WorldWideScience

Sample records for eutrophic temperate lake

  1. Emergent and floating-leaved macrophytes as refuge for zooplankton in a eutrophic temperate lake without submerged vegetation

    DEFF Research Database (Denmark)

    Cazzanelli, Matteo; Perlt, Trine Warming; Christoffersen, Kirsten Seestern

    2008-01-01

    Several studies have shown that submerged macrophytes provide a refuge for zooplankton against fish predation, whereas the role of emergent and floating-leaved species, which are often dominant in eutrophic turbid lakes, is far less investigated. Zooplankton density in open water and amongst....... As a consequence, especially in turbid lakes, the ecological role of these functional types of vegetation, and not merely that of submerged macrophyte species, should be taken into consideration....

  2. Is Lake Chabot Eutrophic?

    Science.gov (United States)

    Pellegrini, K.; Logan, J.; Esterlis, P.; Lew, A.; Nguyen, M.

    2013-12-01

    Introduction/Abstract: Lake Chabot is an integral part of the East Bay watershed that provides habitats for animals and recreation for humans year-round. Lake Chabot has been in danger of eutrophication due to excessive dumping of phosphorous and nitrogen into the water from the fertilizers of nearby golf courses and neighboring houses. If the lake turned out to be eutrophified, it could seriously impact what is currently the standby emergency water supply for many Castro Valley residents. Eutrophication is the excessive richness of nutrients such as nitrogen and phosphorus in a lake, usually as a result of runoff. This buildup of nutrients causes algal blooms. The algae uses up most of the oxygen in the water, and when it dies, it causes the lake to hypoxify. The fish in the lake can't breathe, and consequently suffocate. Other oxygen-dependant aquatic creatures die off as well. Needless to say, the eutrophication of a lake is bad news for the wildlife that lives in or around it. The level of eutrophication in our area in Northern California tends to increase during the late spring/early summer months, so our crew went out and took samples of Lake Chabot on June 2. We focused on the area of the lake where the water enters, known on the map as Honker Bay. We also took readings a ways down in deeper water for comparison's sake. Visually, the lake looked in bad shape. The water was a murky green that glimmered with particulate matter that swirled around the boat as we went by. In the Honker Bay region where we focused our testing, there were reeds bathed in algae that coated the surface of the lake in thick, swirling patterns. Surprisingly enough, however, our test results didn't reveal any extreme levels of phosphorous or nitrogen. They were slightly higher than usual, but not by any significant amount. The levels we found were high enough to stimulate plant and algae growth and promote eutrophication, but not enough to do any severe damage. After a briefing with a

  3. What is the influence of a reduction of planktivorous and benthivorous fish on water quality in temperate eutrophic lakes? A systematic review

    DEFF Research Database (Denmark)

    Bernes, Claes; Carpenter, Stephen R.; Gårdmark, Anna

    2015-01-01

    three years afterwards. Piscivore stocking alone has no significant effect. The response of chlorophyll a levels to biomanipulation is stronger in lakes where fish removal is intense, and in lakes which are small and/or have high pre-manipulation concentrations of total phosphorus. Conclusions: Our......Background: In recent decades, many attempts have been made to restore eutrophic lakes through biomanipulation. Reducing the populations of planktivorous and benthivorous fish (either directly or through stocking of piscivorous fish) may induce ecosystem changes that increase water transparency...... using inclusion criteria set out in an a priori protocol. To reduce the risk of bias, we then critically appraised the combined evidence found on each biomanipulation. Data were extracted on outcomes such as Secchi depth and chlorophyll a concentration before, during and/or after manipulation...

  4. Are all temperate lakes eutrophying in a warmer world?

    Science.gov (United States)

    Paltsev, A.; Creed, I. F.

    2017-12-01

    Freshwater lakes are at risk of eutrophication due to climate change and intensification of human activities on the planet. In relatively undisturbed areas of the temperate forest biome, lakes are "sentinels" of the effects of rising temperatures. We hypothesise that rising temperatures are driving a shift from nutrient-poor oligotrophic states to nutrient-rich eutrophic states. To test this hypothesis, we examined a time series of satellite based chlorophyll-a (a proxy of algal biomass) of 12,000+ lakes over 30 years in the Canadian portion of the Laurentian Great Lakes basin. From the time series, non-stationary trends (detected by Mann-Kendall analysis) and stationary cycles (revealed through Morlet wavelet analysis) were removed, and the standard deviation (SD) of the remaining residuals was used as an indicator of lake stability. Four classes of lake stability were identified: (1) stable (SD is consistently low); (2) destabilizing (SD increases over time); (3) unstable (SD is consistently high); and (4) stabilizing lakes (SD decreases over time). Stable lakes were either oligotrophic or eutrophic indicating the presence of two stable states in the region. Destabilizing lakes were shifting from oligotrophic to lakes with a higher trophic status (indicating eutrophication), unstable lakes were mostly mesotrophic, and stabilizing lakes were shifting from eutrophic to the lakes with lower trophic status (indicating oligotrophication). In contrast to common expectations, while many lakes (2142) were shifting from oligotrophic to eutrophic states, more lakes (3199) were showing the opposite trend and shifting from eutrophic to oligotrophic states. This finding reveals a complexity of lake responses to rising temperatures and the need to improve understanding of why some lakes shift while others do not. Future work is focused on exploring the interactive effects of global, regional, and local drivers of lake trophic states.

  5. Eutrophication potential of Payette Lake, Idaho

    Science.gov (United States)

    Woods, Paul F.

    1997-01-01

    Payette Lake was studied during water years 1995-96 to determine the 20.5-square-kilometer lake's assimilative capacity for nutrients and, thus, its eutrophication potential. The study included quantification of hydrologic and nutrient budgets, characterization of water quality in the limnetic and littoral zones, development of an empirical nutrient load/lake response model, and estimation of the limnological effects of a large-scale forest fire in the lake's 373-square-kilometer watershed during the autumn of 1994. Streamflow from the North Fork Payette River, the lake's primary tributary, delivered about 73 percent of the lake's inflow over the 2 years. Outflow from the lake, measured since 1908, was 128 and 148 percent of the long-term average in 1995 and 1996, respectively. The larger volumes of outflow reduced the long-term average water-

  6. From Greenland to green lakes: Cultural eutrophication and the loss of benthic pathways in lakes

    DEFF Research Database (Denmark)

    Vadeboncoeur, Y.; Jeppesen, E.; Zanden, M. J. V.

    2003-01-01

    Benthic community responses to lake eutrophication are poorly understood relative to pelagic responses. We compared phytoplankton and periphyton productivity along a eutrophication gradient in Greenland, U.S., and Danish lakes. Phytoplankton productivity increased along the phosphorus gradient (t...

  7. Eutrophication monitoring for Lake Superior's Chequamegon ...

    Science.gov (United States)

    A priority for the Lake Superior CSMI was to identify susceptible nearshore eutrophication areas. We developed an integrated sampling design to collect baseline data for Lake Superior’s Chequamegon Bay to understand how nearshore physical processes and tributary loading relate to observed chlorophyll concentrations. Sampling included ship-based water samples combined with vertical CTD casts, continuous in situ towing and data collected from an autonomous underwater glider. Sampling was conducted during June, July and September. The glider collected regional data as part of three extended missions in Lake Superior over the same periods. During the study, two significant storm events impacted the western end of Lake Superior; the first occurred during July 11-12, with 8-10 inches of rain in 24hrs, and the second on July 21 with winds in excess of 161 km/h. Using GIS software, we organized these diverse temporal data sets along a continuous time line with temporally coincident Modis Satellite data to visualize surface sediment plumes in relation to water quality measurements. Preliminary results suggest that both events impacted regional water quality, and that nearshore physical forces (upwelling and currents) influenced the spatial variability. Results comparing in situ measures with remotely sensed images will be discussed. not applicable

  8. Eutrophication of Lake Waters in China: Cost, Causes, and Control

    Science.gov (United States)

    Le, C.; Zha, Y.; Li, Y.; Sun, D.; Lu, H.; Yin, B.

    2010-04-01

    Lake water eutrophication has become one of the most important factors impeding sustainable economic development in China. Knowledge of the current status of lake water eutrophicatoin and determination of its mechanism are prerequisites to devising a sound solution to the problem. Based on reviewing the literature, this paper elaborates on the evolutional process and current state of shallow inland lake water eutrophication in China. The mechanism of lake water eutrophication is explored from nutrient sources. In light of the identified mechanism strategies are proposed to control and tackle lake water eutrophication. This review reveals that water eutrophication in most lakes was initiated in the 1980s when the national economy underwent rapid development. At present, the problem of water eutrophication is still serious, with frequent occurrence of damaging algal blooms, which have disrupted the normal supply of drinking water in shore cities. Each destructive bloom caused a direct economic loss valued at billions of yuan. Nonpoint pollution sources, namely, waste discharge from agricultural fields and nutrients released from floor deposits, are identified as the two major sources of nitrogen and phosphorus. Therefore, all control and rehabilitation measures of lake water eutrophication should target these nutrient sources. Biological measures are recommended to rehabilitate eutrophied lake waters and restore the lake ecosystem in order to bring the problem under control.

  9. Effect of eutrophication on the distribution of arsenic species in eutrophic and mesotrophic lakes

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, H. [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan)], E-mail: hhiroshi@t.kanazawa-u.ac.jp; Rahman, M. Azizur; Matsuda, T.; Kitahara, T.; Maki, T.; Ueda, K. [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan)

    2009-02-01

    Effects of eutrophication on arsenic speciation were studied in eutrophic Lake Kiba and mesotrophic Lake Biwa, Japan. By combining hydride generation atomic absorption spectrometry with ultraviolet irradiation, inorganic, methyl and ultraviolet-labile fractions of arsenic were determined. In both Lakes, inorganic species (As(V + III)) dominated over other forms of arsenic all the year round. Most of methylarsenic fraction was dimethylarsinic acid (DMAA), and the concentration of monomethylarsonic acid (MMAA) was below the detection limit. Measurements of size-fractioned arsenic concentrations in water column indicate that most of the DMAA was distributed in truly dissolved fraction (< 10 kDa), while ultraviolet-labile fractions were distributed in particulate (> 0.45 {mu}m) and colloidal (10 kDa-0.45 {mu}m) fractions. Arsenic speciation in eutrophic Lake Kiba fluctuated greatly with season. The ultraviolet-labile fractions were observed with the increase of DMAA from May to October, and they disappeared with the decrease of DMAA in January. In mesotrophic Lake Biwa, the ultraviolet-labile fractions of arsenic were not influenced as much as those in eutrophic Lake Kiba. On the other hand DMAA concentration was higher in Lake Biwa compared to that in Lake Kiba. The results suggest that the biosynthesis of complex organoarsenicals was enhanced by eutrophication, and the arsenic speciation would be influenced by the balance of biological processes in natural waters.

  10. [Lake eutrophication modeling in considering climatic factors change: a review].

    Science.gov (United States)

    Su, Jie-Qiong; Wang, Xuan; Yang, Zhi-Feng

    2012-11-01

    Climatic factors are considered as the key factors affecting the trophic status and its process in most lakes. Under the background of global climate change, to incorporate the variations of climatic factors into lake eutrophication models could provide solid technical support for the analysis of the trophic evolution trend of lake and the decision-making of lake environment management. This paper analyzed the effects of climatic factors such as air temperature, precipitation, sunlight, and atmosphere on lake eutrophication, and summarized the research results about the lake eutrophication modeling in considering in considering climatic factors change, including the modeling based on statistical analysis, ecological dynamic analysis, system analysis, and intelligent algorithm. The prospective approaches to improve the accuracy of lake eutrophication modeling with the consideration of climatic factors change were put forward, including 1) to strengthen the analysis of the mechanisms related to the effects of climatic factors change on lake trophic status, 2) to identify the appropriate simulation models to generate several scenarios under proper temporal and spatial scales and resolutions, and 3) to integrate the climatic factors change simulation, hydrodynamic model, ecological simulation, and intelligent algorithm into a general modeling system to achieve an accurate prediction of lake eutrophication under climatic change.

  11. Hulun Lake's ecological health and evaluation of its' eutrophication

    Science.gov (United States)

    Li, W.; Yang, W.; Wang, X.; Huang, J.; Sun, B.; Li, X.

    2013-12-01

    Hulun Lake is the largest lake in the north of china. The special geological location determines its important position in regional environmental protection. In terms of Hulun Lake's current situation, this paper chooses the indexes of lake system, lake structure and lake condition. Based on the calculation of these indexes and related theory , the evaluation standards of Hulun Lake's ecological healthy system are worked out. The author used Analytic Hierarchy Process to determine the weight of each indicator layer and criteria layer, and then applied fuzzy-pattern recognition model to calculate, finally, identifying the status of Hulun Lake according to the degrees of all levels. At the same time, the author used an integrated nutrition state index method to do the eutrophication assessment. Evaluation results show that the current status of Hulun Lake is healthy and it is in the moderate level of eutrophication.

  12. Preliminary Data on Eutrophication of Carstic Lakes

    OpenAIRE

    , B. Hoxha; , F. Cane; , M. Avdolli; , A. Dauti

    2016-01-01

    Nutrients play an important role in the health and functioning of aquatic ecosystems. However, an excess of nutrients, particularly phosphorous and nitrogen compounds, can lead to adverse effects on both ecology and uses of receiving waters. This process accelerated by human activities is termed cultural eutrophication, and is recognized as a significant environmental problem. The purpose of this paper is to represent some preliminary data on eutrophication of water bodies from a chemical poi...

  13. Alcian blue-stained particles in a eutrophic lake

    DEFF Research Database (Denmark)

    Worm, J.; Søndergaard, Morten

    1998-01-01

    We used a neutral solution of Alcian Blue to stain transparent particles in eutrophic Lake Frederiksborg Slotss0, Denmark. Alcian Blue-stained particles (ABSP) appeared to be similar to the so-called transparent exopolymer particles (TEP) identified with an acidic solution of Alcian Blue. Our...

  14. Acidity removal from Lusatian mining lakes through eutrophication

    Energy Technology Data Exchange (ETDEWEB)

    Fyson, A.; Nixdorf, B.; Steinberg, C.F.W. [Brandenburg University of Technology, Cottbus (Germany)

    2001-07-01

    The flooded, disused lignite pits of Lusatia in north-eastern Germany are characterised by low pH (2 - 3.5) and high concentrations of iron which contribute to high acidity. Removal of acidity from these lakes using low-cost, environmentally acceptable technologies is being investigated. One option is the enhancement of biologically mediated, alkalinity generating processes, through controlled eutrophication to sustainably increase nutrient cycling and carbon inputs. Although the primary production of these waters is potentially high and diverse algae grow in these lakes, the growth of autotrophic organisms is usually limited by extremely low concentrations of P and inorganic C. Theoretical considerations and laboratory mesocosm results are used to demonstrate the potential productivity of these acid waters and the direct and indirect role of controlled eutrophication in removing acidity. Such data are being used to generate self-sustaining, environmentally friendly, affordable remediation strategies to develop these lakes for recreation and wildlife. 14 refs., 1 tab.

  15. Dissolved organic carbon and its potential predictors in eutrophic lakes.

    Science.gov (United States)

    Toming, Kaire; Kutser, Tiit; Tuvikene, Lea; Viik, Malle; Nõges, Tiina

    2016-10-01

    Understanding of the true role of lakes in the global carbon cycle requires reliable estimates of dissolved organic carbon (DOC) and there is a strong need to develop remote sensing methods for mapping lake carbon content at larger regional and global scales. Part of DOC is optically inactive. Therefore, lake DOC content cannot be mapped directly. The objectives of the current study were to estimate the relationships of DOC and other water and environmental variables in order to find the best proxy for remote sensing mapping of lake DOC. The Boosted Regression Trees approach was used to clarify in which relative proportions different water and environmental variables determine DOC. In a studied large and shallow eutrophic lake the concentrations of DOC and coloured dissolved organic matter (CDOM) were rather high while the seasonal and interannual variability of DOC concentrations was small. The relationships between DOC and other water and environmental variables varied seasonally and interannually and it was challenging to find proxies for describing seasonal cycle of DOC. Chlorophyll a (Chl a), total suspended matter and Secchi depth were correlated with DOC and therefore are possible proxies for remote sensing of seasonal changes of DOC in ice free period, while for long term interannual changes transparency-related variables are relevant as DOC proxies. CDOM did not appear to be a good predictor of the seasonality of DOC concentration in Lake Võrtsjärv since the CDOM-DOC coupling varied seasonally. However, combining the data from Võrtsjärv with the published data from six other eutrophic lakes in the world showed that CDOM was the most powerful predictor of DOC and can be used in remote sensing of DOC concentrations in eutrophic lakes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Could Methane Oxidation in Lakes Be Enhanced by Eutrophication?

    Science.gov (United States)

    Van Grinsven, S.; Villanueva, L.; Harrison, J.; S Sinninghe Damsté, J.

    2017-12-01

    Climate change and eutrophication both affect aquatic ecosystems. Eutrophication is caused by high nutrient inputs, leading to algal blooms, oxygen depletion and disturbances of the natural balances in aquatic systems. Methane, a potent greenhouse gas produced biologically by anaerobic degradation of organic matter, is often released from the sediments of lakes and marine systems to overlying water and the atmosphere. Methane oxidation, a microbial methane consumption process, can limit methane emission from lakes and reservoirs by 50-80%. Here, we studied methane oxidation in a seasonally stratified reservoir: Lacamas Lake in Washington, USA. We found this lake has a large summer storage capacity of methane in its deep water layer, with a very active microbial community capable of oxidizing exceptionally high amounts of methane. The natural presence of terminal electron acceptors is, however, too low to support these high potential rates. Addition of eutrophication-related nutrients such as nitrate and sulfate increased the methane removal rates by 4 to 7-fold. The microbial community was studied using 16S rRNA gene amplicon sequencing and preliminary results indicate the presence of a relatively unknown facultative anaerobic methane oxidizer of the genus Methylomonas, capable of using nitrate as an electron donor. Experiments in which anoxic and oxic conditions were rapidly interchanged showed this facultative anaerobic methane oxidizer has an impressive flexibility towards large, rapid changes in environmental conditions and this feature might be key to the unexpectedly high methane removal rates in eutrophied and anoxic watersheds.

  17. Lake Baikal Ecosystem Faces the Threat of Eutrophication

    Directory of Open Access Journals (Sweden)

    Galina I. Kobanova

    2016-01-01

    Full Text Available Recently there have been reports about large accumulations of algae on the beaches of Lake Baikal, the oldest and deepest freshwater body on earth, near major population centers and in areas with large concentrations of tourists and tourism infrastructure. To evaluate the observations indicating the ongoing process of eutrophication of Lake Baikal, a field study in July 2012 in the two largest bays of Lake Baikal, Barguzinsky and Chivyrkuisky, was organized. The study of phytoplankton using the sedimentary method and quantitative records of accumulations of macrophytes in the surf zone was made. In Chivyrkuisky Bay, we found the massive growth of colorless flagellates and cryptomonads as well as the aggregations of Elodea canadensis along the sandy shoreline (up to 26 kg/m2. Barguzinsky Bay registered abundantly cyanobacterial Anabaena species, cryptomonads, and extremely high biomass of Spirogyra species (up to 70 kg/m3. The results show the presence of local but significant eutrophication of investigated bays. To prevent further extensions of this process in unique ecosystem of Lake Baikal, the detailed study and monitoring of the coastal zone, the identification of the sources of eutrophication, and the development of measures to reduce nutrient inputs in the waters are urgently needed.

  18. Eutrophication status and control strategy of Taihu Lake

    Institute of Scientific and Technical Information of China (English)

    Limin ZHANG; Minfang XIA; Lei ZHANG; Chun WANG; Jilai LU

    2008-01-01

    The water quality and eutrophication status of Taihu Lake in recent years are presented and the pollution trends are analyzed. It is shown that because of unreas-onable industrial structures, pollution discharge per GDP is high within the Taihu basin, and the pollution discharge from point and-non-point sources exceed the basin's environmental carrying capacity. Especially, excessive pollutants containing nitrgogen and phosphorus are being discharged. Moreover, eutrophication may also result from internal pollution sources such as the release of nutrient elements from sediment. All these factors have resulted in-the water quality deterioration of Taihu Lake. To solve this environmental problem, possible con-trol strategies are summarized, including the control of internal pollution sources and inflow-river pollution, eco-logical restoration and reconstruction of the degraded lakeside zone ecosystem, clean water diversion, dredging, and manual algae removal.

  19. Forecasting cyanobacteria dominance in Canadian temperate lakes.

    Science.gov (United States)

    Persaud, Anurani D; Paterson, Andrew M; Dillon, Peter J; Winter, Jennifer G; Palmer, Michelle; Somers, Keith M

    2015-03-15

    Predictive models based on broad scale, spatial surveys typically identify nutrients and climate as the most important predictors of cyanobacteria abundance; however these models generally have low predictive power because at smaller geographic scales numerous other factors may be equally or more important. At the lake level, for example, the ability to forecast cyanobacteria dominance is of tremendous value to lake managers as they can use such models to communicate exposure risks associated with recreational and drinking water use, and possible exposure to algal toxins, in advance of bloom occurrence. We used detailed algal, limnological and meteorological data from two temperate lakes in south-central Ontario, Canada to determine the factors that are closely linked to cyanobacteria dominance, and to develop easy to use models to forecast cyanobacteria biovolume. For Brandy Lake (BL), the strongest and most parsimonious model for forecasting % cyanobacteria biovolume (% CB) included water column stability, hypolimnetic TP, and % cyanobacteria biovolume two weeks prior. For Three Mile Lake (TML), the best model for forecasting % CB included water column stability, hypolimnetic TP concentration, and 7-d mean wind speed. The models for forecasting % CB in BL and TML are fundamentally different in their lag periods (BL = lag 1 model and TML = lag 2 model) and in some predictor variables despite the close proximity of the study lakes. We speculate that three main factors (nutrient concentrations, water transparency and lake morphometry) may have contributed to differences in the models developed, and may account for variation observed in models derived from large spatial surveys. Our results illustrate that while forecast models can be developed to determine when cyanobacteria will dominate within two temperate lakes, the models require detailed, lake-specific calibration to be effective as risk-management tools. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Dynamics of particulate phosphorus in a shallow eutrophic lake

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, Ryuichiro, E-mail: r-shino@nies.go.jp [National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Imai, Akio; Kohzu, Ayato; Tomioka, Noriko [National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Furusato, Eiichi [Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570 (Japan); Satou, Takayuki; Sano, Tomoharu; Komatsu, Kazuhiro; Miura, Shingo; Shimotori, Koichi [National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan)

    2016-09-01

    We tested the hypothesis that in shallow, eutrophic Lake Kasumigaura, the concentration of particulate phosphorus (PP) is controlled by biogenic P (P in living or dead phytoplankton and bacterial cells), rather than by resuspension of inorganic P in sediment. Increases in wind velocity and turbidity were associated with bottom shear stress exceeding the critical value for the lake (τ{sub c} = 0.15 N m{sup −2}); this increased turbidity was due to sediment resuspension. However, concentrations of PP; HCl-extractable, reactive P in PP (P-rP); and HCl-extractable, non-reactive P in PP (P-nrP) were not correlated with wind velocity (PP vs. wind velocity: r = 0.40, p > 0.05). Rather, the P-nrP concentration accounted for approximately 79% of PP, and the concentrations of PP, P-rP, and P-nrP were correlated with the particulate organic carbon (POC) concentration (POC vs. PP: r = 0.90, p < 0.01; POC vs. P-rP: r = 0.82, p < 0.01; POC vs. P-nrP: r = 0.86, p < 0.01). In our {sup 31}P nuclear magnetic resonance spectroscopy results, mononucleotides accounted for the largest proportion among the detected P compound classes. In addition, concentrations of mononucleotides, orthophosphate, and pyrophosphate were significantly higher in samples with high POC concentrations, whereas the DNA-P concentration was not. These results suggest that biogenic P affects PP concentrations more strongly than does sediment resuspension, and the production of biogenic P creates a pool of mononucleotides, a class of easily degradable P, even in shallow, eutrophic Lake Kasumigaura. - Highlights: • Biogenic P affected the PP concentration more than did sediment resuspension. • PP correlated with particulate organic carbon concentration but not wind velocity. • Mononucleotides accounted for the largest P compound class of organic P in PP.

  1. The National Eutrophication Survey: lake characteristics and historical nutrient concentrations

    Directory of Open Access Journals (Sweden)

    J. Stachelek

    2018-01-01

    Full Text Available Historical ecological surveys serve as a baseline and provide context for contemporary research, yet many of these records are not preserved in a way that ensures their long-term usability. The National Eutrophication Survey (NES database is currently only available as scans of the original reports (PDF files with no embedded character information. This limits its searchability, machine readability, and the ability of current and future scientists to systematically evaluate its contents. The NES data were collected by the US Environmental Protection Agency between 1972 and 1975 as part of an effort to investigate eutrophication in freshwater lakes and reservoirs. Although several studies have manually transcribed small portions of the database in support of specific studies, there have been no systematic attempts to transcribe and preserve the database in its entirety. Here we use a combination of automated optical character recognition and manual quality assurance procedures to make these data available for analysis. The performance of the optical character recognition protocol was found to be linked to variation in the quality (clarity of the original documents. For each of the four archival scanned reports, our quality assurance protocol found an error rate between 5.9 and 17 %. The goal of our approach was to strike a balance between efficiency and data quality by combining entry of data by hand with digital transcription technologies. The finished database contains information on the physical characteristics, hydrology, and water quality of about 800 lakes in the contiguous US (Stachelek et al.(2017, https://doi.org/10.5063/F1639MVD. Ultimately, this database could be combined with more recent studies to generate meta-analyses of water quality trends and spatial variation across the continental US.

  2. The National Eutrophication Survey: lake characteristics and historical nutrient concentrations

    Science.gov (United States)

    Stachelek, Joseph; Ford, Chanse; Kincaid, Dustin; King, Katelyn; Miller, Heather; Nagelkirk, Ryan

    2018-01-01

    Historical ecological surveys serve as a baseline and provide context for contemporary research, yet many of these records are not preserved in a way that ensures their long-term usability. The National Eutrophication Survey (NES) database is currently only available as scans of the original reports (PDF files) with no embedded character information. This limits its searchability, machine readability, and the ability of current and future scientists to systematically evaluate its contents. The NES data were collected by the US Environmental Protection Agency between 1972 and 1975 as part of an effort to investigate eutrophication in freshwater lakes and reservoirs. Although several studies have manually transcribed small portions of the database in support of specific studies, there have been no systematic attempts to transcribe and preserve the database in its entirety. Here we use a combination of automated optical character recognition and manual quality assurance procedures to make these data available for analysis. The performance of the optical character recognition protocol was found to be linked to variation in the quality (clarity) of the original documents. For each of the four archival scanned reports, our quality assurance protocol found an error rate between 5.9 and 17 %. The goal of our approach was to strike a balance between efficiency and data quality by combining entry of data by hand with digital transcription technologies. The finished database contains information on the physical characteristics, hydrology, and water quality of about 800 lakes in the contiguous US (Stachelek et al.(2017), https://doi.org/10.5063/F1639MVD). Ultimately, this database could be combined with more recent studies to generate meta-analyses of water quality trends and spatial variation across the continental US.

  3. Editorial - A critical perspective on geo-engineering for eutrophication management in lakes

    NARCIS (Netherlands)

    Lurling, Miguel; Mackay, Eleanor; Reitzel, Kasper; Spears, Bryan M.

    2016-01-01

    Eutrophication is the primary worldwide water quality issue. Reducing excessive external nutrient loading is the most straightforward action in mitigating eutrophication, but lakes, ponds and reservoirs often show little, if any, signs of recovery in the years following external load reduction.

  4. Management of eutrophication in Lake De Kuil (The Netherlands) using combined flocculant - lanthanum modified bentonite treatment

    NARCIS (Netherlands)

    Waaijen, G.; Oosterhout, van F.; Douglas, G.C.; Lurling, M.F.L.L.W.

    2016-01-01

    Eutrophication of Lake De Kuil (The Netherlands, 6.7 ha, maximum depth 9 m) has frequently caused cyanobacterial blooms resulting in swimming bans or the issue of water quality warnings during summer. The eutrophication was mainly driven by sediment phosphorus (P)-release. The external P-loading was

  5. Eutrophication, Nile perch and food-web interactions in south-east Lake Victoria

    NARCIS (Netherlands)

    Cornelissen, I.J.M.

    2015-01-01

    The increasing eutrophication, the introduction of Nile perch (Lates niloticus) and the increasing fishing pressure has changed Lake Victoria tremendously the last century. Since the 1960s, eutrophication increased primary production, enabling an increase in fish production. However,

  6. Precipitation and temperature drive seasonal variation in bioaccumulation of polycyclic aromatic hydrocarbons in the planktonic food webs of a subtropical shallow eutrophic lake in China.

    Science.gov (United States)

    Tao, Yuqiang; Yu, Jing; Xue, Bin; Yao, Shuchun; Wang, Sumin

    2017-04-01

    Hydrophobic organic contaminants (HOCs) are toxic and ubiquitous in aquatic environments and pose great risks to aquatic organisms. Bioaccumulation by plankton is the first step for HOCs to enter aquatic food webs. Trophic status is considered to dominate variations in bioaccumulation of HOCs in plankton in temperate and frigid deep oligotrophic waters. However, long-term driving factors for bioaccumulation of HOCs in planktonic food webs of subtropical shallow eutrophic waters have not been well investigated. China has the largest subtropical lake density in the Northern Hemisphere. Due to limited field data, long-term variations in the bioaccumulation of HOCs in these lakes are almost unknown. Here we take Lake Xuanwu as an example to investigate long-term variations in the bioaccumulation, and biomagnification of polycyclic aromatic hydrocarbon (PAHs) in planktonic food webs of subtropical shallow eutrophic lakes in China, and elucidate the driving factors. Our results indicate that temperature rather than nutrients dominates long-term dynamics of planktonic biomass in this lake. Precipitation significantly enhances the concentrations of the PAHs, and total suspended particles, and consequently affects the distribution of the PAHs in the water column. Biomass dilution induced by temperature dominates bioaccumulation of the PAHs by both phytoplankton and zooplankton (copepods and cladocerans). Biomagnification of the PAHs from phytoplankton to zooplankton is positively correlated with temperature. Our study suggests that temperature and precipitation drive long-term variations in the bioaccumulation of the PAHs in the planktonic food webs of this subtropical shallow eutrophic lake. Lake Xuanwu has a similar mean annual temperature, annual precipitation, sunshine duration, and nutrient levels as other subtropical shallow eutrophic lakes in China. This study may also help to understand the bioaccumulation of HOCs in planktonic food webs of other subtropical shallow

  7. Evidence for the Importance of Atmospheric Nitrogen Deposition to Eutrophic Lake Dianchi, China

    Science.gov (United States)

    Zhan, X.; Bo, Y.; Zhou, F.; Liu, X.; Paerl, H. W.; Shen, J.; Wang, R.; Li, F. R.; Tao, S.; Yanjun, D.; Tang, X.

    2017-12-01

    Elevated atmospheric nitrogen (N) deposition has significantly influenced aquatic ecosystems, especially with regard to their N budgets and phytoplankton growth potentials. Compared to a considerable number of studies on oligotrophic lakes and oceanic waters, little evidence for the importance of N deposition has been generated for eutrophic lakes, even though emphasis has been placed on reducing external N inputs to control eutrophication in these lakes. Our high-resolution observations of atmospheric depositions and riverine inputs of biologically reactive N species into eutrophic Lake Dianchi (the sixth largest freshwater lake in China) shed new light onto the contribution of N deposition to total N loads. Annual N deposition accounted for 15.7% to 16.6% of total N loads under variable precipitation conditions, 2-fold higher than previous estimates (7.6%) for the Lake Dianchi. The proportion of N deposition to total N loads further increased to 27-48% in May and June when toxic blooms of the ubiquitous non-N2 fixing cyanobacteria Microcystis spp. are initiated and proliferate. Our observations reveal that reduced N (59%) contributes a greater amount than oxidized N to total N deposition, reaching 56-83% from late spring to summer. Progress toward mitigating eutrophication in Lake Dianchi and other bloom-impacted eutrophic lakes will be difficult without reductions in ammonia emissions and subsequent N deposition.

  8. Disentangling the effects of a century of eutrophication and climate warming on freshwater lake fish assemblages.

    Directory of Open Access Journals (Sweden)

    Peter C Jacobson

    Full Text Available Eutrophication and climate warming are profoundly affecting fish in many freshwater lakes. Understanding the specific effects of these stressors is critical for development of effective adaptation and remediation strategies for conserving fish populations in a changing environment. Ecological niche models that incorporated the individual effects of nutrient concentration and climate were developed for 25 species of fish sampled in standard gillnet surveys from 1,577 Minnesota lakes. Lake phosphorus concentrations and climates were hindcasted to a pre-disturbance period of 1896-1925 using existing land use models and historical temperature data. Then historical fish assemblages were reconstructed using the ecological niche models. Substantial changes were noted when reconstructed fish assemblages were compared to those from the contemporary period (1981-2010. Disentangling the sometimes opposing, sometimes compounding, effects of eutrophication and climate warming was critical for understanding changes in fish assemblages. Reconstructed abundances of eutrophication-tolerant, warmwater taxa increased in prairie lakes that experienced significant eutrophication and climate warming. Eutrophication-intolerant, warmwater taxa abundance increased in forest lakes where primarily climate warming was the stressor. Coolwater fish declined in abundance in both ecoregions. Large changes in modeled abundance occurred when the effects of both climate and eutrophication operated in the same direction for some species. Conversely, the effects of climate warming and eutrophication operated in opposing directions for other species and dampened net changes in abundance. Quantifying the specific effects of climate and eutrophication will allow water resource managers to better understand how lakes have changed and provide expectations for sustainable fish assemblages in the future.

  9. Eutrophication in the Yunnan Plateau lakes: the influence of lake morphology, watershed land use, and socioeconomic factors.

    Science.gov (United States)

    Liu, Wenzhi; Li, Siyue; Bu, Hongmei; Zhang, Quanfa; Liu, Guihua

    2012-03-01

    Lakes play an important role in socioeconomic development and ecological balance in China, but their water quality has deteriorated considerably in recent decades. In this study, we investigated the spatial-temporal variations of eutrophication parameters (secchi depth, total nitrogen, total phosphorus, chemical oxygen demand, chlorophyll-a, trophic level index, and trophic state index) and their relationships with lake morphology, watershed land use, and socioeconomic factors in the Yunnan Plateau lakes. Results indicated that about 77.8% of lakes were eutrophic according to trophic state index. The plateau lakes showed spatial variations in water quality and could be classified into high-nutrient and low-nutrient groups. However, because watersheds were dominated by vegetation, all eutrophication parameters except chlorophyll-a showed no significant differences between the wet and dry seasons. Lake depth, water residence time, volume, and percentage of built-up land were significantly related to several eutrophication parameters. Agricultural land use and social-economic factors had no significant correlation with all eutrophication parameters. Stepwise regression analyses demonstrated that lake depth and water residence time accounted for 73.8% to 87.6% of the spatial variation of single water quality variables, respectively. Redundancy analyses indicated that lake morphology, watershed land use, and socioeconomic factors together explained 74.3% of the spatial variation in overall water quality. The results imply that water quality degradation in the plateau lakes may be mainly due to the domestic and industrial wastewaters. This study will improve our understanding of the determinants of lake water quality and help to design efficient strategies for controlling eutrophication in the plateau region.

  10. Sedimentary Record of Cladoceran Functionality under Eutrophication and Re-Oligotrophication in Lake Maggiore, Northern Italy

    Directory of Open Access Journals (Sweden)

    Liisa Nevalainen

    2018-01-01

    Full Text Available We examined fossil Cladocera (Crustacea communities and their functional assemblages in a ~60-year sediment record from Lake Maggiore, northern Italy. Our main objective was to document the response of aquatic community functioning to environmental stress during eutrophication (1960–1985 and recovery (post-1985, and to identify environmental controls on cladoceran functionality. Of the functional groups, large filter feeders and oval epibenthos thrived prior to eutrophication (reference conditions pre-1960 and globular epibenthos and small filter feeders increased during eutrophication and as the lake recovered. Multivariate analyses suggested that bottom-up controls (i.e., total phosphorus were important for shaping functional assemblages but taxonomic community changes were likely related to top-down control by predators, particularly the predaceous cladoceran Bythotrephes longimanus. Functional diversity (FD was higher and Daphnia ephippia length (DEL larger during the reference and early eutrophication periods and decreased during eutrophication and recovery. Both FD (high and DEL (large were distinct during reference period, but were similar (FD low, DEL small between the eutrophication and recovery periods. The functional attributes and the assemblages did not recover post-eutrophication, suggesting that the system exhibited a clear shift to low FD and dominance of small filterers. Cladoceran functionality appears to be related to fundamental ecosystem functions, such as productivity, and may thus provide insights for long-term changes in ecological resilience.

  11. Metal accumulation by submerged macrophytes in eutrophic lakes at the watershed scale.

    Science.gov (United States)

    Xing, Wei; Wu, Haoping; Hao, Beibei; Liu, Guihua

    2013-10-01

    Metal concentrations (Al, Ba, Ca, K, Li, Mg, Na, Se, Sr and Ti) in submerged macrophytes and corresponding water and sediments were studied in 24 eutrophic lakes along the middle and lower reaches of the Yangtze River (China). Results showed that these eutrophic lakes have high metal concentrations in both water and sediments because of human activities. Average concentrations of Al and Na in tissues of submerged macrophytes were very high in sampled eutrophic lakes. By comparison, Ceratophyllum demersum and Najas marina accumulated more metals (e.g. Ba, Ca, K, Mg, Na, Sr and Ti). Strong positive correlations were found between metal concentrations in tissues of submerged macrophytes, probably because of co-accumulation of metals. The concentrations of Li, Mg, Na and Sr in tissues of submerged macrophytes significantly correlated with their corresponding water values, but not sediment values.

  12. An Overview of Sediment Organic Matter Records of Human Eutrophication in the Laurentian Great Lakes Region

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, Philip A. [University of Michigan, Department of Geological Sciences (United States)], E-mail: pameyers@umich.ed

    2006-12-15

    The isotopic and molecular compositions of organic matter buried in lake sediments provide information that helps to reconstruct past environmental conditions and to assess impacts of humans on local ecosystems. This overview of sedimentary records from the North American Great Lakes region describes examples of applications of organic geochemistry to paleolimnological reconstructions. These lakes experienced a succession of human-induced environmental changes that started after completion of the Erie Canal in 1825. Agricultural deforestation in the mid-nineteenth century released soil nutrients that increased algal productivity and caused an associated increase in algal biomarkers in sediment records. Eutrophication that accompanied magnified delivery of municipal nutrients to the lakes in the 1960s and 1970s created excursions to less negative {delta}{sup 13}C values in sediment organic matter. Increased organic carbon mass accumulation rates mirror the isotopic evidence of eutrophication in the Great Lakes.

  13. Response of Submerged Macrophyte Communities to External and Internal Restoration Measures in North Temperate Shallow Lakes

    Science.gov (United States)

    Hilt, Sabine; Alirangues Nuñez, Marta M.; Bakker, Elisabeth S.; Blindow, Irmgard; Davidson, Thomas A.; Gillefalk, Mikael; Hansson, Lars-Anders; Janse, Jan H.; Janssen, Annette B. G.; Jeppesen, Erik; Kabus, Timm; Kelly, Andrea; Köhler, Jan; Lauridsen, Torben L.; Mooij, Wolf M.; Noordhuis, Ruurd; Phillips, Geoff; Rücker, Jacqueline; Schuster, Hans-Heinrich; Søndergaard, Martin; Teurlincx, Sven; van de Weyer, Klaus; van Donk, Ellen; Waterstraat, Arno; Willby, Nigel; Sayer, Carl D.

    2018-01-01

    Submerged macrophytes play a key role in north temperate shallow lakes by stabilizing clear-water conditions. Eutrophication has resulted in macrophyte loss and shifts to turbid conditions in many lakes. Considerable efforts have been devoted to shallow lake restoration in many countries, but long-term success depends on a stable recovery of submerged macrophytes. However, recovery patterns vary widely and remain to be fully understood. We hypothesize that reduced external nutrient loading leads to an intermediate recovery state with clear spring and turbid summer conditions similar to the pattern described for eutrophication. In contrast, lake internal restoration measures can result in transient clear-water conditions both in spring and summer and reversals to turbid conditions. Furthermore, we hypothesize that these contrasting restoration measures result in different macrophyte species composition, with added implications for seasonal dynamics due to differences in plant traits. To test these hypotheses, we analyzed data on water quality and submerged macrophytes from 49 north temperate shallow lakes that were in a turbid state and subjected to restoration measures. To study the dynamics of macrophytes during nutrient load reduction, we adapted the ecosystem model PCLake. Our survey and model simulations revealed the existence of an intermediate recovery state upon reduced external nutrient loading, characterized by spring clear-water phases and turbid summers, whereas internal lake restoration measures often resulted in clear-water conditions in spring and summer with returns to turbid conditions after some years. External and internal lake restoration measures resulted in different macrophyte communities. The intermediate recovery state following reduced nutrient loading is characterized by a few macrophyte species (mainly pondweeds) that can resist wave action allowing survival in shallow areas, germinate early in spring, have energy-rich vegetative

  14. Response of Submerged Macrophyte Communities to External and Internal Restoration Measures in North Temperate Shallow Lakes.

    Science.gov (United States)

    Hilt, Sabine; Alirangues Nuñez, Marta M; Bakker, Elisabeth S; Blindow, Irmgard; Davidson, Thomas A; Gillefalk, Mikael; Hansson, Lars-Anders; Janse, Jan H; Janssen, Annette B G; Jeppesen, Erik; Kabus, Timm; Kelly, Andrea; Köhler, Jan; Lauridsen, Torben L; Mooij, Wolf M; Noordhuis, Ruurd; Phillips, Geoff; Rücker, Jacqueline; Schuster, Hans-Heinrich; Søndergaard, Martin; Teurlincx, Sven; van de Weyer, Klaus; van Donk, Ellen; Waterstraat, Arno; Willby, Nigel; Sayer, Carl D

    2018-01-01

    Submerged macrophytes play a key role in north temperate shallow lakes by stabilizing clear-water conditions. Eutrophication has resulted in macrophyte loss and shifts to turbid conditions in many lakes. Considerable efforts have been devoted to shallow lake restoration in many countries, but long-term success depends on a stable recovery of submerged macrophytes. However, recovery patterns vary widely and remain to be fully understood. We hypothesize that reduced external nutrient loading leads to an intermediate recovery state with clear spring and turbid summer conditions similar to the pattern described for eutrophication. In contrast, lake internal restoration measures can result in transient clear-water conditions both in spring and summer and reversals to turbid conditions. Furthermore, we hypothesize that these contrasting restoration measures result in different macrophyte species composition, with added implications for seasonal dynamics due to differences in plant traits. To test these hypotheses, we analyzed data on water quality and submerged macrophytes from 49 north temperate shallow lakes that were in a turbid state and subjected to restoration measures. To study the dynamics of macrophytes during nutrient load reduction, we adapted the ecosystem model PCLake. Our survey and model simulations revealed the existence of an intermediate recovery state upon reduced external nutrient loading, characterized by spring clear-water phases and turbid summers, whereas internal lake restoration measures often resulted in clear-water conditions in spring and summer with returns to turbid conditions after some years. External and internal lake restoration measures resulted in different macrophyte communities. The intermediate recovery state following reduced nutrient loading is characterized by a few macrophyte species (mainly pondweeds) that can resist wave action allowing survival in shallow areas, germinate early in spring, have energy-rich vegetative

  15. Carbon and nitrogen burial in a plateau lake during eutrophication and phytoplankton blooms.

    Science.gov (United States)

    Huang, Changchun; Zhang, Linlin; Li, Yunmei; Lin, Chen; Huang, Tao; Zhang, Mingli; Zhu, A-Xing; Yang, Hao; Wang, Xiaolei

    2018-03-01

    Organic carbon (OC) buried in lake sediment is an important component of the global carbon cycle. The impact of eutrophication on OC burial in lakes should be addressed due to worldwide lake eutrophication. Fourteen 210 Pb- and 137 Cs-dated sediment cores taken in Dianchi Lake (China) in August 2006 (seven cores) and July 2014 (seven cores) were analyzed to evaluate the response of the organic carbon accumulation rate (OCAR) to eutrophication and algal blooms over the past hundred years. The mean value of OCAR before eutrophication occurred in 1979, 16.62±7.53 (mean value±standard deviation), increased to 54.33±27.29gm -2 yr -1 after eutrophication. It further increased to 61.98±28.94gm -2 yr -1 after algal blooms occurred (1989). The accumulation rate of organic nitrogen (ONAR) is coupled with OCAR. The high loss rate of OC and organic nitrogen (ON) leads to a long-term burial efficiency of only 10% and 5% of OC and ON. However, this efficiency can still lead to an increase in OCAR by a factor of 4.55 during algal blooms in Dianchi Lake. Dianchi Lake stored 1.26±0.32 Tg carbon and 0.071±0.018 Tg nitrogen, including 0.94±0.23 Tg OC and 0.32±0.14 Tg inorganic carbon, 0.066±0.018 Tg ON, 0.002±0.001 Tg nitrate nitrogen (NO 3 -N) and 0.003±0.001 Tg ammonium nitrogen (NH 4 -N) between 1900 and 2012. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Interactions between fishes and the structure of fish communities in Dutch shallow, eutrophic lakes

    NARCIS (Netherlands)

    Lammens, E.

    1986-01-01

    This thesis describes the structure of fish communities in Tjeukemeer (21 km 2) and some other surrounding very eutrophic lakes and emphasizes the interactions of the fishes with each other and their food organisms (predation and (exploitative) competition). It is a compilation of seven

  17. Are bacteria an important food source for rotifers in eutrophic lakes?

    NARCIS (Netherlands)

    Ooms-Wilms, A.L.

    1997-01-01

    In situ grazing measurements using fluorescent particles of 0.5, 2.4 and 6.3 mu m diameter in eutrophic Lake Loosdrecht (The Netherlands) showed that Anuraeopsis fissa, a small rotifer, filtered the smallest, bacteria sized particles as efficiently or more efficiently than the larger particles. In

  18. The evolution of the eutrophication of the Palić Lake (Serbia ...

    African Journals Online (AJOL)

    Due to inadequate water quality, it was dried out in 1971 and re-established ... for treated municipal waste waters coming from the lagoons for active sludge ... eutrophication is the enormous amount of sediment at the bottom of the Palic Lake.

  19. Resilience of alternative stable states during the recovery of shallow lakes from eutrophication: Lake Veluwe as a case study

    NARCIS (Netherlands)

    Ibelings, B.W.; Portielje, R.; Lammens, E.H.R.R.; Meijer, M.L.; Noordhuis, R.; van den Berg, Marcel S.; Joosse, W.; Scheffer, M.

    2007-01-01

    In this paper we analyze a long-term dataset on the recovery from eutrophication of Lake Veluwe (The Netherlands). Clear hysteresis was observed in a number of ecosystem variables: the route to recovery differed significantly from the route that led to loss of clear water. The macrophyte dominated

  20. Recovery of lake vegetation following reduced eutrophication and acidification

    DEFF Research Database (Denmark)

    Båstrup-Spohr, Lars; Sand-Jensen, Kaj; Olesen, Sissel C. H.

    2017-01-01

    in pollution control has been successful in terms of markedly improving water quality of lakes and, with a time lag, macrophyte species richness. Although relatively common species have spread across lakes and resulted in homogenised macrophyte communities, continued efforts to reduce pollution could ensure...

  1. Research into the Eutrophication of an Artificial Playground Lake near the Yangtze River

    Directory of Open Access Journals (Sweden)

    Min Pang

    2018-03-01

    Full Text Available Water pollution in urban rivers is serious in China. Eutrophication and other issues are prominent. Taking the artificial Playground Lake in Zhenjiang as an example, a numerical model combining particle tracing, hydrodynamics, water quality and eutrophication was constructed to simulate the water quality improvement in Playground Lake with or without water diversion by pump and sluice. Simulation results using particle tracking showed that the water residence time depended on wind direction: east wind, 125 h; southeast wind, 115 h; south wind, 95 h. With no water diversion, the lower the flow velocity of Playground Lake under three wind fields, the more serious the eutrophication. Under pump diversion, the water body in Playground Lake can be entirely replaced by water diversion for 30 h. When the temperature is lower than 15 °C, from 15 °C to 25 °C and higher than 25 °C, the water quality can be maintained for 15 d, 10 d and 7 d, respectively. During high tide periods of spring tides in the Yangtze River from June to August, the water can be diverted into the lake through sluices. The greater the Δh (the water head between the Yangtze River and Playground Lake, the more the water quality will improve. Overall, the good-to-bad order of water quality improvements for Playground Lake is as follows: pumping 30 h > sluice diversion > no water diversion. This article is relevant for the environmental management of the artificial Playground Lake, and similar lakes elsewhere.

  2. Algal Diet of Small-Bodied Crustacean Zooplankton in a Cyanobacteria-Dominated Eutrophic Lake.

    Directory of Open Access Journals (Sweden)

    Ilmar Tõnno

    Full Text Available Small-bodied cladocerans and cyclopoid copepods are becoming increasingly dominant over large crustacean zooplankton in eutrophic waters where they often coexist with cyanobacterial blooms. However, relatively little is known about their algal diet preferences. We studied grazing selectivity of small crustaceans (the cyclopoid copepods Mesocyclops leuckarti, Thermocyclops oithonoides, Cyclops kolensis, and the cladocerans Daphnia cucullata, Chydorus sphaericus, Bosmina spp. by liquid chromatographic analyses of phytoplankton marker pigments in the shallow, highly eutrophic Lake Võrtsjärv (Estonia during a seasonal cycle. Copepods (mainly C. kolensis preferably consumed cryptophytes (identified by the marker pigment alloxanthin in gut contents during colder periods, while they preferred small non-filamentous diatoms and green algae (identified mainly by diatoxanthin and lutein, respectively from May to September. All studied cladoceran species showed highest selectivity towards colonial cyanobacteria (identified by canthaxanthin. For small C. sphaericus, commonly occuring in the pelagic zone of eutrophic lakes, colonial cyanobacteria can be their major food source, supporting their coexistence with cyanobacterial blooms. Pigments characteristic of filamentous cyanobacteria and diatoms (zeaxanthin and fucoxanthin, respectively, algae dominating in Võrtsjärv, were also found in the grazers' diet but were generally avoided by the crustaceans commonly dominating the zooplankton assemblage. Together these results suggest that the co-occurring small-bodied cyclopoid and cladoceran species have markedly different algal diets and that the cladocera represent the main trophic link transferring cyanobacterial carbon to the food web in a highly eutrophic lake.

  3. Midges as palaeoindicators of lake productivity, eutrophication and hypolimnetic oxygen

    DEFF Research Database (Denmark)

    Brodersen, K. P.; Quinlan, R.

    2006-01-01

    , stratification patterns, water level change, sediment conditions, submerged vegetation and ecological thresholds are all important for interpretation of palaeolimnological trajectories. We use previously published and new data to document how these factors determine, change or preserve the "lake identity" over...

  4. The Geochemical Record of Cultural Eutrophication and Remediation Efforts in Three Connecticut Lakes

    Science.gov (United States)

    Ku, T.; Bourne, H. L.; Tirtajana, S.; Nahar, M.; Kading, T.

    2009-12-01

    Cultural eutrophication is the process whereby human activity increases the amount of nutrients, primarily nitrogen and phosphorous, entering an aquatic ecosystem causing excessive biological growth. To reverse or decelerate cultural eutrophication, many regulatory agencies have implemented stringent laws intended to lower the flux of nutrients into impacted water bodies or have emplaced internal remediation systems designed to decrease primary productivity. To quantify the effects of cultural eutrophication and remediation efforts, we examined sedimentary histories of three eutrophic Connecticut lakes that record the transition from pre-anthropogenic conditions into eutrophication and through recent remediation. The three Connecticut lakes (Lake Waramaug, Beseck Lake, and Amos Lake) represent a range of remediation activities. Since 1983, Lake Waramaug has been the focus of significant remediation efforts including the installation of three hypolimnetic withdrawal / layer aeration systems, zoning regulations to limit runoff, and the stocking and seeding of fish and zooplankton. Beseck Lake has experienced episodic eutrophic conditions, in part due to failing septic systems, and in 2001, 433 residences were converted from septic systems to a city sewer system. Amos Lake serves as a cultural eutrophication end member as it has not has received any major remediation. Multiple freeze and gravity cores were collected from 2005-2008. Radiocarbon, Pb-210, Cs-137, Hg, and Pb measurements determined sediment ages. Organic C accumulation rates, C/N ratios, organic matter delta-15N, bulk sediment Fe and Al concentrations, and P speciation (labile, iron-bound, aluminum-bound, organic, and total) determined sediment and nutrient sources and accumulations. Dithionite-extractable iron, pyrite S, and pyrite delta-34S provided insight into changes in P-Fe-S cycling. The sediment cores represent the last few hundreds of years of lake history and, importantly, some Lake Waramaug

  5. Lake eutrophication and its implications for organic carbon sequestration in Europe.

    Science.gov (United States)

    Anderson, N J; Bennion, H; Lotter, A F

    2014-09-01

    The eutrophication of lowland lakes in Europe by excess nitrogen (N) and phosphorus (P) is severe because of the long history of land-cover change and agricultural intensification. The ecological and socio-economic effects of eutrophication are well understood but its effect on organic carbon (OC) sequestration by lakes and its change overtime has not been determined. Here, we compile data from ~90 culturally impacted European lakes [~60% are eutrophic, Total P (TP) >30 μg P l(-1) ] and determine the extent to which OC burial rates have increased over the past 100-150 years. The average focussing corrected, OC accumulation rate (C ARFC ) for the period 1950-1990 was ~60 g C m(-2) yr(-1) , and for lakes with >100 μg TP l(-1) the average was ~100 g C m(-2) yr(-1) . The ratio of post-1950 to 1900-1950 C AR is low (~1.5) indicating that C accumulation rates have been high throughout the 20th century. Compared to background estimates of OC burial (~5-10 g C m(-2) yr(-1) ), contemporary rates have increased by at least four to fivefold. The statistical relationship between C ARFC and TP derived from this study (r(2) = 0.5) can be used to estimate OC burial at sites lacking estimates of sediment C-burial. The implications of eutrophication, diagenesis, lake morphometry and sediment focussing as controls of OC burial rates are considered. A conservative interpretation of the results of the this study suggests that lowland European meso- to eutrophic lakes with >30 μg TP l(-1) had OC burial rates in excess of 50 g C m(-2) yr(-1) over the past century, indicating that previous estimates of regional lake OC burial have seriously underestimated their contribution to European carbon sequestration. Enhanced OC burial by lakes is one positive side-effect of the otherwise negative impact of the anthropogenic disruption of nutrient cycles. © 2014 John Wiley & Sons Ltd.

  6. Temperature and cyanobacterial bloom biomass influence phosphorous cycling in eutrophic lake sediments.

    Directory of Open Access Journals (Sweden)

    Mo Chen

    Full Text Available Cyanobacterial blooms frequently occur in freshwater lakes, subsequently, substantial amounts of decaying cyanobacterial bloom biomass (CBB settles onto the lake sediments where anaerobic mineralization reactions prevail. Coupled Fe/S cycling processes can influence the mobilization of phosphorus (P in sediments, with high releases often resulting in eutrophication. To better understand eutrophication in Lake Taihu (PRC, we investigated the effects of CBB and temperature on phosphorus cycling in lake sediments. Results indicated that added CBB not only enhanced sedimentary iron reduction, but also resulted in a change from net sulfur oxidation to sulfate reduction, which jointly resulted in a spike of soluble Fe(II and the formation of FeS/FeS2. Phosphate release was also enhanced with CBB amendment along with increases in reduced sulfur. Further release of phosphate was associated with increases in incubation temperature. In addition, CBB amendment resulted in a shift in P from the Fe-adsorbed P and the relatively unreactive Residual-P pools to the more reactive Al-adsorbed P, Ca-bound P and organic-P pools. Phosphorus cycling rates increased on addition of CBB and were higher at elevated temperatures, resulting in increased phosphorus release from sediments. These findings suggest that settling of CBB into sediments will likely increase the extent of eutrophication in aquatic environments and these processes will be magnified at higher temperatures.

  7. Management of eutrophication in Lake De Kuil (The Netherlands) using combined flocculant – Lanthanum modified bentonite treatment

    NARCIS (Netherlands)

    Waajen, Guido; van Oosterhout, Frank; Douglas, Grant; Lürling, Miquel

    2016-01-01

    Abstract Eutrophication of Lake De Kuil (The Netherlands, 6.7 ha, maximum depth 9 m) has frequently caused cyanobacterial blooms resulting in swimming bans or the issue of water quality warnings during summer. The eutrophication was mainly driven by sediment phosphorus (P)-release. The external

  8. Editorial - A critical perspective on geo-engineering for eutrophication management in lakes.

    Science.gov (United States)

    Lürling, Miquel; Mackay, Eleanor; Reitzel, Kasper; Spears, Bryan M

    2016-06-15

    Eutrophication is the primary worldwide water quality issue. Reducing excessive external nutrient loading is the most straightforward action in mitigating eutrophication, but lakes, ponds and reservoirs often show little, if any, signs of recovery in the years following external load reduction. This is due to internal cycling of phosphorus (P). Geo-engineering, which we can here define as activities intervening with biogeochemical cycles to control eutrophication in inland waters, represents a promising approach, under appropriate conditions, to reduce P release from bed sediments and cyanobacteria accumulation in surface waters, thereby speeding up recovery. In this overview, we draw on evidence from this special issue Geoengineering in Lakes, and on supporting literature to provide a critical perspective on the approach. We demonstrate that many of the strong P sorbents in the literature will not be applicable in the field because of costs and other constraints. Aluminium and lanthanum modified compounds are among the most effective compounds for targeting P. Flocculants and ballast compounds can be used to sink cyanobacteria, in the short term. We emphasize that the first step in managing eutrophication is a system analysis that will reveal the main water and P flows and the biological structure of the waterbody. These site specific traits can be significant confounding factors dictating successful eutrophication management. Geo-engineering techniques, considered collectively, as part of a tool kit, may ensure successful management of eutrophication through a range of target effects. In addition, novel developments in modified zeolites offer simultaneous P and nitrogen control. To facilitate research and reduce the delay from concept to market a multi-national centre of excellence is required. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Editorial - A critical perspective on geo-engineering for eutrophication management in lakes

    DEFF Research Database (Denmark)

    Lürling, Miquel; Mackay, Eleanor; Reitzel, Kasper

    2016-01-01

    Eutrophication is the primary worldwide water quality issue. Reducing excessive external nutrient loading is the most straightforward action in mitigating eutrophication, but lakes, ponds and reservoirs often show little, if any, signs of recovery in the years following external load reduction...... accumulation in surface waters, thereby speeding up recovery. In this overview, we draw on evidence from this special issue Geoengineering in Lakes, and on supporting literature to provide a critical perspective on the approach. We demonstrate that many of the strong P sorbents in the literature...... will not be applicable in the field because of costs and other constraints. Aluminium and lanthanum modified compounds are among the most effective compounds for targeting P. Flocculants and ballast compounds can be used to sink cyanobacteria, in the short term. We emphasize that the first step in managing...

  10. Eutrophication of lakes and reservoirs: A framework for making management decisions

    Science.gov (United States)

    Rast, W.; Holland, M.

    1988-01-01

    The development of management strategies for the protection of environmental quality usually involves consideration both of technical and nontechnical issues. A logical, step-by-step framework for development of such strategies is provided. Its application to the control of cultured eutrophication of lakes and reservoirs illustrates its potential usefulness. From the perspective of the policymaker, the main consideration is that the eutrophication-related water quality of a lake or reservoir can be managed for given water uses. The approach presented here allows the rational assessment of relevant water-quality parameters and establishment of water-quality goals, consideration of social and other nontechnical issues, the possibilities of public involvement in the decision-making process, and a reasonable economic analysis within a management framework.

  11. Eutrophication in Poyang Lake (Eastern China over the Last 300 Years in Response to Changes in Climate and Lake Biomass.

    Directory of Open Access Journals (Sweden)

    Mengna Liao

    Full Text Available Poyang Lake is suffering from persistent eutrophication, which is degrading the local ecosystem. A better understanding of the mechanisms that drive eutrophication in lake systems is essential to fight the ongoing deterioration. In this study, hydraulic residence time (HRT was used to evaluate Poyang Lake's trophic state. A hydrology and ecosystem forced model was constructed to simulate long-term changes in algae and aquatic plant biomass and total phosphorous (TP. A comparison analysis revealed that between 1812 and 1828 (i.e., a consistent-change stage, climate and hydrology were the main driving forces, while algae and aquatic plant biomass contributed only 20.9% to the trophic changes in Poyang Lake. However, between 1844 and 1860 the biomass predominated contributing 63.6%. This could be attributed to nutrient absorption by algae and aquatic plants. A correlation analysis of the water TP and algae and aquatic plant biomass revealed a strong positive relationship. However, the algae and aquatic plant growth rate tended to decline after the biomass reached half of the maximum. This research reconstructs the long-term trophic evolution of Poyang Lake and provides a better understanding of the relationship between climatic and hydrological changes and lake ecosystems.

  12. Eutrophication in Poyang Lake (Eastern China) over the Last 300 Years in Response to Changes in Climate and Lake Biomass.

    Science.gov (United States)

    Liao, Mengna; Yu, Ge; Guo, Ya

    2017-01-01

    Poyang Lake is suffering from persistent eutrophication, which is degrading the local ecosystem. A better understanding of the mechanisms that drive eutrophication in lake systems is essential to fight the ongoing deterioration. In this study, hydraulic residence time (HRT) was used to evaluate Poyang Lake's trophic state. A hydrology and ecosystem forced model was constructed to simulate long-term changes in algae and aquatic plant biomass and total phosphorous (TP). A comparison analysis revealed that between 1812 and 1828 (i.e., a consistent-change stage), climate and hydrology were the main driving forces, while algae and aquatic plant biomass contributed only 20.9% to the trophic changes in Poyang Lake. However, between 1844 and 1860 the biomass predominated contributing 63.6%. This could be attributed to nutrient absorption by algae and aquatic plants. A correlation analysis of the water TP and algae and aquatic plant biomass revealed a strong positive relationship. However, the algae and aquatic plant growth rate tended to decline after the biomass reached half of the maximum. This research reconstructs the long-term trophic evolution of Poyang Lake and provides a better understanding of the relationship between climatic and hydrological changes and lake ecosystems.

  13. Mercury emission from a temperate lake during autumn turnover

    International Nuclear Information System (INIS)

    Wollenberg, Jennifer L.; Peters, Stephen C.

    2009-01-01

    Lakes in temperate regions stratify during summer and winter months, creating distinct layers of water differentiated by their physical and chemical characteristics. When lakes mix in autumn and spring, mercury cycling may be affected by the chemical changes that occur during mixing. Sampling was conducted in Lake Lacawac, Eastern Pennsylvania, USA, throughout the autumn of 2007 to characterize changes in emission of gaseous elemental mercury (Hg 0 ) from the lake surface and dissolved mercury profiles in the water column during mixing. Water chemistry and weather parameters were also measured, including dissolved organic carbon (DOC), iron, and solar radiation which have been shown to interact with mercury species. Results indicate that emission of Hg 0 from the lake to the atmosphere during turnover was controlled both by solar radiation and by surface water mercury concentration. As autumn turnover progressed through the months of October and November, higher mercury concentration water from the hypolimnion mixed with epilimnetic water, increasing mercury concentration in epilimnetic waters. Dissolved absorbance was significantly correlated with mercury concentrations and with iron, but DOC concentrations were essentially constant throughout the study period and did not exhibit a relationship with either dissolved mercury concentrations or emission rates. Positive correlations between dissolved mercury and iron and manganese also suggest a role for these elements in mercury transport within the lake, but iron and manganese did not demonstrate a relationship with emission rates. This research indicates that consideration of seasonal processes in lakes is important when evaluating mercury cycling in aquatic systems

  14. Phytoplankton Diversity Effects on Community Biomass and Stability along Nutrient Gradients in a Eutrophic Lake

    Directory of Open Access Journals (Sweden)

    Wang Tian

    2017-01-01

    Full Text Available The relationship between biodiversity and ecosystem functioning is a central issue in ecology, but how this relationship is affected by nutrient stress is still unknown. In this study, we analyzed the phytoplankton diversity effects on community biomass and stability along nutrient gradients in an artificial eutrophic lake. Four nutrient gradients, varying from slightly eutrophic to highly eutrophic states, were designed by adjusting the amount of polluted water that flowed into the lake. Mean phytoplankton biomass, species richness, and Shannon diversity index all showed significant differences among the four nutrient gradients. Phytoplankton community biomass was correlated with diversity (both species richness and Shannon diversity index, varying from positive to negative along the nutrient gradients. The influence of phytoplankton species richness on resource use efficiency (RUE also changed from positive to negative along the nutrient gradients. However, the influence of phytoplankton Shannon diversity on RUE was not significant. Both phytoplankton species richness and Shannon diversity had a negative influence on community turnover (measured as community dissimilarity, i.e., a positive diversity–stability relationship. Furthermore, phytoplankton spatial stability decreased along the nutrient gradients in the lake. With increasing nutrient concentrations, the variability (standard deviation of phytoplankton community biomass increased more rapidly than the average total biomass. Results in this study will be helpful in understanding the phytoplankton diversity effects on ecosystem functioning and how these effects are influenced by nutrient conditions in aquatic ecosystems.

  15. Eutrophication and warming effects on long-term variation of zooplankton in Lake Biwa

    Directory of Open Access Journals (Sweden)

    C. H. Hsieh

    2011-05-01

    Full Text Available We compiled and analyzed long-term (1961–2005 zooplankton community data in response to environmental variations in Lake Biwa. Environmental data indicate that Lake Biwa had experienced eutrophication (according to the total phosphorus concentration in the late 1960s and recovered to a normal trophic status around 1985, and then has exhibited warming since 1990. Total zooplankton abundance showed a significant correlation with total phytoplankton biomass. Following a classic pattern, the cladoceran/calanoid and cyclopoid/calanoid abundance ratio was related positively to eutrophication. The zooplankton community exhibited a significant response to the boom and bust of phytoplankton biomass as a consequence of eutrophication-reoligotriphication and warming. Moreover, our analyses suggest that the Lake Biwa ecosystem exhibited a hierarchical response across trophic levels; that is, higher trophic levels may show a more delayed response or no response to eutrophication than lower ones.

    We tested the hypothesis that the phytoplankton community can better explain the variation of the zooplankton community than bulk environmental variables, considering that the phytoplankton community may directly affect the zooplankton succession through predator-prey interactions. Using a variance partition approach, however, we did not find strong evidence to support this hypothesis. We further aggregated zooplankton according to their feeding types (herbivorous, carnivorous, omnivorous, and parasitic and taxonomic groups, and analyzed the aggregated data. While the pattern remains similar, the results are less clear comparing the results based on finely resolved data. Our research suggests that zooplankton can be bio-indicators of environmental changes; however, the efficacy depends on data resolution.

  16. Restoration of Eutrophic Lakes with Fluctuating Water Levels: A 20-Year Monitoring Study of Two Inter-Connected Lakes

    Directory of Open Access Journals (Sweden)

    Meryem Beklioğlu

    2017-02-01

    Full Text Available Eutrophication continues to be the most important problem preventing a favorable environmental state and detrimentally impacting the ecosystem services of lakes. The current study describes the results of analyses of 20 year monitoring data from two interconnected Anatolian lakes, Lakes Mogan and Eymir, receiving sewage effluents and undergoing restoration. The first step of restoration in both lakes was sewage effluent diversion. Additionally, in hypertrophic Lake Eymir, biomanipulation was conducted, involving removal of benthi-planktivorous fish and prohibition of pike fishing. The monitoring period included high (H and low (L water levels (WL enabling elucidation of the effects of hydrological changes on lake restoration. In shallower Lake Mogan, macrophyte abundance increased after the sewage effluent diversion in periods with low water levels even at turbid water. In comparatively deeper Lake Eymir, the first biomanipulation led to a clear water state with abundant macrophyte coverage. However, shortly after biomanipulation, the water clarity declined, coinciding with low water level (LWL periods during which nutrient concentrations increased. A second biomanipulation was conducted, mostly during high water level (HWL period, resulting in a major decrease in nutrient concentrations and clearer water, but without an expansion of macrophytes. We conclude that repetitive fish removal may induce recovery but its success may be confounded by high availability of nutrients and adverse hydrological conditions.

  17. Floating rice-culture system for nutrient remediation and feed production in a eutrophic lake.

    Science.gov (United States)

    Srivastava, Ankita; Chun, Seong-Jun; Ko, So-Ra; Kim, Junhwan; Ahn, Chi-Yong; Oh, Hee-Mock

    2017-12-01

    The increased inputs of nutrients have been demonstrated to be a major contributing factor to the eutrophication of lakes and reservoirs which can lead to the production of harmful algal/cyanobacterial blooms and deleteriously affect the aesthetics of water-bodies. Floating plant-culture systems have been widely used for the ecological remediation of eutrophic water in a cost-effective manner. We investigated the applicability of Korean japonica rice variety 'Nampyeong' in a floating-culture system in a eutrophic lake for nutrient uptake and biomass production. Chemical and organic compound compositions were analyzed two times during the growth stages of the rice plant: 98 DAT (days after transplanting) and 165 DAT. Total nitrogen and phosphorus contributed around 1.36 and 0.15 (% dry weight), respectively, in rice plant components at 165 DAT. Crude protein, lipids, fiber and ash were 4.35, 1.91, 23.66 and 5.55 (% dry weight), respectively. In addition, microcystin levels in the rice plant components ranged from 0.0008 to 0.002 μg/g and did not exceed the recommended tolerable limits. These results suggested that the developed floating rice-culture system showed a good potential as a holistic management approach in terms of nutrient reduction, rice production for further use as feed and for bloom control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Sediment nitrogen cycling rates and microbial abundance along a submerged vegetation gradient in a eutrophic lake.

    Science.gov (United States)

    Yao, Lu; Chen, Chengrong; Liu, Guihua; Liu, Wenzhi

    2018-03-01

    Decline of submerged vegetation is one of the most serious ecological problems in eutrophic lakes worldwide. Although restoration of submerged vegetation is widely assumed to enhance ecological functions (e.g., nitrogen removal) and aquatic biodiversity, the evidence for this assumption is very limited. Here, we investigated the spatio-temporal patterns of sediment potential nitrification, unamended denitrification and N 2 O production rates along a vegetation gradient in the Lake Honghu, where submerged vegetation was largely restored by prohibiting net-pen aquaculture. We also used five functional genes as markers to quantify the abundance of sediment nitrifying and denitrifying microorganisms. Results showed that unvegetated sediments supported greater nitrification rates than rhizosphere sediments of perennial or seasonal vegetation. However, the absence of submerged vegetation had no significant effect on denitrification and N 2 O production rates. Additionally, the abundance of functional microorganisms in sediments was not significantly different among vegetation types. Season had a strong effect on both nitrogen cycling processes and microbial abundances. The highest nitrification rates were observed in September, while the highest denitrification rates occurred in December. The temporal variation of sediment nitrification, denitrification and N 2 O production rates could be due to changes in water quality and sediment properties rather than submerged vegetation and microbial abundances. Our findings highlight that vegetation restoration in eutrophic lakes improves water quality but does not enhance sediment nitrogen removal rates and microbial abundances. Therefore, for reducing the N level in eutrophic lakes, major efforts should be made to control nutrients export from terrestrial ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Macrophytes and periphyton carbon subsidies to bacterioplankton and zooplankton in a shallow eutrophic lake in tropical China

    NARCIS (Netherlands)

    de Kluijver, A.; Ning, J.; Liu, Z.; Jeppesen, E.; Gulati, R.D.; Middelburg, J.J.

