WorldWideScience

Sample records for european x-fel linear

  1. Production of transform-limited X-ray pulses through self-seeding at the European X-ray FEL

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-09-15

    An important goal for any advanced X-ray FEL is an option for providing Fourier-limited X-ray pulses. In this way, no monochromator is needed in the experimental hall. Self-seeding is a promising approach to significantly narrow the SASE bandwidth to produce nearly transform-limited pulses. These are important for many experiments including 3D diffraction imaging.We discuss the implementation of a single-crystal self-seeding scheme in the hard X-ray lines of the European XFEL. For this facility, transform-limited pulses are particularly valuable since they naturally support the extraction of more FEL power than at saturation by exploiting tapering in the tunable-gap baseline undulators. Tapering consists of a stepwise change of the undulator gap from segment to segment. Based on start-to-end simulations dealing with the up-to-date parameters of the European XFEL, we show that the FEL power reaches about 400 GW, or one order of magnitude higher power than the SASE saturation level (20 GW). This analysis indicates that our self-seeding scheme is not significantly affected by non-ideal electron phase-space distribution, and yields about the same performance as in the case for an electron beam with ideal parameters. The self-seeding scheme with a single crystal monochromator is extremely compact (about 5 m long), and cost estimations are low enough to consider adding it to the European XFEL capabilities from the very beginning of the operation phase. (orig.)

  2. Production of transform-limited X-ray pulses through self-seeding at the European X-ray FEL

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2011-09-01

    An important goal for any advanced X-ray FEL is an option for providing Fourier-limited X-ray pulses. In this way, no monochromator is needed in the experimental hall. Self-seeding is a promising approach to significantly narrow the SASE bandwidth to produce nearly transform-limited pulses. These are important for many experiments including 3D diffraction imaging.We discuss the implementation of a single-crystal self-seeding scheme in the hard X-ray lines of the European XFEL. For this facility, transform-limited pulses are particularly valuable since they naturally support the extraction of more FEL power than at saturation by exploiting tapering in the tunable-gap baseline undulators. Tapering consists of a stepwise change of the undulator gap from segment to segment. Based on start-to-end simulations dealing with the up-to-date parameters of the European XFEL, we show that the FEL power reaches about 400 GW, or one order of magnitude higher power than the SASE saturation level (20 GW). This analysis indicates that our self-seeding scheme is not significantly affected by non-ideal electron phase-space distribution, and yields about the same performance as in the case for an electron beam with ideal parameters. The self-seeding scheme with a single crystal monochromator is extremely compact (about 5 m long), and cost estimations are low enough to consider adding it to the European XFEL capabilities from the very beginning of the operation phase. (orig.)

  3. Harmonic lasing in X-ray FELs

    Energy Technology Data Exchange (ETDEWEB)

    Schneidmiller, E.A.; Yurkov, M.V.

    2012-05-15

    Harmonic lasing in a free electron laser with a planar undulator (under the condition that the fundamental frequency is suppressed) might be a cheap and efficient way of extension of wavelength ranges of existing and planned X-ray FEL facilities. Contrary to nonlinear harmonic generation, harmonic lasing can provide much more intense, stable, and narrow-band FEL beam which is easier to handle due to the suppressed fundamental frequency. In this paper we perform a parametrization of the solution of the eigenvalue equation for lasing at odd harmonics, and present an explicit expression for FEL gain length, taking into account all essential effects. We propose and discuss methods for suppression of the fundamental harmonic. We also suggest a combined use of harmonic lasing and lasing at the retuned fundamental wavelength in order to reduce bandwidth and to increase brilliance of X-ray beam at saturation. Considering 3rd harmonic lasing as a practical example, we come to the conclusion that it is much more robust than usually thought, and can be widely used in the existing or planned X-ray FEL facilities. In particular, LCLS after a minor modification can lase to saturation at the 3rd harmonic up to the photon energy of 25-30 keV providing multi-gigawatt power level and narrow bandwidth. As for the European XFEL, harmonic lasing would allow to extend operating range (ultimately up to 100 keV), to reduce FEL bandwidth and to increase brilliance, to enable two-color operation for pump-probe experiments, and to provide more flexible operation at different electron energies. Similar improvements can be realized in other X-ray FEL facilities with gap-tunable undulators like FLASH II, SACLA, LCLS II, etc. Harmonic lasing can be an attractive option for compact X-ray FELs (driven by electron beams with a relatively low energy), allowing the use of the standard undulator technology instead of small-gap in-vacuum devices. Finally, in this paper we discover that in a part of the

  4. Undulator systems for the TESLA X-FEL

    International Nuclear Information System (INIS)

    Pflueger, J.; Tischer, M.

    2002-01-01

    A large X-ray FEL lab is under consideration within the TESLA project and is supposed to be operated in parallel with the TESLA linear collider. There will be five SASE FELs and five conventional spontaneous undulators. A conceptual design study has been made for the undulator systems for these X-FELs. It includes segmentation into 6.1 m long undulator 'cells'. Each consists of a 5 m long undulator 'segment', a separate quadrupole, one horizontal and one vertical corrector, and a phase shifter. These items are presented and discussed

  5. Obtaining high degree of circular polarization at X-ray FELs via a reverse undulator taper

    Energy Technology Data Exchange (ETDEWEB)

    Schneidmiller, E.A.; Yurkov, M.V.

    2013-08-15

    Baseline design of a typical X-ray FEL undulator assumes a planar configuration which results in a linear polarization of the FEL radiation. However, many experiments at X-ray FEL user facilities would profit from using a circularly polarized radiation. As a cheap upgrade one can consider an installation of a short helical (or cross-planar) afterburner, but then one should have an efficient method to suppress powerful linearly polarized background from the main undulator. In this paper we propose a new method for such a suppression: an application of the reverse taper in the main undulator. We discover that in a certain range of the taper strength, the density modulation (bunching) at saturation is practically the same as in the case of non-tapered undulator while the power of linearly polarized radiation is suppressed by orders of magnitude. Then strongly modulated electron beam radiates at full power in the afterburner. Considering SASE3 undulator of the European XFEL as a practical example, we demonstrate that soft X-ray radiation pulses with peak power in excess of 100 GW and an ultimately high degree of circular polarization can be produced. The proposed method is rather universal, i.e. it can be used at SASE FELs and seeded (self-seeded) FELs, with any wavelength of interest, in a wide range of electron beam parameters, and with any repetition rate. It can be used at different X-ray FEL facilities, in particular at LCLS after installation of the helical afterburner in the near future.

  6. Scheme for generation of fully-coherent, TW power level hard X-ray pulses from baseline undulators at the European X-ray FEL

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2010-07-01

    The most promising way to increase the output power of an X-ray FEL (XFEL) is by tapering the magnetic field of the undulator. Also, significant increase in power is achievable by starting the FEL process from a monochromatic seed rather than from noise. This report proposes to make use of a cascade self-seeding scheme with wake monochromators in a tunable-gap baseline undulator at the European XFEL to create a source capable of delivering coherent radiation of unprecedented characteristics at hard X-ray wavelengths. Compared with SASE X-ray FEL parameters, the radiation from the new source has three truly unique aspects: complete longitudinal and transverse coherence, and a peak brightness three orders of magnitude higher than what is presently available at LCLS. Additionally, the new source will generate hard X-ray beam at extraordinary peak (TW) and average (kW) power level. The proposed source can thus revolutionize fields like single biomolecule imaging, inelastic scattering and nuclear resonant scattering. The self-seeding scheme with the wake monochromator is extremely compact, and takes almost no cost and time to be implemented. The upgrade proposed in this paper could take place during the commissioning stage of the European XFEL, opening a vast new range of applications from the very beginning of operations.We present feasibility study and examplifications for the SASE2 line of the European XFEL. (orig.)

  7. Optics-free x-ray FEL oscillator

    International Nuclear Information System (INIS)

    Litvinenko, V.N.; Hao, Y.; Kayran, D.; Trbojevic, D.

    2011-01-01

    There is a need for an Optics-Free FEL Oscillators (OFFELO) to further the advantages of free-electron lasers and turning them in fully coherent light sources. While SASE (Self-Amplified Spontaneous Emission) FELs demonstrated the capability of providing very high gain and short pulses of radiation and scalability to the X-ray range, the spectra of SASE FELs remains rather wide (∼0.5%-1%) compared with typical short wavelengths FEL-oscillators (0.01%-0.0003% in OK-4 FEL). Absence of good optics in VUV and X-ray ranges makes traditional oscillator schemes with very high average and peak spectral brightness either very complex or, strictly speaking, impossible. In this paper, we discuss lattice of the X-ray optics-free FEL oscillator and present results of initial computer simulations of the feedback process and the evolution of FEL spectrum in X-ray OFFELO. We also discuss main limiting factors and feasibility of X-ray OFFELO.

  8. Optics-free x-ray FEL oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.N.; Hao, Y.; Kayran, D.; Trbojevic, D.

    2011-03-28

    There is a need for an Optics-Free FEL Oscillators (OFFELO) to further the advantages of free-electron lasers and turning them in fully coherent light sources. While SASE (Self-Amplified Spontaneous Emission) FELs demonstrated the capability of providing very high gain and short pulses of radiation and scalability to the X-ray range, the spectra of SASE FELs remains rather wide ({approx}0.5%-1%) compared with typical short wavelengths FEL-oscillators (0.01%-0.0003% in OK-4 FEL). Absence of good optics in VUV and X-ray ranges makes traditional oscillator schemes with very high average and peak spectral brightness either very complex or, strictly speaking, impossible. In this paper, we discuss lattice of the X-ray optics-free FEL oscillator and present results of initial computer simulations of the feedback process and the evolution of FEL spectrum in X-ray OFFELO. We also discuss main limiting factors and feasibility of X-ray OFFELO.

  9. Technological Challenges to X-Ray FELs

    Energy Technology Data Exchange (ETDEWEB)

    Nuhn, Heinz-Dieter

    1999-09-16

    There is strong interest in the development of x-ray free electron lasers (x-ray FELs). The interest is driven by the scientific opportunities provided by intense, coherent x-rays. An x-ray FEL has all the characteristics of a fourth-generation source: brightness several orders of magnitude greater than presently achieved in third-generation sources, full transverse coherence, and sub-picosecond long pulses. The SLAC and DESY laboratories have presented detailed design studies for X-Ray FEL user facilities around the 0.1 nm wavelength-regime (LCLS at SLAC, TESLA X-Ray FEL at DESY). Both laboratories are engaged in proof-of-principle experiments are longer wavelengths (TTF FEL Phase I at 71 nm, VISA at 600-800 nm) with results expected in 1999. The technologies needed to achieve the proposed performances are those of bright electron sources, of acceleration systems capable of preserving the brightness of the source, and of undulators capable of meeting the magnetic and mechanical tolerances that are required for operation in the SASE mode. This paper discusses the technological challenges presented by the X-Ray FEL projects.

  10. The PixFEL project: Progress towards a fine pitch X-ray imaging camera for next generation FEL facilities

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, G., E-mail: giuliana.rizzo@pi.infn.it [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Batignani, G. [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Benkechkache, M.A. [Università di Trento, Dipartimento di Ingegneria Industriale, I-38123 Trento (Italy); University Constantine 1, Department of Electronics in the Science and Technology Faculty, I-25017, Constantine (Algeria); Bettarini, S.; Casarosa, G. [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Comotti, D. [Università di Pavia, Dipartimento di Ingegneria Industriale e dell' Informazione, I-27100 Pavia (Italy); INFN Sezione di Pavia, I-27100 Pavia (Italy); Dalla Betta, G.-F. [Università di Trento, Dipartimento di Ingegneria Industriale, I-38123 Trento (Italy); TIFPA INFN, I-38123 Trento (Italy); Fabris, L. [INFN Sezione di Pavia, I-27100 Pavia (Italy); Università di Bergamo, Dipartimento di Ingegneria e Scienze Applicate, I-24044 Dalmine (Italy); Forti, F. [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Grassi, M.; Lodola, L.; Malcovati, P. [Università di Pavia, Dipartimento di Ingegneria Industriale e dell' Informazione, I-27100 Pavia (Italy); INFN Sezione di Pavia, I-27100 Pavia (Italy); Manghisoni, M. [INFN Sezione di Pavia, I-27100 Pavia (Italy); Università di Bergamo, Dipartimento di Ingegneria e Scienze Applicate, I-24044 Dalmine (Italy); and others

    2016-07-11

    The INFN PixFEL project is developing the fundamental building blocks for a large area X-ray imaging camera to be deployed at next generation free electron laser (FEL) facilities with unprecedented intensity. Improvement in performance beyond the state of art in imaging instrumentation will be explored adopting advanced technologies like active edge sensors, a 65 nm node CMOS process and vertical integration. These are the key ingredients of the PixFEL project to realize a seamless large area focal plane instrument composed by a matrix of multilayer four-side buttable tiles. In order to minimize the dead area and reduce ambiguities in image reconstruction, a fine pitch active edge thick sensor is being optimized to cope with very high intensity photon flux, up to 10{sup 4} photons per pixel, in the range from 1 to 10 keV. A low noise analog front-end channel with this wide dynamic range and a novel dynamic compression feature, together with a low power 10 bit analog to digital conversion up to 5 MHz, has been realized in a 110 μm pitch with a 65 nm CMOS process. Vertical interconnection of two CMOS tiers will be also explored in the future to build a four-side buttable readout chip with high density memories. In the long run the objective of the PixFEL project is to build a flexible X-ray imaging camera for operation both in burst mode, like at the European X-FEL, or in continuous mode with the high frame rates anticipated for future FEL facilities.

  11. The PixFEL project: Progress towards a fine pitch X-ray imaging camera for next generation FEL facilities

    International Nuclear Information System (INIS)

    Rizzo, G.; Batignani, G.; Benkechkache, M.A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Dalla Betta, G.-F.; Fabris, L.; Forti, F.; Grassi, M.; Lodola, L.; Malcovati, P.; Manghisoni, M.

    2016-01-01

    The INFN PixFEL project is developing the fundamental building blocks for a large area X-ray imaging camera to be deployed at next generation free electron laser (FEL) facilities with unprecedented intensity. Improvement in performance beyond the state of art in imaging instrumentation will be explored adopting advanced technologies like active edge sensors, a 65 nm node CMOS process and vertical integration. These are the key ingredients of the PixFEL project to realize a seamless large area focal plane instrument composed by a matrix of multilayer four-side buttable tiles. In order to minimize the dead area and reduce ambiguities in image reconstruction, a fine pitch active edge thick sensor is being optimized to cope with very high intensity photon flux, up to 10"4 photons per pixel, in the range from 1 to 10 keV. A low noise analog front-end channel with this wide dynamic range and a novel dynamic compression feature, together with a low power 10 bit analog to digital conversion up to 5 MHz, has been realized in a 110 μm pitch with a 65 nm CMOS process. Vertical interconnection of two CMOS tiers will be also explored in the future to build a four-side buttable readout chip with high density memories. In the long run the objective of the PixFEL project is to build a flexible X-ray imaging camera for operation both in burst mode, like at the European X-FEL, or in continuous mode with the high frame rates anticipated for future FEL facilities.

  12. X-FEL revolution - X-ray lasers to probe matter

    International Nuclear Information System (INIS)

    Collet, E.; Cammarata, M.; Harmand, M.; Couprie, M.E.

    2015-01-01

    X-ray free electron lasers (X-FEL) are now able to generate X-ray pulses of a few femto-seconds (1 fs = 10"-"1"5 s), which allows the real-time observation of the movements of atoms. The changes in the structure of a material can be seen whatever the material, this is illustrated with the PYP protein (that is the photo-receptor of a bacterium), the changes between an initial state and 100 ps after light excitation show the displacement of the atoms of the protein. The brightness of X-FEL can be so high that it allows the study of nano-metric structures but it enables X-FEL radiation to ionize matter and the crystal sample may be destroyed, this becomes the new limit of X-FEL applied to crystallography. Another application of X-FEL to structure studies is to allow the study of systems that are not crystal systems like macromolecules, proteins or even viruses. Hundreds of patterns of X-ray diffractions of an object are combined to form a 3-dimensional image of the object in the wave vector space and it is then possible but very complex to deduce the real 3-dimensional structure of the object. (A.C.)

  13. The PixFEL project: development of advanced X-ray pixel detectors for application at future FEL facilities

    International Nuclear Information System (INIS)

    Rizzo, G.; Batignani, G.; Bettarini, S.; Casarosa, G.; Forti, F.; Paladino, A.; Paoloni, E.; Comotti, D.; Grassi, M.; Lodola, L.; Malcovati, P.; Ratti, L.; Vacchi, C.; Fabris, L.; Manghisoni, M.; Re, V.; Traversi, G.; Morsani, F.; Betta, G.-F. Dalla; Pancheri, L.

    2015-01-01

    The PixFEL project aims to develop an advanced X-ray camera for imaging suited for the demanding requirements of next generation free electron laser (FEL) facilities. New technologies can be deployed to boost the performance of imaging detectors as well as future pixel devices for tracking. In the first phase of the PixFEL project, approved by the INFN, the focus will be on the development of the microelectronic building blocks, carried out with a 65 nm CMOS technology, implementing a low noise analog front-end channel with high dynamic range and compression features, a low power ADC and high density memory. At the same time PixFEL will investigate and implement some of the enabling technologies to assembly a seamless large area X-ray camera composed by a matrix of multilayer four-side buttable tiles. A pixel matrix with active edge will be developed to minimize the dead area of the sensor layer. Vertical interconnection of two CMOS tiers will be explored to build a four-side buttable readout chip with small pixel pitch and all the on-board required functionalities. The ambitious target requirements of the new pixel device are: single photon resolution, 1 to 10 4 photons @ 1 keV to 10 keV input dynamic range, 10-bit analog to digital conversion up to 5 MHz, 1 kevent in-pixel memory and 100 μm pixel pitch. The long term goal of PixFEL will be the development of a versatile X-ray camera to be operated either in burst mode (European XFEL), or in continuous mode to cope with the high frame rates foreseen for the upgrade phase of the LCLS-II at SLAC

  14. Accelerator Physics Challenges of X-Ray FEL SASE Sources

    Energy Technology Data Exchange (ETDEWEB)

    Emma, Paul J

    2002-05-30

    A great deal of international interest has recently focused on the design and construction of free-electron lasers (FEL) operating in the x-ray region ({approx}1 {angstrom}). At present, a linac-based machine utilizing the principle of self-amplified spontaneous emission (SASE) appears to be the most promising approach. This new class of FEL achieves lasing in a single pass of a high brightness electron beam through a long undulator. The requirements on electron beam quality become more demanding as the FEL radiation wavelength decreases, with the 1-{angstrom} goal still 3-orders of magnitude below the shortest wavelength operational SASE FEL (TTF-FEL at DESY [1]). The subpicosecond bunch length drives damaging effects such as coherent synchrotron radiation, and undulator vacuum chamber wakefields. Unlike linear colliders, beam brightness needs to be maintained only over a small ''slice'' of the bunch length, so the concepts of bunch integrated emittance and energy spread are less relevant than their high-frequency (or ''time-sliced'') counterparts, also adding a challenge to phase space diagnostics. Some of the challenges associated with the generation, preservation, measurement, and stability of high brightness FEL electron beams are discussed here.

  15. The SPARX Project R&D Activity towards X-rays FEL Sources

    CERN Document Server

    Alesini, David; Bertolucci, Sergio; Biagini, M E; Boni, R; Boscolo, Manuela; Castellano, Michele; Clozza, A; Di Pirro, G; Drago, A; Esposito, A; Ferrario, Massimo; Filippetto, D; Fusco, V; Gallo, A; Ghigo, A; Guiducci, Susanna; Incurvati, M; Ligi, C; Marcellini, F; Migliorati, Mauro; Mostacci, Andrea; Palumbo, Luigi; Pellegrino, L; Preger, Miro; Raimondi, Pantaleo; Ricci, R; Sanelli, C; Serio, Mario; Sgamma, F; Spataro, Bruno; Stecchi, A; Stella, A; Tazzioli, Franco; Vaccarezza, Cristina; Vescovi, Mario; Vicario, C

    2004-01-01

    SPARX is an evolutionary project proposed by a collaboration among ENEA-INFN-CNR-Università di Roma Tor Vergata aiming at the construction of a FEL-SASE X-ray source in the Tor Vergata Campus. The first phase of the SPARX project, funded by Government Agencies, will be focused on the R&D activity on critical components and techniques for future X-ray facilities. The R&D plans for the FEL source will be developped along two lines: (a) use of the SPARC high brightness photo-injector to develop experimental test on RF compression techniques and other beam physics issues, like emittance degradation in magnetic compressors due to CSR; (b) development of new undulator design concepts and up-grading of the FEL SPARC source to enhance the non linear harmonic generation mechanism, design and test of e-beam conditioning, prebunching and seeding. A parallel program will be aimed at the development of high repetition rate S-band gun, high Quantum Efficiency cathodes, high gradient X-band RF acceleratin...

  16. Design and optimization of the grating monochromator for soft X-ray self-seeding FELs

    Energy Technology Data Exchange (ETDEWEB)

    Serkez, Svitozar

    2015-10-15

    The emergence of Free Electron Lasers (FEL) as a fourth generation of light sources is a breakthrough. FELs operating in the X-ray range (XFEL) allow one to carry out completely new experiments that probably most of the natural sciences would benefit. Self-amplified spontaneous emission (SASE) is the baseline FEL operation mode: the radiation pulse starts as a spontaneous emission from the electron bunch and is being amplified during an FEL process until it reaches saturation. The SASE FEL radiation usually has poor properties in terms of a spectral bandwidth or, on the other side, longitudinal coherence. Self-seeding is a promising approach to narrow the SASE bandwidth of XFELs significantly in order to produce nearly transformlimited pulses. It is achieved by the radiation pulse monochromatization in the middle of an FEL amplification process. Following the successful demonstration of the self-seeding setup in the hard X-ray range at the LCLS, there is a need for a self-seeding extension into the soft X-ray range. Here a numerical method to simulate the soft X-ray self seeding (SXRSS) monochromator performance is presented. It allows one to perform start-to-end self-seeded FEL simulations along with (in our case) GENESIS simulation code. Based on this method, the performance of the LCLS self-seeded operation was simulated showing a good agreement with an experiment. Also the SXRSS monochromator design developed in SLAC was adapted for the SASE3 type undulator beamline at the European XFEL. The optical system was studied using Gaussian beam optics, wave optics propagation method and ray tracing to evaluate the performance of the monochromator itself. Wave optics analysis takes into account the actual beam wavefront of the radiation from the coherent FEL source, third order aberrations and height errors from each optical element. The monochromator design is based on a toroidal VLS grating working at a fixed incidence angle mounting without both entrance and exit

  17. Design and optimization of the grating monochromator for soft X-ray self-seeding FELs

    International Nuclear Information System (INIS)

    Serkez, Svitozar

    2015-10-01

    The emergence of Free Electron Lasers (FEL) as a fourth generation of light sources is a breakthrough. FELs operating in the X-ray range (XFEL) allow one to carry out completely new experiments that probably most of the natural sciences would benefit. Self-amplified spontaneous emission (SASE) is the baseline FEL operation mode: the radiation pulse starts as a spontaneous emission from the electron bunch and is being amplified during an FEL process until it reaches saturation. The SASE FEL radiation usually has poor properties in terms of a spectral bandwidth or, on the other side, longitudinal coherence. Self-seeding is a promising approach to narrow the SASE bandwidth of XFELs significantly in order to produce nearly transformlimited pulses. It is achieved by the radiation pulse monochromatization in the middle of an FEL amplification process. Following the successful demonstration of the self-seeding setup in the hard X-ray range at the LCLS, there is a need for a self-seeding extension into the soft X-ray range. Here a numerical method to simulate the soft X-ray self seeding (SXRSS) monochromator performance is presented. It allows one to perform start-to-end self-seeded FEL simulations along with (in our case) GENESIS simulation code. Based on this method, the performance of the LCLS self-seeded operation was simulated showing a good agreement with an experiment. Also the SXRSS monochromator design developed in SLAC was adapted for the SASE3 type undulator beamline at the European XFEL. The optical system was studied using Gaussian beam optics, wave optics propagation method and ray tracing to evaluate the performance of the monochromator itself. Wave optics analysis takes into account the actual beam wavefront of the radiation from the coherent FEL source, third order aberrations and height errors from each optical element. The monochromator design is based on a toroidal VLS grating working at a fixed incidence angle mounting without both entrance and exit

  18. Progress toward a soft X-ray FEL

    International Nuclear Information System (INIS)

    Pellegrini, C.

    1988-01-01

    We review the FEL physics and obtain scaling laws for the extension of its operation to the soft X-ray region. We also discuss the properties of an electron beam needed to drive such an FEL, and the present state of the art for the beam production. (orig.)

  19. Optimization of a high efficiency FEL amplifier

    International Nuclear Information System (INIS)

    Schneidmiller, E.A.; Yurkov, M.V.

    2014-10-01

    The problem of an efficiency increase of an FEL amplifier is now of great practical importance. Technique of undulator tapering in the post-saturation regime is used at the existing X-ray FELs LCLS and SACLA, and is planned for use at the European XFEL, Swiss FEL, and PAL XFEL. There are also discussions on the future of high peak and average power FELs for scientific and industrial applications. In this paper we perform detailed analysis of the tapering strategies for high power seeded FEL amplifiers. Application of similarity techniques allows us to derive universal law of the undulator tapering.

  20. Contributions to the FEL2005 conference

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, O. (comp.)

    2005-07-01

    The following topics were dealt with: First lasing at 32 nm of the VUV-FEL at DESY, properties of the radiation from VUV-FEL at DESY, accelerator lay out and physics of X-ray free-electron lasers, bunch compression stability dependence on RF parameters, undulator systems and photon diagnostic for the European XFEL project, electron beam characterization at PITZ and the VUV-FEL at DESY, high precision optical synchronization systems for X-ray free electron lasers, optical laser synnchronized for the DESY VUV-FEL for two-color pump probe experiments, properties of the third harmonic of the SASE FEL radiation, detector response and beam line transmission measurements with far-infrared radiation, upgrades of the laser beam-line at PITZ, bunch length measurements using a Martin-Puplett interferometer at the VUV-FEL, next generation synchronization system for the VUV-FEL at DESY, transverse electron beam diagnostics at the VYV-FEL at DESY, the infrared undulator project at the VUV-FEL, misconceptions regarding second harmonic generation in X-ray free-electron lasers, influence of an energy chirp on SASE FEL operation, design considerations for the 4GLS XUV-FEL, broadband single shot spectrometer, commissioning of TTF2 bunch compressors for 20 fs SASE source, observation of femtosecond bunch length using a transverse deflecting structure, measurement of slice-emittance using a transverse deflecting structure, the injector of the VUV-FEL at DESY, spectral decoding electro-optic measurements for longitudinal bunch diagnostics at the DESY VUV-FEL, longitudinal phase space studies at PITZ, modelling the transverse phase space and core emittance studies at PITZ, measurements of thermal emittance for cesium telluride photocathodes at PITZ, status and first results from the upgraded PITZ facility, commissioning of the SPARC movable emittance meter and its first operation at PITZ. (HSI)

  1. Contributions to the FEL2005 conference

    International Nuclear Information System (INIS)

    Grimm, O.

    2005-01-01

    The following topics were dealt with: First lasing at 32 nm of the VUV-FEL at DESY, properties of the radiation from VUV-FEL at DESY, accelerator lay out and physics of X-ray free-electron lasers, bunch compression stability dependence on RF parameters, undulator systems and photon diagnostic for the European XFEL project, electron beam characterization at PITZ and the VUV-FEL at DESY, high precision optical synchronization systems for X-ray free electron lasers, optical laser synnchronized for the DESY VUV-FEL for two-color pump probe experiments, properties of the third harmonic of the SASE FEL radiation, detector response and beam line transmission measurements with far-infrared radiation, upgrades of the laser beam-line at PITZ, bunch length measurements using a Martin-Puplett interferometer at the VUV-FEL, next generation synchronization system for the VUV-FEL at DESY, transverse electron beam diagnostics at the VYV-FEL at DESY, the infrared undulator project at the VUV-FEL, misconceptions regarding second harmonic generation in X-ray free-electron lasers, influence of an energy chirp on SASE FEL operation, design considerations for the 4GLS XUV-FEL, broadband single shot spectrometer, commissioning of TTF2 bunch compressors for 20 fs SASE source, observation of femtosecond bunch length using a transverse deflecting structure, measurement of slice-emittance using a transverse deflecting structure, the injector of the VUV-FEL at DESY, spectral decoding electro-optic measurements for longitudinal bunch diagnostics at the DESY VUV-FEL, longitudinal phase space studies at PITZ, modelling the transverse phase space and core emittance studies at PITZ, measurements of thermal emittance for cesium telluride photocathodes at PITZ, status and first results from the upgraded PITZ facility, commissioning of the SPARC movable emittance meter and its first operation at PITZ. (HSI)

  2. A HIGH REPETITION RATE VUV-SOFT X-RAY FEL CONCEPT

    International Nuclear Information System (INIS)

    Corlett, J.; Byrd, J.; Fawley, W.M.; Gullans, M.; Li, D.; Lidia, S.M.; Padmore, H.; Penn, G.; Pogorelov, I.; Qiang, J.; Robin, D.; Sannibale, F.; Staples, J.W.; Steier, C.; Venturini, M.; Virostek, S.; Wan, W.; Wells, R.; Wilcox, R.; Wurtele, J.; Zholents, A.

    2007-01-01

    We report on design studies for a seeded FEL light source that is responsive to the scientific needs of the future. The FEL process increases radiation flux by several orders of magnitude above existing incoherent sources, and offers the additional enhancements attainable by optical manipulations of the electron beam: control of the temporal duration and bandwidth of the coherent output, reduced gain length in the FEL, utilization of harmonics to attain shorter wavelengths, and precise synchronization of the x-ray pulse with seed laser systems. We describe an FEL facility concept based on a high repetition rate RF photocathode gun, that would allow simultaneous operation of multiple independent FEL's, each producing high average brightness, tunable over the VUV-soft x-ray range, and each with individual performance characteristics determined by the configuration of the FEL. SASE, enhanced-SASE (ESASE), seeded, harmonic generation, and other configurations making use of optical manipulations of the electron beam may be employed, providing a wide range of photon beam properties to meet varied user demands

  3. FEL based photon collider of TeV energy range

    International Nuclear Information System (INIS)

    Saldin, E.L.; Shnejdmiller, E.A.; Sarantsev, V.P.; Yurkov, M.V.

    1994-01-01

    Physical principles of operation of high energy photon linear colliders (PLC) based on the Compton backscattering of laser photons on high energy electrons are discussed. The main emphasis is put on the analysis of a possibility to construct the PLC with the center of mass energy 0.5-2 TeV. Free electron laser (FEL) is considered as a source of primary photons. Proposed FEL system consists of a tunable FEL oscillator (output power ∼ 1 - 10 MW) with subsequent amplification of the master signal in a FEL amplifier up to the power ∼ 3 x 10 11 W. The FEL parameters are optimized, restrictions on the electron beam and FEL magnetic system parameters are formulated and problems of technical realization are discussed. It is shown that the FEL technique provides the most suitable way to construct photon linear collider on the base of future generation linear collider. 22 refs., 10 figs., 2 tabs

  4. Optimization of a dedicated bio-imaging beamline at the European X-ray FEL

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-09-15

    We recently proposed a basic concept for design and layout of the undulator source for a dedicated bio-imaging beamline at the European XFEL. The goal of the optimized scheme proposed here is to enable experimental simplification and performance improvement. The core of the scheme is composed by soft and hard X-ray self-seeding setups. Based on the use of an improved design for both monochromators it is possible to increase the design electron energy up to 17.5 GeV in photon energy range between 2 keV and 13 keV, which is the most preferable for life science experiments. An advantage of operating at such high electron energy is the increase of the X-ray output peak power. Another advantage is that 17.5 GeV is the preferred operation energy for SASE1 and SASE2 beamline users. Since it will be necessary to run all the XFEL lines at the same electron energy, this choice will reduce the interference with other undulator lines and increase the total amount of scheduled beam time. In this work we also propose a study of the performance of the self-seeding scheme accounting for spatiotemporal coupling caused by the use of a single crystal monochromator. Our analysis indicates that this distortion is easily suppressed by the right choice of diamond crystal planes and that the proposed undulator source yields about the same performance as in the case for a X-ray seed pulse with no coupling. Simulations show that the FEL power reaches 2 TW in the 3 keV-5 keV photon energy range, which is the most preferable for single biomolecule imaging.

  5. Optimization of a dedicated bio-imaging beamline at the European X-ray FEL

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2012-09-01

    We recently proposed a basic concept for design and layout of the undulator source for a dedicated bio-imaging beamline at the European XFEL. The goal of the optimized scheme proposed here is to enable experimental simplification and performance improvement. The core of the scheme is composed by soft and hard X-ray self-seeding setups. Based on the use of an improved design for both monochromators it is possible to increase the design electron energy up to 17.5 GeV in photon energy range between 2 keV and 13 keV, which is the most preferable for life science experiments. An advantage of operating at such high electron energy is the increase of the X-ray output peak power. Another advantage is that 17.5 GeV is the preferred operation energy for SASE1 and SASE2 beamline users. Since it will be necessary to run all the XFEL lines at the same electron energy, this choice will reduce the interference with other undulator lines and increase the total amount of scheduled beam time. In this work we also propose a study of the performance of the self-seeding scheme accounting for spatiotemporal coupling caused by the use of a single crystal monochromator. Our analysis indicates that this distortion is easily suppressed by the right choice of diamond crystal planes and that the proposed undulator source yields about the same performance as in the case for a X-ray seed pulse with no coupling. Simulations show that the FEL power reaches 2 TW in the 3 keV-5 keV photon energy range, which is the most preferable for single biomolecule imaging.

  6. Self-seeding scheme for the soft X-ray line at the European XFEL

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2012-02-01

    This paper discusses the potential for enhancing the capabilities of the European FEL in the soft X-ray regime. A high longitudinal coherence will be the key to such performance upgrade. In order to reach this goal we study a very compact soft X-ray self-seeding scheme originally designed at SLAC. The scheme is based on a grating monochromator, and can be straightforwardly installed in the SASE3 undulator beamline at the European XFEL. For the European XFEL fully-coherent soft X-ray pulses are particularly valuable since they naturally support the extraction of more FEL power than at saturation by exploiting tapering in the tunable-gap SASE3 undulator. Tapering consists of a stepwise change of the undulator gap from segment to segment. Based on start-to-end simulations we show that soft X-ray FEL power reaches about 800 GW, that is about an order of magnitude higher than the SASE level at saturation (100 GW). The self-seeding setup studied in this work is extremely compact (about 5 m long), and cost-effective. This last characteristic may justify to consider it as a possible addition to the European XFEL capabilities from the very beginning of the operation phase. (orig.)

  7. Self-seeding scheme for the soft X-ray line at the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-02-15

    This paper discusses the potential for enhancing the capabilities of the European FEL in the soft X-ray regime. A high longitudinal coherence will be the key to such performance upgrade. In order to reach this goal we study a very compact soft X-ray self-seeding scheme originally designed at SLAC. The scheme is based on a grating monochromator, and can be straightforwardly installed in the SASE3 undulator beamline at the European XFEL. For the European XFEL fully-coherent soft X-ray pulses are particularly valuable since they naturally support the extraction of more FEL power than at saturation by exploiting tapering in the tunable-gap SASE3 undulator. Tapering consists of a stepwise change of the undulator gap from segment to segment. Based on start-to-end simulations we show that soft X-ray FEL power reaches about 800 GW, that is about an order of magnitude higher than the SASE level at saturation (100 GW). The self-seeding setup studied in this work is extremely compact (about 5 m long), and cost-effective. This last characteristic may justify to consider it as a possible addition to the European XFEL capabilities from the very beginning of the operation phase. (orig.)

  8. A high-power rf linear accelerator for FELS [free-electron lasers

    International Nuclear Information System (INIS)

    Sheffield, R.L.; Watson, J.M.

    1987-01-01

    This paper describes the design of a high average current rf linear accelerator suitable for driving short-wavelength free-electron lasers (FEL). It is concluded that the design of a room-temperature rf linear acelerator that can meet the stringent requirements of a high-power short-wavelength FEL appears possible. The accelerator requires the use of an advanced photoelectric injector that is under development; the accelerator components, however, do not require appreciable development. At these large beam currents, low-frequency, large-bore room-temperature cavities can be highly efficient and give all specified performance with minimal risk. 20 refs

  9. PixFEL: developing a fine pitch, fast 2D X-ray imager for the next generation X-FELs

    International Nuclear Information System (INIS)

    Ratti, L.; Comotti, D.; Fabris, L.; Grassi, M.; Lodola, L.; Malcovati, P.; Manghisoni, M.; Re, V.; Traversi, G.; Vacchi, C.; Bettarini, S.; Casarosa, G.; Forti, F.; Morsani, F.; Paladino, A.; Paoloni, E.; Rizzo, G.; Benkechkache, M.A.; Dalla Betta, G.-F.; Mendicino, R.

    2015-01-01

    The PixFEL project is conceived as the first stage of a long term research program aiming at the development of advanced X-ray imaging instrumentation for applications at the free electron laser (FEL) facilities. The project aims at substantially advancing the state-of-the-art in the field of 2D X-ray imaging by exploring cutting-edge solutions for sensor development, for integration processes and for readout channel architectures. The main focus is on the development of the fundamental microelectronic building blocks for detector readout and on the technologies for the assembly of a multilayer module with minimum dead area. This work serves the purpose of introducing the main features of the project, together with the simulation results leading to the first prototyping run

  10. Direct experimental observation of the gas density depression effect using a two-bunch X-ray FEL beam.

    Science.gov (United States)

    Feng, Y; Schafer, D W; Song, S; Sun, Y; Zhu, D; Krzywinski, J; Robert, A; Wu, J; Decker, F J

    2018-01-01

    The experimental observation of the depression effect in gas devices designed for X-ray free-electron lasers (FELs) is reported. The measurements were carried out at the Linac Coherent Light Source using a two-bunch FEL beam at 6.5 keV with 122.5 ns separation passing through an argon gas cell. The relative intensities of the two pulses of the two-bunch beam were measured, after and before the gas cell, from X-ray scattering off thin targets by using fast diodes with sufficient temporal resolution. At a cell pressure of 140 hPa, it was found that the after-to-before ratio of the intensities of the second pulse was about 17% ± 6% higher than that of the first pulse, revealing lower effective attenuation of the gas cell due to heating by the first pulse and subsequent gas density reduction in the beam path. This measurement is important in guiding the design and/or mitigating the adverse effects in gas devices for high-repetition-rate FELs such as the LCLS-II and the European XFEL or other future high-repetition-rate upgrades to existing FEL facilities.

  11. Review of High Gain FELs

    International Nuclear Information System (INIS)

    Shintake, Tsumoru

    2007-01-01

    For understanding on basic radiation mechanism of the high-gain FEL based on SASE, the author presents electron-crystal interpretation of FEL radiation. In the electron-crystal, electrons are localized at regularly spaced multi-layers, which represents micro-bunching, whose spacing is equal to the radiation wavelength, and the multi-layers are perpendicular to beam axis, thus, diffracted wave creates Bragg's spots in forward and backward directions. Due to the Doppler's effect, frequency of the back-scattered wave is up-converted, generates forwardly focused X-ray. The Bragg's effect contributes focusing the X-ray beam into a spot, thus peak power becomes extremely higher by factor of typically 107. This is the FEL radiation. As well known, the total numbers of scattered photons in Bragg's spots is equal to the total elastic scattering photons from the atoms contained in the crystal. Therefore, total power in the FEL laser is same as the spontaneous radiation power from the undulator for the same beam parameter. The FEL radiation phenomenon is simple interference effect. In today's presentations, we use the laser pointer, and we frequently experience difficulty in pointing precisely or steadily in one place on the screen, since the laser spot is very small and does not spread. Exactly same to this, X-ray FEL is a highly focused beam, and pointing stability dominates productivity of experiment, thus we need special care on beam stability from linear accelerator

  12. SwissFEL injector conceptual design report. Accelerator test facility for SwissFEL

    International Nuclear Information System (INIS)

    Pedrozzi, M.

    2010-07-01

    This comprehensive report issued by the Paul Scherrer Institute (PSI) in Switzerland takes a look at the design concepts behind the institute's SwissFEL X-ray Laser facility - in particular concerning the conceptual design of the injector system. The SwissFEL X-ray FEL project at PSI, involves the development of an injector complex that enables operation of a FEL system operating at 0.1 - 7 nm with permanent-magnet undulator technology and minimum beam energy. The injector pre-project was motivated by the challenging electron beam requirements necessary to drive the SwissFEL accelerator facility. The report takes a look at the mission of the test facility and its performance goals. The accelerator layout and the electron source are described, as are the low-level radio-frequency power systems and the synchronisation concept. The general strategy for beam diagnostics is introduced. Low energy electron beam diagnostics, the linear accelerator (Linac) and bunch compressor diagnostics are discussed, as are high-energy electron beam diagnostics. Wavelength selection for the laser system and UV pulse shaping are discussed. The laser room for the SwissFEL Injector and constructional concepts such as the girder system and alignment concepts involved are looked at. A further chapter deals with beam dynamics, simulated performance and injector optimisation. The facility's commissioning and operation program is examined, as are operating regimes, software applications and data storage. The control system structure and architecture is discussed and special subsystems are described. Radiation safety, protection systems and shielding calculations are presented and the lateral shielding of the silo roof examined

  13. X-band rf driven free electron laser driver with optics linearization

    Directory of Open Access Journals (Sweden)

    Yipeng Sun (孙一鹏

    2014-11-01

    Full Text Available In this paper, a compact hard X-ray free electron lasers (FEL design is proposed with all X-band rf acceleration and two stage bunch compression. It eliminates the need of a harmonic rf linearization section by employing optics linearization in its first stage bunch compression. Quadrupoles and sextupoles are employed in a bunch compressor one (BC1 design, in such a way that second order longitudinal dispersion of BC1 cancels the second order energy correlation in the electron beam. Start-to-end 6-D simulations are performed with all the collective effects included. Emittance growth in the horizontal plane due to coherent synchrotron radiation is investigated and minimized, to be on a similar level with the successfully operating Linac coherent light source (LCLS. At a FEL radiation wavelength of 0.15 nm, a saturation length of 40 meters can be achieved by employing an undulator with a period of 1.5 cm. Without tapering, a FEL radiation power above 10 GW is achieved with a photon pulse length of 50 fs, which is LCLS-like performance. The overall length of the accelerator plus undulator is around 250 meters which is much shorter than the LCLS length of 1230 meters. That makes it possible to build hard X-ray FEL in a laboratory with limited size.

  14. Wake monochromator in asymmetric and symmetric Bragg and Laue geometry for self-seeding the European X-ray FEL

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni; Serkez, Svitozar; Tolkiehn, Martin

    2013-01-01

    We discuss the use of self-seeding schemes with wake monochromators to produce TW power, fully coherent pulses for applications at the dedicated bio-imaging beamline at the European X-ray FEL, a concept for an upgrade of the facility beyond the baseline previously proposed by the authors. We exploit the asymmetric and symmetric Bragg and Laue reflections (sigma polarization) in diamond crystal. Optimization of the bio-imaging beamline is performed with extensive start-to-end simulations, which also take into account effects such as the spatio-temporal coupling caused by the wake monochromator. The spatial shift is maximal in the range for small Bragg angles. A geometry with Bragg angles close to π/2 would be a more advantageous option from this viewpoint, albeit with decrease of the spectral tunability. We show that it will be possible to cover the photon energy range from 3 keV to 13 keV by using four different planes of the same crystal with one rotational degree of freedom.

  15. Wake monochromator in asymmetric and symmetric Bragg and Laue geometry for self-seeding the European X-ray FEL

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni; Serkez, Svitozar; Tolkiehn, Martin [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-01-15

    We discuss the use of self-seeding schemes with wake monochromators to produce TW power, fully coherent pulses for applications at the dedicated bio-imaging beamline at the European X-ray FEL, a concept for an upgrade of the facility beyond the baseline previously proposed by the authors. We exploit the asymmetric and symmetric Bragg and Laue reflections (sigma polarization) in diamond crystal. Optimization of the bio-imaging beamline is performed with extensive start-to-end simulations, which also take into account effects such as the spatio-temporal coupling caused by the wake monochromator. The spatial shift is maximal in the range for small Bragg angles. A geometry with Bragg angles close to {pi}/2 would be a more advantageous option from this viewpoint, albeit with decrease of the spectral tunability. We show that it will be possible to cover the photon energy range from 3 keV to 13 keV by using four different planes of the same crystal with one rotational degree of freedom.

  16. An advanced UV optical cavity for the European FEL project

    CERN Document Server

    Poole, M W; Chesworth, A A; Clarke, J A; Fell, B; Hill, C; Marl, R; Mullacrane, I D; Reid, R J

    2000-01-01

    A European collaboration is constructing a short wavelength FEL for the ELETTRA storage ring. The optical cavity has been designed and constructed at Daresbury Laboratory for delivery to Sincrotrone Trieste in Autumn 1999, following commissioning tests over the Summer. Initial FEL operation will be at 350 nm but subsequently down to 200 nm or less and mirrors will be 40 mm diameter. The 32 m optical cavity is controllable to 0.01 mu rad in mirror pitch and yaw using digital piezo translators. A novel feature is the simultaneous presence of three remotely interchangeable mirrors to extend the tuning range and also to interchange damaged mirrors immediately. In addition, a transfer arm and load-lock arrangement will permit a mirror to be withdrawn from the chamber and replaced without disruption to the UHV system. The FEL is designed to operate at high power (1-10 W) and multi-watt spontaneous emission is also present: power loading has been investigated by FEA analysis and has necessitated specification of a w...

  17. Milestone experiments for single pass UV/X-ray FELs

    Science.gov (United States)

    Ben-Zvi, Ilan

    1995-04-01

    In the past decade, significant advances have been made in the theory and technology of high brightness electron beams and single pass FELs. These developments facilitate the construction of practical UV and X-ray FELs and has prompted proposals to the DOE for the construction of such facilities. There are several important experiments to be performed before committing to the construction of dedicated user facilities. Two experiments are under construction in the IR, the UCLA self-amplified spontaneous emission experiment and the BNL laser seeded harmonic generation experiment. A multi-institution collaboration is being organized about a 210 MeV electron linac available at BNL and the 10 m long NISUS wiggler. This experiment will be done in the UV and will test various experimental aspects of electron beam dynamics, FEL exponential regime with gain guiding, start-up from noise, seeding and harmonic generation. These experiments will advance the state of FEL research and lead towards future dedicated users' facilities.

  18. Milestone experiments for single pass UV/X-ray FELs

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    1994-01-01

    In the past decade, significant advances have been made in the theory and technology of high brightness electron beams and single pass FELS. These developments facilitate the construction of practical UV and X-ray FELs and has prompted proposals to the DOE for the construction of such facilities. There are several important experiments to be performed before committing to the construction of dedicated user facilities. Two experiments are under construction in the IR, the UCLA Self Amplified Spontaneous Emission experiment and the BNL laser seeded Harmonic Generation experiment. A multi-institution collaboration is being organized about a 210 MeV electron linac available at BNL and the 10 meter tong NISUS wiggler. This experiment will be done in the UV and will test various experimental aspects of electron beam dynamics, FEL exponential regime with gain guiding, start up from noise, seeding and harmonic generation. These experiments will advance the state of FEL research and lead towards future dedicated users' facilities

  19. SOFT X-RAY FEL BY CASCADING STAGES OF HIGH GAIN HARMONIC GENERATION.

    Energy Technology Data Exchange (ETDEWEB)

    YU,L.H.

    2003-04-17

    Short wavelength Free-Electron Lasers are perceived as the next generation of synchrotron light sources. In the past decade, significant advances have been made in the theory and technology of high brightness electron beams and single pass FELs. These developments facilitate the construction of practical VUV FELs and make x-ray FELs possible. Self-Amplified Spontaneous Emission (SASE) and High Gain Harmonic Generation (HGHG)[17-19] are the two leading candidates for x-ray FELs. The first lasing of HGHG proof-of-principle experiment succeeded in August, 1999 in Brookhaven National Laboratory. The experimental results agree with the theory prediction. Compared with SASE FEL, the following advantages of HGHG FEL were confirmed; (1) Better longitudinal coherence, and hence, much narrower bandwidth than SASE. (2) More stable central wavelength, (3) More stable output energy. In this introduction, we will first briefly describe the principle of HGHG in Section A. Then in Section B, we give a general description about how to produce soft x-ray by cascading HGHG scheme. In section 2, we give a detailed description of the system design. Then, in section 3, we give a description of an analytical estimate for the HGHG process, and the calculation of the parameters of different parts of the system. The estimate is found to agree with simulation within about a factor 2 for most cases we studied. The stability issue, the sensitivity to parameter variation, the harmonic contents of the final output, and the noise degradation issue of such HGHG scheme are discussed in Section 4. The results are presented in Section 4. Finally, in Section 5, we will give some discussion of the challenges in development of the system. The conclusion is given in Section 6.

  20. The ARC-EN-CIEL FEL Proposal

    CERN Document Server

    Couprie, M E

    2005-01-01

    ARC-EN-CIEL (Accelerator-Radiation for Enhanced Coherent Intense Extended Light), the French project of a fourth generation light source aims at providing the user community with coherent femtosecond light pulses covering from UV to soft X ray. It is based on a CW 1 GeV superconducting linear accelerator delivering high charge, subpicosecond, low emittance electron bunches with a high repetition rate. The FEL is based on in the injection of High Harmonics in Gases in a High Gain Harmonic Generation scheme, leading to a rather compact solution. The produced radiation extending down to 0.8 nm with the Non Linear Harmonic reproduces the good longitudinal and transverse coherence of the harmonics in gas. Optional beam loops are foreseen to increase the beam current or the energy. They will accommodate fs synchrotron radiation sources in the IR, VUV and X ray ranges and a FEL oscillator in the 10 nm range. An important synergy is expected between accelerator and laser communities. Indeed, electron plasma accelerat...

  1. Development of a pump-probe facility with sub-picosecond time resolution combining a high-power ultraviolet regenerative FEL amplifier and a soft X-ray SASE FEL

    International Nuclear Information System (INIS)

    Faatz, B.; Fateev, A.A.; Feldhaus, J.; Krzywinski, J.; Pflueger, J.; Rossbach, J.; Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    2001-01-01

    This paper presents the conceptual design of a high power radiation source with laser-like characteristics in the ultraviolet spectral range at the TESLA Test Facility (TTF). The concept is based on the generation of radiation in a regenerative FEL amplifier (RAFEL). The RAFEL described in this paper covers a wavelength range of 200-400 nm and provides 200 fs pulses with 2 mJ of optical energy per pulse. The linac operates at 1% duty factor and the average output radiation power exceeds 100 W. The RAFEL will be driven by the spent electron beam leaving the soft X-ray FEL, thus providing minimal interference between these two devices. The RAFEL output radiation has the same time structure as the X-ray FEL and the UV pulses are naturally synchronized with the soft X-ray pulses from the TTF FEL. Therefore, it should be possible to achieve synchronization close to the duration of the radiation pulses (200 fs) for pump-probe techniques using either an UV pulse as a pump and soft X-ray pulse as a probe, or vice versa

  2. Generation of doublet spectral lines at self-seeded X-ray FELs

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-11-15

    Self-seeding schemes, consisting of two undulators with a monochromator in between, aim to reduce the bandwidth of SASE X-ray FELs. We recently proposed to use a new method of monochromatization exploiting a single crystal in Braggtransmission geometry for self-seeding in the hard X-ray range. The obvious and technically possible extension is to use such kind of monochromator setup with two -or more- crystals arranged in a series to spectrally filter the SASE radiation at two -or more- closely-spaced wavelengths within the FEL gain band. This allows for the production of doublet- or multiplet-spectral lines. Applications exist over a broad range of hard X-ray wavelengths involving any process where there is a large change in cross section over a narrow wavelength range, as in multiple wavelength anomalous diffraction techniques (MAD). In this paper we consider the simultaneous operation of the LCLS hard X-ray FEL at two closely spaced wavelengths. We present simulation results for the LCLS baseline, and we show that this method can produce fully coherent radiation shared between two longitudinal modes. Mode spacing can be easily tuned within the FEL gain band, i.e. within 10 eV. An interesting aspect of the proposed scheme is a way of modulating the electron bunch at optical frequencies without a seed quantum laser. In fact, the XFEL output intensity contains an oscillating ''mode-beat'' component whose frequency is related to the frequency difference between the pair of longitudinal modes considered. Thus, at saturation one obtains FEL-induced modulations of energy loss and energy spread in the electron bunch at optical frequency. These modulations can be converted into density modulation at the same optical frequency with the help of a weak chicane installed behind the baseline undulator. Powerful coherent radiation can then be generated with the help of an optical transition radiation (OTR) station,which have important applications. In this paper we briefly

  3. Generation of doublet spectral lines at self-seeded X-ray FELs

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2010-11-01

    Self-seeding schemes, consisting of two undulators with a monochromator in between, aim to reduce the bandwidth of SASE X-ray FELs. We recently proposed to use a new method of monochromatization exploiting a single crystal in Braggtransmission geometry for self-seeding in the hard X-ray range. The obvious and technically possible extension is to use such kind of monochromator setup with two -or more- crystals arranged in a series to spectrally filter the SASE radiation at two -or more- closely-spaced wavelengths within the FEL gain band. This allows for the production of doublet- or multiplet-spectral lines. Applications exist over a broad range of hard X-ray wavelengths involving any process where there is a large change in cross section over a narrow wavelength range, as in multiple wavelength anomalous diffraction techniques (MAD). In this paper we consider the simultaneous operation of the LCLS hard X-ray FEL at two closely spaced wavelengths. We present simulation results for the LCLS baseline, and we show that this method can produce fully coherent radiation shared between two longitudinal modes. Mode spacing can be easily tuned within the FEL gain band, i.e. within 10 eV. An interesting aspect of the proposed scheme is a way of modulating the electron bunch at optical frequencies without a seed quantum laser. In fact, the XFEL output intensity contains an oscillating ''mode-beat'' component whose frequency is related to the frequency difference between the pair of longitudinal modes considered. Thus, at saturation one obtains FEL-induced modulations of energy loss and energy spread in the electron bunch at optical frequency. These modulations can be converted into density modulation at the same optical frequency with the help of a weak chicane installed behind the baseline undulator. Powerful coherent radiation can then be generated with the help of an optical transition radiation (OTR) station,which have important applications. In this paper we briefly

  4. PFM2: a 32 × 32 processor for X-ray diffraction imaging at FELs

    Science.gov (United States)

    Manghisoni, M.; Fabris, L.; Re, V.; Traversi, G.; Ratti, L.; Grassi, M.; Lodola, L.; Malcovati, P.; Vacchi, C.; Pancheri, L.; Benkechcache, M. E. A.; Dalla Betta, G.-F.; Xu, H.; Verzellesi, G.; Ronchin, S.; Boscardin, M.; Batignani, G.; Bettarini, S.; Casarosa, G.; Forti, F.; Giorgi, M.; Paladino, A.; Paoloni, E.; Rizzo, G.; Morsani, F.

    2016-11-01

    This work is concerned with the design of a readout chip for application to experiments at the next generation X-ray Free Electron Lasers (FEL). The ASIC, named PixFEL Matrix (PFM2), has been designed in a 65 nm CMOS technology and consists of 32 × 32 pixels. Each cell covers an area of 110 × 110 μm2 and includes a low-noise charge sensitive amplifier (CSA) with dynamic signal compression, a time-variant shaper used to process the preamplifier output signal, a 10-bit successive approximation register (SAR) analog-to-digital converter (ADC) and digital circuitry for channel control and data readout. Two different solutions for the readout channel, based on different versions of the time-variant filter, have been integrated in the chip. Both solutions can be operated in such a way to cope with the high frame rate (exceeding 1 MHz) foreseen for future X-ray FEL machines. The ASIC will be bump bonded to a slim/active edge pixel sensor to form the first demonstrator for the PixFEL X-ray imager. This work has been carried out in the frame of the PixFEL project funded by Istituto Nazionale di Fisica Nucleare (INFN), Italy.

  5. Parametric x-ray FEL operating with external Bragg reflectors

    International Nuclear Information System (INIS)

    Baryshevsky, V.G.; Batrakov, K.G.; Dubovskaya, I.Ya.

    1995-01-01

    In the crystal X-ray FELs using channeling and parametric quasi-Cherenkov mechanisms of spontaneous radiation were considered as versions of FEL allowing, in principle, to obtain coherent X-ray source. In this case a crystal is both radiator and resonator for X-rays emitted by a particle beam passing through crystal. However, it is well-known that a beam current density required for lasing is extremely high in X-ray spectral range for any radiation mechanisms and it is very important to find a way to lower its magnitude. The application of three-dimensional distributed feedback formed by dynamical diffraction of emitted photons permitted to reduce starting beam current density 10 2 -10 4 times up to 10 9 . One of ways to lower the starting current is the formation of multi-wave distributed feedback the another one is the application of external reflectors. The thing is that lasing regime was shown to be produced at frequencies in the vicinity of degeneration point for roots of dispersion equation describing radiation modes excited in an active medium (crystal plus particle beam). Unfortunately, in case of parametric quasi-Cherenkov FEL this region coincides with the region of strong self-absorption of radiation inside a crystal. That fact, obviously, increases the starting beam current. In this report we have shown that the application of external Bragg reflectors gives the possibility to lower radiation self-absorption inside a crystal by modifying radiation modes excited in the active medium under consideration. The corresponding dispersion equation and the expression for excited modes are derived. The generation equation determining starting conditions for lasing is obtained. Using these expressions we have shown that the application of external Bragg reflectors permits to reduce starting beam current density more than 10 times

  6. Nearly copropagating sheared laser pulse FEL undulator for soft x-rays

    International Nuclear Information System (INIS)

    Lawler, J E; Yavuz, D; Bisognano, J; Bosch, R A; Chiang, T C; Green, M A; Jacobs, K; Miller, T; Wehlitz, R; York, R C

    2013-01-01

    A conceptual design for a soft x-ray free-electron laser (FEL) using a short-pulsed, high energy near infrared laser undulator and a low-emittance modest-energy (∼170 MeV) electron beam is described. This low-cost design uses the laser undulator beam in a nearly copropagating fashion with respect to the electron beam, instead of the traditional ‘head-on’ fashion. The nearly copropagating geometry reduces the Doppler shift of scattered radiation to yield soft, rather than hard x-rays. To increase the FEL gain a sheared laser pulse from a Ti : sapphire or other broadband laser is used to extend the otherwise short interaction time of the nearly copropagating laser undulator beam with a relativistic electron beam. (paper)

  7. A Coherent Compton Backscattering High Gain FEL using an X-Band Microwave Undulator

    CERN Document Server

    Pellegrini, C; Travish, G

    2005-01-01

    We describe a proposed high-gain FEL using an X-band microwave undulator and operating at a wavelength of about 0.5 μm. The FEL electron beam energy is 65 MeV. The beam is produced by the NLCTA X-band linac at SLAC, using an S-band high-brightness photoinjector. The undulator consists of a circular waveguide with an rf wave counter-propagating with respect to the electron beam. The undulator is powered with two high-power X-band klystrons and a dual-moded pulse compressor recently developed at SLAC. This system is capable of delivering flat-top rf pulses of up to 400 ns and a few hundred megawatts. The equivalent undulator period is 1.4 cm, the radius of the circular pipe is 1 cm, and the undulator parameter is about 0.4 for a helical undulator configuration, obtained using two cross-polarized TE modes, or larger for a planar configuration, using one rf polarization. The undulator is about four meters long. The FEL will reach saturation within this distance when operated in a SASE mode. We describe t...

  8. Towards attosecond X-ray pulses from the FEL

    International Nuclear Information System (INIS)

    Zholents, Alexander A.; Fawley, William M.

    2004-01-01

    The ability to study ultrafast phenomena has been recently advanced by the demonstrated production and measurement of a single, 650-attosecond (10 18 sec), VUV x-ray pulse[1] and, latter, a 250-attosecond pulse[2]. The next frontier is a production of the x-ray pulses with shorter wavelengths and in a broader spectral range. Several techniques for a generation of an isolated, attosecond duration, short-wavelength x-ray pulse based upon the ponderomotive laser acceleration [3], SASE and harmonic cascade FELs ([4] - [6]) had been already proposed. In this paper we briefly review a technique proposed in [5] and present some new results

  9. PFM2: a 32 × 32 processor for X-ray diffraction imaging at FELs

    International Nuclear Information System (INIS)

    Manghisoni, M.; Re, V.; Traversi, G.; Fabris, L.; Ratti, L.; Grassi, M.; Lodola, L.; Malcovati, P.; Vacchi, C.; Pancheri, L.; Benkechcache, M. E. A.; Dalla Betta, G.-F.; Xu, H.; Verzellesi, G.; Ronchin, S.; Boscardin, M.; Batignani, G.; Bettarini, S.; Casarosa, G.; Forti, F.

    2016-01-01

    This work is concerned with the design of a readout chip for application to experiments at the next generation X-ray Free Electron Lasers (FEL). The ASIC, named PixFEL Matrix (PFM2), has been designed in a 65 nm CMOS technology and consists of 32 × 32 pixels. Each cell covers an area of 110 × 110 μm 2 and includes a low-noise charge sensitive amplifier (CSA) with dynamic signal compression, a time-variant shaper used to process the preamplifier output signal, a 10-bit successive approximation register (SAR) analog-to-digital converter (ADC) and digital circuitry for channel control and data readout. Two different solutions for the readout channel, based on different versions of the time-variant filter, have been integrated in the chip. Both solutions can be operated in such a way to cope with the high frame rate (exceeding 1 MHz) foreseen for future X-ray FEL machines. The ASIC will be bump bonded to a slim/active edge pixel sensor to form the first demonstrator for the PixFEL X-ray imager. This work has been carried out in the frame of the PixFEL project funded by Istituto Nazionale di Fisica Nucleare (INFN), Italy.

  10. Performance of a Combined System Using an X-Ray FEL Oscillator and a High-Gain FEL Amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, L.; Lindberg, R.; Kim, K. -J.

