WorldWideScience

Sample records for eutl shell protein

  1. Structure of a bacterial microcompartment shell protein bound to a cobalamin cofactor.

    Science.gov (United States)

    Thompson, Michael C; Crowley, Christopher S; Kopstein, Jeffrey; Bobik, Thomas A; Yeates, Todd O

    2014-12-01

    The EutL shell protein is a key component of the ethanolamine-utilization microcompartment, which serves to compartmentalize ethanolamine degradation in diverse bacteria. The apparent function of this shell protein is to facilitate the selective diffusion of large cofactor molecules between the cytoplasm and the lumen of the microcompartment. While EutL is implicated in molecular-transport phenomena, the details of its function, including the identity of its transport substrate, remain unknown. Here, the 2.1 Å resolution X-ray crystal structure of a EutL shell protein bound to cobalamin (vitamin B12) is presented and the potential relevance of the observed protein-ligand interaction is briefly discussed. This work represents the first structure of a bacterial microcompartment shell protein bound to a potentially relevant cofactor molecule.

  2. Protein profiles of hatchery egg shell membrane

    Science.gov (United States)

    Background: Eggshells, which consist largely of calcareous outer shell and shell membranes, constitute a significant part of poultry hatchery waste. The shell membranes (ESM) not only contain proteins that originate from egg whites but also from the developing embryos and different contaminants of m...

  3. Hydration shells exchange charge with their protein

    DEFF Research Database (Denmark)

    Abitan, Haim; Lindgård, Per-Anker; Nielsen, Bjørn Gilbert

    2010-01-01

    Investigation of the interaction between a protein and its hydration shells is an experimental and theoretical challenge. Here, we used ultrasonic pressure waves in aqueous solutions of a protein to explore the conformational states of the protein and its interaction with its hydration shells....... In our experiments, the amplitude of an ultrasonic pressure wave is gradually increased (0–20 atm) while we simultaneously measure the Raman spectra from the hydrated protein (β-lactoglobulin and lysozyme). We detected two types of spectral changes: first, up to 70% increase in the intensity...... the presence of an ultrasonic pressure, a protein and its hydration shells are in thermodynamic and charge equilibrium, i.e. a protein and its hydration shells exchange charges. The ultrasonic wave disrupts these equilibria which are regained within 30–45 min after the ultrasonic pressure is shut off....

  4. Protein profiles of hatchery egg shell membrane.

    Science.gov (United States)

    Rath, N C; Liyanage, R; Makkar, S K; Lay, J O

    2016-01-01

    Eggshells which consist largely of calcareous outer shell and shell membranes, constitute a significant part of poultry hatchery waste. The shell membranes (ESM) not only contain proteins that originate from egg whites but also from the developing embryos and different contaminants of microbial and environmental origins. As feed supplements, during post hatch growth, the hatchery egg shell membranes (HESM) have shown potential for imparting resistance of chickens to endotoxin stress and exert positive health effects. Considering that these effects are mediated by the bioactive proteins and peptides present in the membrane, the objective of the study was to identify the protein profiles of hatchery eggshell membranes (HESM). Hatchery egg shell membranes were extracted with acidified methanol and a guanidine hydrochloride buffer then subjected to reduction/alkylation, and trypsin digestion. The methanol extract was additionally analyzed by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). The tryptic digests were analyzed by liquid chromatography and tandem mass spectrometry (LC-MS-MS) to identify the proteins. Our results showed the presence of several proteins that are inherent and abundant in egg white such as, ovalbumin, ovotransferrin, ovocleidin-116, and lysozyme, and several proteins associated with cytoskeletal, cell signaling, antimicrobial, and catalytic functions involving carbohydrate, nucleic acid, and protein metabolisms. There were some blood derived proteins most likely originating from the embryos and several other proteins identified with different aerobic, anaerobic, gram positive, gram negative, soil, and marine bacterial species some commensals and others zoonotic. The variety of bioactive proteins, particularly the cell signaling and enzymatic proteins along with the diverse microbial proteins, make the HESM suitable for nutritional and biological application to improve post hatch immunity of poultry.

  5. Ground state instabilities of protein shells are eliminated by buckling.

    Science.gov (United States)

    Singh, Amit R; Perotti, Luigi E; Bruinsma, Robijn F; Rudnick, Joseph; Klug, William S

    2017-11-15

    We propose a hybrid discrete-continuum model to study the ground state of protein shells. The model allows for shape transformation of the shell and buckling transitions as well as the competition between states with different symmetries that characterize discrete particle models with radial pair potentials. Our main results are as follows. For large Föppl-von Kármán (FvK) numbers the shells have stable isometric ground states. As the FvK number is reduced, shells undergo a buckling transition resembling that of thin-shell elasticity theory. When the width of the pair potential is reduced below a critical value, then buckling coincides with the onset of structural instability triggered by over-stretched pair potentials. Chiral shells are found to be more prone to structural instability than achiral shells. It is argued that the well-width appropriate for protein shells lies below the structural instability threshold. This means that the self-assembly of protein shells with a well-defined, stable structure is possible only if the bending energy of the shell is sufficiently low so that the FvK number of the assembled shell is above the buckling threshold.

  6. Oyster Shell Proteins Originate from Multiple Organs and Their Probable Transport Pathway to the Shell Formation Front.

    Directory of Open Access Journals (Sweden)

    Xiaotong Wang

    Full Text Available Mollusk shell is one kind of potential biomaterial, but its vague mineralization mechanism hinders its further application. Mollusk shell matrix proteins are important functional components that are embedded in the shell, which play important roles in shell formation. The proteome of the oyster shell had been determined based on the oyster genome sequence by our group and gives the chance for further deep study in this area. The classical model of shell formation posits that the shell proteins are mantle-secreted. But, in this study, we further analyzed the shell proteome data in combination with organ transcriptome data and we found that the shell proteins may be produced by multiple organs though the mantle is still the most important organ for shell formation. To identify the transport pathways of these shell proteins not in classical model of shell formation, we conducted a shell damage experiment and we determined the shell-related gene set to identify the possible transport pathways from multiple organs to the shell formation front. We also found that there may exist a remodeling mechanism in the process of shell formation. Based on these results along with some published results, we proposed a new immature model, which will help us think about the mechanism of shell formation in a different way.

  7. Acidic Shell Proteins of the Mediterranean Fan Mussel Pinna nobilis.

    Science.gov (United States)

    Marin, Frédéric; Narayanappa, Prabakaran; Motreuil, Sébastien

    2011-01-01

    In molluscs, the shell secretion process is controlled by a set of extracellular macromolecules collectively called the shell matrix. The shell matrix, which is produced by the mantle epithelial cells during mineralization, is predominantly composed of proteins, glycoproteins, acidic polysaccharides, and chitin that precisely regulate the deposition of calcium carbonate outside the mantle cells. In the present paper, we focus on the shell of Pinna nobilis, the giant Mediterranean fan mussel, usually considered as a model for studying molluscan biomineralization processes. P. nobilis exhibits indeed a nacro-prismatic shell, the outer layer of which is constituted of the so-called "regular simple calcitic prisms," according to Carter and Clark (1985). We review here the microstructural characteristics of the prisms and nacre and the biochemical properties of their associated matrices. In particular, the calcitic prisms of P. nobilis are characterized by a cortege of unusually acidic intraprismatic proteins, while the ones of the nacreous layer seem less acidic. A brief description of the molecular characterization of three acidic proteins, caspartin, calprismin and mucoperlin, is given. In particular, we show that extremely acidic intracrystalline proteins such as caspartin interact with calcium carbonate at different scales, from micrometric to crystal lattice levels.

  8. Core-shell microparticles for protein sequestration and controlled release of a protein-laden core.

    Science.gov (United States)

    Rinker, Torri E; Philbrick, Brandon D; Temenoff, Johnna S

    2017-07-01

    Development of multifunctional biomaterials that sequester, isolate, and redeliver cell-secreted proteins at a specific timepoint may be required to achieve the level of temporal control needed to more fully regulate tissue regeneration and repair. In response, we fabricated core-shell heparin-poly(ethylene-glycol) (PEG) microparticles (MPs) with a degradable PEG-based shell that can temporally control delivery of protein-laden heparin MPs. Core-shell MPs were fabricated via a re-emulsification technique and the number of heparin MPs per PEG-based shell could be tuned by varying the mass of heparin MPs in the precursor PEG phase. When heparin MPs were loaded with bone morphogenetic protein-2 (BMP-2) and then encapsulated into core-shell MPs, degradable core-shell MPs initiated similar C2C12 cell alkaline phosphatase (ALP) activity as the soluble control, while non-degradable core-shell MPs initiated a significantly lower response (85+19% vs. 9.0+4.8% of the soluble control, respectively). Similarly, when degradable core-shell MPs were formed and then loaded with BMP-2, they induced a ∼7-fold higher C2C12 ALP activity than the soluble control. As C2C12 ALP activity was enhanced by BMP-2, these studies indicated that degradable core-shell MPs were able to deliver a bioactive, BMP-2-laden heparin MP core. Overall, these dynamic core-shell MPs have the potential to sequester, isolate, and then redeliver proteins attached to a heparin core to initiate a cell response, which could be of great benefit to tissue regeneration applications requiring tight temporal control over protein presentation. Tissue repair requires temporally controlled presentation of potent proteins. Recently, biomaterial-mediated binding (sequestration) of cell-secreted proteins has emerged as a strategy to harness the regenerative potential of naturally produced proteins, but this strategy currently only allows immediate amplification and re-delivery of these signals. The multifunctional, dynamic

  9. Chicken Egg Shell Membrane Associated Proteins and Peptides.

    Science.gov (United States)

    Makkar, Sarbjeet; Liyanage, Rohana; Kannan, Lakshmi; Packialakshmi, Balamurugan; Lay, Jack O; Rath, Narayan C

    2015-11-11

    Egg shells are poultry industry byproducts with potential for use in various biological and agricultural applications. We have been interested in the membranes underlying the calcareous shell as a feed supplement, which showed potential to improve immunity and performance of post hatch poultry. Therefore, to determine their protein and peptide profiles, we extracted the egg shell membranes (ESM) from fresh unfertilized eggs with methanol and guanidine hydrochloride (GdHCl) to obtain soluble proteins for analysis by mass spectrometry. The methanol extract was subjected to matrix-assisted laser desorption ionization (MALDI), electrospray ionization (ESI), high-performance reverse phase liquid chromatographic separation (HPLC), and tandem mass spectrometry (MS/MS) to determine its peptide and protein profiles. The GdHCl extract was subjected to ESI-HPLC-MS/MS following trypsin digestion of reduced/alkylated proteins. Nine proteins from the methanol extract and >275 proteins from the GdHCl extract were tentatively identified. The results suggested the presence of several abundant proteins from egg whites, such as ovoalbumin, ovotransferrin, and lysozyme as well as many others associated with antimicrobial, biomechanical, cytoskeletal organizational, cell signaling, and enzyme activities. Collagens, keratin, agrin, and laminin were some of the structural proteins present in the ESM. The methanol-soluble fraction contained several clusterin peptides and defensins, particularly, two isoforms of gallin. The ratios of the two isoforms of gallin differed between the membranes obtained from brown and white eggs. The high abundance of several antimicrobial, immunomodulatory, and other bioactive proteins in the ESM along with its potential to entrap various microbes and antigens may make it a suitable vehicle for oral immunization of post hatch poultry and improve their disease resistance.

  10. Microcapsules with protein fibril reinforced shells: effect of fibril properties on mechanical strength of the shell.

    Science.gov (United States)

    Humblet-Hua, Nam-Phuong K; van der Linden, Erik; Sagis, Leonard M C

    2012-09-19

    In this study, we produced microcapsules using layer-by-layer adsorption of food-grade polyelectrolytes on an emulsion droplet template. We compared the mechanical stability of microcapsules to shells consisting of alternating layers of ovalbumin-high methoxyl pectin (Ova-HMP) complexes and semi-flexible ovalbumin (Ova) fibrils (average contour length, L(c) ~ 200 nm), with microcapsules built of alternating layers of lysozyme-high methoxyl pectin (LYS-HMP) complexes and lysozyme (LYS) fibrils. Two types of LYS fibrils were used: short and rod-like (L(c) ~ 500 nm) and long and semi-flexible (L(c) = 1.2-1.5 μm). At a low number of layers (≤4), microcapsules from Ova complexes and fibrils were stronger than microcapsules prepared from LYS complexes and fibrils. With an increase of the number of layers, the mechanical stability of microcapsules from LYS-HMP/LYS fibrils increased significantly and capsules were stronger than those prepared from Ova-HMP/Ova fibrils with the same number of layers. The contour length of the LYS fibrils did not have a significant effect on mechanical stability of the LYS-HMP/LYS fibril capsules. The stiffer LYS fibrils produce capsules with a hard but more brittle shell, whereas the semi-flexible Ova fibrils produce capsules with a softer but more stretchable shell. These results show that mechanical properties of this type of capsule can be tuned by varying the flexibility of the protein fibrils.

  11. Homogeneous protein analysis by magnetic core-shell nanorod probes

    KAUST Repository

    Schrittwieser, Stefan

    2016-03-29

    Studying protein interactions is of vital importance both to fundamental biology research and to medical applications. Here, we report on the experimental proof of a universally applicable label-free homogeneous platform for rapid protein analysis. It is based on optically detecting changes in the rotational dynamics of magnetically agitated core-shell nanorods upon their specific interaction with proteins. By adjusting the excitation frequency, we are able to optimize the measurement signal for each analyte protein size. In addition, due to the locking of the optical signal to the magnetic excitation frequency, background signals are suppressed, thus allowing exclusive studies of processes at the nanoprobe surface only. We study target proteins (soluble domain of the human epidermal growth factor receptor 2 - sHER2) specifically binding to antibodies (trastuzumab) immobilized on the surface of our nanoprobes and demonstrate direct deduction of their respective sizes. Additionally, we examine the dependence of our measurement signal on the concentration of the analyte protein, and deduce a minimally detectable sHER2 concentration of 440 pM. For our homogeneous measurement platform, good dispersion stability of the applied nanoprobes under physiological conditions is of vital importance. To that end, we support our measurement data by theoretical modeling of the total particle-particle interaction energies. The successful implementation of our platform offers scope for applications in biomarker-based diagnostics as well as for answering basic biology questions.

  12. Structure of the PduU shell protein from the Pdu microcompartment of Salmonella.

    Science.gov (United States)

    Crowley, Christopher S; Sawaya, Michael R; Bobik, Thomas A; Yeates, Todd O

    2008-09-10

    The Pdu microcompartment is a proteinaceous, subcellular structure that serves as an organelle for the metabolism of 1,2-propanediol in Salmonella enterica. It encapsulates several related enzymes within a shell composed of a few thousand protein subunits. Recent structural studies on the carboxysome, a related microcompartment involved in CO(2) fixation, have concluded that the major shell proteins from that microcompartment form hexamers that pack into layers comprising the facets of the shell. Here we report the crystal structure of PduU, a protein from the Pdu microcompartment, representing the first structure of a shell protein from a noncarboxysome microcompartment. Though PduU is a hexamer like other characterized shell proteins, it has undergone a circular permutation leading to dramatic differences in the hexamer pore. In view of the hypothesis that microcompartment metabolites diffuse across the outer shell through these pores, the unique structure of PduU suggests the possibility of a special functional role.

  13. Shell

    OpenAIRE

    Harper, Catherine

    2006-01-01

    Susie MacMurray's Shell installation manifests in Pallant House Gallery, Chichester, like some pulsing exotica, a heavily-textured wall-paper, darkly decorative, heavily luxurious, broodingly present, with more than a hint of the uncanny or the gothic. A remarkable undertaking by an artist of significance, this work's life-span will be just one year, and then it will disappear, leaving no physical trace, but undoubtedly contributing in a much less tangible way to an already rich layering of n...

  14. Water Dynamics in Protein Hydration Shells: The Molecular Origins of the Dynamical Perturbation

    Science.gov (United States)

    2014-01-01

    Protein hydration shell dynamics play an important role in biochemical processes including protein folding, enzyme function, and molecular recognition. We present here a comparison of the reorientation dynamics of individual water molecules within the hydration shell of a series of globular proteins: acetylcholinesterase, subtilisin Carlsberg, lysozyme, and ubiquitin. Molecular dynamics simulations and analytical models are used to access site-resolved information on hydration shell dynamics and to elucidate the molecular origins of the dynamical perturbation of hydration shell water relative to bulk water. We show that all four proteins have very similar hydration shell dynamics, despite their wide range of sizes and functions, and differing secondary structures. We demonstrate that this arises from the similar local surface topology and surface chemical composition of the four proteins, and that such local factors alone are sufficient to rationalize the hydration shell dynamics. We propose that these conclusions can be generalized to a wide range of globular proteins. We also show that protein conformational fluctuations induce a dynamical heterogeneity within the hydration layer. We finally address the effect of confinement on hydration shell dynamics via a site-resolved analysis and connect our results to experiments via the calculation of two-dimensional infrared spectra. PMID:24479585

  15. Water dynamics in protein hydration shells: the molecular origins of the dynamical perturbation.

    Science.gov (United States)

    Fogarty, Aoife C; Laage, Damien

    2014-07-17

    Protein hydration shell dynamics play an important role in biochemical processes including protein folding, enzyme function, and molecular recognition. We present here a comparison of the reorientation dynamics of individual water molecules within the hydration shell of a series of globular proteins: acetylcholinesterase, subtilisin Carlsberg, lysozyme, and ubiquitin. Molecular dynamics simulations and analytical models are used to access site-resolved information on hydration shell dynamics and to elucidate the molecular origins of the dynamical perturbation of hydration shell water relative to bulk water. We show that all four proteins have very similar hydration shell dynamics, despite their wide range of sizes and functions, and differing secondary structures. We demonstrate that this arises from the similar local surface topology and surface chemical composition of the four proteins, and that such local factors alone are sufficient to rationalize the hydration shell dynamics. We propose that these conclusions can be generalized to a wide range of globular proteins. We also show that protein conformational fluctuations induce a dynamical heterogeneity within the hydration layer. We finally address the effect of confinement on hydration shell dynamics via a site-resolved analysis and connect our results to experiments via the calculation of two-dimensional infrared spectra.

  16. The Role of First and Second Shell Interactions in Phosphate Binding Proteins

    DEFF Research Database (Denmark)

    Gruber, Mathias F.; Junker, Märta Caroline; Greisen, Per

    2013-01-01

    for coordinating or binding the phosphate depends on its functional usage, e.g. a structural motif known as the P loop is often found. In this work, we survey phosphatebinding proteins with emphasis on the molecular recognition of the first and second-shell interactions between anion and amino acid residues....... To characterize the binding sites, we optimize the geometries by using density functional theory calculations. From the optimized geometries, we calculate the charge transfer and force constants between the first shell interactions and the phosphate moiety as well as the interaction between the first- and second...... shell of the protein. The results serve to describe the strength of the first shell interaction, where positive amino acids and metals are often observed. Results also show the importance of the second shell interactions to support the binding motif. Our approach can provide basic insight into the high...

  17. IMPACT OF DYNAMICAL HYDRATION SHELL AROUND HA PROTEIN ON NONLINEAR CONCENTRATION DEPENDENT T-RAYS ABSORPTION

    Directory of Open Access Journals (Sweden)

    YIWEN SUN

    2013-10-01

    Full Text Available T-rays is sensitive to covalently cross-linked proteins and can be used to probe unique dynamic properties of water surrounding a protein. In this paper, we demonstrate the unique absorption properties of the dynamic hydration shells determined by hemagglutinin (HA protein in terahertz frequency. We study the changes arising from different concentrations in detail and show that nonlinear absorption coefficient is induced by the dynamic hydration water. The binary and ternary component model were used to interpret the nonlinearity absorption behaviors and predict the thickness of the hydration shells around the HA protein in aqueous phase.

  18. Dynamic hydration shell restores Kauzmann's 1959 explanation of how the hydrophobic factor drives protein folding

    Science.gov (United States)

    Baldwin, Robert L.

    2014-01-01

    Kauzmann's explanation of how the hydrophobic factor drives protein folding is reexamined. His explanation said that hydrocarbon hydration shells are formed, possibly of clathrate water, and they explain why hydrocarbons have uniquely low solubilities in water. His explanation was not universally accepted because of skepticism about the clathrate hydration shell. A revised version is given here in which a dynamic hydration shell is formed by van der Waals (vdw) attraction, as proposed in 1985 by Jorgensen et al. [Jorgensen WL, Gao J, Ravimohan C (1985) J Phys Chem 89:3470–3473]. The vdw hydration shell is implicit in theories of hydrophobicity that contain the vdw interaction between hydrocarbon C and water O atoms. To test the vdw shell model against the known hydration energetics of alkanes, the energetics should be based on the Ben-Naim standard state (solute transfer between fixed positions in the gas and liquid phases). Then the energetics are proportional to n, the number of water molecules correlated with an alkane by vdw attraction, given by the simulations of Jorgensen et al. The energetics show that the decrease in entropy upon hydration is the root cause of hydrophobicity; it probably results from extensive ordering of water molecules in the vdw shell. The puzzle of how hydrophobic free energy can be proportional to nonpolar surface area when the free energy is unfavorable and the only known interaction (the vdw attraction) is favorable, is resolved by finding that the unfavorable free energy is produced by the vdw shell. PMID:25157156

  19. Preparation and recognition of surface molecularly imprinted core-shell microbeads for protein in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Lu Yan, E-mail: yanlu2001@sohu.com [College of Chemistry and Environmental Science, Henan Normal University, 46 Jlanshe Road, Xinxiang 453007 (China); Yan Changling; Gao Shuyan [College of Chemistry and Environmental Science, Henan Normal University, 46 Jlanshe Road, Xinxiang 453007 (China)

    2009-04-01

    In this paper, a surface molecular imprinting technique was reported for preparing core-shell microbeads of protein imprinting, and bovine hemoglobin or bovine serum albumin were used as model proteins for studying the imprinted core-shell microbeads. 3-Aminophenylboronic acid (APBA) was polymerized onto the surface of polystyrene microbead in the presence of the protein templates to create protein-imprinted core-shell microbeads. The various samples were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) methods. The effect of pH on rebinding of the template hemoglobin, the specific binding and selective recognition were studied for the imprinted microbeads. The results show that the bovine hemoglobin-imprinted core-shell microbeads were successfully created. The shell was a sort of imprinted thin films with porous structure and larger surface areas. The imprinted microbeads have good selectivity for templates and high stability. Due to the recognition sites locating at or closing to the surface, these imprinted microbeads have good property of mass-transport. Unfortunately, the imprint technology was not successfully applied to imprinting bovine serum albumin (BSA).

  20. Decomposition of Protein Experimental Compressibility into Intrinsic and Hydration Shell Contributions

    Science.gov (United States)

    Dadarlat, Voichita M.; Post, Carol Beth

    2006-01-01

    The experimental determination of protein compressibility reflects both the protein intrinsic compressibility and the difference between the compressibility of water in the protein hydration shell and bulk water. We use molecular dynamics simulations to explore the dependence of the isothermal compressibility of the hydration shell surrounding globular proteins on differential contributions from charged, polar, and apolar protein-water interfaces. The compressibility of water in the protein hydration shell is accounted for by a linear combination of contributions from charged, polar, and apolar solvent-accessible surfaces. The results provide a formula for the deconvolution of experimental data into intrinsic and hydration contributions when a protein of known structure is investigated. The physical basis for the model is the variation in water density shown by the surface-specific radial distribution functions of water molecules around globular proteins. The compressibility of water hydrating charged atoms is lower than bulk water compressibility, the compressibility of water hydrating apolar atoms is somewhat larger than bulk water compressibility, and the compressibility of water around polar atoms is about the same as the compressibility of bulk water. We also assess whether hydration water compressibility determined from small compound data can be used to estimate the compressibility of hydration water surrounding proteins. The results, based on an analysis from four dipeptide solutions, indicate that small compound data cannot be used directly to estimate the compressibility of hydration water surrounding proteins. PMID:16997864

  1. Pulsatile protein release from monodisperse liquid-core microcapsules of controllable shell thickness

    Science.gov (United States)

    Xia, Yujie; Pack, Daniel W.

    2014-01-01

    Purpose Pulsatile delivery of proteins, in which release occurs over a short time after a period of little or no release, is desirable for many applications. This paper investigates the effect of biodegradable polymer shell thickness on pulsatile protein release from biodegradable polymer microcapsules. Methods Using precision particle fabrication (PPF) technology, monodisperse microcapsules were fabricated encapsulating bovine serum albumin (BSA) in a liquid core surrounded by a drug-free poly(lactide-co-glycolide) (PLG) shell of uniform, controlled thickness from 14 to 19 μm. Results When using high molecular weight PLG (Mw 88 kDa), microparticles exhibited the desired core-shell structure with high BSA loading and encapsulation efficiency (55-65%). These particles exhibited very slow release of BSA for several weeks followed by rapid release of 80-90% of the encapsulated BSA within seven days. Importantly, with increasing shell thickness the starting time of the pulsatile release could be controlled from 25 to 35 days. Conclusions Biodegradable polymer microcapsules with precisely controlled shell thickness provide pulsatile release with enhanced control of release profiles. PMID:24831313

  2. Shape, shell, and vacuole formation during the drying of a single concentrated whey protein droplet.

    Science.gov (United States)

    Sadek, Céline; Tabuteau, Hervé; Schuck, Pierre; Fallourd, Yannick; Pradeau, Nicolas; Le Floch-Fouéré, Cécile; Jeantet, Romain

    2013-12-17

    The drying of milk concentrate droplets usually leads to specific particle morphology influencing their properties and their functionality. Understanding how the final shape of the particle is formed therefore represents a key issue for industrial applications. In this study, a new approach to the investigation of droplet-particle conversion is proposed. A single droplet of concentrated globular proteins extracted from milk was deposited onto a hydrophobic substrate and placed in a dry environment. Complementary methods (high-speed camera, confocal microscopy, and microbalance) were used to record the drying behavior of the concentrated protein droplets. Our results showed that whatever the initial concentration, particle formation included three dynamic stages clearly defined by the loss of mass and the evolution of the internal and external shapes of the droplet. A new and reproducible particle shape was related in this study. It was observed after drying a smooth, hemispherical cap-shaped particle, including a uniform protein shell and the nucleation of an internal vacuole. The particle morphology was strongly influenced by the drying environment, the contact angle, and the initial protein concentration, all of which governed the duration of the droplet shrinkage, the degree of buckling, and the shell thickness. These results are discussed in terms of specific protein behaviors in forming a predictable and a characteristic particle shape. The way the shell is formed may be the starting point in shaping particle distortion and thus represents a potential means of tuning the particle morphology.

  3. The effect of polycarboxylate shell of magnetite nanoparticles on protein corona formation in blood plasma

    Energy Technology Data Exchange (ETDEWEB)

    Szekeres, Márta, E-mail: szekeres@chem.u-szeged.hu [Department of Physical Chemistry and Materials Sciences, University of Szeged, Hungary, 1 Aradi vt, 6720 Szeged (Hungary); Tóth, Ildikó Y. [Department of Physical Chemistry and Materials Sciences, University of Szeged, Hungary, 1 Aradi vt, 6720 Szeged (Hungary); Turcu, R. [National Institute R& D for Isotopic and Molecular Technology, Cluj-Napoca 400293 (Romania); Tombácz, Etelka [Department of Physical Chemistry and Materials Sciences, University of Szeged, Hungary, 1 Aradi vt, 6720 Szeged (Hungary)

    2017-04-01

    The development of protein corona around nanoparticles upon administration to the human body is responsible in a large part for their biodistribution, cell-internalization and toxicity or biocompatibility. We studied the influence of the chemical composition of polyelectrolyte shells (citric acid (CA) and poly(acrylic-co-maleic acid) (PAM)) of core-shell magnetite nanoparticles (MNPs) on the evolution of protein corona in human plasma (HP). The aggregation state and zeta potential of the particles were measured in the range of HP concentration between 1 and 80 (v/v)% 3 min and 20 h after dispersing the particles in HP diluted with Tris buffered saline. Naked MNPs aggregated in HP solution, but the carboxylated MNPs became stabilized colloidally at higher plasma concentrations. Significant differences were observed at low plasma concentration. CA@MNPs aggregated instantly while the hydrodynamic diameter of PAM@MNP increased only slightly at 1–3 v/v % HP concentrations. The observed differences in protein corona formation can be explained by the differences in the steric effects of the polycarboxylate shells. It is interesting that relatively small but systematic changes in zeta potential alter the aggregation state significantly. - Highlights: • Human plasma protein corona cannot stabilize naked and citrate-coated magnetite nanoparticles. • Polycarboxylic acid (PAM) coated MNPs are well stabilized with HP protein corona. • Stability pattern of naked, CA and PAM-coated MNPs is not predicted by zeta potential.

  4. Folding induced supramolecular assembly into pH-responsive nanorods with a protein repellent shell.

    Science.gov (United States)

    Otter, R; Klinker, K; Spitzer, D; Schinnerer, M; Barz, M; Besenius, P

    2018-01-04

    We report the synthesis of ABA' triblock peptide-polysarcosine-peptide conjugates featuring two complementary phenylalanine-histidine pentapeptide strands A/A'. These sequences encode for antiparallel β-sheet formation into folded conjugates, which promote the self-assembly into polysarcosine-shielded core-shell nanorods. These do not cause aggregation of serum proteins in human blood plasma underlining an enhanced stability.

  5. Retinoid X receptor gene expression and protein content in tissues of the rock shell Thais clavigera

    Energy Technology Data Exchange (ETDEWEB)

    Horiguchi, Toshihiro [Research Center for Environmental Risk, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan)], E-mail: thorigu@nies.go.jp; Nishikawa, Tomohiro [Research Center for Environmental Risk, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Ohta, Yasuhiko [Department of Veterinary Science, Faculty of Agriculture, Tottori University, 4-101 Koyamacho-Minami, Tottori 680-8553 (Japan); Shiraishi, Hiroaki; Morita, Masatoshi [Research Center for Environmental Risk, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan)

    2007-10-15

    To elucidate the role of retinoid X receptor (RXR) in the development of imposex caused by organotin compounds in gastropod molluscs, we investigated RXR gene expression and RXR protein content in various tissues of male and female wild rock shells (Thais clavigera). Quantitative real-time polymerase chain reaction, Western blotting, and immunohistochemistry with a commercial antibody against human RXR {alpha} revealed that RXR gene expression was significantly higher in the penises of males and imposex-exhibiting females than in the penis-forming areas of normal females (P < 0.01 and P < 0.05, respectively). Western blotting demonstrated that the antibody could detect rock shell RXR and showed that the male penis had the highest content of RXR protein among the analyzed tissues of males and normal females. Immunohistochemical staining revealed nuclear localization of RXR protein in the epithelial and smooth muscle cells of the vas deferens and in the interstitial or connective tissues and epidermis of the penis in males and imposex-exhibiting females. RXR could be involved in the mechanism of induction of male-type genitalia (penis and vas deferens) by organotin compounds in female rock shells.

  6. The effect of polycarboxylate shell of magnetite nanoparticles on protein corona formation in blood plasma

    Science.gov (United States)

    Szekeres, Márta; Tóth, Ildikó Y.; Turcu, R.; Tombácz, Etelka

    2017-04-01

    The development of protein corona around nanoparticles upon administration to the human body is responsible in a large part for their biodistribution, cell-internalization and toxicity or biocompatibility. We studied the influence of the chemical composition of polyelectrolyte shells (citric acid (CA) and poly(acrylic-co-maleic acid) (PAM)) of core-shell magnetite nanoparticles (MNPs) on the evolution of protein corona in human plasma (HP). The aggregation state and zeta potential of the particles were measured in the range of HP concentration between 1 and 80 (v/v)% 3 min and 20 h after dispersing the particles in HP diluted with Tris buffered saline. Naked MNPs aggregated in HP solution, but the carboxylated MNPs became stabilized colloidally at higher plasma concentrations. Significant differences were observed at low plasma concentration. CA@MNPs aggregated instantly while the hydrodynamic diameter of PAM@MNP increased only slightly at 1-3 v/v % HP concentrations. The observed differences in protein corona formation can be explained by the differences in the steric effects of the polycarboxylate shells. It is interesting that relatively small but systematic changes in zeta potential alter the aggregation state significantly.

  7. Structure and Function of a Bacterial Microcompartment Shell Protein Engineered to Bind a [4Fe-4S] Cluster.

    Science.gov (United States)

    Aussignargues, Clément; Pandelia, Maria-Eirini; Sutter, Markus; Plegaria, Jefferson S; Zarzycki, Jan; Turmo, Aiko; Huang, Jingcheng; Ducat, Daniel C; Hegg, Eric L; Gibney, Brian R; Kerfeld, Cheryl A

    2016-04-27

    Bacterial microcompartments (BMCs) are self-assembling organelles composed of a selectively permeable protein shell and encapsulated enzymes. They are considered promising templates for the engineering of designed bionanoreactors for biotechnology. In particular, encapsulation of oxidoreductive reactions requiring electron transfer between the lumen of the BMC and the cytosol relies on the ability to conduct electrons across the shell. We determined the crystal structure of a component protein of a synthetic BMC shell, which informed the rational design of a [4Fe-4S] cluster-binding site in its pore. We also solved the structure of the [4Fe-4S] cluster-bound, engineered protein to 1.8 Å resolution, providing the first structure of a BMC shell protein containing a metal center. The [4Fe-4S] cluster was characterized by optical and EPR spectroscopies; it has a reduction potential of -370 mV vs the standard hydrogen electrode (SHE) and is stable through redox cycling. This remarkable stability may be attributable to the hydrogen-bonding network provided by the main chain of the protein scaffold. The properties of the [4Fe-4S] cluster resemble those in low-potential bacterial ferredoxins, while its ligation to three cysteine residues is reminiscent of enzymes such as aconitase and radical S-adenosymethionine (SAM) enzymes. This engineered shell protein provides the foundation for conferring electron-transfer functionality to BMC shells.

  8. Inhibition of protein aggregation by zwitterionic polymer-based core-shell nanogels

    Science.gov (United States)

    Rajan, Robin; Matsumura, Kazuaki

    2017-04-01

    Protein aggregation is a process by which misfolded proteins polymerizes into aggregates and forms fibrous structures with a β-sheet conformation, known as amyloids. It is an undesired outcome, as it not only causes numerous neurodegenerative diseases, but is also a major deterrent in the development of protein biopharmaceuticals. Here, we report a rational design for the synthesis of novel zwitterionic polymer-based core-shell nanogels via controlled radical polymerization. Nanogels with different sizes and functionalities in the core and shell were prepared. The nanogels exhibit remarkable efficiency in the protection of lysozyme against aggregation. Addition of nanogels suppresses the formation of toxic fibrils and also enables lysozyme to retain its enzymatic activity. Increasing the molecular weight and degree of hydrophobicity markedly increases its overall efficiency. Investigation of higher order structures revealed that lysozyme when heated without any additive loses its secondary structure and transforms into a random coil conformation. In contrast, presence of nanogels facilitates the retention of higher order structures by acting as molecular chaperones, thereby reducing molecular collisions. The present study is the first to show that it is possible to design zwitterionic nanogels using appropriate polymerization techniques that will protect proteins under conditions of extreme stress and inhibit aggregation.

  9. Electrophoresis of oil-containing edible microcapsules with protein-polyuronic shells

    Directory of Open Access Journals (Sweden)

    A. Baerle

    2015-05-01

    Full Text Available Introduction.The aim of this work is to determine the sign of the charge of microcapsules shells, containing oil composition and to estimate stability of microcapsules with different diameters in the electric field. Materials and methods. The microcapsules were prepared by complex coacervation method. Remains of electrolytes were removed by dialysis or electro-dialysis. Purified microcapsules were subjected to electrophoresis at 100-400 V/m. Polydispersity was determined by means of our own method. Results and discussion. Small microcapsules with protein-poliuronate shells moves from the cathode (- to the anode (+ during electrophoresis. Microcapsules with a diameter much than 35μm are most susceptible to degradation in the cathode space, while remaining stable at low pH values at the anode surface. Conclusions. Gelatin-Alginat and Gelatin-Hyaluronat shells have a negative electric charge. Electrophoresis can be used to obtain required diameter of coacervate microcapsules. High stability of the microcapsules in the anode space (acid confirms the validity of their introduction into fermented dairy products.

  10. Application of Near Infrared Reflectance Spectroscopy on Determination of Moisture, Total oil and Protein Contents of In-shell Peanuts

    Science.gov (United States)

    Moisture, total oil and protein content of peanuts are important factors in peanut grading. A method that could rapidly and nondestructively measure these parameters for in-shell peanuts would be extremely useful. NIR reflectance spectroscopy was used to analyze the moisture, total oil and protein ...

  11. Combining protein-shelled platinum nanoparticles with graphene to build a bionanohybrid capacitor.

    Science.gov (United States)

    San, Boi Hoa; Kim, Jang Ah; Kulkarni, Atul; Moh, Sang Hyun; Dugasani, Sreekantha Reddy; Subramani, Vinod Kumar; Thorat, Nanasaheb D; Lee, Hyun Ho; Park, Sung Ha; Kim, Taesung; Kim, Kyeong Kyu

    2014-12-23

    The electronic properties of biomolecules and their hybrids with inorganic materials can be utilized for the fabrication of nanoelectronic devices. Here, we report the charge transport behavior of protein-shelled inorganic nanoparticles combined with graphene and demonstrate their possible application as a bionanohybrid capacitor. The conductivity of PepA, a bacterial aminopeptidase used as a protein shell (PS), and the platinum nanoparticles (PtNPs) encapsulated by PepA was measured using a field effect transistor (FET) and a graphene-based FET (GFET). Furthermore, we confirmed that the electronic properties of PepA-PtNPs were controlled by varying the size of the PtNPs. The use of two poly(methyl methacrylate) (PMMA)-coated graphene layers separated by PepA-PtNPs enabled us to build a bionanohybrid capacitor with tunable properties. The combination of bioinorganic nanohybrids with graphene is regarded as the cornerstone for developing flexible and biocompatible bionanoelectronic devices that can be integrated into bioelectric circuits for biomedical purposes.

  12. In situ preparation and protein delivery of silicate-alginate composite microspheres with core-shell structure.

    Science.gov (United States)

    Wu, Chengtie; Fan, Wei; Gelinsky, Michael; Xiao, Yin; Chang, Jiang; Friis, Thor; Cuniberti, Gianaurelio

    2011-12-07

    The efficient loading and sustained release of proteins from bioactive microspheres remain a significant challenge. In this study, we have developed bioactive microspheres which can be loaded with protein and then have a controlled rate of protein release into a surrounding medium. This was achieved by preparing a bioactive microsphere system with core-shell structure, combining a calcium silicate (CS) shell with an alginate (A) core by a one-step in situ method. The result was to improve the microspheres' protein adsorption and release, which yielded a highly bioactive material with potential uses in bone repair applications. The composition and the core-shell structure, as well as the formation mechanism of the obtained CS-A microspheres, were investigated by X-ray diffraction, optical microscopy, scanning electron microscopy, energy dispersive spectrometer dot and line-scanning analysis. The protein loading efficiency reached 75 per cent in CS-A microspheres with a core-shell structure by the in situ method. This is significantly higher than that of pure A or CS-A microspheres prepared by non-in situ method, which lack a core-shell structure. CS-A microspheres with a core-shell structure showed a significant decrease in the burst release of proteins, maintaining sustained release profile in phosphate-buffered saline (PBS) at both pH 7.4 and 4.3, compared with the controls. The protein release from CS-A microspheres is predominantly controlled by a Fickian diffusion mechanism. The CS-A microspheres with a core-shell structure were shown to have improved apatite-mineralization in simulated body fluids compared with the controls, most probably owing to the existence of bioactive CS shell on the surface of the microspheres. Our results indicate that the core-shell structure of CS-A microspheres play an important role in enhancing protein delivery and mineralization, which makes these composite materials promising candidates for application in bone tissue

  13. Expression of cardiac proteins in neonatal cardiomyocytes on PGS/fibrinogen core/shell substrate for Cardiac tissue engineering.

    Science.gov (United States)

    Ravichandran, Rajeswari; Venugopal, Jayarama Reddy; Sundarrajan, Subramanian; Mukherjee, Shayanti; Sridhar, Radhakrishnan; Ramakrishna, Seeram

    2013-08-20

    Heart failure due to myocardial infarction remains the leading cause of death worldwide owing to the inability of myocardial tissue regeneration. The aim of this study is to develop a core/shell fibrous cardiac patch having desirable mechanical properties and biocompatibility to engineer the infarcted myocardium. We fabricated poly(glycerol sebacate)/fibrinogen (PGS/fibrinogen) core/shell fibers with core as elastomeric PGS provides suitable mechanical properties comparable to that of native tissue and shell as fibrinogen to promote cell-biomaterial interactions. The PGS/fibrinogen core/shell fibers and fibrinogen nanofibers were characterized by SEM, contact angle and tensile testing to analyze the fiber morphology, wettability, and mechanical properties of the scaffold. The cell-scaffold interactions were analyzed using isolated neonatal cardiomyocytes for cell proliferation, confocal analysis for the expression of marker proteins α-actinin, Troponin-T, β-myosin heavy chain and connexin 43 and SEM analysis for cell morphology. We observed PGS/fibrinogen core/shell fibers had a Young's modulus of about 3.28 ± 1.7 MPa, which was comparable to that of native myocardium. Neonatal cardiomyocytes cultured on these scaffolds showed normal expression of cardiac specific marker proteins α-actinin, Troponin, β-myosin heavy chain and connexin 43 to prove PGS/fibrinogen core/shell fibers have potential for cardiac tissue engineering. Results indicated that neonatal cardiomyocytes formed predominant gap junctions and expressed cardiac specific marker proteins on PGS/fibrinogen core/shell fibers compared to fibrinogen nanofibers, indicating PGS/fibrinogen core/shell fibers may serve as a suitable cardiac patch for the regeneration of infarcted myocardium. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Preparation of Core-Shell Hybrid Materials by Producing a Protein Corona Around Magnetic Nanoparticles.

    Science.gov (United States)

    Weidner, A; Gräfe, C; von der Lühe, M; Remmer, H; Clement, J H; Eberbeck, D; Ludwig, F; Müller, R; Schacher, F H; Dutz, S

    2015-12-01

    Nanoparticles experience increasing interest for a variety of medical and pharmaceutical applications. When exposing nanomaterials, e.g., magnetic iron oxide nanoparticles (MNP), to human blood, a protein corona consisting of various components is formed immediately. The composition of the corona as well as its amount bound to the particle surface is dependent on different factors, e.g., particle size and surface charge. The actual composition of the formed protein corona might be of major importance for cellular uptake of magnetic nanoparticles. The aim of the present study was to analyze the formation of the protein corona during in vitro serum incubation in dependency of incubation time and temperature. For this, MNP with different shells were incubated in fetal calf serum (FCS, serving as protein source) within a water bath for a defined time and at a defined temperature. Before and after incubation the particles were characterized by a variety of methods. It was found that immediately (seconds) after contact of MNP and FCS, a protein corona is formed on the surface of MNP. This formation led to an increase of particle size and a slight agglomeration of the particles, which was relatively constant during the first minutes of incubation. A longer incubation (from hours to days) resulted in a stronger agglomeration of the FCS incubated MNP. Quantitative analysis (gel electrophoresis) of serum-incubated particles revealed a relatively constant amount of bound proteins during the first minutes of serum incubation. After a longer incubation (>20 min), a considerably higher amount of surface proteins was determined for incubation temperatures below 40 °C. For incubation temperatures above 50 °C, the influence of time was less significant which might be attributed to denaturation of proteins during incubation. Overall, analysis of the molecular weight distribution of proteins found in the corona revealed a clear influence of incubation time and temperature on

  15. Preparation of Core-Shell Hybrid Materials by Producing a Protein Corona Around Magnetic Nanoparticles

    Science.gov (United States)

    Weidner, A.; Gräfe, C.; von der Lühe, M.; Remmer, H.; Clement, J. H.; Eberbeck, D.; Ludwig, F.; Müller, R.; Schacher, F. H.; Dutz, S.

    2015-07-01

    Nanoparticles experience increasing interest for a variety of medical and pharmaceutical applications. When exposing nanomaterials, e.g., magnetic iron oxide nanoparticles (MNP), to human blood, a protein corona consisting of various components is formed immediately. The composition of the corona as well as its amount bound to the particle surface is dependent on different factors, e.g., particle size and surface charge. The actual composition of the formed protein corona might be of major importance for cellular uptake of magnetic nanoparticles. The aim of the present study was to analyze the formation of the protein corona during in vitro serum incubation in dependency of incubation time and temperature. For this, MNP with different shells were incubated in fetal calf serum (FCS, serving as protein source) within a water bath for a defined time and at a defined temperature. Before and after incubation the particles were characterized by a variety of methods. It was found that immediately (seconds) after contact of MNP and FCS, a protein corona is formed on the surface of MNP. This formation led to an increase of particle size and a slight agglomeration of the particles, which was relatively constant during the first minutes of incubation. A longer incubation (from hours to days) resulted in a stronger agglomeration of the FCS incubated MNP. Quantitative analysis (gel electrophoresis) of serum-incubated particles revealed a relatively constant amount of bound proteins during the first minutes of serum incubation. After a longer incubation (>20 min), a considerably higher amount of surface proteins was determined for incubation temperatures below 40 °C. For incubation temperatures above 50 °C, the influence of time was less significant which might be attributed to denaturation of proteins during incubation. Overall, analysis of the molecular weight distribution of proteins found in the corona revealed a clear influence of incubation time and temperature on corona

  16. Food Protein Based Core-Shell Nanocarriers for Oral Drug Delivery: Effect of Shell Composition on in Vitro and in Vivo Functional Performance of Zein Nanocarriers.

    Science.gov (United States)

    Alqahtani, Mohammed S; Islam, M Saiful; Podaralla, Satheesh; Kaushik, Radhey S; Reineke, Joshua; Woyengo, Tofuko; Perumal, Omathanu

    2017-03-06

    The study was aimed at systematically investigating the influence of shell composition on the particle size, stability, release, cell uptake, permeability, and in vivo gastrointestinal distribution of food protein based nanocarriers for oral delivery applications. Three different core-shell nanocarriers were prepared using food-grade biopolymers including zein-casein (ZC) nanoparticles, zein-lactoferrin (ZLF), nanoparticles and zein-PEG (ZPEG) micelles. Nile red was used as a model hydrophobic dye for in vitro studies. The nanocarriers had negative, positive, and neutral charge, respectively. All three nanocarriers had a particle size of less than 200 nm and a low polydispersity index. The nanoparticles were stable at gastrointestinal pH (2-9) and ionic strength (10-200 mM). The nanocarriers sustained the release of Nile red in simulated gastric and intestinal fluids. ZC nanoparticles showed the slowest release followed by ZLF nanoparticles and ZPEG micelles. The nanocarriers were taken up by endocytosis in Caco-2 cells. ZPEG micelles showed the highest cell uptake and transepithelial permeability followed by ZLF and ZC nanoparticles. ZPEG micelles also showed P-gp inhibitory activity. All three nanocarriers showed bioadhesive properties. Cy 5.5, a near IR dye, was used to study the in vivo biodistribution of the nanocarriers. The nanocarriers showed longer retention in the rat gastrointestinal tract compared to the free dye. Among the three formulations, ZC nanoparticles was retained the longest in the rat gastrointestinal tract (≥24 h). Overall, the outcomes from this study demonstrate the structure-function relationship of core-shell protein nanocarriers. The findings from this study can be used to develop food protein based oral drug delivery systems with specific functional attributes.

  17. Magnetic core/shell Fe3O4/Au nanoparticles for studies of quinolones binding to protein by fluorescence spectroscopy.

    Science.gov (United States)

    Jin, Rui; Song, Daqian; Xiong, Huixia; Ai, Lisha; Ma, Pinyi; Sun, Ying

    2016-03-01

    Magnetic core/shell Fe3O4/Au nanoparticles were used in the determination of drug binding to bovine serum albumin (BSA) using a fluorescence spectroscopic method. The binding constants and number of binding sites for protein with drugs were calculated using the Scatchard equation. Because of their superparamagnetic and biocompatible characteristics, magnetic core/shell Fe3O4/Au nanoparticles served as carrier proteins for fixing proteins. After binding of the protein to a drug, the magnetic core/shell Fe3O4/Au nanoparticles-protein-drug complex was separated from the free drug using an applied magnetic field. The free drug concentration was obtained directly by fluorescence spectrometry and the proteins did not influence the drug determination. So, the achieved number of binding sites should be reliable. The binding constant and site number for ciprofloxacin (CPFX) binding to BSA were 2.055 × 10(5) L/mol and 31.7, and the corresponding values for norfloxacin (NOR) binding to BSA were 1.383 × 10(5) L/mol and 38.8. Based on the achieved results, a suitable method was proposed for the determination of binding constants and the site number for molecular interactions. The method was especially suitable for studies on the interactions of serum albumin with the active ingredients of Chinese medicine. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Characterization of 3D Voronoi Tessellation Nearest Neighbor Lipid Shells Provides Atomistic Lipid Disruption Profile of Protein Containing Lipid Membranes

    Science.gov (United States)

    Cheng, Sara Y.; Duong, Hai V.; Compton, Campbell; Vaughn, Mark W.; Nguyen, Hoa; Cheng, Kwan H.

    2015-01-01

    Quantifying protein-induced lipid disruptions at the atomistic level is a challenging problem in membrane biophysics. Here we propose a novel 3D Voronoi tessellation nearest-atom-neighbor shell method to classify and characterize lipid domains into discrete concentric lipid shells surrounding membrane proteins in structurally heterogeneous lipid membranes. This method needs only the coordinates of the system and is independent of force fields and simulation conditions. As a proof-of-principle, we use this multiple lipid shell method to analyze the lipid disruption profiles of three simulated membrane systems: phosphatidylcholine, phosphatidylcholine/cholesterol, and beta-amyloid/phosphatidylcholine/cholesterol. We observed different atomic volume disruption mechanisms due to cholesterol and beta-amyloid Additionally, several lipid fractional groups and lipid-interfacial water did not converge to their control values with increasing distance or shell order from the protein. This volume divergent behavior was confirmed by bilayer thickness and chain orientational order calculations. Our method can also be used to analyze high-resolution structural experimental data. PMID:25637891

  19. Caspartin and calprismin, two proteins of the shell calcitic prisms of the Mediterranean fan mussel Pinna nobilis.

    Science.gov (United States)

    Marin, Frédéric; Amons, Reinout; Guichard, Nathalie; Stigter, Martin; Hecker, Arnaud; Luquet, Gilles; Layrolle, Pierre; Alcaraz, Gérard; Riondet, Christophe; Westbroek, Peter

    2005-10-07

    We used the combination of preparative electrophoresis and immunological detection to isolate two new proteins from the shell calcitic prisms of Pinna nobilis, the Mediterranean fan mussel. The amino acid composition of these proteins was determined. Both proteins are soluble, intracrystalline, and acidic. The 38-kDa protein is glycosylated; the 17-kDa one is not. Ala, Asx, Thr, and Pro represent the dominant residues of the 38-kDa protein, named calprismin. An N-terminal sequence was obtained from calprismin. This sequence, which comprises a pattern of 4 cysteine residues, is not related to any known protein. The second protein, named caspartin, exhibits an unusual amino acid composition, since Asx constitutes by far the main amino acid residue. Preliminary sequencing surprisingly suggests that the first 75 N-terminal residues are all Asp. Caspartin self-aggregates spontaneously into multimers. In vitro tests show that it inhibits the precipitation of calcium carbonate. Furthermore, it strongly interferes with the growth of calcite crystals. A polyclonal antiserum raised against caspartin was used to localize this protein in the shell by immunogold. The immunolocalization demonstrates that caspartin is distributed within the prisms and makes a continuous film at the interface between the prisms and the surrounding insoluble sheets. Our finding emphasizes the prominent role of aspartic acid-rich proteins for the building of calcitic prisms among molluscs.

  20. Chitin-binding proteins of Artemia diapause cysts participate in formation of the embryonic cuticle layer of cyst shells.

    Science.gov (United States)

    Ma, Wen-Ming; Li, Hua-Wei; Dai, Zhong-Min; Yang, Jin-Shu; Yang, Fan; Yang, Wei-Jun

    2013-01-01

    The brine shrimp Artemia reproduces either ovoviviparously, producing free-swimming nauplii, or oviparously, producing encysted embryos (diapause cysts) able to cope with harsh and complex habitats. When the cysts enter diapause they are encased in a complex external shell that protects them from certain extreme environments. The genomic comparison of oviparous and ovoviviparous ovisacs has been described previously. We isolated three significantly up-regulated genes in oviparous oocytes and identified them as Arp-CBP (Artemia parthenogenetica chitin-binding protein) genes. Quantitative real-time PCR indicated that the expression of Arp-CBP genes gradually increases during diapause cyst formation and significant mRNA accumulation occurs during the ovisac stage of oviparous development. Moreover, in situ hybridization results demonstrated that Arp-CBP mRNAs are expressed in the embryo. Interestingly, the results of immune electron microscopy showed that all three Arp-CBPs are distributed throughout the cellular ECL (embryonic cuticle layer) of the cyst shell. Furthermore, knockdown of Arp-CBP by RNA interference resulted in marked changes in the composition of the embryonic cuticular layer. The fibrous layer of the cyst shell adopted a loose conformation and the inner and outer cuticular membranes exhibited marked irregularities when Arp-CBP expression was suppressed. Finally, an in vitro recombinant protein-binding assay showed that all three Arp-CBPs have carbohydrate-binding activities. These findings provide significant insight into the mechanisms by which the ECL of Artemia cyst shell is formed, and demonstrate that Arp-CBPs are involved in construction of the fibrous lattice and are required for formation of the ECL of the cyst shell.

  1. Recombinant production of a shell matrix protein in Escherichia coli and its application to the biomimetic synthesis of spherulitic calcite crystals.

    Science.gov (United States)

    Song, Wooho; Bahn, So Yeong; Cha, Hyung Joon; Pack, Seung Pil; Choi, Yoo Seong

    2016-05-01

    To overcome the limited production capability of shell matrix proteins and efficiently conduct in vitro CaCO3 biomineralization studies, a putative recombinant shell matrix protein was prepared and characterized. A glycine-rich protein (GRP_BA) was found in Pinctada fucata as a putative shell matrix protein (NCBI reference sequence; BAA20465). It was genetically redesigned for the production in Escherichia coli. The recombinant protein was obtained in a 400 ml shake-flask culture at approx. 30 mg l(-1) with a purity of >95 %. It efficiently formed a complex with Ca(2+). Ca(2+)-induced agglomeration was like other calcification-related proteins. Spherulitic calcite micro-particles, 20-30 µm diam. with rosette- and sphere-like structures were synthesized in the presence of the recombinant shell protein, which could be formed by stacking and/or aggregation of calcite nanograins and the bound protein. Recombinant production of a shell matrix protein could overcome potential difficulties associated with the limited amount of protein available for biomineralization studies and provide opportunities to fabricate biominerals in practical aspects.

  2. Novel Synthesis of Core-Shell Silica Nanoparticles for the Capture of Low Molecular Weight Proteins and Peptides

    Directory of Open Access Journals (Sweden)

    Sergio G. Hernandez-Leon

    2017-10-01

    Full Text Available Silica nanoparticles were functionalized with immobilized molecular bait, Cibacron Blue, and a porous polymeric bis-acrylamide shell. These nanoparticles represent a new alternative to capture low molecular weight (LMW proteins/peptides, that might be potential biomarkers. Functionalized core-shell silica nanoparticles (FCSNP presented a size distribution of 243.9 ± 11.6 nm and an estimated surface charge of −38.1 ± 0.9 mV. The successful attachment of compounds at every stage of synthesis was evidenced by ATR-FTIR. The capture of model peptides was determined by mass spectrometry, indicating that only the peptide with a long sequence of hydrophobic amino acids (alpha zein 34-mer interacted with the molecular bait. FCSNP excluded the high molecular weight protein (HMW, BSA, and captured LMW proteins (myoglobin and aprotinin, as evidenced by SDS-PAGE. Functionalization of nanoparticles with Cibacron Blue was crucial to capture these molecules. FCSNP were stable after twelve months of storage and maintained a capacity of 3.1–3.4 µg/mg.

  3. Molecular cloning and characterization of lustrin A, a matrix protein from shell and pearl nacre of Haliotis rufescens.

    Science.gov (United States)

    Shen, X; Belcher, A M; Hansma, P K; Stucky, G D; Morse, D E

    1997-12-19

    A specialized extracellular matrix of proteins and polysaccharides controls the morphology and packing of calcium carbonate crystals and becomes occluded within the mineralized composite during formation of the molluscan shell and pearl. We have cloned and characterized the cDNA coding for Lustrin A, a newly described matrix protein from the nacreous layer of the shell and pearl produced by the abalone, Haliotis rufescens, a marine gastropod mollusc. The full-length cDNA is 4,439 base pairs (bp) long and contains an open reading frame coding for 1,428 amino acids. The deduced amino acid sequence reveals a highly modular structure with a high proportion of Ser (16%), Pro (14%), Gly (13%), and Cys (9%). The protein contains ten highly conserved cysteine-rich domains interspersed by eight proline-rich domains; a glycine- and serine-rich domain lies between the two cysteine-rich domains nearest the C terminus, and these are followed by a basic domain and a C-terminal domain that is highly similar to known protease inhibitors. The glycine- and serine-rich domain and at least one of the proline-rich domains show sequence similarity to proteins of two extracellular matrix superfamilies (one of which also is involved in the mineralized matrixes of bone, dentin, and avian eggshell). The arrangement of alternating cysteine-rich domains and proline-rich domains is strikingly similar to that found in frustulins, the proteins that are integral to the silicified cell wall of diatoms. Its modular structure suggests that Lustrin A is a multifunctional protein, whereas the occurrence of related sequences suggest it is a member of a multiprotein family.

  4. Insights into Mollusk Shell Formation: Interlamellar and Lamellar-Specific Nacre Protein Hydrogels Differ in Ion Interaction Signatures.

    Science.gov (United States)

    Pendola, Martin; Evans, John Spencer

    2018-01-08

    In the mollusk shell nacre layer, there exist hydrogelator proteomes that play important roles in the formation of the mineral phase. Two of these proteomes, the intracrystalline and the framework, reside in the interior and exterior, respectively, of the nacre tablets. To date there is no clear evidence of what distinguishes an intracrystalline protein from a framework protein regarding the nucleation process. Using Eu(III), phosphate anions, and recombinant versions of the intracrystalline protein, AP7 and the framework protein, n16.3 we probed each protein hydrogel for its interactions with these model ions. Fluorescence spectroscopy of Eu(III) interactions with both protein hydrogels revealed that r-AP7 exhibited enhanced effects on Eu(III) fluorescence compared to r-n16.3, and, 31P NMR experiments demonstrated that r-AP7 had a more significant impact on phosphate anions compared to r-n16.3. Thus, r-AP7 was found to be more of an ion "disruptor" than r-n16.3. Interestingly, these findings correlate with the particle size distributions and internal structure of the hydrogel particles themselves, suggesting that the physical and chemical properties of the hydrogels dictate hydrogel-ion interactions. In conclusion, we confirm that hydrogelator proteomes possess distinguishable ion interaction properties that may impact the nucleation processes in these regions and control the overall formation of mesoscale nacre tablets.

  5. Protein/CaCO₃/Chitin Nanofiber Complex Prepared from Crab Shells by Simple Mechanical Treatment and Its Effect on Plant Growth.

    Science.gov (United States)

    Aklog, Yihun Fantahun; Egusa, Mayumi; Kaminaka, Hironori; Izawa, Hironori; Morimoto, Minoru; Saimoto, Hiroyuki; Ifuku, Shinsuke

    2016-09-22

    A protein/CaCO₃/chitin nanofiber complex was prepared from crab shells by a simple mechanical treatment with a high-pressure water-jet (HPWJ) system. The preparation process did not involve chemical treatments, such as removal of protein and calcium carbonate with sodium hydroxide and hydrochloric acid, respectively. Thus, it was economically and environmentally friendly. The nanofibers obtained had uniform width and dispersed homogeneously in water. Nanofibers were characterized in morphology, transparency, and viscosity. Results indicated that the shell was mostly disintegrated into nanofibers at above five cycles of the HPWJ system. The chemical structure of the nanofiber was maintained even after extensive mechanical treatments. Subsequently, the nanofiber complex was found to improve the growth of tomatoes in a hydroponics system, suggesting the mechanical treatments efficiently released minerals into the system. The homogeneous dispersion of the nanofiber complex enabled easier application as a fertilizer compared to the crab shell flakes.

