WorldWideScience

Sample records for eutectics

  1. Rod and lamellar growth of eutectic

    Directory of Open Access Journals (Sweden)

    M. Trepczyńska-Łent

    2010-04-01

    Full Text Available The paper presents adaptation problem of lamellar growth of eutectic. The formation of rod eutectic microstructure was investigated systematically. A new rod eutectic configuration was observed in which the rods form with elliptical cylindrical shape. A new interpretation of the eutectic growth theory was proposed.

  2. Structure-property relationships in eutectic composites

    Science.gov (United States)

    Hertzberg, R. W.

    1976-01-01

    The preparation of a composite material of eutectic composition directly from the molten state is investigated. The manufacture of eutectic composites by unidirectional solidification is reviewed, and it is shown how two-phase composite structures of given relative volume fraction can be produced with a range of particle sizes. Crystallographic relationships and the thermal stability of interfaces in controlled eutectic structures are examined, the mechanical behavior of aligned eutectic microstructures is discussed, and characteristics of eutectic composites having mechanical properties of engineering significance are evaluated. Specific properties of the Ni-Nb eutectic alloy are reviewed to demonstrate the effect of structure control (through directional solidification) on the mechanical response of a eutectic composite. It is noted that unidirectionally solidified eutectic composites possess highly aligned and thermally stable microstructures and also exhibit excellent combinations of strength and ductility to very high temperature levels.

  3. Morphological instabilities of lamellar eutectics

    Energy Technology Data Exchange (ETDEWEB)

    Karma, A.; Sarkissian, A. [Northeastern Univ., Boston, MA (United States). Physics Dept.

    1996-03-01

    The authors present the results of a numerical study based on the boundary integral technique of interfacial pattern formation in directional solidification of thin-film lamellar eutectics at low velocity. Microstructure selection maps that identify the stability domains of various steady-state and nonsteady-state growth morphologies in the spacing-composition ({lambda} {minus} C{sub 0}) plane are constructed for the transparent organic alloy CBr{sub 4}-C{sub 2}Cl{sub 6} and for a model eutectic alloy with two solid phases of identical physical properties. In CBr{sub 4}-C{sub 2}Cl{sub 6}, the basic set of instabilities that limit steady-state growth is richer than expected. It consists of three primary instabilities, two of which are oscillatory, which bound the domain of the commonly observed axisymmetric lamellar morphology, and two secondary oscillatory instabilities, which bound the domain of the nonaxisymmetric (tilted) lamellar morphology. Four stable oscillatory microstructures, at least three of which have been seen experimentally, are predicted to occur in unstable regimes. In the model alloy, the structure is qualitatively similar, except that a stable domain of tilted steady-state growth is not found, in agreement with previous random-walk simulations. Furthermore, the composition range of stability of the axisymmetric morphology decreases sharply with increasing spacing away from minimum undercooling but extends further off-eutectic than predicted by the competitive growth criterion. In addition, oscillations with a wavelength equal to two {lambda} lead to lamella termination at a small distance above the onset of instability. The implications of these two features for the eutectic to dendrite transition are examined with the conclusion that in the absence of heterogeneous nucleation, this transition should be histeritic at small velocity and temperature gradient.

  4. Scaling-Up Eutectic Freeze Crystallization

    NARCIS (Netherlands)

    Genceli, F.E.

    2008-01-01

    A novel crystallization technology, Eutectic Freeze Crystallization (EFC) has been investigated and further developed in this thesis work. EFC operates around the eutectic temperature and composition of aqueous solutions and can be used for recovery of (valuable) dissolved salts (and/or or acids)

  5. Phase-field model of eutectic growth

    Energy Technology Data Exchange (ETDEWEB)

    Karma, A. (Physics Department, Northeastern University, Boston, Massachusetts 02115 (United States))

    1994-03-01

    A phase-field model which describes the solidification of a binary eutectic alloy with a simple symmetric phase diagram is introduced and the sharp-interface limit of this model is explored both analytically and numerically.

  6. Modelling Eutectic Growth in Unmodified and Modified Near-Eutectic Al-Si Alloy

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat; Hattel, Jesper Henri; Taylor, John A.

    2013-01-01

    A numerical model that describes solidification of primary aluminium grains and nucleation and growth of eutectic cells is used to analyse the solidification of an Al-12.5wt% Si alloy. Nucleation of eutectic cells is modelled using an Oldfield-type nucleation model where the number of nuclei in t...... in the liquid and the growth velocity of the eutectic cells to determine the size and distribution of eutectic cells in the solidified material.......A numerical model that describes solidification of primary aluminium grains and nucleation and growth of eutectic cells is used to analyse the solidification of an Al-12.5wt% Si alloy. Nucleation of eutectic cells is modelled using an Oldfield-type nucleation model where the number of nuclei...... in the melt is determined by the amount of active nuclei and the local undercooling from the surface to the centre of a plate casting. Eutectic grains are modelled as spheres growing between the dendrites. The growth velocity of the eutectic cells is a function of undercooling. Experimentally determined...

  7. Stability of eutectic interface during directional solidification

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seung Hoon [Iowa State Univ., Ames, IA (United States)

    1996-04-23

    Directional solidification of eutectic alloys shows different types of eutectic morphologies. These include lamellar, rod, oscillating and tilting modes. The growth of these morphologies occurs with a macroscopically planar interface. However, under certain conditions, the planar eutectic front becomes unstable and gives rise to a cellular or a dendritic structure. This instability leads to the cellular/dendritic structure of either a primary phase or a two-phase structure. The objective of this work is to develop a fundamental understanding of the instability of eutectic structure into cellular/dendritic structures of a single phase and of two-phases. Experimental studies have been carried out to examine the transition from a planar to two-phase cellular and dendritic structures in a ceramic system of Alumina-Zirconia (Al2O3-ZrO2) and in a transparent organic system of carbon tetrabromide and hexachloroethane (CBr4-C2Cl6). Several aspects of eutectic interface stability have been examined.

  8. Eutectic colony formation: A stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Plapp, Mathis [Physics Department and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115 (United States); Karma, Alain [Physics Department and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115 (United States)

    1999-12-01

    Experiments have widely shown that a steady-state lamellar eutectic solidification front is destabilized on a scale much larger than the lamellar spacing by the rejection of a dilute ternary impurity and forms two-phase cells commonly referred to as ''eutectic colonies.'' We extend the stability analysis of Datye and Langer [V. Datye and J. S. Langer, Phys. Rev. B 24, 4155 (1981)] for a binary eutectic to include the effect of a ternary impurity. We find that the expressions for the critical onset velocity and morphological instability wavelength are analogous to those for the classic Mullins-Sekerka instability of a monophase planar interface, albeit with an effective surface tension that depends on the geometry of the lamellar interface and, nontrivially, on interlamellar diffusion. A qualitatively new aspect of this instability is the occurrence of oscillatory modes due to the interplay between the destabilizing effect of the ternary impurity and the dynamical feedback of the local change in lamellar spacing on the front motion. In a transient regime, these modes lead to the formation of large scale oscillatory microstructures for which there is recent experimental evidence in a transparent organic system. Moreover, it is shown that the eutectic front dynamics on a scale larger than the lamellar spacing can be formulated as an effective monophase interface free boundary problem with a modified Gibbs-Thomson condition that is coupled to a slow evolution equation for the lamellar spacing. This formulation provides additional physical insights into the nature of the instability and a simple means to calculate an approximate stability spectrum. Finally, we investigate the influence of the ternary impurity on a short wavelength oscillatory instability that is already present at off-eutectic compositions in binary eutectics. (c) 1999 The American Physical Society.

  9. Raman mapping in the elucidation of solid salt eutectic and near eutectic structures

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Kerridge, D. H.

    2002-01-01

    The distribution of the different components of solidified eutectic or near-eutectic salt mixtures (eutectics) was examined by use of Raman microscope mapping of the structures formed when these melts were slowly cooled. Seven binary and one ternary system were investigated. In most cases...... the component crystallized phases consisted of roughly rounded areas of about 0.5-5 mum across, the areas alternating in all directions across the sections. These three-dimensional structures may best be described by the terns 'conglomerate.' The size of these areas depended on the cooling rate...... and the composition. When unidirectional cooling was applied it was possible for the system (KCl-Na2SO4, 60:40 mol/mol) to observe lamellar arrangements of the component phases, in an arrangement closely similar to what is frequently found among metallic or ceramic eutectics. Each area, conglomerate or lamellar, did...

  10. Eutectic phase in water-ice

    DEFF Research Database (Denmark)

    Monnard, Pierre-Alain; Ziock, Hans-Joachim

    2008-01-01

    Information and catalytic polymers play an essential role in contemporary cellular life and their emergence must have been crucial during the complex processes that led to the assembly of the first living systems. Polymerization reactions producing these molecules would have had to occur in aqueous...... medium, which is known to disfavor such reactions. Thus, it was proposed early on that these polymerizations had to be supported by particular environments, such as mineral surfaces and eutectic phases in water-ice, which would have led to the concentration of the monomers out of the bulk aqueous medium...... and their condensation. This review presents the work conducted to understand how the eutectic phases in water-ice might have promoted RNA polymerization, thereby presumably contributing to the emergence of the ancient information and catalytic system envisioned by the RNA World hypothesis....

  11. Pattern selection dynamics in rod eutectics

    Science.gov (United States)

    Serefoglu, Melis

    The cooperative or diffusively coupled growth of multiple phases during solidification is one of the most widely observed and generally important classes of phase transformations in materials. Technologically, low melting temperature and small freezing range contribute to excellent casting fluidity and fine composite structures give rise to favorable properties. Both of these features contribute to the wide application of eutectic alloys in the casting, welding, and soldering of engineered components. Despite the broad-based technological importance, many fundamental questions regarding eutectic solidification remain unanswered, severely limiting our ability to employ computational methods in the prediction of microstructure for the effective design of new materials and processes. At the core of the most persistent questions, lie problems involving multicomponent thermodynamics, solid-liquid and solid-solid interfacial phenomena, morphological stability, chemical and thermal diffusion, and nucleation phenomena. In the current study, pattern selection dynamics in rod eutectics are investigated using systematic directional solidification experiments and phase field simulations. Directional solidification of a succinonitrile-camphor (SCN-DC) transparent alloy in thin slab geometries of various thicknesses reveals two main points. First, a velocity is indentified at which a transition in array basis vectors is observed in specimens with many rows of rods (i.e. bulk). This transition amounts to a 90 degree rotation of the rod array, shifting from alignment of 1st nearest neighbors to alignment of 2nd nearest neighbors along the slide wall. Second, significant array distortion is observed with decreasing slide thickness, delta, which ultimately leads to a single-row (quasi-3D) morphology where delta/lambda is on the order of unity. In our analysis of these observations, we use a geometrical model to describe the rod arrangement as a function of slide thickness, providing

  12. Pattern stability and trijunction motion in eutectic solidification

    Science.gov (United States)

    Akamatsu, S.; Plapp, M.; Faivre, G.; Karma, A.

    2002-09-01

    We demonstrate by both experiments and phase-field simulations that lamellar eutectic growth can be stable for a wide range of spacings below the point of minimum undercooling at low velocity, contrary to what is predicted by existing stability analyses. This overstabilization can be explained by relaxing Cahn's assumption that lamellae grow locally normal to the eutectic interface.

  13. Quantification of Primary Dendritic and Secondary Eutectic Nucleation Undercoolings in Rapidly Solidified Hypo-Eutectic Al-Cu Droplets

    Science.gov (United States)

    Bogno, A.-A.; Khatibi, P. Delshad; Henein, H.; Gandin, Ch.-A.

    2016-09-01

    This paper reports on the quantification of primary dendritic and secondary eutectic nucleation undercoolings during rapid solidification of impulse atomized hypo-eutectic Al-Cu droplets. The procedure consists in determining the eutectic fraction of each investigated droplet from the fraction of intermetallic Al2Cu obtained by Rietveld refinement analysis of neutrons scattering data. The corresponding eutectic nucleation undercooling is then deduced from the metastable phase diagram of the alloy. The primary dendritic nucleation undercooling is subsequently determined using semi-empirical coarsening models of secondary dendrite arms. The two nucleation undercoolings are finally used as input variables to run a microsegregation model for binary alloys. The fractions of eutectic computed by the microsegregation model compare very favorably with the experimental results.

  14. Fusion reactor blanket with Li17-Pb83 eutectic

    Energy Technology Data Exchange (ETDEWEB)

    Antipenkov, A.; Danilov, I.; Epinatiev, A.; Eremin, S.; Kalinin, G.; Kolganov, V.; Poliksha, V.; Shchipakin, O.; Shiverski, E.; Sidorov, A.; Skladnov, K.; Strebkov, Yu. (Research and Development Inst. of Power Engineering, Moscow (USSR)); Butko, A.; Kuzmin, A. (Moscow Inst. for Hydraulic Engineering and Land-Reclamation (USSR)); Chepovski, A.; Khripunov, V.; Shatalov, G. (Kurchatov Inst. of Atomic Energy, Moscow (USSR))

    1991-04-01

    The article contains some features of using Li17-Pb83 eutectic as a breeder for ITER/OTR fusion reactor. Described blanket design options aim to reduce electromagnetic loads or relieve eutectic/channel interaction. Eutectic channel stress analysis confirms design feasibility. Channel temperature behaviour is analyzed for loss of blanket cooling system power and rupture of a distribution header accidents. First wall and blanket failure rates were evaluated. The results of neutron power density distribution and tritium breeding ratio estimation are presented. Polonium concentration dynamics is estimated for accidental conditions. Some guide-lines for future work and design progress are advised. (orig.).

  15. Eutectic propeties of primitive Earth's magma ocean

    Science.gov (United States)

    Lo Nigro, G.; Andrault, D.; Bolfan-Casanova, N.; Perillat, J.-P.

    2009-04-01

    It is widely accepted that the early Earth was partially molten (if not completely) due to the high energy dissipated by terrestrial accretion [1]. After core formation, subsequent cooling of the magma ocean has led to fractional crystallization of the primitive mantle. The residual liquid corresponds to what is now called the fertile mantle or pyrolite. Melting relations of silicates have been extensively investigated using the multi-anvil press, for pressures between 3 and 25 GPa [2,3]. Using the quench technique, it has been shown that the pressure affects significantly the solidus and liquidus curves, and most probably the composition of the eutectic liquid. At higher pressures, up to 65 GPa, melting studies were performed on pyrolite starting material using the laser-heated diamond anvil cell (LH-DAC) technique [4]. However, the quench technique is not ideal to define melting criteria, and furthermore these studies were limited in pressure range of investigation. Finally, the use of pyrolite may not be relevant to study the melting eutectic temperature. At the core-mantle boundary conditions, melting temperature is documented by a single data point on (Mg,Fe)2SiO4 olivine, provided by shock wave experiments at around 130-140 GPa [5]. These previous results present large uncertainties of ~1000 K. The aim of this study is to determine the eutectic melting temperature in the chemically simplified system composed of the two major lower mantle phases, the MgSiO3 perovskite and MgO periclase. We investigated melting in-situ using the laser-heated diamond anvil cell coupled with angle dispersive X-ray diffraction at the ID27 beamline of the ESRF [6]. Melting relations were investigated in an extended P-T range comparable to those found in the Earth's lower mantle, i.e. from 25 to 120 GPa and up to more than 5000 K. Melting was evidenced from (a) disappearance of one of the two phases in the diffraction pattern, (b) drastic changes of the diffraction image itself, and

  16. Deep eutectic-solvothermal synthesis of nanostructured ceria

    National Research Council Canada - National Science Library

    Oliver S Hammond; Karen J Edler; Daniel T Bowron; Laura Torrente-murciano

    2017-01-01

    .... Here we report the synthesis of nanostructured ceria using the green Deep Eutectic Solvent reline, which allows morphology and porosity control in one of the less energy-intensive routes reported to date...

  17. New eutectic alloys and their heats of transformation

    Science.gov (United States)

    Farkas, D.; Birchenall, C. E.

    1985-01-01

    Eutectic compositions and congruently melting intermetallic compounds in binary and multicomponent systems among common elements such as Al, Ca, Cu, Mg, P, Si, and Zn may be useful for high temperature heat storage. In this work, heats of fusion of new multicomponent eutectics and intermetallic phases are reported, some of which are competitive with molten salts in heat storage density at high temperatures. The method used to determine unknown eutectic compositions combined results of differential thermal analysis, metallography, and microprobe analysis. The method allows determination of eutectic compositions in no more than three steps. The heats of fusion of the alloys were measured using commercial calorimeters, a differential thermal analyzer, and a differential scanning calorimeter.

  18. Characterization of CoQ 10-lauric acid eutectic system

    Energy Technology Data Exchange (ETDEWEB)

    Tarate, Bapurao; Bansal, Arvind K., E-mail: akbansal@niper.ac.in

    2015-04-10

    Highlights: • Two polymorphic forms of CoQ 10. • CoQ 10 forms eutectic mixture with LA. • Experimental and predicted values of eutectic points are 70% CoQ 10 at 37.93 °C and 87.7% CoQ 10 at 38.98 °C, respectively. • Attraction exists between CoQ 10 and LA molecules. - Abstract: Solid state characterization of coenzyme Q10 (CoQ 10) was carried out using differential scanning calorimetry (DSC), variable temperature X-ray diffractometry (VT-XRD) and hot/cold stage microscopy (H/CSM). It revealed that CoQ 10 exists in two polymorphic forms. The recrystallized samples of CoQ 10 melted at different temperatures either due to the wide crystal size variation or change in crystallinity. Further, the binary mixture of CoQ 10 and lauric acid (LA) formed eutectic mixture in the ratio 70:30 melting at 37.93 °C, which was close to the predicted eutectic composition of 87.7:12.3 melting at 38.98 °C. The values of actual liquidus temperatures for CoQ 10 are higher than the predicted liquidus temperatures. The experimental heat of fusion at eutectic point was less than the calculated heat of fusion. Activity coefficient of CoQ 10 in the binary mixture was less than unity, which indicates the attraction between the components of eutectic mixture.

  19. Eutectic colony formation: A phase-field study

    Science.gov (United States)

    Plapp, Mathis; Karma, Alain

    2002-12-01

    Eutectic two-phase cells, also known as eutectic colonies, are commonly observed during the solidification of ternary alloys when the composition is close to a binary eutectic valley. In analogy with the solidification cells formed in dilute binary alloys, colony formation is triggered by a morphological instability of a macroscopically planar eutectic solidification front due to the rejection by both solid phases of a ternary impurity that diffuses in the liquid. Here we develop a phase-field model of a binary eutectic with a dilute ternary impurity. We investigate by dynamical simulations both the initial linear regime of this instability, and the subsequent highly nonlinear evolution of the interface that leads to fully developed two-phase cells with a spacing much larger than the lamellar spacing. We find a good overall agreement with our recent linear stability analysis [M. Plapp and A. Karma, Phys. Rev. E 60, 6865 (1999)], which predicts a destabilization of the front by long-wavelength modes that may be stationary or oscillatory. A fine comparison, however, reveals that the assumption commonly attributed to Cahn that lamellae grow perpendicular to the envelope of the solidification front is weakly violated in the phase-field simulations. We show that, even though weak, this violation has an important quantitative effect on the stability properties of the eutectic front. We also investigate the dynamics of fully developed colonies and find that the large-scale envelope of the composite eutectic front does not converge to a steady state, but exhibits cell elimination and tip-splitting events up to the largest times simulated.

  20. Development of eutectic free cladding materials for metallic fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tokiwai, Moriyasu; Yuda, Ryoichi [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan); Ohuchi, Atsushi [Nippon Nuclear Fuel Development Co. Ltd., Oarai, Ibaraki (Japan); Amaya, Masaki [Global Nuclear Fuel-Japan Co., Ltd, Oarai, Ibaraki (Japan)

    2002-11-01

    Historically, it is well known that U base metallic fuel has a lower eutectic temperature with stainless steel cladding. In the phase diagram for the U-Fe binary system, the eutectic temperature is 998K. The eutectic reaction is a limiting factor for raising reactor operation temperature. For the purpose of development of eutectic-free cladding materials, three kinds of diffusion-couple tests with 10 mass%Zr alloy were conducted at a temperature of 1027K for 2250 hrs. We selected the following materials: (a) nitrogen charged zirconium foils, (b) vanadium foils of commercial grade, and (c) nitrogen charged ferritic stainless steel (HT-9). The results showed that typical Zr with layer was observed in all of these materials. Zr with layer appeared to act as a barrier against inter-diffusion of U, Fe. The barrier provided immunity to the eutectic reaction. Discussion was made on C-14 problems in relation to another desirable thermodynamic characteristics of Zr such as carbon-14 immobilization. EPMA analysis indicated relatively high nitrogen concentration at the barrier. The barrier is probably composed of ZrN. (author)

  1. Sound velocity during solidification in binary eutectic systems

    Science.gov (United States)

    Yoshioka, Hideaki; Kyoden, Tomoaki; Hachiga, Tadashi

    2017-12-01

    We applied an ultrasound technique to an advanced material process by investigating the behavior of sound velocity during solidification of binary alloy melts over a wide range of temperatures and compositions. To gain a basic understanding of the relationship between the sound velocity and phase change in binary eutectic systems, the sound velocity was measured in Pb-Sn and Bi-Sn alloys by the pulse transmission method. Based on the measurement results, we established a link between the sound velocity variation and the complex solidification process, including the initial appearance of undercooling and eutectic reaction. During solidification, alloys usually pass through a transient mushy state between the liquid and solid phases. Since the solid fraction is uniquely related to the sound velocity, we demonstrate that it is possible to identify the solid fraction in the mushy state using the sound velocity. At the eutectic point, a sudden change was observed in relation to the eutectic reaction, in which the sound velocity exhibited an abrupt transition under isothermal conditions. This sudden change in the sound velocity was evident even when the initial composition was below the maximum solid-solution limit, such as when the solute distribution coefficient was relatively large. This result suggests that the presence of a eutectic in the final solidified texture can be predicted using our sound velocity measurement system. Finally, we present a novel sound velocity phase diagram that provides a real-time state determination system using ultrasound during solidification process, such as casting.

  2. Solidification of the eutectic Sn–43 mol % Bi alloy

    Science.gov (United States)

    Aleksandrov, V. D.; Frolova, S. A.; Zozulya, A. P.

    2017-07-01

    The processes of melting and solidification of the eutectic Sn-43 mol % Bi alloy are studied by cyclic thermal analysis. It is found that this alloy melts at a temperature T L = 412 K (which corresponds to the reference melting temperature of the eutectic) upon heating and solidifies isothermally at a temperature T S = 394 K upon cooling; that is, the temperature difference is Δ T LS - = 18 K. A comparison of temperatures T L and T S reveals a temperature hysteresis (TH). The activities and the activity coefficients of tin and bismuth in the eutectic are calculated at temperatures T L and T S . The enthalpies of melting at T L and solidification at TS are measured. The ways of changing the Gibbs energy during TH are determined.

  3. Elucidating the Properties of Graphene-Deep Eutectic Solvents Interface.

    Science.gov (United States)

    Atilhan, Mert; Costa, Luciano T; Aparicio, Santiago

    2017-05-30

    The properties of five deep eutectic solvents prepared based on the selection of choline chloride ionic liquid as hydrogen bond acceptor, which are mixed with several hydrogen bond donors with selected molecular features, were studied theoretically at graphene interfaces via both density functional theory and classical molecular dynamics methods. Molecular structuring at the interfaces, angular orientation, densification, and dynamic properties were analyzed upon adsorption on the graphene surface and when the deep eutectic solvents were confined between two graphene sheets and analyzed in terms of the role of the type of hydrogen bond donor for each solvent. Likewise, the behavior of deep eutectic solvent nanodroplets on graphene was simulated leading to the calculation of contact angles and nanowetting with further studies considering the effect of an external electric field on nanodroplet properties.

  4. Ternary eutectic dendrites: Pattern formation and scaling properties

    Science.gov (United States)

    Rátkai, László; Szállás, Attila; Pusztai, Tamás; Mohri, Tetsuo; Gránásy, László

    2015-04-01

    Extending previous work [Pusztai et al., Phys. Rev. E 87, 032401 (2013)], we have studied the formation of eutectic dendrites in a model ternary system within the framework of the phase-field theory. We have mapped out the domain in which two-phase dendritic structures grow. With increasing pulling velocity, the following sequence of growth morphologies is observed: flat front lamellae → eutectic colonies → eutectic dendrites → dendrites with target pattern → partitionless dendrites → partitionless flat front. We confirm that the two-phase and one-phase dendrites have similar forms and display a similar scaling of the dendrite tip radius with the interface free energy. It is also found that the possible eutectic patterns include the target pattern, and single- and multiarm spirals, of which the thermal fluctuations choose. The most probable number of spiral arms increases with increasing tip radius and with decreasing kinetic anisotropy. Our numerical simulations confirm that in agreement with the assumptions of a recent analysis of two-phase dendrites [Akamatsu et al., Phys. Rev. Lett. 112, 105502 (2014)], the Jackson-Hunt scaling of the eutectic wavelength with pulling velocity is obeyed in the parameter domain explored, and that the natural eutectic wavelength is proportional to the tip radius of the two-phase dendrites. Finally, we find that it is very difficult/virtually impossible to form spiraling two-phase dendrites without anisotropy, an observation that seems to contradict the expectations of Akamatsu et al. Yet, it cannot be excluded that in isotropic systems, two-phase dendrites are rare events difficult to observe in simulations.

  5. On the Nonequilibrium Interface Kinetics of Rapid Coupled Eutectic Growth

    Science.gov (United States)

    Dong, H.; Chen, Y. Z.; Shan, G. B.; Zhang, Z. R.; Liu, F.

    2017-08-01

    Nonequilibrium interface kinetics (NEIK) is expected to play an important role in coupled growth of eutectic alloys, when solidification velocity is high and intermetallic compound or topologically complex phases form in the crystallized product. In order to quantitatively evaluate the effect of NEIK on the rapid coupled eutectic growth, in this work, two nonequilibrium interface kinetic effects, i.e., atom attachment and solute trapping at the solid-liquid interface, were incorporated into the analyses of the coupled eutectic growth under the rapid solidification condition. First, a coupled growth model incorporating the preceding two nonequilibrium kinetic effects was derived. On this basis, an expression of kinetic undercooling (∆ T k), which is used to characterize the NEIK, was defined. The calculations based on the as-derived couple growth model show good agreement with the reported experimental results achieved in rapidly solidified eutectic Al-Sm alloys consisting of a solid solution phase ( α-Al) and an intermetallic compound phase (Al11Sm3). In terms of the definition of ∆ T k defined in this work, the role of NEIK in the coupled growth of the Al-Sm eutectic system was analyzed. The results show that with increasing the coupled growth velocity, ∆ T k increases continuously, and its ratio to the total undercooling reaches 0.32 at the maximum growth velocity for coupled eutectic growth. Parametric analyses on two key alloy parameters that influence ∆ T k, i.e., interface kinetic parameter ( μ i ) and solute distribution coefficient ( k e ), indicate that both μ i and k e influence the NEIK significantly and the decrease of either these two parameters enhances the NEIK effect.

  6. Chemistry of heavy metals in eutectic Li-Pb mixture

    Energy Technology Data Exchange (ETDEWEB)

    Feuerstein, H.; Horner, L.; Horn, S. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany)

    1998-07-01

    The behavior of Bi, Po-210, TI and Hg in non-isothermal Pb-15.8Li systems was studied experimentally. Coefficients of chemical activities were determined. Bi and Po-210 can be removed from the eutectic by a simple diffusion type cold trap. Because of the low chemical activity, there will be no Po-210 problem during blanket operation. Mercury can be extracted with a gas phase, e.g. together with tritium. Thallium will accumulate in the molten eutectic. A possible impact of TI 202,204 on blanket operation has to be evaluated. (authors)

  7. Shape rheocasting of unmodified Al-Si binary eutectic

    CSIR Research Space (South Africa)

    Curle, UA

    2011-02-01

    Full Text Available the temperature drop again with further heat extraction. Standard solidification theory [18] can be used to describe the experimental observations in Figure 3b. It is accepted that irregular eutectics form in cases where one of the two phases is faceted while... the other is non- faceted characteristic of metal-non metal systems like Al-Si. It is also accepted that the faceted phase ?leads? the eutectic morphology growth. Therefore the faceted phase must nucleate first and the non-faceted phase will follow...

  8. Directional solidification of eutectic composites in space environment

    Science.gov (United States)

    Yue, A. S.

    1972-01-01

    The Ni-Ni3Ta eutectic and a nickel-base alloy containing 30 wt pct Ta were solidified unidirectionally in an electron beam floating zone melting apparatus. It was found that the volume fraction of the Ni3Ta phase in the Ni-Ni3Ta eutectic mixture was increased from 7.6 to 36 volume pct in agreement with the theory as predicted. Tensile properties of the randomly solidified and unidirectionally solidified Ni-Ni3Ta eutectic were determined as function of solidification rate and temperature. It was found that the ultimate tensile strength decreased as both the test temperature and solidification rate increased. An elongation of 40 pct was obtained for a nickelbase alloy containing 30 wt at room temperature. This unusually large elongation was attributed to the superplastic behavior of the alloy. The critical currents versus the external fields at 2.5, 3.0, 3.5 and 4.2 deg for the unidirectionally solidified Pb-Sn eutectic were measured. The values of critical fields at zero critical currents were obtained by extrapolation.

  9. Microstructural evolution of eutectic Au-Sn solder joints

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ho Geon [Univ. of California, Berkeley, CA (United States)

    2002-05-01

    Current trends toward miniaturization and the use of lead(Pb)-free solder in electronic packaging present new problems in the reliability of solder joints. This study was performed in order to understand the microstructure and microstructural evolution of small volumes of nominally eutectic Au-Sn solder joints (80Au-20Sn by weight), which gives insight into properties and reliability.

  10. Effect of titanium on the near eutectic grey iron

    DEFF Research Database (Denmark)

    Moumeni, Elham; Tiedje, Niels Skat; Hattel, Jesper Henri

    The effect of Titanium on the microstructure of grey iron was investigated experimentally in this work. Tensile test bars of grey cast iron of near eutectic alloys containing 0.01, 0.1, 0.26 and 0.35% Ti, respectively were made in green sand moulds. Chemical analysis, metallographic investigation...

  11. Organic alloy systems suitable for the investigation of regular binary and ternary eutectic growth

    Science.gov (United States)

    Sturz, L.; Witusiewicz, V. T.; Hecht, U.; Rex, S.

    2004-09-01

    Transparent organic alloys showing a plastic crystal phase were investigated experimentally using differential scanning calorimetry and directional solidification with respect to find a suitable model system for regular ternary eutectic growth. The temperature, enthalpy and entropy of phase transitions have been determined for a number of pure substances. A distinction of substances with and without plastic crystal phases was made from their entropy of melting. Binary phase diagrams were determined for selected plastic crystal alloys with the aim to identify eutectic reactions. Examples for lamellar and rod-like eutectic solidification microstructures in binary systems are given. The system (D)Camphor-Neopentylglycol-Succinonitrile is identified as a system that exhibits, among others, univariant and a nonvariant eutectic reaction. The ternary eutectic alloy close to the nonvariant eutectic composition solidifies with a partially faceted solid-liquid interface. However, by adding a small amount of Amino-Methyl-Propanediol (AMPD), the temperature of the nonvariant eutectic reaction and of the solid state transformation from plastic to crystalline state are shifted such, that regular eutectic growth with three distinct nonfaceted phases is observed in univariant eutectic reaction for the first time. The ternary phase diagram and examples for eutectic microstructures in the ternary and the quaternary eutectic alloy are given.

  12. Eutectic liquid alloys for plasmonics: theory and experiment.

    Science.gov (United States)

    Blaber, Martin G; Engel, Clifford J; Vivekchand, S R C; Lubin, Steven M; Odom, Teri W; Schatz, G C

    2012-10-10

    We report a method based on density functional theory molecular dynamics that allows us to calculate the plasmonic properties of liquid metals and metal alloys from first principles with no a priori knowledge of the system. We show exceptional agreement between the simulated and measured optical constants of liquid Ga and the room temperature liquid In-Ga eutectic alloy (T(m) = 289 K). We then use this method to analyze the plasmonic properties of various alloy concentrations in the In-Ga system. The plasmonic performance of the In-Ga system decreases with increasing In concentration. However, the benefits of a room-temperature plasmonic liquid are likely to outweigh the minor reduction in plasmonic performance when moving from pure Ga to the eutectic composition. Our results show that density functional theory molecular dynamics can be used as a predictive tool for studying the optical properties of liquid metal systems amenable to plasmonics.

  13. Polymerisation of activated RNA in eutectic ice phases

    DEFF Research Database (Denmark)

    Dörr, Mark; Maurer, Sarah Elisabeth; Monnard, Pierre-Alain

    (“cooperative sequences”) or degrading (“parasitic sequences”) the RNA population. These eutectic phases in water-ice are plausible prebiotic micro-environments that should help to overcome the dilution problem in origin of life scenarios. They might have supported the production of libraries/populations...... of longer RNA chains rising the potential to produce (auto-)catalytic active molecular species (e.g. ribozymes)....

  14. Modification mechanism of eutectic silicon in Al–6Si–0.3Mg alloy with scandium

    Energy Technology Data Exchange (ETDEWEB)

    Patakham, Ussadawut [Manufacturing and Systems Engineering Program, Department of Production Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha-Utid Rd., Bangmod, Tungkhru, Bangkok 10140 (Thailand); Kajornchaiyakul, Julathep [National Metal and Material Technology Center, National Science and Technology Development Agency, 114 Thailand Science Park, Klong Nueng, Klong Luang, Pathumthani 12120 (Thailand); Limmaneevichitr, Chaowalit, E-mail: chaowalit.lim@kmutt.ac.th [Manufacturing and Systems Engineering Program, Department of Production Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha-Utid Rd., Bangmod, Tungkhru, Bangkok 10140 (Thailand)

    2013-10-25

    Highlights: •Morphologies and growth of Sc and Sr-modified eutectic silicon resemble those of dendrites. •Crystal orientation of eutectic aluminum depends on growth characteristics of eutectic silicon. •We report strong evidence of the occurrence of an impurity-induced twinning mechanism. -- Abstract: The modification mechanism of eutectic silicon in Al–6Si–0.3Mg alloy with scandium was studied. The crystallographic orientation relationships between primary dendrites and the eutectic phase of unmodified and modified Al–6Si–0.3 Mg alloys were determined using electron backscatter diffraction (EBSD). The orientation of aluminum modified with scandium in the eutectic phase was different from that of the neighboring primary dendrites. This result implies that eutectic aluminum grows epitaxially from the surrounding primary aluminum dendrites in the unmodified alloy and that eutectic aluminum grows competitively from the surrounding primary aluminum dendrites in the modified alloy. The pole figure maps of eutectic Si in the [1 0 0], [1 1 0] and [1 1 1] axes of the unmodified and Sc-modified alloys were different, suggesting that the eutectic Al and Si crystals in modified alloy growth are more isotropic and cover a larger set of directions. The lattice fringes of Si of the alloys with and without Sc modification were different in the TEM results. The lattice fringes of Si in modified alloy were found to be multiple twins. However, this was not observed in the unmodified alloy. The growth characteristic of eutectic Si crystal in modified alloy suggests the occurrence of multiple twinning reactions and the formation of a high density of twins. This modification mechanism by Sc is explained by the results of scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) analysis, which provide strong evidence of the occurrence of the impurity-induced twinning (IIT) mechanism.

  15. Pattern Formation and Growth Kinetics in Eutectic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Jing [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Growth patterns during liquid/solid phase transformation are governed by simultaneous effects of heat and mass transfer mechanisms, creation of new interfaces, jump of the crystallization units from liquid to solid and their rearrangement in the solid matrix. To examine how the above processes influence the scale of microstructure, two eutectic systems are chosen for the study: a polymeric system polyethylene glycol-p-dibromobenzene (PEG-DBBZ) and a simple molecular system succinonitrile (SCN)-camphor. The scaling law for SCN-camphor system is found to follow the classical Jackson-Hunt model of circular rod eutectic, where the diffusion in the liquid and the interface energy are the main physics governing the two-phase pattern. In contrast, a significantly different scaling law is observed for the polymer system. The interface kinetics of PEG phase and its solute concentration dependence thus have been critically investigated for the first time by directional solidification technique. A model is then proposed that shows that the two-phase pattern in polymers is governed by the interface diffusion and the interface kinetics. In SCN-camphor system, a new branch of eutectic, elliptical shape rodl, is found in thin samples where only one layer of camphor rods is present. It is found that the orientation of the ellipse can change from the major axis in the direction of the thickness to the direction of the width as the velocity and/or the sample thickness is decreased. A theoretical model is developed that predicts the spacing and orientation of the elliptical rods in a thin sample. The single phase growth patterns of SCN-camphor system were also examined with emphasis on the three-dimensional single cell and cell/dendrite transition. For the 3D single cell in a capillary tube, the entire cell shape ahead of the eutectic front can be described by the Saffmann-Taylor finger only at extremely low growth rate. A 3D directional solidification model is developed to

  16. Divorced Eutectic Solidification of Mg-Al Alloys

    Science.gov (United States)

    Monas, Alexander; Shchyglo, Oleg; Kim, Se-Jong; Yim, Chang Dong; Höche, Daniel; Steinbach, Ingo

    2015-08-01

    We present simulations of the nucleation and equiaxed dendritic growth of the primary hexagonal close-packed -Mg phase followed by the nucleation of the -phase in interdendritic regions. A zoomed-in region of a melt channel under eutectic conditions is investigated and compared with experiments. The presented simulations allow prediction of the final properties of an alloy based on process parameters. The obtained results give insight into the solidification processes governing the microstructure formation of Mg-Al alloys, allowing their targeted design for different applications.

  17. Natural deep eutectic solvents and their application in natural product research and development

    NARCIS (Netherlands)

    Dai, yuntao

    2013-01-01

    Natural deep eutectic solvents (NADES) ionic liquids (ILs) and deep eutectic solvents (DES) were proposed by our group to extend the range of ILs and DES, particularly to develop cheap, nontoxic, and low viscosity green solvents, and to apply them in health-related fields. They are liquid

  18. Directionally solidified pseudo-binary eutectics of Ni-Cr-/Hf,Zr/

    Science.gov (United States)

    Kim, Y. G.; Ashbrook, R. L.

    1975-01-01

    This report is concerned with the experimental determination of pseudo binary eutectic compositions and the directional solidification of the Ni-Cr-Hf,Zr, and Ni-Cr-Zr eutectic alloys. To determine unknown eutectics, chemical analyses were made of material bled from near eutectic ingots during incipient melting. Nominal compositions in weight per cent of Ni-18.6Cr-24.0Hf, Ni-19.6Cr-12.8Zr-2.8Hf, and Ni-19.2Cr-14.8Zr formed aligned pseudo-binary eutectic structures. The melting points were about 1270 C. The reinforcing intermetallic phases were identified as noncubic (Ni,Cr)7Hf2 and (Ni,Cr)7(Hf,Zr)2, and face centered cubic (Ni,Cr)5Zr. The volume fraction of the reinforcing phases were about 0.5.

  19. Antimony Influence on Shape of Eutectic Silicium in Al-Si Based Alloys

    Directory of Open Access Journals (Sweden)

    Bolibruchová D.

    2017-12-01

    Full Text Available Liquid AI-Si alloys are usually given special treatments before they are cast to obtain finer or modified matrix and eutectic structures, leading to improved properties. For many years, sodium additions to hypoeutectic and eutectic AI-Si melts have been recognized as the most effective method of modifying the eutectic morphology, although most of the group IA or IIA elements have significant effects on the eutectic structure. Unfortunately, many of these approaches also have associated several founding difficulties, such as fading, forming dross in presence of certain alloying elements, reduced fluidity, etc. ln recent years, antimony additions to AI-Si castings have attracted considerable attention as an alternative method of refining the eutectic structure. Such additions eliminate many of the difficulties listed above and provide permanent (i.e. non-fading refining ability. In this paper, the authors summarize work on antimony treatment of Al-Si based alloys.

  20. New insights into the morphological stability of eutectic and peritectic coupled growth

    Science.gov (United States)

    Karma, Alain; Plapp, Mathis

    2004-04-01

    Both eutectic and peritectic alloys exhibit three-phase equilibria and are used in diverse practical applications ranging from casting and welding to growing superconducting crystals. In-situ composites formed by the diffusively coupled growth of two solid phases are ubiquitous in eutectic solidification. This growth, however, is generally only stable over a finite range of eutectic spacing. The addition of a dilute ternary impurity can destabilize the interface and produce coarse two-phase cellular structures. Whether coupled growth is theoretically possible in peritectic alloys has been a question for over 40 years. This article reviews the current status of phase-field modeling of polyphase solidification in eutectic and peritectic alloys. Also discussed are new findings from both simulations and experiments that shed new light on the similarities and differences between the morphological stability of eutectic and peritectic coupled growth.

  1. Lubrication studies of some type III deep eutectic solvents (DESs)

    Science.gov (United States)

    Ahmed, Essa. I.; Abbott, Andrew. P.; Ryder, Karl S.

    2017-09-01

    It has previously been shown that eutectic mixtures of quaternary ammonium salts and hydrogen bond donors form liquids with properties similar to ionic liquids [1; 2]. These so-called deep eutectic solvents (DESs) have been shown to have physical properties which would make them useful as base lubricants. The base lubricant needs to show specific properties, including high viscosity index (VI), low friction coefficient (μ), low pour point and corrosivity. To determine the applicability of DESs as base lubricants, physical properties, corrosion and lubrication properties for four type III DESs have been studied and the results have been compared with mineral base oil. The data show that the lubrication properties of DESs are superior to mineral base oil for short distances. All DESs assessed here have higher VI (191, 147, 121 for Ethaline, Glyceline and Reline respectively compared with 100 for mineral base oil), lower pour points than mineral base oil and most of the liquids studied have shown very low corrosion rates (< 3 µm year-1 for mild steel).

  2. Eutectic solidification as explained by the thermodynamics of irreversible processes

    Directory of Open Access Journals (Sweden)

    W. Wołczyński

    2009-01-01

    Full Text Available The grain size diameter is the main parameter characterizing a given metallic alloy. In the case of Al-Si or Fe-C eutectic alloy theaverage inter-lamellar spacing is a good parameter which seems to be adequate to describe this irregular structure. To define the averageinter-lamellar spacing the regular areas within generally irregular structure has been distinguished.It has been postulated that the formation of regular structure could be related to the minimum entropy production criterion. From theother side the maximum destabilization of the non-faceted phase interface could be referred to marginal stability.The criterion of minimum entropy production allows to formulate the growth law for regular lamellar structure solidifying understationary state. It defines the regular eutectic spacing versus growth rate. The marginal stability concept allows to define the maximum wavelength which can be developed at the solid / liquid interface of non-faceted (Al phase. It defines the maximum spacing within irregular structure taking into account the wavelength of instability (marginal stability created at the non-faceted phase interface.An average inter-lamellar spacing results from the relationship formulated on the basis of both spacings. It should beemphasized that both conditions (criteria are deduced from the thermodynamics of irreversible processes.The simplified scheme of irregular structure incorporates, additionally the intermediate lamella of faceted phase that is also taken into account in the definition of average inter-lamellar spacing,

  3. Directionally solidified Al2O3/GAP eutectic ceramics by micro-pulling-down method

    Science.gov (United States)

    Cao, Xue; Su, Haijun; Guo, Fengwei; Tan, Xi; Cao, Lamei

    2016-11-01

    We reported a novel route to prepare directionally solidified (DS) Al2O3/GAP eutectic ceramics by micro-pulling-down (μ-PD) method. The eutectic crystallizations, microstructure characters and evolutions, and their mechanical properties were investigated in detail. The results showed that the Al2O3/GAP eutectic composites can be successfully fabricated through μ-PD method, possessed smooth surface, full density and large crystal size (the maximal size: φ90 mm × 20 mm). At the process of Diameter, the as-solidified Al2O3/GAP eutectic presented a combination of "Chinese script" and elongated colony microstructure with complex regular structure. Inside the colonies, the rod-type or lamellar-type eutectic microstructures with ultra-fine GAP surrounded by the Al2O3 matrix were observed. At an appropriate solidificational rate, the binary eutectic exhibited a typical DS irregular eutectic structure of "chinese script" consisting of interpenetrating network of α-Al2O3 and GAP phases without any other phases. Therefore, the interphase spacing was refined to 1-2 µm and the irregular microstructure led to an outstanding vickers hardness of 17.04 GPa and fracture toughness of 6.3 MPa × m1/2 at room temperature.

  4. Dynamic solidification mechanism of ternary Ag-Cu-Ge eutectic alloy under ultrasonic condition

    Science.gov (United States)

    Zhai, Wei; Hong, ZhenYu; Mei, CeXiang; Wang, WeiLi; Wei, BingBo

    2013-02-01

    The dynamic solidification of ternary Ag38.5Cu33.4Ge28.1 eutectic alloy within a 35 kHz ultrasonic field is investigated and compared with both its equilibrium solidification by DSC method and its rapid solidification in drop tube. The volume fractions of the primary (Ge) phase and pseudobinary (Ag+ ɛ 2) eutectic solidified within ultrasonic field are larger than those formed under equilibrium state, whereas that of ternary (Ag+ ɛ 2+Ge) eutectic exhibits the reverse trend. During rapid solidification, the liquid alloy droplet directly solidifies into ternary (Ag+ ɛ 2+Ge) eutectic if its diameter is smaller than 350 μm. The ultrasound stimulates the nucleation of alloy melt and prevents the bulk undercooling. With the increase of sound intensity, the primary (Ge) phase transfers from faceted dendrites to nonfaceted blocks with blunt edges, and its grain size is remarkably reduced. Both pseudobinary (Ag+ ɛ 2) and ternary (Ag+ ɛ 2+Ge) eutectics experience a morphological transition from regular to anomalous structures. This indicates that their cooperative growth mode is replaced by independent growth of eutectic phases under the combined effects of cavitation and acoustic streaming. The ultrasound also shows a prominent coarsening effect to the pseudobinary (Ag+ ɛ 2) and ternary (Ag+ ɛ 2 +Ge) eutectics.

  5. Is Failure of Cocrystallization Actually a Failure? Eutectic Formation in Cocrystal Screening of Hesperetin.

    Science.gov (United States)

    Chadha, Kunal; Karan, Maninder; Chadha, Renu; Bhalla, Yashika; Vasisht, Karan

    2017-08-01

    Cocrystal screening of hesperetin with certain countermolecules generated highly soluble noncovalent derivatives in the form of eutectics, instead of expected cocrystals. As adhesive forces established by complimentary functional groups on hesperetin and coformers were unable to overcome the stress due to size shape mismatch of component molecules, thus, eutectics were formed. Hesperetin, a polyphenolic antioxidant with potent anticancer and cardioprotective effects, has an underdeveloped role in modern therapeutics on account of its critically low aqueous solubility resulting in stunted bioavailability. The liquid-assisted cogrinding of hesperetin and coformers generated binary-phase eutectics in fixed stoichiometry with theophylline (1:1.5), adenine (2:1), gallic acid (1.5:1), and theobromine (2:1). Primarily characterized by lower melting endotherm in differential scanning calorimetry, the eutectics showed complete melting in hot-stage microscopy. Apart from characteristic V-shaped binary-phase diagram, no discernible changes in the FTIR and powder X-ray diffraction spectra further confirm eutectic formation. The morphological differences were analyzed by SEM measurements. A 2 to 4 times enhanced dissolution profile of the eutectics measured in pH 7.4 aqueous buffer was coupled with the in vitro (1,1-diphenyl-2-picryl hydroxyl free radical antioxidant assay and RBC antihemolytic assay) studies to present a complete preliminary data on the improved bioavailability of hesperetin eutectics. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  6. Rapidly solidified Ag-Cu eutectics: A comparative study using drop-tube and melt fluxing techniques

    Science.gov (United States)

    Yu, Y.; Mullis, A. M.; Cochrane, R. F.

    2016-03-01

    A comparative study of rapid solidification of Ag-Cu eutectic alloy processed via melt fluxing and drop-tube techniques is presented. A computational model is used to estimate the cooling rate and undercooling of the free fall droplets as this cannot be determined directly. SEM micrographs show that both materials consist of lamellar and anomalous eutectic structures. However, below the critical undercooling the morphologies of each are different in respect of the distribution and volume of anomalous eutectic. The anomalous eutectic in flux- undercooled samples preferentially forms at cell boundaries around the lamellar eutectic in the cell body. In drop-tube processed samples it tends to distribute randomly inside the droplets and at much smaller volume fractions. That the formation of the anomalous eutectic can, at least in part, be suppressed in the drop-tube is strongly suggestive that the formation of anomalous eutectic occurs via remelting process, which is suppressed by rapid cooling during solidification.

  7. Eutectic phases in water-ice : an efficient medium for biopolymerization

    DEFF Research Database (Denmark)

    Monnard, Pierre-Alain; Dörr, Mark; Löffler, Philipp M. G.

    2011-01-01

    , in the eutectic phase in water-ice, starting from dilute aqueous solutions of from imidazole-activated ribonucleotides. When an aqueous solution is cooled below its freezing point, but above the eutectic point, two aqueous phases co-exist and form the eutectic phase system: a solid (crystals made of pure water...... monomers or short oligomers to a solution over several freeze-thawing cycles. In template-directed RNA polymerization, the initial elongation rates clearly depended on the complementarity of the monomers with the templating nucleobases (Monnard and Szostak, 2008). The presence of templates further allows...

  8. Microstructure evolution of eutectic Sn-Ag solder joints

    Science.gov (United States)

    Yang, Wenge; Messler, Robert W.; Felton, Lawrence E.

    1994-08-01

    Laser and infrared reflow soldering methods were used to make Sn-Ag eutectic solder joints for surface-mount components on printed wiring boards. The microstructures of the joints were evaluated and related to process parameters. Aging tests were conducted on these joints for times up to 300 days and at temperature up to 190°C. The evolution of microstructure during aging was examined. The results showed that Sn-Ag solder microstructure is unstable at high temperature, and microstructural evolution can cause solder joint failure. Cu-Sn intermetallics in the solder and at copper-solder interfaces played an important role in both the microstructure evolution and failure of solder joints. Void and crack formation in the aged joints was also observed.

  9. Alkaline extraction of polonium from liquid lead bismuth eutectic

    Science.gov (United States)

    Heinitz, S.; Neuhausen, J.; Schumann, D.

    2011-07-01

    The production of highly radiotoxic polonium isotopes poses serious safety concerns for the development of future nuclear systems cooled by lead bismuth eutectic (LBE). In this paper it is shown that polonium can be extracted efficiently from LBE using a mixture of alkaline metal hydroxides (NaOH + KOH) in a temperature range between 180 and 350 °C. The extraction ratio was analyzed for different temperatures, gas blankets and phase ratios. A strong dependence of the extraction performance on the redox properties of the cover gas was found. While hydrogen facilitates the removal of polonium, oxygen has a negative influence on the extraction. These findings open new possibilities to back up the safety of future LBE based nuclear facilities.

  10. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-12-01

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO{sub x}). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process.

  11. Meloxicam transdermal delivery: effect of eutectic point on the rate and extent of skin permeation

    Directory of Open Access Journals (Sweden)

    Soliman Mohammadi-Samani

    2014-02-01

    Conclusion: This study set out to determine that thymol plays as a skin permeation enhancer and increases the meloxicam skin absorption and this enhancement is significant at the eutectic point of drug-enhancer mixture.

  12. Eutectic Formation During Solidification of Ni-Based Single-Crystal Superalloys with Additional Carbon

    Science.gov (United States)

    Wang, Fu; Ma, Dexin; Bührig-Polaczek, Andreas

    2017-11-01

    γ/ γ' eutectics' nucleation behavior during the solidification of a single-crystal superalloy with additional carbon was investigated by using directional solidification quenching method. The results show that the nucleation of the γ/ γ' eutectics can directly occur on the existing γ dendrites, directly in the remaining liquid, or on the primary MC-type carbides. The γ/γ' eutectics formed through the latter two mechanisms have different crystal orientations than that of the γ matrix. This suggests that the conventional Ni-based single-crystal superalloy castings with additional carbon only guarantee the monocrystallinity of the γ matrix and some γ/ γ' eutectics and, in addition to the carbides, there are other misoriented polycrystalline microstructures existing in macroscopically considered "single-crystal" superalloy castings.

  13. Pre-eutectic densification in MgF/sub 2/-CaF/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Hu, S C; De Jonghe, L C

    1982-04-01

    Increased densification rates were found as much as 200/sup 0/C below the eutectic temperature (980/sup 0/C) for MgF/sub 2/ containing small amounts of CaF/sub 2/. Constant heating rate and constant temperature sintering data, as well as microstructural developments indicated that solid state grain-boundary transport rates had been enhanced by the eutectic forming additive. The effect saturated at about 1 wt % CaF/sub 2/. The results suggest that densification of ceramic powders could be favorably affected without a substantial increase in the grain growth rate, by the addition of small amounts of eutectic forming additives, and sintering below the eutectic temperature. 6 figures.

  14. Modeling studies on divorced eutectic formation of high pressure die cast magnesium alloy

    Directory of Open Access Journals (Sweden)

    Meng-wu Wu

    2018-01-01

    Full Text Available The morphology and content of the divorced eutectic in the microstructure of high pressure die casting (HPDC magnesium alloy have a great influence on the final performance of castings. Based on the previous work concerning simulation of the nucleation and dendritic growth of primary α-Mg during the solidification of magnesium alloy under HPDC process, an extension was made to the formerly established CA (Cellular Automaton model with the purpose of modeling the nucleation and growth of Mg-Al eutectic. With a temperature field and solute field obtained during simulation of the primary α-Mg dendrites as the initial condition of the modified CA model, modeling of the Mg-Al eutectic with a divorced morphology was achieved. Moreover, the simulated results were in accordance with the experimental ones regarding the distribution and content of the divorced eutectic. Taking a "cover-plate" die casting with AM60 magnesium alloy as an example, the rapid solidification with a high cooling rate at the surface layer of the casting led to a fine and uniform grain size of primary α-Mg, while the divorced eutectic at the grain boundary revealed a more dispersed and granular morphology. Islands of divorced eutectic were observed at the central region of the casting, due to the existence of ESCs (Externally Solidified Crystals which contributed to a coarse and non-uniform grain size of primary α-Mg. The volume percentage of the eutectic β-Mg17Al12 phase is about 2%-6% in the die casting as a whole. The numerical model established in this study is of great significance to the study of the divorced eutectic in the microstructure of die cast magnesium alloy.

  15. Self-organizing carbon nitride coatings on steel from molten lead–magnesium eutectic

    Directory of Open Access Journals (Sweden)

    E.A. Orlova

    2015-11-01

    Full Text Available Based on the results of calculation and experimental studies zirconium saturated eutectic Pb–Mg alloy is recommended as liquid metal coolant in fuel elements loaded with nitride fuel. Test stand was developed and manufactured for carrying out studies of deposition of nitride and/or carbide protective coatings from molten eutectic Pb–Mg within narrow gap between coaxially arranged tubes. Pilot testing has been performed.

  16. Directionally solidified pseudo-binary eutectics of Ni-Cr-(Hf, Zr)

    Science.gov (United States)

    Kim, Y. G.; Ashbrook, R. L.

    1975-01-01

    A pseudo-binary eutectic, in which the intermetallic Ni7Hf2 reinforces the Ni-Cr solid solution phase, was previously predicted in the Ni-Cr-Hf system by a computer analysis. The experimental determination of pseudo binary eutectic compositions and the directional solidification of the Ni-Cr-Hf, Zr, and Ni-Cr-Zr eutectic alloys are discussed. To determine unknown eutectics, chemical analyses were made of material bled from near eutectic ingots during incipient melting. Nominal compositions in weight percent of Ni-18.6Cr-24.0HF, Ni19.6Cr-12.8Zr-2.8Hf, and Ni-19.2Cr-14.8Zr formed aligned pseudo-binary eutectic structures. The melting points were about 1270 C. The reinforcing intermetallic phases were identified as noncubic (Ni,Cr)7Hf2 and (Ni,Cr)7(Hf,Zr)2, and face centered cubic (Ni,Cr)5Zr. The volume fraction of the reinforcing phases were about 0.5.

  17. Preparation of eutectic substrate mixtures for enzymatic conversion of ATC to L-cysteine at high concentration levels.

    Science.gov (United States)

    Youn, Sung Hun; Park, Hae Woong; Choe, Deokyeong; Shin, Chul Soo

    2014-06-01

    High concentration eutectic substrate solutions for the enzymatic production of L-cysteine were prepared. Eutectic melting of binary mixtures consisting of D,L-2-amino-Δ(2)-thiazoline-4-carboxylic acid (ATC) as a substrate and malonic acid occurred at 39 °C with an ATC mole fraction of 0.5. Formation of eutectic mixtures was confirmed using SEM, SEM-EDS, and XPS surface analyses. Sorbitol, MnSO4, and NaOH were used as supplements for the enzymatic reactions. Strategies for sequential addition of five compounds, including a binary ATC mixture and supplements, during preparation of eutectic substrate solutions were established. Eutectic substrate solutions were stable for 24 h. After 6 h of enzymatic reactions, a 550 mM L-cysteine yield was obtained from a 670 mM eutectic ATC solution.

  18. Microstructural evolution and thermal stability of aluminum-cerium-nickel ternary eutectic

    Science.gov (United States)

    Fodran, Eric John

    The engineering community has identified several applications in which the use of a lightweight alloy for elevated temperature service, in substitution for current heavier and more costly alloys, would have a substantial benefit. This need for structural materials to perform at elevated temperatures has driven researchers to develop novel alloys as well as processing routes to manufacture them and obtain optimum microstructures. Previous studies on aluminum based binary eutectic systems have proven that the aluminum alloy system shows promising potential for satisfying this need. This has motivated the investigation of the solidification and thermal stability of the Al-12 wt% Ce-5 wt% Ni ternary eutectic performed in this investigation. The solidification behavior of the Al-Ce-Ni ternary eutectic was conducted via solidification of various compositions at and above the eutectic composition in a copper chill mold, thus allowing the observation of various solidification rates on a single ingot. Directional solidification of the ternary eutectic was also conducted to further study the unique microstructures forms. After casting the ingots were analyzed for the composition of phases in the microstructure via X-ray diffraction, and the distribution of the phases determined by scanning electron microscopy. The solidification of the ternary eutectic was found to occur much like that of a faceted/non-faceted binary couples growth. The thermal stability of the microstructure was also studied. Ternary eutectic microstructures were heat treated at various temperatures for time intervals up to 100 hours. The coupled growth microstructures were found to coarsen at temperature above 400°C, which was associated with a loss in hardness. Coarsening of the microstructures at elevated temperatures was also observed to occur by multiple mechanisms: an Ostwald ripening within the eutectic cell, and an accelerated coarsening at the cell boundaries due to increased diffusion at

  19. Directional solidification of Al2-Cu-Al and Al3-Ni-Al eutectics during TEXUS rocket flight

    Science.gov (United States)

    Favier, J. J.; Degoer, J.

    1984-01-01

    One lamellar eutectic sample and one fiber-like eutectic sample were solidified directionally during the TEXUS-6 rocket flight. The microstructures and the results of the thermal analysis, obtained from the temperatures recorded on the cartridge skin, are compared. No appreciable modifications of the regularity of the eutectic structures were observed by passing from 1 g to 0.0001 g in these experiments. No steady state growth conditions were achieved in these experiments.

  20. Assessing the toxicity and biodegradability of deep eutectic solvents.

    Science.gov (United States)

    Wen, Qing; Chen, Jing-Xin; Tang, Yu-Lin; Wang, Juan; Yang, Zhen

    2015-08-01

    Deep eutectic solvents (DESs) have emerged as a new type of promising ionic solvents with a broad range of potential applications. Although their ecotoxicological profile is still poorly known, DESs are generally regarded as "green" because they are composed of ammonium salts and H-bond donors (HBDs) which are considered to be eco-friendly. In this work, cholinium-based DESs comprised of choline chloride (ChCl) and choline acetate (ChAc) as the salt and urea (U), acetamide (A), glycerol (G) and ethylene glycol (EG) as the HBD were evaluated for their toxic effects on different living organisms such as Escherichia coli (a bacterium), Allium sativum (garlic, a plant) and hydra (an invertebrate), and their biodegradabilities were assessed by means of closed bottle tests. These DESs possessed an anti-bacterial property and exhibited inhibitory effects on the test organisms adopted, depending on the composition and concentration of the DES. The mechanism for the impact of DESs and their components on different living organisms can be associated to their interactions with the cellular membranes. Not all DESs can be considered readily biodegradable. By extending the limited knowledge about the toxicity and biodegradation of this particular solvent family, this investigation on DESs provides insight into our structure-based understanding of their ecotoxicological behavior. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Purification of biodiesel by choline chloride based deep eutectic solvent

    Science.gov (United States)

    Niawanti, Helda; Zullaikah, Siti; Rachimoellah, M.

    2017-05-01

    Purification is a crucial step in biodiesel production to meet the biodiesel standard. This study purified biodiesel using choline chloride based deep eutectic solvent (DES). DES was used to reduce unreacted oil and unsaponifiable matter in rice bran oil based biodiesel. The objective of this work was to study the effect of extraction time using DES on the content and yield of fatty acid methyl ester (FAME). Rice bran used in this work contains 16.49 % of oil with initial free fatty acids (FFA) of 44.75 %. Acid catalyzed methanolysis was employed to convert rice bran oil (RBO) into biodiesel under following operation conditions: T = 60 °C, t = 8 h, molar ratio of oil to methanol = 1/10, H2SO4 = 1% w/w of oil. Rice bran oil based biodiesel obtained contain 89.05 % of FAME with very low FFA content (0.05 %). DES was made from a mixture of choline chloride and ethylene glycol with molar ratio of 1/2. Molar ratio of crude biodiesel to DES were 1/2 and 1/4. Extraction time was varied from 15 minutes to 240 minutes at 30 °C. The highest FAME content was obtained after purification for 240 min. at molar ratio crude biodiesel to DES 1/4 was 96.60 %. This work shows that DES has potential to purify biodiesel from non-edible raw material, such as RBO.

  2. Highly Efficient Enzymatic Preparation of Daidzein in Deep Eutectic Solvents

    Directory of Open Access Journals (Sweden)

    Qi-Bin Cheng

    2017-01-01

    Full Text Available Daidzein, which is scarce in nature, has gained significant attention due to its superior biological activity and bioavailability compared with daidzin. So far, it has been widely used in the medicine and health care products industries. The enzymatic approach for the preparation of daidzein has prevailed, benefitted by its high efficiency and eco-friendly nature. Our present research aimed at providing a preparation method of daidzein by enzymatic hydrolysis of daidzin in a new “green” reaction medium-deep eutectic solvents (DESs. Herein, the DESs were screened via evaluating enzyme activity, enzyme stability and the substrate solubility, and the DES (ChCl/EG 2:1, 30 vol % was believed to be the most appropriate co-solvent to improve the bioconversion efficiency. Based on the yield of daidzein, response surface methodology (RSM was employed to model and optimize the reaction parameters. Under these optimum process conditions, the maximum yield of 97.53% was achieved and the purity of daidzein crude product reached more than 70%, which is more efficient than conversions in DESs-free buffer. Importantly, it has been shown that DESs medium could be reused for six batches of the process with a final conversion of above 50%. The results indicated that this procedure could be considered a mild, environmentally friendly, highly efficient approach to the economical production of daidzein, with a simple operation process and without any harmful reagents being involved.

  3. Prussian blue nanospheres synthesized in deep eutectic solvents.

    Science.gov (United States)

    Sheng, Qinglin; Liu, Ruixiao; Zheng, Jianbin

    2012-11-07

    A novel route for controlled synthesis of Prussian blue nanospheres (PB NSs) with different sizes by using deep eutectic solvents (DES) as both solvent and template provider was demonstrated. The size-controlled PB NSs were obtained directly by the coordination of Fe(CN)(6)(4-) ion with Fe(3+) ion in the DES. The probable mechanism of formation of PB NSs was discussed based on the characterization results of UV-visible, X-ray diffraction, X-ray photoelectronic spectrum and transfer electron microscopy. Furthermore, the electrochemical and electrocatalytic properties of the synthesized PB NSs were investigated, and it has demonstrated that the PB NSs exhibited excellent catalytic activity for H(2)O(2) reduction, and then extended this strategy to glucose sensing, by detecting H(2)O(2) formed from the enzymatic reaction of glucose oxidase with its substrate glucose. The linear calibration range for glucose was from 0.9 μM to 0.12 mM, with a correlation coefficient of 0.998. The limit of detection was 0.3 μM and the sensitivity was 61.7 A cm(-2) M(-1). The present study provides a general platform for the controlled synthesis of novel nanomaterials in DES and can be extended to other optical, electronic and magnetic nanocompounds.

  4. Improving agar electrospinnability with choline-based deep eutectic solvents.

    Science.gov (United States)

    Sousa, Ana M M; Souza, Hiléia K S; Uknalis, Joseph; Liu, Shih-Chuan; Gonçalves, Maria P; Liu, LinShu

    2015-09-01

    Very recently our group has produced novel agar-based fibers by an electrospinning technique using water as solvent and polyvinyl alcohol (PVA) as co-blending polymer. Here, we tested the deep eutectic solvent (DES), (2-hydroxyethyl)trimethylammonium chloride/urea prepared at 1:2 molar ratio, as an alternative solvent medium for agar electrospinning. The electrospun materials were collected with an ethanol bath adapted to a previous electrospinning set-up. One weight percent agar-in-DES showed improved viscoelasticity and hence, spinnability, when compared to 1 wt% agar-in-water and pure agar nanofibers were successfully electrospun if working above the temperature of sol-gel transition (∼80 °C). By changing the solvent medium we decreased the PVA concentration (5 wt% starting solution) and successfully produced composite fibers with high agar contents (50/50 agar/PVA). Best composite fibers were formed with the 50/50 and 30/70 agar/PVA solutions. These fibers were mechanically resistant, showed tailorable surface roughness and diverse size distributions, with most of the diameters falling in the sub-micron range. Both nano and micro forms of agar fibers (used separately or combined) may have potential for the design of new and highly functional agar-based materials. Published by Elsevier B.V.

  5. Natural deep eutectic solvents as new potential media for green technology

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yuntao [Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA Leiden (Netherlands); Spronsen, Jaap van; Witkamp, Geert-Jan [Laboratory for Process Equipment, Delft University of Technology, Delft (Netherlands); Verpoorte, Robert [Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA Leiden (Netherlands); Choi, Young Hae, E-mail: y.choi@chem.leidenuniv.nl [Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA Leiden (Netherlands)

    2013-03-05

    Highlights: ► Natural products were used as a source for deep eutectic solvents and ionic liquids. ► We define own chemical and physical properties of natural deep eutectic solvents. ► Interaction between natural deep eutectic solvents and solutes was confirmed by NMR. ► The developed natural deep eutectic solvents were applied as green media. - Abstract: Developing new green solvents is one of the key subjects in Green Chemistry. Ionic liquids (ILs) and deep eutectic solvents, thus, have been paid great attention to replace current harsh organic solvents and have been applied to many chemical processing such as extraction and synthesis. However, current ionic liquids and deep eutectic solvents have still limitations to be applied to a real chemical industry due to toxicity against human and environment and high cost of ILs and solid state of most deep eutectic solvents at room temperature. Recently we discovered that many plant abundant primary metabolites changed their state from solid to liquid when they were mixed in proper ratio. This finding made us hypothesize that natural deep eutectic solvents (NADES) play a role as alternative media to water in living organisms and tested a wide range of natural products, which resulted in discovery of over 100 NADES from nature. In order to prove deep eutectic feature the interaction between the molecules was investigated by nuclear magnetic resonance spectroscopy. All the tested NADES show clear hydrogen bonding between components. As next step physical properties of NADES such as water activity, density, viscosity, polarity and thermal properties were measured as well as the effect of water on the physical properties. In the last stage the novel NADES were applied to the solubilization of wide range of biomolecules such as non-water soluble bioactive natural products, gluten, starch, and DNA. In most cases the solubility of the biomolecules evaluated in this study was greatly higher than water. Based on the

  6. Construction and Characterization of Mini-ruthenium-Carbon Eutectic Cells for Industrial Use

    Science.gov (United States)

    Diril, A.; Bourson, F.; Parga, C.; Sadli, M.

    2015-12-01

    High-temperature eutectic fixed points have proved to be convenient tools for temperature scale dissemination and thermometer calibrations/checks at temperatures above 1100°C. In order to investigate the feasibility of metal-carbon eutectic cells in industrial applications as a means for assessing the traceability of non-contact thermometers, a batch of cells was constructed at LNE-Cnam, NPL, and TUBITAK UME. Compared to the usual dimensions of high-temperature fixed point cells (45 mm in length × 24 mm in diameter), a new cell design was created to fit with industrial applications. TUBITAK UME constructed and characterized five ruthenium-carbon (Ru-C) eutectic cells of dimensions 24 mm in length × 24 mm in diameter. One of these cells has been selected and characterized at CEA premises. Ru-C eutectic cells have been evaluated in terms of short-term repeatability, reproducibility, furnace effect, sharp temperature ramps, and the effect of cell location. Measurements at TÜBİTAK UME have been performed with a transfer standard pyrometer calibrated at the copper point and a BB3500pg high-temperature blackbody furnace was used for construction and measurement. For the measurements at CEA, a Land Standard—HIMERT S1 radiation thermometer and a VITI induction furnace were used. In this article results of the measurements at TÜBİTAK UME and CEA will be presented. The possible use of these mini-eutectic cells as industrial temperature standards will be discussed.

  7. PU/SS EUTECTIC ASSESSMENT IN 9975 PACKAGINGS IN A STORAGE FACILITY DURING EXTENDED FIRE

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, N.

    2012-03-26

    In a radioactive material (RAM) packaging, the formation of eutectic at the Pu/SS (plutonium/stainless steel) interface is a serious concern and must be avoided to prevent of leakage of fissile material to the environment. The eutectic temperature for the Pu/SS is rather low (410 C) and could seriously impact the structural integrity of the containment vessel under accident conditions involving fire. The 9975 packaging is used for long term storage of Pu bearing materials in the DOE complex where the Pu comes in contact with the stainless steel containment vessel. Due to the serious consequences of the containment breach at the eutectic site, the Pu/SS interface temperature is kept well below the eutectic formation temperature of 410 C. This paper discusses the thermal models and the results for the extended fire conditions (1500 F for 86 minutes) that exist in a long term storage facility and concludes that the 9975 packaging Pu/SS interface temperature is well below the eutectic temperature.

  8. Deep eutectic solvents as novel extraction media for protein partitioning.

    Science.gov (United States)

    Zeng, Qun; Wang, Yuzhi; Huang, Yanhua; Ding, Xueqin; Chen, Jing; Xu, Kaijia

    2014-05-21

    Four kinds of green deep eutectic solvent (DES) were synthesized, including choline chloride (ChCl)-urea, tetramethylammonium chloride (TMACl)-urea, tetrapropylammonium bromide (TPMBr)-urea and ChCl-methylurea. An aqueous two-phase system (ATPS) based ChCl-urea DES was studied for the first time for the extraction of bovine serum albumin (BSA). Single factor experiments proved that the extraction efficiency of BSA was influenced by the mass of the DES, concentration of K2HPO4 solution, separation time and extraction temperature. The optimum conditions were determined through an orthogonal experiment with the four factors described above. The results showed that under the optimum conditions, the average extraction efficiency could reach up to 99.94%, 99.72%, 100.05% and 100.05% (each measured three times). The relative standard deviations (RSD) of extraction efficiencies in precision, repeatability and stability experiments were 0.5533% (n = 5), 0.8306% (n = 5) and 0.9829% (n = 5), respectively. UV-vis and FT-IR spectra confirmed that there were no chemical interactions between BSA and the DES in the extraction process, and the CD spectra proved that the conformation of BSA did not change after extraction. The conductivity, DLS and TEM were combined to investigate the microstructure of the top phase and the possible mechanism for the extraction. The results showed that hydrophobic interactions, hydrogen bonding interactions and the salting-out effect played important roles in the transfer process, and the aggregation and surrounding phenomenon were the main driving forces for the separation. All of these results proved that ionic liquid (IL)-based ATPSs could potentially be substituted with DES-based ATPSs to offer new possibilities in the extraction of proteins.

  9. Modelling of Eutectic Saturation Influence on Microstructure in Thin Wall Ductile Iron Casting Using Cellular Automata

    Directory of Open Access Journals (Sweden)

    Burbelko A.A.

    2012-12-01

    Full Text Available The mathematical model of the globular eutectic solidification in 2D was designed. Proposed model is based on the Cellular Automaton Finite Differences (CA-FD calculation method. Model has been used for studies of the primary austenite and of globular eutectic grains growth during the ductile iron solidification in the thin wall casting. Model takes into account, among other things, non-uniform temperature distribution in the casting wall cross-section, kinetics of the austenite and graphite grains nucleation, and non-equilibrium nature of the interphase boundary migration. Calculation of eutectic saturation influence (Sc = 0.9 - 1.1 on microstructure (austenite and graphite fraction, density of austenite and graphite grains and temperature curves in 2 mm wall ductile iron casting has been done.

  10. Modelling of Eutectic Saturation Influence on Microstructure in Thin Wall Ductile Iron Casting Using Cellular Automata

    Directory of Open Access Journals (Sweden)

    M. Górny

    2012-12-01

    Full Text Available The mathematical model of the globular eutectic solidification in 2D was designed. Proposed model is based on the Cellular AutomatonFinite Differences (CA-FD calculation method. Model has been used for studies of the primary austenite and of globular eutectic grainsgrowth during the ductile iron solidification in the thin wall casting. Model takes into account, among other things, non-uniformtemperature distribution in the casting wall cross-section, kinetics of the austenite and graphite grains nucleation, and non-equilibriumnature of the interphase boundary migration. Calculation of eutectic saturation influence (Sc = 0.9 - 1.1 on microstructure (austenite and graphite fraction, density of austenite and graphite grains and temperature curves in 2 mm wall ductile iron casting has been done.

  11. Melting points of gallium and of binary eutectics with gallium realized in small cells

    Science.gov (United States)

    Burdakin, A.; Khlevnoy, B.; Samoylov, M.; Sapritsky, V.; Ogarev, S.; Panfilov, A.; Bingham, G.; Privalsky, V.; Tansock, J.; Humpherys, T.

    2008-02-01

    Melting/freezing curves are studied for the single-component Ga and bimetallic eutectic alloys Ga-In, Ga-Sn, Ga-Zn and Ga-Al in small-size cells. These phase-transition studies were conducted at VNIIOFI and SDL in order to design small-size fixed-point devices for metrological monitoring of temperature sensors on autonomous platforms. Our prime objective is to develop technology to improve the long-term performance of in-flight blackbody calibration sources of space-borne radiometers. The repeatability of the melting temperature of Ga and the eutectic melting temperatures of Ga-In, Ga-Sn and Ga-Zn fixed points were studied. Our results show that small cells containing Ga and some Ga-based eutectic alloys can be used as melting fixed-point standards.

  12. RETRACTED ARTICLE: Comparison on grain refinement efficiency of peritectic and eutectic alloying elements on pure aluminium

    Science.gov (United States)

    Haghayeghi, R.; Kapranos, P.

    2014-07-01

    The work investigated the grain refining efficiency of peritectic forming solutes as well as eutectic solutes on pure Al. Significant grain refinement for peritectic and small refinement for the eutectic elements were achieved and the mechanisms of refinement were studied. In order to investigate the grain structure and solidification phenomena for each set of alloys, a TP-1 test, as well as thermal analysis, was performed and back scattered images were used to analyze the phases that may contribute to the grain refinement. It appears that the significant grain refinement of peritectic elements is due to the formation of in-situ properitectic particles and their appropriate constitutional undercooling. The results suggest that the availability of potent nuclei and exogenous particles play major roles in the grain refinement efficiency. However, in the case of eutectic elements only segregation power contributes to refinement whilst the availability of potent nuclei is of paramount importance.