    2017-06-01

    The LCLS-II at SLAC will feature a 4 GeV CW superconducting (SC) RF linac [1] that can potentially drive a 5th harmonic X-Ray FEL Oscillator (XFELO) to produce fully coherent, 1 MW photon pulses with a 5 meV bandwidth at 14.4 keV [2]. The XFELO output can serve as the input seed signal for a high-gain FEL amplifier employing fs electron beams from the normal conducting SLAC linac, thereby generating coherent, fs x-ray pulses with TW peak powers using a tapered undulator after saturation [3]. Coherent, intense output at several tens of keV will also be feasible if one considers a harmonic generation scheme. Thus, one can potentially reach the 42 keV photon energy required for the MaRIE project [4] by beginning with an XFELO operating at the 3rd harmonic to produce 14.0 keV photons using a 12 GeV SCRF linac, and then subsequently using the high-gain harmonic generation scheme to generate and amplify the 3th harmonic at 42 keV [5]. We report extensive GINGER simulations that determine an optimized parameter set for the combined system.

  11. Design considerations of a MW-scale, high-efficiency, industrial-use, ultraviolet FEL amplifier

    International Nuclear Information System (INIS)

    Pagani, C.; Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    2000-01-01

    Theoretical and experimental work in free electron laser (FEL) physics, and the physics of particle accelerators over the last 10 years has pointed to the possibility of the generation of MW-level optical beams with laser-like characteristics in the ultraviolet (UV) spectral range. The concept is based on generation of the radiation in the master oscillator-power FEL amplifier (MOPA) configuration. The FEL amplifier concept eliminates the need for an optical cavity. As a result, there are no thermal loading limitations to increase the average output power of this device up to the MW-level. The problem of a tunable master oscillator can be solved with available conventional quantum lasers. The use of a superconducting energy-recovery linac could produce a major, cost-effective facility with wall plug power to output optical power efficiency of about 20% that spans wavelengths from the visible to the deep ultraviolet regime. The stringent electron beam qualities required for UV FEL amplifier operation can be met with a conservative injector design (using a conventional thermionic gun and subharmonic bunchers) and the beam compression and linear acceleration technology, recently developed in connection with high-energy linear collider and X-ray FEL programs

  12. X-ray beam splitting design for concurrent imaging at hard X-ray FELs and synchrotron facilities

    Czech Academy of Sciences Publication Activity Database

    Oberta, Peter; Mokso, R.

    2013-01-01

    Roč. 729, NOV (2013), s. 85-89 ISSN 0168-9002 R&D Projects: GA MPO FR-TI1/412 Institutional research plan: CEZ:AV0Z10100522 Keywords : diffractive-refractive optics * hard X-ray FEL * X-ray imaging Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.316, year: 2013 http://www.sciencedirect.com/science/article/pii/S0168900213009613

  13. Effect of FEL induced ionization on X-ray reflectivity of multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Ksenzov, Dmitriy; Grigorian, Souren; Pietsch, Ullrich [University of Siegen (Germany)

    2009-07-01

    The VUV-FEL in Hamburg (FLASH) emits short-pulse radiation with wavelengths from 6 to 30 nm and a pulse length of 10-50 fs. The FLASH wavelength allows x-ray diffraction experiments at periodical multilayer's structures acting as 1D crystal. The probe of depth selective interaction of the high-intense x-ray short pulse with these objects can be used to obtain information about possible electronic excitation and various recombination processes inside multilayers. As known from recent experiments at FLASH, the later ones are most likely using highly intense FEL radiation. The ML reflectivity is analyzed for case of that the optical parameters are changing as function of the depth of the penetrating incident pulse into the multilayer. The response is studied for the model system La/B{sub 4}C using two experimental conditions both at fixed incidence angle: 1) the energy of the incident pulses, E, coincides with the energy of the 1st order multilayer Bragg peak, E{sub B}, of the reflection curve, and 2) the energy of incident pulse differs by a small dE from E{sub B}. The ML response to a given sub-pulse differs for both conditions. However, there is a clear fingerprint of ionization for both conditions for the case that E is close to the K-absorption edge of B-atoms. Our results support respective efforts to measure the optical parameters of solids under high-intense FEL radiation.

  14. High-efficiency FEL with Bragg resonator driven by linear induction accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ginzburg, N S; Kaminskij, A A; Kaminskij, A K; Peskov, N Yu; Sedykh, S N; Sergeev, A P; Sergeev, A S [Russian Academy of Sciences, Nizhny Novgorod (Russian Federation). Inst. of Applied Physics

    1997-12-31

    A narrow-band high-efficiency FEL-oscillator with a Bragg resonator was constructed based on a linear induction accelerator which formed a 1 MeV, 200 A, 200 ns electron beam. At the frequency of 31 GHz, radiation with a power of 31 MW and efficiency of 25% was measured. A high efficiency and a narrow width of the spectrum were achieved owing to the selective properties of the Bragg resonator in combination with the high quality of the helical electron beam formed in the reversed guide field regime. (author). 3 figs., 3 refs.

  15. BEAM OPTIMIZATION STUDY FOR AN X-RAY FEL OSCILLATOR AT THE LCLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Weilun; Huang, S.; Liu, K.X.; Huang, Z; Ding, Y.; Maxwell, T.J.; Kim, K.-J.

    2016-06-01

    The 4 GeV LCLS-II superconducting linac with high repetition beam rate enables the possibility to drive an X-Ray FEL oscillator at harmonic frequencies *. Compared to the regular LCLS-II machine setup, the oscillator mode requires a much longer bunch length with a relatively lower current. Also a flat longitudinal phase space distribution is critical to maintain the FEL gain since the X-ray cavity has extremely narrow bandwidth. In this paper, we study the longitudinal phase space optimization including shaping the initial beam from the injector and optimizing the bunch compressor and dechirper parameters. We obtain a bunch with a flat energy chirp over 400 fs in the core part with current above 100 A. The optimization was based on LiTrack and Elegant simulations using LCLS-II beam parameters.

  16. Investigation of a free electron laser oscillator in the X-ray wavelength regime for the European XFEL

    International Nuclear Information System (INIS)

    Zemella, Johann Christian Uwe

    2013-09-01

    In this thesis an X-ray free electron laser oscillator for the European XFEL is described. Such an oscillator consists of at least two Bragg deflecting crystals, in this content two or four Diamond crystals, focussing mirrors and an undulator. The advantage of Diamond is caused by the high reflectivity and the high thermal conductivity, which is necessary for dissipate the absorbed energy out of the center of the crystal. In context of this thesis the principle layout of an XFELO for the European XFEL and the FEL process is presented. Effects on the FEL process due to the disturbances of the electron beam or the XFELO cavity are discussed. As second aspect the thermal evolution in the crystal under absorbed XFELO-pulses is investigated. An experiment for the investigation of the thermal evolution of crystals under simulated XFELO conditions is presented.

  17. Femtosecond X-ray Pulses from a Spatially Chirped Electron Bunch in a SASE FEL

    Energy Technology Data Exchange (ETDEWEB)

    Emma, P.

    2003-01-14

    We propose a simple method to produce short x-ray pulses using a spatially chirped electron bunch in a SASE FEL. The spatial chirp is generated using an rf deflector which produces a transverse offset (in y and/or y') correlated with the longitudinal bunch position. Since the FEL gain is very sensitive to an initial offset in the transverse phase space at the entrance of the undulator, only a small portion of the electron bunch with relatively small transverse offset will interact significantly with the radiation, resulting in an x-ray pulse length much shorter than the electron bunch length. The x-ray pulse is also naturally phase locked to the rf deflector and so allows high precision timing synchronization. We discuss the generation and transport of such a spatially chirped electron beam and show that tens of femtosecond long pulse can be generated for the linac coherent light source (LCLS).

  18. Circular polarization opportunities at the SASE3 undulator line of the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Serkez, Svitozar; Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2016-08-15

    XFELs provide X-ray pulses with unprecedented peak brightness and ultrashort duration. They are usually driven by planar undulators, meaning that the output radiation is linearly polarized. For many experimental applications, however, polarization control is critical: besides the ability to produce linearly polarized radiation, one often needs the possibility of generating circularly polarized radiation with a high, stable degree of polarization. This may be achieved by using a first part of the XFEL undulator to produce bunching and then, by propagating the the bunched beam through an ''afterburner'' - a short undulator with tunable polarization, where only limited gain takes place. One of the issues that one needs to consider in this case is the separation of the circularly polarized radiation obtained in the radiator from the linearly polarized background produced in the first part of the FEL. In this article we review several methods to do so, including the inverse tapering technique. In particular, we use the Genesis FEL code to simulate a case study pertaining to the SASE3 FEL line at the European XFEL with up-to-date parameters and we confirm that a high degree of circular polarization is expected. Moreover, we propose to further improve the effectiveness of the inverse tapering technique either via angular separation of the linearly polarized radiation or strongly defocusing it at the sample position. In this way we exploit the unique flexibility of the European XFEL from both the electron beam and the photon beam optics side.

  19. A soft x-ray free electron laser (FEL) using a two-beam elliptical pill-box wake-field cavity

    International Nuclear Information System (INIS)

    Kim, S.H.; Chen, K.W.

    1988-01-01

    Stimulated bremsstrahlung in an undulating electric field in the lasing beam direction (electric wiggler) was shown to be possible from the quantum- mechanical viewpoint. Herein, this possibility is scrutinized from the viewpoint of classical electrodynamics. It is found that if stimulated bremsstrahlung in a transverse undulating magnetic field (magnetic wiggler) occurs, stimulated bremsstrahlung in the electric wiggler must also occur. We further show that a free electron laser (FEL) using a magnetic wiggler to provide a catalyzer field for stimulated bremsstrahlung cannot serve as a practical FEL operating in the soft x-ray region from both theoretical and experimental viewpoints. On the other hand, the authors demonstrate that the FEL using a traveling wake field in a two-beam elliptical pill-box cavity is well suited as a source of coherent radiation in the soft x-ray region

  20. Ultrafast phenomena at the nanoscale: science opportunities at the SwissFEL X-ray laser

    International Nuclear Information System (INIS)

    Abela, R.; Braun, H.; Ming, P.; Pedrozzi, M.; Quitmann, Ch.; Reiche, S.; Daalen, M. van; Veen, J.F. van der; Mesot, J.; Mesot, J.; Shiroka, T.; Veen, J.F. van der; Mesot, J.

    2009-09-01

    In today's fast-moving society, standing still is effectively synonymous with being left behind. If it is to maintain, beyond the coming 10-15 years, its high international standing as a complex of large research infrastructures, the Paul Scherrer Institute (PSI) must now lay the foundation for a competitive future. Experts worldwide foresee a strongly growing demand within science and technology for photon sources delivering ultra-short, coherent X-ray pulses. Such a source, called a free electron laser (FEL), is nothing less than a gigantic flash camera, allowing us to take a deeper look into matter than with any other machine before. By literally seeing molecules in action, scientists will be able not only to capture chemical and biological processes of direct relevance and benefit to society but also to improve them. It is a dream coming true. For the first time, it will not only be possible to take pictures of molecular structures, we will be able to make movies of their motion. The new X-ray laser project at PSI, known as SwissFEL, will be an important addition to the existing complex of PSI facilities that serve interdisciplinary and international research teams from academia and industry. The SwissFEL is an essential element of Switzerland's strategic focus and will prolong our nation's leading position in scientific research for years to come. It will attract top scientists from Switzerland and abroad, and will strengthen the position of PSI as a world-class research institute. This new high-tech facility will also provide an important incentive for Swiss industry, through which existing highly-qualified jobs will be maintained and new ones created. In this report we present a wide range of important, open questions within science and engineering disciplines that SwissFEL will contribute towards solving. These questions, which form the 'scientific case' for SwissFEL, have been identified through a range of workshops organized over the past few years and by

  1. Prospects for a soft x-ray FEL powered by a relativistic-klystron high-gradient accelerator (RK-HGA)

    International Nuclear Information System (INIS)

    Shay, H.D.; Barletta, W.A.; Yu, S.S.; Schlueter, R.; Deis, G.A.

    1989-01-01

    We present here the concept of x-ray FELs using high gain, single-pass amplifiers with electron beams accelerated in high gradient structures powered by relativistic klystrons. Other authors have also considered x-ray FELs; the unique aspect of this paper is the use of high gradient acceleration. One of the authors has previously presented preliminary studies on this concept. The intent in this paper is to display the results of a top level design study on a high gain FEL, to present its sensitivity to a variety of fabrication and tuning errors, to discuss several mechanisms for increasing gain yet more, and to present explicitly the output characteristics of such an FEL. The philosophy of the design study is to find a plausible operating point which employs existing or nearly existing state-of-the-art technologies while minimizing the accelerator and wiggler lengths. The notion is to distribute the technical risk as evenly as possible over the several technologies so that each must advance only slightly in order to make this design feasible. This study entailed no systematic investigation of possible costs so that, for example, the sole criterion for balancing the trade-off between beam energy and wiggler length is that the two components have comparable lengths. 20 refs., 10 figs., 1 tab

  2. SwissFEL - Conceptual design report

    International Nuclear Information System (INIS)

    Ganter, R.

    2010-07-01

    This report issued by the Paul Scherrer Institute (PSI) in Switzerland takes a look at the design concepts behind the institute's SwissFEL X-ray Laser facility. The goal of SwissFEL is to provide a source of extremely bright and short X-ray pulses enabling scientific discoveries in a wide range of disciplines to be made, from fundamental research through to applied science. The eminent scientific need for such an X-ray source which is well documented in the SwissFEL Science Case Report is noted. The technical design of SwissFEL has to keep a delicate balance between the demand by experimentalists for breathtaking performance in terms of photon beam properties on the one hand, and essential requirements for a user facility, such as confidence in technical feasibility, reliable and stable functioning and economy of installation and operation on the other hand. The baseline design which has been defined is discussed. This relies entirely on state-of-the-art technologies without fundamental feasibility issues. This SwissFEL Conceptual Design Report describes the technical concepts and parameters used for this baseline design. The report discusses the design strategy, the choice of parameters and the simulation of the accelerator unit and undulator. The photon beam layout is discussed, as is the installation's tera hertz pump source. The components of the facility, including the laser and radio-frequency systems, timing and synchronisation systems, magnets, undulators, and mechanical support systems are discussed. Further, the concepts behind electron beam diagnostics, vacuum equipment as well as control and feedback systems are discussed. The building layout is described and safety issues are discussed. An appendix completes the report

  3. Proposed uv-FEL user facility at BNL

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Di Mauro, L.F.; Krinsky, S.; White, M.G.; Yu, L.H.; Batchelor, K.; Friedman, A.; Fisher, A.S.; Halama, H.; Ingold, G.; Johnson, E.D.; Kramer, S.; Rogers, J.T.; Solomon, L.; Wachtel, J.; Zhang, X.

    1991-01-01

    The NSLS at Brookhaven National Laboratory is proposing the construction of a UV-FEL operating in the wavelength range from visible to 750 Angstrom. Nano-Coulomb electron pulses will be generated at a laser photo-cathode RF gun at a repetition rate of 10 KHz. The 6 ps pulses will be accelerated to 250 MeV in a superconducting linac. The FEL output will serve four stations with independent wavelength tuning, using two wigglers and two rotating mirror beam switches. Seed radiation for the FEL amplifiers will be provided by conventional tunable lasers, and the final frequency multiplication from the visible or near UV to the VUV will be carried out in the FEL itself. Each FEL will comprise of an initial wiggler resonant to the seed wavelength, a dispersion section, and a second wiggler resonant to the output wavelength. The facility will provide pump probe capability, FEL or FEL, and FEL on synchrotron light from an insersion device on the NSLS X-Ray ring. 15 refs., 2 figs., 3 tabs

  4. Investigation of a free electron laser oscillator in the X-ray wavelength regime for the European XFEL; Untersuchungen zu einem Freie-Elektronen-Laser-Oszillator im Roentgen-Wellenlaengenbereich fuer den European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Zemella, Johann Christian Uwe

    2013-09-15

    In this thesis an X-ray free electron laser oscillator for the European XFEL is described. Such an oscillator consists of at least two Bragg deflecting crystals, in this content two or four Diamond crystals, focussing mirrors and an undulator. The advantage of Diamond is caused by the high reflectivity and the high thermal conductivity, which is necessary for dissipate the absorbed energy out of the center of the crystal. In context of this thesis the principle layout of an XFELO for the European XFEL and the FEL process is presented. Effects on the FEL process due to the disturbances of the electron beam or the XFELO cavity are discussed. As second aspect the thermal evolution in the crystal under absorbed XFELO-pulses is investigated. An experiment for the investigation of the thermal evolution of crystals under simulated XFELO conditions is presented.

  5. Ultrafast phenomena at the nanoscale: science opportunities at the SwissFEL X-ray laser

    Energy Technology Data Exchange (ETDEWEB)

    Abela, R.; Braun, H.; Ming, P.; Pedrozzi, M.; Quitmann, Ch.; Reiche, S.; Daalen, M. van; Veen, J.F. van der; Mesot, J. [Paul Scherrer Intitute (PSI), Villigen (Switzerland); Mesot, J.; Shiroka, T.; Veen, J.F. van der [Swiss Federal Institute of Technology (ETHZ), Zuerich (Switzerland); Mesot, J. [Swiss Federal Institute of Technology (EPFL), Lausanne (Switzerland)

    2009-09-15

    In today's fast-moving society, standing still is effectively synonymous with being left behind. If it is to maintain, beyond the coming 10-15 years, its high international standing as a complex of large research infrastructures, the Paul Scherrer Institute (PSI) must now lay the foundation for a competitive future. Experts worldwide foresee a strongly growing demand within science and technology for photon sources delivering ultra-short, coherent X-ray pulses. Such a source, called a free electron laser (FEL), is nothing less than a gigantic flash camera, allowing us to take a deeper look into matter than with any other machine before. By literally seeing molecules in action, scientists will be able not only to capture chemical and biological processes of direct relevance and benefit to society but also to improve them. It is a dream coming true. For the first time, it will not only be possible to take pictures of molecular structures, we will be able to make movies of their motion. The new X-ray laser project at PSI, known as SwissFEL, will be an important addition to the existing complex of PSI facilities that serve interdisciplinary and international research teams from academia and industry. The SwissFEL is an essential element of Switzerland's strategic focus and will prolong our nation's leading position in scientific research for years to come. It will attract top scientists from Switzerland and abroad, and will strengthen the position of PSI as a world-class research institute. This new high-tech facility will also provide an important incentive for Swiss industry, through which existing highly-qualified jobs will be maintained and new ones created. In this report we present a wide range of important, open questions within science and engineering disciplines that SwissFEL will contribute towards solving. These questions, which form the 'scientific case' for SwissFEL, have been identified through a range of workshops organized over

  6. Benefits from the BESSY FEL Higher Harmonic Radiation

    CERN Document Server

    Goldammer, K

    2005-01-01

    In the FEL process, bunching and coherent radiation is produced at the fundamental frequency as well as its higher harmonics. BESSY proposes a linac-based cascaded High-Gain Harmonic-Generation (HGHG) free electron laser (FEL) multi-user facility. The BESSY soft X-ray FEL will be seeded by three lasers spanning the spectral range of 230nm to 460nm. Two to four HGHG stages downconvert the seed wavelength to the desired radiation range of 1.24nm to 51nm using higher harmonic bunching. As a surplus, higher harmonic radiation is intrinsically produced in each FEL stage. Radiation on a higher harmonic of the FEL frequency is of high interest because it yields the possibility to reduce the number of FEL stages. This paper details extensive studies of the higher harmonic content of the BESSY FEL radiation. Important aspects of FEL interaction on higher harmonics as resulting from theory and from numerical simulations are discussed. For the case of the BESSY FEL, methods for improving the harmonic content are present...

  7. Analysis of the FEL-RF interaction in recirculating, energy-recovering linacs with an FEL

    International Nuclear Information System (INIS)

    Merminga, L.; Alexeev, P.; Benson, S.; Bolshakov, A.; Doolittle, L.; Neil, G.

    1999-01-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, phase oscillations and optical cavity detuning. These effects in turn cause changes in the laser output power through a time-varying FEL gain function. All three effects change the beam-induced voltage in the cavities and can lead to unstable variations of the accelerating field and output laser power. We have developed a model of the coupled system and solved it both analytically and numerically. It includes the beam-cavity interaction, low level RF feedback, and the electron-photon interaction. The latter includes the FEL gain function in terms of cavity detuning, energy offset, and is valid both in the small signal gain and in the saturated regimes. We have demonstrated that in the limit of small perturbations, the linear theory agrees with the numerical solutions and have performed numerical simulations for the IR FEL presently being commissioned at Jefferson Lab

  8. Analysis of the FEL-RF interaction in recirculating energy-recovering linacs with an FEL

    International Nuclear Information System (INIS)

    Merminga, Lia; Alexeev, P.; Benson, Steve; Bolshakov, A.; Doolittle, Lawrence; Neil, George

    1999-01-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, phase oscillations and optical cavity detuning. These effects in turn cause changes in the laser output power through a time-varying FEL gain function. All three effects change the beam-induced voltage in the cavities and can lead to unstable variations of the accelerating field and output laser power. We have developed a model of the coupled system and solved it both analytically and numerically. It includes the beam-cavity interaction, low level RF feedback, and the electron-photon interaction. The latter includes the FEL gain function in terms of cavity detuning, energy offset, and is valid both in the small signal gain and in the saturated regimes. We have demonstrated that in the limit of small perturbations, the linear theory agrees with the numerical solutions and have performed numerical simulations for the IR FEL presently being commissioned at Jefferson Lab

  9. Analysis of the FEL-RF interaction in recirculating, energy-recovering linacs with an FEL

    Energy Technology Data Exchange (ETDEWEB)

    Merminga, L. E-mail: merminga@jlab.org; Alexeev, P.; Benson, S.; Bolshakov, A.; Doolittle, L.; Neil, G

    1999-06-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, phase oscillations and optical cavity detuning. These effects in turn cause changes in the laser output power through a time-varying FEL gain function. All three effects change the beam-induced voltage in the cavities and can lead to unstable variations of the accelerating field and output laser power. We have developed a model of the coupled system and solved it both analytically and numerically. It includes the beam-cavity interaction, low level RF feedback, and the electron-photon interaction. The latter includes the FEL gain function in terms of cavity detuning, energy offset, and is valid both in the small signal gain and in the saturated regimes. We have demonstrated that in the limit of small perturbations, the linear theory agrees with the numerical solutions and have performed numerical simulations for the IR FEL presently being commissioned at Jefferson Lab.

  10. Suppression of mode-beating in a saturated hole-coupled FEL oscillator

    International Nuclear Information System (INIS)

    Krishnagopal, S.; Xie, M.; Kim, K.J.

    1992-08-01

    In a hole-coupled resonator, either empty or loaded with a linear FEL gain medium, the phenomenon of mode-degeneracy and mode-beating have been studied. When the magnitudes of the eigenvalues, derived from a linear analysis, are equal for two or more dominant eigenmodes, the system cannot achieve a stable beam-profile. We investigate this phenomenon when a saturated FEL is present within the cavity, thus introducing non-linearity. We use a three-dimensional FEL oscillator code, based on the amplifier code TDA, and show that mode-beating is completely suppressed in the nonlinear saturated regime. We suggest a simple, qualitative model for the mechanism responsible for this suppression

  11. Design of a nondestructive two-in-one instrument for measuring the polarization and energy spectrum at an X-ray FEL facility

    Science.gov (United States)

    Zhang, Qingmin; Deng, Bangjie; Chen, Yuanmiaoliang; Liu, Bochao; Chen, Shaofei; Fan, Jinquan; Feng, Lie; Deng, Haixiao; Liu, Bo; Wang, Dong

    2017-10-01

    The free electron laser (FEL), as a next-generation light source, is an attractive tool in scientific frontier research because of its advantages of full coherence, ultra-short pulse duration, and controllable polarization. Owing to the demand of real-time bunch diagnosis during FEL experiments, precise nondestructive measurements of the polarization and X-ray energy spectrum using one instrument are preferred. In this paper, such an instrument based on the electron time-of-flight technique is proposed. By considering the complexity and nonlinearity, a numerical model in the framework of Geant4 has been developed for optimization. Taking the Shanghai Soft X-ray FEL user facility as an example, its measurement performances' dependence on the critical parameters was studied systematically, and, finally, an optimal design was obtained, achieving resolutions of 0.5% for the polarization degree and 0.3 eV for the X-ray energy spectrum.

  12. Studies of a Linac Driver for a High Repetition Rate X-Ray FEL

    International Nuclear Information System (INIS)

    Venturini, M.; Corlett, J.; Doolittle, L.; Filippetto, D.; Papadopoulos, C.; Penn, G.; Prosnitz, D.; Qiang, J.; Reinsch, M.; Ryne, R.; Sannibale, F.; Staples, J.; Wells, R.; Wurtele, J.; Zolotorev, M.; Zholents, A.

    2011-01-01

    We report on on-going studies of a superconducting CW linac driver intended to support a high repetition rate FEL operating in the soft x-rays spectrum. We present a pointdesign for a 1.8 GeV machine tuned for 300 pC bunches and delivering low-emittance, low-energy spread beams as needed for the SASE and seeded beamlines.

  13. The European XFEL project

    International Nuclear Information System (INIS)

    Floettmann, K.

    2005-01-01

    The European XFEL project is a 4th generation synchrotron radiation facility based on the SASE FEL concept and the superconducting TESLA technology for a linear accelerator. In February 2003 the German government decided that the XFEL should be realized as a European project and be located at DESY in Hamburg. The paper will give an overview of the overall layout and parameters of the facility, with emphasis on the accelerator design, technology and physics. (author)

  14. Extension of self-seeding to hard X-rays >10 keV as a way to increase user access at the European XFEL

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2011-11-01

    We propose to use the self-seeding scheme with single crystal monochromator at the European X-ray FEL to produce monochromatic, high-power radiation at 16 keV. Based on start to end simulations we show that the FEL power of the transform-limited pulses can reach about 100 GW by exploiting tapering in the tunable-gap baseline undulator. The combination of high photon energy, high peak power, and very narrow bandwidth opens a vast new range of applications, and includes the possibility to considerably increase the user capacity and fully exploit the high repetition rate of the European XFEL. In fact, dealing with monochromatic hard X-ray radiation one may use crystals as deflectors with minimum beam loss. To this end, a photon beam distribution system based on the use of crystals in the Bragg reflection geometry is proposed for future study and possible extension of the baseline facility. They can be repeated a number of times to forman almost complete (one meter scale) ring with an angle of 20 degrees between two neighboring lines. The reflectivity of crystal deflectors can be switched fast enough by flipping the crystals with piezo-electric devices similar to those for X-ray phase retarders at synchrotron radiation facilities. It is then possible to distribute monochromatic hard X-rays among 10 independent instruments, thereby enabling 10 users to work in parallel. The unmatched repetition rate of the European XFEL would be therefore fully exploited. (orig.)

  15. Extension of self-seeding to hard X-rays >10 keV as a way to increase user access at the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-11-15

    We propose to use the self-seeding scheme with single crystal monochromator at the European X-ray FEL to produce monochromatic, high-power radiation at 16 keV. Based on start to end simulations we show that the FEL power of the transform-limited pulses can reach about 100 GW by exploiting tapering in the tunable-gap baseline undulator. The combination of high photon energy, high peak power, and very narrow bandwidth opens a vast new range of applications, and includes the possibility to considerably increase the user capacity and fully exploit the high repetition rate of the European XFEL. In fact, dealing with monochromatic hard X-ray radiation one may use crystals as deflectors with minimum beam loss. To this end, a photon beam distribution system based on the use of crystals in the Bragg reflection geometry is proposed for future study and possible extension of the baseline facility. They can be repeated a number of times to forman almost complete (one meter scale) ring with an angle of 20 degrees between two neighboring lines. The reflectivity of crystal deflectors can be switched fast enough by flipping the crystals with piezo-electric devices similar to those for X-ray phase retarders at synchrotron radiation facilities. It is then possible to distribute monochromatic hard X-rays among 10 independent instruments, thereby enabling 10 users to work in parallel. The unmatched repetition rate of the European XFEL would be therefore fully exploited. (orig.)

  16. Research opportunities at the proposed Los Alamos XUV-FEL user facility

    International Nuclear Information System (INIS)

    Conradson, S.D.; Newman, B.E.

    1990-01-01

    This paper reports that within the last several years a number of meetings and conferences have addressed the unique scientific opportunities which would result from the development of an RF-linac FEL user facility accessing the XUV and mid-IR spectral regions. The capabilities of a number of linear and nonlinear spectroscopies would be enhanced by one or more features of the FEL output, e.g., its free tunability in these regions, transform-limited linewidth, high peak power and brightness, time structure, and the possibility of multi-color pump-probe experiments utilizing the coordinated output from more than one FEL oscillator. These advances would in turn benefit a variety of scientific areas. In the realm of basic science, experiments or measurements which ether require an FEL or where increased sensitivity would be advantageous can be found in quantum, atomic, cluster, molecular, and condensed matter physics, magnetic materials, surface science and catalysis, non-linear spectroscopy, and biophysics and -chemistry and physics, advanced fabrication processes, medical applications, and others. These applications form the basis for the specifications of the FEL and for the design of the laboratories for the proposed FEL user facility at Los Alamos

  17. Analysis of the FEL-RF interaction in recirculating, energy-recovering linacs with an FEL

    CERN Document Server

    Merminga, L; Benson, S; Bolshakov, A; Doolittle, L; Neil, George R

    1999-01-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, phase oscillations and optical cavity detuning. These effects in turn cause changes in the laser output power through a time-varying FEL gain function. All three effects change the beam-induced voltage in the cavities and can lead to unstable variations of the accelerating field and output laser power. We have developed a model of the coupled system and solved it both analytically and numerically. It includes the beam-cavity interaction, low level RF feedback, and the electron-photon interaction. The latter includes the FEL gain function in terms of cavity detuning, energy offset, and is valid both in the small signal gain and in the saturated regimes. We have demonstrated that in the limit of small perturbations, the linear theory agrees with the numerical solutions and have performed...

  18. Circular polarization control for the European XFEL in the soft X-ray regime

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-06-15

    The possibility of producing X-ray radiation with high degree of circular polarization is an important asset at XFEL facilities. Polarization control is most important in the soft X-ray region.However, the baseline of the European XFEL, including the soft X-ray SASE3 line, foresees planar undulators only, yielding linearly-polarized radiation. It is clear that the lowest-risk strategy for implementing polarization control at SASE3 involves adding an APPLE II-type undulator at the end of the planar undulator, in order to exploit the micro bunching from the baseline FEL. Detailed experience is available in synchrotron radiation laboratories concerning the manufacturing of 5 m-long APPLE II undulators. However, the choice of a short helical radiator leads to the problem of background suppression. The driving idea of our proposal is that the background radiation can be suppressed by spatial filtering. This operation can be performed by inserting slits behind the APPLE II radiator, where the linearly-polarized radiation spot size is about 30 times larger than the radiation spot size from the helical radiator. The last 7 cells of the SASE3 undulator are left with an open gap in order to provide a total 42 m drift section for electron beam and radiation. Due to the presence of the drift the linearly-polarized radiation spot size increases, and the linearly polarized background radiation can be suppressed by the slits. At the same time, the microbunch structure is easily preserved, so that intense (100 GW) coherent radiation is emitted in the helical radiator. We propose a filtering setup consisting of a pair of water cooled slits for X-ray beam filtering and of a 5 m-long magnetic chicane, which creates an offset for slit installation immediately behind the helical radiator. Electrons and X-rays are separated before the slits by the magnetic chicane, so that the electron beam can pass by the filtering setup without perturbations. Based on start-to-end simulations we

  19. Circular polarization control for the European XFEL in the soft X-ray regime

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2011-06-01

    The possibility of producing X-ray radiation with high degree of circular polarization is an important asset at XFEL facilities. Polarization control is most important in the soft X-ray region.However, the baseline of the European XFEL, including the soft X-ray SASE3 line, foresees planar undulators only, yielding linearly-polarized radiation. It is clear that the lowest-risk strategy for implementing polarization control at SASE3 involves adding an APPLE II-type undulator at the end of the planar undulator, in order to exploit the micro bunching from the baseline FEL. Detailed experience is available in synchrotron radiation laboratories concerning the manufacturing of 5 m-long APPLE II undulators. However, the choice of a short helical radiator leads to the problem of background suppression. The driving idea of our proposal is that the background radiation can be suppressed by spatial filtering. This operation can be performed by inserting slits behind the APPLE II radiator, where the linearly-polarized radiation spot size is about 30 times larger than the radiation spot size from the helical radiator. The last 7 cells of the SASE3 undulator are left with an open gap in order to provide a total 42 m drift section for electron beam and radiation. Due to the presence of the drift the linearly-polarized radiation spot size increases, and the linearly polarized background radiation can be suppressed by the slits. At the same time, the microbunch structure is easily preserved, so that intense (100 GW) coherent radiation is emitted in the helical radiator. We propose a filtering setup consisting of a pair of water cooled slits for X-ray beam filtering and of a 5 m-long magnetic chicane, which creates an offset for slit installation immediately behind the helical radiator. Electrons and X-rays are separated before the slits by the magnetic chicane, so that the electron beam can pass by the filtering setup without perturbations. Based on start-to-end simulations we

  20. Elements of a realistic 17 GHz FEL/TBA design

    International Nuclear Information System (INIS)

    Hopkins, D.B.; Halbach, K.; Hoyer, E.H.; Sessler, A.M.; Sternbach, E.J.

    1989-01-01

    Recently, renewed interest in an FEL version of a two-beam accelerator (TBA) has prompted a study of practical system and structure designs for achieving the specified physics goals. This paper presents elements of a realistic design for an FEL/TBA suitable for a 1 TeV, 17 GHz linear collider. 13 refs., 8 figs., 2 tabs

  1. Harmonic lasing in x-ray free electron lasers

    Directory of Open Access Journals (Sweden)

    E. A. Schneidmiller

    2012-08-01

    Full Text Available Harmonic lasing in a free electron laser with a planar undulator (under the condition that the fundamental frequency is suppressed might be a cheap and efficient way of extension of wavelength ranges of existing and planned x-ray free electron laser (FEL facilities. Contrary to nonlinear harmonic generation, harmonic lasing can provide much more intense, stable, and narrow-band FEL beam which is easier to handle due to the suppressed fundamental frequency. In this paper we perform a parametrization of the solution of the eigenvalue equation for lasing at odd harmonics, and present an explicit expression for FEL gain length, taking into account all essential effects. We propose and discuss methods for suppression of the fundamental harmonic. We also suggest a combined use of harmonic lasing and lasing at the retuned fundamental wavelength in order to reduce bandwidth and to increase brilliance of x-ray beam at saturation. Considering 3rd harmonic lasing as a practical example, we come to the conclusion that it is much more robust than usually thought, and can be widely used in the existing or planned x-ray FEL (XFEL facilities. In particular, Linac Coherent Light Source (LCLS after a minor modification can lase to saturation at the 3rd harmonic up to the photon energy of 25–30 keV providing multigigawatt power level and narrow bandwidth. As for the European XFEL, harmonic lasing would allow one to extend operating range (ultimately up to 100 keV, to reduce FEL bandwidth and to increase brilliance, to enable two-color operation for pump-probe experiments, and to provide more flexible operation at different electron energies. Similar improvements can be realized in other x-ray FEL facilities with gap-tunable undulators like FLASH II, SACLA, LCLS II, etc. Harmonic lasing can be an attractive option for compact x-ray FELs (driven by electron beams with a relatively low energy, allowing the use of the standard undulator technology instead of

  2. Optimizing x-ray mirror thermal performance using variable length cooling for second generation FELs

    Science.gov (United States)

    Hardin, Corey L.; Srinivasan, Venkat N.; Amores, Lope; Kelez, Nicholas M.; Morton, Daniel S.; Stefan, Peter M.; Nicolas, Josep; Zhang, Lin; Cocco, Daniele

    2016-09-01

    The success of the LCLS led to an interest across a number of disciplines in the scientific community including physics, chemistry, biology, and material science. Fueled by this success, SLAC National Accelerator Laboratory is developing a new high repetition rate free electron laser, LCLS-II, a superconducting linear accelerator capable of a repetition rate up to 1 MHz. Undulators will be optimized for 200 to 1300 eV soft X-rays, and for 1000 to 5000 eV hard X-rays. To absorb spontaneous radiation, higher harmonic energies and deflect the x-ray beam to various end stations, the transport and diagnostics system includes grazing incidence plane mirrors on both the soft and Hard X-ray beamline. To deliver the FEL beam with minimal power loss and wavefront distortion, we need mirrors of height errors below 1nm rms in operational conditions. We need to mitigate the thermal load effects due to the high repetition rate. The absorbed thermal profile is highly dependent on the beam divergence, and this is a function of the photon energy. To address this complexity, we developed a mirror cradle with variable length cooling and first order curve correction. Mirror figure error is minimized using variable length water-cooling through a gallium-indium eutectic bath. Curve correction is achieved with an off-axis bender that will be described in details. We present the design features, mechanical analysis and results from optical and mechanical tests of a prototype assembly, with particular regards to the figure sensitivity to bender corrections.

  3. The SwissFEL Experimental Laser facility.

    Science.gov (United States)

    Erny, Christian; Hauri, Christoph Peter

    2016-09-01

    The hard X-ray laser SwissFEL at the Paul Scherrer Institute is currently being commissioned and will soon become available for users. In the current article the laser facility is presented, an integral part of the user facility, as most time-resolved experiments will require a versatile optical laser infrastructure and precise information about the relative delay between the X-ray and optical pulse. The important key parameters are a high availability and long-term stability while providing advanced laser performance in the wavelength range from ultraviolet to terahertz. The concept of integrating a Ti:sapphire laser amplifier system with subsequent frequency conversion stages and drift compensation into the SwissFEL facility environment for successful 24 h/7 d user operation is described.

  4. Self-seeding scheme with gas monochromator for narrow-bandwidth soft X-ray FELs

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-03-15

    Self-seeding schemes, consisting of two undulators with a monochromator in between, aim at reducing the bandwidth of SASE X-ray FELs. We recently proposed to use a new method of monochromatization exploiting a single crystal in Bragg transmission geometry for self-seeding in the hard X-ray range. Here we consider a possible extension of this method to the soft X-ray range using a cell filled with resonantly absorbing gas as monochromator. The transmittance spectrum in the gas exhibits an absorbing resonance with narrow bandwidth. Then, similarly to the hard X-ray case, the temporal waveform of the transmitted radiation pulse is characterized by a long monochromatic wake. In fact, the FEL pulse forces the gas atoms to oscillate in a way consistent with a forward-propagating, monochromatic radiation beam. The radiation power within this wake is much larger than the equivalent shot noise power in the electron bunch. Further on, the monochromatic wake of the radiation pulse is combined with the delayed electron bunch and amplified in the second undulator. The proposed setup is extremely simple, and composed of as few as two simple elements. These are the gas cell, to be filled with noble gas, and a short magnetic chicane. The installation of the magnetic chicane does not perturb the undulator focusing system and does not interfere with the baseline mode of operation. In this paper we assess the features of gas monochromator based on the use of He and Ne.We analyze the processes in the monochromator gas cell and outside it, touching upon the performance of the differential pumping system as well. We study the feasibility of using the proposed self-seeding technique to generate narrow bandwidth soft X-ray radiation in the LCLS-II soft X-ray beam line. We present conceptual design, technical implementation and expected performances of the gas monochromator self-seeding scheme. (orig.)

  5. Self-seeding scheme with gas monochromator for narrow-bandwidth soft X-ray FELs

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2011-03-01

    Self-seeding schemes, consisting of two undulators with a monochromator in between, aim at reducing the bandwidth of SASE X-ray FELs. We recently proposed to use a new method of monochromatization exploiting a single crystal in Bragg transmission geometry for self-seeding in the hard X-ray range. Here we consider a possible extension of this method to the soft X-ray range using a cell filled with resonantly absorbing gas as monochromator. The transmittance spectrum in the gas exhibits an absorbing resonance with narrow bandwidth. Then, similarly to the hard X-ray case, the temporal waveform of the transmitted radiation pulse is characterized by a long monochromatic wake. In fact, the FEL pulse forces the gas atoms to oscillate in a way consistent with a forward-propagating, monochromatic radiation beam. The radiation power within this wake is much larger than the equivalent shot noise power in the electron bunch. Further on, the monochromatic wake of the radiation pulse is combined with the delayed electron bunch and amplified in the second undulator. The proposed setup is extremely simple, and composed of as few as two simple elements. These are the gas cell, to be filled with noble gas, and a short magnetic chicane. The installation of the magnetic chicane does not perturb the undulator focusing system and does not interfere with the baseline mode of operation. In this paper we assess the features of gas monochromator based on the use of He and Ne.We analyze the processes in the monochromator gas cell and outside it, touching upon the performance of the differential pumping system as well. We study the feasibility of using the proposed self-seeding technique to generate narrow bandwidth soft X-ray radiation in the LCLS-II soft X-ray beam line. We present conceptual design, technical implementation and expected performances of the gas monochromator self-seeding scheme. (orig.)

  6. Grating monochromator for soft X-ray self-seeding the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Serkez, Svitozar; Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany)

    2013-02-15

    Self-seeding is a promising approach to significantly narrow the SASE bandwidth of XFELs to produce nearly transform-limited pulses. The implementation of this method in the soft X-ray wavelength range necessarily involves gratings as dispersive elements. We study a very compact self-seeding scheme with a grating monochromator originally designed at SLAC, which can be straightforwardly installed in the SASE3 type undulator beamline at the European XFEL. The monochromator design is based on a toroidal VLS grating working at a fixed incidence angle mounting without entrance slit. It covers the spectral range from 300 eV to 1000 eV. The optical system was studied using wave optics method (in comparison with ray tracing) to evaluate the performance of the self-seeding scheme. Our wave optics analysis takes into account the actual beam wavefront of the radiation from the coherent FEL source, third order aberrations, and errors from each optical element. Wave optics is the only method available, in combination with FEL simulations, for the design of a self-seeding monochromator without exit slit. We show that, without exit slit, the self-seeding scheme is distinguished by the much needed experimental simplicity, and can practically give the same resolving power (about 7000) as with an exit slit. Wave optics is also naturally applicable to calculations of the self-seeding scheme efficiency, which include the monochromator transmittance and the effect of the mismatching between seed beam and electron beam. Simulations show that the FEL power reaches 1 TW and that the spectral density for a TW pulse is about two orders of magnitude higher than that for the SASE pulse at saturation.

  7. Grating monochromator for soft X-ray self-seeding the European XFEL

    International Nuclear Information System (INIS)

    Serkez, Svitozar; Kocharyan, Vitali; Saldin, Evgeni; Geloni, Gianluca

    2013-02-01

    Self-seeding is a promising approach to significantly narrow the SASE bandwidth of XFELs to produce nearly transform-limited pulses. The implementation of this method in the soft X-ray wavelength range necessarily involves gratings as dispersive elements. We study a very compact self-seeding scheme with a grating monochromator originally designed at SLAC, which can be straightforwardly installed in the SASE3 type undulator beamline at the European XFEL. The monochromator design is based on a toroidal VLS grating working at a fixed incidence angle mounting without entrance slit. It covers the spectral range from 300 eV to 1000 eV. The optical system was studied using wave optics method (in comparison with ray tracing) to evaluate the performance of the self-seeding scheme. Our wave optics analysis takes into account the actual beam wavefront of the radiation from the coherent FEL source, third order aberrations, and errors from each optical element. Wave optics is the only method available, in combination with FEL simulations, for the design of a self-seeding monochromator without exit slit. We show that, without exit slit, the self-seeding scheme is distinguished by the much needed experimental simplicity, and can practically give the same resolving power (about 7000) as with an exit slit. Wave optics is also naturally applicable to calculations of the self-seeding scheme efficiency, which include the monochromator transmittance and the effect of the mismatching between seed beam and electron beam. Simulations show that the FEL power reaches 1 TW and that the spectral density for a TW pulse is about two orders of magnitude higher than that for the SASE pulse at saturation.

  8. Scientific opportunities for FEL amplifier based VUV and X-ray research

    International Nuclear Information System (INIS)

    Johnson, E.D.

    1994-01-01

    It has become increasingly clear to a wide cross section of the synchrotron radiation research community that FELs will be the cornerstone of Fourth Generation Radiation Sources. Through the coherent generation of radiation, they provide as much as 12 orders of magnitude increase in peak power over the third generation storage ring machines of today. Facilities have been proposed which will extend the operating wavelength of these devices well beyond the reach of existing solid state laser technology. In addition, it appears possible to generate pulses of unprecedented brevity, down to a few femtoseconds, with mJ pulse energies. The combination of these attributes has stimulated considerable interest in short wavelength FELs for experiments in chemical, surface, and solid state physics, biology and materials science. This paper provides a brief overview of how the features of these FEL's relate to the experimental opportunities

  9. A pixelated x-ray detector for diffraction imaging at next-generation high-rate FEL sources

    Science.gov (United States)

    Lodola, L.; Ratti, L.; Comotti, D.; Fabris, L.; Grassi, M.; Malcovati, P.; Manghisoni, M.; Re, V.; Traversi, G.; Vacchi, C.; Batignani, G.; Bettarini, S.; Forti, F.; Casarosa, G.; Morsani, F.; Paladino, A.; Paoloni, E.; Rizzo, G.; Benkechkache, M. A.; Dalla Betta, G.-F.; Mendicino, R.; Pancheri, L.; Verzellesi, G.; Xu, H.

    2017-08-01

    The PixFEL collaboration has developed the building blocks for an X-ray imager to be used in applications at FELs. In particular, slim edge pixel detectors with high detection efficiency over a broad energy range, from 1 to 12 keV, have been developed. Moreover, a multichannel readout chip, called PFM2 (PixFEL front-end Matrix 2) and consisting of 32 × 32 cells, has been designed and fabricated in a 65 nm CMOS technology. The pixel pitch is 110 μm, the overall area is around 16 mm2. In the chip, different solutions have been implemented for the readout channel, which includes a charge sensitive amplifier (CSA) with dynamic signal compression, a time-variant shaper and an A-to-D converter with a 10 bit resolution. The CSA can be configured in four different gain modes, so as to comply with photon energies in the 1 to 10 keV range. The paper will describe in detail the channel architecture and present the results from the characterization of PFM2. It will discuss the design of a new version of the chip, called PFM3, suitable for post-processing with peripheral, under-pad through silicon vias (TSVs), which are needed to develop four-side buttable chips and cover large surfaces with minimum inactive area.

  10. The GALAXIE all-optical FEL project

    Energy Technology Data Exchange (ETDEWEB)

    Rosenzweig, J. B.; Arab, E.; Andonian, G.; Cahill, A.; Fitzmorris, K.; Fukusawa, A.; Hoang, P.; Jovanovic, I.; Marcus, G.; Marinelli, A.; Murokh, A.; Musumeci, P.; Naranjo, B.; O' Shea, B.; O' Shea, F.; Ovodenko, A.; Pogorelsky, I.; Putterman, S.; Roberts, K.; Shumail, M. [Dept. of Physics and Astronomy, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90034 (United States); Dept. of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Dept. of Physics and Astronomy, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90034 (United States); and others

    2012-12-21

    We describe a comprehensive project, funded under the DARPA AXiS program, to develop an all-optical table-top X-ray FEL based on dielectric acceleration and electromagnetic undulators, yielding a compact source of coherent X-rays for medical and related applications. The compactness of this source demands that high field (>GV/m) acceleration and undulation-inducing fields be employed, thus giving rise to the project's acronym: GV/m AcceLerator And X-ray Integrated Experiment (GALAXIE). There are numerous physics and technical hurdles to surmount in this ambitious scenario, and the integrated solutions include: a biharmonic photonic TW structure, 200 micron wavelength electromagnetic undulators, 5 {mu}m laser development, ultra-high brightness magnetized/asymmetric emittance electron beam generation, and SASE FEL operation. We describe the overall design philosophy of the project, the innovative approaches to addressing the challenges presented by the design, and the significant progress towards realization of these approaches in the nine months since project initialization.

  11. The CSU Accelerator and FEL Facility

    NARCIS (Netherlands)

    Milton, S.V.; Biedron, S.G.; Burleson, T.; Carrico, C.; Edelenbos, J.; Hall, C.; Horovitz, K.; Morin, A.; Rand, L.; Sipahi, N.; Sipahi, T.; van der Slot, P.; Yehudah, H.; Dong, A.; Tanaka, T.; Schaa, V.R.W.

    2013-01-01

    The Colorado State University (CSU) Accelerator Facility will include a 6-MeV L-Band electron linear accelerator (linac) with a free-electron laser (FEL) system capable of producing Terahertz (THz) radiation, a laser laboratory, a microwave test stand, and a magnetic test stand. The photocathode

  12. X-ray beam splitting design for concurrent imaging at hard X-ray FELs and synchrotron facilities

    Energy Technology Data Exchange (ETDEWEB)

    Oberta, P., E-mail: peter.oberta@rigaku.com [Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i., Na Slovance 2, Praha 8, CZ-18221 (Czech Republic); Rigaku, Novodvorská 994, Praha 4, CZ-14221 (Czech Republic); Mokso, R. [Swiss Light Source, Paul Scherrer Institut, Villigen, CH-5232 Villigen (Switzerland)

    2013-11-21

    A new configuration of diffractive–refractive optics for beam splitting is investigated. The set-up can be applied to perform imaging with two beams simultaneously. It brings advantages toward dynamic studies using image guided diffraction or fluorescence spectroscopy. The optimal energy range of operation for the beam-splitter is between 7 keV and 24 keV, reaching best efficiency at an energy of 10 keV. Due to the long focusing distances (several tens of meters) created by the diffractive–refractive optics and the higher refraction efficiency in the softer energy range, the presented set-ups are ideal for hard X-ray FEL sources.

  13. Statistical properties of SASE FEL radiation: experimental results from the VUV FEL at the TESLA test facility at DESY

    International Nuclear Information System (INIS)

    Yurkov, M.V.

    2002-01-01

    This paper presents an experimental study of the statistical properties of the radiation from a SASE FEL. The experiments were performed at the TESLA Test Facility VUV SASE FEL at DESY operating in a high-gain linear regime with a gain of about 10 6 . It is shown that fluctuations of the output radiation energy follows a gamma-distribution. We also measured for the first time the probability distribution of SASE radiation energy after a narrow-band monochromator. The experimental results are in good agreement with theoretical predictions, the energy fluctuations after the monochromator follow a negative exponential distribution

  14. Optical properties of infrared FELs from the FELI Facility II

    Energy Technology Data Exchange (ETDEWEB)

    Saeki, K.; Okuma, S.; Oshita, E. [Free Electron Laser Institute, Osaka (Japan)] [and others

    1995-12-31

    The FELI Facility II has succeeded in infrared FEL oscillation at 1.91 {mu} m using a 68-MeV, 40-A electron beam from the FELI S-band linac in February 27, 1995. The FELI Facility II is composed of a 3-m vertical type undulator ({lambda}u=3.8cm, N=78, Km a x=1.4, gap length {ge}20mm) and a 6.72-m optical cavity. It can cover the wavelength range of 1-5{mu}m. The FELs can be delivered from the optical cavity to the diagnostics room through a 40-m evacuated optical pipeline. Wavelength and cavity length dependences of optical properties such as peak power, average power, spectrum width, FEL macropulse, FEL transverse profile are reported.

  15. A proposed visible FEL Facility at Boeing

    Energy Technology Data Exchange (ETDEWEB)

    Dowell, D.H.; Adamski, J.L.; Hayward, T.D. [Boeing Defense & Space Group, Seattle, WA (United States)] [and others

    1995-12-31

    A 1-kW average power, visible wavelength FEL is described, based on a 120-MeV, 0.1. A macropulse average current linac operating at a duty factor of 0. 6% and having average beam power of 70 kW. The accelerator will employ a demonstrated photoinjector, 18-MeV, 433-MHz linac as an injector, followed by a 1300-MHz longitudinal phase space {open_quotes} linearizer,{close_quotes} a magnetic buncher chicane, and seven 1300-MHz, pulsed traveling wave linac sections. The magnets used to transport the beam from the linac to the FEL centerline, the 5-m THUNDER wiggler, and the optical resonator will be reclaimed from previous FEL demonstration experiments. We expect to attain pulse lengths of 7 ps for 3.5 nC, with minimal distortion of the pulse profile and normalized rms emittance of 7.5 {+-} 2.5 {pi} mm-mr. FELEX projects a laser conversion efficiency of 4.3 %, yielding average output of 3 kW.

  16. Present status and future directions of the JAERI superconducting RF linac-based FEL

    International Nuclear Information System (INIS)

    Minehara, EJ.; Yamauchi, T.; Sugimori, M.; Sawamura, M.; Hajima, R.; Nagai, R.; Kikuzawa, N.; Nishimori, N.; Shizuma, T.

    2000-01-01

    The JAERI superconducting rf linac based FEL has successfully been lased to produce a 2.34kW FEL light and l00kW electron beam output in quasi continuous wave operation in February 2000. Twice larger output than the present program goal of 1kW was achieved to improve the optical out coupling method in the FEL optical resonator, the electron gun, and the electron beam optics in the JAERI FEL driver. As our next 2 years program goal is the 100kW class FEL light and a few MW class electron beam output in average, quasi continuous wave operation of the light and electron beam will be planned in the JAERI superconducting rf linac based FEL facility. Conceptual and engineering design options needed for such a very high power operation will be discussed to improve and to upgrade the existing facility. Finally, several applications, table-top superconducting rf linac based FELs, and an X-ray FEL R and D will be discussed as a next-five years program at JAERI-FEL laboratory. (author)

  17. An Experimental Study of an FEL Oscillator with a Linear Taper

    International Nuclear Information System (INIS)

    Benson, S.; Gubeli, J.; Neil, G.R.

    2001-01-01

    Motivated by the work of Saldin, Schneidmiller and Yurkov, we have measured the detuning curve widths, spectral characteristics, efficiency, and energy spread as a function of the taper for low and high Q resonators in the IR Demo FEL at Jefferson Lab. Both positive and negative tapers were used. Gain and frequency agreed reasonably well with the predictions of a single mode theory. The efficiency agreed reasonably well for a negative taper with a high Q resonator but disagreed for lower Q values due to the large slippage parameter and the non-ideal resonator Q. We saw better efficiency for a negative taper than for the same positive taper. The energy spread induced in the beam, normalized to the efficiency is larger for the positive taper than for the corresponding negative taper. This indicates that a negative taper is preferred over a positive taper in an energy recovery FEL

  18. Some issues and subtleties in numerical simulation of X-ray FEL's

    International Nuclear Information System (INIS)

    Fawley, William M.

    2002-01-01

    Part of the overall design effort for x-ray FEL's such as the LCLS and TESLA projects has involved extensive use of particle simulation codes to predict their output performance and underlying sensitivity to various input parameters (e.g. electron beam emittance). This paper discusses some of the numerical issues that must be addressed by simulation codes in this regime. We first give a brief overview of the standard approximations and simulation methods adopted by time-dependent(i.e. polychromatic) codes such as GINGER, GENESIS, and FAST3D, including the effects of temporal discretization and the resultant limited spectral bandpass,and then discuss the accuracies and inaccuracies of these codes in predicting incoherent spontaneous emission (i.e. the extremely low gain regime)

  19. Locking Lasers to RF in an Ultrafast FEL

    International Nuclear Information System (INIS)

    Wilcox, R.; Huang, G.; Doolittle, L.; White, W.; Frisch, J.; Coffee, R.

    2010-01-01

    Using a novel, phase-stabilized RF-over-fiber scheme, they transmit 3GHz over 300m with 27fs RMS error in 250kHz bandwidth over 12 hours, and phase lock a laser to enable ultrafast pump-probe experiments. Free-electron lasers (FELs) are capable of producing short-duration (< 10fs), high-energy X-ray pulses for a range of scientific applications. The recently activated Linac Coherent Light Source (LCLS) FEL facility at SLAC will support experiments which require synchronized light pulses for pump-probe schemes. They developed and operated a fiber optic RF transmission system to synchronize lasers to the emitted X-ray pulses, which was used to enable the first pump-probe experiments at the LCLS.

  20. FEL system with homogeneous average output

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, David R.; Legg, Robert; Whitney, R. Roy; Neil, George; Powers, Thomas Joseph

    2018-01-16

    A method of varying the output of a free electron laser (FEL) on very short time scales to produce a slightly broader, but smooth, time-averaged wavelength spectrum. The method includes injecting into an accelerator a sequence of bunch trains at phase offsets from crest. Accelerating the particles to full energy to result in distinct and independently controlled, by the choice of phase offset, phase-energy correlations or chirps on each bunch train. The earlier trains will be more strongly chirped, the later trains less chirped. For an energy recovered linac (ERL), the beam may be recirculated using a transport system with linear and nonlinear momentum compactions M.sub.56, which are selected to compress all three bunch trains at the FEL with higher order terms managed.

  1. Simulation studies of a XUV/soft X-ray harmonic-cascade FEL for the proposed LBNL recirculating linac*

    International Nuclear Information System (INIS)

    Fawley, W.M.; Barletta, W.A.; Corlett, J.N.; Zholents, A.

    2003-01-01

    Presently there is significant interest at LBNL in designing and building a facility for ultrafast (i.e. femtosecond time scale) x-ray science based upon a superconducting, recirculating RF linac (see Corlett et al. for more details). In addition to producing synchrotron radiation pulses in the 1-15 keV energy range, we are also considering adding one or more free-electron laser (FEL) beamlines using a harmonic cascade approach to produce coherent XUV soft X-ray emission beginning with a strong input seed at ∼200 nm wavelength obtained from a ''conventional'' laser. Each cascade is composed of a radiator together with a modulator section, separated by a magnetic chicane. The chicane temporally delays the electron beam pulse in order that a ''virgin'' pulse region (with undegraded energy spread) be brought into synchronism with the radiation pulse, which together then undergo FEL action in the modulator. We present various results obtained with the GINGER simulation code examining final output sensitivity to initial electron beam parameters. We also discuss the effects of spontaneous emission and shot noise upon this particular cascade approach which can limit the final output coherence

  2. Introduction: a short-wavelength-FEL/storage-ring complex

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1984-01-01

    We believe that, in view of the present state of FEL understanding, it is now proper to construct a research facility devoted to the use of coherent radiation and the advancement of FEL physics technology at wavelengths shorter than 1000 A. We show a possible layout of such a facility, which will be referred to as a Coherent xuv Facility (CXF), where research can be conducted on several techniques for generating coherent radiation. Undulators are already well understood and will generate broadly tunable, spatially coherent radiation of bandwidth lambda /Δlambda approx. = 10 2 . A crossed undulator system will extend the undulator capability to include variable polarization. For full coherence, in spatial as well as in longitudinal directions, it is necessary to induce and exploit density modulation in electron beams, as is the case in the transverse optical klystrons (TOKs) and FELs. In TOKs, coherent radiation is generated at harmonics of an input laser frequency, with the electron beam playing the role of a nonlinear medium. Ultimately, FELS would deliver intense, tunable x rays and vuv radiation of extremely narrow spectral width. There are two possible routes to an FEL, one based on feedback by end mirrors, the other based on development of a high-gain, single-pass device. It can be seen, from this paper, that the photon flux increases monotonically, or the wavelength decreases monotonically, as one goes through (1) undulator radiation, (2) TOK radiation, (3) FEL oscillator radiation, to (4) FEL single-pass radiation. Each of these will demand considerable quality development effort. Each will result in photon fluxes of increased value to the users

  3. Optimization Studies of the FERMI at ELETTRA FEL Design

    International Nuclear Information System (INIS)

    De Ninno, Giovanni; Fawley, William M.; Penn, Gregory E.; Graves, William

    2005-01-01

    The FERMI at ELETTRA project at Sincotrone Trieste involves two FEL's, each based upon the principle of seeded harmonic generation and using the existing ELETTRA injection linac at 1.2 GeV beam energy. Scheduled to be completed in 2008, FEL-1 will operate in 40-100 nm wavelength range and will involve one stage of harmonic up-conversion. The second undulator line, FEL-2, will begin operation two years later in the 10-40 nm wavelength range and use two harmonic stages operating as a cascade. The FEL design assumes continuous wavelength tunability over the full wavelength range, and polarization tunability of the output radiation including vertical or horizontal linear as well as helical polarization. The design considers focusing properties and segmentation of realizable undulators and available input seed lasers. We review the studies that have led to our current design. We present results of simulations using GENESIS and GINGER simulation codes including studies of various shot-to-shot fluctuations and undulator errors. Findings for the expected output radiation in terms of the power, transverse and longitudinal coherence are reported

  4. Future metrology needs for FEL reflective optics

    International Nuclear Information System (INIS)

    Assoufid, L.

    2000-01-01

    An International Workshop on Metrology for X-ray and Neutron Optics has been held March 16-17, 2000, at the Advanced Photon Source, Argonne National Laboratory, near Chicago, Illinois (USA). The workshop gathered engineers and scientists from both the U.S. and around the world to evaluate metrology instrumentation and methods used to characterize surface figure and finish for long grazing incidence optics used in beamlines at synchrotrons radiation sources. This two-day workshop was motivated by the rapid evolution in the performance of x-ray and neutron sources along with requirements in optics figure and finish. More specifically, the performance of future light sources, such as free-electron laser (FEL)-based x-ray sources, is being pushed to new limits in term of both brilliance and coherence. As a consequence, tolerances on surface figure and finish of the next generation of optics are expected to become tighter. The timing of the workshop provided an excellent opportunity to study the problem, evaluate the state of the art in metrology instrumentation, and stimulate innovation on future metrology instruments and techniques to be used to characterize these optics. This paper focuses on FEL optics and metrology needs. (A more comprehensive summary of the workshop can be found elsewhere.) The performance and limitations of current metrology instrumentation will be discussed and recommendations from the workshop on future metrology development to meet the FEL challenges will be detailed

  5. Future metrology needs for FEL reflective optics.

    Energy Technology Data Exchange (ETDEWEB)

    Assoufid, L.

    2000-09-21

    An International Workshop on Metrology for X-ray and Neutron Optics has been held March 16-17, 2000, at the Advanced Photon Source, Argonne National Laboratory, near Chicago, Illinois (USA). The workshop gathered engineers and scientists from both the U.S. and around the world to evaluate metrology instrumentation and methods used to characterize surface figure and finish for long grazing incidence optics used in beamlines at synchrotrons radiation sources. This two-day workshop was motivated by the rapid evolution in the performance of x-ray and neutron sources along with requirements in optics figure and finish. More specifically, the performance of future light sources, such as free-electron laser (FEL)-based x-ray sources, is being pushed to new limits in term of both brilliance and coherence. As a consequence, tolerances on surface figure and finish of the next generation of optics are expected to become tighter. The timing of the workshop provided an excellent opportunity to study the problem, evaluate the state of the art in metrology instrumentation, and stimulate innovation on future metrology instruments and techniques to be used to characterize these optics. This paper focuses on FEL optics and metrology needs. (A more comprehensive summary of the workshop can be found elsewhere.) The performance and limitations of current metrology instrumentation will be discussed and recommendations from the workshop on future metrology development to meet the FEL challenges will be detailed.