    The subsidy of carbon derived from macrophytes and associated periphyton to bacterioplankton and zooplankton in subtropical shallow eutrophic Huizhou West Lake in China was analyzed using carbon stable isotope signatures. A restored part of the lake dominated by macrophytes was compared with an

  20. Macrophytes and periphyton carbon subsidies to bacterioplankton and zooplankton in a shallow eutrophic lake in tropical China

    NARCIS (Netherlands)

    de Kluijver, A.; Ning, J.; Liu, Z.; Jeppesen, E.; Gulati, R.D.; Middelburg, J.J.

    2015-01-01

    The subsidy of carbon derived from macrophytes and associated periphyton to bacterioplankton and zooplankton in subtropical shallow eutrophic Huizhou West Lake in China was analyzed using carbon stable isotope signatures. A restored part of the lake dominated by macrophytes was compared with an

  1. Seasonal Variation of Eutrophication in Some Lakes of Danube Delta Biosphere Reserve.

    Science.gov (United States)

    Török, Liliana; Török, Zsolt; Carstea, Elfrida M; Savastru, Dan

    2017-01-01

      To understand the trophic state of lakes, this study aims to determine the dynamics of phytoplankton assemblages and the main factors that influence their seasonal variation. Sampling campaigns were carried out in three lakes from the Danube Delta Biosphere Reserve. Spectral analysis of specific phytoplankton pigments was applied as a diagnostic marker to establish the distribution and composition of phytoplankton taxonomic groups. Fluorescence spectroscopy was used to quantify changes in dissolved organic matter (DOM). The relative contribution of the main phytoplankton groups to the total phytoplankton biomass and the trend of development during succession of the seasons showed that cyanobacteria could raise potential ecological or human health problems. Moreover, fluorescence spectroscopy revealed that Cryptophyta and cyanobacteria were the main contributors to the protein-like components of DOM. It was concluded that fluorescence could be used to provide a qualitative evaluation of the eutrophication degree in Danube Delta lakes.

  2. Variations of alkaline phosphatase activity and P fractions in sediments of a shallow Chinese eutrophic lake (Lake Taihu)

    International Nuclear Information System (INIS)

    Zhang Tingxi; Wang Xiaorong; Jin Xiangcan

    2007-01-01

    The distribution of alkaline phosphatase activity (APA) and P fractions in sediment cores and the relationship between them were studied in a shallow Chinese freshwater lake (Lake Taihu). Sediment cores were collected from four sites, characterized by different degrees of eutrophication in June 2004. Sediment P was fractionated into Fe/Al-P, Ca-P, organic P (OP), inorganic P (IP) and total P (TP). The former two species made the largest contribution to the sediment P pool. Results show that trophic status and hydrological conditions have great impact on the APA of the sediments. The order of the APA in sediments was conjectured to be: macrophyte dominated lake > transitional lake > algal dominated lake. APA profiles follow a similar downcore decreasing trend. There was a positive relationship between the APA and the TP, IP. The multiple linear regression equation of the APA and P fractions is: APA = -97 + 0.768TP - 0.985Fe/Al-P. - Characteristics of the alkaline phosphatase activity and P fractions in sediments of different trophic status lake were studied in Lake Taihu

  3. A bibliometric review of nitrogen research in eutrophic lakes and reservoirs.

    Science.gov (United States)

    Yao, Xiaolong; Zhang, Yunlin; Zhang, Lu; Zhou, Yongqiang

    2018-04-01

    The global application of nitrogen is far greater than phosphorus, and it is widely involved in the eutrophication of lakes and reservoirs. We used a bibliometric method to quantitatively and qualitatively evaluate nitrogen research in eutrophic lakes and reservoirs to reveal research developments, current research hotspots, and emerging trends in this area. A total of 2695 articles in the past 25years from the online database of the Scientific Citation Index Expended (SCI-Expanded) were analyzed. Articles in this area increased exponentially from 1991 to 2015. Although the USA was the most productive country over the past 25years, China achieved the top position in terms of yearly publications after 2010. The most active keywords related to nitrogen in the past 25years included phosphorus, nutrients, sediment, chlorophyll-a, carbon, phytoplankton, cyanobacteria, water quality, modeling, and stable isotopes, based on analysis within 5-year intervals from 1991 to 2015 as well as the entire past 25years. In addition, researchers have drawn increasing attention to denitrification, climate change, and internal loading. Future trends in this area should focus on: (1) nutrient amounts, ratios, and major nitrogen sources leading to eutrophication; (2) nitrogen transformation and the bioavailability of different nitrogen forms; (3) nitrogen budget, mass balance model, control, and management; (4) ecosystem responses to nitrogen enrichment and reduction, as well as the relationships between these responses; and (5) interactions between nitrogen and other stressors (e.g., light intensity, carbon, phosphorus, toxic contaminants, climate change, and hydrological variations) in terms of eutrophication. Copyright © 2017. Published by Elsevier B.V.

  4. Spatiotemporal variability of carbon dioxide and methane in a eutrophic lake

    Science.gov (United States)

    Loken, Luke; Crawford, John; Schramm, Paul; Stadler, Philipp; Stanley, Emily

    2017-04-01

    Lakes are important regulators of global carbon cycling and conduits of greenhouse gases to the atmosphere; however, most efflux estimates for individual lakes are based on extrapolations from a single location. Within-lake variability in carbon dioxide (CO2) and methane (CH4) arises from differences in water sources, physical mixing, and local transformations; all of which can be influenced by anthropogenic disturbances and vary at multiple temporal and spatial scales. During the 2016 open water season (March - December), we mapped surface water concentrations of CO2 and CH4 weekly in a eutrophic lake (Lake Mendota, WI, USA), which has a predominately agricultural and urban watershed. In total we produced 26 maps of each gas based on 10,000 point measurements distributed across the lake surface. Both gases displayed relatively consistent spatial patterns over the stratified period but exhibited remarkable heterogeneity on each sample date. CO2 was generally undersaturated (global mean: 0.84X atmospheric saturation) throughout the lake's pelagic zone and often differed near river inlets and shorelines. The lake was routinely extremely supersaturated with CH4 (global mean: 105X atmospheric saturation) with greater concentrations in littoral areas that contained organic-rich sediments. During fall mixis, both CO2 and CH4 increased substantially, and concentrations were not uniform across the lake surface. CO2 and CH4 were higher on the upwind side of the lake due to upwelling of enriched hypolimnetic water. While the lake acted as a modest sink for atmospheric CO2 during the stratified period, the lake released substantial amounts of CO2 during turnover and continually emitted CH4, offsetting any reduction in atmospheric warming potential from summertime CO2 uptake. These data-rich maps illustrate how lake-wide surface concentrations and lake-scale efflux estimates based on single point measurements diverge from spatially weighted calculations. Both gases are not

  5. Eutrophication potential of lakes: an integrated analysis of trophic state, morphometry, land occupation, and land use

    Directory of Open Access Journals (Sweden)

    RF Silvino

    Full Text Available AbstractDespite being inside a protected area, Lake Sumidouro has been impacted by the anthropogenic occupation of the surrounding area since the 1970’s, compromising the ecological integrity of the lake and the sustainable use of natural resources. This study examined the current trophic classification of the lake and developed methods for improving it through an integrated analysis of morphometric and limnological parameters, land use and land occupation in the watershed, and eutrophication potential. Data for the limnological parameters, land use and land occupation, and morphometric characteristics of Lake Sumidouro were collected in the rainy and dry seasons of 2009 and 2010. Depending on the trophic classification system used, Lake Sumidouro is classified as oligotrophic to hypereutrophic. In our study, the highest concentration of nutrients occurred in the rainy season, indicating that high nutrient inputs played an important role during this period. Areas of anthropogenic occupation comprised approximately 62.9% of the total area of the watershed, with pasture and urban settlement as the main types of land use. The influent total phosphorus load was estimated to be 15,824.3 kg/year. To maintain mesotrophic conditions, this load must be reduced by 29.4%. By comparing the isolated use of trophic state indices, this study demonstrated that comparing the trophic state classification with morphometric analyses, land use and land occupation types in the watershed, and potential phosphorus load provided better information to guide management actions for restoration and conservation. Furthermore, this approach also allowed for evaluating the vulnerability of the environment to the eutrophication process.

  6. Prediction of Chl-a concentrations in an eutrophic lake using ANN models with hybrid inputs

    Science.gov (United States)

    Aksoy, A.; Yuzugullu, O.

    2017-12-01

    Chlorophyll-a (Chl-a) concentrations in water bodies exhibit both spatial and temporal variations. As a result, frequent sampling is required with higher number of samples. This motivates the use of remote sensing as a monitoring tool. Yet, prediction performances of models that convert radiance values into Chl-a concentrations can be poor in shallow lakes. In this study, Chl-a concentrations in Lake Eymir, a shallow eutrophic lake in Ankara (Turkey), are determined using artificial neural network (ANN) models that use hybrid inputs composed of water quality and meteorological data as well as remotely sensed radiance values to improve prediction performance. Following a screening based on multi-collinearity and principal component analysis (PCA), dissolved-oxygen concentration (DO), pH, turbidity, and humidity were selected among several parameters as the constituents of the hybrid input dataset. Radiance values were obtained from QuickBird-2 satellite. Conversion of the hybrid input into Chl-a concentrations were studied for two different periods in the lake. ANN models were successful in predicting Chl-a concentrations. Yet, prediction performance declined for low Chl-a concentrations in the lake. In general, models with hybrid inputs were superior over the ones that solely used remotely sensed data.

  7. Assessing and addressing the re-eutrophication of Lake Erie: central basin hypoxia

    Science.gov (United States)

    Scavia, Donald; Allan, J. David; Arend, Kristin K.; Bartell, Steven; Beletsky, Dmitry; Bosch, Nate S.; Brandt, Stephen B.; Briland, Ruth D.; Daloğlu, Irem; DePinto, Joseph V.; Dolan, David M.; Evans, Mary Anne; Farmer, Troy M.; Goto, Daisuke; Han, Haejin; Höök, Tomas O.; Knight, Roger; Ludsin, Stuart A.; Mason, Doran; Michalak, Anna M.; Richards, R. Peter; Roberts, James J.; Rucinski, Daniel K.; Rutherford, Edward; Schwab, David J.; Sesterhenn, Timothy M.; Zhang, Hongyan; Zhou, Yuntao

    2014-01-01

    Relieving phosphorus loading is a key management tool for controlling Lake Erie eutrophication. During the 1960s and 1970s, increased phosphorus inputs degraded water quality and reduced central basin hypolimnetic oxygen levels which, in turn, eliminated thermal habitat vital to cold-water organisms and contributed to the extirpation of important benthic macroinvertebrate prey species for fishes. In response to load reductions initiated in 1972, Lake Erie responded quickly with reduced water-column phosphorus concentrations, phytoplankton biomass, and bottom-water hypoxia (dissolved oxygen 2) requires cutting total phosphorus loads by 46% from the 2003–2011 average or reducing dissolved reactive phosphorus loads by 78% from the 2005–2011 average. Reductions to these levels are also protective of fish habitat. We provide potential approaches for achieving those new loading targets, and suggest that recent load reduction recommendations focused on western basin cyanobacteria blooms may not be sufficient to reduce central basin hypoxia to 2000 km2.

  8. Algal bloom sedimentation induces variable control of lake eutrophication by phosphorus inactivating agents

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Changhui [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Bai, Leilei [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate University of Chinese Academy of Sciences (China); Jiang, He-Long, E-mail: hljiang@niglas.ac.cn [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Xu, Huacheng [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China)

    2016-07-01

    Lake eutrophication typically occurs with a syndrome of algae breeding and biomass accumulation (e.g., algal blooms). Therefore, the effect of algal bloom sedimentation on eutrophication control by phosphorus (P) inactivating agents was assessed herein. Three commercial products, including aluminum (Al) sulfate, iron (Fe) sulfate, and a lanthanum-modified clay (Phoslock®), as well as one easily available by-product, drinking water treatment residue (DWTR), were selected. The most important finding was that during algae sedimentation, P immobilization from the overlying water by Al, Phoslock®, and DWTR was dominated by a long-term slow phase (> 150 d), while Fe has limited effectiveness on the immobilization. Further analysis indicated that the algae sedimentation effect was mainly due to the slow release of P from algae, leading to relatively limited P available for the inactivating agents. Then, a more unfavorable effect on the P immobilization capability of inactivating agents was caused by the induced anaerobic conditions, the released organic matter from algae, and the increased sulfide in the overlying water and sediments during sedimentation. Overall, algae sedimentation induced variable control of eutrophication by P inactivating agents. Accordingly, recommendations for future works about algal lake restoration were also proposed. - Highlights: • A long-term P immobilization by Phoslock®, DWTR, and Al was observed. • Fe had limited effectiveness on P pollution control for overlying water. • Al and Fe enhanced sulfur reduction, while DWTR and Phoslock® had minor effect. • The sedimentation reduced Al and La release from agents, but enhanced Fe release. • The agents changed organic matter compositions and structures in water columns.

  9. Rising CO2 levels will intensify phytoplankton blooms in eutrophic and hypertrophic lakes.

    Directory of Open Access Journals (Sweden)

    Jolanda M H Verspagen

    Full Text Available Harmful algal blooms threaten the water quality of many eutrophic and hypertrophic lakes and cause severe ecological and economic damage worldwide. Dense blooms often deplete the dissolved CO2 concentration and raise pH. Yet, quantitative prediction of the feedbacks between phytoplankton growth, CO2 drawdown and the inorganic carbon chemistry of aquatic ecosystems has received surprisingly little attention. Here, we develop a mathematical model to predict dynamic changes in dissolved inorganic carbon (DIC, pH and alkalinity during phytoplankton bloom development. We tested the model in chemostat experiments with the freshwater cyanobacterium Microcystis aeruginosa at different CO2 levels. The experiments showed that dense blooms sequestered large amounts of atmospheric CO2, not only by their own biomass production but also by inducing a high pH and alkalinity that enhanced the capacity for DIC storage in the system. We used the model to explore how phytoplankton blooms of eutrophic waters will respond to rising CO2 levels. The model predicts that (1 dense phytoplankton blooms in low- and moderately alkaline waters can deplete the dissolved CO2 concentration to limiting levels and raise the pH over a relatively wide range of atmospheric CO2 conditions, (2 rising atmospheric CO2 levels will enhance phytoplankton blooms in low- and moderately alkaline waters with high nutrient loads, and (3 above some threshold, rising atmospheric CO2 will alleviate phytoplankton blooms from carbon limitation, resulting in less intense CO2 depletion and a lesser increase in pH. Sensitivity analysis indicated that the model predictions were qualitatively robust. Quantitatively, the predictions were sensitive to variation in lake depth, DIC input and CO2 gas transfer across the air-water interface, but relatively robust to variation in the carbon uptake mechanisms of phytoplankton. In total, these findings warn that rising CO2 levels may result in a marked

  10. Algal bloom sedimentation induces variable control of lake eutrophication by phosphorus inactivating agents

    International Nuclear Information System (INIS)

    Wang, Changhui; Bai, Leilei; Jiang, He-Long; Xu, Huacheng

    2016-01-01

    Lake eutrophication typically occurs with a syndrome of algae breeding and biomass accumulation (e.g., algal blooms). Therefore, the effect of algal bloom sedimentation on eutrophication control by phosphorus (P) inactivating agents was assessed herein. Three commercial products, including aluminum (Al) sulfate, iron (Fe) sulfate, and a lanthanum-modified clay (Phoslock®), as well as one easily available by-product, drinking water treatment residue (DWTR), were selected. The most important finding was that during algae sedimentation, P immobilization from the overlying water by Al, Phoslock®, and DWTR was dominated by a long-term slow phase (> 150 d), while Fe has limited effectiveness on the immobilization. Further analysis indicated that the algae sedimentation effect was mainly due to the slow release of P from algae, leading to relatively limited P available for the inactivating agents. Then, a more unfavorable effect on the P immobilization capability of inactivating agents was caused by the induced anaerobic conditions, the released organic matter from algae, and the increased sulfide in the overlying water and sediments during sedimentation. Overall, algae sedimentation induced variable control of eutrophication by P inactivating agents. Accordingly, recommendations for future works about algal lake restoration were also proposed. - Highlights: • A long-term P immobilization by Phoslock®, DWTR, and Al was observed. • Fe had limited effectiveness on P pollution control for overlying water. • Al and Fe enhanced sulfur reduction, while DWTR and Phoslock® had minor effect. • The sedimentation reduced Al and La release from agents, but enhanced Fe release. • The agents changed organic matter compositions and structures in water columns.

  11. Rising CO2 Levels Will Intensify Phytoplankton Blooms in Eutrophic and Hypertrophic Lakes

    Science.gov (United States)

    Verspagen, Jolanda M. H.; Van de Waal, Dedmer B.; Finke, Jan F.; Visser, Petra M.; Van Donk, Ellen; Huisman, Jef

    2014-01-01

    Harmful algal blooms threaten the water quality of many eutrophic and hypertrophic lakes and cause severe ecological and economic damage worldwide. Dense blooms often deplete the dissolved CO2 concentration and raise pH. Yet, quantitative prediction of the feedbacks between phytoplankton growth, CO2 drawdown and the inorganic carbon chemistry of aquatic ecosystems has received surprisingly little attention. Here, we develop a mathematical model to predict dynamic changes in dissolved inorganic carbon (DIC), pH and alkalinity during phytoplankton bloom development. We tested the model in chemostat experiments with the freshwater cyanobacterium Microcystis aeruginosa at different CO2 levels. The experiments showed that dense blooms sequestered large amounts of atmospheric CO2, not only by their own biomass production but also by inducing a high pH and alkalinity that enhanced the capacity for DIC storage in the system. We used the model to explore how phytoplankton blooms of eutrophic waters will respond to rising CO2 levels. The model predicts that (1) dense phytoplankton blooms in low- and moderately alkaline waters can deplete the dissolved CO2 concentration to limiting levels and raise the pH over a relatively wide range of atmospheric CO2 conditions, (2) rising atmospheric CO2 levels will enhance phytoplankton blooms in low- and moderately alkaline waters with high nutrient loads, and (3) above some threshold, rising atmospheric CO2 will alleviate phytoplankton blooms from carbon limitation, resulting in less intense CO2 depletion and a lesser increase in pH. Sensitivity analysis indicated that the model predictions were qualitatively robust. Quantitatively, the predictions were sensitive to variation in lake depth, DIC input and CO2 gas transfer across the air-water interface, but relatively robust to variation in the carbon uptake mechanisms of phytoplankton. In total, these findings warn that rising CO2 levels may result in a marked intensification of

  12. Bacterial communities in the sediments of Dianchi Lake, a partitioned eutrophic waterbody in China.

    Directory of Open Access Journals (Sweden)

    Yaohui Bai

    Full Text Available Bacteria play an important role in the decomposition and cycling of a variety of compounds in freshwater aquatic environments, particularly nutrient-rich eutrophic lakes. A unique Chinese eutrophic lake--Dianchi--was selected for study because it has two separate and distinct basins, Caohai with higher organic carbon levels and Waihai with lower organic carbon levels. Sediment bacterial communities were studied in the two basins using samples collected in each season from June 2010 to March 2011. Barcoded pyrosequencing based on the 16 S rRNA gene found that certain common phyla, Proteobacteria, Bacteroidetes, Firmicutes and Chloroflexi, were dominant in the sediments from both basins. However, from the class to genus level, the dominant bacterial groups found in the sediments were distinct between the two basins. Correlation analysis revealed that, among the environmental parameters examined, total organic carbon (TOC accounted for the greatest proportion of variability in bacterial community. Interestingly, study results suggest that increasing allochthonous organic carbon could enhance bacterial diversity and biomass in the sediment. In addition, analysis of function genes (amoA and nosZ demonstrated that ammonia-oxidizing bacteria (AOB were dominant in sediments, with 99% belonging to Nitrosomonas. Denitrifying bacteria were comparatively diverse and were associated with some cultivatable bacteria.

  13. Water quality in simulated eutrophic shallow lakes in the presence of periphyton under different flow conditions.

    Science.gov (United States)

    Chen, Shu; Yang, Guolu; Lu, Jing; Wang, Lei

    2018-02-01

    Although the effects of periphyton on water quality and its relationship with flow conditions have been studied by researchers, our understanding about their combined action in eutrophic shallow lakes is poor. In this research, four aquatic model ecosystems with different water circulation rates and hydraulic conditions were constructed to investigate the effect of periphyton and flow condition on water quality. The concentrations of NH 4 + , TP, and chlorophyll-a and flow conditions were determined. The results show that, as a result of the rising nutrient level at the early stage and the decline in the lower limit, the presence of periphyton can make the ecosystem adaptable to a wider range of nutrients concentration. In terms of the flow condition, the circulation rate and hydraulic condition are influential factors for aquatic ecosystem. Higher circulation rate in the ecosystem, on one hand, facilitates the metabolism by accelerating nutrient cycling which is beneficial to water quality; on the other hand, high circulation rate leads to the nutrient lower limit rising which is harmful to water quality improvement. At low velocities, slight differences in hydraulic conditions, vertical velocity gradient and turbulence intensity gradient could affect the quantity of phytoplankton. Our study suggests that, considering environmental effect of periphyton, flow conditions and their combined action is essential for water quality improvement and ecological restoration in eutrophic shallow lakes.

  14. Determination and occurrence of retinoids in a eutrophic lake (Taihu Lake, China): cyanobacteria blooms produce teratogenic retinal.

    Science.gov (United States)

    Wu, Xiaoqin; Jiang, Jieqiong; Hu, Jianying

    2013-01-15

    Besides retinoic acids (RAs), some retinoids such as retinal (RAL) and retinol (ROH), which are considered as RA precursors in vertebrates, are also reported to be teratogenic agents. In this study we investigated four RA precursors including RAL, ROH, retinyl palmitate, and β-carotene in the eutrophic Taihu Lake, China, by developing a sensitive analytical method. RAL and β-carotene were widely detected in natural cyanobacteria blooms and lake water. Intracellular concentrations of RAL and β-carotene in blooms were 9.4 to 6.9 × 10(3) and 3.4 to 1.8 × 10(5) ng L(-1), respectively, and their concentrations in lake water were up to 1.4 × 10 ng L(-1) (RAL) and 9.8 × 10(2) ng L(-1) (β-carotene). The good correlation between intracellular concentrations of RAL and RAs implied that RAL was involved in the production of RAs by cyanobacteria blooms. Further examination of 39 cyanobacteria and algae species revealed that most species could produce RAL and β-carotene. The greatest amount of RAL was found in Chlamydomonas sp. (FACHB-715; 1.9 × 10(3) ng g(-1) dry weight). As the main cyanobacteria in Taihu Lake, many Microcystis species could produce high amounts of RAL and were thought to greatly contribute to the production of RAL measured in the blooms. Productions of RAL and β-carotene by cyanobacteria were associated with species, origin location, and growth stage. The results in this study present the existence of a potential risk to aquatic animals living in a eutrophic environment from a high concentration of RAL in cyanobacteria blooms and also provide a clue for further investigating the mechanism underlying the biosynthetic pathway of RAs in cyanobacteria and algae.

  15. An integrated method for removal of harmful cyanobacterial blooms in eutrophic lakes

    International Nuclear Information System (INIS)

    Wang Zhicong; Li Dunhai; Qin Hongjie; Li Yinxia

    2012-01-01

    As the eutrophication of lakes becomes an increasingly widespread phenomenon, cyanobacterial blooms are occurring in many countries. Although some research has been reported, there is currently no good method for bloom removal. We propose here a new two-step integrated approach to resolve this problem. The first step is the inactivation of the cyanobacteria via the addition of H 2 O 2 . We found 60 mg/L was the lowest effective dose for a cyanobacterial concentration corresponding to 100 μg/L chlorophyll-a. The second step is the flocculation and sedimentation of the inactivated cyanobacteria. We found the addition of lake sediment clay (2 g/L) plus polymeric ferric sulfate (20 mg/L) effectively deposited them on the lake bottom. Since algaecides and flocculants had been used separately in previous reports, we innovatively combined these two types of reagents to remove blooms from the lake surface and to improve the dissolved oxygen content of lake sediments. - Graphical abstract: The mechanism for the removal of cyanobacterial blooms by using H 2 O 2 , polymeric ferric sulfate (PFS) and lake sediment clay. Display Omitted Highlights: ► We combined algaecide and flocculants together to control cyanobacterial blooms. ► H 2 O 2 was used to irreversibly inactivate the photosynthesis of cyanobacteria. ► Lake sediment clay and polymeric ferric sulfate were used to deposit cyanobacteria. ► Removal rate was very high and re-suspension rate was very low under disturbance. ► The inactivated cyanobacteria could not serve as a seed source for the next bloom. - Inactivation by H 2 O 2 and sedimentation using polymeric ferric sulfate and sediment clay demonstrated high integrated efficiency in removal of cyanobacterial blooms.

  16. Identifying Watershed Regions Sensitive to Soil Erosion and Contributing to Lake Eutrophication--A Case Study in the Taihu Lake Basin (China).

    Science.gov (United States)

    Lin, Chen; Ma, Ronghua; He, Bin

    2015-12-24

    Taihu Lake in China is suffering from severe eutrophication partly due to non-point pollution from the watershed. There is an increasing need to identify the regions within the watershed that most contribute to lake water degradation. The selection of appropriate temporal scales and lake indicators is important to identify sensitive watershed regions. This study selected three eutrophic lake areas, including Meiliang Bay (ML), Zhushan Bay (ZS), and the Western Coastal region (WC), as well as multiple buffer zones next to the lake boundary as the study sites. Soil erosion intensity was designated as a watershed indicator, and the lake algae area was designated as a lake quality indicator. The sensitive watershed region was identified based on the relationship between these two indicators among different lake divisions for a temporal sequence from 2000 to 2012. The results show that the relationship between soil erosion modulus and lake quality varied among different lake areas. Soil erosion from the two bay areas was more closely correlated with water quality than soil erosion from the WC region. This was most apparent at distances of 5 km to 10 km from the lake, where the r² was as high as 0.764. Results indicate that soil erosion could be used as an indicator for identifying key watershed protection areas. Different lake areas need to be considered separately due to differences in geographical features, land use, and the corresponding effects on lake water quality.

  17. Factors controlling bacteria and protists in selected Mazurian eutrophic lakes (North-Eastern Poland) during spring

    Science.gov (United States)

    2013-01-01

    Background The bottom-up (food resources) and top-down (grazing pressure) controls, with other environmental parameters (water temperature, pH) are the main factors regulating the abundance and structure of microbial communities in aquatic ecosystems. It is still not definitively decided which of the two control mechanisms is more important. The significance of bottom-up versus top-down controls may alter with lake productivity and season. In oligo- and/or mesotrophic environments, the bottom-up control is mostly important in regulating bacterial abundances, while in eutrophic systems, the top-down control may be more significant. Results The abundance of bacteria, heterotrophic (HNF) and autotrophic (ANF) nanoflagellates and ciliates, as well as bacterial production (BP) and metabolically active cells of bacteria (CTC, NuCC, EST) were studied in eutrophic lakes (Mazurian Lake District, Poland) during spring. The studied lakes were characterized by high nanoflagellate (mean 17.36 ± 8.57 × 103 cells ml-1) and ciliate abundances (mean 59.9 ± 22.4 ind. ml-1) that were higher in the euphotic zone than in the bottom waters, with relatively low bacterial densities (4.76 ± 2.08 × 106 cells ml-1) that were lower in the euphotic zone compared to the profundal zone. Oligotrichida (Rimostrombidium spp.), Prostomatida (Urotricha spp.) and Scuticociliatida (Histiobalantium bodamicum) dominated in the euphotic zone, whereas oligotrichs Tintinnidium sp. and prostomatids Urotricha spp. were most numerous in the bottom waters. Among the staining methods used to examine bacterial cellular metabolic activity, the lowest percentage of active cells was recorded with the CTC (1.5–15.4%) and EST (2.7–14.2%) assay in contrast to the NuCC (28.8–97.3%) method. Conclusions In the euphotic zone, the bottom-up factors (TP and DOC concentrations) played a more important role than top-down control (grazing by protists) in regulating bacterial numbers and activity

  18. Vertical distribution and community composition of anammox bacteria in sediments of a eutrophic shallow lake.

    Science.gov (United States)

    Qin, H; Han, C; Jin, Z; Wu, L; Deng, H; Zhu, G; Zhong, W

    2018-07-01

    The aim of this study was to explore the vertical distribution traits of anaerobic ammonium-oxidizing (anammox) bacterial relative abundance and community composition along the oxic/anoxic sediment profiles in a shallow lake. The Illumina Miseq-based sequencing and quantitative polymerase chain reactions were utilized to analyse relative abundance of anammox hydrazine synthase (hzsB) gene in comparison with bacterial 16S rRNA genes, anammox bacterial relative abundance (the number of anammox sequences divided by total number of sequences), community composition and diversity in sediments. The relative abundance of hzsB gene at the low-nitrogen (LN) site in the lake sediments showed that the vertical distribution of anammox bacteria increased to a peak, then decreased with increasing depth. Moreover, the relative abundance of hzsB gene at the high-nitrogen site was significantly lower than that at the LN site. Additionally, the community composition results showed that Candidatus Brocadia sp. was the dominant genus. In addition, the anammox bacterial diversity was also site specific. Redundancy analysis showed that the total N and the NH 4 + -N content might be the most important factors affecting anammox bacterial community composition in the studied sites. The results revealed the specific vertical variance of anammox bacterial distribution and community composition in oxic/anoxic sediments of a eutrophic shallow lake. This is the first study to demonstrate that anammox bacteria displayed the particular distribution in freshwater sediments, which implied a strong response to the anthropogenic eutrophication. © 2018 The Society for Applied Microbiology.

  19. Legacy effects of nitrogen and phosphorus in a eutrophic lake catchment: Slapton Ley, SW England

    Science.gov (United States)

    Burt, T. P.; Worrall, F.; Howden, N. J. K.

    2017-12-01

    Slapton Ley is a freshwater coastal lagoon in SW England. The Ley is part of a National Nature Reserve, which is divided into two basins: the Higher Ley (39 ha) is mainly reed swamp; the Lower Ley (77 ha) is a shallow lake (maximum depth 2.9 m). In the 1960s it became apparent that the Lower Ley was becoming increasingly eutrophic. In order to gauge water, sediment and nutrient inputs into the lake, measurements began on the main catchments in 1969. Continuous monitoring of discharge and a weekly water-sampling programme have been maintained by the Slapton Ley Field Centre ever since. The monitoring programme has been supplemented by a number of research projects which have sought to identify the salient hydrological processes operating within the Slapton catchments and to relate these to the delivery of sediment and solute to the stream system. Long-term monitoring data are also available for the catchment area including the lake from the Environment Agency.The nitrate issue has been of particular interest at Slapton; although many longer series exist for large river basins like the Thames, the long record of nitrate data for the Slapton catchments is unique in Britain for a small rural basin. Recent declines in nitrate concentration may reflect less intensive agricultural activity, lower fertiliser inputs in particular, but there may also be a legacy effect in the shallow groundwater system. Phosphorus concentrations in stream and lake water have also shown declining concentrations but a phosphorus legacy in the surficial lake sediments means that algal blooms continue to develop in most summers, as indicated by a continued rise in summer pH levels. Further field observation at the sediment-water interface is needed to better understand the biogeochemical drivers and the balance between N and P limitation in the lake. Successful management of the Nature Reserve requires better understanding of the links between hydrological and biogeochemical processes operating

  20. Is water age a reliable indicator for evaluating water quality effectiveness of water diversion projects in eutrophic lakes?

    Science.gov (United States)

    Zhang, Xiaoling; Zou, Rui; Wang, Yilin; Liu, Yong; Zhao, Lei; Zhu, Xiang; Guo, Huaicheng

    2016-11-01

    Water diversion has been applied increasingly to promote the exchange of lake water and to control eutrophication of lakes. The accelerated water exchange and mass transport by water diversion can usually be represented by water age. But the responses of water quality after water diversion is still disputed. The reliability of using water age for evaluating the effectiveness of water diversion projects in eutrophic lakes should be thereby explored further. Lake Dianchi, a semi-closed plateau lake in China, has suffered severe eutrophication since the 1980s, and it is one of the three most eutrophic lakes in China. There was no significant improvement in water quality after an investment of approximately 7.7 billion USD and numerous project efforts from 1996 to 2015. After the approval of the Chinese State Council, water has been transferred to Lake Dianchi to alleviate eutrophication since December 2013. A three-dimensional hydrodynamic and water quality model and eight scenarios were developed in this study to quantity the influence of this water diversion project on water quality in Lake Dianchi. The model results showed that (a) Water quality (TP, TN, and Chla) could be improved by 13.5-32.2%, much lower than the approximate 50% reduction in water age; (b) Water exchange had a strong positive relationship with mean TP, and mean Chla had exactly the same response to water diversion as mean TN; (c) Water level was more beneficial for improving hydrodynamic and nutrient concentrations than variation in the diverted inflowing water volume; (d) The water diversion scenario of doubling the diverted inflow rate in the wet season with the water level of 1886.5 m and 1887 m in the remaining months was the best water diversion mode for mean hydrodynamics and TP, but the scenario of doubling the diverted inflow rate in the wet season with 1887 m throughout the year was optimum for mean TN and Chla; (e) Water age influenced the effectiveness of water diversion on the

  1. Synchronous dynamics of zooplankton competitors prevail in temperate lake ecosystems.

    Science.gov (United States)

    Vasseur, David A; Fox, Jeremy W; Gonzalez, Andrew; Adrian, Rita; Beisner, Beatrix E; Helmus, Matthew R; Johnson, Catherine; Kratina, Pavel; Kremer, Colin; de Mazancourt, Claire; Miller, Elizabeth; Nelson, William A; Paterson, Michael; Rusak, James A; Shurin, Jonathan B; Steiner, Christopher F

    2014-08-07

    Although competing species are expected to exhibit compensatory dynamics (negative temporal covariation), empirical work has demonstrated that competitive communities often exhibit synchronous dynamics (positive temporal covariation). This has led to the suggestion that environmental forcing dominates species dynamics; however, synchronous and compensatory dynamics may appear at different length scales and/or at different times, making it challenging to identify their relative importance. We compiled 58 long-term datasets of zooplankton abundance in north-temperate and sub-tropical lakes and used wavelet analysis to quantify general patterns in the times and scales at which synchronous/compensatory dynamics dominated zooplankton communities in different regions and across the entire dataset. Synchronous dynamics were far more prevalent at all scales and times and were ubiquitous at the annual scale. Although we found compensatory dynamics in approximately 14% of all combinations of time period/scale/lake, there were no consistent scales or time periods during which compensatory dynamics were apparent across different regions. Our results suggest that the processes driving compensatory dynamics may be local in their extent, while those generating synchronous dynamics operate at much larger scales. This highlights an important gap in our understanding of the interaction between environmental and biotic forces that structure communities. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  2. The role of benthic macrofauna on nitrogen cycling in eutrophic lake sediment

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, J M

    1998-12-01

    This thesis concerns the role of sediment-living macrobenthos in the cycling of nitrogen species and nitrogen transformation in eutrophic freshwater sediments. In my thesis I have, employing {sup 15}N-isotope techniques in laboratory experiments, shown the importance of infaunal chironomid larvae and oligochaetes on denitrification in eutrophic lake sediments. Investigated benthic organisms not only expand the sediment surface with their permanent or non-permanent burrow constructions, they also transport water through the burrows continuously. This behaviour of intermittent water-pumping activity, provides the burrows with oxygen, and in addition, mediates the supply of nitrate to denitrifying zones. The highly dynamic oxygen climate within and narrow oxic zones around burrows, due to their radial geometry, provides a very short diffusion path for nitrate into surrounding anoxic zones. In my studies rates of denitrification were enhanced c. 3 to 6-fold by the influence of chironomids (Chironomus plumosus) and c. 2-fold by the influence of oligochaetes at comparable biomass. The difference in degree of stimulation is explained by species-specific habitat exploitation which could also be observed between different tube-dwelling species of chironomids. Besides chironomid biomass, the degree of enhancement of denitrification by chironomids was dependent on nitrate concentration in the overlying water, and water temperature. Nitrification was also seen to be stimulated by the infaunal macrobenthos but to a lesser degree than denitrification. It is suggested that bioturbated eutrophic sediment, under predominantly oxic bottom water conditions may act more pronouncedly as a sink for inorganic nitrogen relative to non-bioturbated sediment, and that bioturbated sediment above all, may be an important factor contributing to lowered transport of nitrogen to the coast. In order to sustain high nitrogen removal capacity in wetlands, ponds and lakes, it is further suggested

  3. Are the Lake Victoria fisheries threatened by exploitation or eutrophication? Towards an ecosystem-based approach to management

    NARCIS (Netherlands)

    Kolding, J.; Zwieten, van P.A.M.; Mkumbo, O.; Silsbe, G.; Hecky, R.

    2008-01-01

    Lake Victoria’s ecosystem has shown fundamental changes over its past recorded history in terms of nutrient loadings, productivity, faunal composition and fisheries. As yet, however, no attempt has been made to link the driving processes of eutrophication and fisheries to understand the feedback

  4. The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes: Field and experimental evidence

    NARCIS (Netherlands)

    Zhang, Y.; Van Dijk, M.A.; Liu, M.; Zhu, G.; Qin, B.

    2009-01-01

    Eight field campaigns in the eutrophic, shallow, Lake Taihu in the summers from 2005 to 2007, and a phytoplankton degradation experiment of 33 days, were carried out to determine the contribution of phytoplankton degradation to CDOM. Significant and positive correlations were found between the CDOM

  5. Thermal Regime of A Deep Temperate Lake and Its Response to Climate Change: Lake Kuttara, Japan

    Directory of Open Access Journals (Sweden)

    Kazuhisa A. Chikita

    2018-02-01

    Full Text Available A deep temperate lake, Lake Kuttara, Hokkaido, Japan (148 m deep at maximum was completely ice-covered every winter in the 20th century. However, ice-free conditions of the lake over winter occurred three times in the 21st century, which is probably due to global warming. In order to understand how thermal regime of the lake responds to climate change, a change in lake mean water temperature from the heat storage change was calculated by integrating observed water temperature over water depths and by numerical calculation of heat budget components based on hydrometeorological data. As a result, a temporal variation of lake mean water temperature from the heat budget calculation was very reasonable to that from the observed water temperature (determination coefficient R2 = 0.969. The lowest lake mean temperature for non-freeze was then evaluated at −1.87 °C, referring to the zero level at 6.80 °C. The 1978–2017 data at a meteorological station near Kuttara indicated that there are significant (less than 5% level long-term trends for air temperature (+0.024 °C/year and wind speed (−0.010 m/s/year. In order to evaluate the effects of climate change on freeze-up patterns, a sensitivity analysis was carried out for the calculated lake mean water temperature. It is noted that, after two decades, the lake could be ice-free once per every two years.

  6. A Remote Sensing Approach to Estimate Vertical Profile Classes of Phytoplankton in a Eutrophic Lake

    Directory of Open Access Journals (Sweden)

    Kun Xue

    2015-10-01

    Full Text Available The extension and frequency of algal blooms in surface waters can be monitored using remote sensing techniques, yet knowledge of their vertical distribution is fundamental to determine total phytoplankton biomass and understanding temporal variability of surface conditions and the underwater light field. However, different vertical distribution classes of phytoplankton may occur in complex inland lakes. Identification of the vertical profile classes of phytoplankton becomes the key and first step to estimate its vertical profile. The vertical distribution profile of phytoplankton is based on a weighted integral of reflected light from all depths and is difficult to determine by reflectance data alone. In this study, four Chla vertical profile classes (vertically uniform, Gaussian, exponential and hyperbolic were found to occur in three in situ vertical surveys (28 May, 19–24 July and 10–12 October in a shallow eutrophic lake, Lake Chaohu. We developed and validated a classification and regression tree (CART to determine vertical phytoplankton biomass profile classes. This was based on an algal bloom index (Normalized Difference algal Bloom Index, NDBI applied to both in situ remote sensing reflectance (Rrs and MODIS Rayleigh-corrected reflectance (Rrc data in combination with data of local wind speed. The results show the potential of retrieving Chla vertical profiles information from integrated information sources following a decision tree approach.

  7. Specific activity and concentration model applied to 137Cs movement in a eutrophic lake

    International Nuclear Information System (INIS)

    Vanderploeg, H.A.; Booth, R.S.; Clark, F.H.

    1976-01-01

    A linear systems-analysis model which simulates time-dependent dynamics of specific activity and concentration of radiocesium in lake ecosystems was applied to a shallow, eutrophic lake that had received a pulse input of 137 Cs. Best estimates of transfer coefficients for abiotic compartments (sediment, interstitial water and lake water) and the macrophyte compartment which controlled the mass balance of cesium in water were determined by ''tuning'' our initial estimates of the transfer coefficients to observed data on 137 Cs concentrations and contents of these compartments. In most cases, the optimized transfer coefficients for the abiotic compartments were not greatly different from our independently derived initial estimates, and the simulations for optimized coefficients were close to those based on initial estimates. The 137 Cs concentrations in water as predicted by the optimized transfer coefficients were then used to calculate 137 Cs kinetics in biota other than macrophytes. In general, model simulations were close to concentrations observed in the biota. The agreement between 137 Cs concentrations and simulations in bottom invertebrates supported our assumption that bottom sediments are not a major source of Cs to the biota. Our specific activity and concentration model was compared to the radionuclide content model, the model used in terrestrial ecosystems. For biotic components of aquatic ecosystems, values of α/sub ij/, the transfer coefficients of our model, are easily estimated from turnover rates of radiocesium in individual organisms in the laboratory

  8. Assessing lake eutrophication using chironomids: understanding the nature of community response in different lake types

    DEFF Research Database (Denmark)

    Langdon, P. G.; Ruiz, Z.; Brodersen, K. P.

    2006-01-01

    in the original calibration or extended datasets. However, since the transfer functions are based on weighted averages of the trophic optima for the taxa present and not on community similarities, reasonable downcore inferences were produced. Ordination analyses also showed that the lakes retain their 'identity......1. Total phosphorus (TP) and chlorophyll a (Chl a) chironomid inference models ( Brodersen & Lindegaard, 1999 ; Brooks, Bennion & Birks, 2001 ) were used in an attempt to reconstruct changes in nutrients from three very different lake types. Both training sets were expanded, particularly at the low....... A response to nutrients (TP or total nitrogen (TN) ) at this site is also indirect, and the TP reconstruction therefore cannot be reliably interpreted. The third lake, March Ghyll Reservoir has little change in historic chironomid communities, suggesting that this well mixed, relatively unproductive lake has...

  9. Cyanobacterial carbon concentrating mechanisms facilitate sustained CO2 depletion in eutrophic lakes

    Directory of Open Access Journals (Sweden)

    A. M. Morales-Williams

    2017-06-01

    Full Text Available Phytoplankton blooms are increasing in frequency, intensity, and duration in aquatic ecosystems worldwide. In many eutrophic lakes, these high levels of primary productivity correspond to periods of CO2 depletion in surface waters. Cyanobacteria and other groups of phytoplankton have the ability to actively transport bicarbonate (HCO3− across their cell membrane when CO2 concentrations are limiting, possibly giving them a competitive advantage over algae not using carbon concentrating mechanisms (CCMs. To investigate whether CCMs can maintain phytoplankton bloom biomass under CO2 depletion, we measured the δ13C signatures of dissolved inorganic carbon (δ13CDIC and phytoplankton particulate organic carbon (δ13Cphyto in 16 mesotrophic to hypereutrophic lakes during the ice-free season of 2012. We used mass–balance relationships to determine the dominant inorganic carbon species used by phytoplankton under CO2 stress. We found a significant positive relationship between phytoplankton biomass and phytoplankton δ13C signatures as well as a significant nonlinear negative relationship between water column ρCO2 and isotopic composition of phytoplankton, indicating a shift from diffusive uptake to active uptake by phytoplankton of CO2 or HCO3− during blooms. Calculated photosynthetic fractionation factors indicated that this shift occurs specifically when surface water CO2 drops below atmospheric equilibrium. Our results indicate that active HCO3− uptake via CCMs may be an important mechanism in maintaining phytoplankton blooms when CO2 is depleted. Further increases in anthropogenic pressure, eutrophication, and cyanobacteria blooms are therefore expected to contribute to increased bicarbonate uptake to sustain primary production.

  10. Cyanobacterial carbon concentrating mechanisms facilitate sustained CO2 depletion in eutrophic lakes

    Science.gov (United States)

    Morales-Williams, Ana M.; Wanamaker, Alan D., Jr.; Downing, John A.

    2017-06-01

    Phytoplankton blooms are increasing in frequency, intensity, and duration in aquatic ecosystems worldwide. In many eutrophic lakes, these high levels of primary productivity correspond to periods of CO2 depletion in surface waters. Cyanobacteria and other groups of phytoplankton have the ability to actively transport bicarbonate (HCO3-) across their cell membrane when CO2 concentrations are limiting, possibly giving them a competitive advantage over algae not using carbon concentrating mechanisms (CCMs). To investigate whether CCMs can maintain phytoplankton bloom biomass under CO2 depletion, we measured the δ13C signatures of dissolved inorganic carbon (δ13CDIC) and phytoplankton particulate organic carbon (δ13Cphyto) in 16 mesotrophic to hypereutrophic lakes during the ice-free season of 2012. We used mass-balance relationships to determine the dominant inorganic carbon species used by phytoplankton under CO2 stress. We found a significant positive relationship between phytoplankton biomass and phytoplankton δ13C signatures as well as a significant nonlinear negative relationship between water column ρCO2 and isotopic composition of phytoplankton, indicating a shift from diffusive uptake to active uptake by phytoplankton of CO2 or HCO3- during blooms. Calculated photosynthetic fractionation factors indicated that this shift occurs specifically when surface water CO2 drops below atmospheric equilibrium. Our results indicate that active HCO3- uptake via CCMs may be an important mechanism in maintaining phytoplankton blooms when CO2 is depleted. Further increases in anthropogenic pressure, eutrophication, and cyanobacteria blooms are therefore expected to contribute to increased bicarbonate uptake to sustain primary production.

  11. Live/Dead Comparisons of Ostracodes in Temperate Lakes Reveal Evidence of Human Impact and Provides a Tool to Measure the Progress of Remediation Efforts

    Science.gov (United States)

    Spergel, J.; Kimball, K. C.; Fitzpatrick, S. A.; Michelson, A. V.; Leonard-Pingel, J.

    2015-12-01

    Lake ecosystems face a multitude of environmental threats including: eutrophication, overfishing, and heavy metal pollution. Tools to identify lakes impacted by human activity and quantify that impact are needed to combat their environmental degradation. One such promising tool has been the comparison between living communities and associated time-averaged death assemblages of mollusks in marine environments. Here we extend the reach of such live/dead comparisons using ostracodes in temperate lakes. We sampled six lakes in Wisconsin for living communities and associated death assemblages of ostracodes: two lakes impacted by human activity, two relatively "pristine" lakes, and two remediated lakes. We took sixteen grab samples of the upper centimeter of sediment in each lake, capturing simultaneously living benthic ostracodes and discarded valves of dead ostracodes. We found that impacted lakes had lower live/dead fidelity in taxonomic composition and rank-order abundance distributions and greater within-lake variation in death assemblages than "pristine" lakes. Additionally, the living communities in the impacted lakes tended to be lower in species richness and have lower evenness than "pristine" lakes. Remediated lakes displayed similar live/dead fidelity in taxonomic composition and rank-abundance distributions to "pristine" lakes and had lower within-lake variation in death assemblages than impacted lakes. Remediated lakes also contained living communities that tended to be richer and more even than impacted lakes. The lower live/dead fidelity of ostracodes in impacted lakes indicate live/dead ostracode comparisons can provide a tool to identify lake ecosystems impacted by humans. The similar results of remediated and "pristine" lakes indicate remediation efforts in these lakes have been successful in alleviating environmental impact detrimental to ostracode communities. This result indicates live/dead comparisons of ostracodes can be a useful tool to monitor

  12. Lake eutrophication and environmental change: A viability framework for resilience, vulnerability and adaptive capacity

    Science.gov (United States)

    Mathias, Jean-Denis; Rougé, Charles; Deffuant, Guillaume

    2013-04-01

    We present a simple stochastic model of lake eutrophication to demonstrate how the mathematical framework of viability theory fosters operational definitions of resilience, vulnerability and adaptive capacity, and then helps understand which response one should bring to environmental changes. The model represents the phosphorus dynamics, given that high concentrations trigger a regime change from oligotrophic to eutrophic, and causes ecological but also economic losses, for instance from tourism. Phosphorus comes from agricultural inputs upstream of the lake, and we will consider a stochastic input. We consider the system made of both the lake and its upstream region, and explore how to maintain the desirable ecological and economic properties of this system. In the viability framework, we translate these desirable properties into state constraints, then examine how, given the dynamics of the model and the available policy options, the properties can be kept. The set of states for which there exists a policy to keep the properties is called the viability kernel. We extend this framework to both major perturbations and long-term environmental changes. In our model, since the phosphorus inputs and outputs from the lake depend on rainfall, we will focus on extreme rainfall events and long-term changes in the rainfall regime. They can be described as changes in the state of the system, and may displace it outside the viability kernel. Its response can then be described using the concepts of resilience, vulnerability and adaptive capacity. Resilience is the capacity to recover by getting back to the viability kernel where the dynamics keep the system safe, and in this work we assume it to be the first objective of management. Computed for a given trajectory, vulnerability is a measure of the consequence of violating a property. We propose a family of functions from which cost functions and other vulnerability indicators can be derived for any trajectory. There can be

  13. Assessment of primary production in a eutrophic lake from carbon and nitrogen isotope ratios of a carnivorous fish

    International Nuclear Information System (INIS)

    Yoshioka, Takahito

    1991-01-01

    The carbon and nitrogen isotope ratios of Hypomesus transpacificus (a pond smelt) in a eutrophic lake, Lake Suwa, were measured from April to September in 1986 and 1987. The differences in the isotope ratios between these two years were observed. The stable isotopes were transferred from phytoplankton to zooplankton and pond smelt, associated with organic matters. Therefore, the difference in the isotope ratios in two years seemed to reflect the differences of the proceeding of primary production. It was suggested that the carbon and nitrogen isotope ratios of animal, whose trophic level is far from primary producer, can be the qualitative indicators for assessing the primary production in a lake ecosystem. (author)

  14. Mercury distribution in the main compartments of the eutrophic Lake Candia (Northern Italy

    Directory of Open Access Journals (Sweden)

    Gian Maria BEONE

    2009-08-01

    Full Text Available Total mercury (T-Hg and organic mercury (mainly methylmercury, MeHg concentrations in the most important compartments (water, sediment, macrophytes, zooplankton, mussels and fish of the shallow and eutrophic Lake Candia (Turin, Northern Italy were measured. The decreasing sequence of the T-Hg concentrations is as follows: cat-fish (143 μg kg-1 d.w., zooplankton (77 μg kg-1 d.w., Unio pictorum mancus (37.9 μg kg-1 d.w., macrophytes (28.9 μg kg-1 d.w.. The content of mercury in mussel tissues increased with the size of the animal, but the relationship between Hg concentration and tissue weight was negative, indicating that the rate of mercury accumulation was lower than the tissue growth rate. The amount of mercury accumulated in the mussels living in the lake sediments was estimated to be 0.54 μg m-2. The importance of mercury biomagnification is also discussed.

  15. Restoration and Purification of Dissolved Organic Nitrogen by Bacteria and Phytoremediation in Shallow Eutrophic Lakes Sediments

    Science.gov (United States)

    Li, Xin; Yue, Yi

    2018-06-01

    Endogenous organic nitrogen loadings in lake sediments have increased with human activity in recent decades. A 6-month field study from two disparate shallow eutrophic lakes could partly reveal these issues by analysing seasonal variations of biodegradation and phytoremediation in the sediment. This paper describes the relationship between oxidation reduction potential, temperature, microbial activity and phytoremediation in nitrogen cycling by calculation degradative index of dissolved organic nitrogen and amino acid decomposition. The index was being positive in winter and negative in summer while closely positive correlated with biodegradation. Our analysis revealed that rather than anoxic condition, biomass is the primary factor to dissolved organic nitrogen distribution and decomposition. Some major amino acids statistics also confirm the above view. The comparisons of organic nitrogen and amino acid in abundance and seasons in situ provides that demonstrated plants cue important for nitrogen removal by their roots adsorption and immobilization. In conclusion, enhanced microbial activity and phytoremediation with the seasons will reduce the endogenous nitrogen loadings by the coupled mineralization and diagenetic process.

  16. Specific activity and concentration model applied to cesium-137 movement in a eutrophic lake

    International Nuclear Information System (INIS)

    Vanderploeg, H.A.; Booth, R.S.; Clark, F.H.

    1975-01-01

    A linear systems-analysis model which simulates time-dependent dynamics of specific activity and concentration of radiocesium in lake ecosystems was applied to a shallow, eutrophic lake that had received a pulse input of 137 Cs. Best estimates of transfer coefficients for abiotic compartments (sediment, interstitial water, and water) and macrophyte compartment which control mass balance of cesium in water were determined by tuning our initial estimates of the transfer coefficients to observed data on 137 Cs concentrations and contents of these compartments. In most cases, the optimized transfer coefficients of the abiotic compartments were not greatly different from our independently-derived initial estimates, and the simulations for optimized coefficients were close to those based on initial estimates. The simulations of 137 Cs concentration in water predicted by the optimized transfer coefficients were used to derive 137 Cs kinetics in biota other than macrophytes. In general, model simulations were close to concentrations observed in the biota. The agreement between 137 Cs concentrations and simulations in bottom invertebrates supported our assumption that bottom sediments are not a major source of Cs to the biota. (U.S.)

  17. Rapid ecological shift following piscivorous fish introduction to increasingly eutrophic and warmer Lake Furnas (Azores Archipelago, Portugal): A paleoecological approach

    DEFF Research Database (Denmark)

    Buchaca, Teresa; Skov, Tue; Amsinck, Susanne Lildal

    2011-01-01

    Lake ecosystems are nowadays often subjected to multi-stressors, such as eutrophication, climate change, and fish manipulations, the effects of which can be difficult to disentangle, not least from the usual short-term limnological time-series that are available. However, multi-proxy paleoecologi......Lake ecosystems are nowadays often subjected to multi-stressors, such as eutrophication, climate change, and fish manipulations, the effects of which can be difficult to disentangle, not least from the usual short-term limnological time-series that are available. However, multi......, meteorological forcing, and fish species introduction for recent lake ecosystem development in Lake Furnas on the island of Sa˜o Miguel, the Azores. The lake was stocked with cyprinids in the late nineteenth century and recently also with piscivorous fish, and has been affected by increasing agricultural......, and cryptophytes. The composition of microbial and algal assemblages changed rapidly after Daphnia appearance, and the covariance between fish stocking, nutrient loading, and enhanced temperatures captured most of the variability in algae accumulation, and thus likely in lake primary production as well. Thus, lake...

  18. Eutrophication and Dreissena invasion as drivers of biodiversity: a century of change in the mollusc community of Oneida Lake.

    Directory of Open Access Journals (Sweden)

    Vadim A Karatayev

    Full Text Available Changes in nutrient loading and invasive species are among the strongest human-driven disturbances in freshwater ecosystems, but our knowledge on how they affect the biodiversity of lakes is still limited. We conducted a detailed historical analysis of the mollusc community of Oneida Lake based on our comprehensive lakewide study in 2012 and previous surveys dating back to 1915. In the early 20th century, the lake had a high water clarity, with abundant macrophytes and benthic algae, and hosted the most diverse molluscan community in New York State, including 32 gastropod and 9 unionid species. By the 1960s, lake turbidity increased during a period of anthropogenic eutrophication, resulting in a 38% decline in species richness and a 95% reduction in abundance of native gastropods grazing on benthic algae. Following the invasion of Dreissena spp. in 1991 and subsequent increases in water clarity, native gastropod species richness expanded by 37% and abundance increased 20-fold by 2012. In contrast, filter-feeding unionids were unaffected by increased turbidity during the period of eutrophication but were extirpated by dreissenids. Through contrasting effects on turbidity, eutrophication and Dreissena spp. have likely driven the observed changes in native grazing gastropods by affecting the abundance of light-limited benthic algae. Given the high species richness and ecological importance of benthic grazers, monitoring and managing turbidity is important in preserving molluscan diversity.

  19. Application of LANDSAT to the surveillance and control of lake eutrophication in the Great Lakes Basin

    Science.gov (United States)

    Rogers, R. H. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Preliminary results in Saginaw Bay show that processed LANDSAT data provides a synoptic view of turbidity and circulation patterns that no degree of ground monitoring can provide. Processed imagery was produced to show nine discrete categories of turbidity, as indicated by nine Secchi depths between 0.3 and 3.3 meters. Analysis of lakes near Madison, Wisconsin show that inland lake water can be categorized by LANDSAT as clear, tannin, algal, and red clay. LANDSAT's capability to inventory watershed land use was throughly demonstrated in the Ohio-Kentucky-Indiana regional planning area. Computer tabulations providing area covered by each of 16 land use categories were rapidly and economically produced for each of the 225 watersheds and nine counties.

  20. Long term behaviour and seasonal cycling of Cs-137 in a eutrophic lake in Southern Germany

    Energy Technology Data Exchange (ETDEWEB)

    Klemt, E.; Knaus, J.; Putyrskaya, V.; Ries, T. [Hochschule Ravensburg-Weingarten (Germany)

    2014-07-01

    Lake Vorsee is a small and shallow eutrophic lake with a swampy watershed about 25 km north of Lake Constance in southern Germany which is intensely used for fishing by local fishermen. It is completely overgrown by watermilfoil (Myriophyllum spicatum) which produces thick watery organic sediment layers when it decomposes in late autumn and winter. In 1986 the watershed of Lake Vorsee had a Cs-137 Chernobyl inventory of about 30 kBq/m{sup 2}. The Cs-137 activity concentration in the water was monitored for more than 25 years and it can be well described by a sum of two exponential functions superimposed by some seasonal cycling. To analyze the seasonal cycling of the Cs-137 activity concentration in water and in suspended matter, samples were collected with a Large Volume Water Sampler (Midiya-System) on a monthly base and measured gamma-spectrometrically by HPGe-detectors. Also the Cs-137 distribution coefficient kD was determined. Additionally, in the lake water the concentration of the competing ions K{sup +} and NH{sub 4}{sup +} was determined by ion-chromatography, total organic carbon (TOC) with a combustion catalytic oxidation / NDIR detection method as well as the dissolved O{sub 2}-concentration and the pH and temperature of the water by hand-held probes. Information on the amount of precipitation was taken from nearby weather stations. In this project the following hypothesis will be checked: In late autumn the decomposing watermilfoil produces NH{sub 4}{sup +}-ions which exchange Cs{sup +}-ions from their binding places, thereby increasing the Cs-137 activity concentration in the water. In spring the watermilfoil starts growing which leads to a larger O{sub 2}-concentration in the water and helps to disintegrate the NH{sub 4}{sup +}-ions in this way decreasing the Cs-137 concentration again. A possible influence of the other measured parameters on the seasonal cycling will also be discussed. Document available in abstract form only. (authors)

  1. Nearly a decade-long repeatable seasonal diversity patterns of bacterioplankton communities in the eutrophic Lake Donghu (Wuhan, China)

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Qingyun [Environmental Microbiome Research Center and the School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou China; Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Stegen, James C. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Yu, Yuhe [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Deng, Ye [CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing China; Li, Xinghao [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Wu, Shu [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Dai, Lili [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Zhang, Xiang [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Li, Jinjin [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Wang, Chun [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Ni, Jiajia [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Li, Xuemei [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Hu, Hongjuan [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Xiao, Fanshu [Environmental Microbiome Research Center and the School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou China; Feng, Weisong [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Ning, Daliang [Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman OK USA; He, Zhili [Environmental Microbiome Research Center and the School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou China; Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman OK USA; Van Nostrand, Joy D. [Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman OK USA; Wu, Liyou [Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman OK USA; Zhou, Jizhong [Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman OK USA; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing China; Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA

    2017-05-21

    Uncovering which environmental factors have the greatest influence on community diversity patterns and how ecological processes govern community turnover are key questions related to understanding community assembly mechanisms. Although we have good understanding of plant and animal community assembly, the mechanisms regulating diversity patterns of aquatic bacterial communities in lake ecosystems remains poorly understood. Here we present nearly a decade-long time-series study of bacterioplankton communities from the eutrophic Lake Donghu (Wuhan, China) using 16S rRNA gene amplicon sequencing. We found strong repeatable seasonal patterns for the overall community, common (detected in more than 50% samples) and dominant bacterial taxa (relative abundance > 1%). Moreover, community composition tracked the seasonal temperature gradient, indicating that temperature is an important environmental factor controlling observed diversity patterns. Total phosphorus also contributed significantly to the seasonal shifts in bacterioplankton composition. However, any spatial pattern across the main lake areas was overwhelmed by temporal variability in this eutrophic lake system. Phylogenetic analysis further indicated that 75%-82% of community turnover was governed by homogeneous selection, suggesting that the bacterioplankton communities are mainly controlled by niche-based processes. However, dominant niches available within seasons might be occupied by similar combinations of bacterial taxa with modest dispersal rates throughout this lake system. This study gives us important insights into community assembly and seasonal turnover of lake bacterioplankton, it may be also useful to predict temporal patterns of other planktonic communities.

  2. Phytoplankton response to fish-induced environmental changes in a temperate shallow pond-type lake

    Directory of Open Access Journals (Sweden)

    Napiórkowska-Krzebietke Agnieszka

    2017-12-01

    Full Text Available Since 1967, the temperate, shallow, pond-type Lake Warniak has been subjected to different biomanipulation methods including the introduction of common carp, Cyprinus carpio L., grass carp, Ctenopharyngodon idella (Val., silver carp, Hypophthalmichthys molitrix (Val., and bighead carp, Hypophthalmichthys nobilis (Richardson and then their removal in an effort to control macrophytes and phytoplankton. Recently, pilot stocking with predatory fish, particularly pike, Esox lucius L., has also been conducted. Hence, an examination of the long-term response patterns of phytoplankton to multiple fish-induced stressors was undertaken. In recent years, Chara domination (2000-2004 has helped to stabilize a clear-water state, high/good ecological status, and meso-eutrophic conditions. After the disappearance of Charales in 2004, the rapid, unstable changes in phytoplankton biomass, structure, and biodiversity suggested a shift toward a turbid-water state. As a result, the phytoplankton assemblages changed from those dominated by cryptophytes Y+X2+X1+LO (2000-2004 through those dominated by cyanobacteria K (2005-2008, dinoflagellates LO+Y (2009-2011, and cryptophytes Y+LO+F+X2 (2012, to those dominated by diatoms D+K+P+A (2013-2014 with representative taxa that occur in nutrient-rich and/or nutrient-poor water bodies. The 1967-2014 changes indicated that four periods, two with clear-water state and two with turbid-water state, alternately, one after the other, resulted from different fish pressure. Higher autochthonous fish biomass was usually accompanied by lower phytoplankton biomass. In contrast, the introduction of Cyprinidae fish had a stimulating effect on summer phytoplankton dominated by cyanobateria. Among the nutrients, only phosphorus played an important role.

  3. Could an airburst above Canada at the Younger Dryas onset trigger lake eutrophication and acidification in central Europe?

    Czech Academy of Sciences Publication Activity Database

    Stuchlík, Evžen; Kletetschka, G.; Hořická, Zuzana; Hrubá, J.; Nábělek, L.; Svitavská-Svobodová, Helena; Bobek, Přemysl; Kadlec, Jaroslav; Takac, M.; Vondrák, D.

    2017-01-01

    Roč. 52, S1 (2017), A335-A335, č. článku 6247. ISSN 1086-9379. [Annual Meeting of the Meteoritical Society /80./. 23.07.2017-28.07.2017, Santa Fe] R&D Projects: GA ČR(CZ) GA17-05935S Institutional support: RVO:60077344 ; RVO:67985939 ; RVO:67985530 Keywords : airburst * lake * eutrophication * acidification * paleolimnology Subject RIV: DA - Hydrology ; Limnology; EH - Ecology, Behaviour (BU-J)

  4. Zooplankton grazing in a eutrophic lake: implications of diel vertical migration

    International Nuclear Information System (INIS)

    Lampert, W.; Taylor, B.E.

    1985-01-01

    During summer and fall, depth profiles of zooplankton community grazing were determined in situ during day and night in the Schoehsee, a small eutrophic lake. Labeled algae of two different sizes were mixed with the natural suspension of phytoplankton in a grazing chamber. A small blue-green alga (Synechococcus, 1 μm) was labeled with 32 P; a larger green alga (Scenedesmus, 4-15 μm) was labeled with 14 C. During summer, grazing in the upper 5 m was negligible during day but strong at night. Hence, algae grow relatively unimpeded by grazing during daytime but are harvested at night. Vertical and diel differences in grazing rates disappeared when the vertical migration ceased in fall. Selectivity of grazing was controlled by the zooplankton species composition. Eudiaptomus showed a strong preference for Scenedesmus. Daphnia showed a slight preference for Scenedesmus, but Ceriodaphnia preferred Synechococcus. Cyclopoid copepodites did not ingest the small blue-green. Because Daphnia and Eudiaptomus were dominant, grazing rates on larger cells were usually higher than grazing rates on the small cells. Negative electivity indices for scenedesmus occurred only when the biomass of large crustaceans was extremely low (near the surface, during day). Zooplankton biomass was the main factor controlling both vertical and seasonal variations in grazing. Highest grazing rates (65%/d) were measured during fall when zooplankton abundance was high. Because differential losses can produce substantial errors in the results, it was necessary to process the samples on the boat immediately after collection, without preservation

  5. Do lake littoral benthic invertebrates respond differently to eutrophication, hydromorphological alteration, land use and fish stocking?

    Directory of Open Access Journals (Sweden)

    Šiling Rebeka

    2016-01-01

    Full Text Available In order to provide adequate guidelines in freshwater management, managers need reliable bioindicators that can respond differently to varied stressors. Managers also have to consider hierarchical structure of environmental factors. Thus, our research aims to test the independence of taxa responses along environmental gradients and to examine in what order natural and anthropogenic factors constrain the structure of littoral benthic assemblages. The rank of explained variance of littoral benthic assemblage's variable group hierarchy was: land use > landscape characteristics > eutrophication > fish stocking > hydromorphological alteration. We determined nine gradients (two natural and seven stressor gradients, separated into five groups based on statistically significant differences in responsiveness of taxa. Apart from responsiveness to natural factors, littoral benthic invertebrates could be used as bioindicators for stressors reflecting urbanization, eutrophication, hydromorphological alteration and fish stocking. The taxonomical composition of littoral benthic invertebrates, especially when taxa with preference for certain relatively narrow environmental conditions along gradients are present, can be used to identify effects of key stressors. Our findings have profound implications for ecological assessment and management of lakes, as they indicate that benthic invertebrates can be used when the effects of multiple stressors need to be disentangled.

  6. Trends in eutrophication research and control

    Science.gov (United States)

    Rast, Walter; Thornton, Jeffrey A.

    1996-02-01

    Eutrophication is the natural ageing process of lakes. It is characterized by a geologically slow shift from in-lake biological production driven by allochthonous (external to the water body) loading of nutrients, to production driven by autochthonous (in-lake) processes. This shift typically is accompanied by changes in species and biotic community composition, as an aquatic ecosystem is ultimately transformed into a terrestrial biome. However, this typically slow process can be greatly accelerated by human intervention in the natural biogeochemical cycling of nutrients within a watershed; the resulting cultural eutrophication can create conditions inimical to the continued use of the water body for human-driven economic purposes. Excessive algal and rooted plant growth, degraded water quality, extensive deoxygenation of the bottom water layers and increased fish biomass accompanied by decreased harvest quality, are some features of this process.Following the Second World War, concern with cultural eutrophication achieved an intensity that spurred a significant research effort, culminating in the identification of phosphorus as the single most significant, and controllable, element involved in driving the eutrophication process. During the late 1960s and throughout the 1970s, much effort was devoted to reducing phosphorus in wastewater effluents, primarily in the developed countries of the temperate zone. These efforts generally resulted in the control of eutrophication in these countries, albeit with varying degrees of success. The present effort in the temperature zone, comprising mostly developed nations, has now shifted to the control of diffuse sources of a broader spectrum of contaminants that impact human water use.In the developing countries of the inter-tropical zone, however, rapidly expanding populations, a growing industrial economy and extensive urbanization have only recently reached an intensity at which cultural eutrophication can no longer be

  7. Impacts of extreme weather events on highly eutrophic marine ecosystem (Rogoznica Lake, Adriatic coast)

    Science.gov (United States)

    Ciglenečki, I.; Janeković, I.; Marguš, M.; Bura-Nakić, E.; Carić, M.; Ljubešić, Z.; Batistić, M.; Hrustić, E.; Dupčić, I.; Garić, R.

    2015-10-01

    Rogoznica Lake is highly eutrophic marine system located on the Eastern Adriatic coast (43°32‧N, 15°58‧E). Because of the relatively small size (10,276 m2) and depth (15 m) it experiences strong natural and indirect anthropogenic influences. Dynamics within the lake is characterized by the extreme and highly variable environmental conditions (seasonal variations in salinity and temperature, water stratification and mixing, redox and euxinic conditions, concentrations of nutrients) which significantly influence the biology inside the lake. Due to the high phytoplankton activity, the upper part of the water column is well oxygenated, while hypoxia/anoxia usually occurs in the bottom layers. Anoxic part of the water column is characterized with high concentrations of sulfide (up to 5 mM) and nutrients (NH4+ up to 315 μM; PO43- up to 53 μM; SiO44- up to 680 μM) indicating the pronounced remineralization of the allochthonous organic matter, produced in the surface waters. The mixolimnion varies significantly within a season feeling effects of the Adriatic atmospheric and ocean dynamics (temperature, wind, heat fluxes, rainfall) which all affect the vertical stability and possibly induce vertical mixing and/or turnover. Seasonal vertical mixing usually occurs during the autumn/winter upon the breakdown of the stratification, injecting oxygen-rich water from the surface into the deeper layers. Depending on the intensity and duration of the vertical dynamics (slower diffusion and/or faster turnover of the water layers) anoxic conditions could developed within the whole water column. Extreme weather events such as abrupt change in the air temperature accompanied with a strong wind and consequently heat flux are found to be a key triggering mechanism for the fast turnover, introducing a large amount of nutrients and sulfur species from deeper parts to the surface. Increased concentration of nutrients, especially ammonium, phosphate, and silicates persisting for

  8. Internal cycling, not external loading, decides the nutrient limitation in eutrophic lake: A dynamic model with temporal Bayesian hierarchical inference.

    Science.gov (United States)

    Wu, Zhen; Liu, Yong; Liang, Zhongyao; Wu, Sifeng; Guo, Huaicheng

    2017-06-01

    Lake eutrophication is associated with excessive anthropogenic nutrients (mainly nitrogen (N) and phosphorus (P)) and unobserved internal nutrient cycling. Despite the advances in understanding the role of external loadings, the contribution of internal nutrient cycling is still an open question. A dynamic mass-balance model was developed to simulate and measure the contributions of internal cycling and external loading. It was based on the temporal Bayesian Hierarchical Framework (BHM), where we explored the seasonal patterns in the dynamics of nutrient cycling processes and the limitation of N and P on phytoplankton growth in hyper-eutrophic Lake Dianchi, China. The dynamic patterns of the five state variables (Chla, TP, ammonia, nitrate and organic N) were simulated based on the model. Five parameters (algae growth rate, sediment exchange rate of N and P, nitrification rate and denitrification rate) were estimated based on BHM. The model provided a good fit to observations. Our model results highlighted the role of internal cycling of N and P in Lake Dianchi. The internal cycling processes contributed more than external loading to the N and P changes in the water column. Further insights into the nutrient limitation analysis indicated that the sediment exchange of P determined the P limitation. Allowing for the contribution of denitrification to N removal, N was the more limiting nutrient in most of the time, however, P was the more important nutrient for eutrophication management. For Lake Dianchi, it would not be possible to recover solely by reducing the external watershed nutrient load; the mechanisms of internal cycling should also be considered as an approach to inhibit the release of sediments and to enhance denitrification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Long-term effects of extreme weather events and eutrophication on the fish community of shallow Lake Peipsi (Estonia/Russia

    Directory of Open Access Journals (Sweden)

    Külli Kangur

    2013-06-01

    Full Text Available The fish kill in lake Peipsi (Estonia/Russia during the extraordinarily hot summer of 2010 evoked an investigation into the effects of environmental extremes and long-term eutrophication on the fish community of the lake. Current data on lake Peipsi indicate that temperature extremes and synergistic interactions with eutrophication have led to a radical restructuring of the fish community. Commercial landings of lake smelt, Osmerus eperlanus eperlanus m. spirinchus (Pallas, the previous dominant species of the fish community, have decreased dramatically since the 1930s, these declines being coupled with summer heat waves coinciding with low water levels. Gradual decline in smelt stock and catches was significantly related to a decline of near-bottom oxygen conditions and to a decrease in water transparency. The first documented fish kill in 1959 occurred only in the southern, most shallow and eutrophic lake (lake Pihkva. Recently, summer fish kill have become more frequent, involving larger areas of the lake. In addition to the cold-water species, e.g. smelt and vendace Coregonus albula (L., the abundance of bottom-dwelling fishes such as ruffe Gymnocephalus cernuus (L. and juvenile fish have significantly decreased after the 2010 heat wave probably due to hypoxia and warm water temperatures. This study showed that fish community structure in large shallow lakes may be very vulnerable to water temperature increases, especially temperature extremes in combination with eutrophication.