  6. Hierarchical core/shell Fe3O4@SiO2@γ-AlOOH@Au micro/nanoflowers for protein immobilization.

    Science.gov (United States)

    Xuan, Shouhu; Wang, Feng; Gong, Xinglong; Kong, Siu-Kai; Yu, Jimmy C; Leung, Ken Cham-Fai

    2011-03-07

    A facile synthesis of monodispersed microparticles composed of superparamagnetic Fe(3)O(4) cores, SiO(2) shell, hierarchical γ-AlOOH periphery with Au nanoparticles is reported. These particles are found to be useful for protein immobilization and bear resemblance to daisy flowers, and are hereafter termed "nanoflowers".

  7. Open Boundary Simulations of Proteins and Their Hydration Shells by Hamiltonian Adaptive Resolution Scheme.

    Science.gov (United States)

    Tarenzi, Thomas; Calandrini, Vania; Potestio, Raffaello; Giorgetti, Alejandro; Carloni, Paolo

    2017-11-14

    The recently proposed Hamiltonian adaptive resolution scheme (H-AdResS) allows the performance of molecular simulations in an open boundary framework. It allows changing, on the fly, the resolution of specific subsets of molecules (usually the solvent), which are free to diffuse between the atomistic region and the coarse-grained reservoir. So far, the method has been successfully applied to pure liquids. Coupling the H-AdResS methodology to hybrid models of proteins, such as the molecular mechanics/coarse-grained (MM/CG) scheme, is a promising approach for rigorous calculations of ligand binding free energies in low-resolution protein models. Toward this goal, here we apply for the first time H-AdResS to two atomistic proteins in dual-resolution solvent, proving its ability to reproduce structural and dynamic properties of both the proteins and the solvent, as obtained from atomistic simulations.

  8. Core-Shell Soy Protein-Soy Polysaccharide Complex (Nano)particles as Carriers for Improved Stability and Sustained Release of Curcumin.

    Science.gov (United States)

    Chen, Fei-Ping; Ou, Shi-Yi; Tang, Chuan-He

    2016-06-22

    Using soy protein isolate (SPI) and soy-soluble polysaccharides (SSPS) as polymer matrixes, this study reported a novel process to fabricate unique core-shell complex (nano)particles to perform as carriers for curcumin (a typical poorly soluble bioactive). In the process, curcumin-SPI nanocomplexes were first formed at pH 7.0 and then coated by SSPS. At this pH, the core-shell complex was formed in a way the SPI nanoparticles might be incorporated into the interior of SSPS molecules without distinctly affecting the size and morphology of particles. The core-shell structure was distinctly changed by adjusting pH from 7.0 to 4.0. At pH 4.0, SSPS was strongly bound to the surface of highly aggregated SPI nanoparticles, and as a consequence, much larger complexes were formed. The bioaccessibility of curcumin in the SPI-curcumin complexes was unaffected by the SSPS coating. However, the core-shell complex formation greatly improved the thermal stability and controlled release properties of encapsulated curcumin. The improvement was much better at pH 4.0 than that at pH 7.0. All of the freeze-dried core-shell complex preparations exhibited good redispersion behavior. The findings provide a simple approach to fabricate food-grade delivery systems for improved water dispersion, heat stability, and even controlled release of poorly soluble bioactives.

  9. Dietary Protein Sources Affect Internal Quality of Raw and Cooked Shell Eggs under Refrigerated Conditions

    Directory of Open Access Journals (Sweden)

    X. C. Wang

    2015-11-01

    Full Text Available This study was conducted to evaluate the effects of various protein sources (soybean meal, SBM; cottonseed protein, CSP; double-zero rapeseed meal, DRM on the internal quality of refrigerated eggs. A total of 360 laying hens (32 wk of age were randomly allotted to six treatment groups (five replicates per treatment and fed diets containing SBM, CSP, or DRM individually or in combination with equal crude protein content (SBM-CSP, SBM-DRM, and CSP-DRM as the protein ingredient(s. A 6×3 factorial arrangement was employed with dietary types and storage time (0 d, 2 wk, and 4 wk as the main effects. After 12 wk of diet feeding, a total of 270 eggs were collected for egg quality determination. The egg Haugh unit (HU in the CSP, SBM-DRM, and DRM groups were significantly lower than those in the SBM and SBM-CSP groups. The hardness and springiness of the cooked yolk in the CSP group were significantly higher than those in the other treatment groups. A lower HU, lower yolk index and higher albumen pH were observed in the DRM group compared to the SBM and SBM-CSP groups when the eggs were stored to 4 wk, and the HU was improved in the CSP-DRM group compared to the DRM group (p<0.05. Higher yolk hardness was observed in the CSP group compared to the other groups during storage (p<0.05, but the hardness of the cooked yolk in the SBM-CSP and CSP-DRM groups showed no difference in comparison to the SBM group. In conclusion, CSP may ameliorate the negative effects of DRM on the HU of refrigerated eggs, and SBM or DRM may alleviate the adverse effects of CSP on yolk hardness.

  10. Effect of dietary protein sources and storage temperatures on egg internal quality of stored shell eggs

    Directory of Open Access Journals (Sweden)

    Xiaocui Wang

    2015-12-01

    Full Text Available This study was conducted to evaluate the effects of various protein sources (soybean meal, SBM; cottonseed protein, CSP; double-zero rapeseed meal, DRM on the internal quality (Haugh unit, yolk index, albumen pH, yolk hardness and yolk springiness of eggs when stored at either 4 or 28°C for 28 d. A total of 288 laying hens (32 wk of age were randomly allotted to 6 treatment groups (4 replicates per treatment and fed diets containing SBM, CSP, or DRM individually or in combination with equal crude protein content (SBM-CSP, SBM-DRM, and CSP-DRM as the protein ingredient(s. A 6 × 2 factorial arrangement was employed with dietary types and storage temperatures (4 and 28°C as the main effects. After 12 wk of diet feeding, a total of 216 eggs was collected for egg internal quality determination. The results showed as follows: 1 lower egg quality was observed in the DRM group compared with the other groups when stored at 4 and 28°C for 28 d (P < 0.05, while there was no difference in egg internal quality among the other groups. 2 The CSP diet resulted in higher yolk hardness compared with the other diets when eggs were stored at 4°C for 28 d (P < 0.05. Lower Haugh unit was observed in the DRM and SBM-DRM groups compared with the other groups when eggs were stored for 28 d at 4°C (P < 0.05. 3 Yolk breakage occurred in the DRM group and eggs could not be analyzed for egg internal quality when stored at 28°C for 28 d. The overall results indicated that CSP or DRM as the sole dietary protein source for laying hens may adversely affect the internal quality of stored eggs as compared with the SBM diet, and half replacement of CSP combined with SBM may maintain similar egg quality to SBM diet alone for eggs stored under refrigerated conditions.

  11. Isolation and cDNA cloning of a novel red colour-related pigment-binding protein derived from the shell of the shrimp, Litopenaeus vannamei.

    Science.gov (United States)

    Pan, Chuang; Ishizaki, Shoichiro; Nagashima, Yuji; Gao, Jialong; Watabe, Shugo

    2018-02-15

    Pigment-binding proteins play important roles in crustacean shell colour change. In this study, a red colour-related pigment-binding protein, designated LvPBP75, was purified from the shell of Litopenaeus vannamei. HPLC and PAGE analysis showed that LvPBP75 was a homogeneous monomer with molecular mass of 75kDa. Peptide mass fingerprint analysis revealed that LvPBP75 belonged to hemocyanin, and the released pigment from heated LvPBP75 showed a λmax at 481nm in acetone. The significant red-colour change temperatures were detected at 30 and 80°C, respectively. Based on the determined amino acid fragments, a full-length cDNA of LvPBP75 was cloned and sequenced. The ORF encodes a protein of 662 amino acids having 80% identity with penaeidae hemocyanin. These results strongly suggest a novel function of hemocyanin, namely binding with pigment, and its involvement in L. vannamei shell colour change. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Recent advances in the application of core-shell structured magnetic materials for the separation and enrichment of proteins and peptides.

    Science.gov (United States)

    Zhao, Man; Xie, Yiqin; Deng, Chunhui; Zhang, Xiangmin

    2014-08-29

    Many endogenous proteins/peptides and proteins/peptides with post-translational modifications (PTMs) are presented at extremely low abundance, and they usually suffer strong interference with highly abundant proteins/peptides as well as other contaminants, resulting in low ionization efficiency in MS analysis. Therefore, the separation and enrichment of proteins/peptides from complex mixtures is of great importance to the successful identification of them. Core-shell structured magnetic microspheres have been widely used in the enrichment and isolation of proteins/peptides, thanks to unique properties such as strong magnetic responsiveness, outstanding binding capacity, excellent biocompatibility, robust mechanical strength and admirable recoverability. The aim of this review is to update the advances in the application of core-shell structured magnetic materials for proteomics analysis, including the separation and enrichment of low-concentration proteins/peptides, the selective enrichment of phosphoproteins and the selective enrichment of glycoproteins, and to compare the enrichment performance of magnetic microspheres with different kinds of functionalization. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Effect of permethrin, anthracene and mixture exposure on shell components, enzymatic activities and proteins status in the Mediterranean clam Venerupis decussata

    Energy Technology Data Exchange (ETDEWEB)

    Sellami, Badreddine, E-mail: sellamibadreddine@gmail.com [Laboratory of Environment Biomonitoring, Coastal Ecology Unit, Faculty of Sciences of Bizerta, University of Carthage, 7021 Zarzouna (Tunisia); Khazri, Abdelhafidh [Laboratory of Environment Biomonitoring, Coastal Ecology Unit, Faculty of Sciences of Bizerta, University of Carthage, 7021 Zarzouna (Tunisia); Mezni, Amine [Unit of Research 99/UR12-30, Department of Chemistry, Faculty of Sciences of Bizerte, 7021 Jarzouna (Tunisia); Louati, Héla; Dellali, Mohamed; Aissa, Patricia; Mahmoudi, Ezzeddine; Beyrem, Hamouda [Laboratory of Environment Biomonitoring, Coastal Ecology Unit, Faculty of Sciences of Bizerta, University of Carthage, 7021 Zarzouna (Tunisia); Sheehan, David, E-mail: d.sheehan@ucc.ie [Environmental Research Institute and Department of Biochemistry, University College Cork, Western Gateway Building, Western Road, Cork (Ireland)

    2015-01-15

    Highlights: • We assessed toxicity of anthracene, permethrin and their mixture on clams. • Tissue and stressor-dependent changes were observed in biochemical responses. • Permethrin induces phase transition from aragonite to calcite in shell structure. • Interactive effects were observed on digestive gland and gill biomarkers. • Both approaches give new vision to risk assessment of organic pollution. - Abstract: Anthracene (ANT) and permethrin (PER) are two of the more toxic compounds reaching the marine environment. This study aimed to determine the impact of these molecules on Venerupis decussata, an economically important species cultured on the Tunisian coast. Shell structure and its possible transformation upon exposure to the two contaminants were studied by X-ray diffraction and gravimetric analyses. Results revealed a phase transition in shell composition from aragonite to calcite after PER exposure, to a mixture of PER and ANT (Mix) but not for ANT alone. Catalase (CAT), superoxide dismutase (SOD) and glutathione transferase (GST) activities were determined in digestive gland and gills after exposure to ANT, PER and Mix to assess the impact of the contamination on the oxidative status of V. decussata. Enzyme activities increased in the digestive gland after PER treatment and in the gills after ANT treatment. PER exposure significantly reduced the levels of free thiols and increased levels of carbonylated proteins in the digestive gland, as compared to controls. In contrast, ANT exposure significantly reduced free thiols and increased the number of carbonylated proteins in the gills. Mix induced additive effects as measured by both enzymatic and proteomic approaches. The present study suggests that PER has a strong effect on shell structure; that PER and ANT exposure generate compound-dependent oxidative stress in the tissues of V. decussata and that a mixture of the two compounds has synergistic effects on biochemical response.

  14. Significance of surface charge and shell material of superparamagnetic iron oxide nanoparticle (SPION) based core/shell nanoparticles on the composition of the protein corona

    NARCIS (Netherlands)

    Sakulkhu, Usawadee; Mahmoudi, Morteza; Maurizi, Lionel; Coullerez, Geraldine; Hofmann-Amtenbrink, Margarethe; de Vries, Marcel; Motazacker, Mahdi; Rezaee, Farhad; Hofmann, Heinrich

    2015-01-01

    As nanoparticles (NPs) are increasingly used in many applications their safety and efficient applications in nanomedicine have become concerns. Protein coronas on nanomaterials' surfaces can influence how the cell "recognizes" nanoparticles, as well as the in vitro and in vivo NPs' behaviors. The

  15. Electrogenerated chemiluminescence determination of C-reactive protein with carboxyl CdSe/ZnS core/shell quantum dots.

    Science.gov (United States)

    Wang, Shijun; Harris, Emma; Shi, Jian; Chen, Alfred; Parajuli, Suman; Jing, Xiaohui; Miao, Wujian

    2010-09-14

    Electrogenerated chemiluminescence (ECL) of water-soluble core/shell CdSe/ZnS quantum dots (QDs) coated with carboxylated polyethylene glycol polymers ("Qdot 625") was investigated in aqueous solutions using 2-(dibutylamino)ethanol (DBAE) and tri-n-propylamine (TPrA) as ECL coreactants. In both cases, ECL emissions at glassy carbon (GC) electrode appeared at the same potential of approximately 0.80 V vs. Ag/AgCl (3.0 M KCl), which was approximately 200 and approximately 150 mV more positive compared with the oxidation potentials for DBAE (approximately +0.60 V vs. Ag/AgCl) and TPrA (approximately +0.65 V vs. Ag/AgCl), respectively. The ECL intensity, however, was significantly affected by the type and the concentration of the ECL coreactant used as well as the nature of the working electrode. Under the present experimental conditions, ECL from DBAE was approximately 17 times stronger than that from TPrA. The maximum ECL was obtained at GC electrode when [DBAE] approximately = 53 mM, where a ratio of 11:3:1 in ECL intensity was evaluated for GC, Au, and Pt electrodes, respectively. The ECL emission of the Qdot 625/DBAE system had an apparent peak value of approximately 625 nm that matched well the fluorescence data. The QD as a label for ECL-based immunoassays of C-reactive protein (CRP) was realized by covalent binding of avidin on its surface, which allowed biotinylated anti-CRP to be attached and interacted with solution-phase CRP and the anti-CRP linked to micro-sized magnetic beads. The newly formed sandwich type aggregates were separated magnetically from the solution matrix, followed by the ECL generation at partially transparent Au nanoparticle-coated ITO electrode or Au/CD electrode in the presence of DBAE. Much stronger ECL responses were observed from the Au/CD electrode, at which a dynamic range of 1.0-10.0 microg mL(-1) CRP and a limit of detection of 1.0 microg mL(-1) CRP were obtained, respectively.

  16. Mucins and molluscan calcification. Molecular characterization of mucoperlin, a novel mucin-like protein from the nacreous shell layer of the fan mussel Pinna nobilis (Bivalvia, pteriomorphia).

    Science.gov (United States)

    Marin, F; Corstjens, P; de Gaulejac, B; de Vrind-De Jong, E; Westbroek, P

    2000-07-07

    A cDNA expression library constructed from mantle tissue mRNA of the Mediterranean fan mussel Pinna nobilis was screened with antibodies raised against the acetic acid-soluble shell matrix of the same species. This resulted in the isolation of a 2138-base pair cDNA, containing 13 tandem repeats of 93 base pairs. The deduced protein has a molecular mass of 66.7 kDa and a isoelectric point of 4.8. This protein, which is enriched in serine and proline residues, was overexpressed, purified, and used for producing polyclonal antibodies. Immunological in situ and in vitro tests showed that the protein is localized in the nacreous aragonitic layer of P. nobilis, but not in the calcitic prisms. Because this protein of the nacre of P. nobilis exhibits some mucin-like characteristics, we propose the name mucoperlin. This is the first paper reporting the cloning of a molluscan mucin and the first molecular evidence for the involvement of a mucin in molluscan calcification. This finding corroborates our previous hypothesis that some of the proteinaceous constituents of the molluscan shell matrix would derive from mucins, common to many metazoan lineages of the late Precambrian (Marin, F., Smith, M., Isa, Y., Muyzer, G. and Westbroek, P. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 1554-1559). The adaptation of an ancestral mucin to a new function, the regulation of the mineralization process, may be one of the molecular events, among others, that would explain the simultaneous emergence of organized calcification in many metazoan lineages during the Cambrian explosion.

  17. Shell supports

    DEFF Research Database (Denmark)

    Almegaard, Henrik

    2004-01-01

    A new statical and conceptual model for membrane shell structures - the stringer system - has been found. The principle was first published at the IASS conference in Copenhagen (OHL91), and later the theory has been further developed (ALMO3)(ALMO4). From the analysis of the stringer model it can...... be concluded that all membrane shells can be described by a limited number of basic configurations of which quite a few have free edges....

  18. Genome Editing for Cancer Therapy: Delivery of Cas9 Protein/sgRNA Plasmid via a Gold Nanocluster/Lipid Core-Shell Nanocarrier.

    Science.gov (United States)

    Wang, Peng; Zhang, Lingmin; Xie, Yangzhouyun; Wang, Nuoxin; Tang, Rongbing; Zheng, Wenfu; Jiang, Xingyu

    2017-11-01

    The type II bacterial clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 (CRISPR-associated protein) system (CRISPR-Cas9) is a powerful toolbox for gene-editing, however, the nonviral delivery of CRISPR-Cas9 to cells or tissues remains a key challenge. This paper reports a strategy to deliver Cas9 protein and single guide RNA (sgRNA) plasmid by a nanocarrier with a core of gold nanoclusters (GNs) and a shell of lipids. By modifying the GNs with HIV-1-transactivator of transcription peptide, the cargo (Cas9/sgRNA) can be delivered into cell nuclei. This strategy is utilized to treat melanoma by designing sgRNA targeting Polo-like kinase-1 ( Plk1 ) of the tumor. The nanoparticle (polyethylene glycol-lipid/GNs/Cas9 protein/sgPlk1 plasmid, LGCP) leads to >70% down-regulation of Plk1 protein expression of A375 cells in vitro. Moreover, the LGCP suppresses melanoma progress by 75% on mice. Thus, this strategy can deliver protein-nucleic acid hybrid agents for gene therapy.

  19. QTL analysis of cocoon shell weight identifies BmRPL18 associated with silk protein synthesis in silkworm by pooling sequencing.

    Science.gov (United States)

    Li, Chunlin; Tong, Xiaoling; Zuo, Weidong; Luan, Yue; Gao, Rui; Han, Minjin; Xiong, Gao; Gai, Tingting; Hu, Hai; Dai, Fangyin; Lu, Cheng

    2017-12-21

    Mechanisms that regulate silk protein synthesis provide the basis for silkworm variety breeding and silk gland bioreactor optimization. Here, using the pooling sequencing-based methodology, we deciphered the genetic basis for the varied silk production in different silkworm strains. We identified 8 SNPs, with 6 on chromosome 11 and 1 each on chromosomes 22 and 23, that were linked with silk production. After conducting an association analysis between gene expression pattern, silk gland development and cocoon shell weight (CSW), BMGN011620 was found to be regulating silk production. BMGN011620 encodes the 60S ribosomal protein, L18, which is an indispensable component of the 60S ribosomal subunit; therefore we named it BmRPL18. Moreover, the clustering of linked SNPs on chromosome 11 and the analysis of differentially expressed genes reported in previous Omics studies indicated that the genes regulating silk protein synthesis may exhibit a clustering distribution in the silkworm genome. These results collectively advance our understanding of the regulation of silk production, including the role of ribosomal proteins and the clustered distribution of genes involved in silk protein synthesis.

  20. Sensitive protein detection using an optical fibre long period grating sensor anchored with silica core gold shell nanoparticles

    Science.gov (United States)

    Marques, L.; Hernandez, F. U.; Korposh, S.; Clark, M.; Morgan, S.; James, S.; Tatam, R. P.

    2014-05-01

    An optical fibre long period grating (LPG), modified with a coating of silica gold (SiO2:Au) core/shell nanoparticles (NPs) deposited using the layer-by-layer (LbL) method, was employed for the development of a bio-sensor. The SiO2:Au NPs were electrostatically assembled onto the LPG with the aid of a poly(hydrochloride ammonium) (PAH) polycation layer. The LPG sensor operates at the phase matching turning point to provide the highest sensitivity. The SiO2:Au NPs were modified with biotin, which was used as a ligand for streptavidin (SV) detection. The sensing mechanism is based on the measurement of the refractive index change induced by the binding of the SV to the biotin. The lowest detected concentration of SV was 19 nM using an LPG modified with a 3 layer (PAH/SiO2:Au) thin film.

  1. A study of the coordination shell of aluminum(III) and magnesium(II) in model protein environments: thermodynamics of the complex formation and metal exchange reactions.

    Science.gov (United States)

    Rezabal, Elixabete; Mercero, Jose M; Lopez, Xabier; Ugalde, Jesus M

    2006-03-01

    Al(III) toxicity in living organisms is based on competition with other metal cations. Mg(II) is one of the most affected cations, since the size similarity dominates over the charge identity. The slow ligand exchange rates for Al(III) render the ion useless as a metal ion at the active sites of enzymes and provide a mechanism by which Al(III) inhibits Mg(II) dependent biochemical processes. Al(III) cation interactions with relevant bioligands have been studied in a protein-model environment in gas and aqueous phases using density functional theory methods. The protein model consists of the metal cation bound to two chosen bioligands (functional groups of the amino acid side chains, one of them being always an acetate) and water molecules interacting with the cation to complete its first coordination shell. Analogous Mg(II) complexes are calculated and compared with the Al(III) ones. Formation energies of the complexes are calculated in both phases and magnesium/aluminum exchange energies evaluated. The effect of different dielectric media is also analyzed. The presence of an acetate ligand in the binding site is found to promote both, complex formation and metal exchange reactions. In addition, buried binding sites (with low dielectric constant) of the protein favor metal exchange, whereas fully solvated environments of high dielectric constant require the presence of two anionic ligands for metal exchange to occur.

  2. (shell) nanoparticles

    Indian Academy of Sciences (India)

    equations for the scattering of electromagnetic radiation by particles with spherical or cylindrical symmetry. Aden and Kerker have published complete details of scattering from concentric spherical shells in 1951 [28]. In Mie theory, the harmonically oscillating electromagnetic fields are expressed in terms of a set of spherical ...

  3. Production and characterization of functional properties of protein hydrolysates from egg shell membranes by lactic acid bacteria fermentation.

    Science.gov (United States)

    Jain, Surangna; Anal, Anil Kumar

    2017-04-01

    This study aimed to ferment the chicken eggshell membrane (ESM) using the lactic acid bacteria, Lactobacillus plantarum for preparation of functional and bioactive protein hydrolysates. Cultivation at an initial pH of 8.0 for 36 h resulted in maximum protein concentration (177.3 mg/g) and degree of hydrolysis (25.1%) of the hydrolysates. Fermentation resulted in the production of hydrolysates that demonstrated excellent solubility (90.7%), good foaming capacity (36.7%) and emulsification activity (94.6 m2/g). Additionally, these protein hydrolysates exhibited remarkable bioactive properties for instance reducing power (2.53), protection from DPPH radical (70.5%) and angiotensin I converting enzyme inhibition (49.3%). The fermented protein hydrolysates were also found effective against various foodborne pathogens. The protein hydrolysates obtained by fermentation of ESM can be potentially incorporated in functional foods and nutraceuticals resulting in valorization of the ESM waste.

  4. Sheltering DNA in self-organizing, protein-only nano-shells as artificial viruses for gene delivery.

    Science.gov (United States)

    Unzueta, Ugutz; Saccardo, Paolo; Domingo-Espín, Joan; Cedano, Juan; Conchillo-Solé, Oscar; García-Fruitós, Elena; Céspedes, María Virtudes; Corchero, José Luis; Daura, Xavier; Mangues, Ramón; Ferrer-Miralles, Neus; Villaverde, Antonio; Vázquez, Esther

    2014-04-01

    By recruiting functional domains supporting DNA condensation, cell binding, internalization, endosomal escape and nuclear transport, modular single-chain polypeptides can be tailored to associate with cargo DNA for cell-targeted gene therapy. Recently, an emerging architectonic principle at the nanoscale has permitted tagging protein monomers for self-organization as protein-only nanoparticles. We have studied here the accommodation of plasmid DNA into protein nanoparticles assembled with the synergistic assistance of end terminal poly-arginines (R9) and poly-histidines (H6). Data indicate a virus-like organization of the complexes, in which a DNA core is surrounded by a solvent-exposed protein layer. This finding validates end-terminal cationic peptides as pleiotropic tags in protein building blocks for the mimicry of viral architecture in artificial viruses, representing a promising alternative to the conventional use of viruses and virus-like particles for nanomedicine and gene therapy. Finding efficient gene delivery methods still represents a challenge and is one of the bottlenecks to the more widespread application of gene therapy. The findings presented in this paper validate the application of end-terminal cationic peptides as pleiotropic tags in protein building blocks for "viral architecture mimicking" in artificial viruses, representing a promising alternative to the use of viruses and virus-like particles for gene delivery. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Shell worlds

    Science.gov (United States)

    Roy, Kenneth I.; Kennedy, Robert G., III; Fields, David E.

    2013-02-01

    The traditional concept of terraforming assumes ready availability of candidate planets with acceptable qualities: orbiting a star in its "Goldilocks zone", liquid water, enough mass, years longer than days, magnetic field, etc. But even stipulating affordable interstellar travel, we still might never find a good candidate elsewhere. Whatever we found likely would require centuries of heavy terraforming, just as Mars or Venus would here. Our increasing appreciation of the ubiquity of life suggests that any terra nova would already possess it. We would then face the dilemma of introducing alien life forms (us, our microbes) into another living world. Instead, we propose a novel method to create habitable environments for humanity by enclosing airless, sterile, otherwise useless planets, moons, and even large asteroids within engineered shells, which avoids the conundrum. These shells are subject to two opposing internal stresses: compression due to the primary's gravity, and tension from atmospheric pressure contained inside. By careful design, these two cancel each other resulting in zero net shell stress. Beneath the shell an Earth-like environment could be created similar in almost all respects to that of Home, except for gravity, regardless of the distance to the sun or other star. Englobing a small planet, moon, or even a dwarf planet like Ceres, would require astronomical amounts of material (quadrillions of tons) and energy, plus a great deal of time. It would be a quantum leap in difficulty over building Dyson Dots or industrializing our solar system, perhaps comparable to a mission across interstellar space with a living crew within their lifetime. But when accomplished, these constructs would be complete (albeit small) worlds, not merely large habitats. They could be stable across historic timescales, possibly geologic. Each would contain a full, self-sustaining ecology, which might evolve in curious directions over time. This has interesting implications

  6. Pressure-induced formation of inactive triple-shelled rotavirus particles is associated with changes in the spike protein Vp4.

    Science.gov (United States)

    Pontes, L; Cordeiro, Y; Giongo, V; Villas-Boas, M; Barreto, A; Araújo, J R; Silva, J L

    2001-04-13

    Rotaviruses are non-enveloped, triple-shelled particles that cause enteritis in animals and humans. The interactions among the different viral proteins located in the three concentric layers make the rotavirus particle an excellent model for physico-chemical and biological studies of viral assemblage. SA11-4S rotaviruses subjected to high pressure were inactivated by more than five log units. After pressure treatment, the particles were recovered with slight structural changes when compared to the control. Electron microscopy suggested subtle changes in the viral outer layer in some pressurised particles. Fluorescence spectroscopy showed that much more dramatic changes were produced by urea denaturation than by pressure. Based on the fluorescence spectrum, the genome resistance to ribonuclease, and the absence of changes in hydrodynamic properties, there was little or no disruption of the capsid under pressure. On the other hand, hemagglutination assays indicated that the main component affected by pressure was the spike protein VP4, thus accounting for changes in interaction with host cells and greatly reduced infectivity. The changes leading to inactivation did not cause removal of VP4 from the outer capsid, as verified by size-exclusion chromatography. Antibodies raised against pressurised material were as effective as antibodies raised against the intact virus, based on their neutralisation titre in plaque reduction assays, enzyme-linked immunosorbent assays and direct interaction with the particle, as measured by gel-filtration chromatography. Therefore, the new conformation of the pressurised particle did not result in loss of immunogenicity. We propose that pressure alters the receptor-binding protein VP4 by triggering changes similar to those produced when the virus interacts with target cells. As the changes in VP4 conformation caused by pressure occur prior to virus exposure to target cells, it leads to non-infectious particles and may lead to the

  7. CART peptide in the nucleus accumbens shell inhibits cocaine-induced locomotor sensitization to transient overexpression of α-Ca2+/Calmodulin-dependent Protein Kinase II.

    Science.gov (United States)

    Xiong, Lixia; Meng, Qing; Sun, Xi; Lu, Xiangtong; Fu, Qiang; Peng, Qinghua; Yang, Jianhua; Oh, Ki-Wan; Hu, Zhen Zhen

    2018-01-04

    Cocaine- and amphetamine-regulated transcript (CART) peptide is a widely distributed neurotransmitter that attenuates cocaine-induced locomotor activity when injected into the nucleus accumbens (NAc). Our previous work first confirmed that the inhibitory mechanism of the CART peptide on cocaine-induced locomotor activity is related to a reduction in cocaine-enhanced phosphorylated Ca2+ /calmodulin-dependent protein kinaseIIα (pCaMKIIα) and the enhancement of cocaine-induced D3R function. The present study investigated whether CART peptide inhibited cocaine-induced locomotor activity via inhibition of interactions between pCaMKIIα and the D3 dopamine receptor (D3R). We demonstrated that lentivirus-mediated gene transfer transiently increased pCaMKIIα expression, which peaked at 10 days after microinjection into the rat NAc shell, and induced a significant increase in Ca2+ influx along with greater behavioral sensitivity in the open field test after intraperitoneal injections of cocaine (15 mg/kg). However, western blot analysis and coimmunoprecipitation demonstrated that CART peptide treatment in lentivirus-transfected CaMKIIα-overexpressing NAc rat tissues or cells prior to cocaine administration inhibited the cocaine-induced Ca2+ influx and attenuated the cocaine-increased pCaMKIIα expression in lentivirus-transfected CaMKIIα-overexpressing cells. CART peptide decreased the cocaine-enhanced phosphorylated cAMP response element binding protein (pCREB) expression via inhibition of the pCaMKIIα-D3R interaction, which may account for the prolonged locomotor sensitization induced by repeated cocaine treatment in lentivirus-transfected CaMKIIα-overexpressing cells. These results provide strong evidence for the inhibitory modulation of CART peptide in cocaine-induced locomotor sensitization. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Layer-by-Layer Proteomic Analysis of Mytilus galloprovincialis Shell.

    Directory of Open Access Journals (Sweden)

    Peng Gao

    Full Text Available Bivalve shell is a biomineralized tissue with various layers/microstructures and excellent mechanical properties. Shell matrix proteins (SMPs pervade and envelop the mineral crystals and play essential roles in biomineralization. Despite that Mytilus is an economically important bivalve, only few proteomic studies have been performed for the shell, and current knowledge of the SMP set responsible for different shell layers of Mytilus remains largely patchy. In this study, we observed that Mytilus galloprovincialis shell contained three layers, including nacre, fibrous prism, and myostracum that is involved in shell-muscle attachment. A parallel proteomic analysis was performed for these three layers. By combining LC-MS/MS analysis with Mytilus EST database interrogations, a whole set of 113 proteins was identified, and the distribution of these proteins in different shell layers followed a mosaic pattern. For each layer, about a half of identified proteins are unique and the others are shared by two or all of three layers. This is the first description of the protein set exclusive to nacre, myostracum, and fibrous prism in Mytilus shell. Moreover, most of identified proteins in the present study are novel SMPs, which greatly extended biomineralization-related protein data of Mytilus. These results are useful, on one hand, for understanding the roles of SMPs in the deposition of different shell layers. On the other hand, the identified protein set of myostracum provides candidates for further exploring the mechanism of adductor muscle-shell attachment.

  9. Shell ontogeny in radiolarians

    Digital Repository Service at National Institute of Oceanography (India)

    Anderson, O.R.; Gupta, S.M.

    The ontogeny of the shells in modern and ancient radiolarian species, Acrosphaera cyrtodon were observed by scanning and transmission electron microscopy. The shells of A. cyrtodon were obtained from core samples collected from the Central Indian...

  10. Shell concrete pavement.

    Science.gov (United States)

    1966-10-01

    This report describes the testing performed with reef shell, clam shell and a combination of reef and clam shell used as coarse aggregate to determine if a low modulus concrete could be developed for use as a base material as an alternate to the pres...

  11. Fluctuating shells under pressure

    Science.gov (United States)

    Paulose, Jayson; Vliegenthart, Gerard A.; Gompper, Gerhard; Nelson, David R.

    2012-01-01

    Thermal fluctuations strongly modify the large length-scale elastic behavior of cross-linked membranes, giving rise to scale-dependent elastic moduli. Whereas thermal effects in flat membranes are well understood, many natural and artificial microstructures are modeled as thin elastic shells. Shells are distinguished from flat membranes by their nonzero curvature, which provides a size-dependent coupling between the in-plane stretching modes and the out-of-plane undulations. In addition, a shell can support a pressure difference between its interior and its exterior. Little is known about the effect of thermal fluctuations on the elastic properties of shells. Here, we study the statistical mechanics of shape fluctuations in a pressurized spherical shell, using perturbation theory and Monte Carlo computer simulations, explicitly including the effects of curvature and an inward pressure. We predict novel properties of fluctuating thin shells under point indentations and pressure-induced deformations. The contribution due to thermal fluctuations increases with increasing ratio of shell radius to thickness and dominates the response when the product of this ratio and the thermal energy becomes large compared with the bending rigidity of the shell. Thermal effects are enhanced when a large uniform inward pressure acts on the shell and diverge as this pressure approaches the classical buckling transition of the shell. Our results are relevant for the elasticity and osmotic collapse of microcapsules. PMID:23150558

  12. Perturbation of second and farther hydration shells of alkali cations and bromide in concentrated aqueous protein as a water-shortage medium.

    Science.gov (United States)

    Ohki, Takumi; Harada, Makoto; Okada, Tetsuo

    2008-09-25

    The Gibbs free energies of transfer of selected ions from water to concentrated aqueous ovalbumin and albumin (DeltaW(W') G degrees j) have been determined by ion-transfer voltammetry. Negative values for the tetrabutylammonium ion suggest its direct binding to ovalbumin. In contrast, for alkali cations and bromide, the DeltaW(W') G degrees j values are positive and increase with increasing ovalbumin concentration. Positive values are confirmed for concentrated aqueous albumin and poly(styrenesulfonate) as well. The largest value (ca. 10 kJ mol(-1)) is found for the transfer of K(+) from water to 30 wt % ovalbumin. To reveal the solvation structure of these ions in ovalbumin solutions, X-ray absorption fine structure (XAFS) measurements have been performed at the K, Rb, and Br K-edges. Interestingly, the spectra obtained in 30 wt % ovalbumin solutions are identical to those for the corresponding hydrated ions. This strongly suggests that the first coordination shell structures of these ions are not affected by a large concentration of ovalbumin. The detected positive free energy of transfer is slightly lower than the hydrogen bonding energy of a water molecule and should thus come from the perturbation of the second and farther hydration shells of the ions under a water-shortage condition caused by a high concentration of ovalbumin.

  13. Shell-like structures

    CERN Document Server

    Altenbach, Holm

    2011-01-01

    In this volume, scientists and researchers from industry discuss the new trends in simulation and computing shell-like structures. The focus is put on the following problems: new theories (based on two-dimensional field equations but describing non-classical effects), new constitutive equations (for materials like sandwiches, foams, etc. and which can be combined with the two-dimensional shell equations), complex structures (folded, branching and/or self intersecting shell structures, etc.) and shell-like structures on different scales (for example: nano-tubes) or very thin structures (similar

  14. A C1qDC Protein (HcC1qDC6 with Three Tandem C1q Domains Is Involved in Immune Response of Triangle-Shell Pearl Mussel (Hyriopsis cumingii

    Directory of Open Access Journals (Sweden)

    Ying Huang

    2017-07-01

    Full Text Available C1q-domain-containing (C1qDC proteins are a family of proteins with a globular C1q (gC1q domain and participate in several immune responses. In this study, a C1qDC gene was identified from the triangle-shell pearl mussel Hyriopsis cumingii (designated as HcC1qDC6. This gene has a full-length cDNA of 1782 bp and an open reading frame of 1,335 bp that encodes a 444-amino acid polypeptide containing three gC1q domains. HcC1qDC6 contains at least five exons and four introns. The mRNA transcripts of HcC1qDC6 were found to have the highest expression levels in the mantle tissue. The expression levels in the mantle and hepatopancreas were significantly upregulated by Staphylococcus aureus and Vibrio parahaemolyticus challenges. Moreover, knockdown of HcC1qDC6 inhibits the expression of two immune-related genes (tumor necrosis factor and whey acidic protein. The recombinant proteins of C1q1, C1q2, and C1q3 all exhibit a binding activity against seven bacterial species and directly bind to peptidoglycan and lipopolysaccharide. The results indicate that HcC1qDC6 is involved in the innate immunity of H. cumingii.

  15. Preparation of core-shell structure Fe3 O4 @SiO2 superparamagnetic microspheres immoblized with iminodiacetic acid as immobilized metal ion affinity adsorbents for His-tag protein purification.

    Science.gov (United States)

    Ni, Qian; Chen, Bing; Dong, Shaohua; Tian, Lei; Bai, Quan

    2016-04-01

    The core-shell structure Fe3 O4 /SiO2 magnetic microspheres were prepared by a sol-gel method, and immobiled with iminodiacetic acid (IDA) as metal ion affinity ligands for protein adsorption. The size, morphology, magnetic properties and surface modification of magnetic silica nanospheres were characterized by various modern analytical instruments. It was shown that the magnetic silica nanospheres exhibited superparamagnetism with saturation magnetization values of up to 58.1 emu/g. Three divalent metal ions, Cu(2+) , Ni(2+) and Zn(2+) , were chelated on the Fe3 O4 @SiO2 -IDA magnetic microspheres to adsorb lysozyme. The results indicated that Ni(2+) -chelating magnetic microspheres had the maximum adsorption capacity for lysozyme of 51.0 mg/g, adsorption equilibrium could be achieved within 60 min and the adsorbed protein could be easily eluted. Furthermore, the synthesized Fe3 O4 @SiO2 -IDA-Ni(2+) magnetic microspheres were successfully applied for selective enrichment lysozyme from egg white and His-tag recombinant Homer 1a from the inclusion extraction expressed in Escherichia coli. The result indicated that the magnetic microspheres showed unique characteristics of high selective separation behavior of protein mixture, low nonspecific adsorption, and easy handling. This demonstrates that the magnetic silica microspheres can be used efficiently in protein separation or purification and show great potential in the pretreatment of the biological sample. Copyright © 2015 John Wiley & Sons, Ltd.

  16. SHELL ISOTOPE GEOCHEMISTRY

    African Journals Online (AJOL)

    Valley. Although fossil specimens of this subspecies have been used in palaeoclimatic reconstruction, there have been no previous reports of living examples. Here We describe the local habitat, climate and some aspects of ecology and isotopic variation within the snail shell. If isotope data can be obtained for fossil shells, ...

  17. Learning the Bash Shell

    CERN Document Server

    Newham, Cameron

    2005-01-01

    This refreshed edition serves as the most valuable guide yet to the bash shell. It's full of practical examples of shell commands and programs guaranteed to make everyday use of Linux that much easier. Includes information on key bindings, command line editing and processing, integrated programming features, signal handling, and much more!

  18. Comparative study on the characteristics of egg shells of some bird ...

    African Journals Online (AJOL)

    Comparative study on the characteristics of egg shells of some bird species. ... Egg shells of francolin, duck and turkey were compared for their physical and chemical characteristics. The range of weight of eggs and shells, respectively, were 25.2-74.9 and 5.23-9.40 g. Protein content was between 65.2-73.1 g/100 g; crude ...

  19. Nuclear shell theory

    CERN Document Server

    de-Shalit, Amos; Massey, H S W

    1963-01-01

    Nuclear Shell Theory is a comprehensive textbook dealing with modern methods of the nuclear shell model. This book deals with the mathematical theory of a system of Fermions in a central field. It is divided into three parts. Part I discusses the single particle shell model. The second part focuses on the tensor algebra, two-particle systems. The last part covers three or more particle systems. Chapters on wave functions in a central field, tensor fields, and the m-Scheme are also presented. Physicists, graduate students, and teachers of nuclear physics will find the book invaluable.

  20. The shell-forming proteome of Lottia gigantea reveals both deep conservations and lineage-specific novelties

    NARCIS (Netherlands)

    Marie, B.; Jackson, D.J.; Ramos-Silva, P.; Zanella-Cléon, I.; Guichard, N.; Marin, F.

    2013-01-01

    Proteins that are occluded within the molluscan shell, the so-called shell matrix proteins (SMPs), are an assemblage of biomolecules attractive to study for several reasons. They increase the fracture resistance of the shell by several orders of magnitude, determine the polymorph of CaCO(3)

  1. Shells and Patterns

    Science.gov (United States)

    Sutley, Jane

    2009-01-01

    "Shells and Patterns" was a project the author felt would easily put smiles on the faces of her fifth-graders, and teach them about unity and the use of watercolor pencils as well. It was thrilling to see the excitement in her students as they made their line drawings of shells come to life. For the most part, they quickly got the hang of…

  2. Assembly principles and structure of a 6.5-MDa bacterial microcompartment shell.

    Science.gov (United States)

    Sutter, Markus; Greber, Basil; Aussignargues, Clement; Kerfeld, Cheryl A

    2017-06-23

    Many bacteria contain primitive organelles composed entirely of protein. These bacterial microcompartments share a common architecture of an enzymatic core encapsulated in a selectively permeable protein shell; prominent examples include the carboxysome for CO2 fixation and catabolic microcompartments found in many pathogenic microbes. The shell sequesters enzymatic reactions from the cytosol, analogous to the lipid-based membrane of eukaryotic organelles. Despite available structural information for single building blocks, the principles of shell assembly have remained elusive. We present the crystal structure of an intact shell from Haliangium ochraceum, revealing the basic principles of bacterial microcompartment shell construction. Given the conservation among shell proteins of all bacterial microcompartments, these principles apply to functionally diverse organelles and can inform the design and engineering of shells with new functionalities. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  3. Behavioral and structural responses to chronic cocaine require a feedforward loop involving ΔFosB and calcium/calmodulin-dependent protein kinase II in the nucleus accumbens shell.

    Science.gov (United States)

    Robison, Alfred J; Vialou, Vincent; Mazei-Robison, Michelle; Feng, Jian; Kourrich, Saïd; Collins, Miles; Wee, Sunmee; Koob, George; Turecki, Gustavo; Neve, Rachael; Thomas, Mark; Nestler, Eric J

    2013-03-06

    The transcription factor ΔFosB and the brain-enriched calcium/calmodulin-dependent protein kinase II (CaMKIIα) are induced in the nucleus accumbens (NAc) by chronic exposure to cocaine or other psychostimulant drugs of abuse, in which the two proteins mediate sensitized drug responses. Although ΔFosB and CaMKIIα both regulate AMPA glutamate receptor expression and function in NAc, dendritic spine formation on NAc medium spiny neurons (MSNs), and locomotor sensitization to cocaine, no direct link between these molecules has to date been explored. Here, we demonstrate that ΔFosB is phosphorylated by CaMKIIα at the protein-stabilizing Ser27 and that CaMKII is required for the cocaine-mediated accumulation of ΔFosB in rat NAc. Conversely, we show that ΔFosB is both necessary and sufficient for cocaine induction of CaMKIIα gene expression in vivo, an effect selective for D1-type MSNs in the NAc shell subregion. Furthermore, induction of dendritic spines on NAc MSNs and increased behavioral responsiveness to cocaine after NAc overexpression of ΔFosB are both CaMKII dependent. Importantly, we demonstrate for the first time induction of ΔFosB and CaMKII in the NAc of human cocaine addicts, suggesting possible targets for future therapeutic intervention. These data establish that ΔFosB and CaMKII engage in a cell-type- and brain-region-specific positive feedforward loop as a key mechanism for regulating the reward circuitry of the brain in response to chronic cocaine.

  4. Assembly of robust bacterial microcompartment shells using building blocks from an organelle of unknown function.

    Science.gov (United States)

    Lassila, Jonathan K; Bernstein, Susan L; Kinney, James N; Axen, Seth D; Kerfeld, Cheryl A

    2014-05-29

    Bacterial microcompartments (BMCs) sequester enzymes from the cytoplasmic environment by encapsulation inside a selectively permeable protein shell. Bioinformatic analyses indicate that many bacteria encode BMC clusters of unknown function and with diverse combinations of shell proteins. The genome of the halophilic myxobacterium Haliangium ochraceum encodes one of the most atypical sets of shell proteins in terms of composition and primary structure. We found that microcompartment shells could be purified in high yield when all seven H. ochraceum BMC shell genes were expressed from a synthetic operon in Escherichia coli. These shells differ substantially from previously isolated shell systems in that they are considerably smaller and more homogeneous, with measured diameters of 39±2nm. The size and nearly uniform geometry allowed the development of a structural model for the shells composed of 260 hexagonal units and 13 hexagons per icosahedral face. We found that new proteins could be recruited to the shells by fusion to a predicted targeting peptide sequence, setting the stage for the use of these remarkably homogeneous shells for applications such as three-dimensional scaffolding and the construction of synthetic BMCs. Our results demonstrate the value of selecting from the diversity of BMC shell building blocks found in genomic sequence data for the construction of novel compartments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Assembly of Robust Bacterial Microcompartment Shells Using Building Blocks from an Organelle of Unknown Function

    Energy Technology Data Exchange (ETDEWEB)

    Lassila, JK; Bernstein, SL; Kinney, JN; Axen, SD; Kerfeld, CA

    2014-05-29

    Bacterial microconnpartnnents (BMCs) sequester enzymes from the cytoplasmic environment by encapsulation inside a selectively permeable protein shell. Bioinformatic analyses indicate that many bacteria encode BMC clusters of unknown function and with diverse combinations of shell proteins. The genome of the halophilic myxobacterium Haliangium ochraceum encodes one of the most atypical sets of shell proteins in terms of composition and primary structure. We found that microconnpartnnent shells could be purified in high yield when all seven H. ochraceum BMC shell genes were expressed from a synthetic operon in Escherichia coll. These shells differ substantially from previously isolated shell systems in that they are considerably smaller and more homogeneous, with measured diameters of 39 2 nm. The size and nearly uniform geometry allowed the development of a structural model for the shells composed of 260 hexagonal units and 13 hexagons per icosahedral face. We found that new proteins could be recruited to the shells by fusion to a predicted targeting peptide sequence, setting the stage for the use of these remarkably homogeneous shells for applications such as three-dimensional scaffolding and the construction of synthetic BMCs. Our results demonstrate the value of selecting from the diversity of BMC shell building blocks found in genomic sequence data for the construction of novel compartments. (C) 2014 Elsevier Ltd. All rights reserved.

  6. From shell logs to shell scripts

    OpenAIRE

    Jacobs, Nico; Blockeel, Hendrik

    2001-01-01

    Analysing the use of a Unix command shell is one of the classic applications in the domain of adaptive user interfaces and user modelling. Instead of trying to predict the next command from a history of commands, we automatically produce scripts that automate frequent tasks. For this we use an ILP association rule learner. We show how to speedup the learning task by dividing it into smaller tasks, and the need for a preprocessing phase to detect frequent subsequences in the data. We illustrat...

  7. Fabrication of diamond shells

    Science.gov (United States)

    Hamza, Alex V.; Biener, Juergen; Wild, Christoph; Woerner, Eckhard

    2016-11-01

    A novel method for fabricating diamond shells is introduced. The fabrication of such shells is a multi-step process, which involves diamond chemical vapor deposition on predetermined mandrels followed by polishing, microfabrication of holes, and removal of the mandrel by an etch process. The resultant shells of the present invention can be configured with a surface roughness at the nanometer level (e.g., on the order of down to about 10 nm RMS) on a mm length scale, and exhibit excellent hardness/strength, and good transparency in the both the infra-red and visible. Specifically, a novel process is disclosed herein, which allows coating of spherical substrates with optical-quality diamond films or nanocrystalline diamond films.

  8. Sensational spherical shells

    Science.gov (United States)

    Lee, M. C.; Kendall, J. M., Jr.; Bahrami, P. A.; Wang, T. G.

    1986-01-01

    Fluid-dynamic and capillary forces can be used to form nearly perfect, very small spherical shells when a liquid that can solidify is passed through an annular die to form an annular jet. Gravity and certain properties of even the most ideal materials, however, can cause slight asymmetries. The primary objective of the present work is the control of this shell formation process in earth laboratories rather than space microgravity, through the development of facilities and methods that minimize the deleterious effects of gravity, aerodynamic drag, and uncontrolled cooling. The spherical shells thus produced can be used in insulation, recyclable filter materials, fire retardants, explosives, heat transport slurries, shock-absorbing armor, and solid rocket motors.

  9. Atomic force microscopy of virus shells.

    Science.gov (United States)

    Moreno-Madrid, Francisco; Martín-González, Natalia; Llauró, Aida; Ortega-Esteban, Alvaro; Hernando-Pérez, Mercedes; Douglas, Trevor; Schaap, Iwan A T; de Pablo, Pedro J

    2017-04-15

    Microscopes are used to characterize small objects with the help of probes that interact with the specimen, such as photons and electrons in optical and electron microscopies, respectively. In atomic force microscopy (AFM), the probe is a nanometric tip located at the end of a microcantilever which palpates the specimen under study just as a blind person manages a walking stick. In this way, AFM allows obtaining nanometric resolution images of individual protein shells, such as viruses, in a liquid milieu. Beyond imaging, AFM also enables not only the manipulation of single protein cages, but also the characterization of every physicochemical property capable of inducing any measurable mechanical perturbation to the microcantilever that holds the tip. In the present revision, we start revising some recipes for adsorbing protein shells on surfaces. Then, we describe several AFM approaches to study individual protein cages, ranging from imaging to spectroscopic methodologies devoted to extracting physical information, such as mechanical and electrostatic properties. We also explain how a convenient combination of AFM and fluorescence methodologies entails monitoring genome release from individual viral shells during mechanical unpacking. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  10. NIF Double Shell outer/inner shell collision experiments

    Science.gov (United States)

    Merritt, E. C.; Loomis, E. N.; Wilson, D. C.; Cardenas, T.; Montgomery, D. S.; Daughton, W. S.; Dodd, E. S.; Desjardins, T.; Renner, D. B.; Palaniyappan, S.; Batha, S. H.; Khan, S. F.; Smalyuk, V.; Ping, Y.; Amendt, P.; Schoff, M.; Hoppe, M.

    2017-10-01

    Double shell capsules are a potential low convergence path to substantial alpha-heating and ignition on NIF, since they are predicted to ignite and burn at relatively low temperatures via volume ignition. Current LANL NIF double shell designs consist of a low-Z ablator, low-density foam cushion, and high-Z inner shell with liquid DT fill. Central to the Double Shell concept is kinetic energy transfer from the outer to inner shell via collision. The collision determines maximum energy available for compression and implosion shape of the fuel. We present results of a NIF shape-transfer study: two experiments comparing shape and trajectory of the outer and inner shells at post-collision times. An outer-shell-only target shot measured the no-impact shell conditions, while an `imaging' double shell shot measured shell conditions with impact. The `imaging' target uses a low-Z inner shell and is designed to perform in similar collision physics space to a high-Z double shell but can be radiographed at 16keV, near the viable 2DConA BL energy limit. Work conducted under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396.

  11. Temporal structures in shell models

    DEFF Research Database (Denmark)

    Okkels, F.

    2001-01-01

    The intermittent dynamics of the turbulent Gledzer, Ohkitani, and Yamada shell-model is completely characterized by a single type of burstlike structure, which moves through the shells like a front. This temporal structure is described by the dynamics of the instantaneous configuration of the shell...

  12. Shell nu zelf onder vuur!

    NARCIS (Netherlands)

    ir.ing Ruud Thelosen

    2011-01-01

    Shell heeft zich in de Tweede Kamer moeten verantwoorden voor haar activiteiten in Nigeria. Daarnaast loopt er ook een rechtzaak tegen Shell aangespannen door Milieudefensie namens een groepje gedupeerde Nigeriaanse boeren en viseers. In de VS heeft Shell al een megaboete moeten betalen.

  13. Temporal Structures in Shell Models

    OpenAIRE

    Okkels, Fridolin

    2000-01-01

    The intermittent dynamics of the turbulent GOY shell-model is characterised by a single type of burst-like structure, which moves through the shells like a front. This temporal structure is described by the dynamics of the instantaneous configuration of the shell-amplitudes revealing a approximative chaotic attractor of the dynamics.

  14. Are Hadrons Shell-Structured?

    CERN Document Server

    Palazzi, Paolo

    2007-01-01

    A stability analysis of the mass spectrum indicates that hadrons, like atoms and nuclei, are shell-structured. The mesonic shells mass series, combined with the results of a mass quantization analysis, reveals striking similarities with the nuclear shells. In addition, the mesonic mass patterns suggest solid-phase partonic bound states on an fcc lattice, compatible with a model by A. O. Barut with stable leptons as constituents, bound by magnetism. Baryonic shells grow with a lower density, and only start at shell 3 with the nucleon.

  15. Atomic force microscopy of virus shells.

    Science.gov (United States)

    de Pablo, Pedro J

    2017-08-26

    Microscopes are used to characterize small specimens with the help of probes, such as photons and electrons in optical and electron microscopies, respectively. In atomic force microscopy (AFM) the probe is a nanometric tip located at the end of a microcantilever which palpates the specimen under study as a blind person manages a white cane to explore the surrounding. In this way, AFM allows obtaining nanometric resolution images of individual protein shells, such as viruses, in liquid milieu. Beyond imaging, AFM also enables the manipulation of single protein cages, and the characterization of every physico-chemical property able of inducing any measurable mechanical perturbation to the microcantilever that holds the tip. Here we describe several AFM approaches to study individual protein cages, including imaging and spectroscopic methodologies for extracting mechanical and electrostatic properties. In addition, AFM allows discovering and testing the self-healing capabilities of protein cages because occasionally they may recover fractures induced by the AFM tip. Beyond the protein shells, AFM also is able of exploring the genome inside, obtaining, for instance, the condensation state of dsDNA and measuring its diffusion when the protein cage breaks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Role of Genome in the Formation of Conical Retroviral Shells

    NARCIS (Netherlands)

    Erdemci-Tandogan, Gonca; Wagner, Jef; Schoot, Paul van der; Zandi, Roya

    2016-01-01

    Human immunodeficiency virus (HIV) capsid proteins spontaneously assemble around the genome into a protective protein shell called the capsid, which can take on a variety of shapes broadly classified as conical, cylindrical and irregular. The majority of capsids seen in in vivo studies are conical

  17. HST/ACS observations of shell galaxies: inner shells, shell colours and dust

    Science.gov (United States)

    Sikkema, G.; Carter, D.; Peletier, R. F.; Balcells, M.; Del Burgo, C.; Valentijn, E. A.

    2007-06-01

    Context: Shells in Elliptical Galaxies are faint, sharp-edged features, believed to provide evidence for a merger event. Accurate photometry at high spatial resolution is needed to learn on presence of inner shells, population properties of shells, and dust in shell galaxies. Aims: Learn more about the origin of shells and dust in early type galaxies. Methods: V-I colours of shells and underlying galaxies are derived, using HST Advanced Camera for Surveys (ACS) data. A galaxy model is made locally in wedges and subtracted to determine shell profiles and colours. We applied Voronoi binning to our data to get smoothed colour maps of the galaxies. Comparison with N-body simulations from the literature gives more insight to the origin of the shell features. Shell positions and dust characteristics are inferred from model galaxy subtracted images. Results: The ACS images reveal shells well within the effective radius in some galaxies (at 0.24 re = 1.7 kpc in the case of NGC 5982). In some cases, strong nuclear dust patches prevent detection of inner shells. Most shells have colours which are similar to the underlying galaxy. Some inner shells are redder than the galaxy. All six shell galaxies show out of dynamical equilibrium dust features, like lanes or patches, in their central regions. Our detection rate for dust in the shell ellipticals is greater than that found from HST archive data for a sample of normal early-type galaxies, at the 95% confidence level. Conclusions: The merger model describes better the shell distributions and morphologies than the interaction model. Red shell colours are most likely due to the presence of dust and/or older stellar populations. The high prevalence and out of dynamical equilibrium morphologies of the central dust features point towards external influences being responsible for visible dust features in early type shell galaxies. Inner shells are able to manifest themselves in relatively old shell systems. Based on observations made

  18. Multi-Shell Shell Model for Heavy Nuclei

    OpenAIRE

    Sun, Yang; Wu, Cheng-Li

    2003-01-01

    Performing a shell model calculation for heavy nuclei has been a long-standing problem in nuclear physics. Here we propose one possible solution. The central idea of this proposal is to take the advantages of two existing models, the Projected Shell Model (PSM) and the Fermion Dynamical Symmetry Model (FDSM), to construct a multi-shell shell model. The PSM is an efficient method of coupling quasi-particle excitations to the high-spin rotational motion, whereas the FDSM contains a successful t...

  19. Wrinkling of Pressurized Elastic Shells

    Science.gov (United States)

    Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki

    2011-10-01

    We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells are subject to a wrinkling instability. We study wrinkling in depth, presenting scaling laws for the critical indentation at which wrinkling occurs and the number of wrinkles formed in terms of the internal pressurization and material properties of the shell. These results are validated by numerical simulations. We show that the evolution of the wrinkle length with increasing indentation can be understood for highly pressurized shells from membrane theory. These results suggest that the position and number of wrinkles may be used in combination to give simple methods for the estimation of the mechanical properties of highly pressurized shells.

  20. Wrinkling of Pressurized Elastic Shells

    KAUST Repository

    Vella, Dominic

    2011-10-01

    We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells are subject to a wrinkling instability. We study wrinkling in depth, presenting scaling laws for the critical indentation at which wrinkling occurs and the number of wrinkles formed in terms of the internal pressurization and material properties of the shell. These results are validated by numerical simulations. We show that the evolution of the wrinkle length with increasing indentation can be understood for highly pressurized shells from membrane theory. These results suggest that the position and number of wrinkles may be used in combination to give simple methods for the estimation of the mechanical properties of highly pressurized shells. © 2011 American Physical Society.

  1. Phosphorus Binding Sites in Proteins: Structural Preorganization and Coordination

    DEFF Research Database (Denmark)

    Gruber, Mathias Felix; Greisen, Per Junior; Junker, Märta Caroline

    2014-01-01

    by the characteristics of the phosphorus compound and by the presence of cobound cations. The second shell, which supports the coordinating residues in the first shell, is found to consist mainly of protein backbone groups. Our results show how the second shell residue distribution is dictated mainly by the first shell...

  2. Plate shell structures of glass

    DEFF Research Database (Denmark)

    Bagger, Anne

    to their curved shape. A plate shell structure maintains a high stiffness-to-weight ratio, while facilitating the use of plane structural elements. The study focuses on using laminated glass panes for the load bearing facets. Various methods of generating a plate shell geometry are suggested. Together with Ghent......, such as facet size, imperfections, and connection characteristics. The critical load is compared to that of a similar, but smoothly curved, shell structure. Based on the investigations throughout the study, a set of guidelines for the structural design of plate shells of glass is proposed....

  3. Stability Landscape of Shell Buckling

    Science.gov (United States)

    Virot, Emmanuel; Kreilos, Tobias; Schneider, Tobias M.; Rubinstein, Shmuel M.

    2017-12-01

    We measure the response of cylindrical shells to poking and identify a stability landscape, which fully characterizes the stability of perfect shells and imperfect ones in the case where a single defect dominates. We show that the landscape of stability is independent of the loading protocol and the poker geometry. Our results suggest that the complex stability of shells reduces to a low dimensional description. Tracking ridges and valleys of this landscape defines a natural phase-space coordinates for describing the stability of shells.

  4. Automated shell theory for rotating structures (ASTROS)

    Science.gov (United States)

    Foster, B. J.; Thomas, J. M.

    1971-01-01

    A computer program for analyzing axisymmetric shells with inertial forces caused by rotation about the shell axis is developed by revising the STARS II shell program. The basic capabilities of the STARS II shell program, such as the treatment of the branched shells, stiffened wall construction, and thermal gradients, are retained.