  6. Free-electron laser multiplex driven by a superconducting linear accelerator.

    Science.gov (United States)

    Plath, Tim; Amstutz, Philipp; Bödewadt, Jörn; Brenner, Günter; Ekanayake, Nagitha; Faatz, Bart; Hacker, Kirsten; Honkavaara, Katja; Lazzarino, Leslie Lamberto; Lechner, Christoph; Maltezopoulos, Theophilos; Scholz, Matthias; Schreiber, Siegfried; Vogt, Mathias; Zemella, Johann; Laarmann, Tim

    2016-09-01

    Free-electron lasers (FELs) generate femtosecond XUV and X-ray pulses at peak powers in the gigawatt range. The FEL user facility FLASH at DESY (Hamburg, Germany) is driven by a superconducting linear accelerator with up to 8000 pulses per second. Since 2014, two parallel undulator beamlines, FLASH1 and FLASH2, have been in operation. In addition to the main undulator, the FLASH1 beamline is equipped with an undulator section, sFLASH, dedicated to research and development of fully coherent extreme ultraviolet photon pulses using external seed lasers. In this contribution, the first simultaneous lasing of the three FELs at 13.4 nm, 20 nm and 38.8 nm is presented.

  7. RF linacs for FELs

    International Nuclear Information System (INIS)

    Schwettman, H.A.

    1992-01-01

    There are twenty rf linac-driven Free Electron Lasers (FELs) existing or under construction throughout the world and proposals for several more. A number of these FELs have recently been established as facilities to produce coherent optical beams for materials and biomedical research. Both short pulse low duty factor and long pulse high duty factor linac-driven FELs will be discussed. Accelerator issues that influence the performance of an FEL as a scientific instrument will be indicated. (Author) 6 refs., 6 figs., 2 tabs

  8. The 'Fresh-Bunch' technique in FELs

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Yang, K.M.; Yu, L.H.

    1991-01-01

    The 'Fresh Bunch' technique is being proposed as a method of increasing the gain and power of FEL amplifiers in which the length of the optical radiation pulse is shorter than the length of the electron bunch. In multi-stage FEL, electron beam energy spread is increased by the FEL interaction in the early stages. In the 'Fresh Bunch' technique, the low energy spread of the electron beam is recovered by shifting the radiation pulse to an undisturbed part of the electron bunch, thus improving the gain and trapping fraction in later stages. A test case for the application of the Fresh Bunch method is demonstrated by numerical simulation. In this particular example we examine a subharmonically seeded VUV Free-Electron Laser. We begin with the generation of harmonic radiation, which takes place over one part of the electron bunch. Then the radiation is shifted by means of a strong dispersive section to a fresh part of the bunch for exponential amplification and tapered wiggler amplification. By starting over with a new ensemble of electrons, the energy spread introduced by the bunching in the fundamental is removed, leading to an increased gain. Furthermore, it is possible to use a much stronger seed in the fundamental without incurring the penalty of a large energy spread later on. We note that more than a single application of the 'Fresh Bunch' method may be done in a single FEL multiplier-amplifier. Thus x-ray wavelengths may be reached by successive multiplication in a chain of FEL amplifiers starting from a tunable seed laser. 5 refs., 2 figs., 2 tabs

  9. Coherence and linewidth studies of a 4-nm high power FEL

    International Nuclear Information System (INIS)

    Fawley, W.M.; Sessler, A.M.; Scharlemann, E.T.

    1993-05-01

    Recently the SSRL/SLAC and its collaborators elsewhere have considered the merits of a 2 to 4-nm high power FEL utilizing the SLAC linac electron beam. The FEL would be a single pass amplifier excited by spontaneous emission rather than an oscillator, in order to eliminate the need for a soft X-ray resonant cavity. We have used GINGER, a multifrequency 2D FEL simulation code, to study the expected linewidth and coherence properties of the FEL, in both the exponential and saturated gain regimes. We present results concerning the effective shot noise input power and mode shape, the expected subpercent output line widths, photon flux, and the field temporal and spatial correlation functions. We also discuss the effects of tapering the wiggler upon the output power and line width

  10. Bunch compression for an FEL at NLCTA

    International Nuclear Information System (INIS)

    Zimmermann, F.

    1997-04-01

    As part of the design effort for a free electron laser driven by the Next Linear Collider Test Accelerator (NLCTA), the author reports studies of bunch-length compression utilizing the existing infrastructure and hardware. In one possible version of the NLCTA FEL, bunches with 900-microm FWHM length, generated by an S-band photo-injector, would be compressed to an rms length of 60--120 microm before entering the FEL undulator. It is shown that, using the present magnetic chicane, the bunch compression is essentially straightforward, and that almost all emittance-diluting effects, e.g. wakefields, chromaticity, or space charge in the bending magnets, are small. The only exception to this finding is the predicted increase of the horizontal emittance due to coherent synchrotron radiation (CSR). Estimates based on existing theories of coherent synchrotron radiation suggest a tripling or quadrupling of the initial emittance, which seems to preclude bunch compression during regular FEL operation. Serendipitously, the magnitude of the predicted emittance growth would, on the other hand, make the NLCTA chicane an excellent tool for measuring the effects of coherent synchrotron radiation. This will be of considerable interest to many future projects, in particular to the Linac Coherent Light Source (LCLS). As an aside, it is shown that coherent synchrotron radiation in a bending magnet gives rise to a minimum possible bunch length, which is very reminiscent of the Oide limit on the vertical spot size at the interaction point of a linear collider

  11. Purified SASE undulator configuration to enhance the performance of the soft x-ray beamline at the European XFEL

    International Nuclear Information System (INIS)

    Serkez, Svitozar; Kocharyan, Vitali; Saldin, Evgeni; Zagorodnov, Igor; Geloni, Gianluca

    2013-08-01

    The purified SASE (pSASE) undulator configuration recently proposed at SLAC promises an increase in the output spectral density of XFELs. In this article we study a straightforward implementation of this configuration for the soft x-ray beamline at the European XFEL. A few undulator cells, resonant at a subharmonic of the FEL radiation, are used in the middle of the exponential regime to amplify the radiation, while simultaneously reducing the FEL bandwidth. Based on start-to-end simulations, we show that with the proposed configuration the spectral density in the photon energy range between 1.3 keV and 3 keV can be enhanced of an order of magnitude compared to the baseline mode of operation. This option can be implemented into the tunable-gap SASE3 baseline undulator without additional hardware, and it is complementary to the self-seeding option with grating monochromator proposed for the same undulator line, which can cover the photon energy range between about 0.26 keV and 1 keV.

  12. Multicascade X-Ray Free-Electron Laser with Harmonic Multiplier and Two-Frequency Undulator

    Science.gov (United States)

    Zhukovsky, K. V.

    2018-06-01

    The feasibility of generation of powerful x-ray radiation by a cascade free-electron laser (FEL) with amplification of higher harmonics using a two-frequency undulator is studied. To analyze the FEL operation, a complex phenomenological single-pass FEL model is developed and used. It describes linear and nonlinear generation of harmonics in the FEL with seed laser that takes into account initial electron beam noise and describes all main losses of each harmonic in each FEL cascade. The model is also calibrated against and approved by the experimental FEL data and available results of three-dimensional numerical simulation. The electron beam in the undulator is assumed to be matched and focused, and the dynamics of power in the singlepass FEL with cascade harmonic multipliers is investigated to obtain x-ray laser radiation in the FEL having the shortest length, beam energy, and frequency of the seed laser as low as possible. In this context, the advantages of the two-frequency undulator used for generation of harmonics are demonstrated. The evolution of harmonics in a multicascade FEL with multiplication of harmonics is investigated. The operation of the cascade FEL at the wavelength λ = 1.14 nm, generating 30 MW already on 38 m with the seed laser operating at a wavelength of 11.43 nm corresponding to the maximal reflectivity of the multilayered mirror MoRu/Be coating is investigated. In addition, the operation of the multicascade FEL with accessible seed UVlaser operating at a wavelength of 157 nm (F2 excimer UV-laser) and electron beam with energy of 0.5 GeV is investigated. X-ray radiation simulated in it at the wavelength λ 3.9 nm reaches power of 50 MW already at 27 m, which is by two orders of magnitude shorter than 3.4 km of the x-ray FEL recently put into operation in Europe.

  13. Photoionization of atoms and molecules by intense EUV-FEL pulses and FEL seeded by high-order harmonic of ultrashort laser pulses

    International Nuclear Information System (INIS)

    Iwasaki, Atsushi; Owada, Shigeki; Yamanouchi, Kaoru; Sato, Takahiro; Nagasono, Mitsuru; Yabashi, Makina; Ishikawa, Tetsuya; Togashi, Tadashi; Takahashi, Eiji J.; Midorikawa, Katsumi; Aoyama, Makoto; Yamakawa, Koichi; Kannari, Fumihiko; Yagishita, Akira

    2012-01-01

    The advantages of SPring-8 Compact SASE Source as a light source for spectroscopic measurements in the extreme ultraviolet (EUV) wavelength region are introduced by referring to our recent study of non-linear photoionization processes of He, in which the absolute two-photon ionization cross sections of He at four different wavelengths in the 54 - 62 nm region were determined using intense pulses of the free-election laser (FEL). In addition, our recent effort to generate intense full-coherent EUV light pulses are introduced, in which significant amplification of the 13th harmonic of ultrashort laser pulses at 800 nm was achieved by FEL seeded with the 13th harmonic. (author)

  14. Proceedings of the 3rd topical meeting on FEL and high power radiation

    International Nuclear Information System (INIS)

    Hiramatsu, Shigenori

    1994-01-01

    The meeting was held on June 10 and 11, 1993, at the National Laboratory for High Energy Physics. This is the joint study meeting with 31st large power microwave-milliwave study meeting. At the meeting, lectures were given on the report of 1st Asia FEL study meeting, infrared free electron laser (FEL) project in JAERI, present state of Free Electron Laser Research Institute Inc., infrared FEL experiment in the Institute of Scientific and Industrial Research, Osaka University, FEL experiment in UVSOR storage ring, NIJI-4 SRFEL, simulation of FEL oscillation in photo-klystron, vacuum UVFEL in PF, beam characteristics of small photon storage ring, micro-cherenkov FEL using field emission array, coherent spontaneous emission and radiation build-up in FEL oscillator, stability of soft X-ray multilayers under exposure to multipole Wigger radiation, long life Zn 2 excimer excited with relativistic electron beam, development of large power klystron in KEK, design of 1 THz gyrotron and first experiment, experiment of relativistic peniotron, experiments of 3rd and 10th cyclotron harmonic peniotron oscillators and others. (K.I.)

  15. HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS

    International Nuclear Information System (INIS)

    2005-01-01

    Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department

  16. Colorado State University (CSU) accelerator and FEL facility

    NARCIS (Netherlands)

    Milton, S.; Biedron, S.; Harris, J.; Martinez, J.; D'Audney, A.; Edelen, J.; Einstein, J.; Hall, C.; Horovitz, K.; Morin, A.; Sipahi, N.; Sipahi, T.; Williams, J.; Carrico, C.; Van Der Slot, P. J M

    2014-01-01

    The Colorado State University (CSU) Accelerator Facility will include a 6-MeV L-Band (1.3 GHz) electron linear accelerator (linac) with a free-electron laser (FEL) system capable of producing Terahertz (THz) radiation, a laser laboratory, a microwave test laboratory, and a magnetic test laboratory.

  17. FELI linac for IR- and UV-FEL facilities

    International Nuclear Information System (INIS)

    Tomimasu, T.; Morii, Y.; Abe, S.

    1995-01-01

    FELI linac and IR-FEL facilities are now under construction and electron beams of 30-75MeV will be used for FIR- and IR-FEL experiments in this summer. It is composed of a 5-MeV electron injector and seven ETL type accelerating waveguides with a length of 2.93m (2π/3 mode, linearly tapered type). The injector consists of a 150-kV DC thermoionic triode gun operated by a 178.5-MHz and 500-ps pulser, a 714-MHz prebuncher (SHB), and a 2856-MHz standing wave type buncher (SWB). The linac is operated in three modes of 24μs, 12.5μs and 0.5μs. With a choice of three modes, the maximum beam loaded energy can be changed from 165 MeV to 288 MeV. The linac beam is sent to four vertical type undulators using S-type BT systems installed at 30-MeV, 75-MeV, 120-MeV, and 165-MeV sections at a 24-μs pulse beam load. The beam, once used for lasing at 30-MeV section or at 75-MeV section, can be bent back to the following accelerating waveguide and is reaccelerated and reused for lasing. Parameters of four undulators and intended FEL applications are shown. FEL spectral widths and wavelength limitations are also reviewed and discussed for 0.3μm FEL oscillations FELI is aiming at by the end of 1996. (author)

  18. The Harmonically Coupled 2-Beam FEL

    CERN Document Server

    McNeil, Brian W J

    2004-01-01

    A 1-D model of a 2-beam Free Electron Laser amplifier is presented. The two co-propagating electron beams have different energies, chosen so that the fundamental resonant FEL interaction of the higher energy beam is at an harmonic of the lower energy beam. In this way, a coupling between the FEL interactions of the two beams occurs via the harmonic components of the electron bunching and radiation emission of the lower energy interaction. Such resonantly coupled FEL interactions may offer potential benefits over existing single beam FEL schemes. A simple example is presented where the lower energy FEL interaction only is seeded with radiation at its fundamental resonant wavelength. It is predicted that the coherence properties of this seed field are transfered via the resonantly coupled FEL interaction to the un-seeded higher energy FEL interaction, thereby improving its coherence properties over that of a SASE interaction alone. This method may offer an alternative seeding scheme for FELs operating in the XU...

  19. FEL Trajectory Analysis for the VISA Experiment

    International Nuclear Information System (INIS)

    Nuhn, Heinz-Dieter

    1998-01-01

    The Visual to Infrared SASE Amplifier (VISA) [1] FEL is designed to achieve saturation at radiation wavelengths between 800 and 600 nm with a 4-m pure permanent magnet undulator. The undulator comprises four 99-cm segments each of which has four FODO focusing cells superposed on the beam by means of permanent magnets in the gap alongside the beam. Each segment will also have two beam position monitors and two sets of x-y dipole correctors. The trajectory walk-off in each segment will be reduced to a value smaller than the rms beam radius by means of magnet sorting, precise fabrication, and post-fabrication shimming and trim magnets. However, this leaves possible inter-segment alignment errors. A trajectory analysis code has been used in combination with the FRED3D [2] FEL code to simulate the effect of the shimming procedure and segment alignment errors on the electron beam trajectory and to determine the sensitivity of the FEL gain process to trajectory errors. The paper describes the technique used to establish tolerances for the segment alignment

  20. 8-channel, FPGA based, DSP integrated cavity simulator and controller for VUV-FEL. SIMCON 3.0 Ver. 3.0. rev. 1, 06.2005 - Hardware manual

    International Nuclear Information System (INIS)

    Pozniak, K.T.; Czarski, T.; Koprek, W.; Giergusiewicz, W.; Romaniuk, R.S.

    2005-01-01

    system, linear accelerators, FPGA, FPGA-DSP enhanced, VHDL, FEL, TESLA, TTF, UV-FEL, Xilinx, FPGA based systems, LLRF control system of third generation, electronics for UV-FEL, X-Ray FEL and TESLA

  1. Towards short wavelengths FELs workshop

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Winick, H.

    1993-01-01

    This workshop was caged because of the growing perception in the FEL source community that recent advances have made it possible to extend FEL operation to wavelengths about two orders of magnitude shorter than the 240 nm that has been achieved to date. In addition short wavelength FELs offer the possibilities of extremely high peak power (several gigawatts) and very short pulses (of the order of 100 fs). Several groups in the USA are developing plans for such short wavelength FEL facilities. However, reviewers of these plans have pointed out that it would be highly desirable to first carry out proof-of-principle experiments at longer wavelengths to increase confidence that the shorter wavelength devices will indeed perform as calculated. The need for such experiments has now been broadly accepted by the FEL community. Such experiments were the main focus of this workshop as described in the following objectives distributed to attendees: (1) Define measurements needed to gain confidence that short wavelength FELs will perform as calculated. (2) List possible hardware that could be used to carry out these measurements in the near term. (3) Define a prioritized FEL physics experimental program and suggested timetable. (4) Form collaborative teams to carry out this program

  2. Towards short wavelengths FELs workshop

    Science.gov (United States)

    Ben-Zvi, I.; Winick, H.

    1993-11-01

    This workshop was caged because of the growing perception in the FEL source community that recent advances have made it possible to extend FEL operation to wavelengths about two orders of magnitude shorter than the 240 nm that has been achieved to date. In addition short wavelength FEL's offer the possibilities of extremely high peak power (several gigawatts) and very short pulses (of the order of 100 fs). Several groups in the USA are developing plans for such short wavelength FEL facilities. However, reviewers of these plans have pointed out that it would be highly desirable to first carry out proof-of-principle experiments at longer wavelengths to increase confidence that the shorter wavelength devices will indeed perform as calculated. The need for such experiments has now been broadly accepted by the FEL community. Such experiments were the main focus of this workshop as described in the following objectives distributed to attendees: (1) Define measurements needed to gain confidence that short wavelength FEL's will perform as calculated. (2) List possible hardware that could be used to carry out these measurements in the near term. (3) Define a prioritized FEL physics experimental program and suggested timetable. (4) Form collaborative teams to carry out this program.

  3. LCLS X-Ray FEL Output Performance in the Presence of Highly Time-Dependent Undulator Wakefields

    CERN Document Server

    Fawley, W M; Emma, P; Huang, Z; Nuhn, H D; Reiche, S; Stupakov, G

    2005-01-01

    Energy loss due to wakefields within a long undulator, if not compensated by an appropriate tapering of the magnetic field strength, can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive component is the most critical and depends upon the chamber wall material (e.g. Cu) and its radius. Of recent interest [1] is the so-called "AC" component of the resistive wake which can lead to strong variations on very short timescales (e.g. ~20 fs). To study the expected performance of the LCLS in the presence of these wakefields, we have made an extensive series of start-to-end SASE simulations with tracking codes PARMELA and ELEGANT, and time-dependent FEL simulation codes GENESIS1.3 and GINGER. We discuss the impact of the wakefield losses upon output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well a...

  4. GINGER simulations of short-pulse effects in the LEUTL FEL

    International Nuclear Information System (INIS)

    Huang, Z.; Fawley, W.M.

    2001-01-01

    While the long-pulse, coasting beam model is often used in analysis and simulation of self-amplified spontaneous emission (SASE) free-electron lasers (FELs), many current SASE demonstration experiments employ relatively short electron bunches whose pulse length is on the order of the radiation slippage length. In particular, the low-energy undulator test line (LEUTL) FEL at the Advanced Photon Source has recently lased and nominally saturated in both visible and near-ultraviolet wavelength regions with a sub-ps pulse length that is somewhat shorter than the total slippage length in the 22-m undulator system. In this paper we explore several characteristics of the short pulse regime for SASE FELs with the multidimensional, time-dependent simulation code GINGER, concentrating on making a direct comparison with the experimental results from LEUTL. Items of interest include the radiation gain length, pulse energy, saturation position, and spectral bandwidth. We address the importance of short-pulse effects when scaling the LEUTL results to proposed x-ray FELs and also briefly discuss the possible importance of coherent spontaneous emission at startup

  5. FERMI @ Elettra A Seeded Harmonic Cascade FEL for EUV and Soft X-Rays

    CERN Document Server

    Bocchetta, C J; Craievich, P; D'Auria, G; Danailov, M B; De Ninno, G; Di Mitri, S; Diviacco, B; Ferianis, M; Gomezel, A; Iazzourene, F; Karantzoulis, E; Penco, G; Trovò, M

    2005-01-01

    We describe the machine layout and major performance parameters for the FERMI FEL project funded for construction at Sincrotrone Trieste, Italy. The project will be the first user facility based on seeded harmonic cascade FELs, providing controlled, high peak-power pulses. With a high-brightness rf photocathode gun, and using the existing 1.2 GeV S-band linac, the facility will provide tunable output over a range from ~100 nm to ~10 nm, with pulse duration from 40 fs to ~ 1ps, and with fully variable output polarization. Initially, two FEL cascades are planned; a single-stage harmonic generation to operate > 40 nm, and a two-stage cascade operating from ~40 nm to ~10 nm or shorter wavelength. The output is spatially and temporally coherent, with peak power in the GW range. Lasers provide modulation to the electron beam, as well as driving the photocathode and other systems, and the facility will integrate laser systems with the accelerator infrastructure, including a state-of-the-art optical timing sys...

  6. Transverse effects in UV FELs

    International Nuclear Information System (INIS)

    Small, D.W.; Wong, R.K.; Colson, W.B.

    1995-01-01

    In an ultraviolet Free Electron Laser (UV FEL), the electron beam size can be approximately the same as the optical mode size. The performance of a UV FEL is studied including the effect of emittance, betatron focusing, and external focusing of the electron beam on the transverse optical mode. The results are applied to the Industrial Laser Consortium's UV FEL

  7. A high-power compact regenerative amplifier FEL

    International Nuclear Information System (INIS)

    Nguyen, D.C.; Sheffield, R.L.; Fortgang, C.M.; Kinross-Wright, J.M.; Ebrahim, N.A.; Goldstein, J.C.

    1997-01-01

    The Regenerative Amplifier FEL (RAFEL) is a new FEL approach aimed at achieving the highest optical power from a compact rf-linac FEL. The key idea is to feed back a small fraction ( 5 in single pass) wiggler to enable the FEL to reach saturation in a few passes. This paper summarizes the design of a high-power compact regenerative amplifier FEL and describes the first experimental demonstration of the RAFEL concept

  8. A comparison between linear and non-linear analysis of flexible pavements

    Energy Technology Data Exchange (ETDEWEB)

    Soleymani, H.R.; Berthelot, C.F.; Bergan, A.T. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Mechanical Engineering

    1995-12-31

    Computer pavement analysis programs, which are based on mathematical simulation models, were compared. The programs included in the study were: ELSYM5, an Elastic Linear (EL) pavement analysis program, MICH-PAVE, a Finite Element Non-Linear (FENL) and Finite Element Linear (FEL) pavement analysis program. To perform the analysis different tire pressures, pavement material properties and asphalt layer thicknesses were selected. Evaluation criteria used in the analysis were tensile strain in bottom of the asphalt layer, vertical compressive strain at the top of the subgrade and surface displacement. Results showed that FENL methods predicted more strain and surface deflection than the FEL and EL analysis methods. Analyzing pavements with FEL does not offer many advantages over the EL method. Differences in predicted strains between the three methods of analysis in some cases was found to be close to 100% It was suggested that these programs require more calibration and validation both theoretically and empirically to accurately correlate with field observations. 19 refs., 4 tabs., 9 figs.

  9. Potential applications of a dual-sweep streak camera system for characterizing particle and photon beams of VUV, XUV, and x-ray FELS

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. [Argonne National Lab., IL (United States)

    1995-12-31

    The success of time-resolved imaging techniques in the Characterization of particle beams and photon beams of the recent generation of L-band linac-driven or storage ring FELs in the infrared, visible, and ultraviolet wavelength regions can be extended to the VUV, XUV, and x-ray FELs. Tests and initial data have been obtained with the Hamamatsu C5680 dual-sweep streak camera system which includes a demountable photocathode (thin Au) assembly and a flange that allows windowless operation with the transport vacuum system. This system can be employed at wavelengths shorter than 100 nm and down to 1 {Angstrom}. First tests on such a system at 248-nm wavelengths have been performed oil the Argonne Wakefield Accelerator (AWA) drive laser source. A quartz window was used at the tube entrance aperture. A preliminary test using a Be window mounted on a different front flange of the streak tube to look at an x-ray bremsstrahlung source at the AWA was limited by photon statistics. This system`s limiting resolution of {sigma}{approximately}1.1 ps observed at 248 nm would increase with higher incoming photon energies to the photocathode. This effect is related to the fundamental spread in energies of the photoelectrons released from the photocathodes. Possible uses of the synchrotron radiation sources at the Advanced Photon Source and emerging short wavelength FELs to test the system will be presented.

  10. Viability of infrared FEL facilities

    International Nuclear Information System (INIS)

    Schwettman, H.A.

    2004-01-01

    Infrared FELs have broken important ground in optical science in the past decade. The rapid development of optical parametric amplifiers and oscillators, and THz sources, however, has changed the competitive landscape and compelled FEL facilities to identify and exploit their unique advantages. The viability of infrared FEL facilities depends on targeting unique world-class science and providing adequate experimental beam time at competitive costs

  11. Circular polarization with crossed-planar undulators in high-gain FELs

    CERN Document Server

    Kim, K J K J

    2000-01-01

    We propose a crossed undulator configuration for a high-gain free-electron laser to allow versatile polarization control. This configuration consists of a long (saturation length) planar undulator, a dispersive section, and a short (a few gain lengths) planar undulator oriented perpendicular to the first one. In the first undulator, a radiation component linearly polarized in the x-direction is amplified to saturation. In the second undulator, the x-polarized component propagates freely, while a new component, polarized in the y-direction, is generated and reaches saturation in a few gain lengths. By adjusting the strength of the dispersive section, the relative phase of two radiation components can be adjusted to obtain a suitable polarization for the total radiation field, including the circular polarization. The operating principle of the high-gain crossed undulator, which is quite different from that of the crossed undulator for spontaneous radiation, is illustrated in terms of 1-D FEL theory.

  12. Performance of the FEL cryomodules

    International Nuclear Information System (INIS)

    Drury, M.; Fischer, J.; Preble, J.

    1998-01-01

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab, formerly known as CEBAF) is building a highly efficient, kilowatt-level infrared free-electron laser, the IR Demo FEL. The IR FEL uses superconducting radio-frequency (SRF) cavities to accelerate the electron beam that provides energy for the laser. These cavities provide the high-gradient acceleration for the high average currents necessary for a compact FEL design. Currently, a quarter cryomodule injector and a full eight-cavity cryomodule have been installed in the FEL linac. These units were tested as part of the IR FEL commissioning process. The main focus of these tests was to determine the maximum stable operating gradient. The average maximum gradient reached by these ten cavities was 11 Mv/m. Other tests include measurement of cavity parameters such as the unloaded Q (Qo) vs. gradient, the input coupling, calibration of field probes and behavior of the tuner mechanisms. This paper presents the results of those tests

  13. Tapered undulators for SASE FELs

    CERN Document Server

    Fawley, W M; Vinokurov, N A

    2002-01-01

    We discuss the use of tapered undulators to enhance the performance of free-electron lasers (FELs) based upon self-amplified spontaneous emission, where the radiation tends to have a relatively broad bandwidth and limited temporal coherence. Using the polychromatic FEL simulation code GINGER, we numerically demonstrate the effectiveness of tapered undulators for parameters corresponding to the Argonne low-energy undulator test line FEL and the proposed linac coherent light source.

  14. The "TEU-FEL" project

    OpenAIRE

    Ernst, G.J.; Witteman, W.J.; Verschuur, Jeroen W.J.; Mols, R.F.X.A.M.; Mols, R.F.X.A.M.; van Oerle, B.M.; van Oerle, B.M.; Bouman, A.F.M.; Botman, J.I.M.; Hagedoorn, H.L.; Delhez, J.L.; Kleeven, W.J.G.M.

    1995-01-01

    The free-electron laser of the TEU-FEL project will be based on a 6 MeV photo-cathode linac as injector, a 25 MeV race-track microtron as main accelerator and a hybrid, 25 mm period undulator. The project will be carried out in two phases. In phase one only the 6 MeV linac will be used, The FEL will then produce tunable radiation around 200 µm. In phase two the linac will be used as an injector for the microtron. The FEL will then produce tunable radiation around 10 µm. Technical information ...

  15. Optimization of the LCLS X-Rray FEL Output Performance in the Presence of Strong Undulator Wakefields

    CERN Document Server

    Reiche, Sven; Emma, Paul; Fawley, William M; Huang, Zhirong; Nuhn, Heinz-Dieter; Stupakov, Gennady

    2005-01-01

    The Linac Coherent Light Source (LCLS) Free-Electron Laser will operate in the wavelength range of 1.5 to 15 Angstroms. Energy loss due to wakefields within the long undulator can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive component is the most critical and depends upon the chamber material (e.g. Cu) and its radius. To study the expected performance in the presence of these wakefields, we make a series of "start-to-end" simulations with tracking codes PARMELA and ELEGANT and time-dependent FEL simulation codes Genesis 1.3 and Ginger. We discuss the impact of the wakefield on output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation obtained with a slight z dependent taper in the undulator field. We compare these results to those obtained by decreasing the bunch ...

  16. FEL mirror response to shipboard vibrations

    OpenAIRE

    Beauvais, Joshua A.

    2011-01-01

    The Optical cavity of a Free Electron Laser (FEL) is composed of components that must be maintained to very tight tolerances. The shipboard environment is one that will preclude a direct coupling of FEL components to the ship. This thesis will explore the basis for these tight tolerances, and how to isolate them from the FEL. A solid model of a potential FEL system will be developed using SolidWorks. This model will then be converted to a finite element model in ANSYS. The finite element ...

  17. LCLS X-Ray FEL Output Performance in the Presence of Highly Time-Dependent Undulator Wakefields

    International Nuclear Information System (INIS)

    Bane, Karl L.F.; Emma, Paul; Huang, Heinz-Dieter Nuhn; Stupakov, Gennady; Fawley, William M.; Reiche, Sven

    2005-01-01

    Energy loss due to wakefields within a long undulator, if not compensated by an appropriate tapering of the magnetic field strength, can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive-wall component is the most critical and depends upon the chamber material (e.g., Cu) and its radius. Of recent interest[1] is the so-called ''AC'' component of the resistive-wall wake which can lead to strong variations on very short timescales (e.g., ∼ 20 0fs). To study the expected performance of the LCLS in the presence of these wakefields, we have made an extensive series of start-to-end SASE simulations with tracking codes PARMELA and ELEGANT, and time-dependent FEL simulation codes GENESIS1.3 and GINGER. We discuss the impact of the wakefield losses upon output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation of the time-dependent wake losses obtained with a slight z-dependent taper in the undulator field. We compare the taper results to those predicted analytically[2

  18. FEL-principles, techniques and its progress

    International Nuclear Information System (INIS)

    Zhao Xiaofeng; Yang Fujia

    1992-01-01

    The basic principles of free electron laser (FEL) and its operation modes are presented. The state of the art is described for accelerator technology and laser systems. Some comparisons are made between FEL and conventional laser with regard to power capability, short-wavelength operation, and tunability. The application prospects of FEL are discussed

  19. Distributed Radiation Monitoring System for Linear Accelerators based on CAN Bus

    CERN Document Server

    Kozak, T; Napieralski, A

    2010-01-01

    Abstract—Gamma and neutron radiation is produced during the normal operation of linear accelerators like Free-Electron Laser in Hamburg (FLASH) or X-ray Free Electron Laser (X-FEL). Gamma radiation cause general degeneration of electronics devices and neutron fluence can be a reason of soft error in memories and microcontrollers. X-FEL accelerator will be built only in one tunnel, therefore most of electronic control systems will be placed in radiation environment. Exposing control systems to radiation may lead to many errors and unexpected failure of the whole accelerator system. Thus, the radiation monitoring system able to monitor radiation doses produced near controlling systems is crucial. Knowledge of produced radiation doses allows to detect errors caused by radiation, make plans of essential exchange of control systems and prevent accelerator from serious damages. The paper presents the project of radiation monitoring system able to monitor radiation environment in real time.

  20. Summary of the working group on FEL theory

    International Nuclear Information System (INIS)

    Pellegrini, C.

    1984-01-01

    The working group on FEL theory dedicated most of its discussions to topics relevant to the high gain regime in a free electron laser. In addition the area of interest was mainly restricted to FELs for the production of XUV radiation (<1000 A). A list of the topics that were felt to be relevant is: (1) characterization of the FEL high gain regime; (2) the amplified spontaneous emission mode of operation (ASE); (3) superradiance in FELs; (4) diffraction effects for high gain FELs; (5) noise and start-up; (6) coherence properties of the radiation for the ASE and superradiant FELS. 9 references

  1. Summary of the working group on FEL theory

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrini, C.

    1984-01-01

    The working group on FEL theory dedicated most of its discussions to topics relevant to the high gain regime in a free electron laser. In addition the area of interest was mainly restricted to FELs for the production of XUV radiation (<1000 A). A list of the topics that were felt to be relevant is: (1) characterization of the FEL high gain regime; (2) the amplified spontaneous emission mode of operation (ASE); (3) superradiance in FELs; (4) diffraction effects for high gain FELs; (5) noise and start-up; (6) coherence properties of the radiation for the ASE and superradiant FELS. 9 references.

  2. THE SECOND STAGE OF FERMI at ELETTRA: A SEEDED FEL IN THE SOFT X-RAY SPECTRAL RANGE

    International Nuclear Information System (INIS)

    Allaria, E.; DeNinno, G.; Fawley, W.M.

    2009-01-01

    The second stage of the FERMI FEL, named FEL-2, is based on the principle of high-gain harmonic generation and relies on a double-seeded cascade. Recent developments stimulated a revision of the original setup, which was designed to cover the spectral range between 40 and 10 nm. The numerical simulations we present here show that the nominal (expected) electron-beam performance allows extension of the FEL spectral range down to 4 nm. A significant amount of third harmonic power can be also expected. We also show that the proposed setup is flexible enough for exploiting future developments of new seed sources, e.g., high harmonic generation in gases.

  3. Extending the photon energy coverage of an x-ray self-seeding FEL via the reverse taper enhanced harmonic generation technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kaiqing; Qi, Zheng [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Feng, Chao, E-mail: fengchao@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Deng, Haixiao [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Dong, E-mail: wangdong@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, Zhentang [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2017-05-11

    In this paper, a simple method is proposed to extend the photon energy range of a soft x-ray self-seeding free-electron laser (FEL). A normal monochromator is first applied to purify the FEL spectrum and provide a coherent seeding signal. This coherent signal then interacts with the electron beam in the following reverse tapered undulator section to generate strong coherent microbunchings while maintain the good quality of the electron beam. After that, the pre-bunched electron beam is sent into the third undulator section which resonates at a target high harmonic of the seed to amplify the coherent radiation at shorter wavelength. Three dimensional simulations have been performed and the results demonstrate that the photon energy gap between 1.5 keV and 4.5 keV of the self-seeding scheme can be fully covered and 100 GW-level peak power can be achieved by using the proposed technique.

  4. Review of diagnostics for next generation linear accelerators

    CERN Document Server

    Ross, M

    2001-01-01

    New electron linac designs incorporate substantial advances in critical beam parameters such as beam loading and bunch length and will require new levels of performance in stability and phase space control. In the coming decade, e- (and e+) linacs will be built for a high power linear collider (TESLA, CLIC, JLC/NLC), for fourth generation X-ray sources (TESLA FEL, LCLS, Spring 8 FEL) and for basic accelerator research and development (Orion). Each project assumes significant instrumentation performance advances across a wide front. This review will focus on basic diagnostics for beam position and phase space monitoring. Research and development efforts aimed at high precision multi-bunch beam position monitors, transverse and longitudinal profile monitors and timing systems will be described.

  5. A Cherenkov radiator for FEL-synchronized VUV-pulses at a linac-based FEL

    NARCIS (Netherlands)

    Goloviznin, V. V.; Oepts, D.; van der Wiel, M. J.

    1997-01-01

    A possible way to carry out two-color IR+VUV pump-probe experiments at linac-based FELs is proposed. The idea is to supply an FEL facility with a gas cell filled with helium or hydrogen, so that the electron beam, upon passage through the undulator, could be used to generate ultraviolet Cherenkov

  6. A Cherenkov radiator for FEL-synchronized VUV-pulses at a linac-based FEL

    NARCIS (Netherlands)

    Goloviznin, V.V.; Oepts, W.; Wiel, van der M.J.

    1997-01-01

    A possible way to carry out two-color IR + VUV pump-probe experiments at linac-based FELs is proposed. The idea is to supply an FEL facility with a gas cell filled with helium or hydrogen, so that the electron beam, upon passage through the undulator, could be used to generate ultraviolet Cherenkov

  7. Physical optics simulations with PHASE for SwissFEL beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Flechsig, U.; Follath, R.; Reiche, S. [Paul Scherrer Institut, Swiss Light Source, 5232 Villigen PSI (Switzerland); Bahrdt, J. [Helmholtz Zentrum Berlin (Germany)

    2016-07-27

    PHASE is a software tool for physical optics simulation based on the stationary phase approximation method. The code is under continuous development since about 20 years and has been used for instance for fundamental studies and ray tracing of various beamlines at the Swiss Light Source. Along with the planning for SwissFEL a new hard X-ray free electron laser under construction, new features have been added to permit practical performance predictions including diffraction effects which emerge with the fully coherent source. We present the application of the package on the example of the ARAMIS 1 beamline at SwissFEL. The X-ray pulse calculated with GENESIS and given as an electrical field distribution has been propagated through the beamline to the sample position. We demonstrate the new features of PHASE like the treatment of measured figure errors, apertures and coatings of the mirrors and the application of Fourier optics propagators for free space propagation.

  8. Multi-mode interactions in an FEL oscillator

    CERN Document Server

    Dong Zhi Wei; Masuda, K; Yamazaki, T; Yoshikawa, K

    2000-01-01

    A 3D time-dependent FEL oscillator simulation code has been developed by using the transverse mode spectral method to analyze interaction among transverse modes. The competition among them in an FEL oscillator was investigated based on the parameters of LANL FEL experiments. It is found that under typical FEL oscillator operation conditions, the TEM sub 0 sub 0 mode is dominant, and the effects of other transverse modes can be negligible.

  9. Development of intense terahertz coherent synchrotron radiation at KU-FEL

    Energy Technology Data Exchange (ETDEWEB)

    Sei, Norihiro, E-mail: sei.n@aist.go.jp [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Zen, Heishun; Ohgaki, Hideaki [Institute for Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2016-10-01

    We produced intense coherent synchrotron radiation (CSR) in the terahertz (THz) region using an S-band linac at the Kyoto University Free Electron Laser (KU-FEL), which is a mid-infrared free-electron laser facility. The CSR beam was emitted from short-pulse electron bunches compressed by a 180° arc, and was transferred to air at a large solid angle of 0.10 rad. The measured CSR energy was 55 μJ per 7 μs macropulse, and KU-FEL was one of the most powerful CSR sources in normal conducting linear accelerator facilities. The CSR spectra were measured using an uncooled pyroelectric detector and a Michelson-type interferometer designed specifically for the KU-FEL electron beam, and had a maximum at a frequency of 0.11 THz. We found that adjusting the energy slit enhanced the CSR energy and shortened the electron beam bunch length in the CSR spectra measurements. Our results demonstrated that the efficient use of the energy slit can help improve the characteristics of CSR. - Highlights: • We have developed intense coherent synchrotron radiation (CSR) at KU-FEL. • The elevation angle of the CSR was correctly measured by a new technique. • The CSR power extracted to the air was 55 μJ per 7 μs macropulse. • It was demonstrated that an energy slit was effective to improve the CSR properties.

  10. Development of intense terahertz coherent synchrotron radiation at KU-FEL

    International Nuclear Information System (INIS)

    Sei, Norihiro; Zen, Heishun; Ohgaki, Hideaki

    2016-01-01

    We produced intense coherent synchrotron radiation (CSR) in the terahertz (THz) region using an S-band linac at the Kyoto University Free Electron Laser (KU-FEL), which is a mid-infrared free-electron laser facility. The CSR beam was emitted from short-pulse electron bunches compressed by a 180° arc, and was transferred to air at a large solid angle of 0.10 rad. The measured CSR energy was 55 μJ per 7 μs macropulse, and KU-FEL was one of the most powerful CSR sources in normal conducting linear accelerator facilities. The CSR spectra were measured using an uncooled pyroelectric detector and a Michelson-type interferometer designed specifically for the KU-FEL electron beam, and had a maximum at a frequency of 0.11 THz. We found that adjusting the energy slit enhanced the CSR energy and shortened the electron beam bunch length in the CSR spectra measurements. Our results demonstrated that the efficient use of the energy slit can help improve the characteristics of CSR. - Highlights: • We have developed intense coherent synchrotron radiation (CSR) at KU-FEL. • The elevation angle of the CSR was correctly measured by a new technique. • The CSR power extracted to the air was 55 μJ per 7 μs macropulse. • It was demonstrated that an energy slit was effective to improve the CSR properties.

  11. FEL radiation power available in electron storage rings

    International Nuclear Information System (INIS)

    Miyahara, Yoshikazu

    1994-01-01

    FEL radiation power available in electron storage rings was studied in the small signal regime in considering the increase of the energy spread of the electron beam caused by the FEL interaction and the decrease of the FEL gain with the increase of the energy spread in addition to the radiation damping and the quantum excitation. All these effects were considered separately, and combined with FEL power equations. The radiation power available was expressed explicitly with the parameters of the storage ring, the wiggler and the mirrors. The transient process of FEL lasing is simulated with the power equations. A rough estimation is made of the radiation power available by the FEL at different beam energies, and optimization of FEL parameters for a higher radiation power is discussed. ((orig.))

  12. Diode readout electronics for beam intensity and position monitors for FELs

    International Nuclear Information System (INIS)

    Herrmann, S; Hart, P; Freytag, M; Pines, J; Weaver, M; Sapozhnikov, L; Nelson, S; Koglin, J; Carini, G A; Tomada, A; Haller, G

    2014-01-01

    LCLS uses Intensity-Position Monitors (IPM) to measure intensity and position of the FEL x-ray pulses. The primary beam passes through a silicon nitride film and four diodes, arranged in quadrants, detect the backscattered x-ray photons. The position is derived from the relative intensity of the four diodes, while the sum provides beam intensity information. In contrast to traditional synchrotron beam monitors, where diodes measure a DC current signal, the LCLS beam monitors have to cope with the pulsed nature of the FEL, which requires a large single shot dynamic range. A key component of these beam monitors is the readout electronics. The first generation of beam monitors showed some limitations. A new scheme with upgraded electronics, firmware and software was implemented resulting in a more robust and reliable measuring tool.

  13. Design study of a longer wavelength FEL for FELIX

    International Nuclear Information System (INIS)

    Lin, L.; Oepts, D.; Meer, A.F.G. van der

    1995-01-01

    We present a design study of FEL3, which will extend the FELIX spectral range towards a few hundred microns. A rectangular waveguide will be used to reduce diffraction losses. Calculations show that with a waveguide gap of 1 cm, only one sinusoidal mode along the guided direction can exist within the FEL gain bandwidth, thus excluding group velocity dispersion and lengthening of short radiation pulses. To incorporate FEL3 in the existing FELIX facility, two options are being considered: to combine FEL3 with FEL1 by insertion of a waveguide into FEL1, and to build a dedicated third beam line for FEL3 after the two linacs. Expected FEL performance: gain, spectrum, power, pulse shape, etc., will be presented based on numerical simulations

  14. Prospects for CW and LP operation of the European XFEL in hard X-ray regime

    International Nuclear Information System (INIS)

    Brinkmann, R.; Schneidmiller, E.A.; Sekutowicz, J.; Yurkov, M.V.

    2014-03-01

    The European XFEL will operate nominally at 17.5 GeV in SP (short pulse) mode with 0.65 ms long bunch train and 10 Hz repetition rate. A possible upgrade of the linac to CW (continuous wave) or LP (long pulse) modes with a corresponding reduction of electron beam energy is under discussion since many years. Recent successes in the dedicated R and D program allow to forecast a technical feasibility of such an upgrade in the foreseeable future. One of the challenges is to provide sub-Aangstrom FEL operation in CW and LP modes. In this paper we perform a preliminary analysis of a possible operation of the European XFEL in the hard X-ray regime in CW and LP modes with the energies of 7 GeV and 10 GeV, respectively. We consider lasing in the baseline XFEL undulator as well as in a new undulator with a reduced period. We show that, with reasonable requirements on electron beam quality, lasing on the fundamental will be possible in sub-Aangstrom regime. As an option for generation of brilliant photon beams at short wavelengths we also consider harmonic lasing that has recently attracted a significant attention.

  15. Prospects for CW and LP operation of the European XFEL in hard X-ray regime

    Energy Technology Data Exchange (ETDEWEB)

    Brinkmann, R.; Schneidmiller, E.A.; Sekutowicz, J.; Yurkov, M.V.

    2014-03-15

    The European XFEL will operate nominally at 17.5 GeV in SP (short pulse) mode with 0.65 ms long bunch train and 10 Hz repetition rate. A possible upgrade of the linac to CW (continuous wave) or LP (long pulse) modes with a corresponding reduction of electron beam energy is under discussion since many years. Recent successes in the dedicated R and D program allow to forecast a technical feasibility of such an upgrade in the foreseeable future. One of the challenges is to provide sub-Aangstrom FEL operation in CW and LP modes. In this paper we perform a preliminary analysis of a possible operation of the European XFEL in the hard X-ray regime in CW and LP modes with the energies of 7 GeV and 10 GeV, respectively. We consider lasing in the baseline XFEL undulator as well as in a new undulator with a reduced period. We show that, with reasonable requirements on electron beam quality, lasing on the fundamental will be possible in sub-Aangstrom regime. As an option for generation of brilliant photon beams at short wavelengths we also consider harmonic lasing that has recently attracted a significant attention.

  16. The "TEU-FEL" project

    NARCIS (Netherlands)

    Ernst, G.J.; Witteman, W.J.; Verschuur, Jeroen W.J.; Mols, R.F.X.A.M.; Mols, R.F.X.A.M.; van Oerle, B.M.; van Oerle, B.M.; Bouman, A.F.M.; Botman, J.I.M.; Hagedoorn, H.L.; Delhez, J.L.; Kleeven, W.J.G.M.

    1995-01-01

    The free-electron laser of the TEU-FEL project will be based on a 6 MeV photo-cathode linac as injector, a 25 MeV race-track microtron as main accelerator and a hybrid, 25 mm period undulator. The project will be carried out in two phases. In phase one only the 6 MeV linac will be used, The FEL will

  17. JAERI FEL applications in nuclear energy industries

    International Nuclear Information System (INIS)

    Minehara, Eisuke J.

    2005-01-01

    The JAERI FEL has first discovered the new FEL lasing of 255fs ultra fast pulse, 6-9% high efficiency, 1GW high peak power, a few kilowatts average power, and wide tunability of medium and far infrared wavelength regions at the same time. Using the new lasing and energy-recovery linac technology, we could extend a more powerful and more efficient free-electron laser (FEL) than 10kW and 25%, respectively, for nuclear energy industries, and others. In order to realize such a tunable, highly-efficient, high average power, high peak power and ultra-short pulse FEL, we need the efficient and powerful FEL driven by the JAERI compact, stand alone and zero boil-off super-conducting RF linac with an energy-recovery geometry. Our discussions on the FEL will cover the application of non-thermal peeling, cutting, and drilling to prevent cold-worked stress-corrosion cracking failures in nuclear energy and other heavy industries. (author)

  18. Technical Design and Optimization Study for the FERMI at Elettra FEL Photoinjector

    International Nuclear Information System (INIS)

    Lidia, Steven M.; Penco, Giuseppe; Trovo', Mauro

    2006-01-01

    The FERMI (at) Elettra FEL project will provide a novel, x-ray free electron laser user facility at Sincrotrone Trieste based on seeded and cascade FEL techniques. The electron beam source and injector systems play a crucial role in the success of the facility by providing the highest quality electron beams to the linac and FEL undulators. This Technical Note examines the critical technology components that make up the injector system, and demonstrates optimum beam dynamics solutions to achieve the required high quality electron beams. Section 2 provides an overview of the various systems and subsystems that comprise the photoinjector. The different operating modes of the injector are described as they pertain to the different linac configurations driven by the FEL and experimental design. For each mode, the required electron beam parameters are given. Sections 3 and 4 describe the critical beamline elements in the injector complex: the photocathode and drive laser, and the RF gun. The required drive laser parameters are given at the end of Section 3. Additional details on the design of the photoinjector drive laser systems are presented in a separate Technical Note. Design considerations for the RF gun are extensively presented in Section 4. There, we describe the variation of the cavity geometry to optimize the efficiency of the energy transfer to the electron beam. A study of the power coupling into the various cavity modes that interact within the bandwidth of the RF drive pulse is presented, followed by a study of the transient cavity response under several models and, finally, the effects on extracted beam quality. Section 5 describes the initial design for the low energy, off-axis diagnostic beamline. Beam dynamics simulations using ASTRA, elegant, and MAD are presented. Section 6 presents the optimization studies for the beam dynamics in the various operating modes. The optimized baseline configurations for the beamline and incident drive laser pulse are

  19. FEL components and diagnostics

    International Nuclear Information System (INIS)

    Carr, R.

    1997-01-01

    FEL hardware includes undulators, alignment systems, electron beam diagnostics, and mechanical and vacuum systems. While most FEL close-quote s employ conventional undulators, there is some interest in novel types, particularly where conventional designs cannot be used, as at very short periods and high fields. For these areas, superconducting technology is indicated. The most serious issue facing long FEL undulators is that of alignment; mechanical techniques may not be accurate enough, and beam-based strategies must be considered. To maintain alignment and control the electron trajectory, beam position monitors with micron precision are required. Beam size monitors are also required to assure control of emittance. The talks given in the working group sessions touch on undulators, alignment, and electron beam diagnostics, and they are summarized here. copyright 1997 American Institute of Physics

  20. Harmonic Content of the BESSY FEL Radiation

    CERN Document Server

    Meseck, Atoosa

    2005-01-01

    BESSY proposes a linac-based cascaded High-Gain Harmonic-Generation (HGHG) free electron laser (FEL) multi-user facility. The BESSY soft X-ray FEL will consist of three undulator lines. The associated tunable lasers will cover the spectral range of 230nm to 460nm. Two to four HGHG stages reduce the seed wavelength to the desired radiation range of 1.24nm < λ < 51nm. The harmonic content of the high-intensity radiator output can be used to reduce the number of necessary HGHG stages. Moreover the higher harmonic content of the final output extends the offered spectral range and thus is of high interest for the user community. In this paper, the higher harmonic content of the final output as well as of the output of several radiators are investigated. The main parameters such as output power, pulse duration and bandwidth as well as their suitability for seeding are discussed.

  1. The potential for extending the spectral range accessible to the european X-ray free electron laser in the direction of longer wavelengths

    CERN Document Server

    Saldin, E L; Yurkov, M V

    2004-01-01

    The baseline specifications of European XFEL give a range of wavelengths between 0.1 nm and 2 nm. This wavelength range at fixed electron beam energy 17.5 GeV can be covered by operating the SASE FEL with three undulators which have different period and tunable gap. A study of the potential for the extending the spectral range accessible to the XFEL in the direction of longer wavelengths is presented. The extension of the wavelength range to 6 nm would be cover the water window in the VUV region, opening the facility to a new class of experiments. There are at least two possible sources of VUV radiation associated with the X-ray FEL; the "low (2.5 GeV) energy electron beam dedicated" and the " 17.5 GeV spent beam parasitic" (or "after-burner") source modes. The second alternative, "after-burner undulator" is the one we regard as most favorable. It is possible to place an undulator as long as 80 meters after 2 nm undulator. Ultimately, VUV undulator would be able to deliver output power approaching 100 GW. A b...

  2. EUV stimulated emission from MgO pumped by FEL pulses

    Directory of Open Access Journals (Sweden)

    Philippe Jonnard

    2017-09-01

    Full Text Available Stimulated emission is a fundamental process in nature that deserves to be investigated and understood in the extreme ultra-violet (EUV and x-ray regimes. Today, this is definitely possible through high energy density free electron laser (FEL beams. In this context, we give evidence for soft-x-ray stimulated emission from a magnesium oxide solid target pumped by EUV FEL pulses formed in the regime of travelling-wave amplified spontaneous emission in backward geometry. Our results combine two effects separately reported in previous works: emission in a privileged direction and existence of a material-dependent threshold for the stimulated emission. We develop a novel theoretical framework, based on coupled rate and transport equations taking into account the solid-density plasma state of the target. Our model accounts for both observed mechanisms that are the privileged direction for the stimulated emission of the Mg L2,3 characteristic emission and the pumping threshold.

  3. FELs, nice toys or efficient tools?

    CERN Document Server

    Van der Meer, Alex F G

    2004-01-01

    An FEL is an intrinsically interesting device and pushing its performance presents a natural challenge to a physicist. Nonetheless, the main justification for doing FEL research is of course its potential as a unique, versatile source of radiation to be employed for something useful. After 25 years of FEL research, one may wonder how efficient these tools have become. In this paper, I will reflect on this issue from the perspective of 10 years of operation of FELIX as a user facility.

  4. Experimental results of a sheet-beam, high power, FEL amplifier with application to magnetic fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, S.; Destler, W.W.; Granatstein, V.L. [Univ. of Maryland, College Park, MD (United States)] [and others

    1995-12-31

    The experimental study of sheet-beam FELs as candidate millimeter-wave sources for heating magnetic fusion plasmas has achieved a major milestone. In a proof-of-principle, pulsed experiment, saturated FEL amplifier operation was achieved with 250 kW of output power at 86 GHz. Input microwave power was 1 kW, beam voltage was 450 kV and beam current was 17 A. The planar wiggler had a peak value of 3.8 kG, a period of 0.96 cm and was 71 cm long. The linear gain of 30 dB, saturated gain of 24 dB and saturated efficiency of 3% all are in good agreement with theoretical prediction. Follow-on work would include development of a thermionic sheet-beam electron-gun compatible with CW FEL operation, adding a section of tapered wiggler to increase the output power to levels in excess of 1 megawatt, and increasing the FEL frequency.

  5. Super ACO FEL oscillation at 300 nm

    CERN Document Server

    Nutarelli, D; Renault, E; Nahon, L; Couprie, Marie Emmanuelle

    2000-01-01

    Some recent improvements, involving both the optical cavity mirrors and the positron beam dynamics in the storage ring, have allowed us to achieve a laser oscillation at 300 nm on the Super ACO Storage Ring FEL. The Super ACO storage ring is operated at 800 MeV which is the nominal energy for the usual synchrotron radiation users, and the highest energy for a storage ring FEL. The lasing at 300 nm could be kept during 2 h per injection, with a stored current ranging between 30 and 60 mA. The FEL characteristics are presented here. The longitudinal stability and the FEL optics behaviour are also discussed.

  6. Duke storage rink UV/VUV FEL: Status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.N.; Burnham, B.; Madey, J.M.J. [Duke Univ., Durham, NC (United States)] [and others

    1995-12-31

    The 1 GeV Duke storage ring was successfully commissioned with parameters exceeding initial specification. The OK-4 FEL has arrived at the Duke FEL laboratory from the Novosibirsk Institute of Nuclear Physics. The OK-4 installation and commissioning is in progress. In this paper we describe the up-to-date status of the Duke storage ring and the OK-4 FEL. The projected performance of the OK-4 UV/VUV FEL is presented based on the electron beam parameters achieved. Initial plans to operate the OK-4 UV/VUV FEL at the Duke 1 GeV storage ring are outlined. Future plans and prospects of both the OK-4 FEL and the Duke storage ring are discussed.

  7. FEL small signal dynamics and electron beam prebunching

    International Nuclear Information System (INIS)

    Dattoli, G.

    1993-01-01

    A seed signal and/or a pre-bunched electron beam may provide the start up of a free electron laser (FEL). Recently, interest has grown around FEL's operating with pre-bunched electron beams; this paper is, therefore, devoted to the analysis of the dynamic features of FEL's operating in such a configuration. It exploits a slightly modified form of the FEL high gain equation to derive quantities of practical interest like the dependence of the system growth rate on the bunching coefficients

  8. Laser power meters as an X-ray power diagnostic for LCLS-II.

    Science.gov (United States)

    Heimann, Philip; Moeller, Stefan; Carbajo, Sergio; Song, Sanghoon; Dakovski, Georgi; Nordlund, Dennis; Fritz, David

    2018-01-01

    For the LCLS-II X-ray instruments, laser power meters are being developed as compact X-ray power diagnostics to operate at soft and tender X-ray photon energies. These diagnostics can be installed at various locations along an X-ray free-electron laser (FEL) beamline in order to monitor the transmission of X-ray optics along the beam path. In addition, the power meters will be used to determine the absolute X-ray power at the endstations. Here, thermopile power meters, which measure average power, and have been chosen primarily for their compatibility with the high repetition rates at LCLS-II, are evaluated. A number of characteristics in the soft X-ray range are presented including linearity, calibrations conducted with a photodiode and a gas monitor detector as well as ultra-high-vacuum compatibility tests using residual gas analysis. The application of these power meters for LCLS-II and other X-ray FEL sources is discussed.

  9. Lattice Design for a High-Power Infrared FEL

    Science.gov (United States)

    Douglas, D. R.

    1997-05-01

    A 1 kW infrared FEL, funded by the U.S. Navy, is under construction at Jefferson Lab. This device will be driven by a compact, 42 MeV, 5 mA, energy-recovering, CW SRF-based linear accelerator to produce light in the 3-6.6 μm range. The machine concept comprises a 10 MeV injector, a linac based on a single high-gradient Jefferson Lab accelerator cryomodule, a wiggler and optical cavity, and an energy-recovery recirculation arc. Energy recovery limits cost and technical risk by reducing the RF power requirements in the driver accelerator. Following deceleration to 10 MeV, the beam is dumped. Stringent phase space requirements at the wiggler, low beam energy, and high beam current subject the accelerator lattice to numerous constraints. Principal considerations include: transport and delivery to the FEL of a high-quality, high-current beam; the impact of coherent synchrotron radiation (CSR) during beam recirculation transport; beam optics aberration control, to provide low-loss energy-recovery transport of a 5% relative momentum spread, high-current beam; attention to possible beam breakup (BBU) instabilities in the recirculating accelerator; and longitudinal phase space management during beam transport, to optimize RF drive system control during energy recovery and FEL operation. The presentation will address the design process and design solution for an accelerator transport lattice that meets the requirements imposed by these physical phenomena and operational necessities.

  10. The Present Applications of IR FEL at Peking University

    CERN Document Server

    Yang Li Min; Zhao, Kui

    2004-01-01

    In this study the sections of human tissues were treated under 9.5 μm FEL in the BFEL based on the vibrational spectroscopic investigation that significant differences occur between normal and malignant tissues. Under the defocus condition, the burning of tissue section at some part while other part remains unchanged, suggesting that the FEL can selectively destroy some part of tissue. Vibrational spectroscopic and microscopic methods have shown that the FEL can induce decomposition of malignant tissues. The application of FEL whose wavelength is on the characteristic bands of malignant tissues may provide a new method to kill cancer cells with higher selectivity. For understanding the interactions between FEL and biological tissues, structure changes of substances under irradiation by FEL of 9.414 μm and 6.228 μm were measured using FTIR spectroscopy. The samples include ATP, ADP, AMP, and D-ribose, etc. The FTIR spectra of the molecules before and after irradiation of FEL indicate...

  11. Lattice design for a high-power infrared FEL

    International Nuclear Information System (INIS)

    Douglas, D.R.

    1997-01-01

    A 1 kW infrared FEL, funded by the U.S. Navy, is being built at Jefferson Lab. It will be driven by a compact energy-recovering CW superconducting radio-frequency (SRF)-based linear accelerator. Stringent phase space requirements at the wiggler, low beam energy, and high beam current subject the design to numerous constraints. This report addresses these issues and presents a design solution for an accelerator transport lattice meeting the requirements imposed by physical phenomena and operational necessities

  12. Study on wavelength shortening and upgrading of the free electron laser (FEL)

    International Nuclear Information System (INIS)

    Yamazaki, Tetsuo; Yamada, Kawakatsu; Sei, Norihiro; Ohgaki, Hideaki; Sugiyama, Suguru; Mikado, Tomohisa

    1997-01-01

    This study is a task of ''Comprehensive study'' in ''nuclear energy basic technology research'', which is promoted under cooperation of four research institutes. The Electrotechnical Laboratory conducted, in 1991 in the first period of colaboration, on successful oscillation at visible region (598 nm) as the first case in Japan, construction of small type accumulation ring NIJI-IV for FEL, successful oscillation of visible range from 595 to 488 nm by installing optical krystron with maximum frequency in the world, and successful emittance lowering of accumulation beam by wide improvement of the ring. In the optical resonator, studies on minute loss measuring technique and on recovery from mirror deterioration were promoted. In the second period started from fiscal year of 1994, studies on FEL oscillation technique in short wavelength and upgrading of FEL corresponding to a frontier area were started, to succeed an oscillation experiment at 350 nm in ultraviolet area on April, 1994. Then, studies on generation of high luminescence x-ray owing to laser Compton scattering using FEL as a future plan, on design of a new accumulation ring and on the others as well as studies on further quality improvement of electron beam and on optical resonator have been promoted. (G.K.)

  13. High-gain Seeded FEL Amplifier Tunable in the Terahertz Range

    CERN Document Server

    Sung, C; Pellegrini, C; Ralph, J E; Reiche, S; Rosenzweig, J B; Tochitsky, Sergei Ya

    2005-01-01

    The lack of a high-power, relatively low-cost and compact terahertz (THz) source in the range 0.3-3x10(12) Hz is the major obstacle in progressing on biomedical and material studies at these wavelengths. A high-gain, single pass seeded FEL technique allows to obtain high power THz pulses of a high spectral brightness. We describe an ongoing project at the Neptune laboratory where a ~ 1kW seed pulse generated by difference frequency mixing of CO2 laser lines in a GaAs nonlinear crystal is injected into a waveguide FEL amplifier. The FEL is driven by a 5 ps (r.m.s) long electron pulse with a peak current up to 100A provided by a regular S-band photoinjector. According to 3-D, time dependent simulations, up to ~ 10 MW THz power can be generated using a 2 meter long planar undulator. By mixing different pairs of CO2 laser lines and matching resonant energy of the electron beam, tunability in the 100-400 mm range is expected. A tunable Fabri-Perot interferometer will be used to select a high-power 5ps THz pulse. T...