  13. Structural and phonon transmission study of Ge-Au-Ge eutectically bonded interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Knowlton, W.B. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering]|[Lawrence Berkeley Lab., CA (United States). Materials Sciences Div.

    1995-07-01

    This thesis presents a structural analysis and phonon transparency investigation of the Ge-Au-Ge eutectic bond interface. Interface development was intended to maximize the interfacial ballistic phonon transparency to enhance the detection of the dark matter candidate WIMPs. The process which was developed provides an interface which produces minimal stress, low amounts of impurities, and insures Ge lattice continuity through the interface. For initial Au thicknesses of greater than 1,000 {angstrom} Au per substrate side, eutectic epitaxial growth resulted in a Au dendritic structure with 95% cross sectional and 90% planar Au interfacial area coverages. In sections in which Ge bridged the interface, lattice continuity across the interface was apparent. Epitaxial solidification of the eutectic interface with initial Au thicknesses < 500 A per substrate side produced Au agglomerations thereby reducing the Au planar interfacial area coverage to as little as 30%. The mechanism for Au coalescence was attributed to lateral diffusion of Ge and Au in the liquid phase during solidification. Phonon transmission studies were performed on eutectic interfaces with initial Au thicknesses of 1,000 {angstrom}, 500 {angstrom}, and 300 {angstrom} per substrate side. Phonon imaging of eutectically bonded samples with initial Au thicknesses of 300 {angstrom}/side revealed reproducible interfacial percent phonon transmissions from 60% to 70%. Line scan phonon imaging verified the results. Phonon propagation TOF spectra distinctly showed the predominant phonon propagation mode was ballistic. This was substantiated by phonon focusing effects apparent in the phonon imaging data. The degree of interface transparency to phonons and resulting phonon propagation modes correlate with the structure of the interface following eutectic solidification. Structural studies of samples with initial Au thickness of 1,000 {angstrom}/side appear to correspond with the phonon transmission study.

  14. Spheroidization of Si in Al-12.6wt.%Si at eutectic temperature and its tensile properties

    Science.gov (United States)

    Jiaqing, Zhu; Ya, Liu; Haoping, Peng; Jianhua, Wang; Xuping, Su

    2017-10-01

    The morphology of Si affects significantly the mechanical properties of eutectic Al-Si alloy. In this letter, we report a novel method for the spheroidization of Si in eutectic Al-Si alloy. The results show that Si in eutectic Al-Si alloy could be spheroidized after annealing at eutectic temperature for 3 h. Si phase in the alloy exists in the form of ellipsoidal particles without faceted edges. The surface shape factor of Si phase is 0.8 and the average size of Si particles is only 3.3 µm. Compared with cast eutectic Al-Si alloy, the tensile strength and the hardness of the annealed alloy are decreased by 8.2% and 8.6%, respectively, but its elongation is increased by 79.4%. The fracture mode of Al-12.6%Si alloy annealed at 577 °C for 3 h belongs to ductile fracture.

  15. DSC study and calculation of metronidazole and clarithromycin thermodynamic melting parameters for individual substances and for eutectic mixture

    Energy Technology Data Exchange (ETDEWEB)

    Agafonova, Evgeniia V., E-mail: agafonova.ev@samgtu.ru [Samara State Technical University, Molodogvardeyskaya 244, 443100 Samara (Russian Federation); Moshchenskiy, Yuriy V. [Samara State Technical University, Molodogvardeyskaya 244, 443100 Samara (Russian Federation); Tkachenko, Mikhail L., E-mail: tka-mikhail@yandex.ru [Samara State Medical University, Chapaevskaya 89, 443099 Samara (Russian Federation)

    2014-03-01

    Highlights: • The system clarithromycin–metronidazole is a system with a simple eutectic. • The eutectic melting temperature for the system clarithromycin–metronidazole is 155.2 ± 0.5 °C and it is not changed by varying the composition of the system. • The DSC curve for the composition of 89:11 mol or 64.9:35.1 wt% corresponds to the eutectic (or the invariant) composition for the system clarithromycin–metronidazole. - Abstract: In this study melting thermodynamic characteristics of clarithromycin and metronidazole as individual substances were investigated by DSC method. It was found that the binary system of clarithromycin and metronidazole is a system with simple eutectic. Composition, melting temperature and the heat of fusion of the eutectic were determined by calculation and experimental methods.

  16. Eutectic reaction analysis between TRU-50%Zr alloy fuel and HT-9 cladding, and temperature prediction of eutectic reaction under steady-state

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Woan; Lee, Byoung Oon; Lee, Bong Sang; Park, Won Seok

    2001-02-01

    Blanket fuel assembly for HYPER contains a bundle of pins arrayed in triangular pitch, which has hexagonal bundle structure. The reference blanket fuel pin consists of the fuel slug of TRU-50wt%Zr alloy and the cladding material of ferritic martensite steel, HT-9. Chemical interaction between fuel slug and cladding is one of the major concerns in metallic fuel rod design. The contact of metallic fuel slug and stainless steel cladding in a fuel rod forms a complex multi-component diffusion couple at elevated temperatures. The potential problem of inter-diffusion of fuel and cladding components is essentially two-fold weakening of cladding mechanical strength due to the formation of diffusion zones in the cladding, and the formation of comparatively low melting point phases in the fuel/cladding interface to develop eutectic reaction. The main components of fuel slug are composed of zirconium alloying element in plutonium matrix, including neptunium, americium and uranium additionally. Therefore basic eutectic reaction change of Pu-Fe binary system can be assessed, while it is estimated how much other elements zirconium, uranium, americium and neptunium influence on plutonium phase stability. Afterwards it is needed that eutectic reaction is verified through experimental necessarily.

  17. Dimethylurea/citric acid as a highly efficient deep eutectic solvent for ...

    Indian Academy of Sciences (India)

    medium for the efficient synthesis of bis(indolyl)methanes, quinolines and aryl-4, 5-diphenyl-1H-imidazoles. Ease of recovery and reusability of DES with high activity makes this method efficient and eco-friendly. Keywords. Deep eutectic; citric acid; dimethylurea; bis(indolyl)methane; quinoline; aryl-4, 5-diphenyl-1H-.

  18. Phase Evolution in and Creep Properties of Nb-Rich Nb-Si-Cr Eutectics

    Science.gov (United States)

    Gang, Florian; Kauffmann, Alexander; Heilmaier, Martin

    2017-10-01

    In this work, the Nb-rich ternary eutectic in the Nb-Si-Cr system has been experimentally determined to be Nb-10.9Si-28.4Cr (in at. pct). The eutectic is composed of three main phases: Nb solid solution (Nbss), β-Cr2Nb, and Nb9(Si,Cr)5. The ternary eutectic microstructure remains stable for several hundred hours at a temperature up to 1473 K (1200 °C). At 1573 K (1300 °C) and above, the silicide phase Nb9(Si,Cr)5 decomposes into α-Nb5Si3, Nbss, and β-Cr2Nb. Under creep conditions at 1473 K (1200 °C), the alloy deforms by dislocation creep while the major creep resistance is provided by the silicide matrix. If the silicide phase is fragmented and, thus, its matrix character is destroyed by prior heat treatment [e.g., at 1773 K (1500 °C) for 100 hours], creep is mainly controlled by the Laves phase β-Cr2Nb, resulting in increased minimum strain rates. Compared to state of the art Ni-based superalloys, the creep resistance of this three-phase eutectic alloy is significantly higher.

  19. The binary eutectic of NSAIDS and two-phase liquid system for enhanced membrane permeation.

    Science.gov (United States)

    Yuan, Xudong; Capomacchia, A C

    2005-01-01

    The eutectic properties of binary mixtures of some nonsteroidal anti-inflammatory drugs (NSAIDs) with ibuprofen were studied using differential scanning calorimetry (DSC) and phase equilibrium diagrams. The melting points of selected NSAIDs were significantly depressed due to binary eutectic formation with ibuprofen. Ketoprofen and ibuprofen were selected to study the effect of eutectic formation on membrane permeation using Franz diffusion cells and snake skin as the model membrane. The presence of aqueous isopropyl alcohol (IPA) was necessary to completely transform the solid drugs into an oily state at ambient temperature. As much as the 99.6% of ibuprofen and the 88.8% of ketoprofen added were found in the oily phase of the two-phase liquid system formed when aqueous IPA was added to the eutectic mixture. Due to the high drug concentration in the oily phase, and maximum thermodynamic activity, the two-phase liquid system showed enhanced membrane permeation rates of ibuprofen (37.5 microg/cm2/hr) and ketoprofen (33.4 microg/cm2/hr) compared to other reference preparations used.

  20. Design of a Eutectic Freeze Crystallization process for multicomponent waste water stream

    DEFF Research Database (Denmark)

    Lewis, Alison E.; Nathoo, J.; Thomsen, Kaj

    2010-01-01

    Complex, hypersaline brines originating from the mining and extractive metallurgical industries have the potential to be treated using Eutectic Freeze Crystallization (EFC). Although EFC has been shown to be effective in separating a single salt and water, it has yet to be applied to the complex...

  1. Dimethylurea/citric acid as a highly efficient deep eutectic solvent for ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 126; Issue 3. Dimethylurea/citric acid ... Dimethylurea/citric acid deep eutectic solvent was used as a dual catalyst and a green reaction medium for the efficient synthesis of bis(indolyl)methanes, quinolines and aryl-4, 5-diphenyl-1H-imidazoles. Ease of recovery and ...

  2. Lauric and myristic acids eutectic mixture as phase change material for low-temperature heating applications

    Energy Technology Data Exchange (ETDEWEB)

    Keles, Sadat; Kaygusuz, Kamil [Karadeniz Technical Univ., Dept. of Chemistry, Trabzon (Turkey); Sari, Ahmet [Gaziosmanpasa Univ., Dept. of Chemistry, Tokat (Turkey)

    2005-07-01

    Lauric acid (m.p.: 42.6 deg C) and myristic acid (m.p.: 52.2 deg C) are phase change materials (PCM) having quite high melting points which can limit their use in low-temperature solar applications such as solar space heating and greenhouse heating. However, their melting temperatures can be tailored to appropriate value by preparing a eutectic mixture of lauric acid (LA) and myristic acid (MA). In the present study, the thermal analysis based on differential scanning calorimetry (DSC) technique shows that the mixture of 66.0 wt% LA forms a eutectic mixture having melting temperature of 34.2 deg C and the latent heat of fusion of 166.8 J g{sup -1} . This study also considers the experimental establishment of thermal characteristics of the eutectic PCM in a vertical concentric pipe-in-pipe heat storage system. Thermal performance of the PCM was evaluated with respect to the effect of inlet temperature and mass flow rate of the heat transfer fluid on those characteristics during the heat charging and discharging processes. The DSC thermal analysis and the experimental results indicate that the LA-MA eutectic PCM can be potential material for low-temperature solar energy storage applications in terms of its thermo-physical and thermal characteristics. (Author)

  3. Free energy change of off-eutectic binary alloys on solidification

    Science.gov (United States)

    Ohsaka, K.; Trinh, E. H.; Lin, J.-C.; Perepezko, J. H.

    1991-01-01

    A formula for the free energy difference between the undercooled liquid phase and the stable solid phase is derived for off-eutectic binary alloys in which the equilibrium solid/liquid transition takes place over a certain temperature range. The free energy change is then evaluated numerically for a Bi-25 at. pct Cd alloy modeled as a sub-subregular solution.

  4. Eutectic cell and nodule count as the quality factors of cast iron

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2008-10-01

    Full Text Available In this work the predictions based on a theoretical analysis aimed at elucidating of eutectic cell count or nodule counts N wereexperimentally verified. The experimental work was focused on processing flake graphite and ductile iron under various inoculationconditions in order to achieve various physicochemical states of the experimental melts. In addition, plates of various wall thicknesses, s were cast and the resultant eutectic cell or nodule counts were established. Moreover, thermal analysis was used to find out the degree of maximum undercooling for the graphite eutectic, Tm. A relationship was found between the eutectic cell or nodule count and the maximum undercooling Tm.. In addition it was also found that N can be related to the wall thickness of plate shaped castings. Finally, the present work provides a rational for the effect of technological factors such as the melt chemistry, inoculation practice, and holding temperature and time on the resultant cell count or nodule count of cast iron. In particular, good agreement was found between the predictions of the theoretical analysis and the experimental data.

  5. Modeling of Eutectic Formation in Al-Si Alloy Using A Phase-Field Method

    Directory of Open Access Journals (Sweden)

    Ebrahimi Z.

    2017-12-01

    Full Text Available We have utilized a phase-field model to investigate the evolution of eutectic silicon in Al-Si alloy. The interfacial fluctuations are included into a phase-field model of two-phase solidification, as stochastic noise terms and their dominant role in eutectic silicon formation is discussed. We have observed that silicon spherical particles nucleate on the foundation of primary aluminum phase and their nucleation continues on concentric rings, through the Al matrix. The nucleation of silicon particles is attributed to the inclusion of fluctuations into the phase-field equations. The simulation results have shown needle-like, fish-bone like and flakes of silicon phase by adjusting the noise coefficients to larger values. Moreover, the role of primary Al phase on nucleation of silicon particles in Al-Si alloy is elaborated. We have found that the addition of fluctuations plays the role of modifiers in our simulations and is essential for phase-field modeling of eutectic growth in Al-Si system. The simulated finger-like Al phases and spherical Si particles are very similar to those of experimental eutectic growth in modified Al-Si alloy.

  6. Experimental Determination and Theoretical Calculation of the Eutectic Composition of Cefuroxime Axetil Diastereomers.

    Science.gov (United States)

    Dalal, Namita; Buckner, Ira S; Wildfong, Peter L D

    2017-10-01

    Cefuroxime axetil (CFA), an ester prodrug of cefuroxime exists as a pair of diastereoemers, namely isomer A and isomer B. To enable phase diagram construction, crystallization of the diastereomers of CFA from the commercially available amorphous drug substance was carried out. Isomer A was separated with a purity approaching 100% whereas the maximum purity of isomer B was 85% as confirmed by solution state proton NMR spectroscopy. The crystalline forms of isomer A and isomer B were confirmed as forms AI and BI, respectively, based on differential scanning calorimetry (DSC) analysis and powder X-ray diffraction. DSC analysis was used to observe the melting behavior of different diastereomer mixture compositions. The binary solid-liquid phase diagram for mixture compositions ranging from 0 to 85% w/w isomer B indicated the formation of a eutectic mixture having a melting temperature of 124.7 ± 0.4°C and a composition of 75% w/w (+/-5% wt.) isomer B. The eutectic composition was calculated using an index based on the van't Hoff equation for melting point depression and was found to be 75% isomer B and 25% isomer A. As CFA is present in commercial preparations as a mixture of diastereomers, the formation of a eutectic mixture between the diastereomers may impact the solubility and stability of the commercial product. Eutectic formation can be explained on the basis of the chemical similarity of diastereomers that favor miscibility in the liquid state.

  7. Thermodynamic and morphological analysis of eutectic formation of CBZ-L-Asp and L-PheOMe.HCl mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Jung [Department of Biotechnology, College of Engineering, Yonsei University, 134 Shinchon-Dong, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Kim, Jong Hoon [Department of Biotechnology, College of Engineering, Yonsei University, 134 Shinchon-Dong, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Youn, Sung Hun [Department of Biotechnology, College of Engineering, Yonsei University, 134 Shinchon-Dong, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Shin, Chul Soo [Department of Biotechnology, College of Engineering, Yonsei University, 134 Shinchon-Dong, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of)]. E-mail: csshin@yonsei.ac.kr

    2006-02-15

    The eutectic melting of a CBZ-L-Asp/L-PheOMe.HCl model mixture was investigated in kinetic, thermal, thermodynamic, rheological, and morphological aspects. From TX-phase diagrams, the eutectic composition was determined to be 0.55 M fraction of CBZ-L-Asp. The highest melting rate and the lowest apparent viscosity in the range of 55-75 deg. C were obtained at the eutectic composition. Using Arrhenius plots of melting rates and apparent viscosities, minimum activation energies in the range of 60-80 deg. C were obtained at the eutectic composition, whereas maximum values were attained below 60 deg. C. At the eutectic composition, the maximum heat of fusion, the lowest excess free energy, and the highest excess entropy values were observed by differential scanning calorimetry (DSC). A highly homogeneous morphology due to rearrangement of molecules was observed in the eutectic mixture via scanning electron microscopy and X-ray diffraction analysis. IR spectra revealed that hydrogen bonding in the mixture increases during eutectic melting.

  8. Deep eutectic solvents: sustainable media for nanoscale and functional materials.

    Science.gov (United States)

    Wagle, Durgesh V; Zhao, Hua; Baker, Gary A

    2014-08-19

    Deep eutectic solvents (DESs) represent an alternative class of ionic fluids closely resembling room-temperature ionic liquids (RTILs), although, strictly speaking, they are distinguished by the fact that they also contain an organic molecular component (typically, a hydrogen bond donor like a urea, amide, acid, or polyol), frequently as the predominant constituent. Practically speaking, DESs are attractive alternatives to RTILs, sharing most of their remarkable qualities (e.g., tolerance to humidity, negligible vapor pressure, thermostability, wide electrochemical potential windows, tunability) while overcoming several limitations associated with their RTIL cousins. Particularly, DESs are typically, less expensive, more synthetically accessible (typically, from bulk commodity chemicals using solvent/waste-free processes), nontoxic, and biodegradable. In this Account, we provide an overview of DESs as designer solvents to create well-defined nanomaterials including shape-controlled nanoparticles, electrodeposited films, metal-organic frameworks, colloidal assemblies, hierarchically porous carbons, and DNA/RNA architectures. These breakthroughs illustrate how DESs can fulfill multiple roles in directing chemistry at the nanoscale: acting as supramolecular template, metal/carbon source, sacrificial agent (e.g., ammonia release from urea), and/or redox agent, all in the absence of formal stabilizing ligand (here, solvent and stabilizer are one and the same). The ability to tailor the physicochemical properties of DESs is central to controlling their interfacial behavior. The preorganized "supramolecular" nature of DESs provides a soft template to guide the formation of bimodal porous carbon networks or the evolution of electrodeposits. A number of essential parameters (viscosity, polarity, surface tension, hydrogen bonding), plus coordination with solutes/surfaces, all play significant roles in modulating species reactivity and mass transport properties governing the

  9. The fabrication of all-silicon micro gas chromatography columns using gold diffusion eutectic bonding

    Science.gov (United States)

    Radadia, A. D.; Salehi-Khojin, A.; Masel, R. I.; Shannon, M. A.

    2010-01-01

    Temperature programming of gas chromatography (GC) separation columns accelerates the elution rate of chemical species through the column, increasing the speed of analysis, and hence making it a favorable technique to speedup separations in microfabricated GCs (micro-GC). Temperature-programmed separations would be preferred in an all-silicon micro-column compared to a silicon-Pyrex® micro-column given that the thermal conductivity and diffusivity of silicon is 2 orders of magnitude higher than Pyrex®. This paper demonstrates how to fabricate all-silicon micro-columns that can withstand the temperature cycling required for temperature-programmed separations. The columns were sealed using a novel bonding process where they were first bonded using a gold eutectic bond, then annealed at 1100 °C to allow gold diffusion into silicon and form what we call a gold diffusion eutectic bond. The gold diffusion eutectic-bonded micro-columns when examined using scanning electron microscopy (SEM), scanning acoustic microscopy (SAM) and blade insertion techniques showed bonding strength comparable to the previously reported anodic-bonded columns. Gas chromatography-based methane injections were also used as a novel way to investigate proper sealing between channels. A unique methane elution peak at various carrier gas inlet pressures demonstrated the suitability of gold diffusion eutectic-bonded channels as micro-GC columns. The application of gold diffusion eutectic-bonded all-silicon micro-columns to temperature-programmed separations (120 °C min-1) was demonstrated with the near-baseline separation of n-C6 to n-C12 alkanes in 35 s.

  10. Transient and steady state creep response of ice I and magnesium sulfate hydrate eutectic aggregates

    Science.gov (United States)

    McCarthy, C.; Cooper, R.F.; Goldsby, D.L.; Durham, W.B.; Kirby, S.H.

    2011-01-01

    Using uniaxial compression creep experiments, we characterized the transient and steady state deformation behaviors of eutectic aggregates of system ice I and MgSO4 11H2O (MS11; meridianiite), which has significance because of its likely presence on moons of the outer solar system. Synthetic samples of eutectic liquid bulk composition, which produce eutectic colonies containing 0.35-0.50 volume fraction MS11, were tested as functions of colony size and lamellar spacing, temperature (230-250 K), and confining pressure (0.1 and 50 MPa) to strains ???0.2. Up to a differential stress of 6 MPa, the ice I-MS11 aggregates display an order of magnitude higher effective viscosity and higher stress sensitivity than do aggregates of pure polycrystalline ice at the same conditions. The creep data and associated microstructural observations demonstrate, however, that the aggregates are additionally more brittle than pure ice, approaching rate-independent plasticity that includes rupture of the hydrate phase at 6-8 MPa, depending on the scale of the microstructure. Microstructures of deformed samples reveal forms of semibrittle flow in which the hydrate phase fractures while the ice phase deforms plastically. Semibrittle flow in the icy shell of a planetary body would truncate the lithospheric strength envelope and thereby decrease the depth to the brittle-ductile transition by 55% and reduce the failure limit for compressional surface features from 10 to ???6 MPa. A constitutive equation that includes eutectic colony boundary sliding and intracolony flow is used to describe the steady state rheology of the eutectic aggregates. Copyright ?? 2011 by the American Geophysical Union.

  11. Natural deep eutectic solvents as new potential media for green technology.

    Science.gov (United States)

    Dai, Yuntao; van Spronsen, Jaap; Witkamp, Geert-Jan; Verpoorte, Robert; Choi, Young Hae

    2013-03-05

    Developing new green solvents is one of the key subjects in Green Chemistry. Ionic liquids (ILs) and deep eutectic solvents, thus, have been paid great attention to replace current harsh organic solvents and have been applied to many chemical processing such as extraction and synthesis. However, current ionic liquids and deep eutectic solvents have still limitations to be applied to a real chemical industry due to toxicity against human and environment and high cost of ILs and solid state of most deep eutectic solvents at room temperature. Recently we discovered that many plant abundant primary metabolites changed their state from solid to liquid when they were mixed in proper ratio. This finding made us hypothesize that natural deep eutectic solvents (NADES) play a role as alternative media to water in living organisms and tested a wide range of natural products, which resulted in discovery of over 100 NADES from nature. In order to prove deep eutectic feature the interaction between the molecules was investigated by nuclear magnetic resonance spectroscopy. All the tested NADES show clear hydrogen bonding between components. As next step physical properties of NADES such as water activity, density, viscosity, polarity and thermal properties were measured as well as the effect of water on the physical properties. In the last stage the novel NADES were applied to the solubilization of wide range of biomolecules such as non-water soluble bioactive natural products, gluten, starch, and DNA. In most cases the solubility of the biomolecules evaluated in this study was greatly higher than water. Based on the results the novel NADES may be expected as potential green solvents at room temperature in diverse fields of chemistry. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Sustainable Poly(Ionic Liquids) for CO2 Capture Based on Deep Eutectic Monomers

    KAUST Repository

    Isik, Mehmet

    2016-10-05

    The design of high performance solid sorbent materials for CO2 capture is a technology which has been employed to mitigate global warming. However, the covalent incorporation of functionalities into polymeric supports usually involves multistep energy-intensive chemical processes. This fact makes the net CO2 balance of the materials negative even though they possess good properties as CO2 sorbents. Here we show a new family of polymers which are based on amines, amidoximes, and natural carboxylic acids and can be obtained using sustainable low energy processes. Thus, deep eutectic monomers based on natural carboxylic acids, amidoximes, and amines have been prepared by just mixing with cholinium type methacrylic ammonium monomer. The formation of deep eutectic monomers was confirmed by differential scanning calorimetry measurements. In all cases, the monomers displayed glass transition temperatures well below room temperature. Computational studies revealed that the formation of eutectic complexes lengthens the distance between the cation and the anion causing charge delocalization. The liquid nature of the resulting deep eutectic monomers (DEMs) made it possible to conduct a fast photopolymerization process to obtain the corresponding poly(ionic liquids). Materials were characterized by means of nuclear magnetic resonance, differential scanning calorimetry, thermogravimetric analysis, and X-ray diffraction to evaluate the properties of the polymers. The polymers were then used as solid sorbents for CO2 capture. It has been shown that the polymers prepared with citric acid displayed better performance both experimentally and computationally. The current endeavor showed that sustainable poly(ionic liquids) based on deep eutectic monomers can be easily prepared to produce low-energy-cost alternatives to the materials currently being researched for CO2 capture. © 2016 American Chemical Society.

  13. Thermal Characteristics of Eutectic Mixture of Capric-Lauric Acids as Phase Change Material (PCM) in Gypsum Board

    OpenAIRE

    Riza, Medyan

    2010-01-01

    Thermal characteristics of some eutectic mixtures of fatty acids as phase change materials (PCM) for passive solar building heating and cooling application have been studied previously. This study looked at the effect of using capric – lauric acids eutectic mixture with a composition of 65: 35 w/w % as PCM in gypsum board. Capric – lauric acids eutectic mixture has melting point of 17.48oC and latent heat of 133.08 kJ kg-1. The melting point is considered suitable to maintain a comfortabl...

  14. Control of the phase composition and morphology of a Cu-Sb eutectic alloy via liquid-liquid structure transition

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhong-Yue; Zu, Fang-Qiu; Li, Xiao-Yun [Liquid/Solid Metal Processing Institute, School of Materials Science and Engineering, Hefei University of Technology, Hefei (China)

    2012-09-15

    The current paper focuses on the solidification characteristics of a Cu-Sb eutectic alloy in its different liquid states. Liquid alloy resistivity-temperature patterns suggest an irreversible temperature-induced liquid-liquid structure transition (TI-LLST), and a reversible TI-LLST occurred during the heating-cooling runs. A set of solidification experiments was conducted based on the results. The irreversible TI-LLST caused an enhanced solidification undercooling, increased solidification rate, refined regular eutectic morphologies, and absence of a pre-eutectic Cu{sub 2}Sb phase. The reversible TI-LLST resulted in different phase compositions and eutectic structures. The mechanisms behind these transitions are also briefly discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Correction: Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control.

    Science.gov (United States)

    Sarkar, Sujoy; Sampath, S

    2016-05-28

    Correction for 'Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control' by Sujoy Sarkar et al., Chem. Commun., 2016, 52, 6407-6410.

  16. Electronic absorption spectra of U3+ and U4+ in molten LiCl-RbCl eutectic

    Science.gov (United States)

    Nagai, T.; Uehara, A.; Fujii, T.; Sato, N.; Yamana, H.

    2010-03-01

    In the non-aqueous reprocessing process of spent nuclear fuels by the pyro-electrochemical method, a spent fuel is dissolved into molten LiCl-KCl and NaCl-CsCl eutectics and dissolved uranium and plutonium are collected as either metal or oxide. However, the binary alkali chloride mixture with the lowest melting point is the LiCl-RbCl eutectic. In this study, electronic absorption spectra of U3+ and U4+ in molten LiCl-RbCl eutectic at various temperatures between 673 and 973 K were measured by the UV/Vis/NIR spectrophotometry. We confirmed that these spectra were similar to those in molten LiCl-KCl and NaCl-CsCl eutectics. The sensitive absorption bands of U4+ in LiCl-RbCl eutectic were found at 22000, 16500, 14900, 8600, and 4950 cm-1. The large absorption bands of U4+ over 25000 cm-1 increased with increasing melt temperature, while absorption peaks at 15500-4000 cm-1 decreased. The large absorption bands of U3+ in LiCl-RbCl eutectic were observed over 14000 cm-1. The sensitive absorption bands of U3+ at Vis/NIR region were found at 13300, 11500-11200, 9800-9400, and 8250 cm-1, and these peaks decreased with increasing temperature.

  17. Liquid-to-liquid crossover in the GaIn eutectic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Q.; Wang, X. D.; Su, Y.; Cao, Q. P.; Ren, Y.; Zhang, D. X.; Jiang, J. Z.

    2017-06-01

    Liquid-liquid crossover is promising and closely related to the atomic dynamics during heating and cooling processes. Here we reveal a reversible structural crossover in the liquid Ga85.8In14.2 eutectic alloys by using in situ synchrotron x-ray diffraction and ab initio molecular dynamics simulation. A kink always appears on the temperature dependent behaviors of density, ratio of the second peak position to the first in the pair correlation function, coordination number, heat capacity, free energy, and atomic diffusivity in the temperature range of about 400–550 K. It is likely ascribed to atomic rearrangements of Ga and In atoms from a relative random packing at high temperatures to a relative nonuniform packing at low temperatures, in which In atoms prefer to have more In neighbors. This observation will promote more understanding of the liquid structure of eutectic alloys

  18. Chip bonding of low-melting eutectic alloys by transmitted laser radiation

    Science.gov (United States)

    Hoff, Christian; Venkatesh, Arjun; Schneider, Friedrich; Hermsdorf, Jörg; Bengsch, Sebastian; Wurz, Marc C.; Kaierle, Stefan; Overmeyer, Ludger

    2017-06-01

    Present-day thermode bond systems for the assembly of radio-frequency identification (RFID) chips are mechanically inflexible, difficult to control, and will not meet future manufacturing challenges sufficiently. Chip bonding, one of the key processes in the production of integrated circuits (ICs), has a high potential for optimization with respect to process duration and process flexibility. For this purpose, the technologies used, so far, are supposed to be replaced by a transmission laser-bonding process using low-melting eutectic alloys. In this study, successful bonding investigations of mock silicon chips and of RFID chips on flexible polymer substrates are presented using the low-melting eutectic alloy, 52In48Sn, and a laser with a wavelength of 2 μm.

  19. Filtration of aluminum alloys and its influence on mechanical properties and shape of eutectical silicium

    Directory of Open Access Journals (Sweden)

    M. Brůna

    2008-07-01

    Full Text Available Filtration during casting of high quality aluminum alloys belongs to main refining methods. Even when there are many years of experiences and experimental works on this subject, there are still some specific anomalies. While using ceramic filtration media during casting of aluminum alloys, almost in all experiments occurred increase of strength limit and atypical increase of extension. This anomaly was not explained with classical metallurgical methods, black-white contrast after surface etching neither with color surface etching. For that reason was used deep etching on REM. By using pressed ceramic filters, by studying morphology eutectical silicon was observed modification morphology of eutectical silicon, this explains increase extension after filtration. Pressed ceramic filters were used on experimental works. Casting was executed on hardenable alloy AlSi10MgMn.

  20. Metal-ion catalyzed polymerization in the eutectic phase in water-ice

    DEFF Research Database (Denmark)

    Monnard, Pierre-Alain; Szostak, Jack W.

    2008-01-01

    the main issue preventing an efficient template-directed RNA polymerization. We report here the investigation of template-directed RNA polymerization in the eutectic phase in water-ice. In particular, it was found that activated Uridilate monomers in the presence of metal-ion catalysts could efficiently...... elongate RNA hairpins whose 5’-overhangs served as the templating sequence. The same applies for every other pyrimidine and purine nucleobase. Moreover, the initial elongation rates were always higher in the presence of a template complementary to the nucleotide than in systems without proper base......-pairing opportunities. These results suggest that a template-directed RNA polymerization catalyzed by metal-ions could be carried out under eutectic phase in water-ice conditions....

  1. Temperature-dependent viscosities of eutectic Al-Si alloys modified with Sr and P

    Energy Technology Data Exchange (ETDEWEB)

    Song Xigui [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan, 250061 (China)], E-mail: sxglm@126.com; Bian Xiufang; Zhang Jingxiang; Zhang Jie [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan, 250061 (China)

    2009-06-24

    The viscosities of eutectic Al-12 wt.%Si alloy and those modified with Sr and P were investigated using high-temperature torsional oscillation viscometer. Strontium decreased melt's viscosity, while phosphorus increased viscosity. Both additional level and means of addition affected the variation of viscosity. The activation energy of viscous flow was strengthened after modification, but the influence of modification on the molar volume was perplexing.

  2. New eutectic ionic liquids for lipase activation and enzymatic preparation of biodiesel†

    Science.gov (United States)

    Zhao, Hua; Baker, Gary A.; Holmes, Shaletha

    2012-01-01

    The enzymatic preparation of biodiesel has been hampered by the lack of suitable solvents with desirable properties such as high lipase compatibility, low cost, low viscosity, high biodegradability, and ease of product separation. Recent interest in using ionic liquids (ILs) as advanced reaction media has led to fast reaction rates and high yields in the enzymatic synthesis of biodiesel. However, conventional (i.e., cation–anion paired) ILs based on imidazolium and other quaternary ammonium salts remain too expensive for wide application at industrial scales. In this study, we report on newly-synthesized eutectic ILs derived from choline acetate or choline chloride coupled with biocompatible hydrogen-bond donors, such as glycerol. These eutectic solvents have favorable properties including low viscosity, high biodegradability, and excellent compatibility with Novozym® 435, a commercial immobilized Candida antarctica lipase B. Furthermore, in a model biodiesel synthesis system, we demonstrate high reaction rates for the enzymatic transesterification of Miglyol® oil 812 with methanol, catalyzed by Novozym® 435 in choline acetate/glycerol (1 : 1.5 molar ratio). The high conversion (97%) of the triglyceride obtained within 3 h, under optimal conditions, suggests that these novel eutectic solvents warrant further exploration as potential media in the enzymatic production of biodiesel. PMID:21283901

  3. Behavior of a SnLi liquid metal eutectic on D-irradiated, porous tungsten substrates

    Science.gov (United States)

    Lang, Eric; Kapat, Aveek; Allain, J. P.

    2016-10-01

    Tungsten (W) is a common PFC material in the divertor due to its beneficial thermomechanical properties and high sputter threshold. Under helium irradiation, W develops surface morphology such as fuzz. Liquid metals, such as tin-lithium eutectics, have been proposed as PFCs to combat W erosion and allow for a self-healing surface. Tin-dominant eutectics have lower evaporation rates than pure lithium due to increased binding energies, yet exhibit decreased D retention and Li surface segregation. In prior experiments of SnLi coatings on fuzzy W substrates, the SnLi layer has been shown to protect underlying fuzz. Additionally, the liquid metal better adhered to a fuzzy surface than a smooth one. Fuzzy W samples have been coated with a 95 at.% SnLi eutectic and exposed to 250eV D ions at elevated temperatures and fluences of 1017 cm-2 . Experiments will be conducted in the IGNIS facility, a multi-functional, in-situ irradiation and characterization facility at the University of Illinois. In-situ XPS will be used to elucidate irradiation-driven liquid metal behavior to identify surface chemistry changes. Additionally, ex-situSEM will be used to identify surface morphology changes. Work supported by US DOE Contract DE-SC0014267.

  4. Development of sunlight-driven eutectic phase change material nanocomposite for applications in solar water heating

    Directory of Open Access Journals (Sweden)

    S. Shankara Narayanan

    2017-09-01

    Full Text Available Organic phase change materials (PCMs have been utilized as latent heat energy storage medium for effective thermal management. In this work, a PCM nanocomposite, consisting of a mixture of two organic PCMs (referred to as eutectic gel PCM and minimal amount (0.5 wt% of nanographite (NG as a supporting material, was prepared. Differential scanning calorimeter was used to determine the melting temperature and latent heat of pristine PCM, paraffin (61.5 °C and 161.5 J/g, eutectic gel PCM (54 °C and 158 J/g and eutectic gel PCM nanocomposite (53.5 °C and 155 J/g. The prepared PCM nanocomposites exhibited enhanced thermal conductivity and ultrafast thermal charging characteristics. The nanocomposites were employed for two different applications: (i providing hot water using an indigenously fabricated solar water heating (SWH system and (ii solar rechargeable glove that can be rapidly warmed and used. Experimental results on SWH system show that the use of PCM nanocomposites helps to increase the charging rate of PCM while reducing the discharging rate of heat by PCM to water, thus enhancing the maximum utilization of solar energy and hence improving the efficiency of the SWH system. The experimental results on solar rechargeable glove revealed that the glove has the ability to retain the temperature up to 3 hours.

  5. Eutectic mixtures of capric acid and lauric acid applied in building wallboards for heat energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Lv Shilei; Zhu Neng [Tianjin University (China). School of Environmental Science and Technology; Feng Guohui [Shenyang Jianzhu University, Shenyang (China)

    2006-06-15

    Capric acid (CA) and lauric acid (LA), as phase change materials (PCM), can be applied for energy storage in low temperature. The phase transitions temperature and values of latent heat of eutectic mixtures of CA and LA are suitable for being incorporated with building materials to form phase change wallboards used for building energy storage. 120, 240 and 360 accelerated thermal cycle tests were conducted to study the changes in latent heat of fusion and melting temperature of phase change wallboards combined with the eutectic mixtures of CA and LA. Differential scanning calorimetry (DSC) tested the transition temperature and latent heat. The results showed that the melting temperature and latent heat of these phase change wallboards with eutectic mixtures have not obvious variations after repeated 360 thermal cycles, which proved that these phase change wallboards have good thermal stability for melting temperature and variations in latent heat of fusion for long time application. Therefore, they can be used for latent heat storage in the field of building energy conservation. (author)

  6. Eutectic mixtures of capric acid and lauric acid applied in building wallboards for heat energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Shilei, L.; Neng, Z. [School of Environment Science and Technology, Tianjin University, Tianjin (China); Guohui, F. [Shenyang Jianzhu University, Shenyang (China)

    2006-07-01

    Capric acid (CA) and lauric acid (LA), as phase change materials (PCM), can be applied for energy storage in low temperature. The phase transition temperature and values of latent heat of eutectic mixtures of CA and LA are suitable for being incorporated with building materials to form phase change wallboards used for building energy storage. 120, 240 and 360 accelerated thermal cycle tests were conducted to study the changes in latent heat of fusion and melting temperature of phase change wallboards combined with the eutectic mixtures of CA and LA. Differential scanning calorimetry (DSC) tested the transition temperature and latent heat. The results showed that the melting temperature and latent heat of these phase change wallboards with eutectic mixtures have no obvious variations after repeated 360 thermal cycles, which proved that these phase change wallboards have good thermal stability for melting temperature and variations in latent heat of fusion for long time application. Therefore, they can be used for latent heat storage in the field of building energy conservation. (author)

  7. The effect of deep eutectic solvents on catalytic function and structure of bovine liver catalase.

    Science.gov (United States)

    Harifi-Mood, Ali Reza; Ghobadi, Roohollah; Divsalar, Adeleh

    2017-02-01

    Aqueous solutions of reline and glyceline, the most common deep eutectic solvents, were used as a medium for Catalase reaction. By some spectroscopic methods such as UV-vis, fluorescence and circular dichroism (CD) function and structure of Catalase were investigated in aqueous solutions of reline and glyceline. These studies showed that the binding affinity of the substrate to the enzyme increased in the presence of 100mM glyceline solution, which contrasts with reline solution that probably relates to instructive changes in secondary structure of protein. Meanwhile, enzyme remained nearly 70% and 80% active in this concentration of glyceline and reline solutions respectively. In the high concentration of DES solutions, enzyme became mainly inactive but surprisingly stayed in nearly 40% active in choline chloride solution, which is the common ion species in reline and glyceline solvents. It is proposed that the chaotropic nature of choline cation might stop the reducing trend of activity in concentrated choline chloride solutions but this instructive effect is lost in aqueous deep eutectic solvents. In this regard, the presence of various concentrations of deep eutectic solvents in the aqueous media of human cells would be an activity adjuster for this important enzyme in its different operation conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A New Co-C Eutectic Fixed-Point Cell for Thermocouple Calibration at

    Science.gov (United States)

    Failleau, G.; Deuzé, T.; Jouin, D.; Mokdad, S.; Briaudeau, S.; Sadli, M.

    2014-07-01

    The eutectic Co-C is a promising system to serve as a thermometric fixed point beyond the freezing point of copper (). Some national metrology institutes have developed, characterized, and compared their Co-C fixed-point cells based on conventional designs. Indeed, the fixed-point cells constructed are directly inspired by the technologies applied to the fixed points of the ITS-90 to the lower levels of temperature. By studying the eutectic metal-carbon systems, is appears that the high temperatures of implementation give a set of difficulties, such as the strong mechanical stresses on the graphite crucibles, due to the important thermal expansion of the eutectic alloys during their phase transitions. If these devices are suitable with research activities to serve like primary standards, it is not envisaged to propose them for a direct application to the calibration activities for the industry. As regards the limited robustness of the conventional fixed-point cells constructed, an intensive use of these device would not be reasonable, in term of cost for example. In this paper, a new Co-C fixed-point design is introduced. This low cost device has been developed specifically for intensive use in thermocouple calibration activities, with the aim of achieving the lowest level of uncertainties as is practicable. Thus, in this paper, the metrological characterization of this device is also presented, and a direct comparison to a primary Co-C fixed-point cell previously constructed is discussed.

  9. Effect of scandium on structure and hardening of Al–Ca eutectic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Belov, N.A., E-mail: nikolay-belov@yandex.ru [National Research and Technological University “MISIS”, 4, Leninsky pr., Moscow 119049 (Russian Federation); Naumova, E.A. [Bauman Moscow State Technical University, 5, 2 ul. Baumanskaya, Moscow, 105005 (Russian Federation); Alabin, A.N. [National Research and Technological University “MISIS”, 4, Leninsky pr., Moscow 119049 (Russian Federation); UC RUSAL, 13/1, Nikoloyamskaya st., Moscow, 109240 (Russian Federation); Matveeva, I.A. [UC RUSAL, 13/1, Nikoloyamskaya st., Moscow, 109240 (Russian Federation)

    2015-10-15

    The phase composition, structure and hardening of alloys in the aluminium corner of the Al–Ca–Sc system were studied in the range up to 10% Ca and up to 1% S≿. The experimental study (optical, scanning and transmission electron microscopy with electron-microprobe analysis, differential thermal analysis and hardness measurements) was combined with Thermo-Calc software simulation for the optimization of the alloy composition. It was shown that only phases of the binary systems (Al{sub 4}Ca and Al{sub 3}Sc) might be in equilibrium with the aluminium solid solution. It was shown that the (Al) + Al{sub 4}Ca eutectic had a much finer structure as compared with the Al–Si eutectic, which suggests a possibility of reaching higher mechanical properties as compared to commercial alloys of the A356 type. The influence of the annealing temperature within the range up to 600 °C on the structure and hardness of the Al–Ca–Sc experimental alloys was studied. It was determined that the maximum hardening corresponded to the annealing at 300 °C, which was due to the precipitation of Al{sub 3}Sc nanoparticles with their further coarsening. With an example of an Al-7.6% Ca-0.3% Sc model experimental alloy, a principal possibility of manufacturing aluminium casting alloys based on the (Al) + Al{sub 4}Ca eutectic was demonstrated. Unlike commercial alloys of the A356 type, the model alloy does not require quenching, as hardening particles are formed in the course of annealing of casting. - Highlights: • Al–Ca–Sc phase diagram in aluminum corner. • Formation of Al{sub 3}Sc nanoparticles in eutectic (Al) + Al{sub 4}Ca during heating at 300–450 °C. • Hardening and thermal stability of proposed (Al–Ca–Sc) and commercial (Al–Si–Mg, 356 type) eutectic alloys.

  10. Investigation on drug solubility enhancement using deep eutectic solvents and their derivatives.

    Science.gov (United States)

    Li, Zheng; Lee, Ping I

    2016-05-30

    Deep eutectic solvent (DES) is a room temperature liquid typically formed by mixing two solid compounds, such as a quaternary ammonium salt (QAS) (e.g. choline chloride) and a hydrogen bond donor (HBD) (e.g. urea or a carboxylic acid) at their eutectic composition. Very often, a range of room temperature liquids can also be obtained near the eutectic composition. Hence, it is more convenient to introduce a more general term deep eutectic solvent derivatives (DESDs) to describe a wide range of DES-like derivatives including those derived from ternary mixtures. The melting point of the mixture is lowered because the hydrogen bonding between DESD components reduces the lattice energy of components of the eutectic system. Based on the analysis of available data for 22 such choline chloride-based DES pairs, we found that the observed melting point depression can be statistically correlated with the difference between the hydrogen bonding contribution (δh) and the polar contribution (δp) to the solubility parameter of the hydrogen bond donor (HBD) component. The correlation was validated with a new DESD based on glycolic acid and choline chloride, which form DESDs at a molar ratio between 1:1 and 1:4 with DES-like properties. As a room temperature liquid, this DESD exhibits a wide range of solubility enhancement on several weakly basic poorly water-soluble drugs. For example, the solubility of itraconazole, piroxicam, lidocaine, and posaconazole has been observed to increase by 6700, 430, 28, and 6400-fold, respectively as compared to their aqueous solubility at room temperature. Furthermore, another new ternary DESD based on choline chloride, glycolic acid, and oxalic acid at a molar ratio of 1:1.6:0.4 is shown to further increase the solubility of itraconazole to a remarkable level of 5.36mg/mL (a 53,600-fold increase!). Because the components of such DESDs can include those biodegradable ones that had previously been used in formulated human products, the potential

  11. Formation of Al2O3-HfO2 Eutectic EBC Film on Silicon Carbide Substrate

    Directory of Open Access Journals (Sweden)

    Kyosuke Seya

    2015-01-01

    Full Text Available The formation mechanism of Al2O3-HfO2 eutectic structure, the preparation method, and the formation mechanism of the eutectic EBC layer on the silicon carbide substrate are summarized. Al2O3-HfO2 eutectic EBC film is prepared by optical zone melting method on the silicon carbide substrate. At high temperature, a small amount of silicon carbide decomposed into silicon and carbon. The components of Al2O3 and HfO2 in molten phase also react with the free carbon. The Al2O3 phase reacts with free carbon and vapor species of AlO phase is formed. The composition of the molten phase becomes HfO2 rich from the eutectic composition. HfO2 phase also reacts with the free carbon and HfC phase is formed on the silicon carbide substrate; then a high density intermediate layer is formed. The adhesion between the intermediate layer and the substrate is excellent by an anchor effect. When the solidification process finished before all of HfO2 phase is reduced to HfC phase, HfC-HfO2 functionally graded layer is formed on the silicon carbide substrate and the Al2O3-HfO2 eutectic structure grows from the top of the intermediate layer.

  12. Eutectic mixtures of some fatty acids for latent heat storage: Thermal properties and thermal reliability with respect to thermal cycling

    Energy Technology Data Exchange (ETDEWEB)

    Sari, Ahmet [Department of Chemistry, Gaziosmanpasa University, 60240 Tokat (Turkey)]. E-mail: asari@gop.edu.tr

    2006-06-15

    Accelerated thermal cycle tests have been conducted to study the change in melting temperatures and latent heats of fusion of the eutectic mixtures of lauric acid (LA)-myristic acid (MA), lauric acid (LA)-palmitic acid (PA) and myristic acid (MA)-stearic acid (SA) as latent heat storage materials. The thermal properties of these materials were determined by the differential scanning calorimetry (DSC) analysis method. The thermal reliability of the eutectic mixtures after melt/freeze cycles of 720, 1080 and 1460 was also evaluated using the DSC curves. The accelerated thermal cycle tests indicate that the melting temperatures usually tend to decrease, and the variations in the latent heats of fusion are irregular with increasing number of thermal cycles. Moreover, the probable reasons for the change in thermal properties of the eutectic mixtures after repeated thermal cycles were investigated. Fourier Transform Infrared (FT-IR) spectroscopic analysis indicates that the accelerated melt/freeze processes do not cause any degradation in the chemical structure of the mixtures. The change in thermal properties of the eutectic mixtures with increasing number of thermal cycles is only because of the presence of certain amounts of impurities in the fatty acids used in their preparation. It is concluded that the tested eutectic mixtures have reasonable thermal properties and thermal reliability as phase change materials (PCMs) for latent heat storage in any solar heating applications that include a four year utilization period.

  13. Excited-state dynamics of mononucleotides and DNA strands in a deep eutectic solvent.

    Science.gov (United States)

    Zhang, Yuyuan; de La Harpe, Kimberly; Hariharan, Mahesh; Kohler, Bern

    2018-01-31

    The photophysics of several mono- and oligonucleotides were investigated in a deep eutectic solvent for the first time. The solvent glyceline, prepared as a 1 : 2 mole ratio mixture of choline chloride and glycerol, was used to study excited-state deactivation in a non-aqueous solvent by the use of steady-state and time-resolved spectroscopy. DNA strands in glyceline retain the secondary structures that are present in aqueous solution to some degree, thus enabling a study of the effects of solvent properties on the excited states of stacked bases and stacked base pairs. The excited-state lifetime of the mononucleotide 5'-AMP in glyceline is 630 fs, or twice as long as in aqueous solution. Even slower relaxation is seen for 5'-TMP in glyceline, and a possible triplet state with a lifetime greater than 3 ns is observed. Circular dichroism spectra show that the single strand (dA)18 and the duplex d(AT)9·d(AT)9 adopt similar structures in glyceline and in aqueous solution. Despite having similar conformations in both solvents, femtosecond transient absorption experiments reveal striking changes in the dynamics. Excited-state decay and vibrational cooling generally take place more slowly in glyceline than in water. Additionally, the fraction of long-lived excited states in both oligonucleotide systems is lower in glyceline than in aqueous solution. For a DNA duplex, water is suggested to favor decay pathways involving intrastrand charge separation, while the deep eutectic solvent favors interstrand deactivation channels involving neutral species. Slower solvation dynamics in the viscous deep eutectic solvent may also play a role. These results demonstrate that the dynamics of excitations in stacked bases and stacked base pairs depend not only on conformation, but are also highly sensitive to the solvent.

  14. Biodiesel production from ethanolysis of palm oil using deep eutectic solvent (DES) as co-solvent

    Science.gov (United States)

    Manurung, R.; Winarta, A.; Taslim; Indra, L.

    2017-06-01

    Biodiesel produced from ethanolysis is more renewable and have better properties (higher oxidation stability, lower cloud and pour point) compared to methanolysis, but it has a disadvantage such as complicated purification. To improve ethanolysis process, deep eutectic solvent (DES) can be prepared from choline chloride and glycerol and used as co-solvent in ethanolysis. The deep eutectic solvent is formed from a quaternary ammonium salt (choline chloride) and a hydrogen bond donor (Glycerol), it is a non-toxic, biodegradable solvent compared to a conventional volatile organic solvent such as hexane. The deep eutectic solvent is prepared by mixing choline chloride and glycerol with molar ratio 1:2 at temperature 80 °C, stirring speed 300 rpm for 1 hour. The DES is characterized by its density and viscosity. The ethanolysis is performed at a reaction temperature of 70 °C, ethanol to oil molar ratio of 9:1, potassium hydroxide as catalyst concentration of 1.2 wt. DES as co-solvent with concentration 0.5 to 3 wt. stirring speed 400 rpm, and a reaction time 1 hour. The obtained biodiesel is then characterized by its density, viscosity, and ester content. The oil - ethanol phase condition is observed in the reaction tube. The oil - ethanol phase with DES tends to form meniscus compared to without DES, showed that oil and ethanol become more slightly miscible, which favors the reaction. Using DES as co-solvent in ethanolysis showed increasing in yield and easier purification. The esters properties meet the international standards ASTM D6751, with the highest yield achieved 83,67 with 99,77 conversion at DES concentration 2 . Increasing DES concentration above 2 in ethanolysis decrease the conversion and yield, because of the excessive glycerol in the systems makes the reaction equilibrium moves to the reactant side.

  15. Doubly ionic hydrogen bond interactions within the choline chloride-urea deep eutectic solvent.

    Science.gov (United States)

    Ashworth, Claire R; Matthews, Richard P; Welton, Tom; Hunt, Patricia A

    2016-07-21

    Deep eutectic solvents (DESs) are exemplars of systems with the ability to form neutral, ionic and doubly ionic H-bonds. Herein, the pairwise interactions of the constituent components of the choline chloride-urea DES are examined. Evidence is found for a tripodal CHCl doubly ionic H-bond motif. Moreover it is found that the covalency of doubly ionic H-bonds can be greater than, or comparable with, neutral and ionic examples. In contrast to many traditional solvents, an "alphabet soup" of many different types of H-bond (OHO[double bond, length as m-dash]C, NHO[double bond, length as m-dash]C, OHCl, NHCl, OHNH, CHCl, CHO[double bond, length as m-dash]C, NHOH and NHNH) can form. These H-bonds exhibit substantial flexibility in terms of number and strength. It is anticipated that H-bonding will have a significant impact on the entropy of the system and thus could play an important role in the formation of the eutectic. The 2 : 1 urea : choline-chloride eutectic point of this DES is often associated with the formation of a [Cl(urea)2](-) complexed anion. However, urea is found to form a H-bonded urea[choline](+) complexed cation that is energetically competitive with [Cl(urea)2](-). The negative charge on [Cl(urea)2](-) is found to remain localised on the chloride, moreover, the urea[choline](+) complexed cation forms the strongest H-bond studied here. Thus, there is potential to consider a urea[choline](+)·urea[Cl](-) interaction.

  16. Magnetic deep eutectic solvents molecularly imprinted polymers for the selective recognition and separation of protein

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanjin [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Wang, Yuzhi, E-mail: wyzss@hnu.edu.cn [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Dai, Qingzhou [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Zhou, Yigang [Department of Microbiology, College of Basic Medicine, Central South University, Changsha, 410083 (China)

    2016-09-14

    A novel and facile magnetic deep eutectic solvents (DES) molecularly imprinted polymers (MIPs) for the selective recognition and separation of Bovine hemoglobin (BHb) was prepared. The new-type DES was adopted as the functional monomer which would bring molecular imprinted technology to a new direction. The amounts of DES were optimized. The obtained magnetic DES-MIPs were characterized with fourier transform infrared spectrometry (FT-IR), thermogravimetric analysis (TGA), field emission scanning electron microscope (FESEM), dynamic light scattering (DLS), elemental analysis and vibrating sample magnetometer (VSM). The results suggested that the imprinted polymers were successfully formed and possessed a charming magnetism. The maximum adsorption capability (Q{sub max}) and dissociation constant (K{sub L}) were analyzed by Langmuir isotherms (R{sup 2} = 0.9983) and the value were estimated to be 175.44 mg/g and 0.035 mg/mL for the imprinted particles. And the imprinted particles showed a high imprinting factor of 4.77. In addition, the magnetic DES-MIPs presented outstanding recognition specificity and selectivity so that it can be utilized to separate template protein from the mixture of proteins and real samples. Last but not least, the combination of deep eutectic solvents and molecular imprinted technology in this paper provides a new perspective for the recognition and separation of proteins. - Highlights: • Combined green deep eutectic solvents (DES) and molecular imprinted technology in recognition and separation of proteins. • DES was adopted as a new-type functional monomer. • The obtained magnetic DES-MIPs can separate proteins rapidly by an external magnetic field. • Adsorption and selectivity properties were discussed.

  17. The Au/Si eutectic bonding compatibility with KOH etching for 3D devices fabrication

    Science.gov (United States)

    Liang, Hengmao; Liu, Mifeng; Liu, Song; Xu, Dehui; Xiong, Bin

    2018-01-01

    KOH etching and Au/Si eutectic bonding are cost-efficient technologies for 3D device fabrication. Aimed at investigating the process compatibility of KOH etching and Au/Si bonding, KOH etching tests have been carried out for Au/bulk Si and Au/amorphous Si (a-Si) bonding wafers in this paper. For the Au/bulk Si bonding wafer, a serious underetch phenomenon occurring on the damage layer in KOH etching definitely results in packaging failure. In the microstructure analysis, it is found that the formation of the damage layer between the bonded layer and bulk Si is attributed to the destruction of crystal Si lattices in Au/bulk Si eutectic reaction. Considering the occurrence of underetch for Au/Si bonding must meet two requirements: the superfluous Si and the defective layer near the bonded layer, the Au/a-Si bonding by regulating the a-Si/Au thickness ratio is presented in this study. Only when the a-Si/Au thickness ratio is relatively low are there not underetch phenomena, of which the reason is the full reaction of the a-Si layer avoiding the formation of the damage layer for easy underetch. Obviously, the Au/a-Si bonding via choosing a moderate a-Si/Au thickness ratio (⩽1.5:1 is suggested) could be reliably compatible with KOH etching, which provides an available and low-cost approach for 3D device fabrication. More importantly, the theory of the damage layer proposed in this study can be naturally applied to relevant analyses on the eutectic reaction of other metals and single crystal materials.

  18. Evidence of eutectic crystallization and transient nucleation in Al89La6Ni5 amorphous alloy

    DEFF Research Database (Denmark)

    Zhuang, Yanxin; Jiang, Jianzhong; Lin, Z. G.

    2001-01-01

    The phase evolution with the temperature and time in the process of crystallization of Al89La6Ni5 amorphous alloy has been investigated by in situ high-temperature and high-pressure x-ray powder diffraction using synchrotron radiation. Two crystalline phases, fcc-Al and a metastable bcc-(AlNi)(11......)La-3-like phase, were identified after the first crystallization reaction, revealing a eutectic reaction instead of a primary reaction suggested in the literature. Time-dependent nucleation in the amorphous alloy is detected and the experimental data can be fitted by both the Zeldovich...

  19. Centreline formation of Nb(C, N eutectic in structural steel

    Directory of Open Access Journals (Sweden)

    J. Bernetič

    2010-01-01

    Full Text Available The reduction of area in the through thickness direction is an essential mechanical property of thick steel heavy plates. By a routine control, a very small through thickness reduction of area was found for tensile specimen of a 90 mm plate. Careful investigations of the fracture and section of specimens cut from the as solidified continuously cast 250mmthick slab showed that the cause was the presence of coarse particles of niobium carbonitride as constituent of the quasi eutectic Fe-Nb(C, N that form because of the centerline segregation of niobium.

  20. Frequency-Switchable Metamaterial Absorber Injecting Eutectic Gallium-Indium (EGaIn) Liquid Metal Alloy

    Science.gov (United States)

    Ling, Kenyu; Kim, Hyung Ki; Yoo, Minyeong; Lim, Sungjoon

    2015-01-01

    In this study, we demonstrated a new class of frequency-switchable metamaterial absorber in the X-band. Eutectic gallium-indium (EGaIn), a liquid metal alloy, was injected in a microfluidic channel engraved on polymethyl methacrylate (PMMA) to achieve frequency switching. Numerical simulation and experimental results are presented for two cases: when the microfluidic channels are empty, and when they are filled with liquid metal. To evaluate the performance of the fabricated absorber prototype, it is tested with a rectangular waveguide. The resonant frequency was successfully switched from 10.96 GHz to 10.61 GHz after injecting liquid metal while maintaining absorptivity higher than 98%. PMID:26561815

  1. Frequency-Switchable Metamaterial Absorber Injecting Eutectic Gallium-Indium (EGaIn) Liquid Metal Alloy.

    Science.gov (United States)

    Ling, Kenyu; Kim, Hyung Ki; Yoo, Minyeong; Lim, Sungjoon

    2015-11-06

    In this study, we demonstrated a new class of frequency-switchable metamaterial absorber in the X-band. Eutectic gallium-indium (EGaIn), a liquid metal alloy, was injected in a microfluidic channel engraved on polymethyl methacrylate (PMMA) to achieve frequency switching. Numerical simulation and experimental results are presented for two cases: when the microfluidic channels are empty, and when they are filled with liquid metal. To evaluate the performance of the fabricated absorber prototype, it is tested with a rectangular waveguide. The resonant frequency was successfully switched from 10.96 GHz to 10.61 GHz after injecting liquid metal while maintaining absorptivity higher than 98%.

  2. The effect of low Au concentrations on the properties of eutectic Sn/Pb

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, P.A.

    1992-05-01

    This study was of the effects moderately low Au concentrations ({le} 10 wt%) have on the mechanical properties and microstructure of an eutectic Sn/Pb alloy. Vibration (60--90 Hz swept sine wave for 30 hours) and thermal cycling (0--110C for 1450 cycles) reliability tests were performed on fine pitch leaded chip carriers using eutectic Sn/Pb solder on PCBs (printed circuit boards) with 0, 5, 10, 20, and 50{mu}in nominal Au thicknesses. Testing was also performed on double shear creep specimens consisting of arrays of regular pitch joints. There was a dramatic increase in the number of joints containing voids with increasing Au concentration, an effect more pronounced in the creep joints than in the reliability joints. These voids tended to coalesce and grow during rework simulation of the reliability joints. AuSn{sub 4} intermetallics present in toe of 4.8 wt% (50 {mu}in) Au vibration joints rotated from initial vertical perpendicular to surface of PCB metallization, solidification positions to roughly horizontal (parallel to plating surface) orientations during rework simulation and during aging of the parts. The AuSn{sub 4} intermetallics in the toe of the 4.8 wt% (50{mu}in) Au reflowed joints also rotated after vibration testing. No joint failures were observed in either vibration tested or thermally cycled specimens. Cracks formed in some of the vibration tested specimen joints under the heel of the gull-wing lead at Pb-rich phases. Thermally cycled specimens showed eutectic microstructure and intermetallic coarsening without crack formation. Creep tests showed loss of the superplasticity in eutectic Sn/Pb alloys with even the lowest Au concentration tested of 0.2 wt% Au. Intermetallic rotation was not a factor in crack propagation, but void presence was. Cracks tended to form in joints containing voids before forming in void-free joints. Crack propagation followed Sn/Sn grain boundaries and Sn/Pb phase boundaries from Pb-rich phase to Pb-rich phase.

  3. The effect of low Au concentrations on the properties of eutectic Sn/Pb

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Pamela Ann [Univ. of California, Berkeley, CA (United States)

    1992-05-01

    This study was of the effects moderately low Au concentrations (≤ 10 wt%) have on the mechanical properties and microstructure of an eutectic Sn/Pb alloy. Vibration (60--90 Hz swept sine wave for 30 hours) and thermal cycling (0--110C for 1450 cycles) reliability tests were performed on fine pitch leaded chip carriers using eutectic Sn/Pb solder on PCBs (printed circuit boards) with 0, 5, 10, 20, and 50μin nominal Au thicknesses. Testing was also performed on double shear creep specimens consisting of arrays of regular pitch joints. There was a dramatic increase in the number of joints containing voids with increasing Au concentration, an effect more pronounced in the creep joints than in the reliability joints. These voids tended to coalesce and grow during rework simulation of the reliability joints. AuSn4 intermetallics present in toe of 4.8 wt% (50 μin) Au vibration joints rotated from initial vertical perpendicular to surface of PCB metallization, solidification positions to roughly horizontal (parallel to plating surface) orientations during rework simulation and during aging of the parts. The AuSn4 intermetallics in the toe of the 4.8 wt% (50μin) Au reflowed joints also rotated after vibration testing. No joint failures were observed in either vibration tested or thermally cycled specimens. Cracks formed in some of the vibration tested specimen joints under the heel of the gull-wing lead at Pb-rich phases. Thermally cycled specimens showed eutectic microstructure and intermetallic coarsening without crack formation. Creep tests showed loss of the superplasticity in eutectic Sn/Pb alloys with even the lowest Au concentration tested of 0.2 wt% Au. Intermetallic rotation was not a factor in crack propagation, but void presence was. Cracks tended to form in joints containing voids before forming in void-free joints. Crack propagation followed Sn/Sn grain boundaries and Sn/Pb phase boundaries from Pb-rich phase to Pb-rich phase.

  4. Effect of heat treatments in the silicon eutectic crystal evolution in Al-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Forn, A.; Baile, M.T.; Martin, E.; Ruperez, E. [Light Alloys and Surface Treatments Design Centre (CDAL), Univ. Politecnica de Catalunya, Vilanova I la Geltru (Spain)

    2005-07-01

    This paper describes the heat treatment effect on the eutectic silicon evolution in the A357 alloy, obtained by semisolid forming process (SSM). The coarsening rate of the silicon was determined by image analysis technique in specimens from rheocasting ingots and thixocasting components. The study was realized in the temperature range from 450 to 550 C by applying heating times between 1 and 24 hours. The results show that during the heat treatment the coarsening and sphereodization of the silicon particles is produced and the fragmentation stages, which are observed in conventional alloys, do not appear. Kinetic silicon growth has been adjusted to the Oswald's ripening equation. (orig.)

  5. Measurement of solid-liquid interfacial energy in the In-Bi eutectic alloy at low melting temperature

    Energy Technology Data Exchange (ETDEWEB)

    Marasli, N [Department of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri (Turkey); Akbulut, S [Institute of Science and Technology, Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Ocak, Y [Department of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri (Turkey); Keslioglu, K [Department of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri (Turkey); Boeyuek, U [Institute of Science and Technology, Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Kaya, H [Department of Science Education, Education Faculty, Erciyes University, 38039 Kayseri (Turkey); Cadirli, E [Department of Physics, Faculty of Arts and Sciences, Nigde University, Nigde (Turkey)

    2007-12-19

    The Gibbs-Thomson coefficient and solid-liquid interfacial energy of the solid In solution in equilibrium with In Bi eutectic liquid have been determined to be (1.46 {+-} 0.07) x 10{sup -7} K m and (40.4 {+-} 4.0) x 10{sup -3} J m{sup -2} by observing the equilibrated grain boundary groove shapes. The grain boundary energy of the solid In solution phase has been calculated to be (79.0 {+-} 8.7) x 10{sup -3} J m{sup -2} by considering force balance at the grain boundary grooves. The thermal conductivities of the In-12.4 at.% Bi eutectic liquid phase and the solid In solution phase and their ratio at the eutectic melting temperature (72 deg. C) have also been measured with radial heat flow apparatus and Bridgman-type growth apparatus.

  6. Development of Gallium and Gallium-Based Small-Size Eutectic Melting Fixed Points for Calibration Procedures on Autonomous Platforms

    Science.gov (United States)

    Burdakin, A.; Khlevnoy, B.; Samoylov, M.; Sapritsky, V.; Ogarev, S.; Panfilov, A.; Prokhorenko, S.

    2009-02-01

    Melting/freezing temperature curves are studied for the single-component Ga and bimetallic eutectic alloys Ga-In, Ga-Sn, Ga-Zn, and Ga-Al in small-size cells. These phase-transition studies were conducted at VNIIOFI in order to design small-size fixed-point devices for metrological monitoring of temperature sensors on autonomous (e.g., space borne) platforms. The results show that Ga and some Ga-based eutectic alloys in small cells can be used as melting fixed points. The repeatability of melting temperatures of Ga, Ga-In, Ga-Sn, and Ga-Zn fixed points is studied. The effects of the concentration of the second element of Ga-based eutectic alloys and the thermal history on the melting plateau’s shape and the melting temperature are studied.

  7. Structure and mechanical properties of a eutectic high-temperature Nb-Si alloy grown by directional solidification

    Science.gov (United States)

    Karpov, M. I.; Vnukov, V. I.; Korzhov, V. P.; Stroganova, T. S.; Zheltyakova, I. S.; Prokhorov, D. V.; Gnesin, I. B.; Kiiko, V. M.; Kolobov, Yu. R.; Golosov, E. V.; Nekrasov, A. N.

    2014-04-01

    The structure and the short-term high-temperature strength of Ni-18.7 at % Si (Nb-Nb3Si eutectic) alloys fabricated by vacuum electron-beam zone melting and induction melting in an argon atmosphere are studied. The structure of the samples prepared by vacuum electron-beam zone melting is characterized by the presence of primary Nb5Si3 intermetallic precipitates and the absence of its secondary precipitates. The structure of the samples prepared by induction melting in an argon atmosphere has two characteristic zones, namely, eutectic and eutectoid ones.

  8. Eutectic superalloys strengthened by delta Ni3Cb lamellae, and gamma prime, Ni3Al precipitates.

    Science.gov (United States)

    Lemkey, F. D.; Thompson, E. R.

    1972-01-01

    Bivariant eutectic alloys, located on a liquidus surface within the Ni-Cb-Cr-Al quaternary, were identified which permitted the production of aligned delta Ni3Cb lamellae within a nichrome matrix containing the fcc precipitate gamma prime Ni3Al. The volume fraction of delta and gamma prime could be varied significantly by compositional changes. After directional solidification certain alloys possessed improved ductility and corrosion resistance with respect to the Ni3Al-Ni3Cb eutectic, while their values of tensile and creep strength approached or exceeded those for the Ni3Al-Ni3Cb pseudobinary system. The mechanical properties of the directionally solidified alloy, Ni-19.7 wt % Cb-6.0 wt % Cr-2.5 wt % Al, were evaluated. Its longitudinal strength in tension and creep was found to be superior to all advanced nickel base superalloys. It is thus demonstrated that useful properties for gas turbine airfoil applications can be achieved by reinforcing a strong and tough gamma nichrome matrix containing precipitated gamma prime by a strong lamellar intermetallic compound having greater strength at elevated temperature.

  9. Liquid-liquid structure transition and nucleation in undercooled Co-B eutectic alloys

    Energy Technology Data Exchange (ETDEWEB)

    He, Yixuan [Northwestern Polytechnical University, State Key Laboratory of Solidification Processing, Xi' an, Shanxi (China); Universite Grenoble Alpes, LNCMI, Grenoble (France); CNRS, LNCMI, Grenoble (France); Li, Jinshan; Wang, Jun; Kou, Hongchao [Northwestern Polytechnical University, State Key Laboratory of Solidification Processing, Xi' an, Shanxi (China); Beagunon, Eric [Universite Grenoble Alpes, LNCMI, Grenoble (France); CNRS, LNCMI, Grenoble (France)

    2017-06-15

    Cyclic superheating and cooling were carried out for the undercooled hypereutectic Co{sub 80}B{sub 20}, eutectic Co{sub 81.5}B{sub 18.5,} and hypoeutectic Co{sub 83}B{sub 17} alloys. For each alloy, there is a critical overheating temperature T{sub c}° at which there is a sharp increase of the mean undercooling, i.e., below (above) T{sub c}°, and the mean undercooling is about 80 °C (200 °C). DSC measurements show that there is a thermal absorption peak in the heating process, the peak temperature of which is nearly equal to the critical overheating temperature, indicating that the temperature-induced liquid-liquid structure transition does occur and should relate highly to nucleation in the undercooled Co-B eutectic melts. The effect of the liquid-liquid structure transition on nucleation was interpreted by the recent nucleation theory that considers the structures of overheated melts, and the composition-dependent overheating temperature was ascribed to the change of local favored structures. The present work provides further evidences for the liquid-liquid structure transition and is helpful for understanding solidification in undercooled melts. (orig.)

  10. Effects of phase fraction on superconductivity of low-valence eutectic titanate films

    Science.gov (United States)

    Kurokawa, Hikaru; Yoshimatsu, Kohei; Sakata, Osami; Ohtomo, Akira

    2017-08-01

    Creation and characterization of mixed valence states in transition-metal oxides are a fundamental approach to search for the unprecedented electronic and magnetic properties. In contrast to complex oxides, mixed-valence simple oxides tend to form binary or ternary phases, and turning a valence from one to next must be accompanied by structural transformations owing to a lower tolerance for oxygen non-stoichiometry. In this paper, epitaxial growth and transport properties of low-valence titanate thin films are reported to shed light on recently discovered superconducting γ-phase Ti3O5 (γ-Ti3O5). Single-phase TiO and Ti2O3 films and eutectic films including TiO, Ti2O3, and γ-Ti3O5 phases were independently grown on α-Al2O3 (0001) substrates by using pulsed-laser deposition. The X-ray diffraction measurements revealed clear epitaxial relationships with substrates and among three eutectic phases. Temperature dependence of the resistivity revealed that the γ-Ti3O5-rich films exhibited superconductivity with a maximum of transition temperature (TC) of 6.3 K. Distinct effects of the phase fraction on TC are found between TiO- and Ti2O3-enriched samples, suggesting the complex mechanisms of the superconducting proximity effect.

  11. An electrochemical study of uranium behaviour in LiCl–KCl–CsCl eutectic melt

    Energy Technology Data Exchange (ETDEWEB)

    Maltsev, D.S.; Volkovich, V.A., E-mail: v.a.volkovich@urfu.ru; Vasin, B.D.; Vladykin, E.N.

    2015-12-15

    Electrochemical behaviour of uranium was studied in the low melting ternary LiCl–KCl–CsCl eutectic at 573–1073 K employing potentiometry, cyclic voltammetry and chronopotentiometry. Uranium electrode potentials were measured directly and U(III)/U(IV) red-ox potentials were determined from the results of cyclic voltammetry measurements. Formal standard electrode and red-ox potentials of uranium, and thermodynamic properties of uranium chlorides in the studied melt were calculated. Diffusion coefficients of U(III) and U(IV) ions were determined using cyclic voltammetry and chronopotentiometry. - Highlights: • Behaviour of uranium is studied in LiCl–KCl–CsCl eutectic melt over 500° range. • Uranium electrode potentials in LiCl–KCl–CsCl melt are determined at 573–1073 K. • U(III)/(IV) red-ox potentials in LiCl–KCl–CsCl melt are determined at 573–1073 K. • Uranium(III) and (IV) diffusion coefficients are determined at 573–1073 K.

  12. Vibration Monitoring Using Fiber Optic Sensors in a Lead-Bismuth Eutectic Cooled Nuclear Fuel Assembly.

    Science.gov (United States)

    De Pauw, Ben; Lamberti, Alfredo; Ertveldt, Julien; Rezayat, Ali; van Tichelen, Katrien; Vanlanduit, Steve; Berghmans, Francis

    2016-04-21

    Excessive fuel assembly vibrations in nuclear reactor cores should be avoided in order not to compromise the lifetime of the assembly and in order to prevent the occurrence of safety hazards. This issue is particularly relevant to new reactor designs that use liquid metal coolants, such as, for example, a molten lead-bismuth eutectic. The flow of molten heavy metal around and through the fuel assembly may cause the latter to vibrate and hence suffer degradation as a result of, for example, fretting wear or mechanical fatigue. In this paper, we demonstrate the use of optical fiber sensors to measure the fuel assembly vibration in a lead-bismuth eutectic cooled installation which can be used as input to assess vibration-related safety hazards. We show that the vibration characteristics of the fuel pins in the fuel assembly can be experimentally determined with minimal intrusiveness and with high precision owing to the small dimensions and properties of the sensors. In particular, we were able to record local strain level differences of about 0.2 μϵ allowing us to reliably estimate the vibration amplitudes and modal parameters of the fuel assembly based on optical fiber sensor readings during different stages of the operation of the facility, including the onset of the coolant circulation and steady-state operation.

  13. Improved mechanical properties of near-eutectic Al-Si piston alloy through ultrasonic melt treatment

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jae-Gil; Lee, Sang-Hwa [Implementation Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508 (Korea, Republic of); Lee, Jung-Moo, E-mail: jmoolee@kims.re.kr [Implementation Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508 (Korea, Republic of); Cho, Young-Hee [Implementation Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508 (Korea, Republic of); Kim, Su-Hyeon [Metal Materials Division, Korea Institute of Materials Science (KIMS), Changwon 51508 (Korea, Republic of); Yoon, Woon-Ha [Implementation Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508 (Korea, Republic of)

    2016-07-04

    The effects of ultrasonic melt treatment (UST) on the microstructure and mechanical properties of Al-12.2Si-3.3Cu-2.4Ni-0.8Mg-0.1Fe (wt%) piston alloy were systematically investigated. Rigid colonies consisting of primary Si, eutectic Si, Mg{sub 2}Si and various aluminides (ε-Al{sub 3}Ni, δ-Al{sub 3}CuNi, π-Al{sub 8}FeMg{sub 3}Si{sub 6}, γ-Al{sub 7}Cu{sub 4}Ni, Q-Al{sub 5}Cu{sub 2}Mg{sub 8}Si{sub 6} and θ-Al{sub 2}Cu) were observed in the as-cast alloys. The sizes of the secondary phases, eutectic cell and grain were significantly decreased by UST because of the enhanced nucleation of each phase under ultrasonic irradiation. The yield strength, tensile strength and elongation at 25 °C were significantly improved by UST mainly because of the refinement of the microstructures. Both tensile strength and elongation at 350 °C were also improved by UST despite the unchanged yield strength.