  5. A rapidly evolving secretome builds and patterns a sea shell

    Directory of Open Access Journals (Sweden)

    Green Kathryn

    2006-11-01

    Full Text Available Abstract Background Instructions to fabricate mineralized structures with distinct nanoscale architectures, such as seashells and coral and vertebrate skeletons, are encoded in the genomes of a wide variety of animals. In mollusks, the mantle is responsible for the extracellular production of the shell, directing the ordered biomineralization of CaCO3 and the deposition of architectural and color patterns. The evolutionary origins of the ability to synthesize calcified structures across various metazoan taxa remain obscure, with only a small number of protein families identified from molluskan shells. The recent sequencing of a wide range of metazoan genomes coupled with the analysis of gene expression in non-model animals has allowed us to investigate the evolution and process of biomineralization in gastropod mollusks. Results Here we show that over 25% of the genes expressed in the mantle of the vetigastropod Haliotis asinina encode secreted proteins, indicating that hundreds of proteins are likely to be contributing to shell fabrication and patterning. Almost 85% of the secretome encodes novel proteins; remarkably, only 19% of these have identifiable homologues in the full genome of the patellogastropod Lottia scutum. The spatial expression profiles of mantle genes that belong to the secretome is restricted to discrete mantle zones, with each zone responsible for the fabrication of one of the structural layers of the shell. Patterned expression of a subset of genes along the length of the mantle is indicative of roles in shell ornamentation. For example, Has-sometsuke maps precisely to pigmentation patterns in the shell, providing the first case of a gene product to be involved in molluskan shell pigmentation. We also describe the expression of two novel genes involved in nacre (mother of pearl deposition. Conclusion The unexpected complexity and evolvability of this secretome and the modular design of the molluskan mantle enables

  6. Biomechanics of turtle shells: how whole shells fail in compression.

    Science.gov (United States)

    Magwene, Paul M; Socha, John J

    2013-02-01

    Turtle shells are a form of armor that provides varying degrees of protection against predation. Although this function of the shell as armor is widely appreciated, the mechanical limits of protection and the modes of failure when subjected to breaking stresses have not been well explored. We studied the mechanical properties of whole shells and of isolated bony tissues and sutures in four species of turtles (Trachemys scripta, Malaclemys terrapin, Chrysemys picta, and Terrapene carolina) using a combination of structural and mechanical tests. Structural properties were evaluated by subjecting whole shells to compressive and point loads in order to quantify maximum load, work to failure, and relative shell deformations. The mechanical properties of bone and sutures from the plastral region of the shell were evaluated using three-point bending experiments. Analysis of whole shell structural properties suggests that small shells undergo relatively greater deformations before failure than do large shells and similar amounts of energy are required to induce failure under both point and compressive loads. Location of failures occurred far more often at sulci than at sutures (representing the margins of the epidermal scutes and the underlying bones, respectively), suggesting that the small grooves in the bone created by the sulci introduce zones of weakness in the shell. Values for bending strength, ultimate bending strain, Young's modulus, and energy absorption, calculated from the three-point bending data, indicate that sutures are relatively weaker than the surrounding bone, but are able to absorb similar amounts of energy due to higher ultimate strain values. Copyright © 2012 Wiley Periodicals, Inc.

  7. Vibrio cholerae Colonization of Soft-Shelled Turtles.

    Science.gov (United States)

    Wang, Jiazheng; Yan, Meiying; Gao, He; Lu, Xin; Kan, Biao

    2017-07-15

    Vibrio cholerae is an important human pathogen and environmental microflora species that can both propagate in the human intestine and proliferate in zooplankton and aquatic organisms. Cholera is transmitted through food and water. In recent years, outbreaks caused by V. cholerae-contaminated soft-shelled turtles, contaminated mainly with toxigenic serogroup O139, have been frequently reported, posing a new foodborne disease public health problem. In this study, the colonization by toxigenic V. cholerae on the body surfaces and intestines of soft-shelled turtles was explored. Preferred colonization sites on the turtle body surfaces, mainly the carapace and calipash of the dorsal side, were observed for the O139 and O1 strains. Intestinal colonization was also found. The colonization factors of V. cholerae played different roles in the colonization of the soft-shelled turtle's body surface and intestine. Mannose-sensitive hemagglutinin (MSHA) of V. cholerae was necessary for body surface colonization, but no roles were found for toxin-coregulated pili (TCP) or N-acetylglucosamine-binding protein A (GBPA). Both TCP and GBPA play important roles for colonization in the intestine, whereas the deletion of MSHA revealed only a minor colonization-promoting role for this factor. Our study demonstrated that V. cholerae can colonize the surfaces and the intestines of soft-shelled turtles and indicated that the soft-shelled turtles played a role in the transmission of cholera. In addition, this study showed that the soft-shelled turtle has potential value as an animal model in studies of the colonization and environmental adaption mechanisms of V. cholerae in aquatic organisms.IMPORTANCE Cholera is transmitted through water and food. Soft-shelled turtles contaminated with Vibrio cholerae (commonly the serogroup O139 strains) have caused many foodborne infections and outbreaks in recent years, and they have become a foodborne disease problem. Except for epidemiological

  8. Gravity balanced compliant shell mechanisms

    NARCIS (Netherlands)

    Radaelli, G.; Herder, J.L.

    2017-01-01

    The research on compliant shell mechanisms is a new and promising expansion of the well established compliant mechanisms research area. Benefits of compliant shell mechanisms include being spatial and slender, having organic shapes and their high tailorability of the load-displacement response.

  9. Core-shell nanostructured catalysts.

    Science.gov (United States)

    Zhang, Qiao; Lee, Ilkeun; Joo, Ji Bong; Zaera, Francisco; Yin, Yadong

    2013-08-20

    Novel nanotechnologies have allowed great improvements in the syn-thesis of catalysts with well-controlled size, shape, and surface properties. Transition metal nanostructures with specific sizes and shapes, for instance, have shown great promise as catalysts with high selectivities and relative ease of recycling. Researchers have already demonstrated new selective catalysis with solution-dispersed or supported-metal nanocatalysts, in some cases applied to new types of reactions. Several challenges remain, however, particularly in improving the structural stability of the catalytic active phase. Core-shell nanostructures are nanoparticles encapsulated and protected by an outer shell that isolates the nanoparticles and prevents their migration and coalescence during the catalytic reactions. The synthesis and characterization of effective core-shell catalysts has been at the center of our research efforts and is the focus of this Account. Efficient core-shell catalysts require porous shells that allow free access of chemical species from the outside to the surface of nanocatalysts. For this purpose, we have developed a surface-protected etching process to prepare mesoporous silica and titania shells with controllable porosity. In certain cases, we can tune catalytic reaction rates by adjusting the porosity of the outer shell. We also designed and successfully applied a silica-protected calcination method to prepare crystalline shells with high surface area, using anatase titania as a model system. We achieved a high degree of control over the crystallinity and porosity of the anatase shells, allowing for the systematic optimization of their photocatalytic activity. Core-shell nanostructures also provide a great opportunity for controlling the interaction among the different components in ways that might boost structural stability or catalytic activity. For example, we fabricated a SiO₂/Au/N-doped TiO₂ core-shell photocatalyst with a sandwich structure that showed

  10. Composite shell spacecraft seat

    Science.gov (United States)

    Barackman, Victor J. (Inventor); Pulley, John K. (Inventor); Simon, Xavier D. (Inventor); McKee, Sandra D. (Inventor)

    2008-01-01

    A two-part seat (10) providing full body support that is specific for each crew member (30) on an individual basis. The two-part construction for the seat (10) can accommodate many sizes and shapes for crewmembers (30) because it is reconfigurable and therefore reusable for subsequent flights. The first component of the two-part seat construction is a composite shell (12) that surrounds the crewmember's entire body and is generically fitted to their general size in height and weight. The second component of the two-part seat (10) is a cushion (20) that conforms exactly to the specific crewmember's entire body and gives total body support in more complex environment.

  11. Polymer Microcapsules with a Fiber-Reinforced Nanocomposite Shell

    NARCIS (Netherlands)

    Sagis, L.M.C.; Ruiter, de R.; Rossier Miranda, F.J.; Ruiter, de J.; Schroën, C.G.P.H.; Aelst, van A.C.; Kieft, H.; Boom, R.M.; Linden, van der E.

    2008-01-01

    Polymer microcapsules can be used as controlled release systems in drugs or in foods. Using layer-by-layer adsorption of common food proteins and polysaccharides, we produced a new type of microcapsule with tunable strength and permeability. The shell consists of alternating layers of pectin and

  12. MicroShell Minimalist Shell for Xilinx Microprocessors

    Science.gov (United States)

    Werne, Thomas A.

    2011-01-01

    MicroShell is a lightweight shell environment for engineers and software developers working with embedded microprocessors in Xilinx FPGAs. (MicroShell has also been successfully ported to run on ARM Cortex-M1 microprocessors in Actel ProASIC3 FPGAs, but without project-integration support.) Micro Shell decreases the time spent performing initial tests of field-programmable gate array (FPGA) designs, simplifies running customizable one-time-only experiments, and provides a familiar-feeling command-line interface. The program comes with a collection of useful functions and enables the designer to add an unlimited number of custom commands, which are callable from the command-line. The commands are parameterizable (using the C-based command-line parameter idiom), so the designer can use one function to exercise hardware with different values. Also, since many hardware peripherals instantiated in FPGAs have reasonably simple register-mapped I/O interfaces, the engineer can edit and view hardware parameter settings at any time without stopping the processor. MicroShell comes with a set of support scripts that interface seamlessly with Xilinx's EDK tool. Adding an instance of MicroShell to a project is as simple as marking a check box in a library configuration dialog box and specifying a software project directory. The support scripts then examine the hardware design, build design-specific functions, conditionally include processor-specific functions, and complete the compilation process. For code-size constrained designs, most of the stock functionality can be excluded from the compiled library. When all of the configurable options are removed from the binary, MicroShell has an unoptimized memory footprint of about 4.8 kB and a size-optimized footprint of about 2.3 kB. Since MicroShell allows unfettered access to all processor-accessible memory locations, it is possible to perform live patching on a running system. This can be useful, for instance, if a bug is

  13. Soft microcapsules with highly plastic shells formed by interfacial polyelectrolyte-nanoparticle complexation.

    Science.gov (United States)

    Kaufman, Gilad; Nejati, Siamak; Sarfati, Raphael; Boltyanskiy, Rostislav; Loewenberg, Michael; Dufresne, Eric R; Osuji, Chinedum O

    2015-10-14

    Composite microcapsules have been aggressively pursued as designed chemical entities for biomedical and other applications. Common preparations rely on multi-step, time consuming processes. Here, we present a single-step approach to fabricate such microcapsules with shells composed of nanoparticle-polyelectrolyte and protein-polyelectrolyte complexes, and demonstrate control of the mechanical and release properties of these constructs. Interfacial polyelectrolyte-nanoparticle and polyelectrolyte-protein complexation across a water-oil droplet interface results in the formation of capsules with shell thicknesses of a few μm. Silica shell microcapsules exhibited a significant plastic response at small deformations, whereas lysozyme incorporated shells displayed a more elastic response. We exploit the plasticity of nanoparticle incorporated shells to produce microcapsules with high aspect ratio protrusions by micropipette aspiration.

  14. Capsule shells adulterated with tadalafil.

    Science.gov (United States)

    Venhuis, Bastiaan J; Tan, Jing; Vredenbregt, Marjo J; Ge, Xiaowei; Low, Min-Yong; de Kaste, Dries

    2012-01-10

    Following a health complaint a food supplement was brought in for analysis on the suspicion of being adulterated with a synthetic drug substance. When the capsule content did not show evidence of adulteration, the capsule shell was investigated. Using HPLC-DAD and HPLC-MS the capsule shell was found to contain 2.85 mg of the erectile dysfunction drug tadalafil. Using microscopy and RAMAN spectroscopy the presence of tadalafil was shown throughout the gelatine matrix as particles and dissolved into the matrix. The adulteration is probably carried out by adding tadalafil powder to a gelatine jelly in the manufacturing of the capsules shells. Because this technique may also be used for other drug substances, capsules shells should be considered a vehicle for hiding drug substances in general. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Instant Windows PowerShell

    CERN Document Server

    Menon, Vinith

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. A practical, hands-on tutorial approach that explores the concepts of PowerShell in a friendly manner, taking an adhoc approach to each topic.If you are an administrator who is new to PowerShell or are looking to get a good grounding in these new features, this book is ideal for you. It's assumed that you will have some experience in PowerShell and Windows Server, as well being familiar with the PowerShell command-line.

  16. Eupatolide inhibits PDGF-induced proliferation and migration of aortic smooth muscle cells through ROS-dependent heme oxygenase-1 induction.

    Science.gov (United States)

    Kim, Namho; Hwangbo, Cheol; Lee, Suhyun; Lee, Jeong-Hyung

    2013-11-01

    The abnormal proliferation and migration of vascular smooth muscle cell (VSMC) contributes importantly to the pathogenesis of atherosclerosis and restenosis. Here, we investigated the effects of eupatolide (EuTL), a sesquiterpene lactone isolated from the medicinal plant Inula britannica, on platelet-derived growth factor (PDGF)-induced proliferation and migration of primary rat aortic smooth muscle cells (RASMCs), as well as its underlying mechanisms. EuTL remarkably inhibited PDGF-induced proliferation and migration of RASMCs. Treatment of RASMCs with EuTL induced both protein and mRNA expression of heme oxygenase-1 (HO-1). SB203580 (a p38 inhibitor), SP600125 (a JNK inhibitor), U0126 (a MEK inhibitor) and LY294002 (a PI3K inhibitor) did not suppress EuTL-induced HO-1 expression; however, N-acetylcysteine (NAC, an antioxidant) blocked EuTL-induced HO-1 expression. Moreover, treatment of RASMCs with EuTL increased reactive oxygen species (ROS) accumulation and nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2); however, this translocation was also inhibited by NAC. NAC or inhibition of HO-1 significantly attenuated the inhibitory effects of EuTL on PDGF-induced proliferation and migration of RASMCs. Taken together, these findings suggest that EuTL could suppress PDGF-induced proliferation and migration of VSMCs through HO-1 induction via ROS-Nrf2 pathway and may be a potential HO-1 inducer for preventing or treating vascular diseases. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Stellar populations of shell galaxies

    Science.gov (United States)

    Carlsten, S. G.; Hau, G. K. T.; Zenteno, A.

    2017-12-01

    We present a study of the inner (out to ∼1 Reff) stellar populations of nine shell galaxies. We derive stellar population parameters from long-slit spectra by both analysing the Lick indices of the galaxies and by fitting single stellar population model spectra to the full galaxy spectra. The results from the two methods agree reasonably well. A few of the shell galaxies appear to have lower central Mg2 index values than the general population of galaxies of the same central velocity dispersion, which is possibly due to a past interaction event. Our sample shows a relation between central metallicity and velocity dispersion that is consistent with previous samples of non-shell galaxies. Analysing the metallicity gradients in our sample, we find an average gradient of -0.16 ± 0.10 dex decade-1 in radius. We compare this with formation models to constrain the merging history of shell galaxies. We argue that our galaxies likely have undergone major mergers but it is unclear whether the shells formed from these events or from separate minor mergers. Additionally, we find evidence for young stellar populations ranging in age from 500 Myr to 4-5 Gyr in four of the galaxies, allowing us to speculate on the age of the shells. For NGC 5670, we use a simple dynamical model to find the time required to produce the observed distribution of shells to be roughly consistent with the age of the young subpopulation, suggesting that the shells and subpopulation possibly formed from the same event.

  18. 40 Years of Shell Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Shell has been using scenario planning for four decades. During that time these scenarios have helped the company and governments across the world to make better strategic choices. Scenarios provide lenses that help see future prospects more clearly, make richer judgments and be more sensitive to uncertainties. Discover how the Shell Scenarios team has helped guide decision makers at major moments in history and get a peek at the team future focus, including the intricate relationship between energy, water and food.

  19. Isogeometric shell formulation based on a classical shell model

    KAUST Repository

    Niemi, Antti

    2012-09-04

    This paper constitutes the first steps in our work concerning isogeometric shell analysis. An isogeometric shell model of the Reissner-Mindlin type is introduced and a study of its accuracy in the classical pinched cylinder benchmark problem presented. In contrast to earlier works [1,2,3,4], the formulation is based on a shell model where the displacement, strain and stress fields are defined in terms of a curvilinear coordinate system arising from the NURBS description of the shell middle surface. The isogeometric shell formulation is implemented using the PetIGA and igakit software packages developed by the authors. The igakit package is a Python package used to generate NURBS representations of geometries that can be utilised by the PetIGA finite element framework. The latter utilises data structures and routines of the portable, extensible toolkit for scientific computation (PETSc), [5,6]. The current shell implementation is valid for static, linear problems only, but the software package is well suited for future extensions to geometrically and materially nonlinear regime as well as to dynamic problems. The accuracy of the approach in the pinched cylinder benchmark problem and present comparisons against the h-version of the finite element method with bilinear elements. Quadratic, cubic and quartic NURBS discretizations are compared against the isoparametric bilinear discretization introduced in [7]. The results show that the quadratic and cubic NURBS approximations exhibit notably slower convergence under uniform mesh refinement as the thickness decreases but the quartic approximation converges relatively quickly within the standard variational framework. The authors future work is concerned with building an isogeometric finite element method for modelling nonlinear structural response of thin-walled shells undergoing large rigid-body motions. The aim is to use the model in a aeroelastic framework for the simulation of flapping wings.

  20. Soil calcium availability influences shell ecophenotype formation in the sub-antarctic land snail, Notodiscus hookeri.

    Directory of Open Access Journals (Sweden)

    Maryvonne Charrier

    Full Text Available Ecophenotypes reflect local matches between organisms and their environment, and show plasticity across generations in response to current living conditions. Plastic responses in shell morphology and shell growth have been widely studied in gastropods and are often related to environmental calcium availability, which influences shell biomineralisation. To date, all of these studies have overlooked micro-scale structure of the shell, in addition to how it is related to species responses in the context of environmental pressure. This study is the first to demonstrate that environmental factors induce a bi-modal variation in the shell micro-scale structure of a land gastropod. Notodiscus hookeri is the only native land snail present in the Crozet Archipelago (sub-Antarctic region. The adults have evolved into two ecophenotypes, which are referred to here as MS (mineral shell and OS (organic shell. The MS-ecophenotype is characterised by a thick mineralised shell. It is primarily distributed along the coastline, and could be associated to the presence of exchangeable calcium in the clay minerals of the soils. The Os-ecophenotype is characterised by a thin organic shell. It is primarily distributed at high altitudes in the mesic and xeric fell-fields in soils with large particles that lack clay and exchangeable calcium. Snails of the Os-ecophenotype are characterised by thinner and larger shell sizes compared to snails of the MS-ecophenotype, indicating a trade-off between mineral thickness and shell size. This pattern increased along a temporal scale; whereby, older adult snails were more clearly separated into two clusters compared to the younger adult snails. The prevalence of glycine-rich proteins in the organic shell layer of N. hookeri, along with the absence of chitin, differs to the organic scaffolds of molluscan biominerals. The present study provides new insights for testing the adaptive value of phenotypic plasticity in response to spatial

  1. Austromegabalanus psittacus barnacle shell structure and proteoglycan localization and functionality.

    Science.gov (United States)

    Fernández, M S; Arias, J I; Neira-Carrillo, A; Arias, J L

    2015-09-01

    Comparative analyzes of biomineralization models have being crucial for the understanding of the functional properties of biominerals and the elucidation of the processes through which biomacromolecules control the synthesis and structural organization of inorganic mineral-based biomaterials. Among calcium carbonate-containing bioceramics, egg, mollusk and echinoderm shells, and crustacean carapaces, have being fairly well characterized. However, Thoraceca barnacles, although being crustacea, showing molting cycle, build a quite stable and heavily mineralized shell that completely surround the animal, which is for life firmly cemented to the substratum. This makes barnacles an interesting model for studying processes of biomineralization. Here we studied the main microstructural and ultrastructural features of Austromegabalanus psittacus barnacle shell, characterize the occurrence of specific proteoglycans (keratan-, dermatan- and chondroitin-6-sulfate proteoglycans) in different soluble and insoluble organic fractions extracted from the shell, and tested them for their ability to crystallize calcium carbonate in vitro. Our results indicate that, in the barnacle model, proteoglycans are good candidates for the modification of the calcite crystal morphology, although the cooperative effect of some additional proteins in the shell could not be excluded. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Study Added of Waste Chicken Egg Shell in Soils

    Directory of Open Access Journals (Sweden)

    Keng Wong Irwan Lie

    2016-01-01

    Full Text Available Soil is the foundation of structure or construction that will receive the load transfer through to foundation. If the soil has a carrying capacity of small and cannot withstand the load transfer can result in the failure of construction. If the soil has a carrying capacity of small ground it is necessary to stabilize or improve the soil so that an increase in the carrying capacity of the land so that it can be used for construction. One material is commonly used for soil stabilization with the addition of lime. Waste chicken egg shell is waste that is still rarely used, the results of research [1], states that composition egg shell broadly consists of water (1,6% and dry material (98,4%. The total dry ingredients are there, in shell eggs contained mineral elements (95,1% and protein (3,3%. Based on the existing mineral composition, then the egg shells are composed of crystalline CaCO3 (98,43%, MgCO3 (0,84% and Ca3(PO42 (0,75%. This research was done by adding powdered chicken egg shell waste in clay with a composition of 5%, 7,5%, 10% and 14% with physical properties test and soil compaction test.

  3. Shell-model calculations for p-shell hypernuclei

    OpenAIRE

    Millener, D. J.

    2012-01-01

    The interpretation of hypernuclear gamma-ray data for p-shell hypernuclei in terms of shell-model calculations that include the coupling of Lambda- and Sigma-hypernuclear states is briefly reviewed. Next, Lambda 8Li, Lambda 8Be, and Lambda 9Li are considered, both to exhibit features of Lambda-Sigma coupling and as possible source of observed, but unassigned, hypernuclear gamma rays. Then, the feasibility of measuring the ground-state doublet spacing of Lambda 10Be, which, like Lambda 9Li, co...

  4. Windows PowerShell 20 Bible

    CERN Document Server

    Lee, Thomas; Schill, Mark E; Tanasovski, Tome

    2011-01-01

    Here's the complete guide to Windows PowerShell 2.0 for administrators and developers Windows PowerShell is Microsoft's next-generation scripting and automation language. This comprehensive volume provides the background that IT administrators and developers need in order to start using PowerShell automation in exciting new ways. It explains what PowerShell is, how to use the language, and specific ways to apply PowerShell in various technologies. Windows PowerShell is Microsoft's standard automation tool and something that every Windows administrator will eventually have to understand; this b

  5. Shell model Monte Carlo methods

    Energy Technology Data Exchange (ETDEWEB)

    Koonin, S.E. [California Inst. of Tech., Pasadena, CA (United States). W.K. Kellogg Radiation Lab.; Dean, D.J. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, thermal behavior of {gamma}-soft nuclei, and calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. 87 refs.

  6. Learning Shell scripting with Zsh

    CERN Document Server

    Festari, Gaston

    2014-01-01

    A step-by-step tutorial that will teach you, through real-world examples, how to configure and use Zsh and its various features. If you are a system administrator, developer, or computer professional involved with UNIX who are looking to improve on their daily tasks involving the UNIX shell, ""Learning Shell Scripting with Zsh"" will be great for you. It's assumed that you have some familiarity with an UNIX command-line interface and feel comfortable with editors such as Emacs or vi.

  7. Stability of facetted translation shells

    DEFF Research Database (Denmark)

    Almegaard, Henrik; Vanggaard, Ole

    2004-01-01

    This article is discussing the spatial stability i.e. rigidity of double curved shell surfaces under different support conditions. It is based upon a method developed by Henrik Almegaard, as part of the theory concerning the stringer system (ALM04a).......This article is discussing the spatial stability i.e. rigidity of double curved shell surfaces under different support conditions. It is based upon a method developed by Henrik Almegaard, as part of the theory concerning the stringer system (ALM04a)....

  8. The Shell-Model Code NuShellX@MSU

    Science.gov (United States)

    Brown, B. A.; Rae, W. D. M.

    2014-06-01

    Use of the code NuShellX@MSU is outlined. It connects to the ENSDF data files for automatic comparisons to energy level data. Operator overlaps provide predictions for spectroscopic factors, two-nucleon transfer amplitudes, nuclear moments, gamma decay and beta decay.

  9. The Shell-Model Code NuShellX@MSU

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B.A., E-mail: brown@nscl.msu.edu [Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Rae, W.D.M. [Garsington, Oxfordshire, OX44 (United Kingdom)

    2014-06-15

    Use of the code NuShellX@MSU is outlined. It connects to the ENSDF data files for automatic comparisons to energy level data. Operator overlaps provide predictions for spectroscopic factors, two-nucleon transfer amplitudes, nuclear moments, gamma decay and beta decay.

  10. The Shell of the Invasive Bivalve Species Dreissena polymorpha: Biochemical, Elemental and Textural Investigations.

    Directory of Open Access Journals (Sweden)

    Françoise Immel

    Full Text Available The zebra mussel Dreissena polymorpha is a well-established invasive model organism. Although extensively used in environmental sciences, virtually nothing is known of the molecular process of its shell calcification. By describing the microstructure, geochemistry and biochemistry/proteomics of the shell, the present study aims at promoting this species as a model organism in biomineralization studies, in order to establish a bridge with ecotoxicology, while sketching evolutionary conclusions. The shell of D. polymorpha exhibits the classical crossed-lamellar/complex crossed lamellar combination found in several heterodont bivalves, in addition to an external thin layer, the characteristics of which differ from what was described in earlier publication. We show that the shell selectively concentrates some heavy metals, in particular uranium, which predisposes D. polymorpha to local bioremediation of this pollutant. We establish the biochemical signature of the shell matrix, demonstrating that it interacts with the in vitro precipitation of calcium carbonate and inhibits calcium carbonate crystal formation, but these two properties are not strongly expressed. This matrix, although overall weakly glycosylated, contains a set of putatively calcium-binding proteins and a set of acidic sulphated proteins. 2D-gels reveal more than fifty proteins, twenty of which we identify by MS-MS analysis. We tentatively link the shell protein profile of D. polymorpha and the peculiar recent evolution of this invasive species of Ponto-Caspian origin, which has spread all across Europe in the last three centuries.

  11. Statistical mechanics of thin spherical shells

    CERN Document Server

    Kosmrlj, Andrej

    2016-01-01

    We explore how thermal fluctuations affect the mechanics of thin amorphous spherical shells. In flat membranes with a shear modulus, thermal fluctuations increase the bending rigidity and reduce the in-plane elastic moduli in a scale-dependent fashion. This is still true for spherical shells. However, the additional coupling between the shell curvature, the local in-plane stretching modes and the local out-of-plane undulations, leads to novel phenomena. In spherical shells thermal fluctuations produce a radius-dependent negative effective surface tension, equivalent to applying an inward external pressure. By adapting renormalization group calculations to allow for a spherical background curvature, we show that while small spherical shells are stable, sufficiently large shells are crushed by this thermally generated "pressure". Such shells can be stabilized by an outward osmotic pressure, but the effective shell size grows non-linearly with increasing outward pressure, with the same universal power law expone...

  12. Mesoscale structure of chiral nematic shells.

    Science.gov (United States)

    Zhou, Ye; Guo, Ashley; Zhang, Rui; Armas-Perez, Julio C; Martínez-González, José A; Rahimi, Mohammad; Sadati, Monirosadat; de Pablo, Juan J

    2016-11-09

    There is considerable interest in understanding and controlling topological defects in nematic liquid crystals (LCs). Confinement, in the form of droplets, has been particularly effective in that regard. Here, we employ a Landau-de Gennes formalism to explore the geometrical frustration of nematic order in shell geometries, and focus on chiral materials. By varying the chirality and thickness in uniform shells, we construct a phase diagram that includes tetravalent structures, bipolar structures (BS), bent structures and radial spherical structures (RSS). It is found that, in uniform shells, the BS-to-RSS structural transition, in response to both chirality and shell geometry, is accompanied by an abrupt change of defect positions, implying a potential use for chiral nematic shells as sensors. Moreover, we investigate thickness heterogeneity in shells and demonstrate that non-chiral and chiral nematic shells exhibit distinct equilibrium positions of their inner core that are governed by shell chirality c.

  13. The shell matrix of the pulmonate land snail Helix aspersa maxima.

    Science.gov (United States)

    Pavat, Céline; Zanella-Cléon, Isabelle; Becchi, Michel; Medakovic, Davorin; Luquet, Gilles; Guichard, Nathalie; Alcaraz, Gérard; Dommergues, Jean-Louis; Serpentini, Antoine; Lebel, Jean-Marc; Marin, Frédéric

    2012-04-01

    In mollusks, the shell mineralization process is controlled by an array of proteins, glycoproteins and polysaccharides that collectively constitute the shell matrix. In spite of numerous researches, the shell protein content of a limited number of model species has been investigated. This paper presents biochemical data on the common edible land snail Helix aspersa maxima, a model organism for ecotoxicological purposes, which has however been poorly investigated from a biomineralization viewpoint. The shell matrix of this species was extracted and analyzed biochemically for functional in vitro inhibition assay, for amino acid and monosaccharides compositions. The matrix was further analyzed on 1 and 2D gels and short partial protein sequences were obtained from 2D gel spots. Serological comparisons were established with a set of heterologous antibodies, two of which were subsequently used for subsequent immunogold localization of matrix components. Our data suggest that the shell matrix of Helix aspersa maxima may differ widely from the shell secretory repertoire of the marine mollusks studied so far, such as the gastropod Haliotis or the pearl oyster Pinctada. In particular, most of the biochemical properties generally attributed to soluble shell matrices, such as calcium-binding capability, or the capacity to interfere in vitro with the precipitation of calcium carbonate or to inhibit the precipitation of calcium carbonate, were not recorded with this matrix. This drastic change in the biochemical properties of the landsnail shell matrix puts into question the existence of a unique molecular model for molluscan shell formation, and may be related to terrestrialisation. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Shell morphology of core-shell latexes based on conductive polymers

    NARCIS (Netherlands)

    Huijs, F.M; Vercauteren, F.F.; de Ruiter, B.; Kalicharan, D; Hadziioannou, G

    Core-shell latexes with a conductive shell can be used to prepare transparent conducting layers. We have focussed on the relation between the conducting polymer content and the shell morphology and on its influence on conductivity. At low polypyrrole (PPy) concentrations the shell has a smooth

  15. Shell formation and nuclear masses

    Energy Technology Data Exchange (ETDEWEB)

    Zuker, A. P. [IPHC, IN2P3-CNRS, Universite Louis Pasteur, F-67037 Strasbourg (France)]. e-mail: Andres.Zuker@IReS.in2p3.fr

    2008-12-15

    We describe the basic mechanisms responsible for nuclear bulk properties and shell formation incorporated in the Duflo Zuker models. The emphasis is put on explaining why functionals of the occupancies can be so efficient in accounting for data with minimal computational effort. (Author)

  16. Shell theorem for spontaneous emission

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Mortensen, Jakob Egeberg; Lodahl, Peter

    2013-01-01

    and therefore is given exactly by the dipole approximation theory. This surprising result is a spontaneous emission counterpart to the shell theorems of classical mechanics and electrostatics and provides insights into the physics of mesoscopic emitters as well as great simplifications in practical calculations....

  17. (Oil Palm Shell) Lightweight Concrete

    African Journals Online (AJOL)

    The compressive strength as destructive test and, ultrasonic pulse velocity (UPV) and dynamic modulus of elasticity (Ed) as non-destructive tests have been carried out on a new lightweight concrete produced using oil palm shell (OPS) as coarse aggregate, as a way to establish the usefulness of these tests to determine the ...

  18. 21 CFR 886.3800 - Scleral shell.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Scleral shell. 886.3800 Section 886.3800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3800 Scleral shell. (a) Identification. A scleral shell is a device made of glass or plastic that is...

  19. Core-Shell-Shell Upconversion Nanoparticles with Enhanced Emission for Wireless Optogenetic Inhibition.

    Science.gov (United States)

    Lin, Xudong; Chen, Xian; Zhang, Wenchong; Sun, Tianying; Fang, Peilin; Liao, Qinghai; Chen, Xi; He, Jufang; Liu, Ming; Wang, Feng; Shi, Peng

    2018-01-02

    Recent advances in upconversion technology have enabled optogenetic neural stimulation using remotely applied optical signals, but limited success has been demonstrated for neural inhibition by using this method, primarily due to the much higher optical power and more red-shifted excitation spectrum that are required to work with the appropriate inhibitory opsin proteins. To overcome these limitations, core-shell-shell upconversion nanoparticles (UCNPs) with a hexagonal phase are synthesized to optimize the doping contents of ytterbium ions (Yb3+) and to mitigate Yb-associated concentration quenching. Such UCNPs' emission contains an almost three-fold enhanced peak around 540-570 nm, matching the excitation spectrum of a commonly used inhibitory opsin protein, halorhodopsin. The enhanced UCNPs are utilized as optical transducers to develop a fully implantable upconversion-based device for in vivo tetherless optogenetic inhibition, which is actuated by near-infrared (NIR) light irradiation without any electronics. When the device is implanted into targeted sites deep in the rat brain, the electrical activity of the neurons is reliably inhibited with NIR irradiation and restores to normal level upon switching off the NIR light. The system is further used to perform tetherless unilateral inhibition of the secondary motor cortex in behaving mice, achieving control of their motor functions. This study provides an important and useful supplement to the upconversion-based optogenetic toolset, which is beneficial for both basic and translational neuroscience investigations.

  20. Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization

    Directory of Open Access Journals (Sweden)

    Gueguen Yannick

    2010-11-01

    Full Text Available Abstract Background The shell of the pearl-producing bivalve Pinctada margaritifera is composed of an organic cell-free matrix that plays a key role in the dynamic process of biologically-controlled biomineralization. In order to increase genomic resources and identify shell matrix proteins implicated in biomineralization in P. margaritifera, high-throughput Expressed Sequence Tag (EST pyrosequencing was undertaken on the calcifying mantle, combined with a proteomic analysis of the shell. Results We report the functional analysis of 276 738 sequences, leading to the constitution of an unprecedented catalog of 82 P. margaritifera biomineralization-related mantle protein sequences. Components of the current "chitin-silk fibroin gel-acidic macromolecule" model of biomineralization processes were found, in particular a homolog of a biomineralization protein (Pif-177 recently discovered in P. fucata. Among these sequences, we could show the localization of two other biomineralization protein transcripts, pmarg-aspein and pmarg-pearlin, in two distinct areas of the outer mantle epithelium, suggesting their implication in calcite and aragonite formation. Finally, by combining the EST approach with a proteomic mass spectrometry analysis of proteins isolated from the P. margaritifera shell organic matrix, we demonstrated the presence of 30 sequences containing almost all of the shell proteins that have been previously described from shell matrix protein analyses of the Pinctada genus. The integration of these two methods allowed the global composition of biomineralizing tissue and calcified structures to be examined in tandem for the first time. Conclusions This EST study made on the calcifying tissue of P. margaritifera is the first description of pyrosequencing on a pearl-producing bivalve species. Our results provide direct evidence that our EST data set covers most of the diversity of the matrix protein of P. margaritifera shell, but also that the

  1. Recent advances in the synthesis of Fe3O4@AU core/shell nanoparticles

    Science.gov (United States)

    Salihov, Sergei V.; Ivanenkov, Yan A.; Krechetov, Sergei P.; Veselov, Mark S.; Sviridenkova, Natalia V.; Savchenko, Alexander G.; Klyachko, Natalya L.; Golovin, Yury I.; Chufarova, Nina V.; Beloglazkina, Elena K.; Majouga, Alexander G.

    2015-11-01

    Fe3O4@Au core/shell nanoparticles have unique magnetic and optical properties. These nanoparticles are used for biomedical applications, such as magnetic resonance imaging, photothermal therapy, controlled drug delivery, protein separation, biosensors, DNA detection, and immunosensors. In this review, recent methods for the synthesis of core/shell nanoparticles are discussed. We divided all of the synthetic methods in two groups: methods of synthesis of bi-layer structures and methods of synthesis of multilayer composite structures. The latter methods have a layer of "glue" material between the core and the shell.

  2. Design aids for stiffened composite shells with cutouts

    CERN Document Server

    Sahoo, Sarmila

    2017-01-01

    This book focuses on the free vibrations of graphite-epoxy laminated composite stiffened shells with cutout both in terms of the natural frequencies and mode shapes. The dynamic analysis of shell structures, which may have complex geometry and arbitrary loading and boundary conditions, is solved efficiently by the finite element method, even including cutouts in shells. The results may be readily used by practicing engineers dealing with stiffened composite shells with cutouts. Several shell forms viz. cylindrical shell, hypar shell, conoidal shell, spherical shell, saddle shell, hyperbolic paraboloidal shell and elliptic paraboloidal shell are considered in the book. The dynamic characteristics of stiffened composite shells with cutout are described in terms of the natural frequency and mode shapes. The size of the cutouts and their positions with respect to the shell centre are varied for different edge constraints of cross-ply and angle-ply laminated composite shells. The effects of these parametric variat...

  3. Recent developments in anisotropic heterogeneous shell theory

    CERN Document Server

    Grigorenko, Alexander Ya; Grigorenko, Yaroslav M; Vlaikov, Georgii G

    2016-01-01

    This volume focuses on the relevant general theory and presents some first applications, namely those based on classical shell theory. After a brief introduction, during which the history and state-of-the-art are discussed, the first chapter presents the mechanics of anisotropic heterogeneous shells, covering all relevant assumptions and the basic relations of 3D elasticity, classical and refined shell models. The second chapter examines the numerical techniques that are used, namely discrete orthogonalization, spline-collocation and Fourier series, while the third highlights applications based on classical theory, in particular, the stress-strain state of shallow shells, non-circular shells, shells of revolution, and free vibrations of conical shells. The book concludes with a summary and an outlook bridging the gap to the second volume.

  4. Indentation of ellipsoidal and cylindrical elastic shells.

    Science.gov (United States)

    Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki

    2012-10-05

    Thin shells are found in nature at scales ranging from viruses to hens' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal and cylindrical elastic shells, considering both pressurized and unpressurized shells. We provide a theoretical foundation for the experimental findings of Lazarus et al. [following paper, Phys. Rev. Lett. 109, 144301 (2012)] and for previous work inferring the turgor pressure of bacteria from measurements of their indentation stiffness; we also identify a new regime at large indentation. We show that the indentation stiffness of convex shells is dominated by either the mean or Gaussian curvature of the shell depending on the pressurization and indentation depth. Our results reveal how geometry rules the rigidity of shells.

  5. Indentation of Ellipsoidal and Cylindrical Elastic Shells

    KAUST Repository

    Vella, Dominic

    2012-10-01

    Thin shells are found in nature at scales ranging from viruses to hens\\' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal and cylindrical elastic shells, considering both pressurized and unpressurized shells. We provide a theoretical foundation for the experimental findings of Lazarus etal. [following paper, Phys. Rev. Lett. 109, 144301 (2012)PRLTAO0031-9007] and for previous work inferring the turgor pressure of bacteria from measurements of their indentation stiffness; we also identify a new regime at large indentation. We show that the indentation stiffness of convex shells is dominated by either the mean or Gaussian curvature of the shell depending on the pressurization and indentation depth. Our results reveal how geometry rules the rigidity of shells. © 2012 American Physical Society.

  6. Turbine blade with spar and shell

    Science.gov (United States)

    Davies, Daniel O [Palm City, FL; Peterson, Ross H [Loxahatchee, FL

    2012-04-24

    A turbine blade with a spar and shell construction in which the spar and the shell are both secured within two platform halves. The spar and the shell each include outward extending ledges on the bottom ends that fit within grooves formed on the inner sides of the platform halves to secure the spar and the shell against radial movement when the two platform halves are joined. The shell is also secured to the spar by hooks extending from the shell that slide into grooves formed on the outer surface of the spar. The hooks form a serpentine flow cooling passage between the shell and the spar. The spar includes cooling holes on the lower end in the leading edge region to discharge cooling air supplied through the platform root and into the leading edge cooling channel.

  7. Læren fra Shell

    DEFF Research Database (Denmark)

    Ørding Olsen, Anders

    2017-01-01

    Hvad kan afsløringerne om Shells mere end 25 år gamle viden om klimaforandringer lære virksomheder om disruption og strategi? Først og fremmest at undgå at se disruption som en mulig trussel, men i stedet som en fremtidig realitet og chance for vækst......Hvad kan afsløringerne om Shells mere end 25 år gamle viden om klimaforandringer lære virksomheder om disruption og strategi? Først og fremmest at undgå at se disruption som en mulig trussel, men i stedet som en fremtidig realitet og chance for vækst...

  8. Shell Evolutions and Nuclear Forces

    Science.gov (United States)

    Sorlin, O.

    2014-03-01

    During the last 30 years, and more specifically during the last 10 years, many experiments have been carried out worldwide using different techniques to study the shell evolution of nuclei far from stability. What seemed not conceivable some decades ago became rather common: all known magic numbers that are present in the valley of stability disappear far from stability and are replaced by new ones at the drip line. By gathering selected experimental results, beautifully consistent pictures emerge, that very likely take root in the properties of the nuclear forces.The present manuscript describes some of these discoveries and proposes an intuitive understanding of these shell evolutions derived from observations. Extrapolations to yet unstudied regions, as where the explosive r-process nucleosynthesis occurs, are proposed. Some remaining challenges and puzzling questions are also addressed.

  9. The shell coal gasification process

    Energy Technology Data Exchange (ETDEWEB)

    Koenders, L.O.M.; Zuideveld, P.O. [Shell Internationale Petroleum Maatschappij B.V., The Hague (Netherlands)

    1995-12-01

    Future Integrated Coal Gasification Combined Cycle (ICGCC) power plants will have superior environmental performance and efficiency. The Shell Coal Gasification Process (SCGP) is a clean coal technology, which can convert a wide range of coals into clean syngas for high efficiency electricity generation in an ICGCC plant. SCGP flexibility has been demonstrated for high-rank bituminous coals to low rank lignites and petroleum coke, and the process is well suited for combined cycle power generation, resulting in efficiencies of 42 to 46% (LHV), depending on choice of coal and gas turbine efficiency. In the Netherlands, a 250 MWe coal gasification combined cycle plant based on Shell technology has been built by Demkolec, a development partnership of the Dutch Electricity Generating Board (N.V. Sep). The construction of the unit was completed end 1993 and is now followed by start-up and a 3 year demonstration period, after that the plant will be part of the Dutch electricity generating system.

  10. Sound Radiation of Cylindrical Shells

    Directory of Open Access Journals (Sweden)

    B Alzahabi

    2016-09-01

    Full Text Available The acoustic signature of submarines is very critical in such high performance structure. Submarines are not only required to sustain very high dynamic loadings at all time, but also being able maneuver and perform their functions under sea without being detected by sonar systems. Submarines rely on low acoustic signature level to remain undetected. Reduction of sound radiation is most efficiently achieved at the design stage. Acoustic signatures may be determined by considering operational scenarios, and modal characteristics. The acoustic signature of submarines is generally of two categories; broadband which has a continuous spectrum; and a tonal noise which has discrete frequencies. The nature of sound radiation of submarine is fiction of its speed. At low speed the acoustic signature is dominated by tonal noise, while at high speed, the acoustic signature is mainly dominated by broadband noise. Submarine hulls are mainly constructed of circular cylindrical shells. Unlike that of simpler structures such as beams and plates, the modal spectrum of cylindrical shell exhibits very unique characteristics. Mode crossing, the uniqueness of modal spectrum, and the redundancy of modal constraints are just to name a few. In cylindrical shells, the lowest natural frequency is not necessarily associated with the lowest wave index. In fact, the natural frequencies do not fall in ascending order of the wave index either. Solution of the vibration problem of cylindrical shells also indicates repeated natural frequencies. These modes are referred to as double peak frequencies. Mode shapes associated with each one of the natural frequencies are usually a combination of Radial (flexural, Longitudinal (axial, and Circumferential (torsional modes. In this paper, the wave equation will be set up in terms of the pressure fluctuations, p(x, t. It will be demonstrated that the noise radiation is a fluctuating pressure wave.

  11. Atomic inner-shell transitions

    Science.gov (United States)

    Crasemann, B.; Chen, M. H.; Mark, H.

    1984-01-01

    Atomic inner-shell processes have quite different characteristics, in several important aspects, from processes in the optical regime. Energies are large, e.g., the 1s binding energy reaches 100 keV at Z = 87; relativistic and quantum-electrodynamic effects therefore are strong. Radiationless transitions vastly dominate over photon emission in most cases. Isolated inner-shell vacancies have pronounced single-particle character, with correlations generally contributing only approximately 1 eV to the 1s and 2p binding energies; the structure of such systems is thus well tractable by independent-particle self-consistent-field atomic models. For systems containing multiple deep inner-shell vacancies, or for highly stripped ions, the importance of relativistic intermediate coupling and configuration interaction becomes pronounced. Cancellation of the Coulomb interaction can lead to strong manifestations of the Breit interaction in such phenomena as multiplet splitting and hypersatellite X-ray shifts. Unique opportunities arise for the test of theory.

  12. Identification of Genes Directly Involved in Shell Formation and Their Functions in Pearl Oyster, Pinctada fucata

    Science.gov (United States)

    Fang, Dong; Xu, Guangrui; Hu, Yilin; Pan, Cong; Xie, Liping; Zhang, Rongqing

    2011-01-01

    Mollusk shell formation is a fascinating aspect of biomineralization research. Shell matrix proteins play crucial roles in the control of calcium carbonate crystallization during shell formation in the pearl oyster, Pinctada fucata. Characterization of biomineralization-related genes during larval development could enhance our understanding of shell formation. Genes involved in shell biomineralization were isolated by constructing three suppression subtractive hybridization (SSH) libraries that represented genes expressed at key points during larval shell formation. A total of 2,923 ESTs from these libraries were sequenced and gave 990 unigenes. Unigenes coding for secreted proteins and proteins with tandem-arranged repeat units were screened in the three SSH libraries. A set of sequences coding for genes involved in shell formation was obtained. RT-PCR and in situ hybridization assays were carried out on five genes to investigate their spatial expression in several tissues, especially the mantle tissue. They all showed a different expression pattern from known biomineralization-related genes. Inhibition of the five genes by RNA interference resulted in different defects of the nacreous layer, indicating that they all were involved in aragonite crystallization. Intriguingly, one gene (UD_Cluster94.seq.Singlet1) was restricted to the ‘aragonitic line’. The current data has yielded for the first time, to our knowledge, a suite of biomineralization-related genes active during the developmental stages of P.fucata, five of which were responsible for nacreous layer formation. This provides a useful starting point for isolating new genes involved in shell formation. The effects of genes on the formation of the ‘aragonitic line’, and other areas of the nacreous layer, suggests a different control mechanism for aragonite crystallization initiation from that of mature aragonite growth. PMID:21747964

  13. Identification of genes directly involved in shell formation and their functions in pearl oyster, Pinctada fucata.

    Directory of Open Access Journals (Sweden)

    Dong Fang

    Full Text Available Mollusk shell formation is a fascinating aspect of biomineralization research. Shell matrix proteins play crucial roles in the control of calcium carbonate crystallization during shell formation in the pearl oyster, Pinctada fucata. Characterization of biomineralization-related genes during larval development could enhance our understanding of shell formation. Genes involved in shell biomineralization were isolated by constructing three suppression subtractive hybridization (SSH libraries that represented genes expressed at key points during larval shell formation. A total of 2,923 ESTs from these libraries were sequenced and gave 990 unigenes. Unigenes coding for secreted proteins and proteins with tandem-arranged repeat units were screened in the three SSH libraries. A set of sequences coding for genes involved in shell formation was obtained. RT-PCR and in situ hybridization assays were carried out on five genes to investigate their spatial expression in several tissues, especially the mantle tissue. They all showed a different expression pattern from known biomineralization-related genes. Inhibition of the five genes by RNA interference resulted in different defects of the nacreous layer, indicating that they all were involved in aragonite crystallization. Intriguingly, one gene (UD_Cluster94.seq.Singlet1 was restricted to the 'aragonitic line'. The current data has yielded for the first time, to our knowledge, a suite of biomineralization-related genes active during the developmental stages of P. fucata, five of which were responsible for nacreous layer formation. This provides a useful starting point for isolating new genes involved in shell formation. The effects of genes on the formation of the 'aragonitic line', and other areas of the nacreous layer, suggests a different control mechanism for aragonite crystallization initiation from that of mature aragonite growth.

  14. Topological defects in cholesteric liquid crystal shells.

    Science.gov (United States)

    Darmon, Alexandre; Benzaquen, Michael; Čopar, Simon; Dauchot, Olivier; Lopez-Leon, Teresa

    2016-11-23

    We investigate experimentally and numerically the defect configurations emerging when a cholesteric liquid crystal is confined to a spherical shell. We uncover a rich scenario of defect configurations, some of them non-existent in nematic shells, where new types of defects are stabilized by the helical ordering of the liquid crystal. In contrast to nematic shells, here defects are not simple singular points or lines, but have a large structured core. Specifically, we observe five different types of cholesteric shells. We study the statistical distribution of the different types of shells as a function of the two relevant geometrical dimensionless parameters of the system. By playing with these parameters, we are able to induce transitions between different types of shells. These transitions involve interesting topological transformations in which the defects recombine to form new structures. Surprisingly, the defects do not approach each other by taking the shorter distance route (geodesic), but by following intricate paths.

  15. Mussel Shell Impaction in the Esophagus

    Directory of Open Access Journals (Sweden)

    Sunmin Kim

    2013-03-01

    Full Text Available Mussels are commonly used in cooking around the world. The mussel shell breaks more easily than other shells, and the edge of the broken mussel shell is sharp. Impaction can ultimately cause erosion, perforation and fistula. Aside from these complications, the pain can be very intense. Therefore, it is essential to verify and remove the shell as soon as possible. In this report we describe the process of diagnosing and treating mussel shell impaction in the esophagus. Physicians can overlook this unusual foreign body impaction due to lack of experience. When physicians encounter a patient with severe chest pain after a meal with mussels, mussel shell impaction should be considered when diagnosing and treating the patient.

  16. Water Dynamics in the Hydration Shells of Biomolecules

    Science.gov (United States)

    2017-01-01

    The structure and function of biomolecules are strongly influenced by their hydration shells. Structural fluctuations and molecular excitations of hydrating water molecules cover a broad range in space and time, from individual water molecules to larger pools and from femtosecond to microsecond time scales. Recent progress in theory and molecular dynamics simulations as well as in ultrafast vibrational spectroscopy has led to new and detailed insight into fluctuations of water structure, elementary water motions, electric fields at hydrated biointerfaces, and processes of vibrational relaxation and energy dissipation. Here, we review recent advances in both theory and experiment, focusing on hydrated DNA, proteins, and phospholipids, and compare dynamics in the hydration shells to bulk water. PMID:28248491

  17. Template-Directed Synthesis of Porous and Protective Core-Shell Bionanoparticles.

    Science.gov (United States)

    Li, Shaobo; Dharmarwardana, Madushani; Welch, Raymond P; Ren, Yixin; Thompson, Christina M; Smaldone, Ronald A; Gassensmith, Jeremiah J

    2016-08-26

    Metal-organic frameworks (MOFs) are promising high surface area coordination polymers with tunable pore structures and functionality; however, a lack of good size and morphological control over the as-prepared MOFs has persisted as an issue in their application. Herein, we show how a robust protein template, tobacco mosaic virus (TMV), can be used to regulate the size and shape of as-fabricated MOF materials. We were able to obtain discrete rod-shaped TMV@MOF core-shell hybrids with good uniformity, and their diameters could be tuned by adjusting the synthetic conditions, which can also significantly impact the stability of the core-shell composite. More interestingly, the virus particle underneath the MOF shell can be chemically modified using a standard bioconjugation reaction, showing mass transportation within the MOF shell. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Fossorial origin of the turtle shell

    OpenAIRE

    Lyson, Tyler R.; Rubidge, Bruce S.; Torsten M Scheyer; de Queiroz, Kevin; Schachner, Emma R.; Smith, Roger M.H; Botha-Brink, Jennifer; Bever, G.S.

    2016-01-01

    The turtle shell is a complex structure that currently serves a largely protective function in this iconically slow-moving group [1]. Developmental [2, 3] and fossil [4-7] data indicate that one of the first steps toward the shelled body plan was broadening of the ribs (approximately 50 my before the completed shell [5]). Broadened ribs alone provide little protection [8] and confer significant locomotory [9, 10] and respiratory [9, 11] costs. They increase thoracic rigidity [8], which decrea...

  19. Clustering aspects and the shell model

    OpenAIRE

    Arima, Akito

    2004-01-01

    In this talk I shall discuss the clustering aspect and the shell model. I shall first discuss the $\\alpha$-cluster aspects based on the shell model calculations. Then I shall discuss the spin zero ground state dominance in the presence of random interactions and a new type of cluster structure for fermions in a single-$j$ shell in the presence of only pairing interaction with the largest multiplicity.

  20. Indentation of pressurized viscoplastic polymer spherical shells

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Needleman, A.

    2016-01-01

    The indentation response of polymer spherical shells is investigated. Finite deformation analyses are carried out with the polymer characterized as a viscoelastic/viscoplastic solid. Both pressurized and unpressurized shells are considered. Attention is restricted to axisymmetric deformations...... large strains are attained. The transition from an indentation type mode of deformation to a structural mode of deformation involving bending that occurs as the indentation depth increases is studied. The results show the effects of shell thickness, internal pressure and polymer constitutive...

  1. Integrable structure in discrete shell membrane theory.

    Science.gov (United States)

    Schief, W K

    2014-05-08

    We present natural discrete analogues of two integrable classes of shell membranes. By construction, these discrete shell membranes are in equilibrium with respect to suitably chosen internal stresses and external forces. The integrability of the underlying equilibrium equations is proved by relating the geometry of the discrete shell membranes to discrete O surface theory. We establish connections with generalized barycentric coordinates and nine-point centres and identify a discrete version of the classical Gauss equation of surface theory.

  2. Effect of cadmium doses on chickens. 3. Long term influence of cadmium on feed consumption weight gain, egg performance and egg shell quality of laying hens

    Energy Technology Data Exchange (ETDEWEB)

    Suelz, M.; Hardebeck, H.; Krampitz, G.

    1974-01-01

    In long-lasting experiments the application of Cd resulted in a decreased state of health (nephritis) of hens. Feed consumption, weight gain and egg production were reduced. Egg shell quality was not changed under practical Cd-concentrations. Studies of the ultrastructure of egg shells of animals fed with Cd did not yield any hints of damages. The protein-profiles of egg shells revealed an additional component under Cd-application. 17 references, 2 figures, 2 tables.

  3. OPTIMAL THICKNESS OF A CYLINDRICAL SHELL

    Directory of Open Access Journals (Sweden)

    Paul Ziemann

    2015-01-01

    Full Text Available In this paper an optimization problem for a cylindrical shell is discussed. The aim is to look for an optimal thickness of a shell to minimize the deformation under an applied external force. As a side condition, the volume of the shell has to stay constant during the optimization process. The deflection is calculated using an approach from shell theory. The resulting control-to-state operator is investigated analytically and a corresponding optimal control problem is formulated. Moreover, necessary conditions for an optimal solution are stated and numerical solutions are presented for different examples.

  4. Material with core-shell structure

    Science.gov (United States)

    Luhrs, Claudia [Rio Rancho, NM; Richard, Monique N [Ann Arbor, MI; Dehne, Aaron [Maumee, OH; Phillips, Jonathan [Rio Rancho, NM; Stamm, Kimber L [Ann Arbor, MI; Fanson, Paul T [Brighton, MI

    2011-11-15

    Disclosed is a material having a composite particle, the composite particle including an outer shell and a core. The core is made from a lithium alloying material and the outer shell has an inner volume that is greater in size than the core of the lithium alloying material. In some instances, the outer mean diameter of the outer shell is less than 500 nanometers and the core occupies between 5 and 99% of the inner volume. In addition, the outer shell can have an average wall thickness of less than 100 nanometers.

  5. Carbon isotopes in mollusk shell carbonates

    Science.gov (United States)

    McConnaughey, Ted A.; Gillikin, David Paul

    2008-10-01

    Mollusk shells contain many isotopic clues about calcification physiology and environmental conditions at the time of shell formation. In this review, we use both published and unpublished data to discuss carbon isotopes in both bivalve and gastropod shell carbonates. Land snails construct their shells mainly from respired CO2, and shell δ13C reflects the local mix of C3 and C4 plants consumed. Shell δ13C is typically >10‰ heavier than diet, probably because respiratory gas exchange discards CO2, and retains the isotopically heavier HCO3 -. Respired CO2 contributes less to the shells of aquatic mollusks, because CO2/O2 ratios are usually higher in water than in air, leading to more replacement of respired CO2 by environmental CO2. Fluid exchange with the environment also brings additional dissolved inorganic carbon (DIC) into the calcification site. Shell δ13C is typically a few ‰ lower than ambient DIC, and often decreases with age. Shell δ13C retains clues about processes such as ecosystem metabolism and estuarine mixing. Ca2+ ATPase-based models of calcification physiology developed for corals and algae likely apply to mollusks, too, but lower pH and carbonic anhydrase at the calcification site probably suppress kinetic isotope effects. Carbon isotopes in biogenic carbonates are clearly complex, but cautious interpretation can provide a wealth of information, especially after vital effects are better understood.

  6. Voronoi Grid-Shell Structures

    OpenAIRE

    Pietroni, Nico; Tonelli, Davide; Puppo, Enrico; Froli, Maurizio; Scopigno, Roberto; Cignoni, Paolo

    2014-01-01

    We introduce a framework for the generation of grid-shell structures that is based on Voronoi diagrams and allows us to design tessellations that achieve excellent static performances. We start from an analysis of stress on the input surface and we use the resulting tensor field to induce an anisotropic non-Euclidean metric over it. Then we compute a Centroidal Voronoi Tessellation under the same metric. The resulting mesh is hex-dominant and made of cells with a variable density, which depen...

  7. Generic thin-shell gravastars

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Moruno, Prado; Visser, Matt [School of Mathematics, Statistics, and Operations Research, Victoria University of Wellington, PO Box 600, Wellington 6140 (New Zealand); Garcia, Nadiezhda Montelongo [Departamento de Física, Centro de Investigación y Estudios avanzados del I.P.N., A.P. 14-700,07000 México, DF (Mexico); Lobo, Francisco S.N., E-mail: prado@msor.vuw.ac.nz, E-mail: nmontelongo@fis.cinvestav.mx, E-mail: flobo@cii.fc.ul.pt, E-mail: matt.visser@msor.vuw.ac.nz [Centro de Astronomia e Astrofísica da Universidade de Lisboa, Campo Grande, Edifício C8 1749-016 Lisboa (Portugal)

    2012-03-01

    We construct generic spherically symmetric thin-shell gravastars by using the cut-and-paste procedure. We take considerable effort to make the analysis as general and unified as practicable; investigating both the internal physics of the transition layer and its interaction with 'external forces' arising due to interactions between the transition layer and the bulk spacetime. Furthermore, we discuss both the dynamic and static situations. In particular, we consider 'bounded excursion' dynamical configurations, and probe the stability of static configurations. For gravastars there is always a particularly compelling configuration in which the surface energy density is zero, while surface tension is nonzero.

  8. Celestial mechanics of planet shells

    Science.gov (United States)

    Barkin, Yu V.; Vilke, V. G.

    2004-06-01

    The motion of a planet consisting of an external shell (mantle) and a core (rigid body), which are connected by a visco-elastic layer and mutually gravitationally interact with each other and with an external celestial body (considered as a material point), is studied (Barkin, 1999, 2002a,b; Vilke, 2004). Relative motions of the core and mantle are studied on the assumption that the centres of mass of the planet and external body move on unperturbed Keplerian orbits around the general centre of mass of the system. The core and mantle of the planet have axial symmetry and have different principal moments of inertia. The differential action of the external body on the core and mantle cause the periodic relative displacements of their centres of mass and their relative turns. An approximate solution of the problem was obtained on the basis of the linearization, averaging and small-parameter methods. The obtained analytical results are applied to the study of the possible relative displacements of the core and mantle of the Earth under the gravitational action of the Moon. For the suggested two-body Earth model and in the simple case of a circular (model) lunar orbit the new phenomenon of periodic translatory-rotary oscillations of the core with a fortnightly period the mantle was observed. The more remarkable phenomenon is the cyclic rotation with the same period (13.7 days) of the core relative to the mantle with a ‘large’ amplitude of 152 m (at the core surface).The results obtained confirm the general concept described by Barkin (1999, 2002a,b) that induced relative shell oscillations can control and dictate the cyclic and secular processes of energization of the planets and satellites in definite rhythms and on different time scales.The results obtained mean that giant moments and forces produce energy which causes in particular deformations of the viscoelastic layer between planet shells. This process is realized with different intensities on different time

  9. Shell Structure of Exotic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Dobaczewski, J. [Warsaw University; Michel, N. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Nazarewicz, Witold [ORNL; Ploszajczak, M. [Grand Accelerateur National d' Ions Lourds (GANIL); Rotureau, J. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL)

    2007-01-01

    Theoretical predictions and experimental discoveries for neutron-rich, short-lived nuclei far from stability indicate that the familiar concept of nucleonic shell structure should be considered as less robust than previously thought. The notion of single-particle motion in exotic nuclei is reviewed with a particular focus on three aspects: (i) variations of nuclear mean field with neutron excess due to tensor interactions; (ii) importance of many-body correlations; and (iii) influence of open channels on properties of weakly bound and unbound nuclear states.