  14. THz Imaging by a Wide-band Compact FEL

    CERN Document Server

    Uk Jeong Young; Cheol Lee Byung; Hee-Park, S

    2004-01-01

    We have developed a laboratory-scale users facility with a compact THz FEL. The FEL operates in the wide wavelength range of 100–1200 μm, which corresponds to 0.3-3 THz. THz radiation from the FEL shows well collimated Gaussian spatial distribution and narrow spectral width of 0.3 μm, which is Fourier transform limited by the estimated pulse duration of 20 ps. The main application of the FEL is THz imaging for bio-medical researches. We are developing THz imaging techniques by 2-D scanning, single pulse capturing with the electro-optic method, and 3-D holography. High power, coherent, and pulsed feature of the FEL radiation is expected to show much better performance in advanced THz imaging of 3-D tomography by comparing with incoherent and weak THz sources. By controlling the optical delay between reference beam and scattered light from an object, we can get its 3-D tomography by the holograms. The coherent and pulse length of the FEL beam is measured to be 3-6 mm. In this paper we will show a...

  15. The APS SASE FEL: modeling and code comparison

    International Nuclear Information System (INIS)

    Biedron, S. G.

    1999-01-01

    A self-amplified spontaneous emission (SASE) free-electron laser (FEL) is under construction at the Advanced Photon Source (APS). Five FEL simulation codes were used in the design phase: GENESIS, GINGER, MEDUSA, RON, and TDA3D. Initial comparisons between each of these independent formulations show good agreement for the parameters of the APS SASE FEL

  16. Design of a cryo-cooled artificial channel-cut crystal monochromator for the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xiaohao, E-mail: xiaohao.dong@xfel.eu; Sinn, Harald, E-mail: harald.sinn@xfel.eu [European XFEL GmbH, Hamburg, D-22761 (Germany); Shu, Deming, E-mail: shu@aps.anl.gov [Argonne National Laboratory, Argonne, IL 60439, U.S.A (United States)

    2016-07-27

    An artificial channel-cut crystal monochromator for the hard X-Ray beamlines of SASE 1&2, cryogenically cooled by the so-called pulse tube cooler (cryorefrigerator), is currently under development at the European XFEL ( http://www.xfel.eu/ ). The fabrication is on-going. We present here the crystal optical consideration and the novel cooling configuration, according to the X-Ray FEL pulses proprieties. The mechanical design improvements are pointed out as well to implement such kind of monochromator based on the previous similar design.

  17. Spatial distribution and polarization of gamma-rays generated via Compton backscattering in the Duke/OK-4 storage ring FEL

    CERN Document Server

    Park, S H; Tornow, W; Montgomery, C

    2001-01-01

    Beams of nearly monochromatic gamma-rays are produced via intracavity Compton backscattering in the OK-4/Duke storage ring FEL, the high-intensity gamma-ray source (HI gamma S). Presently, HI gamma S generates gamma-ray beams with an energy tunable from 2 to 58 MeV and a maximum flux of 5x10 sup 7 gamma-rays per second. The gamma-rays are linearly polarized with a degree of polarization close to 100% (V.N. Litvinenko, et al., Predictions and expected performance for the VUV OK-5/Duke Storage Ring FEL with variable polarization, Nucl. Instr. and Meth. A, to be published in this proceeding) and they are collimated to pencil-like semi-monoenergetic beams with RMS energy spreads as low as 0.2%. The detailed theoretical and experimental studies of the gamma-ray beam quality were conducted during the last two years (S.H. Park, Thesis, Duke University, Durham, NC, USA, 2000). In this paper, we present the theoretical analysis and the experimental results on the spatial distribution and polarization of gamma-rays fro...

  18. Spatial distribution and polarization of {gamma}-rays generated via Compton backscattering in the Duke/OK-4 storage ring FEL

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H. E-mail: shpark@nanum.kaeri.re.kr; Litvinenko, V.N.; Tornow, W.; Montgomery, C

    2001-12-21

    Beams of nearly monochromatic {gamma}-rays are produced via intracavity Compton backscattering in the OK-4/Duke storage ring FEL, the high-intensity {gamma}-ray source (HI{gamma}S). Presently, HI{gamma}S generates {gamma}-ray beams with an energy tunable from 2 to 58 MeV and a maximum flux of 5x10{sup 7} {gamma}-rays per second. The {gamma}-rays are linearly polarized with a degree of polarization close to 100% (V.N. Litvinenko, et al., Predictions and expected performance for the VUV OK-5/Duke Storage Ring FEL with variable polarization, Nucl. Instr. and Meth. A, to be published in this proceeding) and they are collimated to pencil-like semi-monoenergetic beams with RMS energy spreads as low as 0.2%. The detailed theoretical and experimental studies of the {gamma}-ray beam quality were conducted during the last two years (S.H. Park, Thesis, Duke University, Durham, NC, USA, 2000). In this paper, we present the theoretical analysis and the experimental results on the spatial distribution and polarization of {gamma}-rays from the HI{gamma}S facility.

  19. Spatial distribution and polarization of γ-rays generated via Compton backscattering in the Duke/OK-4 storage ring FEL

    International Nuclear Information System (INIS)

    Park, S.H.; Litvinenko, V.N.; Tornow, W.; Montgomery, C.

    2001-01-01

    Beams of nearly monochromatic γ-rays are produced via intracavity Compton backscattering in the OK-4/Duke storage ring FEL, the high-intensity γ-ray source (HIγS). Presently, HIγS generates γ-ray beams with an energy tunable from 2 to 58 MeV and a maximum flux of 5x10 7 γ-rays per second. The γ-rays are linearly polarized with a degree of polarization close to 100% (V.N. Litvinenko, et al., Predictions and expected performance for the VUV OK-5/Duke Storage Ring FEL with variable polarization, Nucl. Instr. and Meth. A, to be published in this proceeding) and they are collimated to pencil-like semi-monoenergetic beams with RMS energy spreads as low as 0.2%. The detailed theoretical and experimental studies of the γ-ray beam quality were conducted during the last two years (S.H. Park, Thesis, Duke University, Durham, NC, USA, 2000). In this paper, we present the theoretical analysis and the experimental results on the spatial distribution and polarization of γ-rays from the HIγS facility

  20. Start-Up of FEL Oscillator from Shot Noise

    International Nuclear Information System (INIS)

    Kumar, V.; Krishnagopal, S.; Fawley, W.M.

    2007-01-01

    In free-electron laser (FEL) oscillators, as in self-amplified spontaneous emission (SASE) FELs, the buildup of cavity power starts from shot noise resulting from the discreteness of electronic charge. It is important to do the start-up analysis for the build-up of cavity power in order to fix the macropulse width from the electron accelerator such that the system reaches saturation. In this paper, we use the time-dependent simulation code GINGER [1]to perform this analysis. We present results of this analysis for the parameters of the Compact Ultrafast TErahertz FEL (CUTE-FEL) [2] being built at RRCAT

  1. FEL in transverse optical klystron regime

    International Nuclear Information System (INIS)

    Scarlat, F.; Baltateanu, N.

    1994-01-01

    Among all operational regimes of free electron laser (FEL), the transverse optical regime (TOK) requires the least stringent electron beam parameters. The device associated to this regime, also defined as FEL with two or more components, consists of two or more identical interaction sections separated by one or more drift distances among themselves. Starting from the motion equations which describe the interaction between an electron and the radiation inside the undulator, one can obtain some practical expressions for the calculation of the efficiency of the energy transfer from the electron to the radiation, and the gain of the external coherent radiation for a FEL in TOK with three cavities. (Author)

  2. X-ray Free-electron Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Feldhaus, J.; /DESY; Arthur, J.; Hastings, J.B.; /SLAC

    2007-02-23

    In a free-electron laser (FEL) the lasing medium is a high-energy beam of electrons flying with relativistic speed through a periodic magnetic field. The interaction between the synchrotron radiation that is produced and the electrons in the beam induces a periodic bunching of the electrons, greatly increasing the intensity of radiation produced at a particular wavelength. Depending only on a phase match between the electron energy and the magnetic period, the wavelength of the FEL radiation can be continuously tuned within a wide spectral range. The FEL concept can be adapted to produce radiation wavelengths from millimeters to Angstroms, and can in principle produce hard x-ray beams with unprecedented peak brightness, exceeding that of the brightest synchrotron source by ten orders of magnitude or more. This paper focuses on short-wavelength FELs. It reviews the physics and characteristic properties of single-pass FELs, as well as current technical developments aiming for fully coherent x-ray radiation pulses with pulse durations in the 100 fs to 100 as range. First experimental results at wavelengths around 100 nm and examples of scientific applications planned on the new, emerging x-ray FEL facilities are presented.

  3. Scheme for Generation highly monochromatic X-Rays from a baseline XFEL undulator

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2010-03-01

    One goal of XFEL facilities is the production of narrow bandwidth X-ray radiation. The self-seeding scheme was proposed to obtain a bandwidth narrower than that achievable with conventional X-ray SASE FELs. A self-seeded FEL is composed of two undulators separated by a monochromator and an electron beam bypass that must compensate for the path delay of X-rays in the monochromator. This leads to a long bypass, with a length in the order of 40-60 m, which requires modifications of the baseline undulator configuration. As an attempt to get around this obstacle, together with a study of the self-seeding scheme for the European XFEL, here we propose a novel technique based on a pulse doubler concept. Using a crystal monochromator installed within a short magnetic chicane in the baseline undulator, it is possible to decrease the bandwidth of the radiation well beyond the XFEL design down to 10 -5 . The magnetic chicane can be installed without any perturbation of the XFEL focusing structure, and does not interfere with the baseline mode of operation. We present a feasibility study and we make exemplifications with the parameters of the SASE2 line of the European XFEL. (orig.)

  4. Commissioning experience and beam physics measurements at the SwissFEL Injector test Facility

    CERN Document Server

    Schietinger, T.; Aiba, M.; Arsov, V.; Bettoni, S.; Beutner, B.; Calvi, M.; Craievich, P.; Dehler, M.; Frei, F.; Ganter, R.; Hauri, C. P.; Ischebeck, R.; Ivanisenko, Y.; Janousch, M.; Kaiser, M.; Keil, B.; Löhl, F.; Orlandi, G. L.; Ozkan Loch, C.; Peier, P.; Prat, E.; Raguin, J.-Y.; Reiche, S.; Schilcher, T.; Wiegand, P.; Zimoch, E.; Anicic, D.; Armstrong, D.; Baldinger, M.; Baldinger, R.; Bertrand, A.; Bitterli, K.; Bopp, M.; Brands, H.; Braun, H. H.; Brönnimann, M.; Brunnenkant, I.; Chevtsov, P.; Chrin, J.; Citterio, A.; Csatari Divall, M.; Dach, M.; Dax, A.; Ditter, R.; Divall, E.; Falone, A.; Fitze, H.; Geiselhart, C.; Guetg, M. W.; Hämmerli, F.; Hauff, A.; Heiniger, M.; Higgs, C.; Hugentobler, W.; Hunziker, S.; Janser, G.; Kalantari, B.; Kalt, R.; Kim, Y.; Koprek, W.; Korhonen, T.; Krempaska, R.; Laznovsky, M.; Lehner, S.; Le Pimpec, F.; Lippuner, T.; Lutz, H.; Mair, S.; Marcellini, F.; Marinkovic, G.; Menzel, R.; Milas, N.; Pal, T.; Pollet, P.; Portmann, W.; Rezaeizadeh, A.; Ritt, S.; Rohrer, M.; Schär, M.; Schebacher, L.; Scherrer, St.; Schlott, V.; Schmidt, T.; Schulz, L.; Smit, B.; Stadler, M.; Steffen, Bernd; Stingelin, L.; Sturzenegger, W.; Treyer, D. M.; Trisorio, A.; Tron, W.; Vicario, C.; Zennaro, R.; Zimoch, D.

    2016-10-26

    The SwissFEL Injector Test Facility operated at the Paul Scherrer Institute between 2010 and 2014, serving as a pilot plant and test bed for the development and realization of SwissFEL, the x-ray Free Electron Laser facility under construction at the same institute. The test facility consisted of a laser-driven rf electron gun followed by an S-band booster linac, a magnetic bunch compression chicane and a diagnostic section including atransverse deflecting rf cavity. It delivered electron bunchesof up to200 pC chargeand up to 250 MeV beam energy at a repetition rate of 10 Hz. The measurements performed at the test facility not only demonstrated the beam parameters required to drive the first stage of a FEL facility, but also led to significant advances in instrumentation technologies, beam characterization methods and the generation, transport and compression of ultralow-emittance beams. We give a comprehensive overview of the commissioning experience of the principal subsystems and the beam physics measureme...

  5. Issues at a university based FEL center

    International Nuclear Information System (INIS)

    Smith, T.I.; Schwettman, H.A.

    1998-01-01

    The Stanford FEL Center was established in September 1990. In this paper, the FEL itself, the Center infrastructure, the interaction with experimenters and the educational mission are described. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  6. CeB6 electron gun for the soft X-ray FEL project at SPring-8

    International Nuclear Information System (INIS)

    Togawa, K.; Baba, H.; Onoe, K.; Inagaki, T.; Shintake, T.; Matsumoto, H.

    2004-01-01

    A pulsed high-voltage electron gun with a thermionic cathode is under development for the injector system of the soft X-ray FEL project at SPring-8 (SCSS project). A CeB 6 single crystal of 3 mm diameter was chosen as a thermionic cathode because of its excellent emission properties, i.e., high resistance against contamination, uniform emission density and smooth surface. The CeB 6 cathode can produce a 3 A beam with 2 μs FWHM. A gun voltage of -500 kV was chosen as a compromise between the need for controlling emittance growth and minimizing the risks of high-voltage arcing. We have constructed a 500 kV electron gun test stand and have begun performance tests. This paper describes the basic design and the current status of the hardware R and D on the CeB 6 gun

  7. Two-bunch operation with ns temporal separation at the FERMI FEL facility

    Science.gov (United States)

    Penco, Giuseppe; Allaria, Enrico; Bassanese, Silvano; Cinquegrana, Paolo; Cleva, Stefano; Danailov, Miltcho B.; Demidovich, Alexander; Ferianis, Mario; Gaio, Giulio; Giannessi, Luca; Masciovecchio, Claudio; Predonzani, Mauro; Rossi, Fabio; Roussel, Eleonore; Spampinati, Simone; Trovò, Mauro

    2018-05-01

    In the last decade, a continuous effort has been dedicated to extending the capabilities of existing free-electron lasers (FELs) operating in the x-ray and vacuum ultraviolet regimes. In this framework, the generation of two-color (or multi-color) temporally separated FEL pulses, has paved the way to new x-ray pump and probe experiments and several two-color two-pulse schemes have been implemented at the main facilities, but with a generally limited time-separation between the pulses, from 0 to few hundreds of fs. This limitation may be overcome by generating light with two independent electron bunches, temporally separated by integral multiples of the radio-frequency period. This solution was investigated at FERMI, measurements and characterization of this two-bunch mode of operation are presented, including trajectory control, impact of longitudinal and transverse wakefields, manipulation of the longitudinal phase space and finally a demonstration of suitability of the scheme to provide extreme ultraviolet light by using both bunches.

  8. The JAERI superconducting RF linac-based FELS and THEIR cryogenics

    International Nuclear Information System (INIS)

    Minehara, Eisuke J.

    2003-01-01

    In the 21st century, we need a powerful and efficient free-electron laser (FEL) for academic and industrial uses in almost all fields. In order to realize such a tunable, highly-efficient, high average power, high peak power and ultra-short pulse FEL, the JAERI FEL group and I have developed an industrial FEL driven by a compact, stand-alone and zero-boil off super-conducting rf linac with an energy-recovery geometry. Our discussions on the JAERI FEL and cryogenics will cover market-requirements for the industrial FELs, some answers from the JAERI compact, stand-alone and zero-boil off cryostat concept and operational experiences over these 9 years, our discovery of the new, highly-efficient, high-power, and ultra-short pulse lasing mode, and the energy-recovery geometry. (author)

  9. Undulators to FELs: Nanometers, Femtoseconds, Coherence and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Attwood, David [University of California Berkeley

    2011-11-30

    For scientists in many fields, from material science to the life sciences and archeology, synchrotron radiation, and in particular undulator radiation, has provide an intense source of x-rays which are tunable to the absorption edges of particular elements of interest, often permitting studies at high spatial and spectral resolution. Now a close cousin to the undulator, the x-ray free electron laser (XFEL) has emerged with improved spatial coherence and, perhaps more importantly, femtosecond pulse durations which permit dynamical studies. In the future attosecond x-ray capabilities are anticipated. In this colloqium we will describe some state of the art undulator studies, how undulators work, the evolution to FELs, their pulse and coherence properties, and the types of experiments envisioned.

  10. FEL gain optimisation and spontaneous radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bali, L.M.; Srivastava, A.; Pandya, T.P. [Lucknow Univ. (India)] [and others

    1995-12-31

    Colson have evaluated FEL gains for small deviations from perfect electron beam injection, with radiation of the same polarisation as that of the wiggler fields. We find that for optimum gain the polarisation of the optical field should be the same as that of the spontaneous emission under these conditions. With a helical wiggler the axial oscillations resulting from small departures from perfect electron beam injection lead to injection dependent unequal amplitudes and phases of the spontaneous radiation in the two transverse directions. Viewed along the axis therefore the spontaneous emission is elliptically polarised. The azimuth of the ellipse varies with the difference of phase of the two transverse components of spontaneous emission but the eccentricity remains the same. With planar wigglers the spontaneous emission viewed in the axial direction is linearly polarised, again with an injection dependent azimuth. For optimum coherent gain of a radiation field its polarisation characteristics must be the same as those of the spontaneous radiation with both types of wiggler. Thus, with a helical wiggler and the data reported earlier, an increase of 10% in the FEL gain at the fundamental frequency and of 11% at the fifth harmonic has been calculated in the small gain per pass limit. Larger enhancements in gain may result from more favourable values of input parameters.

  11. Quantum theory for 1D X-ray free electron laser

    Science.gov (United States)

    Anisimov, Petr M.

    2018-06-01

    Classical 1D X-ray Free Electron Laser (X-ray FEL) theory has stood the test of time by guiding FEL design and development prior to any full-scale analysis. Future X-ray FELs and inverse-Compton sources, where photon recoil approaches an electron energy spread value, push the classical theory to its limits of applicability. After substantial efforts by the community to find what those limits are, there is no universally agreed upon quantum approach to design and development of future X-ray sources. We offer a new approach to formulate the quantum theory for 1D X-ray FELs that has an obvious connection to the classical theory, which allows for immediate transfer of knowledge between the two regimes. We exploit this connection in order to draw quantum mechanical conclusions about the quantum nature of electrons and generated radiation in terms of FEL variables.

  12. Design and implementation of Web-based SDUV-FEL engineering database system

    International Nuclear Information System (INIS)

    Sun Xiaoying; Shen Liren; Dai Zhimin; Xie Dong

    2006-01-01

    A design of Web-based SDUV-FEL engineering database and its implementation are introduced. This system will save and offer static data and archived data of SDUV-FEL, and build a proper and effective platform for share of SDUV-FEL data. It offers usable and reliable SDUV-FEL data for operators and scientists. (authors)

  13. Tunability and Power Characteristics of the LEBRA Infrared FEL

    CERN Document Server

    Tanaka, Toshinari; Hayakawa, Yasushi; Mori, Akira; Nogami, Kyoko; Sato, Isamu; Yokoyama, Kazue

    2004-01-01

    Application of the infrared (IR) Free-Electron Laser (FEL) was started in October 2003 at the Laboratory for Electron Beam Research and Application (LEBRA) of Nihon University. The FEL system consisted of silver-coated copper mirrors has demonstrated wavelength tunability ranged from 940 to 6100 nm as a function of the electron energy and the undulator K-value. Wavelength dependence of the FEL output power has been measured in term of different electron beam currents, electron energies and the undulator K-values. Approximate 25 mJ/macropulse has been obtained in the range 2 to 3 microns, which corresponds to peak power of 2 MW, provided that the FEL pulse length is 0.4 ps as resulted from the measurement by an interferometric method. The power decrease observed in the longer wavelength range is due to a large diffraction loss in the FEL guiding optics and the vacuum ducts.

  14. Computer modelling of statistical properties of SASE FEL radiation

    International Nuclear Information System (INIS)

    Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    1997-01-01

    The paper describes an approach to computer modelling of statistical properties of the radiation from self amplified spontaneous emission free electron laser (SASE FEL). The present approach allows one to calculate the following statistical properties of the SASE FEL radiation: time and spectral field correlation functions, distribution of the fluctuations of the instantaneous radiation power, distribution of the energy in the electron bunch, distribution of the radiation energy after monochromator installed at the FEL amplifier exit and the radiation spectrum. All numerical results presented in the paper have been calculated for the 70 nm SASE FEL at the TESLA Test Facility being under construction at DESY

  15. Status of the Novosibirsk high-power terahertz FEL

    International Nuclear Information System (INIS)

    Gavrilov, N.G.; Knyazev, B.A.; Kolobanov, E.I.; Kotenkov, V.V.; Kubarev, V.V.; Kulipanov, G.N.; Matveenko, A.N.; Medvedev, L.E.; Miginsky, S.V.; Mironenko, L.A.; Oreshkov, A.D.; Ovchar, V.K.; Popik, V.M.; Salikova, T.V.; Scheglov, M.A.; Serednyakov, S.S.; Shevchenko, O.A.; Skrinsky, A.N.; Tcheskidov, V.G.; Vinokurov, N.A.

    2007-01-01

    The first stage of Novosibirsk high-power free electron laser (FEL) was commissioned in 2003. It is based on the normal conducting CW energy recovery linac (ERL). Now the FEL provides electromagnetic radiation in the wavelength range 120-230 μm. The maximum average power is 400 W. The minimum measured linewidth is 0.3%, which is close to the Fourier-transform limit. Four user stations are in operation now. Manufacturing of the second stage of the FEL (based on the four-turn ERL) is in progress

  16. FEL polarization control studies on Dalian coherent light source

    International Nuclear Information System (INIS)

    Zhang Tong; Deng Haixiao; Wang Dong; Zhao Zhentang; Zhang Weiqing; Wu Guorong; Dai Dongxu; Yang Xueming

    2013-01-01

    The polarization switch of a free-electron laser (FEL) is of great importance to the user scientific community. In this paper, we investigate the generation of controllable polarization FEL from two well-known approaches for Dalian coherent light source, i.e., crossed planar undulator and elliptical permanent undulator. In order to perform a fair comparative study, a one-dimensional time-dependent FEL code has been developed, in which the imperfection effects of an elliptical permanent undulator are taken into account. Comprehensive simulation results indicate that the residual beam energy chirp and the intrinsic FEL gain may contribute to the degradation of the polarization performance for the crossed planar undulator. The elliptical permanent undulator is not very sensitive to the undulator errors and beam imperfections. Meanwhile, with proper configurations of the main planar undulators and additional elliptical permanent undulator section, circular polarized FEL with pulse energy exceeding 100 μJ could be achieved at Dalian coherent light source. (authors)

  17. Inverse Compton gamma-ray source for nuclear physics and related applications at the Duke FEL

    International Nuclear Information System (INIS)

    O'Shea, P.G.; Litvinenko, V.N.; Madey, J.M.J.

    1995-01-01

    In recent years the development of intense, short-wavelength FEL light sources has opened opportunities for the development new applications of high-energy Compton-backscattered photons. These applications range from medical imaging with X-ray photons to high-energy physics with γγ colliders. In this paper we discuss the possibilities for nuclear physics studies using polarized Compton backscattered γ-rays from the Duke storage-ring-driven UV-FEL. There are currently a number of projects that produce polarized γ-rays for nuclear physics studies. All of these facilities operate by scattering conventional laser-light against electrons circulating in a storage ring. In our scheme, intra-cavity scattering of the UV-FEL light will produce a γ-flux enhancement of approximately 10 3 over existing sources. The Duke ring can operate at energies up to 1.2 GeV and can produce FEL photons up to 12.5 eV. We plan to generate γ-rays up to 200 MeV in energy with an average flux in excess of 10 7 /s/MeV, using a modest scattering beam of 10-mA average stored current. The γ-ray energy may be tuned by varying the FEL wavelength or by adjusting the stored electron beam energy. Because of the intense flux, we can eliminate the need for photon energy tagging by collimating of the γ-ray beam. We will discuss the characteristics of the device and its research opportunities

  18. Help system for control of JAERI FEL (Free Electron laser)

    International Nuclear Information System (INIS)

    Sugimoto, Masayoshi

    1993-01-01

    The control system of JAERI FEL (Free Electron Laser) has a help system to provide the information necessary to operate the machine and to develop the new user interface. As the control software is constructed on the MS-Windows 3.x, the hyper-text feature of the Windows help system can be accessed. It consists of three major parts: (1) on-line help, (2) full document, and (3) tutorial system. (author)

  19. PAL-XFEL soft X-ray scientific instruments and X-ray optics: First commissioning results

    Science.gov (United States)

    Park, Sang Han; Kim, Minseok; Min, Changi-Ki; Eom, Intae; Nam, Inhyuk; Lee, Heung-Soo; Kang, Heung-Sik; Kim, Hyeong-Do; Jang, Ho Young; Kim, Seonghan; Hwang, Sun-min; Park, Gi-Soo; Park, Jaehun; Koo, Tae-Yeong; Kwon, Soonnam

    2018-05-01

    We report an overview of soft X-ray scientific instruments and X-ray optics at the free electron laser (FEL) of the Pohang Accelerator Laboratory, with selected first-commissioning results. The FEL exhibited a pulse energy of 200 μJ/pulse, a pulse width of power of 10 500 was achieved. The estimated total time resolution between optical laser and X-ray pulses was <270 fs. A resonant inelastic X-ray scattering spectrometer was set up; its commissioning results are also reported.

  20. FEL induced molecular operation on cultured fibroblast and cholesterol ester

    International Nuclear Information System (INIS)

    Awazu, Kunio; Ogino, Seiji; Nishimura, Eiichi; Tomimasu, Takio; Yasumoto, Masato.

    1997-01-01

    Free Electron Lasers can be used to molecular operation such as the delivery of a number of molecules into cells or the separation of cholesterol ester. First, cultured NIH3T3 cells are exposed to high-intensity short pulse Free Electron Laser (FEL). The FEL is tuned to an absorption maximum wavelength, 6.1 μm, which was measured by microscopic FTIR. A fluorescence dye in the cell suspension is more absorbed into the cell with the FEL exposure due to the FEL-induced mechanical stress to the cell membrane. A quantitative fluorescence microscopy is used to determine the efficiency of delivery. Second, as a compound in a lipid cell, cholesterol ester was exposed to 5.75 μm FEL. FTIR measurement was done to evaluate the modification of the cholesterol ester. The result showed that the fluorescence intensity of sample cells were higher than that of control cells, and there was significant difference between the control and the sample group. Blebbing and the colony formation of the cells were observed for cells with mechanical stress. As for the cholesterol ester, it can be modified by the FEL irradiation. These results showed that FEL can be used as a molecular operational tool by photo-chemical and photo-mechanical interaction. (author)

  1. Renewal of KU-FEL Facility

    CERN Document Server

    Kii, Toshiteru; Masuda, Kai; Murakami, Shio; Ohgaki, Hideaki; Yamazaki, Tetsuo; Yoshikawa, Kiyoshi; Zen, Heishun

    2004-01-01

    Users demands to a high power tunable IR laser are increasing in Japan in energy-related science, such as basic study of high-efficiency solar cells, generation of new energy source of alcohol and/or H2 from polluted gas, and separation of DNA and/or RNA. To satisfy these demands, we decided to renew our FEL facility more user friendly and to operate more flexibly. Construction and fundamental studies on the KU-FEL have been carried out at a building of Institute of Chemical Research where few other accelerators are operating. Therefore, available machine time for our experiments is quite limited. We are now modifying the room by adding concrete walls of 2-m thickness and some space for users will be available. The present FEL system will be moved to the room A photocathode RF-gun system will be nearly added to the system and the present thermionic RF-gun will be used ternatively according to the demands of users. The photocathode material will be Cs2Te. The room with the shielding will be completed in June, ...

  2. Mode-Locked Multichromatic X-Rays in a Seeded Free-Electron Laser for Single-Shot X-Ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Dao; Ding, Yuantao; Raubenheimer, Tor; Wu, Juhao; /SLAC

    2012-05-10

    We present the promise of generating gigawatt mode-locked multichromatic x rays in a seeded free-electron laser (FEL). We show that, by using a laser to imprint periodic modulation in electron beam phase space, a single-frequency coherent seed can be amplified and further translated to a mode-locked multichromatic output in an FEL. With this configuration the FEL output consists of a train of mode-locked ultrashort pulses which span a wide frequency gap with a series of equally spaced sharp lines. These gigawatt multichromatic x rays may potentially allow one to explore the structure and dynamics of a large number of atomic states simultaneously. The feasibility of generating mode-locked x rays ranging from carbon K edge ({approx}284 eV) to copper L{sub 3} edge ({approx}931 eV) is confirmed with numerical simulation using the realistic parameters of the linac coherent light source (LCLS) and LCLS-II. We anticipate that the mode-locked multichromatic x rays in FELs may open up new opportunities in x-ray spectroscopy (i.e. resonant inelastic x-ray scattering, time-resolved scattering and spectroscopy, etc.).

  3. The activity on linear accelerators at the ENEA Frascati center

    International Nuclear Information System (INIS)

    Picardi, L.; Messina, G.; Ronsivalle, C.; Vignati, A.

    1992-01-01

    In the last ten years four small linear accelerators have been built at the ENEA Frascati Center, used for a 100 MeV racetrack microtron and for electron beam processing tests of materials. ENEA is also involved in infrared free electron laser (FEL) research. After good results from a 2 mm wavelength FEL driven by a 2.5 MeV linac, design has been started on a linac for a far infrared FEL facility devoted to an experiment in muonic hydrogen spectroscopy. 3 figs., 3 tabs., ref

  4. Opportunities and challenges for photon diagnostics at the soft X-ray FEL FLASH in simultaneous operation mode (Conference Presentation)

    Science.gov (United States)

    Kuhlmann, Marion; Treusch, Rolf; Plönjes-Palm, Elke; Faatz, Bart; Tiedtke, Kai; Braune, Markus; Keitel, Barbara

    2017-06-01

    FLASH operates two distinguished undulator sections driven by one linear accelerator. In the 11th year of user operation the grown demands for detailed photon beam performances are doubled approached. The more complex machine settings and setup times require a more and more efficient determination of its characteristics concerning electron- and photon-beams. The photon diagnostics systems, e.g. gas monitor detection, photon-ion spectroscopy, or diffractive tools, not only have to deal on a regular basis with fundamental wavelengths between 4nm and 90nm, also they have to be reliable from 1µJ up to 1mJ of average single pulse energy. For the success of the experiments the error bars of many diagnostics measurements need to be pushed into their current limits and developments to go further are always issued. Especial, the pulse duration in conjunction with the spectral width has been accessed in the last year. Direct approaches of fundamental wavelengths below the Nitrogene K-edge and higher harmonics in and below the water window were achieved. While in principal distinguished to each other, the photon diagnostics tools of FLASH1 and FLASH2 add-up to a more complete understanding of the other. Together they allow for a better perspective towards further developments and a more suitable use of beam times. The intermingled knowledge of electron- and photon-beams is essential for an FEL particular in simultaneous operation mode. Examples out of regular user operation and distinguished FEL-studies are given to illustrate the current state of the photon diagnostics at FLASH.

  5. Feasibility of an XUV FEL Oscillator Driven by a SCRF Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H.; Freund, H. P.; Reinsch, M.

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) facility is currently under construction at Fermi National Accelerator Laboratory. Using a1-ms-long macropulse composed of up to 3000 micropulses, and with beam energies projected from 45 to 800 MeV, the possibility for an extreme ultraviolet (XUV) free-electron laser oscillator (FELO) with the higher energy is evaluated. We have used both GINGER with an oscillator module and the MEDUSA/OPC code to assess FELO saturation prospects at 120 nm, 40 nm, and 13.4 nm. The results support saturation at all of these wavelengths which are also shorter than the demonstrated shortest wavelength record of 176 nm from a storage-ring-based FELO. This indicates linac-driven FELOs can be extended into this XUV wavelength regime previously only reached with single-pass FEL configurations.

  6. Novel active signal compression in low-noise analog readout at future X-ray FEL facilities

    Science.gov (United States)

    Manghisoni, M.; Comotti, D.; Gaioni, L.; Lodola, L.; Ratti, L.; Re, V.; Traversi, G.; Vacchi, C.

    2015-04-01

    This work presents the design of a low-noise front-end implementing a novel active signal compression technique. This feature can be exploited in the design of analog readout channels for application to the next generation free electron laser (FEL) experiments. The readout architecture includes the low-noise charge sensitive amplifier (CSA) with dynamic signal compression, a time variant shaper used to process the signal at the preamplifier output and a 10-bit successive approximation register (SAR) analog-to-digital converter (ADC). The channel will be operated in such a way to cope with the high frame rate (exceeding 1 MHz) foreseen for future XFEL machines. The choice of a 65 nm CMOS technology has been made in order to include all the building blocks in the target pixel pitch of 100 μm. This work has been carried out in the frame of the PixFEL Project funded by the Istituto Nazionale di Fisica Nucleare (INFN), Italy.

  7. High-power FEL design issues - a critical review

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.N.; Madey, J.M.J.; O`Shea, P.G. [Duke Univ., Durham, NC (United States)

    1995-12-31

    The high-average power capability of FELs has been much advertised but little realized. In this paper we provide a critical analysis of the technological and economic issues associated with high-average power FEL operation from the UV to near IR. The project of IR FEL for the Siberian Center of photochemical researches is described. The distinguished features of this project are the use of the race-track microtron-recuperator and the {open_quotes}electron output of radiation{close_quotes}. The building for the machine is under reconstruction now. About half of hardware has been manufactured. The assembly of installation began.

  8. Dielectric Wakefield Accelerator to drive the future FEL Light Source.

    Energy Technology Data Exchange (ETDEWEB)

    Jing, C.; Power, J.; Zholents, A. (Accelerator Systems Division (APS)); ( HEP); (LLC)

    2011-04-20

    X-ray free-electron lasers (FELs) are expensive instruments and a large part of the cost of the entire facility is driven by the accelerator. Using a high-energy gain dielectric wake-field accelerator (DWA) instead of the conventional accelerator may provide a significant cost saving and reduction of the facility size. In this article, we investigate using a collinear dielectric wakefield accelerator to provide a high repetition rate, high current, high energy beam to drive a future FEL x-ray light source. As an initial case study, a {approx}100 MV/m loaded gradient, 850 GHz quartz dielectric based 2-stage, wakefield accelerator is proposed to generate a main electron beam of 8 GeV, 50 pC/bunch, {approx}1.2 kA of peak current, 10 x 10 kHz (10 beamlines) in just 100 meters with the fill factor and beam loading considered. This scheme provides 10 parallel main beams with one 100 kHz drive beam. A drive-to-main beam efficiency {approx}38.5% can be achieved with an advanced transformer ratio enhancement technique. rf power dissipation in the structure is only 5 W/cm{sup 2} in the high repetition rate, high gradient operation mode, which is in the range of advanced water cooling capability. Details of study presented in the article include the overall layout, the transform ratio enhancement scheme used to increase the drive to main beam efficiency, main wakefield linac design, cooling of the structure, etc.

  9. JEM-X: Joint European X-ray monitor

    DEFF Research Database (Denmark)

    Lund, Niels; Westergaard, Niels Jørgen Stenfeldt; Budtz-Jørgensen, Carl

    1998-01-01

    JEM-X is the X-ray monitor for INTEGRAL. It is being built by a large European consortium led by the Danish Space Research Institute. It consists of two identical, independent coded mask X-ray telescopes with an energy span from 3 keV to 60 keV. Each system has a microstrip gas detector and a mask...... with a 25% transparent hexagonal uniformly redundant pattern based on a bi-quadratic residue set situated 3.4 m above the detector. The fully illuminated field-of-view is circular and 4.8 degrees across. The mechanical properties and source detection sensitivities are reviewed....

  10. Options for the Cryogenic System for the BESSY-FEL

    International Nuclear Information System (INIS)

    Kutzschbach, A.; Quack, H.; Haberstroh, Ch.; Knobloch, J.; Anders, W.; Pflueckhahn, D.

    2004-01-01

    The Berliner Elektronenspeicherring-Gesellschaft fuer Synchrotronstrahlung (BESSY GmbH), in January 1999, started operation of BESSY II, a third-generation synchrotron light source delivering world-class, high-brilliance photon beams in the VUV to XUV spectral range. Based on this experience, BESSY has recently proposed the construction of a free-electron laser (FEL), covering a photon-energy range from 20 eV to 1 keV.To reduce the development time and cost, BESSY intends to use proven cavity and cryostat technology developed for the TESLA linear collider. However, the cryogenic load per cavity is approximately 15 to 20 times higher than that anticipated for the (pulsed) TESLA operation. This paper describes possible modifications of the cryostat design to accommodate these additional losses.Superconducting RF cavities are the basis of the FEL accelerator providing the driving electron beam with 2.25 GeV. The accelerator consists of five cold sections separated by warm sections reserved for bunch compression and beam extraction. The total refrigeration load will be covered by a single refrigerator. Several possible layouts of the cryogenic system are described and their advantages and disadvantages are discussed

  11. Optical afterburner for an x-ray free electron laser as a tool for pump-probe experiments

    Directory of Open Access Journals (Sweden)

    E. L. Saldin

    2010-03-01

    Full Text Available We propose a new scheme for two-color operation of an x-ray self-amplified spontaneous emission free electron laser (SASE FEL. The scheme is based on an intrinsic feature of such a device: chaotic modulations of electron beam energy and energy spread on the scale of FEL coherence length are converted into large density modulations on the same scale with the help of a dispersion section, installed behind the x-ray undulator. Powerful radiation is then generated with the help of a dedicated radiator (like an undulator that selects a narrow spectral line, or one can simply use, for instance, broadband edge radiation. A typical radiation wavelength can be as short as a FEL coherence length, and can be redshifted by increasing the dispersion section strength. In practice it means the wavelength ranges from vacuum ultraviolet to infrared. The long-wavelength radiation pulse is naturally synchronized with the x-ray pulse and can be either directly used in pump-probe experiments or cross correlated with a high-power pulse from a conventional laser system. In this way experimenters overcome jitter problems and can perform pump-probe experiments with femtosecond resolution. Additional possibilities like on-line monitoring of x-ray pulse duration (making “optical replica” of an x-ray pulse are also discussed in the paper. The proposed scheme is very simple, cheap, and robust, and therefore can be easily realized in facilities like FLASH, European XFEL, LCLS, and SCSS.

  12. First operation of a powerful FEL with two-dimensional distributed feedback

    CERN Document Server

    Agarin, N V; Bobylev, V B; Ginzburg, N S; Ivanenko, V G; Kalinin, P V; Kuznetsov, S A; Peskov, N Yu; Sergeev, A S; Sinitsky, S L; Stepanov, V D

    2000-01-01

    A W-band (75 GHz) FEL of planar geometry driven by a sheet electron beam was realised using the pulse accelerator ELMI (0.8 MeV/3 kA/5 mu s). To provide the spatial coherence of radiation from different parts of the electron beam with a cross-section of 0.4x12 cm two-dimensional distributed feedback systems have been employed using a 2-D Bragg resonator of planar geometry. The resonator consisted of two 2-D Bragg reflectors separated by a regular waveguide section. The total energy in the microwave pulse of microsecond duration was 100 J corresponding to a power of approx 100 MW. The main component of the FEL radiation spectrum was at 75 GHz that corresponded to the zone of effective Bragg reflection found from 'cold' microwave testing of the resonator. The experimental data compared well with the results of theoretical analysis.

  13. Free electron laser for the 2 x 1 TeV photon collider

    International Nuclear Information System (INIS)

    Sarantsev, V.P.; Yurkov, M.V.; Saldin, E.L.; Shnejdmiller, E.A.

    1993-01-01

    The two-cascade scheme of a free electron laser (FEL) of the 2 x 1 TeV photon collider is suggested. The FEL-generator having peak power of ∼ 10 MW which is amplified up to 5 x 10 11 W in the FEL-amplifier with variable parameters is used as a driving laser. Requirements for parameters of electron beam and the FEL-amplifier magnetic system are formulated on the base of calculations. 19 refs., 2 tabs., 4 figs

  14. THE VISA FEL UNDULATOR

    International Nuclear Information System (INIS)

    CARR, R.; CORNACCHIA, M.; EMMA, P.; NUHN, H.D.; FULAND, R.; JOHNSON, E.; RAKOWSKY, G.; LIDIA, S.; BERTOLINI, L.; LIBKIND, M.; FRIGOLA, P.; PELLEGRINI, C.; ROSENZWEIG, J.

    1998-01-01

    The Visible-Infrared SASE Amplifier (VISA) FEL is an experimental device designed to show Self Amplified Spontaneous Emission (SASE) to saturation in the visible light energy range. It will generate a resonant wavelength output from 800--600 nm, so that silicon detectors may be used to characterize the optical properties of the FEL radiation. VISA is the first SASE FEL designed to reach saturation, and its diagnostics will provide important checks of theory. This paper includes a description of the VISA undulator, the magnet measuring and shimming system, and the alignment strategy. VISA will have a 4 m pure permanent magnet undulator comprising four 99 cm segments, each with 55 periods of 18 mm length. The undulator has distributed focusing built into it, to reduce the average beta function of the 70--85 MeV electron beam to about 30 cm. There are four FODO cells per segment. The permanent magnet focusing lattice consists of blocks mounted on either side of the electron beam, in the undulator gap. The most important undulator error parameter for a free electron laser is the trajectory walkoff or lack of overlap of the photon and electron beams. Using pulsed wire magnet measurements and magnet shimming, the authors expect to be able to control trajectory walkoff to less than ±50 pm per field gain length

  15. Accelerator-driven X-ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-09

    After an introduction which mentions x-ray tubes and storage rings and gives a brief review of special relativity, the subject is treated under the following topics and subtopics: synchrotron radiation (bending magnet radiation, wiggler radiation, undulator radiation, brightness and brilliance definition, synchrotron radiation facilities), x-ray free-electron lasers (linac-driven X-ray FEL, FEL interactions, self-amplified spontaneous emission (SASE), SASE self-seeding, fourth-generation light source facilities), and other X-ray sources (energy recovery linacs, Inverse Compton scattering, laser wakefield accelerator driven X-ray sources. In summary, accelerator-based light sources cover the entire electromagnetic spectrum. Synchrotron radiation (bending magnet, wiggler and undulator radiation) has unique properties that can be tailored to the users’ needs: bending magnet and wiggler radiation is broadband, undulator radiation has narrow spectral lines. X-ray FELs are the brightest coherent X-ray sources with high photon flux, femtosecond pulses, full transverse coherence, partial temporal coherence (SASE), and narrow spectral lines with seeding techniques. New developments in electron accelerators and radiation production can potentially lead to more compact sources of coherent X-rays.

  16. The European X-ray Free Electron Laser Project at DESY

    CERN Document Server

    Schwarz, Andreas

    2004-01-01

    On February 5, 2003, the German Federal Ministry of Education and Research decided that the X-ray free-electron laser XFEL, proposed by the International TESLA Collaboration, should be realized as a European project and located at DESY/Hamburg. The ministry also announced that in view of the locational advantage, Germany is prepared to cover half of the investment and personnel costs for the XFEL. In the course of the last year work has concentrated on the following areas: setting up of an organizational structure at DESY for the preparation of the project, discussions with potential European partners on several levels, selection of a new site for the XFEL facility and the preparation of the 'plan approval procedure'. The present status of the technical layout of the Linear Accelerator, the SASE Undulator and Photon Beamlines and the experiment stations will be presented.

  17. Energy stability in recirculating, energy-recovering linacs in the presence of a FEL

    International Nuclear Information System (INIS)

    Merminga, L.; Bisognano, J.; Delayen, J.R.

    1996-01-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs (free electron lasers). Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, or, when coupled to M 56 , phase oscillations. Both effects change the beam induced voltage in the cavities and can lead to unstable variations of the accelerating field. An analytical model which includes amplitude and phase feedback, has been developed to study the stability of the system for small perturbations from equilibrium. The interaction of the electron beam with the FEL is a major perturbation which affects both the stability of the system and development of startup and recovery scenarios. To simulate the system's response to such large parameter variations, a numerical model of the beam-cavity interaction has been developed which includes low level rf feedback, phase oscillations and beam loss instabilities and the FEL interaction. Agreement between the numerical model and the linear theory has been demonstrated in the limit of small perturbations. In addition, the model has been benchmarked against experimental data obtained during CEBAF's high current operation. Numerical simulations have been performed for the high power IR DEMO approved for construction at CEBAF

  18. Nonlinear harmonic generation and proposed experimental verification in SASE FELs

    CERN Document Server

    Freund, H P; Milton, S V

    2000-01-01

    Recently, a 3D, polychromatic, nonlinear simulation code was developed to study the growth of nonlinear harmonics in self-amplified spontaneous emission (SASE) free-electron lasers (FELs). The simulation was applied to the parameters for each stage of the Advanced Photon Source (APS) SASE FEL, intended for operation in the visible, UV, and short UV wavelength regimes, respectively, to study the presence of nonlinear harmonic generation. Significant nonlinear harmonic growth is seen. Here, a discussion of the code development, the APS SASE FEL, the simulations and results, and, finally, the proposed experimental procedure for verification of such nonlinear harmonic generation at the APS SASE FEL will be given.

  19. Coherent methods in X-ray scattering

    International Nuclear Information System (INIS)

    Gorobtsov, Oleg

    2017-05-01

    X-ray radiation has been used to study structural properties of materials for more than a hundred years. Construction of extremely coherent and bright X-ray radiation sources such as free electron lasers (FELs) and latest generationstorage rings led to rapid development of experimental methods relying on high radiation coherence. These methods allow to perform revolutionary studies in a wide range of fields from solid state physics to biology. In this thesis I focus on several important problems connected with the coherent methods. The first part considers applications of dynamical diffraction theory on crystals to studies with coherent X-ray radiation. It presents the design of a high-resolution spectrometer for free electron lasers that should allow to resolve spectral structure of individual FEL pulses. The spectrometer is based on the principle of dynamical diffraction focusing. The knowledge of individual FEL pulse spectra is necessary for understanding FEL longitudinal coherence. In the same part I present quasi-kinematical approximation to dynamical theory which allows to treat analytically phase effects observed in X-ray coherent imaging on nanocrystals. These effects may play a big role when methods such as ptychography are used to study crystalline samples. The second part deals with measurements of FEL coherence properties using intensity - intensity interferometry. Results of several experiments performed at FELs FLASH and LCLS are revealed in this section. I have developed models and theories to explain the behavior observed in experiments on FLASH. These models allowed to extract information about external positional jitter of FEL pulses and secondary beams present in FEL radiation. In the LCLS experiment the Hanbury Brown and Twiss type interferometry was performed on Bragg peaks from colloidal crystal. This did not require additional measurements without the sample and information was extracted directly from diffraction patterns. Therefore intensity

  20. Coherent methods in X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gorobtsov, Oleg

    2017-05-15

    X-ray radiation has been used to study structural properties of materials for more than a hundred years. Construction of extremely coherent and bright X-ray radiation sources such as free electron lasers (FELs) and latest generationstorage rings led to rapid development of experimental methods relying on high radiation coherence. These methods allow to perform revolutionary studies in a wide range of fields from solid state physics to biology. In this thesis I focus on several important problems connected with the coherent methods. The first part considers applications of dynamical diffraction theory on crystals to studies with coherent X-ray radiation. It presents the design of a high-resolution spectrometer for free electron lasers that should allow to resolve spectral structure of individual FEL pulses. The spectrometer is based on the principle of dynamical diffraction focusing. The knowledge of individual FEL pulse spectra is necessary for understanding FEL longitudinal coherence. In the same part I present quasi-kinematical approximation to dynamical theory which allows to treat analytically phase effects observed in X-ray coherent imaging on nanocrystals. These effects may play a big role when methods such as ptychography are used to study crystalline samples. The second part deals with measurements of FEL coherence properties using intensity - intensity interferometry. Results of several experiments performed at FELs FLASH and LCLS are revealed in this section. I have developed models and theories to explain the behavior observed in experiments on FLASH. These models allowed to extract information about external positional jitter of FEL pulses and secondary beams present in FEL radiation. In the LCLS experiment the Hanbury Brown and Twiss type interferometry was performed on Bragg peaks from colloidal crystal. This did not require additional measurements without the sample and information was extracted directly from diffraction patterns. Therefore intensity

  1. Towards the Fourier limit on the super-ACO Storage Ring FEL

    International Nuclear Information System (INIS)

    Couprie, M.E.; De Ninno, G.; Moneron, G.; Nutarelli, D.; Hirsch, M.; Garzella, D.; Renault, E.; Roux, R.; Thomas, C.

    2001-01-01

    Systematic studies on the Free Electron Laser (FEL) line and micropulse have been performed on the Super-ACO storage ring FEL with a monochromator and a double-sweep streak camera under various conditions of operation (detuning, 'CW' and Q-switched mode). From these data, it appears that the FEL is usually operated very close to the Fourier limit

  2. Towards the Fourier limit on the super-ACO Storage Ring FEL

    CERN Document Server

    Couprie, Marie Emmanuelle; Garzella, D; Hirsch, M; Moneron, G; Nutarelli, D; Renault, E; Roux, R; Thomas, C

    2001-01-01

    Systematic studies on the Free Electron Laser (FEL) line and micropulse have been performed on the Super-ACO storage ring FEL with a monochromator and a double-sweep streak camera under various conditions of operation (detuning, 'CW' and Q-switched mode). From these data, it appears that the FEL is usually operated very close to the Fourier limit.

  3. Theoretical analysis of experimental results on SG-1 FEL

    International Nuclear Information System (INIS)

    Yang Zhenhua; Wu Shangqing; Tian Shihong; Dong Zhiwei; Wu Yupu

    1994-01-01

    In order to study the SG-1 FEL and the beam transport thoroughly, and draw certain quantitative conclusions, we developed 3-D WAGFEL code to describe the FEL evolution and 3-D CEBQ code to describe the beam transport. The CEBQ code can simulate the 3-D transport of the electron beam in the modulation section with linear approximation of space charge. According to the first ASE experiments results, the LIA provided a 2 kA, 3.0 MeV beam with a normalized emittance of 0.6 πrad·cm, an energy spread (FWHM) of 4%, resulting in a beam brightness nearly 10 8 A/(πm·rad) 2 . The numerical simulation showed that the quality of the beam was good enough to abandon the 9-m long beam line and substitute it with a 2-m long drifting and focusing region. The second series of ASE and amplifier experiments began in October 1992. The beam transport section was modified. The ASE output power, the amplifier output power and detuning curve was measured. We analysed the experimental results using the WAGFEL and CEBQ codes with parameters equal to those of experiments. Firstly we followed 4096 electrons to simulate the transport process of the beam in the beam line under the condition of I = 2 kA, r b = 1 cm, γ = 6.8, Δγ/γ 4%, ε rms = 0.6 (πrad·cm). Through the simulation, we predicted that the beam current injected into the wiggler was about 611 A. Based on these beam parameters at the entrance of the wiggler, we simulated the FEL process with P in = 300 W. The results are also in Fig.7,8,9

  4. Electron beam optics for the FEL experiment and IFEL experiment

    International Nuclear Information System (INIS)

    van Steenbergen, A.

    1990-01-01

    Electron beam transport system parameters for the FEL experiment and for the FEL experiment are given. The perturbation of the ''interaction region'' optics due to wiggler focussing is taken into account and a range of solutions are provided for relevant Twiss parameters in the FEL or IFEL region. Modifications of the transport optics in specific sections of the overall beam transport lines, for reasons of enhanced diagnostic capability or enhanced beam momentum analysis resolution, is also presented

  5. Characterization of electron bunches from field emitter array cathodes for use in next-generation x-ray free electron lasers

    International Nuclear Information System (INIS)

    Leemann, S. C.

    2007-01-01

    PSI is interested in developing an x-ray free electron laser (X-FEL) as a companion radiation source to the existing Swiss Light Source. In order to achieve radiation wavelengths as low as 1 Α, the X-FEL requires excellent electron beam quality and high beam energy. The energy requirements and thus the size and cost of the project can be reduced considerably if an ultra-low emittance electron source is developed. Therefore PSI has started the Low Emittance Gun Project with the aim to design a novel type of electron source that will deliver an electron beam with unprecedented emittance at high peak currents to the linear accelerator of the proposed X-FEL. A source candidate for such a gun is field emission from cold cathodes. In order to gain first experience with field emission guns, investigate the dynamics of space charge dominated electron beams and to develop diagnostics capable of resolving ultra-low emittances, it was decided to build a 100 keV DC gun test stand. In the scope of this thesis, the test stand has been designed, assembled and commissioned. For the first time, transverse phase space measurements of bunches emitted by field emitter arrays in pulsed DC accelerating fields have been performed. (author)

  6. Generation of a few femtoseconds pulses in seeded FELs using a seed laser with small transverse size

    Energy Technology Data Exchange (ETDEWEB)

    Li, Heting, E-mail: liheting@ustc.edu.cn; Jia, Qika

    2016-09-11

    We propose a simple method to generate a few femtosecond pulses in seeded FELs. We use a longitudinal energy-chirped electron beam passing through a dogleg where transverse dispersion will generate a horizontal energy chirp, then in the modulator, a seed laser with narrow beam radius will only modulate the center portion of the electron beam and then short pulses at high harmonics will be generated in the radiator. Using a representative realistic set of parameters, we show that 30 nm XUV pulse based on the HGHG scheme and 9 nm soft x-ray pulse based on the EEHG scheme with duration of about 8 fs (FWHM) and peak power of GW level can be generated from a 180 nm UV seed laser with beam waist of 75 μm. This new scheme can provide an optional operation mode for the existing seeded FEL facilities to meet the requirement of short-pulse FEL.

  7. A Concept for z-Dependent Microbunching Measurements with Coherent X-ray Transition Radiation in a SASE FEL

    CERN Document Server

    Lumpkin, Alex H

    2004-01-01

    Previously, measurements in the visible to VUV regimes of z-dependent microbunching in a self-amplified spontaneous emission (SASE) free-electron laser (FEL) have provided important information about the fundamental mechanisms. In those experiments a thin metal foil was used to block the more intense SASE radiation and to generate coherent optical transition radiation (COTR) as one source in a two-foil interferometer. However, for the proposed Linac Coherent Light Source (LCLS), the intense SASE emission is either too strongly transmitted at 1.5 angstroms or the needed foil thickness for blocking scatters the electron beam too much. Since coherent x-ray transition radiation (CXTR) is emitted in an annulus with opening angle 1/γ = 36 µrad for 14.09-GeV electrons, one could use a thin foil or foil stack to generate the XTR and CXTR and an annular crystal to wavelength sort the radiation. The combined selectivity will favor the CXTR over SASE by about eight orders of magnitude. Time-dependent GINGER si...

  8. Observation of superradiance in a short-pulse FEL oscillator

    NARCIS (Netherlands)

    Jaroszynski, D. A.; Chaix, P.; Piovella, N.; Oepts, D.; Knippels, G.M.H.; van der Meer, A. F. G.; Weits, H. H.

    1997-01-01

    Superradiance has been experimentally studied, in a short-pulse free-electron laser (FEL) oscillator. Superradiance is the optimal way of extracting optical radiation from an FEL and can be characterised by the following scale laws: peak optical power P, scales as the square of electron charge, Q,

  9. Optical klystron FELs based on tandem electrostatic accelerators

    International Nuclear Information System (INIS)

    Gover, A.; Friedman, A.

    1989-01-01

    The operation of tandem electrostatic accelerator FELs in an optical klystron configuration makes it possible to take advantage of the high quality (low emittance and low energy spread) of the electron beam in electrostatic accelerators. With evolving microwiggler technology, state-of-the-art moderate energy (6-14-MeV) tandem electrostatic accelerators may be used for the development of highly coherent tunable radiation sources in the entire IR region. The authors present the general design considerations and the predicted operating characteristics of such devices and refer in specifics to a design of a 10-1000-μm FEL based on the parameters of a 5-6-MeV high current tandem accelerator. The operating wavelength of FELs is determined by the Doppler shift formula

  10. The FEL development at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Arnold, N. D.; Benson, C.; Berg, S.; Berg, W.; Biedron, S. G.; Chae, Y. C.; Crosbie, E. A.; Decker, G.; Dejus, R. J.; Den Hartog, P.; Deriy, B.; Dortwegt, R.; Edrmann, M.; Freund, H. P.; Friedsam, H.; Galayda, J. N.; Gluskin, E.; Goeppner, G. A.; Grelick, A.; Huang, Z.; Jones, J.; Kang, Y.; Kim, K.-J.; Kim, S.; Kinoshita, K.; Lewellen, J. W.; Lill, R.; Lumpkin, A. H.; Makarov, O.; Markovich, G. M.; Milton, S. V.; Moog, E. R.; Nassiri, A.; Ogurtsov, V.; Pasky, S.; Power, J.; Tieman, B.; Trakhtenberg, E.; Travish, G.; Vasserman, I.; Walters, D. R.; Wang, J.; Xu, S.; Yang, B.

    1999-01-01

    Construction of a single-pass free-electron laser (FEL) based on the self-amplified spontaneous emission (SASE) mode of operation is nearing completion at the Advanced Photon Source (APS) with initial experiments imminent. The APS SASE FEL is a proof-of-principle fourth-generation light source. As of January 1999 the undulator hall, end-station building, necessary transfer lines, electron and optical diagnostics, injectors, and initial undulatory have been constructed and, with the exception of the undulatory, installed. All preliminary code development and simulations have also been completed. The undulator hall is now ready to accept first beam for characterization of the output radiation. It is the project goal to push towards fill FEL saturation, initially in the visible, but ultimately to W and VUV, wavelengths

  11. Optimization Studies of the FERMI at ELETTRA FEL Design

    CERN Document Server

    De Ninno, G

    2005-01-01

    The FERMI at ELETTRA project at Sincotrone Trieste involves two FEL's, each based upon the principle of a seeded harmonic cascade and using the existing ELETTRA injection linac at 1.2 GeV beam energy. Scheduled to be completed in 2008, FEL-1 will operate in the 40-100 nm wavelength range and will involve one stage of harmonic up-conversion. The second phase, FEL-2, will begin operation two years later in the 10-40 nm wavelength range and will involve two cascade stages. FEL design assumes wavelength tunability over the full wavelength range and polarization tunability of the output radiation including helical polarization. The design considers focusing properties and segmentation of realizable undulators and available input seed lasers. We discuss how the interplay between various limitations and self-consistent accelerator simulations [1,2] have led to our current design. We present results of simulations using GENESIS and GINGER simulation codes including studies of various shot-to-shot fluctuations and und...

  12. Commissioning experience and beam physics measurements at the SwissFEL Injector Test Facility

    Directory of Open Access Journals (Sweden)

    T. Schietinger

    2016-10-01

    Full Text Available The SwissFEL Injector Test Facility operated at the Paul Scherrer Institute between 2010 and 2014, serving as a pilot plant and test bed for the development and realization of SwissFEL, the x-ray Free-Electron Laser facility under construction at the same institute. The test facility consisted of a laser-driven rf electron gun followed by an S-band booster linac, a magnetic bunch compression chicane and a diagnostic section including a transverse deflecting rf cavity. It delivered electron bunches of up to 200 pC charge and up to 250 MeV beam energy at a repetition rate of 10 Hz. The measurements performed at the test facility not only demonstrated the beam parameters required to drive the first stage of an FEL facility, but also led to significant advances in instrumentation technologies, beam characterization methods and the generation, transport and compression of ultralow-emittance beams. We give a comprehensive overview of the commissioning experience of the principal subsystems and the beam physics measurements performed during the operation of the test facility, including the results of the test of an in-vacuum undulator prototype generating radiation in the vacuum ultraviolet and optical range.

  13. The full potential of the baseline SASE undulators of the European XFEL

    International Nuclear Information System (INIS)

    Agapov, Ilya; Geloni, Gianluca; Feng, Guangyao; Kocharyan, Vitali; Saldin, Evgeni; Serkez, Svitozar; Zagorodnov, Igor

    2014-04-01

    The output SASE characteristics of the baseline European XFEL, recently used in the TDRs of scientific instruments and X-ray optics, have been previously optimized assuming uniform undulators without considering the potential of undulator tapering in the SASE regime. Here we demonstrate that the performance of European XFEL sources can be significantly improved without additional hardware. The procedure simply consists in the optimization of the undulator gap configuration for each X-ray beamline. Here we provide a comprehensive description of the soft X-ray photon beam properties as a function of wavelength and bunch charge. Based on nominal parameters for the electron beam, we demonstrate that undulator tapering allows one to achieve up to a tenfold increase in peak power and photon spectral density in the conventional SASE regime. We illustrate this fact for the SASE3 beamline. The FEL code Genesis has been extensively used for these studies. Based on these findings we suggest that the requirements for the SASE3 instrument (SCS, SQS) and for the SASE3 beam transport system be updated.

  14. R and D Requirements, RF Gun Mode Studies, FEL-2 Steady-State Studies, Preliminary FEL-1 Time-Dependent Studies, and Preliminary Layout Option Investigation

    International Nuclear Information System (INIS)

    Byrd, John; Corlett, John; Doolittle, Larry; Fawley, William; Lidia, Steven; Penn, Gregory; Ratti, Alex; Staples, John; Wilcox Russell; Wurtele, Jonathan; Zholents, Alexander

    2005-01-01

    This report constitutes the third deliverable of LBNLs contracted role in the FERMI (at) Elettra Technical Optimization study. It describes proposed RandD activities for the baseline design of the Technical Optimization Study, initial studies of the RF gun mode-coupling and potential effects on beam dynamics, steady-state studies of FEL-2 performance to 10 nm, preliminary studies of time-dependent FEL-1 performance using electron bunch distribution from the start-to-end studies, and a preliminary investigation of a configuration with FEL sinclined at a small angle from the line of the linac

  15. Design considerations of 10 kW-scale, extreme ultraviolet SASE FEL for lithography

    CERN Document Server

    Pagani, C; Schneidmiller, E A; Yurkov, M V

    2001-01-01

    The semiconductor industry growth is driven to a large extent by steady advancements in microlithography. According to the newly updated industry road map, the 70 nm generation is anticipated to be available in the year 2008. However, the path to get there is not clear. The problem of construction of extreme ultraviolet (EUV) quantum lasers for lithography is still unsolved: progress in this field is rather moderate and we cannot expect a significant breakthrough in the near future. Nevertheless, there is clear path for optical lithography to take us to sub-100 nm dimensions. Theoretical and experimental work in Self-Amplified Spontaneous Emission (SASE) Free Electron Lasers (FEL) physics and the physics of superconducting linear accelerators over the last 10 years has pointed to the possibility of the generation of high-power optical beams with laser-like characteristics in the EUV spectral range. Recently, there have been important advances in demonstrating a high-gain SASE FEL at 100 nm wavelength (J. Andr...