  14. Magnetic deep eutectic solvents molecularly imprinted polymers for the selective recognition and separation of protein.

    Science.gov (United States)

    Liu, Yanjin; Wang, Yuzhi; Dai, Qingzhou; Zhou, Yigang

    2016-09-14

    A novel and facile magnetic deep eutectic solvents (DES) molecularly imprinted polymers (MIPs) for the selective recognition and separation of Bovine hemoglobin (BHb) was prepared. The new-type DES was adopted as the functional monomer which would bring molecular imprinted technology to a new direction. The amounts of DES were optimized. The obtained magnetic DES-MIPs were characterized with fourier transform infrared spectrometry (FT-IR), thermogravimetric analysis (TGA), field emission scanning electron microscope (FESEM), dynamic light scattering (DLS), elemental analysis and vibrating sample magnetometer (VSM). The results suggested that the imprinted polymers were successfully formed and possessed a charming magnetism. The maximum adsorption capability (Qmax) and dissociation constant (KL) were analyzed by Langmuir isotherms (R(2) = 0.9983) and the value were estimated to be 175.44 mg/g and 0.035 mg/mL for the imprinted particles. And the imprinted particles showed a high imprinting factor of 4.77. In addition, the magnetic DES-MIPs presented outstanding recognition specificity and selectivity so that it can be utilized to separate template protein from the mixture of proteins and real samples. Last but not least, the combination of deep eutectic solvents and molecular imprinted technology in this paper provides a new perspective for the recognition and separation of proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Evolution of eutectic spacing during unidirectional solidification of Al-Ni alloys

    Directory of Open Access Journals (Sweden)

    Igor Jefferson Cabral Araujo

    2011-01-01

    Full Text Available Hypoeutectic Al-Ni alloys show a ductile phase α distributed with a β phase Al3Ni fragile where β serves as reinforcement of the structure of the material. The eutectic composition alloys obey the relationship: λ2.v = C, where λ is the eutectic spacing, v is a tip growth rate and C is a constant. The aim of this study is to establish correlations between λ and v for hypoeutectic Al-1%, 3% and 5% Ni alloys. Unsteady-state upward directional solidification experiments were performed, as well as metallography, dissolution of the aluminum matrix and scanning electron microscopy (SEM. The interphase spacing of the three Al-Ni alloys decreased with increasing tip growth rate, with a predominance of a rod-like morphology on intermetallic. It was observed that parameters such as tip growth rate, cooling rate and temperature gradient decreases as the solidification front advances. It was further observed that a single experimental law λ = 1.2 v-0, 5 illustrates the evolution of the interphase spacing for any examined alloy.

  16. Green Processing of Lignocellulosic Biomass and Its Derivatives in Deep Eutectic Solvents.

    Science.gov (United States)

    Tang, Xing; Zuo, Miao; Li, Zheng; Liu, Huai; Xiong, Caixia; Zeng, Xianhai; Sun, Yong; Hu, Lei; Liu, Shijie; Lei, Tingzhou; Lin, Lu

    2017-07-10

    The scientific community has been seeking cost-competitive and green solvents with good dissolving capacity for the valorization of lignocellulosic biomass. At this point, deep eutectic solvents (DESs) are currently emerging as a new class of promising solvents that are generally liquid eutectic mixtures formed by self-association (or hydrogen-bonding interaction) of two or three components. DESs are attractive solvents for the fractionation (or pretreatment) of lignocellulose and the valorization of lignin, owing to the high solubility of lignin in DESs. DESs are also employed as effective media for the modification of cellulose to afford functionalized cellulosic materials, such as cellulose nanocrystals. More interestingly, biomassderived carbohydrates, such as fructose, can be used as one of the constituents of DESs and then dehydrated to 5-hydroxymethylfurfural in high yield. In this review, a comprehensive summary of recent contribution of DESs to the processing of lignocellulosic biomass and its derivatives is provided. Moreover, further discussion about the challenges of the application of DESs in biomass processing is presented. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Solid state transformation of non-equilibrium Ni-Sn powder with a eutectic composition

    Directory of Open Access Journals (Sweden)

    Ruangdaj Tongsri

    2011-04-01

    Full Text Available Solid state transformation of supersaturated solid solution to anomalous Ni-Sn eutectic has been studied. The metastableNi-Sn solid solution was prepared via mechanical alloying of a mixed Ni+Sn powder containing 32.5 wt-% Sn powder.The milling conditions included ball to powder ratio (BPR of 5:1 and milling speed of 300 rpm. Milling times were varied as5, 15, and 25 hours. Milling the mixed powder for longer than 15 hours resulted in formation of supersaturated Ni-Sn solidsolution. Differential thermal analysis of the supersaturated Ni-Sn solid solution revealed two reactions, namely peritectoidand peritectic reactions, occurring at 945 and 1,141°C, respectively. Heating of the supersaturated Ni-Sn solid solution todifferent temperatures such as 800, 850, 900, 950, 1,100, and 1,140°C with holding time of 10 minutes resulted in developmentof anomalous eutectic with Ni3Sn phase matrix embedded with Ni solution particles. Sintering and coarsening of the eutecticwas depending on heating temperatures.

  18. Vibration Monitoring Using Fiber Optic Sensors in a Lead-Bismuth Eutectic Cooled Nuclear Fuel Assembly

    Directory of Open Access Journals (Sweden)

    Ben De Pauw

    2016-04-01

    Full Text Available Excessive fuel assembly vibrations in nuclear reactor cores should be avoided in order not to compromise the lifetime of the assembly and in order to prevent the occurrence of safety hazards. This issue is particularly relevant to new reactor designs that use liquid metal coolants, such as, for example, a molten lead-bismuth eutectic. The flow of molten heavy metal around and through the fuel assembly may cause the latter to vibrate and hence suffer degradation as a result of, for example, fretting wear or mechanical fatigue. In this paper, we demonstrate the use of optical fiber sensors to measure the fuel assembly vibration in a lead-bismuth eutectic cooled installation which can be used as input to assess vibration-related safety hazards. We show that the vibration characteristics of the fuel pins in the fuel assembly can be experimentally determined with minimal intrusiveness and with high precision owing to the small dimensions and properties of the sensors. In particular, we were able to record local strain level differences of about 0.2 μϵ allowing us to reliably estimate the vibration amplitudes and modal parameters of the fuel assembly based on optical fiber sensor readings during different stages of the operation of the facility, including the onset of the coolant circulation and steady-state operation.

  19. Quantitative Comparison of Ternary Eutectic Phase-Field Simulations with Analytical 3D Jackson-Hunt Approaches

    Science.gov (United States)

    Steinmetz, Philipp; Kellner, Michael; Hötzer, Johannes; Nestler, Britta

    2018-02-01

    For the analytical description of the relationship between undercoolings, lamellar spacings and growth velocities during the directional solidification of ternary eutectics in 2D and 3D, different extensions based on the theory of Jackson and Hunt are reported in the literature. Besides analytical approaches, the phase-field method has been established to study the spatially complex microstructure evolution during the solidification of eutectic alloys. The understanding of the fundamental mechanisms controlling the morphology development in multiphase, multicomponent systems is of high interest. For this purpose, a comparison is made between the analytical extensions and three-dimensional phase-field simulations of directional solidification in an ideal ternary eutectic system. Based on the observed accordance in two-dimensional validation cases, the experimentally reported, inherently three-dimensional chain-like pattern is investigated in extensive simulation studies. The results are quantitatively compared with the analytical results reported in the literature, and with a newly derived approach which uses equal undercoolings. A good accordance of the undercooling-spacing characteristics between simulations and the analytical Jackson-Hunt apporaches are found. The results show that the applied phase-field model, which is based on the Grand potential approach, is able to describe the analytically predicted relationship between the undercooling and the lamellar arrangements during the directional solidification of a ternary eutectic system in 3D.

  20. Transport and junction physics of semiconductor-metal eutectic composites. Final report, 1 April 1986-31 March 1988

    Energy Technology Data Exchange (ETDEWEB)

    Ditchek, B.; Gustafson, J.

    1988-06-01

    An investigation of the transport and junction physics of Si-TaSi/sub 2/ semiconductor-metal eutectic composites has demonstrated the potential use of this class of materials in highpower switching. Following the development of single-crystal-matrix Si-TaSi/sub 2/ crystals, eutectic diodes utilizing the in-situ junctions were fabricated and analyzed using current-voltage, capacitance-voltage, and electron-beam-induced current techniques. Studies demonstrated nearly ideal diode behavior, a Schottky-barrier height of 0.62 eV, and a means of measuring the extent of the depletion zones and the carrier concentration of the semiconductor matrix. An analysis based on a comparison of the EBIC-determined carrier concentration with the Hall carrier concentration resulted in a measure of the effect of the depletion zones on composite resistivity. Building on the foundation provided by this analysis, the first eutectic-composite transistors were demonstrated. These devices confirmed that current flow can be controlled by pinching off Si channels between TaSi/sub 2/ rods. Furthermore, testing at high voltages indicated that the eutectic devices are resistant to avalanche breakdown. Devices were built that block 600 V, three times the value for a conventional planar device in a wafer of the same carrier concentration.

  1. Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control.

    Science.gov (United States)

    Sarkar, Sujoy; Sampath, S

    2016-05-11

    A ternary, ionically conducting, deep eutectic solvent based on acetamide, urea and gallium nitrate is reported for the electrodeposition of gallium nitride/gallium indium nitride under ambient conditions; blue and white light emitting photoluminescent deposits are obtained under potential control.

  2. The application of deep eutectic solvent ionic liquids for environmentally-friendly dissolution and recovery of precious metals

    OpenAIRE

    Jenkin, GRT; Al-Bassam, AZM; Harris, RC; Abbott, AP; Smith, DJ; Holwell, DA; Chapman, RJ; Stanley, Christopher

    2016-01-01

    publisher: Elsevier articletitle: The application of deep eutectic solvent ionic liquids for environmentally-friendly dissolution and recovery of precious metals journaltitle: Minerals Engineering articlelink: http://dx.doi.org/10.1016/j.mineng.2015.09.026 content_type: article copyright: Copyright © 2015 The Authors. Published by Elsevier Ltd.

  3. Eutectic mixture Pb-17Li - in-situ production and Li-adjustment

    Energy Technology Data Exchange (ETDEWEB)

    Feuerstein, H. [Kernforschungszentrum Karlsruhe GmbH, Hauptabteilung Ingenieurtechnik (Germany); Wirjantoro, D.A. [Kernforschungszentrum Karlsruhe GmbH, Hauptabteilung Ingenieurtechnik (Germany); Hoerner, L. [Kernforschungszentrum Karlsruhe GmbH, Hauptabteilung Ingenieurtechnik (Germany); Horn, S. [Kernforschungszentrum Karlsruhe GmbH, Hauptabteilung Ingenieurtechnik (Germany)

    1995-12-31

    The adjustment of a requested Li-concentration in mixtures of lead and lithium is possible by adding lead, LiPb or Li{sub 3}Pb. In smaller facilities, even an in-situ production of Pb-17Li from pure lead is possible. The compounds were produced in a glove box. Simple cooling curves of a complete batch are sufficient for the characterization. LiPb and Li{sub 3}Pb can be handled in air for several hundred hours without excess oxidation. The lithium concentration has a strong influence on deuterium transport by the molten mixture. As a result it has to be concluded that, for reason of tritium extraction, the Li concentration should be not higher than required for the eutectic melting point. (orig.).

  4. Direct construction of diverse metallophthalocyanines by manifold substrates in a deep eutectic solvent

    Science.gov (United States)

    Shaabani, Ahmad; Hooshmand, Seyyed Emad; Afshari, Ronak; Shaabani, Shabnam; Ghasemi, Vahid; Atharnezhad, Mojtaba; Akbari, Masoud

    2018-02-01

    Direct access to a wide range of metal-free phthalocyanines and metallophthalocyanines in deep eutectic solvents (DESs), is reported. Substituted and unsubstituted phthalocyanines of Mn, Fe, Co, Ni, Cu, Zn, Pd, In, and Pt with various raw materials such as phthalonitriles, phthalimides, phthalic anhydrides and phthalic acids are successfully prepared in the DES based on choline chloride and urea in a very short reaction time with appropriate yields. It has been shown that DES as a green and rapidly degraded reaction medium in the environment plays a triple role as a solvent, organocatalyst, and reactant in this process. Moreover, the DES system could be separated and reused in four consecutive reaction runs with no considerable loss in catalytic activity.

  5. Atomic mobility in a ternary liquid Ga-In-Sn alloy of the eutectic composition

    Science.gov (United States)

    Nefedov, D. Yu.; Antonenko, A. O.; Podorozhkin, D. Yu.; Uskov, A. V.; Charnaya, E. V.; Lee, M. K.; Chang, J. L.; Haase, J.; Michel, D.; Kumzerov, Yu. A.; Fokin, A. V.; Samoilovich, M. I.; Bugaev, A. S.

    2017-02-01

    The nuclear spin-lattice relaxation and Knight shift of 71Ga, 69Ga, and 115In nuclei in a ternary liquid gallium-indium-tin alloy of the eutectic composition, which was introduced into pores of an opal matrix and porous glasses with pore sizes of 18 and 7 nm, have been investigated and compared with those for the bulk melt. It has been found that longitudinal relaxation is accelerated and the Knight shift is decreased, depending on the size of pores. The correlation time of the atomic motion has been calculated for the nanostructured melt in porous matrices. It has been shown that the atomic mobility in the melt decreases with decreasing size of pores in the glasses.

  6. Deformation Behavior of the Percolating Eutectic Intermetallic in HPDC and Squeeze-Cast Mg Alloys

    Science.gov (United States)

    Zhang, Bao; Yang, Kun V.; Nagasekhar, Anumalasetty V.; Cáceres, Carlos H.; Easton, Mark

    2014-10-01

    The structural compliance of the spatially interconnected intermetallic network in a squeeze-cast MRI230D alloy was determined using focused ion beam (FIB) data and finite element (FE) modeling, and compared with data for a high-pressure die-cast AZ91D and three binary Mg-RE alloys from the existing literature. The respective elastic responses were sorted out into two characteristic behaviors: for eutectic volume fractions less than ~22% the behavior was akin to that of highly compliant, bending-dominated structures, whereas for larger fractions, it reproduced that of structurally efficient, stretch-dominated microtruss structures. In all cases, the contribution from the interconnected network added to the total strength of the alloy an amount comparable with the strengthening expected from a similar volume fraction of dispersed particles. Being more compliant, the bending-dominated structures appeared less prone to developing damage by cracking at low strains than the stretch dominated ones.

  7. Tetrabutylammonium Bromide (TBABr-Based Deep Eutectic Solvents (DESs and Their Physical Properties

    Directory of Open Access Journals (Sweden)

    Rizana Yusof

    2014-06-01

    Full Text Available Density, viscosity and ionic conductivity data sets of deep eutectic solvents (DESs formed by tetrabutylammonium bromide (TBABr paired with ethlyene glycol, 1,3-propanediol, 1,5-pentanediol and glycerol hydrogen bond donors (HBDs are reported. The properties of DES were measured at temperatures between 303 K and 333 K for HBD percentages of 66.7% to 90%. The effects of HBDs under different temperature and percentages are systematically analyzed. As expected, the measured density and viscosity of the studied DESs decreased with an increase in temperature, while ionic conductivity increases with temperature. In general, DESs made of TBABr and glycerol showed the highest density and viscosity and the lowest ionic conductivity when compared to other DESs. The presence of an extra hydroxyl group on glycerol in a DES affected the properties of the DES.

  8. Compatibilization of HDPE/agar biocomposites with eutectic-based ionic liquid containing surfactant

    CERN Document Server

    Shamsuri, AA; Zainudin, ES; Tahir, PM

    2014-01-01

    In this research, eutectic-based ionic liquid specifically choline chloride/glycerol was prepared at a 1:2 mole ratio. The choline chloride/glycerol was added with the different content of surfactant (hexadecyltrimethylammonium bromide). The choline chloride/glycerol-hexadecyltrimethylammonium bromide was introduced into high-density polyethylene/agar biocomposites through melt mixing. The mechanical testing results indicated that the impact strength and tensile extension of the biocomposites increased with the introduction of the choline chloride/glycerol-hexadecyltrimethylammonium bromide. The scanning electron microscope, differential scanning calorimetry and thermal gravimetric analysis results exhibited that significant decrease in the number of agar fillers pull-out, melting point and thermal decomposition temperatures of the biocomposites are also due to the choline chloride/glycerol-hexadecyltrimethylammonium bromide. The Fourier transform infrared spectra and X-ray diffractometer patterns of the bioc...

  9. Frequency-Switchable Metamaterial Absorber Injecting Eutectic Gallium-Indium (EGaIn Liquid Metal Alloy

    Directory of Open Access Journals (Sweden)

    Kenyu Ling

    2015-11-01

    Full Text Available In this study, we demonstrated a new class of frequency-switchable metamaterial absorber in the X-band. Eutectic gallium-indium (EGaIn, a liquid metal alloy, was injected in a microfluidic channel engraved on polymethyl methacrylate (PMMA to achieve frequency switching. Numerical simulation and experimental results are presented for two cases: when the microfluidic channels are empty, and when they are filled with liquid metal. To evaluate the performance of the fabricated absorber prototype, it is tested with a rectangular waveguide. The resonant frequency was successfully switched from 10.96 GHz to 10.61 GHz after injecting liquid metal while maintaining absorptivity higher than 98%.

  10. Towards the development of continuous, organocatalytic, and stereoselective reactions in deep eutectic solvents

    Directory of Open Access Journals (Sweden)

    Davide Brenna

    2016-12-01

    Full Text Available Different deep eutectic solvent (DES mixtures were studied as reaction media for the continuous synthesis of enantiomerically enriched products by testing different experimental set-ups. L-Proline-catalysed cross-aldol reactions were efficiently performed in continuo, with high yield (99%, anti-stereoselectivity, and enantioselectivity (up to 97% ee. Moreover, using two different DES mixtures, the diastereoselectivity of the process could be tuned, thereby leading to the formation, under different experimental conditions, to both the syn- and the anti-isomer with very high enantioselectivity. The excess of cyclohexanone was recovered and reused, and the reaction could be run and the product isolated without the use of any organic solvent by a proper choice of DES components. The dramatic influence of the reaction media on the reaction rate and stereoselectivity of the process suggests that the intimate architecture of DESs deeply influences the reactivity of different species involved in the catalytic cycle.

  11. Superconductivity in filamentary eutectic composites. Progress report, June 1, 1980-May 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Zaitlin, M P

    1980-01-01

    Measurements of electrical resistivity and magnetic susceptibility have been performed as a function of temperature on samples of Nb-Th eutectic composite. Samples with Nb filament radii as small as 38A were used which is considerably less than the coherence length xi in Nb of approx. 380A. Surprisingly, measurements of all samples showed a drop in electrical resistance near the transition temperature of bulk Nb and an unmeasurably small resistance by approx. 8K. The magnetic susceptibility showed essentially perfect diamagnetism below approx. 7 to 9K even for samples with the smallest of filament radii. This is in contradiction to theories of the proximity effect which predict a sharp decrease in the transition temperature for samples with a radius smaller than xi. Some measurements in a static magnetic field have also been made.

  12. Low-energy biomass pretreatment with deep eutectic solvents for bio-butanol production.

    Science.gov (United States)

    Procentese, Alessandra; Raganati, Francesca; Olivieri, Giuseppe; Russo, Maria Elena; Rehmann, Lars; Marzocchella, Antonio

    2017-11-01

    Waste lettuce leaves - from the "fresh cut vegetable" industry - were pretreated with the deep eutectic solvent (DES) made of choline chloride - glycerol. Reaction time (3-16h) and the operation temperature (80-150°C) were investigated. Enzymatic glucose and xylose yields of 94.9% and 75.0%, respectively were obtained when the biomass was pretreated at 150°C for 16h. Sugars contained in the biomass hydrolysate were fermented in batch cultures of Clostridium acetobutylicum DSMZ 792. The energy consumption and the energy efficiency related to the DES pretreatment were calculated and compared to the most common lignocellulosic pretreatment processes reported in the literature. The DES pretreatment process was characterized by lower energy required (about 28% decrease and 72% decrease) than the NAOH pretreatment and steam explosion process respectively. The Net Energy Ratio (NER) value related to butanol production via DES biomass pretreatment was assessed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Production of Electrospun Fast-Dissolving Drug Delivery Systems with Therapeutic Eutectic Systems Encapsulated in Gelatin.

    Science.gov (United States)

    Mano, Francisca; Martins, Marta; Sá-Nogueira, Isabel; Barreiros, Susana; Borges, João Paulo; Reis, Rui L; Duarte, Ana Rita C; Paiva, Alexandre

    2017-02-24

    Fast-dissolving delivery systems (FDDS) have received increasing attention in the last years. Oral drug delivery is still the preferred route for the administration of pharmaceutical ingredients. Nevertheless, some patients, e.g. children or elderly people, have difficulties in swallowing solid tablets. In this work, gelatin membranes were produced by electrospinning, containing an encapsulated therapeutic deep-eutectic solvent (THEDES) composed by choline chloride/mandelic acid, in a 1:2 molar ratio. A gelatin solution (30% w/v) with 2% (v/v) of THEDES was used to produce electrospun fibers and the experimental parameters were optimized. Due to the high surface area of polymer fibers, this type of construct has wide applicability. With no cytotoxicity effect, and showing a fast-dissolving release profile in PBS, the gelatin fibers with encapsulated THEDES seem to have promising applications in the development of new drug delivery systems.

  14. Continuous sodium modification of nearly-eutectic aluminium alloys. Part II. Experimental studiem

    Directory of Open Access Journals (Sweden)

    Białobrzeski A.

    2007-01-01

    Full Text Available One of the possible means of continuous sodium modification of nearly-eutectic alloys may be continuous electrolysis of sodium compounds (salts, taking place directly in metal bath (in the crucible. For this process it is necessary to use a solid electrolyte conducting sodium ions. Under the effect of the applied direct current voltage, sodium salt placed in a retort made from the solid electrolyte undergoes dissociation, and next - electrolysis. The retort is immersed in liquid metal. The anode is sodium salt, at that temperature occurring in liquid state, connected to the direct current source through, e.g. a graphite electrode, while cathode is the liquid metal. Sodium ions formed during the sodium salt dissociation and electrolysis are transported through the wall of the solid electrolyte (the material of the retort and in contact with liquid alloy acting as a cathode, they are passing into atomic state, modifying the metal bath.

  15. Alcohol based-deep eutectic solvent (DES) as an alternative green additive to increase rotenone yield

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Zetty Shafiqa; Hassan, Nur Hasyareeda; Zubairi, Saiful Irwan [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia)

    2015-09-25

    Deep eutectic solvents (DESs) are basically molten salts that interact by forming hydrogen bonds between two added components at a ratio where eutectic point reaches a melting point lower than that of each individual component. Their remarkable physicochemical properties (similar to ionic liquids) with remarkable green properties, low cost and easy handling make them a growing interest in many fields of research. Therefore, the objective of pursuing this study is to analyze the potential of alcohol-based DES as an extraction medium for rotenone extraction from Derris elliptica roots. DES was prepared by a combination of choline chloride, ChCl and 1, 4-butanediol at a ratio of 1/5. The structure of elucidation of DES was analyzed using FTIR, {sup 1}H-NMR and {sup 13}C-NMR. Normal soaking extraction (NSE) method was carried out for 14 hours using seven different types of solvent systems of (1) acetone; (2) methanol; (3) acetonitrile; (4) DES; (5) DES + methanol; (6) DES + acetonitrile; and (7) [BMIM] OTf + acetone. Next, the yield of rotenone, % (w/w), and its concentration (mg/ml) in dried roots were quantitatively determined by means of RP-HPLC. The results showed that a binary solvent system of [BMIM] OTf + acetone and DES + acetonitrile was the best solvent system combination as compared to other solvent systems. It contributed to the highest rotenone content of 0.84 ± 0.05% (w/w) (1.09 ± 0.06 mg/ml) and 0.84 ± 0.02% (w/w) (1.03 ± 0.01 mg/ml) after 14 hours of exhaustive extraction time. In conclusion, a combination of the DES with a selective organic solvent has been proven to have a similar potential and efficiency as of ILs in extracting bioactive constituents in the phytochemical extraction process.

  16. Compatibility of 31 metals, alloys and coatings with static Pb-17Li eutectic mixture

    Energy Technology Data Exchange (ETDEWEB)

    Feuerstein, H.; Graebner, H.; Oschinski, J.; Beyer, J.; Horn, S.; Hoerner, L.; Santo, K.

    1995-09-01

    The compatibility of 31 metals, alloys and coatings with static eutectic mixture Pb-17Li was investigated in more than 300 tests. Most of the results have not been published before. Wetting has no influence on dissolution rates. This is discussed in detail. Metals can be divided into three groups. Most stable are the refractories Nb, Ta, Mo, Re and W. Ferritic steels, Be, Fe, and V belong to the next group. However, Be is destroyed along grain boundaries. Not stable at all are Al, Ti, Zr, Y, U and their alloys. Temperature functions for solubilities in Pb-17Li were obtained for 8 elements, single -one temperature- values for 3 others. The results are in good agreement with a theoretical work of Guminski. Remarkably high are solubilities of Al, Zr, Y and U while those of the refractories are low. Also, the solubility of Pb in solid Ti was determined, adding new data points to the phase diagram. Because of the effect of mass transfer between dissimilar metals, diffusion coefficients in Pb-17Li could be calculated from dissolution rates and solubilities. Most reliable are the temperature functions for Be, Al, Fe and V. Those for Ti, Zr and U are influenced by the formation of compounds. All values are in an expected range, but not all effects can be explained. Different kinds of reaction zones were found on surfaces. New is a very thin ``chemical reaction zone``, identified for several metals during sample cleaning. It is probably formed as a first step before grain boundary attack of the eutectic. (orig.)

  17. A green deep eutectic solvent-based aqueous two-phase system for protein extracting

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kaijia; Wang, Yuzhi, E-mail: wyzss@hnu.edu.cn; Huang, Yanhua; Li, Na; Wen, Qian

    2015-03-15

    Highlights: • A strategy for the protein purification with a deep eutectic solvent(DES)-based aqueous two-phase system. • Choline chloride-glycerin DES was selected as the extraction solvent. • Bovine serum albumin and trypsin were used as the analytes. • Aggregation phenomenon was detected in the mechanism research. - Abstract: As a new type of green solvent, deep eutectic solvent (DES) has been applied for the extraction of proteins with an aqueous two-phase system (ATPS) in this work. Four kinds of choline chloride (ChCl)-based DESs were synthesized to extract bovine serum albumin (BSA), and ChCl-glycerol was selected as the suitable extraction solvent. Single factor experiments have been done to investigate the effects of the extraction process, including the amount of DES, the concentration of salt, the mass of protein, the shaking time, the temperature and PH value. Experimental results show 98.16% of the BSA could be extracted into the DES-rich phase in a single-step extraction under the optimized conditions. A high extraction efficiency of 94.36% was achieved, while the conditions were applied to the extraction of trypsin (Try). Precision, repeatability and stability experiments were studied and the relative standard deviations (RSD) of the extraction efficiency were 0.4246% (n = 3), 1.6057% (n = 3) and 1.6132% (n = 3), respectively. Conformation of BSA was not changed during the extraction process according to the investigation of UV–vis spectra, FT-IR spectra and CD spectra of BSA. The conductivity, dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to explore the mechanism of the extraction. It turned out that the formation of DES–protein aggregates play a significant role in the separation process. All the results suggest that ChCl-based DES-ATPS are supposed to have the potential to provide new possibilities in the separation of proteins.

  18. Physicochemical characterisation and antimicrobial phototoxicity of an anionic porphyrin in natural deep eutectic solvents.

    Science.gov (United States)

    Wikene, Kristine Opsvik; Rukke, Håkon Valen; Bruzell, Ellen; Tønnesen, Hanne Hjorth

    2016-08-01

    Natural deep eutectic solvents (NADES) are a newly discovered group of eutectics which has shown promise as a solvent in antimicrobial photodynamic therapy (aPDT). The purpose of this study was to investigate preparations of an anionic porphyrin, meso-tetra-(4-carboxyphenyl)-porphine (TCPP), solubilised in NADES, with regard to their physicochemical and antibacterial properties. The NADES CS (pH∼0), ChX (pH∼4) and MFG (pH∼1) solubilised TCPP with absorption maximum ∼443nm and emission maximum ∼678nm, indicating formation of the TCPP dication. Dilution of TCPP-NADES>1:1 (water) reduced the physical stability of the preparations. The photostability half-lives of TCPP in methanol, MFG, and CS were ∼9h, 6.9h and 3.2h, respectively. Nanomolar concentrations of TCPP solubilised in diluted MFG combined with ⩽27J/cm(2) blue light increased Gram-positive and Gram-negative bacterial phototoxicity, >99.98% and 96% bacterial reduction, respectively, compared to TCPP in PBS/ethanol under equivalent treatment conditions. TCPP solubilised in diluted CS was toxic to bacteria both in the absence (36-72% reduction) and presence of light. TCPP in CS, and in the CS component citric acid, induced a TCPP-concentration dependent increase in Gram-negative phototoxicity relative to controls, which was most pronounced for TCPP-CS. The mechanism behind the increased toxicity is unknown. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Fatty acid eutectic/polymethyl methacrylate composite as form-stable phase change material for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijiu; Meng, Duo [School of Civil Engineering, Dalian University of Technology, Dalian 116024 (China)

    2010-08-15

    This work is focused on the preparation and characterization of fatty acid eutectic/polymethyl methacrylate (PMMA) form-stable phase change material (PCM). Capric acid (CA), lauric acid (LA), myristic acid (MA) and stearic acid (SA) were selected to prepare binary fatty acid eutectic for the sake of decreasing the phase change temperature. Using the method of self-polymerization, CA-LA, CA-MA, CA-SA and LA-MA eutectics acting as the heat-absorbing materials and PMMA serving as the supporting material were compounded in the ratio of 50/50 wt.%. The relations between mass fraction of LA-MA eutectic and latent heat and compressive strength of LA-MA/PMMA composite were discussed, and the feasible maximum mass fraction of LA-MA eutectic was determined to be 70%. CA-LA/PMMA, CA-MA/PMMA, CA-SA/PMMA and LA-MA/PMMA composites were examined to investigate their potential application in building energy conservation. Scanning electron microscope and polarizing optical microscope observations showed that fatty acid eutectic was coated by PMMA thus the composite remained solid when the sample was heated above the melted point of the fatty acid. Fourier-transform infrared results indicated that fatty acid and PMMA had no chemical reaction and exhibited good compatibility with each other. According to the differential scanning calorimetry results, phase change temperatures of CA-LA/PMMA, CA-MA/PMMA, CA-SA/PMMA and LA-MA/PMMA composites were 21.11 C, 25.16 C, 26.38 C and 34.81 C and their latent heat values were determined to be 76.3 kJ/kg, 69.32 kJ/kg, 59.29 kJ/kg and 80.75 kJ/kg, respectively. Moreover, thermal stability and expansibility of the form-stable PCMs were characterized by thermogravimetric analysis and volume expansion coefficient respectively, and the results indicated that the composites were available for building energy conservation. (author)

  20. Fusion technology for the production of PbLi eutectic alloys; Obtencion de aleaciones eutecticas PbLi mediante procesos de fusion

    Energy Technology Data Exchange (ETDEWEB)

    Barrena, M. J.; Gomez de Salazar, J. M.; Quinones, J.; Pascual, L.; Soria, A.

    2012-07-01

    The development of thermonuclear experimental reactor (ITER), whose objective is to produce energy from nuclear fusion, has raised the study of Pb-Li eutectic alloys, as they have been selected for the manufacture of test blanket modules (TBM). However, during the manufacturing process of the Pb-Li alloys, thermal conditions used result in a loss of litium element, which inhibits the formation of eutectic structures. In this work we have done fusion of pure lead and lithium, evaluating different process parameters to obtain Pb-Li (17 at. %) eutectic alloys. The alloys manufactured were characterized by DSC, SEM-EDX and microhardness tests. From these studies we noted that the used of an induction reactor and the process parameters optimized to obtain Pb-Li alloy allow for completely eutectic ingots and high chemical homogeneity and microstructural. (Author) 26 refs.

  1. Oxidation and reduction kinetics of eutectic SnPb, InSn, and AuSn: a knowledge base for fluxless solder bonding applications

    DEFF Research Database (Denmark)

    Kuhmann, Jochen Friedrich; Preuss, A.; Adolphi, B.

    1998-01-01

    For microelectronics and especially for upcoming new packaging technologies in micromechanics and photonics fluxless, reliable and economic soldering technologies are needed. In this article, we consequently focus on the oxidation and reduction kinetics of three commonly used eutectic solder allo...

  2. Characterization and comparison of lidocaine-tetracaine and lidocaine-camphor eutectic mixtures based on their crystallization and hydrogen-bonding abilities.

    Science.gov (United States)

    Gala, Urvi; Chuong, Monica C; Varanasi, Ravi; Chauhan, Harsh

    2015-06-01

    Eutectic mixtures formed between active pharmaceutical ingredients and/or excipients provide vast scope for pharmaceutical applications. This study aimed at the exploration of the crystallization abilities of two eutectic mixtures (EM) i.e., lidocaine-tetracaine and lidocaine-camphor (1:1 w/w). Thermogravimetric analysis (TGA) for degradation behavior whereas modulated temperature differential scanning calorimetry (MTDSC) set in first heating, cooling, and second heating cycles, was used to qualitatively analyze the complex exothermic and endothermic thermal transitions. Raman microspectroscopy characterized vibrational information specific to chemical bonds. Prepared EMs were left at room temperature for 24 h to visually examine their crystallization potentials. The degradation of lidocaine, tetracaine, camphor, lidocaine-tetracaine EM, and lidocaine-camphor EM began at 196.56, 163.82, 76.86, 146.01, and 42.72°C, respectively, which indicated that eutectic mixtures are less thermostable compared to their individual components. The MTDSC showed crystallization peaks for lidocaine, tetracaine, and camphor at 31.86, 29.36, and 174.02°C, respectively (n = 3). When studying the eutectic mixture, no crystallization peak was observed in the lidocaine-tetracaine EM, but a lidocaine-camphor EM crystallization peak was present at 18.81°C. Crystallization occurred in lidocaine-camphor EM after being kept at room temperature for 24 h, but not in lidocaine-tetracaine EM. Certain peak shifts were observed in Raman spectra which indicated possible interactions of eutectic mixture components, when a eutectic mixture was formed. We found that if the components forming a eutectic mixture have crystallization peaks close to each other and have sufficient hydrogen-bonding capability, then their eutectic mixture is least likely to crystallize out (as seen in lidocaine-tetracaine EM) or vice versa (lidocaine-camphor EM).

  3. Undercooling, Cooling Curves and Nodule Count for Hypo-, Hyper- and Eutectic Thin-Walled Ductile Iron Castings

    Science.gov (United States)

    Kapturkiewicz, Wojciech; Burbelko, Andriy

    Solidification model and numerical calculations are presented describing the solidification of a thin wall ductile iron with hypo-, hyper- and eutectic composition. The principal assumptions of the kinetic nature of growth, depending on undercooling in respect of the equilibrium lines, have been adopted, disregarding the diffusion processes, which was justified by the rapid course of the crystallization process in a thin-walled casting. This kinetic model was operating in a correct mode when it was completed with adjusted calculations of the carbon amount diffusing through the austenite film around the graphite nodules. The applied model of diffusion determined jointly with the kinetic model of the growth of graphite and austenite resulted in high-speed calculation program. Quite interesting are the results showing distinct differences in the kinetics of solidification and final structure of the cast iron with the same degree of eutectic saturation, but different content of C and Si.

  4. Effects of temperature and strain rate on the tensile behaviors of SIMP steel in static lead bismuth eutectic

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jian, E-mail: jliu12b@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 (China); University of Chinese Academy of Sciences, Beijing, 100049 (China); Yan, Wei [Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 (China); Sha, Wei [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast, Belfast, BT9 5AG (United Kingdom); Wang, Wei; Shan, Yiyin [Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 (China)

    2016-05-15

    In order to assess the susceptibility of candidate structural materials to liquid metal embrittlement, this work investigated the tensile behaviors of ferritic-martensitic steel in static lead bismuth eutectic (LBE). The tensile tests were carried out in static lead bismuth eutectic under different temperatures and strain rates. Pronounced liquid metal embrittlement phenomenon is observed between 200 °C and 450 °C. Total elongation is reduced greatly due to the liquid metal embrittlement in LBE environment. The range of ductility trough is larger under slow strain rate tensile (SSRT) test. - Highlights: • The tensile behaviors of SIMP steel in LBE are investigated for the first time. • The SIMP is susceptible to LME at different strain rates and temperatures. • The total elongation is reduced greatly. • The ductility trough is wider under SSRT. • The tensile specimens rupture in brittle manner without obvious necking.

  5. Application of sacrificial coatings and effect of composition on Al-Al3Ni ultrafine eutectic formation

    Directory of Open Access Journals (Sweden)

    Čelko L.

    2014-01-01

    Full Text Available This paper introduces an unconventional method designed for forming hypereutectic alloys via coating deposition onto the substrate surface and subsequent heat treatment of such systems. The coating was produced from 99.7 wt% nickel powder by means of high velocity oxyfuel (HVOF spraying onto the surface of 99.999 wt% aluminium sheet. The specimens were manufactured immediately after the spraying. Specimens were heat-treated using a differential thermal analysis (DTA apparatus up to a temperature of 900°C and then cooled down to the room temperature in an argon atmosphere with constant heating and cooling rates, under which the NiAl3 intermetallic phase formed within the initial substrate. Two different alloy microstructures consisting of a coarse eutectic and an ultrafine well-dispersed eutectic were produced. The formation processes and resultant microstructures were studied by means of differential thermal analysis, metallography, scanning electron microscopy, energy dispersive microanalysis, and image analysis techniques.

  6. The Pseudo-Eutectic Microstructure and Enhanced Properties in Laser-Cladded Hypereutectic Ti–20%Si Coatings

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2017-01-01

    Full Text Available Ti5Si3 is an attractive light weight reinforcement phase in hypereutectic Ti–Si-based alloys, however, the proeutectic Ti5Si3 phase is brittle and is easily coarsened when the alloy is prepared under normal solidification conditions, thereby limiting its engineering applications in the aviation and biological industries. In this study, a hypereutectic Ti–20%Si coating with a pseudo-eutectic α-Ti + Ti5Si3 microstructure was successfully fabricated on a commercially available Ti alloy by laser cladding under non-equilibrium rapid solidification conditions. The fine, rod-like and well-dispersed eutectic Ti5Si3 phase, without the primary Ti5Si3 phase, that was produced resulted in a considerable improvement in hardness, corrosion resistance, and fracture resistance when compared to the same compositional alloy prepared by the conventional arc melting technique.

  7. A method to enhance the data transfer rate of eutectic Sb-Te phase-change recording media

    Science.gov (United States)

    Yeh, Tung-Ti; Hsieh, T.-E.; Shieh, Han-Ping D.

    2005-07-01

    This work describes the effect of nitrogen doping to eutectic Sb-Te phase-change materials in order to enhance the speed of the amorphous-to-crystalline phase transformation. When nitrogen at a sputtering gas flow ratio of N2/Ar=3% was doped in the eutectic Ge-In-Sb-Te recording layer, the data transfer rate was increased up to 1.6 times. When thin GeNx nucleation promotion layers were further added in below and above the recording layer, an overall enhancement up to 3.3 times in data transfer rate was achieved. The nitrogen contents corresponding to the N2/Ar flow ratios (N2/Ar=0%-10%) were calibrated by electron spectroscopy for chemical analysis. Transmission electron microscopy revealed that nitrogen doping was able to promote the phase transformation by generating numerous nucleation sites uniformly distributed in the recording layer and hence increased the recrystallization speed.

  8. Studies of Al-Al{sub 3}Ni eutectic mixtures as insertion anodes in rechargeable lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Machill, S.; Rahner, D. [Technische Univ. Dresden (Germany). Inst. fuer Physikalische Chemie und Elektrochemie

    1997-10-01

    This contribution will give a short overview of aluminum-nickel eutectic mixture alloys as the anode materials in lithium secondary batteries. These compounds allow to create an alloy matrix of modified grain size with stabilizing properties toward `mechanical stressing` during charge/discharge processes of lithium. Several electrochemical techniques have been used to investigate the electrochemical behaviour of these lithium-inserting materials. (orig.)

  9. Deformation mechanisms to ameliorate the mechanical properties of novel TRIP/TWIP Co-Cr-Mo-(Cu) ultrafine eutectic alloys

    Science.gov (United States)

    Kim, J. T.; Hong, S. H.; Park, H. J.; Kim, Y. S.; Suh, J. Y.; Lee, J. K.; Park, J. M.; Maity, T.; Eckert, J.; Kim, K. B.

    2017-01-01

    In the present study, the microstructural evolution and the modulation of the mechanical properties have been investigated for a Co-Cr-Mo (CCM) ternary eutectic alloy by addition of a small amount of copper (0.5 and 1 at.%). The microstructural observations reveal a distinct dissimilarity in the eutectic structure such as a broken lamellar structure and a well-aligned lamellar structure and an increasing volume fraction of Co lamellae as increasing amount of copper addition. This microstructural evolution leads to improved plasticity from 1% to 10% without the typical tradeoff between the overall strength and compressive plasticity. Moreover, investigation of the fractured samples indicates that the CCMCu alloy exhibits higher plastic deformability and combinatorial mechanisms for improved plastic behavior. The improved plasticity of CCMCu alloys originates from several deformation mechanisms; i) slip, ii) deformation twinning, iii) strain-induced transformation and iv) shear banding. These results reveal that the mechanical properties of eutectic alloys in the Co-Cr-Mo system can be ameliorated by micro-alloying such as Cu addition. PMID:28067248

  10. Nanostructure, hydrogen bonding and rheology in choline chloride deep eutectic solvents as a function of the hydrogen bond donor.

    Science.gov (United States)

    Stefanovic, Ryan; Ludwig, Michael; Webber, Grant B; Atkin, Rob; Page, Alister J

    2017-01-25

    Deep eutectic solvents (DESs) are a mixture of a salt and a molecular hydrogen bond donor, which form a eutectic liquid with a depressed melting point. Quantum mechanical molecular dynamics (QM/MD) simulations have been used to probe the 1 : 2 choline chloride-urea (ChCl : U), choline chloride-ethylene glycol (ChCl : EG) and choline chloride-glycerol (ChCl : Gly) DESs. DES nanostructure and interactions between the ions is used to rationalise differences in DES eutectic point temperatures and viscosity. Simulations show that the structure of the bulk hydrogen bond donor is largely preserved for hydroxyl based hydrogen bond donors (ChCl:Gly and ChCl:EG), resulting in a smaller melting point depression. By contrast, ChCl:U exhibits a well-established hydrogen bond network between the salt and hydrogen bond donor, leading to a larger melting point depression. This extensive hydrogen bond network in ChCl:U also leads to substantially higher viscosity, compared to ChCl:EG and ChCl:Gly. Of the two hydroxyl based DESs, ChCl:Gly also exhibits a higher viscosity than ChCl:EG. This is attributed to the over-saturation of hydrogen bond donor groups in the ChCl:Gly bulk, which leads to more extensive hydrogen bond donor self-interaction and hence higher cohesive forces within the bulk liquid.

  11. Capture and Solidification of Rare Earth Nuclide (Nd) in LiCl-KCl Eutectic Salt Using a Synthetic Inorganic Composite

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Na-Young; Eun, Hee-Chul; Park, Hwan-Seo; Ahn, Do-Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-06-15

    In this study, neodymium (Nd) nuclides in LiCl-KCl eutectic salts were captured and solidified using a synthetic inorganic composite (Li{sub 2}O-SiO{sub 2}-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3}), a process that allows the selective capture of Nd and fabrication of a composite with Nd captured from waste, without additional additives or mixing. The Nd nuclides in the LiCl-KCl eutectic salt were mainly captured in the form of LiNdSiO{sub 4}, and it was confirmed that NdSiO{sub 3} can be formed in the composite with captured Nd when the content of Nd in the composite is increased. The capture efficiency was higher than about 98 wt%. It was thought that the salt recovered from the Nd capture test was a renewable form could be reused in the pyroprocessing of used nuclear fuel, because the composite has high chemical durability in a LiCl-KCl eutectic salt at 900 ℃. The composite captured Nd was fabricated into a homogeneous glass form and a stable ceramic form.

  12. Microemulsions based on paeonol-menthol eutectic mixture for enhanced transdermal delivery: formulation development and in vitro evaluation.

    Science.gov (United States)

    Wang, Wenping; Cai, Yaqin; Liu, Yanhua; Zhao, Yunsheng; Feng, Jun; Liu, Chen

    2017-09-01

    In this work, microemulsion-based gels were prepared for transdermal delivery of paeonol. Microemulsions containing eutectic mixtures of paeonol and menthol were developed. The obtained microemulsions were evaluated for particle size, viscosity and physical stability. The selected microemulsions were incorporated into Carbopol gels. Drug crystallization behavior during a short-term storage was compared and in vitro permeation and deposition study were conducted on mouse skin. Results showed that the eutectic liquids of paeonol and menthol at all ratio (6:4, 5:5 and 4:6) could form microemulsions but with significantly different physical characteristics. As the ratio of paeonol increased, the prepared microemulsions exhibited larger droplet size, higher viscosity and quicker crystal growth. Microemulsion containing paeonol and menthol at a ratio of 4:6 possessed the smallest size of 27 nm. Accordingly, the related gel showed better physical stability during 10 days of storage, as well as the highest percent of drug deposition (111.8 μg/cm 2 ) and steady-state flux (0.3 μg/cm 2  h). These results suggested that the microemulsion formulation is a preferable approach for enhanced skin permeation, and the microemulsion based on drug-menthol eutectic mixture might be used as a potential transdermal delivery system for better therapeutic efficacy.

  13. Long-Term Stability Evaluation of a Sn-Doped Ni-C Eutectic Cell Suitable for Radiation Thermometry

    Science.gov (United States)

    Teixeira, R. N.; Machin, G.

    2017-07-01

    Metal carbon eutectic cells (high-temperature fixed points, HTFPs) (Machin in AIP Conf Proc 1552:305, 2013) are being considered for use as reliable high-temperature references for non-contact thermometry above the copper point (1084.62°C). Recent studies have demonstrated the concept of using doped metal carbon eutectic cells as artefacts suitable for temperature scale comparisons (Teixeira et al. in AIP Conf Proc 1552:363, 2013; Teixeira et al. in Int J Thermophys 35:467-474, 2014; Machin et al. in Int J Thermophys 36:327-335, 2015). When using such artefacts, the participating institutes do not know the realization temperature of the doped HTFP cell, because it has been modified by the addition of a selected dopant at a definite concentration. The use of such fixed points can critically evaluate the real measurement capability of the institutes in any comparison. The pyrometry laboratory of Inmetro developed a set of doped Ni-C eutectic cells in 2012 and 2013. This paper describes the long-term stability of a Sn-doped Ni-C cell constructed in 2012, which accumulated more than 220 h above 1300°C amounting to more than 50 cycles of melts and freezes. The cell remained stable, well within the measurement uncertainty, throughout the evaluation period demonstrating the utility of such cells for scale comparison purposes.

  14. Deformation mechanisms to ameliorate the mechanical properties of novel TRIP/TWIP Co-Cr-Mo-(Cu) ultrafine eutectic alloys

    Science.gov (United States)

    Kim, J. T.; Hong, S. H.; Park, H. J.; Kim, Y. S.; Suh, J. Y.; Lee, J. K.; Park, J. M.; Maity, T.; Eckert, J.; Kim, K. B.

    2017-01-01

    In the present study, the microstructural evolution and the modulation of the mechanical properties have been investigated for a Co-Cr-Mo (CCM) ternary eutectic alloy by addition of a small amount of copper (0.5 and 1 at.%). The microstructural observations reveal a distinct dissimilarity in the eutectic structure such as a broken lamellar structure and a well-aligned lamellar structure and an increasing volume fraction of Co lamellae as increasing amount of copper addition. This microstructural evolution leads to improved plasticity from 1% to 10% without the typical tradeoff between the overall strength and compressive plasticity. Moreover, investigation of the fractured samples indicates that the CCMCu alloy exhibits higher plastic deformability and combinatorial mechanisms for improved plastic behavior. The improved plasticity of CCMCu alloys originates from several deformation mechanisms; i) slip, ii) deformation twinning, iii) strain-induced transformation and iv) shear banding. These results reveal that the mechanical properties of eutectic alloys in the Co-Cr-Mo system can be ameliorated by micro-alloying such as Cu addition.

  15. Investigation of preparation and characteristics of Sn-Bi eutectic powders derived from a high shear mechanical approach

    Energy Technology Data Exchange (ETDEWEB)

    Liang Kun; Tang Xianzhong [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Yu Lijing [Kunming Institute of Physics, Kunming 650223 (China); Wang Ni [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Hu Wencheng, E-mail: huwc@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2011-10-13

    Graphical abstract: Highlights: > Sn-Bi eutectic powders were prepared by a high shear mechanical approach. This approach is a green one because no chemical reaction occurs in the process and the high boiling point solvent can be used repeatedly. > The melting point of the as-prepared powders is about 140 deg. C, which is in agreement with the low melting point solder for industrial applications. > The size of Sn-Bi eutectic powders can be controlled by addition of Poly(N-vinylpyrrolidone) (PVP) due to the adsorption. - Abstract: Fusible Sn-Bi eutectic alloy particles were synthesized from bulk Sn-Bi alloy via a high-shear mechanical approach. The morphology, composition, and structure of the as-prepared Sn-Bi alloy particles were characterized by XRD, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, differential scanning calorimetry, thermogravimetry, and Fourier-transform infrared spectroscopy. The particles were found to be spherical and consist of the tetragonal phase of tin as well as the rhombohedral phase of bismuth. In addition, there were large amounts of poly(N-vinylpyrrolidone) coated on the particles.

  16. Highly Simple Deep Eutectic Solvent Extraction of Manganese in Vegetable Samples Prior to Its ICP-OES Analysis.

    Science.gov (United States)

    Bağda, Esra; Altundağ, Hüseyin; Soylak, Mustafa

    2017-10-01

    In the present work, simple and sensitive extraction methods for selective determination of manganese have been successfully developed. The methods were based on solubilization of manganese in deep eutectic solvent medium. Three deep eutectic solvents with choline chloride (vitamin B4) and tartaric/oxalic/citric acids have been prepared. Extraction parameters were optimized with using standard reference material (1573a tomato leaves). The quantitative recovery values were obtained with 1.25 g/L sample to deep eutectic solvent (DES) volume, at 95 °C for 2 h. The limit of detection was found as 0.50, 0.34, and 1.23 μg/L for DES/tartaric, DES/oxalic, and DES/citric acid, respectively. At optimum conditions, the analytical signal was linear for the range of 10-3000 μg/L for all studied DESs with the correlation coefficient >0.99. The extraction methods were applied to different real samples such as basil herb, spinach, dill, and cucumber barks. The known amount of manganese was spiked to samples, and good recovery results were obtained.

  17. A reactive distillation process for the treatment of LiCl-KCl eutectic waste salt containing rare earth chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Eun, H.C., E-mail: ehc2004@kaeri.re.kr; Choi, J.H.; Kim, N.Y.; Lee, T.K.; Han, S.Y.; Lee, K.R.; Park, H.S.; Ahn, D.H.

    2016-11-15

    The pyrochemical process, which recovers useful resources (U/TRU metals) from used nuclear fuel using an electrochemical method, generates LiCl-KCl eutectic waste salt containing radioactive rare earth chlorides (RECl{sub 3}). It is necessary to develop a simple process for the treatment of LiCl-KCl eutectic waste salt in a hot-cell facility. For this reason, a reactive distillation process using a chemical agent was achieved as a method to separate rare earths from the LiCl-KCl waste salt. Before conducting the reactive distillation, thermodynamic equilibrium behaviors of the reactions between rare earth (Nd, La, Ce, Pr) chlorides and the chemical agent (K{sub 2}CO{sub 3}) were predicted using software. The addition of the chemical agent was determined to separate the rare earth chlorides into an oxide form using these equilibrium results. In the reactive distillation test, the rare earth chlorides in LiCl-KCl eutectic salt were decontaminated at a decontamination factor (DF) of more than 5000, and were mainly converted into oxide (Nd{sub 2}O{sub 3}, CeO{sub 2}, La{sub 2}O{sub 3}, Pr{sub 2}O{sub 3}) or oxychloride (LaOCl, PrOCl) forms. The LiCl-KCl was purified into a form with a very low concentration (<1 ppm) for the rare earth chlorides.

  18. Identification of Flavonoids (Quercetin, Gallic acid and Rutin from Catharanthus roseus Plant Parts using Deep Eutectic Solvent

    Directory of Open Access Journals (Sweden)

    Asma Nisar

    2017-02-01

    Full Text Available Green technology is the most important topic in the pharmaceutical field because it reduces the cost of medicines and minimizes the environmental impact of the field and is better for human health and safety. Green chemistry emphasizes that the solvent should be nontoxic, safe, cheap, green, readily available, recyclable, and biodegradable. Deep eutectic solvents, a new type of green solvent, have some renowned properties—for instance, high thermal stability, low vapor pressure, low cost, biodegradability, and high viscosity. In this study, deep eutectic solvents made up of choline chloride-glycerol (1:2 were used for the extraction and isolation of flavonoid (rutin, gallic acid, and quercetin from Catharanthus roseus plant parts, flower petal, leaves, stem, and root. The amounts of rutin and quercetin in flower petal are 29.46 and 6.51%, respectively, whereas, rutin, gallic acid, and quercetin amounts in leaves are 25.16, 8.57, and 10.47%, respectively. In stem the amounts of rutin, gallic acid, and quercetin are 13.02, 5.89, and 7.47%, respectively. In root, only quercetin has been obtained that is 13.49%. The HPLC is an analytical method, which was found to be an excellent technique for determination of rutin, gallic acid, and quercetin using deep eutectic solvent extraction from plant parts of Catharanthus roseus.

  19. Bitumen recovery from oil sands using deep eutectic solvent and its aqueous solutions

    Science.gov (United States)

    Pulati, Nuerxida

    Oil sands compose a significant proportion of the world's known oil reserves. Oil sands are also known as tar sands and bituminous sands, are complex mixtures of sand, clays, water and bitumen, which is "heavy" and highly viscous oil. The extraction and separation of bitumen from oil sands requires significant amount of energy and large quantities of water and poses several environmental challenges. Bitumen can be successfully separated from oil sands using imidazolium based ionic liquids and nonpolar solvents, however, ionic liquids are expensive and toxic. In this thesis, the ionic liquid alternatives- deep eutectic solvent, were investigated. Oil sands separation can be successfully achieved by using deep eutectic solvents DES (choline chloride and urea) and nonpolar solvent naphtha in different types of oil sands, including Canadian ("water-wet"), Utah ("oil-wet") and low grade Kentucky oil sands. The separation quality depends on oil sands type, including bitumen and fine content, and separation condition, such as solvent ratio, temperature, mixing time and mechanical centrifuge. This separation claims to the DES ability to form ion /charge layering on mineral surface, which results in reduction of adhesion forces between bitumen and minerals and promote their separation. Addition of water to DES can reduce DES viscosity. DES water mixture as a media, oil sands separation can be achieved. However, concentration at about 50 % or higher might be required to obtain a clear separation. And the separation efficiency is oil sands sample dependent. The highest bitumen extraction yield happened at 75% DES-water solution for Utah oil sands samples, and at 50 60% DES-water solutions for Alberta oil sands samples. Force curves were measured using Atomic Force Microscopy new technique, PeakForce Tapping Quantitative Nanomechanical Mapping (PFTQNM). The results demonstrate that, by adding DES, the adhesion force between bitumen and silica and dissipation energy will

  20. Temperature monitoring using fibre optic sensors in a lead-bismuth eutectic cooled nuclear fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    De Pauw, B., E-mail: bdepauw@vub.ac.be [Vrije Universiteit Brussel (VUB), Brussels Photonics Team (B-Phot), Brussels (Belgium); Vrije Universiteit Brussel (VUB), Acoustics and Vibration Research Group (AVRG), Brussels (Belgium); Belgian Nuclear Research Centre, (SCK-CEN), Boeretang 200, Mol (Belgium); Lamberti, A.; Ertveldt, J.; Rezayat, A.; Vanlanduit, S. [Vrije Universiteit Brussel (VUB), Acoustics and Vibration Research Group (AVRG), Brussels (Belgium); Van Tichelen, K. [Belgian Nuclear Research Centre, (SCK-CEN), Boeretang 200, Mol (Belgium); Berghmans, F. [Vrije Universiteit Brussel (VUB), Brussels Photonics Team (B-Phot), Brussels (Belgium)

    2016-02-15

    Highlights: • We demonstrate the use of optical fibre sensors in lead-bismuth cooled installations. • In this first of a kind experiment, we focus on temperature measurements of fuel rods • We acquire the surface temperature with a resolution of 30 mK. • We asses the condition of the installation during different steps of the operation. - Abstract: In-core temperature measurements are crucial to assess the condition of nuclear reactor components. The sensors that measure temperature must respond adequately in order, for example, to actuate safety systems that will mitigate the consequences of an undesired temperature excursion and to prevent component failure. This issue is exacerbated in new reactor designs that use liquid metals, such as for example a molten lead-bismuth eutectic, as coolant. Unlike water cooled reactors that need to operate at high pressure to raise the boiling point of water, liquid metal cooled reactors can operate at high temperatures whilst keeping the pressure at lower levels. In this paper we demonstrate the use of optical fibre sensors to measure the temperature distribution in a lead-bismuth eutectic cooled installation and we derive functional input e.g. the temperature control system or other systems that rely on accurate temperature actuation. This first-of-a-kind experiment demonstrates the potential of optical fibre based instrumentation in these environments. We focus on measuring the surface temperature of the individual fuel rods in the fuel assembly, but the technique can also be applied to other components or sections of the installation. We show that these surface temperatures can be experimentally measured with limited intervention on the fuel pin owing to the small geometry and fundamental properties of the optical fibres. The unique properties of the fibre sensors allowed acquiring the surface temperatures with a resolution of 30 mK. With these sensors, we assess the condition of the test section containing the fuel

  1. Fourier transform infrared spectroscopy (FTIR) analysis of paddy straw pulp treated using deep eutectic solvent

    Science.gov (United States)

    Lun, Lim Wei; Gunny, Ahmad Anas Nagoor; Kasim, Farizul Hafiz; Arbain, Dachyar

    2017-04-01

    This study focus on Fourier Transform Infrared Spectroscopy (FTIR) analysis of paddy straw pulp treated using deep eutectic solvent (DES). DES was synthesized using potassium carbonate and glycerol at different molar ratio under normal atmospheric pressure. Pretreatment of lignocellulosic biomass was carried out at temperature of 120°C for 60 minutes under mass ratio of paddy straw to DES 1:9. The chemical structures of the untreated paddy straw and paddy straw pulp treated with different molar ratio of DES were analyzed using FTIR. The characterization result from FT-IR spectra indicated that the potassium carbonate-glycerol DES deconstructed the structures of paddy straw by removing lignin and hemicellulose during the pulping process. The peak intensity that occurs at region between 900 cm-1 and 1500 cm-1 shows that the presence of elevated level of cellulose after lignocellulosic pulping. From FT-IR analysis, DES could not remove the functional group of lignin and hemicellulose completely but yet expose the structure of cellulose.

  2. Mechanistic Selection and Growth of Twinned Bicrystalline Primary Si in Near Eutectic Al-Si Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Choonho [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Morphological evolution and selection of angular primary silicon is investigated in near-eutectic Al-Si alloys. Angular silicon arrays are grown directionally in a Bridgman furnace at velocities in the regime of 10-3 m/sec and with a temperature gradient of 7.5 x 103 K/m. Under these conditions, the primary Si phase grows as an array of twinned bicrystalline dendrites, where the twinning gives rise to a characteristic 8-pointed star-shaped primary morphology. While this primary Si remains largely faceted at the growth front, a complex structure of coherent symmetric twin boundaries enables various adjustment mechanisms which operate to optimize the characteristic spacings within the primary array. In the work presented here, this primary silicon growth morphology is examined in detail. In particular, this thesis describes the investigation of: (1) morphological selection of the twinned bicrystalline primary starshape morphology; (2) primary array behavior, including the lateral propagation of the starshape grains and the associated evolution of a strong <100> texture; (3) the detailed structure of the 8-pointed star-shaped primary morphology, including the twin boundary configuration within the central core; (4) the mechanisms of lateral propagation and spacing adjustment during array evolution; and (5) the thermosolutal conditions (i.e. operating state) at the primary growth front, including composition and phase fraction in the vicinity of the primary tip.

  3. Supported Silver Nanoparticle and Near-Interface Solution Dynamics in a Deep Eutectic Solvent

    Energy Technology Data Exchange (ETDEWEB)

    Hammons, Joshua A.; Ustarroz, Jon; Muselle, Thibault; Torriero, Angel A. J.; Terryn, Herman; Suthar, Kamlesh; Ilavsky, Jan

    2016-01-28

    Type III deep eutectic solvents (DES) have attracted significant interest as both environmentally friendly and functional solvents that are, in some ways, advantageous to traditional aqueous systems. While these solvents continue to produce remarkable thin films and nanoparticle assemblies, their interactions with metallic surfaces are complex and difficult to manipulate. In this study, the near-surface region (2–600 nm) of a carbon surface is investigated immediately following silver nanoparticle nucleation and growth. This is accomplished, in situ, using a novel grazing transmission small-angle X-ray scattering approach with simultaneous voltammetry and electrochemical impedance spectroscopy. With this physical and electrochemical approach, the time evolution of three distinct surface interaction phenomena is observed: aggregation and coalescence of Ag nanoparticles, multilayer perturbations induced by nonaggregated Ag nanoparticles, and a stepwise transport of dissolved Ag species from the carbon surface. The multilayer perturbations contain charge-separated regions of positively charged choline-ethylene and negatively charged Ag and Cl species. Both aggregation-coalescence and the stepwise decrease in Ag precursor near the surface are observed to be very slow (~2 h) processes, as both ion and particle transport are significantly impeded in a DES as compared to aqueous electrolytes. Finally, altogether, this study shows how the unique chemistry of the DES changes near the surface and in the presence of nanoparticles that adsorb the constituent species.

  4. Choline chloride-based deep eutectic solvents as additives for optimizing chromatographic behavior of caffeic acid

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guizhen; Zhu, Tao; Lei, Yingjie [Tianjin University of Technology, Tianjin (China)

    2015-10-15

    A series of deep eutectic solvents (DESs) were prepared using glycerol and choline chloride (ChCl), and Fourier transform infrared spectrometer (FT-IR) was used to analyze the spectra of glycerol, choline chloride and DESs based on glycerol and choline chloride. Then DESs were used as the additives of mobile phase to optimize chromatographic behavior of caffeic acid in high performance liquid chromatography (HPLC). A 17-run Box-Behnken design (BBD) was employed to evaluate effect of DESs as additives by analyzing the maximum theoretical plate number. Three factors, reaction temperature (60 .deg. C, 80 .deg. C, 100 .deg. C), molar ratio of glycerol and choline chloride (2 : 1, 3 : 1, 4 : 1, n/n), and volume percent of additives (0.05%, 0.10%, 0.15%, v/v), were investigated in BBD. The optimum experiment condition was that of reaction temperature (80 .deg. C), molar ratio of glycerol and ChCl (3 : 1, n/n), and volume percent of additive (0.10%, v/v). The mean chromatographic theoretical plate number of the caffeic acid this condition was 1567.5, and DESs as additives shorten the retention time and modify the chromatogram shape, proving DESs as additives for effective theoretical plate number and column efficiency in HPLC.

  5. Enhanced esterification of oleic acid and methanol by deep eutectic solvent assisted Amberlyst heterogeneous catalyst.

    Science.gov (United States)

    Pan, Ying; Alam, Md Asraful; Wang, Zhongming; Wu, Jingcheng; Zhang, Yi; Yuan, Zhenhong

    2016-11-01

    In present study, esterification of oleic acid with methanol using deep eutectic solvent (DES) assisted Amberlyst heterogeneous catalyst was investigated to produce biodiesel. Results showed that esterification efficiency was enhanced by the DES. The combined effect of DES on Amberlyst BD20 (BD20) is better than Amberlyst 15 (A-15) due to different structure. The optimal reaction conditions were 12:1M ratio of methanol to oleic acid, 20%(wt/wt) catalyst (BD20-DES (2:8) and A-15-DES (8:2)) at 85°C for 100min with agitating at 200rpm. The mechanism involved in catalysis and their capacity to reuse were studied. We proposed, Choline chloride-glycerol (Chcl-gly) DES could enhance the Amberlyst function due to the hydrogen bond effect on both DES and water. BD20 has fewer pores than A-15, have desirable performance in decreasing the inhibition the water during esterification of high FFA content and provide better performance in reuse. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. THEORETICAL MODELLING OF THERMAL CONDUCTIVITY OF DEEP EUTECTIC SOLVENT BASED NANOFLUID

    Directory of Open Access Journals (Sweden)

    OSAMA M.

    2017-03-01

    Full Text Available In this research, the thermal conductivities of graphene oxide nano-particles (GO dispersed in deep eutectic solvents (DESs composed of ethylene glycol (EG as a hydrogen bond donor (HBD and methyl tri-phenyl phosphonium bromide (MTPB as a salt, at weight fractions of 0.01%, 0.02% and 0.05%, were studied and quantitatively analysed. The molar ratios of DES (HBD:Salt used in this study are 3:1 and 5:1.The thermal conductivity data of the nano-fluid samples were measured at temperatures of 25-70 °C and the results were compared with theoretical models. Rashmi and Kumar’ models showed conflicting prediction performance. While, Rashmi’s model can predict thermal conductivity with error as low as 0.1%, Kumar’s model error varied from 3-55%. Thus, in this work, a simple empirical modification to Kumar’s model is presented which improves the predictions accuracy compared to that of Rashmi’s model.

  7. The Corrosion Behavior of Stainless Steel 316L in Novel Quaternary Eutectic Molten Salt System

    Science.gov (United States)

    Wang, Tao; Mantha, Divakar; Reddy, Ramana G.

    2017-03-01

    In this article, the corrosion behavior of stainless steel 316L in a low melting point novel LiNO3-NaNO3-KNO3-NaNO2 eutectic salt mixture was investigated at 695 K which is considered as thermally stable temperature using electrochemical and isothermal dipping methods. The passive region in the anodic polarization curve indicates the formation of protective oxides layer on the sample surface. After isothermal dipping corrosion experiments, samples were analyzed using SEM and XRD to determine the topography, corrosion products, and scale growth mechanisms. It was found that after long-term immersion in the LiNO3-NaNO3-KNO3-NaNO2 molten salt, LiFeO2, LiFe5O8, Fe3O4, (Fe, Cr)3O4 and (Fe, Ni)3O4 oxides were formed. Among these corrosion products, LiFeO2 formed a dense and protective layer which prevents the SS 316L from severe corrosion.

  8. Extraction of Illegal Dyes from Red Chili Peppers with Cholinium-Based Deep Eutectic Solvents

    Directory of Open Access Journals (Sweden)

    Shuqiang Zhu

    2017-01-01

    Full Text Available Deep eutectic solvents (DESs as a new kind of green solvents have been used to extract bioactive compounds but there are few applications in extracting chrysoidine dyes. In this study, we developed an ultrasonic-assisted extraction method with choline chloride/hydrogen bond donor (ChCl/HBD DES for the extraction of chrysoidine G (COG, astrazon orange G (AOG, and astrazon orange R (AOR in food samples. Some experimental parameters, such as extraction time, raw material/solvent ratio, and temperature, were evaluated and optimized as follows: the ratio of ChCl/HBD, 1 : 2 (v/v; the ratio of sample/DES, 1 : 10 (g/mL; extraction time, 20 min; extraction temperature, 50°C. Under the optimized conditions, the limits of detection (μg/mL were 0.10 for COG and 0.06 for AOG and AOR. The relative standard deviations were in the range of 1.2–2.1%. The recoveries of the three dyes were in the range of 80.2–105.0%. By comparing with other commonly used solvents for extracting chrysoidine dyes, the advantages of DESs proved them to be potential extraction solvents for chrysoidine G, astrazon orange G, and astrazon orange R in foods.

  9. Topical amethocaine (Ametop) is superior to EMLA for intravenous cannulation. Eutectic mixture of local anesthetics.

    LENUS (Irish Health Repository)

    Browne, J

    2012-02-03

    PURPOSE: A eutectic mixture of local anesthetics (EMLA) is commonly used to provide topical anesthesia for intravenous (i.v.) cannulation. One of its side effects is vasoconstriction, which may render cannulation more difficult. A gel formulation of amethocaine (Ametop) is now commercially available. The aim of this study was to compare EMLA and Ametop with regard to the degree of topical anesthesia afforded, the incidence of vasoconstriction and the ease of i.v. cannulation. METHODS: Thirty two ASA I adult volunteers had a #16 gauge i.v. cannula inserted on two separate occasions using EMLA and Ametop applied in a double blind fashion for topical anesthesia. Parameters that were recorded after each cannulation included visual analogue pain scores (VAPS), the presence of vasoconstriction and the ease of cannulation, graded as: 1 = easy, 2 = moderately difficult, 3 = difficult and 4 = failed. RESULTS: The mean VAPS +\\/- SD after cannulation with Ametop M was 12+\\/-9.9 and with EMLA was 25.3+\\/-16.6 (P = 0.002). Vasoconstriction occurred after EMLA application on 17 occasions and twice after Ametop (P = 0.001). The grade of difficulty of cannulation was 1.44+\\/-0.88 following EMLA and 1.06+\\/-0.25 with Ametop (P = 0.023). CONCLUSIONS: Intravenous cannulation was less painful following application of Ametop than EMLA. In addition, Ametop caused less vasoconstriction and facilitated easier cannulation. Its use as a topical anesthetic agent is recommended, especially when i.v. access may be problematic.

  10. Influence of cooling speed on the solidification of a hyper-eutectic Cu-Sn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mardare, Cezarina Cela; Hassel, Achim Walter [Institute for Chemical Technology of Inorganic Materials, Johannes Kepler University, Linz (Austria)

    2012-05-15

    Cu-Sn alloys with a hyper-eutectic composition (97.53 at% Sn, 2.42 at% Cu and 0.05 at% impurities) were melted in a Bridgman-type furnace and cooled at different velocities ranging from free fall to 13 {mu}m/s. The formation of the intermetallic phase along the alloys, as well as the size, distribution and microstructure were observed as a function of cooling speed, showing different particle morphologies and growth. The intermetallic phase formed was Cu{sub 6}Sn{sub 5} as confirmed by chemical analysis and X-ray measurements. Electron backscattered diffraction (EBSD) measurements indicate that the {eta}'-monoclinic phase of the Cu{sub 6}Sn{sub 5} intermetallic was formed on all samples, together with the {beta}-Sn. SEM images both transversal and longitudinal cross-sections of alloys cooled at different velocities. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Food-Grade Synthesis of Maillard-Type Taste Enhancers Using Natural Deep Eutectic Solvents (NADES

    Directory of Open Access Journals (Sweden)

    Maximilian Kranz

    2018-01-01

    Full Text Available The increasing demand for healthier food products, with reduced levels of table salt, sugar, and mono sodium glutamate, reinforce the need for novel taste enhancers prepared by means of food-grade kitchen-type chemistry. Although several taste modulating compounds have been discovered in processed foods, their Maillard-type ex food production is usually not exploited by industrial process reactions as the yields of target compounds typically do not exceed 1–2%. Natural deep eutectic solvents (NADES are reported for the first time to significantly increase the yields of the taste enhancers 1-deoxy-ᴅ-fructosyl-N-β-alanyl-ʟ-histidine (49% yield, N-(1-methyl-4-oxoimidazolidin-2-ylidene aminopropionic acid (54% yield and N2-(1-carboxyethyl guanosine 5′-monophosphate (22% yield at low temperature (80–100 °C within a maximum reaction time of 2 h. Therefore, NADES open new avenues to a “next-generation culinary chemistry” overcoming the yield limitations of traditional Maillard chemistry approaches and enable a food-grade Maillard-type generation of flavor modulators.

  12. Overstability of lamellar eutectic growth below the minimum-undercooling spacing

    Science.gov (United States)

    Akamatsu, S.; Faivre, G.; Plapp, M.; Karma, A.

    2004-06-01

    We investigate the stability of lamellar eutectic growth by thin-sample directional solidification experiments and two-dimensional phase-field simulations. We find that lamellar patterns can be morphologically stable for spacings smaller than the minimum undercooling spacing λ m . Key to this finding is the direct experimental measurement of the relationship between the front undercooling and spacing, which identifies λ m independently of the Jackson and Hunt (JH) theory and of uncertainties of alloy parameters. This finding conflicts with the common belief that patterns with λ<λ m should be unstable, which is based on the Jackson-Hunt-Cahn assumption that lamellae grow normal to the envelope of the front. Our simulation results reveal that lamellae also move parallel to this envelope to reduce spacing gradients, thereby weakly violating this assumption but strongly overstabilizing patterns for a range of spacing below λ m that increases with G/V (temperature gradient to growth rate ratio). This range is much larger than predicted by previous stability analyses and can be significant for standard experimental conditions. An analytical expression is obtained phenomenologically, which predicts well the variation of the smallest stable spacing with G/V. We also present results that shed light on the history-dependent selection and long-time evolution of the experimentally observed range of spacings.

  13. Temperature determination of the Si-SiC eutectic fixed point using thermocouples

    Science.gov (United States)

    Suherlan; Kim, Yong-Gyoo; Joung, Wukchul; Yang, Inseok

    2015-04-01

    The temperature of the Si-SiC eutectic fixed point for use in thermocouple thermometry has been determined. Three Si-SiC cells were fabricated from pure silicon powder within separate graphite crucibles. Each of the three cells was cycled through 17 melt-freeze cycles and subjected to temperatures above 1400 °C for a period of approximately 73 h, and none showed any sign of mechanical failure. The melting transition was measured using three types of thermocouple: one type S, one type B, and two Pt/Pd thermocouples calibrated at the fixed points of Ag, Cu, Fe-C, Co-C, and Pd (only for type B). The transition temperature, measured using the type S and two Pt/Pd thermocouples, was (1410.0 ± 0.8) °C with k = 2. However, the measurement uncertainty using the type B thermocouple was as large as 1.5 °C (k = 2) due to the inhomogeneity of the thermocouple. The repeatability of the three Si-SiC cells was calculated to be 0.3 °C, and the extremes of the temperature measurement differed by 0.8 °C.

  14. Deacidification of palm oil using betaine monohydrate-based natural deep eutectic solvents.

    Science.gov (United States)

    Zahrina, Ida; Nasikin, Mohammad; Krisanti, Elsa; Mulia, Kamarza

    2018-02-01

    In the palm oil industry, the deacidification process is performed by steam stripping which causes the loss of most of palm oil's natural antioxidants due to high temperature. The liquid-liquid extraction process which is carried out at low temperature is preferable in order to preserve these compounds. The use of hydrated ethanol can reduce the losses of antioxidants, but the ability of this solvent to extract free fatty acids also decreases. Betaine monohydrate-based natural deep eutectic solvents (NADES) have extensive potential for this process. The selectivity of these NADES was determined to select a preferable solvent. The betaine monohydrate-glycerol NADES in a molar ratio of 1:8 was determined to be the preferred solvent with the highest selectivity. This solvent has an efficiency of palmitic acid extraction of 34.14%, and the amount of antioxidants can be preserved in the refined palm oil up to 99%. The compounds are stable during extraction. Copyright © 2017. Published by Elsevier Ltd.