  10. Local shell-to-shell energy transfer via nonlocal interactions in fluid ...

    Indian Academy of Sciences (India)

    in a triad, and the energy exchanges between wave-number shells in incompressible fluid turbulence. The computation has been done using first-order perturbative field theory. In three dimensions, magnitude of triad interactions is large for nonlocal triads, and small for local triads. However, the shell-to-shell energy transfer ...

  11. Localized versus shell-model-like clusters

    Energy Technology Data Exchange (ETDEWEB)

    Cseh, J.; Algora, A. [Institute of Nuclear Research of the Hungarian Academy of Sciences, Debrecen, Pf. 51, 4001 Hungary (Hungary); Darai, J. [Institute of Experimental Physics, University of Debrecen, Debrecen, Bem ter 18/A, 4026 Hungary (Hungary); Yepez M, H. [Universidad Autonoma de la Ciudad de Mexico, Prolongacion San Isidro 151, Col. San Lorenzo Tezonco, 09790 Mexico D. F. (Mexico); Hess, P. O. [Instituto de Ciencias Nucleares, UNAM, Apartado Postal 70-543, 04510 Mexico D. F. (Mexico)]. e-mail: cseh@atomki.hu

    2008-12-15

    In light of the relation of the shell model and the cluster model, the concepts of localized and shell-model-like clusters are discussed. They are interpreted as different phases of clusterization, which may be characterized by quasi-dynamical symmetries, and are connected by a phase-transition. (Author)

  12. Thick-shell nanocrystal quantum dots

    Science.gov (United States)

    Hollingsworth, Jennifer A [Los Alamos, NM; Chen, Yongfen [Eugene, OR; Klimov, Victor I [Los Alamos, NM; Htoon, Han [Los Alamos, NM; Vela, Javier [Los Alamos, NM

    2011-05-03

    Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.

  13. Periodic Orbits and Deformed Shell Structure

    OpenAIRE

    Arita, K.; Magner, A. G.; Matsuyanagi, K.

    2002-01-01

    Relationship between quantum shell structure and classical periodic orbits is briefly reviewed on the basis of semi-classical trace formula. Using the spheroidal cavity model, it is shown that three-dimensional periodic orbits, which are born out of bifurcation of planar orbits at large prolate deformations, generate the superdeformed shell structure.

  14. Measuring galaxy potentials using shell kinematics

    NARCIS (Netherlands)

    Merrifield, MR; Kuijken, K

    1998-01-01

    We show that the kinematics of the shells seen around some elliptical galaxies provide a new, independent means for measuring the gravitational potentials of elliptical galaxies out to large radii. A numerical simulation of a set of shells formed in the merger between an elliptical and a smaller

  15. CORROSION INHIBITION BY CASHEW NUT SHELL LIQUID

    African Journals Online (AJOL)

    MECHANISTIC STUDIES OF CARBON STEEL. CORROSION INHIBITION BY CASHEW NUT SHELL. LIQUID. JYN Philip, J Buchweishaija and LL Mkayula. Department of Chemistry, University of Dar es Salaam,. P. O. Box 35061, Dar es Salaam, Tanzania. ABSTRACT. The inhibition mechanism of the Cashew Nut Shell ...

  16. Dynamic analysis of conical shells conveying fluid

    Science.gov (United States)

    Senthil Kumar, D.; Ganesan, N.

    2008-02-01

    A formulation, based on the semi-analytical finite element method, is proposed for elastic conical shells conveying fluids. The structural equations are based on the shell element proposed by Ramasamy and Ganesan [Finite element analysis of fluid-filled isotropic cylindrical shells with constrained viscoelastic damping, Computers & Structures 70 (1998) 363-376] while the fluid model is based on velocity potential formulation used by Jayaraj et al. [A semi-analytical coupled finite element formulation for composite shells conveying fluids, Journal of Sound and Vibration 258(2) (2002) 287-307]. Dynamic pressure acting on the walls is derived from Bernoulli's equation. By imposing the requirement that the normal component of velocity of the solid and fluid are equal leads to fluid-structure coupling. The computer code developed has been validated using results available in the literature for cylindrical shells conveying fluid. The study has been carried out for conical shells of different cone angles and for boundary condition like clamped-clamped, simply supported and clamped free. In general, instability occurs at a critical fluid velocity corresponding to the shell circumferential mode with the lowest natural frequency. Critical fluid velocities are lower than that of equivalent cylindrical shells. This result holds good for all boundary conditions.

  17. Strength Calculation of Locally Loaded Orthotropic Shells

    Directory of Open Access Journals (Sweden)

    Yu. I. Vinogradov

    2015-01-01

    Full Text Available The article studies laminated orthotropic cylindrical, conic, spherical, and toroidal shells, which are often locally loaded in the aircraft designs over small areas of their surfaces.The aim of this work is to determine stress concentration in shells versus structure of orthotropic composite material, shell form and parameters, forms of loading areas, which borders do not coincide with lines of main curvatures of shells. For this purpose, an analytical computing algorithm to estimate strength of shells in terms of stress is developed. It enables us to have solution results of the boundary value problem with a controlled error. To solve differential equations an analytical method is used. An algorithm of the boundary value problem solution is multiplicative.The main results of researches are graphs of stress concentration in the orthotropic shells versus their parameters and areas of loading lineated by circles and ellipses.Among the other works aimed at determination of stress concentration in shells, the place of this one is defined by the analytical solution of applied problems for strength estimation in terms of shell stresses of classical forms.The developed effective analytical algorithm to solve the boundary value problem and received results are useful in research and development.

  18. Intershell correlations in photoionization of outer shells

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya. [The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel); A.F. Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Chernysheva, L.V. [A.F. Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Drukarev, E.G. [National Research Center “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg 188300 (Russian Federation)

    2016-02-15

    We demonstrate that the cross sections for photoionization of the outer shells are noticeably modified at the photon energies close to the thresholds of ionization of the inner shells due to correlations with the latter. The correlations may lead to increase or to decrease of the cross sections just above the ionization thresholds.

  19. Microsoft Exchange Server PowerShell cookbook

    CERN Document Server

    Andersson, Jonas

    2015-01-01

    This book is for messaging professionals who want to build real-world scripts with Windows PowerShell 5 and the Exchange Management Shell. If you are a network or systems administrator responsible for managing and maintaining Exchange Server 2013, you will find this highly useful.

  20. Collapsing spherical null shells in general relativity

    Directory of Open Access Journals (Sweden)

    S Khakshournia

    2011-03-01

    Full Text Available In this work, the gravitational collapse of a spherically symmetric null shell with the flat interior and a charged Vaidya exterior spacetimes is studied. There is no gravitational impulsive wave present on the null hypersurface which is shear-free and contracting. It follows that there is a critical radius at which the shell bounces and starts expanding.

  1. Faraday Wave Turbulence on a Spherical Liquid Shell

    Science.gov (United States)

    Holt, R. Glynn; Trinh, Eugene H.

    1996-01-01

    Millimeter-radius liquid shells are acoustically levitated in an ultrasonic field. Capillary waves are observed on the shells. At low energies (minimal acoustic amplitude, thick shell) a resonance is observed between the symmetric and antisymmetric thin film oscillation modes. At high energies (high acoustic pressure, thin shell) the shell becomes fully covered with high-amplitude waves. Temporal spectra of scattered light from the shell in this regime exhibit a power-law decay indicative of turbulence.

  2. Packaging of DNA by shell crosslinked nanoparticles.

    Science.gov (United States)

    Thurmond, K B; Remsen, E E; Kowalewski, T; Wooley, K L

    1999-07-15

    We demonstrate compaction of DNA with nanoscale biomimetic constructs which are robust synthetic analogs of globular proteins. These constructs are approximately 15 nm in diameter, shell crosslinked knedel-like (SCKs) nanoparticles, which are prepared by covalent stabilization of amphiphilic di-block co-polymer micelles, self-assembled in an aqueous solution. This synthetic approach yields size-controlled nanoparticles of persistent shape and containing positively charged functional groups at and near the particle surface. Such properties allow SCKs to bind with DNA through electrostatic interactions and facilitate reduction of the DNA hydrodynamic diameter through reversible compaction. Compaction of DNA by SCKs was evident in dynamic light scattering experiments and was directly observed by in situ atomic force microscopy. Moreover, enzymatic digestion of the DNA plasmid (pBR322, 4361 bp) by Eco RI was inhibited at low SCK:DNA ratios and prevented when [le]60 DNA bp were bound per SCK. Digestion by Msp I in the presence of SCKs resulted in longer DNA fragments, indicating that not all enzyme cleavage sites were accessible within the DNA/SCK aggregates. These results have implications for the development of vehicles for successful gene therapy applications.

  3. A peridynamic theory for linear elastic shells

    CERN Document Server

    Chowdhury, Shubhankar Roy; Roy, Debasish; Reddy, J N

    2015-01-01

    A state-based peridynamic formulation for linear elastic shells is presented. The emphasis is on introducing, possibly for the first time, a general surface based peridynamic model to represent the deformation characteristics of structures that have one physical dimension much smaller than the other two. A new notion of curved bonds is exploited to cater for force transfer between the peridynamic particles describing the shell. Starting with the three dimensional force and deformation states, appropriate surface based force, moment and several deformation states are arrived at. Upon application on the curved bonds, such states beget the necessary force and deformation vectors governing the motion of the shell. Correctness of our proposal on the peridynamic shell theory is numerically assessed against static deformation of spherical and cylindrical shells and flat plates.

  4. Structural shell analysis understanding and application

    CERN Document Server

    Blaauwendraad, Johan

    2014-01-01

    The mathematical description of the properties of a shell is much more elaborate than those of beam and plate structures. Therefore many engineers and architects are unacquainted with aspects of shell behaviour and design, and are not familiar with sufficiently reliable shell theories for the different shell types as derived in the middle of the 20th century. Rather than contributing to theory development, this university textbook focuses on architectural and civil engineering schools. Of course, practising professionals will profit from it as well. The book deals with thin elastic shells, in particular with cylindrical, conical and spherical types, and with elliptic and hyperbolic paraboloids. The focus is on roofs, chimneys, pressure vessels and storage tanks. Special attention is paid to edge bending disturbance zones, which is indispensable knowledge in FE meshing. A substantial part of the book results from research efforts in the mid 20th century at Delft University of Technology. As such, it is a valua...

  5. Variability in shell models of GRBs

    Science.gov (United States)

    Sumner, M. C.; Fenimore, E. E.

    1997-01-01

    Many cosmological models of gamma-ray bursts (GRBs) assume that a single relativistic shell carries kinetic energy away from the source and later converts it into gamma rays, perhaps by interactions with the interstellar medium or by internal shocks within the shell. Although such models are able to reproduce general trends in GRB time histories, it is difficult to reproduce the high degree of variability often seen in GRBs. The authors investigate methods of achieving this variability using a simplified external shock model. Since the model emphasizes geometric and statistical considerations, rather than the detailed physics of the shell, it is applicable to any theory that relies on relativistic shells. They find that the variability in GRBs gives strong clues to the efficiency with which the shell converts its kinetic energy into gamma rays.

  6. K-shell Analysis Reveals Distinct Functional Parts in an Electron Transfer Network and Its Implications for Extracellular Electron Transfer

    Directory of Open Access Journals (Sweden)

    Dewu eDing

    2016-04-01

    Full Text Available Shewanella oneidensis MR-1 is capable of extracellular electron transfer (EET and hence has attracted considerable attention. The EET pathways mainly consist of c-type cytochromes, along with some other proteins involved in electron transfer processes. By whole genome study and protein interactions inquisition, we constructed a large-scale electron transfer network containing 2276 interactions among 454 electron transfer related proteins in S. oneidensis MR-1. Using the k-shell decomposition method, we identified and analyzed distinct parts of the electron transfer network. We found that there was a negative correlation between the ks (k-shell values and the average DR_100 (disordered regions per 100 amino acids in every shell, which suggested that disordered regions of proteins played an important role during the formation and extension of the electron transfer network. Furthermore, proteins in the top three shells of the network are mainly located in the cytoplasm and inner membrane; these proteins can be responsible for transfer of electrons into the quinone pool in a wide variety of environmental conditions. In most of the other shells, proteins are broadly located throughout the five cellular compartments (cytoplasm, inner membrane, periplasm, outer membrane and extracellular, which ensures the important EET ability of S. oneidensis MR-1. Specifically, the fourth shell was responsible for EET and the c-type cytochromes in the remaining shells of the electron transfer network were involved in aiding EET. Taken together, these results show that there are distinct functional parts in the electron transfer network of S. oneidensis MR-1, and the EET processes could achieve high efficiency through cooperation through such an electron transfer network.

  7. Aqueous-Based Coaxial Electrospinning of Genetically Engineered Silk Elastin Core-Shell Nanofibers

    Directory of Open Access Journals (Sweden)

    Jingxin Zhu

    2016-03-01

    Full Text Available A nanofabrication method for the production of flexible core-shell structured silk elastin nanofibers is presented, based on an all-aqueous coaxial electrospinning process. In this process, silk fibroin (SF and silk-elastin-like protein polymer (SELP, both in aqueous solution, with high and low viscosity, respectively, were used as the inner (core and outer (shell layers of the nanofibers. The electrospinnable SF core solution served as a spinning aid for the nonelectrospinnable SELP shell solution. Uniform nanofibers with average diameter from 301 ± 108 nm to 408 ± 150 nm were obtained through adjusting the processing parameters. The core-shell structures of the nanofibers were confirmed by fluorescence and electron microscopy. In order to modulate the mechanical properties and provide stability in water, the as-spun SF-SELP nanofiber mats were treated with methanol vapor to induce β-sheet physical crosslinks. FTIR confirmed the conversion of the secondary structure from a random coil to β-sheets after the methanol treatment. Tensile tests of SF-SELP core-shell structured nanofibers showed good flexibility with elongation at break of 5.20% ± 0.57%, compared with SF nanofibers with an elongation at break of 1.38% ± 0.22%. The SF-SELP core-shell structured nanofibers should provide useful options to explore in the field of biomaterials due to the improved flexibility of the fibrous mats and the presence of a dynamic SELP layer on the outer surface.

  8. The influence of HCl concentration and demineralization temperature of Atrina pectinata shells on quality of chitin

    Science.gov (United States)

    Nugroho, Intan Lazuardi; Pursetyo, Kustiawan Tri; Masithah, Endang Dewi

    2017-02-01

    Atrina pectinata is one of shells species widely consumed by people, which means the high consumption will generate the availability of shells in the environment as waste. Chitin can be produced from the shells. Shells contain quite high minerals that it should be demineralized to reduce the mineral content from the shells. This study aimed to determine the effect of HCl concentration and temperature affect chitin characteristics as the result of demineralization process from pen shells. The method based on two steps, there were demineralization and deproteination. This study used Completely Randomized Design (CRD) with two factors, including HCl concentration (2N, 4N, and 6N) and temperature (33°C and 60°C) which consists six combination treatments and three replications. Data was analyzed by using Analysis of Variance (ANOVA) and followed by Duncan's Multiple Range Test. The results showed that interaction of HCl concentration and temperature has significant effect (p<0.05) to ash content of chitin. The use concentration of 6N and 33°C produced the lowest ash content. Characteristics chitin resulted from the treatment of 6N and 33°C produced ash content 25.33% ± 6.82, moisture content 3.67% ± 1.10, yield 0.72% ± 0.12 and protein content 5.86%.

  9. Next-Generation Polymer Shells for Inorganic Nanoparticles are Highly Compact, Ultra-Dense, and Long-Lasting Cyclic Brushes.

    Science.gov (United States)

    Morgese, Giulia; Shirmardi Shaghasemi, Behzad; Causin, Valerio; Zenobi-Wong, Marcy; Ramakrishna, Shivaprakash N; Reimhult, Erik; Benetti, Edmondo M

    2017-04-10

    Cyclic poly-2-ethyl-2-oxazoline (PEOXA) ligands for superparamagnetic Fe3 O4 nanoparticles (NPs) generate ultra-dense and highly compact shells, providing enhanced colloidal stability and bio-inertness in physiological media. When linear brush shells fail in providing colloidal stabilization to NPs, the cyclic ones assure long lasting dispersions. While the thermally induced dehydration of linear PEOXA shells cause irreversible aggregation of the NPs, the collapse and subsequent rehydration of similarly grafted cyclic brushes allow the full recovery of individually dispersed NPs. Although linear ligands are densely grafted onto Fe3 O4 cores, a small plasma protein such as bovine serum albumin (BSA) still physisorbs within their shells. In contrast, the impenetrable entropic shield provided by cyclic brushes efficiently prevents nonspecific interaction with proteins. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Understanding irregular shell formation of Nautilus in aquaria: chemical composition and structural analysis.

    Science.gov (United States)

    Moini, Mehdi; O'Halloran, Aoife; Peters, Alan M; France, Christine A M; Vicenzi, Edward P; DeWitt, Tamsen G; Langan, Esther; Walsh, Tim; Speakman, Robert J

    2014-01-01

    Irregular shell formation and black lines on the outside of live chambered nautilus shells have been observed in all adult specimens at aquariums and zoos soon after the organisms enter aquaria. Black lines have also been observed in wild animals at sites of broken shell, but continued growth from that point returns to a normal, smooth structure. In contrast, rough irregular deposition of shell continues throughout residence in aquaria. The composition and reasons for deposition of the black material and mitigation of this irregular shell formation is the subject of the current study. A variety of analytical techniques were used, including stable isotope mass spectrometry (SI-MS), inductively coupled plasma mass spectrometry (ICP-MS), micro x-ray fluorescence (µXRF), X-ray diffraction (XRD), and scanning electron microscopy (SEM) based X-ray microanalysis. Results indicate that the black material contains excess amounts of copper, zinc, and bromine which are unrelated to the Nautilus diet. The combination of these elements and proteins plays an important role in shell formation, growth, and strengthening. Further study will be needed to compare the proteomics of the shell under aquaria versus natural wild environments. The question remains as to whether the occurrence of the black lines indicates normal healing followed by growth irregularities that are caused by stress from chemical or environmental conditions. In this paper we begin to address this question by examining elemental and isotopic differences of Nautilus diet and salt water. The atomic composition and light stable isotopic ratios of the Nautilus shell formed in aquaria verses wild conditions are presented. © 2014 Wiley Periodicals, Inc.

  11. Solution blowing of soy protein fibers.

    Science.gov (United States)

    Sinha-Ray, S; Zhang, Y; Yarin, A L; Davis, S C; Pourdeyhimi, B

    2011-06-13

    Solution blowing of soy protein (sp)/polymer blends was used to form monolithic nanofibers. The monolithic fibers were blown from blends of soy protein and nylon-6 in formic acid. The sp/nylon-6 ratio achieved in dry monolithic nanofibers formed using solution blowing of the blend was equal to 40/60. In addition, solution blowing of core-shell nanofibers was realized with soy protein being in the core and the supporting polymer in the shell. The shells were formed from nylon-6. The sp/nylon-6 ratio achieved in dry core-shell fibers was 32/68. The nanofibers developed in the present work contain significant amounts of soy protein and hold great potential in various applications of nonwovens.

  12. Establishment of a polyclonal antibody against the retinoid X receptor of the rock shell Thais clavigera and its application to rock shell tissues for imposex research.

    Science.gov (United States)

    Horiguchi, Toshihiro; Urushitani, Hiroshi; Ohta, Yasuhiko; Iguchi, Taisen; Shiraishi, Hiroaki

    2010-03-01

    In the chain of study to further elucidate the role of retinoid X receptor (RXR) in the development of imposex caused by organotin compounds in gastropod mollusks, we established a polyclonal antibody against RXR of the rock shell Thais clavigera. Immunoblotting demonstrated that this antibody could recognize T. clavigera RXR. In males and imposex-exhibiting females, immunohistochemical staining with the antibody revealed nuclear localization of RXR protein in the epithelial and smooth muscle cells of the vas deferens and in the interstitial and epidermal cells of the penis. These results suggest that the polyclonal antibody against T. clavigera RXR can specifically recognize RXR protein in tissues of T. clavigera and therefore is useful for evaluating RXR protein localization. Furthermore, RXR may be involved in the induction of male-type genitalia (penis and vas deferens) in normal male and organotin-exposed female rock shells.

  13. Silica-shell/oil-core microcapsules with controlled shell thickness and their breakage stress.

    Science.gov (United States)

    O'Sullivan, Michael; Zhang, Zhibing; Vincent, Brian

    2009-07-21

    The encapsulation of one material by another, to form core-shell particles (microcapsules), has many applications, principally the containment, protection, and distribution of an active material. This work describes the development of core-shell particles with silicone oil cores and solid silica-like shells of controlled thickness. Oligomeric polydimethylsiloxane (PDMS) emulsions are employed as the core templates for the formation of the solid shells. The core templates are prepared by the surfactant-free, condensation polymerization of diethoxydimethylsilane (DEODMS) that leads to the formation of monodisperse silicone oil/water emulsions. Solid silica-like, composite shells were formed through condensation of tetraethoxysilane (TEOS) and DEODMS onto the core templates. The shell thickness may be controlled by manipulation of relative TEOS and DEODMS concentrations or by quenching the shell development step. It is possible to incorporate a dye into the core prior to shell formation, which does not seem to permeate the shell. The coated PDMS particles were subjected to a controlled compression stress using a micromanipulation technique. The capsule breaking force was found to be proportional to the shell thickness, as quantified using scanning electron microscopy (SEM) ultramicrotomy.

  14. Photon upconversion in core-shell nanoparticles.

    Science.gov (United States)

    Chen, Xian; Peng, Denfeng; Ju, Qiang; Wang, Feng

    2015-03-21

    Photon upconversion generally results from a series of successive electronic transitions within complex energy levels of lanthanide ions that are embedded in the lattice of a crystalline solid. In conventional lanthanide-doped upconversion nanoparticles, the dopant ions homogeneously distributed in the host lattice are readily accessible to surface quenchers and lose their excitation energy, giving rise to weak and susceptible emissions. Therefore, present studies on upconversion are mainly focused on core-shell nanoparticles comprising spatially confined dopant ions. By doping upconverting lanthanide ions in the interior of a core-shell nanoparticle, the upconversion emission can be substantially enhanced, and the optical integrity of the nanoparticles can be largely preserved. Optically active shells are also frequently employed to impart multiple functionalities to upconversion nanoparticles. Intriguingly, the core-shell design introduces the possibility of constructing novel upconversion nanoparticles by exploiting the energy exchange interactions across the core-shell interface. In this tutorial review, we highlight recent advances in the development of upconversion core-shell nanoparticles, with particular emphasis on the emerging strategies for regulating the interplay of dopant interactions through core-shell nanostructural engineering that leads to unprecedented upconversion properties. The improved control over photon energy conversion will open up new opportunities for biological and energy applications.

  15. Effect of diets containing cocoa bean shell and coconut oil cake on ...

    African Journals Online (AJOL)

    Formulated diets were designated as D1 (cocoa bean shell, corn bran, soybean oil cake and cottonseeds oil cake) and D2 (coconut oil cake, corn bran, soybean oil cake and cottonseeds oil cake). All the tested diets contain around 28% protein and each diet was randomly assigned to triplicate ponds to evaluate growth, ...

  16. Bending stresses in Facetted Glass Shells

    DEFF Research Database (Denmark)

    Bagger, Anne; Jönsson, Jeppe; Almegaard, Henrik

    2008-01-01

    A shell structure of glass combines a highly effective structural principle with a material of optimal permeability to light. A facetted shell structure has a piecewise plane geometry, and together the facets form an approximation to a curved surface. A distributed load on a plane-based facetted...... structure will locally cause bending moments in the loaded facets. The bending stresses are dependent on the stiffness of the joints. Approximate solutions are developed to estimate the magnitude of the bending stresses. A FE-model of a facetted glass shell structure is used to validate the expressions...

  17. Thin shells joining local cosmic string geometries

    Energy Technology Data Exchange (ETDEWEB)

    Eiroa, Ernesto F. [Universidad de Buenos Aires, Ciudad Universitaria Pabellon I, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Rubin de Celis, Emilio; Simeone, Claudio [Universidad de Buenos Aires, Ciudad Universitaria Pabellon I, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Ciudad Universitaria Pabellon I, IFIBA-CONICET, Buenos Aires (Argentina)

    2016-10-15

    In this article we present a theoretical construction of spacetimes with a thin shell that joins two different local cosmic string geometries. We study two types of global manifolds, one representing spacetimes with a thin shell surrounding a cosmic string or an empty region with Minkowski metric, and the other corresponding to wormholes which are not symmetric across the throat located at the shell. We analyze the stability of the static configurations under perturbations preserving the cylindrical symmetry. For both types of geometries we find that the static configurations can be stable for suitable values of the parameters. (orig.)

  18. Windows PowerShell Quick Reference

    CERN Document Server

    Holmes, Lee

    2006-01-01

    For years, support for scripting and command-line administration on the Windows platform has paled in comparison to the support offered by the Unix platform. Unix administrators enjoyed the immense power and productivity of their command shells, while Windows administrators watched in envy. Windows PowerShell, Microsoft's next-generation command shell and scripting language, changes this landscape completely. This Short Cut contains the essential reference material to help you get your work done-including the scripting language syntax, a regular-expression reference, useful .NET classes, an

  19. Thin shells joining local cosmic string geometries

    CERN Document Server

    Eiroa, Ernesto F; Simeone, Claudio

    2016-01-01

    In this article we present a theoretical construction of spacetimes with a thin shell that joins two different local cosmic string geometries. We study two types of global manifolds, one representing spacetimes with a standard thin shell and the other corresponding to wormholes which are not symmetric across the throat located at the shell. We analyze the stability of the static configurations under perturbations preserving the cylindrical symmetry. For both types of geometries we find that the static configurations can be stable for suitable values of the parameters.

  20. A theory of latticed plates and shells

    CERN Document Server

    Pshenichnon, Gi

    1993-01-01

    The book presents the theory of latticed shells as continual systems and describes its applications. It analyses the problems of statics, stability and dynamics. Generally, a classical rod deformation theory is applied. However, in some instances, more precise theories which particularly consider geometrical and physical nonlinearity are employed. A new effective method for solving general boundary value problems and its application for numerical and analytical solutions of mathematical physics and reticulated shell theory problems is described. A new method of solving the shell theory's nonli

  1. Cloning of ovocalyxin-36, a novel chicken eggshell protein related to lipopolysaccharide-binding proteins, bactericidal permeability-increasing proteins, and plunc family proteins.

    Science.gov (United States)

    Gautron, Joël; Murayama, Emi; Vignal, Alain; Morisson, Mireille; McKee, Marc D; Réhault, Sophie; Labas, Valérie; Belghazi, Maya; Vidal, Mary-Laure; Nys, Yves; Hincke, Maxwell T

    2007-02-23

    The avian eggshell is a composite biomaterial composed of noncalcifying eggshell membranes and the overlying calcified shell matrix. The shell is deposited in a uterine fluid where the concentration of different protein species varies at different stages of its formation. The role of avian eggshell proteins during shell formation remains poorly understood, and we have sought to identify and characterize the individual components in order to gain insight into their function during elaboration of the eggshell. In this study, we have used direct sequencing, immunochemistry, expression screening, and EST data base mining to clone and characterize a 1995-bp full-length cDNA sequence corresponding to a novel chicken eggshell protein that we have named Ovocalyxin-36 (OCX-36). Ovocalyxin-36 protein was only detected in the regions of the oviduct where egg-shell formation takes place; uterine OCX-36 message was strongly up-regulated during eggshell calcification. OCX-36 localized to the calcified eggshell predominantly in the inner part of the shell, and to the shell membranes. BlastN data base searching indicates that there is no mammalian version of OCX-36; however, the protein sequence is 20-25% homologous to proteins associated with the innate immune response as follows: lipopolysaccharide-binding proteins, bactericidal permeability-increasing proteins, and Plunc family proteins. Moreover, the genomic organization of these proteins and OCX-36 appears to be highly conserved. These observations suggest that OCX-36 is a novel and specific chicken eggshell protein related to the superfamily of lipopolysaccharide-binding proteins/bactericidal permeability-increasing proteins and Plunc proteins. OCX-36 may therefore participate in natural defense mechanisms that keep the egg free of pathogens.

  2. Versatile post-functionalization of the external shell of cowpea chlorotic mottle virus by using click chemistry

    NARCIS (Netherlands)

    Hommersom, C.A.; Matt, B.D.; van der Ham, A.M.; Cornelissen, Jeroen Johannes Lambertus Maria; Katsonis, Nathalie Hélène

    2014-01-01

    We present the modification of the outer protein shell of cowpea chlorotic mottle virus (CCMV) with linear and strained alkyne groups. These functionalized protein capsids constitute valuable platforms for post-functionalization via click chemistry. After modification, the integrity of the capsid

  3. Microbial deproteinization of shrimp shell penaeus merguiensis for chitin extraction

    Directory of Open Access Journals (Sweden)

    Fatemeh Sedaghat

    2016-09-01

    Full Text Available Introduction: After cellulose, Chitin is the most abundant biopolymer in nature. The most important derivative of chitin is chitosan, obtained by deacetylation of chitin. Major sources of chitin are the exoskeleton of marine crustaceans such as crab, shrimp, and krill. Chitin extraction from shrimp shells can be carried out chemically or using biological methods. Microbial fermentation as an eco-friendly procedure is a suitable alternative for the chemical and enzymatic processes. In this study, the effect of three protease-producing bacteria species (Pseudomonas aeruginosa, Serratia marcescens, and Bacillus pumilus on the efficiency of microbial demineralization (DM and deproteinization (DP of the shrimp shell penaeus merguiensis, was investigated. Furthermore, the antioxidant activity of hydrolysate obtained during the fermentation process was measured. Materials and methods: Demineralization and deproteinization was carried out by incubating shrimp waste inoculated with bacteria at 30°C and 100 rpm for 6 days. Results: Statistical analysis of data showed a significant difference between the percentage of demineralization and deproteinization in different bacteria species (p<0.05. The highest deproteinization (74.76% and demineralization rate (78.46% were obtained with P. aeruginosa, while the lowest was observed for S. marcescens. Antioxidant activity of hydrolysate also showed a significant difference. The highest reducing power and total antioxidant capacity were observed in volumes of 400 µl hydrolysate of S.marcescens and 100 µl hydrolysate of B. pumilus, respectively. Discussion and conclusion: The results indicated that P. aeruginosa in comparison with other bacterial strains, had a higher ability to remove proteins and minerals from shrimp shell waste. Therefore, the use of this bacterium is suitable for protein and minerals removal from marine crustaceans.

  4. Design aids for fixed support reinforced concrete cylindrical shells ...

    African Journals Online (AJOL)

    Shells are objects considered as materialization of the curved surface. Despite structural advantages and architectural aesthetics possessed by shells, relative degree of unacquaintance with shell behavior and design is high. Thin shells are examples of strength through form as opposed to strength through mass; their thin ...

  5. Particle production from off-shell nucleons

    OpenAIRE

    Bozek, P

    1998-01-01

    Particle production in equilibrium and nonequilibrium quantum systems is calculated. The effects of the off-shell propagation of nucleons in medium on the particle production are discussed. Comparision to the semiclassical production rate is given.

  6. Core-shell silicon nanowire solar cells.

    Science.gov (United States)

    Adachi, M M; Anantram, M P; Karim, K S

    2013-01-01

    Silicon nanowires can enhance broadband optical absorption and reduce radial carrier collection distances in solar cell devices. Arrays of disordered nanowires grown by vapor-liquid-solid method are attractive because they can be grown on low-cost substrates such as glass, and are large area compatible. Here, we experimentally demonstrate that an array of disordered silicon nanowires surrounded by a thin transparent conductive oxide has both low diffuse and specular reflection with total values as low as nanowire facilitates enhancement in external quantum efficiency using two different active shell materials: amorphous silicon and nanocrystalline silicon. As a result, the core-shell nanowire device exhibits a short-circuit current enhancement of 15% with an amorphous Si shell and 26% with a nanocrystalline Si shell compared to their corresponding planar devices.

  7. CO2 Hydration Shell Structure and Transformation.

    Science.gov (United States)

    Zukowski, Samual R; Mitev, Pavlin D; Hermansson, Kersti; Ben-Amotz, Dor

    2017-07-06

    The hydration-shell of CO2 is characterized using Raman multivariate curve resolution (Raman-MCR) spectroscopy combined with ab initio molecular dynamics (AIMD) vibrational density of states simulations, to validate our assignment of the experimentally observed high-frequency OH band to a weak hydrogen bond between water and CO2. Our results reveal that while the hydration-shell of CO2 is highly tetrahedral, it is also occasionally disrupted by the presence of entropically stabilized defects associated with the CO2-water hydrogen bond. Moreover, we find that the hydration-shell of CO2 undergoes a temperature-dependent structural transformation to a highly disordered (less tetrahedral) structure, reminiscent of the transformation that takes place at higher temperatures around much larger oily molecules. The biological significance of the CO2 hydration shell structural transformation is suggested by the fact that it takes place near physiological temperatures.

  8. Nuclear Quadrupole Moments and Nuclear Shell Structure

    Science.gov (United States)

    Townes, C. H.; Foley, H. M.; Low, W.

    1950-06-23

    Describes a simple model, based on nuclear shell considerations, which leads to the proper behavior of known nuclear quadrupole moments, although predictions of the magnitudes of some quadrupole moments are seriously in error.

  9. Wireless energy transfer between anisotropic metamaterials shells

    Energy Technology Data Exchange (ETDEWEB)

    Díaz-Rubio, Ana; Carbonell, Jorge; Sánchez-Dehesa, José, E-mail: jsdehesa@upv.es

    2014-06-15

    The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: •Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. •Exchange of electromagnetic energy between shells with high efficiency is analyzed. •Strong coupling is supported with high wireless transfer efficiency. •End-to-end energy transfer efficiencies higher than 83% can be predicted.

  10. Closed Axisymmetric Shells as Flat Jacks

    Science.gov (United States)

    Yudin, S. A.; Sigaeva, T. V.

    Buildings during exploitation can be subjected to the external loadings leading to various kinds of heterogeneous strains or tilts. There is engineering technologies of uplift and flattening of multistory buildings by means of steel shells of the closed volume which are named as flat jacks (FJs) [1]. FJ represents two circular close plates which at the outer contour are joined to torus shell. The oil could be introduced into volume by hydraulic station creating a high pressure. As a result the plates diverge and through inserts from thick plywood create powerful force. The construction and working conditions of flat lifting jacks generates a set of problems of the mathematical modeling which are interesting to study. One of the directions is the geometry optimization. In the paper, we analyze variants of the axisymmetric shells modeling FJs. Stress states of shells with different shapes are compared at the initial loading stage.

  11. Single Shell Tank (SST) Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    HAASS, C.C.

    2000-03-21

    This document provides an initial program plan for retrieval of the single-shell tank waste. Requirements, technical approach, schedule, organization, management, and cost and funding are discussed. The program plan will be refined and updated in fiscal year 2000.

  12. Physical mechanism of surface roughening on the radial core-shell nanowire heterostructure with alloy shell

    Directory of Open Access Journals (Sweden)

    Yuanyuan Cao

    2017-05-01

    Full Text Available We proposed a quantitative thermodynamic theory to address the physical process of surface roughening during the epitaxial growth of core-shell NW with alloy layer. The surface roughening origins from the transformation of the Frank-van der Merwe (FM mode to the Stranski-Krastanow (SK mode. In addition to the radius of NW core, the composition and thickness of alloy shell could determine the growth behaviors due to their modulation to the strain. The established theoretical model not only explains the surface roughening caused by the alloy shell layer, but also provides a new way to control the growth of core-shell NW.

  13. Physical mechanism of surface roughening on the radial core-shell nanowire heterostructure with alloy shell

    Science.gov (United States)

    Cao, Yuanyuan; Diao, Dongfeng

    2017-05-01

    We proposed a quantitative thermodynamic theory to address the physical process of surface roughening during the epitaxial growth of core-shell NW with alloy layer. The surface roughening origins from the transformation of the Frank-van der Merwe (FM) mode to the Stranski-Krastanow (SK) mode. In addition to the radius of NW core, the composition and thickness of alloy shell could determine the growth behaviors due to their modulation to the strain. The established theoretical model not only explains the surface roughening caused by the alloy shell layer, but also provides a new way to control the growth of core-shell NW.

  14. Sexual selection on land snail shell ornamentation: a hypothesis that may explain shell diversity

    Directory of Open Access Journals (Sweden)

    Schilthuizen Menno

    2003-06-01

    Full Text Available Abstract Background Many groups of land snails show great interspecific diversity in shell ornamentation, which may include spines on the shell and flanges on the aperture. Such structures have been explained as camouflage or defence, but the possibility that they might be under sexual selection has not previously been explored. Presentation of the hypothesis The hypothesis that is presented consists of two parts. First, that shell ornamentation is the result of sexual selection. Second, that such sexual selection has caused the divergence in shell shape in different species. Testing the hypothesis The first part of the hypothesis may be tested by searching for sexual dimorphism in shell ornamentation in gonochoristic snails, by searching for increased variance in shell ornamentation relative to other shell traits, and by mate choice experiments using individuals with experimentally enhanced ornamentation. The second part of the hypothesis may be tested by comparing sister groups and correlating shell diversity with degree of polygamy. Implications of the hypothesis If the hypothesis were true, it would provide an explanation for the many cases of allopatric evolutionary radiation in snails, where shell diversity cannot be related to any niche differentiation or environmental differences.

  15. Towards gold shells shaped by carbon cores: From a gold cage to a core shell aurocarbon

    Science.gov (United States)

    Naumkin, Fedor Y.

    2008-11-01

    A new aurocarbon species, C 10Au 18, is investigated in terms of its geometry, stability, charge distribution and properties involving changes of the electronic and charge state. The system consists of a carbon-radical core inside a gold shell. The property variations upon adding the carbon molecular 'dopant' to the gold cage cluster of equivalent geometry are analyzed via isolating the effects of the shell shape change and core influence. The charge distribution in the system exhibits interesting, sometimes counterintuitive features. An approximate splitting of the total binding energy into the in-shell and core-shell components is attempted, indicating comparable values for both.

  16. The oyster genome reveals stress adaptation and complexity of shell formation

    DEFF Research Database (Denmark)

    Zhang, Guofan; Fang, Xiaodong; Guo, Ximing

    2012-01-01

    response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding...... for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster's adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells...

  17. Membrane Shell Reflector Segment Antenna

    Science.gov (United States)

    Fang, Houfei; Im, Eastwood; Lin, John; Moore, James

    2012-01-01

    The mesh reflector is the only type of large, in-space deployable antenna that has successfully flown in space. However, state-of-the-art large deployable mesh antenna systems are RF-frequency-limited by both global shape accuracy and local surface quality. The limitations of mesh reflectors stem from two factors. First, at higher frequencies, the porosity and surface roughness of the mesh results in loss and scattering of the signal. Second, the mesh material does not have any bending stiffness and thus cannot be formed into true parabolic (or other desired) shapes. To advance the deployable reflector technology at high RF frequencies from the current state-of-the-art, significant improvements need to be made in three major aspects: a high-stability and highprecision deployable truss; a continuously curved RF reflecting surface (the function of the surface as well as its first derivative are both continuous); and the RF reflecting surface should be made of a continuous material. To meet these three requirements, the Membrane Shell Reflector Segment (MSRS) antenna was developed.

  18. Plate shell structures - statics and stability

    DEFF Research Database (Denmark)

    Almegaard, Henrik

    2008-01-01

    This paper describes the basic structural system, statics and spatial stability of plate shells. The structural system can be considered as a single layer of planar elements, where each element only transfers in-plane (membrane) forces to its neighbouring elements. External out-of-plane loads...... system is dual to that of a spatial truss system, which means the stringer system [1] can be applied to plate-shell structures....

  19. Antimicrobial activity of coconut shell liquid smoke

    Science.gov (United States)

    Kailaku, SI; Syakir, M.; Mulyawanti, I.; Syah, ANA

    2017-06-01

    Coconut shell liquid smoke is produced from the pyrolysis and condensation of smoke from the burning process of coconut shell. It is known to have considerably high content of polyphenol. Beside acting as antioxidant, polyphenol is also a good antimicrobial. This research was conducted in order to study the antimicrobial activity of coconut shell liquid smoke. Coconut shell liquid smoke used in this study was produced from three different processing stages, which obtained three different grades of liquid smoke (grade 1, 2 and 3). Each sample of coconut shell liquid smoke was extracted using ethyl alcohol and petroleum ether. The extract was then analyzed for its antimicrobial activity against S. aereus, E. coli and C. albicans using well diffusion method. Total phenol and microbial microscopic structure of the liquid smoke were also examined. The results showed that there was influence of coconut shell liquid smoke on the inhibition of S. aureus, E. coli and C. albican growth. This fact was marked by the forming of clear area surrounding the well on the dish agar media. The highest percentage of inhibition showed by the extract of grade 3 coconut shell liquid smoke. This may be explained by the highest total phenol content in grade 3 liquid smoke. Microscopic examination showed that there was a breakage of microbial cell walls caused by the antimicrobial property of the liquid smoke. It was concluded that coconut shell liquid smoke was beneficial as antimicrobial agent, and while all grades of liquid smoke contains polyphenol, the content was influenced by the processing stage and thus influenced its level of microbial growth inhibition.

  20. Shell effects in the superasymmetric fission

    CERN Document Server

    Mirea, M

    2002-01-01

    A new formalism based on the Landau-Zener promotion mechanism intends to explain the fine structure of alpha and cluster decay. The analysis of this phenomenon is accomplished by following the modality in which the shells are reorganized during the decay process beginning with the initial ground state of the parent towards the final configuration of two separated nuclei. A realistic level scheme is obtained in the framework of the superasymmetric two-center shell model. (author)

  1. Core-Shell Structured Magnetic Ternary Nanocubes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lingyan; Wang, Xin; Luo, Jin; Wanjala, Bridgid N.; Wang, Chong M.; Chernova, Natalya; Engelhard, Mark H.; Liu, Yao; Bae, In-Tae; Zhong, Chuan-Jian

    2010-12-01

    While transition metal-doped ferrite nanoparticles constitute an important class of soft magnetic nanomaterials with spinel structures, the ability to control the shape and composition would enable a wide range of applications in homogeneous or heterogeneous reactions such as catalysis and magnetic separation of biomolecules. This report describes novel findings of an investigation of core-shell structured MnZn ferrite nanocubes synthesized in organic solvents by manipulating the reaction temperature and capping agent composition in the absence of the conventionally-used reducing agents. The core-shell structure of the highly-monodispersed nanocubes (~20 nm) are shown to consist of an Fe3O4 core and an (Mn0.5Zn0.5)(Fe0.9, Mn1.1)O4 shell. In comparison with Fe3O4 and other binary ferrite nanoparticles, the core-shell structured nanocubes were shown to display magnetic properties regulated by a combination of the core-shell composition, leading to a higher coercivity (~350 Oe) and field-cool/zero-field-cool characteristics drastically different from many regular MnZn ferrite nanoparticles. The findings are discussed in terms of the unique core-shell composition, the understanding of which has important implication to the exploration of this class of soft magnetic nanomaterials in many potential applications such as magnetic resonance imaging, fuel cells, and batteries.

  2. Comparative study of the shell development of hard- and soft-shelled turtles.

    Science.gov (United States)

    Nagashima, Hiroshi; Shibata, Masahiro; Taniguchi, Mari; Ueno, Shintaro; Kamezaki, Naoki; Sato, Noboru

    2014-07-01

    The turtle shell provides a fascinating model for the investigation of the evolutionary modifications of developmental mechanisms. Different conclusions have been put forth for its development, and it is suggested that one of the causes of the disagreement could be the differences in the species of the turtles used - the differences between hard-shelled turtles and soft-shelled turtles. To elucidate the cause of the difference, we compared the turtle shell development in the two groups of turtle. In the dorsal shell development, these two turtle groups shared the gene expression profile that is required for formation, and shared similar spatial organization of the anatomical elements during development. Thus, both turtles formed the dorsal shell through a folding of the lateral body wall, and the Wnt signaling pathway appears to have been involved in the development. The ventral portion of the shell, on the other hand, contains massive dermal bones. Although expression of HNK-1 epitope has suggested that the trunk neural crest contributed to the dermal bones in the hard-shelled turtles, it was not expressed in the initial anlage of the skeletons in either of the types of turtle. Hence, no evidence was found that would support a neural crest origin. © 2014 Anatomical Society.

  3. Core-shell microspheres with porous nanostructured shells for liquid chromatography.

    Science.gov (United States)

    Ahmed, Adham; Skinley, Kevin; Herodotou, Stephanie; Zhang, Haifei

    2018-01-01

    The development of new stationary phases has been the key aspect for fast and efficient high-performance liquid chromatography separation with relatively low backpressure. Core-shell particles, with a solid core and porous shell, have been extensively investigated and commercially manufactured in the last decade. The excellent performance of core-shell particles columns has been recorded for a wide range of analytes, covering small and large molecules, neutral and ionic (acidic and basic), biomolecules and metabolites. In this review, we first introduce the advance and advantages of core-shell particles (or more widely known as superficially porous particles) against non-porous particles and fully porous particles. This is followed by the detailed description of various methods used to fabricate core-shell particles. We then discuss the applications of common silica core-shell particles (mostly commercially manufactured), spheres-on-sphere particles and core-shell particles with a non-silica shell. This review concludes with a summary and perspective on the development of stationary phase materials for high-performance liquid chromatography applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Supercooling Self-Assembly of Magnetic Shelled Core/Shell Supraparticles.

    Science.gov (United States)

    Zheng, Xiaotong; Yan, Bingyun; Wu, Fengluan; Zhang, Jinlong; Qu, Shuxin; Zhou, Shaobing; Weng, Jie

    2016-09-14

    Molecular self-assembly has emerged as a powerful technique for controlling the structure and properties of core/shell structured supraparticles. However, drug-loading capacities and therapeutic effects of self-assembled magnetic core/shell nanocarriers with magnetic nanoparticles in the core are limited by the intervention of the outer organic or inorganic shell, the aggregation of superparamagnetic nanoparticles, the narrowed inner cavity, etc. Here, we present a self-assembly approach based on rebalancing hydrogen bonds between components under a supercooling process to form a new core/shell nanoscale supraparticle with magnetic nanoparticles as the shell and a polysaccharide as a core. Compared with conventional iron oxide nanoparticles, this magnetic shelled core/shell nanoparticle possesses an optimized inner cavity and a loss-free outer magnetic property. Furthermore, we find that the drug-loaded magnetic shelled nanocarriers showed interesting in vitro release behaviors at different pH conditions, including "swelling-broken", "dissociating-broken", and "bursting-broken" modes. Our experiments demonstrate the novel design of the multifunctional hybrid nanostructure and provide a considerable potential for the biomedical applications.

  5. Sexual selection on land snail shell ornamentation: a hypothesis that may explain shell diversity

    NARCIS (Netherlands)

    Schilthuizen, M.

    2003-01-01

    Background: Many groups of land snails show great interspecific diversity in shell ornamentation, which may include spines on the shell and flanges on the aperture. Such structures have been explained as camouflage or defence, but the possibility that they might be under sexual selection has not

  6. On-shell and half-shell effects of the coulomb potential in quantum mechanics

    NARCIS (Netherlands)

    Maag, Jan Willem de

    1984-01-01

    In dit proefschrift wordt de Coulomb potentiaal in de nietrelativistische quantummechanica bestudeerd. Met gebruik van een streng wiskundige beschrijving onderzoeken we, in het bijzonder, on-shell en off-shell eigenschappen. De overeenkomsten en de verschillen met het geval van een glad afgeschermde

  7. Traditional utilization and biochemical composition of six mollusc shells in Nigeria

    Directory of Open Access Journals (Sweden)

    Ademolu Kehinde O.

    2015-06-01

    Full Text Available The shells of molluscs protect them from physical damage, predators and dehydration. We studied various local uses of shells and their biochemical properties in Abeokuta, Nigeria. A standard structured questionnaire about use was applied to 100 snail and herb sellers and shells from 120 adult individuals of Archachatina marginata, Achatina achatina, Achatina fulica, Littorina littorea, Meretrix lusoria and Merceneria mercenaria were evaluated for their mineral components (Ca2+, Fe2+, Mg2+, Na+, Zn+, P+, K+ and proximate composition (crude protein, ash, fibre, crude fat and carbohydrate using standard methods. Properties against fungi and bacteria isolates were also tested. These shells are used for bleaching, brushing, abrasion and others. The weight of the shells varied from 0.5g (L. littorea to 25.00g (A. marginata and thickness from 0.46mm in M .lusoria to 5.35mm in M. mercenaria. We found no inhibitory effect against fungi and bacterial isolates. The molluscs are high in carbohydrates (83.54-92.76g/100g and low in protein (0.16-0.38g/100g. The fat content ranged between 0.42g/100g and 0.82g/100g, and ash between 2.14g/100g and 9.45g/100g. Ca2+ was the most abundant (10.25-96.35mg/g while K+ was the least abundant (0.3-0.7mg/g (p<0.05. Active ingredients of these shells can be used in the feed and construction industries.

  8. Microbial Degradation of Lobster Shells to Extract Chitin Derivatives for Plant Disease Management.

    Science.gov (United States)

    Ilangumaran, Gayathri; Stratton, Glenn; Ravichandran, Sridhar; Shukla, Pushp S; Potin, Philippe; Asiedu, Samuel; Prithiviraj, Balakrishnan

    2017-01-01

    Biodegradation of lobster shells by chitinolytic microorganisms are an environment safe approach to utilize lobster processing wastes for chitin derivation. In this study, we report degradation activities of two microbes, "S223" and "S224" isolated from soil samples that had the highest rate of deproteinization, demineralization and chitinolysis among ten microorganisms screened. Isolates S223 and S224 had 27.3 and 103.8 protease units mg-1 protein and 12.3 and 11.2 μg ml-1 of calcium in their samples, respectively, after 1 week of incubation with raw lobster shells. Further, S223 contained 23.8 μg ml-1 of N-Acetylglucosamine on day 3, while S224 had 27.3 μg ml-1 on day 7 of incubation with chitin. Morphological observations and 16S rDNA sequencing suggested both the isolates were Streptomyces. The culture conditions were optimized for efficient degradation of lobster shells and chitinase (∼30 kDa) was purified from crude extract by affinity chromatography. The digested lobster shell extracts induced disease resistance in Arabidopsis by induction of defense related genes (PR1 > 500-fold, PDF1.2 > 40-fold) upon Pseudomonas syringae and Botrytis cinerea infection. The study suggests that soil microbes aid in sustainable bioconversion of lobster shells and extraction of chitin derivatives that could be applied in plant protection.

  9. Structural Assessment of Advanced Composite Tow-Steered Shells

    Science.gov (United States)

    Wu, K. Chauncey; Stanford, Bret K.; Hrinda, Glenn A.; Wang, Zhuosong; Martin, Robert a.; Kim, H. Alicia

    2013-01-01

    The structural performance of two advanced composite tow-steered shells, manufactured using a fiber placement system, is assessed using both experimental and analytical methods. The fiber orientation angles vary continuously around the shell circumference from 10 degrees on the shell crown and keel, to 45 degrees on the shell sides. The two shells differ in that one shell has the full 24-tow course applied during each pass of the fiber placement system, while the second shell uses the fiber placement system s tow drop/add capability to achieve a more uniform shell wall thickness. The shells are tested in axial compression, and estimates of their prebuckling axial stiffnesses and bifurcation buckling loads are predicted using linear finite element analyses. These preliminary predictions compare well with the test results, with an average agreement of approximately 10 percent.

  10. Do freshwater mussel shells record road-salt pollution?

    Science.gov (United States)

    O'Neil, Dane D; Gillikin, David P

    2014-11-24

    Road-salt pollution in streams in the Northeastern United States has become a major concern, but historical data are scarce. Freshwater bivalve shells have the ability to record past environmental information, and may act as archives of road-salt pollution. We sampled Elliptio complanata shells from four streams, as well as specimens collected in 1877. Average [Na/Ca]shell was highest in modern shells from the stream with the highest sodium concentrations, and low in shells collected from this same stream in 1877 as well as in the shells from other streams, suggesting that [Na/Ca]shell serves as a proxy for road-salt pollution. We expected higher [Na/Ca]shell in winter and spring. However, high-resolution [Na/Ca]shell analyses along the growth axis of one shell did not reveal any clear subannual patterns, which could be the result of shell growth cessation in winter and/or during periods of high stream sodium concentrations. Therefore, bulk [Na/Ca]shell analysis from multiple shells can be used as a proxy of large changes in stream sodium concentrations, but high-resolution variations in stream sodium concentrations do not seem to be recorded in the shells.

  11. Lithography-free shell-substrate isolation for core-shell GaAs nanowires.

    Science.gov (United States)

    Haggren, Tuomas; Perros, Alexander Pyymaki; Jiang, Hua; Huhtio, Teppo; Kakko, Joona-Pekko; Dhaka, Veer; Kauppinen, Esko; Lipsanen, Harri

    2016-07-08

    A facile and scalable lithography-free technique(5) for the rapid construction of GaAs core-shell nanowires incorporating shell isolation from the substrate is reported. The process is based on interrupting NW growth and applying a thin spin-on-glass (SOG) layer to the base of the NWs and resuming core-shell NW growth. NW growth occurred in an atmospheric pressure metalorganic vapour phase epitaxy (MOVPE) system with gold nanoparticles used as catalysts for the vapour-liquid-solid growth. It is shown that NW axial core growth and radial shell growth can be resumed after interruption and even exposure to air. The SOG residues and native oxide layer that forms on the NW surface are shown to prevent or perturb resumption of epitaxial NW growth if not removed. Both HF etching and in situ annealing of the air-exposed NWs in the MOVPE were shown to remove the SOG residues and native oxide layer. While both procedures are shown capable of removing the native oxide and enabling resumption of epitaxial NW growth, in situ annealing produced the best results and allowed construction of pristine core-shell NWs. No growth occurred on SOG and it was observed that axial NW growth was more rapid when a SOG layer covered the substrate. The fabricated p-core/n-shell NWs exhibited diode behaviour upon electrical testing. The isolation of the NW shells from the substrate was confirmed by scanning electron microscopy and electrical measurements. The crystal quality of the regrown core-shell NWs was verified with a high resolution transmission electron microscope. The reported technique potentially provides a pathway using MOVPE for scalable and high-throughput production of shell-substrate isolated core-shell NWs on an industrial scale.

  12. Lithography-free shell-substrate isolation for core-shell GaAs nanowires

    Science.gov (United States)

    Haggren, Tuomas; Pyymaki Perros, Alexander; Jiang, Hua; Huhtio, Teppo; Kakko, Joona-Pekko; Dhaka, Veer; Kauppinen, Esko; Lipsanen, Harri

    2016-07-01

    A facile and scalable lithography-free technique5 for the rapid construction of GaAs core-shell nanowires incorporating shell isolation from the substrate is reported. The process is based on interrupting NW growth and applying a thin spin-on-glass (SOG) layer to the base of the NWs and resuming core-shell NW growth. NW growth occurred in an atmospheric pressure metalorganic vapour phase epitaxy (MOVPE) system with gold nanoparticles used as catalysts for the vapour-liquid-solid growth. It is shown that NW axial core growth and radial shell growth can be resumed after interruption and even exposure to air. The SOG residues and native oxide layer that forms on the NW surface are shown to prevent or perturb resumption of epitaxial NW growth if not removed. Both HF etching and in situ annealing of the air-exposed NWs in the MOVPE were shown to remove the SOG residues and native oxide layer. While both procedures are shown capable of removing the native oxide and enabling resumption of epitaxial NW growth, in situ annealing produced the best results and allowed construction of pristine core-shell NWs. No growth occurred on SOG and it was observed that axial NW growth was more rapid when a SOG layer covered the substrate. The fabricated p-core/n-shell NWs exhibited diode behaviour upon electrical testing. The isolation of the NW shells from the substrate was confirmed by scanning electron microscopy and electrical measurements. The crystal quality of the regrown core-shell NWs was verified with a high resolution transmission electron microscope. The reported technique potentially provides a pathway using MOVPE for scalable and high-throughput production of shell-substrate isolated core-shell NWs on an industrial scale.

  13. Multimode interaction in axially excited cylindrical shells

    Directory of Open Access Journals (Sweden)

    Silva F. M. A.

    2014-01-01

    Full Text Available Cylindrical shells exhibit a dense frequency spectrum, especially near the lowest frequency range. In addition, due to the circumferential symmetry, frequencies occur in pairs. So, in the vicinity of the lowest natural frequencies, several equal or nearly equal frequencies may occur, leading to a complex dynamic behavior. So, the aim of the present work is to investigate the dynamic behavior and stability of cylindrical shells under axial forcing with multiple equal or nearly equal natural frequencies. The shell is modelled using the Donnell nonlinear shallow shell theory and the discretized equations of motion are obtained by applying the Galerkin method. For this, a modal solution that takes into account the modal interaction among the relevant modes and the influence of their companion modes (modes with rotational symmetry, which satisfies the boundary and continuity conditions of the shell, is derived. Special attention is given to the 1:1:1:1 internal resonance (four interacting modes. Solving numerically the governing equations of motion and using several tools of nonlinear dynamics, a detailed parametric analysis is conducted to clarify the influence of the internal resonances on the bifurcations, stability boundaries, nonlinear vibration modes and basins of attraction of the structure.

  14. Double shell planar experiments on OMEGA

    Science.gov (United States)

    Dodd, E. S.; Merritt, E. C.; Palaniyappan, S.; Montgomery, D. S.; Daughton, W. S.; Schmidt, D. W.; Cardenas, T.; Wilson, D. C.; Loomis, E. N.; Batha, S. H.; Ping, Y.; Smalyuk, V. A.; Amendt, P. A.

    2017-10-01

    The double shell project is aimed at fielding neutron-producing capsules at the National Ignition Facility (NIF), in which an outer low-Z ablator collides with an inner high-Z shell to compress the fuel. However, understanding these targets experimentally can be challenging when compared with conventional single shell targets. Halfraum-driven planar targets at OMEGA are being used to study physics issues important to double shell implosions outside of a convergent geometry. Both VISAR and radiography through a tube have advantages over imaging through the hohlraum and double-shell capsule at NIF. A number physics issues are being studied with this platform that include 1-d and higher dimensional effects such as defect-driven hydrodynamic instabilities from engineering features. Additionally, the use of novel materials with controlled density gradients require study in easily diagnosed 1-d systems. This work ultimately feeds back into the NIF capsule platform through manufacturing tolerances set using data from OMEGA. Supported under the US DOE by the LANS, LLC under contract DE-AC52-06NA25396. LA-UR-17-25386.

  15. Hollow Pollen Shells to Enhance Drug Delivery

    Science.gov (United States)

    Diego-Taboada, Alberto; Beckett, Stephen T.; Atkin, Stephen L.; Mackenzie, Grahame

    2014-01-01

    Pollen grain and spore shells are natural microcapsules designed to protect the genetic material of the plant from external damage. The shell is made up of two layers, the inner layer (intine), made largely of cellulose, and the outer layer (exine), composed mainly of sporopollenin. The relative proportion of each varies according to the plant species. The structure of sporopollenin has not been fully characterised but different studies suggest the presence of conjugated phenols, which provide antioxidant properties to the microcapsule and UV (ultraviolet) protection to the material inside it. These microcapsule shells have many advantageous properties, such as homogeneity in size, resilience to both alkalis and acids, and the ability to withstand temperatures up to 250 °C. These hollow microcapsules have the ability to encapsulate and release actives in a controlled manner. Their mucoadhesion to intestinal tissues may contribute to the extended contact of the sporopollenin with the intestinal mucosa leading to an increased efficiency of delivery of nutraceuticals and drugs. The hollow microcapsules can be filled with a solution of the active or active in a liquid form by simply mixing both together, and in some cases operating a vacuum. The active payload can be released in the human body depending on pressure on the microcapsule, solubility and/or pH factors. Active release can be controlled by adding a coating on the shell, or co-encapsulation with the active inside the shell. PMID:24638098

  16. Open source integrated modeling environment Delta Shell

    Science.gov (United States)

    Donchyts, G.; Baart, F.; Jagers, B.; van Putten, H.