  16. FEL diagnostics and user control

    International Nuclear Information System (INIS)

    Knippels, G.M.H.; Meer, A.F.G. van der

    1998-01-01

    The most recent upgrades and improvements to the free-electron laser (FEL) facility FELIX are presented. Special attention is paid to the improved beam-handling and diagnostic station. In this evacuated beam station a device is implemented that is capable of selecting single micropulses with measured efficiencies of more than 50% over the whole wavelength range of FELIX (5-110 μm). Furthermore, the broadband autocorrelator for micropulse length measurements and the planned continuous polarization rotator based on reflective optics are discussed. Recent additions to the ancillary equipment available to FEL users are presented briefly. The most important ones are the mirror-dispersion-controlled 10-fs Ti:sapphire laser and the 40-T magnet. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  17. Intra-bunch-train transverse dynamics in the superconducting accelerators FLASH and European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Hellert, Thorsten

    2017-11-15

    FLASH and the European XFEL are linear accelerator driven SASE-FELs, operating in a pulsed mode with long bunch-trains. Multi-bunch FEL operation requires longitudinal and transverse stability within the bunch-train. The purpose of this work is to investigate the intra-bunch-train transverse dynamics at FLASH and XFEL. Key relationships of superconducting RF cavity operation, their misalignments and the resulting impact on the intra-bunch-train trajectory variation are described. In this thesis a numerical model is developed and simulations for different accelerating sections at FLASH and XFEL are performed. With the current operational setup significant intra-bunch-train trajectory variation must be considered, hence approaches for their reduction are discussed. The theoretical studies are compared to experimental results at FLASH. The observed trajectory variation during multi-bunch user runs is analyzed and related to causal intra-bunch-train variations of the RF and the following impact on the multi-bunch SASSE performance. Furthermore, HOM-based cavity misalignment measurements are performed and the deduction of misalignments from multi-bunch data is considered.

  18. Intra-bunch-train transverse dynamics in the superconducting accelerators FLASH and European XFEL

    International Nuclear Information System (INIS)

    Hellert, Thorsten

    2017-11-01

    FLASH and the European XFEL are linear accelerator driven SASE-FELs, operating in a pulsed mode with long bunch-trains. Multi-bunch FEL operation requires longitudinal and transverse stability within the bunch-train. The purpose of this work is to investigate the intra-bunch-train transverse dynamics at FLASH and XFEL. Key relationships of superconducting RF cavity operation, their misalignments and the resulting impact on the intra-bunch-train trajectory variation are described. In this thesis a numerical model is developed and simulations for different accelerating sections at FLASH and XFEL are performed. With the current operational setup significant intra-bunch-train trajectory variation must be considered, hence approaches for their reduction are discussed. The theoretical studies are compared to experimental results at FLASH. The observed trajectory variation during multi-bunch user runs is analyzed and related to causal intra-bunch-train variations of the RF and the following impact on the multi-bunch SASSE performance. Furthermore, HOM-based cavity misalignment measurements are performed and the deduction of misalignments from multi-bunch data is considered.

  19. A single-particle calculation of the FEL-Cerenkov gain

    International Nuclear Information System (INIS)

    Dattoli, G.; Doria, A.; Gallerano, G.P.; Renieri, A.; Schettini, G.; Torre, A.

    1988-01-01

    In this work it is shown that the basic FEL-Cerenkov dynamics can be modelled using a pendulumlike equation in close analogy with FEL undulator case. The analysis, including the inhomogeneous broadening effects, is worked out in the hypothesis of single-slab geometry. Two-dimensional motion dynamics effects are also included

  20. Quantum SASE FEL with a Laser Wiggler

    CERN Document Server

    Bonifacio, R

    2005-01-01

    Quantum effects in high-gain FELs become relevant when ρ'=ρ(mcγ/ ћ k)<1. The quantum FEL parameter ρ' rules the maximum number of photons emitted per electrons. It has been shown that when ρ'<1 a "quantum purification" of the SASE regime occurs: in fact, the spectrum of the emitted radiation (randomly spiky in the usual classical SASE regime) shrinks to a very narrow single line, leading to a high degree of temporal coherence. From the definition of ρ it appears that in order to achieve the quantum regime, small values of ρ, beam energy and radiation wavelength are necessary. These requirements can be met only using a laser wiggler. In this work we state the scaling laws necessary to operate a SASE FEL in the Angstrom region. All physical quantities are expressed in terms of the normalized emittance and of two parameters: the ratio between laser and electron beam spot sizes and the ratio between Rayleigh range and electron ...

  1. An injector for the proposed Berkeley Ultrafast X-Ray Light Source

    International Nuclear Information System (INIS)

    Lidia, Steven; Corlett, John; Pusina, Jan; Staples, John; Zholents, Alexander

    2003-01-01

    Berkeley Lab has proposed to build a recirculating linac based X-ray source for ultra-fast dynamic studies [1]. This machine requires a flat electron beam with a small vertical emittance and large x/y emittance ratio to allow for compression of spontaneous undulator emission of soft and hard x-ray pulses, and a low-emittance, round electron beam for coherent emission of soft x-rays via the FEL process based on cascaded harmonic generation [2]. We propose an injector system consisting of two high gradient high repetition rate photo cathode guns [3] (one for each application), an ∼120 MeV super conducting linear accelerator, a 3rd harmonic cavity for linearization of the longitudinal phase space, and a bunch compressor. We present details of the design and the results of particle tracking studies using several computer codes

  2. Two electron response to an intense x-ray free electron laser pulse

    International Nuclear Information System (INIS)

    Moore, L R; Parker, J S; Meharg, K J; Armstrong, G S J; Taylor, K T

    2009-01-01

    New x-ray free electron lasers (FELs) promise an ultra-fast ultra-intense regime in which new physical phenomena, such as double core hole formation in at atom, should become directly observable. Ahead of x-ray FEL experiments, an initial key task is to theoretically explore such fundamental laser-atom interactions and processes. To study the response of a two-electron positive ion to an intense x-ray FEL pulse, our theoretical approach is a direct numerical integration, incorporating non-dipole Hamiltonian terms, of the full six-dimensional time-dependent Schroedinger equation. We present probabilities of double K-shell ionization in the two-electron positive ions Ne 8+ and Ar 16+ exposed to x-ray FEL pulses with frequencies in the range 50 au to 300 au and intensities in the range 10 17 to 10 22 W/cm 2 .

  3. Present and next steps of the JAERI superconducting rf linac based FEL program

    International Nuclear Information System (INIS)

    Minehara, E.J.; Yamauchi, T.; Sugimoto, M.

    2000-01-01

    The JAERI superconducting rf linac based FEL has successfully been lased to produce a 0.3 kW FEL light and 100 kW or larger electron beam output in quasi continuous wave operation in 1999. The 1 kW class output as our present program goal will be achieved to improve the optical out coupling method in the FEL optical resonator, the electron gun, and the electron beam optics in the JAERI FEL driver. As our next 5 year program goal is the 100 kW class FEL light and a few tens MW class electron beam output in average, quasi continuous wave operation of the light and electron beam will be planned in the JAERI superconducting rf linac based FEL facility. Conceptual design options needed for such a very high power operation and shorter wavelength light sources will be discussed to improve and to upgrade the exciting facility. (author)

  4. Fabrication and vertical test experience of the European X-ray Free Electron Laser 3.9 GHz superconducting cavities

    Science.gov (United States)

    Pierini, P.; Bertucci, M.; Bosotti, A.; Chen, J. F.; Maiano, C. G.; Michelato, P.; Monaco, L.; Moretti, M.; Pagani, C.; Paparella, R.; Sertore, D.; Vogel, E.

    2017-04-01

    We report the experience of the production, processing and qualification testing of the superconducting radio frequency cavities at 3.9 GHz for the third harmonic system at the European XFEL (EXFEL) injector. The rf structure concept, originally developed for the FLASH FEL facility, was adapted to the new interfaces provided by the EXFEL design and the cavities were procured from a qualified vendor, delivered ready for the testing at the INFN infrastructure. A total of 23 cavities, three prototypes and two batches of 10, have been realized and tested up to specifications.

  5. European XFEL (in Polish)

    CERN Document Server

    Romaniuk, R S

    2013-01-01

    European X-Ray FEL – free electron laser is under construction in DESY Hamburg. It is scheduled to be operational at 2015/16 at a cost more than 1 billion Euro. The laser uses SASE method to generate x-ray light. It is propelled by an electron linac of 17,5GeV energy and more than 2km in length. The linac uses superconducting SRF TESLA technology working at 1,3 GHz in frequency. The prototype of EXFEL is FLASH Laser (200 m in length), where the “proof of principle” was checked, and from the technologies were transferred to the bigger machine. The project was stared in the nineties by building a TTF Laboratory -Tesla Test Facility. The EXFEL laser is a child of a much bigger teraelectronovolt collider project TESLA (now abandoned in Germany but undertaken by international community in a form the ILC). A number of experts and young researchers from Poland participate in the design, construction and research of the FLASH and EXFEL lasers.

  6. Validity and reliability of the Fels physical activity questionnaire for children.

    Science.gov (United States)

    Treuth, Margarita S; Hou, Ningqi; Young, Deborah R; Maynard, L Michele

    2005-03-01

    The aim was to evaluate the reliability and validity of the Fels physical activity questionnaire (PAQ) for children 7-19 yr of age. A cross-sectional study was conducted among 130 girls and 99 boys in elementary (N=70), middle (N=81), and high (N=78) schools in rural Maryland. Weight and height were measured on the initial school visit. All the children then wore an Actiwatch accelerometer for 6 d. The Fels PAQ for children was given on two separate occasions to evaluate reliability and was compared with accelerometry data to evaluate validity. The reliability of the Fels PAQ for the girls, boys, and the elementary, middle, and high school age groups range was r=0.48-0.76. For the elementary school children, the correlation coefficient examining validity between the Fels PAQ total score and Actiwatch (counts per minute) was 0.34 (P=0.004). The correlation coefficients were lower in middle school (r=0.11, P=0.31) and high school (r=0.21, P=0.006) adolescents. The sport index of the Fels PAQ for children had the highest validity in the high school participants (r=0.34, P=0.002). The Fels PAQ for children is moderately reliable for all age groups of children. Validity of the Fels PAQ for children is acceptable for elementary and high school students when the total activity score or the sport index is used. The sport index was similar to the total score for elementary students but was a better measure of physical activity among high school students.

  7. WavePropaGator: interactive framework for X-ray free-electron laser optics design and simulations1

    OpenAIRE

    Samoylova, Liubov; Buzmakov, Alexey; Chubar, Oleg; Sinn, Harald

    2016-01-01

    This article describes the WavePropaGator (WPG) package, a new interactive software framework for coherent and partially coherent X-ray wavefront propagation simulations. The package has been developed at European XFEL for users at the existing and emerging free-electron laser (FEL) facilities, as well as at the third-generation synchrotron sources and future diffraction-limited storage rings. The WPG addresses the needs of beamline scientists and user groups to facilitate the design, optimiz...

  8. Magnetic design of an Apple-X afterburner for the SASE3 undulator of the European XFEL

    Science.gov (United States)

    Li, Peng; Wei, Tao; Li, Yuhui; Pflueger, Joachim

    2017-10-01

    In its startup configuration the SASE3 beamline of the European XFEL provides only soft X-ray radiation, linearly polarized in the horizontal plane. In order to enhance capabilities of this beamline an afterburner scheme is proposed. It will be used as a coherent radiator using the micro-bunched electron beam of the linear SASE3 system. Radiation with variable polarization, which covers the full SASE3 wavelength range can be generated. For the radiator a new type of undulator design called Apple-X will be used. In this paper the design is described and magnet parameters, which are compatible with the SASE3 afterburner are determined using RADIA simulations. The end structure of such a device is optimized for minimum 1st field integrals.

  9. A 300-nm compact mm-wave linac FEL design

    Energy Technology Data Exchange (ETDEWEB)

    Nassiri, A.; Kustom, R.L.; Kang, Y.W. [Argonne National Lab., IL (United States)

    1995-12-31

    Microfabrication technology offers an alternative method for fabricating precision, miniature-size components suitable for use in accelerator physics and commercial applications. The original R&D work at Argonne, in collaboration with the University of Illinois at Chicago, has produced encouraging results in the area of rf accelerating structure design, optical and x-ray masks production, deep x-ray lithography (LIGA exposures), and precision structural alignments. In this paper we will present a design study for a compact single pass mm-linac FEL to produce short wavelength radiation. This system will consists of a photocathode rf gun operated at 30 GHz, a 50-MeV superconducting constant gradient structure operated at 60 GHz, and a microundulator with 1-mm period. Initial experimental results on a scale model rf gun and microundulator will be presented.

  10. UV-VUV FEL program at DUKE storage ring with OK-4 optical klystron

    International Nuclear Information System (INIS)

    Litvinenko, V.N.; Madey, J.M.J.; Vinokurov, N.A.

    1993-01-01

    A 1 GeV electron storage ring dedicated for UV-VUV FEL operation is under construction at the Duke University Free Electron Laser Laboratory. The UV-VUV-FEL project, based on the collaboration of the Duke FEL Laboratory and Budker Institute for Nuclear Physics is described. The main parameters of the DFELL storage ring, of the OK-4 optical klystron, and the experimental set-up are presented. The parameters of UV-VUV FEL are given and the possible future upgrades to this system are discussed

  11. Two electron response to an intense x-ray free electron laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Moore, L R; Parker, J S; Meharg, K J; Armstrong, G S J; Taylor, K T, E-mail: l.moore@qub.ac.u [DAMTP, David Bates Building, Queen' s University Belfast, Belfast, BT7 1NN (United Kingdom)

    2009-11-01

    New x-ray free electron lasers (FELs) promise an ultra-fast ultra-intense regime in which new physical phenomena, such as double core hole formation in at atom, should become directly observable. Ahead of x-ray FEL experiments, an initial key task is to theoretically explore such fundamental laser-atom interactions and processes. To study the response of a two-electron positive ion to an intense x-ray FEL pulse, our theoretical approach is a direct numerical integration, incorporating non-dipole Hamiltonian terms, of the full six-dimensional time-dependent Schroedinger equation. We present probabilities of double K-shell ionization in the two-electron positive ions Ne{sup 8+} and Ar{sup 16+} exposed to x-ray FEL pulses with frequencies in the range 50 au to 300 au and intensities in the range 10{sup 17} to 10{sup 22} W/cm{sup 2}.

  12. Industrial Applications of High Average Power FELS

    CERN Document Server

    Shinn, Michelle D

    2005-01-01

    The use of lasers for material processing continues to expand, and the annual sales of such lasers exceeds $1 B (US). Large scale (many m2) processing of materials require the economical production of laser powers of the tens of kilowatts, and therefore are not yet commercial processes, although they have been demonstrated. The development of FELs based on superconducting RF (SRF) linac technology provides a scaleable path to laser outputs above 50 kW in the IR, rendering these applications economically viable, since the cost/photon drops as the output power increases. This approach also enables high average power ~ 1 kW output in the UV spectrum. Such FELs will provide quasi-cw (PRFs in the tens of MHz), of ultrafast (pulsewidth ~ 1 ps) output with very high beam quality. This talk will provide an overview of applications tests by our facility's users such as pulsed laser deposition, laser ablation, and laser surface modification, as well as present plans that will be tested with our upgraded FELs. These upg...

  13. FEL for the polymer processing industries

    Science.gov (United States)

    Kelley, Michael J.

    1997-05-01

    Polymers are everywhere in modern life because of their unique combination of end-use functionalities, ease of processing, recycling potential and modest cost. The physical and economic scope of the infrastructure committed to present polymers makes the introduction of entirely new chemistry unlikely. Rather, the breadth of commercial offerings more likely to shrink in the face of the widening mandate for recycling, especially of packaging. Improved performance and new functionality must therefore come by routes such as surface modification. However they must come with little environmental impact and at painfully low cost. Processing with strongly absorbed light offers unique advantages. The journal and patent literatures disclose a number of examples of benefits that can be achieved, principally by use of excimer lasers or special UV lamps. Examples of commercialization are few, however, because of the unit cost and maximum scale of existing light sources. A FEL, however, offers unique advantages: tunability to the optimum wavelength, potential for scale up to high average power, and a path to attractively low unit cost of light. A business analysis of prospective applications defines the technical and economic requirements a FEL for polymer surface processing must meet. These are compared to FEL technology as it now stands and as it is envisioned.

  14. Lasing attempts with a microwiggler on the Los Alamos FEL

    International Nuclear Information System (INIS)

    Warren, R.W.; O'Shea, P.G.; Bender, S.C.; Carlsten, B.E.; Early, J.W.; Feldman, D.W.; Fortgang, C.M.; Goldstein, J.C.; Schmitt, M.J.; Stein, W.E.; Wilke, M.D.; Zaugg, T.J.; Newnam, B.E.; Sheffield, R.L.

    1992-01-01

    The APEX FEL normally lases near a wavelength of 3μm using a permanent magnet wiggler with a 2.7-cm period and a linear accelerator of 40-MeV energy. Los Alamos National Laboratory is conducting a series of experiments with the goal of lasing at significantly shorter wavelengths with the same accelerator and the same kind of near-concentric resonator, but using a novel pulsed microwiggler of 0.5-cm period capable of generating a peak field of several tesla. We plan to lase on a fundamental wavelength of ∼0.8 μm and on the third harmonic at 0.25 μm

  15. Ultrahigh harmonics generation in a FEL with a seed laser

    International Nuclear Information System (INIS)

    Goloviznin, V.V.; Amersfoort, P.W. van

    1995-01-01

    One of the most challenging problems in modern FEL technology is to operate in the X-ray region, especially in the open-quotes water windowclose quotes. Because of the absence of optical resonators in this range of wavelengths, only a single-pass device may be suitable for this task. The Self-Amplified Spontaneous Emission (SASE) mechanism is now under active discussion as a realistic way to provide high-power coherent emission in the X-ray range. Both the undulator parameters and the electron beam parameters required for the lasing are achieveable at today's technological level. On the other hand, the SASE approach implies a very long and expensive periodic magnetic structure, typically several tens of meters long. This is mainly because of the rather long build-up time necessary to establish a coherent mode from incoherent noise. A mechanism of shortening this time would be therefore highly desirable. In the present paper we consider a scheme using two undulators and a seed-laser to produce coherent X-ray emission. The first undulator and the seed-laser provide a pre-modulation of the beam while the second undulator serves as a source of coherent spontaneous radiation at a very high harmonic of the seed-laser frequency; the whole scheme may then be considered to be an FEL-based frequency upconvertor. The total length of the periodic magnetic structure is shown to be of the order of several meters, nearly an order of magnitude shorter than in the SASE case. For the same beam quality as in the SASE scheme and with realistic seed-laser parameters, the efficiency of the beam pre-modulation at the 50-th (exclamation point) harmonic is shown to be as high as 15%. The output radiation is tunable between discrete harmonics of the seed-frequency

  16. FULL ELECTROMAGNETIC FEL SIMULATION VIA THE LORENTZ-BOOSTED FRAME TRANSFORMATION

    International Nuclear Information System (INIS)

    Fawley, William; Vay, Jean-Luc

    2010-01-01

    Numerical electromagnetic simulation of some systems containing charged particles with highly relativistic directed motion can by speeded up by orders of magnitude by choice of the proper Lorentz-boosted frame. A particularly good application for calculation in a boosted frame isthat of short wavelength free-electron lasers (FELs) where a high energy electron beam with small fractional energy spread interacts with a static magnetic undulator. In the optimal boost frame (i.e., the ponderomotive rest frame), the red-shifted FEL radiation and blue-shifted undulator field have identical wavelengths and the number of required longitudinal grid cells and time-steps for fully electromagnetic simulation (relative to the laboratory frame) decrease by factors of gamma 2 each. In theory, boosted frame EM codes permit direct study of FEL problems for which the eikonal approximation for propagation of the radiation field and wiggler-period-averaging for the particle-field interaction may be suspect. We have adapted the WARP code to apply this method to several electromagnetic FEL problems including spontaneous emission, strong exponential gain in a seeded, single pass amplifier configuration, and emission from e-beams in undulators with multiple harmonic components. WARP has a standard relativistic macroparticle mover and a fully 3-D electromagnetic field solver. We discuss our boosted frame results and compare with those obtained using the 'standard' eikonal FEL simulation approach.

  17. FERMI(at)Elettra FEL Design Technical Optimization Final Report

    International Nuclear Information System (INIS)

    Fawley, William; Penn, Gregory; Allaria, Enrico; De Ninno, Giovanni; Graves, William

    2006-01-01

    This is the final report of the FEL Design Group for the Technical Optimization Study for the FERMI(at)ELETTRA project. The FERMI(at)ELETTRA project is based on the principle of harmonic upshifting of an initial ''seed'' signal in a single pass, FEL amplifier employing multiple undulators. There are a number of FEL physics principles which underlie this approach to obtaining short wavelength output: (1) the energy modulation of the electron beam via the resonant interaction with an external laser seed (2) the use of a chromatic dispersive section to then develop a strong density modulation with large harmonic overtones (3) the production of coherent radiation by the microbunched beam in a downstream radiator. Within the context of the FERMI project, we discuss each of these elements in turn

  18. WavePropaGator: interactive framework for X-ray free-electron laser optics design and simulations.

    Science.gov (United States)

    Samoylova, Liubov; Buzmakov, Alexey; Chubar, Oleg; Sinn, Harald

    2016-08-01

    This article describes the WavePropaGator ( WPG ) package, a new interactive software framework for coherent and partially coherent X-ray wavefront propagation simulations. The package has been developed at European XFEL for users at the existing and emerging free-electron laser (FEL) facilities, as well as at the third-generation synchrotron sources and future diffraction-limited storage rings. The WPG addresses the needs of beamline scientists and user groups to facilitate the design, optimization and improvement of X-ray optics to meet their experimental requirements. The package uses the Synchrotron Radiation Workshop ( SRW ) C/C++ library and its Python binding for numerical wavefront propagation simulations. The framework runs reliably under Linux, Microsoft Windows 7 and Apple Mac OS X and is distributed under an open-source license. The available tools allow for varying source parameters and optics layouts and visualizing the results interactively. The wavefront history structure can be used for tracking changes in every particular wavefront during propagation. The batch propagation mode enables processing of multiple wavefronts in workflow mode. The paper presents a general description of the package and gives some recent application examples, including modeling of full X-ray FEL beamlines and start-to-end simulation of experiments.

  19. Electron beam acceleration and compression for short wavelength FELs

    International Nuclear Information System (INIS)

    Raubenheimer, T.O.

    1994-11-01

    A single pass UV or X-ray FEL will require a low emittance electron beam with high peak current and relatively high beam energy, a few hundred MeV to many GeV. To achieve the necessary peak current and beam energy, the beams must be bunch compressed and they must be accelerated in long transport lines where dispersive and wakefield emittance dilutions are important. In this paper, we will describe the sources and significance of the dilutions during acceleration, bunch compression, and transport through the undulator. In addition, we will discuss sources of jitter, especially effects arising from the bunch compressions, and the possible cancellation techniques

  20. Engineering design and fabrication of X-Band components

    CERN Document Server

    Filippova, M; Solodko, A; Riddone, G; Syratchev, I

    2011-01-01

    The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.994 GHz permitting beam independent power production using klystrons for the accelerating structure testing. X-band klystron test facilities at 11.424 GHz are operated at SLAC and at KEK [1], and they are used by the CLIC study in the framework of the X-band structure collaboration for testing accelerating structures scaled to that frequency [2]. CERN is currently building a klystron test-stand operating at 11.994 GHz. In addition X-FEL projects at PSI and Sincrotrone Trieste operate at 11.4 GHz. Therefore several RF components accommodating frequencies from 11.424 to 11.994 GHz are required. The engineering design of these RF components (high power and compact loads, bi-directional couplers, X-band splitters, hybrids, phase shifters, variable power attenuators) and the main fabrication processes are presented here.

  1. 9th International Accelerator School for Linear Colliders

    CERN Document Server

    2015-01-01

    This school is a continuation of the series of schools that began nine years ago: Japan 2006, Italy 2007, United States 2008, China 2009, Switzerland 2010, United States 2011, India 2012 and Turkey 2013. Based on needs from the accelerator community, the Linear Collider Collaboration (LCC) and ICFA Beam Dynamics Panel are organising the Ninth International Accelerator School for Linear Colliders. The school will present instruction in TeV-scale linear colliders including the ILC, CLIC and other advanced accelerators. An important change of this year’s school from previous LC schools is that it will also include the free electron laser (FEL), a natural extension for applications of the ILC/CLIC technology. The school is offered to graduate students, postdoctoral fellows and junior researchers from around the world. We welcome applications from physicists who are considering changing to a career in accelerator physics and technology. This school adopts an in depth approach. A selective course on the FEL has b...

  2. A Next Generation Light Source Facility at LBNL

    Energy Technology Data Exchange (ETDEWEB)

    Corlett, J.N.; Austin, B.; Baptiste, K.M.; Byrd, J.M.; Denes, P.; Donahue, R.; Doolittle, L.; Falcone, R.W.; Filippetto, D.; Fournier, S.; Li, D.; Padmore, H.A.; Papadopoulos, C.; Pappas, C.; Penn, G.; Placidi, M.; Prestemon, S.; Prosnitz, D.; Qiang, J.; Ratti, A.; Reinsch, M.; Sannibale, F.; Schlueter, R.; Schoenlein, R.W.; Staples, J.W.; Vecchione, T.; Venturini, M.; Wells, R.; Wilcox, R.; Wurtele, J.; Charman, A.; Kur, E.; Zholents, A.A.

    2011-03-23

    The Next Generation Light Source (NGLS) is a design concept, under development at LBNL, for a multibeamline soft x-ray FEL array powered by a ~;;2 GeV superconducting linear accelerator, operating with a 1 MHz bunch repetition rate. The CW superconducting linear accelerator is supplied by a high-brightness, highrepetition- rate photocathode electron gun. Electron bunches are distributed from the linac to the array of independently configurable FEL beamlines with nominal bunch rates up to 100 kHz in each FEL, and with even pulse spacing. Individual FELs may be configured for EEHG, HGHG, SASE, or oscillator mode of operation, and will produce high peak and average brightness x-rays with a flexible pulse format, with pulse durations ranging from sub-femtoseconds to hundreds of femtoseconds.

  3. Face expressive lifting (FEL): an original surgical concept combined with bipolar radiofrequency.

    Science.gov (United States)

    Divaris, Marc; Blugerman, Guillermo; Paul, Malcolm D

    2014-01-01

    Aging can lead to changes in facial expressions, transforming the positive youth expression of happiness to negative expressions as sadness, tiredness, and disgust. Local skin distension is another consequence of aging, which can be difficult to treat with rejuvenation procedures. The "face expressive lifting" (FEL) is an original concept in facial rejuvenation surgery. On the one hand, FEL integrates established convergent surgical techniques aiming to correct the age-related negative facial expressions. On the other hand, FEL incorporates novel bipolar RF technology aiming to correct local skin distension. One hundred twenty-six patients underwent FEL procedure. Facial expression and local skin distension were assessed with 2 years follow-up. There was a correction of negative facial expression for 96 patients (76 %) and a tightening of local skin distension in 100 % of cases. FEL is an effective procedure taking into account and able to correct both age-related negative changes in facial expression and local skin distension using radiofrequency. Level of Evidence: Level IV, therapeutic study.

  4. Beam profile diagnostics system for SDUV-FEL

    International Nuclear Information System (INIS)

    Xu Yichao; Han Lifeng; Chen Yongzhong

    2010-01-01

    A new beam profile diagnostics system for Shanghai Deep Ultraviolet Free Electron Laser (SDUV-FEL) has been developed based on industrial Ethernet, with good versatility and scalability. The system includes three major subsystems for image acquisition,pneumatic control and stepper motor control, respectively. Virtual instrument technology is adopted to drive the devices, and to develop the measurement software. In this paper,we describe the system structure, and its hardware and software design. The results of system commissioning are given as well. As an important diagnostic tool and data acquisition method, the system has been successfully applied to the measurement and control of the SDUV-FEL.(authors)

  5. Observation of SASE in LEBRA FEL system

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T. E-mail: tanaka@lebra.nihon-u.ac.jp; Hayakawa, K.; Sato, I.; Hayakawa, Y.; Yokoyama, K

    2004-08-01

    A large enhancement of spontaneous undulator radiation has been observed during FEL lasing experiments at LEBRA. The enhancement has been observed only with the detector for the infrared fundamental radiation. The detector output signal showed spikes during the electron beam pulse, yet no apparent enhancement was observed with a CCD camera monitoring the visible harmonic radiations. An enhancement factor greater than 10 has been obtained with a 2.4 m long undulator with a completely detuned FEL optical cavity length and depends strongly on the parameters of the linac RF system. This implies that the SASE operation is possible even with a conventional electron beam by achieving suitable bunch compression.

  6. A study of phase control in the FEL [free electron laser] two-beam accelerator

    International Nuclear Information System (INIS)

    Sessler, A.M.; Whittum, D.H.; Wurtele, J.S.

    1989-08-01

    A formalism is developed for the analysis of a steady-state free electron laser (FEL) and is applied to the two-beam accelerator (TBA). Conditions are derived for the design of a FEL TBA with rf output power and phase insensitive to errors in both beam current and energy. An example is presented of a suitably phase insensitive TBA design with 100 reaccelerations employing untapered FEL sections and with low power rf input to each section. The theoretical analysis is confirmed by a single particle FEL simulations. 9 refs., 2 tabs

  7. PROCEEDING OF THE SEEDED X-RAY FREE ELECTRON LASER WORKSHOP.

    Energy Technology Data Exchange (ETDEWEB)

    WANG,X.J.; MURPHY,J.B.; YU,L.H.; FAATZ,B.; HUANG,Z.; REICHE,S.; ZOLOTOREV,M.

    2002-12-13

    The underlying theory of a high gain free electron laser (FEL) has existed for two decades [1-2], but it is only in the last few years that these novel radiation sources have been realized experimentally. Several high gain FELs have successfully reached saturation in the infrared, visible and the VUV portion of the spectrum: the High Gain Harmonic Generation (HGHG) free electron lasers [3] at BNL and the Self Amplified Spontaneous Emission (SASE) FELs at LEUTL, VISA and TTF [4-6]. The outstanding challenges for future FELs are to extend high gain FELs to the X-ray regime, improve the longitudinal coherence of the radiation using seeded FEL schemes and generate ultrashort pulses (<100 fs). The National Synchrotron Light Source (NSLS) of the Brookhaven National Laboratory (BNL) sponsored a Seeded X-ray Free Electron Laser Workshop on December 13-14, 2002 to explore these challenging issues. Representatives from BNL, DESY, LBNL, SLAC and UCLA made presentations on the novel schemes under consideration at their laboratories. Workshop participants had a lively discussion on the feasibility, performance and R&D issues associated with the seeded XFEL schemes. An improvement of the electron beam quality will certainly be necessary to drive the XFEL. Self-seeding SASE, cascaded HGHG, and SASE pulse compression FELs show the most promise for producing short pulse X-rays. Of these, only the self-seeded and HGHG schemes generate longitudinally coherent radiation. While the pulse length in the self-seeded scheme is determined by the electron bunch length ({approx}100 fs), the pulse length in the HGHG scheme is determined by the short pulse seed laser, and so can be much shorter ({approx} 20 fs).

  8. Status and Future Plans of JAERI Eergy-Recovery Linac FEL

    CERN Document Server

    Hajima, R; Kikuzawa, N; Minehara, E J; Nagai, R; Nishimori, N; Nishitani, T; Sawamura, M; Yamauchi, T

    2005-01-01

    An energy-recovery linac for a high-power free-electron laser is in operation at Japan Atomic Energy Research Institute (JAERI). In this paper, we report results of research activities and future plans of JAERI ERL-FEL, which are the construction of FEL transport line, the operation of newly-installed RF controller and IOTs, the development of super-lattice photo cathode.

  9. VUV Optics Development for the Elettra Storage Ring FEL

    CERN Document Server

    Guenster, Stefan

    2004-01-01

    Vacuum ultraviolet optical components for the storage ring FEL at Elettra are under continuous development in the European research consortium EUFELE. Target of the project is the progress to shorter lasing wavelengths in the VUV spectral range. The current status allows lasing with oxide mirror systems down to 190 nm. The main obstacles for the development of optical coatings for shorter wavelengths is the high energetic background of the synchrotron radiation impinging onto the front mirror in the laser cavity. Investigations in single layer systems and multilayer stacks of oxide or fluoride materials demonstrate that fluoride mirrors reach highest reflectivity values down to 140 nm, and oxide coatings possess a satisfactory resistance against the high energetic background irradiation. However, pure oxide multilayer stacks exhibit significant absorption below 190 nm and pure fluoride stacks suffer from strong degradation effects under synchrotron radiation. A solution could be hybrid systems, combining fluo...

  10. Start-to-end simulations of SASE FEL at the TESLA Test Facility

    International Nuclear Information System (INIS)

    Dohlus, M.; Floettmann, K.; Limberg, T.; Saldin, E.L; Schneidmiller, E.A.; Kozlov, O.S.; Yurkov, M.V.; Piot, Ph.

    2004-01-01

    VUV SASE FEL at the TESLA Test Facility (Phase 1) was successfully running and reached saturation in the wavelength range 80-120 nm. We present a posteriori start-to-end simulations of this machine. The codes Astra and elegant are used to track particle distribution from the cathode to the undulator entrance. An independent simulation of the beam dynamics in the bunch compressor is performed with the code CSRtrack. SASE FEL process is simulated with the code FAST. The simulation results are in good agreement with the measured properties of SASE FEL radiation. It is shown that the beam dynamics after the bunch compressor is mainly defined by space charge fields. FEL radiation is produced by the head of the electron bunch having a peak current of about 3 kA and a duration of 100 fs

  11. Rational design of hypoallergens applied to the major cat allergen Fel d 1.

    Science.gov (United States)

    Saarne, T; Kaiser, L; Grönlund, H; Rasool, O; Gafvelin, G; van Hage-Hamsten, M

    2005-05-01

    Allergen-specific immunotherapy is the only treatment for allergic disease providing long-lasting symptom relief. Currently, it is mainly based on the use of crude allergen extracts. The treatment may be improved by the use of genetically engineered allergens, hypoallergens, aiming at a more effective and safer therapy. The aim of this study was to provide a rational design of hypoallergen candidates for immunotherapy by using structural information and knowledge of B and T cell epitopes of an allergen. The three-dimensional structure of the major cat allergen Fel d 1 was systematically altered by duplication of selected T cell epitopes and disruption of disulphide bonds. Seven Fel d 1 derivatives were generated and screened for allergenic reactivity in comparison with recombinant Fel d 1 in competition-ELISA. The allergenicity was further evaluated in basophil activation experiments and T cell reactivity was assessed in a lymphoproliferation assay. Three out of seven Fel d 1 derivatives, with two duplicated T cell epitopes and one or two disulphide bonds disrupted, were carefully evaluated. The three derivatives displayed a strong reduction in allergenicity with 400-900 times lower IgE-binding capacity than recombinant Fel d 1. In addition, they induced a lower degree of basophil activation and similar or stronger T cell proliferation than recombinant Fel d 1. By a rational approach, we have constructed three Fel d 1 hypoallergens with reduced IgE-binding capacities and retained T cell reactivities. This strategy may be applied to any well-characterized allergen to improve immunotherapy for allergic patients.

  12. A Next Generation Light Source Facility at LBNL

    International Nuclear Information System (INIS)

    Corlett, J.N.; Austin, B.; Baptiste, K.M.; Byrd, J.M.; Denes, P.; Donahue, R.; Doolittle, L.; Falcone, R.W.; Filippetto, D.; Fournier, S.; Li, D.; Padmore, H.A.; Papadopoulos, C.; Pappas, C.; Penn, G.; Placidi, M.; Prestemon, S.; Prosnitz, D.; Qiang, J.; Ratti, A.; Reinsch, M.; Sannibale, F.; Schlueter, R.; Schoenlein, R.W.; Staples, J.W.; Vecchione, T.; Venturini, M.; Wells, R.; Wilcox, R.; Wurtele, J.; Charman, A.; Kur, E.; Zholents, A.A.

    2011-01-01

    The Next Generation Light Source (NGLS) is a design concept, under development at LBNL, for a multibeamline soft x-ray FEL array powered by a ∼2 GeV superconducting linear accelerator, operating with a 1 MHz bunch repetition rate. The CW superconducting linear accelerator is supplied by a high-brightness, high-repetition-rate photocathode electron gun. Electron bunches are distributed from the linac to the array of independently configurable FEL beamlines with nominal bunch rates up to 100 kHz in each FEL, and with even pulse spacing. Individual FELs may be configured for EEHG, HGHG, SASE, or oscillator mode of operation, and will produce high peak and average brightness x-rays with a flexible pulse format, with pulse durations ranging from sub-femtoseconds to hundreds of femtoseconds.

  13. Seeded quantum FEL at 478 keV

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Marc [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Thirolf, Peter; Seggebrock, Thorben [Ludwig-Maximilians-Universitaet Muenchen, Garching (Germany); Habs, Dietrich [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Ludwig-Maximilians-Universitaet Muenchen, Garching (Germany)

    2012-07-01

    We present for the first time a concept for a seeded {gamma} quantum Free Electron Laser (QFEL) at 478 keV (transition in {sup 7}Li). To produce a highly intense and coherent {gamma} beam, we intend to use a seeded FEL scheme. Important for the production of a highly brilliant and coherent {gamma} beam are novel refractive {gamma} lenses for focusing and an efficient monochromator, allowing to generate a very intense and coherent seed beam. To realize such a coherent {gamma} beam at 478 keV (1/38 A), it is suitable to use a quantum FEL design based on a new ''asymmetric'' laser-electron Compton back scattering scheme as pursued for the MeGaRay and ELI-NP facilities. Here the pulse length of the laser is much longer than the electron bunch length, equivalent to a {gamma}-FEL with laser wiggler. The coherence of a seeded QFEL can open up totally new areas of fundamental physics and applications. Especially, 478 keV can be attractive for ''green energy'' and life-science research, such as the detection of Li deposition in the brain for manic-depressive psychosis treatment with high spatial resolution or isotope-specific nuclear waste management and treatment.

  14. Short wavelength FELs using the SLAC linac

    International Nuclear Information System (INIS)

    Winick, H.; Bane, K.; Boyce, R.

    1993-08-01

    Recent technological developments have opened the possibility to construct a device which we call a Linac Coherent Light Source (LCLS); a fourth generation light source, with brightness, coherence, and peak power far exceeding other sources. Operating on the principle of the free electron laser (FEL), the LCLS would extend the range of FEL operation to much aborter wavelength than the 240 mn that has so far been reached. We report the results of studies of the use of the SLAC linac to drive an LCLS at wavelengths from about 3-100 nm initially and possibly even shorter wavelengths in the future. Lasing would be achieved in a single pass of a low emittance, high peak current, high energy electron beam through a long undulator. Most present FELs use an optical cavity to build up the intensity of the light to achieve lasing action in a low gain oscillator configuration. By eliminating the optical cavity, which is difficult to make at short wavelengths, laser action can be extended to shorter wavelengths by Self-Amplified-Spontaneous-Emission (SASE), or by harmonic generation from a longer wavelength seed laser. Short wavelength, single pass lasers have been extensively studied at several laboratories and at recent workshops

  15. Statistical and coherence properties of radiation from X-ray free electron lasers

    International Nuclear Information System (INIS)

    Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    2009-12-01

    We describe statistical and coherence properties of the radiation from X-ray free electron lasers (XFEL). It is shown that the X-ray FEL radiation before saturation is described with gaussian statistics. Particularly important is the case of the optimized X-ray FEL, studied in detail. Applying similarity techniques to the results of numerical simulations allowed us to find universal scaling relations for the main characteristics of an X-ray FEL operating in the saturation regime: efficiency, coherence time and degree of transverse coherence. We find that with an appropriate normalization of these quantities, they are functions of only the ratio of the geometrical emittance of the electron beam to the radiation wavelength. Statistical and coherence properties of the higher harmonics of the radiation are highlighted as well. (orig.)

  16. Statistical and coherence properties of radiation from X-ray free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Saldin, E L; Schneidmiller, E A; Yurkov, M V

    2009-12-15

    We describe statistical and coherence properties of the radiation from X-ray free electron lasers (XFEL). It is shown that the X-ray FEL radiation before saturation is described with gaussian statistics. Particularly important is the case of the optimized X-ray FEL, studied in detail. Applying similarity techniques to the results of numerical simulations allowed us to find universal scaling relations for the main characteristics of an X-ray FEL operating in the saturation regime: efficiency, coherence time and degree of transverse coherence. We find that with an appropriate normalization of these quantities, they are functions of only the ratio of the geometrical emittance of the electron beam to the radiation wavelength. Statistical and coherence properties of the higher harmonics of the radiation are highlighted as well. (orig.)

  17. Short wavelength FELS

    International Nuclear Information System (INIS)

    Sheffield, R.L.

    1991-01-01

    The generation of coherent ultraviolet and shorter wavelength light is presently limited to synchrotron sources. The recent progress in the development of brighter electron beams enables the use of much lower energy electron rf linacs to reach short-wavelengths than previously considered possible. This paper will summarize the present results obtained with synchrotron sources, review proposed short- wavelength FEL designs and then present a new design which is capable of over an order of magnitude higher power to the extreme ultraviolet. 17 refs., 10 figs

  18. Short wavelength FELS

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, R.L.

    1991-01-01

    The generation of coherent ultraviolet and shorter wavelength light is presently limited to synchrotron sources. The recent progress in the development of brighter electron beams enables the use of much lower energy electron rf linacs to reach short-wavelengths than previously considered possible. This paper will summarize the present results obtained with synchrotron sources, review proposed short- wavelength FEL designs and then present a new design which is capable of over an order of magnitude higher power to the extreme ultraviolet. 17 refs., 10 figs.

  19. Sustained lasing of HHG-seeded FEL by using EOS-based timing control

    International Nuclear Information System (INIS)

    Watanabe, Takahiro; Okayasu, Yuichi; Togashi, Tadashi; Hara, Toru; Tomizawa, Hiromitsu; Matsubara, Shinichi; Aoyama, Makoto; Yamakawa, Koichi; Iwasaki, Atsushi; Ohwada, Shigeki; Sato, Takahiro; Yamauchi, Kaoru; Otake, Yuji; Ohshima, Takashi; Ogawa, Kanade; Togawa, Kazuaki; Tanaka, Takashi; Takahashi, Eiji; Midorikawa, Katsumi; Yabashi, Makina; Tanaka, Hitoshi; Ishikawa, Tetsuya

    2013-01-01

    High-harmonic-generation (HHG) based seeded FEL experiments were demonstrated at SCSS, SPring-8. Seeded FEL has advantageous features against SASE such that there is no intrinsic nature of shot-noise fluctuation and output FEL pulses are in principle fully coherent in both transverse and longitudinal axes. In practical user experiments, however, an overlap between electron bunches and seed laser pulses in six-dimensional phase space needs to be precisely maintained for securing the stable lasing. Otherwise, the overlap could be quickly lost and the lasing is no more sustained. For the stable lasing, we have developed an EO (electro-optic) based timing control system, which enables to observe a timing drift between electron bunches and laser pulses, and compensate for it. Experimental results of the seeded FEL with and without the EO timing control are compared, and the effectiveness of the timing system is discussed. (author)

  20. Mode distortion measurements on the Jefferson lab IR FEL

    CERN Document Server

    Benson, S V; Shinn, M

    2002-01-01

    We have previously reported on the analytical calculations of mirror distortion in a high-power FEL with a near-concentric cavity. This analysis allowed us to estimate the power level at which the FEL interaction would be affected, though no exact theory of FEL power vs. distortion exists at this point. Recently we have directly measured the mode size and beam quality as a function of power using a resonator with a center wavelength of 5 mu m. The resonator mirrors were calcium fluoride. This particular material exhibits a large amount of distortion for a given power but, due to the negative slope of refractive index vs. temperature, adds almost no optical phase distortion on the laser output. The mode in the cavity can thus be directly calculated from the measurements at the resonator output. The presence of angular jitter produced raw measurements inconsistent with cold cavity expectations. Removing the effects of the angular jitter, we derive results in agreement with cold cavity measurements. The result i...

  1. Start-To-End Simulations of the Energy Recovery Linac Prototype FEL

    CERN Document Server

    Gerth, Christopher; Muratori, Bruno; Owen, Hywel; Thompson, Neil R

    2004-01-01

    Daresbury Laboratory is currently building an Energy Recovery Linac Prototype (ERLP) that serves as a testbed for the study of beam dynamics and accelerator technology important for the design and construction of the proposed 4th Generation Light Source (4GLS) project. Two major objectives for the ERLP are the operation of an oscillator infra-red FEL and demonstration of energy recovery from an electron bunch with an energy spread induced by the FEL. In this paper we present start-to-end simulations including the FEL of the ERLP. The beam dynamics in the high-brightness injector, which consists of a DC photocathode gun and a super-conducting booster, have been modelled using the particle tracking code ASTRA. After the main linac, in which the particles are accelerated to 35 MeV, particles have been tracked with the code ELEGANT. The 3D code GENESIS was used to model the FEL interaction with the electron beam. Different modes of operation and their impact on the design of the ERLP are discussed.

  2. On FEL integral equation and electron energy loss in intermediate gain regime

    International Nuclear Information System (INIS)

    Takao, Masaru

    1994-03-01

    The FEL pendulum equation in a intermediate gain small signal regime is investigated. By calculating the energy loss of the electron beam in terms of the solution of the pendulum equation, we confirm the consistency of the FEL equation in intermediate gain regime. (author)

  3. Detailed characterization of electron sources yielding first demonstration of European X-ray Free-Electron Laser beam quality

    Directory of Open Access Journals (Sweden)

    F. Stephan

    2010-02-01

    Full Text Available The photoinjector test facility at DESY, Zeuthen site (PITZ, was built to develop and optimize photoelectron sources for superconducting linacs for high-brilliance, short-wavelength free-electron laser (FEL applications like the free-electron laser in Hamburg (FLASH and the European x-ray free-electron laser (XFEL. In this paper, the detailed characterization of two laser-driven rf guns with different operating conditions is described. One experimental optimization of the beam parameters was performed at an accelerating gradient of about 43  MV/m at the photocathode and the other at about 60  MV/m. In both cases, electron beams with very high phase-space density have been demonstrated at a bunch charge of 1 nC and are compared with corresponding simulations. The rf gun optimized for the lower gradient has surpassed all the FLASH requirements on beam quality and rf parameters (gradient, rf pulse length, repetition rate and serves as a spare gun for this facility. The rf gun studied with increased accelerating gradient at the cathode produced beams with even higher brightness, yielding the first demonstration of the beam quality required for driving the European XFEL: The geometric mean of the normalized projected rms emittance in the two transverse directions was measured to be 1.26±0.13  mm mrad for a 1-nC electron bunch. When a 10% charge cut is applied excluding electrons from those phase-space regions where the measured phase-space density is below a certain level and which are not expected to contribute to the lasing process, the normalized projected rms emittance is about 0.9 mm mrad.

  4. Multi-mode competition in an FEL oscillator at perfect synchronism of an optical cavity

    CERN Document Server

    Dong, Z W; Kii, T; Yamazaki, T; Yoshikawa, K

    2002-01-01

    The sustained saturation in a short pulse free electron laser (FEL) oscillator at perfect synchronism of an optical cavity has been observed recently by Japan Atomic Energy Research Institute (JAERI) FEL group by using their super-conducting linac (Phys. Rev. Lett., in preparation). The experiments have clearly shown that FEL efficiency becomes maximum at perfect synchronism, although it has been considered that only a transient state exists at perfect synchronism due to the lethargy effect. Through careful analyses of the experimental condition of JAERI FEL, we found that, in spite of the short length of the electron micro-bunch, the saturation appears due to the following features, which were different from other FEL experiments: (1) very large ratio of the small signal gain to losses, (2) very long electron macro-bunch which can tolerate a slow start up. The saturation and high efficiency at perfect synchronism were benefited from the contribution of the weak sideband instability. In order to analyse these...

  5. A Mode Locked UV-FEL

    CERN Document Server

    Parvin, Parviz

    2004-01-01

    An appropriate resonator has been designed to generate femtosecond mode locked pulses in a UV FEL with the modulator performance based on the gain switching. The gain broadening due to electron energy spread affects on the gain parameters, small signal gain (γ0) and saturation intensity (Is), to determine the optimum output coupling as small.

  6. Linear polarization observations of some X-ray sources

    International Nuclear Information System (INIS)

    Shakhovskoy, N.M.; Efimov, Yu.S.

    1975-01-01

    Multicolour linear polarization of optical radiation of the X-ray sources Sco X-1, Cyg X-2, Cyg X-1 and Her X-1 was measured at the Crimean Astrophysical Observatory in 1970-1973. These observations indicate that polarization of Sco X-1 in the ultraviolet, blue and red spectral regions appears to be variable. No statistically significant variations of polarization were found for the other three sources observed. (Auth.)

  7. Real time diagnostic for operation at a CW low voltage FEL

    Energy Technology Data Exchange (ETDEWEB)

    Balfour, C.; Shaw, A.; Mayhew, S.E. [and others

    1995-12-31

    At Liverpool University, a system for single user control of an FEL has been designed to satisfy the low voltage FEL (ie 200kV) operational requirements. This system incorporates many aspects of computer automation for beam diagnostics, radiation detection and vacuum system management. In this paper the results of the development of safety critical control systems critical control systems are reported.

  8. Beam transport design for a recirculating-linac FEL driver

    International Nuclear Information System (INIS)

    Neuffer, D.; Douglas, D.; Li, Z.; Cornacchia, M.; Garren, A.

    1996-01-01

    The beam transport system for the CEBAF Industrial FEL includes a two-pass transport of the beam with acceleration from injector to wiggler, followed by energy recovery transport from wiggler to dump. From that context, the authors discuss the general problem of multi-pass energy-recovery beam transport for FELs. Tunable, nearly-isochronous, large-momentum-acceptance transport systems are required. The entire transport must preserve beam quality, particularly in the acceleration transport to the wiggler, and have low losses throughout the entire system. Various possible designs are presented, and results of dynamic analyses are discussed

  9. Quasi-real-time photon pulse duration measurement by analysis of FEL radiation spectra

    Energy Technology Data Exchange (ETDEWEB)

    Engel, Robin, E-mail: robin.engel@uni-oldenburg.de [Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg (Germany); Institut für Physik, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg (Germany); Institut für Laser und Optik, Hochschule Emden/Leer, University of Applied Sciences, Constantiaplatz 4, D-26723 Emden (Germany); Düsterer, Stefan; Brenner, Günter [Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg (Germany); Teubner, Ulrich [Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg (Germany); Institut für Physik, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg (Germany); Institut für Laser und Optik, Hochschule Emden/Leer, University of Applied Sciences, Constantiaplatz 4, D-26723 Emden (Germany)

    2016-01-01

    Considering the second-order spectral correlation function of SASE-FEL radiation allows a real-time observation of the photon pulse duration during spectra acquisition. For photon diagnostics at free-electron lasers (FELs), the determination of the photon pulse duration is an important challenge and a complex task. This is especially true for SASE FELs with strongly fluctuating pulse parameters. However, most techniques require an extensive experimental setup, data acquisition and evaluation time, limiting the usability in all-day operation. In contrast, the presented work uses an existing approach based on the analysis of statistical properties of measured SASE FEL spectra and implements it as a software tool, integrated in FLASH’s data acquisition system. This allows the calculation of the average pulse durations from a set of measured spectral distributions with only seconds of delay, whenever high-resolution spectra are recorded.

  10. Extension of self-seeding scheme with single crystal monochromator to lower energy <5 keV as a way to generate multi-TW scale pulses at the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-07-15

    We propose a use of the self-seeding scheme with single crystal monochromator to produce high power, fully-coherent pulses for applications at a dedicated bio-imaging beamline at the European X-ray FEL in the photon energy range between 3.5 keV and 5 keV. We exploit the C(111) Bragg reflection ({pi}-polarization) in diamond crystals with a thickness of 0.1 mm, and we show that, by tapering the 40 cells of the SASE3 type undulator the FEL power can reach up to 2 TW in the entire photon energy range. The present design assumes the use of a nominal electron bunch with charge 0.1 nC at nominal electron beam energy 17.5 GeV. The main application of the scheme proposed in this work is for single shot imaging of individual protein molecules. (orig.)

  11. Extension of self-seeding scheme with single crystal monochromator to lower energy <5 keV as a way to generate multi-TW scale pulses at the European XFEL

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2012-07-01

    We propose a use of the self-seeding scheme with single crystal monochromator to produce high power, fully-coherent pulses for applications at a dedicated bio-imaging beamline at the European X-ray FEL in the photon energy range between 3.5 keV and 5 keV. We exploit the C(111) Bragg reflection (π-polarization) in diamond crystals with a thickness of 0.1 mm, and we show that, by tapering the 40 cells of the SASE3 type undulator the FEL power can reach up to 2 TW in the entire photon energy range. The present design assumes the use of a nominal electron bunch with charge 0.1 nC at nominal electron beam energy 17.5 GeV. The main application of the scheme proposed in this work is for single shot imaging of individual protein molecules. (orig.)

  12. Ultrafast coherent diffractive imaging of nanoparticles using X-ray free-electron laser radiation

    International Nuclear Information System (INIS)

    Kassemeyer, Stephan

    2014-01-01

    Coherent diffractive imaging with X-ray free-electron lasers (X-FEL) promises high-resolution structure determination of single microscopic particles without the need for crystallization. The diffraction signal of small samples can be very weak, a difficulty that can not be countered by merely increasing the number of photons because the sample would be damaged by a high absorbed radiation dose. Traditional X-ray crystallography avoids this problem by bringing many sample particles into a periodic arrangement, which amplifies the individual signals while distributing the absorbed dose. Depending on the sample, however, crystallization can be very difficult or even impossible. This thesis presents algorithms for a new imaging approach using X-FEL radiation that works with single, non-crystalline sample particles. X-FELs can deliver X-rays with a peak brilliance many orders of magnitude higher than conventional X-ray sources, compensating for their weak interaction cross sections. At the same time, FELs can produce ultra-short pulses down to a few femtoseconds. In this way it is possible to perform ultra-fast imaging, essentially ''freezing'' the atomic positions in time and terminating the imaging process before the sample is destroyed by the absorbed radiation. This thesis primarily focuses on the three-dimensional reconstruction of single (and not necessarily crystalline) particles using coherent diffractive imaging at X-FELs: in order to extract three-dimensional information from scattering data, two-dimensional diffraction patterns from many different viewing angles must be combined. Therefore, the diffraction signal of many identical sample copies in random orientations is measured. The main result of this work is a globally optimal algorithm that can recover the sample orientations solely based on the diffraction signal, enabling three-dimensional imaging for arbitrary samples. The problem of finding three-dimensional orientations is

  13. Growth of transverse coherence in SASE FELs

    International Nuclear Information System (INIS)

    Kumar, Vinit; Krishnagopal, Srinivas

    2000-01-01

    We introduce the correlation function between the electric field at two different points in the transverse plane as a parameter to quantify the degree of transverse coherence. We also propose a more realistic model for the initialization of the radiation in computer codes used to study SASE FELs. We make these modifications in the code TDA and use it to study the growth of transverse coherence as a function of electron beam size, beam current and transverse emittance. Our results show explicitly that the onset of full transverse coherence in SASE takes place much before the power saturates. With the more realistic model the onset of the exponential growth regime is delayed, and to get a given power from the FEL one needs a longer undulator than would be predicted by the original TDA code

  14. Design and performance of a 3.3-MeV linear induction accelerator (LIA)

    International Nuclear Information System (INIS)

    Cheng Nianan; Zhang Shouyun; Tao Zucong

    1992-01-01

    A 3.3-MeV linear induction accelerator (LIA) has been designed and constructed at the China Academy of Engineering Physics. The parameters of 3.4 MeV, 2 kA, 80 ns and 1 x 10 4 A/(rad.cm) 2 have been achieved. It has been used for SG-1 FEL experiments. The accelerator is mounted on a movable frame so that , after moving 3 m transversely, it can be assembled with more modules into a 10-MeV LIA. The authors summarize the physics and engineering aspects of the LIA facility and describe the measuring means of characters for the beam

  15. Status of the tandem FEL project development in Israel

    International Nuclear Information System (INIS)

    Benzvi, I.; Sokolowski, J.; Jerby, E.; Chomski, D.; Ruschin, S.

    1989-01-01

    The authors report the status of a collaborative research project development aimed toward construction of an IR FEL based on the EN tandem electrostatic accelerator of the Weizmann Institute of Science. A preliminary feasibility demonstration project yielded encouraging progress in three aspects: (1) Electron gun and accelerator conversion: A 50-kV 1-A electron gun injector was designed, built, tested, and assembled on the 6-MeV tandem accelerator which was previously converted and conditioned to operate as an electron accelerator in a positively charged HV terminal configuration. Contrary to the configuration of the only electrostatic accelerator FEL demonstrated so far, the electron gun and multistage depressed collector are connected to the ground, and the wiggler is placed in the HV terminal of the straight geometry tandem accelerator. This configuration promises to provide a high current high quality e-beam. (2) Electron-beam transport: The first installation of the electron optical beam recovery system yielded transport efficiency of 80%. Substantial improvement is expected with planned electron optics modifications. An effect, highly significant for realizing long pulse (quasi-cw) FEL operation, was observed experimentally. Due to the damping effect of the accelerator column capacitance network, the voltage terminal stayed constant for milliseconds even with poor beam transport efficiency. This points to the possibility of developing a long pulse FEL which may operate at a single longitudinal mode. (3) Wiggler development: A conventional 4.4-cm period SmCo planar wiggler was acquired and evaluated using a recently constructed floating wire magnetic field measurement setup

  16. Linear accelerator with x-ray absorbing insulators

    International Nuclear Information System (INIS)

    Rose, P.H.

    1975-01-01

    Annular insulators for supporting successive annular electrodes in a linear accelerator have embedded x-ray absorbing shield structures extending around the accelerating path. The shield members are disposed to intercept x-ray radiation without disrupting the insulative effect of the insulator members. In preferred forms, the structure comprises a plurality of annular members of heavy metal disposed in an x-ray blocking array, spaced from each other by the insulating substance of the insulator member. (auth)

  17. Sources of linear polarized x-rays

    International Nuclear Information System (INIS)

    Aiginger, H.; Wobrauschek, P.

    1989-01-01

    Linear polarized X-rays are used in X-ray fluorescence analysis to decrease the background caused by scattered photons. Various experiments, calculations and constructions have demonstrated the possibility to produce polarized radiation in an analytical laboratory with an X-ray tube and polarizer-analyzer facilities as auxiliary equipment. The results obtained with Bragg-polarizers of flat and curved focussing geometry and of Barkla-polarizers are presented. The advantages and disadvantages of the method are discussed and compared with the respective quality of synchrotron radiation. Polarization by scattering reduces the intensity of the primary radiation. Recently much effort is devoted to the construction of integrated high power X-ray tube polarizer-analyzer arrangements. The detailed design, geometry and performance of such a facility is described. (author)

  18. DOOCS based control system for FPGA based cavity simulator and controller in VUV FEL

    International Nuclear Information System (INIS)

    Pucyk, P.

    2005-09-01

    The X-ray free-electron laser XFEL that is being planned at the DESY research center in cooperation with European partners will produce high-intensity ultra-short X-ray flashes with the properties of laser light. This new light source, which can only be described in terms of superlatives, will open up a whole range of new perspectives for the natural sciences. It could also offer very promising opportunities for industrial users. SIMCON (SIMulator and CONtroller) is the project of the fast, low latency digital controller dedicated for LLRF 1 system in VUV FEL experiment It is being developed by ELHEP 2 group in Institute of Electronic Systems at Warsaw University of Technology. The main purpose of the project is to create a controller for stabilizing the vector sum of fields in cavities of one cryo module in the experiment. The device can be also used as the simulator of the cavity and test bench for other devices. Ths paper describes the concept, implementation and tests of the DOOCS based control system for SIMCON. The designed system is based the concept of autonomic and extendable modules connected by well defined, unified interfaces. The communication module controls the access to the hardware. It is crucial, that all modules (this presented in thesis and developed in the future) use this interface. Direct access to the control tables let the engineers to perform algorithm development or diagnostic measurements of the LLRF system. Default control tables generator makes the whole SIMCON an autonomic device, which can start immediately the operation without any additional tools. (orig.)

  19. DOOCS based control system for FPGA based cavity simulator and controller in VUV FEL

    International Nuclear Information System (INIS)

    Pucyk, P.D.

    2006-03-01

    The X-ray free-electron laser XFEL that is being planned at the DESY research center in cooperation with European partners will produce high-intensity ultra-short X-ray flashes with the properties of laser light. This new light source, which can only be described in terms of superlatives, will open up a whole range of new perspectives for the natural sciences. It could also offer very promising opportunities for industrial users. SIMCON (SIMulator and CONtroller) is the project of the fast, low latency digital controller dedicated for LLRF 1 system in VUV FEL experiment It is being developed by ELHEP 2 group in Institute of Electronic Systems at Warsaw University of Technology. The main purpose of the project is to create a controller for stabilizing the vector sum of fields in cavities of one cryo module in the experiment. The device can be also used as the simulator of the cavity and test bench for other devices. This paper describes the concept, implementation and tests of the DOOCS based control system for SIMCON. The designed system is based the concept of autonomic and extendable modules connected by well defined, unified interfaces. The communication module controls the access to the hardware. It is crucial, that all modules (this presented in thesis and developed in the future) use this interface. Direct access to the control tables let the engineers to perform algorithm development or diagnostic measurements of the LLRF system. Default control tables generator makes the whole SIMCON an autonomic device, which can start immediately the operation without any additional tools. (Orig.)