  15. XRD and EBSD Measurements of Directional Solidification Fe-C Eutectic Alloy

    Directory of Open Access Journals (Sweden)

    Trepczyńska-Łent M.

    2016-12-01

    Full Text Available In a vacuum Bridgman-type furnace, under an argon atmosphere, directionally solidified sample of Fe - C alloy was produced. The pulling rate was v = 83 μm/s (300 mm/h and constant temperature gradient G = 33,5 K/mm. The microstructure of the sample was examined on the longitudinal section using an Optical Microscope and Scanning Electron Microscope. The X-ray diffraction and electron backscatter diffraction technique (EBSD have been used for the crystallographic analysis of carbide particles in carbide eutectic. The X-ray diffraction was made parallel and perpendicular to the axis of the goniometer. The EBSD shows the existence of iron carbide Fe3C with orthorhombic and hexagonal structure. Rapid solidification may cause a deformation of the lattice plane which is indicated by different values of the lattice parameters. Such deformation could also be the result of directional solidification. Not all of the peaks in X–ray diffractograms were identified. They may come from other iron carbides. These unrecognized peaks may also be a result of the residual impurity of alloy.

  16. Fluxon Controlled Resistance Switching in Centimeter-Long Superconducting Galium-Indium Eutectic Nanowires

    Science.gov (United States)

    Zhao, Weiwei; Bischof, Jesse; Liu, Xin; Hutasoit, Jimmy; Fitzgibbons, Thomas; Wang, Lin; Cai, Zhonghou; Chen, Si; Hayes, John; Sazio, Pier; Liu, Chaoxing; Jain, Jainendra; Badding, John; Chan, Moses

    2014-03-01

    We observe unexpected hysteretic behavior in centimeter long quasi 1D nanowires of Ga-In eutectic in transport measurements in the presence of a magnetic field. In particular, in some parts of the phase diagram, the system can exist in one of two stable states with different resistances. We propose that the nonzero resistance occurs when a spontaneously nucleated Ga droplet along the length of the nanowire traps a superconducting fluxon and, thereby, triggers phase slips in a nearby Ga droplet. The Ga-In nanowires thus provide a platform wherein the resistance can be switched on and off by the addition of a single fluxon. The presence of pure Ga droplets in the Ga-In nanowire was confirmed by X-ray flourescence studies conducted in Advanced Photon Source. The long length of the nanowire increases the probability of a wire containing two nearby droplets. This work is supported by the Penn State Materials Research Science and Engineering Center, funded by the National Science Foundation (DMR 0820404) and by the Energy Frontier Research Center (DE-0001057), DOE.

  17. On the formation of U-Al alloys in the molten LiCl-KCl eutectic

    Energy Technology Data Exchange (ETDEWEB)

    Cassayre, L. [Laboratoire de Genie Chimique (LGC), Universite Paul Sabatier, UMR CNRS 5503, 31062 Toulouse cedex 9 (France); Caravaca, C. [CIEMAT, DE/DFN/URAA, Avda. Complutense, 22, Madrid 28040 (Spain); Jardin, R. [European Commission, JRC, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Malmbeck, R. [European Commission, JRC, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany)], E-mail: rikard.malmbeck@ec.europa.eu; Masset, P.; Mendes, E.; Serp, J.; Soucek, P.; Glatz, J.-P. [European Commission, JRC, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany)

    2008-08-15

    U-Al alloy formation has been studied in the temperature range of 400-550 deg. C by electrochemical techniques in the molten LiCl-KCl eutectic. Cyclic voltammetry showed that underpotential reduction of U(III) onto solid Al occurs at a potential about 0.35 V more anodic than pure U deposition. Open circuit potential measurements, recorded after small depositions of U metal onto the Al electrode, did not allow the distinction between potentials associated with UAl{sub x} alloys and the Al rest potential, as they were found to be practically identical. As a consequence, a spontaneous chemical reaction between dissolved UCl{sub 3} and Al is thermodynamically possible and was experimentally observed. Galvanostatic electrolyses were carried out both on Al rods and Al plates. Stable and dense U-Al deposits were obtained with high faradic yields, and the possibility to load the whole bulk of a thin Al plate was demonstrated. The analyses (by SEM-EDX and XRD) of the deposits indicated the formation of different intermetallic phases (UAl{sub 2}, UAl{sub 3} and UAl{sub 4}) depending on the experimental conditions.

  18. One-step production of biodiesel from wet and unbroken microalgae biomass using deep eutectic solvent.

    Science.gov (United States)

    Pan, Ying; Alam, Md Asraful; Wang, Zhongming; Huang, Dalong; Hu, Keqin; Chen, Hongxuan; Yuan, Zhenhong

    2017-08-01

    One-step and Two-step methods were studied for lipid extraction from wet and unbroken (water content is 65-67%) Chlorella sp. and Chlorococcum sp. (GN38) using deep eutectic solvent (DES) treated microalgae cells. Further we optimized the extraction process and studied on its underlying mechanism. Among all DES, Choline chloride-Acetic acid (Ch-Aa) DES treatment showed optimal conditions at the mass ratio of DES: methanol-H2SO4 (2.00%) mixture: algae biomass was 60:40:3 with reaction time was 60min, and the optimum temperature was 110°C (Chlorococcum sp.) and 130°C (Chlorella sp.) respectively. The total content of FAME by One-step method with DES treatment was improved by 30% compared with Two-step method. This process is effective on wet and unbroken paste of microalgae biomass, so the FAME extracted using one-step with DES process is feasible for microalgae based biodiesel production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Bulk and interfacial structures of reline deep eutectic solvent: A molecular dynamics study

    Science.gov (United States)

    Kaur, Supreet; Sharma, Shobha; Kashyap, Hemant K.

    2017-11-01

    We apply all-atom molecular dynamics simulations to describe the bulk morphology and interfacial structure of reline, a deep eutectic solvent comprising choline chloride and urea in 1:2 molar ratio, near neutral and charged graphene electrodes. For the bulk phase structural investigation, we analyze the simulated real-space radial distribution functions, X-ray/neutron scattering structure functions, and their partial components. Our study shows that both hydrogen-bonding and long-range correlations between different constituents of reline play a crucial role to lay out the bulk structure of reline. Further, we examine the variation of number density profiles, orientational order parameters, and electrostatic potentials near the neutral and charged graphene electrodes with varying electrode charge density. The present study reveals the presence of profound structural layering of not only the ionic components of reline but also urea near the electrodes. In addition, depending on the electrode charge density, the choline ions and urea molecules render different orientations near the electrodes. The simulated number density and electrostatic potential profiles for reline clearly show the presence of multilayer structures up to a distance of 1.2 nm from the respective electrodes. The observation of positive values of the surface potential at zero charge indicates the presence of significant nonelectrostatic attraction between the choline cation and graphene electrode. The computed differential capacitance (Cd) for reline exhibits an asymmetric bell-shaped curve, signifying different variation of Cd with positive and negative surface potentials.

  20. Deep eutectic solvent-assisted synthesis of biodegradable polyesters with antibacterial properties.

    Science.gov (United States)

    García-Argüelles, Sara; Serrano, M Concepción; Gutiérrez, María C; Ferrer, M Luisa; Yuste, Luis; Rojo, Fernando; del Monte, Francisco

    2013-07-30

    Bacterial infection related to the implantation of medical devices represents a serious clinical complication, with dramatic consequences for many patients. In past decades, numerous attempts have been made to develop materials with antibacterial and/or antifouling properties by the incorporation of antibiotic and/or antiseptic compounds. In this context, deep eutectic solvents (DESs) are acquiring increasing interest not only as efficient carriers of active principle ingredients (APIs) but also as assistant platforms for the synthesis of a wide repertoire of polymer-related materials. Herein, we have successfully prepared biodegradable poly(octanediol-co-citrate) polyesters with acquired antibacterial properties by the DES-assisted incorporation of quaternary ammonium or phosphonium salts into the polymer network. In the resulting polymers, the presence of these salts (i.e., choline chloride, tetraethylammonium bromide, hexadecyltrimethylammonium bromide, and methyltriphenylphosphonium bromide) inhibits bacterial growth in the early postimplantation steps, as tested in cultures of Escherichia coli on solid agar plates. Later, positive polymer cytocompatibility is expected to support cell colonization, as anticipated from in vitro preliminary studies with L929 fibroblasts. Finally, the attractive elastic properties of these polyesters permit matching those of soft tissues such as skin. For all of these reasons, we envisage the utility of some of these antibacterial, biocompatible, and biodegradable polyesters as potential candidates for the preparation of antimicrobial wound dressings. These results further emphasize the enormous versatility of DES-assisted synthesis for the incorporation, in the synthesis step, of a wide palette of APIs into polymeric networks suitable for biomedical applications.

  1. Stability and thermophysical studies on deep eutectic solvent based carbon nanotube nanofluid

    Science.gov (United States)

    Chen, Yan Yao; Walvekar, Rashmi; Khalid, Mohammad; Shahbaz, Kaveh; Gupta, T. C. S. M.

    2017-07-01

    Commercial coolants such as water, ethylene glycol and triethylene glycol possess very low thermal conductivity, high vapor pressure, corrosion issues and low thermal stability thus limiting the thermal enhancement of the nanofluids. Thus, a new type of base fluid known as deep eutectic solvents (DESs) is proposed in this work as a potential substitute for the conventional base fluid due to their unique solvent properties such as low vapor pressure, high thermal stability, biodegradability and non-flammability. In this work, 33 different DESs derived from phosphonium halide salt and ammonium halide salts were synthesised. Carbon nantubes (CNTs) with different concentrations (0.01 wt%-0.08 wt%) were dispersed into DESs with the help of sonication. Stability of the nanofluids were determined using both qualitative (visual observation) and quantitative (UV spectroscopy) approach. In addition, thermo-physical properties such as thermal conductivity, specific heat, viscosity and density were investigated. The stability results indicated that phosphonium based DESs have higher stability (up to 4 d) as compared to ammonium-based DESs (up to 3 d). Thermal enhancement of 30% was observed for ammonium based DES-CNT nanofluid whereas negative thermal enhancement was observed in phosphonium based DES-CNT nanofluid.

  2. Deep eutectic solvent and inorganic salt pretreatment of lignocellulosic biomass for improving xylose recovery.

    Science.gov (United States)

    Loow, Yu-Loong; Wu, Ta Yeong; Yang, Ge Hoa; Ang, Lin Yang; New, Eng Kein; Siow, Lee Fong; Md Jahim, Jamaliah; Mohammad, Abdul Wahab; Teoh, Wen Hui

    2017-07-29

    Deep eutectic solvents (DESs) have received considerable attention in recent years due to their low cost, low toxicity, and biodegradable properties. In this study, a sequential pretreatment comprising of a DES (choline chloride:urea in a ratio of 1:2) and divalent inorganic salt (CuCl2) was evaluated, with the aim of recovering xylose from oil palm fronds (OPF). At a solid-to-liquid ratio of 1:10 (w/v), DES alone was ineffective in promoting xylose extraction from OPF. However, a combination of DES (120°C, 4h) and 0.4mol/L of CuCl2 (120°C, 30min) resulted in a pretreatment hydrolysate containing 14.76g/L of xylose, remarkably yielding 25% more xylose than the CuCl2-only pretreatment (11.87g/L). Characterization studies such as FE-SEM, BET, XRD, and FTIR confirmed the delignification of OPF when DES was implemented. Thus, the use of this integrated pretreatment system enabled xylose recoveries which were comparable with other traditional pretreatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Countercurrent assisted quantitative recovery of metabolites from plant-associated natural deep eutectic solvents

    Science.gov (United States)

    Friesen, J. Brent; Zhang, Yu; McAlpine, James B.; Lankin, David C.; Chen, Shao-Nong; Pauli, Guido F.

    2016-01-01

    NAtural Deep Eutectic Solvents (NADES) are chemically simple but physiologically important plant constituents that exhibit unique solubilizing properties of other metabolites, including bioactive constituents. The high polarity of NADES introduces a challenge in the ability of conventional solid-support based chromatography to recover potential bioactive metabolites. This complicates the systematic explanation of the NADES’ functions in botanical extracts. The present study utilizes countercurrent separation (CCS) methodology to overcome the recovery challenge. To demonstrate its feasibility, Glucose-Choline chloride-Water (GCWat, 2:5:5, mole/mole) served as a model NADES, and four widely used marker flavonoids with different polarities (rutin, quercetin, kaempferol, and daidzein) were chosen as model target analytes. In order to prepare GCWat with high consistency, a water drying study was performed. The unique capabilities of the recently introduced CherryOne system, offering volumetric phase metering, were used to monitor the CCS operations. The collected fractions were analyzed using UHPLC and NMR/quantitative NMR. CCS was able to recover the analytes from the NADES matrix with quantitative recoveries of 95.7%, 94.6%, 97.0%, and 96.7% for rutin, quercetin, kaempferol, and daidzein respectively. The CCS strategy enables recovery of target metabolites from NADES-containing crude extracts as well as from other chemical mixtures, and moreover offers a means of using NADES as environmentally friendly extraction solvents. PMID:27118320

  4. Irradiation of structural materials in contact with lead bismuth eutectic in the high flux reactor

    Energy Technology Data Exchange (ETDEWEB)

    Magielsen, A.J., E-mail: magielsen@nrg.eu [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, 1755 ZG Petten (Netherlands); Jong, M.; Bakker, T.; Luzginova, N.V.; Mutnuru, R.K.; Ketema, D.J.; Fedorov, A.V. [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, 1755 ZG Petten (Netherlands)

    2011-08-31

    In the framework of the materials domain DEMETRA in the European Transmutation research and development project EUROTRANS, irradiation experiment IBIS has been performed in the High Flux Reactor in Petten. The objective was to investigate the synergystic effects of irradiation and lead bismuth eutectic exposure on the mechanical properties of structural materials and welds. In this experiment ferritic martensitic 9 Cr steel, austenitic 316L stainless steel and their welds have been irradiated for 250 Full Power Days up to a dose level of 2 dpa. Irradiation temperatures have been kept constant at 300 deg. C and 500 deg. C. During the post-irradiation test phase, tensile tests performed on the specimens irradiated at 300 deg. C have shown that the irradiation hardening of ferritic martensitic 9 Cr steel at 1.3 dpa is 254 MPa, which is in line with the irradiation hardening obtained for ferritic martensitic Eurofer97 steel investigated in the fusion program. This result indicates that no LBE interaction at this irradiation temperature is present. A visual inspection is performed on the specimens irradiated in contact with LBE at 500 deg. C and have shown blackening on the surface of the specimens and remains of LBE that makes a special cleaning procedure necessary before post-irradiation mechanical testing.

  5. Liquid eutectic GaIn as an alternative electrode for PTB7:PCBM organic solar cells

    Science.gov (United States)

    Thanh Hau Pham, Viet; Kieu Trinh, Thanh; Tam Nguyen Truong, Nguyen; Park, Chinho

    2017-04-01

    Conventional vacuum deposition process of aluminum (Al) is costly, time-consuming and difficult to apply to the large-scale production of organic photovoltaic devices (OPV). This paper reports a vacuum-free fabrication process of poly[[4,8-bis(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b‧]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thienophenediyl]:[6,6]-phenyl C71 butyric acid methyl ester (PTB7:PCBM) bulk heterojunction organic solar cell with liquid eutectic gallium-indium (EGaIn) electrode as an alternative to the common Al electrode. The insertion of a thin poly(ethylene oxide) (PEO) layer after depositing organic photoactive layer could help prevent the diffusion of liquid EGaIn into the active layer and allow the deposition of the EGaIn electrode. The PEO interfacial layer was formed by spin-coating from a mixed solvent of alcohol and water. Among different alcohol+water (methanol, ethanol, ethylene glycol, n-propanol, isopropanol, and isobutanol) mixed solvent tested, the n-propanol+water mixed solvent showed the greatest enhancement to the performance of OPVs. The improved device performance was attributed to the reactivity of mixed solvent n-propanol+water toward the surface of PTB7:PCBM active layer, which could help optimize surface morphology.

  6. Nanofibrillation of deep eutectic solvent-treated paper and board cellulose pulps.

    Science.gov (United States)

    Suopajärvi, Terhi; Sirviö, Juho Antti; Liimatainen, Henrikki

    2017-08-01

    In this work, several cellulose board grades, including waste board, fluting, and waste milk container board, were pretreated with green choline chloride-urea deep eutectic solvent (DES) and nanofibrillated using a Masuko grinder. DES-treated bleached chemical birch pulp, NaOH-swollen waste board, and bleached chemical birch pulp were used as reference materials. The properties of the nanofibrils after disc grinding were compared with those obtained through microfluidization. Overall, the choline chloride-urea DES pretreatment significantly enhanced the nanofibrillation of the board pulps in both nanofibrillation methods-as compared with NaOH-treated pulps-and resulted in fine and long individual nanofibrils and some larger nanofibril bunches, as determined by field emission scanning electron microscopy and transmission electron microscopy. The nanofibril suspensions obtained from the DES pretreatment had a viscous, gel-like appearance with shear thinning behavior. The nanofibrils maintained their initial crystalline structure with a crystallinity index of 61%-47%. Improved board handsheet properties also showed that DES-treated and Masuko-ground waste board and paper nanocellulose can potentially enhance the strength of the board. Consequently, the DES chemical pretreatment appears to be a promising route to obtain cellulose nanofibrils from waste board and paper. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents.

    Science.gov (United States)

    Radošević, Kristina; Bubalo, Marina Cvjetko; Srček, Višnje Gaurina; Grgas, Dijana; Dragičević, Tibela Landeka; Redovniković, Ivana Radojčić

    2015-02-01

    Deep eutectic solvents (DESs) have been dramatically expanding in popularity as a new generation of environmentally friendly solvents with possible applications in various industrial fields, but their ecological footprint has not yet been thoroughly investigated. In the present study, three choline chloride-based DESs with glucose, glycerol and oxalic acid as hydrogen bond donors were evaluated for in vitro toxicity using fish and human cell line, phytotoxicity using wheat and biodegradability using wastewater microorganisms through closed bottle test. Obtained in vitro toxicity data on cell lines indicate that choline chloride: glucose and choline chloride:glycerol possess low cytotoxicity (EC50>10 mM for both cell lines) while choline chloride:oxalic acid possess moderate cytotoxicity (EC50 value 1.64 mM and 4.19 mM for fish and human cell line, respectively). Results on phytotoxicity imply that tested DESs are non-toxic with seed germination EC50 values higher than 5000 mg L(-1). All tested DESs were classified as'readily biodegradable' based on their high levels of mineralization (68-96%). These findings indicate that DESs have a green profile and a good prospect for a wider use in the field of green technologies. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation.

    Science.gov (United States)

    Xu, Guo-Chao; Ding, Ji-Cai; Han, Rui-Zhi; Dong, Jin-Jun; Ni, Ye

    2016-03-01

    In this study, an effective corn stover (CS) pretreatment method was developed for biobutanol fermentation. Deep eutectic solvents (DESs), consisted of quaternary ammonium salts and hydrogen donors, display similar properties to room temperature ionic liquid. Seven DESs with different hydrogen donors were facilely synthesized. Choline chloride:formic acid (ChCl:formic acid), an acidic DES, displayed excellent performance in the pretreatment of corn stover by removal of hemicellulose and lignin as confirmed by SEM, FTIR and XRD analysis. After optimization, glucose released from pretreated CS reached 17.0 g L(-1) and yield of 99%. The CS hydrolysate was successfully utilized in butanol fermentation by Clostridium saccharobutylicum DSM 13864, achieving butanol titer of 5.63 g L(-1) with a yield of 0.17 g g(-1) total sugar and productivity of 0.12 g L(-1)h(-1). This study demonstrates DES could be used as a promising and biocompatible pretreatment method for the conversion of lignocellulosic biomass into biofuel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Synthesis of Alkaline-Soluble Cellulose Methyl Carbamate Using a Reactive Deep Eutectic Solvent.

    Science.gov (United States)

    Sirviö, Juho Antti; Heiskanen, Juha P

    2017-01-20

    This study presents the use of a reactive deep eutectic solvent (DES) for the chemical modification of wood cellulose fibers. DES based on dimethylurea and ZnCl2 was used to synthetize cellulose methyl carbamate (CMeC). This synthesis was performed at elevated temperature under solvent-free conditions. Chemical characterization based on FTIR and NMR indicated that methyl carbamate was successfully introduced to cellulose, and a degree of substitution (DS) of 0.17 was obtained after 3 h of reaction at 150 °C. The product with a DS of 0.17 exhibited good alkaline solubility (in 3 % NaOH solution) after freeze-thawing, whereas the original cellulose fibers were practically insoluble even in 9 % NaOH. As dimethylurea can be produced from CO2 , this method can be used as a sustainable way to obtain novel cellulose materials with desirable properties for use in a wide range of applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. An Expeditious and Greener Synthesis of 2-Aminoimidazoles in Deep Eutectic Solvents

    Directory of Open Access Journals (Sweden)

    Martina Capua

    2016-07-01

    Full Text Available A high-yield one-pot two-step synthesis of 2-aminoimidazoles (2-AI, exploiting an under-air heterocyclodehydration process between α-chloroketones and guanidine derivatives, and using deep eutectic solvents (DESs as nonconventional, “green” and “innocent” reaction media, has been accomplished successfully. The combination of either glycerol or urea with choline chloride (ChCl proved to be effective for decreasing the reaction time to about 4–6 h in contrast to the 10–12 h usually required for the same reaction run in toxic and volatile organic solvents and under an argon atmosphere. In addition, the use of the ChCl–urea as a DES also enables the direct isolation of triaryl-substituted 2-AI derivatives by means of a simple work-up procedure consisting in filtration and crystallization, and allows the recycle of the DES mixture. A plausible mechanism highlighting the potential role played by hydrogen bonding catalysis has also been illustrated.

  11. Green extraction of grape skin phenolics by using deep eutectic solvents.

    Science.gov (United States)

    Cvjetko Bubalo, Marina; Ćurko, Natka; Tomašević, Marina; Kovačević Ganić, Karin; Radojčić Redovniković, Ivana

    2016-06-01

    Conventional extraction techniques for plant phenolics are usually associated with high organic solvent consumption and long extraction times. In order to establish an environmentally friendly extraction method for grape skin phenolics, deep eutectic solvents (DES) as a green alternative to conventional solvents coupled with highly efficient microwave-assisted and ultrasound-assisted extraction methods (MAE and UAE, respectively) have been considered. Initially, screening of five different DES for proposed extraction was performed and choline chloride-based DES containing oxalic acid as a hydrogen bond donor with 25% of water was selected as the most promising one, resulting in more effective extraction of grape skin phenolic compounds compared to conventional solvents. Additionally, in our study, UAE proved to be the best extraction method with extraction efficiency superior to both MAE and conventional extraction method. The knowledge acquired in this study will contribute to further DES implementation in extraction of biologically active compounds from various plant sources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Microstructure and properties of the eutectic 12Si-Al alloy subjected to barothermal treatment

    Science.gov (United States)

    Dedyaeva, E. V.; Nikiforov, P. N.; Padalko, A. G.; Talanova, G. V.; Shvorneva, L. I.

    2016-09-01

    A binary 12Si-Al alloy is subjected to barothermal treatment (hot isostatic pressing) at a temperature of 560°C and a pressure of 100 MPa for 3 h. This treatment is shown to result in a high degree of homogenization in the chemically and structurally heterogeneous initial alloy. As follows from the morphology of silicon microparticles, barothermal treatment of the 12Si-Al alloy leads to thermodynamically promoted silicon dissolution in the aluminum matrix up to 10 at % with the formation of a metastable supersaturated solid solution, which decomposes upon cooling. The process of removal of porosity, which results in the formation of a high-density homogeneous material, is analyzed. After a cycle of barothermal treatment, a bimodal size distribution of the silicon phase constituent forms in the 12Si-Al alloy at an average microparticle size of 2.7 μm and an average nanoparticle size of 36 nm. The linear thermal expansion coefficient of the alloy decreases after barothermal treatment, and the microhardness of the eutectic alloy is determined after this treatment. Barothermal treatment of the 12Si-Al alloy is shown to be an effective tool for the removal of microporosity, achieving a high degree of homogenization, and forming a near-optimum bimodal size distribution of the silicon structural constituent, which is comparable with or even exceeds the results of conventional heat treatment of the material at atmospheric or lower pressure.

  13. Toxicity profile of choline chloride-based deep eutectic solvents for fungi and Cyprinus carpio fish.

    Science.gov (United States)

    Juneidi, Ibrahim; Hayyan, Maan; Mohd Ali, Ozair

    2016-04-01

    An investigation on the toxicological assessment of 10 choline chloride (ChCl)-based deep eutectic solvents (DESs) towards four fungi strains and Cyprinus carpio fish was conducted. ChCl was combined with materials from different chemical groups such as alcohols, sugars, acids and others to form DESs. The study was carried out on the individual DES components, their aqueous mixture before DES formation and their formed DESs. The agar disc diffusion method was followed to investigate their toxicity on four fungi strains selected as a model of eukaryotic microorganisms (Phanerochaete chrysosporium, Aspergillus niger, Lentinus tigrinus and Candida cylindracea). Among these DESs, ChCl:ZnCl2 exhibited the highest inhibition zone diameter towards the tested fungi growth in vitro, followed by the acidic group (malonic acid and p-toluenesulfonic acid). Another study was conducted to test the acute toxicity and determine the lethal concentration at 50 % (LC50) of the same DESs on C. carpio fish. The inhibition range and LC50 of DESs were found to be different from their individual components. DESs were found to be less toxic than their mixture or individual components. The LC50 of ChCl:MADES is much higher than that of ChCl:MAMix. Moreover, the DESs acidic group showed a lower inhibition zone on fungi growth. Thus, DESs should be considered as new components with different physicochemical properties and toxicological profiles, and not merely compositions of compounds.

  14. A functional natural deep eutectic solvent based on trehalose: Structural and physicochemical properties.

    Science.gov (United States)

    Xin, Ruipu; Qi, Suijian; Zeng, Chaoxi; Khan, Faez Iqbal; Yang, Bo; Wang, Yonghua

    2017-02-15

    In this study, the natural deep eutectic solvents (NADESs) based on trehalose and choline chloride have been prepared to enhance the protein thermostability. The results of fourier transform infrared spectroscopy and (1)H nuclear magnetic resonance spectroscopy suggested that there were intensive hydrogen-bonding interactions between trehalose and choline chloride in TCCL3-DES and TCCL3-DES75. The physicochemical properties of TCCL3-DES and TCCL3-DES75 were investigated in the temperature range of 293.15-363.15K. Our results revealed that the thermostability of lysozyme, a model protein used in this study was dramatically increased in TCCL3-DES75, as evidenced by the disappearance of the denaturing peak from their Differential Scanning Calorimetry (DSC) traces. The results of circular dichroism (CD) experiments further demonstrated that the lysozyme in TCCL3-DES75 unfolded partially at 90°C and recovered to the initial structure at 20°C. The study suggests that TCCL3-DES75 might be a potential solvent for stabilizing proteins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A novel Al-10Si-2Fe master alloy and its effect on inoculation of eutectic cells in Sr-modified A356 alloy

    Directory of Open Access Journals (Sweden)

    Zhang Yong

    2014-03-01

    Full Text Available To investigate the possibility of inoculating eutectic cells, a novel Al-10Si-2Fe master alloy was synthesized and tested in Sr-modified A356 alloy. The new master alloy that consists of メ-Al, Si and モ-Al5FeSi phases was prepared by a casting process, and the silicon phase was found to grow epitaxially from the モ-Al5FeSi particles. The inoculation efficiency of the new master alloy on Sr-modified A356 alloy has been investigated by quenching experiment and thermal analysis. With the addition of the new master alloy, the area density of eutectic cells is effectively increased by 100% and the eutectic growth temperature is increased by 1.5 ìC. Therefore, the new master alloy is deduced to introduce nucleating substrates for eutectic cells and to refine the eutectic cells in Sr-modified A356 alloy. There is no poisonous interaction between the Al-10Si-2Fe master alloy and the Sr in this study. Consequently, the mechanical properties have been improved by the addition of the new master alloy.

  16. Enhanced electroanalysis in lithium potassium eutectic (LKE) using microfabricated square microelectrodes.

    Science.gov (United States)

    Corrigan, Damion K; Blair, Ewen O; Terry, Jonathan G; Walton, Anthony J; Mount, Andrew R

    2014-11-18

    Molten salts (MSs) are an attractive medium for chemical and electrochemical processing and as a result there is demand for MS-compatible analysis technologies. However, MSs containing redox species present a challenging environment in which to perform analytical measurements because of their corrosive nature, significant thermal convection and the high temperatures involved. This paper outlines the fabrication and characterization of microfabricated square microelectrodes (MSMs) designed for electrochemical analysis in MS systems. Their design enables precise control over electrode dimension, the minimization of stress because of differential thermal expansion through design for high temperature operation, and the minimization of corrosive attack through effective insulation. The exemplar MS system used for characterization was lithium chloride/potassium chloride eutectic (LKE), which has potential applications in pyrochemical nuclear fuel reprocessing, metal refining, molten salt batteries and electric power cells. The observed responses for a range of redox ions between 400 and 500 °C (673 and 773 K) were quantitative and typical of microelectrodes. MSMs also showed the reduced iR drop, steady-state diffusion-limited response, and reduced sensitivity to convection seen for microelectrodes under ambient conditions and expected for these electrodes in comparison to macroelectrodes. Diffusion coefficients were obtained in close agreement with literature values, more readily and at greater precision and accuracy than both macroelectrode and previous microelectrode measurements. The feasibility of extracting individual physical parameters from mixtures of redox species (as required in reprocessing) and of the prolonged measurement required for online monitoring was also demonstrated. Together, this demonstrates that MSMs provide enhanced electrode devices widely applicable to the characterization of redox species in a range of MS systems.

  17. Ligand-Mediated Stabilization of Low Temperature Metal Eutectics and Their Use in Composite Systems

    Science.gov (United States)

    Finkenauer, Lauren R.

    The objective of this thesis is to contribute to the understanding of the behavior of the liquid metal eutectic gallium/indium (EGaIn) in composite systems and provide a platform for the development of functional hybrid nanocomposites. Contributions are regarding (i) the investigation of the electromechanical coupling performance of EGaIn as electrodes in a soft electrostatic transducer and (ii) the effectiveness of organic surfactants to stabilize EGaIn nanoparticles in organic solvents. For the first portion, a completely soft dielectric elastomer actuator (DEA) using EGaIn electrodes was fabricated and evaluated. Experimental actuation of the DEA showed high agreement with a generalized NeoHookean constitutive law, assuming uniaxial pre-stretch and considering the device saddle deformation. The expected conductive behavior of the liquid alloy was confirmed, and further efforts have focused on the development and stabilization of EGaIn nanodroplets, which do not exhibit the problems associated with larger pools of EGaIn (such as leakage) and can be applied to soft multifunctional materials. A computational procedure was developed for calculating suspended EGaIn nanoparticle mass in order to determine reaction yields using applied Mie theory and optical characterization techniques (dynamic light scattering and UV/Vis spectrophotometry). This method calculated total mass to within 20% when applied to a known system. A systematic study evaluating particle yield as a function of aliphatic surfactant composition and concentration (and solvent type) revealed a pronounced dependence of nanodroplet formation on the solvent type as well as surfactant structure. Ethanol (EtOH) was found to be the most effective solvent for the formation and stabilization of EGaIn nanodroplets, in which only thiol-based surfactants were found to improve nanodroplet yield. Results suggest a stabilization mechanism other than the expected self-assembled monolayer (SAM) formation. The research

  18. Specific recognition of polyphenols by molecularly imprinted polymers based on a ternary deep eutectic solvent.

    Science.gov (United States)

    Fu, Najing; Li, Liteng; Liu, Xiao; Fu, Nian; Zhang, Chenchen; Hu, Liandong; Li, Donghao; Tang, Baokun; Zhu, Tao

    2017-12-29

    Typically, a target compound is selected as a template for a molecularly imprinted polymer (MIP); however, some target compounds are not suitable as templates because of their poor solubility. Using the tailoring properties of a deep eutectic solvent (DES), the insoluble target compound caffeic acid was transformed into a ternary choline chloride-caffeic acid-ethylene glycol (ChCl-CA-EG) DES, which was then employed as a template to prepare MIPs. The ternary DES-based MIPs were characterized by Fourier transform infrared spectroscopy, elemental analysis, scanning electron microscopy, and atomic force microscopy. The effects of time, temperature, ionic strength, and pH on the recognition processes for four polyphenols (caffeic acid, protocatechuic acid, catechin, and epicatechin) by 13 ChCl-CA-EG ternary DES-based MIPs was investigated using high-performance liquid chromatography. The recognition specificity of the MIPs for CA was significantly better than that for the other polyphenols, and the MIPs exhibited obvious characteristics of chromatographic packing materials. In addition, the recognition processes mainly followed a second-order kinetics model and the Freundlich isotherm model, which together indicated that the MIPs mainly recognized the polyphenols by chemical interactions including ion exchange, electron exchange, and new bond formation. Furthermore, the specific recognition ability of the MIPs for polyphenols, which was better than those of C18, C8, or non-molecularly imprinted polymer adsorbents, was successfully applied to the recognition of polyphenols in a Radix asteris sample. The transformation of an insoluble target compound in a polymeric DES for MIP preparation and recognition is a novel and feasible strategy suitable for use in further MIP research developments. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Corrosion behavior of cold-worked austenitic stainless steels in liquid lead-bismuth eutectic

    Science.gov (United States)

    Kurata, Yuji

    2014-05-01

    The effect of cold working on the corrosion behavior of austenitic stainless steels in liquid lead-bismuth eutectic (LBE) was studied to develop accelerator-driven systems for the transmutation of long-lived radioactive wastes and lead-bismuth cooled fast reactors. Corrosion tests on solution-treated, 20% cold-worked and 50% cold-worked 316SS and JPCA (15Cr-15Ni-Ti) were conducted in oxygen-controlled LBE. Slight ferritization caused by Ni dissolution and Pb-Bi penetration were observed for all specimens in the corrosion test conducted at 500 °C for 1000 h in liquid LBE with an intermediate oxygen concentration (1.4 × 10-7 wt.%). In the corrosion test performed at 550 °C for 1000 h in liquid LBE with a low oxygen concentration (4.2 × 10-9 wt.%), the depth of the ferritization of 316SS and JPCA increased with the extent of cold working. Only oxidation was observed in the corrosion test that was performed at 550 °C for 1000 h in liquid LBE with a high oxygen concentration (approximately 10-5 wt.%). Cold working accelerated the formation of the double layer oxide and increased the thickness of the oxide layer slightly. In contrast, the ferritization accompanied by Pb-Bi penetration was widely observed with oxidation for all specimens corrosion tested at 550 °C for 3000 h under the high-oxygen condition. Cold working increased the depth of the ferritization of 316SS and JPCA. It is considered that cold working accelerated the ferritization and Pb-Bi penetration through the enhanced dissolution of Ni into LBE due to an increase in the dislocation density under conditions in which the protective oxide layer was not formed in liquid LBE.

  20. Carbon Dioxide Capture with Ionic Liquids and Deep Eutectic Solvents: A New Generation of Sorbents.

    Science.gov (United States)

    Sarmad, Shokat; Mikkola, Jyri-Pekka; Ji, Xiaoyan

    2017-01-20

    High cost and high energy penalty for CO 2 uptake from flue gases are important obstacles in large-scale industrial applications, and developing efficient technology for CO 2 capture from technical and economic points is crucial. Ionic liquids (ILs) show the potential for CO 2 separation owing to their inherent advantages, and have been proposed as alternatives to overcome the drawbacks of conventional sorbents. Chemical modification of ILs to improve their performance in CO 2 absorption has received more attention. Deep eutectic solvents (DESs) as a new generation of ILs are considered as more economical alternatives to cope with the deficiencies of high cost and high viscosity of conventional ILs. This Review discusses the potential of functionalized ILs and DESs as CO 2 sorbents. Incorporation of CO 2 -philic functional groups, such as amine, in cation and/or anion moiety of ILs can promot their absorption capacity. In general, the functionalization of the anion part of ILs is more effective than the cation part. DESs represent favorable solvent properties and are capable of capturing CO 2 , but the research work is scarce and undeveloped compared to the studies conducted on ILs. It is possible to develop novel DESs with promising absorption capacity. However, more investigation needs to be carried out on the mechanism of CO 2 sorption of DESs to clarify how these novel sorbents can be adjusted and fine-tuned to be best tailored as optimized media for CO 2 capture. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The physicochemical and thermodynamic properties of the choline chloride-based deep eutectic solvents

    Directory of Open Access Journals (Sweden)

    Troter Dragan Z.

    2017-01-01

    Full Text Available This paper reports the physicochemical (density, dynamic viscosity, electrical conductivity and refractive index and the thermodynamic (thermal expansion coefficient, molecular volume, lattice energy and heat capacity properties of several choline chloride (ChCl based deep eutectic solvents (DESs, with 1:2 mole ratio, respectively: ChCl:propylene glycol, ChCl:1,3-dimethylurea and ChCl:thiourea, at atmospheric pressure as a function of temperature over the range of 293.15–363.15 K. Their properties were also compared with those of some already characterized ChCl-based DESs, namely ChCl:ethylene glycol, ChCl:glycerol and ChCl:urea (1:2 mole ratio. Density, viscosity and refractive index of all DESs decrease with the increasing temperature while the electrical conductivity increases. Viscosity and conductivity of the tested DESs were fitted by both Arrhenius-type and Vogel–Tamman–Fulcher equations. The changes of molar enthalpy, entropy and Gibbs energy of activation, determined using the Eyring theory, demonstrated the interactional factor as predominant over the structural factor for all DES systems. The fractional Walden rule, used to correlate molar conductivity and viscosity, showed an excellent linear behaviour. It was shown that ChCl:propylene glycol DES had properties similar to ChCl:ethylene glycol and ChCl:glycerol DESs. However, the properties (density, viscosity and electrical conductivity of ChCl:1,3-dimethylurea and ChCl: :thiourea DESs were inferior to those of the ChCl:urea DES. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III 45001

  2. Laser-Induced Melting of Co-C Eutectic Cells as a New Research Tool

    Science.gov (United States)

    van der Ham, E.; Ballico, M.; Jahan, F.

    2015-08-01

    A new laser-based technique to examine heat transfer and energetics of phase transitions in metal-carbon fixed points and potentially to improve the quality of phase transitions in furnaces with poor uniformity is reported. Being reproducible below 0.1 K, metal-carbon fixed points are increasingly used as reference standards for the calibration of thermocouples and radiation thermometers. At NMIA, the Co-C eutectic point is used for the calibration of thermocouples, with the fixed point traceable to the International Temperature Scale (ITS-90) using radiation thermometry. For thermocouple use, these cells are deep inside a high-uniformity furnace, easily obtaining excellent melting plateaus. However, when used with radiation thermometers, the essential large viewing cone to the crucible restricts the furnace depth and introduces large heat losses from the front furnace zone, affecting the quality of the phase transition. Short laser bursts have been used to illuminate the cavity of a conventional Co-C fixed-point cell during various points in its melting phase transition. The laser is employed to partially melt the metal at the rear of the crucible providing a liquid-solid interface close to the region being observed by the reference pyrometer. As the laser power is known, a quantitative estimate of can be made for the Co-C latent heat of fusion. Using a single laser pulse during a furnace-induced melt, a plateau up to 8 min is observed before the crucible resumes a characteristic conventional melt curve. Although this plateau is satisfyingly flat, well within 100 mK, it is observed that the plateau is laser energy dependent and elevates from the conventional melt "inflection-point" value.

  3. A green deep eutectic solvent-based aqueous two-phase system for protein extracting.

    Science.gov (United States)

    Xu, Kaijia; Wang, Yuzhi; Huang, Yanhua; Li, Na; Wen, Qian

    2015-03-15

    As a new type of green solvent, deep eutectic solvent (DES) has been applied for the extraction of proteins with an aqueous two-phase system (ATPS) in this work. Four kinds of choline chloride (ChCl)-based DESs were synthesized to extract bovine serum albumin (BSA), and ChCl-glycerol was selected as the suitable extraction solvent. Single factor experiments have been done to investigate the effects of the extraction process, including the amount of DES, the concentration of salt, the mass of protein, the shaking time, the temperature and PH value. Experimental results show 98.16% of the BSA could be extracted into the DES-rich phase in a single-step extraction under the optimized conditions. A high extraction efficiency of 94.36% was achieved, while the conditions were applied to the extraction of trypsin (Try). Precision, repeatability and stability experiments were studied and the relative standard deviations (RSD) of the extraction efficiency were 0.4246% (n=3), 1.6057% (n=3) and 1.6132% (n=3), respectively. Conformation of BSA was not changed during the extraction process according to the investigation of UV-vis spectra, FT-IR spectra and CD spectra of BSA. The conductivity, dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to explore the mechanism of the extraction. It turned out that the formation of DES-protein aggregates play a significant role in the separation process. All the results suggest that ChCl-based DES-ATPS are supposed to have the potential to provide new possibilities in the separation of proteins. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Volume Fraction Determination in Cast Superalloys and DS Eutectic Alloys by a New Practice for Manual Point Counting

    Science.gov (United States)

    Andrews, C. W.

    1976-01-01

    Volume fraction of a constituent or phase was estimated in six specimens of conventional and DS-eutectic superalloys, using ASTM E562-76, a new standard recommended practice for determining volume fraction by systematic manual point count. Volume fractions determined ranged from 0.086 to 0.36, and with one exception, the 95 percent relative confidence limits were approximately 10 percent of the determined volume fractions. Since the confidence-limit goal of 10 percent, which had been arbitrarily chosen previously, was achieved in all but one case, this application of the new practice was considered successful.

  5. Deep Metastable Eutectic Nanometer-Scale Particles in the MgO-Al2O3-SiO2 System

    Science.gov (United States)

    Reitmeijer, Frans J. M.; Nash, J. A., III

    2011-01-01

    Laboratory vapor phase condensation experiments systematically yield amorphous, homogeneous, nanoparticles with unique deep metastable eutectic compositions. They formed during the nucleation stage in rapidly cooling vapor systems. These nanoparticles evidence the complexity of the nucleation stage. Similar complex behavior may occur during the nucleation stage in quenched-melt laboratory experiments. Because of the bulk size of the quenched system many of such deep metastable eutectic nanodomains will anneal and adjust to local equilibrium but some will persist metastably depending on the time-temperature regime and melt/glass transformation.

  6. Incorporation of antibacterial agent derived deep eutectic solvent into an active dental composite.

    Science.gov (United States)

    Wang, Jing; Dong, Xiaoqing; Yu, Qingsong; Baker, Sheila N; Li, Hao; Larm, Nathaniel E; Baker, Gary A; Chen, Liang; Tan, Jingwen; Chen, Meng

    2017-12-01

    To incorporate an antibacterial agent derived deep eutectic solvent (DES) into a dental resin composite, and investigate the resulting mechanical properties and antibacterial effects. The DES was derived from benzalkonium chloride (BC) and acrylic acid (AA) and was incorporated into the dental resin composite through rapid mixing. A three-point bending test was employed to measure the flexural strength of the composite. An agar diffusion test was used to investigate antibacterial activity. Artificial (accelerated) aging was undertaken by immersing the composites in buffer solutions at an elevated temperature for up to 4 weeks. UV-vis spectrophotometry and NMR analysis were conducted to study BC release from the composite. Finally, the biocompatibility of the composite materials was evaluated using osteoblast cell culture for 7 days. Results were compared to those of a control composite which contained no BC. The DES-incorporated composite (DES-C) displayed higher flexural strength than a similar BC-incorporated composite BC (BC-C) for the same level of BC. The inclusion of BC conferred antibacterial activity to both BC-containing composites, although BC-C produced larger inhibition halos than DES-C at the same loading of BC. Control composites which contained no BC showed negligible antibacterial activity. After artificial aging, the DES-C composite showed better maintenance of the mechanical properties of the control compared with BC-C, although a decrease was observed during the three-point bending test, particularly upon storage at elevated temperatures. No BC release was detected in the aged solutions of DES-C, whereas the BC-C showed a linear increase in BC release with storage time. Significantly, cell viability results indicated that DES-C has better biocompatibility than BC-C. The incorporation of a BC-based DES into a dental resin composite provides a new strategy to develop antibacterial dental materials with better biocompatibility and longer effective

  7. Preparation of eutectic superalloys by EFG. [Edge-defined Film-fed Growth for directional solidification in airfoil structures

    Science.gov (United States)

    Hurley, G. F.; Marr, N. W.

    1975-01-01

    An attempt was made to produce airfoil shaped bars of three different eutectic superalloys by means of the edge-defined, film-fed growth (EFG) method. The alloys used were a gamma + delta Ni-Cb alloy, a gamma/gamma prime + delta Ni-Cb-Al alloy and a Co-TaC alloy containing Ni and Cr. The development of a new die material was essential in the investigation since these alloys are reactive toward known die materials. Tantalum carbide was selected as a die material because it exhibited spontaneous capillary rise and slow rate of degradation in the liquid metals. Eutectic bars up to 1 mm thick and 6 mm wide were grown from TaC dies in order to determine the growth characteristics and the thermal gradient. Large bars of the gamma/gamma prime + delta alloy were grown and tensile tested. A die with a blind central cavity was designed and several hollow, tear-shaped bars were grown.

  8. Enzymatic selective synthesis of 1,3-DAG based on deep eutectic solvent acting as substrate and solvent.

    Science.gov (United States)

    Zeng, Chao-Xi; Qi, Sui-Jian; Xin, Rui-Pu; Yang, Bo; Wang, Yong-Hua

    2015-11-01

    In this study, enzymatic selective esterification of oleic acid with glycerol based on deep eutectic solvent acting as substrate and solvent was studied. As choline chloride (ChCl) or betaine can effectively change the chemical reaction characteristics of glycerol when they are mixed with a certain molar ratio of glycerol, several factors crucial to the lipase catalytic esterification of glycerol with oleic acid was investigated. Results showed that, betaine had more moderate effects than ChCl on the lipase, and water content had an important influence of the esterification and the enzyme selectivity. Significant changes of the glyceride compositions and enzyme selectivity were found in ChCl adding system compared with pure glycerol system; optimum accumulation of DAG especially 1,3-DAG because of the eutectic effect of ChCl was found in this system. Furthermore, in a model 1,3-DAG esterification synthesis system catalyzed by Novozym 435, high content (42.9 mol%) of the 1,3-DAG could be obtained in ChCl adding system within 1 h.

  9. Vibration Monitoring Using Fiber Optic Sensors in a Lead-Bismuth Eutectic Cooled Nuclear Fuel Assembly †

    Science.gov (United States)

    De Pauw, Ben; Lamberti, Alfredo; Ertveldt, Julien; Rezayat, Ali; van Tichelen, Katrien; Vanlanduit, Steve; Berghmans, Francis

    2016-01-01

    Excessive fuel assembly vibrations in nuclear reactor cores should be avoided in order not to compromise the lifetime of the assembly and in order to prevent the occurrence of safety hazards. This issue is particularly relevant to new reactor designs that use liquid metal coolants, such as, for example, a molten lead-bismuth eutectic. The flow of molten heavy metal around and through the fuel assembly may cause the latter to vibrate and hence suffer degradation as a result of, for example, fretting wear or mechanical fatigue. In this paper, we demonstrate the use of optical fiber sensors to measure the fuel assembly vibration in a lead-bismuth eutectic cooled installation which can be used as input to assess vibration-related safety hazards. We show that the vibration characteristics of the fuel pins in the fuel assembly can be experimentally determined with minimal intrusiveness and with high precision owing to the small dimensions and properties of the sensors. In particular, we were able to record local strain level differences of about 0.2 μϵ allowing us to reliably estimate the vibration amplitudes and modal parameters of the fuel assembly based on optical fiber sensor readings during different stages of the operation of the facility, including the onset of the coolant circulation and steady-state operation. PMID:27110782

  10. Green synthesis of mesoporous molecular sieve incorporated monoliths using room temperature ionic liquid and deep eutectic solvents.

    Science.gov (United States)

    Zhang, Li-Shun; Zhao, Qing-Li; Li, Xin-Xin; Li, Xi-Xi; Huang, Yan-Ping; Liu, Zhao-Sheng

    2016-12-01

    A hybrid monolith incorporated with mesoporous molecular sieve MCM-41 of uniform pore structure and high surface area was prepared with binary green porogens in the first time. With a mixture of room temperature ionic liquids and deep eutectic solvents as porogens, MCM-41 was modified with 3-(trimethoxysilyl) propyl methacrylate (γ-MPS) and the resulting MCM-41-MPS was incorporated into poly (BMA-co-EDMA) monoliths covalently. Because of good dispersibility of MCM-41-MPS in the green solvent-based polymerization system, high permeability and homogeneity for the resultant hybrid monolithic columns was achieved. The MCM-41-MPS grafted monolith was characterized by scanning electron microscopy, energy dispersive spectrometer area scanning, transmission electron microscopy, FT-IR spectra and nitrogen adsorption tests. Chromatographic performance of MCM-41-MPS grafted monolith was characterized by separating small molecules in capillary electrochromatography, including phenol series, naphthyl substitutes, aniline series and alkyl benzenes. The maximum column efficiency of MCM-41-MPS grafted monolith reached 209,000 plates/m, which was twice higher than the corresponding MCM-41-MPS free monolith. Moreover, successful separation of non-steroidal anti-inflammatory drugs and polycyclic aromatic hydrocarbons demonstrated the capacity in broad-spectrum application of the MCM-41-MPS incorporated monolith. The results indicated that green synthesis using room temperature ionic liquid and deep eutectic solvents is an effective method to prepare molecular sieve-incorporated monolithic column. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A new technique for direct traceability of contact thermometry Co-C eutectic cells to the ITS-90

    Energy Technology Data Exchange (ETDEWEB)

    Failleau, G.; Deuzé, T.; Bourson, F.; Briaudeau, S.; Sadli, M. [Laboratoire Commun de Métrologie LNE-Cnam, 61 rue du Landy 93210 La Plaine Saint Denis (France)

    2013-09-11

    The eutectic Co-C melting point is a promising system to serve as a thermometric fixed-point in the temperature range above 1084.62 °C (copper freezing point). During the last decade, LNE-Cnam has developed and characterized some fixed-point devices, based on eutectic Co-C alloy, for applications to contact and radiation thermometry. Above 962 °C, the ITS-90 is realized by radiation thermometry by the extrapolation from a Ag, Au or Cu fixed point using the Planck law for radiation. So the only way for assigning a temperature in the scale to a Co-C cell (∼1324 °C) is by radiation thermometry. An indirect method is commonly used to assign a temperature to a high-temperature fixed point (HTFP) cell designed for contact thermometry is to fill a pyrometric cell with the same mixture as the contact thermometry cell. In this case, the temperature assigned to the pyrometric cell is attributed to the contact cell. This paper describes a direct method allowing the determination of the melting temperature realized by a 'contact thermometry' Co-C cell by comparison to a 'radiation thermometry' Co-C cell whose melting temperature was assigned in accordance to the scale by extrapolation from the Cu point. In addition, the same Co-C cell is studied with a standard Pt/Pd thermocouple.

  12. Development of green betaine-based deep eutectic solvent aqueous two-phase system for the extraction of protein.

    Science.gov (United States)

    Li, Na; Wang, Yuzhi; Xu, Kaijia; Huang, Yanhua; Wen, Qian; Ding, Xueqin

    2016-05-15

    Six kinds of new type of green betaine-based deep eutectic solvents (DESs) have been synthesized. Deep eutectic solvent aqueous two-phase systems (DES-ATPS) were established and successfully applied in the extraction of protein. Betaine-urea (Be-U) was selected as the suitable extractant. Single factor experiments were carried out to determine the optimum conditions of the extraction process, such as the salt concentration, the mass of DES, the separation time, the amount of protein, the temperature and the pH value. The extraction efficiency could achieve to 99.82% under the optimum conditions. Mixed sample and practical sample analysis were discussed. The back extraction experiment was implemented and the back extraction efficiency could reach to 32.66%. The precision experiment, repeatability experiment and stability experiment were investigated. UV-vis, FT-IR and circular dichroism (CD) spectra confirmed that the conformation of protein was not changed during the process of extraction. The mechanisms of extraction were researched by dynamic light scattering (DLS), the measurement of the conductivity and transmission electron microscopy (TEM). DES-protein aggregates and embraces phenomenon play considerable roles in the separation process. All of these results indicated that betaine-based DES-ATPS may provide a potential substitute new method for the separation of proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Drug-Drug Multicomponent Solid Forms: Cocrystal, Coamorphous and Eutectic of Three Poorly Soluble Antihypertensive Drugs Using Mechanochemical Approach.

    Science.gov (United States)

    Haneef, Jamshed; Chadha, Renu

    2017-08-01

    The present study deals with the application of mechanochemical approach for the preparation of drug-drug multicomponent solid forms of three poorly soluble antihypertensive drugs (telmisartan, irbesartan and hydrochlorothiazide) using atenolol as a coformer. The resultant solid forms comprise of cocrystal (telmisartan-atenolol), coamorphous (irbesartan-atenolol) and eutectic (hydrochlorothiazide-atenolol). The study emphasizes that solid-state transformation of drug molecules into new forms is a result of the change in structural patterns, diminishing of dimers and creating new facile hydrogen bonding network based on structural resemblance. The propensity for heteromeric or homomeric interaction between two different drugs resulted into diverse solid forms (cocrystal/coamorphous/eutectics) and become one of the interesting aspects of this research work. Evaluation of these solid forms revealed an increase in solubility and dissolution leading to better antihypertensive activity in deoxycorticosterone acetate (DOCA) salt-induced animal model. Thus, development of these drug-drug multicomponent solid forms is a promising and viable approach to addressing the issue of poor solubility and could be of considerable interest in dual drug therapy for the treatment of hypertension.

  14. Following the electroreduction of uranium dioxide to uranium in LiCl–KCl eutectic in situ using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.D.; Abdulaziz, R.; Jervis, R.; Bharath, V.J. [Electrochemical Innovation Lab, Dept. Chemical Engineering, UCL, London WC1E 7JE (United Kingdom); Atwood, R.C.; Reinhard, C.; Connor, L.D. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Simons, S.J.R.; Inman, D.; Brett, D.J.L. [Electrochemical Innovation Lab, Dept. Chemical Engineering, UCL, London WC1E 7JE (United Kingdom); Shearing, P.R., E-mail: p.shearing@ucl.ac.uk [Electrochemical Innovation Lab, Dept. Chemical Engineering, UCL, London WC1E 7JE (United Kingdom)

    2015-09-15

    Highlights: • We investigated the electroreduction of UO{sub 2} to U in LiCl/KCL eutectic molten salt. • Combined electrochemical measurement and in situ XRD is utilised. • The electroreduction appears to occur in a single, 4-electron-step, process. • No intermediate compounds were observed. - Abstract: The electrochemical reduction of uranium dioxide to metallic uranium has been investigated in lithium chloride–potassium chloride eutectic molten salt. Laboratory based electrochemical studies have been coupled with in situ energy dispersive X-ray diffraction, for the first time, to deduce the reduction pathway. No intermediate phases were identified using the X-ray diffraction before, during or after electroreduction to form α-uranium. This suggests that the electrochemical reduction occurs via a single, 4-electron-step, process. The rate of formation of α-uranium is seen to decrease during electrolysis and could be a result of a build-up of oxygen anions in the molten salt. Slow transport of O{sup 2−} ions away from the UO{sub 2} working electrode could impede the electrochemical reduction.

  15. Rotating disk electrode study of borohydride oxidation in a molten eutectic electrolyte and advancements in the intermediate temperature borohydride battery

    Science.gov (United States)

    Wang, Andrew; Gyenge, Előd L.

    2017-08-01

    The electrode kinetics of the NaBH4 oxidation reaction (BOR) in a molten NaOH-KOH eutectic mixture is investigated by rotating disk electrode (RDE) voltammetry on electrochemically oxidized Ni at temperatures between 458 K and 503 K. The BH4- diffusion coefficient in the molten alkali eutectic together with the BOR activation energy, exchange current density, transfer coefficient and number of electrons exchanged, are determined. Electrochemically oxidized Ni shows excellent BOR electrocatalytic activity with a maximum of seven electrons exchanged and a transfer coefficient up to one. X-ray photoelectron spectroscopy (XPS) reveals the formation of NiO as the catalytically active species. The high faradaic efficiency and BOR rate on oxidized Ni anode in the molten electrolyte compared to aqueous alkaline electrolytes is advantageous for power sources. A novel molten electrolyte battery design is investigated using dissolved NaBH4 at the anode and immobilized KIO4 at the cathode. This battery produces a stable open-circuit cell potential of 1.04 V, and a peak power density of 130 mW cm-2 corresponding to a superficial current density of 160 mA cm-2 at 458 K. With further improvements and scale-up borohydride molten electrolyte batteries and fuel cells could be integrated with thermal energy storage systems.

  16. Microstructural Evolution and Migration Mechanism Study in a Eutectic Sn-37Pb Lap Joint Under High Current Density

    Science.gov (United States)

    Zhang, Zhihao; Cao, Huijun; Yang, Haifeng; Xiao, Yong; Li, Mingyu; Yu, Yuxi; Yao, Shun

    2017-08-01

    The microstructural evolution in eutectic Sn-37Pb solder under high current density seriously threatens the reliability of solder interconnections, but atomic electromigration has often been confused with thermomigration. In this paper, after decoupling the effect of the non-uniform temperature distribution in a Cu/Sn-37Pb/Cu lap joint from the current stress, the microstructural evolution was investigated under an average current density of 1.84 × 104 A cm-2 for 0-24 h. The decomposition and recombination of the Pb-rich phase occurred at the cathode and the anode, respectively. The corresponding migration mechanism was proposed from the viewpoint of energy and was explained by the interactions among the potential energies of ripening, electron wind force, and back stress. Our study may be helpful for understanding the migration mechanism and reliability of eutectic two-phase solder joints and provides supporting data for interpreting the acceleration tests of Sn-37Pb solder joints under electromigration.

  17. Air-assisted dispersive liquid-liquid microextraction based on a new hydrophobic deep eutectic solvent for the preconcentration of benzophenone-type UV filters from aqueous samples.

    Science.gov (United States)

    Ge, Dandan; Zhang, Yi; Dai, Yixiu; Yang, Shumin

    2017-12-28

    Deep eutectic solvents are considered as new and green solvents that can be widely used in analytical chemistry such as microextraction. In the present work, a new dl-menthol-based hydrophobic deep eutectic solvent was synthesized and used as extraction solvents in an air-assisted dispersive liquid-liquid microextraction method for preconcentration and extraction of benzophenone-type UV filters from aqueous samples followed by high-performance liquid chromatography with diode array detection. In an experiment, the deep eutectic solvent formed by dl-menthol and decanoic acid was added to an aqueous solution containing the UV filters, and then the mixture was sucked up and injected five times by using a glass syringe, and a cloudy state was achieved. After extraction, the solution was centrifuged and the upper phase was subjected to high-performance liquid chromatography for analysis. Various parameters such as the type and volume of the deep eutectic solvent, number of pulling, and pushing cycles, solution pH and salt concentration were investigated and optimized. Under the optimum conditions, the developed method exhibited low limits of detection and limits of quantitation, good linearity, and precision. Finally, the proposed method was successfully applied to determine the benzophenone-type filters in environmental water samples with relative recoveries of 88.8-105.9%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Ternary choline chloride/caffeic acid/ethylene glycol deep eutectic solvent as both a monomer and template in a molecularly imprinted polymer.

    Science.gov (United States)

    Fu, Najing; Liu, Xiao; Li, Liteng; Tang, Baokun; Row, Kyung Ho

    2017-05-01

    A molecularly imprinted polymer based on a ternary deep eutectic solvent comprised of choline chloride/caffeic acid/ethylene glycol was prepared. The caffeic acid in the ternary deep eutectic solvent was used as both a monomer and template. The molecularly imprinted polymer based on the ternary deep eutectic solvent was characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, field-emission scanning electron microscopy, Brunauer-Emmett-Teller surface area analysis, atomic force microscopy, and elemental analysis. A series of molecularly imprinted polymers based on choline chloride/caffeic acid/ethylene glycol with different molar ratios was prepared and applied to the molecular recognition of polyphenols. A comparison of the recognition ability of molecularly imprinted polymers to polyphenols revealed that the choline chloride/caffeic acid/ethylene glycol (1:0.4:1, molar ratio) molecularly imprinted polymer had the best molecular recognition effect with 132 μg/g of protocatechuic acid, 104 μg/g of catechins, 80 μg/g of epicatechin, and 123 μg/g of caffeic acid in 6 h, as well as good molecular recognition ability for polyphenols from a Radix Asteris sample. These results show that the ternary deep eutectic solvent based molecularly imprinted polymer is a potential medium that can be applied to drug purification, drug delivery, and drug analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Nano-eutectic growth in Co-17.8 wt%Gd alloy ribbons and the magnetostrictive properties at different wheel speeds.

    Science.gov (United States)

    Yao, Wen-Jing; Sun, Wen; Wang, Nan; Han, Seung Zeon; Lee, Je-Hyun

    2014-11-01

    Under near-equilibrium solidification conditions, the Co-17.8 wt%Gd eutectic alloy forms rod-like eutectic microstructure of (αCo) solid solution and Co17Gd2 compound. When the solidification condition is far from the equilibrium, the rapid growth of nano-eutectic in Co-17.8 wt%Gd alloy ribbons is realized by the single-roller techniques. The average granular size (d) of nano-eutectic in the center of ribbons varies with the increase of wheel speed (V), d = 510.36-25.51 V+0.44 V2. XRD results of ribbons at different wheel speeds indicate that, with the rise of wheel speed, the main peak of Co17Gd2 compound becomes more and more notable, whereas the main peak of (αCo) solid solution tends to reduce. Along the length direction, the Co-17.8 wt%Gd alloy ribbons have the negative magnetostrictive strain. The magnetostrictive strain enhances with the increase of wheel speed. At the wheel speed of 40 m/s, the magnetostrictive coefficient of ribbons is measured to be - 733 ppm at the magnetic field of 6 kOe. The influence of the wheel speed and the magnetic field on the maanetostrictive coefficient is discussed.

  20. Efficient absorption of SO{sub 2} with low-partial pressures by environmentally benign functional deep eutectic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Ren, Shuhang [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029 (China); Hou, Yucui [Department of Chemistry, Taiyuan Normal University, Taiyuan, 030031 (China); Wu, Weize, E-mail: wzwu@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029 (China)

    2017-02-15

    Graphical abstract: Environmentally benign deep eutectic solvents (DESs) based on betaine or L-carnitine with ethylene glycol were designed with a function and used to efficiently capture SO{sub 2} with low partial pressures. - Highlights: • Deep eutectic solvents (DESs) were designed with a function to absorb low-conc. SO{sub 2}. • Betaine(Bet) and L-carnitine(L-car) with a functional group were used as H-bond acceptor. • Bet + ethylene glycol (EG) DES and L-car + EG DES are environmentally benign. • L-car + EG DES can absorb 0.644 mol SO{sub 2} per mole L-car (0.37% SO{sub 2}). • L-car + EG DES is a promising absorbent for SO{sub 2} capture. - Abstract: Sulfur dioxide (SO{sub 2}) emitted from the burning of fossil fuels is one of the main air contaminants. In this work, we found that environmentally benign solvents, deep eutectic solvents (DESs) could be designed with a function to absorb low-partial pressure SO{sub 2} from simulated flue gas. Two kinds of biodegradable functional DESs based on betaine (Bet) and L-carnitine (L-car) as hydrogen bond accepters (HBA) and ethylene glycol (EG) as a hydrogen bond donor (HBD) were prepared with mole ratios of HBA to HBD from 1:3 to 1:5, and they were investigated to absorb SO{sub 2} with different partial pressures at various temperatures. The results showed that the two DESs could absorb low-partial pressure SO{sub 2} efficiently. SO{sub 2} absorption capacities of the DESs with HBA/HBD mole ratio of 1:3 were 0.332 mol SO{sub 2}/mol HBA for Bet + EG DES and 0.820 mol SO{sub 2}/mol HBA for L-car + EG DES at 40 °C with a SO{sub 2} partial pressure of 0.02 atm. In addition, the regeneration experiments demonstrated that the absorption capacities of DESs did not change after five absorption and desorption cycles. Furthermore, the absorption mechanism of SO{sub 2} by DESs was studied by FT-IR, {sup 1}H NMR and {sup 13}C NMR spectra. It was found that there are strong acid–base interactions between SO{sub 2} and

  1. Computational Evaluation of Mixtures of Hydrofluorocarbons and Deep Eutectic Solvents for Absorption Refrigeration Systems.

    Science.gov (United States)

    Abedin, Rubaiyet; Heidarian, Sharareh; Flake, John C; Hung, Francisco R

    2017-10-24

    We used computational tools to evaluate three working fluid mixtures for single-effect absorption refrigeration systems, where the generator (desorber) is powered by waste or solar heat. The mixtures studied here resulted from combining a widely used hydrofluorocarbon (HFC) refrigerant, R134a, with three common deep eutectic solvents (DESs) formed by mixing choline chloride (hydrogen bond acceptor, HBA) with urea, glycerol, or ethylene glycol as the hydrogen bond donor (HBD) species. The COSMOtherm/TmoleX software package was used in combination with refrigerant data from NIST/REFPROP, to perform a thermodynamic evaluation of absorption refrigeration cycles using the proposed working fluid mixtures. Afterward, classical MD simulations of the three mixtures were performed to gain insight on these systems at the molecular level. Larger cycle efficiencies are obtained when R134a is combined with choline chloride and ethylene glycol, followed by the system where glycerol is the HBD, and finally that where the HBD is urea. MD simulations indicate that the local density profiles of all species exhibit very sharp variations in systems containing glycerol or urea; furthermore, the Henry's law constants of R134a in these two systems are larger than those observed for the HFC in choline chloride and ethylene glycol, indicating that R134a is more soluble in the latter DES. Interaction energies indicate that the R134a-R134a interactions are weaker in the system where ethylene glycol is the HBD, as compared to in the other DES. Radial distribution functions confirm that in all systems, the DES species do not form strong directional interactions (e.g., hydrogen bonds) with the R134a molecules. Relatively strong interactions are observed between the Cl anions and the hydrogen atoms in R134a; however, the atom-atom interactions between R134a and the cation and HBD species are weaker and do not play a significant role in the solvation of the refrigerant. In all systems, R134a has

  2. Borohydride electro-oxidation in a molten alkali hydroxide eutectic mixture and a novel borohydride-periodate battery

    Science.gov (United States)

    Wang, Andrew; Gyenge, Előd L.

    2015-05-01

    The electrochemical oxidation of BH4- in a molten NaOH-KOH eutectic mixture (0.515:0.485 mole fractions), is investigated for the first time by cyclic voltammetry and electrochemical impedance spectroscopy. Anodically oxidized Ni is electrocatalytically more active than Pt for BH4- oxidation in the molten alkali electrolyte as shown by the more than three times higher exchange current density (i.e. 15.8 mA cm-2 vs. 4.6 mA cm-2 at 185 °C). Next the proof-of-concept for a novel BH4-/IO4- molten alkali electrolyte battery is presented. Using oxidized Ni mesh anode and Pt mesh cathode a maximum power density of 63 mW cm-2 is achieved at 185 °C.

  3. lVIICROSTRUCTURE AND EUTECTIC MORPHOLOGY OF AL-12.5°/o Si ALLOY REFINED WITH ANTIMONY

    Directory of Open Access Journals (Sweden)

    Funda Kahraman

    2007-01-01

    Full Text Available Modification of Al-Si cast alloys can be achieved in two different ways, namely by additions of certain eleınents orwith rapid cooling rate. Modifications of the Al-Si al1oys are carried out extensivcly in industry to improve themechanical properties, particularly ductility. In this study, the effects of antiınony addition.s and growth rate on theınicrostructure and eutectic morphology on the directionally solidified Al- 1 2.5°/o Si cutectic all oy has beeninvestigated. The results showed that antimony can be identified as a grain refıner. Over modification occurs in Al-12.5 °/oSi alloy when modifier is present in the amount of 1 %Sb results in AISb compound.

  4. Galvanic reduction of uranium(III) chloride from LiCl-KCl eutectic salt using gadolinium metal

    Science.gov (United States)

    Bagri, Prashant; Zhang, Chao; Simpson, Michael F.

    2017-09-01

    The drawdown of actinides is an important unit operation to enable the recycling of electrorefiner salt and minimization of waste. A new method for the drawdown of actinide chlorides from LiCl-KCl molten salt has been demonstrated here. Using the galvanic interaction between the Gd/Gd(III) and U/U(III) redox reactions, it is shown that UCl3 concentration in eutectic LiCl-KCl can be reduced from 8.06 wt.% (1.39 mol %) to 0.72 wt.% (0.12 mol %) in about an hour via plating U metal onto a steel basket. This is a simple process for returning actinides to the electrorefiner and minimizing their loss to the salt waste stream.

  5. Tribological studies of eutectic Aluminum-Silicon alloys used for automotive engine blocks subjected to sliding wear damage

    Science.gov (United States)

    Xue, Guijun

    The microstructures and wear performances of linerless engine cylinder blocks made of two eutectic Al-Si alloys with different Si morphologies were characterized after the engine tests. Overall, both the Al-11 wt. % Si alloy and the Al-12.6 wt. % Si alloy provided similar wear performance. Block-on-ring wear tests were applied to the Al-11% Si alloy. The MW regime in air consisted of two sub-regimes: MW-1 and MW-2. The argon atmosphere produced a 10-fold reduction in wear rates and the formation of LMW regime at loads less than 10 N. The metallic tribolayers formed in the MW under argon atmosphere were uniform and stable, resulting lower wear rates than those in air. The mechanism of material removal under argon atmosphere was delimination. The SW occurring in argon was observed at a relatively low load, compared to an air atmosphere. Wear was also more sensitive to applied load in the argon atmosphere.

  6. Laser Machining and In Vitro Assessment of Wollastonite-Tricalcium Phosphate Eutectic Glasses and Glass-Ceramics.

    Science.gov (United States)

    Sola, Daniel; Grima, Lorena

    2018-01-13

    Bioactivity and ingrowth of ceramic implants is commonly enhanced by a suitable interconnected porous network. In this work, the laser machining of CaSiO₃‒Ca₃(PO₄)₂ biocompatible eutectic glass-ceramics and glasses was studied. For this purpose, 300 µm diameter craters were machined by using pulsed laser radiation at 532 nm with a pulsewidth in the nanosecond range. Machined samples were soaked in simulated body fluid for 2 months to assess the formation of a hydroxyapatite layer on the surface of the laser machined areas. The samples were manufactured by the laser floating zone technique using a CO₂ laser. Morphology, composition and microstructure of the machined samples were described by Field Emission Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy and micro-Raman Spectroscopy.

  7. Cyclic voltammetry on CeCl{sub 3} in LiCl-KCl eutectic using W and Bi coated electrode

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Sungune; Kim, Pyeong-Hwa; Hwang, Il-Soon [Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Park, Jaeyeong [Korea Institute of Nuclear Safety, 62 Gwahak-ro, Yuseong-gu, Daejeon 34142 (Korea, Republic of)

    2016-07-01

    This paper presents experimental results of cyclic voltammetry on CeCl{sub 3} in LiCl-KCl using tungsten electrode and Bi coated electrode respectively at 703 K. Using tungsten electrode at low concentration of CeCl{sub 3}, the redox reaction has been shown to be reversible. Diffusion coefficient and apparent standard potential of Ce(III) in LiCl-KCl were 0.42*10{sup -5} (cm{sup 2}/s) and -3.153 (V vs. Cl{sub 2}/Cl{sup -}) under 50 mV/s. In order to obtain Bi coated electrode, cyclic voltammetry was carried out on eutectic salt including BiCl{sub 3}. The redox reaction of Ce on Bi coated electrode has been shown to be reversible and apparent standard potential on Bi coated electrode moved 782 mV compared with tungsten cathode. (authors)

  8. Peculiarities of the volume ratio of α and β phases in the superplastic eutectic Bi-43 wt % Sn Alloy

    Science.gov (United States)

    Korshak, V. F.; Mateychenko, P. V.; Shapovalov, Yu. A.

    2014-12-01

    This work deals with the study of the volume ratio of α(Sn) and β(Bi) phases in the as-cast eutectic Bi-43 wt % Sn alloy, as well as in this alloy after casting, followed by compression in a hydraulic press to a degree of deformation of ˜70%, and in this alloy aged for various time intervals. This alloy demonstrates superplastic behavior even at room temperature. The experiments were carried out using scanning electron microscopy and electron-microprobe analysis using a JSM-6390LV scanning electron microscope equipped with an INCA-350 attachment for EDS analysis. Based on the obtained cooling curves, it has been found that, under the selected experimental conditions, the crystallization of the alloy is nonequilibrium. The original phase state of the alloy is characterized by an excessive relative amount of the α(Sn) phase compared to the equilibrium amount even for the eutectic temperature, which is indicative of the quenching of the liquid melt. The phase state of the alloy formed in the course of crystallization is metastable. This is confirmed by the volume ratio of the phases in the specimens subjected to fairly long aging. The data on the earlier discovered effect of the enrichment of open outer surfaces of the specimens in tin in the course of aging are presented. As a cause of the metastability of the phase state of the alloy, internal compression stresses are considered, which arise in the course of crystallization due to an increase in the specific volume of the bismuth phase in going from the liquid to the solid state. The results presented are first reported and are significant for gaining insight into the physical nature of the effect of superplasticity.

  9. Electrodeposition of Zn and Cu–Zn alloy from ZnO/CuO precursors in deep eutectic solvent

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xueliang [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Zou, Xingli, E-mail: xinglizou@shu.edu.cn [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Lu, Xionggang, E-mail: luxg@shu.edu.cn [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Lu, Changyuan; Cheng, Hongwei; Xu, Qian [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Zhou, Zhongfu [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Institute of Mathematics and Physics, Aberystwyth University, Aberystwyth SY23 3BZ (United Kingdom)

    2016-11-01

    Graphical abstract: Micro/nanostructured Zn and Cu–Zn alloy films have been electrodeposited directly from ZnO/CuO precursors in ChCl/urea-based DES, the typical nucleation-growth mechanism and the micro/nanostructures-formation process are determined. Display Omitted - Highlights: • Micro/nanostructured Zn films have been electrodeposited directly from ZnO precursor in deep eutectic solvent (DES). • The morphology of the Zn electrodeposits depends on the cathodic potential and temperature. • The electrodeposited Zn films exhibit homogeneous morphologies with controllable particle sizes and improved corrosion resistance. • Cu–Zn alloy films have also been electrodeposited directly from their metal oxides precursors in DES. - Abstract: The electrodeposition of Zn and Cu–Zn alloy has been investigated in choline chloride (ChCl)/urea (1:2 molar ratio) based deep eutectic solvent (DES). Cyclic voltammetry study demonstrates that the reduction of Zn(II) to Zn is a diffusion-controlled quasi-reversible, one-step, two electrons transfer process. Chronoamperometric investigation indicates that the electrodeposition of Zn on a Cu electrode typically involves three-dimensional instantaneous nucleation with diffusion-controlled growth process. Micro/nanostructured Zn films can be obtained by controlling the electrodeposition potential and temperature. The electrodeposited Zn crystals preferentially orient parallel to the (101) plane. The Zn films electrodeposited under more positive potentials and low temperatures exhibit improved corrosion resistance in 3 wt% NaCl solution. In addition, Cu–Zn alloy films have also been electrodeposited directly from CuO–ZnO precursors in ChCl/urea-based DES. The XRD analysis indicates that the phase composition of the electrodeposited Cu–Zn alloy depends on the electrodeposition potential.