    2012-04-01

    In the last decade, integrated modelling has become a very popular topic in environmental modelling since it helps solving problems, which is difficult to model using a single model. However, managing complexity of integrated models and minimizing time required for their setup remains a challenging task. The integrated modelling environment Delta Shell simplifies this task. The software components of Delta Shell are easy to reuse separately from each other as well as a part of integrated environment that can run in a command-line or a graphical user interface mode. The most components of the Delta Shell are developed using C# programming language and include libraries used to define, save and visualize various scientific data structures as well as coupled model configurations. Here we present two examples showing how Delta Shell simplifies process of setting up integrated models from the end user and developer perspectives. The first example shows coupling of a rainfall-runoff, a river flow and a run-time control models. The second example shows how coastal morphological database integrates with the coastal morphological model (XBeach) and a custom nourishment designer. Delta Shell is also available as open-source software released under LGPL license and accessible via http://oss.deltares.nl.

  17. Shell rinse and shell crush methods for the recovery of aerobic microorganisms and enterobacteriaceae from shell eggs.

    Science.gov (United States)

    Musgrove, M T; Jones, D R; Northcutt, J K; Cox, N A; Harrison, M A

    2005-10-01

    Recovery of bacteria from shell eggs is important for evaluating the efficacy of processing and the quality and safety of the final product. Shell rinse (SR) techniques are easy to perform and widely used. An alternative sampling method involves crushing and rubbing the shell (CR). To determine the most appropriate method for recovering microorganisms from shell eggs, 358 shell eggs were collected from a commercial egg processor and sampled by SR and CR techniques. Total aerobic mesophiles and Enterobacteriaceae were enumerated on plate count and violet red bile glucose agar plates, respectively. Unwashed, in process, and postprocess eggs were evaluated in the study. Aerobic microorganism prevalence for eggshells sampled was similar for both methods (approximately 100%), but the log CFU per milliliter values were higher in the SR than the CR samples (3.2 and 2.2, respectively). Average Enterobacteriaceae recovery was similar for both methods (45 versus 40% for the SR and CR methods, respectively) when all eggs were considered together. This population was detected more often by SR when unwashed eggs were sampled (90 versus 56% for the SR and CR methods, respectively), equally by SR and CR for in-process eggs (30 versus 29.3% for the SR and CR methods, respectively), but more often by CR for postprocess eggs (10 versus 36% for the SR and CR methods, respectively). The SR technique was easier to perform and recovered larger numbers of aerobic organisms, particularly for unwashed eggs. However, the CR technique was more efficient for recovery of Enterobacteriaceae from postprocess eggs. Stage of shell egg processing may be an important consideration when choosing egg sampling methods.

  18. Selective Removal of Hemoglobin from Blood Using Hierarchical Copper Shells Anchored to Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Youxun Liu

    2017-01-01

    Full Text Available Hierarchical copper shells anchored on magnetic nanoparticles were designed and fabricated to selectively deplete hemoglobin from human blood by immobilized metal affinity chromatography. Briefly, CoFe2O4 nanoparticles coated with polyacrylic acid were first synthesized by a one-pot solvothermal method. Hierarchical copper shells were then deposited by immobilizing Cu2+ on nanoparticles and subsequently by reducing between the solid CoFe2O4@COOH and copper solution with NaBH4. The resulting nanoparticles were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. The particles were also tested against purified bovine hemoglobin over a range of pH, contact time, and initial protein concentration. Hemoglobin adsorption followed pseudo-second-order kinetics and reached equilibrium in 90 min. Isothermal data also fit the Langmuir model well, with calculated maximum adsorption capacity 666 mg g−1. Due to the high density of Cu2+ on the shell, the nanoparticles efficiently and selectively deplete hemoglobin from human blood. Taken together, the results demonstrate that the particles with hierarchical copper shells effectively remove abundant, histidine-rich proteins, such as hemoglobin from human blood, and thereby minimize interference in diagnostic and other assays.

  19. Selective Removal of Hemoglobin from Blood Using Hierarchical Copper Shells Anchored to Magnetic Nanoparticles.

    Science.gov (United States)

    Liu, Youxun; Wang, Yaokun; Yan, Mingyang; Huang, Juan

    2017-01-01

    Hierarchical copper shells anchored on magnetic nanoparticles were designed and fabricated to selectively deplete hemoglobin from human blood by immobilized metal affinity chromatography. Briefly, CoFe2O4 nanoparticles coated with polyacrylic acid were first synthesized by a one-pot solvothermal method. Hierarchical copper shells were then deposited by immobilizing Cu(2+) on nanoparticles and subsequently by reducing between the solid CoFe2O4@COOH and copper solution with NaBH4. The resulting nanoparticles were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. The particles were also tested against purified bovine hemoglobin over a range of pH, contact time, and initial protein concentration. Hemoglobin adsorption followed pseudo-second-order kinetics and reached equilibrium in 90 min. Isothermal data also fit the Langmuir model well, with calculated maximum adsorption capacity 666 mg g(-1). Due to the high density of Cu(2+) on the shell, the nanoparticles efficiently and selectively deplete hemoglobin from human blood. Taken together, the results demonstrate that the particles with hierarchical copper shells effectively remove abundant, histidine-rich proteins, such as hemoglobin from human blood, and thereby minimize interference in diagnostic and other assays.

  20. Anticavitation and Differential Growth in Elastic Shells

    KAUST Repository

    Moulton, Derek E.

    2010-07-22

    Elastic anticavitation is the phenomenon of a void in an elastic solid collapsing on itself. Under the action of mechanical loading alone typical materials do not admit anticavitation. We study the possibility of anticavitation as a consequence of an imposed differential growth. Working in the geometry of a spherical shell, we seek radial growth functions which cause the shell to deform to a solid sphere. It is shown, surprisingly, that most material models do not admit full anticavitation, even when infinite growth or resorption is imposed at the inner surface of the shell. However, void collapse can occur in a limiting sense when radial and circumferential growth are properly balanced. Growth functions which diverge or vanish at a point arise naturally in a cumulative growth process. © 2010 Springer Science+Business Media B.V.

  1. Core/shell nanoparticles in biomedical applications.

    Science.gov (United States)

    Chatterjee, Krishnendu; Sarkar, Sreerupa; Jagajjanani Rao, K; Paria, Santanu

    2014-07-01

    Nanoparticles have several exciting applications in different areas and biomedial field is not an exception of that because of their exciting performance in bioimaging, targeted drug and gene delivery, sensors, and so on. It has been found that among several classes of nanoparticles core/shell is most promising for different biomedical applications because of several advantages over simple nanoparticles. This review highlights the development of core/shell nanoparticles-based biomedical research during approximately past two decades. Applications of different types of core/shell nanoparticles are classified in terms of five major aspects such as bioimaging, biosensor, targeted drug delivery, DNA/RNA interaction, and targeted gene delivery. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Spectrophotometry of the shell around AG Carinae

    Science.gov (United States)

    Mitra, P. Mila; Dufour, Reginald J.

    1990-01-01

    Spatially-resolved long-slit spectrophotometry are presented for two regions of the shell nebula around the P-Cygni variable star AG Carinae. The spectra cover the 3700-6800 A wavelength range. Emission-line diagnostics are used to derive extinction, electron temperatures, and densities for various positions in the nebula. The chemical abundances and ionization structure are calculated and compared with other types of planetary nebulae and shells around other luminous stars. It is found that the N/O and N/S ratios of Ag Car are high compared to solar neighborhood ISM values. The O/H depletion found for the AG Car shell approaches that found in the condensations of the Eta Car system.

  3. Damage Tolerance of Large Shell Structures

    Science.gov (United States)

    Minnetyan, L.; Chamis, C. C.

    1999-01-01

    Progressive damage and fracture of large shell structures is investigated. A computer model is used for the assessment of structural response, progressive fracture resistance, and defect/damage tolerance characteristics. Critical locations of a stiffened conical shell segment are identified. Defective and defect-free computer models are simulated to evaluate structural damage/defect tolerance. Safe pressurization levels are assessed for the retention of structural integrity at the presence of damage/ defects. Damage initiation, growth, accumulation, and propagation to fracture are included in the simulations. Damage propagation and burst pressures for defective and defect-free shells are compared to evaluate damage tolerance. Design implications with regard to defect and damage tolerance of a large steel pressure vessel are examined.

  4. FInal Report - Investment Casting Shell Cracking

    Energy Technology Data Exchange (ETDEWEB)

    Von Richards

    2003-12-01

    This project made a significant contribution to the understanding of the investment casting shell cracking problem. The effects of wax properties on the occurrence of shell cracking were demonstrated and can be measured. The properties measured include coefficient of thermal expansion, heating rate and crystallinity of the structure. The important features of production molds and materials properties have been indicated by case study analysis and fractography of low strength test bars. It was found that stress risers in shell cavity design were important and that typical critical flaws were either oversize particles or large pores just behind the prime coat. It was also found that the true effect of fugitive polymer fibers was not permeability increase, but rather a toughening mechanism due to crack deflection.

  5. Self-gravitating splitting thin shells

    Science.gov (United States)

    Ramirez, Marcos A.

    2015-04-01

    In this paper we show that thin shells in spherically symmetric spacetimes, whose matter content is described by a pair of non-interacting spherically symmetric matter fields, generically exhibit instability against an infinitesimal separation of its constituent fields. We give explicit examples and construct solutions that represent a shell that splits into two shells. Then we extend those results for five-dimensional Schwarzschild-AdS bulk spacetimes, which is a typical scenario for brane-world models, and show that the same kind of stability analysis and splitting solution can be constructed. We find that a widely proposed family of brane-world models are extremely unstable in this sense. Finally, we discuss possible interpretations of these features and their relation to the initial value problem for concentrated sources.

  6. Improving nutrient values of palm kernel cake (PKC by reducing shell contamination and enzymes supplementation

    Directory of Open Access Journals (Sweden)

    Sinurat AP

    2013-03-01

    Full Text Available Inclusion of palm kernel cake (PKC in poultry feed is limited due to shell contamination and its low nutritive values, despite the increase of PKC production. Therefore, a series of experiment was conducted in order to improve nutritive values of palm kernel cake (PKC by sieving and enzyme supplementation. First experiment was designed to reduce shell content using shiever with different diameters (1, 2 and 4 mm. Shell content was measured manually to determine the effect of the sieving. The second experiment was carried out by blowing the after sieving at 2 mm shieve PKC, to produced heavy, medium and light fractions. The shell content and nutrient contents of the medium and light fractions were compared to those of unsieved PKC. In the third experiment, the sieved PKC was supplemented with 2 enzymes with different concentrations, i.e., BS4 at 10, 15 and 20 ml/kg PKC and a commercial multi enzymes at 0.5, 1.0 and 2.0 g/kg PKC. Digestibility of nutrients (dry matter, crude protein and TME were measured by force feeding method with six replications for each sample. Results of the study showed that sieving with 2 mm diameter siever without blowing was effective in reducing about 50% of PKC shell and improved crude protein, ether extract and amino acids, contents and reduced the crude fiber content of the PKC. Supplementation of enzymes improved the digestibility of dry matter, crude protein and the true metabolisable energy (TME of the PKC. Optimum improvement was obtained when PKC was supplemented with 20 ml BS4 enzymes/kg PKC. Similar improvement was obtained by supplementation of commercial multi enzymes at 2 g/kg PKC. Therefore, in order to improve the nutritive values of PKC, it is suggested to sieve the PKC followed by supplementation of enzyme prior to feeding.

  7. Retention Models on Core-Shell Columns.

    Science.gov (United States)

    Jandera, Pavel; Hájek, Tomáš; Růžičková, Marie

    2017-07-13

    A thin, active shell layer on core-shell columns provides high efficiency in HPLC at moderately high pressures. We revisited three models of mobile phase effects on retention for core-shell columns in mixed aqueous-organic mobile phases: linear solvent strength and Snyder-Soczewiński two-parameter models and a three-parameter model. For some compounds, two-parameter models show minor deviations from linearity due to neglect of possible minor retention in pure weak solvent, which is compensated for in the three-parameter model, which does not explicitly assume either the adsorption or the partition retention mechanism in normal- or reversed-phase systems. The model retention equation can be formulated as a function of solute retention factors of nonionic compounds in pure organic solvent and in pure water (or aqueous buffer) and of the volume fraction of an either aqueous or organic solvent component in a two-component mobile phase. With core-shell columns, the impervious solid core does not participate in the retention process. Hence, the thermodynamic retention factors, defined as the ratio of the mass of the analyte mass contained in the stationary phase to its mass in the mobile phase in the column, should not include the particle core volume. The values of the thermodynamic factors are lower than the retention factors determined using a convention including the inert core in the stationary phase. However, both conventions produce correct results if consistently used to predict the effects of changing mobile phase composition on retention. We compared three types of core-shell columns with C18-, phenyl-hexyl-, and biphenyl-bonded phases. The core-shell columns with phenyl-hexyl- and biphenyl-bonded ligands provided lower errors in two-parameter model predictions for alkylbenzenes, phenolic acids, and flavonoid compounds in comparison with C18-bonded ligands.

  8. Monodisperse magnetic core/shell microspheres with Pd nanoparticles-incorporated-carbon shells.

    Science.gov (United States)

    Fang, Qunling; Cheng, Qing; Xu, Huajian; Xuan, Shouhu

    2014-02-14

    This work reports a hard self-template method to synthesize core/shell like Fe3O4@C microparticles, in which the Pd nanocrystals can be alternatively incorporated into the carbon shells. The Fe3O4@polyaniline core/shell microspheres were first synthesized as the precursor by in situ polymerization of aniline onto the surface of the Fe3O4 microspheres. In a subsequent carbonization of the precursor under a vacuum oven, the Fe3O4 core was preserved and the polyaniline shell transferred into carbon shells enveloping the magnetic sphere, forming magnetic Fe3O4@C microspheres. The Pd ions could be impregnated into the polyaniline shell, and thus the obtained composites were transformed into Fe3O4@C/Pd microspheres under the same vacuum heating progress. The as-obtained system demonstrates superparamagnetic characteristics, which would benefit its potential application in nanocatalysts. This strategy provides an efficient approach for tailoring core/shell materials with desired functionalities and structures by adjusting the precursors and structure-directing agents.

  9. Projected shell model description for nuclear isomers

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y. [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, Popular Republic (China)

    2008-12-15

    The study of nuclear isomer properties is a current research focus. To describe isomers, we present a method based on the Projected Shell Model. Two kinds of isomers, {kappa}-isomers and shape isomers, are discussed. For the {kappa}-isomer treatment, {kappa}-mixing is properly implemented in the model. It is found however that in order to describe the strong {kappa}-violation more efficiently, it may be necessary to further introduce triaxiality into the shell model basis. To treat shape isomers, a scheme is outlined which allows mixing those configurations belonging to different shapes. (Author)

  10. Linux command line and shell scripting bible

    CERN Document Server

    Blum, Richard

    2014-01-01

    Talk directly to your system for a faster workflow with automation capability Linux Command Line and Shell Scripting Bible is your essential Linux guide. With detailed instruction and abundant examples, this book teaches you how to bypass the graphical interface and communicate directly with your computer, saving time and expanding capability. This third edition incorporates thirty pages of new functional examples that are fully updated to align with the latest Linux features. Beginning with command line fundamentals, the book moves into shell scripting and shows you the practical application

  11. Translational invariant shell model for Λ hypernuclei

    Directory of Open Access Journals (Sweden)

    Jolos R.V.

    2016-01-01

    Full Text Available We extend shell model for Λ hypernuclei suggested by Gal and Millener by including 2ћω excitations in the translation invariant version to estimate yields of different hyperfragments from primary p-shell hypernuclei. We are inspired by the first successful experiment done at MAMI which opens way to study baryon decay of hypernuclei. We use quantum numbers of group SU(4, [f], and SU(3, (λμ, to classify basis wave functions and calculate coefficients of fractional parentage.

  12. Nitride stabilized core/shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kuttiyiel, Kurian Abraham; Sasaki, Kotaro; Adzic, Radoslav R.

    2018-01-30

    Nitride stabilized metal nanoparticles and methods for their manufacture are disclosed. In one embodiment the metal nanoparticles have a continuous and nonporous noble metal shell with a nitride-stabilized non-noble metal core. The nitride-stabilized core provides a stabilizing effect under high oxidizing conditions suppressing the noble metal dissolution during potential cycling. The nitride stabilized nanoparticles may be fabricated by a process in which a core is coated with a shell layer that encapsulates the entire core. Introduction of nitrogen into the core by annealing produces metal nitride(s) that are less susceptible to dissolution during potential cycling under high oxidizing conditions.

  13. Development of Mortar Simulator with Shell-In-Shell System – Problem of External Ballistics

    Directory of Open Access Journals (Sweden)

    A. Fedaravicius

    2007-01-01

    Full Text Available The shell-in-shell system used in the mortar simulator raises a number of non-standard technical and computational problems starting from the requirement to distribute the propelling blast energy between the warhead and the ballistic barrel, finishing with the requirement that the length of warhead's flight path must be scaled to combat shell firing tables. The design problem of the simulator is split into two parts – the problem of external ballistics where the initial velocities of the warhead must be determined, and the problem of internal ballistics – where the design of the cartridge and the ballistic barrel must be performed.

  14. Modeling plate shell structures using pyFormex

    DEFF Research Database (Denmark)

    Bagger, Anne; Verhegghe, Benedict; Hertz, Kristian Dahl

    2009-01-01

    A shell structure made of glass combines a light-weight structural concept with glass’ high permeability to light. If the geometry of the structure is plane-based facetted (plate shell structure), the glass elements will be plane panes, and these glass panes will comprise the primary load......-bearing structure. A plate shell structure is contrary to a triangulated facetted shell structure, where the shell action is concentrated in the edges and vertices of the geometry, thereby resulting in the need for a triangulated lattice structure outlining the edges of the geometry. These two structural principles...... (plate shells and triangulated lattice shells) may not differ in complexity regarding the topology, but when it comes to the practical generation of the geometry, e.g. in CAD, the plate shell is far more troublesome to handle than the triangulated geometry. The free software tool “pyFormex”, developed...

  15. On the accuracy of the asymptotic theory for cylindrical shells

    DEFF Research Database (Denmark)

    Niordson, Frithiof; Niordson, Christian

    1999-01-01

    We study the accuracy of the lowest-order bending theory of shells, derived from an asymptotic expansion of the three-dimensional theory of elasticity, by comparing the results of this shell theory for a cylindrical shell with clamped ends with the results of a solution to the three......-dimensional problem. The results are also compared with those of some commonly used engineering shell theories....

  16. NONLINEAR STABILITY ANALYIS OF THIN SHELL WITH INITIAL SHAPE IMPERFECTIONS

    Directory of Open Access Journals (Sweden)

    Bazhenov V.A.

    2015-12-01

    Full Text Available A numerical technique for nonlinear stability analysis of thin-walled shells with geometrical imperfections is presented. Mathematical models of imperfect shells stability are built using the modern finite element method software. The nonlinear stability analysis of a real cylindrical shell with shape imperfections was carried out. Stability domains and reliability of the imperfect shell-bearing under the combined loading were determined.

  17. Development of simulation tools for virus shell assembly. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Bonnie

    2001-01-05

    Prof. Berger's major areas of research have been in applying computational and mathematical techniques to problems in biology, and more specifically to problems in protein folding and genomics. Significant progress has been made in the following areas relating to virus shell assembly: development has been progressing on a second-generation self-assembly simulator which provides a more versatile and physically realistic model of assembly; simulations are being developed and applied to a variety of problems in virus assembly; and collaborative efforts have continued with experimental biologists to verify and inspire the local rules theory and the simulator. The group has also worked on applications of the techniques developed here to other self-assembling structures in the material and biological sciences. Some of this work has been conducted in conjunction with Dr. Sorin Istrail when he was at Sandia National Labs.

  18. Conical shell edge disturbance : An engineer's derivation

    NARCIS (Netherlands)

    Blaauwendraad, J.; Hoefakker, JH

    2016-01-01

    Because a rigorous bending theory for thin shells of revolution is complicated, attempts have been made for reliable approximations of the edge disturbance problem under axisymmetric loading. A well-known one was published by Geckeler [1, 2], who obtained his approximation by mathematical

  19. UHPFRC in large span shell structures

    NARCIS (Netherlands)

    Ter Maten, R.N.; Grunewald, S.; Walraven, J.C.

    2013-01-01

    Ultra-High Performance Fibre-Reinforced Concrete (UHPFRC) is an innovative concrete type with a high compressive strength and a far more durable character compared to conventional concrete. UHPFRC can be applied in structures with aesthetic appearance and high material efficiency. Shell structures

  20. Are Pericentric Inversions Reorganizing Wedge Shell Genomes?

    Directory of Open Access Journals (Sweden)

    Daniel García-Souto

    2017-12-01

    Full Text Available Wedge shells belonging to the Donacidae family are the dominant bivalves in exposed beaches in almost all areas of the world. Typically, two or more sympatric species of wedge shells differentially occupy intertidal, sublittoral, and offshore coastal waters in any given locality. A molecular cytogenetic analysis of two sympatric and closely related wedge shell species, Donax trunculus and Donax vittatus, was performed. Results showed that the karyotypes of these two species were both strikingly different and closely alike; whilst metacentric and submetacentric chromosome pairs were the main components of the karyotype of D. trunculus, 10–11 of the 19 chromosome pairs were telocentric in D. vittatus, most likely as a result of different pericentric inversions. GC-rich heterochromatic bands were present in both species. Furthermore, they showed coincidental 45S ribosomal RNA (rRNA, 5S rRNA and H3 histone gene clusters at conserved chromosomal locations, although D. trunculus had an additional 45S rDNA cluster. Intraspecific pericentric inversions were also detected in both D. trunculus and D. vittatus. The close genetic similarity of these two species together with the high degree of conservation of the 45S rRNA, 5S rRNA and H3 histone gene clusters, and GC-rich heterochromatic bands indicate that pericentric inversions contribute to the karyotype divergence in wedge shells.

  1. Karyotype differentiation in tellin shells (Bivalvia: Tellinidae).

    Science.gov (United States)

    García-Souto, Daniel; Ríos, Gonzalo; Pasantes, Juan J

    2017-07-14

    Although Tellinidae is one of the largest and most diverse families of bivalves, its taxonomy is utterly chaotic. This is mainly due to the morphological diversity and homoplasy displayed by their shells and to the scarcity of the molecular phylogenetic studies performed on them. A molecular cytogenetic analysis of four tellin shell species, Bosemprella incarnata, Macomangulus tenuis, Moerella donacina and Serratina serrata, was performed. To molecularly characterize the analyzed specimens, the sequence of a fragment of the mitochondrial cytochrome c oxidase subunit I (COI) was also studied. The karyotypes of the four species were composed of different amounts of bi-armed and telocentric chromosomes. The chromosomal mapping of 45S and 5S rDNA and H3 histone gene clusters by fluorescent in situ hybridization also revealed conspicuous differences on the distribution of these DNA sequences on their karyotypes. Vertebrate type telomeric sequences were located solely on both ends of each chromosome in all four tellin shells. We present clear evidence of the valuable information provided by FISH signals in both analyzing chromosome evolution in Tellinidae and as a further tool in identifying tellin shell specimens for molecular phylogenies.

  2. Torrefaction of pomaces and nut shells

    Science.gov (United States)

    Technical: Apple, grape, olive, and tomato pomaces as well as almond and walnut shells were torrefied at different temperatures and times in a muffle furnace. The fiber content and thermal stability of the raw byproducts were examined using fiber analysis and thermogravimetric analysis (TGA), respec...

  3. Assessment Of Shell Petroleum Development Company Extension ...

    African Journals Online (AJOL)

    The study assessed Shell Petroleum Development Company Extension Services in Etche Local Government Area of Rivers State, Nigeria. Data were gathered form four categories of respondents drawn from the Company\\'s staff and the communities. A total of 180 respondents participated in the study. means scores and ...

  4. assessment of shell petroleum development company extension ...

    African Journals Online (AJOL)

    ABSTRACT. The study assessed Shell Petroleum DeVelopment Company Extension. Services in Etche Local Government Area of Rivers State, Nigeria. Data were gathered form four categories of respondents drawn from the. Company's staff and the communities. A total of 180 respondents participated in the study. means ...

  5. 7 CFR 51.2289 - Shell.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Shell. 51.2289 Section 51.2289 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 FRESH FRUITS, VEGETABLES AND OTHER...

  6. Conceptual Design Tool for Concrete Shell Structures

    DEFF Research Database (Denmark)

    Holst, Malene Kirstine; Kirkegaard, Poul Henning

    2011-01-01

    This paper focuses on conceptual tools for concrete shell structures when working within the span of performance-based design and computational morphogenesis. The designer, referred to as the Architect-Engineer, works through several iterations parallel with aesthetic, functional and technical...

  7. 7 CFR 51.2002 - Split shell.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Split shell. 51.2002 Section 51.2002 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 FRESH FRUITS, VEGETABLES AND OTHER...

  8. Magnetic core-shell silica particles

    NARCIS (Netherlands)

    Claesson, E.M.

    2007-01-01

    This thesis deals with magnetic silica core-shell colloids and related functionalized silica structures. Synthesis routes have been developed and optimized. The physical properties of these colloids have been investigated, such as the magnetic dipole moment, dipolar structure formation and

  9. Palaeontology: pterosaur egg with a leathery shell.

    Science.gov (United States)

    Ji, Qiang; Ji, Shu-An; Cheng, Yen-Nien; You, Hai-Lu; Lü, Jun-Chang; Liu, Yong-Qing; Yuan, Chong-Xi

    2004-12-02

    The recent discovery of a pterosaur egg with embryonic skeleton and soft tissues from the Yixian Formation confirmed that the flying pterosaurs were oviparous. Here we describe another pterosaur egg whose exquisite preservation indicates that the shell structure was soft and leathery.

  10. William Hayes and His Pallanza Bomb Shell

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 10. William Hayes and His Pallanza Bomb Shell. R Jayaraman. General Article Volume 16 Issue 10 October 2011 pp 911-921. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/016/10/0911-0921 ...

  11. Crushing Analysis of Rotationally Symmetric Plastic Shells.

    Science.gov (United States)

    1981-06-30

    the material behind the circle C to be rigid, the shell should translate rather than rotate. Hence, there must be at C a counterrotation C of the...the hinge circle B the straight line generator of the cylinder is bent into the curvature 1 and at the hinge circle C the curvature is re-r moved, Fig

  12. Inner-shell excitation spectroscopy of peroxides

    NARCIS (Netherlands)

    Harding, K. L.; Kalirai, S.; Hayes, R.; Ju, V.; Cooper, G.; Hitchcock, A. P.; Thompson, M. R.

    2015-01-01

    O 1s inner-shell excitation spectra of a number of vapor phase molecules containing peroxide bonds - hydrogen peroxide (H2O2), di-t-butylperoxide ((BuOBu)-Bu-t-Bu-t), benzoyl peroxide, ((C6H5(CO)O)(2)), luperox-F [1,3(4)-bis(tertbutylperoxyisopropyl)benzene], and analogous, non-peroxide compounds -

  13. Symplectic symmetry in the nuclear shell model

    NARCIS (Netherlands)

    French, J.B.

    The nature of the general two-particle interaction which is compatible with symplectic symmetry in the jj coupling shell model is investigated. The essential result is that, to within an additive constant and an additive multiple of T2, the interaction should have the form of a sum of scalar

  14. Effect of sub- and supercritical water treatments on the physicochemical properties of crab shell chitin and its enzymatic degradation.

    Science.gov (United States)

    Osada, Mitsumasa; Miura, Chika; Nakagawa, Yuko S; Kaihara, Mikio; Nikaido, Mitsuru; Totani, Kazuhide

    2015-12-10

    This study examined the effects of sub- and supercritical water pretreatments on the physicochemical properties of crab shell α-chitin and its enzymatic degradation to obtain N,N'-diacetylchitobiose (GlcNAc)2. Following sub- and supercritical water pretreatments, the protein in the crab shell was removed and the residue of crab shell contained α-chitin and CaCO3. Prolonged pretreatment led to α-chitin decomposition. The reaction of pure α-chitin in sub- and supercritical water pretreatments was investigated separately; we observed lower mean molecular weight and weaker hydrogen bonds compared with untreated α-chitin. (GlcNAc)2 yields from enzymatic degradation of subcritical (350 °C, 7 min) and supercritical water (400 °C, 2.5 min) pretreated crab shell were 8% and 6%, compared with 0% without any pretreatment. This study shows that sub- and supercritical water pretreatments of crab shell provide to an alternative method to the use of acid and base for decalcification and deproteinization of crab shell required for (GlcNAc)2 production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Recent advances in the synthesis of Fe{sub 3}O{sub 4}@AU core/shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Salihov, Sergei V. [National University of Science and Technology MISiS, Leninskiy, Building 9, Moscow, 119049, Russian Federation, (Russian Federation); Ivanenkov, Yan A.; Krechetov, Sergei P.; Veselov, Mark S. [Moscow Institute of Physics and Technology (State University), 9 Institutskiy lane, Dolgoprudny City, Moscow Region, 141700 (Russian Federation); Sviridenkova, Natalia V.; Savchenko, Alexander G. [National University of Science and Technology MISiS, Leninskiy, Building 9, Moscow, 119049, Russian Federation, (Russian Federation); Klyachko, Natalya L. [National University of Science and Technology MISiS, Leninskiy, Building 9, Moscow, 119049, Russian Federation, (Russian Federation); Moscow State University, Chemistry Department, Lenins kie gory, Building 1/3, GSP-1, Moscow, 119991 (Russian Federation); Golovin, Yury I. [Moscow State University, Chemistry Department, Lenins kie gory, Building 1/3, GSP-1, Moscow, 119991 (Russian Federation); Chufarova, Nina V., E-mail: chnv@pharmcluster.ru [Moscow Institute of Physics and Technology (State University), 9 Institutskiy lane, Dolgoprudny City, Moscow Region, 141700 (Russian Federation); Beloglazkina, Elena K. [National University of Science and Technology MISiS, Leninskiy, Building 9, Moscow, 119049, Russian Federation, (Russian Federation); Moscow State University, Chemistry Department, Lenins kie gory, Building 1/3, GSP-1, Moscow, 119991 (Russian Federation); Majouga, Alexander G., E-mail: majouga@org.chem.msu.ru [National University of Science and Technology MISiS, Leninskiy, Building 9, Moscow, 119049, Russian Federation, (Russian Federation); Moscow State University, Chemistry Department, Lenins kie gory, Building 1/3, GSP-1, Moscow, 119991 (Russian Federation)

    2015-11-15

    Fe{sub 3}O{sub 4}@Au core/shell nanoparticles have unique magnetic and optical properties. These nanoparticles are used for biomedical applications, such as magnetic resonance imaging, photothermal therapy, controlled drug delivery, protein separation, biosensors, DNA detection, and immunosensors. In this review, recent methods for the synthesis of core/shell nanoparticles are discussed. We divided all of the synthetic methods in two groups: methods of synthesis of bi-layer structures and methods of synthesis of multilayer composite structures. The latter methods have a layer of “glue” material between the core and the shell. - Highlights: • Fe{sub 3}O{sub 4} nanoparticles are promising for biomedical applications but have some disadvantages. • Covering Fe{sub 3}O{sub 4} nanoparticles with Au shell leads to better stability and biocompatibility. • Core/shell nanoparticles are widely used for biomedical applications. • There are two types of Fe{sub 3}O{sub 4}@Au core/shell nanoparticles structures: bi-layer and multilayer composite. • Different synthetic methods enable production of nanoparticles of different sizes.

  16. Hemocytes participate in calcium carbonate crystal formation, transportation and shell regeneration in the pearl oyster Pinctada fucata.

    Science.gov (United States)

    Li, Shiguo; Liu, Yangjia; Liu, Chuang; Huang, Jingliang; Zheng, Guilan; Xie, Liping; Zhang, Rongqing

    2016-04-01

    In this study, light microscope, scanning and transmission electron microscope, hematoxylin-eosin and fluorescent staining, and mass spectrometry methods were employed to observe the calcium carbonate (CaCO3) crystal formation, hemocyte release and transportation, and hemocyte distribution at the shell regeneration area and to analyse the proteome of hemocytes in the pearl oyster, Pinctada fucata. The results indicated that intracellular CaCO3 crystals were observed in circulating hemocytes in P. fucata, implying that there was a suitable microenvironment for crystal formation in the hemocytes. This conclusion was further supported by the proteome analysis, in which various biomineralization-related proteins were detected. The crystal-bearing hemocytes, mainly granulocytes, may be released to extrapallial fluid (EPF) by the secretory cavities distributed on the outer surface of the mantle centre. These granulocytes in the EPF and between the regenerated shells were abundant and free. In the regenerated prismatic layer, the granulocytes were fused into each column and fragmented with the duration of shell maturation, suggesting the direct involvement of hemocytes in shell regeneration. Overall, this study provided evidence that hemocytes participated in CaCO3 crystal formation, transportation and shell regeneration in the pearl oyster. These results are helpful to further understand the exact mechanism of hemocyte-mediated biomineralization in shelled molluscs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Impact of High Hydrostatic Pressure on the Shelling Efficacy, Physicochemical Properties, and Microstructure of Fresh Razor Clam (Sinonovacula constricta).

    Science.gov (United States)

    Xuan, Xiao-Ting; Cui, Yan; Lin, Xu-Dong; Yu, Jing-Feng; Liao, Xiao-Jun; Ling, Jian-Gang; Shang, Hai-Tao

    2018-01-22

    The effects of high hydrostatic pressure (HHP) treatments (200, 300, and 400 MPa for 1, 3, 5 and 10 min) on the shelling efficacy (the rate of shelling, the rate of integrity and yield of razor clam meat) and the physicochemical (drip loss, water-holding capacity, pH, conductivity, lipid oxidation, Ca2+ -ATPase activity, myofibrillar protein content), microbiological (total viable counts) and microstructural properties of fresh razor clam (Sinonovacula constricta) were investigated. HHP treatments significantly (P clam showed lower levels of microorganisms and drip loss than untreated razor clam. Levels of thiobarbituric acid reacting substances (TBA) in HHP-treated razor clam were greatly increased (up to 0.93 ± 0.09 mg MDA/kg at 400 MPa for 10 min) which was caused by the formation of hydroperoxides during HHP treatment. All HHP treatments were found to have adverse effects on the activity of Ca2+ -ATPase and the content of myofibrillar protein (MP), which might be due to the substantial damage to the tertiary structure of proteins at high pressure. Moreover, scanning electron microscopy (SEM) revealed the compaction of the muscle fibers and a decrease in the extracellular space with increasing pressure and holding time. This phenomenon was mainly correlated with the compaction of muscle fibers and denaturation, aggregation, and gelation of muscle protein triggered by high pressure. In general, HHP could be applied as a safe and effective nonthermal technology to produce high-quality shelled razor clam. High hydrostatic pressure (HHP) is now well known as a nonthermal processing technology and becoming increasingly acknowledged. However, it has not been widely applied to shell seafood due to its uncertain influence on its quality and shelling property. This study could provide valuable information regarding the shelling efficacy, physicochemical properties, and microstructure of razor clam treated by HHP. And it demonstrated that HHP showed a positive impact on

  18. Spatial distribution of dust in the shell elliptical NGC 5982

    NARCIS (Netherlands)

    del Burgo, C.; Carter, D.; Sikkema, G.

    Aims. Shells in Ellipticals are peculiar faint sharp edged features that are thought to be formed by galaxy mergers. We determine the shell and dust distributions, and colours of a well-resolved shell and the underlying galaxy in NGC 5982, and compare the spatial distributions of the dust and gas

  19. Mollusc evolution: seven shells on the sea shore.

    Science.gov (United States)

    Telford, Maximilian J

    2013-11-04

    Recent phylogenies unite two seemingly very different groups of mollusc: the Polyplacophora with multiple shells and the shell-less Aplacophora. The finding of seven muscle rows in larvae of both classes suggests that polyplacophoran-like shell rows have been lost in adult Aplacophora. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. 41 CFR 102-85.120 - What is shell Rent?

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What is shell Rent? 102-85.120 Section 102-85.120 Public Contracts and Property Management Federal Property Management... GSA SPACE Rent Charges § 102-85.120 What is shell Rent? Shell Rent is that portion of GSA Rent charged...

  1. Imperfection sensitivity of pressured buckling of biopolymer spherical shells.

    Science.gov (United States)

    Zhang, Lei; Ru, C Q

    2016-06-01

    Imperfection sensitivity is essential for mechanical behavior of biopolymer shells [such as ultrasound contrast agents (UCAs) and spherical viruses] characterized by high geometric heterogeneity. In this work, an imperfection sensitivity analysis is conducted based on a refined shell model recently developed for spherical biopolymer shells of high structural heterogeneity and thickness nonuniformity. The influence of related parameters (including the ratio of radius to average shell thickness, the ratio of transverse shear modulus to in-plane shear modulus, and the ratio of effective bending thickness to average shell thickness) on imperfection sensitivity is examined for pressured buckling. Our results show that the ratio of effective bending thickness to average shell thickness has a major effect on the imperfection sensitivity, while the effect of the ratio of transverse shear modulus to in-plane shear modulus is usually negligible. For example, with physically realistic parameters for typical imperfect spherical biopolymer shells, the present model predicts that actual maximum external pressure could be reduced to as low as 60% of that of a perfect UCA spherical shell or 55%-65% of that of a perfect spherical virus shell, respectively. The moderate imperfection sensitivity of spherical biopolymer shells with physically realistic imperfection is largely attributed to the fact that biopolymer shells are relatively thicker (defined by smaller radius-to-thickness ratio) and therefore practically realistic imperfection amplitude normalized by thickness is very small as compared to that of classical elastic thin shells which have much larger radius-to-thickness ratio.

  2. Impact Crater Morphology and the Structure of Europa's Ice Shell

    Science.gov (United States)

    Silber, Elizabeth A.; Johnson, Brandon C.

    2017-12-01

    We performed numerical simulations of impact crater formation on Europa to infer the thickness and structure of its ice shell. The simulations were performed using iSALE to test both the conductive ice shell over ocean and the conductive lid over warm convective ice scenarios for a variety of conditions. The modeled crater depth-diameter is strongly dependent on the thermal gradient and temperature of the warm convective ice. Our results indicate that both a fully conductive (thin) shell and a conductive-convective (thick) shell can reproduce the observed crater depth-diameter and morphologies. For the conductive ice shell over ocean, the best fit is an approximately 8 km thick conductive ice shell. Depending on the temperature (255-265 K) and therefore strength of warm convective ice, the thickness of the conductive ice lid is estimated at 5-7 km. If central features within the crater, such as pits and domes, form during crater collapse, our simulations are in better agreement with the fully conductive shell (thin shell). If central features form well after the impact, however, our simulations suggest that a conductive-convective shell (thick shell) is more likely. Although our study does not provide a firm conclusion regarding the thickness of Europa's ice shell, our work indicates that Valhalla class multiring basins on Europa may provide robust constraints on the thickness of Europa's ice shell.

  3. Vibrations of thin piezoelectric shallow shells: Two-dimensional ...

    Indian Academy of Sciences (India)

    In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two-dimensional eigenvalue problem.

  4. Vibrations of thin piezoelectric shallow shells: Two-dimensional ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    of the three-dimensional piezoelectric shells converge to the eigensolutions of a two- dimensional eigenvalue problem. Keywords. Vibrations; piezoelectricity; shallow shells. 1. Introduction. Lower dimensional models of shells are preferred in numerical computations to three- dimensional models when the thickness of the ...

  5. From Bash to Z shell in 5 min

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Chances are you're spending a good amount of your time working on a shell. While Bash is the standard shell on Linux, some alternatives exist. I'll show you how to switch to one of them (Z shell) and what benefits come with it.

  6. Validating Finite Element Models of Assembled Shell Structures

    Science.gov (United States)

    Hoff, Claus

    2006-01-01

    The validation of finite element models of assembled shell elements is presented. The topics include: 1) Problems with membrane rotations in assembled shell models; 2) Penalty stiffness for membrane rotations; 3) Physical stiffness for membrane rotations using shell elements with 6 dof per node; and 4) Connections avoiding rotations.

  7. Parametric analysis of the dynamic properties of sectorial shells ...

    African Journals Online (AJOL)

    The behavioral responses of sectorial shells as related to the number of modes and certain geometric properties of the shell have been studied. By varying certain dimensionless geometric properties of the shell and considering a series of undamped vibration modes, the influences of these properties on displacements, ...

  8. Shell utilization and morphometries of the hermit crab Diogenes ...

    African Journals Online (AJOL)

    Fecundity, shell utilization, and crab and associated shell morphometries were investigated for the hermit crab Diogenes brevirostris collected from three intertidal sites in the eastern Cape. The relationship between crab fresh mass and egg number was linear. D. brevirostris was found to occupy 33 gastropod shell species ...

  9. Implementation and usage of the Bergman package shell

    Directory of Open Access Journals (Sweden)

    Alexander Colesnikov

    1996-09-01

    Full Text Available This article is the survey of author's work on dialog shells over interpreting systems. Aspects of the shell for the computational algebra package Bergman are presented: the solved task, homogenization algorithm, input data checking, approaches to implementation. The shell automatizes and strongly simplifies data preparation and monitoring of the Bergman package.

  10. Properties of Activated Carbon Prepared from Coconut Shells in ...

    African Journals Online (AJOL)

    Materials commonly used for preparation of activated carbons include coal and coconut shells. Ghana generates over 30,000 tonnes of coconut shells annually from coconut oil processing activities but apart from a small percentage of the shells, which is burned as fuel, the remaining is usually dumped as waste.

  11. Shell report 2001; Les personnes, la planete, les profits. Shell rapport 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    In 2001, Shell saw mixed results across the social, environmental and economic spectrum. In order to contribute to the sustainable development, the Group is on track towards meeting its target to reduce greenhouse gas emissions to 10 % below 1990 levels by the end of 2002, although there was a significant increase in spill volumes and greenhouse gas emissions rose. Shell has articulated the business case and defined seven principles of sustainable development for use across the Group in business plans and daily operations: generating robust profitability; delivering value to customers; protecting the environment; managing resources; respecting and safeguarding people; benefiting communities; and working with stakeholders. Key points from the Shell Report include: in the framework of Managing, an independent review of the Shell Nigeria Community Development programme and testing of a human rights assessment tool in Shell South Africa and the implementing of a new Diversity and Inclusiveness Standard; in the framework of the economy the cost improvements of 5,1 billion dollars, ahead of target, the second highest earnings ever in difficult market conditions and the election of Shell top brand for fifth year running by motorists; in the framework of the Social, the safety performance, the avoidance of 100 contracts for incompatibility with Shell Business Principles; in the framework of the Environment, the publication of the Fresh water usage report for the first time, the Greenhouse gas emissions, the increase of spills as a result of a small number of incidents including a pipeline rupture in Nigeria and a well blow out in Oman. The economic, environmental and social data of the Shell Report are externally verified. (A.L.B.)

  12. Constraints for system specifications for the double-shell and single-shell tank systems

    Energy Technology Data Exchange (ETDEWEB)

    SHAW, C.P.

    1999-05-18

    This is a supporting document for the Level 1 Double-Shell and Single-Shell System Specifications. The rationale for selection of specific regulatory constraining documents cited in the two system specifications is provided. many of the regulations have been implemented by the Project Hanford Management Contract procedures (HNF-PROs) and as such noted and traced back to their origins in State and Federal regulations.

  13. Defects in liquid crystal nematic shells

    Science.gov (United States)

    Fernandez-Nieves, A.; Utada, A. S.; Vitelli, V.; Link, D. R.; Nelson, D. R.; Weitz, D. A.

    2006-03-01

    We generate water/liquid crystal (LC)/water double emulsions via recent micro-capillary fluidic devices [A. S. Utada, et.al. Science 308, 537 (2005)]. The resultant objects are stabilized against coalescence by using surfactants or adequate polymers; these also fix the boundary conditions for the director field n. We use 4-pentyl-4-cyanobiphenyl (5CB) and impose tangential boundary conditions at both water/LC interfaces by having polyvinyl alcohol (PVA) dispersed in the inner and outer water phases. We confirm recent predictions [D. R. Nelson, NanoLetters 2, 1125 (2002)] and find that four strength s=+1/2 defects are present; this is in contrast to the two s=+1 defect bipolar configuration observed for bulk spheres [A. Fernandez-Nieves, et.al. Phys. Rev. Lett. 92, 105503 (2004)]. However, these defects do not lie in the vertices of a tetrahedron but are pushed towards each other until certain equilibration distance is reached. In addition to the four defect shells, we observe shells with two s=+1 defects and even with three defects, a s=+1 and two s=+1/2. We argue these configurations arise from nematic bulk distortions that become important as the shell thickness increases. Finally, by adding a different surfactant, sodium dodecyl sulphate (SDS), to the outer phase, we can change the director boundary conditions at the outermost interface from parallel to homeotropic, to induce coalescing of the two pair of defects in the four defect shell configuration to yield two defect bipolar shells.

  14. Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites.

    Science.gov (United States)

    Du, Yunchen; Liu, Wenwen; Qiang, Rong; Wang, Ying; Han, Xijiang; Ma, Jun; Xu, Ping

    2014-08-13

    Core-shell composites, Fe3O4@C, with 500 nm Fe3O4 microspheres as cores have been successfully prepared through in situ polymerization of phenolic resin on the Fe3O4 surface and subsequent high-temperature carbonization. The thickness of carbon shell, from 20 to 70 nm, can be well controlled by modulating the weight ratio of resorcinol and Fe3O4 microspheres. Carbothermic reduction has not been triggered at present conditions, thus the crystalline phase and magnetic property of Fe3O4 micropsheres can be well preserved during the carbonization process. Although carbon shells display amorphous nature, Raman spectra reveal that the presence of Fe3O4 micropsheres can promote their graphitization degree to a certain extent. Coating Fe3O4 microspheres with carbon shells will not only increase the complex permittivity but also improve characteristic impedance, leading to multiple relaxation processes in these composites, thus the microwave absorption properties of these composites are greatly enhanced. Very interestingly, a critical thickness of carbon shells leads to an unusual dielectric behavior of the core-shell structure, which endows these composites with strong reflection loss, especially in the high frequency range. By considering good chemical homogeneity and microwave absorption, we believe the as-fabricated Fe3O4@C composites can be promising candidates as highly effective microwave absorbers.

  15. CFD modelling of shell-side asphaltenes deposition in a shell and tube heat exchanger

    Science.gov (United States)

    Emani, Sampath; Ramasamy, M.; Shaari, Ku Zilati Ku

    2017-07-01

    Asphaltenes are identified as the main cause of crude oil fouling in the shell and tube exchangers. There are occasions where the crude oil flows through the shell side of the heat exchangers and some fouling is reported in the shell side of those heat exchangers. Understanding the fouling phenomena in the shell sides requires the knowledge on the irregular fluid flow paths and most susceptible locations of particles deposition. In the present work, an attempt has been made to investigate the effect of shear stress and surface roughness on shell-side asphaltenes deposition in a shell and tube heat exchanger through Computational Fluid Dynamics approach. The hydrodynamics of asphaltenes particles and the effect of various forces on the asphaltenes deposition on the heat transfer surfaces has been investigated through a Lagrangian based discrete-phase model. From the CFD analysis, the net mass deposition of the asphaltenes particles reduces with an increase in surface roughness from 0 to 0.04 mm and wall shear stress from 0 to 0.04 Pa for flow velocity 1 m/s, respectively. The asphaltenes mass deposition becomes constant with further increase in wall shear stress and surface roughness.

  16. In-shell pistachio nuts reduce caloric intake compared to shelled nuts.

    Science.gov (United States)

    Honselman, Carla S; Painter, James E; Kennedy-Hagan, Karla J; Halvorson, Amber; Rhodes, Kathy; Brooks, Tamatha L; Skwir, Kaitlin

    2011-10-01

    It was hypothesized that consuming in-shell pistachios, compared to shelled pistachios, causes individuals to consume less. A convenience sample of students at a mid-western university (n=140) was recruited, asking them to evaluate a variety of brands of pistachios. A survey at the end of class determined fullness and satisfaction. Subjects entering the classroom were given a 16-ounce cup and asked to self-select a portion of pistachios. Portion weight was recorded and subjects consumed pistachios at their leisure during class. At class end, pistachios remaining in the cup were weighed and total consumption by weight was determined. The caloric content of each portion was then calculated. In condition one, subjects offered in-shell pistachios consumed an average of 125 calories. In condition two, subjects offered shelled pistachios consumed an average of 211 calories; a difference of 86 calories. Subjects in condition one consumed 41% fewer calories compared to subjects in condition two (p≤.01). Fullness and satisfaction ratings were not significantly different (p≥.01). Caloric intake was influenced by the initial form of the food. The difference in calories consumed may be due to the additional time needed to shell the nuts or the extra volume perceived when consuming in-shell nuts. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Role of Genome in the Formation of Conical Retroviral Shells

    CERN Document Server

    Erdemci-Tandogan, Gonca; van der Schoot, Paul; Zandi, Roya

    2016-01-01

    Human immunodeficiency virus (HIV) capsid proteins spontaneously assemble around the genome into a protective protein shell called the capsid, which can take on a variety of shapes broadly classified as conical, cylindrical and irregular. The majority of capsids seen in in vivo studies are conical in shape, while in vitro experiments have shown a preference for cylindrical capsids. The factors involved in the selection of the unique shape of HIV capsids are not well understood, and in particular the impact of RNA on the formation of the capsid is not known. In this work, we study the role of the genome and its interaction with the capsid protein by modeling the genomic RNA through a mean-field theory. Our results show that the confinement free energy for a homopolymeric model genome confined in a conical capsid is lower than that in a cylindrical capsid, at least when the genome does not interact with the capsid, which seems to be the case in in vivo experiments. Conversely, the confinement free energy for th...

  18. A dodecameric CcmK2 structure suggests β-carboxysomal shell facets have a double-layered organization.

    Science.gov (United States)

    Samborska, Bożena; Kimber, Matthew S

    2012-08-08

    Cyanobacteria fix carbon within carboxysomes. Here, RubisCO and carbonic anhydrase are coencapsulated within a semipermeable protein shell built from paralogs of the CcmK proteins. Crystal packing patterns suggest that the shell facets may be built as a single layer of CcmK molecules tiled hexagonally in a continuous sheet. We used fluorescence resonance energy transfer (FRET) to measure interactions mediated by CcmK paralogs from Thermosynechococcus elongatus. CcmK2-an abundant, universally present paralog-shows uniquely strong self-interactions. The CcmK2 structure reveals a back-to-back dodecameric organization, with interactions mediated by a helix comprised of residues 95-101. Modeling indicates that this dodecameric interaction could seamlessly fuse two sheets into a double-layered shell. This model predicts several aspects of CcmK2 interactions, including the attenuation of FRET by Glu95Ala variants at the dodecameric interface. This model also accurately predicts the observed shell thickness, implying that the β-carboxysome shell is most likely organized as a double layer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Shell Scripting Expert Recipes for Linux, Bash and more

    CERN Document Server

    Parker, Steve

    2011-01-01

    A compendium of shell scripting recipes that can immediately be used, adjusted, and applied The shell is the primary way of communicating with the Unix and Linux systems, providing a direct way to program by automating simple-to-intermediate tasks. With this book, Linux expert Steve Parker shares a collection of shell scripting recipes that can be used as is or easily modified for a variety of environments or situations. The book covers shell programming, with a focus on Linux and the Bash shell; it provides credible, real-world relevance, as well as providing the flexible tools to get started

  20. A Comparative Study of Cellulose Agricultural Wastes (Almond Shell, Pistachio Shell, Walnut Shell, Tea Waste And Orange Peel) for Adsorption of Violet B Dye from Aqueous Solutions

    OpenAIRE

    Saeedeh Hashemian

    2014-01-01

    Adsorption of violet B azo dye from aqueous solutions was studied by different cellulose agriculturalwaste materials (almond shell (AS), pistachio shell (PS), walnut shell (WS), Tea waste (TW) and orange peel (OP)). Cellulose agricultural waste sorbents characterized by FTIR and SEM methods. The effects of different parameters such as contact time, pH, adsorbent dosage and initial dye concentration were studied.Maximum removal of dye was obtained at contact time of 90 min and pH 11.The adsorp...

  1. Amino acid racemization dating of marine shells: A mound of possibilities

    Science.gov (United States)

    Demarchi, Beatrice; Williams, Matt G.; Milner, Nicky; Russell, Nicola; Bailey, Geoff; Penkman, Kirsty

    2011-01-01

    Shell middens are one of the most important and widespread indicators for human exploitation of marine resources and occupation of coastal environments. Establishing an accurate and reliable chronology for these deposits has fundamental implications for understanding the patterns of human evolution and dispersal. This paper explores the potential application of a new methodology of amino acid racemization (AAR) dating of shell middens and describes a simple protocol to test the suitability of different molluscan species. This protocol provides a preliminary test for the presence of an intracrystalline fraction of proteins (by bleaching experiments and subsequent heating at high temperature), checking the closed system behaviour of this fraction during diagenesis. Only species which pass both tests can be considered suitable for further studies to obtain reliable age information. This amino acid geochronological technique is also applied to midden deposits at two latitudinal extremes: Northern Scotland and the Southern Red Sea. Results obtained in this study indicate that the application of this new method of AAR dating of shells has the potential to aid the geochronological investigation of shell mounds in different areas of the world. PMID:21776187

  2. Use of free amino acid composition of shell to estimate age since death of recent molluscs

    Energy Technology Data Exchange (ETDEWEB)

    Logan, A.M.; Powell, E.N.; Stanton, R.J. Jr.

    1985-01-01

    An understanding of death assemblage formation requires a measurement of time since death of constituent individuals. A new dating technique based on the measurement of the free amino acid content of mollusc shells has been developed which is inexpensive, rapid, and effective in dating time scales of a few decades to a few centuries. Since the breakdown of proteins of the matrix of mollusc shells begins soon after deposition, free amino acids gradually increase with shell age. The measurement of these can be used to determine the relative age among a group of shells. The future use of this technique depends on a clearer understanding of how free amino acid accumulation rate varies with age and species and developing effective calibration methods so that absolute rather than relative ages can be readily obtained. Three species were distributed widely enough for use - Rangia cuneata, Tagelus plebeius, and Phacoides pectinatus. A good relationship between free amino acids and relative age was present in all three species over the entire core; however some species and some amino acid were superior to others. Rangia cuneata produced the best correlation because it is epifaunal and thus died at the sediment surface rather than over an extended depth range and, also perhaps, because amino acid accumulation rates were more linear.

  3. An integrated approach to the taxonomic identification of prehistoric shell ornaments.

    Directory of Open Access Journals (Sweden)

    Beatrice Demarchi

    Full Text Available Shell beads appear to have been one of the earliest examples of personal adornments. Marine shells identified far from the shore evidence long-distance transport and imply networks of exchange and negotiation. However, worked beads lose taxonomic clues to identification, and this may be compounded by taphonomic alteration. Consequently, the significance of this key early artefact may be underestimated. We report the use of bulk amino acid composition of the stable intra-crystalline proteins preserved in shell biominerals and the application of pattern recognition methods to a large dataset (777 samples to demonstrate that taxonomic identification can be achieved at genus level. Amino acid analyses are fast (<2 hours per sample and micro-destructive (sample size <2 mg. Their integration with non-destructive techniques provides a valuable and affordable tool, which can be used by archaeologists and museum curators to gain insight into early exploitation of natural resources by humans. Here we combine amino acid analyses, macro- and microstructural observations (by light microscopy and scanning electron microscopy and Raman spectroscopy to try to identify the raw material used for beads discovered at the Early Bronze Age site of Great Cornard (UK. Our results show that at least two shell taxa were used and we hypothesise that these were sourced locally.

  4. Ocean acidification alters the material properties of Mytilus edulis shells.

    Science.gov (United States)

    Fitzer, Susan C; Zhu, Wenzhong; Tanner, K Elizabeth; Phoenix, Vernon R; Kamenos, Nicholas A; Cusack, Maggie

    2015-02-06

    Ocean acidification (OA) and the resultant changing carbonate saturation states is threatening the formation of calcium carbonate shells and exoskeletons of marine organisms. The production of biominerals in such organisms relies on the availability of carbonate and the ability of the organism to biomineralize in changing environments. To understand how biomineralizers will respond to OA the common blue mussel, Mytilus edulis, was cultured at projected levels of pCO2 (380, 550, 750, 1000 µatm) and increased temperatures (ambient, ambient plus 2°C). Nanoindentation (a single mussel shell) and microhardness testing were used to assess the material properties of the shells. Young's modulus (E), hardness (H) and toughness (KIC) were measured in mussel shells grown in multiple stressor conditions. OA caused mussels to produce shell calcite that is stiffer (higher modulus of elasticity) and harder than shells grown in control conditions. The outer shell (calcite) is more brittle in OA conditions while the inner shell (aragonite) is softer and less stiff in shells grown under OA conditions. Combining increasing ocean pCO2 and temperatures as projected for future global ocean appears to reduce the impact of increasing pCO2 on the material properties of the mussel shell. OA may cause changes in shell material properties that could prove problematic under predation scenarios for the mussels; however, this may be partially mitigated by increasing temperature. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  5. Monte Carlo simulations of nematic and chiral nematic shells.

    Science.gov (United States)

    Wand, Charlie R; Bates, Martin A

    2015-01-01

    We present a systematic Monte Carlo simulation study of thin nematic and cholesteric shells with planar anchoring using an off-lattice model. The results obtained using the simple model correspond with previously published results for lattice-based systems, with the number, type, and position of defects observed dependent on the shell thickness with four half-strength defects in a tetrahedral arrangement found in very thin shells and a pair of defects in a bipolar (boojum) configuration observed in thicker shells. A third intermediate defect configuration is occasionally observed for intermediate thickness shells, which is stabilized in noncentrosymmetric shells of nonuniform thickness. Chiral nematic (cholesteric) shells are investigated by including a chiral term in the potential. Decreasing the pitch of the chiral nematic leads to a twisted bipolar (chiral boojum) configuration with the director twist increasing from the inner to the outer surface.

  6. Cloaking by shells with radially inhomogeneous anisotropic permittivity.

    Science.gov (United States)

    Reshetnyak, V Yu; Pinkevych, I P; Sluckin, T J; Evans, D R

    2016-01-25

    We model electromagnetic cloaking of a spherical or cylindrical nanoparticle enclosed by an optically anisotropic and optically inhomogeneous symmetric shell, by examining its electric response in a quasi-static uniform electric field. When the components of the shell permittivity are radially anisotropic and power-law dependent (ε~r(m)) whereris distance to the shell center, and m a positive or negative exponent which can be varied), the problem is analytically tractable. Formulas are calculated for the degree of cloaking in the general case, allowing the determination of a dielectric condition for the shells to be used as an invisibility cloak. Ideal cloaking is known to require that homogeneous shells exhibit an infinite ratio of tangential and radial components of the shell permittivity, but for radially inhomogeneous shells ideal cloaking can occur even for finite values of this ratio.

  7. Construction of cDNA subtractive library from pearl oyster ( Pinctada fucata Gould) with red color shell by SSH

    Science.gov (United States)

    Guan, Yunyan; Huang, Liangmin; He, Maoxian

    2011-05-01

    The molecular basis of color polymorphism in the shells of the pearl oyster Pinctada fucata is largely unknown. We developed a red-shelled family line and used suppression subtractive hybridization (SSH) to screen for differentially expressed genes in red- and non-red-shelled pearl oysters. We constructed forward and reverse cDNA subtractive libraries consisting of 2 506 and 797 clones, respectively. Among 343 randomly selected clones in the forward library, 304 sequences were identified in GenBank using BLASTx and BLASTn. Of the 304 sequences, 13 showed no similarity to known sequences and 291 were matched with known genes of the pearl oyster, including shematrin-1, shematrin-2, shematrin-6, shematrin-7, nacrein, nacrein-like protein, aspein for shell matrix protein, glycine-rich protein, mantle gene 5, 28S, EST00031, EST00036, 16S, and COI. In the reverse library, 7 clones were sequenced and analyzed by BLAST. Two sequences shared similarity with EST00036 from the P. fucata subtraction cDNA library, four with the P. fucata mitochondrial gene for 16S rRNA and 1 with P. fucata shematrin-2. We evaluated the expression of 12 genes from the forward library using RT PCR. Two sequences matched with 16S and COI so were considered to be false positives. The remaining 10 sequences were differentially expression in the red-shelled pearl oysters. Our results suggest that differential expression of these genes may be related to color variation in the red-shelled family line of the pearl oyster.