  20. JAERI 10kW High Power ERL-FEL and Its Applications in Nuclear Energy Industries

    CERN Document Server

    Minehara, E J; Iijima, H; Kikuzawa, N; Nagai, R; Nishimori, N; Nishitani, T; Sawamura, M; Yamauchi, T

    2005-01-01

    The JAERI high power ERL-FEL has been extended to the more powerful and efficient free-electron laser (FEL) than 10kW for nuclear energy industries, and other heavy industries like defense, shipbuilding, chemical industries, environmental sciences, space-debris, and power beaming and so on. In order to realize such a tunable, highly-efficient, high average power, high peak power and ultra-short pulse FEL, we need the efficient and powerful FEL driven by the JAERI compact, stand-alone and zero boil-off super-conducting RF linac with an energy-recovery geometry. Our discussions on the ERL-FEL will cover the current status of the 10kW upgrading and its applications of non-thermal peeling, cutting, and drilling to decommission the nuclear power plants, and to demonstrate successfully the proof of principle prevention of cold-worked stress-corrosion cracking failures in nuclear power reactors under routine operation using small cubic low-Carbon stainless steel samples.

  1. Field Encapsulation Library The FEL 2.2 User Guide

    Science.gov (United States)

    Moran, Patrick J.; Henze, Chris; Ellsworth, David

    1999-01-01

    This document describes version 2.2 of the Field Encapsulation Library (FEL), a library of mesh and field classes. FEL is a library for programmers - it is a "building block" enabling the rapid development of applications by a user. Since FEL is a library intended for code development, it is essential that enough technical detail be provided so that one can make full use of the code. Providing such detail requires some assumptions with respect to the reader's familiarity with the library implementation language, C++, particularly C++ with templates. We have done our best to make the explanations accessible to those who may not be completely C++ literate. Nevertheless, familiarity with the language will certainly help one's understanding of how and why things work the way they do. One consolation is that the level of understanding essential for using the library is significantly less than the level that one should have in order to modify or extend the library. One more remark on C++ templates: Templates have been a source of both joy and frustration for us. The frustration stems from the lack of mature or complete implementations that one has to work with. Template problems rear their ugly head particularly when porting. When porting C code, successfully compiling to a set of object files typically means that one is almost done. With templated C++ and the current state of the compilers and linkers, generating the object files is often only the beginning of the fun. On the other hand, templates are quite powerful. Used judiciously, templates enable more succinct designs and more efficient code. Templates also help with code maintenance. Designers can avoid creating objects that are the same in many respects, but not exactly the same. For example, FEL fields are templated by node type, thus the code for scalar fields and vector fields is shared. Furthermore, node type templating allows the library user to instantiate fields with data types not provided by the FEL

  2. Design and test of SX-FEL cavity BPM

    International Nuclear Information System (INIS)

    Yuan Renxian; Zhou Weimin; Chen Zhichu; Yu Luyang; Wang Baopen; Leng Yongbin

    2013-01-01

    This paper reports the design and cold test of the cavity beam position monitor (CBPM) for SX-FEL to fulfill the requirement of beam position measurement resolution of less than 1 μm, even 0.1 μm. The CBPM was optimized by using a coupling slot to damp the TM 010 mode in the output signal. The isolation of TM 010 mode is about 117 dB, and the shunt impedance is about 200 Ω@4.65 GHz with the quality factor 80 from MAFIA simulation and test result. A special antenna was designed to load power for reducing excitation of other modes in the cavity. The resulting output power of TM 110 mode was about 90 mV/mm when the source was 6 dBm, and the accomplishable minimum voltage was about 200 μV. The resolution of the CBPM was about 0.1 μm from the linear fitting result based on the cold test. (authors)

  3. Production of high power microwaves for particle acceleration with an FEL bunched electron beam

    CERN Document Server

    Gardelle, J; Marchese, G; Padois, M; Rullier, J L; Donohue, J T

    1999-01-01

    Among the studies in the framework of high gradient linear electron-positron collider research, the Two-Beam Accelerator (TBA) is a very promising concept, and two projects are in progress, the Compact Linear Collider project at CERN (W. Schnell, Report no. CERN SL/92-51 and CLIC note 184; K. Huebner, CERN/PS 92-43, CLIC note 176; S. Van der Meer, CERN/PS 89-50, CLIC note 97.) and the Relativistic Klystron-TBA project at LBNL (Technical Review Committee, International Linear Collider Technical Review Committee Report 1995, SLAC-R-95-471, 1995). In a TBA an extremely intense low-energy electron beam, called the drive beam, is bunched at the desired operating frequency, and upon passing through resonant cavities generates radio-frequency power for accelerating the main beam. Among the different approaches to the production of a suitable drive beam, the use of an FEL has been proposed and is under active study at CEA/CESTA.

  4. Feasibility analysis for attosecond X-ray pulses at FERMI@ELETTRA free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, Alexander

    2004-09-01

    We present preliminary analysis for the feasibility of the attosecond x-ray pulses at a proposed FERMI@ELETTRA free electron laser (FEL) [1]. In part 1 we restrict ourselves to minimal modifications to the proposed FEL and consider a scheme for attosecond x-ray production which can be qualified as a small add-on to a primary facility. We demonstrate that at 5-nm wavelength our scheme is capable for production of pulses with an approximate duration of 100 attoseconds at approximately 2 MW peak power and with an absolute temporal synchronization to a pump laser pulse. In part 2 we propose to use an FEL amplifier seeded by a VUV signal and to follow it by the scheme for attosecond x-ray production described in part 1.

  5. Analyses of superradiance and spiking-mode lasing observed at JAERI-FEL

    CERN Document Server

    Hajima, R; Nagai, R; Minehara, E J

    2001-01-01

    Japan Atomic Energy Research Institute (JAERI)-FEL has achieved quasi-CW lasing with an average power of 1.7 kW, the initial goal of the R and D program. The FEL extraction efficiency obtained completely exceeds the well-known limit for non-bunched beam, which is determined by the number of undulator periods. We have conducted numerical studies to characterize lasing dynamics observed at JAERI-FEL. Cavity-length detuning curves numerically obtained show good agreement with experimental results. Lasing behavior numerically obtained exhibits chaotic spiking-mode and superradiance as the cavity-length detuning approaches zero. Broadening of lasing spectrum observed in the experiments is explained by these lasing dynamics. The extraction efficiency becomes maximal at the perfect synchronization of the cavity length, where the lasing is quasi-stationary superradiance. We also compare these results with analytical theory previously reported.

  6. Fast synchrotron and FEL beam monitors based on single-crystal diamond detectors and InGaAs/InAlAs quantum well devices

    Science.gov (United States)

    Antonelli, M.; Di Fraia, M.; Carrato, S.; Cautero, G.; Menk, R. H.; Jark, W. H.; Ganbold, T.; Biasiol, G.; Callegari, C.; Coreno, M.; De Sio, A.; Pace, E.

    2013-12-01

    Simultaneous photon-beam position and intensity monitoring is becoming of increasing importance for new-generation synchrotron radiation sources and free-electron lasers (FEL). Thus, novel concepts of beam diagnostics are required in order to keep such beams under control. From this perspective diamond is a promising material for the production of semitransparent in situ photon beam monitors, which can withstand the high dose rates occurring in such radiation facilities. Here, we report on the development of freestanding, single-crystal chemical-vapor-deposited diamond detectors with segmented electrodes. Due to their direct, low-energy band gap, InGaAs quantum well devices operated at room temperature may also be used as fast detectors for photons ranging from visible to X-ray. These features are valuable in low-energy and time-resolved FEL applications. In particular, a novel segmented InGaAs/InAlAs device has been developed and will be discussed. Dedicated measurements carried out on both these devices at the Elettra Synchrotron show their capability to monitor the position and the intensity of the photon beam with bunch-by-bunch temporal performances. Furthermore, preliminary tests have been performed on diamond detectors at the Fermi FEL, extracting quantitative intensity and position information for 100-fs-wide FEL pulses with a photon energy of 28.8 eV.

  7. FEL-Oscillator simulations with Genesis 1.3

    NARCIS (Netherlands)

    Karssenberg, J.G.; van der Slot, Petrus J.M.; Verschuur, Jeroen W.J.; Volokhine, I.; Boller, Klaus J.

    2006-01-01

    Modeling free-electron laser (FEL) oscillators requires calculation of both the light-beam interaction within the undulator and the propagation of the light outside the undulator. We present a paraxial Optical Propagation Code (OPC) based on the Spectral Method and Fresnel Diffraction Integral,

  8. High-power, high-efficiency FELs

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1989-04-01

    High power, high efficiency FELs require tapering, as the particles loose energy, so as to maintain resonance between the electromagnetic wave and the particles. They also require focusing of the particles (usually done with curved pole faces) and focusing of the electromagnetic wave (i.e. optical guiding). In addition, one must avoid transverse beam instabilities (primarily resistive wall) and longitudinal instabilities (i.e sidebands). 18 refs., 7 figs., 3 tabs

  9. Analytical studies of constraints on the performance for EEHG FEL seed lasers

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-11-15

    Laser seeding technique have been envisioned to produce nearly transform-limited pulses at soft X-ray FELs. Echo-Enabled Harmonic Generation (EEHG) is a promising, recent technique for harmonic generation with an excellent up-conversion to very high harmonics, from the standpoint of electron beam physics. This paper explores the constraints on seed laser performance for reaching wavelengths of 1 nm. We show that the main challenge in implementing the EEHG scheme at extreme harmonic factors is the requirement for accurate control of temporal and spatial quality of the seed laser pulse. For example, if the phase of the laser pulse is chirped before conversion to an UV seed pulse, the chirp in the electron beam microbunch turns out to be roughly multiplied by the harmonic factor. In the case of a Ti:Sa seed laser, such factor is about 800. For such large harmonic numbers, generation of nearly transform-limited soft X-ray pulses results in challenging constraints on the Ti:Sa laser. In fact, the relative discrepancy of the time-bandwidth product of the seed-laser pulse from the ideal transform-limited performance should be no more than one in a million. The generated electron beam microbunching is also very sensitive to distortions of the seed laser wavefront, which are also multiplied by the harmonic factor. In order to have minimal reduction of the FEL input coupling factor, it is desirable that the size-angular bandwidth product of the UV seed laser beam be very close to the ideal i.e. diffraction-limited performance in the waist plane at the middle of the modulator undulator. (orig.)

  10. Analytical studies of constraints on the performance for EEHG FEL seed lasers

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2011-11-01

    Laser seeding technique have been envisioned to produce nearly transform-limited pulses at soft X-ray FELs. Echo-Enabled Harmonic Generation (EEHG) is a promising, recent technique for harmonic generation with an excellent up-conversion to very high harmonics, from the standpoint of electron beam physics. This paper explores the constraints on seed laser performance for reaching wavelengths of 1 nm. We show that the main challenge in implementing the EEHG scheme at extreme harmonic factors is the requirement for accurate control of temporal and spatial quality of the seed laser pulse. For example, if the phase of the laser pulse is chirped before conversion to an UV seed pulse, the chirp in the electron beam microbunch turns out to be roughly multiplied by the harmonic factor. In the case of a Ti:Sa seed laser, such factor is about 800. For such large harmonic numbers, generation of nearly transform-limited soft X-ray pulses results in challenging constraints on the Ti:Sa laser. In fact, the relative discrepancy of the time-bandwidth product of the seed-laser pulse from the ideal transform-limited performance should be no more than one in a million. The generated electron beam microbunching is also very sensitive to distortions of the seed laser wavefront, which are also multiplied by the harmonic factor. In order to have minimal reduction of the FEL input coupling factor, it is desirable that the size-angular bandwidth product of the UV seed laser beam be very close to the ideal i.e. diffraction-limited performance in the waist plane at the middle of the modulator undulator. (orig.)

  11. Complete genomic sequence and taxonomic position of Eel virus European X (EVEX), a rhabdovirus of European eel

    NARCIS (Netherlands)

    Galinier, R.; Beurden, van S.J.; Amilhat, E.; Castric, J.; Schoehn, G.; Verneau, O.; Fazio, G.; Allienne, J.F.; Engelsma, M.Y.; Sasal, P.; Faliex, E.

    2012-01-01

    Eel virus European X (EVEX) was first isolated from diseased European eel Anguilla anguilla in Japan at the end of seventies. The virus was tentatively classified into the Rhabdoviridae family on the basis of morphology and serological cross reactivity. This family of viruses is organized into six

  12. Electron bunch length measurement at the Vanderbilt FEL

    Energy Technology Data Exchange (ETDEWEB)

    Amirmadhi, F.; Brau, C.A.; Mendenhall, M. [Vanderbilt Free-Electron-Laser Center, Nashville, TN (United States)] [and others

    1995-12-31

    During the past few years, a number of experiments have been performed to demonstrate the possibility to extract the longitudinal charge distribution from spectroscopic measurements of the coherent far-infrared radiation emitted as transition radiation or synchrotron radiation. Coherent emission occurs in a spectral region where the wavelength is comparable to or longer than the bunch length, leading to an enhancement of the radiation intensity that is on the order of the number of particles per bunch, as compared to incoherent radiation. This technique is particularly useful in the region of mm and sub-mm bunch lengths, a range where streak-cameras cannot be used for beam diagnostics due to their limited time resolution. Here we report on experiments that go beyond the proof of principle of this technique by applying it to the study and optimization of FEL performance. We investigated the longitudinal bunch length of the Vanderbilt FEL by analyzing the spectrum of coherent transition radiation emitted by the electron bunches. By monitoring the bunch length while applying a bunch-compression technique, the amount of the compression could be easily observed. This enabled us to perform a systematic study of the FEL performance, especially gain and optical pulse width, as a function of the longitudinal electron distribution in the bunch. The results of this study will be presented and discussed.

  13. A photocathode rf gun design for a mm-wave linac-based FEL

    Energy Technology Data Exchange (ETDEWEB)

    Nassiri, A.; Berenc, T,; Foster, J.; Waldschmidt, G.; Zhou, J.

    1995-07-01

    In recent years, advances in the rf gun technology have made it possible to produce small beam emittances suitable for short period microundulators which take advantage of the low emittance beam to reduce the wavelength of FELs. At the Advanced Photon Source, we are studying the design of a compact 50-MeV superconducting mm-wave linac-based FEL for the production of short wavelengths ({approximately}300 nm) to carry out FEL demonstration experiments. The electron source considered for the linac is a 30- GHz, 3 1/2-cell {pi}-mode photocathode rf gun. For cold model rf measurements a 15-GHz prototype structure was fabricated. Here we report on the design, numerical modelling and the initial cold-model rf measurement results on the 15-GHz prototype structure.

  14. A photocathode rf gun design for a mm-wave linac-based FEL

    International Nuclear Information System (INIS)

    Nassiri, A.; Berenc, T.; Foster, J.; Waldschmidt, G.; Zhou, J.

    1995-01-01

    In recent years, advances in the rf gun technology have made it possible to produce small beam emittances suitable for short period microundulators which take advantage of the low emittance beam to reduce the wavelength of FELs. At the Advanced Photon Source, we are studying the design of a compact 50-MeV superconducting mm-wave linac-based FEL for the production of short wavelengths (∼300 nm) to carry out FEL demonstration experiments. The electron source considered for the linac is a 30- GHz, 3 1/2-cell π-mode photocathode rf gun. For cold model rf measurements a 15-GHz prototype structure was fabricated. Here we report on the design, numerical modelling and the initial cold-model rf measurement results on the 15-GHz prototype structure

  15. Tunable Soft X-Ray Oscillators

    International Nuclear Information System (INIS)

    Wurtele, Jonathan; Gandhi, Punut; Gu, X.-W.; Fawley, William M.; Reinsch, Matthia; Penn, Gregory; Kim, K.-J.; Lindberg, Ryan; Zholents, Alexander

    2010-01-01

    A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixed frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.

  16. Tunable Soft X-Ray Oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Wurtele, Jonathan; Gandhi, Punut; Gu, X-W; Fawley, William M; Reinsch, Matthia; Penn, Gregory; Kim, K-J; Lindberg, Ryan; Zholents, Alexander

    2010-09-17

    A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixed frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.

  17. Energy stability in a high average power FEL

    International Nuclear Information System (INIS)

    Mermings, L.; Bisognano, J.; Delayen, J.

    1995-01-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields or beam current are investigated. Energy changes can cause beam loss on apertures, or, when coupled to M, phase oscillations. Both effects change the beam induced voltage in the cavities and can lead to unstable variations of the accelerating field. Stability analysis for small perturbations from equilibrium is performed and threshold currents are determined. Furthermore, the analytical model is extended to include feedback. Comparison with simulation results derived from direct integration of the equations of motion is presented. Design strategies to increase the instability threshold are discussed and the UV Demo FEL, proposed for construction at CEBAF, and the INP Recuperatron at Novosibirsk are used as examples

  18. Insulin resistance in Chileans of European and indigenous descent: evidence for an ethnicity x environment interaction.

    Science.gov (United States)

    Celis-Morales, Carlos A; Perez-Bravo, Francisco; Ibañes, Luis; Sanzana, Ruth; Hormazabal, Edison; Ulloa, Natalia; Calvo, Carlos; Bailey, Mark E S; Gill, Jason M R

    2011-01-01

    Effects of urbanisation on diabetes risk appear to be greater in indigenous populations worldwide than in populations of European origin, but the reasons are unclear. This cross-sectional study aimed to determine whether the effects of environment (Rural vs. Urban), adiposity, fitness and lifestyle variables on insulin resistance differed between individuals of indigenous Mapuche origin compared to those of European origin in Chile. 123 Rural Mapuche, 124 Urban Mapuche, 91 Rural European and 134 Urban European Chilean adults had blood taken for determination of HOMA-estimated insulin resistance (HOMA(IR)) and underwent assessment of physical activity/sedentary behaviour (using accelerometry), cardiorespiratory fitness, dietary intake and body composition. General linear models were used to determine interactions with ethnicity for key variables. There was a significant "ethnicity x environment" interaction for HOMA(IR) (Mean±SD; Rural Mapuche: 1.65±2.03, Urban Mapuche: 4.90±3.05, Rural European: 0.82±0.61, Urban European: 1.55±1.34, p((interaction)) = 0.0003), such that the effect of urbanisation on HOMA(IR) was greater in Mapuches than Europeans. In addition, there were significant interactions (all pMapuches compared to Europeans, an observation that persisted after adjustment for potential confounders. Urbanisation, adiposity, physical activity and sedentary behaviour influence insulin resistance to a greater extent in Chilean Mapuches than Chileans of European descent. These findings have implications for the design and implementation of lifestyle strategies to reduce metabolic risk in different ethnic groups, and for understanding of the mechanisms underpinning human insulin resistance.

  19. Cascade self-seeding scheme with wake monochromator for narrow-bandwidth X-ray FELs

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-06-15

    Three different approaches have been proposed so far for production of highly monochromatic X-rays from a baseline XFEL undulator: (i) single-bunch selfseeding scheme with a four crystal monochromator in Bragg reflection geometry; (ii) double-bunch self-seeding scheme with a four-crystal monochromator in Bragg reflection geometry; (iii) single-bunch self-seeding scheme with a wake monochromator. A unique element of the X-ray optical design of the last scheme is the monochromatization of X-rays using a single crystal in Bragg-transmission geometry. A great advantage of this method is that the monochromator introduces no path delay of X-rays. This fact eliminates the need for a long electron beam bypass, or for the creation of two precisely separated, identical electron bunches, as required in the other two self-seeding schemes. In its simplest configuration, the self-seeded XFEL consists of an input undulator and an output undulator separated by a monochromator. In some experimental situations this simplest two-undulator configuration is not optimal. The obvious and technically possible extension is to use a setup with three or more undulators separated by monochromators. This amplification-monochromatization cascade scheme is distinguished, in performance, by a small heat-loading of crystals and a high spectral purity of the output radiation. This paper describes such cascade self-seeding scheme with wake monochromators.We present feasibility study and exemplifications for the SASE2 line of the European XFEL. (orig.)

  20. Scaling of gain with energy spread and energy in the PEP FEL

    International Nuclear Information System (INIS)

    Fisher, A.S.

    1992-01-01

    The Sag Harbor paper on the PEP FEL discusses the scaling of various FEL parameters with energy spread σ var-epsilon . I will repeat some of this material here and then examine the benefit of increasing the energy spread. How much energy spread can be achieved with damping wigglers is the next topic. Finally, I consider the dependence of gain and saturation length on beam energy and undulator field

  1. Short-wavelength free-electron laser sources and science: a review

    Science.gov (United States)

    Seddon, E. A.; Clarke, J. A.; Dunning, D. J.; Masciovecchio, C.; Milne, C. J.; Parmigiani, F.; Rugg, D.; Spence, J. C. H.; Thompson, N. R.; Ueda, K.; Vinko, S. M.; Wark, J. S.; Wurth, W.

    2017-11-01

    This review is focused on free-electron lasers (FELs) in the hard to soft x-ray regime. The aim is to provide newcomers to the area with insights into: the basic physics of FELs, the qualities of the radiation they produce, the challenges of transmitting that radiation to end users and the diversity of current scientific applications. Initial consideration is given to FEL theory in order to provide the foundation for discussion of FEL output properties and the technical challenges of short-wavelength FELs. This is followed by an overview of existing x-ray FEL facilities, future facilities and FEL frontiers. To provide a context for information in the above sections, a detailed comparison of the photon pulse characteristics of FEL sources with those of other sources of high brightness x-rays is made. A brief summary of FEL beamline design and photon diagnostics then precedes an overview of FEL scientific applications. Recent highlights are covered in sections on structural biology, atomic and molecular physics, photochemistry, non-linear spectroscopy, shock physics, solid density plasmas. A short industrial perspective is also included to emphasise potential in this area. Dedicated to John M J Madey (1943-2016) and Rodolfo Bonifacio (1940-2016) whose perception, drive and perseverance paved the way for the realisation and development of short-wavelength free-electron lasers.

  2. Development of a 3D FEL code for the simulation of a high-gain harmonic generation experiment

    International Nuclear Information System (INIS)

    Biedron, S. G.

    1999-01-01

    Over the last few years, there has been a growing interest in self-amplified spontaneous emission (SASE) free-electron lasers (FELs) as a means for achieving a fourth-generation light source. In order to correctly and easily simulate the many configurations that have been suggested, such as multi-segmented wigglers and the method of high-gain harmonic generation, we have developed a robust three-dimensional code. The specifics of the code, the comparison to the linear theory as well as future plans will be presented

  3. Wakefield issue and its impact on X-ray photon pulse in the SXFEL test facility

    Energy Technology Data Exchange (ETDEWEB)

    Song, Minghao; Li, Kai [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Feng, Chao [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Deng, Haixiao, E-mail: denghaixiao@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Liu, Bo; Wang, Dong [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-06-21

    Besides the designed beam acceleration, the energy of electrons is changed by the longitudinal wakefields in a real free-electron laser (FEL) facility, which may degrade FEL performances from the theoretical expectation. In this paper, with the help of simulation codes, the wakefields induced beam energy loss in the sophisticated undulator section is calculated for Shanghai soft X-ray FEL, which is a two-stage seeded FEL test facility. While the 1st stage 44 nm FEL output is almost not affected by the wakefields, it is found that a beam energy loss about 0.8 MeV degrades the peak brightness of the 2nd stage 8.8 nm FEL by a factor of 1.6, which however can be compensated by a magnetic field fine tuning of each undulator segment. And the longitudinal coherence of the 8.8 nm FEL output illustrates a slight degradation, because of the beam energy curvatures induced by the wakefields.

  4. Development of a novel thermionic RF electron gun applied on a compact THz-FEL facility

    Science.gov (United States)

    Hu, T. N.; Pei, Y. J.; Qin, B.; Liu, K. F.; Feng, G. Y.

    2018-04-01

    The current requirements from civil and commercial applications lead to the development of compact free-electron laser (FEL)-based terahertz (THz) radiation sources. A picosecond electron gun plays an important role in an FEL-THz facility and attracts significant attention, as machine performance is very sensitive to initial conditions. A novel thermionic gun with an external cathode (EC) and two independently tunable cavities (ITCs) has been found to be a promising alternative to conventional electron sources due to its remarkable characteristics, and correspondingly an FEL injector can achieve a balance between a compact layout and high brightness benefitting from the velocity bunching properties and RF focusing effects in the EC-ITC gun. Nevertheless, the EC-ITC gun has not been extensively examined as part of the FEL injector in the past years. In this regard, to fill this gap, a development focusing on the experimental setup of an FEL injector based on an EC-ITC gun is described in detail. Before assembly, dynamic beam simulations were performed to investigate the optimal mounting position for the Linac associated with the focusing coils, and a suitable radio-frequency (RF) system was established based on a power coupling design and allocation. The testing bench proved to be fully functional through basic experiments using typical diagnostic approaches for estimating primary parameters. Associated with dynamic beam calculations, a performance evaluation for an EC-ITC gun was established while providing indirect testing results for an FEL injector.

  5. Coherent harmonic production using a two-section undulator FEL

    Energy Technology Data Exchange (ETDEWEB)

    Jaroszynski, D.A. [Commissariat a l`Energie, Bruyeres-le-Chatel (France); Prazeres, R.; Glotin, F. [Centre Universitaire Paris-Sud (France)] [and others

    1995-12-31

    We present measurements and a theoretical analysis of a new method of generating harmonic radiation in a free-electron laser oscillator with a two section undulator in a single optical cavity. To produce coherent harmonic radiation the undulator is arranged so that the downstream undulator section resonance frequency matches a harmonic of the upstream undulator. Both the fundamental and the harmonic optical fields evolve in the same optical cavity and are coupled out with different extraction fractions using a hole in one of the cavity mirrors. We present measurements that show that the optical power at the second and third harmonic can be enhanced by more than an order of magnitude in this fundamental/harmonic configuration. We compare the production of harmonic radiation of a two sectioned fundamental/harmonic undulator with that produced from a FEL operating at its highest efficiency with a step-tapered undulator, where the bunching at the end of the first section is very large. We examine, the dependence of the harmonic power on the intracavity power by adjusting the optical cavity desynchronism, {delta}L. We also examine the evolution of the fundamental and harmonic powers as a function of cavity roundtrip number to evaluate the importance of the small signal gain at the harmonic. We compare our measurements with predictions of a multi-electron numerical model that follows the evolution of fundamental and harmonic power to saturation. This fundamental/harmonic mode, of operation of the FEL may have useful applications in the production of coherent X-ray and VUV radiation, a spectral range where high reflectivity optical cavity mirrors are difficult or impossible to manufacture.

  6. Photocathode driven linac at UCLA for FEL and plasma wakefield acceleration experiments

    International Nuclear Information System (INIS)

    Hartman, S.; Aghamir, F.; Barletta, W.; Cline, D.; Dodd, J.; Katsouleas, T.; Kolonko, J.; Park, S.; Pellegrini, C.; Rosenzweig, J.; Smolin, J.; Terrien, J.; Davis, J.; Hairapetian, G.; Joshi, C.; Luhmann, N. Jr.; McDermott, D.

    1991-01-01

    The UCLA compact 20-MeV/c electron linear accelerator is designed to produce a single electron bunch with a peak current of 200 A, an rms energy spread of 0.2% or less, and a short 1.2 picosecond rms pulse duration. The linac is also designed to minimize emittance growth down the beamline so as to obtain emittances of the order of 8πmm-mrad in the experimental region. The linac will feed two beamlines, the first will run straight into the undulator for FEL experiments while the second will be used for diagnostics, longitudinal bunch compression, and other electron beam experiments. Here the authors describe the considerations put into the design of the accelerating structures and the transport to the experimental areas

  7. IR-FEL-induced green fluorescence protein (GFP) gene transfer into plant cell

    CERN Document Server

    Awazu, K; Tamiya, E

    2002-01-01

    A Free Electron Laser (FEL) holds potential for various biotechnological applications due to its characteristics such as flexible wavelength tunability, short pulse and high peak power. We could successfully introduce the Green Fluorescent Protein (GFP) gene into tobacco BY2 cells by IR-FEL laser irradiation. The irradiated area of the solution containing BY2 cells and plasmid was about 0.1 mm sup 2. FEL irradiation at a wavelength of 5.75 and 6.1 mu m, targeting absorption by the ester bond of the lipid and the amide I bond of the protein, respectively, was shown to cause the introduction of the fluorescent dye into the cell. On the other hand, transient expression of the GFP fluorescence was only observed after irradiation at 5.75 mu m. The maximum transfer efficiency was about 0.5%.

  8. EXPERIENCE AND PLANS OF THE JLAB FEL FACILITY AS A USER FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Michelle D. Shinn

    2007-08-26

    Jefferson Lab's IR Upgrade FEL building was planned from the beginning to be a user facility, and includes an associated 600 m2 area containing seven laboratories. The high average power capability (multikilowatt-level) in the near-infrared (1-3 microns), and many hundreds of watts at longer wavelengths, along with an ultrafast (~ 1 ps) high PRF (10's MHz) temporal structure makes this laser a unique source for both applied and basic research. In addition to the FEL, we have a dedicated laboratory capable of delivering high power (many tens of watts) of broadband THz light. After commissioning the IR Upgrade, we once again began delivering beam to users in 2005. In this presentation, I will give an overview of the FEL facility and its current performance, lessons learned over the last two years, and a synopsis of current and future experiments.

  9. Status of FEL-SUT project, and the experimental setup for multiphoton dissociation and isotope separation in the gaseous phase

    CERN Document Server

    Chernyshev, A V; Petrov, A K; Kawai, M; Toyoda, K; Nakai, K; Kuroda, H

    2001-01-01

    The IR FEL Research Center of the Science University of Tokyo (FEL-SUT) is open for users to develop new applications of IR FEL in a wide field of material science, chemical technology and bio-chemical applications. The FEL is based on 35 MeV linac operated at the frequency of 2856 MHz (s-band). The FEL covers the wavelength range from 5 to 16 mu m with the micropulse duration of 1-2 ps, macropulse duration of 1 mu s, macropulse repetition rate of 10 Hz and the overall average power of 1 W. We report the present status of the Center and an experimental setup designed and constructed for the experiments on multiphoton dissociation and isotope separation.

  10. Spontaneous emission in Cherenkov FEL devices

    International Nuclear Information System (INIS)

    Ciocci, F.; Dattoli, G.; Doria, A.; Schettini, G.; Torre, A.; Walsh, J.E.

    1987-01-01

    The main features of the spectral characteristics of the spontaneously emitted Cherenkov light in circular and rectangular wave-guides filled with dielectric are discussed. The characteristics of the radiation emitted by an electron beam moving near and parallel to the surface of a dielectric slab are also analysed. Finally, the relevance of these results to a possible FEL-Cherenkov operation is briefly discussed

  11. The FEL-TNO uniform open systems model

    NARCIS (Netherlands)

    Luiijf, H.A.M.; Overbeek, P.L.

    1989-01-01

    The FEL-TNO Uniform Open Systems Model is based upon the IS0/0SI Basic Reference Model and integrates operating systems, (OSI) networks, equipment and media into one single uniform nodel. Usage of the model stimulates the development of operating systen and network independent applications and puts

  12. Face expressive lifting (FEL): an original surgical concept combined with bipolar radiofrequency

    OpenAIRE

    Divaris, Marc; Blugerman, Guillermo; Paul, Malcolm D.

    2013-01-01

    Background Aging can lead to changes in facial expressions, transforming the positive youth expression of happiness to negative expressions as sadness, tiredness, and disgust. Local skin distension is another consequence of aging, which can be difficult to treat with rejuvenation procedures. The “face expressive lifting” (FEL) is an original concept in facial rejuvenation surgery. On the one hand, FEL integrates established convergent surgical techniques aiming to correct the age-related nega...

  13. Status report on the development of a high-power UV/IR FEL at CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Benson, S.; Bohn, C.; Dylla, H.F. [Continuous Electron Beam Accelerator Facility, Newport News, VA (United States)] [and others

    1995-12-31

    Last year we presented a design for a kilowatt industrial UV FEL based on a superconducting RF accelerator delivering 5 mA of electron-beam current at 200 MeV with energy recovery to enhance efficiency. Since then, we have progressed toward resolving several issues associated with that design. More exact simulations of the injector have resulted in a more accurate estimate of the injector performance. A new injection method has reduced the longitudinal and transverse emittance at the linac entrance. A more compact lattice has been designed for the UV FEL, and a new recirculation scheme has been identified which greatly increases the threshold for longitudinal instabilities. We decided to use a wiggler from the Advanced Photon Source which leads to a robust high-gain FEL. Analysis of the stability of an RF control system based on CEBAF control modules indicates that only minor modifications will be needed to apply them to this FEL. Detailed magnet specifications, vacuum-chamber beam apertures, and diagnostic specifications have been developed for the recirculation arcs. The design of the optical cavity has been conceptualized, and control systems have been devised to regulate mirror distortion. A half-scale model of one of the end-corner cubes has been built and tested. Finally, three-dimensional simulations have been carried out which indicate that the FEL should exceed its minimum design goals with adequate performance margin.

  14. Cavity-mirror degradation in the deep-UV FEL

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, K.; Yamazaki, T.; Sei, N. [Electrotechnical Lab., Ibaraki (Japan)] [and others

    1995-12-31

    It is known that the degradation of dielectric multilayer mirrors used in short wavelength free-electron lasers (FELs) is caused by the carbon contamination on the mirror surface and the defects inside the dielectrics. We reported last year that the degraded dielectric multilayer mirrors can be repaired with both surface treatment by RF-induced oxygen plasma and thermal annealing. However, such a mirror degradation is still one of the most critical issues in the deep ultraviolet (UV) FELs, because the fundamental undulator radiation resonating in the laser cavity, the intensity of which is much higher than that of higher harmonics, can be sufficiently energetic to cause the mirror degradation through photochemical reactions. We are investigating the mirror degradation mainly in the deep UV region down to 240 nm. The experimental results will be shown. The mirror degradation mechanism will be discussed.

  15. Wavelength and power stability measurements of the Stanford SCA/FEL

    International Nuclear Information System (INIS)

    van der Geer, B.; de Loos, M.J.; Conde, M.E.; Leemans, W.P.

    1994-08-01

    Wavelength and power stability of the Stanford infrared SCA/FEL operating with the TRW wiggler have been measured using a high-resolution spectrometer and an image dissector system. The image dissector is capable of reading the spectrum of every single micropulse at 12 MHz throughout a macropulse of up to 2 ms duration. The intrinsic wavelength and power stability of the SCA/FEL are found to be δλ/λ=0.035% and δP/P=18%. The use of a feedback control system to stabilize the wavelength, and an acousto-optic modulator for output power smoothing, improves the performance to δλ/λ=0.012% and δP/P=7%

  16. Hydrodynamic simulation of X-UV laser-produced plasmas

    International Nuclear Information System (INIS)

    Fajardo, M.; Zeitoun, P.; Gauthier, J.C.

    2004-01-01

    With the construction of novel X-UV sources, such as V-UV FEL's (free-electron lasers), X-UV laser-matter interaction will become available at ultra-high intensities. But even table-top facilities such as X-UV lasers or High Harmonic Generation, are starting to reach intensities high enough to produce dense plasmas. X-UV laser-matter interaction is studied by a 1-dimensional hydrodynamic Lagrangian code with radiative transfer for a range of interesting X-UV sources. Heating is found to be very different for Z=12-14 elements having L-edges around the X-UV laser wavelength. Possible absorption mechanisms were investigated in order to explain this behaviour, and interaction with cold dense matter proved to be dominant. Plasma sensitivity to X-UV laser parameters such as energy, pulse duration, and wavelength was also studied, covering ranges of existing X-UV lasers. We found that X-UV laser-produced plasmas could be studied using table-top lasers, paving the way for future V-UV-FEL high intensity experiments. (authors)

  17. Linear luminescence for thin plastic scintillator under intense soft X-ray irradiation

    International Nuclear Information System (INIS)

    Ning Jiamin; Jiang Shilun; Xu Rongkun; Guo Cun

    2006-01-01

    The basic principle of soft X-ray power meter is introduced in the paper and the experimental process and the result of thin plastic scintillator linear luminescence under intense soft X-ray irradiation are described. A range of flux density of energy for thin plastic scintillator linear luminescence under intense soft X-ray irradiation is included. The upper limit of the flux density is 1.47 x 10 5 W/cm 2 . (authors)

  18. Status and prospects of a compact FIR FEL driven by a magnetron-based microtron

    International Nuclear Information System (INIS)

    Jeong, Young Uk; Kazakevitch, Grigori M.; Lee, Byung Cheol; Kim, Sun Kook; Cho, Sung Oh; Gavrilov, Nicolai G.; Lee, Jongmin

    2002-01-01

    A magnetron-based microtron as a driver of FIR FEL has several prominent advantages in cost, size, beam quality and operation convenience. However, it has some disadvantages due to the instability of the RF frequency and a low current. In order to overcome these disadvantages, the frequency stability of the magnetron was improved, and the interaction between the electron beam and the FIR radiation was enhanced by using a high-performance undulator and a low-loss waveguide-mode optical resonator. The FEL is now under upgrade in order to extend the wavelength range to cover 90-300 μm, which can be done by increasing the energy range of electron beam to 4.3-7 MeV. In this paper, we report the results of investigations on output characteristics of the FEL depending on cavity detuning, electron beam matching, and RF instability. Based on the results, we discuss the prospects of wide-band FIR FELs driven by magnetron-based microtrons as potent sources of radiation for scientific applications

  19. Moving the Frontier of Quantum Control into the Soft X-Ray Spectrum

    Directory of Open Access Journals (Sweden)

    A. Aquila

    2011-01-01

    Full Text Available The femtosecond nature of X-ray free electron laser (FEL pulses opens up exciting research possibilities in time-resolved studies including femtosecond photoemission and diffraction. The recent developments of seeding X-ray FELs extend their capabilities by creating stable, temporally coherent, and repeatable pulses. This in turn opens the possibility of spectral engineering soft X-ray pulses to use as a probe for the control of quantum dynamics. We propose a method for extending coherent control pulse-shaping techniques to the soft X-ray spectral range by using a reflective geometry 4f pulse shaper. This method is based on recent developments in asymmetrically cut multilayer optic technology and piezoelectric substrates.

  20. Generation of linearly polarized resonant transition radiation X-ray beam

    International Nuclear Information System (INIS)

    Yajima, Kazuaki; Awata, Takaaki; Ikeda, Mitsuharu; Ikeda, Kenichi; Yogo, Akifumi; Itoh, Akio; Imanishi, Nobutsugu

    2000-01-01

    We have proposed a method to generate almost linearly polarized resonant transition radiation X rays by using a rectangular slit placed on an electron beam axis. Our calculation predicted that the linearity is 93.5% for the resonant transition radiation X-ray beam extracted through a slit of 0.5 mrad long and 0.2 mrad wide in case of 1-GeV electron beam irradiating a 7.5-μm thick Kapton foil stack. (author)

  1. Generation of linearly polarized resonant transition radiation X-ray beam

    Energy Technology Data Exchange (ETDEWEB)

    Yajima, Kazuaki; Awata, Takaaki; Ikeda, Mitsuharu; Ikeda, Kenichi; Yogo, Akifumi; Itoh, Akio; Imanishi, Nobutsugu [Kyoto Univ. (Japan). Dept. of Nuclear Engineering

    2000-03-01

    We have proposed a method to generate almost linearly polarized resonant transition radiation X rays by using a rectangular slit placed on an electron beam axis. Our calculation predicted that the linearity is 93.5% for the resonant transition radiation X-ray beam extracted through a slit of 0.5 mrad long and 0.2 mrad wide in case of 1-GeV electron beam irradiating a 7.5-{mu}m thick Kapton foil stack. (author)

  2. A wiggler magnet for FEL low voltage operation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Shamma`a, A.; Stuart, R.A.; Lucas, J.

    1995-12-31

    In low voltage FELs (ie, 200kV), operation is necessarily in the microwave frequency range for wiggler periods of the order of cms., so that a waveguide system is mandatory. Also, because of the relatively low velocity of the electron beam, the wiggle amplitude of the electron beam can be much larger than is normal for highly relativistic FELs. Both these factors mean that the electron trajectory must be carefully controlled to avoid beam collision with the waveguide walls. A wiggler system with half poles at entrance and exit is not an acceptable solution because of the offset is gives rise to the electron trajectory. Consequently, we have designed and constructed a wiggler magnet with exponential entrance and exit tapers for a minimal deflection and displacement of the electron beam. Simulations and experimental measurements showed that an on axis trajectory is easily obtainable.

  3. Single-shot beam-position monitor for x-ray free electron laser

    Science.gov (United States)

    Tono, Kensuke; Kudo, Togo; Yabashi, Makina; Tachibana, Takeshi; Feng, Yiping; Fritz, David; Hastings, Jerome; Ishikawa, Tetsuya

    2011-02-01

    We have developed an x-ray beam-position monitor for detecting the radiation properties of an x-ray free electron laser (FEL). It is composed of four PIN photodiodes that detect backscattered x-rays from a semitransparent diamond film placed in the beam path. The signal intensities from the photodiodes are used to compute the beam intensity and position. A proof-of-principle experiment at a synchrotron light source revealed that the error in the beam position is reduced to below 7 μm by using a nanocrystal diamond film prepared by plasma-enhanced chemical vapor deposition. Owing to high dose tolerance and transparency of the diamond film, the monitor is suitable for routine diagnostics of extremely intense x-ray pulses from the FEL.

  4. Production and detection of axion-like particles at the VUV-FEL. Letter of intent

    International Nuclear Information System (INIS)

    Koetz, U.; Ringwald, A.; Tschentscher, T.

    2006-06-01

    Recently, the PVLAS collaboration has reported evidence for an anomalously large rotation of the polarization of light generated in vacuum in the presence of a transverse magnetic field. This may be explained through the production of a new light spin-zero particle coupled to two photons. In this Letter of Intent, we propose to test this hypothesis by setting up a photon regeneration experiment which exploits the photon beam of the Vacuum-UltraViolet Free-Electron Laser VUV-FEL, sent along the transverse magnetic field of a linear arrangement of dipole magnets of size B L ∼ 30 Tm. The high photon energies available at the VUV-FEL increase substantially the expected photon regeneration rate in the mass range implied by the PVLAS anomaly, in comparison to the rate expected at visible lasers of similar power. We find that the particle interpretation of the PVLAS result can be tested within a short running period. The pseudoscalar vs. scalar nature can be determined by varying the direction of the magnetic field with respect to the laser polarization. The mass of the particle can be measured by running at different photon energies. The proposed experiment offers a window of opportunity for a firm establishment or exclusion of the particle interpretation of the PVLAS anomaly before other experiments can compete. (Orig.)

  5. Transient thermal stress wave and vibrational analyses of a thin diamond crystal for X-ray free-electron lasers under high-repetition-rate operation.

    Science.gov (United States)

    Yang, Bo; Wang, Songwei; Wu, Juhao

    2018-01-01

    High-brightness X-ray free-electron lasers (FELs) are perceived as fourth-generation light sources providing unprecedented capabilities for frontier scientific researches in many fields. Thin crystals are important to generate coherent seeds in the self-seeding configuration, provide precise spectral measurements, and split X-ray FEL pulses, etc. In all of these applications a high-intensity X-ray FEL pulse impinges on the thin crystal and deposits a certain amount of heat load, potentially impairing the performance. In the present paper, transient thermal stress wave and vibrational analyses as well as transient thermal analysis are carried out to address the thermomechanical issues for thin diamond crystals, especially under high-repetition-rate operation of an X-ray FEL. The material properties at elevated temperatures are considered. It is shown that, for a typical FEL pulse depositing tens of microjoules energy over a spot of tens of micrometers in radius, the stress wave emission is completed on the tens of nanoseconds scale. The amount of kinetic energy converted from a FEL pulse can reach up to ∼10 nJ depending on the layer thickness. Natural frequencies of a diamond plate are also computed. The potential vibrational amplitude is estimated as a function of frequency. Due to the decreasing heat conductivity with increasing temperature, a runaway temperature rise is predicted for high repetition rates where the temperature rises abruptly after ratcheting up to a point of trivial heat damping rate relative to heat deposition rate.

  6. Investigations on the electron bunch distribution in the longitudinal phase space at a laser driven RF electron source for the European X-FEL

    Energy Technology Data Exchange (ETDEWEB)

    Roensch, Juliane

    2010-01-15

    The Photoinjector Test facility at DESY, Zeuthen site, (PITZ) is aiming for the optimization of electron guns for SAS-FELs. For this it is necessary to investigate the characteristics of the six dimensional phase space of the bunch produced by a photoinjector. This thesis is focused on the analysis of the longitudinal properties of the electron bunch distribution, this means the temporal current distribution and the momentum distribution as well as the correlation of both properties. The complete distribution of the electron bunch in longitudinal phase space of a photoinjector was measured directly for the first time at a beam momentum of about 5 MeV/c, using an existing apparatus. This system had been designed for an accelerating gradient of 40 MV/m. Its subcomponents were analysed to understand sources of uncertainties of the measurement system. The usage of higher accelerating gradients in the gun (60 MV/m, resulting in a beam momentum of about 6.8 MeV/c) demands major modifications of the existing measurement system for the longitudinal phase space distribution. An upgrade of the facility by an additional accelerating cavity required the design of further longitudinal diagnostics systems for the analysis at higher momenta (up to 40 MeV/c). Measurements of the longitudinal beam properties to determine the influence of different operation parameters, like RF launch phase, charge, accelerating field gradient and laser distribution were performed and compared to simulations. (orig.)

  7. Investigations on the electron bunch distribution in the longitudinal phase space at a laser driven RF electron source for the European X-FEL

    International Nuclear Information System (INIS)

    Roensch, Juliane

    2010-01-01

    The Photoinjector Test facility at DESY, Zeuthen site, (PITZ) is aiming for the optimization of electron guns for SAS-FELs. For this it is necessary to investigate the characteristics of the six dimensional phase space of the bunch produced by a photoinjector. This thesis is focused on the analysis of the longitudinal properties of the electron bunch distribution, this means the temporal current distribution and the momentum distribution as well as the correlation of both properties. The complete distribution of the electron bunch in longitudinal phase space of a photoinjector was measured directly for the first time at a beam momentum of about 5 MeV/c, using an existing apparatus. This system had been designed for an accelerating gradient of 40 MV/m. Its subcomponents were analysed to understand sources of uncertainties of the measurement system. The usage of higher accelerating gradients in the gun (60 MV/m, resulting in a beam momentum of about 6.8 MeV/c) demands major modifications of the existing measurement system for the longitudinal phase space distribution. An upgrade of the facility by an additional accelerating cavity required the design of further longitudinal diagnostics systems for the analysis at higher momenta (up to 40 MeV/c). Measurements of the longitudinal beam properties to determine the influence of different operation parameters, like RF launch phase, charge, accelerating field gradient and laser distribution were performed and compared to simulations. (orig.)

  8. R&D for a Soft X-Ray Free Electron Laser Facility

    Energy Technology Data Exchange (ETDEWEB)

    Corlett, John; Attwood, David; Byrd, John; Denes, Peter; Falcone, Roger; Heimann, Phil; Leemans, Wim; Padmore, Howard; Prestemon, Soren; Sannibale, Fernando; Schlueter, Ross; Schroeder, Carl; Staples, John; Venturini, Marco; Warwick, Tony; Wells, Russell; Wilcox, Russell; Zholent, Alexander; Adolphsen, Chris; Arthur, John; Bergmann, Uwe; Cai, Yunhai; Colby, Eric; Dowell, David; Emma, Paul; Fox, John; Frisch, Josef; Galayda, John; Hettel, Robert; Huang, Zhirong; Phinney, Nan; Rabedeau, Tom; Raubenheimer, Tor; Reis, David; Schmerge, John; Stohr, Joachim; Stupakov, Gennady; White, Bill; Xiang, Dao

    2009-06-08

    Several recent reports have identified the scientific requirements for a future soft x-ray light source, and a high-repetition-rate free-electron laser (FEL) facility that is responsive to these requirements is now on the horizon. R&D in some critical areas is needed, however, to demonstrate technical performance, thus reducing technical risks and construction costs. Such a facility most likely will be based on a CW superconducting linear accelerator with beam supplied by a high-brightness, high-repetition-rate photocathode electron gun operating in CW mode, and on an array of FELs to which the accelerated beam is distributed, each operating at high repetition rate and with even pulse spacing. Dependent on experimental requirements, the individual FELs can be configured for either self-amplified spontaneous emission (SASE), seeded, or oscillator mode of operation, including the use of high-gain harmonic generation (HGHG), echo-enhanced harmonic generation (EEHG), harmonic cascade, or other configurations. In this White Paper we identify the overall accelerator R&D needs, and highlight the most important pre-construction R&D tasks required to value-engineer the design configuration and deliverables for such a facility. In Section 1.4 we identify the comprehensive R&D ultimately needed. We identify below the highest-priority requirements for understanding machine performance and reduce risk and costs at this pre-conceptual design stage. Details of implementing the required tasks will be the subject of future evaluation. Our highest-priority R&D program is the injector, which must be capable of delivering a beam with bunches up to a nanocoulomb at MHz repetition rate and with normalized emittance {le} 1 mm {center_dot} mrad. This will require integrated accelerating structure, cathode, and laser systems development. Cathode materials will impact the choice of laser technology in wavelength and energy per pulse, as well as vacuum requirements in the accelerating

  9. A hybrid type undulator for far-infrared FELs at FELI

    Energy Technology Data Exchange (ETDEWEB)

    Zako, A.; Miyauchi, Y.; Koga, A. [Free Electron Laser Research Institute, Inc., Osaka (Japan)] [and others

    1995-12-31

    Two FEL facilities of the FELI are now operating in the wavelength range of 1-20 {mu}m. A 3.2-m hybrid type undulator ({lambda}{sub u}=80mm, N=40) has been designed for far-infrared FELs and will be installed in December. It can cover the wavelength of 20-60 {mu}m by changing K-value from 1 to 2.7 for a 28.0-MeV electron beam. It is composed of ferrite magnetic poles and Sm-Co permanent magnets. Commonly wound coils induce alternating magnetic field in ferrite poles. Combination of the induced field and the permanent magnet field can controls the magnetic field between the undulator gap.

  10. Roadmap of ultrafast x-ray atomic and molecular physics

    Science.gov (United States)

    Young, Linda; Ueda, Kiyoshi; Gühr, Markus; Bucksbaum, Philip H.; Simon, Marc; Mukamel, Shaul; Rohringer, Nina; Prince, Kevin C.; Masciovecchio, Claudio; Meyer, Michael; Rudenko, Artem; Rolles, Daniel; Bostedt, Christoph; Fuchs, Matthias; Reis, David A.; Santra, Robin; Kapteyn, Henry; Murnane, Margaret; Ibrahim, Heide; Légaré, François; Vrakking, Marc; Isinger, Marcus; Kroon, David; Gisselbrecht, Mathieu; L'Huillier, Anne; Wörner, Hans Jakob; Leone, Stephen R.

    2018-02-01

    X-ray free-electron lasers (XFELs) and table-top sources of x-rays based upon high harmonic generation (HHG) have revolutionized the field of ultrafast x-ray atomic and molecular physics, largely due to an explosive growth in capabilities in the past decade. XFELs now provide unprecedented intensity (1020 W cm-2) of x-rays at wavelengths down to ˜1 Ångstrom, and HHG provides unprecedented time resolution (˜50 attoseconds) and a correspondingly large coherent bandwidth at longer wavelengths. For context, timescales can be referenced to the Bohr orbital period in hydrogen atom of 150 attoseconds and the hydrogen-molecule vibrational period of 8 femtoseconds; wavelength scales can be referenced to the chemically significant carbon K-edge at a photon energy of ˜280 eV (44 Ångstroms) and the bond length in methane of ˜1 Ångstrom. With these modern x-ray sources one now has the ability to focus on individual atoms, even when embedded in a complex molecule, and view electronic and nuclear motion on their intrinsic scales (attoseconds and Ångstroms). These sources have enabled coherent diffractive imaging, where one can image non-crystalline objects in three dimensions on ultrafast timescales, potentially with atomic resolution. The unprecedented intensity available with XFELs has opened new fields of multiphoton and nonlinear x-ray physics where behavior of matter under extreme conditions can be explored. The unprecedented time resolution and pulse synchronization provided by HHG sources has kindled fundamental investigations of time delays in photoionization, charge migration in molecules, and dynamics near conical intersections that are foundational to AMO physics and chemistry. This roadmap coincides with the year when three new XFEL facilities, operating at Ångstrom wavelengths, opened for users (European XFEL, Swiss-FEL and PAL-FEL in Korea) almost doubling the present worldwide number of XFELs, and documents the remarkable progress in HHG capabilities since

  11. High average power CW FELs [Free Electron Laser] for application to plasma heating: Designs and experiments

    International Nuclear Information System (INIS)

    Booske, J.H.; Granatstein, V.L.; Radack, D.J.; Antonsen, T.M. Jr.; Bidwell, S.; Carmel, Y.; Destler, W.W.; Latham, P.E.; Levush, B.; Mayergoyz, I.D.; Zhang, Z.X.

    1989-01-01

    A short period wiggler (period ∼ 1 cm), sheet beam FEL has been proposed as a low-cost source of high average power (1 MW) millimeter-wave radiation for plasma heating and space-based radar applications. Recent calculation and experiments have confirmed the feasibility of this concept in such critical areas as rf wall heating, intercepted beam (''body'') current, and high voltage (0.5 - 1 MV) sheet beam generation and propagation. Results of preliminary low-gain sheet beam FEL oscillator experiments using a field emission diode and pulse line accelerator have verified that lasing occurs at the predicted FEL frequency. Measured start oscillation currents also appear consistent with theoretical estimates. Finally, we consider the possibilities of using a short-period, superconducting planar wiggler for improved beam confinement, as well as access to the high gain, strong pump Compton regime with its potential for highly efficient FEL operation

  12. Insulin resistance in Chileans of European and indigenous descent: evidence for an ethnicity x environment interaction.

    Directory of Open Access Journals (Sweden)

    Carlos A Celis-Morales

    Full Text Available BACKGROUND: Effects of urbanisation on diabetes risk appear to be greater in indigenous populations worldwide than in populations of European origin, but the reasons are unclear. This cross-sectional study aimed to determine whether the effects of environment (Rural vs. Urban, adiposity, fitness and lifestyle variables on insulin resistance differed between individuals of indigenous Mapuche origin compared to those of European origin in Chile. METHODOLOGY/PRINCIPAL FINDINGS: 123 Rural Mapuche, 124 Urban Mapuche, 91 Rural European and 134 Urban European Chilean adults had blood taken for determination of HOMA-estimated insulin resistance (HOMA(IR and underwent assessment of physical activity/sedentary behaviour (using accelerometry, cardiorespiratory fitness, dietary intake and body composition. General linear models were used to determine interactions with ethnicity for key variables. There was a significant "ethnicity x environment" interaction for HOMA(IR (Mean±SD; Rural Mapuche: 1.65±2.03, Urban Mapuche: 4.90±3.05, Rural European: 0.82±0.61, Urban European: 1.55±1.34, p((interaction = 0.0003, such that the effect of urbanisation on HOMA(IR was greater in Mapuches than Europeans. In addition, there were significant interactions (all p<0.004 with ethnicity for effects of adiposity, sedentary time and physical activity on HOMA(IR, with greater effects seen in Mapuches compared to Europeans, an observation that persisted after adjustment for potential confounders. CONCLUSIONS/SIGNIFICANCE: Urbanisation, adiposity, physical activity and sedentary behaviour influence insulin resistance to a greater extent in Chilean Mapuches than Chileans of European descent. These findings have implications for the design and implementation of lifestyle strategies to reduce metabolic risk in different ethnic groups, and for understanding of the mechanisms underpinning human insulin resistance.

  13. Probing spin-vibronic dynamics using femtosecond X-ray spectroscopy

    DEFF Research Database (Denmark)

    Penfold, T. J.; Pápai, Mátyás Imre; Rozgonyi, T.

    2016-01-01

    Ultrafast pump-probe spectroscopy within the X-ray regime is now possible owing to the development of X-ray Free Electrons Lasers (X-FELs) and is opening new opportunities for the direct probing of femtosecond evolution of the nuclei, the electronic and spin degrees of freedom. In this contributi...

  14. Advanced Electron Beam Diagnostics for the FERMI FEL

    CERN Document Server

    Ferianis, M; D'Auria, G; Di Mitri, S

    2005-01-01

    Fermi is the fourth generation light source currently under design at ELETTRA: based on the Harmonic Generation (HG) scheme it will generate FEL radiation in the 100-10nm range. The successful implementation of the HG scheme calls also for precise knowledge of electron beam emittances and energy spread as well as for very accurate control on the photon to electron interaction, in the Undulator sections. In this paper we present our design for two fundamental Diagnostics foreseen for the new FERMI LINAC: the Beam Position Monitors (BPM) and the Transverse Deflecting cavity set-up. Sensitivity studies on transverse beam displacement effects on global stability of FEL output radiation dictate the ultimate performance to be provided by the BPM system. Due to non negligible longitudinal occupancy of a cavity type BPM, some efforts have been put to study compact cavity BPM configuration. A proper set-up of RF deflecting cavity combined with the vertical ramp foreseen at the end of the LINAC provide a powerful tool ...

  15. Conceptual design of an undulator system for a dedicated bio-imaging beamline at the European X-ray FEL

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-05-15

    We describe a future possible upgrade of the European XFEL consisting in the construction of an undulator beamline dedicated to life science experiments. The availability of free undulator tunnels at the European XFEL facility offers a unique opportunity to build a beamline optimized for coherent diffraction imaging of complex molecules, like proteins and other biologically interesting structures. Crucial parameters for such bio-imaging beamline are photon energy range, peak power, and pulse duration. Key component of the setup is the undulator source. The peak power is maximized in the photon energy range between 3 keV and 13 keV by the use of a very efficient combination of self-seeding, fresh bunch and tapered undulator techniques. The unique combination of ultra-high peak power of 1 TW in the entire energy range, and ultrashort pulse duration tunable from 2 fs to 10 fs, would allow for single shot coherent imaging of protein molecules with size larger than 10 nm. Also, the new beamline would enable imaging of large biological structures in the water window, between 0.3 keV and 0.4 keV. In order to make use of standardized components, at present we favor the use of SASE3-type undulator segments. The number segments, 40, is determined by the tapered length for the design output power of 1 TW. The present plan assumes the use of a nominal electron bunch with charge of 0.1 nC. Experiments will be performed without interference with the other three undulator beamlines. Therefore, the total amount of scheduled beam time per year is expected to be up to 4000 hours.

  16. Distributed seeding for narrow-line width hard x-ray free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Anisimov, Petr Mikhaylovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lewellen, IV, John W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Marksteiner, Quinn R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-09

    We describe a new FEL line-narrowing technique called distributed seeding (DS), using Si(111) Bragg crystal monochromators to enhance the spectral brightness of the MaRIE hard X-ray freeelectron laser. DS differs from self-seeding in three important aspects. First, DS relies on spectral filtering of the radiation at multiple locations along the undulator, with a monochromator located every few power gain lengths. Second, DS performs filtering early in the exponential gain region before SASE spikes start to appear in the radiation longitudinal profile. Third, DS provides the option to select a wavelength longer than the peak of the SASE gain curve, which leads to improved spectral contrast of the seeded FEL over the SASE background. Timedependent Genesis simulations show the power-vs-z growth curves for DS exhibit behaviors of a seeded FEL amplifier, such as exponential growth region immediately after the filters. Of the seeding approaches considered, the two-stage DS spectra produce the highest contrast of seeded FEL over the SASE background and that the three-stage DS provides the narrowest linewidth with a relative spectral FWHM of 8 X 10-5 .

  17. Characteristics of the FEL project for the MUH experiment; Stato del progetto FEL per l`esperimeto MUH

    Energy Technology Data Exchange (ETDEWEB)

    Ciocci, F.; Doria, A.; Fascetti, M.; Gallerano, G.P.; Giannessi, L.; Giovenale, E.; Messina, G.; Picardi, L.; Renieri, A.; Ronci, G.; Ronsivalle, C.; Vignati, A. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Innovazione

    1999-01-01

    The design characteristics of a compact Free Electron Laser (FEL) operating in the far infrared spectral range between 200 and 600 {mu}m are presented in this report. The device can be employed in a fundamental physics experiment to be performed in collaboration with INFN-Trieste and the Paul Sherrer Institute- Villigen. Spectroscopic measurements in the above spectral region will allow one to determine the energy difference between the levels 3D-3P in the {mu}P system with great accuracy. [Italiano] In questo rapporto vengono presentate le caratteristiche di progetto di un Laser ad Elettroni Liberi (FEL) compatto operante nel lontano infrarosso a lunghezze d`onda comprese tra 200 e 600 {mu}m. Tale laser potra` essere impiegato in un esperimento di fisica fondamentale su idrogeno muonico in collaborazione con INFN-Trieste ed il Paul Sherrer Institute-Villigen. Le misure spettroscopiche nella regione spettrale del lontano infrarosso consentiranno di determinare con grande accuratezza la differenza di energia dei livelli 3D-3P nel sistema {mu}P. Attraverso la misura di questa transizione sara` possibile effettuare un test delle correzioni di Meccanica Quantistica (QED) alle energie di legame, migliorando di un ordine di grandezza l`accuratezza della misura della polarizzazione del vuoto.

  18. Characterization and control of femtosecond electron and X-ray beams at free-electron lasers

    International Nuclear Information System (INIS)

    Behrens, Christopher

    2012-11-01

    X-ray free-electron lasers (FELs) open up new frontiers in photon science, and in order to take full advantage of these unique accelerator-based light sources, the characterization and control of the femtosecond electron and X-ray beams is essential. Within this cumulative thesis, recent results achieved within the active research field of femtosecond electron and X-ray beams at FELs are reported.The basic principles of X-ray FELs are described, and concepts of longitudinal electron beam diagnostics with femtosecond accuracy are covered. Experimental results obtained with a transverse deflecting structure (TDS) and spectroscopy of coherent terahertz radiation are presented, and the suppression of coherent optical radiation effects, required for diagnostics utilizing a TDS, is demonstrated. Control of the longitudinal phase space by using multiple radio frequencies for longitudinal electron beam tailoring is presented, and a new technique of reversible electron beam heating with two TDSs is described. For the characterization of femtosecond X-ray pulses, a novel method based on dedicated longitudinal phase space diagnostics for electron beams is introduced, and recent measurements with a streaking technique using external terahertz fields are presented.