  10. Response Surface Optimization of Rotenone Using Natural Alcohol-Based Deep Eutectic Solvent as Additive in the Extraction Medium Cocktail

    Directory of Open Access Journals (Sweden)

    Zetty Shafiqa Othman

    2017-01-01

    Full Text Available Rotenone is a biopesticide with an amazing effect on aquatic life and insect pests. In Asia, it can be isolated from Derris species roots (Derris elliptica and Derris malaccensis. The previous study revealed the comparable efficiency of alcohol-based deep eutectic solvent (DES in extracting a high yield of rotenone (isoflavonoid to binary ionic liquid solvent system ([BMIM]OTf and organic solvent (acetone. Therefore, this study intends to analyze the optimum parameters (solvent ratio, extraction time, and agitation rate in extracting the highest yield of rotenone extract at a much lower cost and in a more environmental friendly method by using response surface methodology (RSM based on central composite rotatable design (CCRD. By using RSM, linear polynomial equations were obtained for predicting the concentration and yield of rotenone extracted. The verification experiment confirmed the validity of both of the predicted models. The results revealed that the optimum conditions for solvent ratio, extraction time, and agitation rate were 2 : 8 (DES : acetonitrile, 19.34 hours, and 199.32 rpm, respectively. At the optimum condition of the rotenone extraction process using DES binary solvent system, this resulted in a 3.5-fold increase in a rotenone concentration of 0.49 ± 0.07 mg/ml and yield of 0.35 ± 0.06 (%, w/w as compared to the control extract (acetonitrile only. In fact, the rotenone concentration and yield were significantly influenced by binary solvent ratio and extraction time (P<0.05 but not by means of agitation rate. For that reason, the optimal extraction condition using alcohol-based deep eutectic solvent (DES as a green additive in the extraction medium cocktail has increased the potential of enhancing the rotenone concentration and yield extracted.

  11. Eutectic mixtures of some fatty acids for low temperature solar heating applications: Thermal properties and thermal reliability

    Energy Technology Data Exchange (ETDEWEB)

    Sari, Ahmet [Department of Chemistry, Gaziosmanpasa University, 60240 Tokat (Turkey)]. E-mail: asari@gop.edu.tr

    2005-10-01

    The thermal properties and thermal reliability of the eutectic mixtures of lauric acid-myristic acid (LA-MA), lauric acid-palmitic acid (LA-PA), myristic acid-stearic acid (MA-SA) as phase change material (PCM) were determined after repeated melt/freeze cycles by the method of differential scanning calorimeter (DSC). The DSC thermal analysis results indicate that the binary systems of LA-MA in ratio of 66.0:34.0 wt.%, LA-PA in ratio of 69.0:31.0 wt.% and MA-SA in ratio of 64.0:36.0 wt.% form eutectic mixture with a melting temperature of 34.2 deg. C, 35.2 deg. C and 44.1 deg. C, and with a latent heat of fusion of 166.8 J g{sup -1}, 166.3 J g{sup -1} and 182.4 J g{sup -1}, respectively. The changes in the melting temperatures and the latent heats of fusion are in the range of -0.31 deg. C-0.14 deg. C and 0.9%-2.4% for LA-MA, -0.40 deg. C-0.23 deg. C and 1.5%-3.0% for LA-PA, and 1.11 deg. C-0.26 deg. C and -1.10%-2.2% for MA-SA during the 1460 thermal cycles. Based on the results, it can be concluded that the studied PCMs have good thermal properties and thermal reliability for a four-year energy storage period, which corresponds to 1460 thermal cycles, in terms of the change in their melting temperatures and latent heats of fusion.

  12. Investigation of the antimicrobial effect of natural deep eutectic solvents (NADES) as solvents in antimicrobial photodynamic therapy.

    Science.gov (United States)

    Wikene, Kristine Opsvik; Rukke, Håkon Valen; Bruzell, Ellen; Tønnesen, Hanne Hjorth

    2017-06-01

    Natural deep eutectic solvents (NADES) are a third class of liquids, separate from water and lipids. Some NADES, especially those containing organic acids, have been suggested to possess antimicrobial properties. Such properties may be advantageous when NADES are used as solvents in e.g. antimicrobial photodynamic therapy. However, to control the toxicity of acid-containing NADES, they must retain their specific qualities upon dilution. Hence, the aims of this study were to investigate the effect of dilution on the acid-containing NADES network, their antimicrobial activity on different planktonic microorganisms, and their influence on phototoxicity when used as solvents for a photosensitiser. Four bacteria and one fungus were exposed to the NADES, CS (citric acid:sucrose) and MFG (malic acid:fructose:glucose) (molar ratios 1:1 and 1:1:1, respectively), at ≤1:200 dilution. Additionally, the antimicrobial properties of the NADES were studied in Escherichia coli in terms of pH and chelating effects. In investigations of phototoxicity, the microorganisms were exposed to the photosensitiser meso-tetra(p-hydroxyphenyl)porphine (THPP; 1nM) dissolved in diluted NADES combined with blue light (27J/cm 2 ). The eutectic network appeared to remain upon dilution ≤1:200. CS (1:200) was less toxic than an equal concentration of citric acid in the Gram-negative bacteria Klebsiella pneumoniae and E. coli (p<0.05). A higher degree of phototoxicity was induced in E. coli (~1% survival) when THPP was dissolved in CS or MFG than in phosphate buffer (~61% survival; p<0.05). No conclusion could be drawn as to whether the observed toxicity in E. coli exposed to NADES was due to the pH of the solutions or chelation of outer membrane-bound cations. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Biodiesel production from ethanolysis of DPO using deep eutectic solvent (DES) based choline chloride - ethylene glycol as co-solvent

    Science.gov (United States)

    Taslim, Indra, Leonardo; Manurung, Renita; Winarta, Agus; Ramadhani, Debbie Aditia

    2017-03-01

    Biodiesel is usually produced from transesterification using methanol or ethanol as alcohol. However, biodiesel produced using methanol has several disadvantages because methanol is toxic and not entirely bio-based as it is generally produced from petroleum, natural gas and coal. On the other hand, ethanol also has several disadvantages such as lower reactivity in transesterification process and formation of stable emulsion between ester and glycerol. To improve ethanolysis process, deep eutectic solvent (DES) was prepared from choline chloride and ethylene glycol to be used as co-solvent in ethanolysis. Deep eutectic solvent was prepared by mixing choline chloride and ethylene glycol at molar ratio of 1:2, temperature of 80 °C, and stirring speed of 300 rpm for 1 hour. The DES was characterized by its density and viscosity. The ethanolysis of DPO / Degummed Palm Oil was performed at 70 °C, ethanol to oil molar ratio of 9:1, catalyst (potassium hydroxide) concentration of 0.75 wt.% concentration, co-solvent (DES) concentration of 1, 2, 3, 4, 5 and 6 wt.%, stirring speed of 600 rpm, and reaction time of 1 hour. The obtained biodiesel was then characterized by its density, viscosity and ester content. The oil - ethanol phase condition was observed in reaction tube. The oil - ethanol phase with DES tends to form meniscus compared to that without DES. Which implied that oil and ethanol become more slightly miscible, which favours the reaction. Using DES as co-solvent in ethanolysis resulted in an increase in yield and easier purification. The esters properties met the international standards ASTM D6751, with highest yield achieved at 81.72 % with 99.35 % ethyl ester contents at 4% DES concentration.

  14. A new thermodynamic expression for Gibbs free energy difference ΔG between the under-cooled liquid and on microstructure of near-eutectic Al-13wt%Si alloy

    Directory of Open Access Journals (Sweden)

    Xi Xiao

    2008-05-01

    Full Text Available Under cooling rates of 2 ℃/s and 10 ℃/s, the influences of B content on the microstructure of near eutectic Al-13.0wt%Si alloy have been investigated. Results showed that the addition of boron resulted in refi nement of eutectic grains, and to some extent, had an inhibiting effect on precipitation of the primary phases, and the refi ning and inhibiting effects are much more obvious at higher cooling rate. When B was not added, higher cooling rate promoted the a-Al dendrites formation. At lower cooling rate, the addition of B did not cause the so called "columnar to equiaxed transition (CET", however, at higher cooling rate, this transition was obvious. After the addition of B, the nucleation temperature TN ascended and nucleation mode changed from nucleation mode of from wall towards centre (without B addition to a nucleation mode that the eutectic nucleated evenly throughout whole sample (with B added. It can be concluded that the addition of B offers a large amount of nuclei for eutectic solidifi cation, as a result, the eutectic grains was refi ned. Higher cooling rate will lead to more nuclei, so the effects on the refi nement of eutectic grains and on suppression of primary phases are increased.

  15. Effects of Forming Processes on the Microstructure and Solderability of Sn-3.5Ag Eutectic Solder Ribbons as well as the Mechanical Properties of Solder Joints

    Science.gov (United States)

    Liu, Shengfa; Hu, Zhebing; Xiong, Jieran; Tan, Guanghua; Xiong, Wenyong; Chen, Chen; Huang, Shangyu

    2017-11-01

    Two kinds of Sn-3.5Ag eutectic solder ribbons of 0.13 mm thickness were prepared by a casting-rolling process and a rapid solidification process. The microstructure, phase constitution, melting characteristics, wetting behavior and soldering strength were compared using optical microscopy, scanning electron microscopy, x-ray diffraction, energy dispersive spectroscopy, differential scanning calorimetry and a MTS ceramic testing system. The results show that the microstructure of rapidly solidified solder is finer and more uniform, and the eutectic structure has a higher solid solubility and more homogeneous distribution of Ag in a Sn matrix. The solidus and liquidus temperature decreased, resulting in a 3.3% reduction of pasty range. In addition, the wettability and shear strength of the solder joints increased by 13.2% and 7.9%, respectively.

  16. Extraction of phenolic compounds from extra virgin olive oil by a natural deep eutectic solvent: Data on UV absorption of the extracts.

    Science.gov (United States)

    Paradiso, Vito Michele; Clemente, Antonia; Summo, Carmine; Pasqualone, Antonella; Caponio, Francesco

    2016-09-01

    This data article refers to the paper "Towards green analysis of virgin olive oil phenolic compounds: extraction by a natural deep eutectic solvent and direct spectrophotometric detection" [1]. A deep eutectic solvent (DES) based on lactic acid and glucose was used as green solvent for phenolic compounds. Eight standard phenolic compounds were solubilized in the DES. Then, a set of extra virgin olive oil (EVOO) samples (n=65) were submitted to liquid-liquid extraction by the DES. The standard solutions and the extracts were analyzed by UV spectrophotometry. This article reports the spectral data of both the standard solutions and the 65 extracts, as well as the total phenolic content of the corresponding oils, assessed by the Folin-Ciocalteu assay.

  17. Development of High-Strength High-Temperature Cast Al-Ni-Cr Alloys Through Evolution of a Novel Composite Eutectic Structure

    Science.gov (United States)

    Pandey, P.; Kashyap, S.; Tiwary, C. S.; Chattopadhyay, K.

    2017-12-01

    Aiming to develop high-strength Al-based alloys with high material index (strength/density) for structural application, this article reports a new class of multiphase Al alloys in the Al-Ni-Cr system that possess impressive room temperature and elevated temperature (≥ 200 °C) mechanical properties. The ternary eutectic and near eutectic alloys display a complex microstructure containing intermetallic phases displaying hierarchically arranged plate and rod morphologies that exhibit extraordinary mechanical properties. The yield strengths achieved at room temperatures are in excess of 350 MPa with compressive plastic strains of more than 30 pct (without fracturing) for these alloys. The stability of the complex microstructure also leads to a yield stress of 191 ± 8 to 232 ± 5 MPa at 250 °C. It is argued that the alloys derive their high strength and impressive plasticity through synergic effects of refined nanoeutectics of two different morphologies forming a core shell type of architecture.

  18. Extraction of phenolic compounds from extra virgin olive oil by a natural deep eutectic solvent: Data on UV absorption of the extracts

    Directory of Open Access Journals (Sweden)

    Vito Michele Paradiso

    2016-09-01

    Full Text Available This data article refers to the paper “Towards green analysis of virgin olive oil phenolic compounds: extraction by a natural deep eutectic solvent and direct spectrophotometric detection” [1]. A deep eutectic solvent (DES based on lactic acid and glucose was used as green solvent for phenolic compounds. Eight standard phenolic compounds were solubilized in the DES. Then, a set of extra virgin olive oil (EVOO samples (n=65 were submitted to liquid–liquid extraction by the DES. The standard solutions and the extracts were analyzed by UV spectrophotometry. This article reports the spectral data of both the standard solutions and the 65 extracts, as well as the total phenolic content of the corresponding oils, assessed by the Folin–Ciocalteu assay.

  19. Low temperature diffusion process using rare earth-Cu eutectic alloys for hot-deformed Nd-Fe-B bulk magnets

    Energy Technology Data Exchange (ETDEWEB)

    Akiya, T., E-mail: akiya.takahiro@nims.go.jp; Sepehri-Amin, H.; Ohkubo, T. [Elements Strategy Initiative Center for Magnetic Materials, National Institute for Materials Science, Tsukuba 305-0047 (Japan); Liu, J.; Hono, K. [Elements Strategy Initiative Center for Magnetic Materials, National Institute for Materials Science, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8577 (Japan); Hioki, K.; Hattori, A. [Daido Steel Co., LTD, Nagoya 457-8545 (Japan)

    2014-05-07

    The low temperature grain boundary diffusion process using RE{sub 70}Cu{sub 30} (RE = Pr, Nd) eutectic alloy powders was applied to sintered and hot-deformed Nd-Fe-B bulk magnets. Although only marginal coercivity increase was observed in sintered magnets, a substantial enhancement in coercivity was observed when the process was applied to hot-deformed anisotropic bulk magnets. Using Pr{sub 70}Cu{sub 30} eutectic alloy as a diffusion source, the coercivity was enhanced from 1.65 T to 2.56 T. The hot-deformed sample expanded along c-axis direction only after the diffusion process as RE rich intergranular layers parallel to the broad surface of the Nd{sub 2}Fe{sub 14}B are thickened in the c-axis direction.

  20. Effect of Al₂O₃ nanoparticle dispersion on the specific heat capacity of a eutectic binary nitrate salt for solar power applications

    OpenAIRE

    Hu, Y.; Y. He; Z.; Zhang; Wen, D

    2017-01-01

    Molten salts can be used as heat transfer fluids or thermal storage materials in a concentrated solar power plant. Improving the thermal properties can influence the utilization efficiency of solar energy. In this study, the effect of doping eutectic binary salt solvent with Al₂O₃ nanoparticles on its specific heat capacity (cp) was investigated. The effects of the mass fraction of nanoparticles on the cp of the composite nanofluid were analyzed, using both differential scanning calorimetry m...

  1. The effect of thermal cycling on the structure and properties of a Co, Cr, Ni-TaC directionally solidified eutectic composite

    Science.gov (United States)

    Dunlevey, F. M.; Wallace, J. F.

    1973-01-01

    The effect of thermal cycling on the structure and properties of a cobalt, chromium, nickel, tantalum carbide directionally solidified eutectic composite is reported. It was determined that the stress rupture properties of the alloy were decreased by the thermal cycling. The loss in stress rupture properties varied with the number of cycles with the loss in properties after about 200 cycles being relatively high. The formation of serrations and the resulting changes in the mechanical properties of the material are discussed.

  2. Effects of Microalloying on the Microstructures and Mechanical Properties of Directionally Solidified Ni-33(at.%)Al-31Cr-3Mo Eutectic Alloys Investigated

    Science.gov (United States)

    Whittenberger, J. Daniel; Raj, Sai V.; Locci, Ivan E.; Salem, Jonathan A.

    2002-01-01

    Despite nickel aluminide (NiAl) alloys' attractive combination of oxidation and thermophysical properties, their development as replacements for superalloy airfoils in gas turbine engines has been largely limited by difficulties in developing alloys with an optimum combination of elevated-temperature creep resistance and room-temperature fracture toughness. Alternatively, research has focused on developing directionally solidified NiAl-based in situ eutectic composites composed of NiAl and (Cr,Mo) phases in order to obtain a desirable combination of properties a systematic investigation was undertaken at the NASA Glenn Research Center to examine the effects of small additions of 11 alloying elements (Co, Cu, Fe, Hf, Mn, Nb, Re, Si, Ta, Ti, and Zr) in amounts varying from 0.25 to 1.0 at.% on the elevated-temperature strength and room-temperature fracture toughness of directionally solidified Ni-33Al-31Cr-3Mo eutectic alloy. The alloys were grown at 12.7 mm/hr, where the unalloyed eutectic base alloy exhibited a planar eutectic microstructure. The different microstructures that formed because of these fifth-element additions are included in the table. The additions of these elements even in small amounts resulted in the formation of cellular microstructures, and in some cases, dendrites and third phases were observed. Most of these elemental additions did not improve either the elevated-temperature strength or the room-temperature fracture toughness over that of the base alloy. However, small improvements in the compression strength were observed between 1200 and 1400 K when 0.5 at.% Hf and 0.25 at.% Ti were added to the base alloy. The results of this study suggest that the microalloying of Ni-33Al-31Cr-3Mo will not significantly improve either its elevatedtemperature strength or its room-temperature fracture toughness. Thus, any improvements in these properties must be acquired by changing the processing conditions.

  3. Evaluation of damage induced by high irradiation levels on α-Ni-Ni3Si eutectic structure

    Science.gov (United States)

    Camacho Olguin, Carlos Alberto; Garcia-Borquez, Arturo; González-Rodríguez, Carlos Alberto; Loran-Juanico, Jose Antonio; Cruz-Mejía, Hector

    2015-06-01

    Diluted alloys of the binary system Ni-Si have been used as target of beam of ions, electrons, neutrons and so on because in this kind of alloy occurs transformations order-disorder, when the temperature is raised. This fact has permitted to evaluate the phenomena associated with the damage induced by irradiation (DII). The results of these works have been employed to understand the behavior under irradiation of complex alloys and to evaluate the reliability of the results of mathematical simulation of the evolution of the DII. The interest in the alloy system Ni-Si has been reborn due to the necessity of developing materials, which have better resistance against the corrosion on more aggressive environments such as those generated on the nuclear power plants or those that exist out of the Earth's atmosphere. Now, a growing interest to use concentrated alloys of this binary system on diverse fields of the materials science has been taking place because up to determined concentration of silicon, a regular eutectic is formed, and this fact opens the possibility to develop lamellar composite material by directional solidification. However, nowadays, there is a lack of fundamental knowledge about the behavior of this type of lamellar structure under aggressive environments, like those mentioned before. Hence, the task of this work is to evaluate the effect that has the irradiation over the microstructure of the concentrated alloy Ni22at%Si. The dendritic region of the hypereutectic alloy consists of an intermetallic phase Ni3Si, whereas the interdendritic region is formed by the alternation of lamellas of solid solution α-Ni and intermetallic phase Ni3Si. Such kind of microstructure has the advantage to get information of the DII over different phases individually, and at the same time, about of the microstructure influence over the global damage in the alloy. The hypereutectic Ni22at%Si alloy was irradiated perpendicularly to its surface, with 3.66 MeV - Ni ions up

  4. Investigation of Elastic Deformation Mechanism in As-Cast and Annealed Eutectic and Hypoeutectic Zr–Cu–Al Metallic Glasses by Multiscale Strain Analysis

    Directory of Open Access Journals (Sweden)

    Hiroshi Suzuki

    2016-01-01

    Full Text Available Elastic deformation behaviors of as-cast and annealed eutectic and hypoeutectic Zr–Cu–Al bulk metallic glasses (BMG were investigated on a basis of different strain-scales, determined by X-ray scattering and the strain gauge. The microscopic strains determined by Direct-space method and Reciprocal-space method were compared with the macroscopic strain measured by the strain gauge, and the difference in the deformation mechanism between eutectic and hypoeutectic Zr–Cu–Al BMGs was investigated by their correlation. The eutectic Zr50Cu40Al10 BMG obtains more homogeneous microstructure by free-volume annihilation after annealing, improving a resistance to deformation but degrading ductility because of a decrease in the volume fraction of weakly-bonded regions with relatively high mobility. On the other hand, the as-cast hypoeutectic Zr60Cu30Al10 BMG originally has homogeneous microstructure but loses its structural and elastic homogeneities because of nanocluster formation after annealing. Such structural changes by annealing might develop unique mechanical properties showing no degradations of ductility and toughness for the structural-relaxed hypoeutectic Zr60Cu30Al10 BMGs.

  5. Reduction behavior of UO{sub 2}{sup 2+} in molten LiCl–RbCl and LiCl–KCl eutectics by using tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Takayuki, E-mail: nagai.takayuki00@jaea.go.jp [Nuclear Fuel Cycle Engineering Lab., Japan Atomic Energy Agency, Muramatsu, Tokai, Naka, Ibaraki 319-1194 (Japan); Uehara, Akihiro; Fujii, Toshiyuki; Yamana, Hajimu [Research Reactor Institute, Kyoto University, Asashironishi, Kumatori, Sen-nan, Osaka 590-0494 (Japan)

    2013-08-15

    The reduction of uranium from UO{sub 2}{sup 2+} to UO{sub 2}{sup +} or U{sup 4+} in molten LiCl–RbCl and LiCl–KCl eutectics was examined by using tungsten and chlorine gas. Spectrophotometric technique was adopted to determine the concentration of uranium species. When tungsten was immersed into the LiCl–RbCl eutectic melt at 400 °C without supplying chlorine gas, 36% of the total weight of the hexavalent of UO{sub 2}{sup 2+} was reduced to the pentavalent of UO{sub 2}{sup +}. Under purging chlorine gas into the melt, 96% of UO{sub 2}{sup 2+} was reduced to the tetravalent of U{sup 4+}. Tungsten oxy-chloride of WOCl{sub 4} was produced via the reductions of UO{sub 2}{sup 2+}, which was volatized from the melt and adsorbed on the upper part of experimental cell. On the other hand, 84% of UO{sub 2}{sup 2+} in the LiCl–KCl eutectic melt at 500 °C was reduced to U{sup 4+} by using tungsten and chlorine gas.

  6. Reduction behavior of UO22+ in molten LiCl-RbCl and LiCl-KCl eutectics by using tungsten

    Science.gov (United States)

    Nagai, Takayuki; Uehara, Akihiro; Fujii, Toshiyuki; Yamana, Hajimu

    2013-08-01

    The reduction of uranium from UO22+ to UO2+ or U4+ in molten LiCl-RbCl and LiCl-KCl eutectics was examined by using tungsten and chlorine gas. Spectrophotometric technique was adopted to determine the concentration of uranium species. When tungsten was immersed into the LiCl-RbCl eutectic melt at 400 °C without supplying chlorine gas, 36% of the total weight of the hexavalent of UO22+ was reduced to the pentavalent of UO2+. Under purging chlorine gas into the melt, 96% of UO22+ was reduced to the tetravalent of U4+. Tungsten oxy-chloride of WOCl4 was produced via the reductions of UO22+, which was volatized from the melt and adsorbed on the upper part of experimental cell. On the other hand, 84% of UO22+ in the LiCl-KCl eutectic melt at 500 °C was reduced to U4+ by using tungsten and chlorine gas.

  7. Form-Stable Phase Change Materials Based on Eutectic Mixture of Tetradecanol and Fatty Acids for Building Energy Storage: Preparation and Performance Analysis

    Directory of Open Access Journals (Sweden)

    Yiran li

    2013-10-01

    Full Text Available This paper is focused on preparation and performance analysis of a series of form-stable phase change materials (FSPCMs, based on eutectic mixtures as phase change materials (PCMs for thermal energy storage and high-density polyethylene (HDPE-ethylene-vinyl acetate (EVA polymer as supporting materials. The PCMs were eutectic mixtures of tetradecanol (TD–capric acid (CA, TD–lauric acid (LA, and TD–myristic acid (MA, which were rarely explored before. Thermal properties of eutectic mixtures and FSPCMs were measured by differential scanning calorimeter (DSC. The onset melting/solidification temperatures of form-stable PCMs were 19.13 °C/13.32 °C (FS TD–CA PCM, 24.53 °C/24.92 °C (FS TD–LA PCM, and 33.15 °C/30.72 °C (FS TD–MA PCM, respectively, and latent heats were almost greater than 90 J/g. The surface morphologies and chemical stability of form-stable PCM were surveyed by scanning electron microscopy (SEM and Fourier-transform infrared (FT-IR spectroscopy, respectively. The thermal cycling test revealed that the thermal reliability of these three form-stable PCMs was good. Thermal storage/release experiment indicated melting/solidification time was shortened by introducing 10 wt % aluminum powder (AP. It is concluded that these FSPCMs can act as potential building thermal storage materials in terms of their satisfactory thermal properties.

  8. Natural Deep Eutectic Solvents (NADES as a Tool for Bioavailability Improvement: Pharmacokinetics of Rutin Dissolved in Proline/Glycine after Oral Administration in Rats: Possible Application in Nutraceuticals

    Directory of Open Access Journals (Sweden)

    Marta Faggian

    2016-11-01

    Full Text Available There is a need for innovation in plant-derived pharmaceuticals, food supplements and nutraceutical products regarding the use of more eco-sustainable solvents for their extraction. Furthermore, the poor oral bioavailability of several phytochemicals with health promoting effects stimulates the research in the field of pharmaceutical formulations. Natural Deep Eutectic Solvents (NADES are formed by natural compounds, and can be considered as future solvents being especially useful for the preparation of nutraceuticals and food-grade extracts. In this paper various NADES were prepared using sugars, aminoacids and organic acids. Rutin (quercetin-3-O-α-l-rhamnopyranosyl-(1→6-β-d-glucopyranose was used as a model compound to study NADES. Moreover, the effect of various eutectic mixtures on rutin’s water solubility was studied. Proline/glutamic acid (2:1 and proline/choline chloride (1:1 mixtures have a solubility comparable to ethanol. The proline/glutamic acid (2:1 eutectic containing rutin was used in a pharmacokinetic study in Balb/c mice while bioavailability was compared to oral dosing of water suspension. Plasmatic levels of rutin were measured by HPLC-MS/MS showing increased levels and longer period of rutin permanence in plasma of NADES treated animals. This paper reports the possible use of non-toxic NADES for pharmaceutical and nutraceutical preparations.

  9. Magnetic graphene oxide modified with choline chloride-based deep eutectic solvent for the solid-phase extraction of protein

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanhua; Wang, Yuzhi, E-mail: wyzss@hnu.edu.cn; Pan, Qi; Wang, Ying; Ding, Xueqin; Xu, Kaijia; Li, Na; Wen, Qian

    2015-06-02

    Highlights: • A strategy for extraction of protein based on DES-coated magnetic graphene oxide. • The deep eutectic solvents were based on choline chloride. • Bovine serum albumin was used as the analyte. • The material prepared works for the acidic but not the basic or the neutral proteins. - Abstract: Four kinds of green deep eutectic solvents (DESs) based on choline chloride (ChCl) have been synthesized and coated on the surface of magnetic graphene oxide (Fe{sub 3}O{sub 4}@GO) to form Fe{sub 3}O{sub 4}@GO-DES for the magnetic solid-phase extraction of protein. X-ray diffraction (XRD), vibrating sample magnetometer (VSM), Fourier transform infrared spectrometry (FTIR), field emission scanning electron microscopy (FESEM) and thermal gravimetric analysis (TGA) were employed to characterize Fe{sub 3}O{sub 4}@GO-DES, and the results indicated the successful preparation of Fe{sub 3}O{sub 4}@GO-DES. The UV–vis spectrophotometer was used to measure the concentration of protein after extraction. Single factor experiments proved that the extraction amount was influenced by the types of DESs, solution temperature, solution ionic strength, extraction time, protein concentration and the amount of Fe{sub 3}O{sub 4}@GO-DES. Comparison of Fe{sub 3}O{sub 4}@GO and Fe{sub 3}O{sub 4}@GO-DES was carried out by extracting bovine serum albumin, ovalbumin, bovine hemoglobin and lysozyme. The experimental results showed that the proposed Fe{sub 3}O{sub 4}@GO-DES performs better than Fe{sub 3}O{sub 4}@GO in the extraction of acidic protein. Desorption of protein was carried out by eluting the solid extractant with 0.005 mol L{sup −1} Na{sub 2}HPO{sub 4} contained 1 mol L{sup −1} NaCl. The obtained elution efficiency was about 90.9%. Attributed to the convenient magnetic separation, the solid extractant could be easily recycled.

  10. A novel poly(deep eutectic solvent)-based magnetic silica composite for solid-phase extraction of trypsin

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kaijia [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Wang, Yuzhi, E-mail: wyzss@hnu.edu.cn [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Li, Yixue; Lin, Yunxuan; Zhang, Haibao [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Zhou, Yigang [Department of Microbiology, College of Basic Medicine, Central South University, Changsha, 410083 (China)

    2016-11-23

    Novel poly(deep eutectic solvent) grafted silica-coated magnetic microspheres (Fe{sub 3}O{sub 4}@SiO{sub 2}-MPS@PDES) were prepared by polymerization of choline chloride-itaconic acid (ChCl-IA) and γ-MPS-modified magnetic silica composites, and were characterized by vibrating sample magnetometer (VSM), Fourier transform infrared spectrometry (FT-IR), X-ray photoelectron spectra (XPS), thermal gravimetric analysis (TGA) and transmission electron microscope (TEM). Then the synthetic Fe{sub 3}O{sub 4}@SiO{sub 2}-MPS@PDES microspheres were applied for the magnetic solid-phase extraction (MSPE) of trypsin for the first time. After extraction, the concentration of trypsin in the supernatant was determined by a UV–vis spectrophotometer. Single factor experiments were carried out to investigate the effects of the extraction process, including the concentration of trypsin, the ionic strength, the pH value, the extraction time and the temperature. Experimental results showed the extraction capacity could reach up to 287.5 mg/g under optimized conditions. In comparison with Fe{sub 3}O{sub 4}@SiO{sub 2}-MPS, Fe{sub 3}O{sub 4}@SiO{sub 2}-MPS@PDES displayed higher extraction capacity and selectivity for trypsin. According to the regeneration studies, Fe{sub 3}O{sub 4}@SiO{sub 2}-MPS@PDES microspheres can be recycled six times without significant loss of its extraction capacity, and retained a high extraction capacity of 233 mg/g after eight cycles. Besides, the activity studies also demonstrated that the activity of the extracted trypsin was well retained. Furthermore, the analysis of real sample revealed that the prepared magnetic microspheres can be used to purify trypsin in crude bovine pancreas extract. These results highlight the potential of the proposed Fe{sub 3}O{sub 4}@SiO{sub 2}-MPS@PDES-MSPE method in separation of biomolecules. - Highlights: • A strategy for solid-phase extraction of trypsin based on poly(deep eutectic solvent) modified magnetic silica

  11. Evaluation of the response time of H-concentration probes for tritium sensors in lead–lithium eutectic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Llivina, L.; Colominas, S.; Abellà, J., E-mail: jordi.abella@iqs.edu

    2014-10-15

    Highlights: • Synthesis and chemical characterization of proton conductor ceramics. • Qualification of ceramics for hydrogen sensors in molten lithium–lead. • Ceramics have well-defined grains with a wide distribution of sizes. • Good agreement with predictions obtained with BaCe{sub 0.6}Zr{sub 0.3}Y{sub 0.1}O{sub 3−δ} ceramic. - Abstract: Dynamic tritium concentration measurement in lead–lithium eutectic is of major interest for a reliable tritium testing program in ITER TBM and for an experimental proof of tritium self-sufficiency in liquid metal breeding systems. Potentiometric hydrogen sensors using different solid-state electrolytes for molten lead–lithium eutectic have been reported and tested by the Electrochemical Methods Lab at Institut Quimic de Sarria (IQS). In the present work the following ceramic elements have been synthesized and characterized by X-ray diffraction (XRD) in order to be tested as a Proton Exchange Membranes (PEM) H-probes: BaCeO{sub 3}, BaCe{sub 0.6}Zr{sub 0.3}Y{sub 0.1}O{sub 3−δ} and Sr(Ce{sub 0.9}–Zr{sub 0.1}){sub 0.95}Yb{sub 0.05}O{sub 3−δ}. Potentiometric measurements of the synthesized ceramic elements have been performed shifting from a fixed hydrogen partial pressure at the working electrode to high purity argon. In this experimental campaign a fixed and known hydrogen pressure has been used in the reference electrode. The goal of these experiments is to evaluate the sensor response time when the hydrogen concentration in the environment is rapidly changed. All experiments have been done at 500 °C and 600 °C. The sensor constructed using the proton conductor element BaCe{sub 0.6}Zr{sub 0.3}Y{sub 0.1}O{sub 3−δ} exhibited stable output potential and its value was close to the theoretical value calculated with the Nernst equation. In contrast, the sensors constructed using the proton conductor elements BaCeO{sub 3} and Sr(Ce{sub 0.9}–Zr{sub 0.1}){sub 0.95}Yb{sub 0.05}O{sub 3−δ} showed higher

  12. Microstructure and Physical Properties of Sulfate Hydrate/Ice Eutectic Aggregates in the Binary System Sodium-Sulfate/Water at Planetary Conditions

    Science.gov (United States)

    McCarthy, C. M.; Kirby, S.; Durham, W.; Stern, L.

    2004-12-01

    Reflectance spectra data from Mars Odyssey, Galileo and potentially from Cassini suggest the presence of hydrated salts on numerous satellites in environments such as evaporate beds or combined with water ice. Improved mission data on these occurrences indicate that grain structures and properties of such materials merit a closer look using laboratory methods. Here we report the synthesis of a two-phase aggregate of sodium sulfate hydrate and water ice made by eutectic solidification from solution, characterization of its microstructure using cryogenic SEM, and comparison of its physical properties to those of its end-member components. Samples are crystallized from solution using a precision cryobath and seeded growth. The reaction is a "simple" one meaning that there is no solid solution formation in either of the two solid phases. The eutectic composition we studied for the sodium sulfate hydrate is 4wt% Na2SO4, which corresponds to about .06 volume fraction of Na2SO4ṡ10H2O, mirabilite, and .94 ice I. The eutectic microstructure observed with this volume fraction, which is termed "broken lamellar", consists of fairly uniform blade-like mirabilite grains arranged in roughly parallel columns within a water ice matrix. The blades and matrix material form a lamella that alternates with lamellae of pure ice. Energy dispersive spectroscopy of these eutectic mixtures confirms the presence of the two crystalline phases. Also, we find that lamellar spacing decreases with increasing growth rate. Constant-strain-rate tests in compression are carried out in the cryogenic gas deformation apparatus at LLNL in a pressure-temperature range appropriate to the icy satellites. We report the rheology of the two-phase aggregate and compare it to the strength properties of pure water ice and pure mirabilite. With the aid of numerous studies on similar structures in the literature on metals, we analyze the deformation mechanics from the perspective of defect and crack propagation

  13. Electrodeposition of Zn and Cu-Zn alloy from ZnO/CuO precursors in deep eutectic solvent

    Science.gov (United States)

    Xie, Xueliang; Zou, Xingli; Lu, Xionggang; Lu, Changyuan; Cheng, Hongwei; Xu, Qian; Zhou, Zhongfu

    2016-11-01

    The electrodeposition of Zn and Cu-Zn alloy has been investigated in choline chloride (ChCl)/urea (1:2 molar ratio) based deep eutectic solvent (DES). Cyclic voltammetry study demonstrates that the reduction of Zn(II) to Zn is a diffusion-controlled quasi-reversible, one-step, two electrons transfer process. Chronoamperometric investigation indicates that the electrodeposition of Zn on a Cu electrode typically involves three-dimensional instantaneous nucleation with diffusion-controlled growth process. Micro/nanostructured Zn films can be obtained by controlling the electrodeposition potential and temperature. The electrodeposited Zn crystals preferentially orient parallel to the (101) plane. The Zn films electrodeposited under more positive potentials and low temperatures exhibit improved corrosion resistance in 3 wt% NaCl solution. In addition, Cu-Zn alloy films have also been electrodeposited directly from CuO-ZnO precursors in ChCl/urea-based DES. The XRD analysis indicates that the phase composition of the electrodeposited Cu-Zn alloy depends on the electrodeposition potential.

  14. Investigation of the Vortex States of Sr2RuO4-Ru Eutectic Microplates Using DC-SQUIDs

    Science.gov (United States)

    Sakuma, Daisuke; Nago, Yusuke; Ishiguro, Ryosuke; Kashiwaya, Satoshi; Nomura, Shintaro; Kono, Kimitoshi; Maeno, Yoshiteru; Takayanagi, Hideaki

    2017-11-01

    We investigated the magnetic properties of a Sr2RuO4-Ru eutectic microplate containing a single Ru-inclusion using micrometer-sized DC-SQUIDs (direct-current superconducting quantum interference devices). A phase frustration at the interface between chiral p-wave superconducting Sr2RuO4 and s-wave superconducting Ru is expected to cause novel magnetic vortex states such as the spontaneous Ru-center vortex under zero magnetic field [as reported by H. Kaneyasu and M. Sigrist, https://doi.org/10.1143/JPSJ.79.053706" xlink:type="simple">J. Phys. Soc. Jpn. 79, 053706 (2010)]. Our experimental results show no positive evidence for such a spontaneous vortex state. However, in an applied field, an abrupt change in the magnetic flux distribution was observed at a superconducting transition of Ru. The flux distribution is clarified by comparing our experimental results with electromagnetic field simulations in our sample geometry. We discuss the transition of the vortex states and the superconducting coupling at the Sr2RuO4/Ru interface.

  15. Ternary natural deep eutectic solvent (NADES) infused phthaloyl starch as cost efficient quasi-solid gel polymer electrolyte.

    Science.gov (United States)

    Selvanathan, Vidhya; Azzahari, Ahmad Danial; Abd Halim, Adyani Azizah; Yahya, Rosiyah

    2017-07-01

    A first-of-its-kind, eco-friendly quasi-solid bioelectrolyte derived from potato starch was prepared. Starch was chemically modified via phthaloylation to synthesize amorphous, hydrophobic starch derivative and the attachment of the phthaloyl group was confirmed via FTIR which showed phthalate ester peak at 1715cm(-1); and (1)H NMR peaks between 7.30-7.90ppm attributed to the aromatic protons of the phthaloyl group. The resulting starch derivative was then infused with ternary natural deep eutectic solvent (NADES) made from different molar ratios of choline chloride, urea and glycerol. Electrochemical Impedance Spectroscopy (EIS) revealed that the highest ionic conductivity was obtained by the system consisting of NADES with choline chloride:urea:glycerol in molar ratios of 4:6:2, with a magnitude of 2.86mScm(-1), hence validating the prospects of the materials to be further experimented as an alternative electrolyte in various electrochemical devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Enzymatic Synthesis of Glucose-Based Fatty Acid Esters in Bisolvent Systems Containing Ionic Liquids or Deep Eutectic Solvents

    Directory of Open Access Journals (Sweden)

    Kai-Hua Zhao

    2016-09-01

    Full Text Available Sugar fatty acid esters (SFAEs are biocompatible nonionic surfactants with broad applications in food, cosmetic, and pharmaceutical industries. They can be synthesized enzymatically with many advantages over their chemical synthesis. In this study, SFAE synthesis was investigated by using two reactions: (1 transesterification of glucose with fatty acid vinyl esters and (2 esterification of methyl glucoside with fatty acids, catalyzed by Lipozyme TLIM and Novozym 435 respectively. Fourteen ionic liquids (ILs and 14 deep eutectic solvents (DESs were screened as solvents, and the bisolvent system composed of 1-hexyl-3-methylimidazolium trifluoromethylsulfonate ([HMIm][TfO] and 2-methyl-2-butanol (2M2B was the best for both reactions, yielding optimal productivities (769.6 and 397.5 µmol/h/g, respectively which are superior to those reported in the literature. Impacts of different reaction conditions were studied for both reactions. Response surface methodology (RSM was employed to optimize the transesterification reaction. Results also demonstrated that as co-substrate, methyl glucoside yielded higher conversions than glucose, and that conversions increased with an increase in the chain length of the fatty acid moieties. DESs were poor solvents for the above reactions presumably due to their high viscosity and high polarity.

  17. The Effect of Beam Intensity on Temperature Distribution in ADS Windowless Lead-Bismuth Eutectic Spallation Target

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2014-01-01

    Full Text Available The spallation target is the component coupling the accelerator and the reactor and is regarded as the “heart” of the accelerator driven system (ADS. Heavy liquid metal lead-bismuth eutectic (LBE is served as core coolant and spallation material to carry away heat deposition of spallation reaction and produce high flux neutron. So it is very important to study the heat transfer process in the target. In this paper, the steady-state flow pattern has been numerically obtained and taken as the input for the nuclear physics calculation, and then the distribution of the extreme large power density of the heat load is imported back to the computational fluid dynamics as the source term in the energy equation. Through the coupling, the transient and steady-state temperature distribution in the windowless spallation target is obtained and analyzed based on the flow process and heat transfer. Comparison of the temperature distribution with the different beam intensity shows that its shape is the same as broken wing of the butterfly. Nevertheless, the maximum temperature as well as the temperature gradient is different. The results play an important role and can be applied to the further design and optimization of the ADS windowless spallation target.

  18. Deep Eutectic Solvents as Efficient Media for the Extraction and Recovery of Cynaropicrin from Cynara cardunculus L. Leaves.

    Science.gov (United States)

    de Faria, Emanuelle L P; do Carmo, Rafael S; Cláudio, Ana Filipa M; Freire, Carmen S R; Freire, Mara G; Silvestre, Armando J D

    2017-10-30

    In recent years a high demand for natural ingredients with nutraceutical properties has been witnessed, for which the development of more environmentally-friendly and cost-efficient extraction solvents and methods play a primary role. In this perspective, in this work, the application of deep eutectic solvents (DES), composed of quaternary ammonium salts and organic acids, as alternative solvents for the extraction of cynaropicrin from Cynara cardunculus L. leaves was studied. After selecting the most promising DES, their aqueous solutions were investigated, allowing to obtain a maximum cynaropicrin extraction yield of 6.20 wt %, using 70 wt % of water. The sustainability of the extraction process was further optimized by carrying out several extraction cycles, reusing either the biomass or the aqueous solutions of DES. A maximum cynaropicrin extraction yield of 7.76 wt % by reusing the solvent, and of 8.96 wt % by reusing the biomass, have been obtained. Taking advantage of the cynaropicrin solubility limit in aqueous solutions, water was added as an anti-solvent, allowing to recover 73.6 wt % of the extracted cynaropicrin. This work demonstrates the potential of aqueous solutions of DES for the extraction of value-added compounds from biomass and the possible recovery of both the target compounds and solvents.

  19. A new approach of microalgal biomass pretreatment using deep eutectic solvents for enhanced lipid recovery for biodiesel production.

    Science.gov (United States)

    Lu, Weidong; Alam, Md Asraful; Pan, Ying; Wu, Jingcheng; Wang, Zhongming; Yuan, Zhenhong

    2016-10-01

    The biomass of Chlorella sp. was pretreated with three different aqueous deep eutectic solvents (aDESs), i.e. aqueous choline chloride-oxalic acid (aCh-O), aqueous choline chloride-ethylene glycol (aCh-EG) and aqueous urea-acetamide (aU-A). The effect of aDESs pretreatment of microalgae biomass was evaluated in terms of lipid recovery rate, total carbohydrate content, fatty acid composition, and thermal chemical behavior of biomass. Results indicated that, lipid recovery rate was increased from 52.03% of untreated biomass to 80.90%, 66.92%, and 75.26% of the biomass treated by aCh-O, aCh-EG and aU-A, respectively. However, there were no major changes observed in fatty acid profiles of both untreated and treated biomass, specifically palmitic acid, palmitoleic acid and stearic acid under various pretreatments. Furthermore, characterizations of untreated and treated biomass were carried out using Fourier transform infrared (FTIR), thermogravimetry analysis (TGA) and scanning electron microscope (SEM) to understand the enhanced lipids recovery. Copyright © 2016. Published by Elsevier Ltd.

  20. Electrochemical measurements of diffusion coefficients and activity coefficients for MnCl2 in molten eutectic LiCl-KCl

    Science.gov (United States)

    Horvath, D.; Rappleye, D.; Bagri, P.; Simpson, M. F.

    2017-09-01

    An electrochemical study of manganese chloride in molten salt mixtures of eutectic LiCl-KCl was carried out using a variety of electrochemical methods in a high temperature cell including cyclic voltammetry (CV), chronopotentiometry (CP), chronoamperometry (CA), and open circuit potentiometry. Single step reduction from Mn2+ to Mn(0) was observed on both W and Mo working electrodes. Using a combination of these methods, measurements were made of activity coefficient and diffusion coefficient for MnCl2 in LiCl-KCl as a function of concentration (3.54 × 10-4 to 3.60 × 10-3 mol fraction of MnCl2) at 773K. From OCP measurements, values for activity coefficient varied from 0.014 to 0.0071. Diffusion coefficients varied with concentration and differed based on measurement method (CV, CA, or CP). Based on cyclic Mn(II) ranged from 1.1 to 2.8 × 10-5 cm2/s depending on concentration.

  1. Heat Capacity Uncertainty Calculation for the Eutectic Mixture of Biphenyl/Diphenyl Ether Used as Heat Transfer Fluid: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, J. C.; Glatzmaier, G. C.; Mehos, M.

    2012-09-01

    The main objective of this study was to calculate the uncertainty at 95% confidence for the experimental values of heat capacity of the eutectic mixture of biphenyl/diphenyl ether (Therminol VP-1) determined from 300 to 370 degrees C. Twenty-five samples were evaluated using differential scanning calorimetry (DSC) to obtain the sample heat flow as a function of temperature. The ASTM E-1269-05 standard was used to determine the heat capacity using DSC evaluations. High-pressure crucibles were employed to contain the sample in the liquid state without vaporizing. Sample handling has a significant impact on the random uncertainty. It was determined that the fluid is difficult to handle, and a high variability of the data was produced. The heat capacity of Therminol VP-1 between 300 and 370 degrees C was measured to be equal to 0.0025T+0.8672 with an uncertainty of +/- 0.074 J/g.K (3.09%) at 95% confidence with T (temperature) in Kelvin.

  2. The Effect of Temperature on Kinetics and Diffusion Coefficients of Metallocene Derivatives in Polyol-Based Deep Eutectic Solvents.

    Directory of Open Access Journals (Sweden)

    Laleh Bahadori

    Full Text Available The temperature dependence of the density, dynamic viscosity and ionic conductivity of several deep eutectic solvents (DESs containing ammonium-based salts and hydrogen bond donvnors (polyol type are investigated. The temperature-dependent electrolyte viscosity as a function of molar conductivity is correlated by means of Walden's rule. The oxidation of ferrocene (Fc/Fc+ and reduction of cobaltocenium (Cc+/Cc at different temperatures are studied by cyclic voltammetry and potential-step chronoamperometry in DESs. For most DESs, chronoamperometric transients are demonstrated to fit an Arrhenius-type relation to give activation energies for the diffusion of redox couples at different temperatures. The temperature dependence of the measured conductivities of DES1 and DES2 are better correlated with the Vogel-Tamman-Fulcher equation. The kinetics of the Fc/Fc+ and Cc+/Cc electrochemical systems have been investigated over a temperature range from 298 to 338 K. The heterogeneous electron transfer rate constant is then calculated at different temperatures by means of a logarithmic analysis. The glycerol-based DES (DES5 appears suitable for further testing in electrochemical energy storage devices.

  3. Renewable and high efficient syngas production from carbon dioxide and water through solar energy assisted electrolysis in eutectic molten salts

    KAUST Repository

    Wu, Hongjun

    2017-07-13

    Over-reliance on non-renewable fossil fuel leads to steadily increasing concentration of atmospheric CO2, which has been implicated as a critical factor contributing to global warming. The efficient conversion of CO2 into useful product is highly sought after both in academic and industry. Herein, a novel conversion strategy is proposed to one-step transform CO2/H2O into syngas (CO/H2) in molten salt with electrolysis method. All the energy consumption in this system are contributed from sustainable energy sources: concentrated solar light heats molten salt and solar cell supplies electricity for electrolysis. The eutectic Li0.85Na0.61K0.54CO3/nLiOH molten electrolyte is rationally designed with low melting point (<450 °C). The synthesized syngas contains very desirable content of H2 and CO, with tuneable molar ratios (H2/CO) from 0.6 to 7.8, and with an efficient faradaic efficiency of ∼94.5%. The synthesis of syngas from CO2 with renewable energy at a such low electrolytic temperature not only alleviates heat loss, mitigates system corrosion, and heightens operational safety, but also decreases the generation of methane, thus increases the yield of syngas, which is a remarkable technological breakthrough and this work thus represents a stride in sustainable conversion of CO2 to value-added product.

  4. Towards green analysis of virgin olive oil phenolic compounds: Extraction by a natural deep eutectic solvent and direct spectrophotometric detection.

    Science.gov (United States)

    Paradiso, Vito Michele; Clemente, Antonia; Summo, Carmine; Pasqualone, Antonella; Caponio, Francesco

    2016-12-01

    The determination of phenolic compounds in extra virgin olive oils (EVOO) by means of rapid, low-cost, environment-free methods would be a desirable achievement. A natural deep eutectic solvent (DES) based on glucose and lactic acid was considered as extraction solvent for phenolic compounds in EVOO. DESs are green solvents characterized by high availability, biodegradability, safety, and low cost. The spectrophotometric characteristics of DES extracts of 65 EVOO samples were related to the total phenolic content of the oils, assessed by methanol-water extraction coupled to the Folin-Ciocalteu assay. A regression model (ncalibration=45, nvalidation=20), including the absorbance at two wavelengths (257, 324nm), was obtained, with an adjusted R(2)=0.762. Therefore the DES could provide a promising and viable approach for a green screening method of phenolic compounds in EVOO, by means of simple spectrophotometric measurements of extracts, even for on-field analysis (for example in olive mills). Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Theoretical evidence of charge transfer interaction between SO₂ and deep eutectic solvents formed by choline chloride and glycerol.

    Science.gov (United States)

    Li, Hongping; Chang, Yonghui; Zhu, Wenshuai; Wang, Changwei; Wang, Chao; Yin, Sheng; Zhang, Ming; Li, Huaming

    2015-11-21

    The nature of the interaction between deep eutectic solvents (DESs), formed by ChCl and glycerol, and SO2 has been systematically investigated using the M06-2X density functional combined with cluster models. Block-localized wave function energy decomposition (BLW-ED) analysis shows that the interaction between SO2 and DESs is dominated by a charge transfer interaction. After this interaction, the SO2 molecule becomes negatively charged, whereas the ChCl-glycerol molecule is positively charged, which is the result of Lewis acid-base interaction. The current result affords a theoretical proof that it is highly useful and efficient to manipulate the Lewis acidity of absorbents for SO2 capture. Moreover, hydrogen bonding as well as electrostatic interactions may also contribute to the stability of the complex. Structure analysis shows that solvent molecules will adjust their geometries to interact with SO2. In addition, the structure of SO2 is barely changed after interaction. The interaction energy between different cluster models and SO2 ranges from -6.8 to -14.4 kcal mol(-1). It is found that the interaction energy is very sensitive to the solvent structure. The moderate interaction between ChCl-glycerol and SO2 is consistent with the concept that highly efficient solvents for SO2 absorption should not only be solvable but also regenerable.

  6. Application of novel ternary deep eutectic solvents as a functional monomer in molecularly imprinted polymers for purification of levofloxacin.

    Science.gov (United States)

    Li, Xiaoxia; Row, Kyung Ho

    2017-11-15

    A series of ecofriendly ternary deep eutectic solvents (DESs) with different molar ratios were prepared as candidate functional monomers. Three of the optimal ternary DESs as functional monomers were applied to the preparation of molecularly imprinted polymers (MIPs). After synthesis, the proposed polymers were characterized by elemental analysis (EA), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller surface area measurements (BET) and Fourier transform infrared spectroscopy (FT-IR). These MIPs based on ternary DESs with different molar ratios exhibited different absorption capacities of levofloxacin. A sample of levofloxacin (500ng) was dissolved in a millet extractive (10mL). All MIPs were used as SPE adsorbents to purify the extracts. According to characterization result, the ternary DES-3 (1:3:1.5) was joined in the synthetic process of MIP-1. The green ternary DES-3-based MIPs had the best selectivity recovery for levofloxacin (91.4%) from the millet extractive. The best selectivity of MIP-1 was attributed to the novel monomer (ternary DES) in the preparation of the materials. Overall, ternary DES-based MIPs have potential applications as media in many research areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Deep Eutectic Solvent-Based Microwave-Assisted Method for Extraction of Hydrophilic and Hydrophobic Components from Radix Salviae miltiorrhizae

    Directory of Open Access Journals (Sweden)

    Jue Chen

    2016-10-01

    Full Text Available Deep eutectic solvents (DESs have attracted significant attention as a promising green media. In this work, twenty-five kinds of benign choline chloride-based DESs with microwave-assisted methods were applied to quickly extract active components from Radix Salviae miltiorrhizae. The extraction factors, including temperature, time, power of microwave, and solid/liquid ratio, were investigated systematically by response surface methodology. The hydrophilic and hydrophobic ingredients were extracted simultaneously under the optimized conditions: 20 vol% of water in choline chloride/1,2-propanediol (1:1, molar ratio as solvent, microwave power of 800 W, temperature at 70 °C, time at 11.11 min, and solid/liquid ratio of 0.007 g·mL−1. The extraction yield was comparable to, or even better than, conventional methods with organic solvents. The microstructure alteration of samples before and after extraction was also investigated. The method validation was tested as the linearity of analytes (r2 > 0.9997 over two orders of magnitude, precision (intra-day relative standard deviation (RSD < 2.49 and inter-day RSD < 2.96, and accuracy (recoveries ranging from 95.04% to 99.93%. The proposed DESs combined with the microwave-assisted method provided a prominent advantage for fast and efficient extraction of active components, and DESs could be extended as solvents to extract and analyze complex environmental and pharmaceutical samples.

  8. Hybrid Deep Eutectic Solvents with Flexible Hydrogen-Bonded Supramolecular Networks for Highly Efficient Uptake of NH3.

    Science.gov (United States)

    Li, Yuhui; Ali, Mohammad Chand; Yang, Qiwei; Zhang, Zhiguo; Bao, Zongbi; Su, Baogen; Xing, Huabin; Ren, Qilong

    2017-09-11

    Serious environmental concerns have led to a great demand for efficient uptake of NH3 by solvents. However, traditional aqueous absorbents have many shortcomings and efforts to use ionic liquids have met with limited success. A hybrid deep eutectic solvents (DESs) designed with a flexible hydrogen-bonded supramolecular network exhibits both exceptional NH3 uptake capacity and superior desorption-regeneration performance, along with superb NH3 /CO2 selectivity and environmental merit. Elucidated by molecular dynamic simulations and spectroscopic analysis, the abundant hydrogen-bonding sites in the hybrid DESs bind every atom of the NH3 molecule and enable strong physical reversible solvation, whereas the multiple interactions among the hybrid components create a flexible hydrogen-bonded supramolecular network and allow for solvent-unbreaking absorption to ensure the full participation of the solvent and process stability. A mass solubility of NH3 up to 0.13 g g-1 was achieved at 313 K and 101 kPa by the hybrid DES choline chloride/resorcinol/glycerol (1:3:5), which is higher than all reported ionic liquids and ordinary DESs. Moreover, the performance remained the same after ten absorption-desorption cycles and the DESs could be easily regenerated. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Deep Eutectic Solvents as Novel and Effective Extraction Media for Quantitative Determination of Ochratoxin A in Wheat and Derived Products

    Directory of Open Access Journals (Sweden)

    Luca Piemontese

    2017-01-01

    Full Text Available An unprecedented, environmentally friendly, and faster method for the determination of Ochratoxin A (OTA (a mycotoxin produced by several species of Aspergillus and Penicillium and largely widespread in nature, in wheat and derived products has, for the first time, been set up and validated using choline chloride (ChCl-based deep eutectic solvents (DESs (e.g., ChCl/glycerol (1:2 and ChCl/ urea (1:2 up to 40% (w/w water as privileged, green, and biodegradable extraction solvents. This also reduces worker exposure to toxic chemicals. Results are comparable to those obtained using conventional, hazardous and volatile organic solvents (VOCs typical of the standard and official methods. OTA recovery from spiked durum wheat samples, in particular, was to up to 89% versus 93% using the traditional acetonitrile-water mixture with a repeatability of the results (RSDr of 7%. Compatibility of the DES mixture with the antibodies of the immunoaffinity column was excellent as it was able to retain up to 96% of the OTA. Recovery and repeatability for durum wheat, bread crumbs, and biscuits proved to be within the specifications required by the current European Commission (EC regulation. Good results in terms of accuracy and precision were achieved with mean recoveries between 70% (durum wheat and 88% (bread crumbs and an RSDr between 2% (biscuits and 7% (bread.

  10. Randomized double-blind clinical trial of eutectic mixture of local anesthetic creams in reducing pain during hysterosalpingography.

    Science.gov (United States)

    Kalantari, Mojgan; Zadeh Modares, Shahrzad; Ahmadi, Firoozeh; Hazari, Vajihe; Haghighi, Hadieh; Chehrazi, Mohammad; Razaghi, Melika

    2014-12-01

    Hysterosalpingography (HSG) is considered as a primary test in infertility work up worldwide due to its reliability in evaluating abnormalities related to the uterus and fallopian tubes. To assess the efficacy of applying eutectic mixture of local anesthetics (lidocaine-prilocaine cream) (EMLA) on the uterine cervix in reducing pain during HSG. Eighty patients undergoing HSG as part of infertility evaluation were randomly allocated to groups receiving either EMLA (N = 40) or placebo cream (N = 40) in a double-blinded prospective study. Fifteen minutes before HSG, 5 grams of 5% cream was applied to the uterine cervix using a cervical applicator. The degree of pain experienced by the patient was evaluated during and after HSG at five predefined steps on a visual analogue scale (VAS). There was no significant difference in the efficacy between EMLA and placebo creams in pain perception during the entire procedure. There was no significant difference in long term pain perception half an hour after the HSG performance. This study does not support the use of EMLA for HSG.

  11. Quality assurance of Li-Pb eutectic alloy as nuclear material qualification of commercial and R and D material ingots

    Energy Technology Data Exchange (ETDEWEB)

    Palomo, C., E-mail: carmen.palomo@ciemat.es [CIEMAT, Avda. Complutense 22. 28040-Madrid (Spain); Serrano, L.; Duran, S.; Quinones, J.; Fernandez, M. [CIEMAT, Avda. Complutense 22. 28040-Madrid (Spain); Barrena, I. [Dpto. Ciencia de los Materiales, UCM, Avda. Complutense, s/n. 28040-Madrid (Spain); Conde, E.; Quejido, A. [CIEMAT, Avda. Complutense 22. 28040-Madrid (Spain); Gomez de Salazar, J. M. [Dpto. Ciencia de los Materiales, UCM, Avda. Complutense, s/n. 28040-Madrid (Spain); Sedano, L. [CIEMAT, Avda. Complutense 22. 28040-Madrid (Spain)

    2011-10-15

    Production of tons of {sup 6}Li enriched Li-Pb eutectic (LME) is a next coming years demand for Test Blanket Programmes in ITER. EU R and D FT Programme is facing the establishment of LLE procurement plan for ITER and CIEMAT is leading such effort. LME production routes together with constitutive and compositional characteristics should be established according to nuclear material QA requirements. (IAEA ISOs). LLE materials QA as; due to Li aggregation concerns have major impact on key design material properties for breeding blanket design. A case may be the value of Sieverts constant in lead-lithium which has a large impact on tritium control and on the design of auxiliary systems. The present work focus on establishing QA standard for the characterization of some key material properties: (1) accurate certification of Li title, (2) accurate certification of impurities content and (3) accurate assessment of structural homogeneity or Li-aggregation. Two different characterization techniques, DSC and ICP-MS analysis are qualified with different sampling materials origins; commercial (Stachow GmB, Germany) and R and D material from IPUL, Latvia. The proposed methodology and the experimental results obtained allows to measure the total amount of Li in the bulk alloy ingot and localized and determinate the segregation of Li (as Li in excess) generated in different parts of the ingot as a consequence of cooling thermal treatment.

  12. Renewable and high efficient syngas production from carbon dioxide and water through solar energy assisted electrolysis in eutectic molten salts

    Science.gov (United States)

    Wu, Hongjun; Liu, Yue; Ji, Deqiang; Li, Zhida; Yi, Guanlin; Yuan, Dandan; Wang, Baohui; Zhang, Zhonghai; Wang, Peng

    2017-09-01

    Over-reliance on non-renewable fossil fuel leads to steadily increasing concentration of atmospheric CO2, which has been implicated as a critical factor contributing to global warming. The efficient conversion of CO2 into useful product is highly sought after both in academic and industry. Herein, a novel conversion strategy is proposed to one-step transform CO2/H2O into syngas (CO/H2) in molten salt with electrolysis method. All the energy consumption in this system are contributed from sustainable energy sources: concentrated solar light heats molten salt and solar cell supplies electricity for electrolysis. The eutectic Li0.85Na0.61K0.54CO3/nLiOH molten electrolyte is rationally designed with low melting point (energy at a such low electrolytic temperature not only alleviates heat loss, mitigates system corrosion, and heightens operational safety, but also decreases the generation of methane, thus increases the yield of syngas, which is a remarkable technological breakthrough and this work thus represents a stride in sustainable conversion of CO2 to value-added product.

  13. Thermodynamic Investigation of the Effect of Interface Curvature on the Solid-Liquid Equilibrium and Eutectic Point of Binary Mixtures.

    Science.gov (United States)

    Liu, Fanghui; Zargarzadeh, Leila; Chung, Hyun-Joong; Elliott, Janet A W

    2017-10-12

    Thermodynamic phase behavior is affected by curved interfaces in micro- and nanoscale systems. For example, capillary freezing point depression is associated with the pressure difference between the solid and liquid phases caused by interface curvature. In this study, the thermal, mechanical, and chemical equilibrium conditions are derived for binary solid-liquid equilibrium with a curved solid-liquid interface due to confinement in a capillary. This derivation shows the equivalence of the most general forms of the Gibbs-Thomson and Ostwald-Freundlich equations. As an example, the effect of curvature on solid-liquid equilibrium is explained quantitatively for the water/glycerol system. Considering the effect of a curved solid-liquid interface, a complete solid-liquid phase diagram is developed over a range of concentrations for the water/glycerol system (including the freezing of pure water or precipitation of pure glycerol depending on the concentration of the solution). This phase diagram is compared with the traditional phase diagram in which the assumption of a flat solid-liquid interface is made. We show the extent to which nanoscale interface curvature can affect the composition-dependent freezing and precipitating processes, as well as the change in the eutectic point temperature and concentration with interface curvature. Understanding the effect of curvature on solid-liquid equilibrium in nanoscale capillaries has applications in the food industry, soil science, cryobiology, nanoporous materials, and various nanoscience fields.

  14. Analysis of the Deformability of Two-Layer Materials AZ31/Eutectic / Analiza Możliwości Odkształcania Plastycznego Materiału Dwuwarstwowego AZ31/Eutektyka

    Directory of Open Access Journals (Sweden)

    Mola R.

    2015-12-01

    Full Text Available The paper present the results of physical simulation of the deformation of the two-layered AZ31/eutectic material using the Gleeble 3800 metallurgical processes simulator. The eutectic layer was produced on the AZ31 substrate using thermochemical treatment. The specimens of AZ31 alloy were heat treated in contact with aluminium powder at 445°C in a vacuum furnace. Depending on the heating time, Al-enriched surface layers with a thickness of 400, 700 and 1100 μm were fabricated on a substrate which was characterized by an eutectic structure composed of the Mg17Al12 phase and a solid solution of aluminium in magnesium. In the study, physical simulation of the fabricated two-layered specimens with a varying thickness of the eutectic layer were deformed using the plane strain compression test at various values of strain rates. The testing results have revealed that it is possible to deform the two-layered AZ31/eutectic material at low strain rates and small deformation values.

  15. Use of eutectic mixtures for preparation of monolithic carbons with CO₂-adsorption and gas-separation capabilities.

    Science.gov (United States)

    López-Salas, N; Jardim, E O; Silvestre-Albero, A; Gutiérrez, M C; Ferrer, M L; Rodríguez-Reinoso, F; Silvestre-Albero, J; del Monte, F

    2014-10-21

    With global warming becoming one of the main problems our society is facing nowadays, there is an urgent demand to develop materials suitable for CO2 storage as well as for gas separation. Within this context, hierarchical porous structures are of great interest for in-flow applications because of the desirable combination of an extensive internal reactive surface along narrow nanopores with facile molecular transport through broad "highways" leading to and from these pores. Deep eutectic solvents (DESs) have been recently used in the synthesis of carbon monoliths exhibiting a bicontinuous porous structure composed of continuous macroporous channels and a continuous carbon network that contains a certain microporosity and provides considerable surface area. In this work, we have prepared two DESs for the preparation of two hierarchical carbon monoliths with different compositions (e.g., either nitrogen-doped or not) and structure. It is worth noting that DESs played a capital role in the synthesis of hierarchical carbon monoliths not only promoting the spinodal decomposition that governs the formation of the bicontinuous porous structure but also providing the precursors required to tailor the composition and the molecular sieve structure of the resulting carbons. We have studied the performance of these two carbons for CO2, N2, and CH4 adsorption in both monolithic and powdered form. We have also studied the selective adsorption of CO2 versus CH4 in equilibrium and dynamic conditions. We found that these materials combined a high CO2-sorption capacity besides an excellent CO2/N2 and CO2/CH4 selectivity and, interestingly, this performance was preserved when processed in both monolithic and powdered form.

  16. Electrochemical studies and analysis of 1-10 wt% UCl3 concentrations in molten LiCl-KCl eutectic

    Science.gov (United States)

    Hoover, Robert O.; Shaltry, Michael R.; Martin, Sean; Sridharan, Kumar; Phongikaroon, Supathorn

    2014-09-01

    Three electrochemical methods - cyclic voltammetry (CV), chronopotentiometry (CP), and anodic stripping voltammetry (ASV) - were applied to solutions of up to 10 wt% UCl3 in the molten LiCl-KCl eutectic salt at 500 °C to determine electrochemical properties and behaviors and to help provide a scientific basis for the development of an in situ electrochemical probe for determining the concentration of uranium in a used nuclear fuel electrorefiner. Diffusion coefficients of UCl4 and UCl3 were calculated to be (6.72 ± 0.360) × 10-6 cm2/s and (1.04 ± 0.17) × 10-5 cm2/s, respectively. Apparent standard reduction potentials were determined to be (-0.381 ± 0.013) V and (-1.502 ± 0.076) V vs. 5 mol% Ag/AgCl or (-1.448 ± 0.013) V and (-2.568 ± 0.076) V vs. Cl2/Cl- for the U(IV)/U(III) and U(III)/U redox couples, respectively. In comparing this data with supercooled thermodynamic data to determine activity coefficients, the thermodynamic database used was important with resulting activity coefficients ranging from 2.34 × 10-3 to 1.08 × 10-2 for UCl4 and 4.94 × 10-5 to 4.50 × 10-4 for UCl3. Of anodic stripping voltammetry and cyclic voltammetry anodic or cathodic peaks, the CV cathodic peak height divided by square root of scan rate was shown to be the most reliable method of determining UCl3 concentration in the molten salt.

  17. One step transesterification process of sludge palm oil (SPO) by using deep eutectic solvent (DES) in biodiesel production

    Science.gov (United States)

    Manurung, Renita; Ramadhani, Debbie Aditia; Maisarah, Siti

    2017-06-01

    Biodiesel production by using sludge palm oil (SPO) as raw material is generally synthesized in two step reactions, namely esterification and transesterification, because the free fatty acid (FFA) content of SPO is relatively high. However, the presence of choline chloride (ChCl), glycerol based deep eutectic solvent (DES), in transesterification may produce biodiesel from SPO in just one step. In this study, DES was produced by the mixture of ChCl and glycerol at molar ratio of 1:2 at a temperature of 80°C and stirring speed of 400 rpm for 1 hour. DES was characterized by its density and viscosity. The transesterification process was performed at reaction temperature of 70 °C, ethanol to oil molar with ratio of 9:1, sodium hydroxide as catalyst concentration of 1 % wt, DES as cosolvent with concentration of 0 to 5 % wt, stirring speed of 400 rpm, and one hour reaction time. The obtained biodiesel was then assessed with density, viscosity, and ester content as the parameters. FFA content of SPO as the raw material was 7.5290 %. In this case, DES as cosolvent in one step transesterification process of low feedstock could reduce the side reaction (saponification), decrease the time reaction, decrease the surface tension between ethanol and oil, and increase the mass transfer that simultaneously simplified the purification process and obtained the highest yield. The esters properties met the international standards of ASTM D 6751, with the highest yield obtained was 83.19% with 99.55% of ester content and the ratio of ethanol:oil of 9:1, concentration of DES of 4%, catalyst amount of 1%, temperature of reaction at 70°C and stirring speed of 400 rpm.

  18. Enhanced and green extraction polyphenols and furanocoumarins from Fig (Ficus carica L.) leaves using deep eutectic solvents.

    Science.gov (United States)

    Wang, Tong; Jiao, Jiao; Gai, Qing-Yan; Wang, Peng; Guo, Na; Niu, Li-Li; Fu, Yu-Jie

    2017-10-25

    Nowadays, green extraction of bioactive compounds from medicinal plants has gained increasing attention. As green solvent, deep eutectic solvent (DES) have been highly rated to replace toxic organic solvents in extraction process. In present study, to simultaneous extraction five main bioactive compounds from fig leaves, DES was tailor-made. The tailor-made DES composed of a 3:3:3 molar ratio of glycerol, xylitol and D-(-)-Fructose showed enhanced extraction yields for five target compounds simultaneously compared with traditional methanol and non-tailor DESs. Then, the tailor-made DES based extraction methods have compared and microwave-assisted extraction was selected and optimized due to its high extraction yields with lower time consumption. The influencing parameters including extraction temperature, liquid-solid ratio, and extraction time were optimized using response surface methodology (RSM). Under optimal conditions the extraction yield of caffeoylmalic acid, psoralic acid-glucoside, rutin, psoralen and bergapten was 6.482mg/g, 16.34mg/g, 5.207mg/g, 15.22mg/g and 2.475mg/g, respectively. Macroporous resin D101 has been used to recovery target compounds with recovery yields of 79.2%, 83.4%, 85.5%, 81.2% and 75.3% for caffeoylmalic acid, psoralic acid-glucoside, rutin, psoralen and bergapten, respectively. The present study suggests that DESs are truly designer and efficient solvents and the method we developed was efficient and sustainable for extraction main compounds from Fig leaves.mg/g. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Identification of Major Flavone C-Glycosides and Their Optimized Extraction from Cymbidium kanran Using Deep Eutectic Solvents

    Directory of Open Access Journals (Sweden)

    Kyung Min Jeong

    2017-11-01

    Full Text Available Cymbidium kanran, an orchid exclusively distributed in Northeast Asia, has been highly valued as a decorative plant and traditional herbal medicine. Here, C. kanran extracts were prepared in 70% aqueous methanol using ultrasound-assisted extraction (UAE and subjected to liquid chromatography-photodiode array detection and ultra-high performance liquid chromatography-quadrupole-time-of-flight-mass spectrometry analysis, which were used for quantitative and qualitative analysis, respectively. It was found that the extracts were rich in flavone C-glycosides including vicenin-2, vicenin-3, schaftoside, vitexin, and isovitexin. Ten deep eutectic solvents (DESs were synthesized by combining choline chloride (hydrogen bond acceptor with various polyols and diols (hydrogen bond donors and were tested as a medium for the efficient production of extracts enriched with potentially bioactive flavone C-glycosides from C. kanran. A DES named ChCl:DPG, composed of choline chloride and dipropylene glycol at a 1:4 molar ratio, exhibited the best extraction yields. Then, the effects of extraction conditions on the extraction efficiency were investigated by response surface methodology. Lower water content in the extraction solvent and longer extraction time during UAE were desirable for higher extraction yields. Under the statistically optimized conditions, in which 100 mg of C. kanran powder were extracted in 0.53 mL of a mixture of ChCl:DPG and water (74:26, w/w for 86 min, a total of 3.441 mg g−1 flavone C-glycosides including 1.933 mg g−1 vicenin-2 was obtained. This total yield was 196%, 131%, and 71% more than those obtained using 100% methanol, water, and 70% methanol, respectively.

  20. Efficient absorption of SO2 with low-partial pressures by environmentally benign functional deep eutectic solvents.

    Science.gov (United States)

    Zhang, Kai; Ren, Shuhang; Hou, Yucui; Wu, Weize

    2017-02-15

    Sulfur dioxide (SO2) emitted from the burning of fossil fuels is one of the main air contaminants. In this work, we found that environmentally benign solvents, deep eutectic solvents (DESs) could be designed with a function to absorb low-partial pressure SO2 from simulated flue gas. Two kinds of biodegradable functional DESs based on betaine (Bet) and l-carnitine (L-car) as hydrogen bond accepters (HBA) and ethylene glycol (EG) as a hydrogen bond donor (HBD) were prepared with mole ratios of HBA to HBD from 1:3 to 1:5, and they were investigated to absorb SO2 with different partial pressures at various temperatures. The results showed that the two DESs could absorb low-partial pressure SO2 efficiently. SO2 absorption capacities of the DESs with HBA/HBD mole ratio of 1:3 were 0.332mol SO2/mol HBA for Bet+EG DES and 0.820mol SO2/mol HBA for L-car+EG DES at 40°C with a SO2 partial pressure of 0.02atm. In addition, the regeneration experiments demonstrated that the absorption capacities of DESs did not change after five absorption and desorption cycles. Furthermore, the absorption mechanism of SO2 by DESs was studied by FT-IR, (1)H NMR and (13)C NMR spectra. It was found that there are strong acid-base interactions between SO2 and -COO(-) on HBA. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Microstructural Characterization of a Directionally-Solidified Ni-33 (at. %)Al-31Cr-3Mo Eutectic Alloy as a Function of Withdrawal Rate

    Science.gov (United States)

    Raj, S. V.; Locci, I. E.; Whittenberger, J. D.; Salem, J. A.

    2000-01-01

    The Ni-33 (at. %)Al-3lCr-3Mo eutectic alloy was directionally-solidified (DS) at different rates, V(sub I), varying between 2.5 to 508 mm/ h. Detailed qualitative and quantitative metallographic and chemical analyses were conducted on the directionally-solidified rods. The microstructures consisted of eutectic colonies with parallel lamellar NiAl/(Cr,Mo) plates for solidification rates at and below 12.7 mm/ h. Cellular eutectic microstructures were observed at higher solidification rates, where the plates exhibited a radial pattern. The microstructures were demonstrated to be fairly uniform throughout a 100 mm length of the DS zone by quantitative metallography. The average cell size, bar-d, decreased with increasing growth rate to a value of 125 microns at 508 mm/ h according to the relation bar-d (microns) approx. = 465 V(sup -0.22, sub I), where V(sub I) is in mm/ h. Both the average NiAl plate thickness, bar-Delta(sub NiAl), and the interlamellar spacing, bar-lambda, were observed to be constant for V(sub I) less than or = 50.8 mm/ h but decreased with increasing growth rate above this value as 0.93 bar-Delta(sub NiAl)(microns) = 61.2 V(sup -0.93, sub I) and bar-lambda (microns) = 47.7 V(sup -0.64, sub I), respectively. The present results are detailed on a microstructural map. Keywords Optical microscopy, microstructure, compounds intermetallic, directional solidification

  2. Do carboximide–carboxylic acid combinations form co-crystals? The role of hydroxyl substitution on the formation of co-crystals and eutectics

    Directory of Open Access Journals (Sweden)

    Ramanpreet Kaur

    2015-05-01

    Full Text Available Carboxylic acids, amides and imides are key organic systems which provide understanding of molecular recognition and binding phenomena important in biological and pharmaceutical settings. In this context, studies of their mutual interactions and compatibility through co-crystallization may pave the way for greater understanding and new applications of their combinations. Extensive co-crystallization studies are available for carboxylic acid/amide combinations, but only a few examples of carboxylic acid/imide co-crystals are currently observed in the literature. The non-formation of co-crystals for carboxylic acid/imide combinations has previously been rationalized, based on steric and computed stability factors. In the light of the growing awareness of eutectic mixtures as an alternative outcome in co-crystallization experiments, the nature of various benzoic acid/cyclic imide combinations is established in this paper. Since an additional functional group can provide sites for new intermolecular interactions and, potentially, promote supramolecular growth into a co-crystal, benzoic acids decorated with one or more hydroxyl groups have been systematically screened for co-crystallization with one unsaturated and two saturated cyclic imides. The facile formation of an abundant number of hydroxybenzoic acid/cyclic carboximide co-crystals is reported, including polymorphic and variable stoichiometry co-crystals. In the cases where co-crystals did not form, the combinations are shown invariably to result in eutectics. The presence or absence and geometric disposition of hydroxyl functionality on benzoic acid is thus found to drive the formation of co-crystals or eutectics for the studied carboxylic acid/imide combinations.