  8. Engineered protein nano-compartments for targeted enzyme localization.

    Directory of Open Access Journals (Sweden)

    Swati Choudhary

    Full Text Available Compartmentalized co-localization of enzymes and their substrates represents an attractive approach for multi-enzymatic synthesis in engineered cells and biocatalysis. Sequestration of enzymes and substrates would greatly increase reaction efficiency while also protecting engineered host cells from potentially toxic reaction intermediates. Several bacteria form protein-based polyhedral microcompartments which sequester functionally related enzymes and regulate their access to substrates and other small metabolites. Such bacterial microcompartments may be engineered into protein-based nano-bioreactors, provided that they can be assembled in a non-native host cell, and that heterologous enzymes and substrates can be targeted into the engineered compartments. Here, we report that recombinant expression of Salmonella enterica ethanolamine utilization (eut bacterial microcompartment shell proteins in E. coli results in the formation of polyhedral protein shells. Purified recombinant shells are morphologically similar to the native Eut microcompartments purified from S. enterica. Surprisingly, recombinant expression of only one of the shell proteins (EutS is sufficient and necessary for creating properly delimited compartments. Co-expression with EutS also facilitates the encapsulation of EGFP fused with a putative Eut shell-targeting signal sequence. We also demonstrate the functional localization of a heterologous enzyme (β-galactosidase targeted to the recombinant shells. Together our results provide proof-of-concept for the engineering of protein nano-compartments for biosynthesis and biocatalysis.

  9. Interface Fracture in Adhesively Bonded Shell Structures

    DEFF Research Database (Denmark)

    Jensen, Henrik Myhre

    2007-01-01

    Two methods for the prediction of crack propagation through the interface of adhesively bonded shells are discussed. One is based on a fracture mechanics approach; the other is based on a cohesive zone approach. Attention is focussed on predicting the shape of the crack front and the critical...... stress required to propagate the crack under quasi-static conditions. The fracture mechanical model is theoretically sound and it is accurate and numerically stable. The cohesive zone model has some advantages over the fracture mechanics based model. It is easier to generalise the cohesive zone model...... to take into account effects such as plastic deformation in the adhering shells, and to take into account effects of large local curvatures of the interface crack front. The comparison shows a convergence of the results based on the cohesive zone model towards the results based on a fracture mechanics...

  10. Gravity and On-Shell Probe Actions

    CERN Document Server

    Ferrari, Frank

    2016-08-08

    In any gravitational theory and in a wide class of background space-times, we argue that there exists a simple, yet profound, relation between the on-shell Euclidean gravitational action and the on-shell Euclidean action of probes. The probes can be, for instance, charged particles or branes. The relation is tightly related to the thermodynamic nature of gravity. We provide precise checks of the relation in several examples, which include both asymptotically flat and asymptotically AdS space-times, with particle, D-brane and M-brane probes. Perfect consistency is found in all cases, including in a highly non-trivial example including \\alpha'-corrections.

  11. Gravity and on-shell probe actions

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, Frank [Université libre de Bruxelles (ULB) and International Solvay Institutes,Service de Physique Théorique et Mathématique,Campus de la Plaine, CP 231, B-1050 Bruxelles (Belgium); Theoretical Physics Department, CERN,CH-1211 Genève (Switzerland); Rovai, Antonin [Département de Physique Théorique, Université de Genève,24, quai Ansermet, CH-1211 Genève 4 (Switzerland); Université libre de Bruxelles (ULB) and International Solvay Institutes,Service de Physique Théorique et Mathématique,Campus de la Plaine, CP 231, B-1050 Bruxelles (Belgium); Center for Theoretical Physics, Massachusetts Institute of Technology,77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München,Theresienstrasse 37, D-80333 München (Germany)

    2016-08-08

    In any gravitational theory and in a wide class of background space-times, we argue that there exists a simple, yet profound, relation between the on-shell Euclidean gravitational action and the on-shell Euclidean action of probes. The probes can be, for instance, charged particles or branes. The relation is tightly related to the thermodynamic nature of gravity. We provide precise checks of the relation in several examples, which include both asymptotically flat and asymptotically AdS space-times, with particle, D-brane and M-brane probes. Perfect consistency is found in all cases, including in a highly non-trivial example including α{sup ′}-corrections.

  12. Spherical nematic shells with a threefold valence

    Science.gov (United States)

    Koning, Vinzenz; Lopez-Leon, Teresa; Darmon, Alexandre; Fernandez-Nieves, Alberto; Vitelli, V.

    2016-07-01

    We present a theoretical study of the energetics of thin nematic shells with two charge-one-half defects and one charge-one defect. We determine the optimal arrangement: the defects are located on a great circle at the vertices of an isosceles triangle with angles of 66∘ at the charge-one-half defects and a distinct angle of 48∘, consistent with experimental findings. We also analyze thermal fluctuations around this ground state and estimate the energy as a function of thickness. We find that the energy of the three-defect shell is close to the energy of other known configurations having two charge-one and four charge-one-half defects. This finding, together with the large energy barriers separating one configuration from the others, explains their observation in experiments as well as their long-time stability.

  13. Shell model calculations for exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B.A. (Michigan State Univ., East Lansing, MI (USA)); Warburton, E.K. (Brookhaven National Lab., Upton, NY (USA)); Wildenthal, B.H. (New Mexico Univ., Albuquerque, NM (USA). Dept. of Physics and Astronomy)

    1990-02-01

    In this paper we review the progress of the shell-model approach to understanding the properties of light exotic nuclei (A < 40). By shell-model'' we mean the consistent and large-scale application of the classic methods discussed, for example, in the book of de-Shalit and Talmi. Modern calculations incorporate as many of the important configurations as possible and make use of realistic effective interactions for the valence nucleons. Properties such as the nuclear densities depend on the mean-field potential, which is usually separately from the valence interaction. We will discuss results for radii which are based on a standard Hartree-Fock approach with Skyrme-type interactions.

  14. Shell model for warm rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, M.; Yoshida, K. [Kyoto Univ. (Japan); Dossing, T. [Univ. of Copenhagen (Denmark)] [and others

    1996-12-31

    Utilizing a shell model which combines the cranked Nilsson mean-field and the residual surface and volume delta two-body forces, the authors discuss the onset of rotational damping in normal- and super-deformed nuclei. Calculation for a typical normal deformed nucleus {sup 168}Yb indicates that the rotational damping sets in at around 0.8 MeV above the yrast line, and about 30 rotational bands of various length exists at a given rotational frequency, in overall agreement with experimental findings. It is predicted that the onset of rotational damping changes significantly in different superdeformed nuclei due to the variety of the shell gaps and single-particle orbits associated with the superdeformed mean-field.

  15. Shell architecture and its relation to shell occupation by the hermit crab Clibanarius antillensis under different wave action conditions

    Directory of Open Access Journals (Sweden)

    Araceli Argüelles

    2009-12-01

    Full Text Available We studied the intertidal hermit crab Clibanarius antillensis at Montepio Beach, Veracruz, Mexico, to determine whether architecture and weight of occupied shells varied with the degree of exposure to wave action. Data on shell use were obtained from 30-m transects perpendicular to the shoreline. The gastropod shells species used by C. antillensis were classified into four groups according to their morphology: neritiform, conical, turriculate, and turbinate. Neither the size nor the weight of hermit crabs varied along transects. A pattern showing differential use of shell type according to water velocity was detected. Neritiform and turriculate shells were the least occupied, and their abundance decreased with increasing water velocities. Conical and turbinate shells were the most used and their presence increased with increasing water velocities. Turbinate and conical shells are heavier and have a higher weight/exposed-area ratio than neritiform and turriculate shells, so using them at higher energy sites seems to be more advantageous than using turriculate shells. The pattern that emerges is one in which C. antillensis occupy different shells along the intertidal transect, probably due to the advantages that different shells may bring, such as minimising drag and the risk of dislodgement.

  16. Transformation of the matrix structure of shrimp shells during bacterial deproteination and demineralization

    Science.gov (United States)

    2013-01-01

    Background After cellulose and starch, chitin is the third-most abundant biopolymer on earth. Chitin or its deacetylated derivative chitosan is a valuable product with a number of applications. It is one of the main components of shrimp shells, a waste product of the fish industry. To obtain chitin from Penaeus monodon, wet and dried shrimp shells were deproteinated with two specifically enriched proteolytic cultures M1 and M2 and decalcified by in-situ lactic acid forming microorganisms. The viscosity of biologically processed chitin was compared with chemically processed chitin. The former was further investigated for purity, structure and elemental composition by several microscopic techniques and 13C solid state NMR spectroscopy. Results About 95% of the protein of wet shrimp shells was removed by proteolytic enrichment culture M2 in 68 h. Subsequent decalcification by lactic acid bacteria (LAB) took 48 h. Deproteination of the same amount of dried shrimps that contained a 3 × higher solid content by the same culture was a little bit faster and was finished after 140 h. The viscosity of chitin was in the order of chemically processed chitin > bioprocessed chitin > commercially available chitin. Results revealed changes in fine structure and chemical composition of the epi-, exo- and endocuticle of chitin from shrimp shells during microbial deproteination and demineralization. From transmission electron microscopy (TEM) overlays and electron energy loss spectroscopy (EELS) analysis, it was found that most protein was present in the exocuticle, whereas most chitin was present in the endocuticle. The calcium content was higher in the endocuticle than in the exocuticle.13C solid state NMR spectra of different chitin confirmed shell waste resulted in a chitin with high purity. Its viscosity was higher than that of commercially available chitin but lower than that of chemically prepared chitin in our lab. Nevertheless, the biologically processed chitin is a

  17. Ancient shell industry at Bet Dwarka island

    Digital Repository Service at National Institute of Oceanography (India)

    Gaur, A.S.; Sundaresh; Patankar, V.

    picked up by the fishermen till recently. This article discusses the importance of shell artifacts recovered d uring the excavation at Bet Dwarka Island and their significance in dating of an archae o logical site. Keywords: Bet Dwarka, Chank... ? 3640) and 1910 ? 80 (cal. 1950 ? 1730) yrs BP . They are in agreement with the archae o- logical findings. The oldest date came from a late Harappan site (BDK - VI), which is generally dated between 19th and 14th century BC . Similarly...

  18. Jess, the Java expert system shell

    Energy Technology Data Exchange (ETDEWEB)

    Friedman-Hill, E.J.

    1997-11-01

    This report describes Jess, a clone of the popular CLIPS expert system shell written entirely in Java. Jess supports the development of rule-based expert systems which can be tightly coupled to code written in the powerful, portable Java language. The syntax of the Jess language is discussed, and a comprehensive list of supported functions is presented. A guide to extending Jess by writing Java code is also included.

  19. Doehlert uniform shell designs and chromatography.

    Science.gov (United States)

    Araujo, Pedro; Janagap, Steve

    2012-12-01

    The principles of the Doehlert uniform shell designs (aka Doehlert designs) and their importance in the context of chromatography are discussed. The confidence of different models generated by Doehlert designs is studied by means of the uncertainty of the experimental points. The article provides an overview of analytical applications in chromatography with focus on single and coupled techniques and also discusses some reported blunders regarding Doehlert designs. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Quantum corrected Schwarzschild thin-shell wormhole

    OpenAIRE

    Jusufi, Kimet

    2016-01-01

    Recently, Ali and Khalil (Nucl Phys B, 909, 173–185, 2016 ), based on Bohmian quantum mechanics, derived a quantum corrected version of the Schwarzschild metric. In this paper, we construct a quantum corrected Schwarzschild thin-shell wormhole (QSTSW) and investigate the stability of this wormhole. First we compute the surface stress at the wormhole throat by applying the Darmois–Israel formalism to the modified Schwarzschild metric and show that exotic matter is required at the throat to kee...

  1. Cardiogenic differentiation of mesenchymal stem cells on elastomeric poly (glycerol sebacate)/collagen core/shell fibers.

    Science.gov (United States)

    Ravichandran, Rajeswari; Venugopal, Jayarama Reddy; Sundarrajan, Subramanian; Mukherjee, Shayanti; Ramakrishna, Seeram

    2013-03-26

    To facilitate engineering of suitable biomaterials to meet the challenges associated with myocardial infarction. Poly (glycerol sebacate)/collagen (PGS/collagen) core/shell fibers were fabricated by core/shell electrospinning technique, with core as PGS and shell as collagen polymer; and the scaffolds were characterized by scanning electron microscope (SEM), fourier transform infrared spectroscopy (FTIR), contact angle and tensile testing for cardiac tissue engineering. Collagen nanofibers were also fabricated by electrospinning for comparison with core/shell fibers. Studies on cell-scaffold interaction were carried out using cardiac cells and mesenchymal stem cells (MSCs) co-culture system with cardiac cells and MSCs separately serving as positive and negative controls respectively. The co-culture system was characterized for cell proliferation and differentiation of MSCs into cardiomyogenic lineage in the co-culture environment using dual immunocytochemistry. The co-culture cells were stained with cardiac specific marker proteins like actinin and troponin and MSC specific marker protein CD 105 for proving the cardiogenic differentiation of MSCs. Further the morphology of cells was analyzed using SEM. PGS/collagen core/shell fibers, core is PGS polymer having an elastic modulus related to that of cardiac fibers and shell as collagen, providing natural environment for cellular activities like cell adhesion, proliferation and differentiation. SEM micrographs of electrospun fibrous scaffolds revealed porous, beadless, uniform fibers with a fiber diameter in the range of 380 ± 77 nm and 1192 ± 277 nm for collagen fibers and PGS/collagen core/shell fibers respectively. The obtained PGS/collagen core/shell fibrous scaffolds were hydrophilic having a water contact angle of 17.9 ± 4.6° compared to collagen nanofibers which had a contact angle value of 30 ± 3.2°. The PGS/collagen core/shell fibers had mechanical properties comparable to that of native heart muscle

  2. Thermoelastoplastic deformation of noncircular cylindrical shells

    Science.gov (United States)

    Merzlyakov, V. A.

    2008-08-01

    A method to determine the nonstationary temperature fields and the thermoelastoplastic stress-strain state of noncircular cylindrical shells is developed. It is assumed that the physical and mechanical properties are dependent on temperature. The heat-conduction problem is solved using an explicit difference scheme. The temperature variation throughout the thickness is described by a power polynomial. For the other two coordinates, finite differences are used. The thermoplastic problem is solved using the geometrically nonlinear theory of shells based on the Kirchhoff-Love hypotheses. The theory of simple processes with deformation history taken into account is used. Its equations are linearized by a modified method of elastic solutions. The governing system of partial differential equations is derived. Variables are separated in the case where the curvilinear edges are hinged. The partial case where the stress-strain state does not change along the generatrix is examined. The systems of ordinary differential equations obtained in all these cases are solved using Godunov's discrete orthogonalization. The temperature field in a shell with elliptical cross-section is studied. The stress-strain state found by numerical integration along the generatrix is compared with that obtained using trigonometric Fourier series. The effect of a Winkler foundation on the stress-strain state is analyzed

  3. Dust Shells around OH/IR Stars

    Directory of Open Access Journals (Sweden)

    Kyung-Won Suh

    1988-12-01

    Full Text Available We have made new models for mass-losing OH/IR stars to explain the properties of the dust shells around them using more accurate information about the material in the shell and the physical processes including pulsations. We have applied our dust opacity which has been deduced from observations and experimental data to various density distributions, calculated the model emergent spectra, and compared with observations. Contrary to previous suggestions, we could fit observations fairly well using density distribution ρ∝r-2, which is physically plausible, with proper choice of opacities. The time scales for dust formation, growth, and movement are calculated to be compared with pulsation periods. The change of the emergent spectrum depending of the phase of pulsation can be explained fairly well by changing dust condensation radius(for fixed dust condensation temperature in step with the change in stellar luminosity. The effects of stellar wind models and pulsation models on dust shells with attention to emergent spectra are discussed.

  4. Fossorial Origin of the Turtle Shell.

    Science.gov (United States)

    Lyson, Tyler R; Rubidge, Bruce S; Scheyer, Torsten M; de Queiroz, Kevin; Schachner, Emma R; Smith, Roger M H; Botha-Brink, Jennifer; Bever, G S

    2016-07-25

    The turtle shell is a complex structure that currently serves a largely protective function in this iconically slow-moving group [1]. Developmental [2, 3] and fossil [4-7] data indicate that one of the first steps toward the shelled body plan was broadening of the ribs (approximately 50 my before the completed shell [5]). Broadened ribs alone provide little protection [8] and confer significant locomotory [9, 10] and respiratory [9, 11] costs. They increase thoracic rigidity [8], which decreases speed of locomotion due to shortened stride length [10], and they inhibit effective costal ventilation [9, 11]. New fossil material of the oldest hypothesized stem turtle, Eunotosaurus africanus [12] (260 mya) [13, 14] from the Karoo Basin of South Africa, indicates the initiation of rib broadening was an adaptive response to fossoriality. Similar to extant fossorial taxa [8], the broad ribs of Eunotosaurus provide an intrinsically stable base on which to operate a powerful forelimb digging mechanism. Numerous fossorial correlates [15-17] are expressed throughout Eunotosaurus' skeleton. Most of these features are widely distributed along the turtle stem and into the crown clade, indicating the common ancestor of Eunotosaurus and modern turtles possessed a body plan significantly influenced by digging. The adaptations related to fossoriality likely facilitated movement of stem turtles into aquatic environments early in the groups' evolutionary history, and this ecology may have played an important role in stem turtles surviving the Permian/Triassic extinction event. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Electron spin resonance dating of shells from the sambaqui (shell mound) Capelinha, Sao Paulo, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, A. [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica; Universidade do Sagrado Coracao, Bauru, SP (Brazil); Figuty, L. [Sao Paulo Univ., SP (Brazil). Museu de Arqueologia e Etnologia. Setor de Arqueologia; Baffa, O. [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica

    2006-03-15

    Capelinha is a fluvial sambaqui (Brazilian Shell Mound) located in the Ribeira Valley in the State of Sao Paulo that is being studied. It is one of the oldest sambaquis located along a river dated so far in this region. The use of ESR to date other shells stimulated our group to apply this method to the Capelinha site. Shells from land snails (Megalobulimus sp.) obtained in two levels of excavations were analyzed; one of them was in contact with a skeleton that was dated by C-14. The archaeological doses obtained were (8.05{+-}0.07) Gy and (9.50{+-}0.03) Gy. Since the last site was previously dated by C-14 (Beta -Analytics, Beta 153988) giving: 8860 +/- 60 years BP (conventional age) and 10180 to 9710 years BP (calibrated age), the archaeological dose found for this shell was used to determine the local rate of (0.93 to 0.98) mGy/year, that aggress with other surveys done in the region. Using this dose rate the age of the second shell was found to be 8.14 to 8.73 ky BP that agrees with the stratigraphy of the site. (author)

  6. Oxide Shell Reduction and Magnetic Property Changes in Core-Shell Fe Nanoclusters under Ion Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sundararajan, Jennifer A.; Kaur, Maninder; Jiang, Weilin; McCloy, John S.; Qiang, You

    2014-02-12

    Ion irradiation effects are studied on the Fe-based core-shell nanocluster (NC) films with core as Fe and shell as Fe3O4/FeO. These NC films were were deposited on Si substrates to thickness of ~0.5 micrometers using a NC deposition system. The films were irradiated at room temperature with 5.5 MeV Si2+ ions to ion fluences of 1015 and 1016 ions/cm2. It is found that the irradiation induces grain growth, Fe valence reduction in the shell, and crystallization of Fe3N. The nature and mechanism of oxide shell reduction and composition dependence after irradiation were studied by synthesizing additional NC films of Fe3O4 and FeO+Fe3N and irradiating them under the same conditions. The presence of nanocrystalline Fe is found to be a major factor for the oxide shell reduction. The surface morphologies of these films show dramatic changes in the microstructures due to cluster growth and agglomeration as a result of ion irradiation.

  7. Signatures of shell evolution in alpha decay across the N = 126 shell closure

    Science.gov (United States)

    Rui-Wang; Wang, Rui-Yao; Qian, Yi-Bin; Ren, Zhong-Zhou

    2017-06-01

    Within the alpha-cluster model, we particularly investigate the alpha decay of exotic nuclei in the vicinity of the N = 126 neutron shell plus the Z = 82 proton shell. The systematics of alpha-preformation probability (P α ), as an indicator of the shell effect, is deduced from the ratio of the experimental decay width to the calculated one. Through the comparative analysis of the P α trend in the N = 124-130 isotonic chain, the N = 126 and Z = 82 shell closures are believed to strongly affect the formation of the alpha particle before its penetration. Additionally, the P α variety in Po and Rn isotopes is presented as another proof for such an influence. More importantly, it may be concluded that the expected neutron (or proton) shell effect gradually fades away along with the increasing valence proton (or neutron) number. The odd-even staggering presented in the P α value is also discussed. Supported by National Natural Science Foundation of China (11375086, 11535004, 11605089, 11120101005), Natural Science Youth Fund of Jiangsu Province (BK20150762), Fundamental Research Funds for the Central Universities (30916011339), 973 National Major State Basic Research and Development Program of China (2013CB834400), and a Project Funded by the Priority Academic Programme Development of JiangSu Higher Education Institutions (PAPD)

  8. Switching closed-shell to open-shell phenalenyl: toward designing electroactive materials.

    Science.gov (United States)

    Pariyar, Anand; Vijaykumar, Gonela; Bhunia, Mrinal; Dey, Suman Kr; Singh, Santosh K; Kurungot, Sreekumar; Mandal, Swadhin K

    2015-05-13

    Open-shell phenalenyl chemistry started more than half a century back, and the first solid-state phenalenyl radical was realized only 15 years ago highlighting the synthetic challenges associated in stabilizing carbon-based radical chemistry, though it has great promise as building blocks for molecular electronics and multifunctional materials. Alternatively, stable closed-shell phenalenyl has tremendous potential as it can be utilized to create an in situ open-shell state by external spin injection. In the present study, we have designed a closed-shell phenalenyl-based iron(III) complex, Fe(III)(PLY)3 (PLY-H = 9-hydroxyphenalenone) displaying an excellent electrocatalytic property as cathode material for one compartment membraneless H2O2 fuel cell. The power density output of Fe(III)(PLY)3 is nearly 15-fold higher than the structurally related model compound Fe(III)(acac)3 (acac = acetylacetonate) and nearly 140-fold higher than an earlier reported mononuclear Fe(III) complex, Fe(III)(Pc)Cl (Pc = pthalocyaninate), highlighting the role of switchable closed-shell phenalenyl moiety for electron-transfer process in designing electroactive materials.

  9. Research on cracking mechanism of the thin shell mould in expendable pattern shell casting during pattern removal process

    Directory of Open Access Journals (Sweden)

    Jiang Wenming

    2010-08-01

    Full Text Available Aiming at the cracking phenomenon of the thin shell mould in the expendable pattern shell casting during the pattern removing process, some systemic researches are presented. The influence of the pattern removing method and temperature on the pattern removing were investigated. The shell mould cracking mechanism was analyzed by using thermo-gravimetric analysis (TGA, and combining the temperature field and the volume change of the expanded polystyrene (EPS foam pattern being tested. The results indicated that the shell mould was not easily cracked when the pattern removing process was carried out with the furnace being heated little by little because of the shell slowly shrinking with dehydration and shell strength gradually increasing. The shell mould was soon destroyed when it was set directly into the furnace at above 400 ℃ because of the thin shell mould rapidly shrinking and the foam pattern hindering. However, the shell mould had no cracking when it had been preheated for a long time even if the furnace temperature was above 400 篊 and the shell was put into the furnace directly. Moreover, when the shell mould was directly set into the furnace at lower temperatures, 250 to 300 ℃, the shell would shrink slowly and the foam pattern would stay at the maximum expansion stage temperature of 100 to 110 ℃ for a long time; and the shell mould would experience an expansion force from the foam pattern for a long time. The expansion force is related to the pattern removing temperature, holding time, foam pattern thickness and density. Therefore, the foam pattern with higher density could make the shell crack.

  10. Water-Protein Interactions: The Secret of Protein Dynamics

    Directory of Open Access Journals (Sweden)

    Silvia Martini

    2013-01-01

    Full Text Available Water-protein interactions help to maintain flexible conformation conditions which are required for multifunctional protein recognition processes. The intimate relationship between the protein surface and hydration water can be analyzed by studying experimental water properties measured in protein systems in solution. In particular, proteins in solution modify the structure and the dynamics of the bulk water at the solute-solvent interface. The ordering effects of proteins on hydration water are extended for several angstroms. In this paper we propose a method for analyzing the dynamical properties of the water molecules present in the hydration shells of proteins. The approach is based on the analysis of the effects of protein-solvent interactions on water protons NMR relaxation parameters. NMR relaxation parameters, especially the nonselective (R1NS and selective (R1SE spin-lattice relaxation rates of water protons, are useful for investigating the solvent dynamics at the macromolecule-solvent interfaces as well as the perturbation effects caused by the water-macromolecule interactions on the solvent dynamical properties. In this paper we demonstrate that Nuclear Magnetic Resonance Spectroscopy can be used to determine the dynamical contributions of proteins to the water molecules belonging to their hydration shells.

  11. Reference gene selection for gene expression study in shell gland and spleen of laying hens challenged with infectious bronchitis virus.

    Science.gov (United States)

    Khan, Samiullah; Roberts, Juliet; Wu, Shu-Biao

    2017-10-27

    Ten reference genes were investigated for normalisation of candidate target gene expression data in the shell gland and spleen of laying hens challenged with two strains of infectious bronchitis virus (IBV). Data were analysed with geNorm, NormFinder and BestKeeper, and a comprehensive ranking (geomean) was calculated. In the combined data set of IBV challenged shell gland samples, the comprehensive ranking showed TATA-box binding protein (TBP) and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ) as the two most stable, and succinate dehydrogenase complex flavoprotein subunit A (SDHA) and albumin (ALB) as the two least stable reference genes. In the spleen, and in the combined data set of the shell gland and spleen, the two most stable and the two least stable reference genes were TBP and YWHAZ, and ribosomal protein L4 (RPL4) and ALB, respectively. Different ranking has been due to different algorithms. Validation studies showed that the use of the two most stable reference genes produced accurate and more robust gene expression data. The two most and least stable reference genes obtained in the study, were further used for candidate target gene expression data normalisation of the shell gland and spleen under an IBV infection model.

  12. Waltzing route toward double-helix formation in cholesteric shells

    Science.gov (United States)

    Darmon, Alexandre; Benzaquen, Michael; Seč, David; Čopar, Simon; Dauchot, Olivier; Lopez-Leon, Teresa

    2016-01-01

    Liquid crystals, when confined to a spherical shell, offer fascinating possibilities for producing artificial mesoscopic atoms, which could then self-assemble into materials structured at a nanoscale, such as photonic crystals or metamaterials. The spherical curvature of the shell imposes topological constraints in the molecular ordering of the liquid crystal, resulting in the formation of defects. Controlling the number of defects, that is, the shell valency, and their positions, is a key success factor for the realization of those materials. Liquid crystals with helical cholesteric order offer a promising, yet unexplored way of controlling the shell defect configuration. In this paper, we study cholesteric shells with monovalent and bivalent defect configurations. By bringing together experiments and numerical simulations, we show that the defects appearing in these two configurations have a complex inner structure, as recently reported for simulated droplets. Bivalent shells possess two highly structured defects, which are composed of a number of smaller defect rings that pile up through the shell. Monovalent shells have a single radial defect, which is composed of two nonsingular defect lines that wind around each other in a double-helix structure. The stability of the bivalent configuration against the monovalent one is controlled by c = h/p, where h is the shell thickness and p the cholesteric helical pitch. By playing with the shell geometry, we can trigger the transition between the two configurations. This transition involves a fascinating waltz dynamics, where the two defects come closer while turning around each other. PMID:27493221

  13. [Methods for extracting chitin from shrimp shell waste].

    Science.gov (United States)

    Pinelli Saavedra, A; Toledo Guillén, A R; Esquerra Brauer, I R; Luviano Silva, A R; Higuera Ciapara, I

    1998-03-01

    Shrimp shell waste obtained from several industrial freezing-purchasing plants of Guaymas, Sonora, Méx., was studied as a source of value-added chitin biopolymers. In part I, the effect of different isolation conditions on the chitin yield and chemical characteristic, was investigated. Protein and mineral matter were removed with alkali and acid treatment respectively. A 2x2x3 factorial a way of a completely randomized design was used in order to evaluate the effect of the process variables, namely, NaOH concentration (0.4 and 2%) during the deproteinization and HCl concentration (3 and 5%) carried out at 40, 50 and 60 degrees C. The best processing conditions were desproteinization with 2% NaOH, and demineralization with 5% HCl at 50 degrees C, in terms of final ash and chitin content and yield. In part II, a selection of methods of isolation of chitin and chitosan was studied in order to establish the best conditions for scaling up a process to pilot plant level. The processing conditions were selected from reported methods as well as from those defined in part I. Purity of chitin samples was determined in terms of residual protein, ash and chitin each one to produce high quality chitin (0.00% protein, 0.01% ash, 99.99% chitin) and standard grade chitin (0.00% protein, 0.09% ash, 99.13% chitin). Both products were considered as of adequate quality and their manufacture process could be scaled up by further optimization of the processing conditions.

  14. Molecular Dissection of the Forces Responsible for Viral Capsid Assembly and Stabilization by Decoration Proteins.

    Science.gov (United States)

    Lambert, Shannon; Yang, Qin; De Angeles, Rolando; Chang, Jenny R; Ortega, Marcos; Davis, Christal; Catalano, Carlos Enrique

    2017-02-07

    Complex double-stranded DNA viruses utilize a terminase enzyme to package their genomes into a preassembled procapsid shell. DNA packaging triggers a major conformational change in the proteins assembled into the shell and most often subsequent addition of a decoration protein that is required to stabilize the structure. In bacteriophage λ, DNA packaging drives a procapsid expansion transition to afford a larger but fragile shell. The gpD decoration protein adds to the expanded shell as trimeric spikes at each of the 140 three-fold axes. The spikes provide mechanical strength to the shell such that it can withstand the tremendous internal forces generated by the packaged DNA in addition to environmental insults. Hydrophobic, electrostatic, and aromatic-proline noncovalent interactions have been proposed to mediate gpD trimer spike assembly at the expanded shell surface. Here, we directly examine each of these interactions and demonstrate that hydrophobic interactions play the dominant role. In the course of this study, we unexpectedly found that Trp308 in the λ major capsid protein (gpE) plays a critical role in shell assembly. The gpE-W308A mutation affords a soluble, natively folded protein that does not further assemble into a procapsid shell, despite the fact that it retains binding interactions with the scaffolding protein, the shell assembly chaparone protein. The data support a model in which the λ procapsid shell assembles via cooperative interaction of monomeric capsid proteins, as observed in the herpesviruses and phages such as P22. The significance of the results with respect to capsid assembly, maturation, and stability is discussed.

  15. Ants as shell collectors: notes on land snail shells found around ant nests

    Directory of Open Access Journals (Sweden)

    Barna Páll-Gergely

    2009-03-01

    Full Text Available We investigated the shell collecting activities of harvester ants (Messor spp. in semi-arid grasslands and shrubs in Turkey. We found eleven species of snails in the area, two of them were not collected by ants. Eight – mainly small sized – snail species were found on ant nests in a habitat characterized by shrubs, three in rocky grassland and four in a grassland habitat. Some shells (e.g. Chondrus zebrula tantalus, Multidentula ovularis might be taken into the nests, and we hypothesise that some of these snail species are consumed by ants (Monacha spp.. From a fauna inventory perspective, shell collecting activities of harvester ant may help malacologists to find snail species which are normally hidden for a specialist (e.g. Oxychilus hydatinus, Cecilioides spp. due to their special habits.

  16. Effects of Shell-Buckling Knockdown Factors in Large Cylindrical Shells

    Science.gov (United States)

    Hrinda, Glenn A.

    2012-01-01

    Shell-buckling knockdown factors (SBKF) have been used in large cylindrical shell structures to account for uncertainty in buckling loads. As the diameter of the cylinder increases, achieving the manufacturing tolerances becomes increasingly more difficult. Knockdown factors account for manufacturing imperfections in the shell geometry by decreasing the allowable buckling load of the cylinder. In this paper, large-diameter (33 ft) cylinders are investigated by using various SBKF's. An investigation that is based on finite-element analysis (FEA) is used to develop design sensitivity relationships. Different manufacturing imperfections are modeled into a perfect cylinder to investigate the effects of these imperfections on buckling. The analysis results may be applicable to large- diameter rockets, cylindrical tower structures, bulk storage tanks, and silos.

  17. Optimised photocatalytic hydrogen production using core–shell AuPd promoters with controlled shell thickness

    DEFF Research Database (Denmark)

    Jones, Wilm; Su, Ren; Wells, Peter

    2014-01-01

    The development of efficient photocatalytic routines for producing hydrogen is of great importance as society moves away from energy sources derived from fossil fuels. Recent studies have identified that the addition of metal nanoparticles to TiO2 greatly enhances the photocatalytic performance...... on photocatalytic performance remains unclear. Here we report the synthesis of core–shell structured AuPd NPs with the controlled deposition of one and two monolayers (ML) equivalent of Pd onto Au NPs by colloidal and photodeposition methods. We have determined the shell composition and thickness...... of the nanoparticles by a combination of X-ray absorption fine structure and X-ray photoelectron spectroscopy. Photocatalytic ethanol reforming showed that the core–shell structured Au–Pd promoters supported on TiO2 exhibit enhanced activity compared to that of monometallic Au and Pd as promoters, whilst the core...

  18. Social interaction reward decreases p38 activation in the nucleus accumbens shell of rats.

    Science.gov (United States)

    Salti, Ahmad; Kummer, Kai K; Sadangi, Chinmaya; Dechant, Georg; Saria, Alois; El Rawas, Rana

    2015-12-01

    We have previously shown that animals acquired robust conditioned place preference (CPP) to either social interaction alone or cocaine alone. Recently it has been reported that drugs of abuse abnormally activated p38, a member of mitogen-activated protein kinase family, in the nucleus accumbens. In this study, we aimed to investigate the expression of the activated form of p38 (pp38) in the nucleus accumbens shell and core of rats expressing either cocaine CPP or social interaction CPP 1 h, 2 h and 24 h after the CPP test. We hypothesized that cocaine CPP will increase pp38 in the nucleus accumbens shell/core as compared to social interaction CPP. Surprisingly, we found that 24 h after social interaction CPP, pp38 neuronal levels were decreased in the nucleus accumbens shell to the level of naïve rats. Control saline rats that received saline in both compartments of the CPP apparatus and cocaine CPP rats showed similar enhanced p38 activation as compared to naïve and social interaction CPP rats. We also found that the percentage of neurons expressing dopaminergic receptor D2R and pp38 was also decreased in the shell of the nucleus accumbens of social interaction CPP rats as compared to controls. Given the emerging role of p38 in stress/anxiety behaviors, these results suggest that (1) social interaction reward has anti-stress effects; (2) cocaine conditioning per se does not affect p38 activation and that (3) marginal stress is sufficient to induce p38 activation in the shell of the nucleus accumbens. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Evolution of nacre: biochemistry and proteomics of the shell organic matrix of the cephalopod Nautilus macromphalus.

    Science.gov (United States)

    Marie, Benjamin; Marin, Frédéric; Marie, Arul; Bédouet, Laurent; Dubost, Lionel; Alcaraz, Gérard; Milet, Christian; Luquet, Gilles

    2009-06-15

    In mollusks, one of the most widely studied shell textures is nacre, the lustrous aragonitic layer that constitutes the internal components of the shells of several bivalves, a few gastropods,and one cephalopod: the nautilus. Nacre contains a minor organic fraction, which displays a wide range of functions in relation to the biomineralization process. Here, we have biochemically characterized the nacre matrix of the cephalopod Nautilus macromphalus. The acid-soluble matrix contains a mixture of polydisperse and discrete proteins and glycoproteins, which interact with the formation of calcite crystals. In addition, a few bind calcium ions. Furthermore, we have used a proteomic approach,which was applied to the acetic acid-soluble and -insoluble shell matrices, as well as to spots obtained after 2D gel electrophoresis. Our data demonstrate that the insoluble and soluble matrices, although different in their bulk monosaccharide and amino acid compositions, contain numerous shared peptides. Strikingly, most of the obtained partial sequences are entirely new. A few only partly match with bivalvian nacre proteins.Our findings have implications for knowledge of the long-term evolution of molluskan nacre matrices.

  20. Distribution and shell selection by two hermit crabs in different habitats on Egyptian Red Sea Coast

    Science.gov (United States)

    El-Kareem Ismail, Tarek Gad

    2010-05-01

    The present work aims to assess the spatial distribution, analyze shell utilization, shell fitness and determine the effect of coexistence of two hermit crabs Calcinus latens and Clibanarius signatus on used shell resources in various habitats on the Red Sea Coast. Also, to determine the choice of shells and investigate the shell species preference of C. latens and C. signatus in the laboratory. The hermit crabs C. latens and C. signatus were found to occupy shells of 39 gastropod species. The most commonly occupied gastropod shells are those belonging to genera Strombus, Nerita, Cerithium and Planaxis. The results showed that crab individuals utilized mainly the shell with elongate aperture. Laboratory experiments showed that two crab species preferred shells of Strombus followed by Cerithium and Nerita when offered shells of nearly similar size (optimal). Crab individuals showed a significant preference for optimal sized shells when given suboptimal shells as an alternative choice. Also, the hermit crabs avoid damaged shells when given a choice of optimal sized damaged shell and optimal sized intact one. In addition, two hermit crab species chose shells of smaller than optimal size when given a choice of damaged optimal sized shells and smaller intact ones. On the other hand, field observations showed that most crab individuals lived in adequate sized shells. The present data conclude that shell selection by hermit crabs C. latens and C. signatus depends mostly on shell internal volume, shell quality and shell aperture size than other factors, because they provide a maximum protection for hermit crabs.

  1. Safety studies conducted on pecan shell fiber, a food ingredient produced from ground pecan shells

    OpenAIRE

    Laurie Dolan; Ray Matulka; Jeffrey Worn; John Nizio

    2016-01-01

    Use of pecan shell fiber in human food is presently limited, but could increase pending demonstration of safety. In a 91-day rat study, pecan shell fiber was administered at dietary concentrations of 0 (control), 50 000, 100 000 or 150 000 ppm. There was no effect of the ingredient on body weight of males or females or food consumption of females. Statistically significant increases in food consumption were observed throughout the study in 100 000 and 150 000 ppm males, resulting in intermitt...

  2. Windows PowerShell Cookbook The Complete Guide to Scripting Microsoft's New Command Shell

    CERN Document Server

    Holmes, Lee

    2010-01-01

    Do you know how to use Windows PowerShell to navigate the filesystem and manage files and folders? Or how to retrieve a web page? This introduction to the PowerShell language and scripting environment provides more than 430 task-oriented recipes to help you solve the most complex and pressing problems, and includes more than 100 tried-and-tested scripts that intermediate to advanced system administrators can copy and use immediately. You'll find hands-on tutorials on fundamentals, common tasks, and administrative jobs that you can apply whether you're on a client or server version of Windows

  3. Radar attenuation in Europa's ice shell: Obstacles and opportunities for constraining the shell thickness and its thermal structure

    Science.gov (United States)

    Kalousová, Klára; Schroeder, Dustin M.; Soderlund, Krista M.

    2017-03-01

    Young surface and possible recent endogenic activity make Europa one of the most exciting solar system bodies and a primary target for spacecraft exploration. Future Europa missions are expected to carry ice-penetrating radar instruments designed to investigate its subsurface thermophysical structure. Several authors have addressed the radar sounders' performance at icy moons, often ignoring the complex structure of a realistic ice shell. Here we explore the variation in two-way radar attenuation for a variety of potential thermal structures of Europa's shell (determined by reference viscosity, activation energy, tidal heating, surface temperature, and shell thickness) as well as for low and high loss temperature-dependent attenuation model. We found that (i) for all investigated ice shell thicknesses (5-30 km), the radar sounder will penetrate between 15% and 100% of the total thickness, (ii) the maximum penetration depth varies laterally, with deepest penetration possible through cold downwellings, (iii) direct ocean detection might be possible for shells of up to 15 km thick if the signal travels through cold downwelling ice or the shell is conductive, (iv) even if the ice/ocean interface is not directly detected, penetration through most of the shell could constrain the deep shell structure through returns from deep non-ocean interfaces or the loss of signal itself, and (v) for all plausible ice shells, the two-way attenuation to the eutectic point is ≲30 dB which shows a robust potential for longitudinal investigation of the ice shell's shallow thermophysical structure.

  4. Intracellular Protein Delivery for Treating Breast Cancer

    Science.gov (United States)

    2014-08-01

    native forms in responses to reducing conditions such as the cytoplasm. Rationally designed non- covalent protein nanocapsules, incorporating copper-free...the tumor cells towards other various treatments ( radio - and chemotherapy) (Blagosklonny, 2002). Different strategies pursuing this goal have been...target protein to form a non- covalent shell that encapsulates the protein. The monomer acrylamide (1) is used as a general building block of the water

  5. Modelling apical constriction in epithelia using elastic shell theory.

    Science.gov (United States)

    Jones, Gareth Wyn; Chapman, S Jonathan

    2010-06-01

    Apical constriction is one of the fundamental mechanisms by which embryonic tissue is deformed, giving rise to the shape and form of the fully-developed organism. The mechanism involves a contraction of fibres embedded in the apical side of epithelial tissues, leading to an invagination or folding of the cell sheet. In this article the phenomenon is modelled mechanically by describing the epithelial sheet as an elastic shell, which contains a surface representing the continuous mesh formed from the embedded fibres. Allowing this mesh to contract, an enhanced shell theory is developed in which the stiffness and bending tensors of the shell are modified to include the fibres' stiffness, and in which the active effects of the contraction appear as body forces in the shell equilibrium equations. Numerical examples are presented at the end, including the bending of a plate and a cylindrical shell (modelling neurulation) and the invagination of a spherical shell (modelling simple gastrulation).

  6. Design criteria of launching rockets for burst aerial shells

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, T.; Takishita, Y.; Onda, T.; Shibamoto, H.; Hosaya, F. [Hosaya Kako Co. Ltd (Japan); Kubota, N. [Mitsubishi Electric Corporation (Japan)

    2000-04-01

    Rocket motors attached to large-sized aerial shells are proposed to compensate for the increase in the lifting charge in the mortar and the thickness of the shell wall. The proposal is the result of an evaluation of the performance of solid propellants to provide information useful in designing launch rockets for large-size shells. The propellants composed of ammonium perchlorate and hydroxy-terminated polybutadiene were used to evaluate the ballistic characteristics such as the relationship between propellant mass and trajectories of shells and launch rockets. In order to obtain an optimum rocket design, the evaluation also included a study of the velocity and height of the rocket motor and shell separation. A launch rocket with a large-sized shell (84.5 cm in diameter) was designed to verify the effectiveness of this class of launch system. 2 refs., 6 figs.

  7. Shell selection of hermit crabs is influenced by fluid drag

    Science.gov (United States)

    Casillas, Barbara; Ledesma, Rene; Alcaraz, Guillermina; Zenit, Roberto

    2010-11-01

    The flow around gastropod shells used by hermit crabs (Calcinus californiensis) was visualized experimentally. These crabs choose their shells according to many factors; we found that the choice of shell (shape and weight) is directly related to the drag caused over them by the exposure to wave action. Tests were conducted in a wind tunnel to investigate flow differences for shells of various shapes. A particle image velocimetry (PIV) system was used to visualize the flow field. The images above show the flow field around two types of shells (Thais speciosa and Nerita scabircosta) for Reynolds numbers of O(10^5). Using a control volume analysis, the drag coefficient was inferred. Several shell geometries, orientations and mean flow velocities were tested. In this talk, the flow and drag force will be shown for the different arrangements. A discussion of the relation between drag and shape will be presented.

  8. Pair of null gravitating shells: III. Algebra of Dirac's observables

    CERN Document Server

    Kouletsis, I

    2002-01-01

    The study of the two-shell system started in 'pair of null gravitating shells I and II' is continued. The pull back of the Liouville form to the constraint surface, which contains complete information about the Poisson brackets of Dirac observables, is computed in the singular double-null Eddington-Finkelstein (DNEF) gauge. The resulting formula shows that the variables conjugate to the Schwarzschild masses of the intershell spacetimes are simple combinations of the values of the DNEF coordinates on these spacetimes at the shells. The formula is valid for any number of in- and outgoing shells. After applying it to the two-shell system, the symplectic form is calculated for each component of the physical phase space; regular coordinates are found, defining it as a symplectic manifold. The symplectic transformation between the initial and final values of observables for the shell-crossing case is given.

  9. Multidisciplinary optimization of a stiffened shell by genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Mehrabani, Mahdi Maghsoudi; Jafari, Ali Asghar [K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Azadi, Mohammad [Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2012-02-15

    Vibration analysis of simply supported rotating cross-ply laminated stiffened cylindrical shell is performed using an energy approach which includes variational and averaging method. The stiffeners include rings and stringers. The equations are obtained by Rayleigh-Ritz method and Sander's relations. To validate the present method, the results are compared to the results available in other literatures. A good adoption is observed in different type of results including isotropic shells, rotating laminated shells, stiffened isotropic shells and stiffened laminated shells. Then, the optimization of parameters due to shell and stiffeners is conducted by genetic algorithm (GA) method under weight and frequency constraints. Stiffener shape, material properties and dimensions are also optimized.

  10. Vortex shells in mesoscopic triangles of amorphous superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kokubo, N., E-mail: kokubo@uec.ac.jp [Department of Engineering Science, University of Electro-Communications, Cho-fugaoka 1-5-1, Cho-fu, Tokyo 182-8585 (Japan); Miyahara, H. [Department of Engineering Science, University of Electro-Communications, Cho-fugaoka 1-5-1, Cho-fu, Tokyo 182-8585 (Japan); Okayasu, S. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Nojima, T. [Institute for Materials Research,Tohoku University, Sendai 980-8577 (Japan)

    2016-11-15

    Highlights: • Direct imaging of multi-vortex states was made in mesoscopic equilateral triangles. • Commensurate and incommensurate vortex states were observed with metastability. • Formation of triangular multiple shells with alternative vortex packing was discussed. • Occupations of vortices in triangular multiple shells are not monotonic with vorticity. • Packing sequence of triangular shells was compared with ones of square and circle shells. - Abstract: Direct observation of vortex states confined in mesoscopic regular triangle dots of amorphous Mo–Ge thin films was made with a scanning superconducting quantum interference device microscope. The observed magnetic images illustrate clearly how vortices are distributed over the triangle dots by forming not only commensurate triangular clusters, but also unique patterns imposed by incommensurability. We discuss the results in terms of vortex shells and construct the packing sequence of vortices in the multiple shell structure.

  11. Semi-analytical postbuckling strength analysis of anisotropic shell structures

    Science.gov (United States)

    Brauns, J.; Skadins, U.

    2017-10-01

    An investigation of the forms of shell buckling has been the subject of many experimental and theoretical studies. On the basis of analysing of the forms of equilibrium it is possible to determine the stability of a structure as a whole, especially if a statistical analysis is used. The numerical analysis of the shells considered is based on a semi-analytical treatment of displacement and stress field. This method is proven for static and dynamic nonlinear analysis of general shells of revolution and leads to important advantages in efficiency and accuracy compared with a common finite element analysis, especially in the case of geometrically imperfect shells. The method developed permits determination of stresses in a shell by means of an experimental deflection function. Failure criterion allows predicting the sites of fracture and maintenance of a shell upon loss of stability.

  12. Facile production of chitin from crab shells using ionic liquid and citric acid.

    Science.gov (United States)

    Setoguchi, Tatsuya; Kato, Takeshi; Yamamoto, Kazuya; Kadokawa, Jun-ichi

    2012-04-01

    Facile production of chitin from crab shells was performed by direct extraction using an ionic liquid, 1-allyl-3-methylimidazolium bromide (AMIMBr), followed by demineralization using citric acid. First, dried crab shells were treated with AMIMBr at elevated temperatures to extract chitin. Supernatants separated by centrifugation were then subjected to a chelating treatment with an aqueous solution of citric acid to achieve demineralization. The precipitated extracts were filtered and dried. The isolated material was subjected to X-ray diffraction, IR, (1)H NMR, and energy-dispersive X-ray spectroscopy, and thermal gravimetric analysis; the results indicated the structure of chitin. On the basis of the IR spectra, the degree of deacetylation in the samples obtained was calculated to be <7%. Furthermore, the protein content was <0.1% and the M(w) values were 0.7-2.2×10(5). Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Comparative study on the characteristics of egg shells of some bird species

    Directory of Open Access Journals (Sweden)

    E.I. Adeyeye

    2009-08-01

    Full Text Available Egg shells of francolin, duck and turkey were compared for their physical and chemical characteristics. The range of weight of eggs and shells, respectively, were 25.2−74.9 and 5.23−9.40 g. Protein content was between 65.2−73.1 g/100 g; crude fat ranged from 2.54−8.54 g/100 g; crude fibre was low with value range of 0.04−1.14 g/100 g; ash content range was 3.44−7.56 g/100 g. Total and essential amino acids, respectively, were between 189-353 and 98.1−188 mg/g and threonine was limiting. Gross energy ranged from 1556−1687 kJ/100 g. High concentrations of minerals were detected.

  14. Polymorphism of CaCO{sub 3} and microstructure of the shell of a Brazilian invasive Mollusc (Limnoperna fortunei)

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura Filho, Arnaldo; Almeida, Arthur Correa de; Riera, Hernan Espinoza; Cardoso, Antonio Valadao, E-mail: nakamuraaf@gmail.com [Rede Tematica em Engenharia de Materiais (REDEMAT), Ouro Preto, MG (Brazil); Araujo, Joao Locke Ferreira de [Centro de Bioengenharia de Especies Invasoras de Hidreletricas(CBEIH), Belo Horizonte, MG (Brazil); Gouveia, Vitor Jose Pinto [Fundacao Centro Tecnologico de Minas Gerais (CETEC), Belo Horizonte, MG (Brazil); Carvalho, Marcela David de [Companhia Energetica de Minas Gerais (CEMIG), Belo Horizonte, MG (Brazil)

    2014-08-15

    Applying the theories of Materials Science and Engineering to describe the composition and hierarchy of microstructures that comprise biological systems could help the search for new materials and results in a deeper insight into evolutionary processes. The layered microstructure that makes up the freshwater bivalve Limnoperna fortunei shell, an invasive specie in Brazil, was investigated utilizing SEM and AFM for the determination of the morphology and organization of the layers; and XRD was used to determine the crystalline phases of the calcium carbonate (CaCO{sub 3}) present in the shell. The presence of the polymorphs calcite and aragonite were confirmed and the calcite is present only on the external side of the shell. The shell of L. fortunei is composed of two layers of aragonite with distinct microstructures (the aragonite prismatic layer and the aragonite sheet nacreous layer) and the periostracum (a protein layer that covers and protects the ceramic part of the shell). A new morphology of the calcite layer was found, below the periostracum, without defined form, albeit crystal (author)

  15. Antiviral effect of gold/copper sulfide core-shell nanoparticles on GI.1 human norovirus virus like particles (VLPS)

    Science.gov (United States)

    Alston, Brittny C.

    This research studied the effects of the Au/CuS core shell nanoparticles on norovirus (NoV) VLPs in efforts to disrupt the capsids and ultimately inactivate the virus. The results of the study showed that treatment of the GI.1 norovirus VLP ranging from 0.37-5.6ug/mL5.6 microg/mL with Au/CuS core shell nanoparticle concentrations ranging from 1%-25% (v/v) was effective in altering and completely inactivating the viral capsid of the VLP. The likely mechanism of action of the nanoparticles was that the particles degraded the capsid protein and disrupted the viral capsids. This mechanism of action has been supported by the TEM imaging results and Western blotting analysis of capsid protein which showed that the viral capsids were compromised and the major capsid protein degraded.

  16. Structural Acoustic Physics Based Modeling of Curved Composite Shells

    Science.gov (United States)

    2017-09-19

    NUWC-NPT Technical Report 12,236 19 September 2017 Structural Acoustic Physics -Based Modeling of Curved Composite Shells Rachel E. Hesse...SUBTITLE Structural Acoustic Physics -Based Modeling of Curved Composite Shells 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...study was to use physics -based modeling (PBM) to investigate wave propagations through curved shells that are subjected to acoustic excitation. An

  17. Graded core/shell semiconductor nanorods and nanorod barcodes

    Science.gov (United States)

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2010-12-14

    Graded core/shell semiconductor nanorods and shaped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  18. On the accuracy of the asymptotic theory for cylindrical shells

    DEFF Research Database (Denmark)

    Niordson, Frithiof; Niordson, Christian

    1999-01-01

    We study the accuracy of the lowest-order bending theory of shells, derived from an asymptotic expansion of the three-dimensional theory of elasticity, by comparing the results of this theory for a cylindrical shell with clamped ends with the results of a solution to the three-dimensional problem....... The results are also compared with those of some commonly used engineering shell theories....

  19. Plasmonic and Magnetically Responsive Gold ShellMagnetic Nanorod Hybrids

    Science.gov (United States)

    2017-10-10

    UV-vis spectrum of gold-seeded (orange) and gold- coated (yellow) silica–iron oxide core-shell nanoparticles produced with commercially available...spectrum of gold-seeded (orange) and gold- coated (yellow) silica–iron oxide core-shell nanoparticles produced with commercially available (left) or... coated iron oxide core-shell nanoparticles stabilized using thiolated sodium alginate for biomedical applications. Mat Sci Eng: C. 2017;80:274–281

  20. Failure of cement-in-shell acetabular liner exchange.

    Science.gov (United States)

    Blakey, Caroline M; Biant, Leela C; Kavanagh, Thomas G; Field, Richard E

    2010-01-01

    Cement-in-shell acetabular liner exchange is a revision surgery option for cases of total hip arthroplasty (THA) with polyethylene wear where direct liner exchange is not possible. A replacement liner is cemented into a well fixed uncemented acetabular shell, avoiding the morbidity associated with acetabular shell component revision. We present a case of dissociation of an acetabular liner at the cement-liner interface, three years following liner exchange without radiographic evidence to indicate the diagnosis.

  1. Vibrations of structurally orthotropic laminated shells under thermal power loading

    Science.gov (United States)

    Kogan, E. A.; Lopanitsyn, E. A.

    2017-05-01

    On the basis of the linearized version of equations obtained in a geometrically nonlinear statement and describing the nonaxisymmetric strain of nonshallow sandwich structure orthotropic shells under thermal power loading, the Rayleigh-Ritz method with polynomial approximation of displacements and shear strains is used to solve the problem of small free vibrations of axisymmetrically thermally preloaded freely supported three-layer conical shell. The causes of dynamical fracture of the shell under study are revealed.

  2. A Solution Method for Nonlinear Dynamic Analysis of Shell Structures

    Science.gov (United States)

    1984-10-01

    continuum mechanics theory and it is applicable to the analysis of thin and thick shells. The formulation of the element and the solutions to...Linear analysis of a cylindrical ( Scordelis -Lo) shell 26 4.3 Linear analysis of a pinched cylinder 26 4.4 Large deflection analysis of a...latter approach has the advantage of being independent of any particular shell theory , and this approach was used in ref. [3] to formulate a general

  3. Synthesis of AlNiCo core/shell nanopowders

    Science.gov (United States)

    Genc, A. M.; Akdeniz, M. V.; Ozturk, T.; Kalay, Y. E.

    2016-11-01

    Magnetic core/shell nanostructures have been recently received much interest owing to their utmost potential in permanent magnetic applications. In the present work, AlNiCo permanent magnet powders were synthesized by ball milling and a core/shell nanostructure was obtained using RF induced plasma. The effects of particle size and nanoshell structure on the magnetic properties were investigated in details. The coercivity of AlNiCo powders was found to increase with decreasing particle size, exclusively nanopowders encapsulated with Fe3O4 shell showed the highest coercivity values. The shell structure produced during plasma reaction was found to form a resistant layer against oxidation of metallic nanoparticles.

  4. Plasticity around an Axial Surface Crack in a Cylindrical Shell

    DEFF Research Database (Denmark)

    Krenk, Steen

    1979-01-01

    field in an axially cracked cylindrical shell arising from use of classical eighth order shallow shell theory is removed when use is made of a tenth order shell theory which accounts for transverse shear deformations. Although the membrane stresses are only moderately affected, the influence...... and Ratwani,3–5 it generalises Dugdale's assumption of a concentrated yield zone in the plane of the crack but, contrary to that model, transverse shear effects are included and a continuous stress distribution is assumed in the yield zone. The inherent difficulties arising from the use of shell theory...

  5. Theory of elastic thin shells solid and structural mechanics

    CERN Document Server

    Gol'Denveizer, A L; Dryden, H L

    1961-01-01

    Theory of Elastic Thin Shells discusses the mathematical foundations of shell theory and the approximate methods of solution. The present volume was originally published in Russian in 1953, and remains the only text which formulates as completely as possible the different sets of basic equations and various approximate methods of shell analysis emphasizing asymptotic integration. The book is organized into five parts. Part I presents the general formulation and equations of the theory of shells, which are based on the well-known hypothesis of the preservation of the normal element. Part II is

  6. Some Differential Geometric Relations in the Elastic Shell

    Directory of Open Access Journals (Sweden)

    Xiaoqin Shen

    2016-01-01

    Full Text Available The theory of the elastic shells is one of the most important parts of the theory of solid mechanics. The elastic shell can be described with its middle surface; that is, the three-dimensional elastic shell with equal thickness comprises a series of overlying surfaces like middle surface. In this paper, the differential geometric relations between elastic shell and its middle surface are provided under the curvilinear coordinate systems, which are very important for forming two-dimensional linear and nonlinear elastic shell models. Concretely, the metric tensors, the determinant of metric matrix field, the Christoffel symbols, and Riemann tensors on the three-dimensional elasticity are expressed by those on the two-dimensional middle surface, which are featured by the asymptotic expressions with respect to the variable in the direction of thickness of the shell. Thus, the novelty of this work is that we can further split three-dimensional mechanics equations into two-dimensional variation problems. Finally, two kinds of special shells, hemispherical shell and semicylindrical shell, are provided as the examples.

  7. Gravitational collapse of a cylindrical null shell in vacuum

    Directory of Open Access Journals (Sweden)

    S. Khakshournia

    2008-03-01

    Full Text Available   Barrabès-Israel null shell formalism is used to study the gravitational collapse of a thin cylindrical null shell in vacuum. In general the lightlike matter shell whose history coincides with a null hypersurface is characterized by a surface energy density. In addition, a gravitational impulsive wave is present on this null hypersurface whose generators admit both the shear and expansion. In the case of imposing the cylindrical flatness the surface energy-momentum tensor of the matter shell on the null hypersurface vanishes and the null hyper- surface is just the history of the gravitational wave .

  8. Comparison of HMOX1 expression and enzyme activity in blue-shelled chickens and brown-shelled chickens

    Directory of Open Access Journals (Sweden)

    ZhePeng Wang

    2013-01-01

    Full Text Available Blue egg coloring is attributed to biliverdin derived from the oxidative degradation of heme through catalysis by heme oxygenase (HO. The pigment is secreted into the eggshell by the shell gland. There is uncertainty as to whether the pigment is synthesized in the shell gland or in other tissues. To investigate the site of pigment biosynthesis, the expression of heme oxygenase (decycling 1 (HMOX1, a gene encoding HO, and HO activity in liver and spleen were compared between blue-shelled chickens (n=12 and brown-shelled chickens (n=12. There were no significant differences in HMOX1 expression and HO activity in these tissues between the two groups. Since the liver and spleen, two important sites outside the shell gland where heme is degraded into biliverdin, CO and Fe2+, did not differ in HO expression and activity we conclude that the pigment is most likely synthesized in the shell gland.

  9. Free vibrations of circular cylindrical shells

    CERN Document Server

    Armenàkas, Anthony E; Herrmann, George

    1969-01-01

    Free Vibrations of Circular Cylindrical Shells deals with thin-walled structures that undergo dynamic loads application, thereby resulting in some vibrations. Part I discusses the treatment of problems associated with the propagation of plane harmonic waves in a hollow circular cylinder. In such search for solutions, the text employs the framework of the three-dimensional theory of elasticity. The text explains the use of tables of natural frequencies and graphs of representative mode shapes of harmonic elastic waves bounding in an infinitely long isotropic hollow cylinder. The tables are

  10. The structural acoustic properties of stiffened shells

    DEFF Research Database (Denmark)

    Luan, Yu

    2008-01-01

    . This is important when a number of stiffened plates are combined in a complicated structure composed of many plates. However, whereas the equivalent plate theory is well established there is no similar established theory for stiffened shells. This paper investigates the mechanical and structural acoustic properties......Plates stiffened with ribs can be modeled as homogeneous isotropic or orthotropic plates, and modeling such an equivalent plate numerically with, say, the finite element method is, of course, far more economical in terms of computer resources than modelling the complete, stiffened plate...