  19. Characterization and control of femtosecond electron and X-ray beams at free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, Christopher

    2012-11-15

    X-ray free-electron lasers (FELs) open up new frontiers in photon science, and in order to take full advantage of these unique accelerator-based light sources, the characterization and control of the femtosecond electron and X-ray beams is essential. Within this cumulative thesis, recent results achieved within the active research field of femtosecond electron and X-ray beams at FELs are reported.The basic principles of X-ray FELs are described, and concepts of longitudinal electron beam diagnostics with femtosecond accuracy are covered. Experimental results obtained with a transverse deflecting structure (TDS) and spectroscopy of coherent terahertz radiation are presented, and the suppression of coherent optical radiation effects, required for diagnostics utilizing a TDS, is demonstrated. Control of the longitudinal phase space by using multiple radio frequencies for longitudinal electron beam tailoring is presented, and a new technique of reversible electron beam heating with two TDSs is described. For the characterization of femtosecond X-ray pulses, a novel method based on dedicated longitudinal phase space diagnostics for electron beams is introduced, and recent measurements with a streaking technique using external terahertz fields are presented.

  20. Towards imaging of ultrafast molecular dynamics using FELs

    NARCIS (Netherlands)

    Rouzee, A.; Johnsson, P.; Rading, L.; Siu, W.; Huismans, Y.; Duesterer, S.; Redlin, H.; Tavella, F.; Stojanovic, N.; Al-Shemmary, A.; Lepine, F.; Holland, D. M. P.; Schlathölter, Thomas; Hoekstra, R.; Fukuzawa, H.; Ueda, K.; Vrakking, M. J. J.; Hundertmark, A.

    2013-01-01

    The dissociation dynamics induced by a 100 fs, 400 nm laser pulse in a rotationally cold Br-2 sample was characterized by Coulomb explosion imaging (CEI) using a time-delayed extreme ultra-violet (XUV) FEL pulse, obtained from the Free electron LASer in Hamburg (FLASH). The momentum distribution of

  1. Enhancement of Permeation in Transdermal Drug Delivery System by 6μm Wavelength Area Using an MIR-FEL

    Science.gov (United States)

    Uchizono, T.; Ishii, K.; Iwao, Y.; Itou, Y.; Maruo, H.; Hori, M.; Awazu, K.

    2005-03-01

    Ablation of the stratum corneum (SC) by pulsed-laser irradiation is one method of enhancing transdermal drug delivery (TD). For non-invasive laser TD treatment, we have tried to enhance TD without ablation of the SC using an MIR-FEL (6-μm wavelength) (FEL : free electron laser). Lidocaine was used as the drug in this study. The enhancement of TD was measured by HPLC. It was found that the lidocaine TD of the sample irradiated by MIR-FEL was enhanced 10 fold faster than the non-irradiated sample with a flux at 0.5 μg/cm2/h, measured by HPLC. We have demonstrated the effectiveness of TD enhancement by an MIR-FEL (6-μm wavelength) irradiation.

  2. A high-average power tapered FEL amplifier at submillimeter frequencies using sheet electron beams and short-period wigglers

    International Nuclear Information System (INIS)

    Bidwell, S.W.; Radack, D.J.; Antonsen, T.M. Jr.; Booske, J.H.; Carmel, Y.; Destler, W.W.; Granatstein, V.L.; Levush, B.; Latham, P.E.; Zhang, Z.X.

    1990-01-01

    A high-average-power FEL amplifier operating at submillimeter frequencies is under development at the University of Maryland. Program goals are to produce a CW, ∼1 MW, FEL amplifier source at frequencies between 280 GHz and 560 GHz. To this end, a high-gain, high-efficiency, tapered FEL amplifier using a sheet electron beam and a short-period (superconducting) wiggler has been chosen. Development of this amplifier is progressing in three stages: (1) beam propagation through a long length (∼1 m) of short period (λ ω = 1 cm) wiggler, (2) demonstration of a proof-of-principle amplifier experiment at 98 GHz, and (3) designs of a superconducting tapered FEL amplifier meeting the ultimate design goal specifications. 17 refs., 1 fig., 1 tab

  3. A helical optical for circular polarized UV-FEL project at the UVSOR

    Energy Technology Data Exchange (ETDEWEB)

    Hama, Hiroyuki [Institute for Molecular Science, Okazaki (Japan)

    1995-12-31

    Most of existing storage ring free electron lasers (SRFEL) are restricted those performances by degradation of mirrors in optical cavities. In general, the SRFEL gain at the short wavelength region with high energy electrons is quite low, and the high reflectivity mirrors such as dielectric multilayer mirrors are therefore required. The mirror degradation is considered as a result of irradiation of higher harmonic photons that are simultaneously emitted from planar optical klystron (OK) type undulators, which are commonly used in SRFEL. This problem is getting severer as the lasing wavelength becomes shorter. The UVSOR-FEL had been originally scheduled to be shutdown by 1996 because another undulator project for spectroscopic studies with circular polarized photon would take the FEL`s place. According to suggestion of the insertion device group of the SPring-8, we have designed a helical undulator that is able to vary degree and direction of the polarization easily. In addition, the undulator can be converted into a helical OK by replacing magnets at the center part of undulator in order to coexist with further FEL experiments. Using a calculated magnetic field for magnet configurations of the OK mode, the radiation spectrum at wide wavelength range was simulated by a Fourier transform of Lienard-Wiechert potentials. As a matter of course, some higher harmonics are radiated on the off-axis angle. However it was found out that the higher harmonics is almost negligible as far as inside a solid angle of the Gaussian laser mode. Moreover the gain at the UV region of 250 nm is expected to be much higher than our present FEL because of high brilliant fundamental radiation. The calculated spatial distribution of higher harmonics and the estimated instantaneous gain is presented. Advantages of the helical OK for SRFEL will be discussed in view of our experience, and a possibility of application two-color experiment with SR will be also mentioned.

  4. R and D for a Soft X-Ray Free Electron Laser Facility

    International Nuclear Information System (INIS)

    Corlett, John; Attwood, David; Byrd, John; Denes, Peter; Falcone, Roger; Heimann, Phil; Leemans, Wim; Padmore, Howard; Prestemon, Soren; Sannibale, Fernando; Schlueter, Ross; Schroeder, Carl; Staples, John; Venturini, Marco; Warwick, Tony; Wells, Russell; Wilcox, Russell; Zholent, Alexander; Adolphsen, Chris; Arthur, John; Bergmann, Uwe; Cai, Yunhai; Colby, Eric; Dowell, David; Emma, Paul; Fox, John; Frisch, Josef; Galayda, John; Hettel, Robert; Huang, Zhirong; Phinney, Nan; Rabedeau, Tom; Raubenheimer, Tor; Reis, David; Schmerge, John; Stoehr, Joachim; Stupakov, Gennady; White, Bill; Xiang, Dao

    2009-01-01

    Several recent reports have identified the scientific requirements for a future soft x-ray light source, and a high-repetition-rate free-electron laser (FEL) facility that is responsive to these requirements is now on the horizon. R and D in some critical areas is needed, however, to demonstrate technical performance, thus reducing technical risks and construction costs. Such a facility most likely will be based on a CW superconducting linear accelerator with beam supplied by a high-brightness, high-repetition-rate photocathode electron gun operating in CW mode, and on an array of FELs to which the accelerated beam is distributed, each operating at high repetition rate and with even pulse spacing. Dependent on experimental requirements, the individual FELs can be configured for either self-amplified spontaneous emission (SASE), seeded, or oscillator mode of operation, including the use of high-gain harmonic generation (HGHG), echo-enhanced harmonic generation (EEHG), harmonic cascade, or other configurations. In this White Paper we identify the overall accelerator R and D needs, and highlight the most important pre-construction R and D tasks required to value-engineer the design configuration and deliverables for such a facility. In Section 1.4 we identify the comprehensive R and D ultimately needed. We identify below the highest-priority requirements for understanding machine performance and reduce risk and costs at this pre-conceptual design stage. Details of implementing the required tasks will be the subject of future evaluation. Our highest-priority R and D program is the injector, which must be capable of delivering a beam with bunches up to a nanocoulomb at MHz repetition rate and with normalized emittance (le) 1 mm · mrad. This will require integrated accelerating structure, cathode, and laser systems development. Cathode materials will impact the choice of laser technology in wavelength and energy per pulse, as well as vacuum requirements in the

  5. Workshop on scientific applications of short wavelength coherent light sources

    International Nuclear Information System (INIS)

    Spicer, W.; Arthur, J.; Winick, H.

    1993-02-01

    This report contains paper on the following topics: A 2 to 4nm High Power FEL On the SLAC Linac; Atomic Physics with an X-ray Laser; High Resolution, Three Dimensional Soft X-ray Imaging; The Role of X-ray Induced Damage in Biological Micro-imaging; Prospects for X-ray Microscopy in Biology; Femtosecond Optical Pulses?; Research in Chemical Physics Surface Science, and Materials Science, with a Linear Accelerator Coherent Light Source; Application of 10 GeV Electron Driven X-ray Laser in Gamma-ray Laser Research; Non-Linear Optics, Fluorescence, Spectromicroscopy, Stimulated Desorption: We Need LCLS' Brightness and Time Scale; Application of High Intensity X-rays to Materials Synthesis and Processing; LCLS Optics: Selected Technological Issues and Scientific Opportunities; Possible Applications of an FEL for Materials Studies in the 60 eV to 200 eV Spectral Region

  6. Design and TCAD simulation of planar p-on-n active-edge pixel sensors for the next generation of FELs

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Betta, G.-F., E-mail: gianfranco.dallabetta@unitn.it [Università di Trento, Dipartimento di Ingegneria Industriale, I-38123 Trento (Italy); TIFPA INFN, I-38123 Trento (Italy); Batignani, G. [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Benkechkache, M.A. [TIFPA INFN, I-38123 Trento (Italy); University Constantine 1, Department of Electronics in the Science and Technology Faculty, I-25017 Constantine (Algeria); Bettarini, S.; Casarosa, G. [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Comotti, D. [Università di Pavia, Dipartimento di Ingegneria Industriale e dell' Informazione, I-27100 Pavia (Italy); INFN Sezione di Pavia, I-27100 Pavia (Italy); Fabris, L. [INFN Sezione di Pavia, I-27100 Pavia (Italy); Università di Bergamo, Dipartimento di Ingegneria e Scienze Applicate, I-24044 Dalmine (Italy); Forti, F. [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Grassi, M. [Università di Pavia, Dipartimento di Ingegneria Industriale e dell' Informazione, I-27100 Pavia (Italy); INFN Sezione di Pavia, I-27100 Pavia (Italy); Latreche, S. [University Constantine 1, Department of Electronics in the Science and Technology Faculty, I-25017 Constantine (Algeria); Lodola, L.; Malcovati, P. [Università di Pavia, Dipartimento di Ingegneria Industriale e dell' Informazione, I-27100 Pavia (Italy); INFN Sezione di Pavia, I-27100 Pavia (Italy); Manghisoni, M. [INFN Sezione di Pavia, I-27100 Pavia (Italy); Università di Bergamo, Dipartimento di Ingegneria e Scienze Applicate, I-24044 Dalmine (Italy); and others

    2016-07-11

    We report on the design and TCAD simulations of planar p-on-n sensors with active edge aimed at a four-side buttable X-ray detector module for future FEL applications. Edge terminations with different number of guard rings were designed to find the best trade-off between breakdown voltage and border gap size. The methodology of the sensor design, the optimization of the most relevant parameters to maximize the breakdown voltage and the final layout are described.

  7. Design and TCAD simulation of planar p-on-n active-edge pixel sensors for the next generation of FELs

    International Nuclear Information System (INIS)

    Dalla Betta, G.-F.; Batignani, G.; Benkechkache, M.A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Fabris, L.; Forti, F.; Grassi, M.; Latreche, S.; Lodola, L.; Malcovati, P.; Manghisoni, M.

    2016-01-01

    We report on the design and TCAD simulations of planar p-on-n sensors with active edge aimed at a four-side buttable X-ray detector module for future FEL applications. Edge terminations with different number of guard rings were designed to find the best trade-off between breakdown voltage and border gap size. The methodology of the sensor design, the optimization of the most relevant parameters to maximize the breakdown voltage and the final layout are described.

  8. X-ray Digital Linear Tomosynthesis Imaging for Artificial Pulmonary Nodule Detection

    Directory of Open Access Journals (Sweden)

    Tsutomu Gomi

    2011-01-01

    Full Text Available The purpose of this paper is to identify indications for volumetric X-ray digital linear tomosynthesis (DLT with single- and dual-energy subtraction techniques for artificial pulmonary nodule detection and compare X-ray DLT, X-ray digital radiography, and computed tomography.

  9. Primary experimental studies on mid-infrared FEL irradiation on dental substances at BFEL

    CERN Document Server

    Biao, Z J; Gao Xue Ju; He Wei; Huang Yu Ying; Li Yong Gui; LiuNianQing; Wang Min Kai; Wu Gan; Yan Xue Pin; Zhang Guo Qing

    2001-01-01

    A free electron laser (FEL) with its characteristics of wide wavelength tunability, ultrashort pulse time structure, and high peak power density is predominantly superior to all other conventional lasers in applications. Several experimental studies on mid-infrared FEL irradiation on dental enamel and dentine were performed at the Beijing FEL. Experimental aims were to investigate changes in the hardness, ratios of P to Ca and Cs before and after irradiation on samples with a characteristic absorption wavelength of 9.66 mu m, in the colors of these sample surfaces after irradiation with different wavelengths around the peak wavelength. The time dependence of temperature of the dentine sample was measured with its ps pulse effects compared to that with a continuous CO sub 2 laser. FTIR absorption spectra in the range of 2.5-15.4 mu m for samples of these hard dental substances and pure hydroxyapatite were first examined to decide their chemical components and absorption maximums. Primary experimental results w...

  10. Online diagnostics of time-resolved electron beam properties with femtosecond resolution for X-ray FELs

    International Nuclear Information System (INIS)

    Yan, Minjie

    2016-07-01

    The European X-ray Free-electron Laser (XFEL) puts high demands on the quality of the highbrightness driving electron beam with bunch lengths in the femtosecond regime. Longitudinal diagnostics is requested to optimize and control the longitudinal profile, the longitudinal phase space, the slice energy spread and the slice emittance of the electron bunch, all of which are crucial to the generation of Self-Amplified Spontaneous Emission (SASE). The high bunch repetition rate of the super-conducting accelerator renders diagnostic method that is (quasi) non-destructive to the generation of SASE possible. In this thesis, three online diagnostic sections utilizing transverse deflecting structures (TDS) have been designed for the European XFEL, providing access to all parameters of interest with a longitudinal resolution down to below 10 fs.The requirement on the non-destructive capability has been realized by the implementation of fast kickermagnets and off-axis screens, which has been validated experimentally using an installation of the same concept at the Free-electron Laser in Hamburg. A special slicing procedure has been developed to significantly enhance the accuracy of slice energy spread measurements. Suppression of coherence effects, which impede the beam imaging in the TDS diagnostics, has been first demonstrated experimentally using the spatial separation method with scintillator screens. Comparison of the results of emittance measurements using the quadrupole scan method with those using the multi-screen method has proved the reliability of the latter method, which has been modelled intensively for the European XFEL.

  11. Comparison of a ZGP OPO with a Mark-III FEL as a Potential Replacement for Mid-Infrared Soft Tissue Ablation Applications

    CERN Document Server

    Mackanos, M A

    2005-01-01

    A Mark-III FEL, tuned to 6.45 μm has demonstrated minimal collateral damage and high ablation yield in soft tissue. Further clinical advances are limited due to the overhead associated with an FEL; alternative mid-IR sources are needed. The FEL parameters needed to carry out efficient ablation with minimal damage must be determined. Studies by this author have shown that the unique pulse structure of the FEL does not play a role in this process [1]. We focused on comparing the macropulse duration of the FEL with a ZGP-OPO. No difference in pulse structure between the two laser sources with respect to the ablation threshold of water and mouse dermis was seen. There is a difference between the sources with respect to the crater depths in gelatin and mouse dermis. At 6.1 μm, the OPO craters are 8 times the depth of the FEL ones. Brightfield imaging shows the classic ablation mechanism. The timescale of the crater formation, ejection, and collapse occurs on a faster scale for the OPO. Histology ...

  12. X-ray Production by Cascading Stages of a High-Gain Harmonic Generation Free-Electron Laser II: Special Topics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J

    2004-09-01

    In this paper, we study the tolerance of a new approach to produce coherent x-ray by cascading several stages of a High-Gain Harmonic Generation (HGHG) Free-Electron Laser (FEL). Being a harmonic generation process, a small noise in the initial fundamental signal will lead to a significant noise-to-signal (NTS) ratio in the final harmonic, so the noise issue is studied in this paper. We study two sources of noise: the incoherent undulator radiation, which is a noise with respect to the seed laser; and the noise of the seed laser itself. In reality, the electron beam longitudinal current profile is not uniform. Since the electron beam is the amplification medium for the FEL, this non- uniformity will induce phase error in the FEL. Therefore, this effect is studied. Phase error due to the wakefield and electron beam self-field is also studied. Synchrotronization of the electron beam and the seed laser is an important issue determining the success of the HGHG. We study the timing jitter induced frequency jitter in this paper. We also show that an HGHG FEL poses a less stringent requirement on the emittance than a SASE FEL does, due to a Natural Emittance Effect Reduction (NEER) mechanism. This NEER mechanism suggests a new operation mode, i.e., the HGHG FEL could adopt a high current, though unavoidable, a high emittance electron beam. Study in this paper shows that, production of hard x-rays with good longitudinal coherence by cascading stages of a HGHG FEL is promising. However, technical improvement is demanded.

  13. Planar undulator motion excited by a fixed traveling wave. Quasiperiodic averaging normal forms and the FEL pendulum

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, James A.; Heinemann, Klaus [New Mexico Univ., Albuquerque, NM (United States). Dept. of Mathematics and Statistics; Vogt, Mathias [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Gooden, Matthew [North Carolina State Univ., Raleigh, NC (United States). Dept. of Physics

    2013-03-15

    We present a mathematical analysis of planar motion of energetic electrons moving through a planar dipole undulator, excited by a fixed planar polarized plane wave Maxwell field in the X-Ray FEL regime. Our starting point is the 6D Lorentz system, which allows planar motions, and we examine this dynamical system as the wave length {lambda} of the traveling wave varies. By scalings and transformations the 6D system is reduced, without approximation, to a 2D system in a form for a rigorous asymptotic analysis using the Method of Averaging (MoA), a long time perturbation theory. The two dependent variables are a scaled energy deviation and a generalization of the so- called ponderomotive phase. As {lambda} varies the system passes through resonant and nonresonant (NR) zones and we develop NR and near-to-resonant (NtoR) MoA normal form approximations. The NtoR normal forms contain a parameter which measures the distance from a resonance. For a special initial condition, for the planar motion and on resonance, the NtoR normal form reduces to the well known FEL pendulum system. We then state and prove NR and NtoR first-order averaging theorems which give explicit error bounds for the normal form approximations. We prove the theorems in great detail, giving the interested reader a tutorial on mathematically rigorous perturbation theory in a context where the proofs are easily understood. The proofs are novel in that they do not use a near identity transformation and they use a system of differential inequalities. The NR case is an example of quasiperiodic averaging where the small divisor problem enters in the simplest possible way. To our knowledge the planar prob- lem has not been analyzed with the generality we aspire to here nor has the standard FEL pendulum system been derived with associated error bounds as we do here. We briefly discuss the low gain theory in light of our NtoR normal form. Our mathematical treatment of the noncollective FEL beam dynamics problem in

  14. Planar undulator motion excited by a fixed traveling wave. Quasiperiodic averaging normal forms and the FEL pendulum

    International Nuclear Information System (INIS)

    Ellison, James A.; Heinemann, Klaus; Gooden, Matthew

    2013-03-01

    We present a mathematical analysis of planar motion of energetic electrons moving through a planar dipole undulator, excited by a fixed planar polarized plane wave Maxwell field in the X-Ray FEL regime. Our starting point is the 6D Lorentz system, which allows planar motions, and we examine this dynamical system as the wave length λ of the traveling wave varies. By scalings and transformations the 6D system is reduced, without approximation, to a 2D system in a form for a rigorous asymptotic analysis using the Method of Averaging (MoA), a long time perturbation theory. The two dependent variables are a scaled energy deviation and a generalization of the so- called ponderomotive phase. As λ varies the system passes through resonant and nonresonant (NR) zones and we develop NR and near-to-resonant (NtoR) MoA normal form approximations. The NtoR normal forms contain a parameter which measures the distance from a resonance. For a special initial condition, for the planar motion and on resonance, the NtoR normal form reduces to the well known FEL pendulum system. We then state and prove NR and NtoR first-order averaging theorems which give explicit error bounds for the normal form approximations. We prove the theorems in great detail, giving the interested reader a tutorial on mathematically rigorous perturbation theory in a context where the proofs are easily understood. The proofs are novel in that they do not use a near identity transformation and they use a system of differential inequalities. The NR case is an example of quasiperiodic averaging where the small divisor problem enters in the simplest possible way. To our knowledge the planar prob- lem has not been analyzed with the generality we aspire to here nor has the standard FEL pendulum system been derived with associated error bounds as we do here. We briefly discuss the low gain theory in light of our NtoR normal form. Our mathematical treatment of the noncollective FEL beam dynamics problem in the

  15. Transient absorption spectroscopy in biology using the Super-ACO storage ring FEL and the synchrotron radiation combination

    CERN Document Server

    Renault, E; De Ninno, G; Garzella, D; Hirsch, M; Nahon, L; Nutarelli, D

    2001-01-01

    The Super-ACO storage ring FEL, covering the UV range down to 300 nm with a high average power (300 mW at 350 nm) together with a high stability and long lifetime, is a unique tool for the performance of users applications. We present here the first pump-probe two color experiments on biological species using a storage ring FEL coupled to the synchrotron radiation. The intense UV pulse of the Super-ACO FEL is used to prepare a high initial concentration of chromophores in their first singlet electronic excited state. The nearby bending magnet synchrotron radiation provides, on the other hand a pulsed, white light continuum (UV-IR), naturally synchronized with the FEL pulses and used to probe the photochemical subsequent events and the associated transient species. We have demonstrated the feasibility with a dye molecule (POPOP) observing a two-color effect, signature of excited state absorption and a temporal signature with Acridine. Applications on various chromophores of biological interest are carried out,...

  16. Formation of disulfide bonds and homodimers of the major cat allergen Fel d 1 equivalent to the natural allergen by expression in Escherichia coli.

    Science.gov (United States)

    Grönlund, Hans; Bergman, Tomas; Sandström, Kristofer; Alvelius, Gunvor; Reininger, Renate; Verdino, Petra; Hauswirth, Alexander; Liderot, Karin; Valent, Peter; Spitzauer, Susanne; Keller, Walter; Valenta, Rudolf; van Hage-Hamsten, Marianne

    2003-10-10

    Dander from the domestic cat (Felis domesticus) is one of the most common causes of IgE-mediated allergy. Attempts to produce tetrameric folded major allergen Fel d 1 by recombinant methods with structural features similar to the natural allergen have been only partially successful. In this study, a recombinant folded Fel d 1 with molecular and biological properties similar to the natural counterpart was produced. A synthetic gene coding for direct fusion of the Fel d 1 chain 2 N-terminally to chain 1 was constructed by overlapping oligonucleotides in PCR. Escherichia coli expression resulted in a non-covalently associated homodimer with an apparent molecular mass of 30 kDa defined by size exclusion chromatography. Furthermore, each 19,177-Da subunit displayed a disulfide pattern identical to that found in the natural Fel d 1, i.e. Cys3(1) Cys73(2), Cys44(1)-Cys48(2), Cys70(1)-Cys7(2), as determined by electrospray mass spectrometry after tryptic digestion. Circular dichroism analysis showed identical folds of natural and recombinant Fel d 1. Furthermore, recombinant Fel d l reacted specifically with serum IgE, inducing expression of CD203c on basophils and lymphoproliferative responses in cat-allergic patients. The results show that the overall fold and immunological properties of the recombinant Fel d 1 are very similar to those of natural Fel d 1. Moreover, the recombinant Fel d 1 construct provides a tool for defining the three-dimensional structure of Fel d 1 and represents a reagent for diagnosis and allergen-specific immunotherapy of cat allergy.

  17. Physically transparent formulation of a free-electron laser in the linear gain regime

    International Nuclear Information System (INIS)

    Barletta, W.A.; Sessler, A.M.; Yu, L.H.

    1992-08-01

    The recent 2-dimensional analytic theories of a free-electron laser (FEL) in the linear regime are reformulated in terms of three dimensionless ratios that describe the degree to which the characteristics of the electron beam deviate from the cold beam limit of a beam with no emittance or energy spread. In terms of these ratios, algebraic model equations of a fit that combines features of both of the 2-dimensional analyses are given as a convenient computational tool. Graphs of the FEL gain eigenvalue computed with the combined 2-D formulation illustrate that the gain and the output power at saturation are reduced from the 1-D value, when any of the ratios is larger than unity

  18. Dispersion relations for 1D high-gain FELs

    International Nuclear Information System (INIS)

    Webb, S.D.; Litvinenko, V.N.

    2010-01-01

    We present analytical results for the one-dimensional dispersion relation for high-gain FELs. Using kappa-n distributions, we obtain analytical relations between the dispersion relations for various order kappa distributions. Since an exact solution exists for the kappa-1 (Lorentzian) distribution, this provides some insight into the number of modes on the way to the Gaussian distribution.

  19. Reducing the asymmetry in coupled cavity of linear accelerator

    International Nuclear Information System (INIS)

    Wei Xianlin; Wu Congfeng

    2013-01-01

    Background: With the development of high energy physics, high performance of electron linear accelerator is required for large collider, FEL and high brightness synchrotron radiation light source. Structure asymmetry of single coupler destroys the symmetry of field distribution in coupled cavity, which reduces the quality of beam. Purpose: Optimize the asymmetry of field distribution in coupled cavity and improve the quality of beam. Methods: The simulation designs are made for single offset coupler, double symmetry coupler and the new coupler loaded by dielectric rods at X band by using CST microwave studio code. Results: The results show that the distribution of field in coupled cavity is better and all particles almost locate at the center of beam hole after beam passing through the coupler loaded by dielectric rods. The energy spread has also been significantly improved. Conclusions: The coupler loaded by dielectric rods can optimize the asymmetry of field distribution in coupled cavity and improve the quality of beam. (authors)

  20. Development of an alternative testing strategy for the fish early life-stage (FELS) test using the AOP framework

    Science.gov (United States)

    Currently, the fish early life-stage (FELS) test (OECD 210) is the primary guideline used to estimate chronic toxicity of regulated chemicals. Although already more cost-efficient than adult fish tests, the FELS test has some important drawbacks. Both industry and regulatory inst...

  1. Gyrokinetic analysis of linear microinstabilities for the stellarator Wendelstein 7-X

    Science.gov (United States)

    Xanthopoulos, P.; Jenko, F.

    2007-04-01

    A linear collisionless gyrokinetic investigation of ion temperature gradient (ITG) modes—considering both adiabatic and full electron dynamics—and trapped electron modes (TEMs) is presented for the stellarator Wendelstein 7-X (W7-X) [G. Grieger et al., Plasma Physics and Controlled Nuclear Fusion Research 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525]. The study of ITG modes reveals that in W7-X, microinstabilities of distinct character coexist. The effect of changes in the density gradient and temperature ratio is discussed. Substantial differences with respect to the axisymmetric geometry appear in W7-X, concerning the relative separation of regions with a large fraction of helically trapped particles and those of pronounced bad curvature. For both ITG modes and TEMs, the dependence of their linear growth rates on the background gradients is studied along with their parallel mode structure.

  2. The FERMI-Elettra FEL Photon Transport System

    International Nuclear Information System (INIS)

    Zangrando, M.; Cudin, I.; Fava, C.; Godnig, R.; Kiskinova, M.; Masciovecchio, C.; Parmigiani, F.; Rumiz, L.; Svetina, C.; Turchet, A.; Cocco, D.

    2010-01-01

    The FERMI-Elettra free electron laser (FEL) user facility is under construction at Sincrotrone Trieste (Italy), and it will be operative in late 2010. It is based on a seeded scheme providing an almost perfect transform-limited and fully spatially coherent photon beam. FERMI-Elettra will cover the wavelength range 100 to 3 nm with the fundamental harmonics, and down to 1 nm with higher harmonics. We present the layout of the photon beam transport system that includes: the first common part providing on-line and shot-to-shot beam diagnostics, called PADReS (Photon Analysis Delivery and Reduction System), and 3 independent beamlines feeding the experimental stations. Particular emphasis is given to the solutions adopted to preserve the wavefront, and to avoid damage on the different optical elements. Peculiar FEL devices, not common in the Synchrotron Radiation facilities, are described in more detail, e.g. the online photon energy spectrometer measuring shot-by-shot the spectrum of the emitted radiation, the beam splitting and delay line system dedicated to cross/auto correlation and pump-probe experiments, and the wavefront preserving active optics adapting the shape and size of the focused spot to meet the needs of the different experiments.

  3. Feedback Control Of Dynamical Instabilities In Classical Lasers And Fels

    CERN Document Server

    Bielawski, S; Szwaj, C

    2005-01-01

    Dynamical instabilities lead to unwanted full-scale power oscillations in many classical lasers and FEL oscillators. For a long time, applications requiring stable operation were typically performed by working outside the problematic parameter regions. A breakthrough occurred in the nineties [1], when emphasis was made on the practical importance of unstable states (stationary or periodic) that coexist with unwanted oscillatory states. Indeed, although not observable in usual experiments, unstable states can be stabilized, using a feedback control involving arbitrarily small perturbations of a parameter. This observation stimulated a set of works leading to successful suppression of dynamical instabilities (initially chaos) in lasers, sometimes with surprisingly simple feedback devices [2]. We will review a set of key results, including in particular the recent works on the stabilization of mode-locked lasers, and of the super-ACO, ELETTRA and UVSOR FELs [3].

  4. FTIR Spectroscopy on Basic Materials in THz Region for Compact FEL-Based Imaging

    CERN Document Server

    Cha, H J; Lee, B C; Park, S H

    2005-01-01

    We are making experiments on THz(terahertz) imaging using a compact high power FEL (free-electron laser) which is operating as a users facility at KAERI. The wavelength range of output pulses is 100~1200 μm, which corresponds to 0.3~3 THz in the frequency region. We should select the optimum wavelength for the constituents of specimens to realize the imaging based on the THz FEL. A FTIR (Fourier-transform infrared) spectrometer was modified to measure the optical constants of the specimens in THz region. A polyester film of which thickness is 3.7 μm was used as a beam splitter of the spectrometer. In the case of normal incidence, the transmittance of the film was measured to be more than 90%, and the estimated loss by absorption was approximately 2% at the FEL frequency of 3 THz. Several tens of nanometer-thick-silver was coated on the polyester film to balance both transmission and reflection of THz waves in the beam splitter. We investigated FTIR spectroscopy on air, vapor and liquid water...

  5. Relativistic klystron research for linear colliders

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Lee, T.G.; Loew, G.A.; Miller, R.H.; Morton, P.L.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Schwarz, H.D.; Vlieks, A.E.; Wilson, P.B.

    1989-01-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. The authors have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. In this paper the authors report on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future

  6. Relativistic klystron research for linear colliders

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Deruyter, H.

    1988-09-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. We have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 9 figs., 1 tab

  7. A non-destructive electron beam diagnostic for a SASE FEL using coherent off-axis undulator radiation

    International Nuclear Information System (INIS)

    Neuman, C.P.; Ponds, M.L.; Barnett, G.A.; Madey, J.M.J.; O'Shea, P.G.

    1999-01-01

    We show that by observing coherent off-axis undulator radiation (COUR) from a short diagnostic wiggler, it may be possible to determine the length and structure of a short electron bunch. Typically the on-axis undulator radiation is incoherent, but at angles of a few degrees, the wavelength of the emitted radiation may be comparable to the length of a short electron bunch, and thus coherence effects emerge. Due to such coherence effects, the intensity of the emitted radiation may change by up to a factor of 10 9 as the angle of observation is increased. The radiation becomes coherent in a way which depends on the length and structure of the electron bunch. Observing COUR disturbs the electron bunch negligibly. Thus, COUR can be used as a non-destructive diagnostic which would allow for optimization of FEL performance while an FEL is operating. Such a diagnostic could be used for proposed SASE FELs, which use short electron bunches. We present two methods to describe the theory for COUR, and we use these methods to calculate the expected outcome of a COUR experiment. We propose an experiment to demonstrate COUR effects and their applications to SASE FELs

  8. Transient absorption spectroscopy in biology using the Super-ACO storage ring FEL and the synchrotron radiation combination

    International Nuclear Information System (INIS)

    Renault, Eric; Nahon, Laurent; Garzella, David; Nutarelli, Daniele; De Ninno, Giovanni; Hirsch, Matthias; Couprie, Marie Emmanuelle

    2001-01-01

    The Super-ACO storage ring FEL, covering the UV range down to 300 nm with a high average power (300 mW at 350 nm) together with a high stability and long lifetime, is a unique tool for the performance of users applications. We present here the first pump-probe two color experiments on biological species using a storage ring FEL coupled to the synchrotron radiation. The intense UV pulse of the Super-ACO FEL is used to prepare a high initial concentration of chromophores in their first singlet electronic excited state. The nearby bending magnet synchrotron radiation provides, on the other hand a pulsed, white light continuum (UV-IR), naturally synchronized with the FEL pulses and used to probe the photochemical subsequent events and the associated transient species. We have demonstrated the feasibility with a dye molecule (POPOP) observing a two-color effect, signature of excited state absorption and a temporal signature with Acridine. Applications on various chromophores of biological interest are carried out, such as the time-resolved absorption study of the first excited state of Acridine

  9. Relativistic klystron research for linear colliders

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannesfeldt, W.B.; Higo, T.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Lee, T.G.; Loew, G.A.; Miller, R.H.; Morton, P.L.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Schwarz, H.D.; Takeuchi, Y.; Vlieks, A.E.; Wang, J.W.; Wilson, P.B.; Hopkins, D.B.; Sessler, A.M.; Ryne, R.D.; Westenskow, G.A.; Yu, S.S.

    1989-01-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. The authors have attained 200MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. They report here on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 9 figs., 1 tab

  10. A simple method for controlling the line width of SASE X-ray FELs

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2010-04-01

    This paper describes a novel single-bunch self-seeding scheme for generating highly monochromatic X-rays from a baseline XFEL undulator. A self-seeded XFEL consists of two undulators with an X-ray monochromator located between them. Previous self-seeding schemes made use of a four-crystal fixed-exit monochromator in Bragg geometry. In such monochromator the X-ray pulse acquires a cm-long path delay, which must be compensated. For a single-bunch self-seeding scheme this requires a long electron beam bypass, implying modifications of the baseline undulator configuration. To avoid this problem, a double bunch self-seeding scheme based on a special photoinjector setup was recently proposed. At variance, here we propose a new time-domain method of monochromatization exploiting a single crystal in the transmission direction, thus avoiding the problem of extra-path delay for the X-ray pulse. The method can be realized using a temporal windowing technique, requiring a magnetic delay for the electron bunch only. When the incident X-ray beam satisfies the Bragg diffraction condition, multiple scattering takes place and the transmittance spectrum in the crystal exhibits an absorption resonance with a narrow linewidth. Then, the temporal waveform of the transmitted radiation pulse is characterized by a long monochromatic wake. The radiation power within this wake is much larger than the shot noise power. At the entrance of the second undulator, the monochromatic wake of the radiation pulse is combined with the delayed electron bunch, and amplified up to saturation level. The proposed setup is extremely simple and composed of as few as two simple elements. These are the crystal and the short magnetic chicane, which accomplishes three tasks by itself. It creates an offset for crystal installation, it removes the electron micro-bunching produced in the first undulator, and it acts as a delay line for temporal windowing. Using a single crystal installed within a short magnetic

  11. Electron Bunch Timing with Femtosecond Precision in a Superconducting Free-Electron Laser

    Science.gov (United States)

    Löhl, F.; Arsov, V.; Felber, M.; Hacker, K.; Jalmuzna, W.; Lorbeer, B.; Ludwig, F.; Matthiesen, K.-H.; Schlarb, H.; Schmidt, B.; Schmüser, P.; Schulz, S.; Szewinski, J.; Winter, A.; Zemella, J.

    2010-04-01

    High-gain free-electron lasers (FELs) are capable of generating femtosecond x-ray pulses with peak brilliances many orders of magnitude higher than at other existing x-ray sources. In order to fully exploit the opportunities offered by these femtosecond light pulses in time-resolved experiments, an unprecedented synchronization accuracy is required. In this Letter, we distributed the pulse train of a mode-locked fiber laser with femtosecond stability to different locations in the linear accelerator of the soft x-ray FEL FLASH. A novel electro-optic detection scheme was applied to measure the electron bunch arrival time with an as yet unrivaled precision of 6 fs (rms). With two beam-based feedback systems we succeeded in stabilizing both the arrival time and the electron bunch compression process within two magnetic chicanes, yielding a significant reduction of the FEL pulse energy jitter.

  12. Electron Bunch Timing with Femtosecond Precision in a Superconducting Free-Electron Laser

    International Nuclear Information System (INIS)

    Loehl, F.; Arsov, V.; Felber, M.; Hacker, K.; Lorbeer, B.; Ludwig, F.; Matthiesen, K.-H.; Schlarb, H.; Schmidt, B.; Winter, A.; Jalmuzna, W.; Schmueser, P.; Schulz, S.; Zemella, J.; Szewinski, J.

    2010-01-01

    High-gain free-electron lasers (FELs) are capable of generating femtosecond x-ray pulses with peak brilliances many orders of magnitude higher than at other existing x-ray sources. In order to fully exploit the opportunities offered by these femtosecond light pulses in time-resolved experiments, an unprecedented synchronization accuracy is required. In this Letter, we distributed the pulse train of a mode-locked fiber laser with femtosecond stability to different locations in the linear accelerator of the soft x-ray FEL FLASH. A novel electro-optic detection scheme was applied to measure the electron bunch arrival time with an as yet unrivaled precision of 6 fs (rms). With two beam-based feedback systems we succeeded in stabilizing both the arrival time and the electron bunch compression process within two magnetic chicanes, yielding a significant reduction of the FEL pulse energy jitter.

  13. Design of a high average-power FEL driven by an existing 20 MV electrostatic-accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kimel, I.; Elias, L.R. [Univ. of Central Florida, Orlando, FL (United States)

    1995-12-31

    There are some important applications where high average-power radiation is required. Two examples are industrial machining and space power-beaming. Unfortunately, up to date no FEL has been able to show more than 10 Watts of average power. To remedy this situation we started a program geared towards the development of high average-power FELs. As a first step we are building in our CREOL laboratory, a compact FEL which will generate close to 1 kW in CW operation. As the next step we are also engaged in the design of a much higher average-power system based on a 20 MV electrostatic accelerator. This FEL will be capable of operating CW with a power output of 60 kW. The idea is to perform a high power demonstration using the existing 20 MV electrostatic accelerator at the Tandar facility in Buenos Aires. This machine has been dedicated to accelerate heavy ions for experiments and applications in nuclear and atomic physics. The necessary adaptations required to utilize the machine to accelerate electrons will be described. An important aspect of the design of the 20 MV system, is the electron beam optics through almost 30 meters of accelerating and decelerating tubes as well as the undulator. Of equal importance is a careful design of the long resonator with mirrors able to withstand high power loading with proper heat dissipation features.

  14. FAST: a three-dimensional time-dependent FEL simulation code

    International Nuclear Information System (INIS)

    Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    1999-01-01

    In this report we briefly describe the three-dimensional, time-dependent FEL simulation code FAST. The equations of motion of the particles and Maxwell's equations are solved simultaneously taking into account the slippage effect. Radiation fields are calculated using an integral solution of Maxwell's equations. A special technique has been developed for fast calculations of the radiation field, drastically reducing the required CPU time. As a result, the developed code allows one to use a personal computer for time-dependent simulations. The code allows one to simulate the radiation from the electron bunch of any transverse and longitudinal bunch shape; to simulate simultaneously an external seed with superimposed noise in the electron beam; to take into account energy spread in the electron beam and the space charge fields; and to simulate a high-gain, high-efficiency FEL amplifier with a tapered undulator. It is important to note that there are no significant memory limitations in the developed code and an electron bunch of any length can be simulated

  15. ETHERNET BASED EMBEDDED SYSTEM FOR FEL DIAGNOSTICS AND CONTROLS

    International Nuclear Information System (INIS)

    Jianxun Yan; Daniel Sexton; Steven Moore; Albert Grippo; Kevin Jordan

    2006-01-01

    An Ethernet based embedded system has been developed to upgrade the Beam Viewer and Beam Position Monitor (BPM) systems within the free-electron laser (FEL) project at Jefferson Lab. The embedded microcontroller was mounted on the front-end I/O cards with software packages such as Experimental Physics and Industrial Control System (EPICS) and Real Time Executive for Multiprocessor System (RTEMS) running as an Input/Output Controller (IOC). By cross compiling with the EPICS, the RTEMS kernel, IOC device supports, and databases all of these can be downloaded into the microcontroller. The first version of the BPM electronics based on the embedded controller was built and is currently running in our FEL system. The new version of BPM that will use a Single Board IOC (SBIOC), which integrates with an Field Programming Gate Array (FPGA) and a ColdFire embedded microcontroller, is presently under development. The new system has the features of a low cost IOC, an open source real-time operating system, plug and play-like ease of installation and flexibility, and provides a much more localized solution

  16. A semiempirical linear model of indirect, flat-panel x-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shih-Ying; Yang Kai; Abbey, Craig K.; Boone, John M. [Department of Biomedical Engineering, University of California, Davis, California, One Shields Avenue, Davis, California 95616 (United States) and Department of Radiology, University of California, Davis, Medical Center, 4860 Y Street, Ambulatory Care Center Suite 0505, Sacramento, California 95817 (United States); Department of Radiology, University of California, Davis, Medical Center, 4860 Y Street, Ambulatory Care Center Suite 0505, Sacramento, California 95817 (United States); Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 92106 (United States); Department of Biomedical Engineering, University of California, Davis, California, One Shields Avenue, Davis, California 95616 (United States) and Department of Radiology, University of California, Davis, Medical Center, 4860 Y Street, Ambulatory Care Center Suite 3100, Sacramento, California 95817 (United States)

    2012-04-15

    Purpose: It is important to understand signal and noise transfer in the indirect, flat-panel x-ray detector when developing and optimizing imaging systems. For optimization where simulating images is necessary, this study introduces a semiempirical model to simulate projection images with user-defined x-ray fluence interaction. Methods: The signal and noise transfer in the indirect, flat-panel x-ray detectors is characterized by statistics consistent with energy-integration of x-ray photons. For an incident x-ray spectrum, x-ray photons are attenuated and absorbed in the x-ray scintillator to produce light photons, which are coupled to photodiodes for signal readout. The signal mean and variance are linearly related to the energy-integrated x-ray spectrum by empirically determined factors. With the known first- and second-order statistics, images can be simulated by incorporating multipixel signal statistics and the modulation transfer function of the imaging system. To estimate the semiempirical input to this model, 500 projection images (using an indirect, flat-panel x-ray detector in the breast CT system) were acquired with 50-100 kilovolt (kV) x-ray spectra filtered with 0.1-mm tin (Sn), 0.2-mm copper (Cu), 1.5-mm aluminum (Al), or 0.05-mm silver (Ag). The signal mean and variance of each detector element and the noise power spectra (NPS) were calculated and incorporated into this model for accuracy. Additionally, the modulation transfer function of the detector system was physically measured and incorporated in the image simulation steps. For validation purposes, simulated and measured projection images of air scans were compared using 40 kV/0.1-mm Sn, 65 kV/0.2-mm Cu, 85 kV/1.5-mm Al, and 95 kV/0.05-mm Ag. Results: The linear relationship between the measured signal statistics and the energy-integrated x-ray spectrum was confirmed and incorporated into the model. The signal mean and variance factors were linearly related to kV for each filter material (r

  17. A semiempirical linear model of indirect, flat-panel x-ray detectors

    International Nuclear Information System (INIS)

    Huang, Shih-Ying; Yang Kai; Abbey, Craig K.; Boone, John M.

    2012-01-01

    Purpose: It is important to understand signal and noise transfer in the indirect, flat-panel x-ray detector when developing and optimizing imaging systems. For optimization where simulating images is necessary, this study introduces a semiempirical model to simulate projection images with user-defined x-ray fluence interaction. Methods: The signal and noise transfer in the indirect, flat-panel x-ray detectors is characterized by statistics consistent with energy-integration of x-ray photons. For an incident x-ray spectrum, x-ray photons are attenuated and absorbed in the x-ray scintillator to produce light photons, which are coupled to photodiodes for signal readout. The signal mean and variance are linearly related to the energy-integrated x-ray spectrum by empirically determined factors. With the known first- and second-order statistics, images can be simulated by incorporating multipixel signal statistics and the modulation transfer function of the imaging system. To estimate the semiempirical input to this model, 500 projection images (using an indirect, flat-panel x-ray detector in the breast CT system) were acquired with 50-100 kilovolt (kV) x-ray spectra filtered with 0.1-mm tin (Sn), 0.2-mm copper (Cu), 1.5-mm aluminum (Al), or 0.05-mm silver (Ag). The signal mean and variance of each detector element and the noise power spectra (NPS) were calculated and incorporated into this model for accuracy. Additionally, the modulation transfer function of the detector system was physically measured and incorporated in the image simulation steps. For validation purposes, simulated and measured projection images of air scans were compared using 40 kV/0.1-mm Sn, 65 kV/0.2-mm Cu, 85 kV/1.5-mm Al, and 95 kV/0.05-mm Ag. Results: The linear relationship between the measured signal statistics and the energy-integrated x-ray spectrum was confirmed and incorporated into the model. The signal mean and variance factors were linearly related to kV for each filter material (r 2 of

  18. A semiempirical linear model of indirect, flat-panel x-ray detectors.

    Science.gov (United States)

    Huang, Shih-Ying; Yang, Kai; Abbey, Craig K; Boone, John M

    2012-04-01

    It is important to understand signal and noise transfer in the indirect, flat-panel x-ray detector when developing and optimizing imaging systems. For optimization where simulating images is necessary, this study introduces a semiempirical model to simulate projection images with user-defined x-ray fluence interaction. The signal and noise transfer in the indirect, flat-panel x-ray detectors is characterized by statistics consistent with energy-integration of x-ray photons. For an incident x-ray spectrum, x-ray photons are attenuated and absorbed in the x-ray scintillator to produce light photons, which are coupled to photodiodes for signal readout. The signal mean and variance are linearly related to the energy-integrated x-ray spectrum by empirically determined factors. With the known first- and second-order statistics, images can be simulated by incorporating multipixel signal statistics and the modulation transfer function of the imaging system. To estimate the semiempirical input to this model, 500 projection images (using an indirect, flat-panel x-ray detector in the breast CT system) were acquired with 50-100 kilovolt (kV) x-ray spectra filtered with 0.1-mm tin (Sn), 0.2-mm copper (Cu), 1.5-mm aluminum (Al), or 0.05-mm silver (Ag). The signal mean and variance of each detector element and the noise power spectra (NPS) were calculated and incorporated into this model for accuracy. Additionally, the modulation transfer function of the detector system was physically measured and incorporated in the image simulation steps. For validation purposes, simulated and measured projection images of air scans were compared using 40 kV∕0.1-mm Sn, 65 kV∕0.2-mm Cu, 85 kV∕1.5-mm Al, and 95 kV∕0.05-mm Ag. The linear relationship between the measured signal statistics and the energy-integrated x-ray spectrum was confirmed and incorporated into the model. The signal mean and variance factors were linearly related to kV for each filter material (r(2) of signal mean to k

  19. X-band klystrons for Japan Linear Collider

    International Nuclear Information System (INIS)

    Mizuno, H.; Odagiri, J.; Higo, T.; Yonezawa, H.; Yamaguchi, N.

    1992-01-01

    To achieve the acceleration gradient of 100 MeV/m necessary for the future linear collider in X-band, an RF power source which could produce more than 100 MW peak power with the pulse duration of 500 nsec is needed even with the factor 4 RF pulse compression system. As the first step for the development of the 100 MW class klystrons in X-band (11.424 GHz), a 30 MW class klystron named XB-50K was tested several times since 1990. XB-50K was tested up to the peak power of 18 MW with the pulse duration of 100 ns. A new 100 MW class klystron named XB-72K was designed and fabricated. Some test results of this klystron are reported. (Author) 9 refs., 3 figs., 2 tabs

  20. Temporal characterization of FEL micropulses as function of cavity length detuning using frequency-resolved optical gating

    Energy Technology Data Exchange (ETDEWEB)

    Richman, B.A. [Stanford Univ., CA (United States); DeLong, K.W.; Trebino, R. [Sandia National Lab., Livermore, CA (United States)

    1995-12-31

    Results of frequency resolved optical gating (FROG) measurements on the Stanford mid-IR FEL system show the effect of FEL cavity length detuning on the micropulse temporal structure. The FROG technique enables the acquisition of complete and uniquely invertible amplitude and phase temporal dependence of optical pulses. Unambiguous phase and amplitude profiles are recovered from the data. The optical pulses are nearly transform limited, and the pulse length increases with cavity length detuning.

  1. Preliminary Design of a Synchronized Narrow Bandwidth FEL for Taiwan Light Source

    CERN Document Server

    Keung Lau Wai; Ching Fan, Tai; Zone Hsiao Feng; Tung Hsu Kuo; Hwang, Ching Shiang; Cheng Kuo Chin; Huei Luo Guo; Jen Wang Duan; Ping Wang Jau; Huey Wang Min

    2004-01-01

    Design study of a narrow line-width, high power IR-FEL facility has been carried out at NSRRC. This machine is designed to synchronize with the U9 undulator radiation of Taiwan Light Source and therefore provide new opportunity for chemical dynamics and condensed matter research. It has been proposed to use a super-conducting linac to provide a 60 MeV high quality electron beam to drive a 2.5-10 microns FEL oscillator with U5 undulator. Operating this linac in energy recovery mode will also be considered as an option to improve overall system effeciency and reduce heat loss and radiation dosage at the beam dump. Performance requirements and outcomes from this preliminary design study will be reported.

  2. The effects of betatron motion on the preservation of FEL microbunching

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-05-15

    In some options for circular polarization control at X-ray FELs, a helical radiator is placed a few ten meters distance behind the baseline undulator. If the microbunch structure induced in the baseline (planar) undulator can be preserved, intense coherent radiation is emitted in the helical radiator. The effects of betatron motion on the preservation of micro bunching in such in-line schemes should be accounting for. In this paper we present a comprehensive study of these effects. It is shown that one can work out an analytical expression for the debunching of an electron beam moving in a FODO lattice, strictly valid in the asymptote for a FODO cell much shorter than the betatron function. Further on, numerical studies can be used to demonstrate that the validity of such analytical expression goes beyond the abovementioned asymptote, and can be used in much more a general context. Finally, a comparison with Genesis simulations is given. (orig.)

  3. The effects of betatron motion on the preservation of FEL microbunching

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2011-05-01

    In some options for circular polarization control at X-ray FELs, a helical radiator is placed a few ten meters distance behind the baseline undulator. If the microbunch structure induced in the baseline (planar) undulator can be preserved, intense coherent radiation is emitted in the helical radiator. The effects of betatron motion on the preservation of micro bunching in such in-line schemes should be accounting for. In this paper we present a comprehensive study of these effects. It is shown that one can work out an analytical expression for the debunching of an electron beam moving in a FODO lattice, strictly valid in the asymptote for a FODO cell much shorter than the betatron function. Further on, numerical studies can be used to demonstrate that the validity of such analytical expression goes beyond the abovementioned asymptote, and can be used in much more a general context. Finally, a comparison with Genesis simulations is given. (orig.)

  4. High-gradient breakdown studies of an X-band Compact Linear Collider prototype structure

    Directory of Open Access Journals (Sweden)

    Xiaowei Wu

    2017-05-01

    Full Text Available A Compact Linear Collider prototype traveling-wave accelerator structure fabricated at Tsinghua University was recently high-gradient tested at the High Energy Accelerator Research Organization (KEK. This X-band structure showed good high-gradient performance of up to 100  MV/m and obtained a breakdown rate of 1.27×10^{−8} per pulse per meter at a pulse length of 250 ns. This performance was similar to that of previous structures tested at KEK and the test facility at the European Organization for Nuclear Research (CERN, thereby validating the assembly and bonding of the fabricated structure. Phenomena related to vacuum breakdown were investigated and are discussed in the present study. Evaluation of the breakdown timing revealed a special type of breakdown occurring in the immediately succeeding pulse after a usual breakdown. These breakdowns tended to occur at the beginning of the rf pulse, whereas usual breakdowns were uniformly distributed in the rf pulse. The high-gradient test was conducted under the international collaboration research program among Tsinghua University, CERN, and KEK.

  5. Wavelength dependent delay in the onset of FEL tissue ablation

    International Nuclear Information System (INIS)

    Tribble, J.A.; Edwards, G.S.; Lamb, J.A.

    1995-01-01

    We are investigating the wavelength dependence of the onset of laser tissue ablation in the IR Visible and UV ranges. Toward this end, we have made simultaneous measurements of the ejected material (using a HeNe probe beam tangential to the front surface) and the residual stress transient in the tissue (using traditional piezoelectric detection behind the thin samples). For the IR studies we have used the Vanderbilt FEL and for the UV and Vis range we have used a Q-switched ND:Yag with frequency doubling and quadrupling. To satisfy the conditions of the near field limit for the detection of the stress transient, the duration of the IR FEL macropulse must be as short as possible. We have obtained macropulses as short as 100 ns using Pockels Cell technology. The recording of the signals from both the photodiode monitoring the HeNe probe beam and the acoustic detector are synchronized with the arrival of the 100 ns macropulse. With subablative intensities, the resulting stress transient is bipolar with its positive peak separated from its negative peak by 100 ns in agreement with theory. Of particular interest is the comparison of ablative results using 3 μm and 6.45 μm pulses. Both the stress transient and the ejection of material suffer a greater delay (with respect to the arrival of the 100 ns pulse) when the FEL is tuned to 3 μm as compared to 6.45 μm. A comparison of IR Vis and UV data will be discussed in terms of microscopic mechanisms governing the laser ablation process

  6. First lasings at IR-and FIR range using hybrid type undulator (FEL facility 4) and Halbach type undulator

    International Nuclear Information System (INIS)

    Takii, T.; Oshita, E.; Okuma, S.; Wakita, K.; Koga, A.; Tomimasu, T.; Ohasi, K.

    1997-01-01

    First lasing at 18μm was achieved by using a 2.7-m long hybrid type undulator (undulator 4) for far-infrared FELs and a 6.72-m long optical cavity installed at the 33-MeV beam line of the downstream of the FEL facility 1 (FEL-1). We are challenged at two-color FEL oscillation in mid-infrared range using the undulator 1 (λ u=3.4mm) and in far-infrared range using the undulator 4 (λ u=9mm). At first, a 30-MeV, 60-A beam passed through the undulator 1 without lasing is transported using a QFQDBQFQDBQFQDQF system and is used for lasing at the undulator 4. However, six pairs of steering coils had to be attached on the beam duct to reduce the deviation of the electron beam trajectory due to the vertical field distribution induced by the built-in electromagnets. The minimum gap of the undulator 4 was designed to be 35mm. However, the steering coils attached on the beam duct increased the gap up to 52mm. Therefore, the hybrid type undulator was replaced by a new Halbach type one (λ u=8mm, N=30) after the first lasing at 18μm on October 24, '96. The New FEL facility 4 was installed in the middle of December and first lasing at 18.6μm was achieved on December 26, within 10 hours operation. (author)

  7. Development of BPM Electronics at the JLAB FEL

    Science.gov (United States)

    Sexton, D.; Evtushenko, P.; Jordan, K.; Yan, J.; Dutton, S.; Moore, W.; Evans, R.; Coleman, J.

    2006-11-01

    A new version of BPM electronics based on the AD8362 RMS detector, which is a direct RF to DC converter, is under development at the JLAB FEL. Each of these new BPM electronics utilizes an embedded ColdFire Microprocessor for data processing and communication with the EPICS control system via TCP/IP. The ColdFire runs RTEMS, which is an open source real-time operating system. The JLAB FEL is a SRF Energy Recovery LINAC capable of running up to 10 mA CW beam with a 74.85 MHz micropulse frequency. For diagnostic reasons and for machine tune up, the micropulse frequency can be reduced to 1.17 MHz, which corresponds to about 160 μA of beam current. It is required that the BPM system would be functional for all micropulse frequencies. By taking into account the headroom for the beam steering and current variations the dynamic range of the RF front end is required to be about 60 dB. A BPM resolution of at least 100 μm is required, whereas better resolution is very desirable to make it possible for more accurate measurements of the electron beam optics. Some results of the RF front end development are presented as well as the first measurements made with an electron beam.

  8. Modelling of X-ray emission supernova remnants observed by the European satellite XMM-Newton

    International Nuclear Information System (INIS)

    Cassam-Chenai, G.

    2004-01-01

    This thesis deals with the X-ray emission of supernova remnants (SNRs) observed by the European satellite XMM-Newton. In SNRs, the matter heated to millions of degrees shines brightly in X-rays. This emission depends on the hydrodynamical evolution of the SNR, on the chemical composition of the ejected matter and on the ambient medium. Moreover, the blast-wave is considered to be the prime site of the production and the acceleration of cosmic-rays in our Galaxy. XMM-Newton is one of the first to allow the investigation of these different aspects thanks to its spatially-resolved spectroscopy and its very good sensitivity. l first studied Kepler's SNR (SN 1604) whose X-ray emission is dominated by the ejecta. Its observation has allowed to obtain information on the nucleosynthesis products, on their spatial distribution and on the temperature structure in the shocked ejecta. This gives strong constraints on the physics of the explosion and on the progenitor's type. l have shown also that the X-ray emission at the shock is likely to be non-thermal. Then, l studied the SNR G347.3-0.5 whose X-ray emission is entirely due to the synchrotron radiation of relativistic (TeV) electrons accelerated at the shock. From five pointing, l made a full mapping of the X-ray emission characteristics (brightness, absorption and spectral index) at small scale. Combined to radio observations, these results have indicated a clear interaction between the SNR and molecular clouds located at 1 kpc and not at 6 kpc as previously estimated. Lastly, in the framework of a self-similar hydrodynamical model coupled with non-linear particle acceleration, l have obtained the synchrotron emission profile in SNRs, including the adiabatic and radiative losses of the accelerated electrons. (author) [fr

  9. Obtaining attosecond x-ray pulses using a self-amplified spontaneous emission free electron laser

    Directory of Open Access Journals (Sweden)

    A. A. Zholents

    2005-05-01

    Full Text Available We describe a technique for the generation of a solitary attosecond x-ray pulse in a free-electron laser (FEL, via a process of self-amplified spontaneous emission. In this method, electrons experience an energy modulation upon interacting with laser pulses having a duration of a few cycles within single-period wiggler magnets. Two consecutive modulation sections, followed by compression in a dispersive section, are used to obtain a single, subfemtosecond spike in the electron peak current. This region of the electron beam experiences an enhanced growth rate for FEL amplification. After propagation through a long undulator, this current spike emits a ∼250   attosecond x-ray pulse whose intensity dominates the x-ray emission from the rest of the electron bunch.

  10. Status of the project of Novosibirsk high power FEL

    Energy Technology Data Exchange (ETDEWEB)

    Pinayev, I.V.; Erg, G.I.; Gavrilov, N.G. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation)] [and others

    1995-12-31

    The project of IR FEL for the Siberian Center of photochemical researches is described. The distinguished features of this project are the use of the race-track microtron-recuperator and the {open_quotes}electron output of radiation{close_quotes}. The building for the machine is under reconstruction now. About half of hardware has been manufactured. The assembly of installation began.

  11. Ginzburg's invention of undulators and their role in modern synchrotron radiation sources and free electron lasers

    International Nuclear Information System (INIS)

    Kulipanov, Gennadii N

    2007-01-01

    Undulators - periodic magnetic structures that were originally introduced by Vitalii Ginzburg in 1947 for electromagnetic radiation generation using relativistic electrons - are among the key elements of modern synchrotron radiation sources and free electron lasers (FELs). In this talk, the history of three generations of storage ring-based synchrotron X-ray sources using wigglers and undulators is briefly traced. Prospects for two types of next-generation space-coherent X-ray sources are discussed, which use long undulators and energy recovery accelerators or, alternatively, employ linear accelerator-based FELs. The recently developed Novosibirsk terahertz FEL facility, currently the world' s most powerful terahertz source, is described. It was the generation of electromagnetic radiation in this range that Ginzburg discussed in his 1947 work. (oral issue of the journal 'uspekhi fizicheskikh nauk')

  12. Irradiation of intense characteristic x-rays from weakly ionized linear molybdenum plasma

    International Nuclear Information System (INIS)

    Sato, Eiichi; Hayasi, Yasuomi

    2003-01-01

    In the plasma flash x-ray generator, a high-voltage main condenser of approximately 200 nF is charged up to 55 kV by a power supply, and electric charges in the condenser are discharged to an x-ray tube after triggering the cathode electrode. The flash x-rays are then produced. The x-ray tube is a demountable triode that is connected to a turbo molecular pump with a pressure of approximately 1 mPa. As electron flows from the cathode electrode are roughly converged to a rod molybdenum target of 2.0 mm in diameter by the electric field in the x-ray tube, weakly ionized linear plasma, which consists of molybdenum ions and electrons, forms by target evaporation. At a charging voltage of 55 kV, the maximum tube voltage was almost equal to the charging voltage of the main condenser, and the peak current was about 20 kA. When the charging voltage was increased, the linear plasma formed, and the K-series characteristic x-ray intensities increased. The K lines were quite sharp and intense, and hardly any bremsstrahlung rays were detected. The x-ray pulse widths were approximately 700 ns, and the time-integrated x-ray intensity had a value of approximately 35 μC/kg at 1.0 m from the x-ray source with a charging voltage of 50 kV. (author)

  13. Using the longitudinal space charge instability for generation of vacuum ultraviolet and x-ray radiation

    Directory of Open Access Journals (Sweden)

    E. A. Schneidmiller

    2010-11-01

    Full Text Available Longitudinal space charge (LSC driven microbunching instability in electron beam formation systems of x-ray free-electron lasers (FELs is a recently discovered effect hampering beam instrumentation and FEL operation. The instability was observed in different facilities in infrared and visible wavelength ranges. In this paper we propose to use such an instability for generation of vacuum ultraviolet (VUV and x-ray radiation. A typical longitudinal space charge amplifier (LSCA consists of few amplification cascades (drift space plus chicane with a short undulator behind the last cascade. If the amplifier starts up from the shot noise, the amplified density modulation has a wide band, on the order of unity. The bandwidth of the radiation within the central cone is given by an inverse number of undulator periods. A wavelength compression could be an attractive option for LSCA since the process is broadband, and a high compression stability is not required. LSCA can be used as a cheap addition to the existing or planned short-wavelength FELs. In particular, it can produce the second color for a pump-probe experiment. It is also possible to generate attosecond pulses in the VUV and x-ray regimes. Some user experiments can profit from a relatively large bandwidth of the radiation, and this is easy to obtain in the LSCA scheme. Finally, since the amplification mechanism is broadband and robust, LSCA can be an interesting alternative to the self-amplified spontaneous emission free-electron laser (SASE FEL in the case of using laser-plasma accelerators as drivers of light sources.