  3. Density relaxation and particle motion characteristics in a non-ionic deep eutectic solvent (acetamide + urea): Time-resolved fluorescence measurements and all-atom molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Das, Anuradha; Das, Suman; Biswas, Ranjit, E-mail: ranjit@bose.res.in [Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata, West Bengal 700098 (India)

    2015-01-21

    Temperature dependent relaxation dynamics, particle motion characteristics, and heterogeneity aspects of deep eutectic solvents (DESs) made of acetamide (CH{sub 3}CONH{sub 2}) and urea (NH{sub 2}CONH{sub 2}) have been investigated by employing time-resolved fluorescence measurements and all-atom molecular dynamics simulations. Three different compositions (f) for the mixture [fCH{sub 3}CONH{sub 2} + (1 − f)NH{sub 2}CONH{sub 2}] have been studied in a temperature range of 328-353 K which is ∼120-145 K above the measured glass transition temperatures (∼207 K) of these DESs but much lower than the individual melting temperature of either of the constituents. Steady state fluorescence emission measurements using probe solutes with sharply different lifetimes do not indicate any dependence on excitation wavelength in these metastable molten systems. Time-resolved fluorescence anisotropy measurements reveal near-hydrodynamic coupling between medium viscosity and rotation of a dissolved dipolar solute. Stokes shift dynamics have been found to be too fast to be detected by the time-resolution (∼70 ps) employed, suggesting extremely rapid medium polarization relaxation. All-atom simulations reveal Gaussian distribution for particle displacements and van Hove correlations, and significant overlap between non-Gaussian (α{sub 2}) and new non-Gaussian (γ) heterogeneity parameters. In addition, no stretched exponential relaxations have been detected in the simulated wavenumber dependent acetamide dynamic structure factors. All these results are in sharp contrast to earlier observations for ionic deep eutectics with acetamide [Guchhait et al., J. Chem. Phys. 140, 104514 (2014)] and suggest a fundamental difference in interaction and dynamics between ionic and non-ionic deep eutectic solvent systems.

  4. Temperature effect on fluorescence and UV-vis absorption spectroscopic properties of Dy(III) in molten LiCl-KCl eutectic salt

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Young [Department of Nuclear and Quantum Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Yun, Jong-Il, E-mail: jiyun@kaist.ac.kr [Department of Nuclear and Quantum Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2012-11-15

    The spectroscopic properties of Dy(III) in molten LiCl-KCl eutectic salt at high temperature were investigated by time-resolved laser fluorescence spectroscopy (TRLFS) and UV-vis absorption spectroscopy. For the first time, a visible fluorescence of Dy(III) in high-temperature LiCl-KCl eutectic salt was measured due to the electronic transitions from {sup 4}I{sub 13/2} and {sup 4}F{sub 9/2} to {sup 6}H{sub J/2} (J=7, Horizontal-Ellipsis ,15). The effect of temperature on hypersensitivity for the electronic transitions from the {sup 4}I{sub 13/2} excited state ({approx}25700 cm{sup -1}) of Dy(III) was confirmed by altering temperature in chloride eutectic salt in accord with optical absorption measurements. The molar absorptivity of {sup 4}I{sub 13/2} Leftwards-Arrow {sup 6}H{sub 15/2} was enhanced with increasing temperature. The fluorescence intensity of Dy(III) followed a simple mono-exponential decay curve, suggesting the formation of a single chemical species in high-temperature LiCl-KCl molten salt. - Highlights: Black-Right-Pointing-Pointer Spectroscopic characteristics of Dy(III) in the high-temperature LiCl-KCl salt. Black-Right-Pointing-Pointer In-situ chemical analysis of Dy(III) by fluorescence and absorbance measurement. Black-Right-Pointing-Pointer Temperature effect on hypersensitivity for electronic transitions from {sup 4}I{sub 13/2} excited state. Black-Right-Pointing-Pointer Single chemical species of Dy(III) exists in high-temperature LiCl-KCl salt.

  5. Rheological Analysis of Binary Eutectic Mixture of Sodium and Potassium Nitrate and the Effect of Low Concentration CuO Nanoparticle Addition to Its Viscosity

    Directory of Open Access Journals (Sweden)

    Mathieu Lasfargues

    2015-08-01

    Full Text Available This paper is focused on the characterisation and demonstration of Newtonian behaviour of salt at both high and low shear rate for sodium and potassium nitrate eutectic mixture (60/40 ranging from 250 °C to 500 °C. Analysis of published and experimental data was carried out to correlate all the numbers into one meaningful 4th order polynomial equation. Addition of a low amount of copper oxide nanoparticles to the mixture increased viscosity of 5.0%–18.0% compared to the latter equation.

  6. Effects of Electromagnetic Stirring on the Microstructure and High-Temperature Mechanical Properties of a Hyper-eutectic Al-Si-Cu-Ni Alloy

    Science.gov (United States)

    Jang, Youngsoo; Choi, Byounghee; Kang, Byungkeun; Hong, Chun Pyo

    2015-02-01

    A liquid treatment method by electromagnetic stirring was applied to a hyper-eutectic Al-15wt pctSi-4wt pctCu-3wt pctNi alloy for the piston manufacturing with diecasting process in order to improve high-temperature mechanical properties of the piston heads. The mechanical properties, such as hardness, high-temperature tensile stress, thermal expansion, and high-temperature relative wear resistance, were estimated using the specimens taken from the liquid-treated diecast products, and the results were compared with those of a conventional metal-mold-cast piston.

  7. Construction and analysis of dynamic solidification curves for non-equilibrium solidification process in lost-foam casting hypo-eutectic gray cast iron

    Directory of Open Access Journals (Sweden)

    Ming-guo Xie

    2017-05-01

    Full Text Available Most lost-foam casting processes involve non-equilibrium solidification dominated by kinetic factors, while construction of a common dynamic solidification curve is based on pure thermodynamics, not applicable for analyses and research of non-equilibrium macro-solidification processes, and the construction mode can not be applied to non-equilibrium solidification process. In this study, the construction of the dynamic solidification curve (DSC for the non-equilibrium macro-solidification process included: a modified method to determine the start temperature of primary austenite precipitation (TAL and the start temperature of eutectic solidification (TES; double curves method to determine the temperature of the dendrite coherency point of primary austenite (TAC and the temperature of eutectic cells collision point (TEC; the “technical solidus” method to determine the end temperature of eutectic reaction (TEN. For this purpose, a comparative testing of the non-equilibrium solidification temperature fields in lost-foam casting and green sand mold casting hypoeutectic gray iron was carried out. The thermal analysis results were used to construct the DSCs of both these casting methods under non-equilibrium solidification conditions. The results show that the transformation rate of non-equilibrium solidification in hypoeutectic gray cast iron is greater than that of equilibrium solidification. The eutectic solidification region presents a typical mushy solidification mode. The results also indicate that the primary austenite precipitation zone of lost-foam casting is slightly larger than that of green sand casting. At the same time, the solid fraction (fs of the dendrite coherency points in lost-foam casting is greater than that in the green sand casting. Therefore, from these two points, lost-foam casting is more preferable for reduction of shrinkage and mechanical burnt-in sand tendency of the hypoeutectic gray cast iron. Due to the fact that

  8. Idaho National Laboratory Lead or Lead-Bismuth Eutectic (LBE) Test Facility - R&D Requirements, Design Criteria, Design Concept, and Concept Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Loewen; Paul Demkowicz

    2005-05-01

    The Idaho National Laboratory Lead-Bismuth Eutectic Test Facility will advance the state of nuclear technology relative to heavy-metal coolants (primarily Pb and Pb-Bi), thereby allowing the U.S. to maintain the pre-eminent position in overseas markets and a future domestic market. The end results will be a better qualitative understanding and quantitative measure of the thermal physics and chemistry conditions in the molten metal systems for varied flow conditions (single and multiphase), flow regime transitions, heat input methods, pumping requirements for varied conditions and geometries, and corrosion performance. Furthering INL knowledge in these areas is crucial to sustaining a competitive global position. This fundamental heavy-metal research supports the National Energy Policy Development Group’s stated need for energy systems to support electrical generation.1 The project will also assist the Department of Energy in achieving goals outlined in the Nuclear Energy Research Advisory Committee Long Term Nuclear Technology Research and Development Plan,2 the Generation IV Roadmap for Lead Fast Reactor development, and Advanced Fuel Cycle Initiative research and development. This multi-unit Lead-Bismuth Eutectic Test Facility with its flexible and reconfigurable apparatus will maintain and extend the U.S. nuclear knowledge base, while educating young scientists and engineers. The uniqueness of the Lead-Bismuth Eutectic Test Facility is its integrated Pool Unit and Storage Unit. This combination will support large-scale investigation of structural and fuel cladding material compatibility issues with heavy-metal coolants, oxygen chemistry control, and thermal hydraulic physics properties. Its ability to reconfigure flow conditions and piping configurations to more accurately approximate prototypical reactor designs will provide a key resource for Lead Fast Reactor research and development. The other principal elements of the Lead-Bismuth Eutectic Test Facility

  9. Double freezing of (NH(4))(2)SO(4)/H(2)O droplets below the eutectic point and the crystallization of (NH(4))(2)SO(4) to the ferroelectric phase.

    Science.gov (United States)

    Bogdan, A

    2010-09-23

    This paper presents the differential scanning calorimetry (DSC) results obtained from measurements of single droplets of different subeutectic concentrations (freezing of the droplets takes place below the eutectic temperature of Te ≈ 254.5 K, a phase separation into ice and a residual freeze-concentrated solution occurs. The residual solution is formed by the expulsion of NH4+ and SO42- ions from the ice lattice during the nucleation and growth of ice and may possess the eutectic concentration of 40 wt % (NH4)2SO4. On further cooling, the residual solution freezes to the eutectic solid mixture of ice/(NH4)2SO4 at a temperature that is either above or below the ferroelectric "Curie" temperature of Tc ≈ 223 K. If the freezing of the residual solution takes place below the Tc, then (NH4)2SO4 crystallizes directly into the ferroelectric phase.

  10. Uranium hexafluoride liquid thermal expansion, elusive eutectic with hydrogen fluoride, and very first production using chlorine trifluoride

    Energy Technology Data Exchange (ETDEWEB)

    Rutledge, G.P. [Central Environmental, Inc., Anchorage, AK (United States)

    1991-12-31

    Three unusual incidents and case histories involving uranium hexafluoride in the enrichment facilities of the USA in the late 1940`s and early 1950`s are presented. The history of the measurements of the thermal expansion of liquids containing fluorine atoms within the molecule is reviewed with special emphasis upon uranium hexafluoride. A comparison is made between fluorinated esters, fluorocarbons, and uranium hexafluoride. The quantitative relationship between the thermal expansion coefficient, a, of liquids and the critical temperature, T{sub c} is presented. Uranium hexafluoride has an a that is very high in a temperature range that is used by laboratory and production workers - much higher than any other liquid measured. This physical property of UF{sub 6} has resulted in accidents involving filling the UF{sub 6} containers too full and then heating with a resulting rupture of the container. Such an incident at a uranium gaseous diffusion plant is presented. Production workers seldom {open_quotes}see{close_quotes} uranium hexafluoride. The movement of UF{sub 6} from one container to another is usually trailed by weight, not sight. Even laboratory scientists seldom {open_quotes}see{close_quotes} solid or liquid UF{sub 6} and this can be a problem at times. This inability to {open_quotes}see{close_quotes} the UF{sub 6}-HF mixtures in the 61.2{degrees}C to 101{degrees}C temperature range caused a delay in the understanding of the phase diagram of UF{sub 6}-HF which has a liquid - liquid immiscible region that made the eutectic composition somewhat elusive. Transparent fluorothene tubes solved the problem both for the UF{sub 6}-HF phase diagram as well as the UF{sub 6}-HF-CIF{sub 3} phase diagram with a miscibility gap starting at 53{degrees}C. The historical background leading to the first use of CIF{sub 3} to produce UF{sub 6} in both the laboratory and plant at K-25 is presented.

  11. Effect of severe cold-rolling and annealing on microstructure and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy

    Science.gov (United States)

    Wani, I. S.; Bhattacharjee, T.; Sheikh, S.; Lu, Y.; Chatterjee, S.; Guo, S.; Bhattacharjee, P. P.; Tsuji, N.

    2017-05-01

    The possibility of microstructural refinement and improvement of mechanical properties by severe cold-rolling was investigated in an AlCoCrFeNi2.1 lamellar eutectic high entropy alloy (EHEA). The as-cast alloy revealed fine scale eutectic mixture of L12 (ordered FCC) and B2 (ordered BCC) phases. During severe cold-rolling up to 90% reduction in thickness the B2 phase maintained the ordered structure, while the L12 phase showed the evolution of a nanocrystalline structure and progressive disordering. Annealing of the severely cold-rolled material resulted in the formation of duplex microstructures composed of two different phases with equiaxed morphologies and significant resistance to grain growth up to 1200°C. Annealing at 1000°C resulted in an optimum strength-ductility balance with the tensile strength of 1175 MPa and the total elongation of 23%. The present results showed that severe cold-rolling and annealing can impart very attractive mechanical properties in complex EHEAs.

  12. The Strength of the Spatially Interconnected Eutectic Network in HPDC Mg-La, Mg-Nd, and Mg-La-Nd Alloys

    Science.gov (United States)

    Zhang, Bao; Gavras, Serge; Nagasekhar, Anumalasetty V.; Cáceres, Carlos Horacio; Easton, Mark A.

    2014-09-01

    3D numerical images of the intergranular percolating eutectic of two binary alloys, Mg-0.62 at. pctLa and Mg-0.60 at. pctNd, created using dual beam FIB tomography, were incorporated into an FEM code to model their tensile behavior. Due to its high volume fraction (29.9 pct), the behavior of the Mg-La network was akin to that of a stretch-dominated micro-truss structure, whereas the Mg-Nd's, with a relatively low volume fraction (7.5 pct), mimicked that of a bending-dominated structure. The 3D network contributed some 37 MPa to the strength of the Mg-La alloy casting, whereas it only added about 1.4 MPa to the Mg-Nd's. The model predictions based on the binary alloys were verified using cast-to-shape specimens of the Mg-La and two ternary Mg-La-Nd alloys, subjected to a flash-annealing aiming at breaking up the continuity of the 3D network, while preserving the rest of the microstructure unchanged. The flash-annealed specimens exhibited a decrease in strength that matched closely the computed values. Implications regarding alloy design involving the eutectic network and solid solution hardening of more complex alloys are discussed.

  13. High Temperature Fixed-Point Blackbodies Based on Metal-Carbon Eutectics for Precision Measurements in Radiometry, Photometry and Radiation Thermometry

    Science.gov (United States)

    Sapritsky, V. I.; Khlevnoy, B. B.; Khromchenko, V. B.; Ogarev, S. A.; Samoylov, M. L.; Pikalev, Yu. A.

    2003-09-01

    Re-C, TiC-C and ZrC-C metal-carbon eutectics cells were developed and investigated at VNIIOFI (Russia) for use as high-temperature fixed-point blackbodies for precise measurements in radiometry, photometry and radiation thermometry. Two types of cells containing cavities with 4 mm and 10 mm diameters were designed that allow using them in radiance and irradiance modes, respectively. The melting temperatures of Re-C, TiC-C and ZrC-C were found to be 2747.5 K, 3033.8 and 3154.1 K respectively. The reproducibility of the Re-C fixed points was found to be 0.04 to 0.09 K, depending on the cell. The reproducibility of TiC-C and ZrC-C melting temperatures was 0.05 K and 0.09 K respectively. The pyrolitic-graphite blackbody BB3200pg was used as a furnace for heating eutectics. The new TiC-C and ZrC-C fixed-point cells with 16 mm cavity diameter and a new furnace BB3500MP are under development now.

  14. A cellular automaton - finite volume method for the simulation of dendritic and eutectic growth in binary alloys using an adaptive mesh refinement

    Science.gov (United States)

    Dobravec, Tadej; Mavrič, Boštjan; Šarler, Božidar

    2017-11-01

    A two-dimensional model to simulate the dendritic and eutectic growth in binary alloys is developed. A cellular automaton method is adopted to track the movement of the solid-liquid interface. The diffusion equation is solved in the solid and liquid phases by using an explicit finite volume method. The computational domain is divided into square cells that can be hierarchically refined or coarsened using an adaptive mesh based on the quadtree algorithm. Such a mesh refines the regions of the domain near the solid-liquid interface, where the highest concentration gradients are observed. In the regions where the lowest concentration gradients are observed the cells are coarsened. The originality of the work is in the novel, adaptive approach to the efficient and accurate solution of the posed multiscale problem. The model is verified and assessed by comparison with the analytical results of the Lipton-Glicksman-Kurz model for the steady growth of a dendrite tip and the Jackson-Hunt model for regular eutectic growth. Several examples of typical microstructures are simulated and the features of the method as well as further developments are discussed.

  15. Effect of Bath Temperature on Cooling Performance of Molten Eutectic NaNO3-KNO3 Quench Medium for Martempering of Steels

    Science.gov (United States)

    Pranesh Rao, K. M.; Narayan Prabhu, K.

    2017-10-01

    Martempering is an industrial heat treatment process that requires a quench bath that can operate without undergoing degradation in the temperature range of 423 K to 873 K (150 °C to 600 °C). The quench bath is expected to cool the steel part from the austenizing temperature to quench bath temperature rapidly and uniformly. Molten eutectic NaNO3-KNO3 mixture has been widely used in industry to martemper steel parts. In the present work, the effect of quench bath temperature on the cooling performance of a molten eutectic NaNO3-KNO3 mixture has been studied. An Inconel ASTM D-6200 probe was heated to 1133 K (860 °C) and subsequently quenched in the quench bath maintained at different temperatures. Spatially dependent transient heat flux at the metal-quenchant interface for each bath temperature was calculated using inverse heat conduction technique. Heat transfer occurred only in two stages, namely, nucleate boiling and convective cooling. The mean peak heat flux ( q max) decreased with increase in quench bath temperature, whereas the mean surface temperature corresponding to q max and mean surface temperature at the start of convective cooling stage increased with increase in quench bath temperature. The variation in normalized cooling parameter t 85 along the length of the probe increased with increase in quench bath temperature.

  16. Spin-lattice relaxation studies on deep eutectic solvent/Choliniumtetrachloroferrate mixtures: Suitability of DES-based systems towards magnetic resonance imaging studies.

    Science.gov (United States)

    Chandra, Abhilash; Kumar Sahu, Prabhat; Chakraborty, Subhayan; Ghosh, Arindam; Sarkar, Moloy

    2017-09-28

    This study has been undertaken with an aim to investigate the suitability of the deep eutectic solvents (DES)-based systems for magnetic resonance imaging studies. DESs are used to develop the systems, keeping in mind the fact that these are relatively less toxic than ionic liquids, and hence, DES based magnetic compound is expected to be relatively less toxic than magnetic ionic liquids. In this work, spin-lattice (T1 ) relaxation measurements are carried out in the binary mixtures of deep eutectic solvent with a paramagnetic component choliniumtetrachloroferrate ([Ch][FeCl4 ]). Two cholinium ion based DESs, namely ethaline and glyceline have been used for this study. For both ethaline/[Ch][FeCl4 ] and glyceline/[Ch][FeCl4 ], T1 is observed to vary significantly with very low concentration of [Ch][FeCl4 ]. Such an observation can arise due to the high degree of paramagnetic coupling between DESs and [Ch][FeCl4 ]. The results advocate the suitability of both ethaline/[Ch][FeCl4 ] and glyceline/[Ch][FeCl4 ] mixture as a potential T1 contrast agent. Interestingly, when the experiments are carried out in aqueous medium, significant lowering of T1 of water proton with very low concentration of ethaline/[Ch][FeCl4 ] and glyceline/[Ch][FeCl4 ] is observed. This study demonstrates that the present systems can act as a suitable T1 contrast agent. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Preparation of a nitro-substituted tris(indolyl)methane modified silica in deep eutectic solvents for solid-phase extraction of organic acids.

    Science.gov (United States)

    Wang, Na; Wang, Jiamin; Liao, Yuan; Shao, Shijun

    2016-05-01

    A new sorbent for solid-phase extraction was synthesized by chemical immobilization of nitro-substituted tris(indolyl)methane on silica in new and green deep eutectic solvents. Elemental analysis results indicated that deep eutectic solvents could be an alternative to the traditional solvents in preparing nitro-substituted tris(indolyl)methane modified silica. Coupled with high performance liquid chromatography, the extraction performance of the sorbent was evaluated by using four organic acids as model analytes. The rebinding experiments results showed that the nitro-substituted tris(indolyl)methane modified silica sorbent had a good adsorption capacity towards the selected organic acids. Under the appropriate experimental conditions, good precision and wide linear ranges with coefficient of determination (R(2)) of higher than 0.9957 were obtained, and the limits of detection were in the range of 0.50-2.0μgL(-1) for the organic acids tested. The developed solid-phase extraction-high performance liquid chromatography-diode array detection (SPE-HPLC-DAD) method was successfully applied for the determination of organic acids in two drinking samples with recoveries ranging from 76.7% to 110.0% and 67.7% to 104.0% for all the selected organic acids, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Eutectic gamma (Nickel)/gamma vprime(Nickel Aluminide) delta (Nickel Niobium) polycrystalline nickel-base superalloys: Chemistry, processing, microstructure and properties

    Science.gov (United States)

    Xie, Mengtao

    Directionally solidified (D.S.) gamma(Ni)/gamma'(Ni 3A1)-delta(Ni3Nb) eutectic alloys were considered as candidate turbine blade materials. Currently, the properties of polycrystalline gamma/gamma'-delta alloys are of interest as they inherit many advantageous attributes from the D.S. gamma/gamma'-delta alloys. This thesis is therefore dedicated towards the development of a fundamental understanding of these novel eutectic alloys from several important perspectives. This thesis will first be focused on quantifying the effect of several elements. A set of Ni-Cr-Al-Nb alloy compositions with increasing levels of Cr was designed to investigate the influence of Cr on the primary phase formation, solidus and liquidus temperatures and g-d eutectic morphology. A matrix of complex gamma/gamma'-delta alloy compositions with the same (Ta+Nb) content but varying Ta/Nb ratios was designed to study the influence of Ta on elemental segregation and solid state partitioning behaviors. Thermodynamic predicaitons using the Computherm Pandat database (PanNi7) were compared to experimental results in these investigations. The second part of this thesis will provide a more general understanding of the effects of common elements. A large number of experimental alloys covering a broad range of compositions were selected for the analysis. Important alloy attributes were characterized as a function of element concentration. Linear regression analysis was performed to reveal the relative effectiveness of different elements. An extensive comparison between the experimental observations and Pandat predictions was provided to critically evaluate the strength and weakness of existing thermodynamic database model in this novel alloy system. The last part of this thesis emphasizes the development of cast and wrought processes for cast gamma/gamma'-delta alloys as a cost effective alternative to the powder metallurgy route. Hot rolling of workpieces encapsulated within a steel can was performed on

  19. Density of molten salt Mixtures of eutectic LiCl-KCl containing UCl{sub 3}, CeCl{sub 3}, or LaCl{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C.; Simpson, M. F. [Dept. of Metallurgical Engineering, University of Utah, Salt Lake City (United States)

    2017-06-15

    Densities of molten salt mixtures of eutectic LiCl-KCl with UCl{sub 3}, CeCl{sub 3}, or LaCl{sub 3} at various concentrations (up to 13 wt%) were measured using a liquid surface displacement probe. Linear relationships between the mixture density and the concentration of the added salt were observed. For LaCl{sub 3} and CeCl{sub 3}, the measured densities were signifcantly higher than those previously reported from Archimedes’ method. In the case of LiCl-KCl-UCl{sub 3}, the data ft the ideal mixture density model very well. For the other salts, the measured densities exceeded the ideal model prediction by about 2%.

  20. Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Vasco, Carlos; Ma, Ruoshui; Quintero, Melissa; Guo, Mond; Geleynse, Scott; Ramasamy, Karthikeyan K.; Wolcott, Michael; Zhang, Xiao

    2016-01-01

    This paper reports a new method of applying Deep Eutectic Solvents (DES) for extracting lignin from woody biomass with high yield and high purity. DES mixtures prepared from Choline Chloride (ChCl) and four hydrogen-bond donors–acetic acid, lactic acid, levulinic acid and glycerol–were evaluated for treatment of hardwood (poplar) and softwood (D. fir). It was found that these DES treatments can selectively extract a significant amount of lignin from wood with high yields: 78% from poplar and 58% from D. fir. The extracted lignin has high purity (95%) with unique structural properties. We discover that DES can selectively cleave ether linkages in wood lignin and facilitate lignin removal from wood. The mechanism of DES cleavage of ether bonds between phenylpropane units was investigated. The results from this study demonstrate that DES is a promising solvent for wood delignification and the production of a new source of lignin with promising potential applications.

  1. Nonlinear plasmonics in eutectic composites: Second harmonic generation and two-photon luminescence in a volumetric Bi2O3-Ag metamaterial

    Science.gov (United States)

    Deska, R.; Sadecka, K.; Olesiak-Bańska, J.; Matczyszyn, K.; Pawlak, D. A.; Samoć, M.

    2017-01-01

    The nonlinear optical effect of second harmonic generation can be very strong when originating from nanoplasmonic structures, due to enhancement of the surrounding material's intrinsic non-linear optical properties or due to its occurrence as a result of the plasmonic structure. However, manufacturing of large-scale three dimensional nanoplasmonic structures is still a challenge. Here, we demonstrate the two-photon luminescence and second-harmonic generation in a Bi2O3-Ag eutectic-based metamaterial exhibiting a hierarchic structure of nano- and micro-sized silver precipitates. The investigations employed a microscope system combined with polarimetric analysis. It appears that the second-harmonic-generation arises from the silver plasmonic structure rather than from the nonlinear effects of the bismuth oxide matrix. Both quadrupolar and dipolar modes of polarization are observed.

  2. An Electrochemical Study of Lanthanide Elements in LiCl-KCl Eutectic Molten Salt to Convert All The Spent Nuclear Fuel into Low and Intermediate Level Waste

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Judong; Hwang, Il Soon [Seoul National Univ., Seoul (Korea, Republic of); Park, Byung Gi; Hong, Kwang [Soonchunhyang Univ., Asan (Korea, Republic of)

    2010-07-01

    An additional unit step for the residual actinide recovery, designated as 'Pyro-Reisodex', was proposed to convert all the spent nuclear waste into low and intermediated level water by achieving high decontamination factor for TRH elements. The measurement of basic material properties of lanthanide elements in LiCl-KCl eutectic molten salt is necessary to evaluate the performance of the step. Thus, standard potential, activity coefficient, and diffusion coefficient of lanthanide elements is being tried to determine using conventional electrochemical methods. The cycle voltammetry was measured for LiCl-KCl-SmCl{sub 3} mixture and the standard potential, activity coefficient, and diffusion coefficient of this system was determined from the voltammogram data. The calculated data was well-agreed with reference. Based on this results, another techniques for other lanthanide elements will be applied for better understanding of LiCl-KCl-LnCl{sub n} system.

  3. Collective dynamic dipole moment and orientation fluctuations, cooperative hydrogen bond relaxations, and their connections to dielectric relaxation in ionic acetamide deep eutectics: Microscopic insight from simulations.

    Science.gov (United States)

    Das, Suman; Biswas, Ranjit; Mukherjee, Biswaroop

    2016-08-28

    The paper reports a detailed simulation study on collective reorientational relaxation, cooperative hydrogen bond (H-bond) fluctuations, and their connections to dielectric relaxation (DR) in deep eutectic solvents made of acetamide and three uni-univalent electrolytes, lithium nitrate (LiNO3), lithium bromide (LiBr), and lithium perchlorate (LiClO4). Because cooperative H-bond fluctuations and ion migration complicate the straightforward interpretation of measured DR timescales in terms of molecular dipolar rotations for these conducting media which support extensive intra- and inter-species H-bonding, one needs to separate out the individual components from the overall relaxation for examining the microscopic origin of various timescales. The present study does so and finds that reorientation of ion-complexed acetamide molecules generates relaxation timescales that are in sub-nanosecond to nanosecond range. This explains in molecular terms the nanosecond timescales reported by recent giga-Hertz DR measurements. Interestingly, the simulated survival timescale for the acetamide-Li(+) complex has been found to be a few tens of nanosecond, suggesting such a cation-complexed species may be responsible for a similar timescale reported by mega-Hertz DR measurements of acetamide/potassium thiocyanate deep eutectics near room temperature. The issue of collective versus single particle relaxation is discussed, and jump waiting time distributions are determined. Dependence on anion-identity in each of the cases has been examined. In short, the present study demonstrates that assumption of nano-sized domain formation is not required for explaining the DR detected nanosecond and longer timescales in these media.

  4. A liquid-based eutectic system: LiBH4·NH 3-nNH3BH3 with high dehydrogenation capacity at moderate temperature

    KAUST Repository

    Tan, Yingbin

    2011-01-01

    A novel eutectic hydrogen storage system, LiBH4·NH 3-nNH3BH3, which exists in a liquid state at room temperature, was synthesized through a simple mixing of LiBH 4·NH3 and NH3BH3 (AB). In the temperature range of 90-110 °C, the eutectic system showed significantly improved dehydrogenation properties compared to the neat AB and LiBH 4·NH3 alone. For example, in the case of the LiBH4·NH3/AB with a mole ratio of 1:3, over 8 wt.% hydrogen could be released at 90 °C within 4 h, while only 5 wt.% hydrogen released from the neat AB at the same conditions. Through a series of experiments it has been demonstrated that the hydrogen release of the new system is resulted from an interaction of AB and the NH3 group in the LiBH4·NH3, in which LiBH4 works as a carrier of ammonia and plays a crucial role in promoting the interaction between the NH3 group and AB. The enhanced dehydrogenation of LiBH 4·NH3/AB may result from the polar liquid state reaction environments and the initially promoted formation of the diammoniate of diborane, which will facilitate the B-H⋯H-N interaction between LiBH4·NH3 and AB. Kinetics analysis revealed that the rate-controlling steps of the dehydrogenation process are three-dimensional diffusion of hydrogen at temperatures ranging from 90 to 110 °C. This journal is © The Royal Society of Chemistry.

  5. A basic study on capture and solidification of rare earth nuclide (Nd) in LiCl-KCl eutectic salt using an inorganic composite with Li{sub 2}OAl{sub 2}O{sub 3}- SiO{sub 2}-B{sub 2}O{sub 3} systems

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Na Young; Eum, Hee Chul; Park, Hwan Seo; Ahn, Do Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-03-15

    The pyroprocessing of spent nuclear fuel generates LiCl-KCl eutectic waste salt containing radioactive rare earth nuclides. It is necessary to develop a simple process for the treatment of LiCl-KCl eutectic waste in a hot-cell facility. In this study, capture and solidification of a rare earth nuclide (Nd) in LiCl-KCl eutectic salt using an inorganic composite with a Li{sub 2}OAl{sub 2}O{sub 3}- SiO{sub 2}-B{sub 2}O{sub 3} system was conducted to simplify the existing separation and solidification process of rare earth nuclides in LiCl-KCl eutectic waste salt from the pyroprocessing of spent nuclear fuel. More than 98wt% of Nd in LiCl-KCl eutectic salt was captured when the mass ratio of the composite was 0.67 over NdCl3 in the eutectic salt. The content of Nd{sub 2}O{sub 3} in the Nd captured-composite reached about 50wt%, and this composite was directly fabricated into a homogeneous and chemical resistant glass waste in a monolithic form. These results will be utilized in designing a process to simplify the existing separation and solidification process.

  6. Electrochemical study of Tm (III) ions on W and oxo acidity reactions in the LiCI-KCI eutectic; Estudio electroquimico de disoluciones de Tm (III) sobre W y reacciones de oxoacidez en el eutectico LiCI.-KCl

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Requejo, P.

    2010-07-01

    Study of the electrochemical behaviour of Tm (III) dissolutions in the LiCI-KCI eutectic mixture using inert electrodes (W) and reagent electrodes (Al). On W, TM (III) ions are reduced in two consecutives stages sufficiently separated. The TM electro-reduction on Al makes room for the formation of intermetallic compounds so the use of an Ai electrode is appropriate to decontamination operations.

  7. Molecular motion and ion diffusion in choline chloride based deep eutectic solvents studied by 1H pulsed field gradient NMR spectroscopy.

    Science.gov (United States)

    D'Agostino, Carmine; Harris, Robert C; Abbott, Andrew P; Gladden, Lynn F; Mantle, Mick D

    2011-12-28

    Deep Eutectic Solvents (DESs) are a novel class of solvents with potential industrial applications in separation processes, chemical reactions, metal recovery and metal finishing processes such as electrodeposition and electropolishing. Macroscopic physical properties such as viscosity, conductivity, eutectic composition and surface tension are already available for several DESs, but the microscopic transport properties for this class of compounds are not well understood and the literature lacks experimental data that could give a better insight into the understanding of such properties. This paper presents the first pulsed field gradient nuclear magnetic resonance (PFG-NMR) study of DESs. Several choline chloride based DESs were chosen as experimental samples, each of them with a different associated hydrogen bond donor. The molecular equilibrium self-diffusion coefficient of both the choline cation and hydrogen bond donor was probed using a standard stimulated echo PFG-NMR pulse sequence. It is shown that the increasing temperature leads to a weaker interaction between the choline cation and the correspondent hydrogen bond donor. The self-diffusion coefficients of the samples obey an Arrhenius law temperature-dependence, with values of self-diffusivity in the range of [10(-10)-10(-13) m(2) s(-1)]. In addition, the results also highlight that the molecular structure of the hydrogen bond donor can greatly affect the mobility of the whole system. While for ethaline, glyceline and reline the choline cation diffuses slower than the associated hydrogen bond donor, reflecting the trend of molecular size and molecular weight, the opposite behaviour is observed for maline, in which the hydrogen bond donor, i.e. malonic acid, diffuses slower than the choline cation, with self-diffusion coefficients values of the order of 10(-13) m(2) s(-1) at room temperature, which are remarkably low values for a liquid. This is believed to be due to the formation of extensive dimer

  8. Part I: Virtual laboratory versus traditional laboratory: Which is more effective for teaching electrochemistry? Part II: The green synthesis of aurones using a deep eutectic solvent

    Science.gov (United States)

    Hawkins, Ian C.

    The role of the teaching laboratory in science education has been debated over the last century. The goals and purposes of the laboratory are still debated and while most science educators consider laboratory a vital part of the education process, they differ widely on the purposes for laboratory and what methods should be used to teach laboratory. One method of instruction, virtual labs, has become popular among some as a possible way of capitalizing on the benefits of lab in a less costly and more time flexible format. The research regarding the use of virtual labs is limited and the few studies that have been done on General Chemistry labs do not use the virtual labs as a substitute for hands-on experiences, but rather as a supplement to a traditional laboratory program. This research seeks to determine the possible viability of a virtual simulation to replace a traditional hands-on electrochemistry lab in the General Chemistry II course sequence. The data indicate that for both content knowledge and the development of hands-on skills the virtual lab showed no significant difference in overall scores on the assessments, but that an individual item related to the physical set-up of a battery showed better scores for the hands-on labs over the virtual labs. Further research should be done to determine if these results are similar in other settings with the use of different virtual labs and how the virtual labs compare to other laboratories using different learning styles and learning goals. One often cited purpose of laboratory experiences in the context of preparing chemists is to simulate the experiences common in chemical research so graduate experience in a research laboratory was a necessary part of my education in the field of laboratory instruction. This research experience provided me the opportunity, to complete an organic synthesis of aurones using a deep eutectic solvent. These solvents show unique properties that make them a viable alternative to ionic

  9. Electrochemical reduction of oxygen on gold and boron-doped diamond electrodes in ambient temperature, molten acetamide-urea-ammonium nitrate eutectic melt

    Energy Technology Data Exchange (ETDEWEB)

    Dilimon, V.S.; Venkata Narayanan, N.S. [Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012 (India); Sampath, S., E-mail: sampath@ipc.iisc.ernet.i [Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012 (India)

    2010-08-01

    The electrochemical reduction of oxygen has been studied on gold, boron-doped diamond (BDD) and glassy carbon (GC) electrodes in a ternary eutectic mixture of acetamide (CH{sub 3}CONH{sub 2}), urea (NH{sub 2}CONH{sub 2}) and ammonium nitrate (NH{sub 4}NO{sub 3}). Cyclic voltammetry (CV), differential pulse voltammetry (DPV), chronoamperometry and rotating disk electrode (RDE) voltammetry techniques have been employed to follow oxygen reduction reaction (ORR). The mechanism for the electrochemical reduction of oxygen on polycrystalline gold involves 2-step, 2-electron pathways of O{sub 2} to H{sub 2}O{sub 2} and further reduction of H{sub 2}O{sub 2} to H{sub 2}O. The first 2-electron reduction of O{sub 2} to H{sub 2}O{sub 2} passes through superoxide intermediate by 1-electron reduction of oxygen. Kinetic results suggest that the initial 1-electron reduction of oxygen to HO{sub 2} is the rate-determining step of ORR on gold surfaces. The chronoamperometric and RDE studies show a potential dependent change in the number of electrons on gold electrode. The oxygen reduction reaction on boron-doped diamond (BDD) seems to proceed via a direct 4-electron process. The reduction of oxygen on the glassy carbon (GC) electrode is a single step, irreversible, diffusion limited 2-electron reduction process to peroxide.

  10. Analysis by numerical calculations of the depth and dynamics of the penetration of ordered cellular structure made by casting from AlSi10Mg eutectic alloy

    Directory of Open Access Journals (Sweden)

    M. Małysza

    2011-07-01

    Full Text Available Owing to high plastic deformability while maintaining stress values constant and relatively low, ordered cellular structures arecharacterised by excellent properties and the ability to dissipate the impact energy. Due to the low weight, structures of this type can beused, among others, for different parts of motor vehicles. For tests, a trapezoidal ordered cellular structure of 50.8 x 50.8 x 25.4 (mmoverall dimensions was selected. It was made as an investment casting from AlSi9Mg eutectic alloy by the method of Rapid Prototyping(RP. During FEM computations using an Abaqus programme, it was assumed that the material is isotropic and exhibits the features of anelastic – plastic body, introducing to calculations the, listed in a table, values of the stress-strain curve obtained in tensile tests performedon a MTS testing machine (10T. The computations used Johnson - Cook model, which is usually sufficiently accurate when modelling thephenomena of penetration of an element by an object of high initial velocity. The performed numerical calculations allowed identification

  11. Low temperature synthesis of CaZrO3 nanoceramics from CaCl2–NaCl molten eutectic salt

    Directory of Open Access Journals (Sweden)

    Rahman Fazli

    2015-06-01

    Full Text Available CaZrO3 nanoceramics were successfully synthesized at 700 C using the molten salt method, and the effects of processing parameters, such as temperature, holding time, and amount of salt on the crystallization of CaZrO3 were investigated. CaCl2, Na2CO3, and nano-ZrO2 were used as starting materials. On heating, CaCl2–NaCl molten eutectic salt provided a liquid medium for the reaction of CaCO3 and ZrO2 to form CaZrO3. The results demonstrated that CaZrO3 started to form at about 600C and that, after the temperature was increased to 1,000C, the amounts of CaZrO3 in the resultant powders increased with a concomitant decrease in CaCO3and ZrO2 contents. After washing with hot distilled water, the samples heated for 3 h at 700C were single-phase CaZrO3 with 90–95 nm particle size. Furthermore, the synthesized CaZrO3 particles retained the size and morphology of the ZrO2 powders which indicated that a template mechanism dominated the formation of CaZrO3 by molten-salt method.

  12. Dissolution corrosion of 316L austenitic stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500 °C

    Science.gov (United States)

    Lambrinou, Konstantina; Charalampopoulou, Evangelia; Van der Donck, Tom; Delville, Rémi; Schryvers, Dominique

    2017-07-01

    This work addresses the dissolution corrosion behaviour of 316L austenitic stainless steels. For this purpose, solution-annealed and cold-deformed 316L steels were simultaneously exposed to oxygen-poor (<10-8 mass%) static liquid lead-bismuth eutectic (LBE) for 253-3282 h at 500 °C. Corrosion was consistently more severe for the cold-drawn steels than the solution-annealed steel, indicating the importance of the steel thermomechanical state. The thickness of the dissolution-affected zone was non-uniform, and sites of locally-enhanced dissolution were occasionally observed. The progress of LBE dissolution attack was promoted by the interplay of certain steel microstructural features (grain boundaries, deformation twin laths, precipitates) with the dissolution corrosion process. The identified dissolution mechanisms were selective leaching leading to steel ferritization, and non-selective leaching; the latter was mainly observed in the solution-annealed steel. The maximum corrosion rate decreased with exposure time and was found to be inversely proportional to the depth of dissolution attack.

  13. Deep Eutectic Solvent-Assisted Preparation of Nitrogen/Chloride-Doped Carbon Dots for Intracellular Biological Sensing and Live Cell Imaging.

    Science.gov (United States)

    Wang, Ning; Zheng, An-Qi; Liu, Xun; Chen, Jun-Jie; Yang, Ting; Chen, Ming-Li; Wang, Jian-Hua

    2018-02-21

    A novel approach for the preparation of dual-functional carbon dots, i.e., nitrogen- and chloride-doped carbon dots, abbreviated as N/Cl-CDs, is developed with the assistance of a choline chloride-glycerine deep eutectic solvent (DES). The carbon source is provided by urea and the DES serves as a solvent for controlling the preparation of CDs in the absence of water. The dual-element doped carbon dots are oxygen-rich with hydroxyl and amine groups. They exhibit an average particle size of ca. 3.88 nm and give rise to strong and pH-sensitive fluorescent emission at λ ex /λ em = 340/430 nm with a quantum yield of 16.15 ± 1.36%. It is particularly interesting to see that the fluorescence of N/Cl-CDs remains stable in a high-salinity matrix, providing vast potentials for treating real biological sample matrixes with high salinity. The N/Cl-CDs provide an optical probe for intracellular pH sensing and multicolor imaging in HeLa cells. In addition, the N/Cl-CDs show obvious fluorescence response to cytochrome c (cyt-c) with a detection limit of 3.6 mg L -1 (ca. 0.29 μmol L -1 ) within in a range of 10-500 mg L -1 , providing potentials for fluorescence detection of cyt-c as well as facilitating intracellular cyt-c imaging.

  14. Evidence for quantum interference in SAMs of arylethynylene thiolates in tunneling junctions with eutectic Ga-In (EGaIn) top-contacts.

    Science.gov (United States)

    Fracasso, Davide; Valkenier, Hennie; Hummelen, Jan C; Solomon, Gemma C; Chiechi, Ryan C

    2011-06-22

    This paper compares the current density (J) versus applied bias (V) of self-assembled monolayers (SAMs) of three different ethynylthiophenol-functionalized anthracene derivatives of approximately the same thickness with linear-conjugation (AC), cross-conjugation (AQ), and broken-conjugation (AH) using liquid eutectic Ga-In (EGaIn) supporting a native skin (~1 nm thick) of Ga(2)O(3) as a nondamaging, conformal top-contact. This skin imparts non-Newtonian rheological properties that distinguish EGaIn from other top-contacts; however, it may also have limited the maximum values of J observed for AC. The measured values of J for AH and AQ are not significantly different (J ≈ 10(-1)A/cm(2) at V = 0.4 V). For AC, however, J is 1 (using log averages) or 2 (using Gaussian fits) orders of magnitude higher than for AH and AQ. These values are in good qualitative agreement with gDFTB calculations on single AC, AQ, and AH molecules chemisorbed between Au contacts that predict currents, I, that are 2 orders of magnitude higher for AC than for AH at 0 quantum interference effects. The agreement between the theoretical predictions on single molecules and the measurements on SAMs suggest that molecule-molecule interactions do not play a significant role in the transport properties of AC, AQ, and AH.

  15. Efficient Cleavage of Lignin–Carbohydrate Complexes and Ultrafast Extraction of Lignin Oligomers from Wood Biomass by Microwave‐Assisted Treatment with Deep Eutectic Solvent

    Science.gov (United States)

    Liu, Yongzhuang; Chen, Wenshuai; Xia, Qinqin; Guo, Bingtuo; Wang, Qingwen; Liu, Shouxin; Liu, Yixing; Li, Jian

    2017-01-01

    Abstract Lignocellulosic biomass is an abundant and renewable resource for the production of biobased value‐added fuels, chemicals, and materials, but its effective exploitation by an energy‐efficient and environmentally friendly strategy remains a challenge. Herein, a facile approach for efficiently cleaving lignin–carbohydrate complexes and ultrafast fractionation of components from wood by microwave‐assisted treatment with deep eutectic solvent is reported. The solvent was composed of sustainable choline chloride and oxalic acid dihydrate, and showed a hydrogen‐bond acidity of 1.31. Efficient fractionation of lignocellulose with the solvent was realized by heating at 80 °C under 800 W microwave irradiation for 3 min. The extracted lignin showed a low molecular weight of 913, a low polydispersity of 1.25, and consisted of lignin oligomers with high purity (ca. 96 %), and thus shows potential in downstream production of aromatic chemicals. The other dissolved matter mainly comprised glucose, xylose, and hydroxymethylfurfural. The undissolved material was cellulose with crystal I structure and a crystallinity of approximately 75 %, which can be used for fabricating nanocellulose. Therefore, this work promotes an ultrafast lignin‐first biorefinery approach while simultaneously keeping the undissolved cellulose available for further utilization. This work is expected to contribute to improving the economics of overall biorefining of lignocellulosic biomass. PMID:28054749

  16. The influence of a eutectic mixture of lidocaine and prilocaine on minor surgical procedures: a randomized controlled double-blind trial.

    LENUS (Irish Health Repository)

    Shaikh, Faisal M

    2012-01-31

    BACKGROUND: A eutectic mixture of lidocaine and prilocaine (EMLA) has been shown to be effective in reducing pain from needle sticks, including those associated with blood sampling and intravenous insertion. OBJECTIVE: To evaluate the effectiveness of EMLA cream applied before needle puncture for local anesthetic administration before minor surgical procedures in this double-blind, randomized, controlled, parallel-group study. MATERIALS AND METHODS: Patients were randomly assigned to receive EMLA or placebo cream (Aqueous) applied under an occlusive dressing. After the procedure, patients were asked to rate the needle prick and procedure pain on a visual analog scale (0=no pain; 10=maximum pain). RESULTS: A total of 94 minor surgical procedures (49 in EMLA and 45 in control) were performed. The mean needle-stick pain score in the EMLA group was significantly lower than in the control group (2.7 vs. 5.7, p<.001, Mann-Whitney U-test). There was also significantly lower procedure pain in the EMLA group than in the control group (0.83 vs. 1.86, p=.009). There were no complications associated with the use of EMLA. CONCLUSION: EMLA effectively reduces the preprocedural needle-stick pain and procedural pain associated with minor surgical procedures.

  17. Efficient Cleavage of Lignin-Carbohydrate Complexes and Ultrafast Extraction of Lignin Oligomers from Wood Biomass by Microwave-Assisted Treatment with Deep Eutectic Solvent.

    Science.gov (United States)

    Liu, Yongzhuang; Chen, Wenshuai; Xia, Qinqin; Guo, Bingtuo; Wang, Qingwen; Liu, Shouxin; Liu, Yixing; Li, Jian; Yu, Haipeng

    2017-04-22

    Lignocellulosic biomass is an abundant and renewable resource for the production of biobased value-added fuels, chemicals, and materials, but its effective exploitation by an energy-efficient and environmentally friendly strategy remains a challenge. Herein, a facile approach for efficiently cleaving lignin-carbohydrate complexes and ultrafast fractionation of components from wood by microwave-assisted treatment with deep eutectic solvent is reported. The solvent was composed of sustainable choline chloride and oxalic acid dihydrate, and showed a hydrogen-bond acidity of 1.31. Efficient fractionation of lignocellulose with the solvent was realized by heating at 80 °C under 800 W microwave irradiation for 3 min. The extracted lignin showed a low molecular weight of 913, a low polydispersity of 1.25, and consisted of lignin oligomers with high purity (ca. 96 %), and thus shows potential in downstream production of aromatic chemicals. The other dissolved matter mainly comprised glucose, xylose, and hydroxymethylfurfural. The undissolved material was cellulose with crystal I structure and a crystallinity of approximately 75 %, which can be used for fabricating nanocellulose. Therefore, this work promotes an ultrafast lignin-first biorefinery approach while simultaneously keeping the undissolved cellulose available for further utilization. This work is expected to contribute to improving the economics of overall biorefining of lignocellulosic biomass. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  18. Deep-Eutectic Solvents as MWCNT Delivery Vehicles in the Synthesis of Functional Poly(HIPE) Nanocomposites for Applications as Selective Sorbents.

    Science.gov (United States)

    Carranza, Arturo; Pérez-García, María G; Song, Kunlin; Jeha, George M; Diao, Zhenyu; Jin, Rongying; Bogdanchikova, Nina; Soltero, Armando F; Terrones, Mauricio; Wu, Qinglin; Pojman, John A; Mota-Morales, Josué D

    2016-11-16

    We report an alternative green strategy based on deep-eutectic solvents (DES) to deliver multiwalled carbon nanotubes (MWCNTs) for a bottom-up approach that allows for the selective interfacial functionalization of nonaqueous poly(high internal phase emulsions), poly(HIPEs). The formation and polymerization of methacrylic and styrenic HIPEs were possible through stabilization with nitrogen doped carbon nanotube (CNX) and surfactant mixtures using a urea-choline chloride DES as a delivering phase. Subtle changes in CNX concentration (less than 0.2 wt % to the internal phase) produced important changes in the macroporous monolith functionalization, which in turn led to increased monolith hydrophobicity and pore openness. These materials displayed great oleophilicity with water contact angles as high as 140° making them apt for biodiesel, diesel, and gasoline fuel sorption applications. Overall, styrene divinylbenzene (StDvB) based poly(HIPEs) showed hydrophobicity and fuel sorption capacities as high as 4.8 (g/g). Pore hierarchy, namely pore openness, regulated sorption capacity, and sorption times where greater openness resulted in faster sorption and increased sorption capacity. Monoliths were subject to 20 sorption-desorption cycles demonstrating recyclability and stable sorption capacity. Finally, CNX/surfactant hybrids made it possible to reduce surfactant requirements for successful HIPE formation and stabilization during polymerization. All poly(HIPEs) retained acceptable conversion as a function of CNX loading nearing 90% or better with thermal stability as high as 283 °C.

  19. First-time success with needle procedures was higher with a warm lidocaine and tetracaine patch than an eutectic mixture of lidocaine and prilocaine cream.

    Science.gov (United States)

    Cozzi, Giorgio; Borrometi, Fabio; Benini, Franca; Neri, Elena; Rusalen, Francesca; Celentano, Loredana; Zanon, Davide; Schreiber, Silvana; Ronfani, Luca; Barbi, Egidio

    2017-05-01

    More than 50% of children report apian during venepuncture or intravenous cannulation and using local anaesthetics before needle procedures can lead to different success rates. This study examined how many needle procedures were successful at the first attempt when children received either a warm lidocaine and tetracaine patch or an eutectic mixture of lidocaine and prilocaine (EMLA) cream. We conducted this multicentre randomised controlled trial at three tertiary-level children's hospitals in Italy in 2015. Children aged three to 10 years were enrolled in an emergency department, paediatric day hospital and paediatric ward and randomly allocated to receive a warm lidocaine and tetracaine patch or EMLA cream. The primary outcome was the success rate at the first attempt. The analysis included 172 children who received a warm lidocaine and tetracaine patch and 167 who received an EMLA cream. The needle procedure was successful at the first attempt in 158 children (92.4%) who received the warm patch and in 142 children (85.0%) who received the cream (p = 0.03). The pain scores were similar in both groups. This study showed that the first-time needle procedure success was 7.4% higher in children receiving a warm lidocaine and tetracaine patch than EMLA cream. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  20. Behavior of steels in flowing liquid PbBi eutectic alloy at 420-600 °C after 4000-7200 h

    Science.gov (United States)

    Müller, G.; Heinzel, A.; Konys, J.; Schumacher, G.; Weisenburger, A.; Zimmermann, F.; Engelko, V.; Rusanov, A.; Markov, V.

    2004-11-01

    This paper presents the results of steel exposure up to 7200 h in flowing LBE at elevated temperatures and is a follow-up paper of that with results of an exposure of up to 2000 h. The examined AISI 316 L, 1.4970 austenitic and MANET 10Cr martensitic steels are suitable as a structural material in LBE (liquid eutectic Pb 45Bi 55) up to 550 °C, if 10 -6 wt% of oxygen is dissolved in the LBE. The martensitic steel develops a thick magnetite and spinel layer while the austenites have thin spinel surface layers at 420 °C and thick oxide scales like the martensitic steel at 550 °C. The oxide scales protect the steels from dissolution attack by LBE during the whole test period of 7200 h. Oxide scales that spall off are replaced by new protective ones. At 600 °C severe attack occurs already after 2000 and 4000 h of exposure. Steels with 8-15 wt% Al alloyed into the surface suffer no corrosion attack at all experimental temperatures and exposure times.

  1. A Double-Blind, Randomised, Placebo-Controlled Trial of EMLA® Cream (Eutectic Lidocaine/Prilocaine Cream) for Analgesia Prior to Cryotherapy of Plantar Warts in Adults.

    Science.gov (United States)

    Lee, Siew Hui; Pakdeethai, Janthorn; Toh, Matthias P H S; Aw, Derrick C W

    2014-10-01

    Cryotherapy with liquid nitrogen is an effective, safe and convenient form of treatment for plantar warts. EMLA® cream (eutectic mixture of lidocaine 2.5% and prilocaine 2.5%) is a topical local anaesthetic agent that has proven to be effective and well tolerated in the relief of pain associated with various minor interventions in numerous clinical settings. In a single-centre, double-blind, randomised placebo-controlled study, 64 subjects were randomised into 2 groups. The subjects had a thick layer of EMLA® cream or placebo cream applied to pared plantar wart(s) and onto the surrounding margin of 1 mm to 2 mm under occlusion for 60 minutes prior to receiving cryotherapy. The pain of cryotherapy was evaluated by the subjects using a self-administered Visual Analogue Scale (VAS) immediately after the cryotherapy. There was no statistical difference between the mean VAS score for EMLA® cream (47.0 ± 21.4 mm) and placebo (48.9 ± 22.0 mm). Those with more than 1 wart had a significantly higher VAS score than those with only 1 wart (59.1 ± 21.8 vs. 44.3 ± 20.4, P cryotherapy. We conclude that the application of EMLA® cream prior to cryotherapy does not reduce the pain associated with cryotherapy.

  2. Determination of the E-pO{sup 2-} stability diagram of plutonium in the molten LiCl-KCl eutectic at 450 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Caravaca, Concha [CIEMAT, DE/DFN/URR, Avda. Complutense 22, Madrid 28040 (Spain)], E-mail: c.caravaca@ciemat.es; Laplace, Annabelle; Vermeulen, Jackie; Lacquement, Jerome [Commissariat a l' Energie Atomique, Site de Marcoule, DEN/DRCP/SCPS/LPP, Batiment 399, BP 17171, 30207 Bagnols sur Ceze (France)

    2008-07-01

    Plutonium trichloride solution in the molten LiCl-KCl eutectic was prepared by carbochlorination of plutonium oxide. Kinetics of this reaction was compared in different conditions in the range of 443-550 deg. C. Using this molten salt solution, the redox potential of the Pu(III)/Pu couple at inert tungsten electrode was measured at 450 deg. C by electromotive force measurement and was found to be E'{sup o} = -2.76 V vs. the Cl{sub 2(g)}(1 atm)/Cl{sup -} reference electrode (molar fraction scale). Reaction between plutonium trichloride and oxide ions was studied by potentiometric titration, using yttria stabilized electrodes. In our experimental conditions, the titration curves indicate the precipitation of the sesquioxide Pu{sub 2}O{sub 3}. The solubility product cologarithm calculated from these curves is found to be pK{sub s}(Pu{sub 2}O{sub 3}) = 22.8 {+-} 1.1 (molality scale). Using the experimentally obtained values for E'{sup o}, activity coefficient and pK{sub s} joined to the published thermodynamic data, the stability phase diagram of the Pu-O species was then drawn.

  3. Graphene and graphene oxide modified by deep eutectic solvents and ionic liquids supported on silica as adsorbents for solid-phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoqin; Li, Guizhen; Row, Kyung Ho [Dept. of Chemistry and Chemical Engineering, Inha University, Incheon (Korea, Republic of)

    2017-02-15

    A novel deep eutectic solvent (DES) and ionic liquid (IL)-modified graphene (G) and graphene oxide (GO) were synthesized and used as effective adsorbents for the preconcentration of three chlorophenols (CPs), 4-chlorophenol (4-CP), 2,4-dichlorophenol (2,4-DCP), and 2,4,6-trichlorophenol (2,4,6-TCP), in environmental water samples prior to high-performance liquid chromatography (HPLC). The new materials were characterized by scanning electron microscopy (S-4200) and Fourier-transform infrared spectrometry. The prepared functionalized GO@silica shows remarkable adsorption capacity toward CPs. When used as solid-phase extraction (SPE) sorbents, a superior recovery (88.49–89.70%) could be obtained compared to commercial sorbents, such as silica and aminosilica. Based on this, a method for the analysis of CPs in water samples was established by coupling SPE with HPLC. These results highlight the potential new role of DES and IL-modified GO in the preparation of analytical samples.

  4. The influence of natural deep eutectic solvents on bioactive natural products: Studying interactions between a hydrogel model and Schisandra chinensis metabolites.

    Science.gov (United States)

    Liu, Yang; Zhang, Yu; Chen, Shao-Nong; Brent Friesen, J; Nikolić, Dejan; Choules, Mary P; McAlpine, James B; Lankin, David C; Gemeinhart, Richard A; Pauli, Guido F

    2018-02-20

    Natural Deep Eutectic Solvent (NADES) species can exhibit unexpected solubilizing power for lipophilic molecules despite their simple composition, hydrophilic organic molecules and water. In the present study, the unique properties of NADES species were applied in combination with a model polymer system: a hydrophilic chitosan/alginate hydrogel. Briefly, NADES species (e.g., mannose-dimethylurea-water, 2:5:5, mole/mole) formed matrices to 1) dissolve lipophilic molecules (e.g., curcumin), 2) load lipophilic molecule(s) into the hydrogel, and 3) spontaneously vacate from the system. NADES species ubiquitously occur in natural sources, and a crude extract is a mixture of the NADES species and bioactive metabolites. Based on these ideas, we hypothesized that the crude extract may also allow the loading of natural bioactive molecules from a natural NADES species into (bio)hydrogel systems. To evaluate this hypothesis in vitro, Schisandra chinensis fruit extract was chosen as a representative mixture of lipophilic botanical molecules and hydrophilic NADES species. The results showed that the NADES matrix of S. chinensis was capable of loading at least three bioactive lignans (i.e., gomisin A, gomisin J, and angeloylgomisin H) into the polymer system. The lipophilic metabolites can subsequently be released from the hydrogel. The outcomes suggest that a unique drug delivery mechanism may exist in nature, thereby potentially improving the bioavailability of lipophilic metabolites through physicochemical interactions with the NADESs. Copyright © 2017. Published by Elsevier B.V.

  5. Ultrasonic cavitation erosion of 316L steel weld joint in liquid Pb-Bi eutectic alloy at 550°C.

    Science.gov (United States)

    Lei, Yucheng; Chang, Hongxia; Guo, Xiaokai; Li, Tianqing; Xiao, Longren

    2017-11-01

    Liquid lead-bismuth eutectic alloy (LBE) is applied in the Accelerator Driven transmutation System (ADS) as the high-power spallation neutron targets and coolant. A 19.2kHz ultrasonic device was deployed in liquid LBE at 550°C to induce short and long period cavitation erosion damage on the surface of weld joint, SEM and Atomic force microscopy (AFM) were used to map out the surface properties, and Energy Dispersive Spectrometer (EDS) was applied to the qualitative and quantitative analysis of elements in the micro region of the surface. The erosion mechanism for how the cavitation erosion evolved by studying the element changes, their morphology evolution, the surface hardness and the roughness evolution, was proposed. The results showed that the pits, caters and cracks appeared gradually on the erode surface after a period of cavitation. The surface roughness increased along with exposure time. Work hardening by the bubbles impact in the incubation stage strengthened the cavitation resistance efficiently. The dissolution and oxidation corrosion and cavitation erosion that simultaneously happened in liquid LBE accelerated corrosion-erosion process, and these two processes combined to cause more serious damage on the material surface. Contrast to the performance of weld metal, base metal exhibited a much better cavitation resistance. Copyright © 2017. Published by Elsevier B.V.

  6. Electrochemical synthesis of copper nanoparticles using cuprous oxide as a precursor in choline chloride-urea deep eutectic solvent: nucleation and growth mechanism.

    Science.gov (United States)

    Zhang, Q B; Hua, Y X

    2014-12-28

    The electrochemical nucleation and growth kinetics of copper nanoparticles on a Ni electrode have been studied with cyclic voltammetry and chronoamperometry in the choline chloride (ChCl)-urea based deep eutectic solvent (DES). The copper source was introduced into the solvent by the dissolution of Cu(I) oxide (Cu2O). Cyclic voltammetry indicates that the electroreduction of Cu(I) species in the DES is a diffusion-controlled quasi-reversible process. The analysis of the chronoamperometric transient behavior during electrodeposition suggests that the deposition of copper on the Ni electrode at low temperatures follows a progressive nucleation and three-dimensional growth controlled by diffusion. The effect of temperature on the diffusion coefficient of Cu(I) species that is present in the solvent and electron transfer rate constant obeys the Arrhenius law, according to which the activation energies are estimated to be 49.20 and 21.72 kJ mol(-1), respectively. The initial stage of morphological study demonstrates that both electrode potential and temperature play important roles in controlling the nucleation and growth kinetics of the nanocrystals during the electrodeposition process. Electrode potential is observed to affect mainly the nucleation process, whereas temperature makes a major contribution to the growth process.

  7. A study of the neutron irradiation effects on the susceptibility to embrittlement of A316L and T91 steels in lead-bismuth eutectic

    Energy Technology Data Exchange (ETDEWEB)

    Sapundjiev, D. [TCH, SCK-CEN, Boeretang 200, Mol, B-2400 (Belgium)]. E-mail: danislav.sapundjiev@sckcen.be; Al Mazouzi, A. [TCH, SCK-CEN, Boeretang 200, Mol, B-2400 (Belgium); Van Dyck, S. [TCH, SCK-CEN, Boeretang 200, Mol, B-2400 (Belgium)

    2006-09-15

    The effects of neutron irradiation on the susceptibility to liquid metal embrittlement of two primary selected materials for MYRRHA project an accelerator driven system (ADS), was investigated by means of slow strain rate tests (SSRT). The latter were carried out at 200 deg. C in nitrogen and in liquid Pb-Bi at a strain rate of 5 x 10{sup -6} s{sup -1}. The small tensile specimens were irradiated at the BR-2 reactor in the MISTRAL irradiation rig at 200 deg. C for 3 reactor cycles to reach a dose of about 1.50 dpa. The SSR tests were carried out under poor and under dissolved oxygen conditions ({approx}1.5 x 10{sup -12} wt% dissolved oxygen) which at this temperature will favour formation of iron and chromium oxides. Although both materials differ in structure (fcc for A316L against bcc for T91), their flow behaviour in contact with liquid lead bismuth eutectic before and after irradiation is very similar. Under these testing conditions none of them was found susceptible to liquid metal embrittlement (LME)

  8. Enhancing the enzymatic saccharification of bamboo shoot shell by sequential biological pretreatment with Galactomyces sp. CCZU11-1 and deep eutectic solvent extraction.

    Science.gov (United States)

    Dai, Yong; Zhang, Hai-Sheng; Huan, Bin; He, Yucai

    2017-06-22

    In this study, sequential biological pretreatment (BP) with Galactomyces sp. CCZU11-1 at 30 °C for 3 days and deep eutectic solvent (DES) choline chloride: oxalic acid (ChCl:OA, 1 mol/2 mol) extraction at 120 °C for 1.5 h was used for pretreating BSS. It was found that combination pretreatment could effectively remove xylan and lignin for enhancing enzymatic saccharification. The reducing sugars and glucose from the hydrolysis of 100 g/L pretreated BSS with complexed cellulases of Galactomyces sp. CCZU11-1 were obtained in the yields of 81.0% and 74.1%, respectively. The BSS-hydrolyzates had no inhibitory effects on the lipid-accumulating microorganism Bacillus sp. CCZU11-1, and the cell mass and TAG accumulation were 4.8 g CDW/L and 2.2 g TAG/L, respectively. Fatty acids including palmitic acid (C16:0; 25.3%), palmitoleic acid (C16:1; 24.4%), stearic acid (C18:0; 15.1%), and oleic acid (C18:1; 21.6%) were accumulated in cells. Clearly, this combination pretreatment has high potential application in future.

  9. One-pot production of chitin with high purity from lobster shells using choline chloride-malonic acid deep eutectic solvent.

    Science.gov (United States)

    Zhu, Ping; Gu, Zhongji; Hong, Shu; Lian, Hailan

    2017-12-01

    For the first time in this study, chitin was solely extracted from lobster shells through a fast, easy and eco-friendly method using deep eutectic solvents (DESs), consisting of mixtures of choline chloride-thiourea (CCT), choline chloride-urea (CCU), choline chloride-glycerol (CCG) and choline chloride-malonic acid (CCMA). The physiochemical properties of the isolated chitins were compared with those of the chemically prepared one and commercial one from shrimp shells. Results showed that CCT, CCU and CCG DESs had no important effect on the elimination of proteins and minerals, while chitin obtained by CCMA DES showed a high purity. The yield (20.63±3.30%) of chitin isolated by CCMA DES was higher than that (16.53±2.35%) of the chemically prepared chitin. The chitin obtained by CCMA DES could be divided into two parts with different crystallinity (67.2% and 80.6%), which also had different thermal stability. Chitin from lobster shells showed porous structure, which is expected to be used for adsorption materials and tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Application of natural deep eutectic solvents to the extraction of anthocyanins from Catharanthus roseus with high extractability and stability replacing conventional organic solvents.

    Science.gov (United States)

    Dai, Yuntao; Rozema, Evelien; Verpoorte, Robert; Choi, Young Hae

    2016-02-19

    Natural deep eutectic solvents (NADES) have attracted a great deal of attention in recent times as promising green media. They are generally composed of neutral, acidic or basic compounds that form liquids of high viscosity when mixed in certain molar ratio. Despite their potential, viscosity and acid or basic nature of some ingredients may affect the extraction capacity and stabilizing ability of the target compounds. To investigate these effects, extraction with a series of NADES was employed for the analysis of anthocyanins in flower petals of Catharanthus roseus in combination with HPLC-DAD-based metabolic profiling. Along with the extraction yields of anthocyanins their stability in NADES was also studied. Multivariate data analysis indicates that the lactic acid-glucose (LGH), and 1,2-propanediol-choline chloride (PCH) NADES present a similar extraction power for anthocyanins as conventional organic solvents. Furthermore, among the NADES employed, LGH exhibits an at least three times higher stabilizing capacity for cyanidins than acidified ethanol, which facilitates their extraction and analysis process. Comparing NADES to the conventional organic solvents, in addition to their reduced environmental impact, they proved to provide higher stability for anthocyanins, and therefore have a great potential as possible alternatives to those organic solvents in health related areas such as food, pharmaceuticals and cosmetics. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Study of Superbase-Based Deep Eutectic Solvents as the Catalyst in the Chemical Fixation of CO2 into Cyclic Carbonates under Mild Conditions

    Science.gov (United States)

    García-Argüelles, Sara; Iglesias, Marta; Del Monte, Francisco

    2017-01-01

    Superbases have shown high performance as catalysts in the chemical fixation of CO2 to epoxides. The proposed reaction mechanism typically assumes the formation of a superbase, the CO2 adduct as the intermediate, most likely because of the well-known affinity between superbases and CO2, i.e., superbases have actually proven quite effective for CO2 absorption. In this latter use, concerns about the chemical stability upon successive absorption-desorption cycles also merits attention when using superbases as catalysts. In this work, 1H NMR spectroscopy was used to get further insights about (1) whether a superbase, the CO2 adduct, is formed as an intermediate and (2) the chemical stability of the catalyst after reaction. For this purpose, we proposed as a model system the chemical fixation of CO2 to epichlorohydrin (EP) using a deep eutectic solvent (DES) composed of a superbase, e.g., 2,3,4,6,7,8-hexahydro-1H-pyrimido[1,2-a]pyrimidine (TBD) or 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine (DBU), as a hydrogen acceptor and an alcohol as a hydrogen bond donor, e.g., benzyl alcohol (BA), ethylene glycol (EG), and methyldiethanolamine (MDEA), as the catalyst. The resulting carbonate was obtained with yields above 90% and selectivities approaching 100% after only two hours of reaction in pseudo-mild reaction conditions, e.g., 1.2 bars and 100 °C, and after 20 h if the reaction conditions of choice were even milder, e.g., 1.2 bars and 50 °C. These results were in agreement with previous works using bifunctional catalytic systems composed of a superbase and a hydrogen bond donor (HBD) also reporting good yields and selectivities, thus confirming the suitability of our choice to perform this study. PMID:28773128

  12. Electrochemical studies and analysis of 1–10 wt% UCl{sub 3} concentrations in molten LiCl–KCl eutectic

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, Robert O., E-mail: roberthoover@vandals.uidaho.edu [Chemical and Materials Engineering Department and Nuclear Engineering Program, University of Idaho, Idaho Falls, Center for Advanced Energy Studies, 995 University Blvd, Idaho Falls, ID 83401 (United States); Shaltry, Michael R., E-mail: mshaltry@uidaho.edu [Chemical and Materials Engineering Department and Nuclear Engineering Program, University of Idaho, Idaho Falls, Center for Advanced Energy Studies, 995 University Blvd, Idaho Falls, ID 83401 (United States); Martin, Sean, E-mail: Sean.martin@xenuclear.com [Department of Engineering Physics, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); Sridharan, Kumar, E-mail: kumar@engr.wisc.edu [Department of Engineering Physics, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); Phongikaroon, Supathorn, E-mail: supathor@uidaho.edu [Chemical and Materials Engineering Department and Nuclear Engineering Program, University of Idaho, Idaho Falls, Center for Advanced Energy Studies, 995 University Blvd, Idaho Falls, ID 83401 (United States)

    2014-09-15

    Three electrochemical methods – cyclic voltammetry (CV), chronopotentiometry (CP), and anodic stripping voltammetry (ASV) – were applied to solutions of up to 10 wt% UCl{sub 3} in the molten LiCl–KCl eutectic salt at 500 °C to determine electrochemical properties and behaviors and to help provide a scientific basis for the development of an in situ electrochemical probe for determining the concentration of uranium in a used nuclear fuel electrorefiner. Diffusion coefficients of UCl{sub 4} and UCl{sub 3} were calculated to be (6.72 ± 0.360) × 10{sup −6} cm{sup 2}/s and (1.04 ± 0.17) × 10{sup −5} cm{sup 2}/s, respectively. Apparent standard reduction potentials were determined to be (−0.381 ± 0.013) V and (−1.502 ± 0.076) V vs. 5 mol% Ag/AgCl or (−1.448 ± 0.013) V and (−2.568 ± 0.076) V vs. Cl{sub 2}/Cl{sup −} for the U(IV)/U(III) and U(III)/U redox couples, respectively. In comparing this data with supercooled thermodynamic data to determine activity coefficients, the thermodynamic database used was important with resulting activity coefficients ranging from 2.34 × 10{sup −3} to 1.08 × 10{sup −2} for UCl{sub 4} and 4.94 × 10{sup −5} to 4.50 × 10{sup −4} for UCl{sub 3}. Of anodic stripping voltammetry and cyclic voltammetry anodic or cathodic peaks, the CV cathodic peak height divided by square root of scan rate was shown to be the most reliable method of determining UCl{sub 3} concentration in the molten salt.

  13. Study of Superbase-Based Deep Eutectic Solvents as the Catalyst in the Chemical Fixation of CO2 into Cyclic Carbonates under Mild Conditions

    Directory of Open Access Journals (Sweden)

    Sara García-Argüelles

    2017-07-01

    Full Text Available Superbases have shown high performance as catalysts in the chemical fixation of CO2 to epoxides. The proposed reaction mechanism typically assumes the formation of a superbase, the CO2 adduct as the intermediate, most likely because of the well-known affinity between superbases and CO2, i.e., superbases have actually proven quite effective for CO2 absorption. In this latter use, concerns about the chemical stability upon successive absorption-desorption cycles also merits attention when using superbases as catalysts. In this work, 1H NMR spectroscopy was used to get further insights about (1 whether a superbase, the CO2 adduct, is formed as an intermediate and (2 the chemical stability of the catalyst after reaction. For this purpose, we proposed as a model system the chemical fixation of CO2 to epichlorohydrin (EP using a deep eutectic solvent (DES composed of a superbase, e.g., 2,3,4,6,7,8-hexahydro-1H-pyrimido[1,2-a]pyrimidine (TBD or 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine (DBU, as a hydrogen acceptor and an alcohol as a hydrogen bond donor, e.g., benzyl alcohol (BA, ethylene glycol (EG, and methyldiethanolamine (MDEA, as the catalyst. The resulting carbonate was obtained with yields above 90% and selectivities approaching 100% after only two hours of reaction in pseudo-mild reaction conditions, e.g., 1.2 bars and 100 °C, and after 20 h if the reaction conditions of choice were even milder, e.g., 1.2 bars and 50 °C. These results were in agreement with previous works using bifunctional catalytic systems composed of a superbase and a hydrogen bond donor (HBD also reporting good yields and selectivities, thus confirming the suitability of our choice to perform this study.

  14. Lab-Scale Electrodeposition Behaviors of Pr(III) with Use of Quartz Cell in Molten LiCl-KCl Eutectic

    Energy Technology Data Exchange (ETDEWEB)

    Jee, Young Taek; Yun, Jong-Il [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    As electrorefining is proceeded, all actinides and lanthanides in metallic form are electrochemically oxidized and dissolved into the salt, while UCl{sub 3} in the salt is reduced and forms U-metal at solid cathodes. Since this unit process includes diverse actinides and recovers most of uranium, information on stream of nuclear materials and electrochemical condition inside of electrorefiner must continuously be notified not only for its performance assessment and process prediction but also for its safeguards. Currently, there are several computational models for electrorefiner (REFIN, ERAD, and etc.). However, the absence of model which reflects the change in surface area of cathode due to electrodeposition of UCl{sub 3} critically disturbs the precision of simulation. The change in surface area leads the change in current density, diffusion layer, potential and current gradient, and thus changes the entire electrochemical conditions in electrorefiner. In this paper, as a beginning step of investigating electrodeposition behavior of lanthanides and actinides, lab-scale electrodeposition experiments and methodological evaluation on the use of quartz cell are performed. In the lab-scale electrodeposition, sizes of quartz cell and deposited material became crucial factors for precise analysis of experiments. In a typical stabilized electrodeposition, CA diagram showed large plateau with reasonably increased magnitude of current due to the increase in surface area of working electrode. The amount of charge transferred (-61.55 C) can be utilized for concentration balance. According to ICP-OES, the decreased amount of bulk was 0.301 wt. % which was close to the expected decrease from the information of charge flow (0.29 wt. %). However, deposited material in contact with quartz wall in molten LiCl-KCl eutectic led a spontaneous reaction between each other. As an indicator of this undesired reaction, the cell became black, and enormous amount of charge was consumed. In

  15. Assessment of pain and hemodynamic response in older children undergoing circumcision: comparison of eutectic lidocaine/prilocaine cream and dorsal penile nerve block.