  11. Mg/Ca of Continental Ostracode Shells

    Science.gov (United States)

    Ito, E.; Forester, R. M.; Marco-Barba, J.; Mezquita, F.

    2007-12-01

    Marine ionic chemistry is thought to remain constant. This, together with the belief that marine calcifiers partition Mg/Ca in a systematic manner as functions of temperature (and Mg/Ca) of water forms the basis of the Mg/Ca thermometer. In continental settings both of these assumptions are usually not true. Continental waters contain a wide variety of solutes in absolute and relative ion concentrations. Hence, waters with identical Mg/Ca may have very different concentrations of Mg and Ca and very different anions. Here we use two examples to focus on the effects of ion chemistry on Mg/Ca partitioning in continental ostracode shells and we ignore the complexities of solute evolution, which can change Mg/Ca over timescales of minutes to millennia. Palacios-Fest and Dettman (2001) conducted a monthly study of ,Cypridopsis vidua at El Yeso Lake in Sonora, Mexico. They established a relation between temperature and average shell Mg/Ca using regression analyses on averaged data. When their Mg/Ca-temperature relation is applied to monthly ,C. vidua data from Page Pond near Cleveland, Ohio, water temperatures of -8 to -1°C are obtained. The observed Mg/Ca ranges for El Yeso Lake (0.31 to 0.46) and Page Pond (0.33 to 0.46) are similar, as are their specific conductivities (700 to 850μS for El Yeso Lake; 400 to 600μS for Page Pond). However, [Ca] is 140-260 mg/L for El Yeso, but only 70-90 mg/L for Page Pond. Page Pond data, in fact, shows a good temperature shell Mg/Ca relation for .C. vidua, but the relation is different from that at El Yeso. Hence, shell Mg/Ca is a multi-valued, family of curves function of temperature and Mg/Ca of water that depends on the [Mg] and [Ca] values in water and perhaps other factors. Our second example comes from sites near Valencia, Spain and involves shell data for ,Cyprideis torosa, an estuarine ostracode that is tolerant of a wide range of salinity and can live in continental waters as long as the carbonate alkalinity to Ca ratio is

  12. The dynamo bifurcation in rotating spherical shells

    CERN Document Server

    Morin, Vincent; 10.1142/S021797920906378X

    2010-01-01

    We investigate the nature of the dynamo bifurcation in a configuration applicable to the Earth's liquid outer core, i.e. in a rotating spherical shell with thermally driven motions. We show that the nature of the bifurcation, which can be either supercritical or subcritical or even take the form of isola (or detached lobes) strongly depends on the parameters. This dependence is described in a range of parameters numerically accessible (which unfortunately remains remote from geophysical application), and we show how the magnetic Prandtl number and the Ekman number control these transitions.

  13. Shell thickness-dependent antibacterial activity and biocompatibility of gold@silver core–shell nanoparticles

    Science.gov (United States)

    Antimicrobial activity of silver is highly effective and broad-spectrum; however, poor long-term antibacterial efficiency and cytotoxicity toward mammalian cells have restricted their applications. Here, we fabricated Au@Ag NPs with tailored shell thickness, and investigated their antibacterial acti...

  14. Unified description of pf-shell nuclei by the Monte Carlo shell model calculations

    Energy Technology Data Exchange (ETDEWEB)

    Mizusaki, Takahiro; Otsuka, Takaharu [Tokyo Univ. (Japan). Dept. of Physics; Honma, Michio

    1998-03-01

    The attempts to solve shell model by new methods are briefed. The shell model calculation by quantum Monte Carlo diagonalization which was proposed by the authors is a more practical method, and it became to be known that it can solve the problem with sufficiently good accuracy. As to the treatment of angular momentum, in the method of the authors, deformed Slater determinant is used as the basis, therefore, for making angular momentum into the peculiar state, projected operator is used. The space determined dynamically is treated mainly stochastically, and the energy of the multibody by the basis formed as the result is evaluated and selectively adopted. The symmetry is discussed, and the method of decomposing shell model space into dynamically determined space and the product of spin and isospin spaces was devised. The calculation processes are shown with the example of {sup 50}Mn nuclei. The calculation of the level structure of {sup 48}Cr with known exact energy can be done with the accuracy of peculiar absolute energy value within 200 keV. {sup 56}Ni nuclei are the self-conjugate nuclei of Z=N=28. The results of the shell model calculation of {sup 56}Ni nucleus structure by using the interactions of nuclear models are reported. (K.I.)

  15. Energy Migration Upconversion in Ce(III)-Doped Heterogeneous Core-Shell-Shell Nanoparticles.

    Science.gov (United States)

    Chen, Xian; Jin, Limin; Sun, Tianying; Kong, Wei; Yu, Siu Fung; Wang, Feng

    2017-11-01

    One major challenge in upconversion research is to develop new materials and structures to expand the emission spectrum. Herein, a heterogeneous core-shell-shell nanostructure of NaYbF4 :Gd/Tm@NaGdF4 @CaF2 :Ce is developed to realize efficient photon upconversion in Ce3+ ions through a Gd-mediated energy migration process. The design takes advantage of CaF2 host that reduces the 4f-5d excitation frequency of Ce3+ to match the emission line of Gd3+ . Meanwhile, CaF2 is isostructural with NaGdF4 and can form a continuous crystalline lattice with the core layer. As a result, effective Yb3+ → Tm3+ → Gd3+ → Ce3+ energy transfer can be established in a single nanoparticle. This effect enables efficient ultraviolet emission of Ce3+ following near infrared excitation into the core layer. The Ce3+ upconversion emission achieved in the core-shell-shell nanoparticles features broad bandwidth and long lifetime, which offers exciting opportunities of realizing tunable lasing emissions in the ultraviolet spectral region. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Local shell-to-shell energy transfer via nonlocal interactions in fluid ...

    Indian Academy of Sciences (India)

    In this paper we analytically compute the strength of nonlinear interactions in a triad, and the energy exchanges between wave-number shells in incompressible fluid turbulence. The computation has been done using first-order perturbative field theory. In three dimensions, magnitude of triad interactions is large for nonlocal ...

  17. Predicting Protein Interactions by Brownian Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Xuan-Yu Meng

    2012-01-01

    Full Text Available We present a newly adapted Brownian-Dynamics (BD-based protein docking method for predicting native protein complexes. The approach includes global BD conformational sampling, compact complex selection, and local energy minimization. In order to reduce the computational costs for energy evaluations, a shell-based grid force field was developed to represent the receptor protein and solvation effects. The performance of this BD protein docking approach has been evaluated on a test set of 24 crystal protein complexes. Reproduction of experimental structures in the test set indicates the adequate conformational sampling and accurate scoring of this BD protein docking approach. Furthermore, we have developed an approach to account for the flexibility of proteins, which has been successfully applied to reproduce the experimental complex structure from the structure of two unbounded proteins. These results indicate that this adapted BD protein docking approach can be useful for the prediction of protein-protein interactions.

  18. Standardized CSR and climate performance: why is Shell willing, but Hydro reluctant?; Shell; Hydro

    Energy Technology Data Exchange (ETDEWEB)

    Boasson, Elin Lerum; Wettestad, Joergen

    2007-06-15

    This report aims to contribute to the ongoing discussion concerning whether CSR merely serves to streamline company rhetoric or also has an influence on actual efforts. We discuss the tangible effects of CSR instruments on the climate-related rules and performances of the two different oil companies Hydro and Shell. First we explore whether similar CSR instruments lead to similar climate-related rules and practices in the two companies. Both Hydro and Shell adhere to the Global Compact (GC), the Global Reporting Initiative (GRI), the Carbon Disclosure Project (CDP) and the Global Gas Flaring Reduction Public-Private Partnership (GGFR). The report concludes that the GC has not rendered any tangible effects in either of the companies. Concerning the other instruments, Hydro has only followed the instrument requirements that fit their initial approach, and refrained from all deviating requirements. Shell has been more malleable, but we have noted few effects on the actual emissions and business portfolio resulting from the instrument adherence. Second, we assess how the differing results of the similar CSR portfolio may be explained. The reluctant attitude of the leaders in Hydro and the strong CSR motivation of Shell's executives result in significant differences. Hydro executives are able to constrain the effects of the instrument adherence. With Shell we note the opposite pattern: Its leaders promoted the instruments to be translated into internal rules, but a general lack of hierarchical structures hinders them from governing the conduct of various sub-organisations. The very diversity of the Shell culture helps to explain why the efforts of its executives have resulted in limited impact. The strength of the Hydro culture makes the corporation resistant to the instruments. Moreover, Hydro is strikingly shielded by virtue of its strong position in Norway. In contrast, Shell is more strongly affected by the global field of petroleum and the global field of CSR

  19. Multi-shelled ceria hollow spheres with a tunable shell number and thickness and their superior catalytic activity.

    Science.gov (United States)

    Liao, Yuanyuan; Li, Yuan; Wang, Lei; Zhao, Yongxia; Ma, Danyang; Wang, Biqing; Wan, Yongxia; Zhong, Shengliang

    2017-01-31

    In this work, ceria multi-shelled nanospheres with a tunable shell number and thickness were prepared by a facile coordination polymer (CP) precursor method without the use of any template and surfactant. Interestingly, the number, thickness and structure of the shell can be tuned by varying the reaction time, reaction temperature, ratio of reagent and calcination temperature. The formation process of the multi-shelled hollow spheres was also investigated, which experienced a core contraction and shell separation process. Moreover, the multi-shelled CeO2 hollow nanospheres displayed excellent photocatalytic activity in the degradation of RhB. Au and AuPd nanoparticle loaded multi-shelled CeO2 nanocomposites were also prepared. Results show that Au/CeO2 multi-shelled hollow nanospheres showed eximious catalytic activity for the reduction of p-nitrophenol with a reaction rate constant k of 0.416 min. In addition, AuPd/CeO2 exhibited a remarkable catalytic activity for the conversion of CO. Employing this method, heavy rare earth oxide multi-shelled structures and light rare earth oxide solid spheres were obtained. This method may be employed for the preparation of other materials with complex structures.

  20. Ge/Si core/shell quantum dots in alumina: tuning the optical absorption by the core and shell size

    Directory of Open Access Journals (Sweden)

    Nekić Nikolina

    2017-03-01

    Full Text Available Ge/Si core/shell quantum dots (QDs recently received extensive attention due to their specific properties induced by the confinement effects of the core and shell structure. They have a type II confinement resulting in spatially separated charge carriers, the electronic structure strongly dependent on the core and shell size. Herein, the experimental realization of Ge/Si core/shell QDs with strongly tunable optical properties is demonstrated. QDs embedded in an amorphous alumina glass matrix are produced by simple magnetron sputtering deposition. In addition, they are regularly arranged within the matrix due to their self-assembled growth regime. QDs with different Ge core and Si shell sizes are made. These core/shell structures have a significantly stronger absorption compared to pure Ge QDs and a highly tunable absorption peak dependent on the size of the core and shell. The optical properties are in agreement with recent theoretical predictions showing the dramatic influence of the shell size on optical gap, resulting in 0.7 eV blue shift for only 0.4 nm decrease at the shell thickness. Therefore, these materials are very promising for light-harvesting applications.

  1. Crystal Phase Transitions in the Shell of PbS/CdS Core/Shell Nanocrystals Influences Photoluminescence Intensity

    Science.gov (United States)

    2014-01-01

    We reveal the existence of two different crystalline phases, i.e., the metastable rock salt and the equilibrium zinc blende phase within the CdS-shell of PbS/CdS core/shell nanocrystals formed by cationic exchange. The chemical composition profile of the core/shell nanocrystals with different dimensions is determined by means of anomalous small-angle X-ray scattering with subnanometer resolution and is compared to X-ray diffraction analysis. We demonstrate that the photoluminescence emission of PbS nanocrystals can be drastically enhanced by the formation of a CdS shell. Especially, the ratio of the two crystalline phases in the shell significantly influences the photoluminescence enhancement. The highest emission was achieved for chemically pure CdS shells below 1 nm thickness with a dominant metastable rock salt phase fraction matching the crystal structure of the PbS core. The metastable phase fraction decreases with increasing shell thickness and increasing exchange times. The photoluminescence intensity depicts a constant decrease with decreasing metastable rock salt phase fraction but shows an abrupt drop for shells above 1.3 nm thickness. We relate this effect to two different transition mechanisms for changing from the metastable rock salt phase to the equilibrium zinc blende phase depending on the shell thickness. PMID:25673918

  2. Chitin extraction from blue crab (Portunus segnis) and shrimp (Penaeus kerathurus) shells using digestive alkaline proteases from P. segnis viscera.

    Science.gov (United States)

    Hamdi, Marwa; Hammami, Amal; Hajji, Sawssen; Jridi, Mourad; Nasri, Moncef; Nasri, Rim

    2017-08-01

    Since chitin is closely associated with proteins, deproteinization is a crucial step in the process of extracting chitin. Thus, this research aimed to extract chitin from Portunus segnis and Penaeus kerathurus shells by means of crude digestive alkaline proteases from the viscera of P. segnis, regarding deproteinization step, as an alternative to chemical treatment. Casein zymography revealed that five caseinolytic proteases bands exist, suggesting the presence of at least five different major proteases. The optimum pH and temperature for protease activity were pH 8.0 and 60°C, respectively, using casein as a substrate. The crude enzymes extract was highly stable at low temperatures and over a wide range of pH from 6.0 to 12.0. The crude alkaline protease extract was found to be effective in the deproteinization of blue crab and shrimp shells, to produce chitin. The best efficiency in deproteinization (84.69±0.65% for blue crab shells and 91.06±1.40% for shrimp shells) was achieved with an E/S ratio of 5U/mg of proteins after 3h incubation at 50°C. These results suggest that enzymatic deproteinization of crab and shrimp wastes by fish endogenous alkaline proteases could be a potential alternative in the chitin production process. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Sequentially releasing dual-drug-loaded PLGA-casein core/shell nanomedicine: design, synthesis, biocompatibility and pharmacokinetics.

    Science.gov (United States)

    Narayanan, Sreeja; Pavithran, Maya; Viswanath, Aiswarya; Narayanan, Dhanya; Mohan, Chandini C; Manzoor, K; Menon, Deepthy

    2014-05-01

    The present study reports an engineered poly-l-lactide-co-glycolic acid (PLGA)-casein polymer-protein hybrid nanocarrier 190±12nm in size entrapping a combination of chemically distinct (hydrophobic/hydrophilic) model drugs. A simple emulsion-precipitation route was adopted to prepare nearly monodispersed nanoparticles with distinct core/shell morphology entrapping paclitaxel (Ptx) in the core and epigallocatechin gallate (EGCG) in the shell, with the intention of providing a sequential and sustained release of these drugs. The idea was that an early release of EGCG would substantially increase the sensitivity of Ptx to cancer, thereby providing improved therapeutics at lower concentrations, with less toxicity. The hemo- and immunocompatibility of the core/shell nanomedicine was established in this study. The core/shell nanoparticles injected via the tail vein in Sprague-Dawley rats did not reveal any organ toxicity as was evident from histopathological evaluations of the major organs. In vivo pharmacokinetic studies in rats by high-performance liquid chromatography confirmed a sustained and sequential release of both the drugs in plasma, indicating prolonged circulation of the nanomedicine and enhanced availability of the drugs when compared to the bare drugs. Overall, the polymer-protein multilayered nanoparticles proved to be a promising platform for nanopolypharmaceutics. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Magnetization-prepared shells trajectory with automated gradient waveform design.

    Science.gov (United States)

    Shu, Yunhong; Tao, Shengzhen; Trzasko, Joshua D; Huston, John; Weavers, Paul T; Bernstein, Matt A

    2017-08-21

    To develop a fully automated trajectory and gradient waveform design for the non-Cartesian shells acquisition, and to develop a magnetization-prepared (MP) shells acquisition to achieve an efficient three-dimensional acquisition with improved gray-to-white brain matter contrast. After reviewing the shells k-space trajectory, a novel, fully automated trajectory design is developed that allows for gradient waveforms to be automatically generated for specified acquisition parameters. Designs for two types of shells are introduced, including fully sampled and undersampled/accelerated shells. Using those designs, an MP-Shells acquisition is developed by adjusting the acquisition order of shells interleaves to synchronize the center of k-space sampling with the peak of desired gray-to-white matter contrast. The feasibility of the proposed design and MP-Shells is demonstrated using simulation, phantom, and volunteer subject experiments, and the performance of MP-Shells is compared with a clinical Cartesian magnetization-prepared rapid gradient echo acquisition. Initial experiments show that MP-Shells produces excellent image quality with higher data acquisition efficiency and improved gray-to-white matter contrast-to-noise ratio (by 36%) compared with the conventional Cartesian magnetization-prepared rapid gradient echo acquisition. We demonstrated the feasibility of a three-dimensional MP-Shells acquisition and an automated trajectory design to achieve an efficient acquisition with improved gray-to-white matter contrast. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  5. What determines sclerobiont colonization on marine mollusk shells?

    Science.gov (United States)

    Ochi Agostini, Vanessa; Ritter, Matias do Nascimento; José Macedo, Alexandre; Muxagata, Erik; Erthal, Fernando

    2017-01-01

    Empty mollusk shells may act as colonization surfaces for sclerobionts depending on the physical, chemical, and biological attributes of the shells. However, the main factors that can affect the establishment of an organism on hard substrates and the colonization patterns on modern and time-averaged shells remain unclear. Using experimental and field approaches, we compared sclerobiont (i.e., bacteria and invertebrate) colonization patterns on the exposed shells (internal and external sides) of three bivalve species (Anadara brasiliana, Mactra isabelleana, and Amarilladesma mactroides) with different external shell textures. In addition, we evaluated the influence of the host characteristics (mode of life, body size, color alteration, external and internal ornamentation and mineralogy) of sclerobionts on dead mollusk shells (bivalve and gastropod) collected from the Southern Brazilian coast. Finally, we compared field observations with experiments to evaluate how the biological signs of the present-day invertebrate settlements are preserved in molluscan death assemblages (incipient fossil record) in a subtropical shallow coastal setting. The results enhance our understanding of sclerobiont colonization over modern and paleoecology perspectives. The data suggest that sclerobiont settlement is enhanced by (i) high(er) biofilm bacteria density, which is more attracted to surfaces with high ornamentation; (ii) heterogeneous internal and external shell surface; (iii) shallow infaunal or attached epifaunal life modes; (iv) colorful or post-mortem oxidized shell surfaces; (v) shell size (1,351 mm2); and (vi) calcitic mineralogy. Although the biofilm bacteria density, shell size, and texture are considered the most important factors, the effects of other covarying attributes should also be considered. We observed a similar pattern of sclerobiont colonization frequency over modern and paleoecology perspectives, with an increase of invertebrates occurring on textured bivalve

  6. Core-shell diodes for particle detectors

    Science.gov (United States)

    Jia, Guobin; Plentz, Jonathan; Höger, Ingmar; Dellith, Jan; Dellith, Andrea; Falk, Fritz

    2016-02-01

    High performance particle detectors are needed for fundamental research in high energy physics in the exploration of the Higgs boson, dark matter, anti-matter, gravitational waves and proof of the standard model, which will extend the understanding of our Universe. Future particle detectors should have ultrahigh radiation hardness, low power consumption, high spatial resolution and fast signal response. Unfortunately, some of these properties are counter-influencing for the conventional silicon drift detectors (SDDs), so that they cannot be optimized simultaneously. In this paper, the main issues of conventional SDDs have been analyzed, and a novel core-shell detector design based on micro- and nano-structures etched into Si-wafers is proposed. It is expected to simultaneously reach ultrahigh radiation hardness, low power consumption, fast signal response and high spatial resolution down to the sub-micrometer range, which will probably meet the requirements for the most powerful particle accelerators in the near future. A prototype core-shell detector was fabricated using modern silicon nanotechnology and the functionality was tested using electron-beam-induced current measurements. Such a high performance detector will open many new applications in extreme radiation environments such as high energy physics, astrophysics, high resolution (bio-) imaging and crystallography, which will push these fields beyond their current boundaries.

  7. Natural melting within a spherical shell

    Science.gov (United States)

    Bahrami, Parviz A.

    1990-01-01

    Fundamental heat transfer experiments were performed on the melting of a phase change medium in a spherical shell. Free expansion of the medium into a void space within the sphere was permitted. A step function temperature jump on the outer shell wall was imposed and the timewise evolution of the melting process and the position of the solid-liquid interface was photographically recorded. Numerical integration of the interface position data yielded information about the melted mass and the energy of melting. It was found that the rate of melting and the heat transfer were significantly affected by the movement of the solid medium to the base of the sphere due to gravity. The energy transfer associated with melting was substantially higher than that predicted by the conduction model. Furthermore, the radio of the measured values of sensible energy in the liquid melt to the energy of melting were nearly proportional to the Stefan number. The experimental results are in agreement with a theory set forth in an earlier paper.

  8. Pyrolysis of Coconut Shell: An Experimental Investigation

    Directory of Open Access Journals (Sweden)

    E. Ganapathy Sundaram

    2009-12-01

    Full Text Available Fixed-bed slow pyrolysis experiments of coconut shell have been conducted to determine the effect of pyrolysis temperature, heating rate and particle size on the pyrolysis product yields. The effect of vapour residence time on the pyrolysis yield was also investigated by varying the reactor length. Pyrolysis experiments were performed at pyrolysis temperature between 400 and 600°C with a constant heating rate of 60°C/min and particle sizes of 1.18-1.80 mm. The optimum process conditions for maximizing the liquid yield from the coconut shell pyrolysis in a fixed bed reactor were also identified. The highest liquid yield was obtained at a pyrolysis temperature of 550 °C, particle size of 1.18-1.80 mm, with a heating rate of 60 °C/min in a 200 mm length reactor. The yield of obtained char, liquid and gas was 22-31 wt%, 38-44 wt% and 30-33 wt% respectively at different pyrolysis conditions. The results indicate that the effects of pyrolysis temperature and particle size on the pyrolysis yield are more significant than that of heating rate and residence time. The various characteristics of pyrolysis oil obtained under the optimum conditions for maximum liquid yield were identified on the basis of standard test methods.

  9. Dynamical symmetries of the shell model

    Energy Technology Data Exchange (ETDEWEB)

    Van Isacker, P

    2000-07-01

    The applications of spectrum generating algebras and of dynamical symmetries in the nuclear shell model are many and varied. They stretch back to Wigner's early work on the supermultiplet model and encompass important landmarks in our understanding of the structure of the atomic nucleus such as Racah's SU(2) pairing model and Elliot's SU(3) rotational model. One of the aims of this contribution has been to show the historical importance of the idea of dynamical symmetry in nuclear physics. Another has been to indicate that, in spite of being old, this idea continues to inspire developments that are at the forefront of today's research in nuclear physics. It has been argued in this contribution that the main driving features of nuclear structure can be represented algebraically but at the same time the limitations of the symmetry approach must be recognised. It should be clear that such approach can only account for gross properties and that any detailed description requires more involved numerical calculations of which we have seen many fine examples during this symposium. In this way symmetry techniques can be used as an appropriate starting point for detailed calculations. A noteworthy example of this approach is the pseudo-SU(3) model which starting from its initial symmetry Ansatz has grown into an adequate and powerful description of the nucleus in terms of a truncated shell model. (author)

  10. Helium-Shell Nucleosynthesis and Extinct Radioactivities

    Science.gov (United States)

    Meyer, B. S.; The, L.-S.; Clayton, D. D.; ElEid, M. F.

    2004-01-01

    Although the exact site for the origin of the r-process isotopes remains mysterious, most thinking has centered on matter ejected from the cores of massive stars in core-collapse supernovae [13]. In the 1970's and 1980's, however, difficulties in understanding the yields from such models led workers to consider the possibility of r-process nucleosynthesis farther out in the exploding star, in particular, in the helium burning shell [4,5]. The essential idea was that shock passage through this shell would heat and compress this material to the point that the reactions 13C(alpha; n)16O and, especially, 22Ne(alpha; n)25Mg would generate enough neutrons to capture on preexisting seed nuclei and drive an "n process" [6], which could reproduce the r-process abundances. Subsequent work showed that the required 13C and 22Ne abundances were too large compared to the amounts available in realistic models [7] and recent thinking has returned to supernova core material or matter ejected from neutron star-neutron star collisions as the more likely r-process sites.

  11. Controlling core/shell Au/FePt nanoparticle electrocatalysis via changing the core size and shell thickness

    Science.gov (United States)

    Sun, Xiaolian; Li, Dongguo; Guo, Shaojun; Zhu, Wenlei; Sun, Shouheng

    2016-01-01

    Using a modified seed-mediated method, we synthesized core/shell Au/FePt nanoparticles (NPs) with Au sizes of 4, 7, and 9 nm and the FePt shell was controlled to have similar FePt compositions and 0.5, 1, and 2 nm thickness. We studied both core and shell effects on electrochemical and electrocatalytic properties of the Au/FePt NPs, and found that the Au core did change the redox chemistry of the FePt shell and promoted its electrochemical oxidation of methanol. The catalytic activity was dependent on the FePt thicknesses, but not much on the Au core sizes, and the 1 nm FePt shell was found to be the optimal thickness for catalyzing methanol oxidation in 0.1 M HClO4 + 0.1 M methanol, offering not only high activity (1.19 mA cm-2 at 0.5 V vs. Ag/AgCl), but also enhanced stability. Our studies demonstrate a general approach to the design and tuning of shell catalysis in the core/shell structure to achieve optimal catalysis for important electrochemical reactions.Using a modified seed-mediated method, we synthesized core/shell Au/FePt nanoparticles (NPs) with Au sizes of 4, 7, and 9 nm and the FePt shell was controlled to have similar FePt compositions and 0.5, 1, and 2 nm thickness. We studied both core and shell effects on electrochemical and electrocatalytic properties of the Au/FePt NPs, and found that the Au core did change the redox chemistry of the FePt shell and promoted its electrochemical oxidation of methanol. The catalytic activity was dependent on the FePt thicknesses, but not much on the Au core sizes, and the 1 nm FePt shell was found to be the optimal thickness for catalyzing methanol oxidation in 0.1 M HClO4 + 0.1 M methanol, offering not only high activity (1.19 mA cm-2 at 0.5 V vs. Ag/AgCl), but also enhanced stability. Our studies demonstrate a general approach to the design and tuning of shell catalysis in the core/shell structure to achieve optimal catalysis for important electrochemical reactions. Electronic supplementary information (ESI

  12. Dynamic Stiffness Modeling of Composite Plate and Shell Assemblies

    Science.gov (United States)

    2013-12-09

    28, 29, 63]. Re- views on finite element shell formulations have been given by Denis and Palazzotto [64] and Di and Ramm [65]. An exhaustive review...theory. AIAA Journal, 27(10):1441–1447, 1989. [65] S. Di and E. Ramm . Hybrid stress formulation for higher-order theory of laminated shell analysis

  13. Nonlinear analysis of doubly curved shells: An analytical approach

    Indian Academy of Sciences (India)

    Dynamic analogues of vin Karman-Donnell type shell equations for doubly curved, thin isotropic shells in rectangular planform are formulated and expressed in displacement components. These nonlinear partial differential equations of motion are linearized by using a quadratic extrapolation technique. The spatial and ...

  14. PENETRATION OF A SOUND FIELD THROUGH A MULTILAYERED SPHERICAL SHELL

    Directory of Open Access Journals (Sweden)

    G. Ch. Shushkevich

    2013-01-01

    Full Text Available An analytical solution of the boundary problem describing the process of penetration of thesound field of a spherical emitter located inside a thin unclosed spherical shell through a permeable multilayered spherical shell is considered. The influence of some parameters of the problem on the value of the sound field weakening (screening coefficient is studied via a numerical simulation.

  15. Generalized synthesis of mesoporous shells on zeolite crystals

    KAUST Repository

    Han, Yu

    2010-12-30

    A simple and generalized synthetic approach is developed for creating mesoporous shells on zeolite crystals. This method allows for the tailoring of thickness, pore size, and composition of the mesoporous shell, and can be applied to zeolites of various structures, compositions, and crystal sizes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A Review of Imperfection Sensitivity of Stiffened Shells.

    Science.gov (United States)

    1984-02-01

    of examining the static uperfection sensitivity of shells -- BOSOR6 6 , STAGS 7 , FASOR 8 7 and NBALL(SATANS) 8 0 The last three permit general V...CR-1901, 1971. 87. Cohen, G. A., " FASOR - A Second Generation Shell of Revolution Code," Trends in Computerized Structural Analysis and Synthesis 1978

  17. Snap-Through Buckling Problem of Spherical Shell Structure

    Directory of Open Access Journals (Sweden)

    Sumirin Sumirin

    2014-12-01

    Full Text Available This paper presents results of a numerical study on the nonlinear behavior of shells undergoing snap-through instability. This research investigates the problem of snap-through buckling of spherical shells applying nonlinear finite element analysis utilizing ANSYS Program. The shell structure was modeled by axisymmetric thin shell of finite elements. Shells undergoing snap-through buckling meet with significant geometric change of their physical configuration, i.e. enduring large deflections during their deformation process. Therefore snap-through buckling of shells basically is a nonlinear problem. Nonlinear numerical operations need to be applied in their analysis. The problem was solved by a scheme of incremental iterative procedures applying Newton-Raphson method in combination with the known line search as well as the arc- length methods. The effects of thickness and depth variation of the shell is taken care of by considering their geometrical parameter l. The results of this study reveal that spherical shell structures subjected to pressure loading experience snap-through instability for values of l≥2.15. A form of ‘turn-back’ of the load-displacement curve took place at load levels prior to the achievement of the critical point. This phenomenon was observed for values of l=5.0 to l=7.0.

  18. Eco-technique of sewer renovation using composite shells ...

    African Journals Online (AJOL)

    An eco-technical renovation of the sewage system is developed in this paper; this technique involves incorporating into the existing sewer a series of jointed prefabricated sandwich or composite shells. The purpose of his study is to determine the structural shell deflection, the high displacement areas and to validate the ...

  19. Problems with tunneling of thin shells from black holes

    Indian Academy of Sciences (India)

    Specifically for shells tunneling out of black holes, this quantity is not invariant under canonical transformations. It can be interpreted as the transmission coefficient only in the cases in which it is invariant under canonical transformations. Although such cases include alpha decay, they do not include the tunneling of shells ...

  20. Water Quality of Trickling Biological Periwinkle Shells Filter for ...

    African Journals Online (AJOL)

    Water Quality of Trickling Biological Periwinkle Shells Filter for Closed Recirculating Catfish System. ... International Journal of Tropical Agriculture and Food Systems ... Studies were carried on the design, efficiency and economics of trickling biological periwinkle shells filter in recirculating aquaculture systems for catfish ...

  1. AF-Shell 1.0 User Guide

    Science.gov (United States)

    McElroy, Mark W.

    2017-01-01

    This document serves as a user guide for the AF-Shell 1.0 software, an efficient tool for progressive damage simulation in composite laminates. This guide contains minimal technical material and is meant solely as a guide for a new user to apply AF-Shell 1.0 to laminate damage simulation problems.

  2. String gas shells, their dual radiation and hedgehog signature control

    National Research Council Canada - National Science Library

    Guendelman, E.I

    2009-01-01

    ... as spacelike in nature. This “dual radiation”, we will argue, can be interpreted as representing the virtual quantum fluctuations that stabilize the shell. The solutions can be generalized allowing for the introduction of a string-hedgehog [2] or a global monopole [3] on top of the string gas shell and its dual radiation. Then, for big enough hedgehog strengt...

  3. Monodispersed core-shell Fe3O4@Au nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L Y.; Luo, Jin; Fan, Quan; Suzuki, Masatsugu; Suzuki, Itsuko S.; Engelhard, Mark H.; Lin, Yuehe; Kim, Nam; Wang, JQ; Zhong, Chuan-Jian

    2005-12-15

    The ability to synthesize and assemble monodispersed core-shell nanoparticles is important for exploring the unique properties of nanoscale core, shell, or their combinations in technological applications. This paper describes findings of an investigation of the synthesis and assembly of core (Fe3O4)-shell (An) nanoparticles with high monodispersity. Fe3O4 nanoparticles of selected sizes were used as seeding materials for the reduction of gold precursors to produce gold-coated Fe3O4 nanoparticles (Fe3O4@Au). Experimental data from both physical and chemical determinations of the changes in particle size, surface plasmon resonance optical band, core-shell composition, surface reactivity, and magnetic properties have confirmed the formation of the core-shell nanostructure. The interfacial reactivity of a combination of ligand-exchanging and interparticle cross-linking was exploited for molecularly mediated thin film assembly of the core-shell nanoparticles. The SQUID data reveal a decrease in magnetization and blocking temperature and an increase in coercivity for Fe3O4@Au, reflecting the decreased coupling of the magnetic moments as a result of the increased interparticle spacing by both gold and capping shells. Implications of the findings to the design of interfacial reactivities via core-shell nanocomposites for magnetic, catalytic, and biological applications are also briefly discussed.

  4. Inner-shell physics after fifty years of quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Merzbacher, E.

    1976-01-01

    A historical view is given of how the development of quantum mechanics has been affected by the information relating to inner shells, gathered by physicists since the early days of atomic physics, and of the impact of quantum mechanics on the physics of inner atomic shells. 25 refs. (GHT)

  5. Core-shell particles as model compound for studying fouling

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Nielsen, Troels Bach; Andersen, Morten Boel Overgaard

    2008-01-01

    Synthetic colloidal particles with hard cores and soft, water-swollen shells were used to study cake formation during ultrafiltration. The total cake resistance was lowest for particles with thick shells, which indicates that interparticular forces between particles (steric hindrance...... the permeate flux could be enhanced by lowering the pressure. Hence, the amount of water-swollen material influences both cake thickness and resistance....

  6. Pasteurization of shell eggs using radio frequency heating

    Science.gov (United States)

    The USDA-FSIS estimates that pasteurization of all shell eggs in the U.S. would reduce the annual number of illnesses by more than 110,000, yet less than 1% of shell eggs are commercially pasteurized. One of the main reasons for this is that the current process, hot water immersion, requires approxi...

  7. Nondestructive pasteurization of shell eggs using radio frequency energy

    Science.gov (United States)

    Shell eggs are on the top of the list of the 10 riskiest foods regulated by the Food and Drug Administration and 352 outbreaks from 1990 to 2006 were linked to eggs. The goals of this study were to design and assemble an apparatus to apply RF energy to shell eggs and to develop a process for pasteur...

  8. Production of concrete using laterite, periwinkle shell and river stone ...

    African Journals Online (AJOL)

    This paper presents the success recorded in producing concrete using laterite, periwinkle shell and river stone. Laterite was used to replace 100% of sand. Periwinkle shell replaces 50% by volume of the total coarse aggregate, while river stone made up the rest 50%. Sixteen mix ratios were used, and a total of 96 cubes ...

  9. The Structural Response of Cylindrical Shells to Internal Shock Loading

    NARCIS (Netherlands)

    Beltman, W.M.; Burcsu, E.N.; Shepherd, J.E.; Zuhal, L.

    The internal shock loading of cylindrical shells can be represented as a step load advancing at constant speed. Several analytical models are available to calculate the structural response of shells to this type of loading. These models show that the speed of the shock wave is an important

  10. Electromagnetic off-shell effects in proton-proton bremsstrahlung

    NARCIS (Netherlands)

    Kondratyuk, S.A.; Martinus, G.H.; Scholten, O.

    1998-01-01

    We study the influence of the off-shell structure of the nucleon electromagnetic vertex on proton-proton bermsstrahlung observables. Realistic choices for the off-shell behavior are found to have considerable influences on observables such as cross sections and analyzing powers. The rescattering

  11. Microwave moisture meter for in-shell almonds.

    Science.gov (United States)

    Determining almond kernel moisture content while still in the shell is important for both almond growers and processors. A dielectric method was developed for almond kernel moisture determination from dielectric measurements on in-shell almonds at a single microwave frequency. A sample holder was fi...

  12. Stability of charged thin shell wormhole supported by polytropic gas

    Science.gov (United States)

    Eid, A.

    2017-05-01

    In the framework of Darmois-Israel formalism, the general equations describing the motion of thin shell wormhole with a general form of equation of state of a polytropic gas are derived. The mechanical stability analysis of thin shell wormhole with charge in Reissner-Nordstrom (RN) to linearized spherically symmetric perturbation about static equilibrium solution is carried out.

  13. Palm kernel shell as aggregate for light weight concrete | Idah ...

    African Journals Online (AJOL)

    In this study, the effect of replacing the conventional gravel with palm. kernel shell as aggregates in making concrete was inquired into. Several . volumes of palm kernel shells were used in two (4) different proportions with the other constituents and the strength of the concretes produced were tested to ascertain the effect of ...

  14. Core-in-shell sorbent for hot coal gas desulfurization

    Science.gov (United States)

    Wheelock, Thomas D.; Akiti, Jr., Tetteh T.

    2004-02-10

    A core-in-shell sorbent is described herein. The core is reactive to the compounds of interest, and is preferably calcium-based, such as limestone for hot gas desulfurization. The shell is a porous protective layer, preferably inert, which allows the reactive core to remove the desired compounds while maintaining the desired physical characteristics to withstand the conditions of use.

  15. (bivalve) shells of Vellar estuary, southeast coast of India

    African Journals Online (AJOL)

    The bivalve mollusk, Meretrix casta shells are abundant in the Vellar estuary along the East coast of India, they are economically important and used as chief raw material for many lime based industries. Their shells are harvested in large quantities for meat and lime production. The present study focused on understanding ...

  16. Characterization of Physic nut (Jatropha curcas L.) shells

    NARCIS (Netherlands)

    Wever, Diego; Heeres, H. J.; Broekhuis, Antonius A.

    The characterization of Physic nut shells was done using the wet chemical analysis of wood components. The obtained fractions were analyzed using IR, NMR, GPC, ICP and MALDI-TOF mass spectroscopy. TGA was used to determine the fixed carbon (+ash) and water content of the shells. The results of wet

  17. Microsoft Hyper-V PowerShell automation

    CERN Document Server

    Menon, Vinith

    2015-01-01

    This book is great for administrators who are new to automating Hyper-V administration tasks using PowerShell. If you are familiar with the PowerShell command line and have some experience with the Windows Server, this book is perfect for you.

  18. an evalution of some mechanical methods for shelling melon seeds ...

    African Journals Online (AJOL)

    Dr Obe

    human consumption. Furthermore, there is a great potential for using the shells as livestock feed and litter, it is therefore preferable to leave the shells or hulls .... base the design of a device. Table 1: performance summary of the knurled roller machine. Table 2: Variance ratios for the results of the performance tests of the.

  19. Comparison of Cashew Nut Shell Liquid (CNS) Resin with Polyester ...

    African Journals Online (AJOL)

    Akorede

    natural resin is the cashew nut shell liquid (CNSL). Cashew nut shell liquid is a very sticky secretion (gum) from cashew nuts which is similar to gum Arabic. It can be used as a substitute for liquid glue for paper in pharmaceutical and cosmetic industries (Mwaikambo and Anseli, 2001). Cashew gum (like polyester resin) is a ...

  20. Management of shells of giant African snails (Achatinidae) from the ...

    African Journals Online (AJOL)

    Objective: this study aimed to estimate the amount of snail's shells produced in the Abidjan City and the mode of management of empty shells for possible reuse. Methodology and Results: An investigation was carried out by a questionnaire on 120 snail retailers' in the markets of Abidjan. The data was stripped by Sphinx ...

  1. Engineering effect of Pinna nobilis shells on benthic communities

    Directory of Open Access Journals (Sweden)

    Lotfi Rabaoui

    2015-07-01

    Full Text Available Within the framework of the possibility of using the Mediterranean pen shell Pinna nobilis in restoration and conservation plans of benthic habitats, an in situ experiment was conducted using empty P. nobilis shells. The latter were transplanted in a bare soft-bottomed area and their associated fauna were followed along 120 days and compared at different temporal points and with the assemblages living in the surrounding soft-sediment area. Compared to soft-sediment communities, an evidently increasing succession of species richness, abundance, and diversity descriptors (Shannon-Wiener H′ and Pielou's evenness J′ was observed with the community inhabiting empty Pinna shells. Among the forty-five (45 species found in association with the transplanted empty shells, seventeen (17 were found constantly in the three temporal points; the other twenty-eight (28 species appeared in the samples collected in the second and/or third sampling time. While motile and sessile species associated to Pinna shells showed an increasing pattern of appearance and abundance along the experiment time, those of soft sediment remained almost constant. The comparison between Pinna shells and soft-sediment associated communities showed that the species richness was slightly different between the two different sample types (49 for soft sediment versus 45 for empty Pinna shells; however the total abundance was found more important with empty Pinna shells. The results obtained herein argue in favor of the important engineering effect of P. nobilis in soft benthic habitats and therefore for the necessity of its conservation.

  2. Gauge constraints and electromagnetic properties of off-shell particles

    NARCIS (Netherlands)

    Nagorny, S.I.; Dieperink, A.E.L.

    The consequences of the gauge constraints for off-shellness in the electromagnetic (EM) vertices have been considered, using Compton scattering as an example. We have found that even if the gauge constraint for the 3-point EM Green function allows for off-shell effects in the charge (Dirac) form

  3. Synthesis of Cationic Core-Shell Latex Particles

    NARCIS (Netherlands)

    Dziomkina, N.; Hempenius, Mark A.; Vancso, Gyula J.

    2006-01-01

    Surfactant-free seeded (core-shell) polymerization of cationic polymer colloids is presented. Polystyrene core particles with sizes between 200 nm and 500 nm were synthesized. The number average diameter of the colloidal core particles increased with increasing monomer concentration. Cationic shells

  4. Experimental investigations on buckling of cylindrical shells under ...

    Indian Academy of Sciences (India)

    This paper presents experimental studies on buckling of cylindrical shell models under axial and transverse shear loads. Tests are carried out using an experimental facility specially designed, fabricated and installed, with provision for in-situ measurement of the initial geometric imperfections. The shell models are made by ...

  5. Teaching Valence Shell Electron Pair Repulsion (VSEPR) Theory

    Science.gov (United States)

    Talbot, Christopher; Neo, Choo Tong

    2013-01-01

    This "Science Note" looks at the way that the shapes of simple molecules can be explained in terms of the number of electron pairs in the valence shell of the central atom. This theory is formally known as valence shell electron pair repulsion (VSEPR) theory. The article explains the preferred shape of chlorine trifluoride (ClF3),…

  6. Settlement pattern and survival of a shell-infesting sabellid ...

    African Journals Online (AJOL)

    This study tested whether abalone diet influences larval settlement success of the shell-dwelling sabellid polychaete Terebrasabella heterouncinata and their survival over the first 96h after settlement on host abalone. Shell area preferences of the sabellid were also investigated. Abalone diet (fresh kelp, Ecklonia maxima or ...

  7. Geochemical aspects of Meretrix casta (bivalve) shells of Vellar ...

    African Journals Online (AJOL)

    SAM

    2014-05-14

    May 14, 2014 ... recently, shells were burnt merely for mortar and plaster in building work. But, now it is vastly used in paper mills, rayon fibre, calcium carbide, white ... In the future, M. casta shells will play significant role in sustainable industrial development as well as in countries economic growth, because these are.

  8. Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties.

    Science.gov (United States)

    Zhang, Fan; Che, Renchao; Li, Xiaomin; Yao, Chi; Yang, Jianping; Shen, Dengke; Hu, Pan; Li, Wei; Zhao, Dongyuan

    2012-06-13

    Lanthanide-doped upconversion nanoparticles have shown considerable promise in solid-state lasers, three-dimensional flat-panel displays, and solar cells and especially biological labeling and imaging. It has been demonstrated extensively that the epitaxial coating of upconversion (UC) core crystals with a lattice-matched shell can passivate the core and enhance the overall upconversion emission intensity of the materials. However, there are few papers that report a precise link between the shell thickness of core/shell nanoparticles and their optical properties. This is mainly because rare earth fluoride upconversion core/shell structures have only been inferred from indirect measurements to date. Herein, a reproducible method to grow a hexagonal NaGdF(4) shell on NaYF(4):Yb,Er nanocrystals with monolayer control thickness is demonstrated for the first time. On the basis of the cryo-transmission electron microscopy, rigorous electron energy loss spectroscopy, and high-angle annular dark-field investigations on the core/shell structure under a low operation temperature (96 K), direct imaging the NaYF(4):Yb,Er@NaGdF(4) nanocrystal core/shell structure at the subnanometer level was realized for the first time. Furthermore, a strong linear link between the NaGdF(4) shell thickness and the optical response of the hexagonal NaYF(4):Yb,Er@NaGdF(4) core/shell nanocrystals has been established. During the epitaxial growth of the NaGdF(4) shell layer by layer, surface defects of the nanocrystals can be gradually passivated by the homogeneous shell deposition process, which results in the obvious enhancement in overall UC emission intensity and lifetime and is more resistant to quenching by water molecules.

  9. Shell micro-structure of the Late Miocene freshwater unionid Parreysia binaiensis (Mollusca : Bivalvia) from Nepal

    OpenAIRE

    Gurung, Damayanti; Kobayashi, Iwao

    1998-01-01

    A Late Miocene freshwater bivalvian shell of Parreysia binaiensis Takayasu, Gurung & Matsuoka, 1995, is examined to assess its state of preservation as well as to determine its shell structure and mineral composition. The characters of shell micro-structure are valuable for their systematics, phylogeny and environmental analysis. It is found that the shell is well preserved with most of the shell layers intact. The X-ray diffraction analysis shows that the mineral species of the shell is whol...

  10. Forced Vibration Analysis for a FGPM Cylindrical Shell

    Directory of Open Access Journals (Sweden)

    Hong-Liang Dai

    2013-01-01

    Full Text Available This article presents an analytical study for forced vibration of a cylindrical shell which is composed of a functionally graded piezoelectric material (FGPM. The cylindrical shell is assumed to have two-constituent material distributions through the thickness of the structure, and material properties of the cylindrical shell are assumed to vary according to a power-law distribution in terms of the volume fractions for constituent materials, the exact solution for the forced vibration problem is presented. Numerical results are presented to show the effect of electric excitation, thermal load, mechanical load and volume exponent on the static and force vibration of the FGPM cylindrical shell. The goal of this investigation is to optimize the FGPM cylindrical shell in engineering, also the present solution can be used in the forced vibration analysis of cylindrical smart elements.

  11. Tunable cylindrical shell as an element in acoustic metamaterial

    CERN Document Server

    Titovich, Alexey S

    2014-01-01

    Elastic cylindrical shells are fitted with an internal mechanism which is optimized so that, in the quasi-static regime, the combined system exhibits prescribed effective acoustic properties. The mechanism consists of a central mass supported by an axisymmetric distribution of elastic stiffeners. By appropriate selection of the mass and stiffness of the internal mechanism, the shell's effective acoustic properties (bulk modulus and density) can be tuned as desired. Subsonic flexural waves excited in the shell by the attachment of stiffeners are suppressed by including a sufficiently large number of such stiffeners. Effectiveness of the proposed metamaterial is demonstrated by matching the properties of a thin aluminum shell with a polymer insert to those of water. The scattering cross section in water is nearly zero over a broad range of frequencies at the lower end of the spectrum. By arranging the tuned shells in an array the resulting acoustic metamaterial is capable of steering waves. As an example, a cyl...

  12. Process to make core-shell structured nanoparticles

    Science.gov (United States)

    Luhrs, Claudia; Phillips, Jonathan; Richard, Monique N

    2014-01-07

    Disclosed is a process for making a composite material that contains core-shell structured nanoparticles. The process includes providing a precursor in the form of a powder a liquid and/or a vapor of a liquid that contains a core material and a shell material, and suspending the precursor in an aerosol gas to produce an aerosol containing the precursor. In addition, the process includes providing a plasma that has a hot zone and passing the aerosol through the hot zone of the plasma. As the aerosol passes through the hot zone of the plasma, at least part of the core material and at least part of the shell material in the aerosol is vaporized. Vapor that contains the core material and the shell material that has been vaporized is removed from the hot zone of the plasma and allowed to condense into core-shell structured nanoparticles.

  13. Creep stresses in a spherical shell under steady state temperature

    Science.gov (United States)

    Verma, Gaurav; Rana, Puneet

    2017-10-01

    The paper investigates the problem of creep of a spherical structure under the influence of steady state temperature. The problem of creep in spherical shell is solved by using the concept of generalized strain measures and transition hypothesis given by Seth. The problem has reduced to non-linear differential equation for creep transition. This paper deals with the non-linear behaviour of spherical shell under thermal condition. The spherical shell structures are easily vulnerable to creep, shrinkage and thermal effects; a thorough understanding of their time-dependent behaviour has been fully established. The paper aims to provide thermal creep analysis to enhance the effective design and long life of shells, and a theoretical model is developed for calculating creep stresses and strains in a spherical shell with purpose. Results obtained for the problem are depicted graphically.

  14. Reversible patterning of spherical shells through constrained buckling

    Science.gov (United States)

    Marthelot, J.; Brun, P.-T.; Jiménez, F. López; Reis, P. M.

    2017-07-01

    Recent advances in active soft structures envision the large deformations resulting from mechanical instabilities as routes for functional shape morphing. Numerous such examples exist for filamentary and plate systems. However, examples with double-curved shells are rarer, with progress hampered by challenges in fabrication and the complexities involved in analyzing their underlying geometrical nonlinearities. We show that on-demand patterning of hemispherical shells can be achieved through constrained buckling. Their postbuckling response is stabilized by an inner rigid mandrel. Through a combination of experiments, simulations, and scaling analyses, our investigation focuses on the nucleation and evolution of the buckling patterns into a reticulated network of sharp ridges. The geometry of the system, namely, the shell radius and the gap between the shell and the mandrel, is found to be the primary ingredient to set the surface morphology. This prominence of geometry suggests a robust, scalable, and tunable mechanism for reversible shape morphing of elastic shells.

  15. Thin-shell wormholes constrained by cosmological observations

    Science.gov (United States)

    Wang, Deng; Meng, Xin-He

    2017-09-01

    We investigate the thin-shell wormholes constrained by cosmological observations for the first time in the literature. Without loss of generality, we study the thin-shell wormholes in ωCDM model and analyze their stability under perturbations preserving the symmetry. Firstly, we constrain the ωCDM model using a combination of Union 2.1 SNe Ia data, the latest H(z) data and CMB data. Secondly, we use the constrained dark energy equation of state (EoS) ω which lies in [ - 1 . 05 , - 0 . 89 ] to investigate thin-shell wormholes generated by various black hole spacetimes. We find that the stable Schwarzschild and Reinssner-Nordström thin-shell wormholes constrained by cosmological observations do not exist. In addition, the method we developed can be applied in exploring the stable thin-shell wormholes from any black hole spacetime in the framework of any cosmological theory.

  16. Inner-shell couplings in transiently formed superheavy quasimolecules

    Energy Technology Data Exchange (ETDEWEB)

    Verma, P [Kalindi College, University of Delhi, New Delhi 110008 (India); Mokler, P H [Max-Planck-Institut fuer Kernphysik, 69117 Heidelberg (Germany); Braeuning-Demian, A; Kozhuharov, C; Braeuning, H; Bosch, F; Hagmann, S; Liesen, D [GSI Helmholzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Anton, J; Fricke, B [Universitaet Kassel, 34109 Kassel (Germany); Stachura, Z [Institute for Nuclear Physics, Cracow PL 31342 (Poland); Wahab, M A, E-mail: p.verma.du@gmail.com [Jamia Millia Islamia, Jamia Nagar, New Delhi 110025 (India)

    2011-06-15

    The inner-shell couplings for U{sup q+}-ions (73{<=}q{<=}91) moving moderately slow at {approx}69 MeV u{sup -1} and bombarding thin Au targets have been investigated. Having established the definite survival probability of incoming projectile K vacancies in these targets in an earlier publication, the transfer of these vacancies to the target K-shell due to inner-shell couplings has been studied. As the system is in the quasiadiabatic collision regime for the K-shell of collision partners, advanced SCF-DFS (self-consistent field-Dirac-Fock-Slater) multielectron level diagrams have been used for interpretation. Using a simple model, the L-K shell coupling interaction distance has been estimated and compared with level diagram calculations.

  17. Operating factors of Thai threshers affecting corn shelling losses

    Directory of Open Access Journals (Sweden)

    Somchai Chuan-udom

    2013-02-01

    Full Text Available The objective of this research was to study the operating factors of Thai threshers affecting corn shelling losses,which comprised rotor speed (RS, louver inclination (LI, grain moisture content (MC, feed rate (FR, and grain to materialother than grain ratio (GM. Seventeen Thai corn-shelling threshers were random-sampled during the late rainy season cropof 2008 and ten threshers were sampled in the early rainy season crop of 2009 in Loei province, Northeast of Thailand.The results of this study indicated that LI and MC affected shelling losses whereas RS, FR and GM did not affect losses.Increased LI or decreased MC tended to reduce shelling losses. In operating the Thai threshers for corn shelling, if shellinglosses have to be kept lower that 0.5%, the moisture content should not exceed 20%wb and the louver inclination should notbe less than 85 degrees.

  18. Chemical modification of the cocoa shell surface using diazonium salts.

    Science.gov (United States)

    Fioresi, Flavia; Vieillard, Julien; Bargougui, Radhouane; Bouazizi, Nabil; Fotsing, Patrick Nkuigue; Woumfo, Emmanuel Djoufac; Brun, Nicolas; Mofaddel, Nadine; Le Derf, Franck

    2017-05-15

    The outer portion of the cocoa bean, also known as cocoa husk or cocoa shell (CS), is an agrowaste material from the cocoa industry. Even though raw CS is used as food additive, garden mulch, and soil conditioner or even burnt for fuel, this biomass material has hardly ever been investigated for further modification. This article proposes a strategy of chemical modification of cocoa shell to add value to this natural material. The study investigates the grafting of aryl diazonium salt on cocoa shell. Different diazonium salts were grafted on the shell surface and characterized by infrared spectroscopy and scanning electronic microscopy imaging. Strategies were developed to demonstrate the spontaneous grafting of aryl diazonium salt on cocoa shell and to elucidate that lignin is mainly involved in immobilizing the phenyl layer. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Stress Resultant Based Elasto-Viscoplastic Thick Shell Model

    Directory of Open Access Journals (Sweden)

    Pawel Woelke

    2012-01-01

    Full Text Available The current paper presents enhancement introduced to the elasto-viscoplastic shell formulation, which serves as a theoretical base for the finite element code EPSA (Elasto-Plastic Shell Analysis [1–3]. The shell equations used in EPSA are modified to account for transverse shear deformation, which is important in the analysis of thick plates and shells, as well as composite laminates. Transverse shear forces calculated from transverse shear strains are introduced into a rate-dependent yield function, which is similar to Iliushin's yield surface expressed in terms of stress resultants and stress couples [12]. The hardening rule defined by Bieniek and Funaro [4], which allows for representation of the Bauschinger effect on a moment-curvature plane, was previously adopted in EPSA and is used here in the same form. Viscoplastic strain rates are calculated, taking into account the transverse shears. Only non-layered shells are considered in this work.

  20. Transcriptome analysis of the freshwater pearl mussel (Cristaria plicata) mantle unravels genes involved in the formation of shell and pearl.

    Science.gov (United States)

    Wang, Xuefeng; Liu, Zhiming; Wu, Wenjian

    2017-04-01

    Cristaria plicata, a bivalve widespread in Eastern Asia fresh water, is utilized as the freshwater pearl mussel in China. With a high economic value in pearl production, it is also an ideal object used for the studies on biomineralization in freshwater. In the research, we performed a large-scale sequencing of Cristaria plicata mantle transcriptome using Illumina HiSeq™ 2500, obtaining 98,501 unigenes with 67,817,724 bases. 22.28 and 16.64% of the unigenes were annotated in the NR and Swiss-Prot databases, respectively. Most of the annotated unigenes were homologous with proteins of Crassostrea gigas (47.4%) and some were similar to proteins of Aplysia californica (16.7%). Here, we identified 109 homologous unigenes of 15 decided shell matrix proteins, including nacrein, Pif, perlucin, tyrosinase (Tyr), PfN44, PUSP1, chitinase, shell matrix protein, MSI80, fibronectin type III, AmOxCo, perlwapin, BMSP, PfCHS1 and CaLP. Two other mantle transcriptomes of Pinctada margaritifera and Pinctada fucata were also analyzed to perform a biomineralization protein comparison of the three molluscan transcriptomes. All the three compared mollusks shared four proteins, including nacrein, Pif, Tyr and PfCHS1. It was also discovered that Cristaria plicata shared more biomineralization proteins with Pinctada fucata than that with Pinctada margaritifera. Our study explored a whole draft of mantle transcriptome of freshwater mussel and unraveled genes involved in the formation of shell and pearl, making it possible to identify massive novel biomineralization proteins in mollusks.

  1. Localized surface plasmon mediated energy transfer in the vicinity of core-shell nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Shishodia, Manmohan Singh, E-mail: manmohan@gbu.ac.in; Juneja, Soniya [Department of Applied Physics, School of Vocational Studies and Applied Sciences, Gautam Buddha University, Greater Noida 201308 (India)

    2016-05-28

    Multipole spectral expansion based theory of energy transfer interactions between a donor and an acceptor molecule in the vicinity of a core-shell (nanoshell or core@shell) based plasmonic nanostructure is developed. In view of the diverse applications and rich plasmonic features such as tuning capability of surface plasmon (SP) frequencies, greater sensitivity to the change of dielectric environment, controllable redirection of electromagnetic radiation, closed form expressions for Energy Transfer Rate Enhancement Factor (ETREF) near core-shell particle are reported. The dependence of ETREF on different parameters is established through fitting equations, perceived to be of key importance for developing appropriate designs. The theoretical approach developed in the present work is capable of treating higher order multipoles, which, in turn, are also shown to play a crucial role in the present context. Moreover, closed form expressions derived in the present work can directly be used as formula, e.g., for designing SP based biosensors and estimating energy exchange between proteins and excitonic interactions in quantum dots.

  2. Bioluminescent virion shells: new tools for quantitation of AAV vector dynamics in cells and live animals.

    Science.gov (United States)

    Asokan, A; Johnson, J S; Li, C; Samulski, R J

    2008-12-01

    Current technologies for visualizing infectious pathways of viruses rely on fluorescent labeling of capsid proteins by chemical conjugation or genetic manipulation. For noninvasive in vivo imaging of such agents in mammalian tissue, we engineered bioluminescent Gaussia luciferase-tagged Adeno-associated viral (gLuc/AAV) vectors. The enzyme was incorporated into recombinant AAV serotypes 1, 2 and 8 capsids by fusing to the N-terminus of the VP2 capsid subunit to yield bioluminescent virion shells. The gLuc/AAV vectors were used to quantify kinetics of cell-surface-binding by AAV2 capsids in vitro. Bioluminescent virion shells displayed an exponential decrease in luminescent signal following cellular uptake in vitro. A similar trend was observed following intramuscular injection in vivo, although the rate of decline in bioluminescent signal varied markedly between AAV serotypes. gLuc/AAV1 and gLuc/AAV8 vectors displayed rapid decrease in bioluminescent signal to background levels within 30 min, whereas the signal from gLuc/AAV2 vectors persisted for over 2 h. Bioluminescent virion shells might be particularly useful in quantifying dynamics of viral vector uptake in cells and peripheral tissues in live animals.

  3. Triggered release of insulin from glucose-sensitive enzyme multilayer shells.

    Science.gov (United States)

    Qi, Wei; Yan, Xuehai; Fei, Jinbo; Wang, Anhe; Cui, Yue; Li, Junbai

    2009-05-01

    A glucose-sensitive multilayer shell, which was fabricated by the layer-by-layer (LbL) assembly method, can be used as a carrier for the encapsulation and controlled release of insulin. In the present report, glucose oxidase (GOD) and catalase (CAT) were assembled on insulin particles alternately via glutaraldehyde (GA) cross-linking. The resulting core-shell system has been proven to be glucose-sensitive. When the external glucose was introduced, the release ratio of insulin from the protein multilayer can be increased observably. This is likely attributed to the catalysis interaction of CAT/GOD shells to glucose, which leads to the production of H(+) and thus drops the pH of the microenvironment. Under the acidic conditions, on the one hand, a part of C=N bond formed from Schiff base reaction can be broken and thus increasing the permeability of the capsule wall. On the other hand, the solubility of insulin can also be increased. The above factors may be the key control to increase the release of insulin from the multilayer. Therefore, such CAT/GOD multilayer may have a great potential as a glucose-sensitive release carrier for insulin, and may open the way for the further application of LbL capsules in the drug delivery and controlled release, etc.