  10. Effects of submerged macrophytes on the abundance and community composition of ammonia-oxidizing prokaryotes in a eutrophic lake.

    Science.gov (United States)

    Zhao, Da-yong; Luo, Juan; Zeng, Jin; Wang, Meng; Yan, Wen-ming; Huang, Rui; Wu, Qinglong L

    2014-01-01

    Abundances and community compositions of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in unvegetated sediment and the rhizosphere sediments of three submerged macrophytes (Ceratophyllum demersum, Vallisneria spinulosa, and Potamogeton crispus) were investigated in a large, eutrophic freshwater lake, Lake Taihu. Abundances of archaeal ammonia monooxygenase alpha-subunit (amoA) gene (from 6.56 × 10(6) copies to 1.06 × 10(7) copies per gram of dry sediment) were higher than those of bacterial amoA (from 6.13 × 10(5) to 3.21 × 10(6) copies per gram of dry sediment) in all samples. Submerged macrophytes exhibited no significant effect on the abundance and diversity of archaeal amoA gene. C. demersum and V. spinulosa increased the abundance and diversity of bacterial amoA gene in their rhizosphere sediment. However, the diversity of bacterial amoA gene in the rhizosphere sediments of P. crispus was decreased. The data obtained in this study would be helpful to elucidate the roles of submerged macrophytes involved in the nitrogen cycling of eutrophic lake ecosystems.

  11. Fifty years of eutrophication and lake restoration reflected in sedimentary carbon and nitrogen isotopes of a small, hardwater lake (south Germany

    Directory of Open Access Journals (Sweden)

    Emanuel Braig

    2013-04-01

    Full Text Available This study analyses the response of the carbon and nitrogen isotopic composition of sedimentary organic matter to rapid human-induced eutrophication and meromixis as well as subsequent restoration efforts [in-lake phosphorus (P-Precipitation, P-remediation of the well inflow and multiannual destratification] in a 46-yr sediment core sequence (1963-2009 from Fischkaltersee, a small hard-water lake (S-Germany. In addition, the sediment record was compared with detailed data on water column chemistry during almost (1977-2009 the recorded history of eutrophication and trophic recovery of the named lake. While the onset of eutrophication resulted in an abrupt positive excursion (+2.4‰, the overall reaction of δ13CSOM to ongoing eutrophication and meromixis as well as to permanent hypolimnion aeration and trophic recovery is a continous negative trend (-3.7‰ with the most depleted signatures (-38.8‰ present in the youngest part of the core. This negative trend was not influenced by multiannual hypolimnion aeration, which although oxygenating bottom waters (>2 mg O2 L–1, did not reverse the increasing anoxis in the sediment, as is indicated by an declining Mn/Fe ratio. Hence, we conclude that in Fischkaltersee δ13CSOM was controlled by photoautotrophic input only during an early phase in the eutrophication process. The signal of intensifying microbially mediated carbon cycling processes in the sediment, i.e. methanogenesis and methanotrophy, was superimposed on the primary productivity signal by crossing a certain TP threshold (approx. TP=0.04 mg L–1. Sedimentary δ15N values exhibit an overall increase (+3.4‰ in reaction to the eutrophication process, while trophic recovery produces a continous decrease in the signal (-2.7‰. Linear correlation of δ15N to nitrate utilisation in the epilimnion, however, is rather weak (R2=0.33. Comparison between sediment δ15N values and water column data reveals that two negative shifts in the

  12. Removal of phosphate from eutrophic lakes through adsorption by in situ formation of magnesium hydroxide from diatomite.

    Science.gov (United States)

    Xie, Fazhi; Wu, Fengchang; Liu, Guijian; Mu, Yunsong; Feng, Chenglian; Wang, Huanhua; Giesy, John P

    2014-01-01

    Since in situ formation of Mg(OH)2 can efficiently sorb phosphate (PO4) from low concentrations in the environment, a novel dispersed magnesium oxide nanoflake-modified diatomite adsorbent (MOD) was developed for use in restoration of eutrophic lakes by removal of excess PO4. Various adsorption conditions, such as pH, temperature and contact time were investigated. Overall, sorption capacities increased with increasing temperature and contact time, and decreased with increasing pH. Adsorption of PO4 was well described by both the Langmuir isotherm and pseudo second-order models. Theoretical maximum sorption capacity of MOD for PO4 was 44.44-52.08 mg/g at experimental conditions. Characterization of PO4 adsorbed to MOD by use of X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and solid state (31)P nuclear magnetic resonance revealed that electrostatic attraction, surface complexation and chemical conversion in situ were the major forces in adsorption of PO4. Mg(OH)2 formed in situ had a net positive charge on the surface of the MOD that could adsorb PO4(3-) and HPO4(2-) anion to form surface complex and gradually convert to Mg3(PO4)2 and MgHPO4. Efficiency of removal of PO4 was 90% when 300 mg MOD/L was added to eutrophic lake water. Results presented here demonstrated the potential use of the MOD for restoration of eutrophic lakes by removal of excess PO4.

  13. Will the Oxygen-Phosphorus Paradigm Persist? - Expert Views of the Future of Management and Restoration of Eutrophic Lakes

    Science.gov (United States)

    Nygrén, Nina A.; Tapio, Petri; Horppila, Jukka

    2017-11-01

    In the age of climate change, the demand and lack of pure water challenges many communities. Substantial amount of effort is put in every year to manage and restore degraded lakes while the long-term effects of those efforts are only poorly known or monitored. Oxygenation, or aeration, is used extensively for the restoration of eutrophic lakes, although many studies question whether this process improves the status of the lakes in the long-term. The desired effect of oxygenation is based on paradigmatic theories that, in the light of recent literature, might not be adequate when long-term improvements are sought. This article canvasses expert views on the feasibility of the `oxygen-phosphorus paradigm' as well as the future of the management and restoration of eutrophic lakes, based on an international, two-rounded, expert panel survey (Delphi study), employing 200 freshwater experts from 33 nationalities, contacted at three conferences on the topic. The conclusion is that the oxygen-phosphorus paradigm seems to be rather persistent. The experts considered oxygenation to be a valid short-term lake restoration method, but not without harmful side-effects. In addition, experts' low level of trust in the adequacy of the scientific knowledge on the effects of restorations and in the use of the scientific knowledge as a basis of choice of restoration methods, could be signs of a paradigm shift towards an outlook emphasizing more effective catchment management over short-term restorations. The expert panel also anticipated that reducing external nutrient loads from both point and diffuse sources will succeed in the future.

  14. Antibiotic resistance genes in surface water of eutrophic urban lakes are related to heavy metals, antibiotics, lake morphology and anthropic impact.

    Science.gov (United States)

    Yang, Yuyi; Xu, Chen; Cao, Xinhua; Lin, Hui; Wang, Jun

    2017-08-01

    Urban lakes are impacted by heavy human activities and represent potential reservoirs for antibiotic resistance genes. In this study, six urban lakes in Wuhan, central China were selected to analyze the distribution of sulfonamide resistance (sul) genes, tetracycline resistance (tet) genes and quinolone resistance (qnr) genes and their relationship with heavy metals, antibiotics, lake morphology and anthropic impact. sul1 and sul2 were detected in all six lakes and dominated the types of antibiotic resistance genes, which accounted for 86.28-97.79% of the total antibiotic resistance gene abundance. For eight tested tet genes, antibiotic efflux pumps (tetA, tetB, tetC, and tetG) genes were all observed in six lakes and had higher relative abundance than ribosomal protection protein genes (tetM and tetQ). For 4 plasmid mediated quinolone resistance genes, only qnrD is found in all six lakes. The class I integron (intI1) is also found to be a very important media for antibiotic resistance gene propagation in urban lakes. The results of redundancy analysis and variation partitioning analysis showed that antibiotic and co-selection with heavy metals were the major factors driving the propagation of antibiotic resistance genes in six urban lakes. The heavily eutrophic Nanhu Lake and Shahu Lake which located in a high density building area with heavy human activities had the higher relative abundance of total antibiotic resistance genes. Our study could provide a useful reference for antibiotic resistance gene abundance in urban lakes with high anthropic impact.

  15. Perspectives for an integrated understanding of tropical and temperate high-mountain lakes

    Directory of Open Access Journals (Sweden)

    Jordi Catalan

    2016-03-01

    Full Text Available High mountain lakes are extreme freshwater ecosystems and excellent sentinels of current global change. They are likely among the most comparable ecosystems across the world. The largest contrast occurs between lakes in temperate and tropical areas. The main difference arises from the seasonal patterns of heat exchange and the external loadings (carbon, phosphorus, metals. The consequence is a water column structure based on temperature, in temperate lakes, and oxygen, in tropical lakes. This essential difference implies that, in tropical lakes, one can expect a more sustained productivity throughout the year; a higher nutrient internal loading based on the mineralization of external organic matter; higher nitrification-denitrification potential related to the oxyclines; and a higher metal mobilization due to the permanently reduced bottom layer. Quantifying and linking these and other biogeochemical pathways to particular groups of organisms is in the current agenda of high-mountain limnology. The intrinsic difficulties of the taxonomic study of many of the organisms inhabiting these systems can be now overcome with the use of molecular techniques. These techniques will not only provide a much less ambiguous taxonomic knowledge of the microscopic world, but also will unveil new biogeochemical pathways that are difficult to measure chemically and will solve biogeographical puzzles of the distribution of some macroscopic organism, tracing the relationship with other areas. Daily variability and vertical gradients in the tropics are the main factors of phytoplankton species turnover in tropical lakes; whereas seasonality is the main driver in temperate communities. The study of phytoplankton in high-mountain lakes only makes sense in an integrated view of the microscopic ecosystem. A large part of the plankton biomass is in heterotrophic, and mixotrophic organisms and prokaryotes compete for dissolved resources with eukaryotic autotrophs. In fact

  16. Occurrence, spatial distribution, sources, and risks of polychlorinated biphenyls and heavy metals in surface sediments from a large eutrophic Chinese lake (Lake Chaohu)

    DEFF Research Database (Denmark)

    He, Wei; Bai, Ze-Lin; Liu, Wen-Xiu

    2016-01-01

    Surface sediment from large and eutrophic Lake Chaohu was investigated to determine the occurrence, spatial distribution, sources, and risks of polychlorinated biphenyls (PCBs) and heavy metals in one of the five biggest freshwater lakes in China. Total concentration of PCBs (Σ34PCBs) in Lake...... and microbial degradation accounted for 34.2 % and 65.8 % of total PCBs using PMF, and PMF revealed that natural and anthropogenic sources of heavy metals accounted for 38.1 % and 61.8 %, respectively. CA indicated that some toxic heavy metals (e.g., Cd, In, Tl, and Hg) were associated with Ca–Na–Mg minerals......, and Hg were at levels of environmental concern. The sediment in the drinking water source area (DWSA) was threatened by heavy metals from other areas, and some fundamental solutions were proposed to protect the DWSA....

  17. Spatial variations in food web structures with alternative stable states: evidence from stable isotope analysis in a large eutrophic lake

    Science.gov (United States)

    Li, Yunkai; Zhang, Yuying; Xu, Jun; Zhang, Shuo

    2018-03-01

    Food web structures are well known to vary widely among ecosystems. Moreover, many food web studies of lakes have generally attempted to characterize the overall food web structure and have largely ignored internal spatial and environmental variations. In this study, we hypothesize that there is a high degree of spatial heterogeneity within an ecosystem and such heterogeneity may lead to strong variations in environmental conditions and resource availability, in turn resulting in different trophic pathways. Stable carbon and nitrogen isotopes were employed for the whole food web to describe the structure of the food web in different sub-basins within Taihu Lake. This lake is a large eutrophic freshwater lake that has been intensively managed and highly influenced by human activities for more than 50 years. The results show significant isotopic differences between basins with different environmental characteristics. Such differences likely result from isotopic baseline differences combining with a shift in food web structure. Both are related to local spatial heterogeneity in nutrient loading in waters. Such variation should be explicitly considered in future food web studies and ecosystem-based management in this lake ecosystem.

  18. Spatial variations in food web structures with alternative stable states: evidence from stable isotope analysis in a large eutrophic lake

    Science.gov (United States)

    Li, Yunkai; Zhang, Yuying; Xu, Jun; Zhang, Shuo

    2017-05-01

    Food web structures are well known to vary widely among ecosystems. Moreover, many food web studies of lakes have generally attempted to characterize the overall food web structure and have largely ignored internal spatial and environmental variations. In this study, we hypothesize that there is a high degree of spatial heterogeneity within an ecosystem and such heterogeneity may lead to strong variations in environmental conditions and resource availability, in turn resulting in different trophic pathways. Stable carbon and nitrogen isotopes were employed for the whole food web to describe the structure of the food web in different sub-basins within Taihu Lake. This lake is a large eutrophic freshwater lake that has been intensively managed and highly influenced by human activities for more than 50 years. The results show significant isotopic differences between basins with different environmental characteristics. Such differences likely result from isotopic baseline differences combining with a shift in food web structure. Both are related to local spatial heterogeneity in nutrient loading in waters. Such variation should be explicitly considered in future food web studies and ecosystem-based management in this lake ecosystem.

  19. Use of metabolic inhibitors to estimate protozooplankton grazing and bacterial production in a monomictic eutrophic lake with an anaerobic hypolimnion

    International Nuclear Information System (INIS)

    Sanders, R.W.; Porter, K.G.

    1986-01-01

    Inhibitors of eucaryotes (cycloheximide and amphotericin B) and procaryotes (penicillin and chloramphenical) were used to estimate bacterivory and bacterial production in a eutrophic lake. Bacterial production appeared to be slightly greater than protozoan grazing in the aerobic waters of Lake Oglethorpe. Use of penicillin and cycloheximide yielded inconsistent results in anaerobic water and in aerobic water when bacterial production was low. Production measured by inhibiting eucaryotes with cycloheximide did not always agree with [ 3 H]thymidine estimates or differential filtration methods. Laboratory experiments showed that several common freshwater protozoans continued to swim and ingest bacterium-size latex beads in the presence of the eucaryote inhibitor. Penicillin also affected grazing rates of some ciliates. The authors recommended that caution and a corroborating method be used when estimating ecologically important parameters with specific inhibitors

  20. Mapping Aquatic Vegetation in a Large, Shallow Eutrophic Lake: A Frequency-Based Approach Using Multiple Years of MODIS Data

    Directory of Open Access Journals (Sweden)

    Xiaohan Liu

    2015-08-01

    Full Text Available Aquatic vegetation serves many important ecological and socioeconomic functions in lake ecosystems. The presence of floating algae poses difficulties for accurately estimating the distribution of aquatic vegetation in eutrophic lakes. We present an approach to map the distribution of aquatic vegetation in Lake Taihu (a large, shallow eutrophic lake in China and reduce the influence of floating algae on aquatic vegetation mapping. Our approach involved a frequency analysis over a 2003–2013 time series of the floating algal index (FAI based on moderate-resolution imaging spectroradiometer (MODIS data. Three phenological periods were defined based on the vegetation presence frequency (VPF and the growth of algae and aquatic vegetation: December and January composed the period of wintering aquatic vegetation; February and March composed the period of prolonged coexistence of algal blooms and wintering aquatic vegetation; and June to October was the peak period of the coexistence of algal blooms and aquatic vegetation. By comparing and analyzing the satellite-derived aquatic vegetation distribution and 244 in situ measurements made in 2013, we established a FAI threshold of −0.025 and VPF thresholds of 0.55, 0.45 and 0.85 for the three phenological periods. We validated the accuracy of our approach by comparing the results between the satellite-derived maps and the in situ results obtained from 2008–2012. The overall classification accuracy was 87%, 81%, 77%, 88% and 73% in the five years from 2008–2012, respectively. We then applied the approach to the MODIS images from 2003–2013 and obtained the total area of the aquatic vegetation, which varied from 265.94 km2 in 2007 to 503.38 km2 in 2008, with an average area of 359.62 ± 69.20 km2 over the 11 years. Our findings suggest that (1 the proposed approach can be used to map the distribution of aquatic vegetation in eutrophic algae-rich waters and (2 dramatic changes occurred in the

  1. Spatial statistics of hydrography and water chemistry in a eutrophic boreal lake based on sounding and water samples.

    Science.gov (United States)

    Leppäranta, Matti; Lewis, John E; Heini, Anniina; Arvola, Lauri

    2018-06-04

    Spatial variability, an essential characteristic of lake ecosystems, has often been neglected in field research and monitoring. In this study, we apply spatial statistical methods for the key physics and chemistry variables and chlorophyll a over eight sampling dates in two consecutive years in a large (area 103 km 2 ) eutrophic boreal lake in southern Finland. In the four summer sampling dates, the water body was vertically and horizontally heterogenic except with color and DOC, in the two winter ice-covered dates DO was vertically stratified, while in the two autumn dates, no significant spatial differences in any of the measured variables were found. Chlorophyll a concentration was one order of magnitude lower under the ice cover than in open water. The Moran statistic for spatial correlation was significant for chlorophyll a and NO 2 +NO 3 -N in all summer situations and for dissolved oxygen and pH in three cases. In summer, the mass centers of the chemicals were within 1.5 km from the geometric center of the lake, and the 2nd moment radius ranged in 3.7-4.1 km respective to 3.9 km for the homogeneous situation. The lateral length scales of the studied variables were 1.5-2.5 km, about 1 km longer in the surface layer. The detected spatial "noise" strongly suggests that besides vertical variation also the horizontal variation in eutrophic lakes, in particular, should be considered when the ecosystems are monitored.

  2. Catchment-fed cyanobacterial blooms in brownified temperate lakes

    Science.gov (United States)

    Senar, O.; Creed, I. F.

    2017-12-01

    One of the most significant impacts of global atmospheric change is the alteration of hydrological regimes and the associated disruption of hydrological connectivity within watersheds. We show how changes in the frequency, magnitude, and duration of hydrological connectivity and disconnectivity is compromising the capacity of forest soils to store organic carbon, and increasing its export to both aquatic and atmospheric systems. Increases in dissolved organic matter (DOM) loads from forested landscapes to aquatic systems and the shift of the DOM pool to a more refractory mixture of organic compounds, a process known as brownification, alters the physical and chemical characteristics of lake environments. Furthermore, by characterizing the stages of brownification (from low to high concentrations of refractory DOM), we show a shift in the limiting factors for phytoplankton growth from macronutrients (nitrogen -N- and phosphorus -P) to micronutrients (iron -Fe) and light availability. This shift is driven by the low concentrations of DOM supplying N and P in early stages of brownification, to the strong Fe-binding capacity of refractory DOM in brownified lakes. As lakes undergo brownification, cyanobacteria adapted to scavenge Fe from DOM-Fe complexes have a competitive advantage leading to the formation of cyanobacterial blooms. Our findings provide evidence that brownification is a driving force leading to cyanobacterial blooms in lakes on forested landscapes, with expected cascading consequences to lake food webs.

  3. Effects of dissolved organic matter from a eutrophic lake on the freely dissolved concentrations of emerging organic contaminants.

    Science.gov (United States)

    Xiao, Yi-Hua; Huang, Qing-Hui; Vähätalo, Anssi V; Li, Fei-Peng; Chen, Ling

    2014-08-01

    The authors studied the effects of dissolved organic matter (DOM) on the bioavailability of bisphenol A (BPA) and chloramphenicol by measuring the freely dissolved concentrations of the contaminants in solutions containing DOM that had been isolated from a mesocosm in a eutrophic lake. The abundance and aromaticity of the chromophoric DOM increased over the 25-d mesocosm experiment. The BPA freely dissolved concentration was 72.3% lower and the chloramphenicol freely dissolved concentration was 56.2% lower using DOM collected on day 25 than using DOM collected on day 1 of the mesocosm experiment. The freely dissolved concentrations negatively correlated with the ultraviolent absorption coefficient at 254 nm and positively correlated with the spectral slope of chromophoric DOM, suggesting that the bioavailability of these emerging organic contaminants depends on the characteristics of the DOM present. The DOM-water partition coefficients (log KOC ) for the emerging organic contaminants positively correlated with the aromaticity of the DOM, measured as humic acid-like fluorescent components C1 (excitation/emission=250[313]/412 nm) and C2 (excitation/emission=268[379]/456 nm). The authors conclude that the bioavailability of emerging organic contaminants in eutrophic lakes can be affected by changes in the DOM. © 2014 SETAC.

  4. High primary production contrasts with intense carbon emission in a eutrophic tropical reservoir

    NARCIS (Netherlands)

    Almeida, Rafael M.; Nóbrega, Gabriel N.; Junger, Pedro C.; Figueiredo, Aline V.; Andrade, Anízio S.; Moura, de Caroline G.B.; Tonetta, Denise; Oliveira, Ernandes S.; Araújo, Fabiana; Rust, Felipe; Piñeiro-Guerra, Juan M.; Mendonça, Jurandir R.; Medeiros, Leonardo R.; Pinheiro, Lorena; Miranda, Marcela; Costa, Mariana R.A.; Melo, Michaela L.; Nobre, Regina L.G.; Benevides, Thiago; Roland, Fábio; Klein, de Jeroen; Barros, Nathan O.; Mendonça, Raquel; Becker, Vanessa; Huszar, Vera L.M.; Kosten, Sarian

    2016-01-01

    Recent studies from temperate lakes indicate that eutrophic systems tend to emit less carbon dioxide (CO2) and bury more organic carbon (OC) than oligotrophic ones, rendering them CO2 sinks in some cases. However, the scarcity of data from tropical systems is critical for a

  5. Evasion of added isotopic mercury from a northern temperate lake

    Science.gov (United States)

    Southworth, G.; Lindberg, S.; Hintelmann, H.; Amyot, M.; Poulain, A.; Bogle, M.; Peterson, M.; Rudd, J.; Harris, R.; Sandilands, K.; Krabbenhoft, D.; Olsen, M.

    2007-01-01

    Isotopically enriched Hg (90% 202Hg) was added to a small lake in Ontario, Canada, at a rate equivalent to approximately threefold the annual direct atmospheric deposition rate that is typical of the northeastern United States. The Hg spike was thoroughly mixed into the epilimnion in nine separate events at two-week intervals throughout the summer growing season for three consecutive years. We measured concentrations of spike and ambient dissolved gaseous Hg (DGM) concentrations in surface water and the rate of volatilization of Hg from the lake on four separate, week-long sampling periods using floating dynamic flux chambers. The relationship between empirically measured rates of spike-Hg evasion were evaluated as functions of DGM concentration, wind velocity, and solar illumination. No individual environmental variable proved to be a strong predictor of the evasion flux. The DGM-normalized flux (expressed as the mass transfer coefficient, k) varied with wind velocity in a manner consistent with existing models of evasion of volatile solutes from natural waters but was higher than model estimates at low wind velocity. The empirical data were used to construct a description of evasion flux as a function of total dissolved Hg, wind, and solar illumination. That model was then applied to data for three summers for the experiment to generate estimates of Hg re-emission from the lake surface to the atmosphere. Based on ratios of spike Hg to ambient Hg in DGM and dissolved total Hg pools, ratios of DGM to total Hg in spike and ambient Hg pools, and flux estimates of spike and ambient Hg, we concluded that the added Hg spike was chemically indistinguishable from the ambient Hg in its behavior. Approximately 45% of Hg added to the lake over the summer was lost via volatilization. ?? 2007 SETAC.

  6. Response of Zooplankton to Climate Variability: Droughts Create a Perfect Storm for Cladocerans in Shallow Eutrophic Lakes

    Directory of Open Access Journals (Sweden)

    Gaohua Ji

    2017-10-01

    Full Text Available A major attribute of the Earth’s climate that may be affected by global warming is the amplitude of variability in teleconnections. These global-scale processes involve links between oceanic conditions in one locale and weather in another, often distant, locale. An example is the El Niño Southern Oscillation (ENSO, which can affect rainfall and then the properties of lakes in Europe, Africa, North and South America. It affects rainfall, droughts and the depth of lakes in Florida, USA. It is predicted that the amplitude of variation in the ENSO will increase with global warming and, therefore, droughts will become more severe and periods of rain more intense. We investigated possible effects of climate on the zooplankton in shallow subtropical lakes by studying 16 years of monthly data from six shallow eutrophic lakes located north of Orlando, Florida. Results indicate that water depth and lake volume are tightly coupled with rainfall, as expected. During droughts, when lake depth and volume were greatly reduced, there were intensified cyanobacterial blooms, and the zooplankton shifted towards greater relative biomass of copepods compared to cladocerans. The change of zooplankton was likely due to the intensified selective fish predation in the reduced water volume, and/or selective adverse effects of cyanobacteria on cladocerans. The greatly reduced volume might lead to a ‘perfect storm’ of top-down and bottom-up factors that favor copepods over cladocerans. The mechanism needs further study. Regardless, this study documents a direct link between climate variability and zooplankton composition, and suggests how future changes in climate might affect plankton communities.

  7. Halogenated organic contaminants (HOCs) in sediment from a highly eutrophicated lake, China: occurrence, distribution and mass inventories.

    Science.gov (United States)

    Wang, Ji-Zhong; Liu, Liang-Ying; Zhang, Kai; Liang, Bo; Li, Guo-Lian; Chen, Tian-Hu

    2012-11-01

    Halogenated organic contaminants (HOCs) including 16 polybrominated diphenyl ethers (PBDEs) and 37 polychlorinated biphenyls (PCBs) were determined in 49 surfacial sediments from Chaohu Lake, a highly eutrophicated lake, China. PBDEs were detected in almost samples with the range of the total concentration (defined as Σ(16)PBDEs) from 0.84 to 86.6 ng g(-1). Compared with the occurrence of PBDEs in Pearl River Delta and Yangtze River Delta in China, lower percentage of BDE-209 over the concentration of Σ(16)PBDEs was inferred by the high-volume application of penta-BDE mixture product for local domestic furniture purpose. The total concentration of 37 PCBs (Σ(37)PCBs) ranged from 0.05 to 3.36 ng g(-1) with the most detection of PCB-1, -4, -52 and -71. Both the concentrations of Σ(16)PBDE and Σ(37)PCB poorly correlated with total organic carbon (TOC), suggesting the significant contribution of phytoplankton organic carbons to sediment TOC. The contamination by PBDEs and PCBs in western region of the lake was significantly more serious than in eastern lake. Our findings about the higher residues of PBDEs and PCBs in sediments at the estuary of Nanfei River compared to the other estuaries also supported the conclusion that urban area (Hefei city) was the main source of PBDEs and PCBs. The comparison with the concentration of HOC in the present study with those in other lacustrine sediments around the world suggested the contamination by PBDEs in Chaohu Lake is at middle of the global concentration range, whereas PCBs is at low end of the global range which could be elucidated by local economic development and historical usage of PBDEs and PCBs. The mass inventories of HOCs in the lake were estimated at 561 and 38 kg, which corresponds to only 0.000006% and 0.0001% of these global historical produce volumes, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Species composition, abundance and distribution of zooplankton in a tropical eutrophic lake: Lake Catemaco, México

    Directory of Open Access Journals (Sweden)

    Roberto E. Torres-Orozco B.

    1998-06-01

    Full Text Available From April 1992 to May 1993, zooplankton samples were collected monthly by means of horizontal tows in nine sites of the lake. Prior to the towing, temperature of surface water, transparency (Secchi, pH and dissolved oxygen were evaluated. A total of 31 zooplankton forms, including 14 species of rotifers, three copepods, five cladocerans and one ostracod, as well as protozoans (mainly vorticellids and ciliates, were detected. Rotifers were the dominant organisms, mainly Brachionus havanaensis (27.6 ind l-¹, B. angularis (6.9 ind l-¹, Keratella cochlearis (4.9 ind l-¹, Conochilus unicornis (10.8 ind l-¹ and C. dossuarius (3.1 ind l-¹. Within crustaceans, higher densities were shown by larvae (nauplii and copepodites of calanoid (16.8 ind l-¹ and cyclopoid (15.6 ind l-¹ copepods, as well as Arctodiaptomus dorsalis (2 ind l-¹, Mesocyclops edax (0.5 ind l-¹, and the cladocerans Bosmina longirostris (1.6 ind l-¹ and Diaphanosoma brachyurum (0.5 ind l-¹. Densities were low, probably because of a high predation pressure imposed by fishes. A gradual increase in total zooplankton density related with a progressive diminution of transparency was observed throughout the sampling period. Zooplankton densities in the stations located at the central part of the lake were higher when compared with those at a more peripheral position. Time variation in rotifer's relative abundance was directly related to temperature fluctuations. The low density and diversity values, the small size of the zooplankters, the presence of an important number of indicator species, and the calanoid copepods: other planktonic crustaceans low ratio, are all indicators of eutrophy. Evidences suggest that the eutrophication process of Lake Catemaco is still progressing rapidly.Entre abril de 1992 y mayo de 1993, se realizaron mensualmente recolectas subsuperficiales de zooplancton, con red, en nueve localidades del lago, en donde también se determinaron la temperatura

  9. An Assessment of Sub-Meter Scale Spatial Variability of Arcellinida (Testate Lobose Amoebae) Assemblages in a Temperate Lake: Implications for Limnological Studies.

    Science.gov (United States)

    Steele, Riley E; Nasser, Nawaf A; Patterson, R Timothy; Gregory, Braden R B; Roe, Helen M; Reinhardt, Eduard G

    2018-03-04

    Arcellinida (testate lobose amoebae), a group of benthic protists, were examined from 46 sediment-water interface samples collected from oligotrophic Oromocto Lake, New Brunswick, Canada. To assess (1) assemblage homogeneity at a sub-meter spatial scale and (2) the necessity for collecting samples from multiple stations during intra-lake surveys; multiple samples were collected from three stations (quadrats 1, 2, and 3) across the north basin of Oromocto Lake, with quadrat 1 (n = 16) being the furthest to the west, quadrat 2 (n = 15) situated closer to the center of the basin, and quadrat 3 (n = 15) positioned 300 m south of the mouth of Dead Brook, an inlet stream. Results from cluster analysis and non-metric multidimensional scaling (NMDS) analysis identified two major Arcellinida assemblages, A1 and A2, the latter containing two sub-assemblages (A2a and A2b). Redundancy analysis and variance partitioning results indicated that seven statistically significant environmental variables (K, S, Sb, Ti, Zn, Fe, and Mn) explained 41.5% of the total variation in the Arcellinida distribution. Iron, Ti and K, indicators of detrital runoff, had the greatest influence on assemblage variance. The results of this study reveal that closely spaced samples (~ 10 cm) in an open-water setting are comprised of homogenous arcellinidan assemblages, indicating that replicate sampling is not required. The results, however, must be tempered with respect to the various water properties and physical characteristics that comprise individual lakes as collection of several samples may likely be necessary when sampling multiple sites of a lake basin characterized by varying water depths (e.g., littoral zone vs. open water), or lakes impacted by geogenic or anthropogenic stressors (e.g., eutrophication, or industrial contamination).

  10. Mitigation of eutrophication in river basins, lakes, and coastal waters requires and integrated and adaptive approach; experiences from The Netherlands.

    Science.gov (United States)

    Rozemeijer, J.; Jansen, S.; Villars, N.; Grift, B. V. D.

    2017-12-01

    We propose a guideline for mitigation of eutrophication in river basins, lakes, and coastal waters. The proposed strategy is based on our experiences with implementation of manure legislation and the Water Framework Directive (WFD) in Europe. These regulations led to reduced nutrient losses from highly productive agricultural areas. For example in The Netherlands, the worldwide second largest exporter of agricultural products, nutrient concentrations in agricultural headwaters reduced since the early 1990's. Our guideline builds on three basic principles: (1) a conceptual framework integrating water quality, water quantity, soil, groundwater, and surface water, (2) the `from catchment to coast' approach for up-scaling field-scale pilot results to downstream ecological effects, and (3) a mitigation order of preference from (a) optimizing nutrient uptake efficiency to (b) enhancing nutrient retention and recirculation to (c) nutrient discharge and applying effect oriented measures. The tools needed to mitigate eutrophication are system understanding, smart monitoring, smart modelling, smart measures, and smart governance. Following these principles and using these tools enables an integrated, adaptive approach for selecting, implementing, and evaluating the most cost-effective and sustainable set of mitigation actions.

  11. Tracking past changes in lake-water phosphorus with a 251-lake calibration dataset in British Columbia: tool development and application in a multiproxy assessment of eutrophication and recovery in Osoyoos Lake, a transboundary lake in western North America

    Directory of Open Access Journals (Sweden)

    Brian Fraser Cumming

    2015-08-01

    Full Text Available Recently there has been an active discussion about the potential and challenges of tracking past lake-water trophic state using paleolimnological methods. Herein, we present analyses of the relationship between modern-day diatom assemblages from the surface sediments of 251 fresh-water lakes from British Columbia and contemporary limnological variables. Total phosphorus (TP was significantly related to the modern distribution of diatom assemblages. The large size of this new calibration dataset resulted in higher abundances and occurrences of many diatom taxa thereby allowing a more accurate quantification of the optima of diatom taxa to TP in comparison to previous smaller calibration datasets. Robust diatom-based TP inference models with a moderate predictive power were developed using weighted-averaging regression and calibration. Information from the calibration dataset was used to interpret changes in the diatom assemblages from the north and south basins of Osoyoos Lake, in conjunction with fossil pigment analyses. Osoyoos Lake is a large salmon-bearing lake that straddles the British Columbia-Washington border and has undergone cultural eutrophication followed by recovery due to substantial mitigation efforts in managing sources of nutrients. Both diatom assemblages and sedimentary pigments indicate that eutrophication began c. 1950 in the north basin and c. 1960 in the southern basin, reaching peak levels of production between 1960 and 1990, after which decreases in sedimentary pigments occurred, as well as decreases in the relative abundance and concentrations of diatom taxa inferred to have high TP optima. Post-1990 changes in the diatom assemblage suggests conditions have become less productive with a shift to taxa more indicative of lower TP optima in concert with measurements of declining TP, two of these diatom taxa, Cyclotella comensis and Cyclotella gordonensis, that were previously rare are now abundant.

  12. The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes: field and experimental evidence.

    Science.gov (United States)

    Zhang, Yunlin; van Dijk, Mark A; Liu, Mingliang; Zhu, Guangwei; Qin, Boqiang

    2009-10-01

    Eight field campaigns in the eutrophic, shallow, Lake Taihu in the summers from 2005 to 2007, and a phytoplankton degradation experiment of 33 days, were carried out to determine the contribution of phytoplankton degradation to CDOM. Significant and positive correlations were found between the CDOM absorption coefficient at 355 nm [a(CDOM)(355)], normalized fluorescence emission (QSU) at 450 nm from excitation at 355 nm [F(n)(355)], and the chlorophyll a (Chla) concentration for all eight field campaigns, which indicates that the decomposition and degradation of phytoplankton is an important source of CDOM. In the degradation experiment, the CDOM absorption coefficient increased as phytoplankton broke down during the first 12 days, showing the production of CDOM from phytoplankton. After 12 days, a(CDOM)(355) had increased from the initial value 0.41+/-0.03 m(-1) to 1.37+/-0.03 m(-1) (a 234% increase), and the Chla concentration decreased from the initial value of 349.1+/-11.2 microg/L to 30.4+/-13.2 microg/L (a 91.3% decrease). The mean daily production rate of CDOM from phytoplankton was 0.08 m(-1) for a(CDOM)(355). Parallel Factor Analysis (PARAFAC) was used to assess CDOM composition from EEM spectra, and four components were identified: a terrestrial-like humic component, two marine-like humic components, and a protein-like component. The rapid increase in marine-like humic fluorophores (C3 and C4) during the degradation experiment suggests that in situ production of CDOM plays an important role in the dynamics of CDOM. The field campaigns and experimental data in the present study show that phytoplankton can be one of the important CDOM producers in eutrophic shallow lakes.

  13. Anthropogenic and climatic factors enhancing hypolimnetic anoxia in a temperate mountain lake

    Science.gov (United States)

    Sánchez-España, Javier; Mata, M. Pilar; Vegas, Juana; Morellón, Mario; Rodríguez, Juan Antonio; Salazar, Ángel; Yusta, Iñaki; Chaos, Aida; Pérez-Martínez, Carmen; Navas, Ana

    2017-12-01

    Oxygen depletion (temporal or permanent) in freshwater ecosystems is a widespread and globally important environmental problem. However, the factors behind increased hypolimnetic anoxia in lakes and reservoirs are often diverse and may involve processes at different spatial and temporal scales. Here, we evaluate the combined effects of different anthropogenic pressures on the oxygen dynamics and water chemistry of Lake Enol, an emblematic mountain lake in Picos de Europa National Park (NW Spain). A multidisciplinary study conducted over a period of four years (2013-2016) indicates that the extent and duration of hypolimnetic anoxia has increased dramatically in recent years. The extent and duration of hypolimnetic anoxia is typical of meso-eutrophic systems, in contrast with the internal productivity of the lake, which remains oligo-mesotrophic and phosphorus-limited. This apparent contradiction is ascribed to the combination of different external pressures in the catchment, which have increased the input of allochthonous organic matter in recent times through enhanced erosion and sediment transport. The most important among these pressures appears to be cattle grazing, which affects not only the import of carbon and nutrients, but also the lake microbiology. The contribution of clear-cutting, runoff channelling, and tourism is comparatively less significant. The cumulative effects of these local human impacts are not only affecting the lake metabolism, but also the import of sulfate, nitrate- and ammonium-nitrogen, and metals (Zn). However, these local factors alone cannot explain entirely the observed oxygen deficit. Climatic factors (e.g., warmer and drier spring and autumn seasons) are also reducing oxygen levels in deep waters through a longer and increasingly steep thermal stratification. Global warming may indirectly increase anoxia in many other mountain lakes in the near future.

  14. Carbon source/sink function of a subtropical, eutrophic lake determined from an overall mass balance and a gas exchange and carbon burial balance

    International Nuclear Information System (INIS)

    Yang Hong; Xing Yangping; Xie Ping; Ni Leyi; Rong Kewen

    2008-01-01

    Although studies on carbon burial in lake sediments have shown that lakes are disproportionately important carbon sinks, many studies on gaseous carbon exchange across the water-air interface have demonstrated that lakes are supersaturated with CO 2 and CH 4 causing a net release of CO 2 and CH 4 to the atmosphere. In order to more accurately estimate the net carbon source/sink function of lake ecosystems, a more comprehensive carbon budget is needed, especially for gaseous carbon exchange across the water-air interface. Using two methods, overall mass balance and gas exchange and carbon burial balance, we assessed the carbon source/sink function of Lake Donghu, a subtropical, eutrophic lake, from April 2003 to March 2004. With the overall mass balance calculations, total carbon input was 14 905 t, total carbon output was 4950 t, and net carbon budget was +9955 t, suggesting that Lake Donghu was a great carbon sink. For the gas exchange and carbon burial balance, gaseous carbon (CO 2 and CH 4 ) emission across the water-air interface totaled 752 t while carbon burial in the lake sediment was 9477 t. The ratio of carbon emission into the atmosphere to carbon burial into the sediment was only 0.08. This low ratio indicates that Lake Donghu is a great carbon sink. Results showed good agreement between the two methods with both showing Lake Donghu to be a great carbon sink. This results from the high primary production of Lake Donghu, substantive allochthonous carbon inputs and intensive anthropogenic activity. Gaseous carbon emission accounted for about 15% of the total carbon output, indicating that the total output would be underestimated without including gaseous carbon exchange. - Due to high primary production, substantive allochthonous carbon inputs and intensive anthropogenic acitivity, subtropical, eutrophic Lake Donghu is a great carbon sink

  15. Bacterial community composition of size-fractioned aggregates within the phycosphere of cyanobacterial blooms in a eutrophic freshwater lake.

    Directory of Open Access Journals (Sweden)

    Haiyuan Cai

    Full Text Available Bacterial community composition of different sized aggregates within the Microcystis cyanobacterial phycosphere were determined during summer and fall in Lake Taihu, a eutrophic lake in eastern China. Bloom samples taken in August and September represent healthy bloom biomass, whereas samples from October represent decomposing bloom biomass. To improve our understanding of the complex interior structure in the phycosphere, bloom samples were separated into large (>100 µm, medium (10-100 µm and small (0.2-10 µm size aggregates. Species richness and library coverage indicated that pyrosequencing recovered a large bacterial diversity. The community of each size aggregate was highly organized, indicating highly specific conditions within the Microcystis phycosphere. While the communities of medium and small-size aggregates clustered together in August and September samples, large- and medium-size aggregate communities in the October sample were grouped together and distinct from small-size aggregate community. Pronounced changes in the absolute and relative percentages of the dominant genus from the two most important phyla Proteobacteria and Bacteroidetes were observed among the various size aggregates. Bacterial species on large and small-size aggregates likely have the ability to degrade high and low molecular weight compounds, respectively. Thus, there exists a spatial differentiation of bacterial taxa within the phycosphere, possibly operating in sequence and synergy to catalyze the turnover of complex organic matters.

  16. Potential human health risks from metals and As via Odontesthes bonariensis consumption and ecological risk assessments in a eutrophic lake.

    Science.gov (United States)

    Monferran, Magdalena V; Garnero, Paola Lorena; Wunderlin, Daniel A; Bistoni, María de los Angeles

    2016-07-01

    The concentration of Al, Cr, Fe, Mn, Ni, Cu, Zn, Hg, Sr, Mo, Ag, Cd, Pb and As was analyzed in water, sediment, and muscle of Odontesthes bonariensis from the eutrophic San Roque Lake (Córdoba-Argentina). The monitoring campaign was performed during the wet, dry and intermediate season. The concentration of Cr, Fe, Pb, Zn, Al and Cd in water exceeded the limits considered as hazardous for aquatic life. The highest metal concentrations were observed in sediment, intermediate concentrations, in fish muscle, and the lowest in water, with the exception of Cr, Zn, As and Hg, which were the highest in fish muscle. Potential ecological risk analysis of heavy metal concentrations in sediment indicated that the San Roque Lake posed a low ecological risk in all sampling periods. The target hazard quotients (THQs) and carcinogenic risk (CR) for individual metals showed that As in muscle was particularly hazardous, posing a potential risk for fishermen and the general population during all sampling periods. Hg poses a potential risk for fishermen only in the intermediate season. It is important to highlight that none of these two elements exceeded the limits considered as hazardous for aquatic life in water and sediment. This result proves the importance of performing measurements of contaminants, in both abiotic and biotic compartments, to assess the quality of food resources. These results suggest that the consumption of this fish species from this reservoir is not completely safe for human health. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Optical properties and composition changes in chromophoric dissolved organic matter along trophic gradients: Implications for monitoring and assessing lake eutrophication.

    Science.gov (United States)

    Zhang, Yunlin; Zhou, Yongqiang; Shi, Kun; Qin, Boqiang; Yao, Xiaolong; Zhang, Yibo

    2017-12-26

    Chromophoric dissolved organic matter (CDOM) is an important optically active substance in aquatic environments and plays a key role in light attenuation and in the carbon, nitrogen and phosphorus biogeochemical cycles. Although the optical properties, abundance, sources, cycles, compositions and remote sensing estimations of CDOM have been widely reported in different aquatic environments, little is known about the optical properties and composition changes in CDOM along trophic gradients. Therefore, we collected 821 samples from 22 lakes along a trophic gradient (oligotrophic to eutrophic) in China from 2004 to 2015 and determined the CDOM spectral absorption and nutrient concentrations. The total nitrogen (TN), total phosphorus (TP), and chlorophyll a (Chla) concentrations and the Secchi disk depth (SDD) ranged from 0.02 to 24.75 mg/L, 0.002-3.471 mg/L, 0.03-882.66 μg/L, and 0.05-17.30 m, respectively. The trophic state index (TSI) ranged from 1.55 to 98.91 and covered different trophic states, from oligotrophic to hyper-eutrophic. The CDOM absorption coefficient at 254 nm (a(254)) ranged from 1.68 to 92.65 m -1 . Additionally, the CDOM sources and composition parameters, including the spectral slope and relative molecular size value, exhibited a substantial variability from the oligotrophic level to other trophic levels. The natural logarithm value of the CDOM absorption, lna(254), is highly linearly correlated with the TSI (r 2  = 0.92, p 10 m -1 , respectively. The results suggested that the CDOM absorption coefficient a(254) might be a more sensitive single indicator of the trophic state than TN, TP, Chla and SDD. Therefore, we proposed a CDOM absorption coefficient and determined the threshold for defining the trophic state of a lake. Several advantages of measuring and estimating CDOM, including rapid experimental measurements, potential in situ optical sensor measurements and large-spatial-scale remote sensing estimations, make it

  18. Multi-sensor satellite and in situ monitoring of phytoplankton development in a eutrophic-mesotrophic lake.

    Science.gov (United States)

    Dörnhöfer, Katja; Klinger, Philip; Heege, Thomas; Oppelt, Natascha

    2018-01-15

    Phytoplankton indicated by its photosynthetic pigment chlorophyll-a is an important pointer on lake ecology and a regularly monitored parameter within the European Water Framework Directive. Along with eutrophication and global warming cyanobacteria gain increasing importance concerning human health aspects. Optical remote sensing may support both the monitoring of horizontal distribution of phytoplankton and cyanobacteria at the lake surface and the reduction of spatial uncertainties associated with limited water sample analyses. Temporal and spatial resolution of using only one satellite sensor, however, may constrain its information value. To discuss the advantages of a multi-sensor approach the sensor-independent, physically based model MIP (Modular Inversion and Processing System) was applied at Lake Kummerow, Germany, and lake surface chlorophyll-a was derived from 33 images of five different sensors (MODIS-Terra, MODIS-Aqua, Landsat 8, Landsat 7 and Sentinel-2A). Remotely sensed lake average chlorophyll-a concentration showed a reasonable development and varied between 2.3±0.4 and 35.8±2.0mg·m -3 from July to October 2015. Match-ups between in situ and satellite chlorophyll-a revealed varying performances of Landsat 8 (RMSE: 3.6 and 19.7mg·m -3 ), Landsat 7 (RMSE: 6.2mg·m -3 ), Sentinel-2A (RMSE: 5.1mg·m -3 ) and MODIS (RMSE: 12.8mg·m -3 ), whereas an in situ data uncertainty of 48% needs to be respected. The temporal development of an index on harmful algal blooms corresponded well with the cyanobacteria biomass development during summer months. Satellite chlorophyll-a maps allowed to follow spatial patterns of chlorophyll-a distribution during a phytoplankton bloom event. Wind conditions mainly explained spatial patterns. Integrating satellite chlorophyll-a into trophic state assessment resulted in different trophic classes. Our study endorsed a combined use of satellite and in situ chlorophyll-a data to alleviate weaknesses of both approaches and

  19. High net CO2 and CH4 release at a eutrophic shallow lake on a formerly drained fen

    Science.gov (United States)

    Franz, Daniela; Koebsch, Franziska; Larmanou, Eric; Augustin, Jürgen; Sachs, Torsten

    2016-05-01

    years of rewetting the lake ecosystem exhibited a considerable C loss and global warming impact, the latter mainly driven by high CH4 emissions. We assume the eutrophic conditions in combination with permanent high inundation as major reasons for the unfavourable GHG balance.

  20. Great cormorant (Phalacrocorax carbo predation on pikeperch (Sander lucioperca L. in shallow eutrophic lakes in Poland

    Directory of Open Access Journals (Sweden)

    Traczuk Piotr

    2017-06-01

    Full Text Available Increases in the population abundance of the piscivorous great cormorant (Phalacrocorax carbo has led to conflicts with fisheries. Cormorants are blamed for decreased fish catches in many lakes in Poland. The aim of this paper is to describe to role of pikeperch (Sander lucioperca in the diet of cormorants nesting in a colony on the island in Lake Warnołty. Since the breeding colony is located in the vicinity of Lake OEniardwy, the largest lake in Poland, the cormorants use the resources in this lake. In 2009-2016, 18,432 regurgitated fish were collected, of which 593 were pikeperch. The share of pikeperch among fish collected in 2009-2012 did not exceed 2%, but from 2013 this increased substantially to maximum of 38.2% in 2015. The smallest pikeperch had a standard length of 8.4 cm, and the largest 42.5 cm. Pikeperch mean length differed by year, and the length distribution was close to normal. The sizes of the regurgitated pikeperch indicate that cormorants prey almost exclusively on juvenile specimens. The results of the present study indicate that cormorant predation has a significant impact on pikeperch populations in lakes in the vicinity of the colony, and the great cormorants are possibly a significant factor in the effectiveness of pikeperch management. When planning for the management of fish populations in lakes subjected to cormorant predation pressure, it should be borne in mind that predation by this piscivorous bird species impacts the abundance and size-age structure of fish populations.

  1. Bacterial diversity and geochemical profiles in sediments from eutrophic Azorean lakes

    NARCIS (Netherlands)

    da Costa Martins, G.; Henriques, I.; Ribeiro, D.C; Correia, A.; Bodelier, P.L.E.; Cruz, J.V.; Brito, A.G.; Nogueira, R.

    2012-01-01

    In the Azores, the advanced trophic state of the lakes requires a fast intervention to achieve the good ecological status prescribed by the Water Framework Directive. Despite the considerable effort made to describe the phytoplankton growing on the water column, the lack of information regarding the

  2. Could artificial plant beds favour microcrustaceans during biomanipulation of eutrophic shallow lakes?

    DEFF Research Database (Denmark)

    Balayla, David; Boll, Thomas; Trochine, Carolina

    2017-01-01

    Introduction of artificial plants may facilitate the transition from a turbid to a clear-water state in shallow lakes, particularly when plant establishment is delayed. We investigated the usefulness of artificial plants as a restoration tool in an experimental setup mimicking open submerged plant...

  3. Determining Long-Term Trends of Four Fast-Eutrophicated Lakes in China and Finland

    DEFF Research Database (Denmark)

    Liao, Mengna; Yu, Ge; Ventelä, Anne-Mari

    2016-01-01

    by increases in tourism, farming and urbanization respectively. Water quality changes in Lakes Lugu, Taibai and Taihu captured 68.4%, 54.9%, and 86.0% of the temperature variations before the turning points. The anthropogenic impacts explained 84.0%, 96.4% and 96.0% of the water quality variations after...

  4. Bioelectrode-based approach for enhancing nitrate and nitrite removal and electricity generation from eutrophic lakes

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2012-01-01

    Nitrate and nitrite contamination of surface waters (e.g. lakes) has become a severe environmental and health problem, especially in developing countries. The recent demonstration of nitrate reduction at the cathode of microbial fuel cell (MFC) provides an opportunity to develop a new technology ...

  5. Pyrosequencing analysis of free-living and attached bacterial communities in Meiliang Bay, Lake Taihu, a large eutrophic shallow lake in China.

    Science.gov (United States)

    Tang, Xiangming; Li, Linlin; Shao, Keqiang; Wang, Boweng; Cai, Xianlei; Zhang, Lei; Chao, Jianying; Gao, Guang

    2015-01-01

    To elucidate the relationship between particle-attached (PA, ≥ 5.0 μm) and free-living (FL, 0.2-5.0 μm) bacterial communities, samplings were collected seasonally from November 2011 to August 2012 in Meiliang Bay, Lake Taihu, China. We used 454 pyrosequencing of 16S rRNA genes to study bacterial diversity and structure of PA and FL communities. The analysis rendered 37,985 highly qualified reads, subsequently assigned to 1755 operational taxonomic units (97% similarity) for the 8 samples. Although 27 high-level taxonomic groups were obtained, the 3 dominant phyla (Proteobacteria, Actinobacteria, and Bacteroidetes) comprised about 75.9% and 82.4% of the PA and FL fractions, respectively. Overall, we found no significant differences between community types, as indicated by ANOSIM R statistics (R = 0.063, P > 0.05) and the Parsimony test (P = 0.222). Dynamics of bacterial communities were correlated with changes in concentrations of total suspended solids (TSS) and total phosphorus (TP). In summer, a significant taxonomic overlap in the 2 size fractions was observed when Cyanobacteria, a major contributor of TSS and TP, dominated in the water, highlighting the potential rapid exchange between PA and FL bacterial populations in large shallow eutrophic lakes.

  6. Bioelectrode-based approach for enhancing nitrate and nitrite removal and electricity generation from eutrophic lakes

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    Nitrate and nitrite contamination of surface waters (e.g. lakes) has become a severe environmental and health problem, especially in developing countries. The recent demonstration of nitrate reduction at the cathode of microbial fuel cell (MFC) provides an opportunity to develop a new technology...... from nitrate- and nitrite-rich synthetic lake waters at initial concentration of 10 mg-N/L. Along with the electricity production a total nitrogen removal of 62% and 77% was accomplished, for nitrate and nitrite, respectively. The nitrogen removal was almost 4 times higher under close-circuit condition...... with biocathode, compared to either the open-circuit operation or with abiotic cathode. The mass balance on nitrogen indicates that most of the removed nitrate and nitrite (84.7±0.1% and 81.8±0.1%, respectively) was reduced to nitrogen gas. The nitrogen removal and power generation was limited by the dissolved...

  7. A 200 year sedimentary record of progressive eutrophication in lake Greifen (Switzerland): Implications for the origin of organic-carbon-rich sediments

    Science.gov (United States)

    Hollander, David J.; McKenzie, Judith A.; Lo Ten Haven, H.

    1992-09-01

    Over the past 200 years Lake Greifen, a small lake in northeastern Switzerland, has undergone dramatic changes in primary productivity and eutrophication due to increased nutrient supply from agricultural activity and industrialization. A 40 year historical record of the water-column chemistry indicates that productivity and eutrophication reached a maximum in 1974, after which stricter regulations on the input of nutrients resulted in a progressive decrease. Collected cores show the sedimentary expression of this anthropogenically induced eutrophication by a well-developed annual sedimentation and by enhanced values of total organic carbon, organic-carbon accumulation rates, and hydrogen indices (HI) of the kerogens. Analyses of the carbon isotopic composition of sedimentary carbonates and organic matter reveal that the fractionation between these two phases varies with the HI of kerogens. This observation is explicable in terms of changing productivity and preservation of the organic matter, and the CO2(aq) budget of the water body. We propose that if high primary productivity were primarily responsible for the preservation and accumulation of organic matter, then a negative correlation will occur between Δδ13Ccalcite-organic matter (Δδ13Ccal-om) and HI values. In an environment with relatively low to moderate productivity but with bottom-water anoxia, a positive correlation will exist between Δδ13Ccal-om and HI values. This study of Lake Greifen has implications for understanding paleoenvironmental controls on ancient organic-carbon-rich sediments.

  8. Characterization, origin and aggregation behavior of colloids in eutrophic shallow lake.

    Science.gov (United States)

    Xu, Huacheng; Xu, Mengwen; Li, Yani; Liu, Xin; Guo, Laodong; Jiang, Helong

    2018-05-31

    Stability of colloidal particles contributes to the turbidity in the water column, which significantly influences water quality and ecological functions in aquatic environments especially shallow lakes. Here we report characterization, origin and aggregation behavior of aquatic colloids, including natural colloidal particles (NCPs) and total inorganic colloidal particles (TICPs), in a highly turbid shallow lake, via field observations, simulation experiments, ultrafiltration, spectral and microscopic, and light scattering techniques. The colloidal particles were characterized with various shapes (spherical, polygonal and elliptical) and aluminum-, silicon-, and ferric-containing mineralogical structures, with a size range of 20-200 nm. The process of sediment re-suspension under environmentally relevant conditions contributed 78-80% of TICPs and 54-55% of NCPs in Lake Taihu, representing an important source of colloids in the water column. Both mono- and divalent electrolytes enhanced colloidal aggregation, while a reverse trend was observed in the presence of natural organic matter (NOM). The influence of NOM on colloidal stability was highly related to molecular weight (MW) properties with the high MW fraction exhibiting higher stability efficiency than the low MW counterparts. However, the MW-dependent aggregation behavior for NCPs was less significant than that for TICPs, implying that previous results on colloidal behavior using model inorganic colloids alone should be reevaluated. Further studies are needed to better understand the mobility/stability and transformation of aquatic colloids and their role in governing the fate and transport of pollutants in natural waters. Copyright © 2018. Published by Elsevier Ltd.

  9. Patterns and multi-scale drivers of phytoplankton species richness in temperate peri-urban lakes

    Energy Technology Data Exchange (ETDEWEB)

    Catherine, Arnaud, E-mail: arnocat@mnhn.fr [UMR7245 MCAM MNHN-CNRS, Muséum National d' Histoire Naturelle, CC 39, 12 rue Buffon, F-75231 Paris, Cedex 05 (France); Selma, Maloufi, E-mail: maloufi@mnhn.fr [UMR7245 MCAM MNHN-CNRS, Muséum National d' Histoire Naturelle, CC 39, 12 rue Buffon, F-75231 Paris, Cedex 05 (France); Mouillot, David, E-mail: david.mouillot@univ-montp2.fr [UMR 9190 MARBEC UM2-CNRS-IRD-UM1-IFREMER, CC 93, Place Eugène Bataillon, Université de Montpellier 2, F-34095 Montpellier (France); Troussellier, Marc, E-mail: troussel@univ-montp2.fr [UMR 9190 MARBEC UM2-CNRS-IRD-UM1-IFREMER, CC 93, Place Eugène Bataillon, Université de Montpellier 2, F-34095 Montpellier (France); Bernard, Cécile, E-mail: cbernard@mnhn.fr [UMR7245 MCAM MNHN-CNRS, Muséum National d' Histoire Naturelle, CC 39, 12 rue Buffon, F-75231 Paris, Cedex 05 (France)

    2016-07-15

    species richness in temperate lakes. This approach may prove useful and cost-effective for the management and conservation of aquatic ecosystems. - Highlights: • We studied phytoplankton communities in 50 peri-urban lakes. • We assessed the impact of multi-scale drivers of phytoplankton richness. • Local- and catchment-scale predictive models performed similarly. • Seasonal temperature variation and resource availability strongly modulate species richness. • This approach may be used for the management and conservation of aquatic ecosystems.

  10. Patterns and multi-scale drivers of phytoplankton species richness in temperate peri-urban lakes

    International Nuclear Information System (INIS)

    Catherine, Arnaud; Selma, Maloufi; Mouillot, David; Troussellier, Marc; Bernard, Cécile

    2016-01-01

    species richness in temperate lakes. This approach may prove useful and cost-effective for the management and conservation of aquatic ecosystems. - Highlights: • We studied phytoplankton communities in 50 peri-urban lakes. • We assessed the impact of multi-scale drivers of phytoplankton richness. • Local- and catchment-scale predictive models performed similarly. • Seasonal temperature variation and resource availability strongly modulate species richness. • This approach may be used for the management and conservation of aquatic ecosystems.

  11. Species composition, abundance and distribution of zooplankton in a tropical eutrophic lake: Lake Catemaco, México

    OpenAIRE

    Roberto E. Torres-Orozco B.; Sandra A. Zanatta

    1998-01-01

    From April 1992 to May 1993, zooplankton samples were collected monthly by means of horizontal tows in nine sites of the lake. Prior to the towing, temperature of surface water, transparency (Secchi), pH and dissolved oxygen were evaluated. A total of 31 zooplankton forms, including 14 species of rotifers, three copepods, five cladocerans and one ostracod, as well as protozoans (mainly vorticellids and ciliates), were detected. Rotifers were the dominant organisms, mainly Brachionus havanaens...

  12. Seasonal Trophic Shift of Littoral Consumers in Eutrophic Lake Taihu (China Revealed by a Two-Source Mixing Model

    Directory of Open Access Journals (Sweden)

    Qiong Zhou

    2011-01-01

    Full Text Available We evaluated the seasonal variation in the contributions of planktonic and benthic resources to 11 littoral predators in eutrophic Lake Taihu (China from 2004 to 2005. Seasonal fluctuations in consumer σ13C and σ15N were attributed to the combined impacts of temporal variation in isotopic signatures of basal resources and the diet shift of fishes. Based on a two-end-member mixing model, all target consumers relied on energy sources from coupled benthic and planktonic pathways, but the predominant energy source for most species was highly variable across seasons, showing seasonal trophic shift of littoral consumers. Seasonality in energy mobilization of consumers focused on two aspects: (1 the species number of consumers that relied mainly on planktonic carbon showed the lowest values in the fall and the highest during spring/summer, and (2 most consumer species showed seasonal variation in the percentages of planktonic reliance. We concluded that seasonal trophic shifts of fishes and invertebrates were driven by phytoplankton production, but benthic resources were also important seasonally in supporting littoral consumers in Meiliang Bay. Energy mobilization of carnivorous fishes was more subject to the impact of resource availability than omnivorous species.

  13. Spatio-temporal changes in water quality in an eutrophic lake with artificial aeration

    Directory of Open Access Journals (Sweden)

    Ferral Anabella

    2017-12-01

    Full Text Available In this work we present novel results concerning water quality changes in an eutrophic water body connected with an artificial aeration system installed in it. Sixty one in-situ and laboratory measurements of biogeochemical variables were recorded monthly between October 2008 and June 2011 to evaluate temporal and spatial changes in San Roque reservoir (Argentina. t-Student mean difference tests, carried out over the whole period, showed with 95% confidence that a monitoring point located at the centre of the water body is representative of the chemical behaviour of the reservoir. Thermal stratification was observed in all sampling sites in the summer, but the frequency of these episodes was markedly lower in bubbling zones. Mean chlorophyll-a concentrations were 58.9 μg·dm−3 and 117.0 μg·dm−3 in the absence and in the presence of thermocline respectively. According to the t-Student test, this difference was significant, with p < 0.001. Phosphate release from sediments was corroborated under hypoxia conditions. ANOVA one way analysis did not show significant spatial differences for any variable. Mean normalize spatial index (MENSI was developed to compare data from different regions affected by high temporal variability. It proved to be useful to quantify spatial differences. Structure analysis of temporal series was used to scrutinize both chemical and spatial association successfully. Three chemically different zones were determined in the reservoir. This study demonstrated that spatial comparisons by means of marginal statistics may not be an adequate method when high temporal variation is present. In such a case, temporal structure analysis has to be considered.

  14. Detection of extracellular phosphatases in natural spring phytoplankton of a shallow eutrophic lake (Donghu, China)

    Czech Academy of Sciences Publication Activity Database

    Cao, X.; Štrojsová, Alena; Znachor, Petr; Zapomělová, Eliška; Liu, G.; Vrba, Jaroslav; Zhou, Y.

    2005-01-01

    Roč. 40, č. 3 (2005), s. 251-258 ISSN 0967-0262. [International symposium on river and lake environments /12./. Wuhan, 01.11.2004-12.11.2004] R&D Projects: GA AV ČR(CZ) IAA6017202; GA MŠk(CZ) ME 617 Grant - others:Chinese Academy of Sciences(CN) KZCX1-SW-12-II-02-02; National Science Foundation(CN) 39170165, 39670149, 20177033, 2002CB412300 Institutional research plan: CEZ:AV0Z60170517 Keywords : enzyme labelled fluorescence * phosphatase activity * phytoplankton Subject RIV: EH - Ecology, Behaviour Impact factor: 2.064, year: 2005

  15. Predictive modelling of eutrophication in the Pozón de la Dolores lake (Northern Spain) by using an evolutionary support vector machines approach.

    Science.gov (United States)

    García-Nieto, P J; García-Gonzalo, E; Alonso Fernández, J R; Díaz Muñiz, C

    2018-03-01

    Eutrophication is a water enrichment in nutrients (mainly phosphorus) that generally leads to symptomatic changes and deterioration of water quality and all its uses in general, when the production of algae and other aquatic vegetations are increased. In this sense, eutrophication has caused a variety of impacts, such as high levels of Chlorophyll a (Chl-a). Consequently, anticipate its presence is a matter of importance to prevent future risks. The aim of this study was to obtain a predictive model able to perform an early detection of the eutrophication in water bodies such as lakes. This study presents a novel hybrid algorithm, based on support vector machines (SVM) approach in combination with the particle swarm optimization (PSO) technique, for predicting the eutrophication from biological and physical-chemical input parameters determined experimentally through sampling and subsequent analysis in a certificate laboratory. This optimization technique involves hyperparameter setting in the SVM training procedure, which significantly influences the regression accuracy. The results of the present study are twofold. In the first place, the significance of each biological and physical-chemical variables on the eutrophication is presented through the model. Secondly, a model for forecasting eutrophication is obtained with success. Indeed, regression with optimal hyperparameters was performed and coefficients of determination equal to 0.90 for the Total phosphorus estimation and 0.92 for the Chlorophyll concentration were obtained when this hybrid PSO-SVM-based model was applied to the experimental dataset, respectively. The agreement between experimental data and the model confirmed the good performance of the latter.

  16. Role of organic phosphorus in sediment in a shallow eutrophic lake

    Science.gov (United States)

    Shinohara, Ryuichiro; Hiroki, Mikiya; Kohzu, Ayato; Imai, Akio; Inoue, Tetsunori; Furusato, Eiichi; Komatsu, Kazuhiro; Satou, Takayuki; Tomioka, Noriko; Shimotori, Koichi; Miura, Shingo

    2017-08-01

    We tested the hypothesis that mineralization of molybdenum unreactive phosphorus (MUP) in pore water is the major pathway for the changes in the concentration of molybdenum-reactive P (MRP) in pore water and inorganic P in sediment particles. The concentration of inorganic P in the sediment particles increased from December to April in Lake Kasumigaura, whereas concentrations of organic P in the sediment particles and MUP in pore water decreased. These results suggest that MUP mineralization plays a key role as the source of MRP, whereas desorption of inorganic P from the sediment particles into the pore water is a minor process. One-dimensional numerical simulation of sediment particles and the pore water supported the hypothesis. Diffusive flux of MUP was small in pore water, even in near-surface layers, so mineralization was the dominant process for changing the MUP concentration in the pore water. For MRP, diffusion was the dominant process in the surface layer, whereas adsorption onto the sediment was the dominant process in deeper layers. Researchers usually ignore organic P in the sediment, but organic P in sediment particles and the pore water is a key source of inorganic P in the sediment particles and pore water; our results suggest that in Lake Kasumigaura, organic P in the sediment is an important source, even at depths more than 1 cm below the sediment surface. In contrast, the large molecular size of MUP in pore water hampers diffusion of MUP from the sediment into the overlying water.

  17. Temporal and spatial variations in kinetics of alkaline phosphatase in sediments of a shallow Chinese eutrophic lake (Lake Donghu).

    Science.gov (United States)

    Yiyong, Zhou; Jianqiu, Li; Min, Zhang

    2002-04-01

    Monthly sediment and interstitial water samples were collected in a shallow Chinese freshwater lake (Lake Donghu) from three areas to determine if alkaline phosphatase activity (APA) plays an important role, in phosphorus cycling in sediment. The seasonal variability in the kinetics of APA and other relevant parameters were investigated from 1995-1996. The phosphatase hydrolyzable phosphorus (PHP) fluctuated seasonally in interstitial water, peaking in the spring. A synchronous pattern was observed in chlorophyll a contents in surface water in general. The orthophosphate (o-P) concentrations in the interstitial water increased during the spring. An expected negative relationship between PHP and Vmax of APA is not evident in interstitial water. The most striking feature of the two variables is their co-occurring, which can be explained in terms of an induction mechanism. It is argued that phosphatase activity mainly contributes to the driving force of o-P regeneration from PHP in interstitial water, supporting the development of phytoplankton biomass in spring. The Vmax values in sediment increased during the summer, in conjunction with lower Km values in interstitial water that suggest a higher affinity for the substrate. The accumulation of organic matter in the sediment could be traced back to the breakdown of the algal spring bloom, which may stimulate APA with higher kinetic efficiency, by a combination of the higher Vmax in sediments plus lower Km values in interstitial water, in summer. In summary, a focus on phosphatase and its substrate in annual scale may provide a useful framework for the development of novel P cycling, possible explanations for the absence of a clear relationship between PHP and APA were PHP released from the sediment which induced APA, and the presence of kinetically higher APA both in sediment and interstitial water which permitted summer mineralization of organic matter derived from the spring bloom to occur. The study highlighted the

  18. Estimation of the algal-available phosphorus pool in sediments of a large, shallow eutrophic lake (Taihu, China) using profiled SMT fractional analysis

    International Nuclear Information System (INIS)

    Zhu Mengyuan; Zhu Guangwei; Li Wei; Zhang Yunlin; Zhao Linlin; Gu Zhao

    2013-01-01

    Because large, shallow lakes are heavily influenced by wind–wave disturbance, it is difficult to estimate internal phosphorus load using traditional methods. To estimate the potential contribution of phosphorus from sediment to overlying water in eutrophic Lake Taihu, phosphorus fractions of surface and deep layer sediments were quantified and analyzed for algal bloom potential using a Standard Measurements and Testing (SMT) sequential extraction method and incubation experiments. Phosphorus bound to Fe, Al and Mn oxides and hydroxides (Fe–P) and organic phosphorus (OP) were to be found bioactive. The difference in Fe–P and OP contents between surface and deep layers equates to the sediment pool of potentially algal-available phosphorus. This pool was estimated at 5168 tons for the entire lake and was closely related to pollution input and algal blooms. Profiled SMT fractionation analysis is thus a potentially useful tool for estimating internal phosphorus loading in large, shallow lakes. - Highlights: ► We used profiled sediment P activity by SMT fractionation to evaluate the P release potential in large and shallow lakes. ► We built the relationship between sediment SMT fractionations of P and the P release by algal bloom degradation process. ► We discussed the supporting mechanism of sediment P release to Microcystis algal bloom in a large and shallow lake. ► We discussed the nutrient control strategy of algal bloom in shallow lakes in highly human activities disturbance catchment. - Profiled SMT fractional analysis of internal phosphorus pool in large, shallow lake.

  19. A three-dimensional water quality modeling approach for exploring the eutrophication responses to load reduction scenarios in Lake Yilong (China)

    International Nuclear Information System (INIS)

    Zhao, Lei; Li, Yuzhao; Zou, Rui; He, Bin; Zhu, Xiang; Liu, Yong; Wang, Junsong; Zhu, Yongguan

    2013-01-01

    Lake Yilong in Southwestern China has been under serious eutrophication threat during the past decades; however, the lake water remained clear until sudden sharp increase in Chlorophyll a (Chl a) and turbidity in 2009 without apparent change in external loading levels. To investigate the causes as well as examining the underlying mechanism, a three-dimensional hydrodynamic and water quality model was developed, simulating the flow circulation, pollutant fate and transport, and the interactions between nutrients, phytoplankton and macrophytes. The calibrated and validated model was used to conduct three sets of scenarios for understanding the water quality responses to various load reduction intensities and ecological restoration measures. The results showed that (a) even if the nutrient loads is reduced by as much as 77%, the Chl a concentration decreased only by 50%; and (b) aquatic vegetation has strong interaction with phytoplankton, therefore requiring combined watershed and in-lake management for lake restoration. -- Highlights: ► We quantitatively investigated the non-linear lake responses to load reduction. ► The aquatic ecological condition had a great impact on algal blooms. ► Only water quality improvement cannot ensure the aquatic ecology restoration. -- The lake water quality responds to watershed load reduction in a nonlinear way, which requires combined watershed and in-lake management for lake restoration

  20. Long-term moderate wind induced sediment resuspension meeting phosphorus demand of phytoplankton in the large shallow eutrophic Lake Taihu.