    Science.gov (United States)

    Salgado Filho, Marcello Fonseca; Gonçalves, Hedelberto Barbosa; Pimentel Filho, Lúcio Huebra; Rodrigues, Daniel da Silva; da Silva, Izabela Palitot; Avarese de Figueiredo, André; Bastos Netto, José Murillo

    2013-10-01

    To evaluate whether dorsal penile nerve block (DPNB) or local topical anesthesia (LT) provided better postoperative analgesia and less hemodynamic stimulation during and after circumcision surgery with Plastibell in older children. Forty-one subjects (age: 2-13 years) undergoing circumcision with Plastibell were randomly divided into LT and DPNB groups. Inhalation induction was performed with an 8% end-tidal sevoflurane concentration. In the LT group, a eutectic ointment of 5% lidocaine and 5% prilocaine was applied to the foreskin 1 h before surgery. At 10 min after anesthesia induction, the end-tidal sevoflurane concentration was decreased to 2%. In the other group, a DPNB was performed with 0.5% bupivacaine (1 mg/kg). Heart rate (HR), respiratory rate, mean arterial pressure (MAP), and involuntary movements were evaluated at anesthesia induction (T0), 1 min after DPNB (T1), 1 min after incision (T2), and 1 min after surgery (T3). Pain was evaluated at 1 and 24 h after surgery, and complications were evaluated at 24 h after surgery. The groups were homogeneous with respect to age, weight, glans diameter, penile length, Kayaba classification, and surgical duration. The LT group showed increased HR (p = 0.073) and MAP (p = 0.046) at T2 as compared to T0. No hemodynamic changes were observed in the HPDB group. The LT group showed a higher pain score at 1 h after surgery than the DPNB group, whereas the DPNB group had a higher incidence of hematoma (p = 0.02) at 24 h after surgery. Anesthesia with 5% lidocaine and 5% prilocaine cream during circumcision of older children with Plastibell under general anesthesia with sevoflurane does not provide satisfactory perioperative hemodynamic stability or postoperative analgesia. Copyright © 2012 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  16. The intermetallic formation and growth kinetics at the interface of near eutectic tin-silver-copper solder alloys and gold/nickel metallization

    Science.gov (United States)

    Gao, Mao

    The formation of a one micron thick layer of an intermetallic compound between a solder alloy and a metallic substrate generally constitutes a good solder joint in an electronic device. However, if the compound grows too thick, and/or if multiple intermetallic compounds form, poor solder joint reliability may result. Thus significant interest has been focused on intermetallic compound phase selection and growth kinetics at such solder/metal interfaces. The present study focuses on one such specific problem, the formation and growth of intermetallic compounds at near eutectic Sn-Ag-Cu solder alloy/Ni interfaces. Sn-3.0Ag-0.5Cu solder was reflowed on Au/Ni substrates, resulting in the initial formation and growth of (CuNi)6Sn 5 at Sn-3.0Ag-0.5Cu /Ni interfaces. (NiCu)3Sn4 formed between the (CuNi)6Sn5 and the Ni substrate when the concentration of Cu in the liquid SnAgCu solder decreased to a critical value which depended upon temperature: 0.37, 0.31 and 0.3(wt.%) at reflow temperatures of 260°C, 245°C and 230°C respectively. The growth rate of (CuNi)6Sn5 was found to be consistent with extrapolations of a diffusion limited growth model formulated for lower temperature, solid state diffusion couples. The long range diffusion of Cu did not limit growth rates. The spalling of (CuNiAu)6Sn5 from (NiCu)3 Sn4 surfaces during reflow was also examined. When the Cu concentration in the solder decreased to approximately 0.28wt.%, the (Cu,Ni,Au) 6Sn5 was observed to spall. Compressive stress in (CuNiAu) 6Sn5 and weak adhesion between (CuNiAu)6Sn 5 and (NiCu)3Sn4 was found to cause this effect.

  17. Ultrafast direct laser writing of cladding waveguides in the 0.8CaSiO{sub 3}-0.2Ca{sub 3}(PO{sub 4}){sub 2} eutectic glass doped with Nd{sup 3+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Martínez de Mendívil, J., E-mail: jon.martinez@uam.es; Lifante, G. [Departamento de Física de Materiales, C-04, Facultad de Ciencias, Universidad Autónoma de Madrid, 28.049 Madrid (Spain); Sola, D.; Peña, J. I. [Departamento de Ciencia y Tecnología de Materiales y Fluidos, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, 50.018 Zaragoza (Spain); Vázquez de Aldana, J. R. [Grupo de Investigación en Microprocesado de Materiales con Láser, Departamento de Física Aplicada, Universidad de Salamanca, 37.008 Salamanca (Spain); Aza, A. H. de; Pena, P. [Instituto de Cerámica y Vidrio-CSIC, 28.049 Madrid (Spain)

    2015-01-28

    We report on tubular cladding optical waveguides fabricated in Neodymium doped Wollastonite-Tricalcium Phosphate glass in the eutectic composition. The glass samples were prepared by melting the eutectic powder mixture in a Pt-Rh crucible at 1600 °C and pouring it in a preheated brass mould. Afterwards, the glass was annealed to relieve the inner stresses. Cladding waveguides were fabricated by focusing beneath the sample surface using a pulsed Ti:sapphire laser with a pulsewidth of 120 fs working at 1 kHz. The optical properties of these waveguides have been assessed in terms of near-field intensity distribution and transmitted power, and these results have been compared to previously reported waveguides with double-line configuration. Optical properties have also been studied as function of the temperature. Heat treatments up to 700 °C were carried out to diminish colour centre losses where waveguide's modes and transmitted power were compared in order to establish the annealing temperature at which the optimal optical properties were reached. Laser experiments are in progress to evaluate the ability of the waveguides for 1064 nm laser light generation under 800 nm optical pumping.

  18. Eutectic Composite Turbine Blade Development

    Science.gov (United States)

    1976-11-01

    Sintered Bar Pressed & Sintered Pieces Al V 5.4 ± 0.2 5.6 - 0.3 99-99% V-Al Master Alloy Ta C 8.1 - 0.3 0.48 - 0.04 NRG Double Vacuum Arc...To check for powder dissolution, X-ray emission chemical analysis was performed at the bottom of the aligned fiber section from two bars, B70 and B73...RF coil was located far from the susceptor making it both inefficient and difficult to focus the RF energy . Therefore, the new DB facility was

  19. Experimental Study of Codeposition Electrochemistry Using Mixtures of ScCl3 and YCl3 in LiCl-KCl Eutectic Salt at 500°C

    Energy Technology Data Exchange (ETDEWEB)

    Shaltry, Michael R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Yoo, Tae-Sic [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fredrickson, Guy L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-09-12

    Cyclic voltammetry and chronopotentiometry tests were applied to molten LiCl-KCl eutectic at 500 °C including amounts of ScCl3 and YCl3. The purpose of the testing was to observe the effect of applied electrical current on the codeposition of scandium and yttrium, which were chosen as surrogate elements for uranium and plutonium, respectively. Features of the work were to vary the concentration of ScCl3 (at relatively low concentrations) as well as varying the applied current, all with a fixed concentration of YCl3. Results of the experiments could provide insight of uranium electrorefining and may provide evidence, which suggests the electrorefiner could be operated at lower UCl3 concentration whereby codeposition (U and Pu) could be more effectively controlled.

  20. Morphologies and growth mechanisms of the eutectic particles in as-cast Al-Mg-Sc alloy; Morphologien und Wachstumsmechanismen eutektischer Partikel in Al-Mg-Sc-Legierung im Gusszustand

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Dejiang; Zhou, Shi' ang; Li, Heng [Hefei Univ. of Technology (China); Zhang, Zhen; Wu, Yucheng [Laboratories of Nonferrous Metal Material and Processing Engineering of Anhui Province, Hefei (China); Li, Ming [Anhui Jianghuai Automobile Co., Ltd, Hefei (China)

    2017-04-15

    Primary particles with faceted cubic morphology were produced in as-cast Al-Mg alloy due to the addition of Sc. The cross-section of the particles revealed some eutectic structure composed of multilayer of 'Al{sub 3}Sc + α-Al + Al{sub 3}Sc..'. At the cooling rate of 200 - 300 K/s, Al{sub 3}Sc primary phase nucleated initially on oxides within the melt and developed to a cubic structure with a 'cellular-dendritic' mode of growth. The formation of α-Al structural shells was attributed as a reason for the segregation of Mg-rich lamellar dendrites at later stages. A growth mechanism for multilayer structure was proposed using the results presented.

  1. Dispersion of magnetic graphene oxide nanoparticles coated with a deep eutectic solvent using ultrasound assistance for preconcentration of methadone in biological and water samples followed by GC-FID and GC-MS.

    Science.gov (United States)

    Lamei, Navid; Ezoddin, Maryam; Ardestani, Mehdi Shafiee; Abdi, Khosrou

    2017-10-01

    Magnetic graphene nanoparticles coated with a new deep eutectic solvent (Fe3O4@GO-DES) were developed for efficient preconcentration of methadone. The extracted methadone was then analyzed by gas chromatography-flame ionization detection (GC-FID) or gas chromatography-mass spectrometry (GC-MS). Fe3O4@GO-DES were characterized by Fourier transform IR and X-ray diffraction techniques. Ultrasound was used to enhance the dispersion of the sorbent, with a high extraction recovery. Some parameters affecting the extraction recovery, such as pH, type of deep eutectic solvent, sample volume, amount of sorbent, extraction time, and type of eluent, were investigated. Under optimum conditions, the method developed was linear in the concentration range from 3 to 45,000 μg L-1 for GC-FID and from 0.1 to 500 μg L-1 for GC-MS, with a detection limit of 0.8 μg L-1 for GC-FID and 0.03 μg L-1 for GC-MS. The relative standard deviations (n = 6) as the intraday and interday precisions of the methadone spike at a concentration of 100 μg L-1 were 5.8% and 8.4% respectively for GC-FID. The preconcentration factor was 250. Relative recoveries from spiked plasma, urine, and water samples ranged from 95.1% to 101.5%.

  2. Stress-induced buried waveguides in the 0.8CaSiO{sub 3}–0.2Ca{sub 3}(PO{sub 4}){sub 2} eutectic glass doped with Nd{sup 3+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Sola, D., E-mail: dsola@unizar.es [Centro de Física de Materiales, CSIC-UPV/EHU, P° Manuel de Lardizabal, 5, 20.018 San Sebastián (Spain); Martínez de Mendibil, J. [Departamento de Física de Materiales, C-04, Facultad de Ciencias, Universidad Autónoma de Madrid, 28.049 Madrid (Spain); Vázquez de Aldana, J.R. [Grupo de Óptica, Facultad de Ciencias, Universidad de Salamanca, 37.008 Salamanca (Spain); Lifante, G. [Departamento de Física de Materiales, C-04, Facultad de Ciencias, Universidad Autónoma de Madrid, 28.049 Madrid (Spain); Balda, R. [Centro de Física de Materiales, CSIC-UPV/EHU, P° Manuel de Lardizabal, 5, 20.018 San Sebastián (Spain); Departamento de Física Aplicada I, E.T.S. Ingeniería de Bilbao, UPV/EHU, Alda. de Urquijo s/n, 48.013 Bilbao (Spain); Aza, A.H. de; Pena, P. [Instituto de Cerámica y Vidrio, CSIC, C/Kelsen 5, 28.049 Madrid (Spain); Fernández, J. [Centro de Física de Materiales, CSIC-UPV/EHU, P° Manuel de Lardizabal, 5, 20.018 San Sebastián (Spain); Departamento de Física Aplicada I, E.T.S. Ingeniería de Bilbao, UPV/EHU, Alda. de Urquijo s/n, 48.013 Bilbao (Spain)

    2013-08-01

    In this work the fabrication of buried optical waveguides by femtosecond laser inscription in the 0.8CaSiO{sub 3}–0.2Ca{sub 3}(PO{sub 4}){sub 2} eutectic glass doped with Nd{sup 3+} ions is reported. The glass samples were prepared by melting the eutectic powder mixture in a Pt–10 wt.% Rh crucible at 1600 °C and pouring it in a preheated brass mould. Afterwards, the glass was annealed to release the inner stresses. Buried waveguides were fabricated by focusing beneath the surface a pulsed Ti:sapphire laser with a pulsewidth of 120 fs working at 1 kHz. Two adjacent parallel tracks were written to define a region where an increase in the refractive index occurs. The effects produced by the variation of the laser pulse energy as well as the lateral separation between tracks, scanning speed and focusing distance were studied. After the laser processing, the near-field intensity distribution at 633 nm of the waveguide's modes was studied demonstrating the confinement of both, the TE as the TM polarizations. In order to diminish the losses induced by colour centres absorption, heat treatments were carried out in the samples. The waveguide's modes were compared with respect to the samples without heat treatments. The spectroscopic properties of the neodymium ions have been characterized to evaluate in what extent their optical properties could be modified by the waveguide fabrication process and to elucidate the potential application of such waveguides as integrated laser sources.

  3. Electrochemistry of Europium(III) Chloride in 3 LiCl – NaCl, 3 LiCl – 2 KCl, LiCl – RbCl, and 3 LiCl – 2 CsCl Eutectics at Various Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Schroll, Cynthia A.; Chatterjee, Sayandev; Levitskaia, Tatiana G.; Heineman, William R.; Bryan, Samuel A.

    2017-01-01

    Here we report the effect of changing the eutectic melt composition on the electrochemical properties of europium(III) chloride under pyroprocessing conditions. The number of electrons transferred, redox potentials and diffusion coefficients were determined using various electrochemical and spectroelectrochemical techniques in four different eutectic mixtures (3 LiCl - NaCl, 3 LiCl - 2 KCl, 3 LiCl - RbCl, and 3 LiCl - 2 CsCl) while varying the temperature of the melt. It was determined that Eu3+ undergoes a one electron reduction to Eu2+ in each melt at all temperatures evaluated. Within all the melts a positive shift in the redox potential as well as an increase in the diffusion coefficient for Eu3+ was observed as the temperature increased. Also observed was a positive shift in the redox potential and increase in the diffusion coefficient for Eu3+ as the weighted average of the cationic radii for the melt decreased.

  4. Spectroelectrochemistry of EuCl 3 in Four Molten Salt Eutectics; 3 LiCl−NaCl, 3 LiCl−2 KCl, LiCl−RbCl, and 3 LiCl−2 CsCl; at 873 K

    Energy Technology Data Exchange (ETDEWEB)

    Schroll, Cynthia A. [Department of Chemistry, University of Cincinnati, Cincinnati OH 45221-0172; Chatterjee, Sayandev [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99352; Levitskaia, Tatiana [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99352; Heineman, William R. [Department of Chemistry, University of Cincinnati, Cincinnati OH 45221-0172; Bryan, Samuel A. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99352

    2016-05-17

    Key electrochemical properties affecting pyroprocessing of nuclear fuel were examined in four eutectic melts using using Eu3+/2+ as a representative probe. We report the electrochemical and spectroelectrochemical behavior of EuCl3 in four molten salt eutectics (3 LiCl – NaCl, 3 LiCl – 2 KCl, LiCl – RbCl and 3 LiCl – 2 CsCl) at 873 K. Cyclic voltammetry was used to determine the redox potential for Eu3+/2+ and the applied potentials for spectroelectrochemistry. Single step chronoabsorptometry and thin-layer spectroelectrochemistry were used to obtain the number of electrons transferred, redox potentials and diffusion coefficients for Eu3+ in each eutectic melt. The redox potentials determined by thin-layer spectroelectrochemistry were extremely close to those obtained using cyclic voltammetry. The redox potential for Eu3+/2+ was most positive in the 3 LiCl - NaCl melt, showed a negative shift in the 3 LiCl - 2 KCl melt, and was the most negative in the LiCl - RbCl and 3 LiCl - 2 CsCl eutectics. The diffusion coefficient for Eu3+ followed this same trend; it was the largest in the 3 LiCl - NaCl melt and the smallest in the LiCl - RbCl and 3 LiCl - 2 CsCl melts. The basic one-electron reversible electron transfer for Eu3+/2+ was not changed by melt composition.

  5. How a Transition-Metal(II) Chloride Interacts with a Eutectic AlCl3 -Based Ionic Liquid: Insights into the Speciation of the Electrolyte and Electrodeposition of Magnetic Materials.

    Science.gov (United States)

    Pulletikurthi, Giridhar; Weidenfeller, Bernd; Borodin, Andriy; Namyslo, Jan C; Endres, Frank

    2017-10-18

    Electrostatic interactions are characteristic of ionic liquids (ILs) and play a pivotal role in determining the formation of species when solutes are dissolved in them. The formation of new species/complexes has been investigated for certain ILs. However, such investigations have not yet focused on eutectic liquids, which are a promising class of ILs. These liquids (or liquid coordination complexes, LCCs) are rather new and are composed of cationic and anionic chloro complexes of metals. To date, these liquids have been employed as electrolytes to deposit metals and as solvents for catalysis. The present study deals with a liquid that is prepared by mixing a 1.2:1 mol ratio of AlCl3 and 1-butylpyrrolidine. An attempt has been made to understand the interactions of FeCl2 with the organic molecule using spectroscopy. It was found that dissolved Fe(II) species interact mainly with the IL anion and such interactions can lead to changes in the cation of the electrolyte. Furthermore, the viability of depositing thick magnetic films of Fe and Fe-Al has been explored. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Combination of Lactic Acid-Based Deep Eutectic Solvents (DES with β-Cyclodextrin: Performance Screening Using Ultrasound-Assisted Extraction of Polyphenols from Selected Native Greek Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Chrysa Georgantzi

    2017-08-01

    Full Text Available A series of novel l-lactic acid-based deep eutectic solvents (DES were tested for polyphenol extraction performance, using organically grown, native Greek medicinal plants. The extractions were ultrasonically-assisted and the effect of the addition of β-cyclodextrin (β-CD as extraction booster was also tested, at a concentration of 1.5% (w/v. The estimation of total polyphenol yield (YTP suggested that DES composed of l-lactic acid and nicotinamide and l-lactic acid and l-alanine, both at a molar ratio of 7:1, are promising solvents giving significantly higher yields compared with 60% (v/v aqueous ethanol and water. However, when β-CD was combined with DES comprised of l-lactic acid and ammonium acetate (molar ratio 7:1, the extraction yields obtained in some instances were equal of even higher. The pattern was not consistent when the yield in total flavonoids (YTFn was considered, indicating water, 60% (v/v aqueous ethanol and l-lactic acid:sodium acetate (molar ratio 7:1 to be the most efficient solvents. In this case, the effect of β-CD was of rather lower magnitude. The examination of the antioxidant activity of the extracts generated showed that there is a close correlation mainly with their concentration in total polyphenols.

  7. Chemical and electrochemical properties in the molten lithium chloride-potassium chloride eutectic; Proprietes chimiques et electrochimiques dans l'eutectique chlorure de lithium-chlorure de potassium fondu

    Energy Technology Data Exchange (ETDEWEB)

    Delarue, G. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1960-12-15

    We have studied the behaviour of several chemical species in the molten LiCI-KCI eutectic. The solubility of certain oxides and sulphides has made it possible for us to show the existence of O{sup 2-} and S{sup 2-} ions. We have been able to show the existence of a certain number of chemical reactions: oxido-reduction precipitation, complex formation; we have studied, amongst others, the oxidation of O{sup 2-} and of S{sup 2-}. (author) [French] Nous avons examine le comportement de quelques especes chimiques dans l'eutectique LiCl-KCl fondu. La solubilite de certains oxydes et sulfures nous a permis de montrer l'existence des particules O{sup 2-} et S{sup 2-}. Nous avons pu mettre en evidence un certain nombre de reactions chimiques: oxydoreduction, precipitation, formation de complexes; nous avons etudie, entre autres, l'oxydation de O{sup 2-} et de S{sup 2-}. La prevision de ces reactions peut etre faite d'une facon semi-quantitive a l'aide de diagrammes potentiel pO{sup 2-} et potentiel pS{sup 2-}. Les raisonnements que l'on fait dans les milieux aqueux sont applicables dans le cas des sels fondus. (auteur)

  8. A Study of Pb-Rich Dendrites in a Near-Eutectic 63Sn-37Pb Solder Microstructure via Laboratory-Scale Micro X-ray Computed Tomography ( μXCT)

    Science.gov (United States)

    Mertens, J. C. E.; Williams, J. J.; Chawla, Nikhilesh

    2014-12-01

    A key challenge in the application of laboratory-scale x-ray computed tomography to the study of metallic alloys is achieving sufficient feature contrast and resolution for the segmentation between solid phases of similar composition and density at spatial length scales suitable for microstructure quantification. In the microelectronic packaging, value exists in the nondestructive evaluation of solder system microstructures resulting from varying compositional and processing factors. A near-eutectic 63Sn-37Pb butt-joint on copper was studied with a custom laboratory-scale microresolved x-ray computed tomography scanner with the goal of quantifying three-dimensional (3D) microstructural constituents resulting from a reproducible reflow process. The 3D character of lead-rich dendrites resulting from non-equilibrium solidification was revealed. The quantification of the dendrite microstructure was made possible through a combination of data acquisition, data processing, and data segmentation techniques. The scanning parameter selection, with respect to the characterization task, is discussed. Data acquisition and processing methods which were determined to be beneficial for 3D microstructure characterization are detailed. A beam-hardening artifact reduction algorithm is provided, without which microstructure quantification would not have been possible. The segmentation of the dendrite features, performed using a semi-automatic 3D region growth method, is described. The segmented solder volume enabled quantitative description of the 3D dendrite microstructure and void content.

  9. Die-cast of a hypo-eutectic AL-SI alloy: influence of injection temperature on microstructure and mechanical properties; Fundicao sob pressao das ligas de AL-SI: influencia da temperatura de injecao nas microestruturas e propriedades mecanicas

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Silvano Leal dos; Santos, Sydney Ferreira, E-mail: silvano_lleal@yahoo.com.br [Universidade Federal do ABC (UFABC), SP (Brazil)

    2014-07-01

    Die-casting is widely used for manufacturing light alloy components for automotive industry. Among others, hypo-eutectic Al-Si alloys are currently processed by die-casting. To obtain high quality die-cast components, a better understanding on the correlations between processing parameters, microstructures, and mechanical properties are of utmost importance. In this study, we investigate the effect of injection temperature of liquid metal on the microstructure and mechanical properties of Al-Si alloy EN AC 46000 (DIN designation). The injection temperatures were 579, 589, 643, and 709 deg C. As-cast components had their microstructures analyzed by X-ray diffraction, optical and scanning electron microscopy, and X-ray energy dispersive spectroscopy. The mechanical properties were examined by micro-hardness and tensile tests. It was observed that the ultimate tensile strength slightly increased with the increase of injection temperature. The same trend was observed for micro-hardness. The amount of porosity in the samples varies in a small amount for different injection temperatures. On the other hand, the microstructure of the alloys seems more refined for higher temperatures of injection. This refinement in microstructure might play a major role on the mechanical properties of the Al-Si die-cast alloy. (author)

  10. A clinical study to evaluate the efficacy of ELA-Max (4% liposomal lidocaine) as compared with eutectic mixture of local anesthetics cream for pain reduction of venipuncture in children.

    Science.gov (United States)

    Eichenfield, Lawrence F; Funk, Ann; Fallon-Friedlander, Sheila; Cunningham, Bari B

    2002-06-01

    A double-randomized, blinded crossover trial was performed to assess the efficacy of ELA-Max (4% liposomal lidocaine) as compared with eutectic mixture of local anesthetics (EMLA) for pain relief during pediatric venipuncture procedures. Safety was assessed by evaluation for topical or systemic effects and measurement of serum lidocaine concentrations. A total of 120 children who were scheduled for repeat venipuncture for non-study-related reasons at 2 sites participated in the study. Patients were doubly randomized to treatment regimen (study medication application time of either 30 or 60 minutes) and to the order of application of the topical anesthetics for each venipuncture. The primary outcome measures were the child's rating of pain immediately after the venipuncture procedures using a 100-mm visual analog scale (VAS) tool and the parent's and blinded research observer's Observed Behavioral Distress scores. Both ELA-Max and EMLA seemed to alleviate venipuncture pain. There was no clinically or statistically significant difference in the patient VAS scores within the 30-minute or 60-minute treatment groups, and there was no clinical or statistical difference in VAS scores between the 30-minute ELA-Max treatment without occlusion and the 60-minute EMLA treatment with occlusion. There were no clinically or statistically significant differences between treatment with ELA-Max and EMLA in parental or blinded researcher Observed Behavioral Distress scores, the most frequent response at any observation time being "no distress." This study demonstrates that a 30-minute application of ELA-Max without occlusion is as safe and as effective for ameliorating pain associated with venipuncture as a 60-minute application of the prescription product EMLA requiring occlusion.

  11. Magnetic Solid-phase Extraction with Fe3O4/Molecularly Imprinted Polymers Modified by Deep Eutectic Solvents and Ionic Liquids for the Rapid Purification of Alkaloid Isomers (Theobromine and Theophylline from Green Tea

    Directory of Open Access Journals (Sweden)

    Guizhen Li

    2017-06-01

    Full Text Available Different kinds of deep eutectic solvents (DES based on choline chloride (ChCl and ionic liquids (ILs based on 1-methylimidazole were used to modify Fe3O4/molecularly imprinted polymers (Fe3O4/MIPs, and the resulting materials were applied for the rapid purification of alkaloid isomers (theobromine and theophylline from green tea with magnetic solid-phase extraction (M-SPE. The M-SPE procedure was optimized using the response surface methodology (RSM to analyze the maximum conditions. The materials were characterized by Fourier transform infrared spectroscopy (FI-IR and field emission scanning electron microscopy (FE-SEM. Compared to the ILs-Fe3O4/MIPs, the DESs-Fe3O4/MIPs were developed for the stronger recognition and higher recoveries of the isomers (theophylline and theobromine from green tea, particularly DES-7-Fe3O4/MIPs. With RSM, the optimal recovery condition for theobromine and theophylline in the M-SPE were observed with ratio of methanol (80% as the washing solution, methanol/acetic acid (HAc (8:2 as the eluent at pH 3, and an eluent volume of 4 mL. The practical recoveries of theobromine and theophylline in green tea were 92.27% and 87.51%, respectively, with a corresponding actual extraction amount of 4.87 mg•g−1 and 5.07 mg•g−1. Overall, the proposed approach with the high affinity of Fe3O4/MIPs might offer a novel method for the purification of complex isomer samples.

  12. Magnetic Solid-phase Extraction with Fe₃O₄/Molecularly Imprinted Polymers Modified by Deep Eutectic Solvents and Ionic Liquids for the Rapid Purification of Alkaloid Isomers (Theobromine and Theophylline) from Green Tea.

    Science.gov (United States)

    Li, Guizhen; Wang, Xiaoqin; Row, Kyung Ho

    2017-06-25

    Different kinds of deep eutectic solvents (DES) based on choline chloride (ChCl) and ionic liquids (ILs) based on 1-methylimidazole were used to modify Fe3O4/molecularly imprinted polymers (Fe3O4/MIPs), and the resulting materials were applied for the rapid purification of alkaloid isomers (theobromine and theophylline) from green tea with magnetic solid-phase extraction (M-SPE). The M-SPE procedure was optimized using the response surface methodology (RSM) to analyze the maximum conditions. The materials were characterized by Fourier transform infrared spectroscopy (FI-IR) and field emission scanning electron microscopy (FE-SEM). Compared to the ILs-Fe3O4/MIPs, the DESs-Fe3O4/MIPs were developed for the stronger recognition and higher recoveries of the isomers (theophylline and theobromine) from green tea, particularly DES-7-Fe3O4/MIPs. With RSM, the optimal recovery condition for theobromine and theophylline in the M-SPE were observed with ratio of methanol (80%) as the washing solution, methanol/acetic acid (HAc) (8:2) as the eluent at pH 3, and an eluent volume of 4 mL. The practical recoveries of theobromine and theophylline in green tea were 92.27% and 87.51%, respectively, with a corresponding actual extraction amount of 4.87 mg•g-1 and 5.07 mg•g-1. Overall, the proposed approach with the high affinity of Fe3O4/MIPs might offer a novel method for the purification of complex isomer samples.

  13. Novel Applications of Eutectic Freeze Crystallization

    NARCIS (Netherlands)

    Lu, X.

    2014-01-01

    During the last decades, the consumption of raw materials and energy in the world has faced a tremendous increase with a corresponding industrial waste volume increases, which treatment poses serious challenges. From an economical point of view, the waste has values as it contains valuable matters.

  14. Finite Element Analysis of Eutectic Structures

    Science.gov (United States)

    2014-03-12

    controlled by an optical pyrometer . Boron nitride (BN) (Momentive Performance Materials, Albany, NY) and fused silica (SiO2) (Momentive Performance...chloride, J. Crystal Growth 94 (1989) 62. 15. L.M. Clark & R.E. Taylor, Radiation loss in the flash method for thermal diffusivity, J. App. Phys. 2...Diffraction (XRD) in Bragg-Brentano geometry (Siemens D500 diffractometer in (θ,2θ) mode, Cu Kα radiation ). A 360° continuous rotation around the rod axis

  15. Electrochemical properties of uranium, cerium, and zirconium in the lithium fluoride - barium fluoride eutectic; Proprietes electrochimiques de l'uranium, du cerium et du zirconium dans l'eutectique fluorure de lithium - fluorure de baryum

    Energy Technology Data Exchange (ETDEWEB)

    Cartier, R. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1969-07-01

    The aim of this work has been to determine the possibility of carrying out an electrochemical analysis of the ions U{sup 4+}, Ce{sup 3+}, Zr{sup 4+} in a fluoride melt, and to obtain some of the electrochemical properties of these ions. It was first of all necessary to develop a method for purifying the LiF-BaF{sub 2} eutectic so as to have melts of sufficient purity for carrying out an electrochemical study using linear chrono-amperometry and chrono-potentiometry. The polarization curves recorded in solutions for the ions U{sup 4+}, Ce{sup 3+}, Zr{sup 4+} show that the systems U{sup 4+}/U{sup 3+}, Ce{sup 3+}/Ce{sup 4+} and Zr{sup 4+}/Zr are rapid. After it had been checked that mass transport on the electrode is controlled by diffusion, the diffusion coefficients for the ions Ce{sup 3+}, U{sup 4+} and Zr{sup 4+} were determined. The oxidizing nature of the ion Ce{sup 4+} makes it possible to dissolve ceric oxide in the molten fluoride. Furthermore the existence of two zirconium oxyfluorides has been demonstrated, they appear after dissolution of the zirconia in a solution of zirconium tetrafluoride. From a practical point of view these results are of interest for the preparation of metals by electrolytic reduction of their oxides. (author) [French] Le but de ce travail est de determiner la possibilite d'analyse electrochimique des ions U{sup 4+}, Ce{sup 3+}, Zr{sup 4+} dans un bain de fluorures fondus et de mettre en evidence quelques proprietes electrochimiques de ces ions. Il a tout d'abord ete necessaire de mettre au point une methode de purification de l'eutectique LiF-BaF{sub 2} afin d'obtenir des bains suffisamment purs pour realiser une etude electrochimique par chronoamperometrie lineaire et par chronopotentiometrie. L'enregistrement des courbes de polarisation dans des solutions des ions U{sup 4+}, Ce{sup 3+}, Zr{sup 4+} montre que les systemes U{sup 4+}/U{sup 3+}, Ce{sup 3+}/Ce{sup 4+}, Zr{sup 4+}/Zr sont rapides. Apres avoir

  16. Corrosion mechanism of T91 steel by Pb-Bi eutectic used as spallation target: importance for accelerator driven system; Mecanisme de corrosion de l'acier T91 par l'eutectique Pb-Bi utilise comme materiau de cible de spallation: importance pour les reacteurs hybrides

    Energy Technology Data Exchange (ETDEWEB)

    Martinelli, L

    2005-10-15

    The aim of this work has been to determine the oxidation mechanism of the martensitic steel T91 in the Pb-Bi liquid eutectic alloy, saturated in oxygen, at 470 C, in order to develop a long-term predictive model of the oxidation kinetics of the steel. This work enters in the framework of the lifetime studies of the spallation module demonstrator: MEGAPIE for the researches on hybrid reactors. An experimental characterization of the oxide layers has been carried out as well as the oxidation kinetics of the T91 steel. An oxidation mechanism has been elaborated from these experimental results and then simulated. The oxide layer formed at the T91 surface presents a duplex structure constituted by a magnetite external layer and a spinel Fe-Cr internal layer. A growth mechanism of the oxide layers has been proposed: the growth of the magnetite layer seems to be limited by the iron diffusion in the lattice of the duplex oxide layer. In parallel, an auto-regulation mechanism seems to govern the growth of the Fe-Cr spinel layer. This mechanism includes a non-limiting step of the oxygen diffusion in the oxide layer (by liquid way in the nano-channels of lead), as well as a limiting step of iron diffusion in the lattice of the oxide layer. In considering the proposed oxidation mechanisms, a simulation of the growth of the two oxide layers is carried out and compared to the long-time oxidation growth kinetics. The good agreement between the experimental results allows, finally, to strengthen the proposition of a long-term growth kinetic oxidation mechanism of the oxide layers. (O.M.)

  17. Effect of lidocaine-prilocaine eutectic mixture of local anaesthetic ...

    African Journals Online (AJOL)

    Materials and Methods: This study was conducted in the Day Care Surgery Department of Maternity and Children Hospital, Dammam City, KSA. 90 full-term newborn males who underwent circumcision were divided randomly into three groups (30 each). Each group was assigned to receive a different type of analgesics ...

  18. WEAR-RESISTANCE OF CHROMIC CAST IRONS OF EUTECTIC COMPOSITION

    Directory of Open Access Journals (Sweden)

    K. E. Baranovskij

    2009-01-01

    Full Text Available Casting of wear-resistant chrome cast irons in combined molds and iron chills is studied. Application of these ways of casting results in blending of carbides and increasing of hardness of castings.

  19. Cold, no sweat : Eutectic freezing beats evaporation hands down

    NARCIS (Netherlands)

    Vaessen, R.; Witkamp, G.J.; Hartmann, L.

    2001-01-01

    Researchers at the Laboratory for Process Equipment at Delft University of Technology have developed an energy-friendly method to separate saline solutions into clean water and pure salt crystals. The method works by crystallizing the water and salt simultaneously though independently from each

  20. Field Emission Cold Cathode Devices Based on Eutectic Systems

    Science.gov (United States)

    1981-07-01

    molten aluminium. Finally it should be noted that at 800C LaB6 is in equilibrium with a variety of ternary borides of molybdenum and tungsten, e.g. (Mo...alloy containing molybdenum fibres designated A77-205. The maximum current density obtained from -2 the four systems tested were: VC 5.8, TaC 0.5...Selected physical properties of refractory carbides. TABLE 2. Selected physical properties of refractory borides . TABLE 3. Selected physical properties of

  1. Derivative thermo analysis of the near eutectic Al-Si-Cu alloy

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2008-12-01

    Full Text Available For determining of the dependence between cooling Speer, chemical composition and structure of the Al–Si–Cu aluminium cast alloy the thermo-analysis was carried out, using the UMSA device (Universal Metallurgical Simulator and Analyzer, next the optical and electron scanning microscopy was used for investigation of the structure, phase and chemical composition of the AC-AlSi7Cu3Mg grade Al cast alloy also using the EDS microanalysis as well the EBSD technique.

  2. Template Directed Oligomer Ligation in Eutectic Phases in Water-Ice

    DEFF Research Database (Denmark)

    Dörr, Mark; Löffler, Philipp M. G.; Wieczorek, Rafal

    2011-01-01

    . (a) Reaction scheme of the condensation reaction of two oligoribonucleotides : The leaving group in this example is imidazole. (b) Illustration of a possible spatial arrangement of a template (15nt) directed ligation. The 7-mer is activated with imidazole at the 5' phosphate (apical moiety...

  3. High temperature indentation behavior of eutectic lead-free solder materials

    Directory of Open Access Journals (Sweden)

    Worrack H.

    2010-06-01

    Full Text Available Electronic malfunction caused by thermal stresses is one major problem in modern electronic industries. Therefore, the precise knowledge of the mechanical solder material properties as a function of temperature is required. Nanoindentation and its potential of recording load-displacement curves is a widely-used miniature test for the determination of Young’s modulus and hardness values. Furthermore, such tests can be performed in a temperature range from Room Temperature (RT up to +500°C by using a Hot-Stage add on. In this paper the lead-free solder alloys Sn91Zn9 and Sn42Bi58, and also copper and fused silica, which is used for the indenter calibration are investigated. The results for quartz and copper agree with the published values in several references. However, the Young’s modulus of Sn42Bi58 as a function of temperature differs from the values presented in the literature. Due to delayed material response in the unloading regime it must be assumed that creep effects lead to an incorrect automatic data evaluation. Investigation and understanding of the creep behavior is part of this paper. For this purpose a visco-elastic material model is used to model the indentation response at elevated temperatures and to determine the corresponding viscous material constants.

  4. Physical Aspects of Scraped Heat Exchanger Crystallizers : An Application in Eutectic Freeze Crystallization

    NARCIS (Netherlands)

    Rodriguez Pascual, M.

    2009-01-01

    One of the most important natural resources is fresh water. An unfortunate issue is however, the low availability and high demand of fresh water world-wide. From the total resources industry consumes about 20 % (1200 km3 yearly) [UN, 2007]. Industrial aqueous waste streams are therefore widely

  5. WORK FUNCTION CHARACTERIZATION OF DIRECTIONALLY SOLIDIFIED LAB6VB2 EUTECTIC (POSTPRINT)

    Science.gov (United States)

    2017-05-10

    Ultramicroscopy 0 0 0 (2017) 1–5 Contents lists available at ScienceDirect Ultramicroscopy journal homepage: www.elsevier.com/locate/ultramic Work function...temperature to the primarily the B 2 at 977 °C. Although the SPLEEM is capable of heating the samples to tem - eratures that are typical of a working...by e -beam nd thermal evaporation during image acquisition at room tem - erature. Fig. 5 (a), (b), (c) shows the results of the dosing exper- ments

  6. L-proline-based deep eutectic solvents (DESs) for deep catalytic oxidative desulfurization (ODS) of diesel.

    Science.gov (United States)

    Hao, Lingwan; Wang, Meiri; Shan, Wenjuan; Deng, Changliang; Ren, Wanzhong; Shi, Zhouzhou; Lü, Hongying

    2017-10-05

    A series of L-proline-based DESs was prepared through an atom economic reaction between L-proline (L-Pro) and four different kinds of organic acids. The DESs were characterized by Fourier transform infrared spectroscopy (FT-IR), H nuclear magnetic resonance (1HNMR), cyclic voltammogram (CV) and the Hammett method. The synthesized DESs were used for the oxidative desulfurization and the L-Pro/p-toluenesultonic acid (L-Pro/p-TsOH) system shows the highest catalytic activity that the removal of dibenzothiophene (DBT) reached 99% at 60°C in 2h, which may involve the dual activation of the L-Pro/p-TsOH. The acidity of four different L-proline-based DESs was measured and the results show that it could not simply conclude that the correlation between the acidity of DESs and desulfurization capability was positive or negative. The electrochemical measurements evidences and recycling experiment indicate a good stability performance of L-Pro/p-TsOH in desulfurization. This work will provide a novel and potential method for the deep oxidation desulfurization. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy (Part I)

    Energy Technology Data Exchange (ETDEWEB)

    Martinelli, L. [CEA, DEN, Service de la Corrosion et du Comportement des Materiaux dans leur Environnement, F-91191 Gif sur Yvette (France)], E-mail: laure.martinelli@cea.fr; Balbaud-Celerier, F.; Terlain, A. [CEA, DEN, Service de la Corrosion et du Comportement des Materiaux dans leur Environnement, F-91191 Gif sur Yvette (France); Delpech, S. [CNRS, UMR 7575 Ecole Nationale superieure de Chimie de Paris, Laboratoire d' Electrochimie et de Chimie Analytique, 11 rue Pierre et Marie Curie 75231 Paris (France); Santarini, G. [CEA, Cabinet du Haut-Commisaire, F-91191 Gif sur Yvette (France); Favergeon, J.; Moulin, G. [CNRS, centre de recherche de Royallieu FRE CNRS 2833, Laboratoire Roberval, 20529-60205 Compiegne (France); Tabarant, M. [CEA, DEN, Service de Chimie Physique, F- 91191 Gif sur Yvette (France); Picard, G. [CNRS, UMR 7575 Ecole Nationale superieure de Chimie de Paris, Laboratoire d' Electrochimie et de Chimie Analytique, 11 rue Pierre et Marie Curie 75231 Paris (France)

    2008-09-15

    This paper is the first part of a global study on the oxidation process of a Fe-9Cr-1Mo martensitic steel (T91) in static liquid Pb-Bi. It focuses on the oxygen transport mode across the oxide scale. The oxide layer has a duplex structure composed of an internal Fe-Cr spinel layer and an external magnetite layer. Oxygen 18 tracer experiments are performed: they show that the magnetite layer grows at the Pb-Bi/ oxide interface whereas the Fe-Cr spinel layer grows at the metal/oxide interface. Oxygen seems to diffuse across the oxide scale dissolved inside nanometric lead penetrations called nano-channels. Specific experiments are performed to characterize the nano-channels.

  8. Multi-Scale Microstructure and Mechanical Properties of High Carbon Eutectic Tantalum Carbide Reinforced with Carbon Nanotubes

    Science.gov (United States)

    2012-07-02

    2421. [37] C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R.B. Mahfoud, J. Melanqon, A.D. Pelton , S. Petersen, Calphad 26 (2002) 189...A.D. Pelton , S. Petersen, Calphad-Comput. Coupling Phase Diagrams Thermochem. 26 (2002) 189–228. [46] S.J. Lukasiewicz, J. Am. Ceram. Soc. 72 (1989

  9. Influence of Growth Rate on Microstructural Length Scales in Directionally Solidified NiAl-Mo Hypo-Eutectic Alloy

    Science.gov (United States)

    Zhang, Jianfei; Ma, Xuewei; Ren, Huiping; Chen, Lin; Jin, Zili; Li, Zhenliang; Shen, Jun

    2016-01-01

    In this article, the Ni-46.1Al-7.8Mo (at.%) alloy was directionally solidified at different growth rates ranging from 15 μm/s to 1000 μm/s under a constant temperature gradient (334 K/cm). The dependence of microstructural length scales on the growth rate was investigated. The results show that, with the growth rate increasing, the primary dendritic arm spacings (PDAS) and secondary dendritic arm spacings (SDAS) decreased. There exists a large distribution range in PDAS under directional solidification conditions at a constant temperature gradient. The average PDAS and SDAS as a function of growth rate can be given as λ1 = 848.8967 V-0.4509 and λ2 = 64.2196 V-0.4140, respectively. In addition, a comparison of our results with the current theoretical models and previous experimental results has also been made.

  10. Study of parametric optimization of burr formation in step drilling of eutectic Al–Si alloy–Gr composites

    Directory of Open Access Journals (Sweden)

    Palanisamy Shanmughasundaram

    2014-04-01

    Full Text Available In this study, the effect of the step drill's geometries such as step angle, step size and cutting parameters such as feed and spindle speed on the exit burr height was investigated for burr minimization in drilling of Al–Gr composites which are fabricated through squeeze casting method. The experimental study was conducted as per the L27 orthogonal array of Taguchi method to find the optimum drilling parameters, and analysis of variance (ANOVA was performed to investigate the influence of parameters on the burr height of composites during drilling. Confirmation tests were conducted to validate the test results. Results revealed that feed, step angle, step size and spindle speed were the significant parameters in the formation of exit burr.

  11. Design of a permeator against vacuum for tritium extraction from eutectic lithium-lead in a DCLL DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Garcinuño, Belit, E-mail: belit.garcinuno@ciemat.es [CIEMAT-LNF (Laboratorio Nacional de Fusión), Madrid (Spain); Rapisarda, David [CIEMAT-LNF (Laboratorio Nacional de Fusión), Madrid (Spain); Fernández, Iván [Fundación & Departamento de Ingeniería Energética, UNED, Madrid (Spain); CIEMAT-LNF (Laboratorio Nacional de Fusión), Madrid (Spain); Moreno, Carlos; Palermo, Iole; Ibarra, Ángel [CIEMAT-LNF (Laboratorio Nacional de Fusión), Madrid (Spain)

    2017-04-15

    Highlights: • A conceptual design of a Permeator Against Vacuum is presented. • The efficiency is dependent on geometry and Tritium transport. • The use of different membrane materials is discussed. • A squared PAV with alternated PbLi flowing and vacuum flat ducts is designed. • 80% efficiency of Tritium extraction is accomplished under DCLL-BB requirements. - Abstract: One of the most important issues in future fusion power plants is the extraction of tritium generated in the breeders in order to achieve self-sufficiency. When the breeder is a liquid metal one of the most promising techniques is the Permeation Against Vacuum, whose principle is based on tritium diffusion through a permeable membrane in contact with the liquid metal carrier and its further extraction by a vacuum pump. A conceptual design of permeator has been developed, taking into account the features of a DEMO reactor with a Dual Coolant Lithium Lead (DCLL) breeder blanket. The study is based on the analysis of different membranes and geometries aiming at the overall efficiency (extraction capability) of the device, as well as its compatibility with the breeder material. The permeator is based on a rectangular section multi-channel distribution where the liquid metal channels and vacuum channels are alternated in order to maximize the contact area and therefore to promote tritium transport from the bulk to the walls. The resulting permeator design has an excellent estimated extraction efficiency, of 80%, in a relatively compact device.

  12. Phase analysis and determination of local charge carrier concentration in eutectic Mg{sub 2}Si–Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Levin, E.M., E-mail: levin@iastate.edu [Division of Materials Sciences and Engineering, US DOE Ames Laboratory, Ames, IA 50011 (United States); Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Hanus, R. [Division of Materials Sciences and Engineering, US DOE Ames Laboratory, Ames, IA 50011 (United States); Cui, J. [Division of Materials Sciences and Engineering, US DOE Ames Laboratory, Ames, IA 50011 (United States); Department of Chemistry, Iowa State University, Ames, IA 50011 (United States); Xing, Q.; Riedemann, T. [Division of Materials Sciences and Engineering, US DOE Ames Laboratory, Ames, IA 50011 (United States); Lograsso, T.A. [Division of Materials Sciences and Engineering, US DOE Ames Laboratory, Ames, IA 50011 (United States); Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Schmidt-Rohr, K. [Division of Materials Sciences and Engineering, US DOE Ames Laboratory, Ames, IA 50011 (United States); Department of Chemistry, Iowa State University, Ames, IA 50011 (United States)

    2015-05-05

    Multiphase materials attract attention due to possible combination of various properties attributed to each phase. The phase diagram of Mg–Si system shows that solidification of a melt containing about 45 and 55 at.% of Mg and Si should result in formation of Mg{sub 2}Si and Si. Two alloys, Mg{sub 45}Si{sub 55} and Mg{sub 46}Si{sub 54} + 0.5 wt.% Cu have been synthesized and studied using XRD, SEM, and {sup 29}Si NMR at 300 K, and the Seebeck effect, electrical resistivity, and thermal conductivity in the temperature range of 300–750 K have been measured. {sup 29}Si NMR detects two distinct signals, at −177 and −80 ppm, in both materials, which are assigned to Mg{sub 2}Si and Si phases, respectively. Both phases are slightly nonstoichiometric and doped with Mg. Two phases also are found by XRD and electron microscopy. {sup 29}Si NMR spin-lattice relaxation measurements in Mg{sub 2}Si and Si phases show at least two components, short and long, which can be attributed to different local carrier concentrations, high and low, respectively, reflecting a local electronic inhomogeneity in each phase. The carrier concentrations range between 0.6 × 10{sup 19} and 9 × 10{sup 19} cm{sup −3}. The Seebeck coefficient in both alloys is mostly determined by the Si phase, while the thermal conductivity is limited by the Mg{sub 2}Si phase with a lower value than that of the Si phase. By utilizing all characterization tools, we show how various experimental methods can be used as complementary methods to better understand the individual and combined properties of multiphase alloys. - Highlights: • Two distinct phases, Mg{sub 2}Si and Si, are found in Mg{sub 45}Si{sub 55} and Mg{sub 46}Si{sub 54} + 0.5 wt.% Cu alloys. • {sup 29}Si NMR spin-lattice relaxation measurements demonstrate two relaxation components in each phase. • XRD, electron microscopy, and NMR have been demonstrated as complementary methods to study multiphase alloys.

  13. Theoretical investigation on the microstructure of triethylene glycol based deep eutectic solvents: COSMO-RS and TURBOMOLE prediction

    Science.gov (United States)

    Aissaoui, Tayeb; Benguerba, Yacine; AlNashef, Inas M.

    2017-08-01

    The in-silico combination mechanism of triethylene glycol based DESs has been studied. COSMO-RS and graphical user interface TmoleX software were used to predict the interaction mechanism of hydrogen bond donors (HBDs) with hydrogen bond acceptors (HBA) to form DESs. The predicted IR results were compared with the previously reported experimental FT-IR analysis for the same studied DESs. The sigma profiles for the HBD, HBAs and formed DESs were interpreted to identify qualitatively molecular properties like polarity or hydrogen bonding donor and acceptor abilities. The predicted physicochemical properties reported in this study were in good agreement with experimental ones.

  14. The role of elevated temperature exposure on structural evolution and fatigue strength of eutectic AlSi12 alloys

    Czech Academy of Sciences Publication Activity Database

    Konečná, R.; Nicoletto, G.; Kunz, Ludvík; Riva, E.

    2016-01-01

    Roč. 83, č. 1 (2016), s. 24-35 ISSN 0142-1123 Institutional support: RVO:68081723 Keywords : Piston * Al-Si alloy * Elevated temperature * Fatigue strength Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.899, year: 2016

  15. Electrochemical investigation of lithium/potassium carbonate eutectic for application in modeling the molten carbonate fuel cell cathode

    Science.gov (United States)

    McCoy, L.; Schuman, M.

    1986-04-01

    A program involving the design, construction, and operation of a high-temperature cell equipped with a rotating gold disk electrode has been carried out with the objective of identifying and quantifying the principal oxide species present in molten LiKCO3 electrolytes using electrochemical measurements. The dependence of the current on electrode rotational speed at 750 to 800 C indicates that the data are typical of the convective/diffusive transport of an electroactive species from the bulk electrolyte. The reverse is true at 650 C, where the current increases with an increasing voltage sweep rate but is little affected by the speed of electrode rotation. In the latter case, a current by chemical reaction occurring within the electrode boundary layer is indicated. The linear current-voltage increase observed at the lower temperature in the presence of about 20 mol % 02 has not been accounted for. Graphical analysis of the data taken with air and CO2 sparged electrolyte at 750 and 800C indicates the electroactive species to be the superoxide ion. Computer studies of the same data usi ng regression analysis methodology indicate that the current may instead arise from the reduction of the peroxide ion concurrently with other electroactive material derived from secondary catalytic reactions or electrolyte impurities. Additional data will be required to support either conclusion with certainty. Detailed studies of the electrochemistry of the LiKCO3 electrolyte over a broader range of temperatures and sparge gas compositions are recommended as a means of providing a second basis for identifying the electrode reactions.

  16. The thermodynamic and transport properties of GdCl3 in molten eutectic LiCl-KCl derived from the analysis of cyclic voltammetry signals

    Science.gov (United States)

    Samin, Adib; Wu, Evan; Zhang, Jinsuo

    2017-02-01

    Pyroprocessing technology is a promising tool for recycling nuclear fuel and producing high purity gadolinium for industrial applications. An efficient implementation of pyroprocessing entails a careful characterization of the electrochemical and transport properties of lanthanides in high temperature molten salts. In this work, the cyclic voltammetry signals of Gd in molten LiCl-KCl salt were recorded for a combination of three temperatures (723 K, 773 K, and 823 K) and three concentration levels (3 wt. %, 6 wt. %, and 9 wt. %) including concentration levels higher than previously reported and relevant for a realistic application of pyroprocessing for molten salt recycle, and the concentration effects were investigated. Four scan rates (200 mV/s to 500 mV/s) were used for each condition, and the signals were examined using conventional Cyclic Voltammetry (CV) analysis equations and by utilizing a two-plate Brunauer, Emmett, and Teller (BET) model accounting for mass diffusion, kinetics, adsorption, and the evolution of electrode morphology via a nonlinear least squares procedure for fitting the model to the experimental signals. It was determined that the redox process is quasi-reversible for the scan rates being used. Furthermore, the applicability of the conventional equations for CV analysis was shown to be problematic for the conditions used, and this is thought to be due to the fact that these equations were derived under the assumption of reversible conditions. The model-derived values for diffusivity are consistent with the literature and are shown to decrease with increasing concentration. This may be due to increased interactions at higher concentration levels. It was also shown that the formal redox potential increased with a concentration and was slightly more positive on the covered electrode.

  17. Development of new eutectic phase change materials and plate-based latent heat thermal energy storage systems for domestic cogeneration applications

    OpenAIRE

    Diarce Belloso, Gonzalo

    2017-01-01

    327 p. La presente tesis doctoral tiene como objetivo el desarrollo de nuevos sistemas de almacenamiento térmico latente para aplicaciones de cogeneración en edificios, con el fin de contribuir al ahorro energético en los mismos. Para ello se han desarrollado las siguientes tareas de investigación: (i) investigar mezclas eutécticas binarias de materiales para desarrollar nuevos PCMs adecuados para almacenar calor en el rango de temperaturas correspondiente a sistemas de calefacción y agua ...

  18. Non-invasive Drosophila ECG recording by using eutectic gallium-indium alloy electrode: a feasible tool for future research on the molecular mechanisms involved in cardiac arrhythmia.

    Directory of Open Access Journals (Sweden)

    Po-Hung Kuo

    Full Text Available BACKGROUND: Drosophila heart tube is a feasible model for cardiac physiological research. However, obtaining Drosophila electrocardiograms (ECGs is difficult, due to the weak signals and limited contact area to apply electrodes. This paper presents a non-invasive Gallium-Indium (GaIn based recording system for Drosophila ECG measurement, providing the heart rate and heartbeat features to be observed. This novel, high-signal-quality system prolongs the recording time of insect ECGs, and provides a feasible platform for research on the molecular mechanisms involved in cardiovascular diseases. METHODS: In this study, two types of electrode, tungsten needle probes and GaIn electrodes, were used respectively to noiselessly conduct invasive and noninvasive ECG recordings of Drosophila. To further analyze electrode properties, circuit models were established and simulated. By using electromagnetic shielded heart signal acquiring system, consisted of analog amplification and digital filtering, the ECG signals of three phenotypes that have different heart functions were recorded without dissection. RESULTS AND DISCUSSION: The ECG waveforms of different phenotypes of Drosophila recorded invasively and repeatedly with n value (n>5 performed obvious difference in heart rate. In long period ECG recordings, non-invasive method implemented by GaIn electrodes acts relatively stable in both amplitude and period. To analyze GaIn electrode, the correctness of GaIn electrode model established by this paper was validated, presenting accuracy, stability, and reliability. CONCLUSIONS: Noninvasive ECG recording by GaIn electrodes was presented for recording Drosophila pupae ECG signals within a limited contact area and signal strength. Thus, the observation of ECG changes in normal and SERCA-depleted Drosophila over an extended period is feasible. This method prolongs insect survival time while conserving major ECG features, and provides a platform for electrophysiological signal research on the molecular mechanism involved in cardiac arrhythmia, as well as research related to drug screening and development.

  19. Thermodynamic Assessment of Hot Corrosion Mechanisms of Superalloys Hastelloy N and Haynes 242 in Eutectic Mixture of Molten Salts KF and ZrF4

    Energy Technology Data Exchange (ETDEWEB)

    Michael V. Glazoff

    2012-02-01

    The KF - ZrF4 system was considered for the application as a heat exchange agent in molten salt nuclear reactors (MSRs) beginning with the work carried out at ORNL in early fifties. Based on a combination of excellent properties such as thermal conductivity, viscosity in the molten state, and other thermo-physical and rheological properties, it was selected as one of possible candidates for the nuclear reactor secondary heat exchanger loop.

  20. Study on the efficacy of ELA-Max (4% liposomal lidocaine) compared with EMLA cream (eutectic mixture of local anesthetics) using thermosensory threshold analysis in adult volunteers.

    Science.gov (United States)

    Tang, M B Y; Goon, A T J; Goh, C L

    2004-04-01

    ELA-Max and EMLA cream are topical anesthetics that have been shown to have similar anesthetic efficacy in previous studies. To evaluate the analgesic efficacy of ELA-Max in comparison with EMLA cream using a novel method of thermosensory threshold analysis. A thermosensory analyzer was used to assess warmth- and heat-induced pain thresholds. No statistically significant difference was found in pain thresholds using either formulation. However, EMLA cream increased the heat-induced pain threshold to a greater extent than ELA-Max. Thermosensory measurement and analysis was well tolerated and no adverse events were encountered. EMLA cream may be superior to ELA-Max for heat-induced pain. This study suggests that thermosensory measurement may be another suitable tool for future topical anesthetic efficacy studies.

  1. An efficient and green method for regio- and chemo-selective Friedel–Crafts acylations using a deep eutectic mixture ([CholineCl][ZnCl2]3)

    DEFF Research Database (Denmark)

    Hoang, Tran Phuong; Nguyen, Hai Truong; Hansen, Poul Erik

    2016-01-01

    are performed with high yields under microwave irradiation with short reaction times for the synthesis of ketones. Interestingly, indole derivatives are regioselectively acylated in the 3-position under mild conditions with high yields without NH protection. Three new ketone products are synthesized. [Choline...

  2. Synthesis of monoclinic structured BiVO{sub 4} spindly microtubes in deep eutectic solvent and their application for dye degradation

    Energy Technology Data Exchange (ETDEWEB)

    Liu Wei, E-mail: weiliu@ouc.edu.cn [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China); Yu Yaqin; Cao Lixin; Su Ge; Liu Xiaoyun; Zhang Lan; Wang Yonggang [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China)

    2010-09-15

    Monoclinic structured spindly bismuth vanadate microtubes were fabricated on a large scale by a simple ionothermal treatment in the environment-friendly green solvent of urea/choline chloride. The as-prepared samples were characterized by XRD, SEM, TEM, IR and their photocatalytic activity was evaluated by photocatalytic decolorization of rhodamine B aqueous solution under visible-light irradiation. As-obtained BiVO{sub 4} microtubes exhibit the spindly shape with a side length of ca. 800 nm and a wall thickness of ca. 100 nm. The opening of these microtubes presents a saw-toothed structure, which is seldom in other tube-shaped materials. The formation mechanism of the spindly microtubes is ascribed to the complex cooperation of the reaction-crystallization process controlled by BiOCl and the nucleation-growth process of nanosheets induced by solvent molecules attached on the surface of microtubes. Such spindly microtubes exhibit much higher visible-light photocatalytic activity than that of bulk BiVO{sub 4} prepared by solid-state reaction, possibly resulting from their large surface area and improved crystallinity.

  3. The role of correlations in the determination of the transport properties of LaCl{sub 3} in high temperature molten eutectic LiCl-KCl

    Energy Technology Data Exchange (ETDEWEB)

    Samin, Adib; Wu, Evan; Zhang, Jinsuo [The Ohio State Univ., Columbus, OH (United States). Dept. of Mechanical and Aerospace Engineering

    2017-10-01

    It is important to develop an accurate assessment of fundamental data of lanthanides in high temperature molten salts to enable an efficient application of pyroprocessing. This requires a careful consideration of uncertainties in the reported results. In this study, cyclic voltammetry (CV) tests of LaCl{sub 3} in KCl-LiCl molten salt were conducted at low concentration levels in the molten salt at 723 K and at several scan rates. The CV signals were subsequently analyzed through the conventional CV analysis and using a BET-based model through a nonlinear least-squares fitting procedure. It was determined that the parameters of the model were strongly correlated and the support plane procedure was implemented to assign joint confidence intervals for the diffusivity of lanthanum. Accounting for the correlations led to a significant increase in the uncertainty of the reported diffusivity which led to better agreement with the literature. Accounting for the correlations may be important for higher concentration levels.

  4. Hot-corrosion of AISI 1020 steel in a molten NaCl/Na2SO4 eutectic at 700°C

    Science.gov (United States)

    Badaruddin, Mohammad; Risano, Ahmad Yudi Eka; Wardono, Herry; Asmi, Dwi

    2017-01-01

    Hot-corrosion behavior and morphological development of AISI 1020 steel with 2 mg cm-2 mixtures of various NaCl/Na2SO4 ratios at 700°C were investigated by means of weight gain measurements, Optical Microscope (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). The weight gain kinetics of the steel with mixtures of salt deposits display a rapid growth rates, compared with the weight gain kinetics of AISI 1020 steel without salt deposit in dry air oxidation, and follow a steady-state parabolic law for 49 h. Chloridation and sulfidation produced by a molten NaCl/Na2SO4 on the steel induced hot-corrosion mechanism attack, and are responsible for the formation of thicker scale. The most severe corrosion takes place with the 70 wt.% NaCl mixtures in Na2SO4. The typical Fe2O3 whisker growth in outer part scale was attributed to the FeCl3 volatilization. The formation of FeS in the innermost scale is more pronounced as the content of Na2SO4 in the mixture is increased.

  5. THERMAL ANALYSIS OF THE MODIFIED MAGNESIUM-CONTAINING SILUMINS WITH DIFFERENT TYPE OF MODIFIER

    Directory of Open Access Journals (Sweden)

    I. V. Rafalskij

    2005-01-01

    Full Text Available The modification of the eutectic structure in aluminum-silicon-magnesium alloys related to the thermal parameters analysis is investigated. The magnitude of the eutectic undercooling and eutectic arrest depression caused by modifying sodium and strontium has been correlated to the eutectic microstructure accordingly to the type of modifier. The reason for difference of cooling curves and microstructure of aluminum-silicon-magnesium alloys modified sodium and strontium is changing in growth mode of eutectic crystals from the liquid.

  6. Inoculation Effects of Cast Iron

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2012-12-01

    Full Text Available The paper presents a solidification sequence of graphite eutectic cells of A and D types, as well as globular and cementite eutectics. The morphology of eutectic cells in cast iron, the equations for their growth and the distances between the graphite precipitations in A and D eutectic types were analyzed. It is observed a critical eutectic growth rate at which one type of eutectic transformed into another. A mathematical formula was derived that combined the maximum degree of undercooling, the cooling rate of cast iron, eutectic cell count and the eutectic growth rate. One type of eutectic structure turned smoothly into the other at a particular transition rate, transformation temperature and transformational eutectic cell count. Inoculation of cast iron increased the number of eutectic cells with flake graphite and the graphite nodule count in ductile iron, while reducing the undercooling. An increase in intensity of inoculation caused a smooth transition from a cementite eutectic structure to a mixture of cementite and D type eutectic structure, then to a mixture of D and A types of eutectics up to the presence of only the A type of eutectic structure. Moreover, the mechanism of inoculation of cast iron was studied.

  7. Undercooling and nodule count in thin walled ductile iron castings

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2007-01-01

    Casting experiments have been performed with eutectic and hypereutectic castings with plate thicknesses from 2 to 8 mm involving both temperature measurements during solidification and microstructural examination afterwards. The nodule count was the same for the eutectic and hypereutectic castings...... in the thin plates (≤4.3 mm) while in the 8 mm plate the nodule count was higher in the hypereutectic than in the eutectic castings. The minimum temperature before the eutectic recalescence (Tmin) was 15 to 20ºC lower for the eutectic than for the hypereutectic castings. This is due to nucleation of graphite...... nodules which begins at a lower temperature in the eutectic than in the hypereutectic castings. The recalescence ∆Trec was however also larger for the eutectic casting and in the thin plates the maximum temperature after recalescence (Tmax) was the same in the eutectic and hypereutectic plates...

  8. Heated lidocaine/tetracaine patch (Synera™, Rapydan™) compared with lidocaine/prilocaine cream (EMLA®) for topical anaesthesia before vascular access

    National Research Council Canada - National Science Library

    Sawyer, J; Febbraro, S; Masud, S; Ashburn, M. A; Campbell, J. C

    2009-01-01

    Background We compared the lidocaine/tetracaine patch [Synera™ (USA), Rapydan™ (Europe)], a novel heat-aided patch using a eutectic mixture of lidocaine 70 mg and tetracaine 70 mg, with a eutectic mixture of lidocaine 25 mg ml...

  9. NiAl-based Polyphase in situ Composites in the NiAl-Ta-X (X = Cr, Mo, or V) Systems

    Science.gov (United States)

    Johnson, D. R.; Oliver, B. F.; Noebe, R. D.; Whittenberger, J. D.

    1995-01-01

    Polyphase in situ composites were generated by directional solidification of ternary eutectics. This work was performed to discover if a balance of properties could be produced by combining the NiAl-Laves phase and the NiAl-refractory metal phase eutectics. The systems investigated were the Ni-Al-Ta-X (X = Cr, Mo, or V) alloys. Ternary eutectics were found in each of these systems and the eutectic composition, temperature, and morphology were determined. The ternary eutectic systems examined were the NiAl-NiAlTa-(Mo, Ta), NiAl-(Cr, Al) NiTa-Cr, and the NiAl-NiAlTa-V systems. Each eutectic consists of NiAl, a C14 Laves phase, and a refractory metal phase. Directional solidification was performed by containerless processing techniques in a levitation zone refiner to minimize alloy contamination. Room temperature fracture toughness of these materials was determined by a four-point bend test. Preliminary creep behavior was determined by compression tests at elevated temperatures, 1100-l400 K. Of the ternary eutectics, the one in the NiAl-Ta-Cr system was found to be the most promising. The fracture toughness of the NiAl-(Cr, Al)NiTa-Cr eutectic was intermediate between the values of the NiAl-NiAlTa eutectic and the NiAl-Cr eutectic. The creep strength of this ternary eutectic was similar to or greater than that of the NiAl-Cr eutectic.

  10. A solidification model for unmodified, Na-modified and Sr-modified Al-Si alloys

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat; Hattel, Jesper Henri; Taylor, J. A.

    2012-01-01

    An addition of small amounts of Na and Sr is commonly used in the industry to modify the eutectic in Al-Si alloys. Both Na and Sr suppress nucleation of the eutectic forcing nucleation and growth to take place at higher undercooling than in the unmodified material. Thus the scale of the eutectic ...

  11. Undercooling and nodule count in thin walled ductile iron castings

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2007-01-01

    of graphite nodules which begins at a lover temperature in the eutectic than in the hypereutectic castings The recalescence (Trec) was however also larger for the eutectic casting and in the thin plates the maximum temperature after recalescence (Tmax) was the same in the eutectic and hypereutectic plates...

  12. Processing and Mechanical Properties of NiAl-Based In-Situ Composites. Ph.D. Thesis Final Report

    Science.gov (United States)

    Johnson, David Ray

    1994-01-01

    In-situ composites based on the NiAl-Cr eutectic system were successfully produced by containerless processing and evaluated. The NiAl-Cr alloys had a fibrous microstructure while the NiAl-(Cr,Mo) alloys containing 1 at. percent or more molybdenum exhibited a lamellar structure. The NiAl-28Cr-6Mo eutectic displays promising high temperature strength while still maintaining a reasonable room temperature fracture toughness when compared to other NiAl-based materials. The Laves phase NiAlTa was used to strengthen NiAl and very promising creep strengths were found for the directionally solidified NiAl-NiAlTa eutectic. The eutectic composition was found to be near NiAl-15.5Ta (at. percent) and well aligned microstructures were produced at this composition. An off-eutectic composition of NiAl-14.5Ta was also processed, consisting of NiAl dendrites surrounded by aligned eutectic regions. The room temperature toughness of these two phase alloys was similar to that of polycrystalline NiAl even with the presence of the brittle Laves phase NiAlTa. Polyphase in-situ composites were generated by directional solidification of ternary eutectics. The systems investigated were the Ni-Al-Ta-X (X=Cr, Mo, or V) alloys. Ternary eutectics were found in each of these systems and both the eutectic composition and temperature were determined. Of these ternary eutectics, the one in the NiAl-Ta-Cr system was found to be the most promising. The fracture toughness of the NiAl-(Cr,Al)NiTa-Cr eutectic was intermediate between those of the NiAl-NiAlTa eutectic and the NiAl-Cr eutectic. The creep strength of this ternary eutectic was similar to or greater than that of the NiAl-Cr eutectic.

  13. Processing and in vitro bioactivity of a β-Ca{sub 3}(PO{sub 4}){sub 2}-CaMg(SiO{sub 3)}2 ceramic with the eutectic composition

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Paez, I. H.; Pena, P.; Baudin, C.; Rodriguez, M. A.; Cordoba, E.; Aza, A. H. de

    2016-05-01

    In this study, a dense bioactive ceramic, with nominal composition (wt.%) 40 Ca{sub 3}(PO{sub 4}){sub 2}-60 CaMg(SiO{sub 3}){sub 2}, was prepared by solid state sintering of homogeneous compacted mixtures of fine synthetic Ca{sub 3}(PO{sub 4)}2 and CaMg(SiO{sub 3}){sub 2} powders. The results obtained by X-ray diffraction and field emission scanning electron microscopy with microanalysis indicate that the ceramic composite showed a fine grained and homogeneous microstructure consisting of diopside (CaMg(SiO{sub 3}){sub 2}) and whitlockite (β-Ca{sub 3}(PO{sub 4}){sub 2}ss) grains with very small amounts of apatite. The flexural strength and elastic modulus values of the composite are similar to those of cortical human bone. Bioactivity was experimentally evaluated by examining in vitro apatite formation in simulated body fluid (SBF). In addition, a simulation of the dissolution properties of the different phases present in the material in SBF was carried out by thermodynamic calculations, with the purpose of understanding the in vitro results obtained. The experimental results demonstrated that, during soaking in SBF, the grains of whitlockite dissolved preferentially than those of diopside, leaving a porous surface layer rich in diopside. Subsequently, partial dissolution of the remaining diopside occurred and the porous surface of the ceramic became coated by a bone-like apatite layer after 7 days in SBF. This bio ceramic containing β-Ca{sub 3}(PO{sub 4}){sub 2} and CaMg(SiO{sub 3}){sub 2} is expected to be useful to fabricate scaffolds for bone repair. (Author)

  14. Corrosion mechanism of T91 steel by Pb-Bi eutectic used as spallation target:importance for accelerator driven system; Caracterisation de l'endommagement de parois de galeries par tomographie electrique: application en laboratoire souterrain

    Energy Technology Data Exchange (ETDEWEB)

    Grislin-Mouezy, A

    2005-07-01

    The electrical tomography monitoring is one of the basic technique used in applied geophysics. This method allows to obtain the electrical resistivity distribution from the electrical potential measurements. The excavation of a new gallery in the underground rock laboratory at Mont Terri offers the possibility to follow and characterize the damaged zone in a spatial and temporal way. Successive acquired data sets have been carried out during several months and the results have been compared with the geological observations and the studies of the stress field. These results show that the resistivity changes are correlated with the local tectonics, the bedding and the stress field near the barriers. On account of the cylindrical geometry of the gallery, a modelling program has been developed in cylindrical co-ordinates. A program of inversion by simulated annealing has been developed too and tested on synthetical data sets. (O.M.)

  15. Comparison of Iontophoretic Lidocaine to EMLA Cream for Pain Reduction Prior to Intravenous Fannulation in Adults

    National Research Council Canada - National Science Library

    Spence, Kenneth

    2000-01-01

    .... Topically administered EMLA (Eutectic Mixture of Local Anesthetics) cream is frequently used, but it takes one hour for it to effectively anesthetize venipuncture sites, which limits its usefulness...

  16. Development of a High Chromium Ni-Base Filler Metal Resistant to Ductility Dip Cracking and Solidification Cracking

    Science.gov (United States)

    Hope, Adam T.

    Many nuclear reactor components previously constructed with Ni-based alloys containing 20 wt% Cr have been found to be susceptible to stress corrosion cracking. The nuclear power industry now uses high chromium (˜30wt%) Ni-based filler metals to mitigate stress corrosion cracking. Current alloys are plagued with weldability issues, either solidification cracking or ductility dip cracking (DDC). Solidification cracking is related to solidification temperature range and the DDC is related to the fraction eutectic present in the microstructure. It was determined that an optimal alloy should have a solidification temperature range less than 150°C and at least 2% volume fraction eutectic. Due to the nature of the Nb rich eutectic that forms, it is difficult to avoid both cracking types simultaneously. Through computational modeling, alternative eutectic forming elements, Hf and Ta, have been identified as replacements for Nb in such alloys. Compositions have been optimized through a combination of computational and experimental techniques combined with a design of experiment methodology. Small buttons were melted using commercially pure materials in a copper hearth to obtain the desired compositions. These buttons were then subjected to a gas tungsten arc spot weld. A type C thermocouple was used to acquire the cooling history during the solidification process. The cooling curves were processed using Single Sensor Differential Thermal Analysis to determine the solidification temperature range, and indicator of solidification cracking susceptibility. Metallography was performed to determine the fraction eutectic present, an indicator of DDC resistance. The optimal level of Hf to resist cracking was found to be 0.25 wt%. The optimal level of Ta was found to be 4 wt%. gamma/MC type eutectics were found to form first in all Nb, Ta, and Hf-bearing compositions. Depending on Fe and Cr content, gamma/Laves eutectic was sometimes found in Nb and Ta-bearing compositions, while

  17. Peptides as catalysts in the RNA world

    DEFF Research Database (Denmark)

    Wieczorek, Rafal; Dörr, Mark; Luisi, Pier Luigi

    condensation was achieved using water/ice eutectic phase environment (Monnard and Ziock 2008). To obtain such an environment, a reaction solution was cooled below its depressed freezing point, but above the eutectic point. Under these conditions (in our case, at a temperature of -18°C), most of the water...

  18. Synthesis and characterization of ceramics for sensors Hydrogen; Sintesis y caracterizacion de ceramicas para sensores de hidrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Serret, P.; Colominas, S.; Abella, J.

    2010-07-01

    One of the issues that the scientific community must address in ITER Tritium is generating. The lithium-lead eutectic alloy is one of the candidates to be used for the generation of Tritium and regenerating the casing refrigerant. Furthermore, lithium-lead eutectic can act as a shield, preventing the escape of radiation and neutrons and regenerating the casing.

  19. Phase diagrams of a condensed decane-eicosane-cyclododecane system

    Science.gov (United States)

    Garkushin, I. K.; Kolyado, A. V.; Shamitov, A. A.

    2016-05-01

    An n-eicosane-cyclododecane- n-decane system related to eutectic-type systems is investigated by means of differential thermal analysis. The eutectic alloy with melting point of-33.8°C contains 2.8 wt % of n-eicosane, 89.2 wt % of n-decane, and 8.0 wt % of cyclododecane.

  20. Novel Routes for Sintering of Ultra-high Temperature Ceramics and their Properties

    Science.gov (United States)

    2014-10-31

    its transformation into lower carbides. According to the equilibrium diagram Cr – C it means a transition of chromium carbide in much fusible states...presented tetrahedron there are fusible quadruple eutectics, apart from highlighted ternary eutectics. Thorough analysis of phase interactions is not

  1. Solidification of Hypereutectic Thin Wall Ductile Cast Iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2006-01-01

    Hypereutectic ductile iron was cast in green sand moulds with four plates with thickness of 1.5, 2, 3 and 4 mm in each mould. Temperatures were measured in the 3 and 4 mm plate. The temperature curves showed that eutectic solidification was divided into two stages: primary and secondary eutectic...