  4. Oceans, Ice Shells, and Life on Europa

    Science.gov (United States)

    Schenk, Paul

    2002-01-01

    The four large satellites of Jupiter are famous for their planet-like diversity and complexity, but none more so than ice-covered Europa. Since the provocative Voyager images of Europa in 1979, evidence has been mounting that a vast liquid water ocean may lurk beneath the moon's icy surface. Europa has since been the target of increasing and sometimes reckless speculation regarding the possibility that giant squid and other creatures may be swimming its purported cold, dark ocean. No wonder Europa tops everyone's list for future exploration in the outer solar system (after the very first reconnaissance of Pluto and the Kuiper belt, of course). Europa may be the smallest of the Galilean moons (so-called because they were discovered by Galileo Galilei in the early 17th century) but more than makes up for its diminutive size with a crazed, alien landscape. The surface is covered with ridges hundreds of meters high, domes tens of kilometers across, and large areas of broken and disrupted crust called chaos. Some of the geologic features seen on Europa resemble ice rafts floating in polar seas here on Earth-reinforcing the idea that an ice shell is floating over an ocean on this Moon-size satellite. However, such features do not prove that an ocean exists or ever did. Warm ice is unusually soft and will flow under its own weight. If the ice shell is thick enough, the warm bottom of the shell will flow, as do terrestrial glaciers. This could produce all the observed surface features on Europa through a variety of processes, the most important of which is convection. (Convection is the vertical overturn of a layer due to heating or density differences-think of porridge or sauce boiling on the stove.) Rising blobs from the base of the crust would then create the oval domes dotting Europa's surface. The strongest evidence for a hidden ocean beneath Europa's surface comes from the Galileo spacecraft's onboard magnetometer, which detected fluctuations in Jupiter's magnetic

  5. Pathogen prevalence and microbial levels associated with restricted shell eggs.

    Science.gov (United States)

    Jones, D R; Musgrove, M T

    2007-09-01

    Restricted shell eggs that do not meet quality standards for retail but maintain acceptable quality for inclusion in further processed eggs are often diverted to further processing. A study was conducted to characterize the microbiological populations present on and in these eggs. On a single day, restricted eggs were collected from three shell egg processing plants a total of three times (replicates). Six shells or egg contents were combined to create a pool. Ten pools of shells and contents were formed for each plant per replicate. Shells and membranes were macerated in 60 ml of diluent. Contents were stomacher blended to form a homogeneous mixture. Total aerobic microorganisms and Enterobacteriaceae were enumerated. The prevalence of Salmonella, Campylobacter, and Listeria was determined by cultural methods. Average aerobic counts were 4.3 log CFU/ml for the shells and 2.0 log CFU/ml for the contents. There were plant x replicate differences for both (P Enterobacteriaceae level associated with the shell was 2.4 log CFU/ml and less than 0.1 log CFU/ml for the egg contents, with 36.7% of the samples being positive. One shell sample (0.5% of total samples) was Campylobacter positive. Two shell samples (1.1% of total samples) were Salmonella positive. Twenty-one percent of samples were positive for Listeria (33 shells and 5 contents). Although current pasteurization guidelines are based on Salmonella lethality, the results of this study reiterate the need to revisit the guidelines to determine the effectiveness for other pathogenic species.

  6. The NASA Monographs on Shell Stability Design Recommendations: A Review and Suggested Improvements

    Science.gov (United States)

    Nemeth, Michael P.; Starnes, James H., Jr.

    1998-01-01

    A summary of the existing NASA design criteria monographs for the design of buckling-resistant thin-shell structures is presented. Subsequent improvements in the analysis for nonlinear shell response are reviewed, and current issues in shell stability analysis are discussed. Examples of nonlinear shell responses that are not included in the existing shell design monographs are presented, and an approach for including reliability-based analysis procedures in the shell design process is discussed. Suggestions for conducting future shell experiments are presented, and proposed improvements to the NASA shell design criteria monographs are discussed.

  7. Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo

    Science.gov (United States)

    Chen, Fangfang; Wang, Guankui; Griffin, James I.; Brenneman, Barbara; Banda, Nirmal K.; Holers, V. Michael; Backos, Donald S.; Wu, Linping; Moghimi, Seyed Moein; Simberg, Dmitri

    2017-05-01

    When nanoparticles are intravenously injected into the body, complement proteins deposit on the surface of nanoparticles in a process called opsonization. These proteins prime the particle for removal by immune cells and may contribute toward infusion-related adverse effects such as allergic responses. The ways complement proteins assemble on nanoparticles have remained unclear. Here, we show that dextran-coated superparamagnetic iron oxide core-shell nanoworms incubated in human serum and plasma are rapidly opsonized with the third complement component (C3) via the alternative pathway. Serum and plasma proteins bound to the nanoworms are mostly intercalated into the nanoworm shell. We show that C3 covalently binds to these absorbed proteins rather than the dextran shell and the protein-bound C3 undergoes dynamic exchange in vitro. Surface-bound proteins accelerate the assembly of the complement components of the alternative pathway on the nanoworm surface. When nanoworms pre-coated with human plasma were injected into mice, C3 and other adsorbed proteins undergo rapid loss. Our results provide important insight into dynamics of protein adsorption and complement opsonization of nanomedicines.

  8. Biomass-based palm shell activated carbon and palm shell carbon molecular sieve as gas separation adsorbents.

    Science.gov (United States)

    Sethupathi, Sumathi; Bashir, Mohammed Jk; Akbar, Zinatizadeh Ali; Mohamed, Abdul Rahman

    2015-04-01

    Lignocellulosic biomass has been widely recognised as a potential low-cost source for the production of high added value materials and proved to be a good precursor for the production of activated carbons. One of such valuable biomasses used for the production of activated carbons is palm shell. Palm shell (endocarp) is an abundant by-product produced from the palm oil industries throughout tropical countries. Palm shell activated carbon and palm shell carbon molecular sieve has been widely applied in various environmental pollution control technologies, mainly owing to its high adsorption performance, well-developed porosity and low cost, leading to potential applications in gas-phase separation using adsorption processes. This mini-review represents a comprehensive overview of the palm shell activated carbon and palm shell carbon molecular sieve preparation method, physicochemical properties and feasibility of palm shell activated carbon and palm shell carbon molecular sieve in gas separation processes. Some of the limitations are outlined and suggestions for future improvements are pointed out. © The Author(s) 2015.

  9. Triggered Templated Assembly of Protein Polymersomes

    NARCIS (Netherlands)

    Li, F.; Wolf, de F.A.; Marcelis, A.T.M.; Sudhölter, E.J.R.; Stuart, M.A.C.; Leermakers, F.A.M.

    2010-01-01

    Trigger the block: Stable biocompatible protein polymersomes can be generated by a triggered templated self-assembly route (see picture). Pluronic L121 vesicles (red core with blue corona) take up a biosynthetic triblock copolymer CSXSXC into their unilamellar shell. In response to changes in pH

  10. Identification of a Broadly Cross-Reactive Epitope in the Inner Shell of the Norovirus Capsid.

    Directory of Open Access Journals (Sweden)

    Gabriel I Parra

    Full Text Available Noroviruses are major pathogens associated with acute gastroenteritis. They are diverse viruses, with at least six genogroups (GI-GVI and multiple genotypes defined by differences in the major capsid protein, VP1. This diversity has challenged the development of broadly cross-reactive vaccines as well as efficient detection methods. Here, we report the characterization of a broadly cross-reactive monoclonal antibody (MAb raised against the capsid protein of a GII.3 norovirus strain. The MAb reacted with VLPs and denatured VP1 protein from GI, GII, GIV and GV noroviruses, and mapped to a linear epitope located in the inner shell domain. An alignment of all available VP1 sequences showed that the putative epitope (residues 52-56 is highly conserved across the genus Norovirus. This broadly cross-reactive MAb thus constitutes a valuable reagent for the diagnosis and study of these diverse viruses.

  11. The descent of off-shell supersymmetry to the mass shell

    Science.gov (United States)

    Krotov, D.

    2008-07-01

    It is shown that classical actions for some "physically interesting" quantum field theories can be obtained as effective actions from the single "fundamental" theory of the Chern-Simons form. The physical degrees of freedom are encoded in the space of cohomologies of a certain differential operator. This observation suggests a different perspective on some of the supersymmetric properties of these effective theories. Namely, it is possibie to construct a superfield formalism which allows to find off-shell SUSY actions for the on-shell supersymmetric theories, where conventional superfield formalism does not work. This formalism contains even auxiliary variables λα in addition to conventional odd variables θα. This idea is similar to the Pure Spinor construction. This paper is a short review of papers [11, 12]. Original results discussed below were obtained in collaboration with V. Alexandrov, A. Gorodentsev, A. Losev and V. Lysov.

  12. The descent of off-shell supersymmetry to the mass shell. short review

    Science.gov (United States)

    Krotov, D.

    2008-03-01

    It is shown that classical actions for some “physically interesting” quantum field theories can be obtained as effective actions from the single “fundamental” theory of the Chern Simons form. The physical degrees of freedom are encoded in the space of cohomologies of a certain differential operator. This observation suggests a different perspective on some of the supersymmetric properties of these effective theories. Namely, it is possible to construct a superfield formalism which allows to find off-shell SUSY actions for the on-shell supersymmetric theories, where conventional superfield formalism does not work. This formalism contains even auxiliary variables λα in addition to conventional odd variables θα. This idea is similar to the Pure Spinor construction. This paper is a short review of papers [11, 12]. Original results discussed below were obtained in collaboration with V. Alexandrov, A. Gorodentsev, A. Losev and V. Lysov.

  13. Intestinal mucosa permeability following oral insulin delivery using core shell corona nanolipoparticles.

    Science.gov (United States)

    Li, Xiuying; Guo, Shiyan; Zhu, Chunliu; Zhu, Quanlei; Gan, Yong; Rantanen, Jukka; Rahbek, Ulrik Lytt; Hovgaard, Lars; Yang, Mingshi

    2013-12-01

    Chitosan nanoparticles (NC) have excellent capacity for protein entrapment, favorable epithelial permeability, and are regarded as promising nanocarriers for oral protein delivery. Herein, we designed and evaluated a class of core shell corona nanolipoparticles (CSC) to further improve the absorption through enhanced intestinal mucus penetration. CSC contains chitosan nanoparticles as a core component and pluronic F127-lipid vesicles as a shell with hydrophilic chain and polyethylene oxide PEO as a corona. These particles were developed by hydration of a dry pluronic F127-lipid film with NC suspensions followed by extrusion. Insulin nested inside CSC was well protected from enzymatic degradation. Compared with NC, CSC exhibited significantly higher efficiency of mucosal penetration and, consequently, higher cellular internalization of insulin in mucus secreting E12 cells. The cellular level of insulin after CSC treatment was 36-fold higher compared to treatment with free insulin, and 10-fold higher compared to NC. CSC significantly facilitated the permeation of insulin across the ileum epithelia, as demonstrated in an ex vivo study and an in vivo absorption study. CSC pharmacological studies in diabetic rats showed that the hypoglycemic effects of orally administrated CSC were 2.5-fold higher compared to NC. In conclusion, CSC is a promising oral protein delivery system to enhance the stability, intestinal mucosal permeability, and oral absorption of insulin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Quantum Corrected Schwarzschild Thin Shell Wormhole

    CERN Document Server

    Jusufi, Kimet

    2016-01-01

    Recently, Ali and Khalil \\cite{ahmed}, based on the Bohmian quantum mechanics derived a quantum corrected version of the Schwarzschild metric. In this paper, we construct a quantum corrected Schwarzschild thin shell wormhole (QSTSW) and investigate the stability of this wormhole. First we compute the surface stress at the wormhole throat by applying the Darmois-Israel formalism to the modified Schwarzschild metric and show that exotic matter is required at the throat to keep the wormhole stable. We then study the stability analysis of the wormhole by considering phantom-energy for the exotic matter, generalized Chaplygin gas (GCG), and the linearized stability analysis. It is argued that, quantum corrections can affect the stability domain of the wormhole.

  15. Quantum corrected Schwarzschild thin-shell wormhole

    Energy Technology Data Exchange (ETDEWEB)

    Jusufi, Kimet [State University of Tetovo, Physics Department, Tetovo (Macedonia, The Former Yugoslav Republic of)

    2016-11-15

    Recently, Ali and Khalil (Nucl Phys B, 909, 173-185, 2016), based on Bohmian quantum mechanics, derived a quantum corrected version of the Schwarzschild metric. In this paper, we construct a quantum corrected Schwarzschild thin-shell wormhole (QSTSW) and investigate the stability of this wormhole. First we compute the surface stress at the wormhole throat by applying the Darmois-Israel formalism to the modified Schwarzschild metric and show that exotic matter is required at the throat to keep the wormhole stable. We then study the stability analysis of the wormhole by considering phantom-energy for the exotic matter, generalized Chaplygin gas (GCG), and the linearized stability analysis. It is argued that quantum corrections can affect the stability domain of the wormhole. (orig.)

  16. Shell script na Prática

    Directory of Open Access Journals (Sweden)

    Aliny Meire Jardim

    2010-12-01

    Full Text Available O seguinte trabalho apresenta uma proposta de minicurso sobre shell-script, uma linguagem interpretada que serve de interface de comunicação entre o usuário e o kernel do sistema. São descritos os pré-requesitos necessários para adquirir os conhecimentos e atender as expectativas de aprendizagem. Este prático minicurso irá usar um sistema unix-like[1] e ensinar algumas ténicas para usar o terminal e construir um script executável. resumo deve conter as principais informações referentes ao trabalho realizado, como os objetivos, a metodologia, os principais aspectos analisados e as conclusões.

  17. Taming the off-shell Higgs boson

    CERN Document Server

    Azatov, Aleksandr; Paul, Ayan; Salvioni, Ennio

    2015-01-01

    We study the off-shell Higgs data in the process $pp\\to h^{(*)} \\to Z^{(\\ast)}Z^{(\\ast)}\\to 4\\ell$, to constrain deviations of the Higgs couplings. We point out that this channel can be used to resolve the long- and short-distance contributions to Higgs production by gluon fusion and can thus be complementary to $pp\\to ht\\bar t$ in measuring the top Yukawa coupling. Our analysis, performed in the context of Effective Field Theory, shows that current data do not allow one to draw any model-independent conclusions. We study the prospects at future hadron colliders, including the high-luminosity LHC and accelerators with higher-energy, up to 100 TeV. The available QCD calculations and the theoretical uncertainties affecting our analysis are also briefly discussed.

  18. Topological magnetic solitons on a paraboloidal shell

    Energy Technology Data Exchange (ETDEWEB)

    Vilas-Boas, Priscila S.C. [Universidade do Estado da Bahia, Campus VII, BR 402, 48970-000, Senhor do Bonfim, BA (Brazil); Elias, Ricardo G.; Altbir, Dora [Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Fonseca, Jakson M. [Universidade Federal de Viçosa, Departamento de Física, Avenida Peter Henry Rolfs s/n, 36570-000, Viçosa, MG (Brazil); Carvalho-Santos, Vagson L., E-mail: vagson.carvalho@usach.cl [Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Instituto Federal de Educação, Ciência e Tecnologia Baiano, Campus Senhor do Bonfim, Km 04 Estrada da Igara, 48970-000 Senhor do Bonfim, Bahia (Brazil)

    2015-01-02

    We study the influence of curvature on the exchange energy of skyrmions and vortices on a paraboloidal surface. It is shown that such structures appear as excitations of the Heisenberg model, presenting topological stability, unlike what happens on other simply-connected geometries such as pseudospheres. We also show that the skyrmion width depends on the geometrical parameters of the paraboloid. The presence of a magnetic field leads to the appearance of 2π-skyrmions, introducing a new characteristic length into the system. Regarding vortices, the geometrical parameters of the paraboloid play an important role in the exchange energy of this excitation. - Highlights: • Curvature-induced change in the width of a skyrmion on a paraboloid. • Presence of 2π-skyrmions due to the interaction with external fields. • Changes in the width of a skyrmion induced by magnetic fields. • Coupling between magnetic field and curvature. • Prediction of vortex repulsion due to a paraboloidal shell.

  19. Torrefaction of pomaces and nut shells.

    Science.gov (United States)

    Chiou, Bor-Sen; Valenzuela-Medina, Diana; Bilbao-Sainz, Cristina; Klamczynski, Artur K; Avena-Bustillos, Roberto J; Milczarek, Rebecca R; Du, Wen-Xian; Glenn, Greg M; Orts, William J

    2015-02-01

    Apple, grape, olive, and tomato pomaces as well as almond and walnut shells were torrefied at different temperatures and times in a muffle furnace. The fiber content and thermal stability of the raw byproducts were examined and the moisture and ash contents, elemental composition, and gross calorific values of the raw and torrefied samples were characterized. Response surface methodology and a central composite design were used to examine the effects of temperature and time on mass and energy yields of the torrefied byproducts. Raw apple pomace had the highest hemicellulose content, whereas raw grape pomace had the highest lignin content. Raw tomato pomace had the highest gross calorific value because of its high carbon content. Temperature had a larger effect on mass and energy yields than time. Grape pomace generally had the highest mass and energy yields. Also, energy yields of the byproducts could be predicted from mass loss values. Published by Elsevier Ltd.

  20. Radiation-induced preparation of core/shell gold/albumin nanoparticles

    Science.gov (United States)

    Flores, Constanza Y.; Achilli, Estefania; Grasselli, Mariano

    2018-01-01

    Nanoparticles (NPs) are one of the most promising nanomaterials to be used in the biomedical field. Gold NPs (Au-NPs) have been covered with monolayers of many different molecules and macromolecules to prepare different kinds of biosensors. However, these coatings based on physisorption methods are not stable enough to prepare functional nanomaterials to be used in complex mixtures or in vivo applications. The aim of this work was to prepare a protein coating of Au-NPs based on a protein multilayer covering, stabilized by a novel radiation-induced crosslinking process. Albumins from human and bovine source were added to Au-NPs suspension and followed by ethanol addition to induce protein aggregation. Samples were irradiated with a gamma source at 10 kGy to induce a protein crosslinking according to recent findings. Samples containing 30%v/v ethanol showed a plasmon peak at about 532 nm, demonstrating the presence of non-aggregated Au-NPs. Using higher ethanol concentrations, the absorbance of plasmon peak showed NP aggregation. By Dynamic Light Scattering measurements, a new particle population with an average diameter of about 60 nm was found. Moreover, TEM images showed that the NPs had spherical shape and the presence of a low-density halo around the metal core confirmed the presence of the protein shell. An irradiation dose of one kGy was enough to show changes in the plasmon peak characteristics. The increase in the chemical stability of protein shell was demonstrated by the reduction in the NP dissolution kinetics in presence of cyanate.

  1. Testing refined shell-model interactions in the sd shell: Coulomb excitation of Na26

    CERN Document Server

    Siebeck, B; Blazhev, A; Reiter, P; Altenkirch, R; Bauer, C; Butler, P A; De Witte, H; Elseviers, J; Gaffney, L P; Hess, H; Huyse, M; Kröll, T; Lutter, R; Pakarinen, J; Pietralla, N; Radeck, F; Scheck, M; Schneiders, D; Sotty, C; Van Duppen, P; Vermeulen, M; Voulot, D; Warr, N; Wenander, F

    2015-01-01

    Background: Shell-model calculations crucially depend on the residual interaction used to approximate the nucleon-nucleon interaction. Recent improvements to the empirical universal sd interaction (USD) describing nuclei within the sd shell yielded two new interactions—USDA and USDB—causing changes in the theoretical description of these nuclei. Purpose: Transition matrix elements between excited states provide an excellent probe to examine the underlying shell structure. These observables provide a stringent test for the newly derived interactions. The nucleus Na26 with 7 valence neutrons and 3 valence protons outside the doubly-magic 16O core is used as a test case. Method: A radioactive beam experiment with Na26 (T1/2=1,07s) was performed at the REX-ISOLDE facility (CERN) using Coulomb excitation at safe energies below the Coulomb barrier. Scattered particles were detected with an annular Si detector in coincidence with γ rays observed by the segmented MINIBALL array. Coulomb excitation cross sections...

  2. Three-dimensional flat shell-to-shell coupling: numerical challenges

    Directory of Open Access Journals (Sweden)

    Guo Kuo

    2017-11-01

    Full Text Available The node-to-surface formulation is widely used in contact simulations with finite elements because it is relatively easy to implement using different types of element discretizations. This approach, however, has a number of well-known drawbacks, including locking due to over-constraint when this formulation is used as a twopass method. Most studies on the node-to-surface contact formulation, however, have been conducted using solid elements and little has been done to investigate the effectiveness of this approach for beam or shell elements. In this paper we show that locking can also be observed with the node-to-surface contact formulation when applied to plate and flat shell elements even with a singlepass implementation with distinct master/slave designations, which is the standard solution to locking with solid elements. In our study, we use the quadrilateral four node flat shell element for thin (Kirchhoff-Love plate and thick (Reissner-Mindlin plate theory, both in their standard forms and with improved formulations such as the linked interpolation [1] and the Discrete Kirchhoff [2] elements for thick and thin plates, respectively. The Lagrange multiplier method is used to enforce the node-to-surface constraints for all elements. The results show clear locking when compared to those obtained using a conforming mesh configuration.

  3. Preparation of activated carbons from macadamia nut shell and coconut shell by air activation

    Energy Technology Data Exchange (ETDEWEB)

    Tam, M.S.; Antal, M.J. Jr.

    1999-11-01

    A novel, three-step process for the production of high-quality activated carbons from macadamia nut shell and coconut shell charcoals is described. In this process the charcoal is (1) heated to a high temperature (carbonized), (2) oxidized in air following a stepwise heating program from low (ca. 450 K) to high (ca. 660 K) temperatures (oxygenated), and (3) heated again in an inert environment to a high temperature (activated). By use of this procedure, activated carbons with surface areas greater than 1,000 m{sub 2}/g are manufactured with an overall yield of 15% (based on the dry shell feed). Removal of carbon mass by the development of mesopores and macropores is largely responsible for increases in the surface area of the carbons above 600 m{sub 2}/g. Thus, the surface area per gram of activated carbon can be represented by an inverse function of the yield for burnoffs between 15 and 60%. These findings are supported by mass-transfer calculations and pore-size distribution measurements. A kinetic model for gasification of carbon by oxygen, which provides for an Eley-Rideal type reaction of a surface oxide with oxygen in air, fits the measured gasification rates reasonably well over the temperature range of 550--660 K.

  4. PEGylation of αα-Hb using succinimidyl propionic acid PEG 5K: Conjugation chemistry and PEG shell structure dictate respectively the oxygen affinity and resuscitation fluid like properties of PEG αα-Hbs.

    Science.gov (United States)

    Meng, Fantao; Tsai, Amy G; Intaglietta, Marcos; Acharya, Seetharama A

    2015-01-01

    PEGylation of intramolecularly crosslinked Hb has been studied here to overcome the limitation of dissociation of Hb tetramers. New hexa and deca PEGylated low oxygen affinity PEG-ααHbs have been generated. Influence of PEG conjugation chemistry and the PEG shell structure on the functional properties as well as PEGylation induced plasma expander like properties of the protein has been delineated. The results have established that in the design of PEG-Hbs as oxygen therapeutics, the influence of conjugation chemistry and the PEG shell structure on the oxygen affinity of Hb needs to be optimized independently besides optimizing the PEG shell structure for inducing resuscitation fluid like properties.

  5. Synthesis and characterization of dual-functionalized core-shell fluorescent microspheres for bioconjugation and cellular delivery.

    Directory of Open Access Journals (Sweden)

    Jonathan M Behrendt

    Full Text Available The efficient transport of micron-sized beads into cells, via a non-endocytosis mediated mechanism, has only recently been described. As such there is considerable scope for optimization and exploitation of this procedure to enable imaging and sensing applications to be realized. Herein, we report the design, synthesis and characterization of fluorescent microsphere-based cellular delivery agents that can also carry biological cargoes. These core-shell polymer microspheres possess two distinct chemical environments; the core is hydrophobic and can be labeled with fluorescent dye, to permit visual tracking of the microsphere during and after cellular delivery, whilst the outer shell renders the external surfaces of the microspheres hydrophilic, thus facilitating both bioconjugation and cellular compatibility. Cross-linked core particles were prepared in a dispersion polymerization reaction employing styrene, divinylbenzene and a thiol-functionalized co-monomer. These core particles were then shelled in a seeded emulsion polymerization reaction, employing styrene, divinylbenzene and methacrylic acid, to generate orthogonally functionalized core-shell microspheres which were internally labeled via the core thiol moieties through reaction with a thiol reactive dye (DY630-maleimide. Following internal labeling, bioconjugation of green fluorescent protein (GFP to their carboxyl-functionalized surfaces was successfully accomplished using standard coupling protocols. The resultant dual-labeled microspheres were visualized by both of the fully resolvable fluorescence emissions of their cores (DY630 and shells (GFP. In vitro cellular uptake of these microspheres by HeLa cells was demonstrated conventionally by fluorescence-based flow cytometry, whilst MTT assays demonstrated that 92% of HeLa cells remained viable after uptake. Due to their size and surface functionalities, these far-red-labeled microspheres are ideal candidates for in vitro, cellular

  6. Synthesis of superparamagnetic Fe3O4/PMMA/SiO2 nanorattles with periodic mesoporous shell for lysozyme adsorption.

    Science.gov (United States)

    Lan, Fang; Hu, Hao; Jiang, Wen; Liu, Kexia; Zeng, Xiaobo; Wu, Yao; Gu, Zhongwei

    2012-04-07

    A new kind of nanorattle, composed of a Fe(3)O(4)/polymethyl methacrylate (PMMA) composite nanospherical core and mesoporous SiO(2) shell, has been successfully synthesized with the combination of a modified stöber method and a dual-template strategy, followed by alcohol dialysis. The nanorattles showed high efficiency in protein adsorption and separation. This journal is © The Royal Society of Chemistry 2012

  7. Phosphoproteomes of Strongylocentrotus purpuratus shell and tooth matrix: identification of a major acidic sea urchin tooth phosphoprotein, phosphodontin.

    Science.gov (United States)

    Mann, Karlheinz; Poustka, Albert J; Mann, Matthias

    2010-02-08

    Sea urchin is a major model organism for developmental biology and biomineralization research. However, identification of proteins involved in larval skeleton formation and mineralization processes in the embryo and adult, and the molecular characterization of such proteins, has just gained momentum with the sequencing of the Strongylocentrotus purpuratus genome and the introduction of high-throughput proteomics into the field. The present report contains the determination of test (shell) and tooth organic matrix phosphoproteomes. Altogether 34 phosphoproteins were identified in the biomineral organic matrices. Most phosphoproteins were specific for one compartment, only two were identified in both matrices. The sea urchin phosphoproteomes contained several obvious orthologs of mammalian proteins, such as a Src family tyrosine kinase, protein kinase C-delta 1, Dickkopf-1 and other signal transduction components, or nucleobindin. In most cases phosphorylation sites were conserved between sea urchin and mammalian proteins. However, the majority of phosphoproteins had no mammalian counterpart. The most interesting of the sea urchin-specific phosphoproteins, from the perspective of biomineralization research, was an abundant highly phosphorylated and very acidic tooth matrix protein composed of 35 very similar short sequence repeats, a predicted N-terminal secretion signal sequence, and an Asp-rich C-terminal motif, contained in [Glean3:18919]. The 64 phosphorylation sites determined represent the most comprehensive list of experimentally identified sea urchin protein phosphorylation sites at present and are an important addition to the recently analyzed Strongylocentrotus purpuratus shell and tooth proteomes. The identified phosphoproteins included a major, highly phosphorylated protein, [Glean3:18919], for which we suggest the name phosphodontin. Although not sequence-related to such highly phosphorylated acidic mammalian dental phosphoproteins as phosphoryn or

  8. Phosphoproteomes of Strongylocentrotus purpuratus shell and tooth matrix: identification of a major acidic sea urchin tooth phosphoprotein, phosphodontin

    Directory of Open Access Journals (Sweden)

    Mann Matthias

    2010-02-01

    Full Text Available Abstract Background Sea urchin is a major model organism for developmental biology and biomineralization research. However, identification of proteins involved in larval skeleton formation and mineralization processes in the embryo and adult, and the molecular characterization of such proteins, has just gained momentum with the sequencing of the Strongylocentrotus purpuratus genome and the introduction of high-throughput proteomics into the field. Results The present report contains the determination of test (shell and tooth organic matrix phosphoproteomes. Altogether 34 phosphoproteins were identified in the biomineral organic matrices. Most phosphoproteins were specific for one compartment, only two were identified in both matrices. The sea urchin phosphoproteomes contained several obvious orthologs of mammalian proteins, such as a Src family tyrosine kinase, protein kinase C-delta 1, Dickkopf-1 and other signal transduction components, or nucleobindin. In most cases phosphorylation sites were conserved between sea urchin and mammalian proteins. However, the majority of phosphoproteins had no mammalian counterpart. The most interesting of the sea urchin-specific phosphoproteins, from the perspective of biomineralization research, was an abundant highly phosphorylated and very acidic tooth matrix protein composed of 35 very similar short sequence repeats, a predicted N-terminal secretion signal sequence, and an Asp-rich C-terminal motif, contained in [Glean3:18919]. Conclusions The 64 phosphorylation sites determined represent the most comprehensive list of experimentally identified sea urchin protein phosphorylation sites at present and are an important addition to the recently analyzed Strongylocentrotus purpuratus shell and tooth proteomes. The identified phosphoproteins included a major, highly phosphorylated protein, [Glean3:18919], for which we suggest the name phosphodontin. Although not sequence-related to such highly phosphorylated

  9. Structural and Acoustic Responses of a Submerged Stiffened Conical Shell

    Directory of Open Access Journals (Sweden)

    Meixia Chen

    2014-01-01

    Full Text Available This paper studies the vibrational behavior and far-field sound radiation of a submerged stiffened conical shell at low frequencies. The solution for the dynamic response of the conical shell is presented in the form of a power series. A smeared approach is used to model the ring stiffeners. Fluid loading is taken into account by dividing the conical shell into narrow strips which are considered to be local cylindrical shells. The far-field sound pressure is solved by the Element Radiation Superposition Method. Excitations in two directions are considered to simulate the loading on the surface of the conical shell. These excitations are applied along the generator and normal to the surface of the conical shell. The contributions from the individual circumferential modes on the structural responses of the conical shell are studied. The effects of the external fluid loading and stiffeners are discussed. The results from the analytical models are validated by numerical results from a fully coupled finite element/boundary element model.

  10. Method of initial functions for thick transversely isotropic shells

    Energy Technology Data Exchange (ETDEWEB)

    Faraji, S. (Lowell Univ., MA (USA). Dept. of Civil Engineering); Archer, R.R. (Massachusetts Univ., Amherst (USA). Dept. of Civil Engineering)

    1989-10-10

    In the present work for circular cylindrical shells, three-dimensional elasticity equations are solved by assuming Taylor series expansions, in the radial direction, for the stresses and displacements. Depending upon the number of terms retained in the expansion, different order shell theories are derived. Classical theories (referred to as eighth-order), the shear deformation-transverse normal stress theories (referred to as tenth-order), and higher order theories (referred to as twelfth-order) are derived. In each case, by carrying out the symbolic algebra using the digital computer, partial differential equations are derived. The procedure was carried out in detail for the case of a circular cyclindrical shell with no loading on the interior surface and a given pressure distribution on the exterior surface. Then, numerical comparisons are made between the current theories and various shell theories, as well as the exact (three-dimensional) theory. Thus, using this method with its associated computer programs, one can realize a spectrum of approximate shell theories ranging from the classical thin shell, through all current thick shell theories, and approaching the three-dimensional elastic theories. (orig.).

  11. Spherical shells buckling to the sound of music

    Science.gov (United States)

    Lee, Anna; Marthelot, Joel; Reis, Pedro

    We study how the critical buckling load of spherical elastic shells can be modified by a fluctuating external pressure field. In our experiments, we employ thin elastomeric shells of nearly uniform thickness fabricated by the coating of a hemispherical mold with a polymer solution, which upon curing yields elastic structures. A shell is submerged in a water bath and loaded quasi-statically until buckling occurs by reducing its inner volume with a syringe pump. Simultaneously, a plunger connected to an electromagnetic shaker is placed above the shell and driven sinusoidally to create a fluctuating external pressure field that can excite dynamic vibration modes of the shell. These dynamic modes induce effective compressive stresses, in addition to those from the inner pressure loading, which can modify the critical conditions for the onset of buckling. We systematically quantify how the frequency and amplitude of the external driving affects the buckling strength of our shells. In specific regions of the parameter space, we find that pressure fluctuations can result in large reductions of the critical buckling pressure. This is analogous to the classic knock-down effect in shells due to intrinsic geometric imperfections, albeit now in a way that can be controlled externally.

  12. Uniform double-walled polymer microspheres of controllable shell thickness.

    Science.gov (United States)

    Berkland, Cory; Pollauf, Emily; Pack, Daniel W; Kim, Kyekyoon

    2004-04-16

    A method for fabricating uniform double-walled microspheres with controllable size and shell thickness has been developed. The method, based on previous work to fabricate uniform microspheres, employs multiple concentric nozzles to produce a smooth coaxial jet comprising an annular shell and core material, which is acoustically excited to break up into uniform core-shell droplets. The orientation of the jets, material flow rates, and rate of solvent extraction are controlled to create uniform and well-centered "double-walled" microspheres exhibiting a controllable shell thickness. Double-walled microspheres were fabricated with different arrangements of bulk-eroding poly(D,L-lactide-co-glycolide) (PLG) and surface-eroding poly[(1,6-bis-carboxyphenoxy) hexane] (PCPH). Variation of the fabrication parameters allowed complete encapsulation by the shell phase, including the efficient formation of a PCPH shell encapsulating a PLG core. Utilizing this technology, double-walled microsphere shell thickness can be varied from core encapsulation for double-walled microspheres near 50 microm in overall diameter.

  13. Dropping macadamia nuts-in-shell reduces kernel roasting quality.

    Science.gov (United States)

    Walton, David A; Wallace, Helen M

    2010-10-01

    Macadamia nuts ('nuts-in-shell') are subjected to many impacts from dropping during postharvest handling, resulting in damage to the raw kernel. The effect of dropping on roasted kernel quality is unknown. Macadamia nuts-in-shell were dropped in various combinations of moisture content, number of drops and receiving surface in three experiments. After dropping, samples from each treatment and undropped controls were dry oven-roasted for 20 min at 130 °C, and kernels were assessed for colour, mottled colour and surface damage. Dropping nuts-in-shell onto a bed of nuts-in-shell at 3% moisture content or 20% moisture content increased the percentage of dark roasted kernels. Kernels from nuts dropped first at 20%, then 10% moisture content, onto a metal plate had increased mottled colour. Dropping nuts-in-shell at 3% moisture content onto nuts-in-shell significantly increased surface damage. Similarly, surface damage increased for kernels dropped onto a metal plate at 20%, then at 10% moisture content. Postharvest dropping of macadamia nuts-in-shell causes concealed cellular damage to kernels, the effects not evident until roasting. This damage provides the reagents needed for non-enzymatic browning reactions. Improvements in handling, such as reducing the number of drops and improving handling equipment, will reduce cellular damage and after-roast darkening. Copyright © 2010 Society of Chemical Industry.

  14. Shell architecture: a novel proxy for paleotemperature reconstructions?

    Science.gov (United States)

    Milano, Stefania; Nehrke, Gernot; Wanamaker, Alan D., Jr.; Witbaard, Rob; Schöne, Bernd R.

    2017-04-01

    Mollusk shells are unique high-resolution paleoenvironmental archives. Their geochemical properties, such as oxygen isotope composition (δ18Oshell) and element-to-calcium ratios, are routinely used to estimate past environmental conditions. However, the existing proxies have certain drawbacks that can affect paleoreconstruction robustness. For instance, the estimation of water temperature of brackish and near-shore environments can be biased by the interdependency of δ18Oshell from multiple environmental variables (water temperature and δ18Owater). Likely, the environmental signature can be masked by physiological processes responsible for the incorporation of trace elements into the shell. The present study evaluated the use of shell structural properties as alternative environmental proxies. The sensitivity of shell architecture at µm and nm-scale to the environment was tested. In particular, the relationship between water temperature and microstructure formation was investigated. To enable the detection of potential structural changes, the shells of the marine bivalves Cerastoderma edule and Arctica islandica were analyzed with Scanning Electron Microscopy (SEM), nanoindentation and Confocal Raman Microscopy (CRM). These techniques allow a quantitative approach to the microstructural analysis. Our results show that water temperature induces a clear response in shell microstructure. A significant alteration in the morphometric characteristics and crystallographic orientation of the structural units was observed. Our pilot study suggests that shell architecture records environmental information and it has potential to be used as novel temperature proxy in near-shore and open ocean habitats.

  15. Horizon shells and BMS-like soldering transformations

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Matthias [Albert Einstein Center for Fundamental Physics,Institute for Theoretical Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland); O’Loughlin, Martin [University of Nova Gorica,Vipavska 13, 5000 Nova Gorica (Slovenia)

    2016-03-07

    We revisit the theory of null shells in general relativity, with a particular emphasis on null shells placed at horizons of black holes. We study in detail the considerable freedom that is available in the case that one solders two metrics together across null hypersurfaces (such as Killing horizons) for which the induced metric is invariant under translations along the null generators. In this case the group of soldering transformations turns out to be infinite dimensional, and these solderings create non-trivial horizon shells containing both massless matter and impulsive gravitational wave components. We also rephrase this result in the language of Carrollian symmetry groups. To illustrate this phenomenon we discuss in detail the example of shells on the horizon of the Schwarzschild black hole (with equal interior and exterior mass), uncovering a rich classical structure at the horizon and deriving an explicit expression for the general horizon shell energy-momentum tensor. In the special case of BMS-like soldering supertranslations we find a conserved shell-energy that is strikingly similar to the standard expression for asymptotic BMS supertranslation charges, suggesting a direct relation between the physical properties of these horizon shells and the recently proposed BMS supertranslation hair of a black hole.

  16. Horizon shells and BMS-like soldering transformations

    Science.gov (United States)

    Blau, Matthias; O'Loughlin, Martin

    2016-03-01

    We revisit the theory of null shells in general relativity, with a particular emphasis on null shells placed at horizons of black holes. We study in detail the considerable freedom that is available in the case that one solders two metrics together across null hypersurfaces (such as Killing horizons) for which the induced metric is invariant under translations along the null generators. In this case the group of soldering transformations turns out to be infinite dimensional, and these solderings create non-trivial horizon shells containing both massless matter and impulsive gravitational wave components. We also rephrase this result in the language of Carrollian symmetry groups. To illustrate this phenomenon we discuss in detail the example of shells on the horizon of the Schwarzschild black hole (with equal interior and exterior mass), uncovering a rich classical structure at the horizon and deriving an explicit expression for the general horizon shell energy-momentum tensor. In the special case of BMS-like soldering supertranslations we find a conserved shell-energy that is strikingly similar to the standard expression for asymptotic BMS supertranslation charges, suggesting a direct relation between the physical properties of these horizon shells and the recently proposed BMS supertranslation hair of a black hole.

  17. Effects of low pH stress on shell traits and proteomes of the dove snail, Anachis misera inhabiting shallow vent environments off Kueishan Islet, Taiwan

    Science.gov (United States)

    Chen, Y. J.; Wu, J. Y.; Chen, C. T. A.; Liu, L. L.

    2014-12-01

    The effects of naturally acidified seawater on a snail species, Anachis misera (Family: Columbellidae) were quantified in five shallow vent-based environments off Kueishan Islet, Taiwan. An absence of Anachis snails was observed in the most acidic North site (pH 7.22), and the size structure differed among the remaining East, South, Southwest and Northwest sites. If a positive correlation between shell length and shell width or total weight existed, the coefficient of determination (R2) of the equations was low, i.e., 0.207-0.444. Snails from the Northwest site (pH 7.33) exhibited a more globular shape than those of the South ones (pH 7.80). Standardized shell thickness T1 (thickness of body whorl : shell length) and T2 (thickness of penultimate whorl : shell length) from the Northwest site showed a decrease of 6.3 and 9.4%, respectively, compared to the South ones. In a similar vein, based on the 16 examined protein spots, protein expression profiles of snails in the South were distinct. With further characterization by principle component analysis, the separation was mainly contributed by the first (i.e., spots 8, 1, 15, and 12) and second (i.e., spots 15, 13, 12, 1, and 11) principal-components. As a whole, the shallow vent-based findings provide new information from subtropics on the effects of ocean acidification on gastropod snails in natural environments.

  18. Protein Foods

    Science.gov (United States)

    ... Text Size: A A A Listen En Español Protein Foods Foods high in protein such as fish, ... for the vegetarian proteins, whether they have carbohydrate. Protein Choices Plant-Based Proteins Plant-based protein foods ...

  19. Similar pathogen targets in Arabidopsis thaliana and homo sapiens protein networks.

    Directory of Open Access Journals (Sweden)

    Paulo Shakarian

    Full Text Available We study the behavior of pathogens on host protein networks for humans and Arabidopsis - noting striking similarities. Specifically, we preform [Formula: see text]-shell decomposition analysis on these networks - which groups the proteins into various "shells" based on network structure. We observe that shells with a higher average degree are more highly targeted (with a power-law relationship and that highly targeted nodes lie in shells closer to the inner-core of the network. Additionally, we also note that the inner core of the network is significantly under-targeted. We show that these core proteins may have a role in intra-cellular communication and hypothesize that they are less attacked to ensure survival of the host. This may explain why certain high-degree proteins are not significantly attacked.

  20. Intracellular Protein Delivery for Treating Breast Cancer

    Science.gov (United States)

    2014-08-01

    Following electrostatic deposition of the monomers acrylamide (1 in Figure 1a) and N-(3-aminopropyl)methacrylamide (2), and the cross-linker N,N’-bis...APO N localization cellular upt MBP-APO PO to eith ells. Prior ho-APO). oscopy show cells within hell, corres lular interna ed for 2 hou acrylamide ...polymerized in situ around the target protein to form a noncovalent shell that encapsulates the protein. The monomer acrylamide (1) is used as a

  1. Shell thickness matters! Energy transfer and rectification study of Au/ZnO core/shell nanoparticles.

    Science.gov (United States)

    Haldar, Krishna Kanta; Sen, Tapasi

    2016-12-15

    In the present study we report the influence of shell thickness on fluorescence resonance energy transfer between Au/ZnO core-shell nanoparticles and Rhodamine 6G dye by steady-state and time-resolved spectroscopy and rectification behaviours. Au/ZnO core-shell nanoparticles with different shell thickness were synthesized in aqueous solution by chemically depositing zinc oxide on gold nanoparticles surface. A pronounced effect on the photoluminescence (PL) intensity and shortening of the decay time of the dye in presence of Au/ZnO core-shell nanoparticles is observed. The calculated energy transfer efficiencies from dye to Au/ZnO are 62.5%, 79.2%, 53.6% and 46.7% for 1.5nm, 3nm, 5nm and 8nm thickness of shell, respectively. Using FRET process, the calculated distances (r) are 117.8, 113.2Å 129.9Å and 136.7Å for 1.5nm, 3nm, 5nm and 8nm thick Au/ZnO core-shell nanoparticles, respectively. The distances (d) between the donor and acceptor are 71.0, 57.8, 76.2 and 81.6Å for 1.5nm, 3nm, 5nm and 8nm thick core-shell Au/ZnO nanoparticles, respectively, using the efficiency of surface energy transfer (SET). The current-voltage (I-V) curve of hybrid Au/ZnO clearly exhibits a rectifying nature and represents the n-type Schottky diode characteristics with a typical turn-on voltage of between 0.6 and 1.3V. It was found that the rectifying ratio increases from 20 to 90 with decreasing the thickness of the shell from 5nm to 3nm and with shell thickness of 8nm, electrical transport through the core-shell is similar to what is observed with pure ZnO samples nanoparticles. The results indicated that the Au/ZnO core-shell nanoparticles with an average shell thickness of 3nm exhibited the maximum energy transfer efficiencies (79.2%) and rectification (rectifying ratio 90). Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Composite fuselage shell structures research at NASA Langley Research Center

    Science.gov (United States)

    Starnes, James H., Jr.; Shuart, Mark J.

    1992-01-01

    Fuselage structures for transport aircraft represent a significant percentage of both the weight and the cost of these aircraft primary structures. Composite materials offer the potential for reducing both the weight and the cost of transport fuselage structures, but only limited studies of the response and failure of composite fuselage structures have been conducted for transport aircraft. The behavior of these important primary structures must be understood, and the structural mechanics methodology for analyzing and designing these complex stiffened shell structures must be validated in the laboratory. The effects of local gradients and discontinuities on fuselage shell behavior and the effects of local damage on pressure containment must be thoroughly understood before composite fuselage structures can be used for commercial aircraft. This paper describes the research being conducted and planned at NASA LaRC to help understand the critical behavior or composite fuselage structures and to validate the structural mechanics methodology being developed for stiffened composite fuselage shell structure subjected to combined internal pressure and mechanical loads. Stiffened shell and curved stiffened panel designs are currently being developed and analyzed, and these designs will be fabricated and then tested at Langley to study critical fuselage shell behavior and to validate structural analysis and design methodology. The research includes studies of the effects of combined internal pressure and mechanical loads on nonlinear stiffened panel and shell behavior, the effects of cutouts and other gradient-producing discontinuities on composite shell response, and the effects of local damage on pressure containment and residual strength. Scaling laws are being developed that relate full-scale and subscale behavior of composite fuselage shells. Failure mechanisms are being identified and advanced designs will be developed based on what is learned from early results from

  3. Fabrication of Magnetite/Silica/Titania Core-Shell Nanoparticles

    Directory of Open Access Journals (Sweden)

    Suh Cem Pang

    2012-01-01

    Full Text Available Fe3O4/SiO2/TiO2 core-shell nanoparticles were synthesized via a sol-gel method with the aid of sonication. Fe3O4 nanoparticles were being encapsulated within discrete silica nanospheres, and a layer of TiO2 shell was then coated directly onto each silica nanosphere. As-synthesized Fe3O4/SiO2/TiO2 core-shell nanoparticles showed enhanced photocatalytic properties as evidenced by the enhanced photodegradation of methylene blue under UV light irradiation.

  4. Synthesis and characterization of mesoporous silica core-shell particles

    Directory of Open Access Journals (Sweden)

    Milan Nikolić

    2010-06-01

    Full Text Available Core-shell particles were formed by deposition of primary silica particles synthesized from sodium silicate solution on functionalized silica core particles (having size of ~0.5 µm prepared by hydrolysis and condensation of tetraethylortosilicate. The obtained mesoporous shell has thickness of about 60 nm and consists of primary silica particles with average size of ~21 nm. Scanning electron microscopy and zeta potential measurements showed that continuous silica shell exists around functionalized core particles which was additionally proved by FTIR and TEM results.

  5. Surfactant-induced core/shell phase equilibrium in hydrogels.

    Science.gov (United States)

    Gernandt, J; Hansson, P

    2016-02-14

    The formation of core/shell structures in hydrogels upon interaction with surfactants is a well-known phenomenon, but whether they are equilibrium states or not is still under debate. This paper presents an equilibrium theory of phase coexistence in hydrogels meant to answer the question of the stability of core/shell separation. The theory suggests that core/shell separation caused by surfactants can indeed be thermodynamically stable if the amount of added surfactant is not too large, but that the exact phase behaviour is governed by both the volume and concentration of the added surfactant solution.

  6. Fabrication of Magnetite/Silica/Titania Core-Shell Nanoparticles

    OpenAIRE

    Pang, Suh Cem; Kho, Sze Yun; Chin, Suk Fun

    2012-01-01

    Fe3O4/SiO2/TiO2 core-shell nanoparticles were synthesized via a sol-gel method with the aid of sonication. Fe3O4 nanoparticles were being encapsulated within discrete silica nanospheres, and a layer of TiO2 shell was then coated directly onto each silica nanosphere. As-synthesized Fe3O4/SiO2/TiO2 core-shell nanoparticles showed enhanced photocatalytic properties as evidenced by the enhanced photodegradation of methylene blue under UV light irradiation.

  7. Shell-model representation to describe α emission

    Science.gov (United States)

    Delion, D. S.; Liotta, R. J.

    2013-04-01

    It is shown that the standard shell-model representation is inadequate to explain cluster decay processes due to a deficient asymptotic behavior of the corresponding single-particle wave functions. A new representation is proposed which is derived from a mean field consisting of the standard Woods-Saxon plus spin-orbit potential of the shell model, with an additional attractive pocket potential of a Gaussian form localized on the nuclear surface. The eigenvectors of this new mean field provide a representation which retains all the benefits of the standard shell model while at the same time reproducing well the experimental absolute α-decay widths from heavy nuclei.

  8. European Union Import Demand for In-Shell Peanuts

    OpenAIRE

    Boonsaeng, Tullaya; Fletcher, Stanley M.; Carpio, Carlos E.

    2008-01-01

    This paper analyzes the European Union (EU) import demand for in-shell peanuts from three sources: the United States, China, and the rest of the world. We find that peanuts from different sources are differentiated by EU consumers. The expenditure elasticity is elastic for U.S. in-shell peanuts, which is associated with their higher quality. The conditional own price elasticities are more elastic for U.S. and Chinese in-shell peanuts. These findings have at least two implications. First, U.S....

  9. From Ewald sphere to Ewald shell in nonlinear optics.

    Science.gov (United States)

    Huang, Huang; Huang, Cheng-Ping; Zhang, Chao; Hong, Xu-Hao; Zhang, Xue-Jin; Qin, Yi-Qiang; Zhu, Yong-Yuan

    2016-07-08

    Ewald sphere is a simple vector scheme to depict the X-ray Bragg diffraction in a crystal. A similar method, known as the nonlinear Ewald sphere, was employed to illustrate optical frequency conversion processes. We extend the nonlinear Ewald sphere to the Ewald shell construction. With the Ewald shell, a variety of quasi-phase-matching (QPM) effects, such as the collective envelope effect associated with multiple QPM resonances, the enhanced second- harmonic generation due to multiple reciprocal vectors etc., are suggested theoretically and verified experimentally. By rotating the nonlinear photonic crystal sample, the dynamic evolution of these QPM effects has also been observed, which agreed well with the Ewald shell model.

  10. Windows Server 2012 -palvelimen hallinta PowerShell-komennoilla

    OpenAIRE

    Pitkänen, Henri

    2013-01-01

    Tämän opinnäytetyön tavoitteena oli perehtyä Windows Server 2012 -palvelimen ja aktiivihakemiston hallintaan käyttäen Windows PowerShell -komentotulkkia. PowerShell on Microsoftin kehittämä komentotulkki ja skriptausympäristö, jonka tarkoitus on tehostaa ja automatisoida Windows-käyttöjärjestelmien ja sovellusten hallintaa komentorivin ja skriptien avulla. Opinnäytetyössä käsiteltiin Windows Server 2012 -käyttöjärjestelmään, aktiivihakemistoon ja Windows PowerShell -komentotulkkiin liitty...

  11. Recent progress on synthesis of ceramics core/shell nanostructures

    Directory of Open Access Journals (Sweden)

    Vladimir V. Srdić

    2013-06-01

    Full Text Available Thin surface layers on fine particles were found to substantially change their functionalities and properties, such as chemical reactivity, thermal stability, catalytic activity, dispersibility, or optical, magnetic and electronic properties. Because of that, the core/shell nanostructures have opened up research opportunities in almost all areas of science and engineering, including medicine, catalysis, biotechnology, chemistry, optics, electronics, energy storage, etc. Immense efforts have been implied to produce and investigate different core/shell systems, and thereby, various synthesis techniques have been developed. In this review, we report adetailed overview of different synthesis techniques used for preparation of various ceramics core/shell nanostructures with tunable size and tailored structure.

  12. Stability of generic thin shells in conformally flat spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Amirabi, Z. [Eastern Mediterranean Univ., Gazimagusa (Turkey). Dept. of Physics

    2017-07-15

    Some important spacetimes are conformally flat; examples are the Robertson-Walker cosmological metric, the Einstein-de Sitter spacetime, and the Levi-Civita-Bertotti-Robinson and Mannheim metrics. In this paper we construct generic thin shells in conformally flat spacetime supported by a perfect fluid with a linear equation of state, i.e., p = ωσ. It is shown that, for the physical domain of ω, i.e., 0 < ω ≤ 1, such thin shells are not dynamically stable. The stability of the timelike thin shells with the Mannheim spacetime as the outer region is also investigated. (orig.)

  13. Injection Moulding Simulation and Experimental Validation of Hearing Aid Shells

    DEFF Research Database (Denmark)

    Islam, Aminul; Li, Xiaoliu

    ) mode was adopted in this work to simulate the injection molding process of a hearing aid shell made of Polybutylene Terephthalate (PBT) filled with 30% glass fiber. The typical hearing aid shells are complex thin-walled structures made by injection molding. Highly sophisticated molds and lots...... of process optimizations by trial and errors are needed to make successful shells for hearing aids. In this context, a dedicated simulation tool can be very useful to reduce the time and cost for developing the new hearing aids. In this work, the injection molding experimental validation of the Moldex3D...

  14. Microsoft Exchange Server 2013 PowerShell cookbook

    CERN Document Server

    Andersson, Jonas

    2013-01-01

    This book is written in a Cookbook-style format and provides practical, immediately usable task-based recipes that show you how to manage and maintain your Microsoft Exchange Server 2013 environment with Windows PowerShell 3. Each chapter of the book is written so that it can be used as a desktop reference, or it can be read from beginning to end, allowing you to build a solid foundation for building scripts in your Exchange environment.This Cookbook is for messaging professionals who want to learn how to build real-world scripts with Windows PowerShell 3 and the Exchange Management Shell. If

  15. Electronic shells and supershells in large trivalent metal clusters

    Energy Technology Data Exchange (ETDEWEB)

    Pellarin, M. [Lyon-1 Univ., 69 - Villeurbanne (France). Lab. de Spectrometrie Ionique et Moleculaire; Baguenard, B. [Lyon-1 Univ., 69 - Villeurbanne (France). Lab. de Spectrometrie Ionique et Moleculaire; Bordas, C. [Lyon-1 Univ., 69 - Villeurbanne (France). Lab. de Spectrometrie Ionique et Moleculaire; Lerme, J. [Lyon-1 Univ., 69 - Villeurbanne (France). Lab. de Spectrometrie Ionique et Moleculaire; Vialle, J.L. [Lyon-1 Univ., 69 - Villeurbanne (France). Lab. de Spectrometrie Ionique et Moleculaire; Broyer, M. [Lyon-1 Univ., 69 - Villeurbanne (France). Lab. de Spectrometrie Ionique et Moleculaire

    1995-12-31

    Electronic shell structures are observed for the first time in large gallium and aluminum clusters. In gallium, the electronic shells extend up to 7000 electrons and a nice supershell structure is obtained around 2500 electrons. This number is considerably larger than expected from standard jellium calculations and is consistent with the introduction of a small surface softness. In aluminum, the clusters are more rigid and in usual experimental conditions they have specific geometric arrangement. However by heating the source nozzle, we obtain liquid-like aluminum clusters and observe the electronic shell structure up to 1800 electrons. (orig.)

  16. Radiative Heat Transfer Between Core-Shell Nanoparticles

    OpenAIRE

    Nikbakht, Moladad

    2017-01-01

    Radiative heat transfer in systems with core-shell nanoparticles may exhibit not only a combination of disparate physical properties of its components but also further enhanced properties that arise from the synergistic properties of the core and shell components. We study the thermal conductance between two core-shell nanoparticles (CSNPs). We predict that the radiative heat transfer in a dimer of Au@SiO$_2$ CSNPs (i.e., silica-coated gold nanoparticles) could be enhanced several order of ma...

  17. A Study of the Nearfield of an Excited Spherical Shell.

    Science.gov (United States)

    1980-03-17

    screwed on an aluminum adapter (1/2 inch in diameter, 1/4 inch thick) which was attached to the shell with epoxy resin. Both of the shells were...Spheres in Water," J. Acoust. Soc. Amer. 41, 380-393 (1967). 7. Dragonette, L. R., Vogt, R. H., Flax , L. and Neubauer, W. G., "Acoustic Reflection from...34High Frequency Response of an Elastic Spherical Shell," J. Appl. Mech. 36, 4, 859-864 (December 1969). 9. Flax , L., "High ka Scattering of Elastic

  18. Core-shell diode array for high performance particle detectors and imaging sensors: status of the development

    Science.gov (United States)

    Jia, G.; Hübner, U.; Dellith, J.; Dellith, A.; Stolz, R.; Plentz, J.; Andrä, G.

    2017-02-01

    We propose a novel high performance radiation detector and imaging sensor by a ground-breaking core-shell diode array design. This novel core-shell diode array are expected to have superior performance respect to ultrahigh radiation hardness, high sensitivity, low power consumption, fast signal response and high spatial resolution simultaneously. These properties are highly desired in fundamental research such as high energy physics (HEP) at CERN, astronomy and future x-ray based protein crystallography at x-ray free electron laser (XFEL) etc.. This kind of detectors will provide solutions for these fundamental research fields currently limited by instrumentations. In this work, we report our progress on the development of core-shell diode array for the applications as high performance imaging sensors and particle detectors. We mainly present our results in the preparation of high aspect ratio regular silicon rods by metal assisted wet chemical etching technique. Nearly 200 μm deep and 2 μm width channels with high aspect ratio have been etched into silicon. This result will open many applications not only for the core-shell diode array, but also for a high density integration of 3D microelectronics devices.

  19. Core-shell biopolymer nanoparticle delivery systems: synthesis and characterization of curcumin fortified zein-pectin nanoparticles.

    Science.gov (United States)

    Hu, Kun; Huang, Xiaoxia; Gao, Yongqing; Huang, Xulin; Xiao, Hang; McClements, David Julian

    2015-09-01

    Biopolymer core-shell nanoparticles were fabricated using a hydrophobic protein (zein) as the core and a hydrophilic polysaccharide (pectin) as the shell. Particles were prepared by coating cationic zein nanoparticles with anionic pectin molecules using electrostatic deposition (pH 4). The core-shell nanoparticles were fortified with curcumin (a hydrophobic bioactive molecule) at a high loading efficiency (>86%). The resulting nanoparticles were spherical, relatively small (diameter ≈ 250 nm), and had a narrow size distribution (polydispersity index ≈ 0.24). The encapsulated curcumin was in an amorphous (rather than crystalline form) as detected by differential scanning calorimetry (DSC). Fourier transform infrared (FTIR) and Raman spectra indicated that the encapsulated curcumin interacted with zein mainly through hydrophobic interactions. The nanoparticles were converted into a powdered form that had good water-dispersibility. These core-shell biopolymer nanoparticles could be useful for incorporating curcumin into functional foods and beverages, as well as dietary supplements and pharmaceutical products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Strontium and barium incorporation into freshwater bivalve shells

    Science.gov (United States)

    Zhao, Liqiang; Schöne, Bernd R.

    2015-04-01

    Despite strong vital control, trace elements of bivalve shells can potentially serve as proxies of environmental change. However, to reconstruct past environments with the geochemical properties of the shells and determine the degree to which the element levels are biologically influenced, it is essential to experimentally determine the relationship between environmental variables and the element composition of the shells. In particular, the trace element geochemistry of freshwater bivalve shells has so far received little attention. Here, we present a controlled laboratory experiment that aimed at providing a better understanding of the influence of changing environmental variables on the incorporation of trace elements into freshwater bivalve shells. Under controlled conditions, Asian clams Corbicula fluminea were reared for 5 weeks in three sets of experiments: (1) different water temperature (10, 16, and 22° C) and different food levels (an equally mixed Scenedesmu quadricanda and Chlorella vulgaris at rations of 0.4, 2, 4, and 8 × 104 cells ml-1 d-1); (2) different water temperature (10, 16, and 22° C) and different element levels (Sr, Ba); (3) five sediment types (sand, slightly muddy sand, muddy sand, slightly sandy mud and mud). In the first set of experiments, shell Sr/Ca showed a significantly negative correlation with temperature, where Sr/Ca decreased linearly by about 1.6 to 2.1% per 1° C, but responded far more weakly to food availability. On the other hand, temperature and food availability affected shell Ba/Ca ratios, which potentially confounds the interpretation of Ba/Ca variations. Moreover, shell Sr/Ca and Ba/Ca exhibited a clearly negative dependence on shells growth rate that varied significantly among combinations of temperature and food availability. In the second set of experiments, shell Sr/Ca and Ba/Ca were positively and linearly related to water Sr/Ca and Ba/Ca for all temperatures. However, significantly negative effects of