    Directory of Open Access Journals (Sweden)

    Jian-Ying Chao

    Full Text Available The objective of this study was to investigate the impact of sediment resuspension and phosphorus (P release on phytoplankton growth under different kinds of wind-wave disturbance conditions in the large and shallow eutrophic Lake Taihu in China. Short-term strong wind (STSW conditions, long-term moderate wind (LTMW conditions, and static/calm conditions were investigated. To address this objective, we (1 monitored changes in surface water P composition during field-based sediment resuspension caused by STSW conditions in Lake Taihu, and also conducted (2 a series of laboratory-based sediment resuspension experiments to simulate LTMW and calm conditions. The results showed that under both strong and moderate wind-wave conditions, suspended solids (SS and total phosphorus (TP in the water column increased significantly, but total dissolved phosphorus (TDP and soluble reactive phosphorus (SRP remained low throughout the experiments, indicating that the P released from sediments mainly existed in particulate forms. In STSW conditions, alkaline phosphatase activity (APA and enzymatically hydrolysable phosphorus (EHP increased rapidly, with the peak value occurring following the peak value of wind speed for 1-2 days, and then rapidly decreased after the wind stopped. Under LTMW conditions, APA and EHP increased steadily, and by the end of the laboratory experiments, APA increased by 11 times and EHP increased by 5 times. Chlorophyll a (Chl-a in LTMW conditions increased significantly, but remained low under STSW conditions, demonstrating that the former type of sediment P release promoted phytoplankton growth more effectively, and the latter type did not. Despite the fact that STSW conditions resulted in the release of more TP, TP settled to the bottom rapidly with SS after the wind stopped, and did not promote algal growth. Under LTMW conditions, suspended particulate P was hydrolyzed to SRP by phosphatase and promoted algae growth. Algal growth in

  1. Distribution and life strategies of two bacterial populations in a eutrophic lake

    Science.gov (United States)

    Weinbauer; Hofle

    1998-10-01

    Monoclonal antibodies and epifluorescence microscopy were used to determine the depth distribution of two indigenous bacterial populations in the stratified Lake Plusssee and characterize their life strategies. Populations of Comamonas acidovorans PX54 showed a depth distribution with maximum abundances in the oxic epilimnion, whereas Aeromonas hydrophila PU7718 showed a depth distribution with maximum abundances in the anoxic thermocline layer (metalimnion), i. e., in the water layer with the highest microbial activity. Resistance of PX54 to protist grazing and high metabolic versatility and growth rate of PU7718 were the most important life strategy traits for explaining the depth distribution of the two bacterial populations. Maximum abundance of PX54 was 16,000 cells per ml, and maximum abundance of PU7718 was 20,000 cells per ml. Determination of bacterial productivity in dilution cultures with different-size fractions of dissolved organic matter (DOM) from lake water indicates that low-molecular-weight (LMW) DOM is less bioreactive than total DOM (TDOM). The abundance and growth rate of PU7718 were highest in the TDOM fractions, whereas those of PX54 were highest in the LMW DOM fraction, demonstrating that PX54 can grow well on the less bioreactive DOM fraction. We estimated that 13 to 24% of the entire bacterial community and 14% of PU7718 were removed by viral lysis, whereas no significant effect of viral lysis on PX54 could be detected. Growth rates of PX54 (0.11 to 0.13 h-1) were higher than those of the entire bacterial community (0.04 to 0.08 h-1) but lower than those of PU7718 (0.26 to 0.31 h-1). In undiluted cultures, the growth rates were significantly lower, pointing to density effects such as resource limitation or antibiosis, and the effects were stronger for PU7718 and the entire bacterial community than for PX54. Life strategy characterizations based on data from literature and this study revealed that the fast-growing and metabolically

  2. Phototaxis of Propsilocerus akamusi (Diptera: Chironomidae) From a Shallow Eutrophic Lake in Response to Led Lamps.

    Science.gov (United States)

    Hirabayashi, Kimio; Nagai, Yoshinari; Mushya, Tetsuya; Higashino, Makoto; Taniguchi, Yoshio

    2017-06-01

    A study on the attraction of adult Propsilocerus akamusi midges to different-colored light traps was carried out from October 21 to November 15, 2013. The 6 colored lights used in light-emitting diode (LED) lamps were white, green, red, blue, amber, and ultraviolet (UV). The UV lamp attracted the most P. akamusi, followed by green, white, blue, amber, and red. A white pulsed LED light attracted only half the number of midges as did a continuous-emission white LED light. The result indicated that manipulation of light color, considering that the red LED light and/or pulsed LED light are not as attractive as the other colors, may be appropriate for the development of an overall integrated strategy to control nuisance P. akamusi in the Lake Suwa area.

  3. Resting cysts of freshwater dinoflagellates in southeastern Georgian Bay (Lake Huron) as proxies of cultural eutrophication

    DEFF Research Database (Denmark)

    McCarthy, Francine M.G.; Mertens, Kenneth Neil; Ellegaard, Marianne

    2011-01-01

    conditions, comprise 60–74% of the cysts identified in Ambrosia (ragweed)-rich sediments in the upper 20 cm of a gravity core taken from Honey Harbour. Euro-Canadian settlement and land-clearing that began in the Midland-Penetanguishene region around A.D. 1840 are evident in the increase in Ambrosia (ragweed...... contained between ~ 750 and 8500 cysts/cm3. However, winnowing by bottom currents and high concentrations of dissolved oxygen adversely impact the dinoflagellate cyst record on the lakebed, and cyst concentrations in easily remobilized muds on bathymetric highs were core changes......-Canadian settlement, when cyst flux was an order of magnitude lower. This is consistent with the restriction of this species to relatively warm, oligotrophic to mesotrophic lakes in North America. An earlier increase in P. willei at the expense of P. wisconsinense in the core from Honey Harbour within pollen zone 3 d...

  4. Hydrogen sulfide production and volatilization in a polymictic eutrophic saline lake, Salton Sea, California.

    Science.gov (United States)

    Reese, Brandi Kiel; Anderson, Michael A; Amrhein, Christopher

    2008-11-15

    The Salton Sea is a large shallow saline lake located in southern California that is noted for high sulfate concentrations, substantial algal productivity, and very warm water column temperatures. These conditions are well-suited for sulfide production, and sulfide has been implicated in summer fish kills, although no studies have been conducted to specifically understand hydrogen sulfide production and volatilization there. Despite polymictic mixing patterns and relatively short accumulation periods, the amount of sulfide produced is comparable to meromictic lakes. Sulfide levels in the Salton Sea reached concentrations of 1.2 mmol L(-1) of total free sulfide in the hypolimnion and 5.6 mmol L(-1) in the sediment pore water. Strong winds in late July mixed H2S into the surface water, where it depleted the entire water column of dissolved oxygen and reached a concentration of 0.1 mmol L(-1). Sulfide concentrations exceeded the toxicity threshold of tilapia (Oreochromis mossambicus) and combined with strong anoxia throughout the water column, resulted in a massive fish kill. The mixing of sulfide into the surface waters also increased atmospheric H2S concentrations, reaching 1.0 micromol m(-3). The flux of sulfide from the sediment into the water column was estimated to range from 2-3 mmol m(-2) day(-1) during the winter and up to 8 mmol m(-2) day(-1) during the summer. Application of the two-layer model for volatilization indicates that up to 19 mmol m(-2) day(-1) volatilized from the surface during the mixing event. We estimate that as much as 3400 Mg year(-1) or approximately 26% of sulfide that diffused into the water column from the deepest sediments may have been volatilized to the atmosphere.

  5. Assessment of the Eutrophication-Related Environmental Parameters in Two Mediterranean Lakes by Integrating Statistical Techniques and Self-Organizing Maps.

    Science.gov (United States)

    Hadjisolomou, Ekaterini; Stefanidis, Konstantinos; Papatheodorou, George; Papastergiadou, Evanthia

    2018-03-19

    During the last decades, Mediterranean freshwater ecosystems, especially lakes, have been under severe pressure due to increasing eutrophication and water quality deterioration. In this article, we compared the effectiveness of different data analysis methods by assessing the contribution of environmental parameters to eutrophication processes. For this purpose, principal components analysis (PCA), cluster analysis, and a self-organizing map (SOM) were applied, using water quality data from two transboundary lakes of North Greece. SOM is considered as an advanced and powerful data analysis tool because of its ability to represent complex and nonlinear relationships among multivariate data sets. The results of PCA and cluster analysis agreed with the SOM results, although the latter provided more information because of the visualization abilities regarding the parameters' relationships. Besides nutrients that were found to be a key factor for controlling chlorophyll-a (Chl - a), water temperature was related positively with algal production, while the Secchi disk depth parameter was found to be highly important and negatively related toeutrophic conditions. In general, the SOM results were more specific and allowed direct associations between the water quality variables. Our work showed that SOMs can be used effectively in limnological studies to produce robust and interpretable results, aiding scientists and managers to cope with environmental problems such as eutrophication.

  6. Characterization of Phosphate Solubilizing Bacteria in Sediments from a Shallow Eutrophic Lake and a Wetland: Isolation, Molecular Identification and Phosphorus Release Ability Determination

    Directory of Open Access Journals (Sweden)

    Jie Tang

    2010-11-01

    Full Text Available The transformation of phosphorus (P is a major factor of lake eutrophication, and phosphate releasing bacteria play an important role in the release process. Experiments were conducted to investigate P content and characterize phosphate solubilizing bacterial composition at the molecular level in a shallow eutrophic lake and a wetland. Results showed that P concentrations were relatively high and derived from agricultural runoff and domestic or industrial pollution. Enumeration and molecular identification of these strains indicated that these bacterial groups were abundant in the ecosystem and various kinds of bacteria participated in the phosphorus release process. Twelve phosphate solubilizing bacteria, including eight organic P-solubilizing bacteria (OPBs and four inorganic P-solubilizing bacteria (IPBs, which belonged to three different families, were isolated and identified. Cupriavidus basilensis was found for the first time to have the ability to mineralize organic P (OP. Laboratory tests on P release ability revealed that IPBs were more effective at releasing P than OPBs. The most efficient IPB strain could accumulate over 170 mg·L-1 orthophosphate, while the equivalent OPB strain only liberated less than 4 mg·L-1 orthophosphate in liquid culture. The results obtained from this investigation should help clarify the roles of microorganisms in aquatic systems and the mechanisms of eutrophication.

  7. Assessment of the Eutrophication-Related Environmental Parameters in Two Mediterranean Lakes by Integrating Statistical Techniques and Self-Organizing Maps

    Directory of Open Access Journals (Sweden)

    Ekaterini Hadjisolomou

    2018-03-01

    Full Text Available During the last decades, Mediterranean freshwater ecosystems, especially lakes, have been under severe pressure due to increasing eutrophication and water quality deterioration. In this article, we compared the effectiveness of different data analysis methods by assessing the contribution of environmental parameters to eutrophication processes. For this purpose, principal components analysis (PCA, cluster analysis, and a self-organizing map (SOM were applied, using water quality data from two transboundary lakes of North Greece. SOM is considered as an advanced and powerful data analysis tool because of its ability to represent complex and nonlinear relationships among multivariate data sets. The results of PCA and cluster analysis agreed with the SOM results, although the latter provided more information because of the visualization abilities regarding the parameters’ relationships. Besides nutrients that were found to be a key factor for controlling chlorophyll-a (Chl-a, water temperature was related positively with algal production, while the Secchi disk depth parameter was found to be highly important and negatively related toeutrophic conditions. In general, the SOM results were more specific and allowed direct associations between the water quality variables. Our work showed that SOMs can be used effectively in limnological studies to produce robust and interpretable results, aiding scientists and managers to cope with environmental problems such as eutrophication.

  8. A metabolism-based whole lake eutrophication model to estimate the magnitude and time scales of the effects of restoration in Upper Klamath Lake, south-central Oregon

    Science.gov (United States)

    Wherry, Susan A.; Wood, Tamara M.

    2018-04-27

    A whole lake eutrophication (WLE) model approach for phosphorus and cyanobacterial biomass in Upper Klamath Lake, south-central Oregon, is presented here. The model is a successor to a previous model developed to inform a Total Maximum Daily Load (TMDL) for phosphorus in the lake, but is based on net primary production (NPP), which can be calculated from dissolved oxygen, rather than scaling up a small-scale description of cyanobacterial growth and respiration rates. This phase 3 WLE model is a refinement of the proof-of-concept developed in phase 2, which was the first attempt to use NPP to simulate cyanobacteria in the TMDL model. The calibration of the calculated NPP WLE model was successful, with performance metrics indicating a good fit to calibration data, and the calculated NPP WLE model was able to simulate mid-season bloom decreases, a feature that previous models could not reproduce.In order to use the model to simulate future scenarios based on phosphorus load reduction, a multivariate regression model was created to simulate NPP as a function of the model state variables (phosphorus and chlorophyll a) and measured meteorological and temperature model inputs. The NPP time series was split into a low- and high-frequency component using wavelet analysis, and regression models were fit to the components separately, with moderate success.The regression models for NPP were incorporated in the WLE model, referred to as the “scenario” WLE (SWLE), and the fit statistics for phosphorus during the calibration period were mostly unchanged. The fit statistics for chlorophyll a, however, were degraded. These statistics are still an improvement over prior models, and indicate that the SWLE is appropriate for long-term predictions even though it misses some of the seasonal variations in chlorophyll a.The complete whole lake SWLE model, with multivariate regression to predict NPP, was used to make long-term simulations of the response to 10-, 20-, and 40-percent

  9. Occurrence, spatial distribution, sources, and risks of polychlorinated biphenyls and heavy metals in surface sediments from a large eutrophic Chinese lake (Lake Chaohu).

    Science.gov (United States)

    He, Wei; Bai, Ze-Lin; Liu, Wen-Xiu; Kong, Xiang-Zhen; Yang, Bin; Yang, Chen; Jørgensen, Sven Erik; Xu, Fu-Liu

    2016-06-01

    Surface sediment from large and eutrophic Lake Chaohu was investigated to determine the occurrence, spatial distribution, sources, and risks of polychlorinated biphenyls (PCBs) and heavy metals in one of the five biggest freshwater lakes in China. Total concentration of PCBs (Σ34PCBs) in Lake Chaohu was 672 pg g(-1) dry weight (dw), with a range of 7 to 3999 pg g(-1) dw, which was lower than other water bodies worldwide. The majority of heavy metals were detected at all sampling locations, except for Sr, B, and In. Concentrations of Al, Fe, Ca, Mn, Sr, Co, Zn, Cd, Pb, and Hg were similar to that reported for other lakes globally. Concentrations of K, Mg, Na, Li, Ga, and Ag were greater than the average, whereas those of Cr, Ni, and Cu were lower. Cluster analysis (CA) and positive matrix factorization (PMF) yielded accordant results for the source apportionment of PCBs. The technical PCBs and microbial degradation accounted for 34.2 % and 65.8 % of total PCBs using PMF, and PMF revealed that natural and anthropogenic sources of heavy metals accounted for 38.1 % and 61.8 %, respectively. CA indicated that some toxic heavy metals (e.g., Cd, In, Tl, and Hg) were associated with Ca-Na-Mg minerals rather than Fe-Mn minerals. The uncorrelated results between organic matter revealed by pyrolysis technology and heavy metals might be caused by the existence of competitive adsorption between organic matter and minerals. PCBs and heavy metals were coupling discharge without organochlorine pesticides (OCPs), but with polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenyl ethers (PBDEs). No sediment sample exceeded the toxic threshold for dioxin-like PCBs (dl-PCBs) set at 20 pg toxicity equivalency quantity (TEQ) g(-1), (max dl-PCBs, 10.9 pg TEQ g(-1)). However, concentrations of Ag, Cd, and Hg were at levels of environmental concern. The sediment in the drinking water source area (DWSA) was threatened by heavy metals from other areas, and some

  10. A food web modeling analysis of a Midwestern, USA eutrophic lake dominated by non-native Common Carp and Zebra Mussels

    Science.gov (United States)

    Colvin, Michael E.; Pierce, Clay; Stewart, Timothy W.

    2015-01-01

    Food web modeling is recognized as fundamental to understanding the complexities of aquatic systems. Ecopath is the most common mass-balance model used to represent food webs and quantify trophic interactions among groups. We constructed annual Ecopath models for four consecutive years during the first half-decade of a zebra mussel invasion in shallow, eutrophic Clear Lake, Iowa, USA, to evaluate changes in relative biomass and total system consumption among food web groups, evaluate food web impacts of non-native common carp and zebra mussels on food web groups, and to interpret food web impacts in light of on-going lake restoration. Total living biomass increased each year of the study; the majority of the increase due to a doubling in planktonic blue green algae, but several other taxa also increased including a more than two-order of magnitude increase in zebra mussels. Common carp accounted for the largest percentage of total fish biomass throughout the study even with on-going harvest. Chironomids, common carp, and zebra mussels were the top-three ranking consumer groups. Non-native common carp and zebra mussels accounted for an average of 42% of the total system consumption. Despite the relatively high biomass densities of common carp and zebra mussel, food web impacts was minimal due to excessive benthic and primary production in this eutrophic system. Consumption occurring via benthic pathways dominated system consumption in Clear Lake throughout our study, supporting the argument that benthic food webs are significant in shallow, eutrophic lake ecosystems and must be considered if ecosystem-level understanding is to be obtained.

  11. A 150-year record of recent changes in human activity and eutrophication of Lake Wushan from the middle reach of the Yangze River, China

    Directory of Open Access Journals (Sweden)

    Xiangdong YANG

    2010-08-01

    Full Text Available In order to determine baseline conditions (pre-impact and recent changes to lakes on the middle reach of the Yangtze River, China, a lake sediment core was extracted from Lake Wushan covering the last ca 150 years. Detailed chemical, biological (subfossil chironomids, and physical analyses of the lake sediments were undertaken. The data showed consistent trends of increased productivity since the early 1920s, notably significant changes in the chironomid fauna which were associated with changes in the sedimentological and stable isotope proxies. More typically eutrophic chironomid taxa first appeared around this time that had not been present in the lake since at least the 1860s. Further increases in productivity occurred around the 1950s which coincided with the local decline and extirpation of some chironomid taxa, particularly macrophyte associated taxa, which had been present in the lake since at least the late 19th Century. A chironomid-inferred water total phosphorus (CI-TP reconstruction produced accurate levels of water TP compared with contemporary measurements (207.4 μg L-1 TP, and suggested that levels for the late 19th Century were relatively low (50-60 μg L-1 TP. These reconstructions illustrate the baseline levels that existed pre-impact and provide potential targets for restoration, but they also show the magnitude of human impact in this region, which has increased the nutrient content of Lake Wushan fourfold within the last ca 100 years.

  12. Assessing the Utility of Hydrogen, Carbon and Nitrogen Stable Isotopes in Estimating Consumer Allochthony in Two Shallow Eutrophic Lakes.

    Directory of Open Access Journals (Sweden)

    Jari Syväranta

    Full Text Available Hydrogen stable isotopes (δ2H have recently been used to complement δ13C and δ15N in food web studies due to their potentially greater power to separate sources of organic matter in aquatic food webs. However, uncertainties remain regarding the use of δ2H, since little is known about the potential variation in the amount of exchangeable hydrogen (Hex among common sample materials or the patterns of δ2H when entire food webs are considered. We assessed differences in Hex among the typical sample materials in freshwater studies and used δ2H, δ13C and δ15N to compare their effectiveness in tracing allochthonous matter in food webs of two small temperate lakes. Our results showed higher average amounts of Hex in animal tissues (27% in fish and macroinvertebrates, 19% in zooplankton compared to most plant material (15% in terrestrial plants and 8% in seston/periphyton, with the exception of aquatic vascular plants (23%, referred to as macrophytes. The amount of Hex correlated strongly with sample lipid content (inferred from C:N ratios in fish and zooplankton samples. Overall, the three isotopes provided good separation of sources (seston, periphyton, macrophytes and allochthonous organic matter, particularly the δ2H followed by δ13C. Aquatic macrophytes revealed unexpectedly high δ2H values, having more elevated δ2H values than terrestrial organic matter with direct implications for estimating consumer allochthony. Organic matter from macrophytes significantly contributed to the food webs in both lakes highlighting the need to include macrophytes as a potential source when using stable isotopes to estimate trophic structures and contributions from allochthonous sources.

  13. Long-term monitoring reveals carbon-nitrogen metabolism key to microcystin production in eutrophic lakes

    Directory of Open Access Journals (Sweden)

    Lucas J Beversdorf

    2015-05-01

    Full Text Available The environmental drivers contributing to cyanobacterial dominance in aquatic systems have been extensively studied. However, understanding of toxic versus non-toxic cyanobacterial population dynamics and the mechanisms regulating cyanotoxin production remain elusive, both physiologically and ecologically. One reason is the disconnect between laboratory and field-based studies. Here, we combined three years of temporal data, including microcystin (MC concentrations, 16 years of long-term ecological research, and 10 years of molecular data to investigate the potential factors leading to the selection of toxic Microcystis and MC production. Our analysis revealed that nitrogen (N speciation and inorganic carbon (C availability might be important drivers of Microcystis population dynamics and that an imbalance in cellular C: N ratios may trigger MC production. More specifically, precipitous declines in ammonium concentrations lead to a transitional period of N stress, even in the presence of high nitrate concentrations, that we call the toxic phase. Following the toxic phase, temperature and cyanobacterial abundance remained elevated but MC concentrations drastically declined. Increases in ammonium due to lake turnover may have led to down regulation of MC synthesis or a shift in the community from toxic to non-toxic species. While total phosphorus (P to total N ratios were relatively low over the time-series, MC concentrations were highest when total N to total P ratios were also highest. Similarly, high C: N ratios were also strongly correlated to the toxic phase. We propose a metabolic model that corroborates molecular studies and reflects our ecological observations that C and N metabolism may regulate MC production physiologically and ecologically. In particular, we hypothesize that an imbalance between 2-oxoglutarate and ammonium in the cell regulates MC synthesis in the environment.

  14. Large-Scale Mapping and Predictive Modeling of Submerged Aquatic Vegetation in a Shallow Eutrophic Lake

    Directory of Open Access Journals (Sweden)

    Karl E. Havens

    2002-01-01

    Full Text Available A spatially intensive sampling program was developed for mapping the submerged aquatic vegetation (SAV over an area of approximately 20,000 ha in a large, shallow lake in Florida, U.S. The sampling program integrates Geographic Information System (GIS technology with traditional field sampling of SAV and has the capability of producing robust vegetation maps under a wide range of conditions, including high turbidity, variable depth (0 to 2 m, and variable sediment types. Based on sampling carried out in AugustœSeptember 2000, we measured 1,050 to 4,300 ha of vascular SAV species and approximately 14,000 ha of the macroalga Chara spp. The results were similar to those reported in the early 1990s, when the last large-scale SAV sampling occurred. Occurrence of Chara was strongly associated with peat sediments, and maximal depths of occurrence varied between sediment types (mud, sand, rock, and peat. A simple model of Chara occurrence, based only on water depth, had an accuracy of 55%. It predicted occurrence of Chara over large areas where the plant actually was not found. A model based on sediment type and depth had an accuracy of 75% and produced a spatial map very similar to that based on observations. While this approach needs to be validated with independent data in order to test its general utility, we believe it may have application elsewhere. The simple modeling approach could serve as a coarse-scale tool for evaluating effects of water level management on Chara populations.

  15. Large-scale mapping and predictive modeling of submerged aquatic vegetation in a shallow eutrophic lake.

    Science.gov (United States)

    Havens, Karl E; Harwell, Matthew C; Brady, Mark A; Sharfstein, Bruce; East, Therese L; Rodusky, Andrew J; Anson, Daniel; Maki, Ryan P

    2002-04-09

    A spatially intensive sampling program was developed for mapping the submerged aquatic vegetation (SAV) over an area of approximately 20,000 ha in a large, shallow lake in Florida, U.S. The sampling program integrates Geographic Information System (GIS) technology with traditional field sampling of SAV and has the capability of producing robust vegetation maps under a wide range of conditions, including high turbidity, variable depth (0 to 2 m), and variable sediment types. Based on sampling carried out in August-September 2000, we measured 1,050 to 4,300 ha of vascular SAV species and approximately 14,000 ha of the macroalga Chara spp. The results were similar to those reported in the early 1990s, when the last large-scale SAV sampling occurred. Occurrence of Chara was strongly associated with peat sediments, and maximal depths of occurrence varied between sediment types (mud, sand, rock, and peat). A simple model of Chara occurrence, based only on water depth, had an accuracy of 55%. It predicted occurrence of Chara over large areas where the plant actually was not found. A model based on sediment type and depth had an accuracy of 75% and produced a spatial map very similar to that based on observations. While this approach needs to be validated with independent data in order to test its general utility, we believe it may have application elsewhere. The simple modeling approach could serve as a coarse-scale tool for evaluating effects of water level management on Chara populations.

  16. Dissolved organic carbon concentration controls benthic primary production: results from in situ chambers in north-temperate lakes

    Science.gov (United States)

    Godwin, Sean C.; Jones, Stuart E.; Weidel, Brian C.; Solomon, Christopher T.

    2014-01-01

    We evaluated several potential drivers of primary production by benthic algae (periphyton) in north-temperate lakes. We used continuous dissolved oxygen measurements from in situ benthic chambers to quantify primary production by periphyton at multiple depths across 11 lakes encompassing a broad range of dissolved organic carbon (DOC) and total phosphorous (TP) concentrations. Light-use efficiency (primary production per unit incident light) was inversely related to average light availability (% of surface light) in 7 of the 11 study lakes, indicating that benthic algal assemblages exhibit photoadaptation, likely through physiological or compositional changes. DOC alone explained 86% of the variability in log-transformed whole-lake benthic production rates. TP was not an important driver of benthic production via its effects on nutrient and light availability. This result is contrary to studies in other systems, but may be common in relatively pristine north-temperate lakes. Our simple empirical model may allow for the prediction of whole-lake benthic primary production from easily obtained measurements of DOC concentration.

  17. Why bacteria are smaller in the epilimnion than in the hypolimnion? A hypothesis comparing temperate and tropical lakes

    Directory of Open Access Journals (Sweden)

    Roberto Bertoni

    2012-01-01

    Full Text Available Bacterial size and morphology are controlled by several factors including predation, viral lysis, UV radiation, and inorganic nutrients. We observed that bacterial biovolume from the hypolimnion of two oligotrophic lakes is larger than that of bacteria living in the layer from surface to 20 m, roughly corresponding to the euphotic/epilimnetic zone. One lake is located in the temperate region at low altitude (Lake Maggiore, Northern Italy and the other in the tropical region at high altitude (Lake Alchichica, Mexico. The two lakes differ in oxygen, phosphorus and nitrogen concentrations and in the temperature of water column. If we consider the two lakes separately, we risk reducing the explanation of bacterial size variation in the water column to merely regional factors. Comparing the two lakes, can we gather a more general explanation for bacterial biovolume variation. The results showed that small bacteria dominate in the oxygenated, P-limited epilimnetic waters of both lakes, whereas larger cells are more typical of hypolimnetic waters where phosphorus and nitrogen are not limiting. Indeed, temperature per se cannot be invoked as an important factor explaining the different bacterial size in the two zones. Without excluding the top-down control mechanism of bacterial size, our data suggest that the average lower size of bacterial cells in the epilimnion of oligotrophic lakes is controlled by outcompetition over the larger cells at limiting nutrients.

  18. Fish and phytoplankton exhibit contrasting temporal species abundance patterns in a dynamic north temperate lake.

    Directory of Open Access Journals (Sweden)

    Gretchen J A Hansen

    Full Text Available Temporal patterns of species abundance, although less well-studied than spatial patterns, provide valuable insight to the processes governing community assembly. We compared temporal abundance distributions of two communities, phytoplankton and fish, in a north temperate lake. We used both 17 years of observed relative abundance data as well as resampled data from Monte Carlo simulations to account for the possible effects of non-detection of rare species. Similar to what has been found in other communities, phytoplankton and fish species that appeared more frequently were generally more abundant than rare species. However, neither community exhibited two distinct groups of "core" (common occurrence and high abundance and "occasional" (rare occurrence and low abundance species. Both observed and resampled data show that the phytoplankton community was dominated by occasional species appearing in only one year that exhibited large variation in their abundances, while the fish community was dominated by core species occurring in all 17 years at high abundances. We hypothesize that the life-history traits that enable phytoplankton to persist in highly dynamic environments may result in communities dominated by occasional species capable of reaching high abundances when conditions allow. Conversely, longer turnover times and broad environmental tolerances of fish may result in communities dominated by core species structured primarily by competitive interactions.

  19. Fish and Phytoplankton Exhibit Contrasting Temporal Species Abundance Patterns in a Dynamic North Temperate Lake

    Science.gov (United States)

    Hansen, Gretchen J. A.; Carey, Cayelan C.

    2015-01-01

    Temporal patterns of species abundance, although less well-studied than spatial patterns, provide valuable insight to the processes governing community assembly. We compared temporal abundance distributions of two communities, phytoplankton and fish, in a north temperate lake. We used both 17 years of observed relative abundance data as well as resampled data from Monte Carlo simulations to account for the possible effects of non-detection of rare species. Similar to what has been found in other communities, phytoplankton and fish species that appeared more frequently were generally more abundant than rare species. However, neither community exhibited two distinct groups of “core” (common occurrence and high abundance) and “occasional” (rare occurrence and low abundance) species. Both observed and resampled data show that the phytoplankton community was dominated by occasional species appearing in only one year that exhibited large variation in their abundances, while the fish community was dominated by core species occurring in all 17 years at high abundances. We hypothesize that the life-history traits that enable phytoplankton to persist in highly dynamic environments may result in communities dominated by occasional species capable of reaching high abundances when conditions allow. Conversely, longer turnover times and broad environmental tolerances of fish may result in communities dominated by core species structured primarily by competitive interactions. PMID:25651399

  20. Focused groundwater discharge of phosphorus to a eutrophic seepage lake (Lake Væng, Denmark): implications for lake ecological state and restoration

    DEFF Research Database (Denmark)

    Kidmose, Jacob; Nilsson, Bertel; Engesgaard, Peter

    2013-01-01

    and borehole data. Discharge was found to be much focused and opposite to expected increase away from the shoreline. The average total phosphorus concentration in discharging groundwater sampled just beneath the lakebed was 0.162 mg TP/l and thereby well over freshwater ecological thresholds (0...... paths through the aquifer–lakebed interface either being overland flow through a seepage face, or focused in zones with very high discharge rates. In-lake springs have measured discharge of up to 7.45 m3 per m2 of lakebed per day. These findings were based on seepage meter measurements at 18 locations...

  1. Herbivory of Omnivorous Fish Shapes the Food Web Structure of a Chinese Tropical Eutrophic Lake: Evidence from Stable Isotope and Fish Gut Content Analyses

    Directory of Open Access Journals (Sweden)

    Jian Gao

    2017-01-01

    Full Text Available Studies suggest that, unlike the situation in temperate lakes, high biomasses of omnivorous fish are maintained in subtropical and tropical lakes when they shift from a turbid phytoplankton-dominated state to a clear water macrophyte-dominated state, and the predation pressure on large-bodied zooplankton therefore remains high. Whether this reflects a higher degree of herbivory in warm lakes than in temperate lakes is debatable. We combined food web studies using stable isotopes with gut content analyses of the most dominant fish species to elucidate similarities and differences in food web structure between a clear water macrophyte-dominated basin (MDB and a turbid phytoplankton-dominated basin (PDB of Huizhou West Lake, a shallow tropical Chinese lake. The δ13C–δ15N biplot of fish and invertebrates revealed community-wide differences in isotope-based metrics of the food webs between MDB and PDB. The range of consumer δ15N (NR was lower in MDB than in PDB, indicating shorter food web length in MDB. The mean nearest neighbor distance (MNND and standard deviation around MNND (SDNND were higher in MDB than in PDB, showing a markedly low fish trophic overlap and a more uneven packing of species in niches in MDB than in PDB. The range of fish δ13C (CR of consumers was more extensive in MDB than in PDB, indicating a wider feeding range for fish in MDB. Mixing model results showed that macrophytes and associated periphyton constituted a large fraction of basal production sources for the fish in MDB, while particulate organic matter (POM contributed a large fraction in PDB. In MDB, the diet of the dominant fish species, crucian carp (Carassius carassius, consisted mainly of vegetal matter (macrophytes and periphyton and zooplankton, while detritus was the most important food item in PDB. Our results suggest that carbon from macrophytes with associated periphyton may constitute an important food resource for omnivorous fish, and this may strongly

  2. Comment on: "Bachmann, R. W., M. V. Hoyer, and D. E. Canfield. 2013. The extent that natural lakes in the United States of America have been changed by cultural eutrophication. Limnology and Oceanography 58:945-950."

    Science.gov (United States)

    In a recent paper, Bachmann et al. (2013) conclude, based on paleolimnological reconstructions, that lakes in the conterminous U.S. have undergone very little cultural eutrophication. They go on to suggest that their results invalidate the efforts of the U.S. EPA to establish num...

  3. Long-term changes in the flora and vegetation of Lake Mikołajskie (Poland as a result of its eutrophication

    Directory of Open Access Journals (Sweden)

    Barbara Solińska-Górnicka

    2014-01-01

    Full Text Available Changes in littoral flora as well as aquatic and swamp vegetation were analysed with increasing eutrophication of the mesotrophic Lake Mikołajskie. Over 30 years the habitat conditions of the lake deteriorated and the phy-tolittoral was reduced from a zone 6 metres wide to one of only 2 metres. In addition, the number of submerged macrophyte species decreased by 50% and the frequency of most of the remaining species declined severalfold. No new species were encountered. Species retreating from the lake littoral included all Chara species, Potamogeton obtusifolius, P. natans and Hydrocharis morsus-ranae. A significant lowering of the phytosociological diversity and species richness of aquatic and swamp communities was observed. By 1994, six of the 12 associations identified in 1964 and representing the submerged and floating-leaved vegetation (e.g. Nitellopsidetum ubtusae, Charetum asperae and Potamogetonetum compressi were no longer present. In turn, 6 swamp communities from among the original 14 identified in the lake were lacking (e.g. Typhetum angustifoliae, Sugittario-Sparganietum emersi and Eleocharitetum palustris. At the same time, two new aquatic and swamp communities appeared (Ranunculetum circinuti, Myriophylletum spicati, Caricetum acutiformis and Caricetum distichae. In contrast there was an increase in the species richness of reedswamp communities due to an influx of marshland species. While the 1990s witnessed a distinct decrease in concentrations of nutrients in Lake Mikołajskie, the consequent increase in water transparency was not associated with an increase in the area of submerged macrophytes, or the species richness of aquatic vegetation.

  4. Importance of the autumn overturn and anoxic conditions in the hypolimnion for the annual methane emissions from a temperate lake.

    Science.gov (United States)

    Encinas Fernández, Jorge; Peeters, Frank; Hofmann, Hilmar

    2014-07-01

    Changes in the budget of dissolved methane measured in a small temperate lake over 1 year indicate that anoxic conditions in the hypolimnion and the autumn overturn period represent key factors for the overall annual methane emissions from lakes. During periods of stable stratification, large amounts of methane accumulate in anoxic deep waters. Approximately 46% of the stored methane was emitted during the autumn overturn, contributing ∼80% of the annual diffusive methane emissions to the atmosphere. After the overturn period, the entire water column was oxic, and only 1% of the original quantity of methane remained in the water column. Current estimates of global methane emissions assume that all of the stored methane is released, whereas several studies of individual lakes have suggested that a major fraction of the stored methane is oxidized during overturns. Our results provide evidence that not all of the stored methane is released to the atmosphere during the overturn period. However, the fraction of stored methane emitted to the atmosphere during overturn may be substantially larger and the fraction of stored methane oxidized may be smaller than in the previous studies suggesting high oxidation losses of methane. The development or change in the vertical extent and duration of the anoxic hypolimnion, which can represent the main source of annual methane emissions from small lakes, may be an important aspect to consider for impact assessments of climate warming on the methane emissions from lakes.

  5. Effects of contrasting omnivorous fish on submerged macrophyte biomass in temperate lakes: a mesocosm experiment

    NARCIS (Netherlands)

    Dorenbosch, M.; Bakker, E.S.

    2012-01-01

    1.Freshwater fish can affect aquatic vegetation directly by consuming macrophytes or indirectly by changing water quality. However, most fish in the temperate climate zone have an omnivorous diet. The impact of fish as aquatic herbivores in temperate climates therefore remains unclear and depends on

  6. Activity and food choice of piscivorous perch ( Perca fluviatilis ) in a eutrophic shallow lake: a radio-telemetry study

    DEFF Research Database (Denmark)

    Jacobsen, Lene; Berg, Søren; Broberg, M.

    2002-01-01

    in midsummer. The general lack of activity at night supports the idea that perch is a visually oriented forager. 4. There was no significant relationship between daytime activity during the year and temperature or day length, but nighttime activity was correlated with temperature. In contrast with previous......+ planktivorous fish in lakes and has potential implications for pelagic food web structure and lake management by biomanipulation...

  7. An application of a water assessment and simulation model in the remediation of the eutrophication capacity of a tropical water system: Case study the Lake Obili in Yaounde (Cameroon

    Directory of Open Access Journals (Sweden)

    Ajeagah Gideon A.

    2017-06-01

    Full Text Available Lake Obili is one of the most famous lakes in the city of Yaounde, Cameroon. Studies carried out in this lake showed that it was hyper eutrophic and therefore it represents a great danger because it is used for aquaculture, tourism and a suitable laboratory for hydro-biological engineering. It is thus very vital to restore this lake ecosystem that singles itself in the heart of the city of Yaounde. This can be greatly facilitated through the use of Water Quality Analysis Simulation Program (WASP of the United State Environmental protection Agency (USEPA. The outcomes of the previous results obtained from EUTRO, a Subroutine of the WASP model specialised in determining eutrophication level have proven that the remediation of this lake can be achievable through the implementation of a wet dredging, the construction and restoration of a wastewater treatment plant, the implementation of environmental incentive policies and the arrangement of the access to the lake. The application of the model is a contribution to the scientific mastery of nutrient flow, lake functioning and possibilities of restauration of highly polluted tropical water bodies subjected to domestic and industrial pollution.

  8. Spatio-seasonal variability of chromophoric dissolved organic matter absorption and responses to photobleaching in a large shallow temperate lake

    Science.gov (United States)

    Encina Aulló-Maestro, María; Hunter, Peter; Spyrakos, Evangelos; Mercatoris, Pierre; Kovács, Attila; Horváth, Hajnalka; Preston, Tom; Présing, Mátyás; Torres Palenzuela, Jesús; Tyler, Andrew

    2017-03-01

    The development and validation of remote-sensing-based approaches for the retrieval of chromophoric dissolved organic matter (CDOM) concentrations requires a comprehensive understanding of the sources and magnitude of variability in the optical properties of dissolved material within lakes. In this study, spatial and seasonal variability in concentration and composition of CDOM and the origin of its variation was studied in Lake Balaton (Hungary), a large temperate shallow lake in central Europe. In addition, we investigated the effect of photobleaching on the optical properties of CDOM through in-lake incubation experiments. There was marked variability throughout the year in CDOM absorption in Lake Balaton (aCDOM(440) = 0. 06-9.01 m-1). The highest values were consistently observed at the mouth of the main inflow (Zala River), which drains humic-rich material from the adjoining Kis-Balaton wetland, but CDOM absorption decreased rapidly towards the east where it was consistently lower and less variable than in the westernmost lake basins. The spectral slope parameter for the interval of 350-500 nm (SCDOM(350-500)) was more variable with increasing distance from the inflow (observed range 0.0161-0.0181 nm-1 for the mouth of the main inflow and 0.0158-0.0300 nm-1 for waters closer to the outflow). However, spatial variation in SCDOM was more constant exhibiting a negative correlation with aCDOM(440). Dissolved organic carbon (DOC) was strongly positively correlated with aCDOM(440) and followed a similar seasonal trend but it demonstrated more variability than either aCDOM or SCDOM with distance through the system. Photobleaching resulting from a 7-day exposure to natural solar UV radiation resulted in a marked decrease in allochthonous CDOM absorption (7.04 to 3.36 m-1, 42 % decrease). Photodegradation also resulted in an increase in the spectral slope coefficient of dissolved material.

  9. Dynamics of chromophoric dissolved organic matter influenced by hydrological conditions in a large, shallow, and eutrophic lake in China.

    Science.gov (United States)

    Zhou, Yongqiang; Zhang, Yunlin; Shi, Kun; Liu, Xiaohan; Niu, Cheng

    2015-09-01

    High concentrations of chromophoric dissolved organic matter (CDOM) are terrestrially derived from upstream tributaries to Lake Taihu, China, and are influenced by hydrological conditions of the upstream watershed. To investigate how the dynamics of CDOM in Lake Taihu are influenced by upstream inflow runoff, four sampling cruises, differing in hydrological conditions, were undertaken in the lake and its three major tributaries, rivers Yincun, Dapu, and Changdou. CDOM absorption, fluorescence spectroscopy, chemical oxygen demand (COD), and stable isotope δ(13)C and δ(15)N measurements were conducted to characterize the dynamics of CDOM. The mean absorption coefficient a(350) collected from the three river profiles (5.15 ± 1.92 m(-1)) was significantly higher than that of the lake (2.95 ± 1.88 m(-1)), indicating that the upstream rivers carried a substantial load of CDOM to the lake. This finding was substantiated by the exclusively terrestrial signal exhibited by the level of δ(13)C (-26.23 ± 0.49‰) of CDOM samples collected from the rivers. Mean a(350) and COD in Lake Taihu were significantly higher in the wet season than in the dry season (t test, p CDOM in the lake is strongly influenced by hydrological conditions of the watershed. Four components were identified by parallel factor analysis, including two protein-like components (C1 and C2), a terrestrial humic-like component (C3), and a microbial humic-like (C4) component. The contribution percentage of the two humic-like components relative to the summed fluorescence intensity of the four components (C humic) increased significantly from the dry to the wet season. This seasonal difference in contribution further substantiated that an enhanced rainfall followed by an elevated inflow runoff in the lake watershed in the wet season may result in an increase in humic-like substances being discharged into the lake compared to that in the dry season. This finding was further supported by an

  10. Development of constructed wetland using hydroponic biofilter method for purification of hyper-eutrophic lake water; Fueiyoka kosui no joka no tameno suiko seibutsu rokaho wo mochiita jinko shicchi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Aizaki, M. [Shimane Univ., Matsue (Japan)] Nakasato, H. [Top Ecology Co. Ltd., Tokyo (Japan)

    1997-09-10

    Applying the hydroponic biofilter method as a direct purification method for a hyper-eutrophic lake water, an experiment was carried out at the Tsuchiura Port on Lake Kasumigaura to obtain data for constructing a hydrophilic artificial wetland. Purification of hyper-eutrophic lake water containing a large amount of water blooms in summer was attempted applying the hydroponic biofilter method for which hydrophyte is used. As a result, it was clarified, by applying the hydroponic biofilter method, that capturing effect of suspended substances can be achieved in the rooting zone, captured suspended substances are decomposed at high rate, and the revolved nutrient salt can be absorbed and assimilated by the use of plants having high growth rates. Ipomoea aquatica had the highest removal activity, followed by nasturtium officinal, menthe spicata, and oenanthe javanica. As a result, it became clear that a constructed wetland made with the hydroponic biofilter method can be applied as a direct purifying method for hyper-eutrophic lake water by selecting appropriate plants in accordance with season. 18 refs., 1 fig., 4 tabs.

  11. Environmental Degradation in a Eutrophic Shallow Lake is not Simply Due to Abundance of Non-native Cyprinus carpio

    Science.gov (United States)

    Ramírez-Herrejón, Juan P.; Mercado-Silva, Norman; Balart, Eduardo F.; Moncayo-Estrada, Rodrigo; Mar-Silva, Valentín; Caraveo-Patiño, Javier

    2015-09-01

    Non-native species are often major drivers of the deterioration of natural ecosystems. The common carp Cyprinus carpio are known to cause major changes in lentic systems, but may not be solely responsible for large scale changes in these ecosystems. We used data from extensive collection efforts to gain insight into the importance of carp as drivers of ecosystem change in Lake Patzcuaro, Mexico. We compared the structure (fish density, biomass, diversity, and evenness) of fish assemblages from six Lake Patzcuaro sites with different habitat characteristics. Intersite comparisons were carried out for both wet and dry seasons. We explored the relationships between non-carp species and carp; and studied multivariate interactions between fish abundance and habitat characteristics. From a biomass perspective, carp was dominant in only four of six sites. In terms of density, carp was not a dominant species in all sites. Further, carp density and biomass were not negatively related to native species density and biomass, even when carp density and biomass were positively correlated to water turbidity levels. Carp dominated fish assemblages in the shallowest sites with the highest water turbidity, plant detritus at the bottom, and floating macrophytes covering the lake surface. These results suggest that the effect of carp on fish assemblages may be highly dependent on habitat characteristics in Lake Patzcuaro. Watershed degradation, pollution, water level loss, and other sources of anthropogenic influence may be more important drivers of Lake Patzcuaro degradation than the abundance of carp.

  12. Effects of internal phosphorus loadings and food-web structure on the recovery of a deep lake from eutrophication

    Science.gov (United States)

    Lepori, Fabio; Roberts, James J.

    2017-01-01

    We used monitoring data from Lake Lugano (Switzerland and Italy) to assess key ecosystem responses to three decades of nutrient management (1983–2014). We investigated whether reductions in external phosphorus loadings (Lext) caused declines in lake phosphorus concentrations (P) and phytoplankton biomass (Chl a), as assumed by the predictive models that underpinned the management plan. Additionally, we examined the hypothesis that deep lakes respond quickly to Lext reductions. During the study period, nutrient management reduced Lext by approximately a half. However, the effects of such reduction on P and Chl a were complex. Far from the scenarios predicted by classic nutrient-management approaches, the responses of P and Chl a did not only reflect changes in Lext, but also variation in internal P loadings (Lint) and food-web structure. In turn, Lint varied depending on basin morphometry and climatic effects, whereas food-web structure varied due to apparently stochastic events of colonization and near-extinction of key species. Our results highlight the complexity of the trajectory of deep-lake ecosystems undergoing nutrient management. From an applied standpoint, they also suggest that [i] the recovery of warm monomictic lakes may be slower than expected due to the development of Lint, and that [ii] classic P and Chl a models based on Lext may be useful in nutrient management programs only if their predictions are used as starting points within adaptive frameworks.

  13. Historical records of polycyclic aromatic hydrocarbon deposition in a shallow eutrophic lake: Impacts of sources and sedimentological conditions.

    Science.gov (United States)

    Li, Chaocan; Huo, Shouliang; Yu, Zhiqiang; Guo, Wei; Xi, Beidou; He, Zhuoshi; Zeng, Xiangying; Wu, Fengchang

    2016-03-01

    Sediment core samples collected from Lake Chaohu were analyzed for 15 priority polycyclic aromatic hydrocarbons (PAHs) to assess the spatial and temporal distributions of the PAHs during lacustrine sedimentary processes and regional economic development. Assessing the PAH sedimentary records over an approximately 100-year time span, we identified two stages in the PAH inputs and sources (before the 1970s and after the 1970s) in the eastern lake region near a village, whereas three stages (before the 1950s, 1950s-1990s and after the 1990s) were identified in the western lake region near urban and industrial areas. Rapid increases in the PAH depositional fluxes occurred during the second stage due to increased human activities in the Lake Chaohu basin. The composition and isomeric ratios of the PAHs revealed that pyrolysis is the main source of PAHs in this lake. Strong positive relationships between PAH concentration and the total organic carbon concentration, sediment grain size (energy consumption and the levels of urban industrialization and civilization, affect both the composition and abundance of the PAHs. Copyright © 2015. Published by Elsevier B.V.

  14. Environmental Degradation in a Eutrophic Shallow Lake is not Simply Due to Abundance of Non-native Cyprinus carpio.

    Science.gov (United States)

    Ramírez-Herrejón, Juan P; Mercado-Silva, Norman; Balart, Eduardo F; Moncayo-Estrada, Rodrigo; Mar-Silva, Valentín; Caraveo-Patiño, Javier

    2015-09-01

    Non-native species are often major drivers of the deterioration of natural ecosystems. The common carp Cyprinus carpio are known to cause major changes in lentic systems, but may not be solely responsible for large scale changes in these ecosystems. We used data from extensive collection efforts to gain insight into the importance of carp as drivers of ecosystem change in Lake Patzcuaro, Mexico. We compared the structure (fish density, biomass, diversity, and evenness) of fish assemblages from six Lake Patzcuaro sites with different habitat characteristics. Intersite comparisons were carried out for both wet and dry seasons. We explored the relationships between non-carp species and carp; and studied multivariate interactions between fish abundance and habitat characteristics. From a biomass perspective, carp was dominant in only four of six sites. In terms of density, carp was not a dominant species in all sites. Further, carp density and biomass were not negatively related to native species density and biomass, even when carp density and biomass were positively correlated to water turbidity levels. Carp dominated fish assemblages in the shallowest sites with the highest water turbidity, plant detritus at the bottom, and floating macrophytes covering the lake surface. These results suggest that the effect of carp on fish assemblages may be highly dependent on habitat characteristics in Lake Patzcuaro. Watershed degradation, pollution, water level loss, and other sources of anthropogenic influence may be more important drivers of Lake Patzcuaro degradation than the abundance of carp.

  15. Effects of climate change on bioaccumulation and biomagnification of polycyclic aromatic hydrocarbons in the planktonic food web of a subtropical shallow eutrophic lake in China.

    Science.gov (United States)

    Tao, Yuqiang; Xue, Bin; Lei, Guoliang; Liu, Fei; Wang, Zhen

    2017-04-01

    To date effects of climate change on bioaccumulation and biomagnification of chemical pollutants in planktonic food webs have rarely been studied. Recruitments of plankton have shifted earlier due to global warming. Global warming and precipitation patterns are projected to shift seasonally. Whether and how the shifts in plankton phenology induced by climate change will impact bioaccumulation and biomagnification of chemical pollutants, and how they will respond to climate change are largely unknown. Here, we combine data analysis of the past seven decades, high temporal resolution monitoring and model development to test this hypothesis with nine polycyclic aromatic hydrocarbons (PAHs) in the planktonic food web of a subtropical shallow eutrophic lake in China. We find biphasic correlations between both bioconcentration factors and bioaccumulation factors of the PAHs and the mean temperature, which depend on the recruitment temperatures of cyanobacteria, and copepods and cladocerans. The positive correlations between bioconcentration factors, bioaccumulation factors and the mean temperature will be observed less than approximately 13-18 days by 2050-2060 due to the shifts in plankton phenology. The PAHs and their bioaccumulation and biomagnification will respond seasonally and differently to climate change. Bioaccumulation of most of the PAHs will decrease with global warming, with higher decreasing rates appearing in winter and spring. Biomagnification of most of the PAHs from phytoplankton to zooplankton will increase with global warming, with higher increasing rates appearing in winter and spring. Our study provides novel insights into bioaccumulation and biomagnification of chemical pollutants in eutrophic waters under climate change scenarios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Population dynamics of Chaoborus flavicans and Daphnia spp.: effects on a zooplankton community in a volcanic eutrophic lake with naturally high metal concentrations (L. Monticchio Grande, Southern Italy

    Directory of Open Access Journals (Sweden)

    Letizia GARIBALDI

    2009-02-01

    Full Text Available The response of Daphnia populations to invertebrate predators involves morphological or behavioural changes. Few studies suggest that contaminant aqueous metals, like Cu or Ni at environmentally relevant concentrations, interfere with invertebrate chemical communication systems, such as that which operates between Daphnia and Chaoborus. The objective of our study was to determine if this interference could be also observed in lakes naturally rich in dissolved metals, such as volcanic lake (Lago Grande di Monticchio. This study aimed to assess if natural dissolved metals (e.g., Fe, Mn and Sr could impair the ability of Daphnia pulex and D. galeata × hyalina × cucullata 'complex' populations to respond to Chaoborus kairomones by producing morphological defenses against potential predation, and to understand how Chaoborus predation might affect zooplankton community composition and overall zooplankton density. The predator impact did not result in: i any morphological changes; ii any apparent shift in body size pattern of the prey population; iii any shift in life history traits. Chaoborus accounted for high mortality rates in Cladocera and strongly reduced the chance of individuals to reach maturity. Moreover, highly significant negative correlations between abundance of dominant taxa of zooplankton and C. flavicans were found. The last larval instars of C. flavicans seem to reduce the number of crustaceans, particularly cladocerans and copepod adults and could play an important role in structuring zooplankton communities. Our results suggest that metal inhibition of defence strategies induction probably occurs along the signal transduction pathway in Lake Grande di Monticchio. Impairment of chemosensory response to predatory chemical cues may have widespread ecological consequences in aquatic systems. Chaoborus predation effects can greatly affect both zooplankton biomass and community composition, impact interactions at lower trophic levels

  17. Spring temperature variability and eutrophication history inferred from sedimentary pigments in the varved sediments of Lake Żabińskie, north-eastern Poland, AD 1907-2008

    Science.gov (United States)

    Amann, Benjamin; Lobsiger, Simon; Fischer, Daniela; Tylmann, Wojciech; Bonk, Alicja; Filipiak, Janusz; Grosjean, Martin

    2014-12-01

    Varved lake sediments are excellent natural archives providing quantitative insights into climatic and environmental changes at very high resolution and chronological accuracy. However, due to the multitude of responses within lake ecosystems it is often difficult to understand how climate variability interacts with other environmental pressures such as eutrophication, and to attribute observed changes to specific causes. This is particularly challenging during the past 100 years when multiple strong trends are superposed. Here we present a high-resolution multi-proxy record of sedimentary pigments and other biogeochemical data from the varved sediments of Lake Żabińskie (Masurian Lake District, north-eastern Poland, 54°N-22°E, 120 m a.s.l.) spanning AD 1907 to 2008. Lake Żabińskie exhibits biogeochemical varves with highly organic late summer and winter layers separated by white layers of endogenous calcite precipitated in early summer. The aim of our study is to investigate whether climate-driven changes and anthropogenic changes can be separated in a multi-proxy sediment data set, and to explore which sediment proxies are potentially suitable for long quantitative climate reconstructions. We also test if convoluted analytical techniques (e.g. HPLC) can be substituted by rapid scanning techniques (visible reflectance spectroscopy VIS-RS; 380-730 nm). We used principal component analysis and cluster analysis to show that the recent eutrophication of Lake Żabińskie can be discriminated from climate-driven changes for the period AD 1907-2008. The eutrophication signal (PC1 = 46.4%; TOC, TN, TS, Phe-b, high TC/CD ratios total carotenoids/chlorophyll-a derivatives) is mainly expressed as increasing aquatic primary production, increasing hypolimnetic anoxia and a change in the algal community from green algae to blue-green algae. The proxies diagnostic for eutrophication show a smooth positive trend between 1907 and ca 1980 followed by a very rapid increase

  18. Extracellular phosphatases produced by phytoplankton and other sources in shallow eutrophic lakes (Wuhan, China): taxon-specific versus bulk activity

    Czech Academy of Sciences Publication Activity Database

    Cao, X.; Song, C.; Zhou, Y.; Štrojsová, A.; Znachor, Petr; Zapomělová, Eliška; Vrba, Jaroslav

    2009-01-01

    Roč. 10, č. 2 (2009), s. 95-104 ISSN 1439-8621 R&D Projects: GA AV ČR(CZ) IAA6017202; GA MŠk(CZ) ME 617 Institutional research plan: CEZ:AV0Z60170517 Keywords : ELF97 phosphate * phosphorus regeneration * polymictic lakes * algae * protozoa Subject RIV: EH - Ecology, Behaviour Impact factor: 0.968, year: 2009

  19. 200 kHz Sonication of Mixed-Algae Suspension from a Eutrophic Lake: The Effect on the Caution vs. Outbreak Bloom Alert Levels

    Directory of Open Access Journals (Sweden)

    Andinet Tekile

    2017-11-01

    Full Text Available For effective ultrasonic algae removal, several studies have considered the ultrasound equipment linked factors, such as power and frequency. However, studies on the response of mixed algal cultures and associated water quality parameters to ultrasound are limited. In this lab-scale sonication, the removal of cyanobacteria at a pre-set frequency of 200 kHz on mixed algae suspensions collected from a eutrophic lake was investigated. The caution (17.5 µg/L and outbreak (1450 µg/L alert levels in terms of chlorophyll-a (Chl-a concentrations of the initial samples were each sonicated for 10, 15, and 20 min, and then kept in an incubator. Fifteen minutes of sonication resulted in best removal efficiency of 0.94 and 0.77, at an ultrasonic dose of 30 kWh/m3 at the outbreak and caution level concentrations, respectively. Immediately after 15 min sonication, and after standing in the incubator for a day, chlorophyll-a removal efficiencies of 0.28 and 0.90 were achieved in the outbreak level, respectively, and the matching removal efficiencies for the caution level were 0.23 and 0.64. Even though the removal was substantial in both cases, the final 147 µg/L chlorophyll-a concentration of the outbreak, which is itself still in the outbreak level range, shows that ultrasonication is not effective to satisfactorily remove algae from a concentrated suspension. Total dissolved nitrogen and chemical oxygen demand were reduced, overall, due to sonication. However, total dissolved phosphorus of the concentrated level was increased during the treatment. Although sonication needs further replicated experimental testing in whole-lake systems, our results show that 200 kHz sonication was able to reduce chlorophyll-a concentrations in small-scale laboratory tests.

  20. Soil erosion and sedimentation rates in a small eutrophic lake in southern Chile estimated by 210Pb isotope analysis

    International Nuclear Information System (INIS)

    Cisternas, M.; Urrutia, R.; Araneda, A.; Debels, P.; Rios, F.

    1999-01-01

    The purpose of this research is to study the effects of historical land use patterns on soil erosion within the San Pedro Lake watershed (Concepcion, VIII Region, Chile). To this end, a geochronological reconstruction of the last 50 years was accomplished by 210 Pb isotope and photo-interpretation analysis through the use of GIS. The erosion rate has varied from 0.40 t ha -1 y -1 in 1955 to 0.86 t ha -1 y -1 in 1994. The decrease in native forest was closely coupled with the increase in exotic forestry. The Total Change, meaning the land use change without considering each typology, shows a constant trend indicating a greater degree of anthropogenic intervention. As opposed to the expected, there is no relationship between land use typologies and erosion rates, however it is possible to recognise some degree of dependency between Total Change and erosion values. It is concluded that over the last 50 years the soil erosion processes in the San Pedro Lake watershed may have been more regulated more by land use changes than by land use typologies themselves. (author)

  1. Incidence of invasive macrophytes on methylmercury budget in temperate lakes: Central role of bacterial periphytic communities

    International Nuclear Information System (INIS)

    Gentès, Sophie; Monperrus, Mathilde; Legeay, Alexia; Maury-Brachet, Régine; Davail, Stephane; André, Jean-Marc; Guyoneaud, Rémy

    2013-01-01

    Several studies demonstrated high mercury (Hg) methylation and demethylation in the periphyton associated with floating roots in tropical ecosystems. The importance of aquatic plants on methylmercury production in three temperate ecosystems from south-western France was evaluated through Hg species concentrations, and Hg methylation/demethylation activities by using stable isotopic tracers ( 199 Hg(II), Me 201 Hg). Hg accumulation and high methylation and demethylation yields were detected in plant roots and periphyton, whereas results for sediment and water were low to insignificant. The presence of sulfate reducing prokaryotes was detected in all compartments (T-RFLP based on dsrAB amplified through nested PCR) and their main role in Hg methylation could be demonstrated. In turn, sulfate reduction inhibition did not affect demethylation activities. The estimation of net MeHg budgets in these ecosystems suggested that aquatic rhizosphere is the principal location for methylmercury production and may represent an important source for the contamination of the aquatic food chain. - Highlights: ► Both Hg methylation and demethylation occur in the periphyton of temperate ecosystems. ► Aquatic rhizosphere is the main compartment for net methylmercury production. ► Sulfate reducers are detected in all ecosystem compartments (water, sediment, periphyton). ► Sulfate reducers are responsible for methylmercury production in aquatic roots. - The incidence of periphytic microbial communities on net methylmercury production is highlighted in temperate aquatic ecosystems.

  2. Seasonal bat activity related to insect emergence at three temperate lakes.

    Science.gov (United States)

    Salvarina, Ioanna; Gravier, Dorian; Rothhaupt, Karl-Otto

    2018-04-01

    Knowledge of aquatic food resources entering terrestrial systems is important for food web studies and conservation planning. Bats, among other terrestrial consumers, often profit from aquatic insect emergence and their activity might be closely related to such events. However, there is a lack of studies which monitor bat activity simultaneously with aquatic insect emergence, especially from lakes. Thus, our aim was to understand the relationship between insect emergence and bat activity, and investigate whether there is a general spatial or seasonal pattern at lakeshores. We assessed whole-night bat activity using acoustic monitoring and caught emerging and aerial flying insects at three different lakes through three seasons. We predicted that insect availability and seasonality explain the variation in bat activity, independent of the lake size and characteristics. Spatial (between lakes) differences of bat activity were stronger than temporal (seasonal) differences. Bat activity did not always correlate to insect emergence, probably because other factors, such as habitat characteristics, or bats' energy requirements, play an important role as well. Aerial flying insects explained bat activity better than the emerged aquatic insects in the lake with lowest insect emergence. Bats were active throughout the night with some activity peaks, and the pattern of their activity also differed among lakes and seasons. Lakes are important habitats for bats, as they support diverse bat communities and activity throughout the night and the year when bats are active. Our study highlights that there are spatial and temporal differences in bat activity and its hourly nocturnal pattern, that should be considered when investigating aquatic-terrestrial interactions or designing conservation and monitoring plans.

  3. Improving the accuracy of estimation of eutrophication state index ...

    African Journals Online (AJOL)

    Trophic Level Index (TLI) is oen used to assess the general eutrophication state of inland lakes in water science, technology, and engineering. In this paper, a data-driven inland-lake eutrophication assessment method was proposed by using an articial neural network (ANN) to build relationships from remote sensing data ...

  4. Spatial distributions, fractionation characteristics, and ecological risk assessment of trace elements in sediments of Chaohu Lake, a large eutrophic freshwater lake in eastern China.

    Science.gov (United States)

    Wu, Lei; Liu, Guijian; Zhou, Chuncai; Liu, Rongqiong; Xi, Shanshan; Da, Chunnian; Liu, Fei

    2018-01-01

    The concentrations, spatial distribution, fractionation characteristics, and potential ecological risks of trace elements (Cu, Pb, Zn, Cr, Ni, and Co) in the surface sediment samples collected from 32 sites in Chaohu Lake were investigated. The improved BCR sequential extraction procedure was applied to analyze the chemical forms of trace elements in sediments. The enrichment factor (EF), sediment quality guidelines (SQGs), potential ecological risk index (PERI), and risk assessment code (RAC) were employed to evaluate the pollution levels and the potential ecological risks. The results found that the concentrations of Cu, Pb, Zn, Cr, Ni, and Co in the surface sediments were 78.59, 36.91, 161.84, 98.87, 38.92, and 10.09 mg kg -1 , respectively. The lower concentrations of Cu, Pb, Zn, Cr, and Ni were almost found in the middle part of the lake, while Co increased from the western toward the eastern parts of the lake. Cr, Ni, Co, and Zn predominantly existed in the residual fractions, with the average values of 76.35, 59.22, 45.60, and 44.30%, respectively. Cu and Pb were mainly combined with Fe/Mn oxides in reducible fraction, with the average values of 66.4 and 69.1%, respectively. The pollution levels were different among the selected elements. Cu had the highest potential ecological risk, while Cr had the lowest potential ecological risk.

  5. Diet Overlap and Predation between Smallmouth Bass and Walleye in a North Temperate Lake

    Science.gov (United States)

    Aaron P. Frey; Michael A. Bozek; Clayton J. Edwards; Steve P. Newman

    2003-01-01

    Walleye (Stizostedion vitreum vitreum) and smallmouth bass (Micropterus dolomieu) diets from Big Crooked Lake, Wisconsin were examined to assess the degree of diet overlap and predation occurring between these species in an attempt to deternine whether walleye influence smallmouth bass recruitment, which is consistently low...

  6. Energy input and dissipation in a temperate lake during the spring transition

    Science.gov (United States)

    Woolway, R. Iestyn; Simpson, John H.

    2017-08-01

    ADCP and temperature chain measurements have been used to estimate the rate of energy input by wind stress to the water surface in the south basin of Windermere. The energy input from the atmosphere was found to increase markedly as the lake stratified in spring. The efficiency of energy transfer ( Eff), defined as the ratio of the rate of working in near-surface waters ( RW) to that above the lake surface ( P 10), increased from ˜0.0013 in vertically homogenous conditions to ˜0.0064 in the first 40 days of the stratified regime. A maximum value of Eff˜0.01 was observed when, with increasing stratification, the first mode internal seiche period decreased to match the diurnal wind period of 24 h. The increase in energy input, following the onset of stratification was reflected in enhancement of the mean depth-varying kinetic energy without a corresponding increase in wind forcing. Parallel estimates of energy dissipation in the bottom boundary layer, based on determination of the structure function show that it accounts for ˜15% of RW in stratified conditions. The evolution of stratification in the lake conforms to a heating stirring model which indicates that mixing accounts for ˜21% of RW. Taken together, these estimates of key energetic parameters point the way to the development of full energy budgets for lakes and shallow seas.

  7. Chromophoric dissolved organic matter of black waters in a highly eutrophic Chinese lake: Freshly produced from algal scums?

    Science.gov (United States)

    Zhou, Yongqiang; Jeppesen, Erik; Zhang, Yunlin; Niu, Cheng; Shi, Kun; Liu, Xiaohan; Zhu, Guangwei; Qin, Boqiang

    2015-12-15

    Field campaigns and an incubation experiment were conducted to evaluate the sources of chromophoric dissolved organic matter (CDOM) in black water spots in highly polluted regions of the Chinese Lake Taihu. A significant positive correlation (pCDOM absorption coefficient a(350), indicating that algae degradation was likely the primary source of CDOM in black waters. This is supported by our field results that Chl-a, a(350) and the spectral slope ratio (SR) were significantly higher in the black water samples than in the regular samples (pCDOM source where a(350) increased with decreasing Chl-a concentrations. After seven days' incubation, a 72.2% decrease and a 74.9% increase were recorded for Chl-a and a(350), respectively, relative to the initial values. Parallel factor analysis identified five fluorescent components. The maximal fluorescence intensity (Fmax) of tryptophan-like C1 and microbial humic-like C3 of black water samples was significantly higher than in the regular water samples (pCDOM source in black water spots. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Spatial and temporal variability of greenhouse gas emissions from a small and shallow temperate lake

    Science.gov (United States)

    Praetzel, Leandra; Schmiedeskamp, Marcel; Broder, Tanja; Hüttemann, Caroline; Jansen, Laura; Metzelder, Ulrike; Wallis, Ronya; Knorr, Klaus-Holger; Blodau, Christian

    2017-04-01

    Small inland waters (spots" and "hot moments" that could contribute significantly to total emissions. To address this knowledge gap, we determined CO2 and CH4 emissions and dynamics to identify their controlling environmental factors in a polymictic small (1.4 ha) and shallow (max. depth approx. 1.5 m) crater lake ("Windsborn") in the Eifel uplands in south-west Germany. As Lake Windsborn has a small catchment area (8 ha) and no surficial inflows, it serves well as a model system for the identification of factors and processes controlling emissions. In 2015, 2016 and 2017 we measured CO2 and CH4 gas fluxes with different techniques across the sediment/water and water/atmosphere interface. Atmospheric exchange was measured using mini-chambers equipped with CO2 sensors and with an infra-red greenhouse gas analyzer for high temporal resolution flux measurements. Ebullition of CH4 was quantified with funnel traps. Sediment properties were examined using pore-water peepers. All measurements were carried out along a transect covering both littoral and central parts of the lake. Moreover, a weather station on a floating platform in the center of the lake recorded meteorological data as well as CO2 concentration in different depths of the water column. So far, Lake Windsborn seems to be a source for both CO2 and CH4 on an annual scale. CO2 emissions generally increased from spring to summer. Even though CO2 uptake could be observed during some periods in spring and fall, CO2 emissions in the summer exceeded the uptake. CO2 and CH4 emissions also appeared to be spatially variable between littoral areas and the inner lake. Shallow areas turned out to be "hot spots" of CO2 emissions whereas CH4 emissions were - against our expectations - highest in the center of the lake. Moreover, CH4 ebullition contributed substantially to total CH4 emissions. Our results show the importance of spatially and temporally highly resolved long-term measurements of greenhouse gas emissions and

  9. Environmental influence on cyanobacteria abundance and microcystin toxin production in a shallow temperate lake.

    Science.gov (United States)

    Lee, Tammy A; Rollwagen-Bollens, Gretchen; Bollens, Stephen M; Faber-Hammond, Joshua J

    2015-04-01

    The increasing frequency of harmful cyanobacterial blooms in freshwater systems is a commonly recognized problem due to detrimental effects on water quality. Vancouver Lake, a shallow, tidally influenced lake in the flood plain of the Columbia River within the city of Vancouver, WA, USA, has experienced numerous summertime cyanobacterial blooms, dominated by Aphanizomenon sp. and Anabaena sp. Cyanobacteria abundance and toxin (microcystin) levels have been monitored in this popular urban lake for several years; however, no previous studies have identified which cyanobacteria species produce toxins, nor analyzed how changes in environmental variables contribute to the fluctuations in toxic cyanobacteria populations. We used a suite of molecular techniques to analyze water samples from Vancouver Lake over two summer bloom cycles (2009 and 2010). Both intracellular and extracellular microcystin concentrations were measured using an ELISA kit. Intracellular microcystin concentrations exceeded WHO guidelines for recreational waters several times throughout the sampling period. PCR results demonstrated that Microcystis sp. was the sole microcystin-producing cyanobacteria species present in Vancouver Lake, although Microcystis sp. was rarely detected in microscopical counts. qPCR results indicated that the majority of the Microcystis sp. population contained the toxin-producing gene (mcyE), although Microcystis sp. abundance rarely exceeded 1 percent of overall cyanobacteria abundance. Non-metric multidimensional scaling (NMDS) revealed that PO4-P was the main environmental variable influencing the abundance of toxic and non-toxic cyanobacteria, as well as intracellular microcystin concentrations. Our study underscores the importance of using molecular genetic techniques, in addition to traditional microscopy, to assess the importance of less conspicuous species in the dynamics of harmful algal blooms. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Establishment of stream nutrient criteria by comparing reference conditions with ecological thresholds in a typical eutrophic lake basin.

    Science.gov (United States)

    Cao, Xiaofeng; Wang, Jie; Jiang, Dalin; Sun, Jinhua; Huang, Yi; Luan, Shengji

    2017-12-13

    The establishment of numeric nutrient criteria is essential to aid the control of nutrient pollution and for protecting and restoring healthy ecological conditions. However, it's necessary to determine whether regional nutrient criteria can be defined in stream ecosystems with a poor ecological status. A database of periphytic diatom samples was collected in July and August 2011 and 2012. In total 172 samples were included in the database with matching environmental variables. Here, percentile estimates, nonparametric change-point analysis (nCPA) and Threshold Indicator Taxa ANalysis (TITAN) were conducted to detect the reference conditions and ecological thresholds along a total nitrogen (TN) and total phosphorus (TP) gradient and ammonia nitrogen (NH 3 -N) for the development of nutrient criteria in the streams of the Lake Dianchi basin. The results highlighted the possibility of establishing regional criteria for nutrient concentrations, which we recommended to be no more than 1.39 mg L -1 for TN, 0.04 mg L -1 for TP and 0.17 mg L -1 for NH 3 -N to prevent nuisance growths of tolerant taxa, and 0.38 mg L -1 for TN, 0.02 mg L -1 for TP and 0.02 mg L -1 for NH 3 -N to maintain high quality waters in streams. Additionally, the influence of excessive background nutrient enrichment on the threshold response, and the ecological interaction with other stressors (HQI, etc.) in the nutrient dynamic process need to be considered to establish the eventual nutrient criteria, regardless of which technique is applied.