  2. Effect of solution heat treatment time on a rheocast Al-Zn-Mg-Cu alloy

    CSIR Research Space (South Africa)

    Mazibuko, NE

    2011-06-01

    Full Text Available During rheo-high pressure die casting (R-HPDC) of Al-Zn-Mg-Cu alloys a coarse eutectic phase is formed. This eutectic phase is difficult to take into solution because of its size and it would require longer solution heat treatment times...

  3. Thermodynamic study of binary system Propafenone Hydrocloride with Metoprolol Tartrate: solid-liquid equilibrium and compatibility with α-lactose monohydrate and corn starch.

    Science.gov (United States)

    Marinescu, Daniela-Crina; Pincu, Elena; Meltzer, Viorica

    2013-05-20

    Solid-liquid equilibrium (SLE) for binary mixture of Propafenone Hydrocloride (PP) with Metoprolol Tartrate (MT) was investigated using differential scanning calorimetry (DSC) and corresponding activity coefficients were calculated. Simple eutectic behavior for this system was observed. The excess thermodynamic functions: G(E) and S(E) for the pre-, post-, and eutectic composition have been obtained using the computed activity coefficients data of the eutectic phase with their excess chemical potentials μi(E) (i=1, 2). The experimental solid-liquid phase temperatures were compared with predictions obtained from available eutectic equilibrium models. The results indicate non-ideality in this mixture. Also, the compatibility of each component and their eutectic mixture with usual excipients was investigated, and the DSC experiments indicate possible weak interactions with α-lactose monohydrate and compatibility with corn starch. The results obtained were confirmed by FT-IR measurements. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Evidence for quantum interference in sams of arylethynylene thiolates in tunneling junctions with eutectic Ga-In (EGaIn) top-contacts : The influence of π-conjugation on the single-molecule conductance at a solid/liquid interface

    NARCIS (Netherlands)

    Fracasso, Davide; Valkenier, Hennie; Hummelen, Jan C.; Solomon, Gemma C.; Chiechi, Ryan C.; Hong, Wenjing; Mészáros, Gábor; Zsolt Manrique, David; Mishchenko, Artem; Putz, Alexander; Moreno García, Pavel; Lambert, Colin J.; Wandlowski, Thomas; Ruitenbeek, J.M. van

    2011-01-01

    This paper compares the current density (J) versus applied bias (V) of self-assembled monolayers (SAMs) of three different ethynylthiophenol-functionalized anthracene derivatives of approximately the same thickness with linear-conjugation (AC), cross-conjugation (AQ), and broken-conjugation (AH)

  5. Comparison of Microstructure and Mechanical Properties of Induction and Vacuume Brazed Joint of Titanium Via Copper and Ag-Cu Eutectic Filler Metal / Mikrostruktura I Właściwości Mechaniczne Połączeń Tytanu Lutowanych Indukcyjnie I Próżniowo Z Użyciem Spoiwa Miedzianego I Eutektycznego Ag-Cu

    Directory of Open Access Journals (Sweden)

    Różański M.

    2015-12-01

    Full Text Available This study presents the basic physico-chemical properties and describes the brazeability of titanium. The work contains the results of macro and microscopic metallographic examination as well as the results of strength-related tests of vacuum and induction brazed joints made of Grade 2 technical titanium using the Cu 0.99 and Ag 272 filler metal interlayers and F60T flux intended for titanium brazing in the air atmosphere.

  6. Directional Solidification and Mechanical Properties of NiAl-NiAlTa Alloys

    Science.gov (United States)

    Johnson, D. R.; Chen, X. F.; Oliver, B. F.; Noebe, R. D.; Whittenberger, J. D.

    1995-01-01

    Directional solidification of eutectic alloys is a promising technique for producing in-situ composite materials exhibiting a balance of properties. Consequently, the microstructure, creep strength and fracture toughness of directionally solidified NiAl-NiAlTa alloys were investigated. Directional solidification was performed by containerless processing techniques to minimize alloy contamination. The eutectic composition was found to be NiAl-15.5 at% Ta and well-aligned microstructures were produced at this composition. A near-eutectic alloy of NiAl-14.5Ta was also investigated. Directional solidification of the near-eutectic composition resulted in microstructures consisting of NiAl dendrites surrounded by aligned eutectic regions. The off-eutectic alloy exhibited promising compressive creep strengths compared to other NiAl-based intermetallics, while preliminary testing indicated that the eutectic alloy was competitive with Ni-base single crystal superalloys. The room temperature toughness of these two-phase alloys was similar to that of polycrystalline NiAl even with the presence of the brittle Laves phase NiAlTa.

  7. Influence of Coal Blending on Ash Fusibility in Reducing Atmosphere

    Directory of Open Access Journals (Sweden)

    Mingke Shen

    2015-05-01

    Full Text Available Coal blending is an effective way to organize and control coal ash fusibility to meet different requirements of Coal-fired power plants. This study investigates three different eutectic processes and explains the mechanism of how coal blending affects ash fusibility. The blended ashes were prepared by hand-mixing two raw coal ashes at five blending ratios, G:D = 10:90 (G10D90, G:D= 20:80 (G20D80, G:D = 30:70 (G30D70, G:D = 40:60 (G40D60, and G:D = 50:50 (G50D50. The samples were heated at 900 °C, 1000 °C, 1100 °C, 1200 °C, and 1300 °C in reducing atmosphere. XRD and SEM/EDX were used to identify mineral transformations and eutectic processes. The eutectic processes were finally simulated with FactSage. Results show that the fusion temperatures of the blended ashes initially decrease and then increase with the blending ratio, a trend that is typical of eutectic melting. Eutectic phenomena are observed in D100, G10D90, and G30D70 in different degrees, which do not appear in G100 and G50D50 for the lack of eutectic reactants. The main eutectic reactants are gehlenite, magnetite, merwinite, and diopside. The FactSage simulation results show that the content discrepancy of merwinite and diopside in the ashes causes the inconsistent eutectic temperatures and eutectic degrees, in turn decrease the fusion temperature of the blended ash and then increase them with the blending ratio.

  8. Carbon, chromium and molybdenum contents; Teores de carbono, cromo e molibdenio

    Energy Technology Data Exchange (ETDEWEB)

    Sinatora, A; Goldenstein, H.; Mei, P.R.; Albertin, E.; Fuoco, R.; Mariotto, C.L

    1992-12-31

    This work describes solidification experiments on white cast iron, with 15 and 20% of chromium, 2.3, 3.0 and 3.6 % of carbon and 0.0, 1.5 and 2.5 % of molybdenum in test de samples with 30 mm diameter. Measurements were performed on the austenite and eutectic formation arrests, the number of the eutectic carbide particles relative to the total and the eutectic volumes, and the volume fraction of the primary austenite 9 figs., 3 tabs.

  9. Effect of Al and AlP on the microstructure of Mn-30 wt.%Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yuying [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jing Shi Road 73, Jinan 250061 (China); Liu Xiangfa [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jing Shi Road 73, Jinan 250061 (China)], E-mail: xfliu@sdu.edu.cn

    2008-04-15

    Effect of Al and AlP particles on the microstructure of near eutectic Mn-Si alloy (Mn-30 wt.%Si) was studied by Electron Probe Micro-analyzer (EPMA) and Differential Scanning Calorimeter (DSC). Crystal lattice correspondence analyses show that both Al and AlP have good lattice matching coherence relationships with MnSi phase, and the addition of Al and AlP particles results in an abnormal eutectic structure, i.e. the eutectic constitution MnSi and Mn{sub 5}Si{sub 3} precipitate separately: MnSi precipitates firstly, and then the Mn{sub 5}Si{sub 3} phase.

  10. Silumins alloy crystallization

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2009-07-01

    Full Text Available This paper presents the results of research, by ATD method, of hypo-, near- and hyperutectic silumins crystallization containing the following alloying additives: Mg, Ni, Cu, Cr, Mo, W, V. It has been shown that, depending on their concentration may crystallize pre-eutectic or eutectic multicomponent phases containing these alloy additives. It has been revealed that any subsequent crystallizable phase nucleate and grows near the liquid/former crystallized phase interface. In multiphases compound also falls the silicon, resulting in a reduction in its quantity and the fragmentation in the eutectic mixture. As a result, it gets a high hardness of silumins in terms of 110-220HB.

  11. EFFECT OF COOLING RATES ON THE MICROSTRUCTURE AND ...

    African Journals Online (AJOL)

    B eutectic prepared under various cooling rates had been investigated using differential thermal analysis (DTA), scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). It was observed that for ...

  12. Surface Segregation during Directional Solidification of Ni-Base Superalloys

    Science.gov (United States)

    Brewster, G.; Dong, H. B.; Green, N. R.; D'Souza, N.

    2008-02-01

    Some aspects pertaining to the increased microsegregation at the external casting surface during directional solidification of a typical Ni-base superalloy, CMSX 10N, are presented. Increased eutectic coverage was observed at the external surface along the solidification length. This eutectic appears as a thin segregated layer proud of the secondary dendrite arms preventing them from impinging onto the mold wall. The extent of surface eutectic coverage was represented as a fractional measure of the ingot perimeter. Possible mechanisms focusing on the following: (1) interaction between mold and metal, (2) inclination of primary dendrite, and (3) contraction of the dendrite network have been investigated in relation to the observed phenomenon. We deduce that the most likely explanation is associated with the contraction of the dendritic network, which qualitatively accounts both for the observed morphology and the increased eutectic fraction at the external surface of the casting.

  13. Mechanism of silicon influence on the chill of cast iron

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2007-12-01

    Full Text Available In this work an analytical solution of general validity is used to explain mechanism of the silicon influence on the absolute chill tendency (CT and chill (w of cast iron. It is found that CT can be related to nucleation potential of graphite (Nv, growth parameter (μ of eutectic cells, temperature range (ΔTsc and the pre-eutectic austenite volume fraction (fγ. It has been shown that silicon additions: a impede the growth of graphite eutectic cells, μ, b expands the temperature range ΔTsc, c increases the nucleation potential of graphite Nv, d lowers the pre-eutectic austenite volume fraction, fγ. and in consequence the absolute chilling tendency, CT decreases. The minimum wall thicknesses for chilled castings, or chill widths (w in wedge shaped castings is related to CT and as silcon contents increases, the w value also increases.

  14. Technology for Obtaining Large Size Complex Oxide Crystals for Experiments on Muon-Electron Conversion Registration in High Energy Physics

    Directory of Open Access Journals (Sweden)

    Gerasymov, Ya.

    2014-11-01

    Full Text Available Technological approaches for qualitative large size scintillation crystals growing based on rare-earth silicates are proposed. A method of iridium crucibles charging using eutectic phase instead of a oxyorthosilicate was developed.

  15. Thermal phase diagram of acetamide-benzoic acid and benzoic acid-phthalimide binary systems for solar thermal applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rohitash, E-mail: dootrohit1976@gmail.com [Defence Laboratory Jodhpur, Rajasthan, India 342011, +91-2912567520 (India); Department of Physics & Center for Solar Energy, Indian Institute of Technology Jodhpur, Rajasthan, India 342011, +91-291-2449045 (India); Kumar, Ravindra [Defence Laboratory Jodhpur, Rajasthan, India 342011, +91-2912567520 (India); Dixit, Ambesh, E-mail: ambesh@iitj.ac.in [Department of Physics & Center for Solar Energy, Indian Institute of Technology Jodhpur, Rajasthan, India 342011, +91-291-2449045 (India)

    2016-05-06

    Thermal properties of Acetamide (AM) – Benzoic acid (BA) and Benzoic acid (BA) – Phthalimide (PM) binary eutectic systems are theoretically calculated using thermodynamic principles. We found that the binary systems of AM-BA at 67.6 : 32.4 molar ratio, BA-PM at 89.7 : 10.3 molar ratio form eutectic mixtures with melting temperatures ~ 54.5 °C and 114.3 °C respectively. Calculated latent heat of fusion for these eutectic mixtures are 191 kJ/kg and 146.5 kJ/kg respectively. These melting temperatures and heat of fusions of these eutectic mixtures make them suitable for thermal energy storage applications in solar water heating and solar cooking systems.

  16. On the “compositional threshold“ in GeS2-Sb2S3, GeSe2-Sb2Se3 and GeS2-Bi2S3 glasses

    Czech Academy of Sciences Publication Activity Database

    Tichý, Ladislav; Tichá, H.

    2015-01-01

    Roč. 152, 15 February (2015), s. 1-3 ISSN 0254-0584 Institutional support: RVO:61389013 Keywords : chalcogenide glasses * hetero three atom linkages * eutectic compositon Subject RIV: CA - Inorganic Chemistry Impact factor: 2.101, year: 2015

  17. Analysis of nucleation modelling in ductile cast iron

    DEFF Research Database (Denmark)

    Moumeni, Elham; Tutum, Cem Celal; Tiedje, Niels Skat

    2012-01-01

    Heterogeneous nucleation of nodular graphite at inclusions in ductile iron during eutectic solidification has been investigated. The experimental part of this work deals with casting of ductile iron samples with two different inoculants in four different thicknesses. Chemical analysis...

  18. Thermodynamic studies of mixtures for topical anesthesia: Lidocaine-salol binary phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Lazerges, Mathieu [Laboratoire de Chimie Physique (EA 4066), Faculte des Sciences Pharmaceutiques et Biologiques, Universite Paris Descartes, 4 Avenue de l' Observatoire, 75270 Paris Cedex 06 (France); Rietveld, Ivo B., E-mail: ivo.rietveld@parisdescartes.fr [Laboratoire de Chimie Physique (EA 4066), Faculte des Sciences Pharmaceutiques et Biologiques, Universite Paris Descartes, 4 Avenue de l' Observatoire, 75270 Paris Cedex 06 (France); Corvis, Yohann; Ceolin, Rene; Espeau, Philippe [Laboratoire de Chimie Physique (EA 4066), Faculte des Sciences Pharmaceutiques et Biologiques, Universite Paris Descartes, 4 Avenue de l' Observatoire, 75270 Paris Cedex 06 (France)

    2010-01-10

    The lidocaine-salol binary system has been investigated by differential scanning calorimetry, direct visual observations, and X-ray powder diffraction, resulting in a temperature-composition phase diagram with a eutectic equilibrium. The eutectic mixture, found at 0.423 {+-} 0.007 lidocaine mole-fraction, melts at 18.2 {+-} 0.5 {sup o}C with an enthalpy of 17.3 {+-} 0.5 kJ mol{sup -1}. This indicates that the liquid phase around the eutectic composition is stable at room temperature. Moreover, the undercooled liquid mixture does not easily crystallize. The present binary mixture exhibits eutectic behavior similar to the prilocaine-lidocaine mixture in the widely used EMLA topical anesthetic preparation.

  19. Composites of porous metal and solid lubricants increase bearing life

    Science.gov (United States)

    Sliney, H. E.

    1967-01-01

    Self-lubricating composites of porous nickel and nickel-chromium alloy impregnated with a barium fluoride-calcium fluoride eutectic, and a thin film of solid lubricant increase wear life of load bearing surfaces.

  20. Advanced Ionic Liquid Monopropellant for Payload Ascent Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a monopropellant replacement for hydrazine using eutectic mixtures of ionic liquids (EILs). These liquids offer us the ability to tailor fluid...

  1. Study on thermal property of lauric–palmitic–stearic acid/vermiculite composite as form-stable phase change material for energy storage

    OpenAIRE

    Nan Zhang; Yanping Yuan; Tianyu Li; Xiaoling Cao; Xiaojiao Yang

    2015-01-01

    The form-stable composite phase change material of lauric–palmitic–stearic acid ternary eutectic mixture/vermiculite was prepared by vacuum impregnation method for thermal energy storage. The maximum mass fraction of lauric–palmitic–stearic acid ternary eutectic mixture retained in vermiculite was determined as 50 wt% without melted phase change material seepage from the composite phase change material. Fourier transformation infrared spectroscope and scanning electron microscope were used to...

  2. Use of coatings for protection of welded joints of steels, their structure and properties

    Science.gov (United States)

    Bezborodov, V. P.; Saraev, Yu N.

    2017-05-01

    The paper studies the structure and demonstrates the efficiency of application of eutectic nickel coatings for protection of welded joints of the 10G2S-type steels from corrosive action. It increases simultaneously with the increase of eutectic content and chemical compounds along the grain boundaries of the γ-solid solution based on nickel. The refinement of the coatings’ structure and the reduction of their heterogeneity allow enhancing the protective properties and resistance of welded joints to corrosion.

  3. Effects of Withdrawal Rate and Temperature Gradient on the Microstructure Evolution in Directionally Solidified NiAl-36Cr-6Mo Hypereutectic Alloy

    Science.gov (United States)

    Shang, Zhao; Shen, Jun; Zhang, Jian-Fei; Wang, Lei; Qin, Ling; Fu, Heng-Zhi

    2014-09-01

    The effects of withdrawal rate and temperature gradient on the microstructure and growth interface morphology in directionally solidified Ni-29Al-36Cr-6Mo(at.%) hypereutectic alloy were investigated. Under the temperature gradient of 250 K/cm, well-aligned eutectic microstructure with lamellar morphology was obtained at the withdrawal rate of 6 μm/s. When the withdrawal rate was 10 μm/s, the microstructure changed to Cr(Mo) dendrites + eutectic lamellae. With the increasing withdrawal rate, the interdendritic eutectic growth interface changed from planar to cellular, the number of primary Cr(Mo) dendrites became greater, and the microstructure was refined. When the temperature gradient increased to 600 K/cm, the coupled eutectic growth zone of NiAl-Cr(Mo) alloy was expanded; a well-aligned eutectic microstructure could be obtained at higher rate of 10 μm/s. Furthermore, the planar/cellular transition rate of the interdendritic eutectic growth interface increased. Even at the same withdrawal rate, the number of primary Cr(Mo) dendrites was less and the microstructure was finer under the temperature gradient of 600 K/cm.

  4. Phase behavior of itraconazole-phenol mixtures and its pharmaceutical applications.

    Science.gov (United States)

    Park, Chun-Woong; Mansour, Heidi M; Oh, Tack-Oon; Kim, Ju-Young; Ha, Jung-Myung; Lee, Beom-Jin; Chi, Sang-Cheol; Rhee, Yun-Seok; Park, Eun-Seok

    2012-10-15

    The aims of this study were to examine the phase behavior of itraconazole-phenol mixtures and assess the feasibility of topical formulations of itraconazole using eutectic mixture systems. Itraconazole-phenol eutectic mixtures were characterized using differential scanning calorimetry, Fourier transform infrared spectroscopy, (1)H-nuclear magnetic resonance, and powder X-ray diffractometry. The skin permeation rates of itraconazole-phenol eutectic formulations were determined using Franz diffusion cells fitted with excised hairless mouse skins. Itraconazole can form eutectic compounds with phenol, and the hydrogen-bonding interactions between the carbonyl group in the itraconazole and hydroxyl group in phenol play a major role in itraconazole-phenol eutectic formation. Despite its high molecular weight and hydrophobicity, the drug (i.e., itraconazole) can be permeated through excised hairless mouse skins from itraconazole-phenol eutectic formulations. The findings of this study emphasize the capabilities of the topical application of itraconazole via external preparations. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Morphology and microstructure of rapidly solidified tin-lead alloy powders

    Directory of Open Access Journals (Sweden)

    Xiang Qingchun

    2014-09-01

    Full Text Available Sn60Pb40 alloy powders were fabricated using the planar flow casting (PFC atomization process. By using OM, SEM and EPMA, the characteristics of the morphologies and microstructures of the powders have been investigated. It is observed that the environment of ambient gas in the atomization box has great effects on the morphology of the alloy powders. The microstructures of Sn60Pb40 alloy powders produced by the PFC atomization process are completely composed of eutectic, which is made up of both oversaturated α solid solution and β solid solution. The microstructures of small size powders are extraordinarily undeveloped dendritic eutectic, in which the large majority of the α phase appears nearly spherical, evidently since the cooling rate is higher and the under-cooling is larger. As for the large size powders, since the cooling rate and undercooling are relatively low, lamellar α phase apparently increases in the eutectic microstructures of these powders, and there is even typical lamellar eutectic structure clearly observed in some micro-areas. After remelting tests by DTA, the microstructures of small size powders are transformed, which become composed of large crumby α phase and eutectic (α+β, while those of large size powders change into classical tin-lead structures of primary α phase plus lamellar eutectic (α+β. By studying the microstructures of tin-lead alloy powders, a model has been proposed to predict the microstructure formation of Sn60Pb40 alloy powders.

  6. Technetium Waste Form Development - Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, David S.; Ermi, Ruby M.; Buck, Edgar C.; Seffens, Rob J.; Chamberlin, Clyde E.

    2009-01-07

    Analytical electron microscopy using SEM and TEM has been used to analyze a ~5 g. ingot with composition 71.3 wt% 316SS-5.3 wt% Zr-13.2 wt% Mo-4.0 wt% Rh-6.2 wt% Re prepared at the Idaho National Laboratory. Four phase fields have been identified two of which are lamellar eutectics, with a fifth possibly present. A Zr rich phase was found distributed as fine precipitate, ~10µm in diameter, often coating large cavities. A Mo-Fe-Re-Cr lamellar eutectic phase field appears as blocky regions ~30µm in diameter, surrounded by a Fe-Mo-Cr lamellar eutectic phase field, and that in turn is surrounded by a Zr-Fe-Rh-Mo-Ni phase field. The eutectic phase separation reactions are different. The Mo-Fe-Re-Cr lamellar eutectic appears a result of austenitic steel forming at lower volume fraction within an Mo-Fe-Re intermetallic phase, whereas the Fe-Mo-Cr lamellar eutectic may be a result of the same intermetallic phase forming within a ferritic steel phase. Cavitation may have arisen either as a result of bubbles, or from loss of equiaxed particles during specimen preparation.

  7. Directional solidification studies in Ni-Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Je-hyun [Iowa State Univ., Ames, IA (United States)

    1993-05-01

    Three solid phases are involved in the phase equilibria of the intermetallic compound Ni3Al near its melting point, β, γ'(Ni3Al), and γ. The generally-accepted phase diagram involves a eutectic reaction between β' and γ, but some recent studies agree with an older diagram due to Schramm, which has a eutectic reaction between the β and γ' phases. The phase equilibria near Ni3Al compositions was evaluated using quenched directional solidification experiments, that preserve the microstructures tonned at the solidification front, and using diffusion couple experiments. These experiments show that eutectic forms between β and γ' phases, as in the Schramm diagram. Growth and phase transformations of these three phases are also studied in the directional solidification experiments. Microstructure analysis shows that etching of Ni3Al(γ') is very sensitive to small composition variations and crystallographic orientation changes. The eutectic solidification study confirms that the equilibrium eutectic is γ'+β, and that the metastable γ+β eutectic might be also produced in this system according to the impurities, solidification rates, and composition variations.

  8. Efecto protector de la melatonina y del tratamiento tópico con la mezcla eutéctica de lidocaína y prilocaína en un modelo de isquemia reperfusión en el colgajo cutáneo microvascularizado en ratas Protective effect of melatonin and the lidocaine and prilocaine eutectic mixture in an ischemia reperfusion injury model in the microvascular cutaneous flap in rats

    Directory of Open Access Journals (Sweden)

    C. Casado Sánchez

    2012-09-01

    Full Text Available El síndrome de isquemia reperfusión es el conjunto de sucesos desarrollados desde la instauración de la isquemia en un tejido hasta su posterior reperfusión. Se trata de una condición limitante y, hasta la fecha, inevitable, en toda cirugía que implique una revascularización tisular. En un intento por buscar medidas terapéuticas frente al estrés oxidativo desarrollado durante este síndrome en los colgajos microvascularizados, se valoró la acción del antioxidante melatonina y de los anestésicos locales lidocaína y prilocaína en un modelo de isquemia reperfusión en el colgajo epigástrico microvascularizado en ratas. Tanto el indol como los fármacos vasoactivos poseen un efecto protector en el tratamiento del síndrome de isquemia reperfusión, desde un punto de vista bioquímico e histológico, destacando su acción sinérgica manifestada principalmente como un incremento en la neovascularización tisular.Ischemia-reperfusion injury is a set of events developed since the introduction of ischemia in a tissue to subsequent reperfusion. It is a limiting condition and, to date, inevitable in any surgery involving tissue revascularization. In an attempt to find therapeutic measures against oxidative stress developed during this syndrome in microvascular flaps, we evaluated the antioxidant action of melatonin and local anesthetics lidocaine and prilocaine in a model of ischemia reperfusion in the microvascularized epigastric flap in rats. The indole and vasoactive drugs have a protective effect in the treatment of ischemia reperfusion injury, from both a biochemical and histological view, emphasizing their synergistic action mainly manifested as an increase in tissue neovascularization.

  9. Results of High-Temperature Heating Test for Irradiated U-10Zr(-5Ce with T92 Cladding Fuel

    Directory of Open Access Journals (Sweden)

    June-Hyung Kim

    2016-11-01

    Full Text Available A microstructure observation using an optical microscope, SEM and EPMA was performed for the irradiated U-10Zr and U-10Zr-5Ce fuel slugs with a T92 cladding specimen after a high-temperature heating test. Also, the measured eutectic penetration rate was compared with the value predicted by the existing eutectic penetration correlation being used for design and modeling purposes. The heating temperature and duration time for the U-10Zr/T92 specimen were 750 °C and 1 h, and those for the U-10Zr-5Ce/T92 specimen were 800 °C and 1 h. In the case of the U-10Zr/T92 specimen, the migration phenomena of U, Zr, Fe, and Cr as well as the Nd lanthanide fission product were observed at the eutectic melting region. The measured penetration rate was similar to the value predicted by the existing eutectic penetration rate correlation. In addition, when comparing with measured eutectic penetration rates for the unirradiated U-10Zr fuel slug with FMS (ferritic martensitic steel, HT9 or Gr.91 cladding specimens which had been reported in the literature, the measured eutectic penetration rate for the irradiated fuel specimen was higher than that for the unirradiated U-10Zr specimen. In the case of the U-10Zr-5Ce/T92 specimen in which there had been a gap between the fuel slug and cladding after the irradiation test, the eutectic melting region was not found because contact between the fuel slug and cladding did not take place during the heating test.

  10. Results of High-Temperature Heating Test for Irradiated Metallic Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, June-Hyung; Cheon, Jin-Sik; Lee, Byoung-Oon; Kim, Jun-Hwan; Kim, Hee-Moon; Yoo, Boung-Ok; Jung, Yang-Hong; Ahn, Sang-Bok; Lee, Chan-Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The U and Pu constituents in the fuel, however, tend to interact metallurgically with iron-based claddings at elevated temperatures during nominal steady-state operating conditions and off-normal reactor events. In particular, if the temperature is raised above the eutectic temperature of metallic fuel, e.g., in an off-normal reactor event, the fuel can form a mixture of liquid and solid phases that may promote further cladding interaction. Such fuel-cladding chemical interaction, in conjunction with fission gas pressure loading, can potentially shorten fuel pin lifetime and eventually cause cladding breach. In this work, microstructure observation results through microscope, SEM and EPMA are reported for the irradiated U-10Zr and U-10Zr-5Ce fuel slugs with T92 cladding after high-temperature heating test. Also, the measured eutectic penetration rate is compared with the prediction value by the existing eutectic penetration correlation being used for design and modelling purposes. Microstructure of the irradiated U-10Zr and U-10Zr-5Ce fuel slug with T92 cladding after high-temperature heating test were investigated through the microscope, SEM and EPMA. Also, the measured maximum eutectic penetration rate along cladding direction was compared with the prediction value by existing eutectic penetration correlation. In the case of U-10Zr/T92 specimen, migration phenomena of U, Zr, and Fe as well as Nd lanthanide fission product were observed at the eutectic melting region. The measured penetration rate was almost similar to prediction value by existing eutectic penetration rate correlation.

  11. Effect of Ag on Sn–Cu and Sn–Zn lead free solders

    Directory of Open Access Journals (Sweden)

    Alam S.N.

    2015-06-01

    Full Text Available Lead and lead-containing compounds are considered as toxic substances due to their detrimental effect on the environment. Sn-based soldering systems, like Sn-Cu and Sn-Zn are considered as the most promising candidates to replace the eutectic Sn-Pb solder compared to other solders because of their low melting temperature and favorable properties. Eutectic Sn-0.7 wt.% Cu and near eutectic composition Sn-8 wt.% Zn solders have been considered here for study. For the Sn-Cu system, besides the eutectic Sn-0.7 wt.% Cu composition, Sn-1Cu and Sn-2Cu were studied. Three compositions containing Ag: Sn-2Ag-0.7Cu, Sn-2.5Ag-0.7Cu and Sn-4.5Ag-0.7Cu were also developed. Ag was added to the eutectic Sn-0.7 wt.% Cu composition in order to reduce the melting temperature of the eutectic alloy and to enhance the mechanical properties. For the Sn-Zn system, besides the Sn-8 wt.% Zn near eutectic composition, Sn-8Zn-0.05Ag, Sn-8Zn-0.1Ag and Sn-8Zn-0.2Ag solder alloys were developed. The structure and morphology of the solder alloys were analyzed using a scanning electron microscope (SEM, filed emission scanning electron microscope (FESEM, electron diffraction X-ray spectroscopy (EDX and X-ray diffraction (XRD. Thermal analysis of the alloys was also done using a differential scanning calorimeter (DSC. Trace additions of Ag have been found to significantly reduce the melting temperature of the Sn-0.7 wt.% Cu and Sn-8 wt.% Zn alloys.

  12. Study on thermal property of lauric–palmitic–stearic acid/vermiculite composite as form-stable phase change material for energy storage

    Directory of Open Access Journals (Sweden)

    Nan Zhang

    2015-09-01

    Full Text Available The form-stable composite phase change material of lauric–palmitic–stearic acid ternary eutectic mixture/vermiculite was prepared by vacuum impregnation method for thermal energy storage. The maximum mass fraction of lauric–palmitic–stearic acid ternary eutectic mixture retained in vermiculite was determined as 50 wt% without melted phase change material seepage from the composite phase change material. Fourier transformation infrared spectroscope and scanning electron microscope were used to characterize the structure and morphology of the prepared lauric–palmitic–stearic acid ternary eutectic mixture/vermiculite form-stable composite phase change material, and the results indicate that lauric–palmitic–stearic acid ternary eutectic mixture was well confined into the layer porous structure of vermiculite by physical reaction. The melting and freezing temperatures and latent heats were measured by differential scanning calorimeter as 31.4°C and 30.3°C, and 75.8 and 73.2 J/g, respectively. Thermal cycling test showed that there was no significant change in the thermal properties of lauric–palmitic–stearic acid ternary eutectic mixture/vermiculite form-stable composite phase change material after 1000 thermal cycles. Moreover, 2 wt% expanded graphite was added to improve the thermal conductivity of lauric–palmitic–stearic acid ternary eutectic mixture/vermiculite form-stable composite phase change material. All results indicated that the prepared lauric–palmitic–stearic acid ternary eutectic mixture/vermiculite form-stable composite phase change material had suitable thermal properties and good thermal reliability for the application of thermal energy storage in building energy efficiency.

  13. EBSD Study on the Effect of a Strong Axial Magnetic Field on the Microstructure and Crystallography of Al-Ni Alloys During Solidification

    Science.gov (United States)

    Li, Xi; Fautrelle, Yves; Gagnoud, Annie; Moreau, Rene; Du, Dafan; Ren, Zhongming; Lu, Xionggang

    2016-03-01

    The effect of a strong magnetic field on the microstructure and crystallography of the primary and eutectic Al3Ni phases in Al-Ni alloys was investigated by using EBSD. The results show that the magnetic field significantly affected the microstructures and crystallography during both volume and directional solidification. As a result, the Al3Ni primary phases were aligned with the crystal direction along the magnetic field and formed a layer-like structure. The magnetic field intensity, solidification temperature, growth speed, and alloy composition played important roles during the alignment process of the Al3Ni primary phase. Indeed, the alignment degree increased with the magnetic field and the solidification temperature during normal solidification. Moreover, the effect of the magnetic field on the crystallography of the Al-Al3Ni eutectic in the Al-Ni alloys was also studied. The applied magnetic field modified the orientation of the preferred growth direction of the Al3Ni eutectic fiber and the crystallographic orientation relationship of the Al-Al3Ni eutectic. The orientation of the preferred growth direction of the Al3Ni eutectic fiber depended mainly on the solidification direction and the alignment of the Al3Ni primary phase. Furthermore, a method for controlling the crystallization process by adjusting the angle between the solidification direction and the magnetic field was proposed.

  14. Control of Carbides and Graphite in Cast Irons Type Alloy’s Microstructures for Hot Strip Mills

    Directory of Open Access Journals (Sweden)

    Sergio Villanueva Bravo

    2012-01-01

    Full Text Available The carbide and graphite formation and redistribution of alloy elements during solidification were investigated on high-speed steel (HS and Ni-hard type cast irons with Nb and V. The crystallization of hypereutectic HSS proceeds in the order of primary MC, γ + MC, γ + M6C, γ + M7C3, and γ +  graphite eutectic, in hypoeutectic alloys proceeds in the order of primary γ, γ + MC, γ + graphite, γ + M6C, and γ + M7C3 eutectic, and in Ni-hard proceeds in the order of primary γ, γ + MC, γ + M3C, and γ +  graphite eutectic. The γ +  graphite eutectic solidifies with the decrease of V, Nb, and Cr and the increase of Si and C contents in residual liquid during solidification. The behavior in graphite forming tendency in the residual liquid is estimated by the parameter ∑CLimi′. The eutectic graphite crystallizes at the solid fraction when ∑CLimi′ takes a minimum value. The amount of graphite increases with the decrease in ∑CLimi′ of initial alloy content in both specimens. Inoculation with ferrosilicon effectively increases the graphite content in both specimens.

  15. [Cracking in laser welds of dental Ni-Cr alloys. Effect of alloy composition].

    Science.gov (United States)

    Matsui, Y

    1990-06-01

    For the purpose of clarifying the effect of alloy compositions on cracking in laser welds of dental Ni-Cr alloys, 12 commercial and 11 experimental Ni-Cr alloys for crown and bridges were subjected to pulsed YAG laser spot welding, and their welds were investigated by optical and scanning electron microscopy, and EDX and thermal analysis methods. Main conclusions are as follows. 1. Cracks in laser welds were solidification cracks at grain boundaries in weld fusion zones. 2. In the case of commercial dental Ni-Cr alloys, a considerable number of eutectics enriched in Si, A1 and/or S were formed. Greater cracking susceptibility was interpreted by considering that these eutectics solidified at solidification temperatures far lower than the nominal solidus. 3. In the case of experimental Ni-Cr alloys with a small amount of eutectics, S and Si enhanced cracking sensitivity, but Mn reduced cracking. 4. The above results suggest that it is beneficial to the prevention or reduction of cracking to decrease harmful elements such as Si and S forming low solidification temperature eutectics or to add some elements such as Mn forming higher solidification temperature eutectics instead of lower ones.

  16. The effect of binary oxide materials on a single droplet vapor explosion triggering

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, R.C.; Manickam, L.T.; Dinh, T.N. [Royal Inst. of Tech., Stockholm (Sweden)

    2011-07-01

    In order to explore the fundamental mechanism dictated by the material influence on triggering, fine fragmentation and subsequent vapor explosion energetics, a series of experiments using a mixture of eutectic and non-eutectic binary oxide were initiated. Dynamics of the hot liquid (WO{sub 3}-CaO) droplet and the volatile liquid (water) were investigated in the MISTEE (Micro-Interactions in Steam Explosion Experiments) facility by performing well-controlled, externally triggered, single-droplet experiments, using a high-speed visualization system with synchronized digital cinematography and continuous X-ray radiography, called SHARP (Simultaneous High-speed Acquisition of X-ray Radiography and Photography). The acquired images followed by further analysis showed a milder interaction for the non-eutectic melt composition for the tests with low melt superheat, whether no evident differences between eutectic and non-eutectic melt compositions regarding bubble dynamics, energetics and melt preconditioning was perceived for the high melt superheat tests. (author)

  17. A study of the effect of binary oxide materials in a single droplet vapor explosion

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, R.C., E-mail: rch@kth.se [Royal Institute of Technology, Stockholm (Sweden); Dinh, T.N.; Manickam, L.T. [Royal Institute of Technology, Stockholm (Sweden)

    2013-11-15

    In an effort to explore fundamental mechanisms that may govern the effect of melt material on vapor explosion's triggering, fine fragmentation and energetics, a series of experiments using a binary-oxide mixture with eutectic and non-eutectic compositions were performed. Interactions of a hot liquid (WO{sub 3}–CaO) droplet and a volatile liquid (water) were investigated in well-controlled, externally triggered, single-droplet experiments conducted in the Micro-interactions in steam explosion experiments (MISTEE) facility. The tests were visualized by means of a synchronized digital cinematography and continuous X-ray radiography system, called simultaneous high-speed acquisition of X-ray radiography and photography (SHARP). The acquired images followed by further analysis indicate milder interactions for the droplet with non-eutectic melt composition in the tests with low melt superheat, whereas no evident differences between eutectic and non-eutectic melt compositions regarding bubble dynamics, energetics and melt preconditioning was observed in the tests with higher melt superheat.

  18. Fluoride salts as phase change materials for thermal energy storage in the temperature range 1000-1400 K

    Science.gov (United States)

    Misra, Ajay K.

    1988-01-01

    Eutectic compositions and congruently melting intermediate compounds in binary and ternary fluoride salt systems were characterized for potential use as latent heat of fusion phase change materials to store thermal energy in the temperature range 1000-1400 K. The melting points and eutectic compositions for many systems with published phase diagrams were experimentally verified and new eutectic compositions having melting points between 1000 and 1400 K were identified. Heats of fusion of several binary and ternary eutectics and congruently melting compounds were experimentally measured by differential scanning calorimetry. For a few systems in which heats of mixing in the melts have been measured, heats of fusion of the eutectics were calculated from thermodynamic considerations and good agreement was obtained between the measured and calculated values. Several combinations of salts with high heats of fusion per unit mass (greater than 0.7 kJ/g) have been identified for possible use as phase change materials in advanced solar dynamic space power applications.

  19. Thermodynamic evaluation of hypereutectic Al-Si (A390) alloy with addition of Mg

    Energy Technology Data Exchange (ETDEWEB)

    Hekmat-Ardakan, Alireza [Ecole Polytechnique de Montreal, Dep. de Genie Chimique, P.O. Box 6079, Centre-Ville, Montreal, Quebec, H3C 3A7 (Canada); Ajersch, Frank, E-mail: frank.ajersch@polymtl.ca [Ecole Polytechnique de Montreal, Dep. de Genie Chimique, P.O. Box 6079, Centre-Ville, Montreal, Quebec, H3C 3A7 (Canada)

    2010-05-15

    This paper presents the thermodynamic evaluation of A390 hypereutectic Al-Si alloy (Al-17% Si-4.5% Cu-0.5% Mg) and alloys up to 10% Mg, using the Factsage (registered) software. Two critical compositions were detected at 4.2% and 7.2% Mg where the temperatures of the liquidus, the start of the binary and of the ternary eutectic reaction are changed. These critical compositions show differences in the formation of Mg{sub 2}Si intermetallic particles during the solidification interval. For compositions up to 4.2% Mg, the Mg{sub 2}Si intermetallic phase first appears in the ternary eutectic zone. With Mg contents between 4.2% and 7.2%, Mg{sub 2}Si particle appears in both the binary and ternary eutectic reactions. Above 7.2% Mg, it solidifies as a primary phase and also during the binary and ternary reactions. The calculated liquid fraction vs. temperature curves also showed a decrease of the eutectic formation temperature (knee point temperature) with the addition of Mg content up to 4.2% Mg. This temperature becomes almost constant up to 10% Mg. The calculation of eutectic formation temperature shows a good agreement with differential scanning calorimetry (DSC) tests.

  20. Microstructure and Mechanical Properties of TIG Weld Joint of ZM5 Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    QIN Ren-yao

    2016-06-01

    Full Text Available The ZM5 magnesium alloy plates were welded by TIG welding method. The microstructural characteristics and mechanical properties of ZM5 magnesium alloy joint were studied by optical microscopy, microhardness and tensile testers. The results show that the TIG weld joint of ZM5 magnesium alloy is composed of heat affected zone, partially melted zone and weld metal. The heat affected zone is consisted of primary α-Mg phase and eutectic phase that is composed of eutectic α-Mg and eutectic β-Mg17Al12 phase and mainly precipitated at grain boundaries. In the partially melted zone, the eutectic phase is not only increasingly precipitated at grain boundaries, but also dispersed in grains, and the growth of the β-Mg17Al12 phase is obviously observed. The microstructure in the weld is the typical dendritic morphology. The dendrites are considered as primary α-Mg phase, and the interdendritic regions are α+β eutectic phase. The difference in the microstructure of the heat affected zone, partially melted zone and weld results in their various microhardness values, and leads to the smaller tensile strength and ductility in the ZM5 alloy weld joint than parent metal.

  1. Microstructural Investigation and Phase Relationships of Fe-Al-Hf Alloys

    Science.gov (United States)

    Yildirim, Mehmet; Akdeniz, M. Vedat; Mekhrabov, Amdulla O.

    2014-07-01

    The effect of Hf addition on microstructures, phase relationships, microhardness, and magnetic properties of Fe50Al50- n Hf n alloys for n = 1, 3, 5, 7, and 9 at. pct has been investigated. At all investigated compositions, the ternary intermetallic HfFe6Al6 τ 1 phase forms due to the limited solid solubility of Hf in FeAl phase and tends to develop a eutectic phase mixture with the Fe-Al-based phase. The Hf concentration of the eutectic composition is found to be 7 at. pct from the microstructural examinations and the eutectic phase transition temperature is determined as 1521 K (1248 °C) independent of Hf amount by differential scanning calorimetry measurements. Furthermore, the enthalpies and activation energies (based on Kissinger and Ozawa methods) of eutectic phase transitions are reported. The minimum activation energy is calculated for the fully eutectic composition. Moreover, variation of the microhardness of Fe-Al-based alloys as a function of the Hf content is investigated, and its dependence on the thermal history of the alloys is explained.

  2. Effect of Ce on Casting Structure of Near-rapidly Solidified Al-Zn-Mg-Cu Alloy

    Directory of Open Access Journals (Sweden)

    HUANG Gao-ren

    2017-11-01

    Full Text Available Through using XRD,DSC,SEM,EDS and other modern analysis methods, the effects of rare earth element Ce on microstructure and solidification temperature of Al-Zn-Mg-Cu under different cooling rates were studied, the principle of Ce on grain refining and melt cleaning of alloys was analyzed and discussed. The results show that MgZn2 phase and α-Al matrix are the main precipitations, Al,Cu,Mg and other elements dissolve in MgZn2 phase, a new phase Mg(Zn, Cu, Al2 is formed, solute elements in the grain boundary have higher concentration, eutectic reaction takes place between MgZn2 and α-Al, lamellar eutectic structure is generated. The addition of Ce decreases the dendritic arm spacing,reduces the layer spacing between eutectic phases and refines the eutectic structure and the grain significantly, and inhibits the appearance of the impurity phase Al7Cu2Fe in aluminum alloys. The addition of Ce also reduces the precipitation temperature of α-Al matrix and eutectic phase by 6.4℃ and 5.6℃ respectively.

  3. Formulation of paracetamol-containing pastilles with in situ coating technology.

    Science.gov (United States)

    Katona, Gábor; Szalontai, Balázs; Budai-Szűcs, Mária; Csányi, Erzsébet; Szabó-Révész, Piroska; Jójárt-Laczkovich, Orsolya

    2016-12-01

    The focus of this research was to apply the in situ coating technology for producing paracetamol- (PCT-) containing pastilles for paediatric use from a eutectic of two sugar alcohols (sorbitol, xylitol) in one step. This type of melt-technology is more cost-efficient and simpler than other conventional tableting technologies, whereby the formation of the pastilles and their coating occur upon the same fabrication step. We managed to produce pastilles having a softer core and a harder, resistant shell in one cooling step. Adding polyethylene glycol (PEG) 2000 or 6000 to the PCT-containing eutectic, the dissolution rate of PCT could be considerably increased, especially when using PEG 2000, reaching equal dissolution characteristics both under mouth- and gastric-specific conditions. Distributions of the components within the pastilles have been determined by X-ray scattering and Raman spectroscopy. Physico-chemical parameters of the xylitol-sorbitol eutectic and their changes upon adding PCT and PEGs have been determined, and it has been revealed that xylitol and sorbitol form a new entity with a distinguished crystal structure. The significant changes in viscosity were explained and the interaction in the eutectic mixture was investigated using Fourier transform infrared spectroscopy (FT-IR). The uniformity of the physical parameters of the pastilles (including size, weight and drug content) also demonstrates the feasibility of using the cost-efficient and simple one-step eutectic-cooling technology for manufacturing pastilles. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Effect of Growth Rate on Elevated Temperature Plastic Flow and Room Temperature Fracture Toughness of Directionally Solidified NiAl-31Cr-3Mo

    Science.gov (United States)

    Whittenberger, J. Daniel; Raj, S. V.; Locci, I. E.; Salem, J. A.

    1999-01-01

    The eutectic system Ni-33Al-31Cr-3Mo was directionally solidified at rates ranging from 7.6 to 508 mm/h. Samples were examined for microstructure and alloy chemistry, compression tested at 1200 and 1300 K, and subjected to room temperature fracture toughness measurements. Lamellar eutectic grains were formed at 12.7 mm/h; however cellular structures with a radial eutectic pattern developed at faster growth rates. Elevated temperature compression testing between 10(exp -4) to 10(exp -7)/s did not reveal an optimum growth condition, nor did any single growth condition result in a significant fracture toughness advantage. The mechanical behavior, taken together, suggests that Ni-33Al-31Cr-3Mo grown at rates from 25.4 to 254 mm/h will have nominally equivalent properties.

  5. Microstructural modulations enhance the mechanical properties in Al-Cu-(Si, Ga) ultrafine composites

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Man [Center for Non-Crystalline Materials, Yonsei University 120-749 Seoul (Korea, Republic of); IFW Dresden, Institute for Complex Materials D-01171 Dresden (Germany); Pauly, Simon; Mattern, Norbert [IFW Dresden, Institute for Complex Materials D-01171 Dresden (Germany); Kim, Do Hyang [Center for Non-Crystalline Materials, Yonsei University 120-749 Seoul (Korea, Republic of); Kim, Ki Buem [Department of Advanced Materials Engineering Sejong University, 143-747 Seoul (Korea, Republic of); Eckert, Juergen [IFW Dresden, Institute for Complex Materials D-01171 Dresden (Germany); Institute of Materials Science, TU Dresden D-01062 Dresden (Germany)

    2010-11-15

    Adding small amounts of Si or Ga (3 at.%) to the eutectic Al{sub 83}Cu{sub 17} alloy yields an ultrafine bimodal eutectic composite microstructure upon solidification. The as-solidified alloys exhibit a distinct microstructural length-scale hierarchy leading to a high fracture strength of around 1 GPa combined with a large compressive plastic strain of up to 30% at room temperature. The present results suggest that the mechanical properties of the ultrafine bimodal eutectic composites are strongly related to their microstructural characteristics, namely phase evolution, length-scales, and distribution of the constituent phases. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Solidification behaviour of an AA5754 Al alloy ingot cast with high impurity content

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sundaram; Hari Babu, Nadendla; Scamans, Geoff M.; Eskin, Dmitry G.; Fan, Zhongyun [Brunel Univ., Uxbridge (United Kingdom). EPSRC Centre - LiME, BCAST

    2012-10-15

    In view of the recycling of aluminium scrap for automotive sheet application, we have investigated the solidification behaviour of AA5754 alloy containing additional amounts of impurity elements such as Si, Fe, and Cu. Ingot casts with a high impurity content resulted in coarse {alpha}-Al dendrites and complex-shaped secondary phases. A large volume of coarse Chinese script and needle-type Fe-bearing intermetallic phases were observed to form at the centre of an ingot. In addition to the grain-boundary eutectic, spherically shaped rosette-type eutectic phases were observed within the Al grain in the high-impurity alloy. The more uniform size distribution of the Fe-bearing intermetallics observed in the Al-Ti-B grain refined alloy is attributed to the presence of a large fraction of {alpha}-Al grain boundaries which distributes the eutectic liquid where the Fe-bearing intermetallic forced to nucleate and grow. (orig.)

  7. The Effect of Chilling and Ce Addition on the Microstructure and Mechanical Properties of Al-23Si Alloy

    Science.gov (United States)

    Vijeesh, V.; Narayan Prabhu, K.

    2017-01-01

    The present work involves the study of the effect of varying concentration of Ce addition on microstructure and mechanical properties of Al-23%Si alloys. Melt-treated alloys were solidified in copper, brass, stainless steel molds to assess the effect of cooling rate. The effect on microstructure was assessed by measuring the fineness of primary silicon and eutectic silicon particle characteristics. The Ce melt treatment transformed the coarse and irregular primary silicon into refined polyhedral silicon crystals, and the effect was more significant at higher cooling rates. Although the melt treatment had refined the eutectic silicon at lower cooling rates, it did not show any considerable effect on the eutectic silicon at higher cooling rates. The mechanical properties of the alloy increased significantly with increase in cooling rates and cerium concentration. Analysis of the results and literature reveals that the refined primary silicon was formed as a result of an invariant reaction between Ce compounds and primary silicon at higher temperatures.

  8. Thermal and structural studies about the solidification process of grey cast irons; Estudio termico y estructural del proceso de solidificacion de funciones de hierro con grafito laminar

    Energy Technology Data Exchange (ETDEWEB)

    Larranaga, P.; Sertucha, J.

    2010-07-01

    The grey iron casting manufacture is an industrial process extendly used today. Therefore, the study of the solidification features obtained from this iron and the factors that have influence on such transition becomes a powerful tool in order to support the technological development of this type of material. In the present work, three inoculated alloys with different chemical compositions (hypo eutectic, eutectic and hyper eutectic) have been selected so as to comparatively analyse the structural characteristics of the irons during the liquid-solid transformation. The behaviour of the samples has been controlled recording the cooling curves and then they have been quenched in order to study the structural characteristics at different stages of the solidification. The selected alloys show different solidification features as a function of the chemical composition and the corresponding nucleation potential. The obtained results have been discussed in terms of a comparative analysis, establishing a solidification model that explains the industrial behaviour of the alloys. (Author)

  9. Effects Of Nickel On The Microstructure And The Mechanical Properties Of Sn-0.7Cu Lead-Free Solders

    Directory of Open Access Journals (Sweden)

    Gyenes A.

    2015-06-01

    Full Text Available This paper investigates the effects of small amount nickel addition (0, 200, 400, 800, 1800 ppm on the microstructure and the mechanical properties of Sn-0.7Cu lead-free solder alloys. It is known that even ppm level Ni additions have significant effects on the microstructure of Sn-Cu solder alloys. Ni suppresses the growth of β-Sn dendrites in favour of eutectic formation. As the nickel content increases, the microstructure undergoes a morphological evolution from hypoeutectic through fully eutectic to hypereutectic. Along with these transformations, the mechanical properties of the alloy also significantly change. Based on the experimental results presented in this paper, the Sn-0.7Cu solder achieves maximum strength at the addition level of 800 ppm Ni, when the microstructure becomes fully eutectic.

  10. Numerical modelling of solidification of thin walled hypereutectic ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Hattel, Jesper; Tiedje, Niels

    2006-01-01

    Numerical simulation of solidification of ductile cast iron is normally based on a model where graphite nodules are surrounded by an austenite shell. The two phases are then growing as two concentric spheres governed by diffusion of carbon through the austenite shell. Experiments have however shown...... simulation of thin-walled ductile iron castings. Simulations have been performed with a 1-D numerical solidi¬fication model that includes the precipitation of non-eutectic austenite during the eutectic stage. Results from the simulations have been compared with experimental castings with wall thick...... solidification had only one main stage. The simulations reveal that the first stage of solidification can be explained by precipitation of off-eutectic austenite...

  11. Thermodynamic and analytical studies of drugs binary systems of paracetamol mixed with pseudoephedrine.HCl, dextropropoxyphene.HCl and tramadol.HCl

    Energy Technology Data Exchange (ETDEWEB)

    Boumrah, Yacine [Laboratoire de thermodynamique et modélisation moléculaire, Faculté de chimie, USTHB, BP 32 El-Alia, 16111, Bab-Ezzouar, Alger (Algeria); Institut National de Criminalistique et de Criminologie (INCC-GN), Bouchaoui, Alger (Algeria); Bouzahia, Imane; Bouanani, Sabrina [Institut National de Criminalistique et de Criminologie (INCC-GN), Bouchaoui, Alger (Algeria); Khimeche, Kamel [Ecole Militaire Polytechnique EMP, BP 17 Bordj-El-Bahri, Alger (Algeria); Dahmani, Abdallah, E-mail: adahmani@yahoo.fr [Laboratoire de thermodynamique et modélisation moléculaire, Faculté de chimie, USTHB, BP 32 El-Alia, 16111, Bab-Ezzouar, Alger (Algeria)

    2016-06-20

    Highlights: • Solid–liquid equilibria of binary drug mixtures were investigated by DSC. • The study revealed a simple eutectic behavior of the investigated drug binary systems. • DSC results have been exploited for quantification purpose. • DSC quantification results were in good agreement with those obtained by HPTLC. - Abstract: In this paper, we report a DSC investigation of solid–liquid equilibria in three binary mixtures of paracetamol, namely with pseudoephedrine, dextropropoxyphene and tramadol, resulting in a temperature-composition phase diagrams with eutectic equilibrium. Eutectic mole fractions, temperatures and enthalpies were determined and reported for each system. The study reports also a direct exploitation of the DSC results for the quantification purpose, which were in good agreement with those obtained by a standard analytical method namely high performance thin layer chromatography (HPTLC), used in this work for comparison purpose.

  12. Undercooling of Rapidly Solidified Droplets and Spray Formed Strips of Al-Cu (Sc)

    Science.gov (United States)

    Bogno, A.; Natzke, P.; Yin, S.; Henein, H.

    Impulse Atomization (IA) (a single fluid atomization technique) was used to rapidly solidify Al-4.5wt%Cu and Al-4.5wt%Cu-0.4wt%Sc under argon atmosphere. In addition to the IA-generated droplets, the same technique was used to produce strips by Spray Deposition (SD) of the same alloys on a copper substrate with and without oil coating. The rapid solidification microstructures were analyzed using Scanning Electron Microscopy (SEM). From the SEM images, the amount of eutectic and the secondary dendrite arm spacing (SDAS) were measured. These SDAS results lead to the estimation of cooling rate. The eutectic fraction coupled with the metastable extension of the solidus and liquidus lines of Al-Cu (Sc) phase diagram lead to the estimation of primary and eutectic undercoolings. A comparison of the solidification path of the droplets and the strips was done as well as the analysis of the effects of scandium.

  13. Evolution of Secondary Phases Formed upon Solidification of a Ni-Based Alloy

    Science.gov (United States)

    Zuo, Qiang; Liu, Feng; Wang, Lei; Chen, Changfeng

    2013-07-01

    The solidification of UNS N08028 alloy subjected to different cooling rates was studied, where primary austenite dendrites occur predominantly and different amounts of sigma phase form in the interdendritic regions. The solidification path and elemental segregation upon solidification were simulated using the CALPHAD method, where THERMO-CALC software packages and two classical segregation models were employed to predict the real process. It is thus revealed that the interdendritic sigma phase is formed via eutectic reaction at the last stage of solidification. On this basis, an analytical model was developed to predict the evolution of nonequilibrium eutectic phase, while the isolated morphology of sigma phase can be described using divorced eutectic theory. Size, fraction, and morphology of the sigma phase were quantitatively studied by a series of experiments; the results are in good agreement with the model prediction.

  14. The reliability of calibration for thermocouples in industry at around 1300 °C

    Science.gov (United States)

    Ogura, H.; Numajiri, H.; Kobayashi, T.

    2013-09-01

    Recently, the eutectic points are being studied by many national institutes, and considered being useful for the calibration laboratories in industry to improve their uncertainty of thermocouple calibration at high temperature. To conduct a cooperative research for investigation on the reliability of thermocouple calibration in industry at high temperature, a working group has been established within the Japan Society for the Promotion of Science (JSPS). AIST and nine domestic laboratories participated to this working group. In this working group, thermocouple comparison measurements were performed at around 1300 °C in nine laboratories by using two Pt/Pd thermocouples and one type R thermocouple following calibration at Co-C eutectic point. It was found that the uncertainties of calibration at around 1300°C in industry would be improved by utilizing the calibration at Co-C eutectic point.

  15. Solidification processing of intermetallic Nb-Al alloys

    Science.gov (United States)

    Smith, Preston P.; Oliver, Ben F.; Noebe, Ronald D.

    1992-01-01

    Several Nb-Al alloys, including single-phase NbAl3 and the eutectic of Nb2Al and NbAl3, were prepared either by nonconsumable arc melting in Ar or by zone processing in He following initial induction melting and rod casting, and the effect of the solidification route on the microstructure and room-temperature mechanical properties of these alloys was investigated. Automated control procedures and melt conditions for directional solidification of NbAl3 and the Nb2Al/Nb3Al eutectic were developed; high purity and stoichiometry were obtained. The effects of ternary additions of Ti and Ni are described.

  16. Electrochemical preparation of few layer-graphene nanosheets via reduction of oriented exfoliated graphene oxide thin films in acetamide-urea-ammonium nitrate melt under ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dilimon, V.S.; Sampath, S., E-mail: sampath2562@gmail.co

    2011-01-31

    Electrochemical reduction of exfoliated graphene oxide, prepared from pre-exfoliated graphite, in acetamide-urea-ammonium nitrate ternary eutectic melt results in few layer-graphene thin films. Negatively charged exfoliated graphene oxide is attached to positively charged cystamine monolyer self-assembled on a gold surface. Electrochemical reduction of the oriented graphene oxide film is carried out in a room temperature, ternary molten electrolyte. The reduced film is characterized by atomic force microscopy (AFM), conductive AFM, Fourier-transform infrared spectroscopy and Raman spectroscopy. Ternary eutectic melt is found to be a suitable medium for the regulated reduction of graphene oxide to reduced graphene oxide-based sheets on conducting surfaces.

  17. Conduvtivity, NMR, Thermal Measurements and Phase Diagram of the K2S2O7-KHSO4 System

    DEFF Research Database (Denmark)

    Eriksen, Kim Michael; Fehrmann, Rasmus; Hatem, Gerard

    1996-01-01

    .94. The conductivities of the solid and molten K2S2O7-KHSO4 system were measured at 13 different compositions in the whole composition range, X(KHSO4)= 0-1. The conductivity of the molten mixtures were fitted to polynomia of the second degree.The results indicated delocalization of the conducting ions compared......The phase diagram of the catalytically important K2S2O7-KHSO4 molten salt solvent system has been investigated by electrochemical, thermal and spectroscopic methods.It is of the simple eutectic type with a temperature of fusion of 205C for the eutectic composition, X(KHSO4)= 0...

  18. Studies on copper alloys containing chromium on the copper side phase diagram

    Science.gov (United States)

    Doi, T.

    1984-01-01

    Specimens were prepared from vacuum melted alloys of high purity vacuum melted copper and electrolytic chromium. The liquidus and eutectic point were determined by thermal analysis. The eutectic temperature is 1974.8 F and its composition is 1.28 wt% of chromium. The determination of solid solubility of chromium in copper was made by microscopic observation and electrical resistivity measurement. The solubility of chromium in solid copper is 0.6 wt% at 1050 F, 0.4 wt% at 1000 F, 0.25 wt% at 950 F, 0.17 wt% at 900 F, and 0.30 wt% at 840 F.

  19. Prebiotic water/ice as medium for peptide catlysis and RNA world

    DEFF Research Database (Denmark)

    Wieczorek, Rafal

    of RNA oligomers from imidazole derivatives of mononucleotides. The thermodynamic shift towards condensation was achieved using water/ice eutectic phase environment (Monnard and Ziock 2008). To obtain such an environment, a reaction solution is cooled below its freezing point, but above the eutectic...... point. Under these conditions, most of the water is in the form of ice crystals and the other reactants are upconcentrated in the remaining liquid micro-inclusions, hence creating an environment with low water activity in which condensation reactions can occur. In the above mentioned conditions we were...

  20. Compatibility of refractory metals and beryllium with molten Pb-17Li

    Energy Technology Data Exchange (ETDEWEB)

    Feuerstein, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany); Graebner, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany); Oschinski, J. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany); Horn, S. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany)

    1996-10-01

    The compatibility of V, Nb, Ta, Mo, W and Re with static eutectic mixture Pb-17Li was investigated experimentally. All these metals are very stable in the eutectic up to 600 C. Dissolution rates as well as solubilities are low. Below 600 C, a chemical reaction zone caused by initiation of an intergranular corrosion was observed. There was a strong isothermal mass transfer to the crucible wall. Diffusion coefficients for vanadium were calculated. They are in the expected range. The behaviour of beryllium is included in this paper for comparison. Diffusion coefficients were determined. In spite of low dissolution rates a strong intergranular corrosion causes destruction of this metal. (orig.).

  1. Design and fabrication of a direct contact latent thermal energy storage heat exchanger

    Science.gov (United States)

    Alario, J. P.; Brown, R. F.

    1984-06-01

    Originally intended for solar-thermal applications, the present direct contact, latent thermal energy storage heat exchanger has a 10 kW-h storage capacity and a 10 kW heat transfer rate. The inorganic eutectic NaNO3-KNO3 salt is used as the latent energy storage medium, and the liquid metal Pb-Bi eutectic is used as an intermediate heat exchange fluid. The heat exchange mechanism injects molten salt droplets at the bottom of a counterflowing liquid metal column.

  2. Characterization on carbide of a novel steel for cold work roll during solidification process

    Energy Technology Data Exchange (ETDEWEB)

    Guo, J.; Liu, L.G.; Li, Q.; Sun, Y.L. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Gao, Y.K. [Institute of Aeronautical Materials, Beijing 100095 (China); Ren, X.J. [School of Engineering, Liverpool John Moores University, Liverpool L3 3AF (United Kingdom); Yang, Q.X., E-mail: qxyang@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2013-05-15

    A novel steel for cold work roll was developed in this work. Its phase structures were determined by X-ray diffraction, and phase transformation temperatures during the cooling process were measured by Differential Scanning Calorimeter. The Fe–C isopleths of the steel were calculated by Thermo-Calc to preliminarily determine the characteristic temperatures of the different phases. Then the specimens were quenched at these characteristic temperatures. The typical microstructures were observed by Optical Microscopy and Field Emission Scanning Electron Microscopy with Energy Disperse Spectroscopy. The results show that α-Fe, MC, M{sub 2}C and M{sub 7}C{sub 3} precipitate when the specimen is cooled slowly to room temperature. According to the DSC curve and the Fe–C isopleths, the characteristic temperatures of the phase transformation and carbide precipitation are chosen as 1380 °C, 1240 °C, 1200 °C and 1150 °C respectively. Primary austenite precipitates at 1380 °C, then eutectic reaction occurs in residual liquid after quenching and the eutectic microstructures distribute along the crystal grain boundary. The eutectic MC is leaf-like and eutectic M{sub 2}C is fibrous-like. Both of them precipitate in ternary eutectic reaction simultaneously at 1240 °C, grow together in the form of dendrite along the crystal grain boundary. Secondary MC precipitates from the austenitic matrix at 1200 °C and nucleates at the position where eutectic MC located accompanied by the dissolving of eutectic carbides. The mixed secondary M{sub 2}C and M{sub 7}C{sub 3} precipitate at 1150 °C. The secondary M{sub 2}C is strip-like and honeycomb-like, while the M{sub 7}C{sub 3} is chrysanthemum-like and maze-like. - Highlights: • The solidification process was analyzed by Thermo-Calc, DSC, XRD and SEM observation. • Primary and secondary carbides precipitated during solidification were determined. • The three dimensional morphologies of all carbides was observed. • The

  3. Micro- and nano-spheres of low melting point metals and alloys, formed by ultrasonic cavitation.

    Science.gov (United States)

    Friedman, H; Reich, S; Popovitz-Biro, R; von Huth, P; Halevy, I; Koltypin, Y; Gedanken, A; Porat, Z

    2013-01-01

    Metals and alloys of low melting points (metals into microspheres that solidify rapidly upon cooling. This method has been applied to seven pure metals (Ga, In, Sn, Bi, Pb, Zn, Hg) and two eutectic alloys of gold (Au-Ge and Au-Si). The morphology and composition of the resulting microspheres were examined by SEM and EDS. Eutectic Au-Si formed also crystalline Au nanoparticles, which were separated and studied by HRTEM. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. VERTICAL CENTRIFUGAL CASTING OF A HYPEREUTECTIC SILUMIN WITH COOLING OF THE MOLD AND CASTING

    Directory of Open Access Journals (Sweden)

    E. I. Marukovich

    2017-01-01

    Full Text Available It is shown that cooling of casting molds by water with water flow of 0,42 m3/h and internal surfaces of castings with thickness of a wall 12–14 mm with water quantity 2,5×10–4–5×10–4 m3 allows to receive procurements with completely modified microstructure without use of modifiers. External layers of the produced castings consist of the eutectic silumin with compact crystals of silicon, and internal layers – of hypereutectic silumin with crystals of high-disperse primary and compact eutectic silicon.

  5. Preparation of a bulk Fe83B17 soft magnetic alloy by undercooling and copper-mold casting methods

    Science.gov (United States)

    Yang, Changlin; Sheng, Gang; Chen, Guiyun; Liu, Feng

    2013-11-01

    Bulk Fe83B17 eutectic alloy rods with diameters up to 3 mm were prepared by undercooling solidification combined with Cu-mold casting. The results showed that the rapid solidification led to an increase in the nucleation rate, an inhibition of the grain growth and a competition between a stable Fe2B phase and a metastable Fe3B phase. Then, pure nano-lamellar eutectic microstructures and the metastable Fe3B phase were successfully obtained in as-solidified alloys, which resulted in improved soft magnetic properties.

  6. Solidification of hipereutectoid high speed steel for rolls

    Directory of Open Access Journals (Sweden)

    J. Gontarev

    2011-01-01

    Full Text Available This work presents results of microstructural development through solidification, heat treated processes and characterization of two low-alloyed hypereutectoid alloys, emphasizing the effects of the alloy chemical composition. Samples of different compositions were prepared by melting in the induction furnace. The microstructural difference of the different HSS steels will affect the performance of the end products. The main features of the as cast microstructure are the distribution and morphology of eutectic carbides which have been obtained through progress in alloy design concerning the type, morphology, and the volume fraction of the eutectic carbides. Samples were characterized by optical and Scanning electron microscopy.

  7. Binary Ni-Nb bulk metallic glasses

    Science.gov (United States)

    Xia, L.; Li, W. H.; Fang, S. S.; Wei, B. C.; Dong, Y. D.

    2006-01-01

    We studied the glass forming ability of Ni-Nb binary alloys and found that some of the alloys can be prepared into bulk metallic glasses by a conventional Cu-mold casting. The best glass former within the compositional range studied is off-eutectic Ni62Nb38 alloy, which is markedly different from those predicted by the multicomponent and deep eutectic rules. The glass formation mechanism for binary Ni-Nb alloys was studied from the thermodynamic point of view and a parameter γ* was proposed to approach the ability of glass formation against crystallization.

  8. Cryosphere and Psychrophiles: Insights into a Cold Origin of Life?

    Science.gov (United States)

    Feller, Georges

    2017-06-11

    Psychrophiles thrive permanently in the various cold environments on Earth. Their unsuspected ability to remain metabolically active in the most extreme low temperature conditions provides insights into a possible cold step in the origin of life. More specifically, metabolically active psychrophilic bacteria have been observed at -20 °C in the ice eutectic phase (i.e., the liquid veins between sea ice crystals). In the context of the RNA world hypothesis, this ice eutectic phase would have provided stability to the RNA molecules and confinement of the molecules in order to react and replicate. This aspect has been convincingly tested by laboratory experiments.

  9. Solidification cracking in austenitic stainless steel welds

    Indian Academy of Sciences (India)

    Solidification cracking is a significant problem during the welding of austenitic stainless steels, particularly in fully austenitic and stabilized compositions. Hot cracking in stainless steel welds is caused by low-melting eutectics containing impurities such as S, P and alloy elements such as Ti, Nb. The WRC-92 diagram can be ...

  10. Tin-Silver Alloys for Flip-Chip Bonding Studied with a Rotating Cylinder Electrode

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Pedersen, E.H.; Bech-Nielsen, G.

    1999-01-01

    Electrodeposition of solder for flip-chip bonding is studied in the form of a pyrophosphate/iodide tin-silver alloy bath. The objective is to obtain a uniform alloy composition, with 3.8 At.% silver, over a larger area. This specific alloy will provide an eutectic solder melting at 221°C (or 10°C...

  11. The Solidification Behavior of AA2618 Aluminum Alloy and the Influence of Cooling Rate

    Science.gov (United States)

    Liu, Yulin; Liu, Ming; Luo, Lei; Wang, Jijie; Liu, Chunzhong

    2014-01-01

    In AA2618 aluminum alloy, the iron- and nickel-rich intermetallics formed during solidification are of great effect on the mechanical properties of the alloy at both room temperature and elevated temperatures. However, the solidification behavior of the alloy and the formation mechanism of the intermetallics during solidification of the alloy are not clear. This research fills the gap and contributes to understanding the intermetallic of the alloy. The results showed that cooling rate was of great influence on the formation of the intermetallics. Under the condition of slow cooling, the as-cast microstructures of the alloy were complex with many coarse eutectic compounds including Al9FeNi, Al7(CuNi)5, Si, Al2Cu and Al2CuMg. The phase Al9FeNi was the dominant intermetallic compound, which precipitated at the earlier stage of the solidification by eutectic reaction L → α-Al + Al9FeNi. Increasing the cooling rate would suppress the formation of the coarse eutectic intermetallics. Under the condition of near-rapid cooling, the as-cast microstructures of the alloy consisted of metastable intermetallics Al9FeNi and Al2Cu; the equilibrium eutectic compounds were suppressed. This research concluded that intermetallics could be refined to a great extent by near-rapid cooling. PMID:28788281

  12. The NaNO2-NaNO3 system – a revised phase diagram

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Kerridge, D.H.; Larsen, Peter Halvor

    2004-01-01

    Three earlier determinations of the phase diagram of the sodium nitrite/sodium nitrate binary system resulted in considerably different conclusions, ranging from simple eutectic to continuous solid solution types, together with different sub-solidus lines. Recent melting enthalpy measurements hav...

  13. Advanced Accelerator Applications University Participation Program

    Energy Technology Data Exchange (ETDEWEB)

    Y. Chen; A. Hechanova

    2007-07-25

    Our research tasks span the range of technology areas for transmutation, gas-cooled reactor technology, and high temperature heat exchangers, including separation of actinides from spent nuclear fuel, methods of fuel fabrication, reactor-accelerator coupled experiments, corrosion of materials exposed to lead-bismuth eutectic, and special nuclear materials protection and accountability.

  14. Graphite Nodule and Cell Count in Cast Iron

    Directory of Open Access Journals (Sweden)

    E Fraś

    2007-07-01

    Full Text Available In this work, a model is proposed for heterogeneous nucleation on substrates whose size distribution can be described by the Weibull statistics. It is found that the nuclei density, Nnuc can be given in terms of the maximum undercooling, ΔTm by Nnuc = Ns exp(-b/ΔTm; where Ns is the density of nucleation sites in the melt and b is the nucleation coefficient (b > 0 . When nucleation occurs on all the possible substrates, the graphite nodule density, NV,n or eutectic cell density NV after solidification equals Ns. In this work, measurements of NV,n and NV values were carried out on experimental nodular and flake graphite iron castings processed under various inoculation conditions. The volumetric nodule NV,,n or graphite eutectic cell NV count, were estimated from the area nodule count, NA,n or eutectic cell count NA on polished cast iron surface sections by stereological means. In addition, maximum undercoolings, ΔTm were measured using thermal analysis. The experimental outcome indicates that volumetric nodule NV,n or graphite eutectic cell NV count can be properly described by the proposed expression NV,,n = NV = Ns exp(-b/ΔTm. Moreover, the Ns and b values were experimentally determined. In particular, the proposed model suggests that the size distribution of nucleation sites is exponential in nature.

  15. Accelerator driven systems from the radiological safety point of view

    Indian Academy of Sciences (India)

    Abstract. In the proposed accelerator driven systems (ADS) the possible use of several milliamperes of protons of about 1 GeV incident on high mass targets like the molten lead– bismuth eutectic is anticipated to pose radiological problems that have so far not been encountered by the radiation protection community.

  16. Embedded atom approach for gold–silicon system from ab initio ...

    Indian Academy of Sciences (India)

    determined using Johnson's [19] mixing scheme. The EAM potential proposed here can be useful to reproduce pair corre- lation function, coordination numbers, structure factors and dynamic properties. We consider that this EAM potential will also be an appropriate tool for the study of the inter- face of an Au–Si eutectic ...

  17. The magnesium sulfate-water system at pressures to 4 kilobars

    Science.gov (United States)

    Hogenboom, D. L.; Kargel, Jeffrey S.; Ganasan, J. P.; Lewis, J. S.

    1991-01-01

    Hydrated magnesium sulfate constitutes up to 1/6 of the mass of carbonaceous chondrites, and probably is important in many icy asteroids and satellites. It occurs naturally in meteorites mostly as epsomite. MgSO4, considered anhydrously, comprises nearly 3/4 of the highly soluble fraction of C1 chondrites. Thus, MgSO4 is probably an important solute in cryovolcanic brines erupted on certain icy objects in the outer solar system. While the physiochemical properties of the water-magnesium sulfate system are well known at low pressures, planetological applications of these data are hindered by a dearth of useful published data at elevated pressures. Accordingly, solid-liquid phase equilibria was recently explored in this chemical system at pressures extending to about 4 kilobars. The water magnesium sulfate system in the region of the eutectic exhibits qualitatively constant behavior between pressures of 1 atm and 2 kbar. The eutectic melting curve closely follows that for water ice, with a freezing point depression of about 4 K at 1 atm decreasing to around 3.3 K at 2 kbars. The eutectic shifts from 17 pct. MgSO4 at 1 atm to about 15.3 pct at 2 kbars. Above 2 kbars, the eutectic melting curve again tends to follow ice.

  18. Relations between the modulus of elasticity of binary alloys and their structure

    Science.gov (United States)

    Koster, Werner; Rauscher, Walter

    1951-01-01

    A comprehensive survey of the elastic modulus of binary alloys as a function of the concentration is presented. Alloys that form continuous solid solutions, limited solid solutions, eutectic alloys, and alloys with intermetallic phases are investigated. Systems having the most important structures have been examined to obtain criteria for the relation between lattice structure, type of binding, and elastic behavior.

  19. Influence of temper condition on microstructure and mechanical properties of semisolid metal processed Al–Si–Mg alloy A356

    CSIR Research Space (South Africa)

    Moller, H

    2009-01-01

    Full Text Available results in spheroidisation of the eutectic silicon particles under the T4 and T6 temper conditions. The A356-T5 maintains the fibrous silicon morphology after artificial aging. A356-T4 has better ductility and impact strength than A356-T5 due to its...

  20. effect of pre effect of pre-ageing thermal conditions on the corrosion ...

    African Journals Online (AJOL)

    eobe

    Keywords: Al-Si-Mg alloy, thermal ageing, polarization, eutectics, interdendritic spacing. 1. INTRODUCTION. INTRODUCTION. INTRODUCTION. Corrosion of aluminium alloys lead to impairment of its operation and progressive weakening of that structure. The consequences of corrosion are many, and its effects on safety, ...