  11. The effect of environmental parameters and cyanobacterial blooms on phytoplankton dynamics of a Portuguese temperate lake

    DEFF Research Database (Denmark)

    De Figueiredo, Daniela R.; P. S. Reboleira, Ana Sofia; Antunes, Sara C.

    2006-01-01

    The increasing occurrence of cyanobacterial blooms in freshwaters is of great concern due to the ability of many cyanobacteria to produce cyanotoxins. In the present work, the eutrophied Vela Lake (Central Portugal), used for recreational purposes and as a water source for agriculture, was monito...... for the phytoplanktonic assemblage during the study period was increased in about 7% achieving a total of 61.0%, indicating a correlation that may be due to the known competitive advantage and/or allelopathy of the bloom-forming cyanobacteria towards microalgae....

  12. Food-web stability signals critical transitions in temperate shallow lakes.

    Science.gov (United States)

    Kuiper, Jan J; van Altena, Cassandra; de Ruiter, Peter C; van Gerven, Luuk P A; Janse, Jan H; Mooij, Wolf M

    2015-07-15

    A principal aim of ecologists is to identify critical levels of environmental change beyond which ecosystems undergo radical shifts in their functioning. Both food-web theory and alternative stable states theory provide fundamental clues to mechanisms conferring stability to natural systems. Yet, it is unclear how the concept of food-web stability is associated with the resilience of ecosystems susceptible to regime change. Here, we use a combination of food web and ecosystem modelling to show that impending catastrophic shifts in shallow lakes are preceded by a destabilizing reorganization of interaction strengths in the aquatic food web. Analysis of the intricate web of trophic interactions reveals that only few key interactions, involving zooplankton, diatoms and detritus, dictate the deterioration of food-web stability. Our study exposes a tight link between food-web dynamics and the dynamics of the whole ecosystem, implying that trophic organization may serve as an empirical indicator of ecosystem resilience.

  13. It's time to set some standards: Environmental classification of freshwater wetlands in New Zealand and their protection from eutrophication

    DEFF Research Database (Denmark)

    Sorrell, Brian Keith; Clarkson, Beverly

    Most natural resource plans provide protection for lakes and rivers from catchment activities leading to eutrophication. However, they are often silent about wetlands, due to the lack of information available for setting standards, defining reference conditions, and predicting responses to nutrient...... states in New Zealand wetlands, present an environmental classification based on physico-chemical and nutrient data, compare wetlands in New Zealand with those in other temperate regions, and argue for some catchment land use standards to protect wetlands from nutrient enrichment. Our database reveals...... that New Zealand wetlands, like those in other temperate climates, are defined by specific alkalinity and nutrient gradients and that there is a wide range of fertility levels. Using regression tree analysis, we have identified environmental groups of wetlands with significantly distinct nutrient regimes...

  14. Decade-long time delays in nutrient and plant species dynamics during eutrophication and re-oligotrophication of Lake Fure 1900–2015

    DEFF Research Database (Denmark)

    Sand-Jensen, Kaj; Bruun, Hans Henrik; Båstrup-Spohr, Lars

    2017-01-01

    Fure, Denmark, spanning the transformation from pristine environmental conditions in the early 1900s through a period (1920–1970) of eutrophication – from accelerating sewage input of phosphorus (P) – and subsequent re-oligotrophication after sewage cleaning (1970–2015). We examine time delays between...... sediment release. Fifty years of eutrophication led to a reduction in aquatic macrophyte richness from 36 species to 12. Species’ responses were closely related to their growth strategy and depth distribution. Deep-growing mosses, charophytes and short angiosperms disappeared, while tall angiosperms...... in species dominance takes longer than colonization by new species. Synthesis. Time delays of P concentrations, water clarity and macrophyte richness and composition were long and complex. Neglecting growth strategies of species makes application of extinction debt and colonization credit concepts dubious...

  15. Paleolimnological sedimentation of organic carbon, nitrogen, phosphorus, fossil pigments, pollen, and diatoms in a hypereutrophic, hardwater lake: a case history of eutrophication

    Energy Technology Data Exchange (ETDEWEB)

    Manny, B.A.; Wetzel, R.G.; Bailey, R.E.

    1977-01-01

    The sediment history of this productive, hardwater lake (Wintergreen Lake in southern Michigan) developed as five periods of increasing eutrophy, each strongly influenced by a hybrid basin morphometry. This morphometry led to higher productivity per unit area by macrophytic plants in littoral waters of the lake than by phytoplankton in pelagic waters. Climate and trophic conditions during each of the five periods between 14,000 and 0 B.P. are postulated.

  16. Evaporation from a temperate closed-basin lake and its impact on present, past, and future water level

    Science.gov (United States)

    Xiao, Ke; Griffis, Timothy J.; Baker, John M.; Bolstad, Paul V.; Erickson, Matt D.; Lee, Xuhui; Wood, Jeffrey D.; Hu, Cheng; Nieber, John L.

    2018-06-01

    Lakes provide enormous economic, recreational, and aesthetic benefits to citizens. These ecosystem services may be adversely impacted by climate change. In the Twin Cities Metropolitan Area of Minnesota, USA, many lakes have been at historic low levels and water augmentation strategies have been proposed to alleviate the problem. White Bear Lake (WBL) is a notable example. Its water level declined 1.5 m during 2003-2013 for reasons that are not fully understood. This study examined current, past, and future lake evaporation to better understand how climate will impact the water balance of lakes within this region. Evaporation from WBL was measured from July 2014 to February 2017 using two eddy covariance (EC) systems to provide better constraints on the water budget and to investigate the impact of evaporation on lake level. The estimated annual evaporation losses for years 2014 through 2016 were 559 ± 22 mm, 779 ± 81 mm, and 766 ± 11 mm, respectively. The higher evaporation in 2015 and 2016 was caused by the combined effects of larger average daily evaporation and a longer ice-free season. The EC measurements were used to tune the Community Land Model 4 - Lake, Ice, Snow and Sediment Simulator (CLM4-LISSS) to estimate lake evaporation over the period 1979-2016. Retrospective analyses indicate that WBL evaporation increased during this time by about 3.8 mm year-1, which was driven by increased wind speed and lake-surface vapor pressure gradient. Using a business-as-usual greenhouse gas emission scenario (RCP8.5), lake evaporation was modeled forward in time from 2017 to 2100. Annual evaporation is expected to increase by 1.4 mm year-1 over this century, largely driven by lengthening ice-free periods. These changes in ice phenology and evaporation will have important implications for the regional water balance, and water management and water augmentation strategies that are being proposed for these Metropolitan lakes.

  17. The tempo-spatial variations of phytoplankton diversities and their correlation with trophic state levels in a large eutrophic Chinese lake

    DEFF Research Database (Denmark)

    Yang, Bin; Jiang, Yu-Jiao; He, Wei

    2016-01-01

    status of the lake. The present study indicated that the Margalef index of all samples was as low as 0.799 ± 0.543 in summer (August 2011) and as high as 1.467 ± 0.653 in winter (February 2012). The Margalef index of the river samples had a high mean value and substantial variation compared with the lake...... occurred in the eastern lake, especially in the middle of the lake, in autumn and winter. The total trophic state index (TSI) in all samples exhibited a significant negative correlation with the Margalef (r = −0.726) and Peilou (r = −0.530) indices but a significant positive correlation with the Shannon...

  18. Evaporation from a temperate closed-basin lake and its impact on present, past, and future water level

    Science.gov (United States)

    Lakes provide enormous economic, recreational, and aesthetic benefits to citizens. These ecosystem services may be adversely impacted by climate change. In the Twin Cities Metropolitan Area of Minnesota, USA, many lakes have been at historic low levels and water augmentation strategies have been pro...

  19. Temporal and spatial heterogeneity in lacustrine δ13CDIC and δ18ODO signatures in a large mid-latitude temperate lake

    Directory of Open Access Journals (Sweden)

    Jane DRUMMOND

    2010-08-01

    Full Text Available Modelling limnetic carbon processes is necessary for accurate global carbon models and stable isotope analysis can provide additional insight of carbon flow pathways. This research examined the spatial and temporal complexity of carbon cycling in a large temperate lake. Dissolved inorganic carbon (DIC is utilised by photosynthetic organisms and dissolved oxygen (DO is used by heterotrophic organisms during respiration. Thus the spatial heterogeneity in the pelagic metabolic balance in Loch Lomond, Scotland was investigated using a combined natural abundance isotope technique. The isotopic signatures of dissolved inorganic carbon (δ13CDIC and dissolved oxygen (δ18ODO were measured concurrently on four different dates between November 2004 and September 2005. We measured isotopic variation over small and large spatial scales, both horizontal distance and depth. δ13CDIC and δ18ODO changed over a seasonal cycle, becoming concurrently more positive (negative in the summer (winter months, responding to increased photosynthetic and respiratory rates, respectively. With increasing depth, δ13CDIC became more negative and δ18ODO more positive, reflecting the shift to a respiration-dominated system. The horizontal distribution of δ13CDIC and δ18ODO in the epilimnion was heterogeneous. In general, the south basin had the most positive δ13CDIC, becoming more negative with increasing latitude, except in winter when the opposite pattern was observed. Areas of local variation were often observed near inflows. Clearly δ13CDIC and δ18ODO can show large spatial heterogeneity, as a result of varying metabolic balance coupled with inflow proximity and thus single point sampling to extrapolate whole lake metabolic patterns can result in error when modelling large lake systems Whilst we advise caution when using single point representation, we also show that this combined isotopic approach has potential to assist in constructing detailed lake carbon models.

  20. Evaporation from a temperate closed-basin lake and its impact on present, past, and future water level

    Science.gov (United States)

    Xiao, K.; Griffis, T. J.; Baker, J. M.; Bolstad, P. V.; Erickson, M. D.; Lee, X.; Wood, J. D.; Hu, C.

    2017-12-01

    Lakes provide enormous economic, recreational, and aesthetic benefits to citizens. These ecosystem services may be adversely impacted by climate change. In the Twin Cities Metropolitan Area of Minnesota, USA, many lakes have been at historic low levels and water augmentation strategies have been proposed to alleviate the problem. For example, the water level of White Bear Lake (WBL) declined 1.5 m during 2003-2013 for reasons that are not fully understood. This study examined current, past, and future lake evaporation to better understand how climate will impact the water balance of lakes within this region. Evaporation from WBL was measured from July 2014 to February 2017 using two eddy covariance (EC) systems to provide better constraints on the water budget and to investigate the impact of evaporation on lake level. The annual evaporation for years 2014 through 2016 were 559±22 mm, 779±81 mm, and 766±11 mm, respectively. The larger evaporation in 2015 and 2016 was caused by the combined effects of larger average daily evaporation and a longer ice-free season. The EC measurements were used to tune the Community Land Model 4 - Lake, Ice, Snow and Sediment Simulator (CLM4-LISSS) to estimate lake evaporation over the period 1979-2016. Retrospective analyses indicated that WBL evaporation increased by about 3.8 mm yr-1. Mass balance analysis implied that the lake level declines at WBL during 1986-1990 and 2003-2012 were mainly caused by the coupled low precipitation and high evaporation. Using a business-as-usual greenhouse gas emission scenario (RCP8.5), lake evaporation was modeled forward in time from 2017 to 2100. Annual evaporation is expected to increase by 1.4 mm yr-1 over this century, which is largely driven by lengthening ice-free periods. These changes in ice phenology and evaporation will have important implications for the regional water balance, and water management and water augmentation strategies that are being proposed for these Metropolitan

  1. The altered ecology of Lake Christina: A record of regime shifts, land-use change, and management from a temperate shallow lake

    International Nuclear Information System (INIS)

    Theissen, Kevin M.; Hobbs, William O.; Hobbs, Joy M. Ramstack; Zimmer, Kyle D.; Domine, Leah M.; Cotner, James B.; Sugita, Shinya

    2012-01-01

    We collected two sediment cores and modern submerged aquatic plants and phytoplankton from two sub-basins of Lake Christina, a large shallow lake in west-central Minnesota, and used stable isotopic and elemental proxies from sedimentary organic matter to explore questions about the pre- and post-settlement ecology of the lake. The two morphologically distinct sub-basins vary in their sensitivities to internal and external perturbations offering different paleoecological information. The record from the shallower and much larger western sub-basin reflects its strong response to internal processes, while the smaller and deeper eastern sub-basin record primarily reflects external processes including important post-settlement land-use changes in the area. A significant increase in organic carbon accumulation (3–4 times pre-settlement rates) and long-term trends in δ 13 C, organic carbon to nitrogen ratios (C/N), and biogenic silica concentrations shows that primary production has increased and the lake has become increasingly phytoplankton-dominated in the post-settlement period. Significant shifts in δ 15 N values reflect land-clearing and agricultural practices in the region and support the idea that nutrient inputs have played an important role in triggering changes in the trophic status of the lake. Our examination of hydroclimatic data for the region over the last century suggests that natural forcings on lake ecology have diminished in their importance as human management of the lake increased in the mid-1900s. In the last 50 years, three chemical biomanipulations have temporarily shifted the lake from the turbid, algal-dominated condition into a desired clear water regime. Two of our proxies (δ 13 C and BSi) measured from the higher resolution eastern basin record responded significantly to these known regime shifts. -- Highlights: ► We explore the sediment geochemistry from Lake Christina's two distinct sub-basins. ► Our geochemical data show

  2. Assessment of biological effects of pollutants in a hyper eutrophic tropical water body, Lake Beira, Sri Lanka using multiple biomarker responses of resident fish, Nile tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Pathiratne, Asoka; Pathiratne, K A S; De Seram, P K C

    2010-08-01

    Biomarkers measured at the molecular and cellular level in fish have been proposed as sensitive "early warning" tools for biological effect measurements in environmental quality assessments. Lake Beira is a hypertrophic urban water body with a complex mixture of pollutants including polycyclic aromatic hydrocarbons (PAHs) and Microcystins. In this study, a suite of biomarker responses viz. biliary fluorescent aromatic compounds (FACs), hepatic ethoxyresorufin O-deethylase (EROD) and glutathione S-transferase (GST), brain and muscle cholinesterases (ChE), serum sorbitol dehydrogenase (SDH), and liver histology of Oreochromis niloticus, the dominant fish inhabiting this tropical Lake were evaluated to assess the pollution exposure and biological effects. Some fish sampled in the dry periods demonstrated prominent structural abnormalities in the liver and concomitant increase in serum SDH and reduction in hepatic GST activities in comparison to the control fish and the fish sampled in the rainy periods. The resident fish with apparently normal liver demonstrated induction of hepatic EROD and GST activities and increase in biliary FACs irrespective of the sampling period indicating bioavailability of PAHs. Muscle ChE activities of the resident fish were depressed significantly indicating exposure to anticholinesterase substances. The results revealed that fish populations residing in this Lake is under threat due to the pollution stress. Hepatic abnormalities in the fish may be mainly associated with the pollution stress due to recurrent exposure to PAHs and toxigenic Microcystis blooms in the Lake.

  3. Food-web studies in shallow eutrophic lakes by the Netherlands Institute of Ecology: Main results, knowledge gaps and new perspectives

    NARCIS (Netherlands)

    Vijverberg, J.; Gulati, R.D.; Mooij, W.M.

    1993-01-01

    For more than 20 years scientists of the ‘Food-chain studies’ Group of the former Limnological Institute have been studying interactions within the pelagic food web. Purpose of research was to explain the structure and dynamics of the zooplankton and fish communities in lakes and reservoirs in

  4. Dynamics of cyanobacterial bloom formation during short-term hydrodynamic fluctuation in a large shallow, eutrophic, and wind-exposed Lake Taihu, China.

    Science.gov (United States)

    Wu, Tingfeng; Qin, Boqiang; Zhu, Guangwei; Luo, Liancong; Ding, Yanqing; Bian, Geya

    2013-12-01

    Short-term hydrodynamic fluctuations caused by extreme weather events are expected to increase worldwide because of global climate change, and such fluctuations can strongly influence cyanobacterial blooms. In this study, the cyanobacterial bloom disappearance and reappearance in Lake Taihu, China, in response to short-term hydrodynamic fluctuations, was investigated by field sampling, long-term ecological records, high-frequency sensors and MODIS satellite images. The horizontal drift caused by the dominant easterly wind during the phytoplankton growth season was mainly responsible for cyanobacterial biomass accumulation in the western and northern regions of the lake and subsequent bloom formation over relatively long time scales. The cyanobacterial bloom changed slowly under calm or gentle wind conditions. In contrast, the short-term bloom events within a day were mainly caused by entrainment and disentrainment of cyanobacterial colonies by wind-induced hydrodynamics. Observation of a westerly event in Lake Taihu revealed that when the 30 min mean wind speed (flow speed) exceeded the threshold value of 6 m/s (5.7 cm/s), cyanobacteria in colonies were entrained by the wind-induced hydrodynamics. Subsequently, the vertical migration of cyanobacterial colonies was controlled by hydrodynamics, resulting in thorough mixing of algal biomass throughout the water depth and the eventual disappearance of surface blooms. Moreover, the intense mixing can also increase the chance for forming larger and more cyanobacterial colonies, namely, aggregation. Subsequently, when the hydrodynamics became weak, the cyanobacterial colonies continuously float upward without effective buoyancy regulation, and cause cyanobacterial bloom explosive expansion after the westerly. Furthermore, the results of this study indicate that the strong wind happening frequently during April and October can be an important cause of the formation and expansion of cyanobacterial blooms in Lake Taihu.

  5. MODIS observations of cyanobacterial risks in a eutrophic lake: Implications for long-term safety evaluation in drinking-water source.

    Science.gov (United States)

    Duan, Hongtao; Tao, Min; Loiselle, Steven Arthur; Zhao, Wei; Cao, Zhigang; Ma, Ronghua; Tang, Xiaoxian

    2017-10-01

    The occurrence and related risks from cyanobacterial blooms have increased world-wide over the past 40 years. Information on the abundance and distribution of cyanobacteria is fundamental to support risk assessment and management activities. In the present study, an approach based on Empirical Orthogonal Function (EOF) analysis was used to estimate the concentrations of chlorophyll a (Chla) and the cyanobacterial biomarker pigment phycocyanin (PC) using data from the MODerate resolution Imaging Spectroradiometer (MODIS) in Lake Chaohu (China's fifth largest freshwater lake). The approach was developed and tested using fourteen years (2000-2014) of MODIS images, which showed significant spatial and temporal variability of the PC:Chla ratio, an indicator of cyanobacterial dominance. The results had unbiased RMS uncertainties of MODIS Chla and PC products were then used for cyanobacterial risk mapping with a decision tree classification model. The resulting Water Quality Decision Matrix (WQDM) was designed to assist authorities in the identification of possible intake areas, as well as specific months when higher frequency monitoring and more intense water treatment would be required if the location of the present intake area remained the same. Remote sensing cyanobacterial risk mapping provides a new tool for reservoir and lake management programs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The Impact of Nutrient State and Lake Depth on Top-down Control in the Pelagic Zone of Lakes: A Study of 466 Lakes from the Temperate Zone to the Arctic

    DEFF Research Database (Denmark)

    Jeppesen, E.; Jensen, J. P.; Jensen, C.

    2003-01-01

    is unimodally related to TP and is highest in the most nutrient-rich and nutrient-poor lakes and generally higher in shallow than deep lakes, (b) the cascading effect of changes in predator control on phytoplankton decreases with increasing TP, and (c) these general patterns occur with significant variations......%, respectively, at all TP levels. Moreover, deep lakes (more than 6 m) had a higher percentage of Daphnia than shallow (less than 6 m) lakes. The median percentage of Daphnia peaked at 0.15 mg L-1 in shallow lakes and 0.09 mg L-1 in deep lakes. The assumption that fish are responsible for the unimodality...

  7. A comparison between benthic gillnet and bottom trawl for assessing fish assemblages in a shallow eutrophic lake near the Changjiang River estuary

    Science.gov (United States)

    Li, Yalei; Liu, Qigen; Chen, Liping; Zhao, Liangjie; Wu, Hao; Chen, Liqiao; Hu, Zhongjun

    2018-03-01

    Two fishing methods including gillnetting and trawling to estimate attributes of fish assemblage were compared in Dianshan Lake from August 2009 to July 2010. Species composition differed significantly between the gears, with four significant contributors in gillnet catches and one in trawl catches. Trawling collected more proportions of benthic species by number and biomass than gillnetting. Size distribution was significantly influenced by fishing technique; gillnetting captured relatively less small-sized fishes and trawling captured less large-sized individuals. Trawling produced species richness closer to the one expected than gillnetting. On the whole, trawl catch was a quadratic polynomial function of gillnet catch and a significantly negative correlation was found between them, both of which varied as different polynomial functions of temperature. However, trawl and gillnet catches were significantly correlated only in one of five month groups. It is concluded that single-gear-based surveys can be misleading in assessments of attributes of fish assemblages, bottom trawling is a more effective gear for assessing fish diversity than benthic gillnetting, and using gillnet catches as an indicator of fish density depends on fishing season in the lake.

  8. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations.

    Science.gov (United States)

    Jeppesen, Erik; Kronvang, Brian; Meerhoff, Mariana; Søndergaard, Martin; Hansen, Kristina M; Andersen, Hans E; Lauridsen, Torben L; Liboriussen, Lone; Beklioglu, Meryem; Ozen, Arda; Olesen, Jørgen E

    2009-01-01

    Climate change may have profound effects on phosphorus (P) transport in streams and on lake eutrophication. Phosphorus loading from land to streams is expected to increase in northern temperate coastal regions due to higher winter rainfall and to a decline in warm temperate and arid climates. Model results suggest a 3.3 to 16.5% increase within the next 100 yr in the P loading of Danish streams depending on soil type and region. In lakes, higher eutrophication can be expected, reinforced by temperature-mediated higher P release from the sediment. Furthermore, a shift in fish community structure toward small and abundant plankti-benthivorous fish enhances predator control of zooplankton, resulting in higher phytoplankton biomass. Data from Danish lakes indicate increased chlorophyll a and phytoplankton biomass, higher dominance of dinophytes and cyanobacteria (most notably of nitrogen fixing forms), but lower abundance of diatoms and chrysophytes, reduced size of copepods and cladocerans, and a tendency to reduced zooplankton biomass and zooplankton:phytoplankton biomass ratio when lakes warm. Higher P concentrations are also seen in warm arid lakes despite reduced external loading due to increased evapotranspiration and reduced inflow. Therefore, the critical loading for good ecological state in lakes has to be lowered in a future warmer climate. This calls for adaptation measures, which in the northern temperate zone should include improved P cycling in agriculture, reduced loading from point sources, and (re)-establishment of wetlands and riparian buffer zones. In the arid Southern Europe, restrictions on human use of water are also needed, not least on irrigation.

  9. Tissue distributions and seasonal dynamics of the hepatotoxic microcystins-LR and -RR in a freshwater snail (Bellamya aeruginosa) from a large shallow, eutrophic lake of the subtropical China

    International Nuclear Information System (INIS)

    Chen Jun; Xie Ping; Guo Longgen; Zheng Li; Ni Leyi

    2005-01-01

    Tissue distributions and seasonal dynamics of the hepatotoxic microcystins-LR and -RR in a freshwater snail (Bellamya aeruginosa) were studied monthly in a large shallow, eutrophic lake of the subtropical China during June-November, 2003. Microcystins (MCs) were quantitatively determined by High-Performance Liquid Chromatography (HPLC) with a qualitative analysis by a Finnigan LC-MS system. On the average of the study period, hepatopancreas was the highest in MC contents (mean 4.14 and range 1.06-7.42 μg g -1 DW), followed by digestive tracts (mean 1.69 and range 0.8-4.54 μg g -1 DW) and gonad (mean 0.715 and range 0-2.62 μg g -1 DW), whereas foot was the least (mean 0.01 and range 0-0.06 μg g -1 DW). There was a positive correlation in MC contents between digestive tracts and hepatopancreas. A constantly higher MC content in hepatopancreas than in digestive tracts indicates a substantial bioaccumulation of MCs in the hepatopancreas of the snail. The average ratio of MC-LR/MC-RR showed a steady increase from digestive tracts (0.44) to hepatopancreas (0.63) and to gonad (0.96), suggesting that MC-LR was more resistant to degradation in the snail. Since most MCs were present in the hepatopancreas, digestive tracts and gonad with only a very small amount in the edible foot, the risk to human health may not be significant if these toxic parts are removed prior to snail consumption. However, the possible transference of toxins along food chains should not be a negligible concern. - Snails bioaccumulate microcystins in their hepatopancreas, gut and gonad, posing a risk to human consumers

  10. Impact of toxic cyanobacteria on gastropods and microcystin accumulation in a eutrophic lake (Grand-Lieu, France) with special reference to Physa (= Physella) acuta

    International Nuclear Information System (INIS)

    Lance, Emilie; Brient, Luc; Carpentier, Alexandre; Acou, Anthony; Marion, Loic; Bormans, Myriam; Gerard, Claudia

    2010-01-01

    Hepatotoxic microcystins (MCs) produced by cyanobacteria are known to accumulate in gastropods following grazing of toxic cyanobacteria and/or absorption of MCs dissolved in water, with adverse effects on life history traits demonstrated in the laboratory. In the field, such effects may vary depending on species, according to their relative sensitivity and ecology. The aims of this study were to i) establish how various intensities of MC-producing cyanobacteria proliferations alter the structure of gastropod community and ii) compare MC tissue concentration in gastropods in the field with those obtained in our previous laboratory experiments on the prosobranch Potamopyrgus antipodarum and the pulmonate Lymnaea stagnalis. We explored these questions through a one-year field study at three stations at Grand-Lieu Lake (France) affected by different intensities of cyanobacteria proliferations. A survey of the community structure and MC content of both cyanobacteria and gastropods was associated with a caging experiment involving P. antipodarum and L. stagnalis. In total, 2592 gastropods belonging to 7 prosobranch and 16 pulmonate species were collected. However, distribution among the stations was unequal with 62% vs 2% of gastropods sampled respectively at the stations with the lowest vs highest concentrations of MC. Irrespective of the station, pulmonates were always more diverse, more abundant and occurred at higher frequencies than prosobranchs. Only the pulmonate Physa acuta occurred at all stations, with abundance and MC tissue concentration (≤ 4.32 μg g DW -1 ) depending on the degrees of MC-producing cyanobacteria proliferations in the stations; therefore, P. acuta is proposed as a potential sentinel species. The caging experiment demonstrated a higher MC accumulation in L. stagnalis (≤ 0.36 μg g DW -1 for 71% of individuals) than in P. antipodarum (≤ 0.02 μg g DW -1 for 12%), corroborating previous laboratory observations. Results are discussed in

  11. Presence of the Cyanotoxin Microcystin in Arctic Lakes of Southwestern Greenland

    Directory of Open Access Journals (Sweden)

    Jessica V. Trout-Haney

    2016-08-01

    Full Text Available Cyanobacteria and their toxins have received significant attention in eutrophic temperate and tropical systems where conspicuous blooms of certain planktonic taxa release toxins into fresh water, threatening its potability and safe use for recreation. Although toxigenic cyanobacteria are not confined to high nutrient environments, bloom-forming species, or planktonic taxa, these other situations are studied les often studied. For example, toxin production in picoplankton and benthic cyanobacteria—the predominant photoautotrophs found in polar lakes—is poorly understood. We quantified the occurrence of microcystin (MC, a hepatotoxic cyanotoxin across 18 Arctic lakes in southwestern Greenland. All of the focal lakes contained detectable levels of MC, with concentrations ranging from 5 ng·L−1 to >400 ng·L−1 during summer, 2013–2015. These concentrations are orders of magnitude lower than many eutrophic systems, yet the median lake MC concentration in Greenland (57 ng·L−1 was still 6.5 times higher than the median summer MC toxicity observed across 50 New Hampshire lakes between 1998 and 2008 (8.7 ng·L−1. The presence of cyanotoxins in these Greenlandic lakes demonstrates that high latitude lakes can support toxigenic cyanobacteria, and suggests that we may be underestimating the potential for these systems to develop high levels of cyanotoxins in the future.

  12. Calcium Carbonate Phosphate Binding Ion Exchange Filtration and Accelerated Denitrification Improve Public Health Standards and Combat Eutrophication in Aquatic Ecosystems

    OpenAIRE

    Yanamadala, Vijay

    2005-01-01

    Cultural eutrophication, the process by which a lake becomes rich in dissolved nutrients as a result of point and nonpoint pollutant sources, is a major cause of the loss of natural lake ecosystems throughout the world. The process occurs naturally in all lakes, but phosphate-rich nutrient runoff from sources such as storm drains and agricultural runoff is a major cause of excess phosphate-induced eutrophication. Especially in Madrona Marsh, one of the last remaining vernal marshes in the gre...

  13. Carbon flows in eutrophic Lake Rotsee: a

    NARCIS (Netherlands)

    Lammers, J.M.; Schubert, C. J.; Reichart, G.-J.

    2016-01-01

    The microbial segment of food webs playsa crucial role in lacustrine food-web functioning andcarbon transfer, thereby influencing carbon storageand CO2 emission and uptake in freshwater environments.Variability in microbial carbon processing(autotrophic and heterotrophic production and

  14. The influence of climate change to European Lakes, with a special emphasis in the Balkan Region

    International Nuclear Information System (INIS)

    Kuusisto, Esko

    2004-01-01

    There are almost one and half million lakes in Europe, if small water bodies with an area down to 0.001 km 2 are included. The total area of lakes is over 200.000 km 2 , in addition the man-made reservoirs cover almost 100.000 km 2 . The largest lakes are located in the zone extending from southwestern Sweden through Finland to Russia, but there are many important lakes also in central and southern Europe. The Balkan countries have altogether about ten thousand lakes with a total area of over 4000 km 2 and total volume of almost loo km 3 . Over half of the total volume is in Lake Ohrid, which ranks the seventh in Europe both as to the volume and as to the maximum depth. However, there are around thirty lakes in Europe with their surface area larger than that of Lake Ohrid. In addition to the lakes, the Balkan countries also have thousands of reservoirs with a total water storage capacity of over 50 km 3 . The response of European lakes to climate change can be discussed by dividing the lakes into five categories: 1) deep temperate lakes, 2) shallow temperate lakes, 3) mountain lakes, 4) boreal lakes and 5) arctic lakes. The lakes in the Balkan region fall belong into the first three categories. Most of the deep temperate lakes are warm monomictic; convective overturn occurs in winter or early spring. The future climate change may suppress this overturn, giving these lakes the classification of oligomictic. This implies the enhancement of anoxic bottom conditions and an increased risk of eutrophication. The oxygen conditions can also be expected to deteriorate due to increased bacterial activity in deep waters and superficial bottom sediment. In shallow temperate lakes, higher water temperatures in the future will induce intensified primary production and bacterial decomposition. The probability of harmful extreme events, e.g. the mass production of algae, will increase. The impacts may extend to fishing and recreational use. In lakes with relatively long water

  15. Induced calcite precipitation for the restoration of stratified hardwater lakes: The case of Lake Schmaler Luzin (North-East Germany); Induzierte Calcitfaellung zur Restaurierung eutropher Seen am Beispiel des Schmalen Luzins (Nord-Ost-Deutschland)

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, M.; Heiser, A.; Koschel, R. [Inst. fuer Gewaesseroekologie und Binnenfischerei, Neuglobsow (Germany). Abt. fuer Limnologie Geschichteter Seen

    1997-11-01

    Artificially induced calcite precipitation combined with deep water aeration has been tested as a possible technology for lake restoration. A pilot equipment for whole lake experiments has been developed for the restoration of the Lake Schmaler Luzin on the basis of enclosure experiments. The hypolimnetic calcite precipitation was induced by hypolimnetic addition of Ca(OH){sub 2}. In 1996 the first experiments were aimed at checking the conditions for artificially induced hypolimnetic calcite precipitation and their effectiveness on phosphorus elimination. 140 t Ca(OH){sub 2} and 416 000 m{sup 3} air were added in the hypolimnion during two cycles of these experiments, each lasting one month. This led to an increase of the pH value in the hypolimnion from 7.2 to 9.1, above the sediment (2-3 cm) from 7.2 to 8.2 and in the upper layers of sediments from 7.4 to 8.6. The chemical equilibrium was shifted towards the calcite and we observed hypolimnetic calcite precipitations. In 1996 the hypolimnetic aeration was performed with the aim of homogenisation of the hypolimnion. As expected the amount of added air was not enough to make the whole hypolimnion aerobic during the summer stagnation. The reduction of the total and dissolved phosphorus concentration in the hypolimnion and at the sediment-water interface in comparison to the values of the year before indicated the occurence of phosphorus coprecipitation with calcite. The concentration of the soluble reactive phosphorus above the sediment decreased from 0.31 mgl{sup -1} in 1995 (26.07.) to 0.04 mgl{sup -1} in 1996 (01.08.). (orig.) [Deutsch] Basirend auf den Ergebnissen von Enclosureversuchen wurde 1995/96 eine Pilotanlage zur Restaurierung geschichteter eutrophierter und kalkreicher Seen entwickelt. Die Pilotanlage kombiniert die hypolimnische Ca(OH){sub 2}-Zugabe mit einer Tiefenwasserbelueftung. Die Anlage hat 1996 ihren Betrieb aufgenommen und wird zur Restaurierung des ehemals oligotrophen, jetzt eutrophen

  16. Temper Tantrums

    Science.gov (United States)

    ... Nine Steps to More Effective Parenting How Can Parents Discipline Without Spanking? Delayed Speech or Language Development Talking to Your Child's Preschool Teacher Your Child's Habits Separation Anxiety Breath-Holding Spells Train Your Temper View ...

  17. Eutrophication Modeling Using Variable Chlorophyll Approach

    International Nuclear Information System (INIS)

    Abdolabadi, H.; Sarang, A.; Ardestani, M.; Mahjoobi, E.

    2016-01-01

    In this study, eutrophication was investigated in Lake Ontario to identify the interactions among effective drivers. The complexity of such phenomenon was modeled using a system dynamics approach based on a consideration of constant and variable stoichiometric ratios. The system dynamics approach is a powerful tool for developing object-oriented models to simulate complex phenomena that involve feedback effects. Utilizing stoichiometric ratios is a method for converting the concentrations of state variables. During the physical segmentation of the model, Lake Ontario was divided into two layers, i.e., the epilimnion and hypolimnion, and differential equations were developed for each layer. The model structure included 16 state variables related to phytoplankton, herbivorous zooplankton, carnivorous zooplankton, ammonium, nitrate, dissolved phosphorus, and particulate and dissolved carbon in the epilimnion and hypolimnion during a time horizon of one year. The results of several tests to verify the model, close to 1 Nash-Sutcliff coefficient (0.98), the data correlation coefficient (0.98), and lower standard errors (0.96), have indicated well-suited model’s efficiency. The results revealed that there were significant differences in the concentrations of the state variables in constant and variable stoichiometry simulations. Consequently, the consideration of variable stoichiometric ratios in algae and nutrient concentration simulations may be applied in future modeling studies to enhance the accuracy of the results and reduce the likelihood of inefficient control policies.

  18. Tempered fractional calculus

    Energy Technology Data Exchange (ETDEWEB)

    Sabzikar, Farzad, E-mail: sabzika2@stt.msu.edu [Department of Statistics and Probability, Michigan State University, East Lansing, MI 48823 (United States); Meerschaert, Mark M., E-mail: mcubed@stt.msu.edu [Department of Statistics and Probability, Michigan State University, East Lansing, MI 48823 (United States); Chen, Jinghua, E-mail: cjhdzdz@163.com [School of Sciences, Jimei University, Xiamen, Fujian, 361021 (China)

    2015-07-15

    Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.

  19. Tempered fractional calculus

    Science.gov (United States)

    Sabzikar, Farzad; Meerschaert, Mark M.; Chen, Jinghua

    2015-07-01

    Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.

  20. Tempered fractional calculus

    International Nuclear Information System (INIS)

    Sabzikar, Farzad; Meerschaert, Mark M.; Chen, Jinghua

    2015-01-01

    Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series

  1. Study of pollution in Rawal lake

    International Nuclear Information System (INIS)

    Ahmad, M.; Khan, M.I.A.; Nisar, M.; Kaleem, M.Y.

    1999-01-01

    It was intended to establish effects of pollution on quality of water of Rawal Lake, Islamabad. Six stations were located for collection of water. The data collected and analyzed so far indicated increasing pollution in the lake Increase in growth of hydrophytes in quite evident, leading towards process of eutrophication of the lake. (author)

  2. The vertical distribution of fish in the open water area of a deep temperate mesotrophic lake assessed by hydroacoustics and midwater trawling

    Czech Academy of Sciences Publication Activity Database

    Jůza, Tomáš; Frouzová, Jaroslava; Brämick, U.; Draštík, Vladislav; Mrkvička, Tomáš; Kubečka, Jan

    2012-01-01

    Roč. 97, č. 6 (2012), s. 509-525 ISSN 1434-2944 R&D Projects: GA AV ČR(CZ) IAA600960901 Institutional support: RVO:60077344 Keywords : smelt * vendace * trawling * hydroacoustics * Lake Werbellin Subject RIV: EH - Ecology, Behaviour Impact factor: 0.870, year: 2012

  3. Worldwide Eutrophication of Water Bodies: Causes, Concerns, Controls

    Science.gov (United States)

    Prepas, E. E.; Charette, T.

    2003-12-01

    depletion is one of the most harmful side effects of eutrophication because it can cause catastrophic fish kills, devastating local fisheries.The accumulation of plant biomass depends on the addition of factors that stimulate plant growth. On average, the macronutrients nitrogen and phosphorus are present in marine phytoplankton at an atomic ratio 16 : 1 (Redfield, 1958). The ratio of nitrogen to phosphorus in freshwaters tends to be greater than the ratio in phytoplankton; therefore, phosphorus most often limits the growth of phytoplankton. As a result, phosphorus enrichment of freshwater often causes its eutrophication ( Schindler, 1977). In lakes, nitrogen is usually present in concentrations equal to or beyond what is required for aquatic plant growth because, unlike phosphorus, it has an atmospheric source. In marine systems, nitrogen concentrations are often limiting because bacterial nitrogen fixation, while a considerable source of nitrogen in lakes, not as important in marine waters. A wide variety of prokaryotic organisms (i.e., certain cyanobacteria, heterotrophic, and chemoautotrophic bacteria) can use nitrogen gas directly and incorporate it into organic compounds through a process called nitrogen fixation. Nitrogen fixation is an enzyme-catalyzed process that reduces nitrogen gas (N2) to ammonia (NH3). Nitrogen-fixing cyanobacteria make up less than 1% of the total biomass of phytoplankton in estuaries of the Atlantic coast of North America, whereas in lakes they often make up more than 50% of phytoplankton biomass (reviewed in Howarth, 1988). An increase in water clarity can also spur the growth of aquatic vegetation in systems where the clarity of water is poor from high concentrations of suspended particles.The biodiversity of most aquatic systems decreases with eutrophication (Figure 1). Phytoplankton species diversity is reduced in highly productive systems. Cyanobacteria are usually dominant in eutrophic systems because these organisms are better adapted

  4. Laboratory assessment of bioleaching of shallow eutrophic sediment by immobilized photosynthetic bacteria.

    Science.gov (United States)

    Sun, Shiyong; Fan, Shenglan; Shen, Kexuan; Lin, Shen; Nie, Xiaoqin; Liu, Mingxue; Dong, Faqin; Li, Jian

    2017-10-01

    Eutrophic sediment is a serious problem in ecosystem restoration, especially in shallow lake ecosystems. We present a novel bioleaching approach to treat shallow eutrophic sediment with the objective of preventing the release of nitrate, phosphate, and organic compounds from the sediment to the water column, using porous mineral-immobilized photosynthetic bacteria (PSB). Bioactivity of bacteria was maintained during the immobilization process. Immobilized PSB beads were directly deposited on the sediment surface. The deposited PSB utilized pollutants diffused from the sediment as a nutritive matrix for growth. We evaluated the effects of light condition, temperature, initial pH, amount of PSB beads, and frequency of addition of PSB beads for contaminant removal efficiency during bioleaching operations. The presented study indicated that immobilized PSB beads using porous minerals as substrates have considerable application potential in bioremediation of shallow eutrophic lakes.

  5. Clearing lakes : an ecosystem approach to the restoration and management of shallow lakes in the Netherlands

    NARCIS (Netherlands)

    Hosper, H.

    1997-01-01

    In the 1950 s and 1960 s, most shallow lakes in the Netherlands shifted from macrophyte-dominated clear water lakes, towards algae-dominated turbid water lakes. Eutrophication, i.e. increased nutrient loading, is the main cause of the deterioration

  6. Mowing Submerged Macrophytes in Shallow Lakes with Alternative Stable States: Battling the Good Guys?

    Science.gov (United States)

    Kuiper, Jan J.; Verhofstad, Michiel J. J. M.; Louwers, Evelien L. M.; Bakker, Elisabeth S.; Brederveld, Robert J.; van Gerven, Luuk P. A.; Janssen, Annette B. G.; de Klein, Jeroen J. M.; Mooij, Wolf M.

    2017-04-01

    Submerged macrophytes play an important role in maintaining good water quality in shallow lakes. Yet extensive stands easily interfere with various services provided by these lakes, and harvesting is increasingly applied as a management measure. Because shallow lakes may possess alternative stable states over a wide range of environmental conditions, designing a successful mowing strategy is challenging, given the important role of macrophytes in stabilizing the clear water state. In this study, the integrated ecosystem model PCLake is used to explore the consequences of mowing, in terms of reducing nuisance and ecosystem stability, for a wide range of external nutrient loadings, mowing intensities and timings. Elodea is used as a model species. Additionally, we use PCLake to estimate how much phosphorus is removed with the harvested biomass, and evaluate the long-term effect of harvesting. Our model indicates that mowing can temporarily reduce nuisance caused by submerged plants in the first weeks after cutting, particularly when external nutrient loading is fairly low. The risk of instigating a regime shift can be tempered by mowing halfway the growing season when the resilience of the system is highest, as our model showed. Up to half of the phosphorus entering the system can potentially be removed along with the harvested biomass. As a result, prolonged mowing can prevent an oligo—to mesotrophic lake from becoming eutrophic to a certain extent, as our model shows that the critical nutrient loading, where the lake shifts to the turbid phytoplankton-dominated state, can be slightly increased.

  7. Predicting the effects of climate change on trophic status of three morphologically varying lakes: Implications for lake restoration and management

    DEFF Research Database (Denmark)

    Trolle, Dennis; Hamilton, David P.; Pilditch, Conrad A.

    2011-01-01

    To quantify the effects of a future climate on three morphologically different lakes that varied in trophic status from oligo-mesotrophic to highly eutrophic, we applied the one-dimensional lake ecosystem model DYRESM-CAEDYM to oligo-mesotrophic Lake Okareka, eutrophic Lake Rotoehu, both in the t....... Therefore, future climate effects should be taken into account in the long-term planning and implementation of lake management as strategies may need to be refined and adapted to preserve or improve the present-day lake water quality....

  8. Effect of coastal eutrophication on heavy metal bioaccumulation and oral bioavailability in the razor clam, Sinonovacula constricta

    International Nuclear Information System (INIS)

    Tu, Tengxiu; Li, Shunxing; Chen, Lihui; Zheng, Fengying; Huang, Xu-Guang

    2014-01-01

    Graphical abstract: - Highlights: • Razor clams are often exposed to coastal eutrophication. • The bioaccumulation of Fe, Ni, V, and As was promoted by eutrophication. • Bionic gastrointestinal tract was used for metal oral bioavailability assessment. • Eutrophication decreased oral bioavailability of Fe and Pb but enhanced for V. • The daily maximum allowable intakes are controlled by eutrophication levels. - Abstract: As traditional seafoods, the razor clams are widely distributed from tropical to temperate areas. Coastal razor clams are often exposed to eutrophication. Heavy metal contamination is critical for seafood safety. However, how eutrophication affects bioaccumulation and oral bioavailability of heavy metals in the razor clams is unknown. After a four-month field experimental cultivation, heavy metals (Fe, Cu, Ni, V, As, and Pb) could be bioaccumulated by the razor clams (Sinonovacula constricta) through exposure to metals present in water and sediments or in the food chain, and then transferred to human via consumption of razor clams. Bionic gastrointestinal digestion and monolayer liposome extraction are used for metal oral bioavailability (OBA) assessment. The influence of eutrophication on OBA is decreased for Fe and Pb and increased for V. A significant positive linear correlation was observed between the bioaccumulation factors of Fe, Ni, V, and As in razor clams and the coastal eutrophication. These results may be due to the effect of eutrophication on metal species transformation in coastal seawater and subcellular distribution in razor clams. The maximum allowable daily intakes of razor clams are controlled by eutrophication status and the concentration of affinity-liposome As in razor clams

  9. Effect of coastal eutrophication on heavy metal bioaccumulation and oral bioavailability in the razor clam, Sinonovacula constricta

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Tengxiu [College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000 (China); Li, Shunxing, E-mail: lishunxing@mnnu.edu.cn [College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000 (China); Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology (China); Chen, Lihui [College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000 (China); Zheng, Fengying; Huang, Xu-Guang [College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000 (China); Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology (China)

    2014-10-15

    Graphical abstract: - Highlights: • Razor clams are often exposed to coastal eutrophication. • The bioaccumulation of Fe, Ni, V, and As was promoted by eutrophication. • Bionic gastrointestinal tract was used for metal oral bioavailability assessment. • Eutrophication decreased oral bioavailability of Fe and Pb but enhanced for V. • The daily maximum allowable intakes are controlled by eutrophication levels. - Abstract: As traditional seafoods, the razor clams are widely distributed from tropical to temperate areas. Coastal razor clams are often exposed to eutrophication. Heavy metal contamination is critical for seafood safety. However, how eutrophication affects bioaccumulation and oral bioavailability of heavy metals in the razor clams is unknown. After a four-month field experimental cultivation, heavy metals (Fe, Cu, Ni, V, As, and Pb) could be bioaccumulated by the razor clams (Sinonovacula constricta) through exposure to metals present in water and sediments or in the food chain, and then transferred to human via consumption of razor clams. Bionic gastrointestinal digestion and monolayer liposome extraction are used for metal oral bioavailability (OBA) assessment. The influence of eutrophication on OBA is decreased for Fe and Pb and increased for V. A significant positive linear correlation was observed between the bioaccumulation factors of Fe, Ni, V, and As in razor clams and the coastal eutrophication. These results may be due to the effect of eutrophication on metal species transformation in coastal seawater and subcellular distribution in razor clams. The maximum allowable daily intakes of razor clams are controlled by eutrophication status and the concentration of affinity-liposome As in razor clams.

  10. A Comparison of Alternative Strategies for Cost-Effective Water Quality Management in Lakes

    Science.gov (United States)

    Daniel Boyd Kramer; Stephen Polasky; Anthony Starfield; Brian Palik; Lynn Westphal; Stephanie Snyder; Pamela Jakes; Rachel Hudson; Eric Gustafson

    2006-01-01

    Roughly 45% of the assessed lakes in the United States are impaired for one or more reasons. Eutrophication due to excess phosphorus loading is common in many impaired lakes. Various strategies are available to lake residents for addressing declining lake water quality, including septic system upgrades and establishing riparian buffers. This study examines 25 lakes to...

  11. The dynamics the quantitative changes of mycoflora in two lakes differing in trophicity (Poland. I.

    Directory of Open Access Journals (Sweden)

    Teresa Korniłłowicz

    2014-08-01

    Full Text Available It was demonstrated that the number of saprophytic fungi in the population of plankton in mesotrophic lake changing to eutrophic (Lake Piaseczno was mountained a similiar level (average values as in the eutrophic one (Lake Głębokie. The seasonal and annual changes in the number of fungi in the waters of the lake with lower trophicity were markedly stronger than those in the lake with higher trophicity. In the mesotrophic lake this was connected with the intensity of phytoplankton development. The greatest accumulation of fungi occured in the waters of littoral zone in both lakes and in the pelagial metha- and hypolimniun of the Lake Piaseczno.

  12. Bacterial diversity in the sediments of a temperate artificial lake, Rapel reservoir Diversidad bacteriana en sedimentos de un lago artificial temperado, embalse Rapel

    Directory of Open Access Journals (Sweden)

    CRISTINA DORADOR

    2007-06-01

    Full Text Available Rapel reservoir is an eutrophic system in Chile that has undergone a series of anthropogenic impacts in recent decades. To provide a better understanding of the processes occurring in the reservoir, we examined bacterial composition from surface sediments using traditional microbiology techniques and molecular biology tools. Our results showed significant temporal variation in the physical and chemical composition of the water column, but no depth-related differences during the study period. To detect temporal changes in bacterial composition, cultivable heterotrophic bacteria, heterotrophic iron oxidizing bacteria, and sulfate-reducing bacteria were extracted from the surface sediments and their concentration measured. Microbial diversity in sediments was represented by closest relatives of eight different bacterial phyla. The most frequently recovered phylotypes in the clone library of 16S rDNA were related to sulfate-reducing bacteria belong to the Deltaproteobacteria groupEl embalse Rapel es un sistema eutrófico en Chile que ha experimentado diversos impactos antropogénicos en las últimas décadas. Para conocer mejor los posibles procesos que ocurren en el embalse, la composición bacteriana fue estudiada en la zona superficial de los sedimentos utilizando técnicas microbiológicas tradicionales y herramientas de biología molecular. Nuestros resultados mostraron variación temporal significativa en la composición física y química del agua, no encontrándose diferencias de las variables medidas entre superficie y fondo en la columna de agua durante el período de estudio. Para detectar cambios temporales en la concentración y composición bacteriana, se midieron bacterias heterótrofas, heterótrofas oxidantes de fierro y bacterias reductoras de sulfato extraídas de la superficie de los sedimentos. La diversidad bacteriana en los sedimentos estuvo representada por 8 diferentes Phyla del dominio Bacteria. Los filotipos m

  13. Ecosystem-based management of coastal eutrophication

    DEFF Research Database (Denmark)

    Andersen, Jesper H.

    This thesis focuses on Ecosystem-Based Management (EBM) of coastal eutrophication. Special attention is put on connections between science and decision-making in regard to development, implementation and revision of evidence-based nutrient management strategies. Two strategies are presented...... and analysed: the Danish Action Plans on the Aquatic Environment and the eutrophication segment of the Baltic Sea Action Plan. Similarities and differences are discussed and elements required for making nutrient management strategies successful are suggested. Key words: Eutrophication, marine, Danish...

  14. Effects of eutrophication and temperature on submersed rooted plants

    DEFF Research Database (Denmark)

    Raun, Ane-Marie Løvendahl

    nutrient levels facilitate the formation of pelagic alga blooms which lead to poor light conditions (Nielsen et al., 2002). However, the lack of re‐colonization after reduced nutrient loading for Zostera marina and other seagrasses indicates that other factors influence the pattern. Sedimentation...... in combination with high temperature affect internal oxygen concentrations, growth and survival of aquatic macrophytes. Measurements of internal oxygen levels were made on several north temperate and tropical marine seagrass species exposed to a range of water column oxygen concentrations. The combined effects...... of eutrophication and temperatures were clarified for the temporal seagrass Zostera marina. Furthermore, the direct effect of sediment enrichment with labile organic matter was examined for four freshwater species with different growth strategies (isoetids: Lobelia dortmanna and Littorella uniflora, and elodeids...

  15. SWAT modeling of Critical Source Area for Runoff and Phosphorus losses: Lake Champlain Basin, VT

    Science.gov (United States)

    Lake Champlain, located between Vermont, New York, and Quebec, exhibits eutrophication due to continuing phosphorus (P) inputs mainly from upstream nonpoint source areas. To address the Lake's eutrophication problem and as part of total maximum daily load (TMDL) requirements, a state-level P reducti...

  16. Eutrophication management in surface waters using lanthanum modified bentonite

    DEFF Research Database (Denmark)

    Copetti, Diego; Finsterle, Karin; Marziali, Laura

    2016-01-01

    This paper reviews the scientific knowledge on the use of a lanthanum modified bentonite (LMB) to manage eutrophication in surface water. The LMB has been applied in around 200 environments worldwide and it has undergone extensive testing at laboratory, mesocosm, and whole lake scales. The availa......This paper reviews the scientific knowledge on the use of a lanthanum modified bentonite (LMB) to manage eutrophication in surface water. The LMB has been applied in around 200 environments worldwide and it has undergone extensive testing at laboratory, mesocosm, and whole lake scales....... The available data underline a high efficiency for phosphorus binding. This efficiency can be limited by the presence of humic substances and competing oxyanions. Lanthanum concentrations detected during a LMB application are generally below acute toxicological threshold of different organisms, except in low...... alkalinity waters. To date there are no indications for long-term negative effects on LMB treated ecosystems, but issues related to La accumulation, increase of suspended solids and drastic resources depletion still need to be explored, in particular for sediment dwelling organisms. Application of LMB...

  17. From Leaf Synthesis to Senescence: n-Alkyl Lipid Abundance and D/H Composition Among Plant Species in a Temperate Deciduous Forest at Brown's Lake Bog, Ohio, USA

    Science.gov (United States)

    Freimuth, E. J.; Diefendorf, A. F.; Lowell, T. V.

    2014-12-01

    The hydrogen isotope composition (D/H, δD) of terrestrial plant leaf waxes is a promising paleohydrology proxy because meteoric water (e.g., precipitation) is the primary hydrogen source for wax synthesis. However, secondary environmental and biological factors modify the net apparent fractionation between precipitation δD and leaf wax δD, limiting quantitative reconstruction of paleohydrology. These secondary factors include soil evaporation, leaf transpiration, biosynthetic fractionation, and the seasonal timing of lipid synthesis. Here, we investigate the influence of each of these factors on n-alkyl lipid δD in five dominant deciduous angiosperm tree species as well as shrubs, ferns and grasses in the watershed surrounding Brown's Lake Bog, Ohio, USA. We quantified n-alkane and n-alkanoic acid concentrations and δD in replicate individuals of each species at weekly to monthly intervals from March to October 2014 to assess inter- and intraspecific isotope variability throughout the growing season. We present soil, xylem and leaf water δD from each individual, and precipitation and atmospheric water vapor δD throughout the season to directly examine the relationship between source water and lipid isotope composition. These data allow us to assess the relative influence of soil evaporation and leaf transpiration among plant types, within species, and along a soil moisture gradient throughout the catchment. We use leaf water δD to approximate biosynthetic fractionation for each individual and test whether this is a species-specific and seasonal constant, and to evaluate variation among plant types with identical growth conditions. Our high frequency sampling approach provides new insights into the seasonal timing of n-alkane and n-alkanoic acid synthesis and subsequent fluctuations in concentration and δD in a temperate deciduous forest. These results will advance understanding of the magnitude and timing of secondary influences on the modern leaf wax

  18. Saltmarsh plant responses to eutrophication.

    Science.gov (United States)

    Johnson, David Samuel; Warren, R Scott; Deegan, Linda A; Mozdzer, Thomas J

    2016-12-01

    In saltmarsh plant communities, bottom-up pressure from nutrient enrichment is predicted to increase productivity, alter community structure, decrease biodiversity, and alter ecosystem functioning. Previous work supporting these predictions has been based largely on short-term, plot-level (e.g., 1-300 m 2 ) studies, which may miss landscape-level phenomena that drive ecosystem-level responses. We implemented an ecosystem-scale, nine-year nutrient experiment to examine how saltmarsh plants respond to simulated conditions of coastal eutrophication. Our study differed from previous saltmarsh enrichment studies in that we applied realistic concentrations of nitrate (70-100 μM NO 3 - ), the most common form of coastal nutrient enrichment, via tidal water at the ecosystem scale (~60,000 m 2 creeksheds). Our enrichments added a total of 1,700 kg N·creek -1 ·yr -1 , which increased N loading 10-fold vs. reference creeks (low-marsh, 171 g N·m -2 ·yr -1 ; high-marsh, 19 g N·m -2 ·yr -1 ). Nutrients increased the shoot mass and height of low marsh, tall Spartina alterniflora; however, declines in stem density resulted in no consistent increase in aboveground biomass. High-marsh plants S. patens and stunted S. alterniflora did not respond consistently to enrichment. Nutrient enrichment did not shift community structure, contrary to the prediction of nutrient-driven dominance of S. alterniflora and Distichlis spicata over S. patens. Our mild responses may differ from the results of previous studies for a number of reasons. First, the limited response of the high marsh may be explained by loading rates orders of magnitude lower than previous work. Low loading rates in the high marsh reflect infrequent inundation, arguing that inundation patterns must be considered when predicting responses to estuarine eutrophication. Additionally, we applied nitrate instead of the typically used ammonium, which is energetically favored over nitrate for plant uptake. Thus, the

  19. Natural and human induced trophic changes in European lowland lakes

    NARCIS (Netherlands)

    Kirilova, E.P.

    2009-01-01

    The European legislation (WFD) and the IPCC 2008 are both acknowledging the relevance of current and future problems with regard to water quality and quantity. Globally, many lakes are suffering from increased nutrient input (mainly phosphorus) leading to eutrophication. Eutrophication is

  20. The release of dissolved phosphorus from lake sediments

    NARCIS (Netherlands)

    Boers, P.C.M.

    1991-01-01

    Chapter 1. Introduction: Eutrophication is one of the world's major water quality problems. Attempts to alleviate eutrophication of lakes have involved the control of phosphorus loadings. In such cases, an internal loading of phosphorus from the sediments may

  1. Thinking outside of the Lake: Can controls on nutrient inputs into Lake Erie benefit stream conservation in its watershed?

    Science.gov (United States)

    Investment in agricultural conservation practices (CPs) to address Lake Erie's re-eutrophication may offer benefits that extend beyond the lake, such as improved habitat conditions for fish communities throughout the watershed. If such conditions are not explicitly considered in Lake Erie nutrient ...

  2. Phosphorus Loadings to the World's Largest Lakes: Sources and Trends

    Science.gov (United States)

    Fink, Gabriel; Alcamo, Joseph; Flörke, Martina; Reder, Klara

    2018-04-01

    Eutrophication is a major water quality issue in lakes worldwide and is principally caused by the loadings of phosphorus from catchment areas. It follows that to develop strategies to mitigate eutrophication, we must have a good understanding of the amount, sources, and trends of phosphorus pollution. This paper provides the first consistent and harmonious estimates of current phosphorus loadings to the world's largest 100 lakes, along with the sources of these loadings and their trends. These estimates provide a perspective on the extent of lake eutrophication worldwide, as well as potential input to the evaluation and management of eutrophication in these lakes. We take a modeling approach and apply the WorldQual model for these estimates. The advantage of this approach is that it allows us to fill in large gaps in observational data. From the analysis, we find that about 66 of the 100 lakes are located in developing countries and their catchments have a much larger average phosphorus yield than the lake catchments in developed countries (11.1 versus 0.7 kg TP km-2 year-1). Second, the main source of phosphorus to the examined lakes is inorganic fertilizer (47% of total). Third, between 2005-2010 and 1990-1994, phosphorus pollution increased at 50 out of 100 lakes. Sixty percent of lakes with increasing pollution are in developing countries. P pollution changed primarily due to changing P fertilizer use. In conclusion, we show that the risk of P-stimulated eutrophication is higher in developing countries.

  3. Aquatic macrophyte richness in Danish lakes in relation to alkalinity, transparency, and lake area

    DEFF Research Database (Denmark)

    Vestergaard, Ole Skafte; Sand-Jensen, Kaj

    2000-01-01

    We examined the relationship between environmental factors and the richness of submerged macrophytes species in 73 Danish lakes, which are mainly small, shallow, and have mesotrophic to hypertrophic conditions. We found that mean species richness per lake was only 4.5 in acid lakes of low...... alkalinity but 12.3 in lakes of high alkalinity due to a greater occurrence of the species-rich group of elodeids. Mean species richness per lake also increased significantly with increasing Secchi depth. No significant relationship between species richness and lake surface area was observed among the entire...... group of lakes or a subset of eutrophic lakes, as the growth of submerged macrophytes in large lakes may be restricted by wave action in shallow water and light restriction in deep water. In contrast, macrophyte species richness increased with lake surface area in transparent lakes, presumably due...

  4. The Need for Temperance

    Directory of Open Access Journals (Sweden)

    Karl Inge Tangen

    2015-11-01

    Full Text Available This article explores how temperance as a virtue relates to organizational leadership. The study begins with a short survey of classical Greek and Christian notions of temperance before proceeding to ex-plore temperance in relation to self-leadership, visionary and strategic leadership, and relational lead-ership. The final part of the article offers reflections on how temperance might be cultivated from a theological perspective. Temperance is understood not only as sound thinking but also as embodied self-control and active patience. On the level of self-leadership, it is argued that temperance enables the leader to establish forms of integrity that protect the leader’s self from chaos and destruction. Moreover, temperance may also nurture focused visionary leadership that accepts ethical limits and has an eye to the common good. The study also suggests that organizations should cultivate a culture of strategic discipline that is capable of realizing such visions. On the interpersonal level, temperance is viewed as critical in terms of enabling leaders to treat co-workers with respect and wisdom and han-dle conflict with consideration. Finally, is argued that that the cultivation of temperance is not a one-way street from the inside to the outside or a subordination of feelings to reason but rather a very complex process that includes interpersonal humility, finds vision in an encounter with the good, and yet remains a personal responsibility.

  5. Water reservoirs - aquatic ecosystems subject to eutrophication processes

    International Nuclear Information System (INIS)

    Ionita, Veronica

    1997-01-01

    The paper presents some aspects relating to eutrophication of Batca Doamnei and Reconstructia hydropower lakes situated near Piatra Neamt town. The presence of phosphorus salts in the two water reservoirs (ten times the admissible content) is responsible for excessive growth of plants. In Reconstructia lake the diversity of species is also explained by the existence of large amounts of nitrogen salts. The general characteristic of aquatic macrophyte is the resistance to large variations of environmental factors (water level, currents, temperature, turbidity, organic material content), adaptation to water pollution conditions and development of adverse condition resistant forms. Besides Cladophora, a harmful species in fishing waters when growing excessively, others species are favorable to aquatic life and help to the consolidation of complex lake biocenoses, providing support, food and habitation for many small animal species which also favor other species economically valuable. The aquatic macrophytes are true biological filters which maintain the natural auto-purging potential of the waters. Taking into consideration these facts, the direct and indirect effects of plant destruction on the whole ecosystem should be carefully analyzed

  6. Surface microlayers on temperate lowland lakes

    DEFF Research Database (Denmark)

    Båstrup-Spohr, Lars; Stæhr, Peter Anton

    2009-01-01

    . Enrichment factors of several compounds were higher at low bulk water concentrations, suggesting that atmospheric deposition then contributed relatively more to concentrations in the SML. Increasing temperature significantly decreased SML enrichment of TOC (total organic carbon), related to changes in TOC...

  7. The Potential Impacts of Climate Change Factors on Freshwater Eutrophication: Implications for Research and Countermeasures of Water Management in China

    Directory of Open Access Journals (Sweden)

    Rui Xia

    2016-03-01

    Full Text Available Water eutrophication has become one of the most serious aquatic environmental problems around the world. More and more research has indicated climate change as a major natural factor that will lead to the acceleration of eutrophication in rivers and lakes. However, understanding the mechanism of climate change’s effect on water eutrophication is difficult due to the uncertainties caused by its complex, non-linear process. There is considerable uncertainty about the magnitude of future temperature changes, and how these will drive eutrophication in water bodies at regional scales under the effect of human activities. This review collects the existing international and domestic literature from the last 10 years, discussing the most sensitive factors of climate change (i.e., temperature, precipitation, wind, and solar radiation and analyzing their interaction with water eutrophication. Case studies of serious eutrophication and algal bloom problems in China are discussed to further demonstrate the conclusion. Finally, adaptation countermeasures and related implications are proposed in order to foster the development of sustainability strategies for water management in China.

  8. Trophic diversity of Poznań Lakeland lakes

    Directory of Open Access Journals (Sweden)

    Dzieszko Piotr

    2015-06-01

    Full Text Available The main goal of the presented work is to determine the current trophic state of 31 lakes located in Poznań Lakeland. These lakes are included in the lake monitoring programme executed by the Voivodship Environmental Protection Inspectorate in Poznań. The place in the trophic classification for investigated lakes was determined as well as the relationships between their trophic state indices. The trophic state of investigated lakes in the research area is poor. More than a half of the investigated lakes are eutrophic. Depending on the factor that is taken into account the trophic state of investigated lakes differs radically.

  9. Our evolving conceptual model of the coastal eutrophication problem

    Science.gov (United States)

    Cloern, James E.

    2001-01-01

    A primary focus of coastal science during the past 3 decades has been the question: How does anthropogenic nutrient enrichment cause change in the structure or function of nearshore coastal ecosystems? This theme of environmental science is recent, so our conceptual model of the coastal eutrophication problem continues to change rapidly. In this review, I suggest that the early (Phase I) conceptual model was strongly influenced by limnologists, who began intense study of lake eutrophication by the 1960s. The Phase I model emphasized changing nutrient input as a signal, and responses to that signal as increased phytoplankton biomass and primary production, decomposition of phytoplankton-derived organic matter, and enhanced depletion of oxygen from bottom waters. Coastal research in recent decades has identified key differences in the responses of lakes and coastal-estuarine ecosystems to nutrient enrichment. The contemporary (Phase II) conceptual model reflects those differences and includes explicit recognition of (1) system-specific attributes that act as a filter to modulate the responses to enrichment (leading to large differences among estuarine-coastal systems in their sensitivity to nutrient enrichment); and (2) a complex suite of direct and indirect responses including linked changes in: water transparency, distribution of vascular plants and biomass of macroalgae, sediment biogeochemistry and nutrient cycling, nutrient ratios and their regulation of phytoplankton community composition, frequency of toxic/harmful algal blooms, habitat quality for metazoans, reproduction/growth/survival of pelagic and benthic invertebrates, and subtle changes such as shifts in the seasonality of ecosystem functions. Each aspect of the Phase II model is illustrated here with examples from coastal ecosystems around the world. In the last section of this review I present one vision of the next (Phase III) stage in the evolution of our conceptual model, organized around 5

  10. Dams release methane even in temperate zoned

    International Nuclear Information System (INIS)

    Lemarchand, F.

    2010-01-01

    The Wohlen lake (near Bern) is a retaining dam built 90 years ago that has undergone a campaign to measure the quantity of methane released. The campaign lasted 1 year and the result was unexpected: 0.15 g/m 2 *day which one of the highest release rates in temperate zones. This result is all the more stunning since water stays only 2 days in average in the reservoir and that the drowned area is not important. In fact the river Aar that feeds the lake is loaded with organic matter coming from humane activities: agriculture and 3 sewage plants. This organic matter decays in the lake releasing methane. (A.C.)

  11. Mercury biomagnification in three geothermally-influenced lakes differing in chemistry and algal biomass

    International Nuclear Information System (INIS)

    Verburg, Piet; Hickey, Christopher W.; Phillips, Ngaire

    2014-01-01

    Accumulation of Hg in aquatic organisms is influenced not only by the contaminant load but also by various environmental variables. We compared biomagnification of Hg in aquatic organisms, i.e., the rate at which Hg accumulates with increasing trophic position, in three lakes differing in trophic state. Total Hg (THg) concentrations in food webs were compared in an oligotrophic, a mesotrophic and a eutrophic lake with naturally elevated levels of Hg associated with geothermal water inputs. We explored relationships of physico-chemistry attributes of lakes with Hg concentrations in fish and biomagnification in the food web. Trophic positions of biota and food chain length were distinguished by stable isotope 15 N. As expected, THg in phytoplankton decreased with increasing eutrophication, suggesting the effect of biomass dilution. In contrast, THg biomagnification and THg concentrations in trout were controlled by environmental physico-chemistry and were highest in the eutrophic lake. In the more eutrophic lake frequent anoxia occurred, resulting in favorable conditions for Hg transfer into and up the food chain. The average concentration of THg in the top predator (rainbow trout) exceeded the maximum recommended level for consumption by up to 440%. While there were differences between lakes in food chain length between plankton and trout, THg concentration in trout did not increase with food chain length, suggesting other factors were more important. Differences between the lakes in biomagnification and THg concentration in trout correlated as expected from previous studies with eight physicochemical variables, resulting in enhanced biomagnification of THg in the eutrophic lake. - Highlights: • Relationships between Hg biomagnification and 11 variables in 3 lakes. • Hg in trout too high for consumption in two geothermally-influenced lakes. • Hg biomagnification was highest in the most eutrophic lake. • First study to compare Hg biomagnification in lakes

  12. Mercury biomagnification in three geothermally-influenced lakes differing in chemistry and algal biomass

    Energy Technology Data Exchange (ETDEWEB)

    Verburg, Piet, E-mail: piet.verburg@niwa.co.nz; Hickey, Christopher W.; Phillips, Ngaire

    2014-09-15

    Accumulation of Hg in aquatic organisms is influenced not only by the contaminant load but also by various environmental variables. We compared biomagnification of Hg in aquatic organisms, i.e., the rate at which Hg accumulates with increasing trophic position, in three lakes differing in trophic state. Total Hg (THg) concentrations in food webs were compared in an oligotrophic, a mesotrophic and a eutrophic lake with naturally elevated levels of Hg associated with geothermal water inputs. We explored relationships of physico-chemistry attributes of lakes with Hg concentrations in fish and biomagnification in the food web. Trophic positions of biota and food chain length were distinguished by stable isotope {sup 15}N. As expected, THg in phytoplankton decreased with increasing eutrophication, suggesting the effect of biomass dilution. In contrast, THg biomagnification and THg concentrations in trout were controlled by environmental physico-chemistry and were highest in the eutrophic lake. In the more eutrophic lake frequent anoxia occurred, resulting in favorable conditions for Hg transfer into and up the food chain. The average concentration of THg in the top predator (rainbow trout) exceeded the maximum recommended level for consumption by up to 440%. While there were differences between lakes in food chain length between plankton and trout, THg concentration in trout did not increase with food chain length, suggesting other factors were more important. Differences between the lakes in biomagnification and THg concentration in trout correlated as expected from previous studies with eight physicochemical variables, resulting in enhanced biomagnification of THg in the eutrophic lake. - Highlights: • Relationships between Hg biomagnification and 11 variables in 3 lakes. • Hg in trout too high for consumption in two geothermally-influenced lakes. • Hg biomagnification was highest in the most eutrophic lake. • First study to compare Hg biomagnification in

  13. Tempered fractional time series model for turbulence in geophysical flows

    Science.gov (United States)

    Meerschaert, Mark M.; Sabzikar, Farzad; Phanikumar, Mantha S.; Zeleke, Aklilu

    2014-09-01

    We propose a new time series model for velocity data in turbulent flows. The new model employs tempered fractional calculus to extend the classical 5/3 spectral model of Kolmogorov. Application to wind speed and water velocity in a large lake are presented, to demonstrate the practical utility of the model.

  14. Tempered fractional time series model for turbulence in geophysical flows

    International Nuclear Information System (INIS)

    Meerschaert, Mark M; Sabzikar, Farzad; Phanikumar, Mantha S; Zeleke, Aklilu

    2014-01-01

    We propose a new time series model for velocity data in turbulent flows. The new model employs tempered fractional calculus to extend the classical 5/3 spectral model of Kolmogorov. Application to wind speed and water velocity in a large lake are presented, to demonstrate the practical utility of the model. (paper)

  15. Eutrophication in aquatic ecosystems: a scientometric study

    Directory of Open Access Journals (Sweden)

    Jéssica Alves da Costa

    2018-03-01

    Full Text Available Abstract Aim: Reveal the direction for future studies about eutrophication, or even reveal the preoccupation among the scientific community about this environmental problem. With a systematic synthesis of eutrophication studies, scientists may be able to understand the state of the literature on aquatic ecosystems around the world. This study intends to identify the main factors used to control algal blooms and the eutrophication process, the countries and environments which have more research about this theme or even identify the articles’ subjects in different periods (e.g.: Experimental, theoretic, monitoring, conservation. Methods We analyzed all studies published in the Thomson ISI Web of Science on both eutrophication and phytoplankton between 2001 and 2016. Results During the period analyzed, we observed an increase in concern about this subject. Authors from institutions in the USA and China wrote most of the studies. The most important geographic and socioeconomic aspects to determine the publication number were total area and HDI respectively. However, the main determinant for the publication about this subject was international collaboration. Some of the most actual themes in ecology and conservation (e.g.: functional groups, climate change, experiment, perdition models, regional scales, invasive species were addressed in the studies analysed. Invasive species such as Tilapia and Cylindrospermopsis raciborskii were the most cited species on these keywords. Conclusion Despite the current issues addressed in the studies on phytoplankton and eutrophication, some subjects, such as climate change or spatial pattern, were only common in years more recent. Even though studies focusing in functional diversity are highly relevant for conservation, they were not common in any year studied. The major determinant factor related to the increasing in eutrophication knowledge was the international collaboration

  16. Confidence rating of marine eutrophication assessments

    DEFF Research Database (Denmark)

    Murray, Ciarán; Andersen, Jesper Harbo; Kaartokallio, Hermanni

    2011-01-01

    of the 'value' of the indicators on which the primary assessment is made. Such secondary assessment of confidence represents a first step towards linking status classification with information regarding their accuracy and precision and ultimately a tool for improving or targeting actions to improve the health......This report presents the development of a methodology for assessing confidence in eutrophication status classifications. The method can be considered as a secondary assessment, supporting the primary assessment of eutrophication status. The confidence assessment is based on a transparent scoring...

  17. Investigation of environmental change on the Tega Lake based on lake sediment analysis. Pt. 2. Dating of sediment by the lead-210/cesium-137 method and environmental change detected by the diatom assemblage analysis

    International Nuclear Information System (INIS)

    Hamada, Takaomi

    1998-01-01

    Sediment collected in the Tega Lake was dated by lead-210/cesium-137 method and environmental change in the Tega Lake was investigated by analysis of diatom remain assemblages in the sediment. Dating of the lead-210/cesium-137 method proved that the surface 30 cm-thickness of sediment in the Tega Lake was deposited during the recent 50 years. Diatom remain assemblage change in the Hon-Tega Lake sediment started in the early half of 1960's and the changes is characterized decrease of Fragilaria construens, that does not prefer to inhabit eutrophic water, and increase of Cyclotella meneghiniana that prefers to inhabit eutrophic water. This diatom assemblage change indicates that the Tega Lake was eutrophicated, and probably suggests water pollution in the Tega Lake. It is detected that influence of residential development around the Tega Lake and reclaiming by drainage on the Tega Lake. (author)

  18. Interannual and long-term changes in the trophic state of a multibasin lake: Effects of morphology, climate, winter aeration, and beaver activity

    Science.gov (United States)

    Robertson, Dale M.; Rose, William; Reneau, Paul C.

    2016-01-01

    Little St. Germain Lake (LSG), a relatively pristine multibasin lake in Wisconsin, USA, was examined to determine how morphologic (internal), climatic (external), anthropogenic (winter aeration), and natural (beaver activity) factors affect the trophic state (phosphorus, P; chlorophyll, CHL; and Secchi depth, SD) of each of its basins. Basins intercepting the main flow and external P sources had highest P and CHL and shallowest SD. Internal loading in shallow, polymictic basins caused P and CHL to increase and SD to decrease as summer progressed. Winter aeration used to eliminate winterkill increased summer internal P loading and decreased water quality, while reductions in upstream beaver impoundments had little effect on water quality. Variations in air temperature and precipitation affected each basin differently. Warmer air temperatures increased productivity throughout the lake and decreased clarity in less eutrophic basins. Increased precipitation increased P in the basins intercepting the main flow but had little effect on the isolated deep West Bay. These relations are used to project effects of future climatic changes on LSG and other temperate lakes.

  19. Eutrophication and warming boost cyanobacterial biomass and microcystins

    NARCIS (Netherlands)

    Lurling, Miguel; Oosterhout, Jean; Faassen, Els

    2017-01-01

    Eutrophication and warming are key drivers of cyanobacterial blooms, but their combined effects on microcystin (MC) concentrations are less studied. We tested the hypothesis that warming promotes cyanobacterial abundance in a natural plankton community and that eutrophication enhances cyanobacterial

  20. Adaptive responses to environmental changes in Lake Victoria cichlids

    NARCIS (Netherlands)

    Rijssel, Jacobus Cornelis van (Jacco)

    2014-01-01

    Lake Victoria cichlids show the fastest vertebrate adaptive radiation known which is why they function as a model organism to study evolution. In the past 40 years, Lake Victoria experienced severe environmental changes including the boom of the introduced, predatory Nile perch and eutrophication.

  1. Geo-Engineering in Lakes: A Crisis of Confidence?

    NARCIS (Netherlands)

    Spears, B.M.; Maberly, S.C.; Pan, G.; Mackay, E.; Lurling, M.F.L.L.W.

    2014-01-01

    The effective management of lakes suffering from eutrophication is confounded by a mosaic of interactions and feedbacks that are difficult to manipulate. For example, in lake processes can delay the relinquishment of legacy phosphorus (P) manifested within bed sediments for decades, even after

  2. Microplastic pollution in lakes and lake shoreline sediments - A case study on Lake Bolsena and Lake Chiusi (central Italy).

    Science.gov (United States)

    Fischer, Elke Kerstin; Paglialonga, Lisa; Czech, Elisa; Tamminga, Matthias

    2016-06-01

    Rivers and effluents have been identified as major pathways for microplastics of terrestrial sources. Moreover, lakes of different dimensions and even in remote locations contain microplastics in striking abundances. This study investigates concentrations of microplastic particles at two lakes in central Italy (Lake Bolsena, Lake Chiusi). A total number of six Manta Trawls have been carried out, two of them one day after heavy winds occurred on Lake Bolsena showing effects on particle distribution of fragments and fibers of varying size categories. Additionally, 36 sediment samples from lakeshores were analyzed for microplastic content. In the surface waters 2.68 to 3.36 particles/m(3) (Lake Chiusi) and 0.82 to 4.42 particles/m(3) (Lake Bolsena) were detected, respectively. Main differences between the lakes are attributed to lake characteristics such as surface and catchment area, depth and the presence of local wind patterns and tide range at Lake Bolsena. An event of heavy winds and moderate rainfall prior to one sampling led to an increase of concentrations at Lake Bolsena which is most probable related to lateral land-based and sewage effluent inputs. The abundances of microplastic particles in sediments vary from mean values of 112 (Lake Bolsena) to 234 particles/kg dry weight (Lake Chiusi). Lake Chiusi results reveal elevated fiber concentrations compared to those of Lake Bolsena what might be a result of higher organic content and a shift in grain size distribution towards the silt and clay fraction at the shallow and highly eutrophic Lake Chiusi. The distribution of particles along different beach levels revealed no significant differences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. MODELING WAVE-INDUCED ENTRAINMENT OF MUD IN NEWNANS LAKE, FLORIDA

    Science.gov (United States)

    Many shallow lakes in the southeastern US are eutrophic, and as such, the water quality in these lakes is of concern to state and federal environmental regulatory agencies. Some of these lakes have been classified as impaired with one or more nutrients being the stressor. For the...

  4. Algae, phytoplankton and eutrophication research and management ...

    African Journals Online (AJOL)

    The role of algal and phytoplankton research and the focus shift to cyanobacteria, because of eutrophication in South African aquatic systems, are highlighted, which indicates the different modelling and management methods that have been used and tested. Recommendations are made for future research. Keywords: ...

  5. Plankton dynamics and photosynthesis responses in a eutrophic lake in Patagonia (Argentina: influence of grazer abundance and UVR Dinámica del plancton y respuestas fotosintéticas en una laguna eutrófica de Patagonia (Argentina: influencia de la abundancia de herbívoros y RUV

    Directory of Open Access Journals (Sweden)

    Rodrigo J Gonçalves

    2011-01-01

    Full Text Available A natural plankton population from the eutrophic lake Cacique Chiquichano, in the Argentine Patagonia, was monitored for one year to evaluate changes in photosynthetic parameters as a result of exposure to ultraviolet radiation (UVR, 280-400 nm, grazer abundance, and the taxonomic composition of the phytoplankton community. Both physical (temperature, solar radiation and biological (grazers, taxonomic composition, photosynthetic parameters variables fluctuated throughout the study. Crustacean zooplankton showed alternating dominance between cladocerans (Daphnia spinulata and copepods (Metacyclops mendocinus. The phytoplankton community underwent concomitant changes throughout the year, with cyanobacteria and diatoms alternately dominating. In addition, although copepod abundance was not significantly related to changes in phytoplankton, the presence of D. spinulata was significant during periods of more transparent water; these periods were dominated by diatoms. On the other hand, cyanobacteria dominated the phytoplankton assemblage when the penetration of solar radiation into the water column was lower. Photosynthetic inhibition due to UVR decreased during the diatom-dominated periods. In contrast, inhibition increased along with the proportion of cyanobacteria, likely as a result of acclimation to low irradiance during the lake's phase of lower transparency. Moreover, the presence of D. spinulata was associated with the increased penetration of solar radiation into the water column, resulting in an indirect increment in the inhibition of cyanobacteria photosynthesis. The results suggest that both solar radiation and grazing abundance strongly influence the dynamics and photosynthetic activity of the phytoplankton in Lake Cacique Chiquichano.Se estudió a lo largo del año una comunidad planctónica natural de la laguna eutrófica Cacique Chiquichano de Patagonia-Argentina, para evaluar los cambios en parámetros fotosintéticos como resultados

  6. Approaches for integrated assessment of ecological and eutrophication status of surface waters in Nordic Countries

    DEFF Research Database (Denmark)

    Andersen, Jesper H.; Aroviita, Jukka; Carstensen, Jacob

    2016-01-01

    We review approaches and tools currently used in Nordic countries (Denmark, Finland, Norway and Sweden) for integrated assessment of ‘ecological status’ sensu the EU Water Framework Directive as well as assessment of ‘eutrophication status’ in coastal and marine waters. Integration principles for...... principles applied within BQEs are critical and in need of harmonisation if we want a better understanding of potential transition in ecological status between surface water types, e.g. when riverine water enters a downstream lake or coastal water body.......We review approaches and tools currently used in Nordic countries (Denmark, Finland, Norway and Sweden) for integrated assessment of ‘ecological status’ sensu the EU Water Framework Directive as well as assessment of ‘eutrophication status’ in coastal and marine waters. Integration principles...

  7. Diatoms in Liyu Lake, Eastern Taiwan

    Directory of Open Access Journals (Sweden)

    Liang-Chi Wang

    2010-09-01

    Full Text Available This study described the diatoms appeared in the sediments of Liyu Lake, a lowland natural lake situated at Hualen, eastern Taiwan. A total of 50 species was found in the sediments of this eutrophic lake. In them, 8 species were reported for the first time in Taiwan. They are: Cymbella thienemannii, Navicula absoluta, Navicula bacillum, Frustulia rhomboides var. crassinervia, Gyrosigma procerum, Nitzschia paleacea Epithemia smithii and Eunotia subarcuatioides. The ultrastructures of each species were described on the basis of observations under a scanning electron microscope. The ecological implications of the occurrence of these diatom species in this lake were inferred.

  8. Lake trout rehabilitation in Lake Erie: a case history

    Science.gov (United States)

    Cornelius, Floyd C.; Muth, Kenneth M.; Kenyon, Roger

    1995-01-01

    Native lake trout (Salvelinus namaycush) once thrived in the deep waters of eastern Lake Erie. The impact of nearly 70 years of unregulated exploitation and over 100 years of progressively severe cultural eutrophication resulted in the elimination of lake trout stocks by 1950. Early attempts to restore lake trout by stocking were unsuccessful in establishing a self-sustaining population. In the early 1980s, New York's Department of Environmental Conservation, Pennsylvania's Fish and Boat Commission, and the U.S. Fish and Wildlife Service entered into a cooperative program to rehabilitate lake trout in the eastern basin of Lake Erie. After 11 years of stocking selected strains of lake trout in U.S. waters, followed by effective sea lamprey control, lake trout appear to be successfully recolonizing their native habitat. Adult stocks have built up significantly and are expanding their range in the lake. Preliminary investigations suggest that lake trout reproductive habitat is still adequate for natural reproduction, but natural recruitment has not been documented. Future assessments will be directed toward evaluation of spawning success and tracking age-class cohorts as they move through the fishery.

  9. Monitoring and predicting eutrophication of Sri Lankan inland waters using ASTER satellite data

    Science.gov (United States)

    Dahanayaka, D. D. G. L.; Wijeyaratne, M. J. S.; Tonooka, H.; Minato, A.; Ozawa, S.; Perera, B. D. C.

    2014-10-01

    This study focused on determining the past changes and predicting the future trends in eutrophication of the Bolgoda North lake, Sri Lanka using in situ Chlorophyll-a (Chl-a) measurements and Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) satellite data. This Lake is located in a mixed land use area with industries, some agricultural lands, middle income and high income housing, tourist hotels and low income housing. From March to October 2013, water samples from five sampling sites were collected once a month parallel to ASTER overpass and Chl-a, nitrate and phosphate contents of each sample were measured using standard laboratory methods. Cloud-free ASTER scenes over the lake during the 2000-2013 periods were acquired for Chl-a estimation and trend analysis. All ASTER images were atmospherically corrected using FLAASH software and in-situ Chl-a data were regressed with atmospherically corrected three ASTER VNIR band ratios of the same date. The regression equation of the band ratio and Chl-a content with the highest correlation, which was the green/red band ratio was used to develop algorithm for generation of 15-m resolution Chl-a distribution maps. According to the ASTER based Chl-a distribution maps it was evident that eutrophication of this lake has gradually increased from 2008-2011. Results also indicated that there had been significantly high eutrophic conditions throughout the year 2013 in several regions, especially in water stagnant areas and adjacent to freshwater outlets. Field observations showed that this lake is receiving various discharges from factories. Unplanned urbanization and inadequacy of proper facilities in the nearby industries for waste management have resulted in the eutrophication of the water body. If the present trends of waste disposal and unplanned urbanization continue, enormous environmental problems would be resulted in future. Results of the present study showed that information from satellite remote

  10. Toxic cyanobacteria in the lakes located in R- lga (the capital of ...

    African Journals Online (AJOL)

    the capital of Latvia) were investigated between 1998 and 2004. These lakes are shallow eutrophic water bodies with a high surface to depth ratio and are widely used for recreational and fishing activities. Intense cyanobacterial blooms were ...

  11. Determinants of biodiversity in subtropical shallow lakes (Atlantic coast, Uruguay)

    NARCIS (Netherlands)

    Kruk, C.; Rodriguez-Gallego, L.; Meerhoff, M.; Quintans, F.; Lacerot, G.; Mazzeo, N.; Scasso, F.; Paggi, J.C.; Peeters, E.; Marten, S.

    2009-01-01

    P> Shallow lakes and ponds contribute disproportionally to species richness relative to other aquatic ecosystems. In-lake conditions (e.g. presence of submerged plants) seem to play a key role in determining diversity, as has been demonstrated for temperate lakes. When water quality deteriorates

  12. Collaborative Understanding of Cyanobacteria in Lake Ecosystems

    Science.gov (United States)

    Greer, Meredith L.; Ewing, Holly A.; Cottingham, Kathryn L.; Weathers, Kathleen C.

    2013-01-01

    We describe a collaboration between mathematicians and ecologists studying the cyanobacterium "Gloeotrichia echinulata" and its possible role in eutrophication of New England lakes. The mathematics includes compartmental modeling, differential equations, difference equations, and testing models against high-frequency data. The ecology…

  13. Optimum operation of restoration techniques for eutrophic water bodies

    Science.gov (United States)

    Hagen, N. M.; Kleeberg, H.-B.

    1994-05-01

    Operating rules have been applied in water resources management for a long time in order to control and supply a required quantity (volume) of water. The operating rules have to guarantee the optimum management of the reservoir(s). The quality of the stored water has been satisfactory for the desired utilization up to the sixties. Due to the deterioration of reservoir water quality through human impacts, however, increased attention had to be paid since. Eutrophication of stagnant waters is still an unsolved problem. Through means of various restoration techniques, i.e., dilution/flushing or hypolimnetic withdrawal, the quality of the stored water can be improved. Continuous operation or appropriate time or depth variant operating rules are required to achieve this goal. The paper presents such rules for long-term operation. They have been established for the first time and can he represented in two or three-dimensional graphs depending on the number of included components (e.g., actual water storage and quality). The ‘quality operating rules’ take into account the dynamics of the processes in aquatic ecosystems. Simplifications with regard to application and acceptance (e.g., clarity) are developed and tested. The general validity and efficiency of the operating rules have been proved in a case study (a multi-purpose reservoir) and a fictitious lake.

  14. Biodiesel production from sediments of a eutrophic reservoir

    International Nuclear Information System (INIS)

    Kuchkina, A.Yu.; Gladyshev, M.I.; Sushchik, N.N.; Kravchuk, E.S.; Kalachova, G.S.

    2011-01-01

    Sediments from eutrophic reservoir Bugach (Siberia, Russia) were tested for possibility to produce biodiesel. We supposed that the sediments could be a promising biodiesel producer. The major reason of high price of biodiesel fuel is cost of a raw material. The use of dredging sediments for biodiesel production reduces production costs, because the dredging sediments are by-products which originated during lake restoration actions, and are free of cost raw materials. Lipid content in sediments was 0.24% of dry weight. To assess the potential of from sediments as a substitute of diesel fuel, the properties of the biodiesel such as cetane number, iodine number and heat of combustion were calculated. All of this parameters complied with limits established by EN 14214 and EN 14213 related to biodiesel quality. -- Highlights: → Dredging sediments were considered as a new feedstock for biodiesel production. → Lipid and fatty acid content in the sediments were determined. → Main properties of the biodiesel were calculated basing on fatty acid composition. → The properties well complied with limits established in biodiesel standards.

  15. Estimating the critical phosphorus loading of shallow lakes with the ecosystem model PCLake: Sensitivity, calibration and uncertainty

    NARCIS (Netherlands)

    Janse, J.H.; Scheffer, M.; Lijklema, L.; Van Liere, L.; Sloot, J.S.; Mooij, W.M.

    2010-01-01

    There is a vast body of knowledge that eutrophication of lakes may cause algal blooms. Among lakes, shallow lakes are peculiar systems in that they typically can be in one of two contrasting (equilibrium) states that are self-stabilizing: a ‘clear’ state with submerged macrophytes or a ‘turbid’

  16. Estimating the critical phosphorus loading of shallow lakes with the ecosystem model PCLake: Sensitivity, calibration and uncertainty

    NARCIS (Netherlands)

    Janse, J.H.; Scheffer, M.; Lijklema, L.; Liere, van L.; Sloot, J.S.; Mooij, W.M.

    2010-01-01

    There is avast body of knowledge that eutrophication of lakes may cause algal blooms. Among lakes, shallow lakes are peculiar systems in that they typically can be in one of two contrasting (equilibrium) states that are self-stabilizing: a 'clear' state with submerged macrophytes or a 'turbid' state

  17. First attempt to apply whole-lake food-web manipulation on a large scale in The Netherlands.

    NARCIS (Netherlands)

    Donk, van E.; Grimm, M.P.; Gulati, R.D.; Heuts, P.G.M.; Kloet, de W.A.; Liere, van L.

    1990-01-01

    Lake Breukeleveen is a compartment of the eutrophic Loosdrecht lakes system. In Lake Loosdrecht (dominated by filamentous cyanobacteria), due to water management measures taken from 1970-1984 (sewerage systems, dephosphorization) the external P load has been reduced from 1.2g m-2y-1 to 0.35g m-2y-1.

  18. Volcanic nutrient inputs and trophic state of Lake Caviahue, Patagonia, Argentina

    Science.gov (United States)

    Pedrozo, Fernando L.; Temporetti, Pedro F.; Beamud, Guadalupe; Diaz, Mónica M.

    2008-12-01

    The strategies for eutrophication control, remediation, and policy management are often defined for neutral to alkaline freshwater systems, as they are most suitable for human use. The influence of nutrients on eutrophication in a naturally-acidic lake is poorly known. The main purpose of the present work is to evaluate the significance of volcanic nutrients in the control of the trophic state of the acidic Lake Caviahue, located at North Patagonia, Argentina. Acidic water systems were most studied on artificial acidified lakes, such as mining lakes in Germany or pit lakes in the United States. Lake Caviahue received a very high P load (42-192 ton P/yr) and low N load (14 ton N/yr), mainly as ammonium with quite low N:P ratios (Copahue volcano represents the main natural contribution of nutrients and acidity to the Lake Caviahue. The lake is oligotrophic in terms of CHLa. Neither the transparency nor the nutrient, dissolved or particulate, contents are to date representative of the trophic state of the lake. High P loads do not imply the eutrophication of the lake. We suggest that nitrogen and not phosphorus represents the key control nutrient in volcanically acidified lakes as TON was better related to CHLa observed (0.13-0.36 mg/m 3) in the lake. The pH increased around one unit (pH 2.0-3.0) during the last five years suggesting that the lake has not yet returned to a stable state.

  19. Enhanced effects of biotic interactions on predicting multispecies spatial distribution of submerged macrophytes after eutrophication.

    Science.gov (United States)

    Song, Kun; Cui, Yichong; Zhang, Xijin; Pan, Yingji; Xu, Junli; Xu, Kaiqin; Da, Liangjun

    2017-10-01

    Water eutrophication creates unfavorable environmental conditions for submerged macrophytes. In these situations, biotic interactions may be particularly important for explaining and predicting the submerged macrophytes occurrence. Here, we evaluate the roles of biotic interactions in predicting spatial occurrence of submerged macrophytes in 1959 and 2009 for Dianshan Lake in eastern China, which became eutrophic since the 1980s. For the four common species occurred in 1959 and 2009, null species distribution models based on abiotic variables and full models based on both abiotic and biotic variables were developed using generalized linear model (GLM) and boosted regression trees (BRT) to determine whether the biotic variables improved the model performance. Hierarchical Bayesian-based joint species distribution models capable of detecting paired biotic interactions were established for each species in both periods to evaluate the changes in the biotic interactions. In most of the GLM and BRT models, the full models showed better performance than the null models in predicting the species presence/absence, and the relative importance of the biotic variables in the full models increased from less than 50% in 1959 to more than 50% in 2009 for each species. Moreover, co-occurrence correlation of each paired species interaction was higher in 2009 than that in 1959. The findings suggest biotic interactions that tend to be positive play more important roles in the spatial distribution of multispecies assemblages of macrophytes and should be included in prediction models to improve prediction accuracy when forecasting macrophytes' distribution under eutrophication stress.

  20. Technologies for lake restoration

    Directory of Open Access Journals (Sweden)

    Helmut KLAPPER

    2003-09-01

    Full Text Available Lakes are suffering from different stress factors and need to be restored using different approaches. The eutrophication remains as the main water quality management problem for inland waters: both lakes and reservoirs. The way to curb the degradation is to stop the nutrient sources and to accelerate the restoration with help of in-lake technologies. Especially lakes with a long retention time need (eco- technological help to decrease the nutrient content in the free water. The microbial and other organic matter from sewage and other autochthonous biomasses, causes oxygen depletion, which has many adverse effects. In less developed countries big reservoirs function as sewage treatment plants. Natural aeration solves problems only partly and many pollutants tend to accumulate in the sediments. The acidification by acid rain and by pyrite oxidation has to be controlled by acid neutralizing technologies. Addition of alkaline chemicals is useful only for soft waters, and technologies for (microbial alkalinization of very acidic hardwater mining lakes are in development. The corrective measures differ from those in use for eutrophication control. The salinization and water shortage mostly occurs if more water is used than available. L. Aral, L. Tschad, the Dead Sea or L. Nasser belong to waters with most severe environmental problems on a global scale. Their hydrologic regime needs to be evaluated. The inflow of salt water at the bottom of some mining lakes adds to stability of stratification, and thus accumulation of hydrogen sulphide in the monimolimnion of the meromictic lakes. Destratification, which is the most used technology, is only restricted applicable because of the dangerous concentrations of the byproducts of biological degradation. The contamination of lakes with hazardous substances from industry and agriculture require different restoration technologies, including subhydric isolation and storage, addition of nutrients for better self

  1. Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests

    Czech Academy of Sciences Publication Activity Database

    Verheyen, E.; Baeten, L.; De Frenne, P.; Brnhardt-Römermann, M.; Brunet, J.; Cornelis, J.; Decocq, G.; Dierschke, H.; Eriksson, O.; Hédl, Radim; Heinken, T.; Hermy, M.; Hommel, P.; Kirby, K.; Naaf, T.; Peterken, G.; Petřík, Petr; Pfadenhauer, J.; Van Calster, H.; Walther, G.-R.; Wulf, M.; Verstraeten, G.

    2012-01-01

    Roč. 100, č. 2 (2012), s. 352-365 ISSN 0022-0477 R&D Projects: GA AV ČR IAA600050812 Institutional research plan: CEZ:AV0Z60050516 Keywords : Ellenberg indicator values * forest management * large herbivores Subject RIV: EF - Botanics Impact factor: 5.431, year: 2012

  2. Seasonal dynamics and conservative mixing of dissolved organic matter in the temperate eutrophic estuary Horsens Fjord

    DEFF Research Database (Denmark)

    Markager, Stiig; Stedmon, Colin; Søndergaard, Morten

    2011-01-01

    of different DOM parameters i.e. dissolved organic carbon (DOC), nitrogen (DON), and phosphorous (DOP), light absorption and eight fluorescence components, were analysed relative to conservative mixing. Many of the parameters did not behave conservatively. For DON, DOP and absorption, more than 65......This study presents the results of a year-long study investigating the characteristics of dissolved organic matter (DOM) in the Danish estuary, Horsens Fjord. The estuary is shallow with a mean depth of 2.9 m and receives high loadings of inorganic nutrients from its catchment. The behaviour......% of the freshwater concentration was removed initially at salinities below 12. At higher salinities two general patterns were identified. Concentrations of DON, DOP and four humic fluorescent fractions were not, or only weakly, related to salinity, showing that other processes than mixing were involved. Other...

  3. Bioaccumulation and trophic transfer of perfluorinated compounds in a eutrophic freshwater food web

    International Nuclear Information System (INIS)

    Xu, Jian; Guo, Chang-Sheng; Zhang, Yuan; Meng, Wei

    2014-01-01

    In this study, the bioaccumulation of perfluorinated compounds from a food web in Taihu Lake in China was investigated. The organisms included egret bird species, carnivorous fish, omnivorous fish, herbivorous fish, zooplankton, phytoplankton, zoobenthos and white shrimp. Isotope analysis by δ 13 C and δ 15 N indicated that the carnivorous fish and egret were the top predators in the studied web, occupying trophic levels intermediate between 3.66 and 4.61, while plankton was at the lowest trophic level. Perfluorinated carboxylates (PFCAs) with 9–12 carbons were significantly biomagnified, with trophic magnification factors (TMFs) ranging from 2.1 to 3.7. The TMF of perfluorooctane sulfonate (PFOS) (2.9) was generally comparable to or lower than those of the PFCAs in the same food web. All hazard ratio (HR) values reported for PFOS and perfluorooctanoate (PFOA) were less than unity, suggesting that the detected levels would not cause any immediate health effects to the people in Taihu Lake region through the consumption of shrimps and fish. -- Highlights: • Biomagnification of PFCs in the food web of a eutrophic freshwater lake was studied. • Carnivorous fish and egret were the top predators while plankton was at the lowest trophic level. • PFCAs with 9–12 carbons were significantly biomagnified. • TMF of PFOS was comparable to or lower than those of the PFCAs in the same food web. • PFOS and PFOA would not cause health effects to the people via diet consumption. -- PFCs were found to be bioaccumulated and biomagnified in a food web from a eutrophic freshwater lake in subtropical area

  4. The research on Nelumbonucifera for eutrophication control in Wuliangsuhailake Inner Mongolia,China

    Science.gov (United States)

    Li, Xing; Xu, Xiaoqing; Gou, Mangmang

    2018-02-01

    In order to study the effect on Nelumbonucifera (common name:lotus) for eutrophication control in Wuliangsuhai lake inner Mongolia, an enclosure of 2000m2was established in the southeast of Wuliangsuhailake. In the paper, the changes on water quality and phytoplankton abundance were monitored before planting lotus, after. Purpose of the study is to investigate the influence of lotus on improving water quality, restoration of water environment, and so on. The results were shown below. Firstly, Plantinglotus was significant for removal of total nitrogen and total phosphorus in water. Total nitrogen removal rate was more than 25%.Total phosphorus removal rate was more than 30%.Secondly, dissolved oxygen concentrations in August increased by 39.31percent.The Simultaneously, compared with the control (in April), the pH value was 8.0 in August(the flowering period) and declined by 10.11 percent. In this salinity, lotus had a strong salt tolerance and growed normally. Lastly, the biomass of phytoplankton was inhibited after planting lotus, especially for the inhibition of green algae growth. Studies on water bodies restoration under planting lotus in Wuliangsuhai lake have not been reported.Therefore, planting lotus will provide a new idea and theoretical reference for improving the eutrophication of Wuliangsuhailake.

  5. Marine Litter, Eutrophication and Noise Assessment Tools

    Science.gov (United States)

    Palazov, Atanas; Velcheva, Maya; Milkova, Tanya; Slabakova, Violeta; Marinova, Veselka

    2017-04-01

    MARLEN - Marine Litter, Eutrophication and Noise Assessment Tools is a project under the Programme BG02.03: Increased capacity for assessing and predicting environmental status in marine and inland waters, managed by Bulgarian Ministry of environment and waters and co-financed by the Financial Mechanism of the European Economic Area (EEA FM) 2009 - 2014. Project Beneficiary is the Institute of oceanology - Bulgarian Academy of Sciences with two partners: Burgas municipality and Bulgarian Black Sea Basin Directorate. Initial assessment of ecological state of Bulgarian marine waters showed lack of data for some descriptors of MSFD. The main goal of MARLEN is to build up tools for assessment of marine environment by implementing new technologies and best practices for addressing three main areas of interest with lack of marine data in particular: a) Marine litter detection and classification in coastal areas; b) Regular near real time surface water eutrophication monitoring on large aquatory; c) Underwater noise monitoring. Developed tools are an important source of real time, near real time and delay mode marine data for Bulgarian Black Sea waters. The partnership within the project increased capacity for environmental assessments and training of personnel and enhances collaboration between scientific institutes, regional and local authorities. Project results supported implementation of MSFD in Bulgarian marine waters for the benefit of coastal population, marine industry, tourism, marine research and marine spatial planning.

  6. Contaminant Monitoring Strategy for Henrys Lake, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    John S. Irving; R. P. Breckenridge

    1992-12-01

    Henrys Lake, located in southeastern Idaho, is a large, shallow lake (6,600 acres, {approx} 17.1 feet maximum depth) located at 6,472 feet elevation in Fremont Co., Idaho at the headwaters of the Henrys Fork of the Snake River. The upper watershed is comprised of high mountains of the Targhee National Forest and the lakeshore is surrounded by extensive flats and wetlands, which are mostly privately owned. The lake has been dammed since 1922, and the upper 12 feet of the lake waters are allocated for downriver use. Henrys Lake is a naturally productive lake supporting a nationally recognized ''Blue Ribbon'' trout fishery. There is concern that increasing housing development and cattle grazing may accelerate eutrophication and result in winter and early spring fish kills. There has not been a recent thorough assessment of lake water quality. However, the Department of Environmental Quality (DEQ) is currently conducting a study of water quality on Henrys Lake and tributary streams. Septic systems and lawn runoff from housing developments on the north, west, and southwest shores could potentially contribute to the nutrient enrichment of the lake. Many houses are on steep hillsides where runoff from lawns, driveways, etc. drain into wetland flats along the lake or directly into the lake. In addition, seepage from septic systems (drainfields) drain directly into the wetlands enter groundwater areas that seep into the lake. Cattle grazing along the lake margin, riparian areas, and uplands is likely accelerating erosion and nutrient enrichment. Also, cattle grazing along riparian areas likely adds to nutrient enrichment of the lake through subsurface flow and direct runoff. Stream bank and lakeshore erosion may also accelerate eutrophication by increasing the sedimentation of the lake. Approximately nine streams feed the lake (see map), but flows are often severely reduced or completely eliminated due to irrigation diversion. In addition, subsurface

  7. Choking Lake Winnipeg

    Science.gov (United States)

    Byrne, J. M.; Little, L. J.; Dodgson, K. A.; MacDonald, R. J.; Graham, J.

    2009-12-01

    The problems of waterway eutrophication and coastal zone hypoxia are reaching epidemic proportions. Fresh water and coastal marine environments around the world are suffering unprecedented pollution loadings. We are developing an education program to address the dramatic need for public, community and K-12 education about the harsh impacts of elevated nutrient loads on fresh and marine water environments. The Lake Winnipeg watershed is adopted as the poster child of fresh water eutrophication in western North America. The watershed, one of the largest on the continent, is in rapid decline due to pollution, population pressures and water diversion. A concerted education program is needed to change personal and society actions that negatively impact the Winnipeg watershed; and the confluence of the watershed - Lake Winnipeg. But the education program goes beyond Lake Winnipeg. Negative impacts of nutrient loads are adversely affecting environments right to the oceans. Major dead zones that are expanding on our continental shelves due to nutrient overloading threaten to coalesce into extensive regions of marine life die-off. This presentation outlines the documentary education production process under development. We are building a series of Public Service Announcements (PSAs) for national television networks. The PSAs will direct educators, stakeholders and citizens to an associated website with educational video clips detailing the issues of eutrophication and hypoxia. The video clips or webisodes, present interviews with leading scientists. The discussions address the causes of the problems, and presents workable solutions to nutrient overloads from a variety of sources. The webisodes are accompanied by notes and advice to teachers on ways and means to use the webisodes in classrooms. The project is fully funed by a group of Canadian Community Foundations, with the understanding the work wil be available free to educators anywhere in the world. Our education

  8. Study on Mechanism Experiments and Evaluation Methods for Water Eutrophication

    Directory of Open Access Journals (Sweden)

    Jiabin Yu

    2017-01-01

    Full Text Available The process of water eutrophication involves the interaction of external factors, nutrients, microorganisms, and other factors. It is complex and has not yet been effectively studied. To examine the formation process of water eutrophication, a set of orthogonal experiments with three factors and four levels is designed to analyze the key factors. At the same time, with the help of a large amount of monitoring data, the principal component analysis method is used to extract the main components of water eutrophication and determine the effective evaluation indicators of eutrophication. Finally, the Bayesian theory of uncertainty is applied to the evaluation of the eutrophication process to evaluate the sample data. The simulation results demonstrate the validity of the research method.

  9. Great Lakes modeling: Are the mathematics outpacing the data and our understanding of the system?

    Science.gov (United States)

    Mathematical modeling in the Great Lakes has come a long way from the pioneering work done by Manhattan College in the 1970s, when the models operated on coarse computational grids (often lake-wide) and used simple eutrophication formulations. Moving forward 40 years, we are now...

  10. Remote sensing of euphotic depth in shallow tropical inland waters of Lake Naivasha using MERIS data

    CSIR Research Space (South Africa)

    Majozi, NP

    2014-05-01

    Full Text Available radiometric and limnological data collection was undertaken at Lake Naivasha. Atmospheric correction was done on the MERIS images using MERIS Neural Network algorithms, Case 2 Waters (C2R) and Eutrophic Lakes processors and the bright pixel atmospheric...

  11. Cascading trophic interactions in the littoral zone: an enclosure experiment in shallow Lake Stigsholm, Denmark

    DEFF Research Database (Denmark)

    Jeppesen, E.; Søndergaard, M.; Søndergaard, M.

    2002-01-01

    The importance of grazer versus resource control has been extensively studied in the pelagic zone of lakes. In contrast, comparatively little is known about trophic interactions within the littoral zone. We conducted an experiment in the littoral zone of a eutrophic shallow lake using six 20 m2......, zooplankton grazing was equivalent to production in M+, but amounted to littoral zones do not alone feed on particles produced in the water, but also exploit alternative sources such as periphyton...... hypothesize that the strong cascading effects of zooplankton on chlorophyll-a and microorganisms in the littoral zone at natural fish densities are restricted to eutrophic lakes with high plant densities....

  12. An introduction to the processes, problems, and management of urban lakes

    Science.gov (United States)

    Britton, L.J.; Averett, R.C.; Ferreira, R.F.

    1975-01-01

    Lakes are bodies of water formed in depressions on the earth's surface, and as such, act as depositories for a variety of chemical and biological materials. The study of lakes has become increasingly prevalent in recent years. Lakes are a valuable resource, and their multiple uses have made them susceptible to water-quality problems such as algal blooms, sediment deposition and fish kills. These problems are products of the eutrophication process (enrichment, aging and extinction of lakes), which is often accelerated by man. Therefore, it becomes important to understand the properties and processes of lakes which govern lake enrichment, and the measures available to control enrichment.

  13. Identifying Watershed Regions Sensitive to Soil Erosion and Contributing to Lake Eutrophication—A Case Study in the Taihu Lake Basin (China)

    Science.gov (United States)

    Lin, Chen; Ma, Ronghua; He, Bin

    2015-01-01

    Taihu Lake in China is suffering from severe eutrophication partly due to non-point pollution from the watershed. There is an increasing need to identify the regions within the watershed that most contribute to lake water degradation. The selection of appropriate temporal scales and lake indicators is important to identify sensitive watershed regions. This study selected three eutrophic lake areas, including Meiliang Bay (ML), Zhushan Bay (ZS), and the Western Coastal region (WC), as well as multiple buffer zones next to the lake boundary as the study sites. Soil erosion intensity was designated as a watershed indicator, and the lake algae area was designated as a lake quality indicator. The sensitive watershed region was identified based on the relationship between these two indicators among different lake divisions for a temporal sequence from 2000 to 2012. The results show that the relationship between soil erosion modulus and lake quality varied among different lake areas. Soil erosion from the two bay areas was more closely correlated with water quality than soil erosion from the WC region. This was most apparent at distances of 5 km to 10 km from the lake, where the r2 was as high as 0.764. Results indicate that soil erosion could be used as an indicator for identifying key watershed protection areas. Different lake areas need to be considered separately due to differences in geographical features, land use, and the corresponding effects on lake water quality. PMID:26712772

  14. A critical review of the development, current hotspots, and future directions of Lake Taihu research from the bibliometrics perspective.

    Science.gov (United States)

    Zhang, Yunlin; Yao, Xiaolong; Qin, Boqiang

    2016-07-01

    Lake Taihu, as the important drinking water source of the Yangtze River Delta urban agglomeration and the third largest freshwater lake in China, has experienced serious lake eutrophication and water quality deterioration in the past three decades. Growing scientific, political, and public attention has been given to the water quality of Lake Taihu. This study aimed to conduct a comparative quantitative and qualitative analysis of the development, current hotspots, and future directions of Lake Taihu research using a bibliometric analysis of eight well-studied lakes (Lake Taihu, Lake Baikal, Lake Biwa, Lake Erie, Lake Michigan, Lake Ontario, Lake Superior and Lake Victoria) around the world based on the Science Citation Index (SCI) database. A total of 1582 papers discussing Lake Taihu research were published in 322 journals in the past three decades. However, the first paper about Lake Taihu research was not found in the SCI database until 1989, and there were only zero, one, or two papers each year from 1989 to 1995. There had been rapid development in Lake Taihu research since 1996 and a sharp increase in papers since 2005. A keyword analysis showed that "sediment," "eutrophication", "Microcystis aeruginosa", "cyanobacterial blooms", and "remote sensing" were the most frequently used keywords of the study subject. Owing to its significant impact on aquatic ecosystems, a crucial emphasis has been placed on climate change recently. In addition, the future focuses of research directions, including (1) environmental effects of physical processes; (2) nutrient cycles and control and ecosystem responses; (3) cyanobacteria bloom monitoring, causes, forecast and management; (4) eutrophication and climate change interactions; and (5) ecosystem degradation mechanism and ecological practice of lake restoration, are presented based on the keyword analysis. Through multidisciplinary fields (physics, chemistry, and biology) cross and synthesis study of Lake Taihu, the

  15. The influence of hydrologic residence time on lake carbon cycling dynamics following extreme precipitation events

    Science.gov (United States)

    Jacob A. Zwart; Stephen D. Sebestyen; Christopher T. Solomon; Stuart E. Jones

    2016-01-01

    The frequency and magnitude of extreme events are expected to increase in the future, yet little is known about effects of such events on ecosystem structure and function. We examined how extreme precipitation events affect exports of terrestrial dissolved organic carbon (t-DOC) from watersheds to lakes as well as in-lake heterotrophy in three north-temperate lakes....

  16. Stable carbon isotope biogeochemistry of lakes along a trophic gradient

    NARCIS (Netherlands)

    de Kluijver, A.; Schoon, P.L.; Downing, J.A.; Schouten, S.; Middelburg, J.J.

    2014-01-01

    The stable carbon (C) isotope variability of dissolved inorganic and organic C (DIC and DOC), particulate organic carbon (POC), glucose and polar-lipid derived fatty acids (PLFAs) was studied in a survey of 22 North American oligotrophic to eutrophic lakes. The d13C of different PLFAs were used as

  17. Modeling lake trophic state: a random forest approach

    Science.gov (United States)

    Productivity of lentic ecosystems has been well studied and it is widely accepted that as nutrient inputs increase, productivity increases and lakes transition from low trophic state (e.g. oligotrophic) to higher trophic states (e.g. eutrophic). These broad trophic state classi...

  18. Mitigation of environmental problems in Lake Victoria, East Africa: causal chain and policy options analyses.

    Science.gov (United States)

    Odada, Eric O; Olago, Daniel O; Kulindwa, Kassim; Ntiba, Micheni; Wandiga, Shem

    2004-02-01

    Lake Victoria is an international waterbody that offers the riparian communities a large number of extremely important environmental services. Over the past three decades or so, the lake has come under increasing and considerable pressure from a variety of interlinked human activities such as overfishing, species introductions, industrial pollution, eutrophication, and sedimentation. In this paper we examine the root causes for overfishing and pollution in Lake Victoria and give possible policy options that can help remediate or mitigate the environmental degradation.

  19. Eutrophication: Present reality and future challenges for South Africa ...

    African Journals Online (AJOL)

    During the past 40 years, eutrophication has become an increasing threat to the usability ... biomanipulation of the food web, accurate prediction of cyanobacterial growth ... Continued monitoring and reporting of trophic status are essential to ...

  20. Linking climate change and progressive eutrophication to incidents ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... 1CSIR Natural Resources and the Environment, P. O. Box 395, Pretoria, ZA0001, South Africa. ... be greatly accelerated by human intervention in the natural ..... and the prioritization of eutrophication control. Ecol. Eng. 16: ...

  1. Water Age Responses to Weather Conditions in a Hyper-Eutrophic Channel Reservoir in Southern China

    Directory of Open Access Journals (Sweden)

    Wei Du

    2016-08-01

    Full Text Available Channel reservoirs have the characteristics of both rivers and lakes, in which hydrodynamic conditions and the factors affecting the eutrophication process are complex and highly affected by weather conditions. Water age at any location in the reservoir is used as an indicator for describing the spatial and temporal variations of water exchange and nutrient transport. The hyper-eutrophic Changtan Reservoir (CTR in Southern China was investigated. Three weather conditions including wet, normal, and dry years were considered for assessing the response of water age by using the coupled watershed model Soil Water Assessment Tool (SWAT and the three-dimensional hydrodynamic model Environmental Fluid Hydrodynamic Code (EFDC. The results showed that the water age in CTR varied tremendously under different weather conditions. The averaged water ages at the downstream of CTR were 3 d, 60 d, and 110 d, respectively in the three typical wet, normal, and dry years. The highest water ages at the main tributary were >70 d, >100 d, and >200 d, respectively. The spatial distribution of water ages in the tributaries and the reservoir were mainly affected by precipitation. This paper provides useful information on water exchange and transport pathways in channel reservoir, which will be helpful in understanding nutrient dynamics for controlling algal blooms.

  2. Eutrophication: present reality and future challenges for South Africa

    OpenAIRE

    van Ginkel, CE

    2011-01-01

    During the past 40 years, eutrophication has become an increasing threat to the usability of South African freshwater resources. Despite legislation moderating the discharge of phosphorus from some wastewater treatment works since the 1980s, eutrophication of freshwater resources is now widespread. Two important consequences are blooms of cyanobacteria, carrying the threat of cyanotoxin contamination, and excessive growth of macrophytes, which clog water-supply structures and reduce the recre...

  3. Palaeolimnological evidence of vulnerability of Lake Neusiedl (Austria) toward climate related changes since the last "vanished-lake" stage.

    Science.gov (United States)

    Tolotti, Monica; Milan, Manuela; Boscaini, Adriano; Soja, Gerhard; Herzig, Alois

    2013-04-01

    The palaeolimnological reconstruction of secular evolution of Euroepan Lakes with key socio-economical relevance respect to large (climate change) and local scale (land use, tourism) environmental changes, represents one of the objectives of the project EuLakes (European Lakes Under Environmental Stressors, Supporting lake governance to mitigate the impact of climate change, Reg. N. 2CE243P3), launched in 2010 within the Central European Inititiative. The project consortium comprises lakes of different morphology and prevalent human uses, including the meso-eutrophic Lake Neusiedl, the largest Austrian lake (total area 315 km2), and the westernmost shallow (mean depth 1.2 m) steppe lake of the Euro-Asiatic continent. The volume of Lake Neusiedl can potentially change over the years, in relation with changing balance between atmospheric precipitation and lake water evapotranspiration. Changing water budget, together with high lake salinity and turbidity, have important implications over the lake ecosystem. This contribution illustrates results of the multi-proxi palaeolimnological reconstruction of ecologial changes occurred in Lake Neusiedl during the last ca. 140 years, i.e. since the end of the last "vanished-lake" stage (1865-1871). Geochemical and biological proxies anticipate the increase in lake productivity of ca. 10 years (1950s) respect to what reported in the literature. Diatom species composition indicate a biological lake recovery in the late 1980s, and suggest a second increment in lake productivity since the late 1990s, possibly in relation with the progressive increase in the nitrogen input from agriculture. Abundance of diatoms typical of brackish waters indicated no significant long-term change in lake salinity, while variations in species toleranting dessiccation confirm the vulnerability of Lake Neusiedl toward climate-driven changes in the lake water balance. This fragility is aggravated by the the semi-arid climate conditions of the catchemnt

  4. [Limnology of high mountain tropical lake, in Ecuador: characteristics of sediments and rate of sedimentation].

    Science.gov (United States)

    Gunkel, Günter

    2003-06-01

    Equatorial high mountain lakes are a special type of lake occurring mainly in the South American Andes as well as in Central Africa and Asia. They occur at altitudes of a few thousand meters above sea level and are cold-water lakes (limnological study was therefore undertaken at Lake San Pablo, Ecuador, to analyze the basic limnological processes of the lake, which has a tendency for eutrophication. Sediment quality of San Pablo Lake is given under consideration of horizontal and vertical distribution using sediment cores. Significance of sediments for eutrophication process of lakes is demonstrated using phosphorus concentration of sediments as well as the phosphorus retention capacity of the sediments by ratio Fe/P. Dating of the sediments is done using 137Cs and 210Pb, but the activity of 137Cs in the sediment was very low nearly at the detection level. Sedimentation rate is determined to be 3.5 mm/year and the sediment cores represent about 110 years. P concentration of the sediments is high (approximately 5 g/kg dry substance), and P retention capacity by Fe is insufficient (Fe/P = 4). The sediment quality did not change significantly during the past decades, and the trophic state of San Pablo Lake was already less or more eutrophic 110 years ago. The contamination of the lake sediments by heavy metals is insignificant.

  5. Assessing ways to combat eutrophication in a Chinese drinking water reservoir using SWAT

    DEFF Research Database (Denmark)

    Nielsen, Anders; Trolle, Dennis; Me, W

    2013-01-01

    Across China, nutrient losses associated with agricultural production and domestic sewage have triggered eutrophication, and local managers are challenged to comply with drinking water quality requirements. Evidently, the improvement of water quality should be targeted holistically and encompass...... in land and livestock management and sewage treatment on nutrient export and derived consequences for water quality in the Chinese subtropical Kaiping (Dashahe) drinking water reservoir (supplying 0.4 million people). The critical load of TP was estimated to 13.5 tonnes yr–1 in order to comply...... both point sources and surface activities within the watershed of a reservoir. We expanded the ordinary Soil Water Assessment Tool – (SWAT) with a widely used empirical equation to estimate total phosphorus (TP) concentrations in lakes and reservoirs. Subsequently, we examined the effects of changes...

  6. The trophic role and impact of plankton ciliates in the microbial web structure of a tropical polymictic lake dominated by filamentous cyanobacteria

    Directory of Open Access Journals (Sweden)

    Alfonso Esquivel

    2016-03-01

    Full Text Available The recent interest in the plankton structures and dynamics in tropical and subtropical lakes has revealed important trends that set these lakes apart from temperate lakes, and one of the main differences is the enhanced importance of the microbial food web with respect to net plankton. Ciliates are a key component of subtropical and tropical microbial webs because of their role as dominant picoplankton grazers and their ability to channel picoplankton production to the uppermost trophic levels. Plankton ciliates have been found to play a crucial role in the survival of fish larvae in lakes that share several features with Lake Catemaco, a eutrophic tropical Mexican lake. Therefore, the plankton ciliate composition, abundance, and biomass of Lake Catemaco were studied to assess their role in the microbial food web. The data were obtained from surface and bottom water samples collected at eleven points during three surveys in 2011 and an additional survey in 2013, with the surveys covering the local climatic seasons. The most abundant components of the plankton ciliate assemblages were small prostomatids (Urotricha spp., choreotrichs (Rimostrombidium spp., cyclotrichs (Mesodinium and Askenasia, and scuticociliates (Cyclidium, Cinetochilum, Pleuronema, and Uronema. Other important ciliates in terms of abundance and/or biomass were haptorids (Actinobolina, Belonophrya, Monodinium, Paradileptus, and Laginophrya, Halteria, oligotrichs (Limnostrombidium and Pelagostrombidium, Linostomella, Bursaridium, Cyrtolophosis, and Litonotus. The ciliate abundance averaged 57 cells mL-1 and ranged from 14 to 113 cells mL-1. The mean ciliate biomass was 71 µg C L-1 and ranged from 10 to 202 µg C L-1. Differences were not detected in ciliate abundance or biomass between the sampling points or sampling depths (surface to bottom; however, significant differences were observed between seasons for both variables. Nano-sized filamentous cyanobacteria were the most

  7. Differences in the exploitation of bream in three shallow lake systems and their relation to water quality

    NARCIS (Netherlands)

    Lammens, E.H.R.R.; Nes, van E.H.; Mooij, W.M.

    2002-01-01

    1. The development of bream populations, water transparency, chlorophyll-a concentration, extent of submerged vegetation and densities of the zebra mussel, Dreissena polymorpha, were analysed in three shallow eutrophic lake systems subject to different fish management. 2. In Lake Veluwemeer, the

  8. Differences in the exploitation of bream in three shallow lake systems and their relation to water quality

    NARCIS (Netherlands)

    Lammens, E.H.R.R.; Van Nes, E.H.; Mooij, W.M.

    2002-01-01

    SUMMARY1. The development of bream populations, water transparency, chlorophyll-a concentration, extent of submerged vegetation and densities of the zebra mussel, Dreissena polymorpha, were analysed in three shallow eutrophic lake systems subject to different fish management. 2. In Lake Veluwemeer,

  9. Performance of surface and subsurface flow constructed wetlands treating eutrophic waters.

    Science.gov (United States)

    Hernández-Crespo, C; Gargallo, S; Benedito-Durá, V; Nácher-Rodríguez, Beatriz; Rodrigo-Alacreu, M A; Martín, M

    2017-10-01

    Three medium size constructed wetlands (CWs) with a total surface of 90ha are working since 2009 in the Albufera de Valencia Natural Park (Spain). Two of them are fed with eutrophic waters from l'Albufera Lake. Their objectives are both reduce the phytoplankton biomass and increase the biodiversity; consequently, improved water quality is returned to the lake. A "science based governance" of these CWs is ongoing inside the LIFE+12 Albufera Project to demonstrate the environmental benefits of these features. In this paper, results and relationships among hydraulic operation, physicochemical variables and plankton in two different CWs typologies, five free water surface CW (FWSCW) and one horizontal subsurface flow CW (HSSFCW), were analysed showing that CWs were capable of improving the water quality and biodiversity but showing clear differences depending on the CW type. The CWs worked under different hydraulic load rates (HLR) from <0.12 to 54.75myr -1 . Inflow water quality was typical from eutrophic waters with mean values of chlorophyll a (Chl a) about 22-90μgChlal -1 and mean total phosphorus (TP) between 0.122 and 0.337mgl -1 . The main conclusion is that HSSFCW was much more efficient than FWSCW in the removal of organic matter, suspended solids and nutrients. The biological role of several shallow lagoons located at the end of the CWs has also been evaluated, showing that they contribute to increase the zooplankton biomass, a key factor to control the phytoplankton blooms. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Time-temperature equivalence in Martensite tempering

    Energy Technology Data Exchange (ETDEWEB)

    Hackenberg, Robert E. [Los Alamos National Laboratory; Thomas, Grant A. [CSM; Speer, John G. [CSM; Matlock, David K. [CSM; Krauss, George [CSM

    2008-06-16

    The relationship between time and temperature is of great consequence in many materials-related processes including the tempering of martensite. In 1945, Hollomon and Jaffe quantified the 'degree of tempering' as a function of both tempering time, t, and tempering temperature, T, using the expression, T(log t + c). Here, c is thought to be a material constant and appears to decrease linearly with increasing carbon content. The Hollomon-Jaffe tempering parameter is frequently cited in the literature. This work reviews the original derivation of the tempering parameter concept, and presents the use of the characteristics diffusion distance as an alternative time-temperature relationship during martensite tempering. During the tempering of martensite, interstitial carbon atoms diffuse to form carbides. In addition, austenite decomposes, dislocations and grain boundaries rearrange, associated with iron self diffusion. Since these are all diffusional processes, it is reasonable to expect the degree of tempering to relate to the extent of diffusion.

  11. Preliminary Assessment of Cyanobacteria Diversity and Toxic Potential in Ten Freshwater Lakes in Selangor, Malaysia.

    Science.gov (United States)

    Sinang, Som Cit; Poh, Keong Bun; Shamsudin, Syakirah; Sinden, Ann

    2015-10-01

    Toxic cyanobacteria blooms are increasing in magnitude and frequency worldwide. However, this issue has not been adequately addressed in Malaysia. Therefore, this study aims to better understand eutrophication levels, cyanobacteria diversity, and microcystin concentrations in ten Malaysian freshwater lakes. The results revealed that most lakes were eutrophic, with total phosphorus and total chlorophyll-a concentrations ranging from 15 to 4270 µg L(-1) and 1.1 to 903.1 µg L(-1), respectively. Cyanobacteria were detected in all lakes, and identified as Microcystis spp., Planktothrix spp., Phormidium spp., Oscillatoria spp., and Lyngbya spp. Microcystis spp. was the most commonly observed and most abundant cyanobacteria recorded. Semi-quantitative microcystin analysis indicated the presence of microcystin in all lakes. These findings illustrate the potential health risk of cyanobacteria in Malaysia freshwater lakes, thus magnifying the importance of cyanobacteria monitoring and management in Malaysian waterways.

  12. Combining lake and watershed characteristics with Landsat TM data for remote estimation of regional lake clarity

    Science.gov (United States)

    McCullough, Ian M.; Loftin, Cyndy; Sader, Steven A.

    2012-01-01

    Water clarity is a reliable indicator of lake productivity and an ideal metric of regional water quality. Clarity is an indicator of other water quality variables including chlorophyll-a, total phosphorus and trophic status; however, unlike these metrics, clarity can be accurately and efficiently estimated remotely on a regional scale. Remote sensing is useful in regions containing a large number of lakes that are cost prohibitive to monitor regularly using traditional field methods. Field-assessed lakes generally are easily accessible and may represent a spatially irregular, non-random sample of a region. We developed a remote monitoring program for Maine lakes >8 ha (1511 lakes) to supplement existing field monitoring programs. We combined Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) brightness values for TM bands 1 (blue) and 3 (red) to estimate water clarity (secchi disk depth) during 1990–2010. Although similar procedures have been applied to Minnesota and Wisconsin lakes, neither state incorporates physical lake variables or watershed characteristics that potentially affect clarity into their models. Average lake depth consistently improved model fitness, and the proportion of wetland area in lake watersheds also explained variability in clarity in some cases. Nine regression models predicted water clarity (R2 = 0.69–0.90) during 1990–2010, with separate models for eastern (TM path 11; four models) and western Maine (TM path 12; five models that captured differences in topography and landscape disturbance. Average absolute difference between model-estimated and observed secchi depth ranged 0.65–1.03 m. Eutrophic and mesotrophic lakes consistently were estimated more accurately than oligotrophic lakes. Our results show that TM bands 1 and 3 can be used to estimate regional lake water clarity outside the Great Lakes Region and that the accuracy of estimates is improved with additional model variables that reflect

  13. Toxic Cyanobacterial Bloom Triggers in Missisquoi Bay, Lake Champlain, as Determined by Next-Generation Sequencing and Quantitative PCR

    Directory of Open Access Journals (Sweden)

    Nathalie Fortin

    2015-05-01

    Full Text Available Missisquoi Bay (MB is a temperate eutrophic freshwater lake that frequently experiences toxic Microcystis-dominated cyanobacterial blooms. Non-point sources are responsible for the high concentrations of phosphorus and nitrogen in the bay. This study combined data from environmental parameters, E. coli counts, high-throughput sequencing of 16S rRNA gene amplicons, quantitative PCR (16S rRNA and mcyD genes and toxin analyses to identify the main bloom-promoting factors. In 2009, nutrient concentrations correlated with E. coli counts, abundance of total cyanobacterial cells, Microcystis 16S rRNA and mcyD genes and intracellular microcystin. Total and dissolved phosphorus also correlated significantly with rainfall. The major cyanobacterial taxa were members of the orders Chroococcales and Nostocales. The genus Microcystis was the main mcyD-carrier and main microcystin producer. Our results suggested that increasing nutrient concentrations and total nitrogen:total phosphorus (TN:TP ratios approaching 11:1, coupled with an increase in temperature, promoted Microcystis-dominated toxic blooms. Although the importance of nutrient ratios and absolute concentrations on cyanobacterial and Microcystis dynamics have been documented in other laboratories, an optimum TN:TP ratio for Microcystis dominance has not been previously observed in situ. This observation provides further support that nutrient ratios are an important determinant of species composition in natural phytoplankton assemblages.

  14. New records of the rare glacial relict Eurytemora lacustris (Poppe 1887 (Copepoda; Calanoida in atypical lake habitats of northern Germany

    Directory of Open Access Journals (Sweden)

    Peter KASPRZAK

    2011-02-01

    Full Text Available During monitoring investigations of lakes in Schleswig-Holstein (northern Germany in 2000 and 2008, the calanoid copepod Eurytemora lacustris (POPPE 1887 was found in three lakes of the Ratzeburger Lake complex: the Kleine Küchensee, the Große Küchensee and the Große Ratzeburger See. The species has a broad geographic distribution but has become rare and endangered by eutrophication and global change. The lakes are mesotrophic (Gr. Ratzeburger See and eutrophic (Kl. Küchensee, Gr. Küchensee with cool (1 mg O2 L-1. Food and physical conditions seem to be favourable enough to permit survival and reproduction of the species at least in spring. It remains unclear, however, whether the populations in the studied lakes are autochthonous. Eurytemora lacustris possibly invaded the lakes or was transported via a canal from the Schaalsee upstream, where a viable population exists.

  15. Eutrophication and Warming Boost Cyanobacterial Biomass and Microcystins

    Directory of Open Access Journals (Sweden)

    Miquel Lürling

    2017-02-01

    Full Text Available Eutrophication and warming are key drivers of cyanobacterial blooms, but their combined effects on microcystin (MC concentrations are less studied. We tested the hypothesis that warming promotes cyanobacterial abundance in a natural plankton community and that eutrophication enhances cyanobacterial biomass and MC concentrations. We incubated natural seston from a eutrophic pond under normal, high, and extreme temperatures (i.e., 20, 25, and 30 °C with and without additional nutrients added (eutrophication mimicking a pulse as could be expected from projected summer storms under climate change. Eutrophication increased algal- and cyanobacterial biomass by 26 and 8 times, respectively, and led to 24 times higher MC concentrations. This effect was augmented with higher temperatures leading to 45 times higher MC concentrations at 25 °C, with 11 times more cyanobacterial chlorophyll-a and 25 times more eukaryote algal chlorophyll-a. At 30 °C, MC concentrations were 42 times higher, with cyanobacterial chlorophyll-a being 17 times and eukaryote algal chlorophyll-a being 24 times higher. In contrast, warming alone did not yield more cyanobacteria or MCs, because the in situ community had already depleted the available nutrient pool. MC per potential MC producing cell declined at higher temperatures under nutrient enrichments, which was confirmed by a controlled experiment with two laboratory strains of Microcystis aeruginosa. Nevertheless, MC concentrations were much higher at the increased temperature and nutrient treatment than under warming alone due to strongly promoted biomass, lifting N-imitation and promotion of potential MC producers like Microcystis. This study exemplifies the vulnerability of eutrophic urban waters to predicted future summer climate change effects that might aggravate cyanobacterial nuisance.

  16. Stream Macroinvertebrate Occurrence along Gradients in Organic Pollution and Eutrophication

    DEFF Research Database (Denmark)

    Friberg, Nikolai; Skriver, Jens; Larsen, Søren Erik

    2010-01-01

    We analysed a large number of concurrent samples of macroinvertebrate communities and chemical indicators of eutrophication and organic pollution [total-P, total-N, NH4-N, biological oxygen demand (BOD5)] from 594 Danish stream sites. Samples were taken over an 11-year time span as part of the Da......We analysed a large number of concurrent samples of macroinvertebrate communities and chemical indicators of eutrophication and organic pollution [total-P, total-N, NH4-N, biological oxygen demand (BOD5)] from 594 Danish stream sites. Samples were taken over an 11-year time span as part...

  17. Review on methodology for LCIA of marine eutrophication

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred

    As part of the ongoing EU FP7 project LC-Impact (www.lc-impact.eu) new life cycle impact assessment (LCIA) methods are going to be developed and tested on industry cases. Among the life cycle assessment (LCA) impact categories in focus are aquatic eutrophication. As related to especially the marine...... concentration and the potentially affected fraction of species in the marine ecosystem. This poster will present a review of the very limited existing attempts on how to include marine eutrophication in LCA and discuss alternative methodologies on how to model the environmental mechanism of this impact category....

  18. Tempered stable laws as random walk limits

    OpenAIRE

    Chakrabarty, Arijit; Meerschaert, Mark M.

    2010-01-01

    Stable laws can be tempered by modifying the L\\'evy measure to cool the probability of large jumps. Tempered stable laws retain their signature power law behavior at infinity, and infinite divisibility. This paper develops random walk models that converge to a tempered stable law under a triangular array scheme. Since tempered stable laws and processes are useful in statistical physics, these random walk models can provide a basic physical model for the underlying physical phenomena.

  19. Watershed vs. within-lake drivers of nitrogen: phosphorus dynamics in shallow lakes.

    Science.gov (United States)

    Ginger, Luke J; Zimmer, Kyle D; Herwig, Brian R; Hanson, Mark A; Hobbs, William O; Small, Gaston E; Cotner, James B

    2017-10-01

    Research on lake eutrophication often identifies variables affecting amounts of phosphorus (P) and nitrogen (N) in lakes, but understanding factors influencing N:P ratios is important given its influence on species composition and toxin production by cyanobacteria. We sampled 80 shallow lakes in Minnesota (USA) for three years to assess effects of watershed size, proportion of watershed as both row crop and natural area, fish biomass, and lake alternative state (turbid vs. clear) on total N : total P (TN : TP), ammonium, total dissolved phosphorus (TDP), and seston stoichiometry. We also examined N:P stoichiometry in 20 additional lakes that shifted states during the study. Last, we assessed the importance of denitrification by measuring denitrification rates in sediment cores from a subset of 34 lakes, and by measuring seston δ 15 N in four additional experimental lakes before and after they were experimentally manipulated from turbid to clear states. Results showed alternative state had the largest influence on overall N:P stoichiometry in these systems, as it had the strongest relationship with TN : TP, seston C:N:P, ammonium, and TDP. Turbid lakes had higher N at given levels of P than clear lakes, with TN and ammonium 2-fold and 1.4-fold higher in turbid lakes, respectively. In lakes that shifted states, TN was 3-fold higher in turbid lakes, while TP was only 2-fold higher, supporting the notion N is more responsive to state shifts than is P. Seston δ 15 N increased after lakes shifted to clear states, suggesting higher denitrification rates may be important for reducing N levels in clear states, and potential denitrification rates in sediment cores were among the highest recorded in the literature. Overall, our results indicate lake state was a primary driver of N:P dynamics in shallow lakes, and lakes in clear states had much lower N at a given level of P relative to turbid lakes, likely due to higher denitrification rates. Shallow lakes are often

  20. SURFACE WATER AND GROUND WATER QUALITY MONITORING FOR RESTORATION OF URBAN LAKES IN GREATER HYDERABAD, INDIA

    Science.gov (United States)

    Mohanty, A. K.

    2009-12-01

    SURFACE WATER AND GROUND WATER QUALITY MONITORING FOR RESTORATION OF URBAN LAKES IN GREATER HYDERABAD, INDIA A.K. Mohanty, K. Mahesh Kumar, B. A. Prakash and V.V.S. Gurunadha Rao Ecology and Environment Group National Geophysical Research Institute, (CSIR) Hyderabad - 500 606, India E-mail:atulyakumarmohanty@yahoo.com Abstract: Hyderabad Metropolitan Development Authority has taken up restoration of urban lakes around Hyderabad city under Green Hyderabad Environment Program. Restoration of Mir Alam Tank, Durgamcheruvu, Patel cheruvu, Pedda Cheruvu and Nallacheruvu lakes have been taken up under the second phase. There are of six lakes viz., RKPuramcheruvu, Nadimicheruvu (Safilguda), Bandacheruvu Patelcheruvu, Peddacheruvu, Nallacheruvu, in North East Musi Basin covering 38 sq km. Bimonthly monitoring of lake water quality for BOD, COD, Total Nitrogen, Total phosphorous has been carried out for two hydrological cycles during October 2002- October 2004 in all the five lakes at inlet channels and outlets. The sediments in the lake have been also assessed for nutrient status. The nutrient parameters have been used to assess eutrophic condition through computation of Trophic Status Index, which has indicated that all the above lakes under study are under hyper-eutrophic condition. The hydrogeological, geophysical, water quality and groundwater data base collected in two watersheds covering 4 lakes has been used to construct groundwater flow and mass transport models. The interaction of lake-water with groundwater has been computed for assessing the lake water budget combining with inflow and outflow measurements on streams entering and leaving the lakes. Individual lake water budget has been used for design of appropriate capacity of Sewage Treatment Plants (STPs) on the inlet channels of the lakes for maintaining Full Tank Level (FTL) in each lake. STPs are designed for tertiary treatment i.e. removal of nutrient load viz., Phosphates and Nitrates. Phosphates are

  1. The Potential Applications of Real-Time Monitoring of Water Quality in a Large Shallow Lake (Lake Taihu, China) Using a Chromophoric Dissolved Organic Matter Fluorescence Sensor

    OpenAIRE

    Niu, Cheng; Zhang, Yunlin; Zhou, Yongqiang; Shi, Kun; Liu, Xiaohan; Qin, Boqiang

    2014-01-01

    This study presents results from field surveys performed over various seasons in a large, eutrophic, shallow lake (Lake Taihu, China) using an in situ chromophoric dissolved organic matter (CDOM) fluorescence sensor as a surrogate for other water quality parameters. These measurements identified highly significant empirical relationships between CDOM concentration measured using the in situ fluorescence sensor and CDOM absorption, fluorescence, dissolved organic carbon (DOC), chemical oxygen ...

  2. Ocean acidification with (de)eutrophication will alter future phytoplankton growth and succession

    DEFF Research Database (Denmark)

    Flynn, Kevin J.; Darren, Clark R.; Mitra, Aditee

    2015-01-01

    Human activity causes ocean acidification (OA) though the dissolution of anthropogenically generated CO2 into seawater, and eutrophication through the addition of inorganic nutrients. Eutrophication increases the phytoplankton biomass that can be supported during a bloom, and the resultant uptake...

  3. Physical Factors Correlate to Microbial Community Structure and Nitrogen Cycling Gene Abundance in a Nitrate Fed Eutrophic Lagoon.

    Science.gov (United States)

    Highton, Matthew P; Roosa, Stéphanie; Crawshaw, Josie; Schallenberg, Marc; Morales, Sergio E

    2016-01-01

    Nitrogenous run-off from farmed pastures contributes to the eutrophication of Lake Ellesmere, a large shallow lagoon/lake on the east coast of New Zealand. Tributaries periodically deliver high loads of nitrate to the lake which likely affect microbial communities therein. We hypothesized that a nutrient gradient would form from the potential sources (tributaries) creating a disturbance resulting in changes in microbial community structure. To test this we first determined the existence of such a gradient but found only a weak nitrogen (TN) and phosphorous gradient (DRP). Changes in microbial communities were determined by measuring functional potential (quantification of nitrogen cycling genes via nifH , nirS , nosZI , and nosZII using qPCR), potential activity (via denitrification enzyme activity), as well as using changes in total community (via 16S rRNA gene amplicon sequencing). Our results demonstrated that changes in microbial communities at a phylogenetic (relative abundance) and functional level (proportion of the microbial community carrying nifH and nosZI genes) were most strongly associated with physical gradients (e.g., lake depth, sediment grain size, sediment porosity) and not nutrient concentrations. Low nitrate influx at the time of sampling is proposed as a factor contributing to the observed patterns.

  4. Physical factors correlate to microbial community structure and nitrogen cycling gene abundance in a nitrate fed eutrophic lagoon

    Directory of Open Access Journals (Sweden)

    Matthew Paul Highton

    2016-10-01

    Full Text Available Nitrogenous run-off from farmed pastures contributes to the eutrophication of Lake Ellesmere, a large shallow lagoon/lake on the east coast of New Zealand. Tributaries periodically deliver high loads of nitrate to the lake which likely affect microbial communities therein. We hypothesized that a nutrient gradient would form from the potential sources (tributaries creating a disturbance resulting in changes in microbial community structure. To test this we first determined the existence of such a gradient but found only a weak nitrogen (TN and phosphorous gradient (DRP. Changes in microbial communities were determined by measuring functional potential (quantification of nitrogen cycling genes via nifH, nirS, nosZI and nosZII using qPCR, potential activity (via denitrification enzyme activity, as well as using changes in total community (via 16S rRNA gene amplicon sequencing. Our results demonstrated that changes in microbial communities at a phylogenetic (relative abundance and functional level (proportion of the microbial community carrying nifH and nosZI genes were most strongly associated with physical gradients (e.g. lake depth, sediment grain size, sediment porosity and not nutrient concentrations. Low nitrate influx at the time of sampling is proposed as a factor contributing to the observed patterns.

  5. Effects of N and P enrichment on competition between phytoplankton and benthic algae in shallow lakes: a mesocosm study : Environmental Science and Pollution Research

    NARCIS (Netherlands)

    Zhang, Xiufeng; Mei, Xueying; Gulati, Ramesh; Liu, Zhengwen

    2015-01-01

    Competition for resources between coexisting phytoplankton and benthic algae, but with different habitats and roles in functioning of lake ecosystems, profoundly affects dynamics of shallow lakes in the process of eutrophication. An experiment was conducted to test the hypothesis that combined

  6. Residence time and physical processes in lakes

    Directory of Open Access Journals (Sweden)

    Nicoletta SALA

    2003-09-01

    Full Text Available The residence time of a lake is highly dependent on internal physical processes in the water mass conditioning its hydrodynamics; early attempts to evaluate this physical parameter emphasize the complexity of the problem, which depends on very different natural phenomena with widespread synergies. The aim of this study is to analyse the agents involved in these processes and arrive at a more realistic definition of water residence time which takes account of these agents, and how they influence internal hydrodynamics. With particular reference to temperate lakes, the following characteristics are analysed: 1 the set of the lake's caloric components which, along with summer heating, determine the stabilizing effect of the surface layers, and the consequent thermal stratification, as well as the winter destabilizing effect; 2 the wind force, which transfers part of its momentum to the water mass, generating a complex of movements (turbulence, waves, currents with the production of active kinetic energy; 3 the water flowing into the lake from the tributaries, and flowing out through the outflow, from the standpoint of hydrology and of the kinetic effect generated by the introduction of these water masses into the lake. These factors were studied in the context of the general geographical properties of the lake basin and the watershed (latitude, longitude, morphology, also taking account of the local and regional climatic situation. Also analysed is the impact of ongoing climatic change on the renewal of the lake water, which is currently changing the equilibrium between lake and atmosphere, river and lake, and relationships

  7. Eutrophication, microbial-sulfate reduction and mass extinctions

    DEFF Research Database (Denmark)

    Schobben, Martin; Stebbins, Alan; Ghaderi, Abbas

    2016-01-01

    to the Earth system, notably, the biogeochemical sulfur and carbon cycle. This climate warming feedback produces large-scale eutrophication on the continental shelf, which, in turn, expands oxygen minimum zones by increased respiration, which can turn to a sulfidic state by increased microbial-sulfate...

  8. [Eutrophication control in local area by physic-ecological engineering].

    Science.gov (United States)

    Li, Qiu-Hua; Xia, Pin-Hua; Wu, Hong; Lin, Tao; Zhang, You-Chun; Li, Cun-Xiong; Chen, Li-Li; Yang, Fan

    2012-07-01

    An integrated physical and ecological engineering experiment for ecological remediation was performed at the Maixi River bay in Baihua Reservoir Guizhou Province, China. The results show that eutrophic parameters, such as total nitrogen, total phosphorus, chlorophyll a and chemical oxygen demand from the experimental site (enclosed water) were significantly lower than those of the reference site. The largest differences between the sites were 0.61 mg x L(-1), 0.041 mg x L(-1), 23.06 microg x L(-1), 8.4 mg x L(-1) respectively; experimental site transparency was > 1.50 m which was significantly higher than that of the reference site. The eutrophic index of the experimental site was oligo-trophic and mid-trophic, while the control site was mid-trophic state and eutrophic state. Phytoplankton abundance was 2 125.5 x 10(4) cells x L(-1) in June, 2011 at the control site,but phytoplankton abundance was lower at the experimental site with 33 x 10(4) cells x L(-1). Cyanobacteria dominated phytoplankton biomass at both sites, however the experimental site consisted of a higher proportion of diatoms and dinoflagellates. After more than one year of operation, the ecological engineering technology effectively controlled the occurrence of algae blooms, changed phytoplankton community structure, and controlled the negative impacts of eutrophication. Integrating physical and ecological engineering technology could improve water quality for reservoirs on the Guizhou plateau.

  9. Eutrophication of an Urban Forest Ecosystem: Causes and Effects

    Science.gov (United States)

    Bednova, O. V.; Kuznetsov, V. A.; Tarasova, N. P.

    2018-01-01

    The combined use of methods of passive dosimetry of the status of atmospheric air, phytoindication, and cartographic visualization of data made it possible to elaborate and substantiate approaches to evaluation of the effect of atmospheric air contamination on the eutrophication of forest ecosystems under urban conditions.

  10. Phosphorus and nitrogen in the eutrophication of waters

    International Nuclear Information System (INIS)

    Salonen, S.; Frisk, T.; Kaermeniemi, T.; Niemi, J.; Pitkaenen, H.; Silvo, K.; Vuoristo, H.

    1992-01-01

    This report is a summary of the contribution of nitrogen and phosphorus in the eutrophication process of inland and coastal waters. Special attention was paid to the mechanisms of these nutrients in regulating biological processes and to the methods available in estimating their effects in the eutrophication of water bodies. The report includes five chapters which are entitled: Introduction, which is a general background to the subject with special attention to the requirements of the Finnish Water Act. Phosphorus and nitrogen as factors regulating biological processes. The topics included are: definition of eutrophication, forms of phosphorus and nitrogen and their sources to inland and coastal waters, effects of these nutrients as growth factors of phytoplankton and macrophytes and consequences of eutrophication. Estimation of the effects of phosphorus and nitrogen. The topics discussed from the point of view of the tasks of the National Board of Waters and the Environment are: estimation of the effects of phosphorus and nitrogen in the planning and supervision of industry, fish farming, peat production, municipalities, agriculture and forestry. A brief state-of-the art of the research carried out in the National Board of Waters and the Environment is given. Methods of estimating the effects of phosphorus and nitrogen loading in waters. The topics are: relationships between phosphorus and nitrogen concentrations in waters, material balances, water quality models, classification of waters and different groups of organisms as indicators of water quality. Conclusions for the estimation of the effects of phosphorus and nitrogen in receiving waters

  11. Quaternary Landforms and Basin Morphology Control the Natural Eutrophy of Boreal Lakes and Their Sensitivity to Anthropogenic Forcing

    Directory of Open Access Journals (Sweden)

    Mira Tammelin

    2018-05-01

    Full Text Available Both natural and anthropogenic changes in boreal lakes have been studied utilizing paleolimnological methods, but the spatial variation in the natural conditions of lakes and its connection to geological factors has drawn less attention. Our aims were to examine the spatial distribution of naturally eutrophic lakes on the previously glaciated terrain of central-eastern Finland and the relationship between pre-human disturbance water quality and geological factors related to the basins and their catchments. Furthermore, we studied the pre- to post-human disturbance changes in the diatom assemblages and water quality of 48 lakes (51 sampling sites across the pre-disturbance phosphorus gradient by using the top-bottom sampling approach and multivariate statistics. According to our results, naturally eutrophic boreal lakes are more common than previously thought, occurring on fine-grained and organic Quaternary landforms, including fine-grained till. Our study emphasizes the importance of the previously overlooked matter of till grain-size variation as a driver behind the spatial variation in the natural trophic states of boreal lakes. The location of a lake in the hydrologic landscape and basin morphology appear to be important factors as well. Shallow, naturally eutrophic lakes with short water residence times and high catchment area to lake area and volume ratios have been particularly sensitive to anthropogenic forcing. Our results indicate that cultural eutrophication is not the only water protection challenge for the relatively remote and dilute boreal lakes, but salinization and alkalinization are also serious threats that should be taken into account. Therefore, it is crucial to consider the notable variation in the natural conditions of boreal lakes in addition to mitigating the effects of anthropogenic forcing, such as nutrient loading, catchment erosion, salt pollution, and climate change, in order to achieve efficient water protection.

  12. Evaluation of ERTS data for certain oceanographic uses. [upwelling, water circulation, and pollution in Great Lakes

    Science.gov (United States)

    Strong, A. E. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Upwelling along the eastern shore of Lake Michigan was occurring during the 3 and 21 August 1973 visits by ERTS-1. The NOAA-2 VHRR thermal-IR data are being digitized for comparison. Early indications are that these upwellings induced a calcium carbonate precipitate to form in the surface waters. It is most pronounced in the MSS-4 channel. On the lake bottom this jell-like sediment is known as marl and adds to the eutrophication of the lake. This phenomenon may help to explain the varve-like nature of bottom cores that have been observed in the Great Lakes.

  13. LIMNOLOGY, LAKE BASINS, LAKE WATERS

    Directory of Open Access Journals (Sweden)

    Petre GÂŞTESCU

    2009-06-01

    Full Text Available Limnology is a border discipline between geography, hydrology and biology, and is also closely connected with other sciences, from it borrows research methods. Physical limnology (the geography of lakes, studies lake biotopes, and biological limnology (the biology of lakes, studies lake biocoenoses. The father of limnology is the Swiss scientist F.A. Forel, the author of a three-volume entitled Le Leman: monographie limnologique (1892-1904, which focuses on the geology physics, chemistry and biology of lakes. He was also author of the first textbook of limnology, Handbuch der Seenkunde: allgemeine Limnologie,(1901. Since both the lake biotope and its biohydrocoenosis make up a single whole, the lake and lakes, respectively, represent the most typical systems in nature. They could be called limnosystems (lacustrine ecosystems, a microcosm in itself, as the American biologist St.A. Forbes put it (1887.

  14. [Characterizing chromophoric dissolved organic matter (CDOM) in Lake Honghu, Lake Donghu and Lake Liangzihu using excitation-emission matrices (EEMs) fluorescence and parallel factor analysis (PARAFAC)].

    Science.gov (United States)

    Zhou, Yong-Qiang; Zhang, Yun-Lin; Niu, Cheng; Wang, Ming-Zhu

    2013-12-01

    Little is known about DOM characteristics in medium to large sized lakes located in the middle and lower reaches of Yangtze River, like Lake Honghu, Lake Donghu and Lake Liangzihu. Absorption, fluorescence and composition characteristics of chromophoric dissolved organic matter (CDOM) are presented using the absorption spectroscopy, the excitation-emission ma trices (EEMs) fluorescence and parallel factor analysis (PARAFAC) model based on the data collected in Sep-Oct. 2007 including 15, 9 and 10 samplings in Lake Honghu, Lake Donghu and Lake Liangzihu, respectively. CDOM absorption coefficient at 350 nm a(350) coefficient in Lake Honghu was significantly higher than those in Lake Donghu and Lake Liangzihu (t-test, pCDOM spectral slope in the wavelength range of 280-500 nm (S280-500) and a(350) (R2 =0. 781, p<0. 001). The mean value of S280-500 in Lake Honghu was significantly lower than those in Lake Donghu (t-test, pLake Liangzihu (t-test, p<0. 001). The mean value of spectral slope ratio SR in Lake Honghu was also significantly lower than those in Lake Donghu and Lake Liangzihu (t-test, p<0. 05). Two humic-like (C1, C2) and two protein-like fluorescent components (C3, C4) were identified by PARAFAC model, among which significant positive correlations were found between C1 and C2 (R2 =0. 884, p<0. 001), C3 and C4 (R2 =0. 677, p<0.001), respectively, suggesting that the sources of the two humic-like components as well as the two protein-like components were similar. However, no significant correlation has been found between those 4 fluorescent components and DOC concentration. Th e fluorescenceindices of FI255 (HIX), Fl265, FI310 (BIX) and Fl370 in Lake Donghu were all significantly higher than those in Lake Liangzihu (t-test, p <0.05) and Lake Honghu (t-test, p<0. 01), indicating that the eutrophication status in Lake Donghu was higher than Lake Honghu and Lake Liangzihu.

  15. The evolution of a mining lake - From acidity to natural neutralization

    Energy Technology Data Exchange (ETDEWEB)

    Sienkiewicz, Elwira, E-mail: esienkie@twarda.pan.pl; Gąsiorowski, Michał, E-mail: mgasior@twarda.pan.pl

    2016-07-01

    Along the border of Poland and Germany (central Europe), many of the post-mining lakes have formed “an anthropogenic lake district”. This study presents the evolution of a mining lake ecosystem (TR-33) based on subfossil phyto- and zooplankton, isotopic data (δ{sup 13}C, δ{sup 15}N), elemental analyses of organic carbon and nitrogen (C/N ratio and TOC) and sedimentological analyses. Recently, lake TR-33 became completely neutralized from acidification and an increase in eutrophication began a few years ago. However, the lake has never been neutralized by humans; only natural processes have influenced the present water quality. From the beginning of the existence of the lake (1920s) to the present, we can distinguish four stages of lake development: 1) very shallow reservoir without typical lake sediments but with a sand layer containing fine lignite particles and very poor diatom and cladoceran communities; 2) very acidic, deeper water body with increasing frequencies of phyto- and zooplankton; 3) transitional period (rebuilding communities of diatoms and Cladocera), meaning a deep lake with benthic and planktonic fauna and flora with wide ecological tolerances; and 4) a shift to circumneutral conditions with an essential increase in planktonic taxa that prefer more fertile waters (eutrophication). In the case of lake TR-33, this process of natural neutralization lasted approximately 23 years. - Highlights: • Originally acid water lake had poor phyto- and zooplankton populations. • Process of natural neutralization lasted approximately 23 years. • Presently, lake's ecosystem is similar to other shallow lakes in the region. • Changes in the lake are representative for other mine lakes.

  16. Laboratory studies of dissolved radiolabelled microcystin-LR in lake water

    DEFF Research Database (Denmark)

    Hyenstrand, Per; Rohrlack, Thomas; Beattie, Kenneth A

    2003-01-01

    The fate of dissolved microcystin-LR was studied in laboratory experiments using surface water taken from a eutrophic lake. Based on initial range finding, a concentration of 50 microg l(-1) dissolved 14C-microcystin-LR was selected for subsequent time-course experiments. The first was performed ...... fractions. The study demonstrated that biodegradation of dissolved microcystin-LR occurred in water collected at a lake surface with carbon dioxide as a major end-product....

  17. Organic carbon mass accumulation rate regulates the flux of reduced substances from the sediments of deep lakes

    Directory of Open Access Journals (Sweden)

    T. Steinsberger

    2017-07-01

    Full Text Available The flux of reduced substances, such as methane and ammonium, from the sediment to the bottom water (Fred is one of the major factors contributing to the consumption of oxygen in the hypolimnia of lakes and thus crucial for lake oxygen management. This study presents fluxes based on sediment porewater measurements from different water depths of five deep lakes of differing trophic states. In meso- to eutrophic lakes Fred was directly proportional to the total organic carbon mass accumulation rate (TOC-MAR of the sediments. TOC-MAR and thus Fred in eutrophic lakes decreased systematically with increasing mean hypolimnion depth (zH, suggesting that high oxygen concentrations in the deep waters of lakes were essential for the extent of organic matter mineralization leaving a smaller fraction for anaerobic degradation and thus formation of reduced compounds. Consequently, Fred was low in the 310 m deep meso-eutrophic Lake Geneva, with high O2 concentrations in the hypolimnion. By contrast, seasonal anoxic conditions enhanced Fred in the deep basin of oligotrophic Lake Aegeri. As TOC-MAR and zH are based on more readily available data, these relationships allow estimating the areal O2 consumption rate by reduced compounds from the sediments where no direct flux measurements are available.

  18. Bio-accumulation of lanthanum from lanthanum modified bentonite treatments in lake restoration

    NARCIS (Netherlands)

    Waajen, G.; Van Oosterhout, F.; Lürling, M.

    2017-01-01

    Abstract Lanthanum (La) modified bentonite (LMB) is one of the available mitigating agents used for the reduction of the phosphorus (P) recycling in eutrophic lakes. The potential toxicity of the La from LMB to aquatic organisms is a matter of concern. In this study the accumulation of La was

  19. Lake Erie, phosphorus and microcystin: Is it really the farmer's fault?

    Science.gov (United States)

    Agricultural loss of phosphorus (P) have been identified as a primary contributor to eutrophication and the associated release of toxins (i.e., mycrocystin) in Lake Erie. These losses are commonly deemed excessive by the media and the public, singling out agriculture as the culprit in spite of redu...

  20. The zooplankton community of Lake Abo Zaabal, a newly-formed ...

    African Journals Online (AJOL)

    Cladocera were seldom recorded. Hexarthra, Brachionus and Rotaria were the dominant rotifer taxa. Several characteristics — including the community composition, the dominance of small ciliates and nauplii, the abundance of Cyanobacteria, and the absence of macrophytes — indicated that it is a severely eutrophic lake.

  1. Nitrogen removal by denitrification in the sediments of a shallow lake

    NARCIS (Netherlands)

    Luijn, van F.

    1997-01-01

    Most surface waters in the Netherlands are highly eutrophicated due to high loadings with the nutrients nitrogen (N) and phosphorus (P). To improve the water quality of lakes often the phosphorus loading is reduced. Due to phosphorus release from the sediments the success of the recovery of

  2. Impacts of climate warming on lake fish community structure and potential effects on ecosystem function

    NARCIS (Netherlands)

    Jeppesen, E.; Meerhoff, M.; Holmgren, K.; González-Bergonzoni, I.; Teixeira-de Mello, F.; Declerck, Steven A.J.; De Meester, L.; Søndergaard, M.; Lauridsen, T.; Bjerring, R.; Conde-Porcuna, J-M.; Mazzeo, N.; Iglesias, C.; Reizenstein, M.; Malmquist, H.J.; Liu, Z.; Balayla, D.; Lazzaro, X.

    2010-01-01

    Fish play a key role in the trophic dynamics of lakes, not least in shallow systems. With climate warming, complex changes in fish community structure may be expected owing to the direct and indirect effects of temperature, and indirect effects of eutrophication, water-level changes and salinisation

  3. Water quality and remote sensing: A case study of Lake Naivasha, Kenya

    CSIR Research Space (South Africa)

    Majozi, NP

    2012-10-01

    Full Text Available validation gave an RSME 0.24 and MAE 20%. Atmospheric correction processors, MERIS Neural Network processors, and the ODESA software, were applied to MERIS images. Eutrophic Lakes was the most accurate at 490nm with MAE 43% and RSME 0.49. The Zeu maps show...

  4. Species succession and sustainability of the Great Lakes fish community

    Science.gov (United States)

    Eshenroder, Randy L.; Burnham-Curtis, Mary K.; Taylor, William W.; Ferreri, C. Paola

    1999-01-01

    This article concentrates on the sustainability of the offshore pelagic and deepwater fish communities that were historically dominated by lake trout (Salvelinus namaycush). The causes of alteration in these fish communities (i.e., overfishing, introductions, and cultural eutrophication) were identified by Loftus and Regier (1972). Here we look at the ecology of these altered communities in relation to sustainability and discuss the need for restoration.

  5. Annotated Bibliography for Lake Erie. Volume II. Chemical,

    Science.gov (United States)

    1974-10-01

    ural forces tending to restore equilibrium. Bieber , Glen F. - See: Frank J. Little, Jr., et al, No. 212. 37. Bird, John. 1966. Our dying waters...research should indicate more definite trends. 207. Leonard, Justin W. 1962. Environmental requirements of Ephemeroptera. In: Clarence M. Tarzwell (Ed... Bieber , Thomas J. Horst and Danley F. Brown. 1973. Possible accelerated eutrophication thresholds in the Great Lakes rela- tive to human population

  6. Eutrophication decrease: Phosphate adsorption processes in presence of nitrates.

    Science.gov (United States)

    Boeykens, Susana P; Piol, M Natalia; Samudio Legal, Lisa; Saralegui, Andrea B; Vázquez, Cristina

    2017-12-01

    Eutrophication causes aquatic environment degradation as well as serious problems for different purposes of water uses. Phosphorus and nitrogen, mainly as phosphate and nitrate respectively, are considered responsible for eutrophication degradation. The focus of this work was the study of adsorption processes for decreasing phosphate and nitrate concentrations in bi-component aqueous systems. Dolomite and hydroxyapatite were selected as low-cost adsorbents. Obtained results showed that both adsorbents have high capacity for phosphate adsorption which the presence of nitrate does not modify. Hydroxyapatite proved to be the most efficient adsorbent, however, it showed a low percentage of desorption and few possibilities of reuse. Dolomite, on the other hand, allows a desorption of the adsorbed material that favours its reuse. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Lake depth rather than fish planktivory determines cladoceran community structure in Faroese lakes - evidence from contemporary data and sediments

    DEFF Research Database (Denmark)

    Amsinck, S.L.; Strzelczak, A.; Bjerring, R.

    2006-01-01

    development was inferred by cladoceran-based paleolimnological investigations of a 14C-dated sediment core covering the last ca 5700 years. 3. The 29 study lakes were overall shallow, small-sized, oligotrophic and dominated by brown trout (Salmo trutta). Cladoceran species richness was overall higher...... depth. A recent increase in inferred Zmax may, however, be an artefact induced by, for instance, eutrophication....

  8. Controlling Eutrophication in A Mediterranean Shallow Reservoir by Phosphorus Loading Reduction: The Need for an Integrated Management Approach

    Science.gov (United States)

    Zaragüeta, Mikel; Acebes, Pablo

    2017-04-01

    Increased nutrient enrichment in Mediterranean standing waters has enhanced the risk of being affected by cyanobacterial blooms. Because phosphorus abatement is shaped as a crucial strategy for controlling eutrophication, this study introduces a structural thinking, experiential learning laboratory with animation dynamic model elaborated for Cazalegas Reservoir (Spain) to assess the feasibility of implementing a set of internal and external control measures and hydromorphological adjustments to meet the goal of oligotrophication. This shallow reservoir is another case where recurrent eutrophication has led to reach annual mean total phosphorus concentrations (0.16 ± 0.08 mg total phosphorus/L) over the threshold of current water policies, triggering cyanobacterial growth up to undesirable levels in summer time (approximately 50,000 cells/mL). Modeling results showed that (i) after upgrading water treatment in the main tributary, (ii) applying a lanthanum-modified bentonite into the water column and sediment, and (iii) increasing reservoir water level, in-lake P concentrations and cyanobacterial abundance decreased in an 88% (below 0.01 mg total phosphorus/L) and 84% (below 6000 cells/mL), respectively in the most critical periods. However, the constraints of the proposed management strategies are associated with their costs of implementation and the time span for a stable trophic recovery of the reservoir. In that end, integrated management approaches are aimed to be adopted by water managers to reach adequate ecological status of freshwater bodies.

  9. Methane Ebullition in Temperate Hydropower Reservoirs and Implications for US Policy on Greenhouse Gas Emissions.

    Science.gov (United States)

    Miller, Benjamin L; Arntzen, Evan V; Goldman, Amy E; Richmond, Marshall C

    2017-10-01

    The United States is home to 2198 dams actively used for hydropower production. With the December 2015 consensus adoption of the United Nations Framework Convention on Climate Change Paris Agreement, it is important to accurately quantify anthropogenic greenhouse gas emissions. Methane ebullition, or methane bubbles originating from river or lake sediments, has been shown to account for nearly all methane emissions from tropical hydropower reservoirs to the atmosphere. However, distinct ebullitive methane fluxes have been studied in comparatively few temperate hydropower reservoirs globally. This study measures ebullitive and diffusive methane fluxes from two eastern Washington reservoirs, and synthesizes existing studies of methane ebullition in temperate, boreal, and tropical hydropower reservoirs. Ebullition comprises nearly all methane emissions (>97%) from this study's two eastern Washington hydropower reservoirs to the atmosphere. Summer methane ebullition from these reservoirs was higher than ebullition in six southeastern U.S. hydropower reservoirs, however it was similar to temperate reservoirs in other parts of the world. Our literature synthesis suggests that methane ebullition from temperate hydropower reservoirs can be seasonally elevated compared to tropical climates, however annual emissions are likely to be higher within tropical climates, emphasizing the possible range of methane ebullition fluxes and the need for the further study of temperate reservoirs. Possible future changes to the Intergovernmental Panel on Climate Change and UNFCCC guidelines for national greenhouse gas inventories highlights the need for accurate assessment of reservoir emissions.

  10. Methane Ebullition in Temperate Hydropower Reservoirs and Implications for US Policy on Greenhouse Gas Emissions

    Science.gov (United States)

    Miller, Benjamin L.; Arntzen, Evan V.; Goldman, Amy E.; Richmond, Marshall C.

    2017-10-01

    The United States is home to 2198 dams actively used for hydropower production. With the December 2015 consensus adoption of the United Nations Framework Convention on Climate Change Paris Agreement, it is important to accurately quantify anthropogenic greenhouse gas emissions. Methane ebullition, or methane bubbles originating from river or lake sediments, has been shown to account for nearly all methane emissions from tropical hydropower reservoirs to the atmosphere. However, distinct ebullitive methane fluxes have been studied in comparatively few temperate hydropower reservoirs globally. This study measures ebullitive and diffusive methane fluxes from two eastern Washington reservoirs, and synthesizes existing studies of methane ebullition in temperate, boreal, and tropical hydropower reservoirs. Ebullition comprises nearly all methane emissions (>97%) from this study's two eastern Washington hydropower reservoirs to the atmosphere. Summer methane ebullition from these reservoirs was higher than ebullition in six southeastern U.S. hydropower reservoirs, however it was similar to temperate reservoirs in other parts of the world. Our literature synthesis suggests that methane ebullition from temperate hydropower reservoirs can be seasonally elevated compared to tropical climates, however annual emissions are likely to be higher within tropical climates, emphasizing the possible range of methane ebullition fluxes and the need for the further study of temperate reservoirs. Possible future changes to the Intergovernmental Panel on Climate Change and UNFCCC guidelines for national greenhouse gas inventories highlights the need for accurate assessment of reservoir emissions.

  11. Benthic biogeochemical cycling, nutrient stoichiometry, and carbon and nitrogen mass balances in a eutrophic freshwater bay

    Science.gov (United States)

    Klump, J.V.; Fitzgerald, S.A.; Waplesa, J.T.

    2009-01-01

    Green Bay, while representing only ,7% of the surface area and ??1.4% of the volume of Lake Michigan, contains one-third of the watershed of the lake, and receives approximately one-third of the total nutrient loading to the Lake Michigan basin, largely from the Fox River at the southern end of the bay. With a history of eutrophic conditions dating back nearly a century, the southern portion of the bay behaves as an efficient nutrient and sediment trap, sequestering much of the annual carbon and nitrogen input within sediments accumulating at up to 1 cm per year. Depositional fluxes of organic matter varied from ??0.1 mol C m-2 yr-1 to >10 mol C m-2 yr-1 and were both fairly uniform in stoichiometric composition and relatively labile. Estimates of benthic recycling derived from pore-water concentration gradients, whole-sediment incubation experiments, and deposition-burial models of early diagenesis yielded an estimated 40% of the carbon and 50% of the nitrogen recycled back into the overlying water. Remineralization was relatively rapid with ??50% of the carbon remineralized within <15 yr of deposition, and a mean residence time for metabolizable carbon and nitrogen in the sediments of 20 yr. On average, organic carbon regeneration occurred as 75% CO2, 15% CH4, and 10% dissolved organic carbon (DOC). Carbon and nitrogen budgets for the southern bay were based upon direct measurements of inputs and burial and upon estimates of export and production derived stoichiometrically from a coupled phosphorus budget. Loadings of organic carbon from rivers were ??3.7 mol m-2 yr-1, 80% in the form of DOC and 20% as particulate organic carbon. These inputs were lost through export to northern Green Bay and Lake Michigan (39%), through sediment burial (26%), and net CO2 release to the atmosphere (35%). Total carbon input, including new production, was 4.54 mol m-2 C yr-1, equivalent to ??10% of the gross annual primary production. Nitrogen budget terms were less well quantified

  12. Temperature dependence of the relationship between pCO2 and dissolved organic carbon in lakes

    KAUST Repository

    Pinho, L.

    2016-02-15

    The relationship between the partial pressure of carbon dioxide (pCO2) and dissolved organic carbon (DOC) concentration in Brazilian lakes, encompassing 225 samples across a wide latitudinal range in the tropics, was tested. Unlike the positive relationship reported for lake waters, which was largely based on temperate lakes, we found no significant relationship for low-latitude lakes (< 33°), despite very broad ranges in both pCO2 and DOC levels. These results suggest substantial differences in the carbon cycling of low-latitude lakes, which must be considered when upscaling limnetic carbon cycling to global scales.

  13. Temperature dependence of the relationship between pCO2 and dissolved organic carbon in lakes

    KAUST Repository

    Pinho, L.; Duarte, Carlos M.; Marotta, H.; Enrich-Prast, A.

    2016-01-01

    The relationship between the partial pressure of carbon dioxide (pCO2) and dissolved organic carbon (DOC) concentration in Brazilian lakes, encompassing 225 samples across a wide latitudinal range in the tropics, was tested. Unlike the positive relationship reported for lake waters, which was largely based on temperate lakes, we found no significant relationship for low-latitude lakes (< 33°), despite very broad ranges in both pCO2 and DOC levels. These results suggest substantial differences in the carbon cycling of low-latitude lakes, which must be considered when upscaling limnetic carbon cycling to global scales.

  14. On choice of tempered steels

    International Nuclear Information System (INIS)

    Govorov, A.A.; Pan'shin, I.F.; Rakhmanov, V.I.

    1978-01-01

    For the purpose of developing a graphical method for choosing structural steels, a change in the propagation work of a crack and in the critical temperature of brittleness of 40, 40Kh, 40KhN, and 40KhNM steels, was examined depending on the hardness after hardening and tempering. A diagram enabling to choose the grade of steel for making an article of known dimensions according to the preset values of its mechanical properties has been plotted. The developed selection scheme takes into account the hardenability of steels and the influence of the hardness after thermal treatment on the cold-shortness of steel

  15. Mercury contamination level and speciation inventory in Lakes Titicaca & Uru-Uru (Bolivia): Current status and future trends.

    Science.gov (United States)

    Guédron, S; Point, D; Acha, D; Bouchet, S; Baya, P A; Tessier, E; Monperrus, M; Molina, C I; Groleau, A; Chauvaud, L; Thebault, J; Amice, E; Alanoca, L; Duwig, C; Uzu, G; Lazzaro, X; Bertrand, A; Bertrand, S; Barbraud, C; Delord, K; Gibon, F M; Ibanez, C; Flores, M; Fernandez Saavedra, P; Ezpinoza, M E; Heredia, C; Rocha, F; Zepita, C; Amouroux, D

    2017-12-01

    Aquatic ecosystems of the Bolivian Altiplano (∼3800 m a.s.l.) are characterized by extreme hydro-climatic constrains (e.g., high UV-radiations and low oxygen) and are under the pressure of increasing anthropogenic activities, unregulated mining, agricultural and urban development. We report here a complete inventory of mercury (Hg) levels and speciation in the water column, atmosphere, sediment and key sentinel organisms (i.e., plankton, fish and birds) of two endorheic Lakes of the same watershed differing with respect to their size, eutrophication and contamination levels. Total Hg (THg) and monomethylmercury (MMHg) concentrations in filtered water and sediment of Lake Titicaca are in the lowest range of reported levels in other large lakes worldwide. Downstream, Hg levels are 3-10 times higher in the shallow eutrophic Lake Uru-Uru than in Lake Titicaca due to high Hg inputs from the surrounding mining region. High percentages of MMHg were found in the filtered and unfiltered water rising up from <1 to ∼50% THg from the oligo/hetero-trophic Lake Titicaca to the eutrophic Lake Uru-Uru. Such high %MMHg is explained by a high in situ MMHg production in relation to the sulfate rich substrate, the low oxygen levels of the water column, and the stabilization of MMHg due to abundant ligands present in these alkaline waters. Differences in MMHg concentrations in water and sediments compartments between Lake Titicaca and Uru-Uru were found to mirror the offset in MMHg levels that also exist in their respective food webs. This suggests that in situ MMHg baseline production is likely the main factor controlling MMHg levels in fish species consumed by the local population. Finally, the increase of anthropogenic pressure in Lake Titicaca may probably enhance eutrophication processes which favor MMHg production and thus accumulation in water and biota. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Microbial mechanisms of using enhanced ecological floating beds for eutrophic water improvement.

    Science.gov (United States)

    Wu, Qing; Hu, Yue; Li, Shuqun; Peng, Sen; Zhao, Huabing

    2016-07-01

    Enhanced ecological floating beds were implemented to reduce nutrient quantity and improve the water quality of a eutrophic lake. The results showed that average removal efficiencies of CODCr, total nitrogen, NH3-N and total phosphorus for Canna indica L. set-up were 23.1%, 15.3%, 18.1% and 19.4% higher, respectively, than that of the setup with only substrate, and 14.2%, 12.8%, 7.9% and 11.9% higher than Iris pseudacorus L. ecological floating bed. The microbial community structure had obvious differences between devices and low similarity; bacteria were mainly attached on the fiber filling. The microbial population was abundant at the start and end of the experiment. Shannon index of samples selected ranged from 0.85 to 1.05. The sequencing results showed that fiber filling collected most uncultured bacteria species and the majority of bacteria on the plant roots were β-Proteobacteria and α-Proteobacteria. The co-dominant species attaching to the filling and plant was Nitrosomonadaceae. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Analysis of black water aggregation in Taihu Lake

    Directory of Open Access Journals (Sweden)

    Gui-hua Lu

    2011-12-01

    Full Text Available Black water aggregation (BWA in Taihu Lake is a disaster for the lake environment. It is a phenomenon resulting from water environmental deterioration and eutrophication caused by accumulation of pollutants in the lake, according to research on the water quality, pollutants of BWA, and occurrence mechanisms of BWA. Dead algae are the material base of BWA, the polluted sediment is an important factor for the formation of BWA, and hydrological and meteorological conditions such as sun light, air temperature, wind speed, and water flow are the other factors that may lead to the formation of BWA. Thioether substances such as dimethyl trisulfide are the representative pollutants of BWA. Parameters such as chlorophyll-a, DO, pH, and water temperature are sensitive indicators of BWA. Measures such as algae collection, ecological dredging, pollution control, and water diversion from the Yangtze River to the lake, are effective, and strengthening aeration is an emergency measure to control BWA.

  18. Driving forces of the diel distribution of phytoplankton functional groups in a shallow tropical lake (Lake Monte Alegre, Southeast Brazil

    Directory of Open Access Journals (Sweden)

    LM. Rangel

    Full Text Available Phytoplankton vertical and diel dynamics in a small shallow lake (Lake Monte Alegre, Ribeirão Preto, state of São Paulo were investigated in two climatological periods: July 2001 (cool-dry season and March 2002 (warm-rainy season. Monte Alegre is a eutrophic reservoir, with a warm polymictic discontinuous circulation pattern. The lake was thermally stratified in both periods, although dissolved oxygen varied less in the cool-dry period. Phytoplankton biomass was higher in the warm-rainy season and the vertical distribution was stratified in both seasons. Flagellate groups (Lm, Y, W1 and W2 and functional groups typical of shallow eutrophic environments (J, X1 and Sn were important throughout the study period. The lake's thermal pattern strongly influenced the vertical distribution of the phytoplankton community in both periods. Biomass, functional groups and size classes of phytoplankton also were determined by the presence of more efficient herbivores in the lake, especially during the cool-dry period when phytoplankton biomass decreased.

  19. Role of a productive lake in carbon sequestration within a calcareous catchment

    International Nuclear Information System (INIS)

    Nõges, Peeter; Cremona, Fabien; Laas, Alo; Martma, Tõnu; Rõõm, Eva-Ingrid; Toming, Kaire; Viik, Malle; Vilbaste, Sirje; Nõges, Tiina

    2016-01-01

    For a long time, lakes were considered unimportant in the global carbon (C) cycle because of their small total area compared to the ocean. Over the last two decades, a number of studies have highlighted the important role of lakes in both sequestering atmospheric C and modifying the C flux from the catchment by degassing CO_2 and methane and burying calcite and organic matter in the sediment. Based on a full C mass balance, high frequency measurements of lake metabolism and stable isotope analysis of a large shallow eutrophic lake in Estonia, we assess the role alkaline lakes play in augmenting the strength of terrestrial carbonate weathering as a temporary CO_2 sink. We show that a large part of organic C buried in the sediments in this type of lakes originates from the catchment although a direct uptake from the atmosphere during periods of intensive phytoplankton growth in eutrophic conditions contributes to the carbon sink. - Highlights: • Terrestrial carbonate weathering is considered a temporary sink for CO_2_. • Alkaline lakes precipitate calcite reverting chemical weathering reactions. • Algal uptake increased δ"1"3C of dissolved inorganic C while passing through the lake. • 40–70% of sediment organic C originated from catchment alkalinity export. • Biological uptake of released CO_2 counteracts emissions from reversed weathering.

  20. Role of a productive lake in carbon sequestration within a calcareous catchment

    Energy Technology Data Exchange (ETDEWEB)

    Nõges, Peeter, E-mail: peeter.noges@emu.ee [Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 61117 Rannu, Tartu County (Estonia); Cremona, Fabien; Laas, Alo [Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 61117 Rannu, Tartu County (Estonia); Martma, Tõnu [Institute of Geology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Rõõm, Eva-Ingrid [Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 61117 Rannu, Tartu County (Estonia); Toming, Kaire [Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 61117 Rannu, Tartu County (Estonia); Estonian Marine Institute, University of Tartu, Mäealuse 14, 12618 Tallinn (Estonia); Viik, Malle; Vilbaste, Sirje; Nõges, Tiina [Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 61117 Rannu, Tartu County (Estonia)

    2016-04-15

    For a long time, lakes were considered unimportant in the global carbon (C) cycle because of their small total area compared to the ocean. Over the last two decades, a number of studies have highlighted the important role of lakes in both sequestering atmospheric C and modifying the C flux from the catchment by degassing CO{sub 2} and methane and burying calcite and organic matter in the sediment. Based on a full C mass balance, high frequency measurements of lake metabolism and stable isotope analysis of a large shallow eutrophic lake in Estonia, we assess the role alkaline lakes play in augmenting the strength of terrestrial carbonate weathering as a temporary CO{sub 2} sink. We show that a large part of organic C buried in the sediments in this type of lakes originates from the catchment although a direct uptake from the atmosphere during periods of intensive phytoplankton growth in eutrophic conditions contributes to the carbon sink. - Highlights: • Terrestrial carbonate weathering is considered a temporary sink for CO{sub 2.} • Alkaline lakes precipitate calcite reverting chemical weathering reactions. • Algal uptake increased δ{sup 13}C of dissolved inorganic C while passing through the lake. • 40–70% of sediment organic C originated from catchment alkalinity export. • Biological uptake of released CO{sub 2} counteracts emissions from reversed weathering.

  1. Lake on life support: Evaluating urban lake management measures by using a coupled 1D-modelling approach

    Science.gov (United States)

    Ladwig, Robert; Kirillin, Georgiy; Hinkelmann, Reinhard; Hupfer, Michael

    2017-04-01

    Urban surface water systems and especially lakes are heavily stressed and modified systems to comply with water management goals and expectations. In this study we focus on Lake Tegel in Berlin, Germany, as a representative of heavily modified urban lakes. In the 20th century, Lake Tegel received increased loadings of nutrients and leached heavy metals from an upstream sewage farm resulting in severe eutrophication problems. The construction of two upstream treatment plants caused a lowering of nutrient concentrations and a re-oligotrophication of the lake. Additionally, artificial aerators, to keep the hypolimnion oxic, and a lake pipeline, to bypass water for maintaining a minimum discharge, went into operation. Lake Tegel is still heavily used for drinking water extraction by bank filtration. These interacting management measures make the system vulnerable to changing climate conditions and pollutant loads. Past modelling studies have shown the complex hydrodynamics of the lake. Here, we are following a simplified approach by using a less computational time consuming vertical 1D-model to simulate the hydrodynamics and the ecological interactions of the system by coupling the General Lake Model to the Aquatic Ecodynamics Model Library 2. For calibration of the multidimensional parameter space we applied the Covariance Matrix Adaption-Evolution Strategy algorithm. The model is able to sufficiently replicate the vertical field temperature profiles of Lake Tegel as well as to simulate similar concentration ranges of phosphate, dissolved oxygen and nitrate. The calibrated model is used to run an uncertainty analysis by sampling the simulated data within the meaning of the Metropolis-Hastings algorithm. Finally, we are evaluating different scenarios: (1) changing air temperatures, precipitation and wind speed due to effects of climate change, (2) decreased discharges into the lake due to bypassing treated effluents into a near stream instead of Lake Tegel, and (3

  2. Water level, vegetation composition, and plant productivity explain greenhouse gas fluxes in temperate cutover fens after inundation

    Science.gov (United States)

    Minke, Merten; Augustin, Jürgen; Burlo, Andrei; Yarmashuk, Tatsiana; Chuvashova, Hanna; Thiele, Annett; Freibauer, Annette; Tikhonov, Vitalij; Hoffmann, Mathias

    2016-07-01

    Peat extraction leaves a land surface with a strong relief of deep cutover areas and higher ridges. Rewetting inundates the deep parts, while less deeply extracted zones remain at or above the water level. In temperate fens the flooded areas are colonized by helophytes such as Eriophorum angustifolium, Carex spp., Typha latifolia or Phragmites australis dependent on water depth. Reeds of Typha and Phragmites are reported as large sources of methane, but data on net CO2 uptake are contradictory for Typha and rare for Phragmites. Here, we analyze the effect of vegetation, water level and nutrient conditions on greenhouse gas (GHG) emissions for representative vegetation types along water level gradients at two rewetted cutover fens (mesotrophic and eutrophic) in Belarus. Greenhouse gas emissions were measured campaign-wise with manual chambers every 2 to 4 weeks for 2 years and interpolated by modelling. All sites had negligible nitrous oxide exchange rates. Most sites were carbon sinks and small GHG sources. Methane emissions generally increased with net ecosystem CO2 uptake. Mesotrophic small sedge reeds with water table around the land surface were small GHG sources in the range of 2.3 to 4.2 t CO2 eq. ha-1 yr-1. Eutrophic tall sedge - Typha latifolia reeds on newly formed floating mats were substantial net GHG emitters in the range of 25.1 to 39.1 t CO2 eq. ha-1 yr. They represent transient vegetation stages. Phragmites reeds ranged between -1.7 to 4.2 t CO2 eq. ha-1 yr-1 with an overall mean GHG emission of 1.3 t CO2 eq. ha-1 yr-1. The annual CO2 balance was best explained by vegetation biomass, which includes the role of vegetation composition and species. Methane emissions were obviously driven by biological activity of vegetation and soil organisms. Shallow flooding of cutover temperate fens is a suitable measure to arrive at low GHG emissions. Phragmites australis establishment should be promoted in deeper flooded areas and will lead to moderate, but

  3. A Comparison of Alternative Strategies for Cost-Effective Water Quality Management in Lakes

    Science.gov (United States)

    Kramer, Daniel Boyd; Polasky, Stephen; Starfield, Anthony; Palik, Brian; Westphal, Lynne; Snyder, Stephanie; Jakes, Pamela; Hudson, Rachel; Gustafson, Eric

    2006-09-01

    Roughly 45% of the assessed lakes in the United States are impaired for one or more reasons. Eutrophication due to excess phosphorus loading is common in many impaired lakes. Various strategies are available to lake residents for addressing declining lake water quality, including septic system upgrades and establishing riparian buffers. This study examines 25 lakes to determine whether septic upgrades or riparian buffers are a more cost-effective strategy to meet a phosphorus reduction target. We find that riparian buffers are the more cost-effective strategy in every case but one. Large transaction costs associated with the negotiation and monitoring of riparian buffers, however, may be prohibiting lake residents from implementing the most cost-effective strategy.

  4. Application of digital image processing techniques and information systems to water quality monitoring of Lake Tahoe

    Science.gov (United States)

    Smith, A. Y.; Blackwell, R. J.

    1981-01-01

    The Tahoe basin occupies over 500 square miles of territory located in a graben straddling the boundary between California and Nevada. Lake Tahoe contains 126 million acre-feet of water. Since the 1950's the basin has experienced an ever increasing demand for land development at the expense of the natural watershed. Discharge of sediment to the lake has greatly increased owing to accelerated human interference, and alterations to the natural drainage patterns are evident in some areas. In connection with an investigation of the utility of a comprehensive system that takes into account the causes as well as the effects of lake eutrophication, it has been attempted to construct an integrated and workable data base, comprised of currently available data sources for the Lake Tahoe region. Attention is given to the image based information system (IBIS), the construction of the Lake Tahoe basin data base, and the application of the IBIS concept to the Lake Tahoe basin.

  5. Bioaccumulation and trophic transfer of mercury in a food web from a large, shallow, hypereutrophic lake (Lake Taihu) in China.

    Science.gov (United States)

    Wang, Shaofeng; Li, Biao; Zhang, Mingmei; Xing, Denghua; Jia, Yonfeng; Wei, Chaoyang

    2011-08-01

    Due to the fast development of industry and the overuse of agrichemicals in past decades, Lake Taihu, an important source of aquatic products for Eastern China, has simultaneously suffered mercury (Hg) contamination and eutrophication. The objectives of this study are to understand Hg transfer in the food web in this eutrophic, shallow lake and to evaluate the exposure risk of Hg through fish consumption. Biota samples including macrophytes, sestons, benthic animals, and fish were collected from Lake Taihu in the fall of 2009. The total mercury (THg), methyl mercury (MeHg), δ(13)C and δ(15)N in the samples were measured. The signature for δ(15)N increased with the trophic levels. Along with a diet composed of fish, the significant relationship between the δ(13)C and δ(15)N indicated that a pelagic foraging habitat is the dominant pathway for energy transfer in Lake Taihu. The concentrations of THg and MeHg in the organisms varied dramatically by ∼3 orders of magnitude from primary producers (macrophytes and sestons) to piscivorous fish. The highest concentrations of both THg (100 ng g(-1)) and MeHg (66 ng g(-1)), however, were lower than the guideline of 200 ng g(-1) of MeHg for vulnerable populations that is recommended by the World Health Organization (WHO). The daily intake of THg and MeHg of 92 and 56 ng day(-1) kg(-1) body weight, respectively, was generally lower than the tolerable intake of 230 ng day(-1) kg(-1) body weight for children recommended by the Joint FAO/WHO Expert Committee on Food Additives. Significant relationships between the δ(15)N and the logarithm of THg and MeHg showed an obvious biomagnification of Hg along the food web. The logarithmic bioaccumulation factor of MeHg in the fish (up to 5.7) from Lake Taihu, however, was relatively low compared to that of other aquatic ecosystems. Health risk of exposure to Hg by consumption of fish for local residents is relatively low in the Lake Taihu area. Dilution of Hg levels in

  6. 100 years of vegetation decline and recovery in Lake Fure, Denmark

    DEFF Research Database (Denmark)

    Jensen, Kaj Sand; Pedersen, Niels Lagergaard; Thorsgaard, Inge

    2008-01-01

    because deeper growth generates more niches. Reduction of species distribution and richness has been reversible following nutrient reduction of the long eutrophied lake, whereas species composition and abundance have not. The historical legacy of community composition is strong, as reflected by closer...... of eutrophication, but four reappeared. Mesotrophic macroalgae were replaced by hypertrophic species whose dominance has persisted. Species richness decreased from 37 to 13 species at the peak of eutrophication, before returning to 25 species during the recent recovery. Species richness increased with transparency...

  7. Piscivory and trophic position of Anguilla anguilla in two lakes: importance of macrozoobenthos density

    DEFF Research Database (Denmark)

    Dorner, H.; Skov, Christian; Berg, Søren

    2009-01-01

    The feeding habits of the European eel Anguilla anguilla (> 300 mm total length, L-T) were compared in two lakes of different environmental state: Lake Gro ss er Vatersee (LGV), Germany (clear water, mesotrophic and submerged macrophytes), and Lake Vallum (LV), Denmark (turbid, eutrophic and no s...... on these results, it is concluded that piscivory among A. anguilla was generally controlled by the density of macrozoobenthos. Stable isotope analysis further indicated that A. anguilla may act as integrators between benthic and pelagic food webs when density of insect larvae is low....

  8. Characterizing the Fate and Mobility of Phosphorus in Utah Lake Sediments

    Science.gov (United States)

    Carling, G. T.; Randall, M.; Nelson, S.; Rey, K.; Hansen, N.; Bickmore, B.; Miller, T.

    2017-12-01

    An increasing number of lakes worldwide are impacted by eutrophication and harmful algal blooms due to anthropogenic nutrient inputs. Utah Lake is a unique eutrophic freshwater lake that is naturally shallow, turbid, and alkaline with high dissolved oxygen levels that has experienced severe algal blooms in recent years. Recently, the Utah Division of Water Quality has proposed a new limitation of phosphorus (P) loading to Utah Lake from wastewater treatment plants in an effort to mitigate eutrophication. However, reducing external P loads may not lead to immediate improvements in water quality due to the legacy pool of nutrients in lake sediments. The purpose of this study was to characterize the fate and mobility of P in Utah Lake sediments to better understand P cycling in this unique system. We analyzed P speciation, mineralogy, and binding capacity in lake sediment samples collected from 15 locations across Utah Lake. P concentrations in sediment ranged from 615 to 1894 ppm, with highest concentrations in Provo Bay near the major metropolitan area. Sequential leach tests indicate that 25-50% of P is associated with Ca (CaCO₃/ Ca10(PO4)6(OH,F,Cl)2 ≈ P) and 40-60% is associated with Fe (Fe(OOH) ≈ P). Ca-associated P was confirmed by SEM images, which showed the highest P concentrations correlating with Ca (carbonate minerals/apatite). The Ca-associated P fraction is likely immobile, but the Fe-bound P is potentially bioavailable under changing redox conditions. Batch sorption results indicate that lake sediments have a high capacity to absorb and remove P from the water column, with an average uptake of 70-96% removal over the range of 1-10 mg/L P. Mineral precipitation and sorption to bottom sediments is an efficient removal mechanism of P in Utah Lake, but a significant portion of P may be temporarily available for resuspension and cycling in surface waters. Mitigating lake eutrophication is a complex problem that goes beyond decreasing external nutrient

  9. Spatial variation in lake benthic macroinvertebrate ecological assessment: a synthesis of European case studies

    DEFF Research Database (Denmark)

    Sandin, Leif Leonard; Solimini, Angelo G.

    2012-01-01

    macroinvertebrate community composition and natural and human induced environmental variables (eutrophication, catchment land-use, and hydromorphological pressures) were studied. This was done in different lake habitats (the profundal, sublittoral, and littoral) in five regions of Europe (Alpine, Northern, Central...... local invertebrate assemblages. In this issue we provide a contribution towards the understanding of basic sources of spatial variation of invertebrate assemblages in different European lake habitat types and their relationship with major human pressures. All papers have an obvious applied objective...... and our aim is to provide useful information for designing monitoring programs and invertebrate based ecological classification tools with the ultimate aim to improve a sound management of European lake ecosystems....

  10. Solar UVR-induced DNA damage and inhibition of photosynthesis in phytoplankton from Andean lakes of Argentina

    NARCIS (Netherlands)

    Villafane, VE; Buma, AGJ; Boelen, P; Helbling, EW

    2004-01-01

    During January 1999, studies were carried out in temperate lakes of the Andean region of Argentina (41degreesS, 71degreesW) to determine the short-term effects of solar ultraviolet radiation (UVR, 280-400 nm) upon natural phytoplankton assemblages. Organisms from one 'clear' (Lake Moreno) and two

  11. Optical Changes in a Eutrophic Estuary During Reduced Nutrient Loadings

    DEFF Research Database (Denmark)

    Pedersen, Troels Møller; Sand-Jensen, Kaj; Markager, Stiig

    2014-01-01

    Loss of water clarity is one of the consequences of coastal eutrophication. Efforts have therefore been made to reduce external nutrient loadings of coastal waters. This paper documents improvements to water clarity between 1985 and 2008–2009 at four stations in the microtidal estuary Roskilde...... to 74 % in 1985 to 78 to 85 % in 2008–2009. Overall, efforts to reduce nutrient loading and improve water clarity appeared to have had a larger impact on POM* than on Chl a and colored dissolved organic matter concentrations in the estuary, which can account for the decrease in the scatter...

  12. Climate Change Will Make Recovery from Eutrophication More Difficult in Shallow Danish Lake Søbygaard

    DEFF Research Database (Denmark)

    Rolighed, Jonas; Jeppesen, Erik; Søndergaard, Martin

    2016-01-01

    . The nutrient loading reduction scenarios predicted increased diatom dominance, accompanied by an increase in the zooplankton:phytoplankton biomass ratio. Simulations generally showed phytoplankton to benefit from a warmer climate and the fraction of cyanobacteria to increase. In the 6 ◦C warming scenario...

  13. Carbon flows in eutrophic Lake Rotsee : a ¹³C-labelling experiment

    NARCIS (Netherlands)

    Lammers, J.M.; Schubert, C.J.; Middelburg, J.J.; Reichart, Gert-Jan

    2016-01-01

    The microbial segment of food webs plays a crucial role in lacustrine food-web functioning and carbon transfer, thereby influencing carbon storage and CO2 emission and uptake in freshwater environments. Variability in microbial carbon processing (autotrophic and heterotrophic production and

  14. Light climate and its impact on Potamogeton pectinatus L. in a shallow eutrophic lake

    NARCIS (Netherlands)

    Dijk, van G.M.

    1991-01-01

    Eutrofiëring, dat wil zeggen een toename in aanbod van nutriënten, vormt de laatste decennia een van de belangrijkste bedreigingen voor aquatische ecosystemen in zoete, brakke en mariene wateren. Bij eutrofiëring profiteren de waterplanten, de planktonische en de epifytische algen van het toegenomen

  15. De-acidification of flooded lignite mining lakes by controlled eutrophication: mesocosm experiments

    International Nuclear Information System (INIS)

    Steinberg, C.E.W.; Totsche, O.; Fyson, A.; Brandenburgische Technische Univ. Cottbus; Nixdorf, B.

    2000-01-01

    Mesocosm experiments with Tagebausee water overlying Tagebausee sediment indicate that without continued inflow of groundwater, some acidity will likely be removed (through Fe(OH) 3 precipitation). Alkalinity production can be greatly enhanced through addition of organic wastes containing decomposible organic carbon and nutrients. Once neutral conditions are achieved, they can be maintained without additional acid inputs through sustained C input (through photosynthesis) and enhanced geochemical cycling to maintain nutrient supply (e.g. P). The role of algal and bacterial growth in acidity/alkalinity balance are currently under investigation. (orig.)

  16. Flickering gives early warning signals of a critical transition to a eutrophic lake state : Letter

    NARCIS (Netherlands)

    Wang, R.; Dearing, J.; Langdon, P.G.; Zhang, E.; Yang, X.; Dakos, V.; Scheffer, M.

    2012-01-01

    There is a recognized need to anticipate tipping points, or critical transitions, in social–ecological systems1, 2. Studies of mathematical3, 4, 5 and experimental6, 7, 8, 9 systems have shown that systems may ‘wobble’ before a critical transition. Such early warning signals10 may be due to the

  17. Atmospheric Correction Performance of Hyperspectral Airborne Imagery over a Small Eutrophic Lake under Changing Cloud Cover

    Directory of Open Access Journals (Sweden)

    Lauri Markelin

    2016-12-01

    Full Text Available Atmospheric correction of remotely sensed imagery of inland water bodies is essential to interpret water-leaving radiance signals and for the accurate retrieval of water quality variables. Atmospheric correction is particularly challenging over inhomogeneous water bodies surrounded by comparatively bright land surface. We present results of AisaFENIX airborne hyperspectral imagery collected over a small inland water body under changing cloud cover, presenting challenging but common conditions for atmospheric correction. This is the first evaluation of the performance of the FENIX sensor over water bodies. ATCOR4, which is not specifically designed for atmospheric correction over water and does not make any assumptions on water type, was used to obtain atmospherically corrected reflectance values, which were compared to in situ water-leaving reflectance collected at six stations. Three different atmospheric correction strategies in ATCOR4 was tested. The strategy using fully image-derived and spatially varying atmospheric parameters produced a reflectance accuracy of ±0.002, i.e., a difference of less than 15% compared to the in situ reference reflectance. Amplitude and shape of the remotely sensed reflectance spectra were in general accordance with the in situ data. The spectral angle was better than 4.1° for the best cases, in the spectral range of 450–750 nm. The retrieval of chlorophyll-a (Chl-a concentration using a popular semi-analytical band ratio algorithm for turbid inland waters gave an accuracy of ~16% or 4.4 mg/m3 compared to retrieval of Chl-a from reflectance measured in situ. Using fixed ATCOR4 processing parameters for whole images improved Chl-a retrieval results from ~6 mg/m3 difference to reference to approximately 2 mg/m3. We conclude that the AisaFENIX sensor, in combination with ATCOR4 in image-driven parametrization, can be successfully used for inland water quality observations. This implies that the need for in situ reference measurements is not as strict as has been assumed and a high degree of automation in processing is possible.

  18. Mesocosm studies to assess acidity removal from acidic mine lakes through controlled eutrophication

    International Nuclear Information System (INIS)

    Fyson, A.; Nixdorf, B.; Kalin, M.; Steinberg, C.E.W.

    1998-01-01

    Flooded lignite pits (Tagebaurestseen) in Lusatia, Germany, are acidic (pH 2.5-4) with high concentrations of iron. Mesocosms (total volume 20 l) were set up with water and sediment from a Tagebaurestsee to assess the effects of phosphate and organic amendments under natural light and low temperature. Chemical and biological parameters were observed over a 9-month period. Phosphate rock addition resulted in sustained reduction in acidity in the water column and induced the growth of Chlamydomonas spp. (Chlorophyceae) near the water surface and Lepocinclis teres (Euglenophyceae) in a band above the sediment. Addition of potatoes to mesocosms resulted in the generation of near-anoxic conditions above the sediment, and phosphorus, ammonium and carbon (organic and inorganic) were released as the potatoes decomposed. A pH > 6 was attained with 5.1 g (dry weight) of potatoes and pH > 8 with 34 g (dry weight). In both mesocosms, more than 90% of total acidity was removed

  19. Uncertainty propagation and speculation in projective forecasts of environmental change - a lake eutrophication example.

    NARCIS (Netherlands)

    Straten, van G.; Keesman, K.J.

    1991-01-01

    The issue of whether models developed for current conditions can yield correct predictions when used under changed control, as is often the case in environmental management, is discussed. Two models of different complexity are compared on the basis of performance criteria, but it appears that good

  20. Water volume reduction increases eutrophication risk in tropical semi-arid reservoirs

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Nascimento da Rocha Junior

    2018-04-01

    Full Text Available Abstract Aim Global patterns of temperature and precipitation have significantly changed over the last century and nearly all predictions point to even greater changes by the end of 2100. Long periods of drought in semi-arid regions generally reduce reservoirs and lakes water level, increasing the nutrients concentrations in the water. Our principal hypothesis is that water volume reduction, driven by prolonged droughts, will increase reservoirs susceptibility to eutrophication and accordingly an increase in trophic state. To test this hypothesis, we used a comparative analysis of ecosystems in a space-for-time substitution approach, in a Brazilian semi-arid region, to predict the consequences of reservoirs water volume reduction on key limnological variables. Methods We sampled 16 reservoirs located in two sub-basins with contrasting rainfall regimes, inserted on Piranhas-Açu watershed. The Seridó River basin (SB is dry and the Piancó River basin (SB is humid, with annual mean precipitation of 500 and 700 mm, respectively. Linear regressions analyzes were performed to assess whether the percentage of maximum volume stored (%MVS is a good predictor for total phosphorus (TP, total nitrogen (TN and chlorophyll-a (CHLA. In addition, a two factorial analysis of variance (two-way ANOVA was performed to test for period (dry, very dry and extremely dry, basin (SB and PB and their interactions effects on TP, TN, CHLA, conductivity, turbidity, and Secchi depth. Results The results showed a reduction in the reservoirs %MVS both for PB and SB regions. At the extremely dry period, all reservoirs were classified as eutrophic, but TP concentrations reached much higher values in SB than in PB. The linear regressions analyses showed that the TP and TN were negatively related to %MVS during all periods sampled. The two-way ANOVA showed that there were significant basin and period effects on TP, TN, Secchi depth and turbidity, whereas for CHLA and conductivity

  1. New temperable solar coatings: Tempsol

    Science.gov (United States)

    Demiryont, Hulya

    2001-11-01

    This paper deals with the large area deposition and coating properties of the thermo-stable (temperable/bendable) solar coating material, CuO, and some new optical coating systems comprising CuO films for architectural and automotive/transportation applications. The CuO solar coating is combined with other coating layers, for example, an anti-reflection film, a reflection film, a coloration coating layer, etc., which are also thermo-stable. The film systems are developed at the research laboratory by D.C. Magnetron reactive sputtering process. The new developed technologies then transferred to the production line. Product performances are compared before and after heat treatment of the coating systems. Performance tables and other physical properties, including optical parameters, mechanical and environmental stability, storage properties, etc., are also presented for this new product series.

  2. GIS-based pollution hazard mapping and assessment framework of shallow lakes: southeastern Pampean lakes (Argentina) as a case study.

    Science.gov (United States)

    Romanelli, A; Esquius, K S; Massone, H E; Escalante, A H

    2013-08-01

    The assessment of water vulnerability and pollution hazard traditionally places particular emphasis on the study on groundwaters more than on surface waters. Consequently, a GIS-based Lake Pollution Hazard Index (LPHI) was proposed for assessing and mapping the potential pollution hazard for shallow lakes due to the interaction between the Potential Pollutant Load and the Lake Vulnerability. It includes easily measurable and commonly used parameters: land cover, terrain slope and direction, and soil media. Three shallow lake ecosystems of the southeastern Pampa Plain (Argentina) were chosen to test the usefulness and applicability of this suggested index. Moreover, anthropogenic and natural medium influence on biophysical parameters in these three ecosystems was examined. The evaluation of the LPHI map shows for La Brava and Los Padres lakes the highest pollution hazard (≈30 % with high to very high category) while Nahuel Rucá Lake seems to be the less hazardous water body (just 9.33 % with high LPHI). The increase in LPHI value is attributed to a different loading of pollutants governed by land cover category and/or the exposure to high slopes and influence of slope direction. Dissolved oxygen and biochemical oxygen demand values indicate a moderately polluted and eutrophized condition of shallow lake waters, mainly related to moderate agricultural activities and/or cattle production. Obtained information by means of LPHI calculation result useful to perform a local diagnosis of the potential pollution hazard to a freshwater ecosystem in order to implement basic guidelines to improve lake sustainability.

  3. Temperature Dependence of Apparent Respiratory Quotients and Oxygen Penetration Depth in Contrasting Lake Sediments

    Science.gov (United States)

    Sobek, Sebastian; Gudasz, Cristian; Koehler, Birgit; Tranvik, Lars J.; Bastviken, David; Morales-Pineda, María.

    2017-11-01

    Lake sediments constitute an important compartment in the carbon cycle of lakes, by burying carbon over geological timescales and by production and emission of greenhouse gases. The degradation of organic carbon (OC) in lake sediments is linked to both temperature and oxygen (O2), but the interactive nature of this regulation has not been studied in lake sediments in a quantitative way. We present the first systematic investigation of the effects of temperature on the apparent respiratory quotient (RQ, i.e., the molar ratio between carbon dioxide (CO2) production and O2 consumption) in two contrasting lake sediments. Laboratory incubations of sediment cores of a humic lake and an eutrophic lake across a 1-21°C temperature gradient over 157 days revealed that both CO2 production and O2 consumption were positively, exponentially, and similarly dependent on temperature. The apparent RQ differed significantly between the lake sediments (0.63 ± 0.26 and 0.99 ± 0.28 in the humic and the eutrophic lake, respectively; mean ± SD) and was significantly and positively related to temperature. The O2 penetration depth into the sediment varied by a factor of 2 over the 1-21°C temperature range and was significantly, negatively, and similarly related to temperature in both lake sediments. Accordingly, increasing temperature may influence the overall extent of OC degradation in lake sediments by limiting O2 supply to aerobic microbial respiration to the topmost sediment layer, resulting in a concomitant shift to less effective anaerobic degradation pathways. This suggests that temperature may represent a key controlling factor of the OC burial efficiency in lake sediments.

  4. Critical phosphorus loading of different types of shallow lakes and the consequences for management estimated with the ecosystem model PCLake

    NARCIS (Netherlands)

    Janse, J.H.; De Senerpont Domis, L.N.; Scheffer, M.; Lijklema, L.; Klinge, M.; Mooij, W.M.; Van Liere, L.

    2008-01-01

    Shallow lakes typically can be in one of two contrasting states: a clear state with submerged macrophytes or a turbid state dominated by phytoplankton. Eutrophication may cause a switch from the clear to the turbid state, if the phosphorus loading exceeds a critical value. Recovery of the clear

  5. Comparative Sensor Fusion between Hyperspectral and Multispectral Remote Sensing Data for Monitoring Microcystin Distribution in Lake Erie

    Science.gov (United States)

    Urban growth and agricultural production have caused an influx of nutrients into Lake Erie, leading to eutrophic zones. These conditions result in the formation of algal blooms, some of which are toxic due to the presence of Microcystis (a cyanobacteria), which produces the hepat...

  6. Lake Cadagno

    DEFF Research Database (Denmark)

    Tonolla, Mauro; Storelli, Nicola; Danza, Francesco

    2017-01-01

    Lake Cadagno (26 ha) is a crenogenic meromictic lake located in the Swiss Alps at 1921 m asl with a maximum depth of 21 m. The presence of crystalline rocks and a dolomite vein rich in gypsum in the catchment area makes the lake a typical “sulphuretum ” dominated by coupled carbon and sulphur...... cycles. The chemocline lies at about 12 m depth, stabilized by density differences of salt-rich water supplied by sub-aquatic springs to the monimolimnion and of electrolyte-poor surface water feeding the mixolimnion. Steep sulphide and light gradients in the chemocline support the growth of a large...... in the chemocline. Small-celled PSB together with the sulfate-reducing bacterium Desulfocapsa thiozymogenes sp. form stable aggregates in the lake, which represent small microenvironments with an internal sulphur cycle. Eukaryotic primary producers in the anoxic zones are dominated by Cryptomonas phaseolus...

  7. Playa Lakes

    Data.gov (United States)

    Kansas Data Access and Support Center — This digital dataset provides information about the spatial distribution of soil units associated with playa lakes. Specific soil types have been designated by the...

  8. Estimation of lake water - groundwater interactions in meromictic mining lakes by modelling isotope signatures of lake water.

    Science.gov (United States)

    Seebach, Anne; Dietz, Severine; Lessmann, Dieter; Knoeller, Kay

    2008-03-01

    A method is presented to assess lake water-groundwater interactions by modelling isotope signatures of lake water using meteorological parameters and field data. The modelling of delta(18)O and deltaD variations offers information about the groundwater influx into a meromictic Lusatian mining lake. Therefore, a water balance model is combined with an isotope water balance model to estimate analogies between simulated and measured isotope signatures within the lake water body. The model is operated with different evaporation rates to predict delta(18)O and deltaD values in a lake that is only controlled by weather conditions with neither groundwater inflow nor outflow. Comparisons between modelled and measured isotope values show whether the lake is fed by the groundwater or not. Furthermore, our investigations show that an adaptation of the Craig and Gordon model [H. Craig, L.I. Gordon. Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In Stable Isotopes in Oceanographic Studies and Paleotemperature, Spoleto, E. Tongiorgi (Ed.), pp. 9-130, Consiglio Nazionale delle Ricerche, Laboratorio di Geologia Nucleare, Pisa (1965).] to specific conditions in temperate regions seems necessary.

  9. Ocean acidification: One potential driver of phosphorus eutrophication.

    Science.gov (United States)

    Ge, Changzi; Chai, Yanchao; Wang, Haiqing; Kan, Manman

    2017-02-15

    Harmful algal blooms which may be limited by phosphorus outbreak increases currently and ocean acidification worsens presently, which implies that ocean acidification might lead to phosphorus eutrophication. To verify the hypothesis, oxic sediments were exposed to seawater with different pH 30days. If pH was 8.1 and 7.7, the total phosphorus (TP) content in sediments was 1.52±0.50 and 1.29±0.40mg/g. The inorganic phosphorus (IP) content in sediments exposed to seawater with pH8.1 and 7.7 was 1.39±0.10 and 1.06±0.20mg/g, respectively. The exchangeable phosphorus (Ex-P) content in sediments was 4.40±0.45 and 2.82±0.15μg/g, if seawater pH was 8.1 and 7.7. Ex-P and IP contents in oxic sediments were reduced by ocean acidification significantly (pocean acidification was one potential facilitator of phosphorus eutrophication in oxic conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Cogs in the endless machine: lakes, climate change and nutrient cycles: a review.

    Science.gov (United States)

    Moss, Brian

    2012-09-15

    Lakes have, rather grandly, been described as sentinels, integrators and regulators of climate change (Williamson et al., Limnol. Oceanogr. 2009; 54: 2273-82). Lakes are also part of the continuum of the water cycle, cogs in a machine that processes water and elements dissolved and suspended in myriad forms. Assessing the changes in the functioning of the cogs and the machine with respect to these substances as climate changes is clearly important, but difficult. Many other human-induced influences, not least eutrophication, that impact on catchment areas and consequently on lakes, have generally complicated the recording of recent change in sediment records and modern sets of data. The least confounded evidence comes from remote lakes in mountain and polar regions and suggests effects of warming that include mobilisation of ions and increased amounts of phosphorus. A cottage industry has arisen in deduction and prediction of the future effects of climate change on lakes, but the results are very general and precision is marred not only by confounding influences but by the complexity of the lake system and the infinite variety of possible future scenarios. A common conclusion, however, is that warming will increase the intensity of symptoms of eutrophication. Direct experimentation, though expensive and still unusual and confined to shallow lake and wetland systems is perhaps the most reliable approach. Results suggest increased symptoms of eutrophication, and changes in ecosystem structure, but in some respects are different from those deduced from comparisons along latitudinal gradients or by inference from knowledge of lake behaviour. Experiments have shown marked increases in community respiration compared with gross photosynthesis in mesocosm systems and it may be that the most significant churnings of these cogs in the earth-air-water machine will be in their influence on the carbon cycle, with possibly large positive feedback effects on warming. Copyright

  11. Restoring lakes by using artificial plant beds: habitat selection of zooplankton in a clear and a turbid shallow lake

    DEFF Research Database (Denmark)

    Schou, Majbritt Overgård; Risholt, Casper; Lauridsen, Torben L.

    2009-01-01

    1. Return of large-bodied zooplankton populations is of key importance for creating a shift from a turbid to a clear-water state in shallow lakes after a nutrient loading reduction. In temperate lakes, recovery is promoted by submerged macrophytes which function as a daytime refuge for large...... zooplankton. However, recovery of macrophytes is often delayed and use of artificial plant beds (APB) has been suggested as a tool to enhance zooplankton refuges, thereby reinforcing the shift to a clear-water state and, eventually, colonisation of natural plants. 2. To further evaluate the potential of APB...... in lake restoration, we followed the day–night habitat choices of zooplankton throughout summer in a clear and a turbid lake. Observations were made in the pelagic and littoral zones and in APB in the littoral representing three different plant densities (coverage 0%, 40% and 80%). 3. In the clear lake...

  12. The Effect of Tempering on Strength Properties and Seed Coat ...

    African Journals Online (AJOL)

    The effect of tempering on seed coat adhesion strength and mechanical strength of sorghum and millet grain kernels was investigated at different tempering durations. Tempering reduced the kernel breaking strength and had significant effect on seed coat adhesion strength. Tempering the grain for 60 minutes at ambient ...

  13. Benthic-planktonic coupling, regime shifts, and whole-lake primary production in shallow lakes.

    Science.gov (United States)

    Genkai-Kato, Motomi; Vadeboncoeur, Yvonne; Liboriussen, Lone; Jeppesen, Erik

    2012-03-01

    Alternative stable states in shallow lakes are typically characterized by submerged macrophyte (clear-water state) or phytoplankton (turbid state) dominance. However, a clear-water state may occur in eutrophic lakes even when macrophytes are absent. To test whether sediment algae could cause a regime shift in the absence of macrophytes, we developed a model of benthic (periphyton) and planktonic (phytoplankton) primary production using parameters derived from a shallow macrophyte-free lake that shifted from a turbid to a clear-water state following fish removal (biomanipulation). The model includes a negative feedback effect of periphyton on phosphorus (P) release from sediments. This in turn induces a positive feedback between phytoplankton production and P release. Scenarios incorporating a gradient of external P loading rates revealed that (1) periphyton and phytoplankton both contributed substantially to whole-lake production over a broad range of external P loading in a clear-water state; (2) during the clear-water state, the loss of benthic production was gradually replaced by phytoplankton production, leaving whole-lake production largely unchanged; (3) the responses of lakes to biomanipulation and increased external P loading were both dependent on lake morphometry; and (4) the capacity of periphyton to buffer the effects of increased external P loading and maintain a clear-water state was highly sensitive to relationships between light availability at the sediment surface and the of P release. Our model suggests a mechanism for the persistence of alternative states in shallow macrophyte-free lakes and demonstrates that regime shifts may trigger profound changes in ecosystem structure and function.

  14. Geo-engineering experiments in two urban ponds to control eutrophication

    NARCIS (Netherlands)

    Waaijen, G.; Oosterhout, J.F.X.; Douglas, G.C.; Lurling, M.F.L.L.W.

    2016-01-01

    Many urban ponds experience detrimental algal blooms as the result of eutrophication. During a two year field experiment, the efficacy of five in situ treatments to mitigate eutrophication effects in urban ponds was studied. The treatments targeted the sediment phosphorus release and were intended

  15. Microbial Community Structure in Relation to Water Quality in a Eutrophic Gulf of Mexico Estuary

    Science.gov (United States)

    Weeks Bay is a shallow, microtidal, eutrophic sub-estuary of Mobile Bay, AL. High watershed nutrient inputs to the estuary contribute to a eutrophic condition characterized by frequent summertime diel-cycling hypoxia and dissolved oxygen (DO) oversaturation. Spatial and seasonal ...

  16. Variable selection for modelling effects of eutrophication on stream and river ecosystems

    NARCIS (Netherlands)

    Nijboer, R.C.; Verdonschot, P.F.M.

    2004-01-01

    Models are needed for forecasting the effects of eutrophication on stream and river ecosystems. Most of the current models do not include differences in local stream characteristics and effects on the biota. To define the most important variables that should be used in a stream eutrophication model,

  17. Principles of lake sedimentology

    International Nuclear Information System (INIS)

    Janasson, L.

    1983-01-01

    This book presents a comprehensive outline on the basic sedimentological principles for lakes, and focuses on environmental aspects and matters related to lake management and control-on lake ecology rather than lake geology. This is a guide for those who plan, perform and evaluate lake sedimentological investigations. Contents abridged: Lake types and sediment types. Sedimentation in lakes and water dynamics. Lake bottom dynamics. Sediment dynamics and sediment age. Sediments in aquatic pollution control programmes. Subject index

  18. The paleolimnological development of the twin lakes Etujärvi and Takajärvi in Askola, southern Finland – implications for lake management

    Directory of Open Access Journals (Sweden)

    Samu E. Valpola

    2006-01-01

    Full Text Available The twin lakes Etujärvi and Takajärvi in Askola, southern Finland, are closely interconnected mesotrophic headwater lakes with a relatively small catchment area. Both of the lakes have suffered from eutrophication and its consequences. Remediation activities such as oxygenation and biomanipulation have not resolved the problems. In this study a large set of paleolimnological techniques (radiometric AMS dating, spherical carbonaceous particles analysis, sediment lithology, grain-size analysis, phosphorus fractionation, and diatom analysis were applied to put together the development of the basin and its water level fluctuations during the Holocene. The age for observed Trapa natans -horizons was determined, and lake management options were discussed. The studied lakes dried up after isolation from the Ancylus Lake at about 9500 cal. B.P. and remained at very low water level until ca. 8700–8500 cal. B.P. The mid-Holocene risein water level resulted in fluctuating water levels, and led to the most recent rise starting about 2500 cal. B.P. as wet and cool climate conditions prevailed. The pronounced water level fluctuations led to the extensive growth of peat deposits surrounding the lake andprobably also forced T. natans to disappear from lake flora. The unstable, erodable peat rims impact the lakes, causing heavy load of humic substances to the lake and presenting additional deterioration to their recreational value.

  19. Comparisons of invasive plants in southern Africa originating from southern temperate, northern temperate and tropical regions

    Directory of Open Access Journals (Sweden)

    L. Henderson

    2006-08-01

    Full Text Available A subset of invasive alien plant species in southern Africa was analysed in terms of their history of introduction, rate of spread, countries/region of origin, taxonomy, growth forms, cultivated uses, weed status and current distribution in southern Africa, and comparisons made of those originating from south of the tropic of Capricorn, north of the tropic of Cancer and from the tropics. The subset of 233 species, belonging to 58 families, includes all important declared species and some potentially important species. Almost as many species originate from temperate regions (112 as from the tropics (121. Most southern temperate species came from Australia (28/36, most tropical species from tropical America (92/121 and most northern temperate species from Europe (including the Mediterranean and Asia (58/76. Transformers account for 33% of  all species. More transformers are of tropical origin (36 than of northern temperate (24 and southern temperate origin (18. However. 50% of southern temperate species are transformers, compared to 32% of northern temperate and 29% of tropical species. Southern temperate transformer species are mainly woody trees and shrubs that were established on a grand scale as silvicultural crops, barriers (hedges, windbreaks and screens and cover/binders. Most aquatics, herbs, climbers and succulent shrubs an. trom the tropics. Ornamentals are the single largest category of plants from all three regions, the tropics having contributed twice as many species as temperate regions.

  20. Top-down control as important as nutrient enrichment for eutrophication effects in North Atlantic coastal ecosystems

    NARCIS (Netherlands)

    Ostman, Orjan; Eklof, Johan; Eriksson, Britas Klemens; Olsson, Jens; Moksnes, Per-Olav; Bergstrom, Ulf

    Seagrass and seaweed habitats constitute hotspots for diversity and ecosystem services in coastal ecosystems. These habitats are subject to anthropogenic pressures, of which eutrophication is one major stressor. Eutrophication favours fast-growing ephemeral algae over perennial macroalgae and

  1. Eutrophication assessment of the Baltic Sea Protected Areas by available data and GIS technologies.

    Science.gov (United States)

    Ranft, Susanne; Pesch, Roland; Schröder, Winfried; Boedeker, Dieter; Paulomäki, Hanna; Fagerli, Hilde

    2011-01-01

    Concerning increased degradation of marine ecosystems, there is a great political and institutional demand for an array of different tools to restore a good environmental status. Thereby, eutrophication is acknowledged as one of the major human induced stressors which has to be monitored and reduced. The present study concentrates on an assessment of the eutrophication status of the Baltic Sea Protected Areas by use of available data and GIS technologies. Two geodata layers were used for analysis: (1) a map on the eutrophication status of the Baltic Sea generated by the Helsinki Commission applying the HELCOM Eutrophication Assessment Tool (HEAT), and (2) modelled data on atmospheric nitrogen deposition made available by the European Monitoring and Evaluation Programme (EMEP). The results yielded comprehensive and conclusive data indicating that most of the BSPAs may be classified as being 'affected by eutrophication' and underlining the need to decrease the overall emissions of nutrients. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Spatio-temporal organization of phytoplankton in Peipsi Lake

    Directory of Open Access Journals (Sweden)

    Sharov Andrey

    2016-12-01

    Full Text Available In the article, the results of the study of phytoplankton received at 16 stations of the Lake Peipsi in the spring (May, summer (August and autumn (October within the period of 2012–2015 were analyzed. 186 phytoplankton species were found. The list of mass taxa is given. It was noted that phytoplankton biomass had wide amplitude of annual average values in different lakes: Lake Peipsi/Chudskoe 2.1 ± 0.2 (0.3–23.0 mg / L; Lake Pihkva/Pskovskoe 5.4 ± 1.4 (0.4–34.0 mg / L and Lake Lämmijärv/Teploe 6.1 ± 1.2 (3.4–25.1 mg / l. According to species composition, structure and biomass of phytoplankton the lake belongs to the mesotrophic reservoirs with eutrophic features, as it was in previous years of observation. The water quality in the different parts of Lake Peipsi corresponded to conditionally pure water (1st quality class and slightly polluted one(2nd quality class. Correlation between characteristics of phytoplankton and the environmental factors (temperature, water level, transparency, N and P concentration in water was detected.

  3. Relation between century-scale Holocene arid intervals in tropical and temperate zones

    Science.gov (United States)

    Lamb, H. F.; Gasse, F.; Benkaddour, A.; El Hamouti, N.; van der Kaars, S.; Perkins, W. T.; Pearce, N. J.; Roberts, C. N.

    1995-01-01

    CLIMATE records from lake sediments in tropical Africa, Central America and west Asia show several century-scale arid intervals during the Holocene1-10. These may have been caused by temporary weakening of the monsoonal circulation associated with reduced northward heat transport by the oceans7 or by feedback processes stimulated by changes in tropical land-surface conditions10. Here we use a lake-sediment record from the montane Mediterranean zone of Morocco to address the question of whether these events were also felt in temperate continental regions. We find evidence of arid intervals of similar duration, periodicity and possibly timing to those in the tropics. But our pollen data show that the forest vegetation was not substantially affected by these events, indicating that precipitation remained adequate during the summer growing season. Thus, the depletion of the groundwater aquifer that imprinted the dry events in the lake record must have resulted from reduced winter precipitation. We suggest that the occurrence of arid events during the summer in the tropics but during the winter at temperate latitudes can be rationalized if they are both associated with cooler sea surface temperatures in the North Atlantic.

  4. Zooplankton from Lake Magelungen, Central Sweden 1960-1963

    Energy Technology Data Exchange (ETDEWEB)

    Almquist, Elisabeth

    1970-11-15

    The investigation of the zooplankton of Lake Magelungen, Central Sweden, was carried out over a period of three years. The aim of the investigation was to illustrate the qualitative and quantitative composition of the zooplankton before the release of waste water from the Aagesta Heat and Power Station began. Vertical sampling series were collected once a month at three different stations in the lake. The highest volumes of zooplankton were obtained in the summer. The ciliates predominated when the conditions were unfavourable for other zooplankton, as in winter just below the ice. The rotifers dominated during and immediately after the spring circulation. With one exception the crustaceans reached their peak volume values in August or September. The composition of the zooplankton indicates that Lake Magelungen is highly eutrophic

  5. Zooplankton from Lake Magelungen, Central Sweden 1960-1963

    International Nuclear Information System (INIS)

    Almquist, Elisabeth

    1970-11-01

    The investigation of the zooplankton of Lake Magelungen, Central Sweden, was carried out over a period of three years. The aim of the investigation was to illustrate the qualitative and quantitative composition of the zooplankton before the release of waste water from the Aagesta Heat and Power Station began. Vertical sampling series were collected once a month at three different stations in the lake. The highest volumes of zooplankton were obtained in the summer. The ciliates predominated when the conditions were unfavourable for other zooplankton, as in winter just below the ice. The rotifers dominated during and immediately after the spring circulation. With one exception the crustaceans reached their peak volume values in August or September. The composition of the zooplankton indicates that Lake Magelungen is highly eutrophic

  6. Holocene millennial/centennial-scale multiproxy cyclicity in temperate eastern Australian estuary sediments

    Science.gov (United States)

    Skilbeck, C. Gregory; Rolph, Timothy C.; Hill, Natalie; Woods, Jonathan; Wilkens, Roy H.

    2005-05-01

    We have undertaken a comparative study of down-core variation in multiproxy palaeoclimate data (magnetic susceptibility, calcium carbonate content and total organic carbon) from two coastal water bodies (Myall and Tuggerah Lakes) in temperate eastern Australia to identify local, regional and global-forcing factors within Holocene estuarine sediments. The two lakes lie within the same temperate climate zone adjacent to the Tasman Sea, but are not part of the same catchment and drain different geological provinces. One is essentially a freshwater coastal lake whereas the other is a brackish back-barrier lagoon. Despite these differences, data from two sites in each of the two lakes have allowed us to investigate and compare cyclicity in otherwise uniform, single facies sediments within the frequency range of 200-2000 years, limited by the sedimentation rate within the lakes and our sample requirements. We have auto- and cross-correlated strong periodicities at 360 years, 500-530 years, 270-290 years, 420-450 years and 210 years, and subordinate periods of 650 years, 1200-1400 years and 1800 years. Our thesis is that climate is the only regionally available mechanism available to control common millennial and centennial scale cyclicity in these sediments, given the geographical and other differences. However, regional climate may not be the dominant effect at any single time and either location. Within the range of frequency spectral peaks we have identified, several fall within known long-term periodical fluctuations of sun spot activity; however, feedback loops associated with short-term orbital variation, such as Dansgaard-Oeschger cycles, and the relationship between these and palaeo-ENSO variation, are also possible contributors. Copyright

  7. From fish to jellyfish in the eutrophicated Limfjorden (Denmark)

    DEFF Research Database (Denmark)

    Riisgård, Hans Ulrik; Andersen, Per; Hoffmann, Erik

    2012-01-01

    the historical development of nutrient overloading and subsequent oxygen depletion in near-bottom water, and how the annual landings of edible bottom-dwelling fish species (plaice, flounder, eel and others) caught in Limfjorden have decreased from about 2,500 t in the early 1920s to only about 20 t in recent...... ctenophore Mnemiopsis leidyi, which was observed in Limfjorden for the first time in 2007, is a second carnivore adding additional predation pressure of the indigenous A. aurita so that copepods and other mesozooplankton organisms may be virtually absent, as observed in 2008 and 2009 where ciliates made up...... a substantial part of the zooplankton biomass. Marine environmental management programmes should be aware of the increasing importance of both indigenous and new invasive jellyfish species that may show mass occurrence in especially eutrophicated and overfished areas...

  8. Agriculture and Eutrophication: Where Do We Go from Here?

    Directory of Open Access Journals (Sweden)

    Paul J. A. Withers

    2014-09-01

    Full Text Available The eutrophication of surface waters has become an endemic global problem. Nutrient loadings from agriculture are a major driver, but it remains very unclear what level of on-farm controls are necessary or can be justified to achieve water quality improvements. In this review article, we use the UK as an example of societies’ multiple stressors on water quality to explore the uncertainties and challenges in achieving a sustainable balance between useable water resources, diverse aquatic ecosystems and a viable agriculture. Our analysis shows that nutrient loss from agriculture is a challenging issue if farm productivity and profitability is to be maintained and increased. Legacy stores of nitrogen (N and phosphorus (P in catchments may be sufficient to sustain algal blooms and murky waters for decades to come and more innovation is needed to drawdown and recover these nutrients. Agriculture’s impact on eutrophication risk may also be overestimated in many catchments, and more accurate accounting of sources, their bioavailabilities and lag times is needed to direct proportioned mitigation efforts more effectively. Best practice farms may still be leaky and incompatible with good water quality in high-risk areas requiring some prioritization of society goals. All sectors of society must clearly use N and P more efficiently to develop long-term sustainable solutions to this complex issue and nutrient reduction strategies should take account of the whole catchment-to-coast continuum. However, the right balance of local interventions (including additional biophysical controls will need to be highly site specific and better informed by research that unravels the linkages between sustainable farming practices, patterns of nutrient delivery, biological response and recovery trajectories in different types of waterbodies.

  9. A Systematic Study of Zerbar Lake Restoration

    Science.gov (United States)

    Hosseini, Reza; Oveis Torabi, Seyed; Forman Asgharzadeh, Deonna

    2017-04-01

    The beautiful lake of Zerbar, located near Marivan City at the west of Iran, is a freshwater lake with an area of 20 km2 and average depth of 5 meters. The lake is created by regional tectonic activities and is mainly fed with natural spring water from bottom. During the past three decades, regional development has caused much disturbance to the natural environment of the lake and its watershed. Rescuing the lake is crucial to the sustainability of the whole region. The study of Zerbar Restoration was performed with the aim to restore its health indicators. Variety of human activities in the watershed, as well as the multidisciplinary nature of lake restoration studies, made it necessary to develop a systematic approach to conduct the study. In Step I of restoration studies, satellite images were investigated to identify the historical changes of watershed during the past 30 years. Meanwhile, documents since 50 years ago were studied. Results indicate that farmland and graze land areas have been relatively constant during the past 50 years. Also, the area of lake, its riparian canes and floating plants have not changed much. In fact, the only significant land use change observed was the significant spread of Marivan City that has stretched toward the lake. The main physical variation to the lake has been elevating the southern edge of the lake by a constructing a landfill dam which was done to control the lake's overflow discharge for irrigation of downstream farmland development. Step II consists of studies performed by disciplines of water resources, hydrogeology, water quality, wetland and watershed ecology, agriculture, animal farming and fishery. Study results indicate that eutrophication (TSL>100), mainly caused by sewage from Marivan City and the surrounding rural areas has been the main reason for lake ecosystem degradation. DPSIR framework, as a novel approach in lake restoration, was applied to synthesize the study results of different disciplines in a

  10. SEASONAL VARIABILITY OF SELECTED NUTRIENTS IN THE WATERS OF LAKES NIEPRUSZEWSKIE, PAMIATKOWSKIE AND STRYKOWSKIE

    Directory of Open Access Journals (Sweden)

    Anna Zbierska

    2016-09-01

    Full Text Available The paper presents the evaluation of seasonal and long-term changes in selected nutrients of three lakes of the Poznań Lakeland. The lakes were selected due to the high risk of pollution from agricultural and residential areas. Water samples were taken in 6 control points in the spring, summer and autumn, from 2004 to 2014. Trophic status of the lakes was evaluated based on the concentration of nutrients (nitrates, nitrites, ammonium, nitrogen and phosphorus and indicators of eutrophication. Studies have shown that the concentration of nutrients varied greatly both in individual years and seasons of the analyzed decades, especially in Lakes Niepruszewskie and Pamiątkowskie. The main problem is the high concentration of nitrates. In general, it showed an upward trend until 2013, especially in the spring. This may indicate that actions restricting runoff pollution from agricultural sources have not been fully effective. On the other hand, a marked downward trend in the concentrations of NH4 over the years from 2004 to 2014, especially after 2007, indicates a gradual improvement of wastewater management. Moreover, seasonal variation in NH4 concentrations differed from those of NO3 and NO2. The highest values were reported in the autumn season, the lowest in the summer. Concentrations of nutrients and eutrophication indexes reached high values in all analysed lakes, indicating a eutrophic or hypertrophic state of the lakes. The high value of the N:P ratio indicates that the lakes had a huge surplus of nitrogen, and phosphorus is a productivity limiting factor.

  11. Bioaccumulation and biomagnification of mercury in African lakes: The importance of trophic status

    Energy Technology Data Exchange (ETDEWEB)

    Poste, Amanda E., E-mail: amanda.poste@niva.no [Norwegian Institute for Water Research, Gaustadalléen 21, 0349 Oslo (Norway); Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 (Canada); Muir, Derek C.G. [Aquatic Contaminants Research Division, Environment Canada, 867 Lakeshore Drive, Burlington, ON L7R 4A6 (Canada); Guildford, Stephanie J.; Hecky, Robert E. [Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 (Canada); Large Lakes Observatory, University of Minnesota Duluth, 2205 East Fifth Street, Duluth, MN 55812 (United States)

    2015-02-15

    Despite the global prevalence of both mercury (Hg) contamination and anthropogenic eutrophication, relatively little is known about the behavior of Hg in eutrophic and hypereutrophic systems or the effects of lake trophic status on Hg uptake and trophodynamics. In the current study we explore Hg trophodynamics at 8 tropical East African study sites ranging from mesotrophic to hypereutrophic, in order to assess the influence of lake trophic status on Hg uptake and biomagnification. Comprehensive water, plankton and fish samples were collected for analysis of total mercury (THg) and stable carbon and nitrogen isotopic ratios. We found evidence that uptake of THg into phytoplankton tended to be lower in higher productivity systems. THg concentrations in fish were generally low, and THg trophic magnification factors (TMFs; representing the average increase in contaminant concentrations from one trophic level to the next) ranged from 1.9 to 5.6. Furthermore TMFs were significantly lower in hypereutrophic lakes than in meso- and eutrophic lakes, and were negatively related to chlorophyll a concentrations both across our study lakes, and across African lakes for which literature data were available. These observations suggest that THg concentrations were strongly influenced by trophic status, with year-round high phytoplankton and fish growth rates reducing the potential for high THg in fish in these productive tropical lakes. - Highlights: • We characterized Hg in water and biota from 8 East African study sites. • Hg concentrations in fish were low and should not pose a risk to human consumers. • Hg uptake and biomagnification rates were negatively related to trophic status. • Growth dilution in phytoplankton and consumer trophic levels led to low fish Hg.

  12. Bioaccumulation and biomagnification of mercury in African lakes: The importance of trophic status

    International Nuclear Information System (INIS)

    Poste, Amanda E.; Muir, Derek C.G.; Guildford, Stephanie J.; Hecky, Robert E.

    2015-01-01

    Despite the global prevalence of both mercury (Hg) contamination and anthropogenic eutrophication, relatively little is known about the behavior of Hg in eutrophic and hypereutrophic systems or the effects of lake trophic status on Hg uptake and trophodynamics. In the current study we explore Hg trophodynamics at 8 tropical East African study sites ranging from mesotrophic to hypereutrophic, in order to assess the influence of lake trophic status on Hg uptake and biomagnification. Comprehensive water, plankton and fish samples were collected for analysis of total mercury (THg) and stable carbon and nitrogen isotopic ratios. We found evidence that uptake of THg into phytoplankton tended to be lower in higher productivity systems. THg concentrations in fish were generally low, and THg trophic magnification factors (TMFs; representing the average increase in contaminant concentrations from one trophic level to the next) ranged from 1.9 to 5.6. Furthermore TMFs were significantly lower in hypereutrophic lakes than in meso- and eutrophic lakes, and were negatively related to chlorophyll a concentrations both across our study lakes, and across African lakes for which literature data were available. These observations suggest that THg concentrations were strongly influenced by trophic status, with year-round high phytoplankton and fish growth rates reducing the potential for high THg in fish in these productive tropical lakes. - Highlights: • We characterized Hg in water and biota from 8 East African study sites. • Hg concentrations in fish were low and should not pose a risk to human consumers. • Hg uptake and biomagnification rates were negatively related to trophic status. • Growth dilution in phytoplankton and consumer trophic levels led to low fish Hg

  13. Great Lakes

    Science.gov (United States)

    Edsall, Thomas A.; Mac, Michael J.; Opler, Paul A.; Puckett Haecker, Catherine E.; Doran, Peter D.

    1998-01-01

    The Great Lakes region, as defined here, includes the Great Lakes and their drainage basins in Minnesota, Wisconsin, Illinois, Indiana, Ohio, Pennsylvania, and New York. The region also includes the portions of Minnesota, Wisconsin, and the 21 northernmost counties of Illinois that lie in the Mississippi River drainage basin, outside the floodplain of the river. The region spans about 9º of latitude and 20º of longitude and lies roughly halfway between the equator and the North Pole in a lowland corridor that extends from the Gulf of Mexico to the Arctic Ocean.The Great Lakes are the most prominent natural feature of the region (Fig. 1). They have a combined surface area of about 245,000 square kilometers and are among the largest, deepest lakes in the world. They are the largest single aggregation of fresh water on the planet (excluding the polar ice caps) and are the only glacial feature on Earth visible from the surface of the moon (The Nature Conservancy 1994a).The Great Lakes moderate the region’s climate, which presently ranges from subarctic in the north to humid continental warm in the south (Fig. 2), reflecting the movement of major weather masses from the north and south (U.S. Department of the Interior 1970; Eichenlaub 1979). The lakes act as heat sinks in summer and heat sources in winter and are major reservoirs that help humidify much of the region. They also create local precipitation belts in areas where air masses are pushed across the lakes by prevailing winds, pick up moisture from the lake surface, and then drop that moisture over land on the other side of the lake. The mean annual frost-free period—a general measure of the growing-season length for plants and some cold-blooded animals—varies from 60 days at higher elevations in the north to 160 days in lakeshore areas in the south. The climate influences the general distribution of wild plants and animals in the region and also influences the activities and distribution of the human

  14. Effect of water chemistry on zooplanktonic and microbial communities across freshwater ecotones in different macrophyte-dominated shallow lakes

    Directory of Open Access Journals (Sweden)

    Tomasz Mieczan

    2015-12-01

    Full Text Available Complex interactions between zooplankton and microbial food webs are vital to the ecosystem ecology of shallow lakes. However, little is known about how horizontal changes in environmental conditions may influence microbial and metazoan communities in shallow lakes. The specific goals of the study were i to describe environmental variables responsible for the distribution of bacteria, flagellates, ciliates and crustaceans in an adjacent canal, ecotone and reservoir (littoral-pelagic zone in two different types of lakes (Ceratophyllum-dominated and Potamogeton-dominated lakes; ii to determine whether the contact zone waters differ in hydrochemical and biological terms from the waters of the canal and the open water zone; iii and to evaluate the influence of particular macro-habitats (canal, canal/reservoir, littoral and pelagic zone on the interactions between components of the planktonic food web. We studied four shallow, eutrophic lakes in Polesie Lubelskie (eastern Poland. The highest diversity and abundance of microorganisms and crustaceans were observed in the canal-reservoir contact zone, while the lowest values were noted in the pelagic zone. Hence, the contact zone in the investigated lakes could fulfil the function of an ecotone, distinguished by a significant increase in biodiversity, abundance, and species specificity of micro- and macroorganisms. Weak relations between food web components were found in the Ceratophyllum-dominated lakes, where environmental variables explained the bulk of the total variance in plankton abundance, whereas in the Potamogeton-dominated lakes, where environmental variables had a minor role in the total variance in plankton abundance, strong predator-prey relations were noted. Spatial structure of habitats proved to be another important factor for relationships between food web components, as our study indicated that habitat complexity can reduce negative correlations between food web components. Our study

  15. Water-quality and bottom-material characteristics of Cross Lake, Caddo Parish, Louisiana, 1997-99

    Science.gov (United States)

    McGee, Benton D.

    2004-01-01

    liter. Based on nitrogen to phosphorus ratios calculated for Cross Lake, median values for all water-quality sites were within the nitrogen-limited range (less than or equal to 5). Historical Trophic State Indexes for Cross Lake classified the lake as eutrophic. Recent (1998-99) Trophic State Indexes classify Cross Lake as mesotrophic-eutrophic, which might indicate a recution in eutrophication. Sedimentation traps indicate that Cross Lake is filling at an average rate of 0.41 inches per year. Concentrations of fecal-coliform and streptococci bacteria generally were low. Fecal coliform was detected in higher concentrations than fecal streptococci. High bacterial concentrations were measured shortly after rainfall-runoff events, possibly washing bacteria from surrounding areas into the lake.

  16. Classification of the ecological status of volcanic lakes in Central Italy

    Directory of Open Access Journals (Sweden)

    Daria VAGAGGINI

    2003-09-01

    Full Text Available A synthesis is made of biological data collected in the last three decades on five volcanic lakes in Central Italy with the aim of evaluating their environmental status by means of biological parameters related to zooplankton, littoral and profundal zoobenthos frequently used to detect water quality changes in lakes. A number of bioindicators and bioindices were selected for this purpose, as far as possible following an integrated approach using information drawn from physical and chemical variables. Our results allowed the lakes to be classified according to their biological quality level, which proved to be in good agreement with physical and chemical diagnoses. Lake Bracciano exhibited the best environmental quality, due to the presence of a ring waste water collecting system, to its large size and depth, and to its strong hydrodynamism. Lake Martignano followed, with some symptoms of stress in the hypolimnion due to a marked summer deoxygenation. Oxygen depletion in the profundal characterized also Lake Vico, which showed a mesotrophic condition in the sixties, and 20 years later now shows clear signs of increased trophy (meso-eutrophy. Lake Albano seemed meso-eutrophic with total absence of fauna below a depth of 120 m due to a meromictic status. Finally Lake Nemi, exposed to domestic wastes in the 70s, suffered a heavy eutrophication with dramatic algal blooms and fish kills. Following the diversion of discharges that occurred in the early 90s, today this lake is characterized by the partial improvement of many ecological features. The need for integration between physical and chemical analyses and biological data in order to obtain a reliable evaluation of lake environmental quality is stressed, especially as far as routine implementation in managing and recovery procedures is concerned.

  17. Assessment of Lake Water Quality and Quantity Using Satellite Remote Sensing

    Science.gov (United States)

    Daniel, K. C.; Suresh, A.; Paredes Mesa, S.

    2017-12-01

    Lakes are one of the few sources of freshwater used throughout the world but due to human activities, its quality and availability has been decreasing. The drying of lakes is a concerning issue in different communities around the world. This problem can affect jobs and the lives of individuals who use lakes as a source of income, consumption and recreation. Another dilemma that has occurred in lakes is eutrophication which is the buildup of excess nutrients in the lakes caused by runoff. This natural process can lead to anoxic conditions that may have a detrimental impact on surrounding ecosystems. Therefore, causing a devastating impact to economies and human livelihood worldwide. To monitor these issues, satellite data can be used to assess the water quality of different lakes throughout the world. Landsat satellite data from the past 10 years was used to conduct this research. By using the IOP (Inherent Optical Properties) of chlorophyll and suspended solids in the visible spectrum, the presence of algal blooms and sediments was determined. ARCGIS was used to outline the areas of the lakes and obtain reflectance values for quantity and quality assessment. Because there is always a certain amount of contamination in the lake, this research is used to evaluate the condition of the lakes throughout the years. Using the data that we have collected, we are able to understand how the issues addressed can harm civilians seasonally. Key Words: Lakes, Water Quality, Algal Blooms, Eutrophication, Remote Sensing, Satellite DataData Source: Landsat 4, Landsat 5, Landsat 7, Landsat 8

  18. Decline in Chinese lake phosphorus concentration accompanied by shift in sources since 2006

    Science.gov (United States)

    Tong, Yindong; Zhang, Wei; Wang, Xuejun; Couture, Raoul-Marie; Larssen, Thorjørn; Zhao, Yue; Li, Jing; Liang, Huijiao; Liu, Xueyan; Bu, Xiaoge; He, Wei; Zhang, Qianggong; Lin, Yan

    2017-07-01

    Domestic wastewater and agricultural activities are important sources of nutrient pollutants such as phosphorus and nitrogen. Upon reaching freshwater, these nutrients can lead to extensive growth of harmful algae, which results in eutrophication. Many Chinese lakes are subject to such eutrophication, especially in highly polluted areas, and as such, understanding nutrient fluxes to these lakes offers insights into the varying processes governing pollutant fluxes as well as lake water quality. Here we analyse water quality data, recorded between 2006 and 2014 in 862 freshwater lakes in four geographical regions of China, to assess the input of phosphorus from human activity. We find that improvements in sanitation of both rural and urban domestic wastewater have resulted in large-scale declines in lake phosphorus concentrations in the most populated parts of China. In more sparsely populated regions, diffuse sources such as aquaculture and livestock farming offset this decline. Anthropogenic deforestation and soil erosion may also offset decreases in point sources of pollution. In the light of these regional differences, we suggest that a spatially flexible set of policies for water quality control would be beneficial for the future health of Chinese lakes.

  19. Role of a productive lake in carbon sequestration within a calcareous catchment.

    Science.gov (United States)

    Nõges, Peeter; Cremona, Fabien; Laas, Alo; Martma, Tõnu; Rõõm, Eva-Ingrid; Toming, Kaire; Viik, Malle; Vilbaste, Sirje; Nõges, Tiina

    2016-04-15

    For a long time, lakes were considered unimportant in the global carbon (C) cycle because of their small total area compared to the ocean. Over the last two decades, a number of studies have highlighted the important role of lakes in both sequestering atmospheric C and modifying the C flux from the catchment by degassing CO2 and methane and burying calcite and organic matter in the sediment. Based on a full C mass balance, high frequency measurements of lake metabolism and stable isotope analysis of a large shallow eutrophic lake in Estonia, we assess the role alkaline lakes play in augmenting the strength of terrestrial carbonate weathering as a temporary CO2 sink. We show that a large part of organic C buried in the sediments in this type of lakes originates from the catchment although a direct uptake from the atmosphere during periods of intensive phytoplankton growth in eutrophic conditions contributes to the carbon sink. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Calcium carbonate phosphate binding ion exchange filtration and accelerated denitrification improve public health standards and combat eutrophication in aquatic ecosystems.

    Science.gov (United States)

    Yanamadala, Vijay

    2005-01-01

    Cultural eutrophication, the process by which a lake becomes rich in dissolved nutrients as a result of point and nonpoint pollutant sources, is a major cause of the loss of natural lake ecosystems throughout the world. The process occurs naturally in all lakes, but phosphate-rich nutrient runoff from sources such as storm drains and agricultural runoff is a major cause of excess phosphate-induced eutrophication. Especially in Madrona Marsh, one of the last remaining vernal marshes in the greater Los Angeles area, California, cultural eutrophication has become a major problem. In this study, calcium carbonate was found to be an excellent phosphate binder, reducing up to 70% of the phosphates in a given sample of water, and it posed relatively negligent ecological repercussions. This study involved the testing of this principle in both the laboratory and the real ecosystem. A calcium carbonate lacing procedure was first carried out to determine its efficacy in Madrona Marsh. Through this, ammonia was found to interfere with the solubility of calcium carbonate and therefore to be a hindrance to the reduction of phosphate. Therefore, various approaches for reduction of ammonia were tested, including aeration, use of fiber growth media, and plants, mainly Caulerpa verticellata, chosen for it hardiness, primarily in an attempt to increase population of Nitrobacter and Nitrosomonas. All were successful in moderately reducing ammonia levels. In addition, soil sampling, sediment analysis, microscopic plant analysis, microorganism and macroinvertebrate identification, and rate law formulations were conducted. The effect of phosphate and ammonia reduction on the populations of enterobacteria was also an important focus of this experiment. Varying concentrations of phosphate, ammonia, and calcium carbonate in conjunction with phosphate were tested in Madrona Marsh to determine their effects on the populations of enteropathogens on nonspecific blood agar, MacConkey agar, and

  1. Prediction of Microcystis Blooms Based on TN:TP Ratio and Lake Origin

    Directory of Open Access Journals (Sweden)

    Yoshimasa Amano

    2008-01-01

    Full Text Available We evaluated the relationship between TN:TP ratio and Microcystis growth via a database that includes worldwide lakes based on four types of lake origin (dammed, tectonic, coastal, and volcanic lakes. We used microcosm and mesocosm for the nutrient elution tests with lake water and four kinds of sediment (nontreated, MgO sprinkling treated, dissolved air flotation [DAF] treated, and combined treated sediment in order to control TN:TP ratio and to suppress Microcystis growth. Microcystis growth was related to TN:TP ratio, with the maximum value at an optimum TN:TP ratio and the minimum values when the TN:TP ratios reached to 0 or ∞. The kurtosis of the distribution curve varied with the type of lake origin; the lowest kurtosis was found in dammed lakes, while the highest was found in volcanic lakes. The lake trophic state could affect the change in the kurtosis, providing much lower kurtosis at eutrophic lakes (dammed lakes than that at oligotrophic lakes (volcanic lakes. The relationship between TN:TP ratio and Microcystis growth could be explained by the nutrient elution tests under controlled TN:TP ratios through the various sediment treatments. A significant suppression of Microcystis growth of 70% could be achieved when the TN:TP ratios exceeded 21. Lake origin could be regarded as an index including morphological and geographical factors, and controlling the trophic state in lakes. The origin rather than trophic state for lakes could be considered as an important factor of TN:TP influences on Microcystis growth.

  2. Simplified Procedures for Eutrophication Assessment and Prediction: User Manual

    Science.gov (United States)

    1996-09-01

    1975), for use in the Lake Erie Wastewater Management Study and is described by Verhoff, Yaksich, and Melfi (1980) and Westerdahl et al. (1981). This...manual," Technical Re- port E-81-9, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS. Westerdahl , H. E., Ford, W. B., Harris, J., and

  3. Cogs in the endless machine: Lakes, climate change and nutrient cycles: A review

    Energy Technology Data Exchange (ETDEWEB)

    Moss, Brian, E-mail: brmoss@liverpool.ac.uk

    2012-09-15

    Lakes have, rather grandly, been described as sentinels, integrators and regulators of climate change (). Lakes are also part of the continuum of the water cycle, cogs in a machine that processes water and elements dissolved and suspended in myriad forms. Assessing the changes in the functioning of the cogs and the machine with respect to these substances as climate changes is clearly important, but difficult. Many other human-induced influences, not least eutrophication, that impact on catchment areas and consequently on lakes, have generally complicated the recording of recent change in sediment records and modern sets of data. The least confounded evidence comes from remote lakes in mountain and polar regions and suggests effects of warming that include mobilisation of ions and increased amounts of phosphorus. A cottage industry has arisen in deduction and prediction of the future effects of climate change on lakes, but the results are very general and precision is marred not only by confounding influences but by the complexity of the lake system and the infinite variety of possible future scenarios. A common conclusion, however, is that warming will increase the intensity of symptoms of eutrophication. Direct experimentation, though expensive and still unusual and confined to shallow lake and wetland systems is perhaps the most reliable approach. Results suggest increased symptoms of eutrophication, and changes in ecosystem structure, but in some respects are different from those deduced from comparisons along latitudinal gradients or by inference from knowledge of lake behaviour. Experiments have shown marked increases in community respiration compared with gross photosynthesis in mesocosm systems and it may be that the most significant churnings of these cogs in the earth-air-water machine will be in their influence on the carbon cycle, with possibly large positive feedback effects on warming. -- Highlights: Black-Right-Pointing-Pointer Climate change has had

  4. The Influence of Macrophytes on Sediment Resuspension and the Effect of Associated Nutrients in a Shallow and Large Lake (Lake Taihu, China)

    Science.gov (United States)

    Zhu, Mengyuan; Zhu, Guangwei; Nurminen, Leena; Wu, Tingfeng; Deng, Jianming; Zhang, Yunlin; Qin, Boqiang; Ventelä, Anne-Mari

    2015-01-01

    A yearlong campaign to examine sediment resuspension was conducted in large, shallow and eutrophic Lake Taihu, China, to investigate the influence of vegetation on sediment resuspension and its nutrient effects. The study was conducted at 6 sites located in both phytoplankton-dominated zone and macrophyte-dominated zone of the lake, lasting for a total of 13 months, with collections made at two-week intervals. Sediment resuspension in Taihu, with a two-week high average rate of 1771 g·m-2·d-1 and a yearly average rate of 377 g·m-2·d-1, is much stronger than in many other lakes worldwide, as Taihu is quite shallow and contains a long fetch. The occurrence of macrophytes, however, provided quite strong abatement of sediment resuspension, which may reduce the sediment resuspension rate up to 29-fold. The contribution of nitrogen and phosphorus to the water column from sediment resuspension was estimated as 0.34 mg·L-1 and 0.051 mg·L-1 in the phytoplankton-dominated zone. Sediment resuspension also largely reduced transparency and then stimulated phytoplankton growth. Therefore, sediment resuspension may be one of the most important factors delaying the recovery of eutrophic Lake Taihu, and the influence of sediment resuspension on water quality must also be taken into account by the lake managers when they determine the restoration target. PMID:26030094

  5. First Temperate Exoplanet Sized Up

    Science.gov (United States)

    2010-03-01

    Combining observations from the CoRoT satellite and the ESO HARPS instrument, astronomers have discovered the first "normal" exoplanet that can be studied in great detail. Designated Corot-9b, the planet regularly passes in front of a star similar to the Sun located 1500 light-years away from Earth towards the constellation of Serpens (the Snake). "This is a normal, temperate exoplanet just like dozens we already know, but this is the first whose properties we can study in depth," says Claire Moutou, who is part of the international team of 60 astronomers that made the discovery. "It is bound to become a Rosetta stone in exoplanet research." "Corot-9b is the first exoplanet that really does resemble planets in our solar system," adds lead author Hans Deeg. "It has the size of Jupiter and an orbit similar to that of Mercury." "Like our own giant planets, Jupiter and Saturn, the planet is mostly made of hydrogen and helium," says team member Tristan Guillot, "and it may contain up to 20 Earth masses of other elements, including water and rock at high temperatures and pressures." Corot-9b passes in front of its host star every 95 days, as seen from Earth [1]. This "transit" lasts for about 8 hours, and provides astronomers with much additional information on the planet. This is fortunate as the gas giant shares many features with the majority of exoplanets discovered so far [2]. "Our analysis has provided more information on Corot-9b than for other exoplanets of the same type," says co-author Didier Queloz. "It may open up a new field of research to understand the atmospheres of moderate- and low-temperature planets, and in particular a completely new window in our understanding of low-temperature chemistry." More than 400 exoplanets have been discovered so far, 70 of them through the transit method. Corot-9b is special in that its distance from its host star is about ten times larger than that of any planet previously discovered by this method. And unlike all such

  6. Distinctive effects of allochthonous and autochthonous organic matter on CDOM spectra in a tropical lake

    OpenAIRE

    Brandão, Luciana Pena Mello; Brighenti, Ludmila Silva; Staehr, Peter Anton; Asmala, Eero; Massicotte, Philippe; Tonetta, Denise; Barbosa, Francisco Antônio Rodrigues; Pujoni, Diego; Bezerra-Neto, José Fernandes

    2018-01-01

    Despite the increasing understanding about differences in carbon cycling between temperate and tropical freshwater systems, our knowledge on the importance of organic matter (OM) pools on light absorption properties in tropical lakes is very scarce. We performed a factorial mesocosm experiment in a tropical lake (Minas Gerais, Brazil) to evaluate the effects of increased concentrations of allochthonous and autochthonous OM on the light absorption characteristics of colored dissolved organic m...

  7. Possible Sediment Mixing and the Disparity between Field Measurements and Paleolimnological Inferences in Shallow Iowa Lakes in the Midwestern United States

    Directory of Open Access Journals (Sweden)

    Roger W. Bachmann

    2018-01-01

    Full Text Available Field measurements of water quality in Iowa lakes contradict paleolimnological studies that used 210Pb dating techniques in 33 lakes to infer accelerating eutrophication and sediment accumulation in recent decades. We tested this hypothesis by analyzing a series of water quality measurements taken in 24 of these lakes during the period 1972–2010. There was little change in the trophic state variables. Total phosphorus and algal chlorophylls did not increase, and Secchi depths did not decrease with no evidence that the lakes had become more eutrophic. Changes in daily sediment loads in the Raccoon River also did not match the paleolimnological inferred rates of soil erosion for the period 1905–2005, and an independent estimate of soil erosion rates showed a decline of 40% in the 1977 to 2012 period rather than an increase. We hypothesized that sediment mixing by benthivorous fish could be responsible for violating the basic assumption of 210Pb sediment dating that the sediments are not disturbed once they are laid down. We developed a mathematical model that demonstrated that sediment mixing could lead to false inferences about sediment dates and sediment burial rates. This study raises the possibility that sediment mixing in Iowa lakes and similar shallow, eutrophic lakes with benthivorous fish may cause significant sediment mixing that can compromise dating using 210Pb dating of sediment cores.

  8. Tempering of Low-Temperature Bainite

    Science.gov (United States)

    Peet, Mathew J.; Babu, Sudarsanam Suresh; Miller, Mike K.; Bhadeshia, H. K. D. H.

    2017-07-01

    Electron microscopy, X-ray diffraction, and atom probe tomography have been used to identify the changes which occur during the tempering of a carbide-free bainitic steel transformed at 473 K (200 °C). Partitioning of solute between ferrite and thin-films of retained austenite was observed on tempering at 673 K (400 °C) for 30 minutes. After tempering at 673 K (400 °C) and 773 K (500 °C) for 30 minutes, cementite was observed in the form of nanometre scale precipitates. Proximity histograms showed that the partitioning of solutes other than silicon from the cementite was slight at 673 K (400 °C) and more obvious at 773 K (500 °C). In both cases, the nanometre scale carbides are greatly depleted in silicon.

  9. Well-Tempered Metadynamics Converges Asymptotically

    Science.gov (United States)

    Dama, James F.; Parrinello, Michele; Voth, Gregory A.

    2014-06-01

    Metadynamics is a versatile and capable enhanced sampling method for the computational study of soft matter materials and biomolecular systems. However, over a decade of application and several attempts to give this adaptive umbrella sampling method a firm theoretical grounding prove that a rigorous convergence analysis is elusive. This Letter describes such an analysis, demonstrating that well-tempered metadynamics converges to the final state it was designed to reach and, therefore, that the simple formulas currently used to interpret the final converged state of tempered metadynamics are correct and exact. The results do not rely on any assumption that the collective variable dynamics are effectively Brownian or any idealizations of the hill deposition function; instead, they suggest new, more permissive criteria for the method to be well behaved. The results apply to tempered metadynamics with or without adaptive Gaussians or boundary corrections and whether the bias is stored approximately on a grid or exactly.

  10. Spatiotemporal distribution of algal and nutrient, and their correlations based on long-term monitoring data in Lake Taihu, China

    Science.gov (United States)

    Acharya, K.; Li, Y.; Stone, M.; Yu, Z.; Young, M.; Shafer, D. S.; Zhu, J.; Warwick, J. J.

    2009-12-01

    Eutrophication in Lake Taihu - China’s third largest freshwater lake - has led to deterioration of water quality and caused more frequent cyanobacteria blooms at many lake locations in recent years. Eutrophication is thought to be fueled by increased nutrient loading, a consequence of rapid population and economic growth in the region. To understand the spatiotemporal distribution of algal blooms, a database was developed that includes long-term meteorological, hydrological, water quality, and socioeconomic data from the Lake Taihu watershed. The data were collected through various field observations, and augmented with information from local and provincial agencies, and universities. Based on the data, spatiotemporal distributions of, and correlations between, chlorophyll-a (Chl-a), total phosphorus (TP), total nitrogen (TN) and water temperature (WT) were analyzed. Results revealed a high degree of correlation between TP and Chl-a concentrations during warm seasons, with high concentrations of both substances present in the northern and northwest portions of the lake. During winter months, Chl-a concentrations were more strongly correlated with WT. Spatial trends in TP and TN concentrations corresponded to observed nutrient fluxes from adjoining rivers in densely populated areas, demonstrating the influence of watershed pollutant loads on lake water quality. Among important questions to be answered is whether wind-driven resuspension of existing nutrients in sediments in this shallow (cyanobacteria blooms to begin. This study identifies other questions, data gaps, and research needs, and provides a foundation for improving lake management strategies.

  11. The role of benthic macrophytes and their associated macroinvertebrate community in coastal lagoon resistance to eutrophication.

    Science.gov (United States)

    Lloret, Javier; Marín, Arnaldo

    2009-12-01

    Eutrophication is widely recognised as one of the major menaces to coastal environments, particularly enclosed bays and lagoons. Although there is a general understanding of the consequences of eutrophication in these systems, there is a lack of sufficient knowledge concerning biotic feedbacks that influence eutrophication patterns and the resistance capacity of coastal environments. In this paper, the isotope ratios of main producers and consumers of a Mediterranean lagoon were examined in order to elucidate the fate of anthropogenic inputs from the main watercourse flowing into the lagoon. The results of the study of stable isotope data in the Mar Menor lagoon reflected that the whole benthic community plays an important role as a natural 'filter' that removes excess nutrients from the water column and stores them in the sediments, thereby enhancing lagoon resistance to eutrophication.

  12. The role of benthic macrophytes and their associated macroinvertebrate community in coastal lagoon resistance to eutrophication

    International Nuclear Information System (INIS)

    Lloret, Javier; Marin, Arnaldo

    2009-01-01

    Eutrophication is widely recognised as one of the major menaces to coastal environments, particularly enclosed bays and lagoons. Although there is a general understanding of the consequences of eutrophication in these systems, there is a lack of sufficient knowledge concerning biotic feedbacks that influence eutrophication patterns and the resistance capacity of coastal environments. In this paper, the isotope ratios of main producers and consumers of a Mediterranean lagoon were examined in order to elucidate the fate of anthropogenic inputs from the main watercourse flowing into the lagoon. The results of the study of stable isotope data in the Mar Menor lagoon reflected that the whole benthic community plays an important role as a natural 'filter' that removes excess nutrients from the water column and stores them in the sediments, thereby enhancing lagoon resistance to eutrophication.

  13. How well do ecosystem indicators communicate the effects of anthropogenic eutrophication?

    NARCIS (Netherlands)

    McQuatters-Gollop, A.; Gilbert, A.J.; Mee, L.; Vermaat, J.E.; Artioli, Y.; Humborg, C.; Wulff, F.

    2009-01-01

    Anthropogenic eutrophication affects the Mediterranean, Black, North and Baltic Seas to various extents. Responses to nutrient loading and methods of monitoring relevant indicators vary regionally, hindering interpretation of ecosystem state changes and preventing a straightforward pan-European

  14. Deterioration of atlantic soft water macrophyte communities by acidification, eutrophication and alkalinisation

    NARCIS (Netherlands)

    Arts, G.H.P.

    2002-01-01

    This review presents an overview of the most important succession patterns and underlying processes associated with the deterioration of soft water macrophyte communities in atlantic and boreo-atlantic regions. As acidification, eutrophication and alkalinisation are the dominant processes, this

  15. Spatial differentiated effect assessment for aquatic eutrophication in Life Cycle Assessment.

    NARCIS (Netherlands)

    Penailillo, Reinaldo

    2005-01-01

    The conventional evaluation of aquatic eutrophication in Life Cycle Assessment (LCA) expresses the contribution of nitrogen and/or phosphorus emissions to biomass production in terms of the equivalent emission of a reference substance. This assessment doe

  16. Is nutrient contamination of groundwater causing eutrophication of groundwater-fed meadows?

    NARCIS (Netherlands)

    Pieterse, N.M.; Olde Venterink, H.; Schot, P.P.; Verkroost, A.W.M.

    2005-01-01

    There is an ongoing debate as to whether nutrient contamination of groundwater under agricultural fields may cause nutrient-enrichment and subsequent eutrophication in discharge areas. Often, there is only circumstantial evidence to support this supposition (proximity of agricultural fields,

  17. Determinants of the microbial community structure of eutrophic, hyporheic river sediments polluted with chlorinated aliphatic hydrocarbons

    NARCIS (Netherlands)

    Hamonts, K.; Ryngaert, A.; Smidt, H.; Springael, D.; Dejonghe, W.

    2014-01-01

    Chlorinated aliphatic hydrocarbons (CAHs) often discharge into rivers as contaminated groundwater baseflow. As biotransformation of CAHs in the impacted river sediments might be an effective remediation strategy, we investigated the determinants of the microbial community structure of eutrophic,

  18. EUTROPHICATION OF WATER RESERVOIRS AND ROLE OF MACROPHYTES IN THIS PROCESS

    Directory of Open Access Journals (Sweden)

    Joanna Jadwiga Sender

    2017-06-01

    Full Text Available The paper presents the problem related with the process of eutrophication, with special emphasis on dam reservoirs. Eutrophication is a global process, threatening the water ecosystem on every continent. It often leads to their degradation. Particularly vulnerable to eutrophication are artificial reservoirs which are dam reservoirs. This paper describes the mechanisms of eutrophication. We also pointed to the importance of aquatic plants in the process of water purification, as well as the possibility of multilateral use. Recently, in the world and in Poland there is a tendency to pay attention to the natural or semi-natural method of water purification (including constructed wetland. On the one hand, the presence of macrophytes in water bodies is a guarantor of good ecological status, on the other hand, the undeniable aesthetic value.

  19. Integrated water quality, emergy and economic evaluation of three bioremediation treatment systems for eutrophic water

    Science.gov (United States)

    This study was targeted at finding one or more environmentally efficient, economically feasible and ecologically sustainable bioremediation treatment modes for eutrophic water. Three biological species, i.e. water spinach (Ipomoea aquatica), loach (Misgurus anguillicaudatus) and ...

  20. Analysis of Mathematics and Sustainability in an Impulsive Eutrophication Controlling System

    Directory of Open Access Journals (Sweden)

    Hengguo Yu

    2013-01-01

    quite accurate to describe the interaction effect of some critical factors (fishermen catch and releasing small fry, etc., which enables a systematic and logical procedure for fitting eutrophication mathematical system to real monitoring data and experiment data. Mathematical theoretical works have been pursuing the investigation of two threshold functions of some critical parameters under the condition of all species persistence, which can in turn provide a theoretical basis for the numerical simulation. Using numerical simulation works, we mainly focus on how to choose the best value of some critical parameters to ensure the sustainability of the eutrophication system so that the eutrophication removal process can be well developed with maximizing economic benefit. These results may be further extended to provide a basis for simulating the algal bloom in the laboratory and understanding the application of some impulsive controlling models about eutrophication removal problems.

  1. Eutrophication and cyanobacteria in South Africa’s standing water bodies: A view from space

    CSIR Research Space (South Africa)

    Matthews, MW

    2015-05-01

    Full Text Available Satellite remote sensing can make a significant contribution to monitoring water quality in South African standing water bodies. Eutrophication, defined as enrichment by nutrients, and toxin-producing cyanobacteria (blue-green algae) blooms pose a...

  2. Hydrogeology and hydrochemistry of groundwater-dominated lakes

    DEFF Research Database (Denmark)

    Kazmierczak, Jolanta

    at a 25-m-wide sandy lakebed, while surface runoff from the western and southern seepage faces delivers approximately 65%. The simulated seepage rates are an acceptable approximation of the average fluxes measured with seepage meters on the eastern shore. Seepage measurements and the observation...... time for diffusion of oxygen into the aquifer and prevent the re-precipitation of iron hydroxides and DIP immobilization. From the ecological perspective, the continuous, external loading of geogenic DIP in high concentrations (on average 60 µg/L) results in natural lake eutrophication and explains...

  3. Ecological, biogeochemical and salinity changes in coastal lakes and wetlands over the last 200 years

    Science.gov (United States)

    Roberts, Lucy; Holmes, Jonathan; Horne, David

    2016-04-01

    Shallow lakes provide extensive ecosystem services and are ecologically important aquatic resources supporting a diverse flora and fauna. In marginal-marine areas, where such lakes are subjected to the multiple pressures of coastal erosion, sea level rise, increasing sea surface temperature and increasing frequency and intensity of storm surges, environments are complex and unstable. They are characterised by physico-chemical variations due to climatic (precipitation/evaporation cycles) and dynamic factors (tides, currents, freshwater drainage and sea level changes). Combined with human activity in the catchment these processes can alter the salinity, habitat and ecology of coastal fresh- to brackish water ecosystems. In this study the chemical and biological stability of coastal lakes forming the Upper Thurne catchment in the NE of the Norfolk Broads, East Anglia, UK are seriously threatened by long-term changes in salinity resulting from storm surges, complex hydrogeology and anthropogenic activity in the catchment. Future management decisions depend on a sound understanding of the potential ecological impacts, but such understanding is limited by short-term observations and measurements. This research uses palaeolimnological approaches, which can be validated and calibrated with historical records, to reconstruct changes in the aquatic environment on a longer time scale than can be achieved by observations alone. Here, salinity is quantitatively reconstructed using the trace-element geochemistry (Sr/Ca and Mg/Ca) of low Mg-calcite shells of Ostracoda (microscopic bivalved crustaceans) and macrophyte and macroinvertebrate macrofossil remains are used as a proxy to assess ecological change in response to variations in salinity. δ13C values of Cladocera (which are potentially outcompeted by the mysid Neomysis integer with increasing salinity and eutrophication) can be used to reconstruct carbon cycling and energy pathways in lake food webs, which alongside

  4. Bioaccumulation of radionuclides in fertilized Canadian Shield lake basins

    International Nuclear Information System (INIS)

    Bird, G.A.; Schwartz, W.J.; Hesslein, R.H.; Mills, K.H.; Turner, M.A.

    1998-01-01

    Radionuclide tracers of heavy metals ( 59 Fe, 60 Co, 65 Zn, 75 Se 85 Sr, 134 Cs and 203 Hg) representing potential contamination from nuclear power plants, industry and agriculture were added to separate basins of Lake 226, Experimental Lakes Area, northwestern Ontario. The two basins were part of a eutrophication experiment and differed in their trophic status; the north basin (L226N) was eutrophic whereas the south basin (L226S) was mesotrophic. Our objective was to determine the uptake of the radionuclides by biota and the effect of lake trophic status on their bioaccumulation. The trophic status of the lakes did not appear to have a marked effect on the accumulation of radionuclides by the biota. This may have been because of a mid-summer leakage of nutrients between the basins which enhanced primary production in L226S, because there is a time lag between primary production and the availability of the radionuclides to the fishes or because trophic status does not affect the uptake of at least some of these radionuclides. However, there was a tendency for faster uptake of the radionuclides in L226N by fish than L226S, but the differences were not significant. Concentrations in the biota generally decreased in the order: fathead minnow>pearl dace>tadpoles>slimy sculpin>leeches. Concentrations in biota generally decreased in the order: 65 Zn> 203 Hg> 75 Se> 134 Cs> 60 Co> 85 Sr= 59 Fe. Cobalt-60 concentrations in tadpoles were greater than in the other biota. Radionuclide concentrations in the tissues of lake whitefish indicated that uptake was predominately from food. Radionuclide concentrations were usually higher in the posterior gut, liver and kidney than in other tissues, whereas body burdens were generally high in the muscle for 75 Se, 134 Cs and 203 Hg; kidney and gut for 60 Co; and bone for 65 Zn and 75 Se. Mercury-203 burdens were also high in the bone and gut

  5. Can microcystins affect zooplankton structure community in tropical eutrophic reservoirs?

    Directory of Open Access Journals (Sweden)

    T. A. S. V. Paes

    Full Text Available Abstract The aim of our study was to assess whether cyanotoxins (microcystins can affect the composition of the zooplankton community, leading to domination of microzooplankton forms (protozoans and rotifers. Temporal variations in concentrations of microcystins and zooplankton biomass were analyzed in three eutrophic reservoirs in the semi-arid northeast region of Brazil. The concentration of microcystins in water proved to be correlated with the cyanobacterial biovolume, indicating the contributions from colonial forms such as Microcystis in the production of cyanotoxins. At the community level, the total biomass of zooplankton was not correlated with the concentration of microcystin (r2 = 0.00; P > 0.001, but in a population-level analysis, the biomass of rotifers and cladocerans showed a weak positive correlation. Cyclopoid copepods, which are considered to be relatively inefficient in ingesting cyanobacteria, were negatively correlated (r2 = – 0.01; P > 0.01 with the concentration of cyanotoxins. Surprisingly, the biomass of calanoid copepods was positively correlated with the microcystin concentration (r2 = 0.44; P > 0.001. The results indicate that allelopathic control mechanisms (negative effects of microcystin on zooplankton biomass do not seem to substantially affect the composition of mesozooplankton, which showed a constant and high biomass compared to the microzooplankton (rotifers. These results may be important to better understand the trophic interactions between zooplankton and cyanobacteria and the potential effects of allelopathic compounds on zooplankton.

  6. Water quality index and eutrophication indices of Caiabi River, MT

    Directory of Open Access Journals (Sweden)

    Grasiane Andrietti

    2016-03-01

    Full Text Available The objective of this study was to evaluate the water quality of the Caiabi River based upon the water quality index (WQI and the trophic state index (TSI, considering seasonal and spatial variations, with the aim of determining the most appropriate monitoring design for this study site. Sampling for water quality monitoring was conducted at five points on the Caiabi River from July 2012 to June 2013. Quality parameters quantified were as follows: pH, temperature, conductivity, dissolved oxygen, total and thermotolerant coliforms, turbidity, Kjeldahl nitrogen, nitrite, nitrate, total phosphorus, biochemical oxygen demand, series of solids, and chlorophyll a. Sampling procedures and analysis followed the methods recommended by the Standard Methods for the Examination of Water and Wastewater. The WQI results showed that the quality of the Caiabi River water is good. TSI results demonstrated the low risk of eutrophication in the Caiabi River, indicating an ultra-oligotrophic lotic environment. Analysis of variance showed that 10 of the 16 monitored quality parameters presented differences of means between the dry and rainy seasons or among the monitored points or in the interaction between seasons and points. These results indicate that two annual sampling collections at two points may be sufficient to describe the water quality behavior in the basin, as long as the conditions of land use are stable.

  7. Bathymetry of Lake Michigan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Michigan has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  8. Bathymetry of Lake Ontario

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Ontario has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  9. Bathymetry of Lake Superior

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Superior has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  10. Great Lakes Bathymetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lakes Michigan, Erie, Saint Clair, Ontario and Huron has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and...

  11. Bathymetry of Lake Huron

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Huron has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  12. Eutrophication and cyanobacteria in South Africa's standing water bodies: A view from space

    OpenAIRE

    Matthews, Mark W.; Bernard, Stewart

    2015-01-01

    Satellite remote sensing can make a significant contribution to monitoring water quality in South African standing water bodies. Eutrophication, defined as enrichment by nutrients, and toxin-producing cyanobacteria (blue-green algae) blooms pose a significant threat to the quality of South African surface water bodies. The status and trends of chlorophyll a (chl-a, a proxy for eutrophication), cyanobacterial blooms and cyanobacterial surface scum were determined for South Africa’s 50 largest ...

  13. Water Quality and Hydrology of Silver Lake, Barron County, Wisconsin, With Special Emphasis on Responses of a Terminal Lake to Changes in Phosphorus Loading and Water Level

    Science.gov (United States)

    Robertson, Dale M.; Rose, William J.; Fitzpatrick, Faith A.

    2009-01-01

    Silver Lake is typically an oligotrophic-to-mesotrophic, soft-water, terminal lake in northwestern Wisconsin. A terminal lake is a closed-basin lake with surface-water inflows but no surface-water outflows to other water bodies. After several years with above-normal precipitation, very high water levels caused flooding of several buildings near the lake and erosion of soil around much of the shoreline, which has been associated with a degradation in water quality (increased phosphorus and chlorophyll a concentrations and decreased water clarity). To gain a better understanding of what caused the very high water levels and degradation in water quality and collect information to better understand the lake and protect it from future degradation, the U.S. Geological Survey did a detailed study from 2004 to 2008. This report describes results of the study; specifically, lake-water quality, historical changes in water level, water and phosphorus budgets for the two years monitored in the study, results of model simulations that demonstrate how changes in phosphorus inputs affect lake-water quality, and the relative importance of changes in hydrology and changes in the watershed to the water quality of the lake. From 1987 to about 1996, water quality in Silver Lake was relatively stable. Since 1996, however, summer average total phosphorus concentrations increased from about 0.008 milligrams per liter (mg/L) to 0.018 mg/L in 2003, before decreasing to 0.011 mg/L in 2008. From 1996 to 2003, Secchi depths decreased from about 14 to 7.4 feet, before increasing to about 19 feet in 2008. Therefore, Silver Lake is typically classified as oligotrophic to mesotrophic; however, during 2002-4, the lake was classified as mesotrophic to eutrophic. Because productivity in Silver Lake is limited by phosphorus, phosphorus budgets for the lake were constructed for monitoring years 2005 and 2006. The average annual input of phosphorus was 216 pounds: 78 percent from tributary and

  14. The trophic role and impact of plankton ciliates in the microbial web structure of a tropical polymictic lake dominated by filamentous cyanobacteria

    OpenAIRE

    Alfonso Esquivel; Aude Barani; Miroslav Macek; Ruth Ruth Soto-Castor; Celia Bulit

    2016-01-01

    The recent interest in the plankton structures and dynamics in tropical and subtropical lakes has revealed important trends that set these lakes apart from temperate lakes, and one of the main differences is the enhanced importance of the microbial food web with respect to net plankton. Ciliates are a key component of subtropical and tropical microbial webs because of their role as dominant picoplankton grazers and their ability to channel picoplankton production to the uppermost trophic leve...

  15. Responses of primary production, leaf litter decomposition and associated communities to stream eutrophication

    International Nuclear Information System (INIS)

    Dunck, Bárbara; Lima-Fernandes, Eva; Cássio, Fernanda; Cunha, Ana; Rodrigues, Liliana; Pascoal, Cláudia

    2015-01-01

    We assessed the eutrophication effects on leaf litter decomposition and primary production, and on periphytic algae, fungi and invertebrates. According to the subsidy-stress model, we expected that when algae and decomposers were nutrient limited, their activity and diversity would increase at moderate levels of nutrient enrichment, but decrease at high levels of nutrients, because eutrophication would lead to the presence of other stressors and overwhelm the subsidy effect. Chestnut leaves (Castanea sativa Mill) were enclosed in mesh bags and immersed in five streams of the Ave River basin (northwest Portugal) to assess leaf decomposition and colonization by invertebrates and fungi. In parallel, polyethylene slides were attached to the mesh bags to allow colonization by algae and to assess primary production. Communities of periphytic algae and decomposers discriminated the streams according to the trophic state. Primary production decomposition and biodiversity were lower in streams at both ends of the trophic gradient. - Highlights: • Algae and decomposers discriminated the streams according to the eutrophication level. • Primary production and litter decomposition are stimulated by moderate eutrophication. • Biodiversity and process rates were reduced in highly eutrophic streams. • Subsidy-stress model explained biodiversity and process rates under eutrophication. - Rates of leaf litter decomposition, primary production and richness of periphytic algae, fungi and invertebrates were lower in streams at both ends of the trophic gradient

  16. Great Lakes Science Center

    Data.gov (United States)

    Federal Laboratory Consortium — Since 1927, Great Lakes Science Center (GLSC) research has provided critical information for the sound management of Great Lakes fish populations and other important...

  17. The structuring role of submerged macrophytes in a large subtropical shallow lake

    NARCIS (Netherlands)

    Finkler Ferreira, Tiago; Crossetti, Luciane O.; Motta Marques, David M.L.; Cardoso, Luciana; Fragoso, Carlos Ruberto; Nes, van Egbert H.

    2018-01-01

    It is well known that submerged macrophytes exert positive feedback effects that enhance the water transparency, stabilizing the clear-water state in shallow temperate lakes. However, the structuring effect of macrophytes on the food web of subtropical and tropical ecosystems is still poorly

  18. Unprecedented slow growth and mortality of the rare colonial cyanobacterium, Nostoc zetterstedtii, in oligotrophic lakes

    DEFF Research Database (Denmark)

    Jensen, Kaj Sand; Møller, Claus Lindskov

    2011-01-01

    Centimeter-large colonies of Nostoc zetterstedtii from a Swedish oligotrophic lake had the lowest growth and mortality rates of any studied temperate macrophyte. Annual growth rates at two shallow sites averaged 0.57– 0.73 3 1023 d21, corresponding to doubling times of colony dry weight in 2...

  19. A Facies Model for Temperate Continental Glaciers.

    Science.gov (United States)

    Ashley, Gail Mowry

    1987-01-01

    Discusses the presence and dynamics of continental glaciers in the domination of the physical processes of erosion and deposition in the mid-latitudes during the Pleistocene period. Describes the use of a sedimentary facies model as a guide to recognizing ancient temperate continental glacial deposits. (TW)

  20. The Temperance Movement and Social Work

    Science.gov (United States)

    Murdach, Allison D.

    2009-01-01

    This article examines a forgotten episode in social work history: the involvement of the profession in the temperance movement in the late 19th and early 20th centuries. Though some notable social workers such as Jane Addams, Robert A. Woods, and Representative Jeannette Rankin (the first woman elected to the U.S. Congress), championed the…

  1. The Interactive Effect of Multiple Stressors on Crustacean Zooplankton Communities in Montane Lakes

    Science.gov (United States)

    Brittain, Jeffrey T.; Strecker, Angela L.

    2018-02-01

    Nonnative fish introductions have altered thousands of naturally fishless montane lakes, resulting in cascading food web repercussions. Nitrogen deposition has been recognized as an anthropogenic contributor to acidification and eutrophication of freshwater ecosystems, which may affect the abundance and composition of planktonic communities. This study identified responses of zooplankton communities from two lakes (fish present versus absent) in Mount Rainier National Park to manipulations simulating an episodic disturbance of acidification and eutrophication via nitrogen addition in mesocosms. Zooplankton communities from lakes with different food web structure (i.e., fish present or absent) responded differently to the singular effects of acid and nitrogen addition. For instance, zooplankton biomass decreased in the acid treatment of the fishless lake experiment, but increased in response to acid in the fish-present experiment. In contrast, the combination of acid and nitrogen often resulted in weak responses for both lake types, resulting in nonadditive effects, i.e., the net effect of the stressors was in the opposite direction than predicted, which is known as a reversal or "ecological surprise." This experiment demonstrates the difficulty in predicting the interactive effects of multiple stressors on aquatic communities, which may pose significant challenges for habitat restoration through fish removal.

  2. Lanthanum-modified drinking water treatment residue for initial rapid and long-term equilibrium phosphorus immobilization to control eutrophication.

    Science.gov (United States)

    Wang, Changhui; Wu, Yu; Wang, Youquan; Bai, Leilei; Jiang, Helong; Yu, Juhua

    2018-06-15

    This study presents an approach for developing inactivating materials to achieve an initial rapid and a long-term equilibrium P immobilization to control eutrophication based on drinking water treatment residue (DWTR), which is a byproduct of potable water production. By taking advantage of the long-term equilibrium P adsorption by DWTR, the La chemical properties, and the previous success of using La-modified bentonite clay (Phoslock ® ), we used DWTR as a La carrier with different ratios to develop the specific materials. The La loading mechanisms, the potentially toxic effect of La-modified DWTR on snail Bellamya aeruginosa (within 120 d), and the short- and long-term (within 80 d) P immobilization characteristics of the modified DWTR were investigated to understand the performance of the developed materials. The results showed that La loading into DWTR was based on ligand exchanges and the formation of new particles; DWTR loaded with <5% La had no toxicity against the snail. Most importantly, the loading of 5% La to DWTR substantially enhanced the rapid immobilization capacity of DWTR, achieving an initial rapid and a long-term equilibrium P adsorption in aqueous solutions. This study promotes the beneficial recycling of DWTR and results in a win-win situation for lake restoration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Evolution of trophic state of Lake Endine from '70s onwards

    International Nuclear Information System (INIS)

    Garibaldi, L.; Mezzanotte, V.; Varallo, A.

    1995-01-01

    The present paper deals with the trend of the trophic level of Lake Endine in the last 20 years. A sharp decrease in the external loads has taken place due to the realization of an interceptor collecting sewage produced in the watershed and to the reduction of allowed phosphorus concentrations in the detergents. As a consequence, in lake phosphorus concentrations have decreased too, leading the lake to its theoretical natural conditions. However, less significant changes have been observed for chlorophyll and transparency, so that, according to the values of such parameters, the lake would still be eutrophic. Such situation could only be explained by an impairment between production and grazing due on the one hand to the modified composition of phytoplankton community and on the other one on the effect of the continuous and uncontrolled introduction of fish

  4. Evaluating stocking of YOY pike Esox lucius as a tool in the restoration of shallow lakes

    DEFF Research Database (Denmark)

    Skov, Christian; Nilsson, P.A.

    2007-01-01

    from field surveys in eight study lakes stocked with YOY pike as well as from the literature. 3. Our model showed that all parameters studied were important for predicting the effects of pike stocking on cyprinids. In particular, body size at stocking, cyprinid production and pike survival were good...... as an appropriate and reliable tool for restoration programmes in shallow lakes, and indicate that when used efforts should be made to optimize the timing of stocking in relation to YOY cyprinid production and to increase the stocking body size of the pike.......1. Stocking of piscivores in shallow, eutrophicated lakes to reduce cyprinid densities is a common approach in lake restorations. Young-of-the-year (YOY) pike Esox lucius are frequently used to reduce cyprinid densities, but their effectiveness is equivocal. This study uses a simple model to assess...

  5. Water pollution and cyanobacteria's variation of rivers surrounding southern Taihu Lake, China.

    Science.gov (United States)

    Sun, Mingyang; Huang, Linglin; Tan, Lisha; Yang, Zhe; Baig, Shams Ali; Sheng, Tiantian; Zhu, Hong; Xu, Xinhua

    2013-05-01

    The water quality and cyanobacterial variation of rivers surrounding southern Taihu Lake, China were purposively monitored from 2008 to 2010. Trophic level index (TLI) was used to evaluate the trophic levels of southern Taihu Lake. Results showed a considerable decline in the monitored data compared with 2007, and the data showed downward trends year after year. The TLI decreased from 55.6 to 51.3, which implied that southern Taihu Lake was mildly eutrophic. The water quality and cyanobacterial variation indicated a positive response to the adopted control measures in the southern Taihu Lake basin, but the intra- and inter-annual variability was still quite varied. High concentrations of nitrogen and phosphorus typically lead to algae outbreaks, however, the cyanobacteria growth may result in a decline of the concentration of nitrogen and phosphorus. Temperature and other weather conditions are also important factors for algae outbreaks; the risk of blue-green algal blooms still persists.

  6. The Effect of Land Used on the Water Quality of Oxbow Lakes in Sabah

    International Nuclear Information System (INIS)

    Ajimi Jawan; Viduriati Sumin

    2012-01-01

    The unique and isolated nature of oxbow lakes from its parent river is reflected by its water quality. This study was carried out to determine the water quality of oxbow lake located along the Sg. Sugut, Beluran, Sg. Padas, Beaufort and Sg. Kinabatangan, Sandakan, Sabah with different human activities. Physical and chemical parameters studied on site were dissolved oxygen (DO), temperature, pH value, conductivity and secchi disk depth (SDD) while those analysed in the laboratory were total suspended solid (TSS), total phosphorus (TP) and chlorophyll-a. From the results indicate human activities near oxbow lake cause increment of nutrient. It will lead ecotone by eutrophication that start succession of water bodies to terrestrial land. Number of oxbow lakes and its uniqueness will diminish and its function as organisms sanctuary will be greatly affected. (author)

  7. Climate-induced changes in the trophic status of a Central European lake

    Directory of Open Access Journals (Sweden)

    Thomas HÜBENER

    2009-02-01

    Full Text Available We present a case study of the development of Sacrower See, a stratified, eutrophic lake in northeastern German