  14. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer.

    Science.gov (United States)

    Dell'Angela, M; Anniyev, T; Beye, M; Coffee, R; Föhlisch, A; Gladh, J; Kaya, S; Katayama, T; Krupin, O; Nilsson, A; Nordlund, D; Schlotter, W F; Sellberg, J A; Sorgenfrei, F; Turner, J J; Öström, H; Ogasawara, H; Wolf, M; Wurth, W

    2015-03-01

    Vacuum space charge induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.

  15. LINAC DESIGN FOR AN ARRAY OF SOFT X-RAY FREE ELECTRON LASERS

    International Nuclear Information System (INIS)

    Zholents, Alexander A.; Kur, E.; Penn, G.; Qiang, Ji; Venturini, M.; Wells, R. P.

    2008-01-01

    The design of the linac delivering electron bunches into ten independent soft x-ray free electron lasers (FELs) producing light at 1 nm and longer wavelengths is presented. The bunch repetition rate in the linac is 1 MHz and 100 kHz in each of ten FEL beam lines. Various issues regarding machine layout and lattice, bunch compression, collimation, and the beam switch yard are discussed. Particular attention is given to collective effects. A demanding goal is to preserve both a low beam slice emittance and low slice energy spread during acceleration, bunch compression and distribution of the electron bunches into the array of FEL beamlines. Detailed studies of the effect of the electron beam microbunching caused by longitudinal space-charge forces and coherent synchrotron radiation (CSR) have been carried out and their results are presented

  16. High resolution x-ray lensless imaging by differential holographic encoding

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, D.; Guizar-Sicairos, M.; Wu, B.; Scherz, A.; Acremann, Y.; Tylisczcak, T.; Fischer, P.; Friedenberger, N.; Ollefs, K.; Farle, M.; Fienup, J. R.; Stohr, J.

    2009-11-02

    X-ray free electron lasers (X-FEL{sub s}) will soon offer femtosecond pulses of laterally coherent x-rays with sufficient intensity to record single-shot coherent scattering patterns for nanoscale imaging. Pulse trains created by splitand-delay techniques even open the door for cinematography on unprecedented nanometer length and femtosecond time scales. A key to real space ultrafast motion pictures is fast and reliable inversion of the recorded reciprocal space scattering patterns. Here we for the first time demonstrate in the x-ray regime the power of a novel technique for lensless high resolution imaging, previously suggested by Guizar-Sicairos and Fienup termed holography with extended reference by autocorrelation linear differential operation, HERALD0. We have achieved superior resolution over conventional x-ray Fourier transform holography (FTH) without sacrifices in SNR or significant increase in algorithmic complexity. By combining images obtained from individual sharp features on an extended reference, we further show that the resolution can be even extended beyond the reference fabrication limits. Direct comparison to iterative phase retrieval image reconstruction and images recorded with stateof- the-art zone plate microscopes is presented. Our results demonstrate the power of HERALDO as a favorable candidate for robust inversion of single-shot coherent scattering patterns.

  17. High-Resolution X-Ray Lensless Imaging by Differential Holographic Encoding

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Diling [Stanford Univ., CA (United States). Dept. of Applied Physics; SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Material and Energy Science; Guizar-Sicairos, Manuel [Univ. of Rochester, NY (United States). Inst. of Optics; Wu, Benny [Stanford Univ., CA (United States). Dept. of Applied Physics; SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Material and Energy Science; Scherz, Andreas [SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Material and Energy Science; Acremann, Yves [SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE); Tyliszczak, Tolek [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Fischer, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Center for X-ray Optics; Friedenberger, Nina [Universitat Duisburg-Essen (Germany). Dept. of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE); Ollefs, Katharina [Universitat Duisburg-Essen (Germany). Dept. of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE); Farle, Michael [Universitat Duisburg-Essen (Germany). Dept. of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE); Fienup, James R. [Univ. of Rochester, NY (United States). Inst. of Optics; Stöhr, Joachim [SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)

    2010-07-01

    X-ray free electron lasers (X-FELs) will soon offer femtosecond pulses of laterally coherent x-rays with sufficient intensity to record single-shot coherent scattering patterns for nanoscale imaging. Pulse trains created by split and- delay techniques even open the door for cinematography on unprecedented nanometer length and femtosecond time scales. A key to real space ultrafast motion pictures is fast and reliable inversion of the recorded reciprocal space scattering patterns. Here we for the first time demonstrate in the x-ray regime the power of a novel technique for lensless high resolution imaging, previously suggested by Guizar-Sicairos and Fienup termed holography with extended reference by autocorrelation linear differential operation, HERALD0. We have achieved superior resolution over conventional x-ray Fourier transform holography (FTH) without sacrifices in SNR or significant increase in algorithmic complexity. By combining images obtained from individual sharp features on an extended reference, we further show that the resolution can be even extended beyond the reference fabrication limits. Direct comparison to iterative phase retrieval image reconstruction and images recorded with state of-the-art zone plate microscopes is presented. Our results demonstrate the power of HERALDO as a favorable candidate for robust inversion of single-shot coherent scattering patterns.

  18. Spurious dispersion effects at FLASH

    International Nuclear Information System (INIS)

    Prat, Eduard

    2009-07-01

    The performance of the Free-Electron Laser (FEL) process imposes stringent demands on the transverse trajectory and size of the electron beam. Since transverse dispersion changes off-energy particle trajectories and increases the effective beam size, dispersion must be controlled. This thesis treats the concept of dispersion in linacs, and analyses the impact of dispersion on the electron beam and on the FEL process. It presents generation mechanisms for spurious dispersion, quantifying its importance for FLASH (Free-electron Laser in Hamburg) and the XFEL (European X-ray Free-Electron Laser). A method for measuring and correcting dispersion and its implementation in FLASH is described. Experiments of dispersion e ects on the transverse beam quality and on the FEL performance are presented. (orig.)

  19. Spurious dispersion effects at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Prat, Eduard

    2009-07-15

    The performance of the Free-Electron Laser (FEL) process imposes stringent demands on the transverse trajectory and size of the electron beam. Since transverse dispersion changes off-energy particle trajectories and increases the effective beam size, dispersion must be controlled. This thesis treats the concept of dispersion in linacs, and analyses the impact of dispersion on the electron beam and on the FEL process. It presents generation mechanisms for spurious dispersion, quantifying its importance for FLASH (Free-electron Laser in Hamburg) and the XFEL (European X-ray Free-Electron Laser). A method for measuring and correcting dispersion and its implementation in FLASH is described. Experiments of dispersion e ects on the transverse beam quality and on the FEL performance are presented. (orig.)

  20. FEL options for power beaming

    International Nuclear Information System (INIS)

    Kim, K.J.; Zholents, A.A.; Zolotorev, M.S.; Vinokurov, N.A.

    1997-10-01

    The demand for the output power of communication satellites has been increasing exponentially. The satellite power is generated from solar panels which collect the sunlight and convert it to electrical power. The power per satellite is limited due to the limit in the practical size of the solar panel. One way to meet the power demand is to employ multiple satellites (up to 10) per the internationally agreed-upon ''slot'' in the geosynchronous earth orbit (GEO). However, this approach is very expensive due to the high cost of sending a satellite into a GEO orbit. An alternative approach is power beaming, i.e., to illuminate the solar panels with high power, highly-directed laser beams from earth. The power beaming generates more power per satellite for the same area of the solar panel. The minimum optical beam power, interesting for power beaming application, is P L = 200kW. The wavelength is chosen to be λ 0.84 microm, so that it is within one of the transmission windows of the air, and at the same time near the peak of the photo-voltaic conversion efficiency of Si, which is the commonly used material for the solar panels. Free electron lasers (FELs) are well suited for the power beaming application because they can provide high power with coherent wavefront, but without high energy density in media. In this article the authors discuss some principal issues, such as the choice of accelerator and electron gun, the choice of beam parameters, radiation hazards, technological availability, and overall efficiency and reliability of the installation. They also attempt to highlight the compromise between the cost of the primary installation, the operation cost, and the choice of technology, and its maturity. They then present several schemes for the accelerator-FEL systems based on RF accelerators. The initial electron beam accelerator up to the energy of a few MeV is more or less common for all these schemes

  1. Transport studies of LPA electron beam towards the FEL amplification at COXINEL

    Energy Technology Data Exchange (ETDEWEB)

    Khojoyan, M., E-mail: martin.khojoyan@synchrotron-soleil.fr; Briquez, F.; Labat, M.; Loulergue, A.; Marcouillé, O.; Marteau, F.; Sharma, G.; Couprie, M.E.

    2016-09-01

    Laser Plasma Acceleration (LPA) [1] is an emerging concept enabling to generate electron beams with high energy, high peak current and small transverse emittance within a very short distance. The use of LPA can be applied to the Free Electron Laser (FEL) [2] case in order to investigate whether it is suitable for the light amplification in the undulator. However, capturing and guiding of such beams to the undulator is very challenging, because of the large divergence and high energy spread of the electron beams at the plasma exit, leading to large chromatic emittances. A specific beam manipulation scheme was recently proposed for the COXINEL (Coherent X-ray source inferred from electrons accelerated by laser) setup, which makes an advantage from the intrinsically large chromatic emittance of such beams [3]. The electron beam transport is studied using two simulation codes: a SOLEIL in-house one and ASTRA [4]. The influence of the collective effects on the electron beam performance is also examined.

  2. Performance of an undulator for visible and UV FELs at FELI

    Energy Technology Data Exchange (ETDEWEB)

    Miyauchi, Y.; Zako, A.; Koga, A. [Free Electron Laser Research Institute, Inc., Osaka (Japan)] [and others

    1995-12-31

    Two infrared free electron lasers (FELs) of the FELI project are now operating in the wavelength range of 1-20{mu}m. A 2.68-m undulator has been constructed for visible and UV FELs covering the wavelength of 1-0.2{mu}m for 100-165 MeV electron beams. It generates alternating, horizontal magnetic field, and wiggles electron beam on a vertical plane. The undulator length and period are 2.68m and 40mm, respectively. The gap of undulator magnets can be changed remotely by using servomotors with an accuracy of 1 {mu}m from the control room. The maximum K-value and related magnetic field strength are 1.9 and 0.5T, respectively, when its gap is set to the minimum value of 16mm. In order to minimize magnetic field reduction due to radiation damage, Sm-Co permanent magnet was adopted. Its structure and the results of magnetic field measurement will be reported.

  3. End-to-end simulation of a visible 1 kW FEL

    International Nuclear Information System (INIS)

    Parazzoli, Claudio G.; Koltenbah, Benjamin E.C.

    2000-01-01

    In this paper we present the complete numerical simulation of the 1 kW visible Free Electron Laser under construction in Seattle. We show that the goal of producing 1.0 kW at 0.7 μm is well within the hardware capabilities. We simulate in detail the evolution of the electron bunch phase space in the entire e-beam line. The e-beam line includes the photo-injector cavities, the 433.33 MHz accelerator, the magnetic buncher, the 1300 MHz accelerator, the 180 deg. bend and the matching optics into the wiggler. The computed phase space is input for a three-dimensional time-dependent code that predicts the FEL performance. All the computations are based on state of the art software, and the limitations of the current software are discussed. We believe that this is the first time that such a thorough numerical simulation has been carried out and that such a realistic electron phase space has been used in FEL performance calculations

  4. Reflection of femtosecond pulses from soft X-ray free-electron laser by periodical multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Ksenzov, D.; Grigorian, S.; Pietsch, U. [Faculty of Physics, University of Siegen (Germany); Hendel, S.; Bienert, F.; Sacher, M.D.; Heinzmann, U. [Faculty of Physics, University of Bielefeld (Germany)

    2009-08-15

    Recent experiments on a soft X-ray free-electron laser (FEL) source (FLASH in Hamburg) have shown that multilayers (MLs) can be used as optical elements for highly intense X-ray irradiation. An effort to find most appropriate MLs has to consider the femtosecond time structure and the particular photon energy of the FEL. In this paper we have analysed the time response of 'low absorbing' MLs (e.g. such as La/B{sub 4}C) as a function of the number of periods. Interaction of a pulse train of Gaussian shaped sub-pulses using a realistic ML grown by electron-beam evaporation technique has been analysed in the soft-X-ray range. The structural parameters of the MLs were obtained by reflectivity measurements at BESSY II and subsequent profile fittings. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  5. Interaction of femtosecond X-ray pulses with periodical multilayer structures

    International Nuclear Information System (INIS)

    Ksenzov, Dmitry

    2010-01-01

    The VUV Free Electron Laser FLASH operates in soft X-ray range and produces high-intensive pulse trains with few tens femtoseconds duration. The transversely fully coherent beam will open new experiments in solid state physics which can not be studied with present radiation sources. The study of the time dependent response of the multilayer to the X-ray pulse can provide insights into the process of interaction of highly intense FEL radiation with matter. To test the influence of electron excitation on the optical properties of boron carbide, the refractive index of B 4 C was measured near B K-edge by energy-resolved photon-in-photon-out method probing a Bragg reflection from periodical multilayers. The measured data clearly show that the variation of the fine structure of the Kabsorption edges due to the chemical nature of the absorber element. The knowledge obtained from experiments with continuous radiation was used to design the respective experiments with pulse from the FEL. In my thesis, it is proposed that the geometrical setup, where the incident pulse arrives from the FEL under the angle close to the 1st order ML Bragg peak, provides the most valuable information. Preliminary simulation considering form factors of neutral and ionized boron showed that due to ionization, pronounced changes in the reflectivity curve are expected. The proposed scheme can be the powerful tool to study the various processes within the electronic subsystem of the FEL pulse interaction with matter. This type of investigations gives a deep understanding of the nature of the electronic excitation and the recombination at the femtosecond scale. (orig.)

  6. Interaction of femtosecond X-ray pulses with periodical multilayer structures

    Energy Technology Data Exchange (ETDEWEB)

    Ksenzov, Dmitry

    2010-07-01

    The VUV Free Electron Laser FLASH operates in soft X-ray range and produces high-intensive pulse trains with few tens femtoseconds duration. The transversely fully coherent beam will open new experiments in solid state physics which can not be studied with present radiation sources. The study of the time dependent response of the multilayer to the X-ray pulse can provide insights into the process of interaction of highly intense FEL radiation with matter. To test the influence of electron excitation on the optical properties of boron carbide, the refractive index of B{sub 4}C was measured near B K-edge by energy-resolved photon-in-photon-out method probing a Bragg reflection from periodical multilayers. The measured data clearly show that the variation of the fine structure of the Kabsorption edges due to the chemical nature of the absorber element. The knowledge obtained from experiments with continuous radiation was used to design the respective experiments with pulse from the FEL. In my thesis, it is proposed that the geometrical setup, where the incident pulse arrives from the FEL under the angle close to the 1st order ML Bragg peak, provides the most valuable information. Preliminary simulation considering form factors of neutral and ionized boron showed that due to ionization, pronounced changes in the reflectivity curve are expected. The proposed scheme can be the powerful tool to study the various processes within the electronic subsystem of the FEL pulse interaction with matter. This type of investigations gives a deep understanding of the nature of the electronic excitation and the recombination at the femtosecond scale. (orig.)

  7. Design of compressors for FEL pulses using deformable gratings

    Science.gov (United States)

    Bonora, Stefano; Fabris, Nicola; Frassetto, Fabio; Giovine, Ennio; Miotti, Paolo; Quintavalla, Martino; Poletto, Luca

    2017-06-01

    We present the optical layout of soft X-rays compressors using reflective grating specifically designed to give both positive or negative group-delay dispersion (GDD). They are tailored for chirped-pulse-amplification experiments with FEL sources. The optical design originates from an existing compressor with plane gratings already realized and tested at FERMI, that has been demonstrated capable to introduce tunable negative GDD. Here, we discuss two novel designs for compressors using deformable gratings capable to give both negative and positive GDD. Two novel designs are discussed: 1) a design with two deformable gratings and an intermediate focus between the twos, that is demonstrated capable to introduce positive GDD; 2) a design with one deformable grating giving an intermediate focus, followed by a concave mirror and a plane grating, that is capable to give both positive and negative GDD depending on the distance between the second mirror and the second grating. Both the designs are tunable in wavelength and GDD, by acting on the deformable gratings, that are rotated to tune the wavelength and the GDD and deformed to introduce the radius required to keep the spectral focus. The deformable gratings have a laminar profile and are ruled on a thin silicon plane substrate. A piezoelectric actuator is glued on the back of the substrate and is actuated to give a radius of curvature that is varying from infinite (plane) to few meters. The ruling procedure, the piezoelectric actuator and the efficiency measurements in the soft X-rays will be presented. Some test cases are discussed for wavelengths shorter than 12 nm.

  8. Harmonic Inverse FEL Interaction at 800nm

    CERN Document Server

    Sears, C M S; Siemann, R; Spencer, J E

    2005-01-01

    The inverse Free Electron Laser (IFEL) interaction has recently been proposed and demonstrated as a premodulator for High Gain Harmonic Generation (HGHG) experiments. These experiments utilized the fundamental of the interaction between the laser field and electron bunch. In the current experiment, we explore the higher order resonances of the IFEL interaction from a 3 period, 1.8 centimeter wavelength undulator with a picosecond, 0.25 mJ/pulse laser at 800nm. The resonances are observed by adjusting the gap of the undulator while keeping the beam energy constant. The harmonic IFEL can add flexibility to HGHG FEL design.

  9. The Posterior Sustained Negativity Revisited—An SPN Reanalysis of Jacobsen and Höfel (2003

    Directory of Open Access Journals (Sweden)

    Thomas Jacobsen

    2018-01-01

    Full Text Available Symmetry is an important cue for the aesthetic judgment of beauty. Using a binary forced-choice format in a cued mixed design, Jacobsen and Höfel (2003 compared aesthetic judgments of beauty and symmetry judgments of novel graphic patterns. A late posterior sustained negativity elicited by symmetric patterns was observed in the symmetry judgment condition, but not in the beauty judgement condition. Therefore, this negativity appeared to be mainly driven by the task.In a series of studies, Bertamini, Makin, and colleagues observed a comparable sustained posterior negativity (SPN to symmetric stimuli, mainly taken to reflect obligatory symmetry processing independent of task requirements. We reanalyzed the data by Jacobsen and Höfel (2003 using similar parameters for data analysis as Bertamini, Makin, and colleagues to examine these apparent differences. The reanalysis confirmed both a task-driven effect on the posterior sustained negativity/SPN to symmetric patterns in the symmetry judgment condition and a strong symmetry-driven SPN to symmetric patterns. Differences between the references used for analyses of the electroencephalogram (EEG had an effect. Based on the reanalysis, the Jacobsen and Höfel (2003 data also fit well with Bertamini’s, Makin’s, and colleagues’ account of obligatory symmetry processing.

  10. Coherent x-rays and vacuum-ultraviolet radiation from storage-ring-based undulators and free electron lasers

    International Nuclear Information System (INIS)

    Kim, K.J.

    1984-12-01

    High-brightness electron storage rings and permanent-magnet technology provide a basis for the development of coherent radiation in the 10- to 1000-A (xuv) spectral range. The most assured route to the production of coherent x-rays and vuv is the simple interaction between properly constrained relativistic electrons and permanent-magnet undulators, a subject that is already well understood and where technology is well advanced. Other techniques are less well developed, but with increasing degrees of technical challenge they will provide additional coherence properties. Transverse optical klystrons (TOKs) provide an opportunity for additional coherence at certain harmonics of longer-wavelength lasers. Free electron lasers (FELs) extend coherence capabilities substantially through two possible routes: one is the development of suitable mirror coatings. Both FEL techniques would provide vuv radiation and soft x rays with extremely narrow spectral content. Research on all of these techniques (undulators, TOKs, and FELs) is possible in a single facility based on a high-brightness electron storage ring, referred to herein as a Coherent xuv Facility (CXF). Individual items from the report were prepared separately for the data base

  11. A non-destructive electron beam diagnostic for a SASE FEL using coherent off-axis undulator radiation

    CERN Document Server

    Neuman, C P; Barnett, G A; Madey, J M J; O'Shea, P G

    1999-01-01

    We show that by observing coherent off-axis undulator radiation (COUR) from a short diagnostic wiggler, it may be possible to determine the length and structure of a short electron bunch. Typically the on-axis undulator radiation is incoherent, but at angles of a few degrees, the wavelength of the emitted radiation may be comparable to the length of a short electron bunch, and thus coherence effects emerge. Due to such coherence effects, the intensity of the emitted radiation may change by up to a factor of 10 sup 9 as the angle of observation is increased. The radiation becomes coherent in a way which depends on the length and structure of the electron bunch. Observing COUR disturbs the electron bunch negligibly. Thus, COUR can be used as a non-destructive diagnostic which would allow for optimization of FEL performance while an FEL is operating. Such a diagnostic could be used for proposed SASE FELs, which use short electron bunches. We present two methods to describe the theory for COUR, and we use these m...

  12. Gain length dependence on phase shake in the VUV-FEL at the TESLA Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Pflueger, J. [DESY/HASYLAB, Hamburg (Germany); Schneidmiller, E.A. [Automatic Systems Corporation, Samara (Russian Federation); Pierini, P. [INFN, Milano (Italy)

    1995-12-31

    The TTF VUV FEL, which is in its design stage at DESY, consists of a 30 m long SASE FEL which will radiate around 6 nm, driven by a superconducting linac with final energy of 1 GeV. One of the important issues in its design is the undulator performance, which is studied in this paper. The present setup, including FODO lattice, is discussed in this paper. Results of simulations, including the realistic wiggler field errors and beam stearing, are presented. Dependence of the performance, in particular the gain and saturation length as well as the saturation peak power, on the wiggler field errors is discussed.

  13. Clocking Femtosecond Collisional Dynamics via Resonant X-Ray Spectroscopy

    Science.gov (United States)

    van den Berg, Q. Y.; Fernandez-Tello, E. V.; Burian, T.; Chalupský, J.; Chung, H.-K.; Ciricosta, O.; Dakovski, G. L.; Hájková, V.; Hollebon, P.; Juha, L.; Krzywinski, J.; Lee, R. W.; Minitti, M. P.; Preston, T. R.; de la Varga, A. G.; Vozda, V.; Zastrau, U.; Wark, J. S.; Velarde, P.; Vinko, S. M.

    2018-02-01

    Electron-ion collisional dynamics is of fundamental importance in determining plasma transport properties, nonequilibrium plasma evolution, and electron damage in diffraction imaging applications using bright x-ray free-electron lasers (FELs). Here we describe the first experimental measurements of ultrafast electron impact collisional ionization dynamics using resonant core-hole spectroscopy in a solid-density magnesium plasma, created and diagnosed with the Linac Coherent Light Source x-ray FEL. By resonantly pumping the 1 s →2 p transition in highly charged ions within an optically thin plasma, we have measured how off-resonance charge states are populated via collisional processes on femtosecond time scales. We present a collisional cross section model that matches our results and demonstrates how the cross sections are enhanced by dense-plasma effects including continuum lowering. Nonlocal thermodynamic equilibrium collisional radiative simulations show excellent agreement with the experimental results and provide new insight on collisional ionization and three-body-recombination processes in the dense-plasma regime.

  14. Generation of coherent soft x-rays using a single-pass free-electron laser amplifier

    International Nuclear Information System (INIS)

    Wang, T.F.; Goldstein, J.C.; Newnam, B.E.; McVey, B.D.

    1988-01-01

    We consider a single-pass free-electron laser (FEL) amplifier, driven by an rf-linac followed by a damping ring for reduced emittance, for use in generating coherent light in the soft x-ray region. The dependence of the optical gain on electron-beam quality, studied with the three-dimensional FEL simulation code FELEX, is given and related to the expected power of self-amplified spontaneous emission. We discuss issues for the damping ring designed to achieve the required electron beam quality. The idea of a multipass regenerative amplifier is also presented

  15. RF phase focusing in portable x-band, linear accelerators

    International Nuclear Information System (INIS)

    Miller, R.H.; Deruyter, H.; Fowkes, W.R.; Potter, J.M.; Schonberg, R.G.; Weaver, J.N.

    1985-01-01

    In order to minimize the size and weight of the x-ray or neutron source for a series of portable radiographic linear accelerators, the x-ray head was packaged separately from the rest of the system and consists of only the linac accelerating structure, electron gun, built-in target, collimator, ion pump and an RF window. All the driving electronics and cooling are connected to the x-ray head through flexible waveguide, cables, and waterlines. The x-ray head has been kept small and light weight by using the RF fields for radial focusing, as well as for longitudinal bunching and accelerating the beam. Thus, no external, bulky magnetic focusing devices are required. The RF focusing is accomplished by alternating the sign of the phase difference between the RF and the beam and by tapering from cavity to cavity the magnitude of the buncher field levels. The former requires choosing the right phase velocity taper (mix of less than vp = c cavities) and the latter requires the right sizing of the cavity to cavity coupling smiles (irises)

  16. RF phase focusing in portable X-band, linear accelerators

    International Nuclear Information System (INIS)

    Miller, R.H.; Deruyter, H.; Fowkes, W.R.; Potter, J.W.; Schonberg, R.G.; Weaver, J.W.

    1985-01-01

    In order to minimize the size and weight of the x-ray or neutron source for a series of portable radiographic linear accelerators, the x-ray head was packaged separately from the rest of the system and consists of only the linac accelerating structure, electron gun, built-in target, collimator, ion pump and an RF window. All the driving electronics and cooling are connected to the x-ray head through flexible waveguide, cables, and waterlines. The x-ray head has been kept small and light weight by using the RF fields for radial focusing, as well as for longitudinal bunching and accelerating the beam. Thus, no external, bulky magnetic focusing devices are required. The RF focusing is accomplished by alternating the sign of the phase difference between the RF and the beam and by tapering from cavity to cavity the magnitude of the buncher field levels. The former requires choosing the right phase velocity taper (mix of less than vp=c cavities) and the latter requires the right sizing of the cavity to cavity coupling smiles (irises)

  17. Nonlinear undulator tapering in conventional SASE regime at baseline electron beam parameters as a way to optimize the radiation characteristics of the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Serkez, Svitozar; Kocharyan, Vitali; Saldin, Evgeni; Zagorodnov, Igor [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany)

    2013-09-15

    We demonstrate that the output radiation characteristics of the European XFEL sources at nominal operation point can be easily made significantly better than what is currently reported in the TDRs of scientific instruments and X-ray optics. In fact, the output SASE characteristics of the baseline European XFEL have been previously optimized assuming uniform undulators at a nominal operating point of 5 kA peak current, without considering the potential of undulator tapering in the SASE regime. In order to illustrate this point, we analyze the case of an electron bunch with nominal parameters. Based on start-to-end simulations, we demonstrate that nonlinear undulator tapering allows one to achieve up to a tenfold increase in peak power and photon spectral density in the conventional SASE regime, without modification to the baseline design. The FEL code Genesis has been extensively used for these studies. In order to increase our confidence in simulation results, we cross-checked outcomes by reproducing simulations in the deep nonlinear SASE regime with tapered undulator using the code ALICE.

  18. Another cat and mouse game: Deciphering the evolution of the SCGB superfamily and exploring the molecular similarity of major cat allergen Fel d 1 and mouse ABP using computational approaches.

    Science.gov (United States)

    Durairaj, Rajesh; Pageat, Patrick; Bienboire-Frosini, Cécile

    2018-01-01

    The mammalian secretoglobin (SCGB) superfamily contains functionally diverse members, among which the major cat allergen Fel d 1 and mouse salivary androgen-binding protein (ABP) display similar subunits. We searched for molecular similarities between Fel d 1 and ABP to examine the possibility that they play similar roles. We aimed to i) cluster the evolutionary relationships of the SCGB superfamily; ii) identify divergence patterns, structural overlap, and protein-protein docking between Fel d 1 and ABP dimers; and iii) explore the residual interaction between ABP dimers and steroid binding in chemical communication using computational approaches. We also report that the evolutionary tree of the SCGB superfamily comprises seven unique palm-like clusters, showing the evolutionary pattern and divergence time tree of Fel d 1 with 28 ABP paralogs. Three ABP subunits (A27, BG27, and BG26) share phylogenetic relationships with Fel d 1 chains. The Fel d 1 and ABP subunits show similarities in terms of sequence conservation, identical motifs and binding site clefts. Topologically equivalent positions were visualized through superimposition of ABP A27:BG27 (AB) and ABP A27:BG26 (AG) dimers on a heterodimeric Fel d 1 model. In docking, Fel d 1-ABP dimers exhibit the maximum surface binding ability of AG compared with that of AB dimers and the several polar interactions between ABP dimers with steroids. Hence, cat Fel d 1 is an ABP-like molecule in which monomeric chains 1 and 2 are the equivalent of the ABPA and ABPBG monomers, respectively. These findings suggest that the biological and molecular function of Fel d 1 is similar to that of ABP in chemical communication, possibly via pheromone and/or steroid binding.

  19. Another cat and mouse game: Deciphering the evolution of the SCGB superfamily and exploring the molecular similarity of major cat allergen Fel d 1 and mouse ABP using computational approaches

    Science.gov (United States)

    Pageat, Patrick; Bienboire-Frosini, Cécile

    2018-01-01

    The mammalian secretoglobin (SCGB) superfamily contains functionally diverse members, among which the major cat allergen Fel d 1 and mouse salivary androgen-binding protein (ABP) display similar subunits. We searched for molecular similarities between Fel d 1 and ABP to examine the possibility that they play similar roles. We aimed to i) cluster the evolutionary relationships of the SCGB superfamily; ii) identify divergence patterns, structural overlap, and protein-protein docking between Fel d 1 and ABP dimers; and iii) explore the residual interaction between ABP dimers and steroid binding in chemical communication using computational approaches. We also report that the evolutionary tree of the SCGB superfamily comprises seven unique palm-like clusters, showing the evolutionary pattern and divergence time tree of Fel d 1 with 28 ABP paralogs. Three ABP subunits (A27, BG27, and BG26) share phylogenetic relationships with Fel d 1 chains. The Fel d 1 and ABP subunits show similarities in terms of sequence conservation, identical motifs and binding site clefts. Topologically equivalent positions were visualized through superimposition of ABP A27:BG27 (AB) and ABP A27:BG26 (AG) dimers on a heterodimeric Fel d 1 model. In docking, Fel d 1-ABP dimers exhibit the maximum surface binding ability of AG compared with that of AB dimers and the several polar interactions between ABP dimers with steroids. Hence, cat Fel d 1 is an ABP-like molecule in which monomeric chains 1 and 2 are the equivalent of the ABPA and ABPBG monomers, respectively. These findings suggest that the biological and molecular function of Fel d 1 is similar to that of ABP in chemical communication, possibly via pheromone and/or steroid binding. PMID:29771985

  20. Study of Coherence Limits and Chirp Control in Long Pulse FEL Oscillator

    CERN Document Server

    Gover, Avraham; Socol, Yehoshua; Volshonok, Mark

    2004-01-01

    Electrostatic Accelerator FELs have the capacity to generate long pulses of tens microseconds and more, that in principle can be elongated indefinitely (CW operation). This allows the generation of very coherent radiation. The fundamental linewidth is extremely narrow [1], and in practice the spectral width is limited by the pulse duration (Fourier transform limit) and e-beam stability. Practical problems such as the accelerator terminal voltage drop due to a non-ideal electron beam transport may reduce the length of the radiation pulse and hence create a limiting factor for coherence measurement. The current status of the Israeli Tandem Electrostatic Accelerator FEL allows the generation of pulses of tens microseconds duration. It has been operated recently past saturation, and produces single mode coherent radiation of relative linewidth ~Δf/f=10-5 at frequencies near 100GHz. A clear frequency chirp is observed during pulses of tens of microseconds (0.1-1 MHz/mS), and is directly proportional to th...

  1. Incorporation of a PbSe Array Based Spectrograph into EPICS using LabView at the JLab FEL Facility

    International Nuclear Information System (INIS)

    Hardy, D.; Benson, S.V.; Shinn, M.D.; Zhang, S.

    2005-01-01

    A real-time spectrograph with a 1Hz update rate was designed and installed at the JLab FEL facility using a Cal Sensors PbSe array and a Roper Scientific SpectraPro 300 monochrometer. This paper describes the implementation of EPICS channel access on a remote PC running LabView with modification of vendor supplied LabView VI's to allow display of FEL light spectra in real-time on a remote workstation. This allows PC based diagnostics to be used in EPICS

  2. Femtosecond resolution timing jitter correction on a TW scale Ti:sapphire laser system for FEL pump-probe experiments.

    Science.gov (United States)

    Csatari Divall, Marta; Mutter, Patrick; Divall, Edwin J; Hauri, Christoph P

    2015-11-16

    Intense ultrashort pulse lasers are used for fs resolution pump-probe experiments more and more at large scale facilities, such as free electron lasers (FEL). Measurement of the arrival time of the laser pulses and stabilization to the machine or other sub-systems on the target, is crucial for high time-resolution measurements. In this work we report on a single shot, spectrally resolved, non-collinear cross-correlator with sub-fs resolution. With a feedback applied we keep the output of the TW class Ti:sapphire amplifier chain in time with the seed oscillator to ~3 fs RMS level for several hours. This is well below the typical pulse duration used at FELs and supports fs resolution pump-probe experiments. Short term jitter and long term timing drift measurements are presented. Applicability to other wavelengths and integration into the timing infrastructure of the FEL are also covered to show the full potential of the device.

  3. Towards diffractive imaging with single pulses of FEL radiation. Dynamics within irradiatied samples and their influence on the analysis of imaging data

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fenglin

    2010-08-15

    3D single particle coherent diffraction imaging (CDI) of bioparticles (such as proteins, macromolecules and viruses) is one of the main possible applications of the new generation of light sources: free-electron lasers (FELs), which are now available at FLASH (Hamburg, Germany) and LCLS (Stanford, U.S.A.). The extremely bright and ultrashort FEL pulses potentially enable CDI to achieve high resolution down to subnanometer length scale. However, intense FEL pulses cause serious radiation damage in bioparticles, even during single shots, which may set the resolution limits for CDI with FELs. Currently, since the signal-to-noise ratio is very low for small biological particles, direct experimental study of radiation damage in the single particle imaging is fairly difficult. Single atomic (noble gas) clusters become good objects to reveal effects of radiation damage processes on CDI with FEL radiation. This thesis studies three aspects of the radiation damage problem, which are treated in three independent chapters: (1) Molecular Dynamics simulations to quantitively describe radiation damage processes within irradiated atomic clusters during single pulses; (2) reconstruction analysis of single-shot CDI diffraction patterns of atomic clusters, which may potentially help to understand the radiation damage occurring in biological samples; and (3) testing the effects of coating water layers in CDI, which is supposed to minimize the radiation damage in irradiated bioparticles. (orig.)

  4. Photocathode guns for single pass X-ray FELs

    International Nuclear Information System (INIS)

    Palmer, D.T.

    1997-10-01

    The present state of the art in photoinjector designs will be presented in this review. The authors discuss both proposed and operational photoinjectors with operating frequencies from L-band (1.424 GHz) to X-band (11.424 GHz). Also a novel pulsed DC gun will be presented. All the RF photoinjector discussed here use an emittance compensation scheme to align the different slices of the electron beam to decrease the beams normalized rms emittance

  5. Advances in X-Band and S-Band Linear Accelerators for Security, NDT, and Other Applications

    CERN Document Server

    Mishin, Andrey V

    2005-01-01

    At AS&E High Energy Systems Division, we designed several new advanced high energy electron beam and X-ray sources. Our primary focus has always been in building the world's most portable commercial X-band accelerators. Today, our X-band systems frequently exceed performance of the similar S-band machines, while they are more portable compared to the latter. The new designs of the X-band accelerators in the most practical energy range from 1 MeV to 6 MeV have been tested delivering outstanding results. Seventy 6 MeV X-band linacs systems have been produced. The most compact linac for security is used by AS&E in a self-shielded, Shaped Energy™ cargo screening system. We pioneered using the X-band linear accelerators for CT, producing high quality images of oil pipes and wood logs. An X-band linear accelerator head on a robotic arm has been used for electron beam radiation curing of an odd-shaped graphite composite part. We developed the broad-range 4 MeV to over 10 MeV energy-regulated X-band ...

  6. Characteristics of the FEL project for the MUH experiment

    International Nuclear Information System (INIS)

    Ciocci, F.; Doria, A.; Fascetti, M.; Gallerano, G.P.; Giannessi, L.; Giovenale, E.; Messina, G.; Picardi, L.; Renieri, A.; Ronci, G.; Ronsivalle, C.; Vignati, A.

    1999-01-01

    The design characteristics of a compact Free Electron Laser (FEL) operating in the far infrared spectral range between 200 and 600 μm are presented in this report. The device can be employed in a fundamental physics experiment to be performed in collaboration with INFN-Trieste and the Paul Sherrer Institute- Villigen. Spectroscopic measurements in the above spectral region will allow one to determine the energy difference between the levels 3D-3P in the μP system with great accuracy [it

  7. Preliminary evaluation of 1′-[18F]fluoroethyl-β-D-lactose ([18F]FEL) for detection of pancreatic cancer in nude mouse orthotopic xenografts

    International Nuclear Information System (INIS)

    Arumugam, Thiruvengadam; Paolillo, Vincenzo; Young, Daniel; Wen, XiaoXia; Logsdon, Craig D.; De Palatis, Louis; Alauddin, Mian M.

    2014-01-01

    Introduction: Early detection of pancreatic cancer could save many thousands of lives. Non-invasive diagnostic imaging, including PET with [ 18 F]FDG, has inadequate resolution for detection of small (2–3 mm) pancreatic tumours. We demonstrated the efficacy of PET imaging with an 18 F-labelled lactose derivative, [ 18 F]FEDL, that targets HIP/PAP, a biomarker that is overexpressed in the peritumoural pancreas. We developed another analogue, 1-[ 18 F]fluoroethyl lactose ([ 18 F]FEL), which is simpler to synthesise, for the same application. We conducted a preliminary evaluation of the new probe and its efficacy in detecting orthotopic pancreatic carcinoma xenografts in mice. Methods: Xenografts were developed in nude mice by injecting L3.6pl/GL + pancreatic carcinoma cells into the pancreas of each mouse. Tumour growth was monitored by bioluminescence imaging (BLI); accuracy of BLI tumour size estimates was verified by MRI in two representative mice. When the tumour size reached approximately 2–3 mm, the animals were injected with [ 18 F]FEL (3.7 MBq) and underwent static PET/CT scans. Blood samples were collected at 2, 5, 10, 20 and 60 min after [ 18 F]FEL injection to track blood clearance. Following imaging, animals were sacrificed and their organs and tumours/pancreatic tissue were collected and counted on a gamma counter. Pancreas, including tumour, was frozen, sliced and used for autoradiography and immunohistochemical analysis of HIP/PAP expression. Results: Tumour growth was rapid, as observed by BLI and MRI. Blood clearance of [ 18 F]FEL was bi-exponential, with half-lives of approximately 3.5 min and 40 min. Mean accumulation of [ 18 F]FEL in the peritumoural pancreatic tissue was 1.29 ± 0.295 %ID/g, and that in the normal pancreas of control animals was 0.090 ± 0.101 %ID/g. [ 18 F]FEL was cleared predominantly by the kidneys. Comparative analysis of autoradiographic images and immunostaining results demonstrated a correlation between [ 18 F]FEL

  8. Magnetic measurement, sorting optimization and adjustment of SDUV-FEL hybrid undulator

    International Nuclear Information System (INIS)

    Wang Tao; Jia Qika

    2007-01-01

    Construction of an undulator includes magnet block measurement, sorting, field measurement and adjustment. Optimizing SDUV-FEL undulator by simulated annealing algorithm using measurement results of the magnet blocks by Helmholtz coil before installing undulator magnets, the cost function can be reduced by three orders of magnitude. The practical parameters of one segment meet the design specifications after adjusting the magnetic field. (authors)

  9. Undulator commissioning by characterization of radiation in x-ray free electron lasers

    Directory of Open Access Journals (Sweden)

    Takashi Tanaka

    2012-11-01

    Full Text Available In x-ray free electron lasers (XFELs where a long undulator composed of many segments is installed, there exist a number of error sources to reduce the FEL gain such as the trajectory error, K value discrepancy, and phase mismatch, which are related to the segmented-undulator structure. Undulator commissioning, which refers to the tuning and alignment processes to eliminate the possible error sources, is thus an important step toward realization of lasing. In the SPring-8 angstrom compact free electron laser (SACLA facility, the undulator commissioning has been carried out by means of characterization of x-ray radiation, i.e., measurements of the spatial and spectral profiles of monochromatized spontaneous undulator radiation as well as by probing the FEL intensity. The achieved tuning and alignment accuracies estimated from the statistics of actual measurements in SACLA show the effectiveness of this commissioning scheme.

  10. Pickup design for high bandwidth bunch arrival-time monitors in free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Angelovski, Aleksandar; Penirschke, Andreas; Jakoby, Rolf [TU Darmstadt (Germany). Institut fuer Mikrowellentechnik und Photonik; Kuhl, Alexander; Schnepp, Sascha [TU Darmstadt (Germany). Graduate School of Computational Engineering; Bock, Marie Kristin; Bousonville, Michael; Schlarb, Holger [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Weiland, Thomas [TU Darmstadt (Germany). Institut fuer Theorie Elektromagnetischer Felder

    2012-07-01

    The increased demands for low bunch charge operation mode in the free-electron lasers (FELs) require an upgrade of the existing synchronization equipment. As a part of the laser-based synchronization system, the bunch arrival-time monitors (BAMs) should have a sub-10 femtosecond precision for high and low bunch charge operation. In order to fulfill the resolution demands for both modes of operation, the bandwidth of such a BAM should be increased up to a cutoff frequency of 40 GHz. In this talk, we present the design and the realization of high bandwidth cone-shaped pickup electrodes as a part of the BAM for the FEL in Hamburg (FLASH) and the European X-ray free-electron laser (European XFEL). The proposed pickup was simulated with CST STUDIO SUITE, and a non-hermetic model was built up for radio frequency (rf) measurements.

  11. Time-resolved electron beam phase space tomography at a soft x-ray free-electron laser

    Directory of Open Access Journals (Sweden)

    Michael Röhrs

    2009-05-01

    Full Text Available High-gain free-electron lasers (FELs in the ultraviolet and x-ray regime put stringent demands on the peak current, transverse emittance, and energy spread of the driving electron beam. At the soft x-ray FEL FLASH, a transverse deflecting microwave structure (TDS has been installed to determine these parameters for the longitudinally compressed bunches, which are characterized by a narrow leading peak of high charge density and a long tail. The rapidly varying electromagnetic field in the TDS deflects the electrons vertically and transforms the time profile into a streak on an observation screen. The bunch current profile was measured single shot with an unprecedented resolution of 27 fs under FEL operating conditions. A precise single-shot measurement of the energy distribution along a bunch was accomplished by using the TDS in combination with an energy spectrometer. Variation of quadrupole strengths allowed for a determination of the horizontal emittance as a function of the longitudinal position within a bunch, the so-called slice emittance. In the bunch tail, a normalized slice emittance of about 2  μm was found, in agreement with expectations. In the leading spike, however, surprisingly large emittance values were observed, in apparent contradiction with the low emittance deduced from the measured FEL gain. By applying three-dimensional phase space tomography, we were able to show that the bunch head contains a central core of low emittance and high local current density, which is presumably the lasing part of the bunch.

  12. Extension of the spectral range of the CLIO FEL

    Energy Technology Data Exchange (ETDEWEB)

    Marcouille, O.; Boyer, J.C.; Corlier, M. [LURE, Orsay (France)] [and others

    1995-12-31

    The CLIO FEL has been designed to lase between 2 and 20 {mu}m. The electrons are produced by a 32/50 MeV RF linear accelerator. The injector is a 100 keV thermoionic gun, followed by a subharmonic prebuncher at 0.5 GHz and a buncher at 3 GHz. The electron beam is then accelerated in a 4.5 m long travelling wave accelerating section, to the nominal energy. The undulator consisted of 48 periods of 40 mm and the optical cavity is 4.8 m long which corresponds to a 1.2 m Rayleigh length. The peak power extracted by a ZnSe Brewster plate is 10 MW at 10 {mu}. But, beyond 11{mu}m, the laser power decreases rapidely and no laser oscillation appears above 17 {mu}m. In order to lase at farther wavelengths, few changes have been made: First of all, the power limit is due to the diffraction losses of the undulator vaccuum chamber (7 mm height and 2 m long). Numerical calculations have been made and show that cavity losses reach 55 % at 15 {mu}m whereas the measured gain is 60 %. Consequently, the undulator vaccuum chamber have been replaced by a approximately twice bigger one. Then, the minimum gap is increased and the maximum deflection parameter K is reduced by a factor 2: laser tunability is greatly reduced. This why a new undulator has been built. The main characteristics are summarized.

  13. Synchronization and sequencing of data acquisition and control electronics at the European X-ray free electron laser

    International Nuclear Information System (INIS)

    Gessler, Patrick

    2015-11-01

    The 3.5 km long European X-Ray Free Electron Laser, currently under construction in northern Germany, will deliver bursts of up to 2700 short X-ray pulses every 100 ms, providing wavelengths between 0.05 and 6 nm, and a repetition rate of 4.5 MHz to several experiment stations. It allows in-depth research in various scientific fields. In order to set-up the beam, position samples and capture the measured variables, information from the accelerator, diagnostic devices and detectors have to be digitized, converted, processed, transferred, concentrated, distributed, reorganized, controlled and saved. All these steps have to be accurately synchronized and sequenced relative to the actual electron bunch or photon pulse in order to guarantee correct data acquisition timings and unique identification of each bunch passing the beamlines. This document provides a complete description of the planning, design, realization and evaluation of the European XFEL Timing System, which implements the synchronization and sequencing of the data acquisition and control electronics for the European X-Ray Free-Electron Laser Facility.

  14. The European UV/VUV storage ring FEL at ELETTRA: first operation and future prospects

    CERN Document Server

    Walker, R P; Couprie, Marie Emmanuelle; Dattoli, Giuseppe; Eriksson, M; Garzella, D; Giannessi, L; Marsi, M; Poole, M W; Renault, E; Roux, R; Trovò, M; Werin, S; Wille, K

    2001-01-01

    A European project to develop the first storage ring free-electron laser on a third-generation synchrotron radiation facility is presented, including a description of the main features, initial performance at 350 and 220 nm and future prospects.

  15. [Multiple linear regression analysis of X-ray measurement and WOMAC scores of knee osteoarthritis].

    Science.gov (United States)

    Ma, Yu-Feng; Wang, Qing-Fu; Chen, Zhao-Jun; Du, Chun-Lin; Li, Jun-Hai; Huang, Hu; Shi, Zong-Ting; Yin, Yue-Shan; Zhang, Lei; A-Di, Li-Jiang; Dong, Shi-Yu; Wu, Ji

    2012-05-01

    To perform Multiple Linear Regression analysis of X-ray measurement and WOMAC scores of knee osteoarthritis, and to analyze their relationship with clinical and biomechanical concepts. From March 2011 to July 2011, 140 patients (250 knees) were reviewed, including 132 knees in the left and 118 knees in the right; ranging in age from 40 to 71 years, with an average of 54.68 years. The MB-RULER measurement software was applied to measure femoral angle, tibial angle, femorotibial angle, joint gap angle from antero-posterir and lateral position of X-rays. The WOMAC scores were also collected. Then multiple regression equations was applied for the linear regression analysis of correlation between the X-ray measurement and WOMAC scores. There was statistical significance in the regression equation of AP X-rays value and WOMAC scores (Pregression equation of lateral X-ray value and WOMAC scores (P>0.05). 1) X-ray measurement of knee joint can reflect the WOMAC scores to a certain extent. 2) It is necessary to measure the X-ray mechanical axis of knee, which is important for diagnosis and treatment of osteoarthritis. 3) The correlation between tibial angle,joint gap angle on antero-posterior X-ray and WOMAC scores is significant, which can be used to assess the functional recovery of patients before and after treatment.

  16. Microbunch preserving bending system for a helical radiator at the European X-ray Free Electron Laser

    Directory of Open Access Journals (Sweden)

    Y. Li

    2010-08-01

    Full Text Available At the European X-ray Free Electron Laser there is a planar undulator system under construction called SASE3, which produces intense linearly polarized light in the wavelength range from 0.4–1.6 nm. Nevertheless there is a strong demand for circularly polarized radiation in this wavelength range. An important part of a potential solution is described in this paper. After the planar undulator the electron beam, which is completely bunched, is sent through a suitable radiator. This can be an economically and technically convenient method to generate radiation with polarization properties, which are determined only by the radiator. If in addition a bend is used to separate the light created by the linear SASE3 from that of the radiator, two beam lines may be served, one with planar and one with circular radiation. In this case the light of the helical radiator is not contaminated by the light generated by the planar system. In order to obtain coherent radiation in the radiator, the microbunching of the planar undulator must be preserved throughout the bend. This is the basic problem. In this paper a fundamental, basic study is made. Several solutions for bending systems are presented, whose complexities, wavelength ranges, and debunching effects are different. The expected circular polarization and radiation power by such a bend are simulated for a model radiator.

  17. Photoneutron intensity variation with field size around radiotherapy linear accelerator 18-MeV X-ray beam

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghamdi, H.; Fazal-ur-Rehman [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Jarallah, M.I. [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)], E-mail: mibrahim@kfupm.edu.sa; Maalej, N. [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2008-08-15

    In X-ray radiotherapy accelerators, neutrons are produced mainly by ({gamma},n) reaction when high energy X-rays interact with high Z materials of the linear accelerator head. These materials include the lead (Pb) used as shielding in the collimator, tungsten (W) target used for the production of X-rays and iron (Fe) in the accelerator head. These unwanted neutrons contaminate the therapeutic beam and contribute to the patient dose during the treatment of a cancer patient. Knowing the neutron distribution around the radiotherapy accelerator is therefore desired. CR-39 nuclear track detectors (NTDs) were used to study the variation of fast and thermal neutron relative intensities around an 18 MeV linear accelerator X-ray beam with the field sizes of 0, 10x10, 20x20, 30x30 and 40x40cm{sup 2}. For fast neutron detection, bare NTDs were used. For thermal neutron detection, NTDs were covered with lithium tetra borate (Li{sub 2}B{sub 4}O{sub 7}) converters. The NTDs were placed at different locations in the direction perpendicular to the treatment couch (transversal) and in the direction parallel to the treatment couch (longitudinal) with respect to the isocenter of the accelerator. The fast neutron relative intensity is symmetrical about the beam axis and exhibits an exponential-like drop with distance from the isocenter of the accelerator for all the field sizes. At the primary beam (isocenter), the relative fast neutron intensity is highest for 40x40cm{sup 2} field size and decreases linearly with the decrease in the field size. However, fast neutron intensities do not change significantly with beam size for the measurements outside the primary beam. The fast neutron intensity in the longitudinal direction outside the primary beam decreases linearly with the field size. The thermal neutron intensity, at any location, was found to be almost independent of the field size.

  18. Ultraviolet laser transverse profile shaping for improving x-ray free electron laser performance

    International Nuclear Information System (INIS)

    Li, S.; Alverson, S.; Bohler, D.; Egger, A.; Fry, A.

    2017-01-01

    The photocathode rf gun is one of the most critical components in x-ray free electron lasers. The drive laser strikes the photocathode surface, which emits electrons with properties that depend on the shape of the drive laser. Most free electron lasers use photocathodes with work function in the ultraviolet, a wavelength where direct laser manipulation becomes challenging. In this paper, we present a novel application of a digital micromirror device (DMD) for the 253 nm drive laser at the Linear Coherent Light Source. Laser profile shaping is accomplished through an iterative algorithm that takes into account shaping error and efficiency. Next, we use laser shaping to control the X-ray laser output via an online optimizer, which shows improvement in FEL pulse energy. Lastly, as a preparation for electron beam shaping, we use the DMD to measure the photocathode quantum efficiency across cathode surface with an averaged laser rms spot size of 59 μm. In conclusion, our experiments demonstrate promising outlook of using DMD to shape ultraviolet lasers for photocathode rf guns with various applications.

  19. Ultraviolet laser transverse profile shaping for improving x-ray free electron laser performance

    Science.gov (United States)

    Li, S.; Alverson, S.; Bohler, D.; Egger, A.; Fry, A.; Gilevich, S.; Huang, Z.; Miahnahri, A.; Ratner, D.; Robinson, J.; Zhou, F.

    2017-08-01

    The photocathode rf gun is one of the most critical components in x-ray free electron lasers. The drive laser strikes the photocathode surface, which emits electrons with properties that depend on the shape of the drive laser. Most free electron lasers use photocathodes with work function in the ultraviolet, a wavelength where direct laser manipulation becomes challenging. In this paper, we present a novel application of a digital micromirror device (DMD) for the 253 nm drive laser at the Linear Coherent Light Source. Laser profile shaping is accomplished through an iterative algorithm that takes into account shaping error and efficiency. Next, we use laser shaping to control the X-ray laser output via an online optimizer, which shows improvement in FEL pulse energy. Lastly, as a preparation for electron beam shaping, we use the DMD to measure the photocathode quantum efficiency across cathode surface with an averaged laser rms spot size of 59 μ m . Our experiments demonstrate promising outlook of using DMD to shape ultraviolet lasers for photocathode rf guns with various applications.

  20. Microbunching Instability Effect Studies and Laser Heater Optimization for the SPARX FEL Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Vaccarezza, C.; Chiadroni, E.; Ferrario, M.; Giannessi, L.; Quattromini, M.; Ronsivalle, C.; Venturini, C.; Migliorati, M.; Dattoli, G.

    2010-05-23

    The effects of microbunching instability for the SPARX accelerator have been analyzed by means of numerical simulations. The laser heater counteracting action has been addressed in order to optimize the parameters of the compression system, either hybrid RF plus magnetic chicane or only magnetic, and possibly enhance the FEL performance.

  1. Spectrometer for X-ray emission experiments at FERMI free-electron-laser

    International Nuclear Information System (INIS)

    Poletto, L.; Frassetto, F.; Miotti, P.; Di Cicco, A.; Iesari, F.; Finetti, P.; Grazioli, C.; Kivimäki, A.; Stagira, S.; Coreno, M.

    2014-01-01

    A portable and compact photon spectrometer to be used for photon in-photon out experiments, in particular x-ray emission spectroscopy, is presented. The instrument operates in the 25–800 eV energy range to cover the full emissions of the FEL1 and FEL2 stages of FERMI. The optical design consists of two interchangeable spherical varied-lined-spaced gratings and a CCD detector. Different input sections can be accommodated, with/without an entrance slit and with/without an additional relay mirror, that allow to mount the spectrometer in different end-stations and at variable distances from the target area both at synchrotron and at free-electron-laser beamlines. The characterization on the Gas Phase beamline at ELETTRA Synchrotron (Italy) is presented

  2. Influence of the partial temporal coherence of short FEL pulses on two-colour photoionization and photoinduced Auger decay of atoms

    International Nuclear Information System (INIS)

    Kazansky, A K; Sazhina, I P; Kabachnik, N M

    2013-01-01

    The influence of the partial temporal coherence of free electron laser (FEL) radiation on the sidebands arising in the electron spectra of laser-assisted photoionization and photoinduced Auger decay of atoms is theoretically analysed. A simple model is developed which describes the inner-shell photoionization by a short (femtosecond) FEL pulse and the following Auger decay in a strong field of an infrared laser. The model is based on the time-dependent approach and uses the strong field approximation for both photo- and Auger electrons. Particular calculations have been carried out for Ne 1s photoionization and KLL Auger emission. We demonstrate that the temporal coherence of FEL pulses influences the line widths in the photoelectron spectrum. For a small coherence time the sidebands in this spectrum cannot be resolved. On the other hand, our calculations show that in the Auger electron spectrum the sidebands are practically independent of the coherence time of the ionizing pulse.

  3. Materials analysis using x-ray linear attenuation coefficient measurements at four photon energies

    International Nuclear Information System (INIS)

    Midgley, S M

    2005-01-01

    The analytical properties of an accurate parameterization scheme for the x-ray linear attenuation coefficient are examined. The parameterization utilizes an additive combination of N compositional- and energy-dependent coefficients. The former were derived from a parameterization of elemental cross-sections using a polynomial in atomic number. The compositional-dependent coefficients are referred to as the mixture parameters, representing the electron density and higher order statistical moments describing elemental distribution. Additivity is an important property of the parameterization, allowing measured x-ray linear attenuation coefficients to be written as linear simultaneous equations, and then solved for the unknown coefficients. The energy-dependent coefficients can be determined by calibration from measurements with materials of known composition. The inverse problem may be utilized for materials analysis, whereby the simultaneous equations represent multi-energy linear attenuation coefficient measurements, and are solved for the mixture parameters. For in vivo studies, the choice of measurement energies is restricted to the diagnostic region (approximately 20 keV to 150 keV), where the parameterization requires N ≥ 4 energies. We identify a mathematical pathology that must be overcome in order to solve the inverse problem in this energy regime. An iterative inversion strategy is presented for materials analysis using four or more measurements, and then tested against real data obtained at energies 32 keV to 66 keV. The results demonstrate that it is possible to recover the electron density to within ±4% and fourth mixture parameter. It is also a key finding that the second and third mixture parameters cannot be recovered, as they are of minor importance in the parameterization at diagnostic x-ray energies

  4. Measurement of picometre non-linearity in an optical grating encoder using x-ray interferometry

    Science.gov (United States)

    Yacoot, Andrew; Cross, Nigel

    2003-01-01

    X-ray interferometry has been used to characterize the non-linearity in an optical encoder displacement measuring system. Traceable measurements of the non-linearity have been made and an estimation of the uncertainty associated with the measurements is given. Cyclic errors with a magnitude of up to 50 pm and periodicity of the encoder system (128 nm) have been recorded.

  5. Development of a Pump-Probe System using a Non-Coated ZnSe Beam Splitter Cube for an MIR-FEL

    CERN Document Server

    Heya, Manabu; Horiike, Hiroshi; Ishii, Katsonuri; Suzuki, Sachiko

    2004-01-01

    A pump-probe technique is essential for a proper understanding of laser interaction with tissue and material. Our pump-probe system divides the incident mid-infrared Free Electron Laser (MIR-FEL) into two beams with equal intensity, and crosses simultaneously the two incoming beams at the same position. One is for a pump beam, another is for a probe beam. Time-resolved absorption spectroscopy involving this technique gives us information on the vibrational dynamics of molecules. We have developed this system for an MIR-FEL using a non-coating ZnSe beam splitter cube. The beam splitter cube is composed of two ZnSe prisms in the shape like a trapezoid. The two pulses with equal intensity are generated due to Fresnel reflection and transmission at the boundary between two prisms, then are reflected due to total reflection at other side boundaries between each prism and air, and illuminate simultaneously the same spot. We have conducted a proof-of-concept of experiment of this system using an MIR-FEL. We showed t...

  6. A linear motion machine for soft x-ray interferometry

    International Nuclear Information System (INIS)

    Duarte, R.; Howells, M.R.; Hussain, Z.; Lauritzen, T.; McGill, R.

    1997-07-01

    A Fourier Transform X-ray Spectrometer has been designed and built for use at the Advanced light source at Lawrence Berkeley National Laboratory. The design requires a total rectilinear motion of 15 mm with a maximum pitch error of the stage below ±0.4 μradians, to achieve this the authors chose to build the entire machine as a single monolithic flexure. A hydraulic driver with sliding O-ring seals was developed with the intention to provide motion with a stick-slip position error of less than 0.8 nm at a uniform velocity of 20 μm/sec. The machine is comprised of two pairs of nested linear motion flexures, all explained by means of a theory published earlier by Hathaway. Certain manufacturing errors were successfully corrected by an extra weak-link feature in the monolith frame. The engineering details of all the subsystems of the linear motion machine are described and measured performance reported

  7. Design of RF chopper system for improving beam quality in FEL injector with thermionic gun

    International Nuclear Information System (INIS)

    Chen, Q.; Qin, B.; Tan, P.; Hu, T.; Pei, Y.; Zhang, F.

    2014-01-01

    For a linac-based Free Electron Laser (FEL), good beam quality largely contributes to the success of the final radiation. An imperfection confronted with the HUST THz-FEL facility is the long beam tail that emerges in the electron gun and exists through the whole beam line. This paper proposes to deploy a chopper system after the electron gun to truncate the beam tails before they enter into the linac. Physical dimensions of the chopper cavity are discussed in detail and we have developed and derived new analytical expressions applying to all frequencies for the optimal design. Also, technical issues of the cavity are considered. Beam dynamic simulation is performed to examine the truncation effect and the results show that more than 78% of the beam tail can be removed effectively, while preserving the emittance and energy spread in acceptable level

  8. Millimeter-wave FEL-oscillator with a new type Bragg resonator: advantages in efficiency and selectivity

    CERN Document Server

    Ginzburg, N S; Kaminsky, A K; Peskov, N Yu; Sedykh, S N; Sergeev, A P

    2000-01-01

    An FEL-oscillator with a new type of Bragg resonator was realized on the basis of linac LIU-3000 (JINR, Dubna) (0.8 MeV/200 A/200 ns). This resonator consists of two corrugated waveguide sections having a step of phase pi between the corrugations at the point of connection. The selective properties of a resonator of this type are significantly improved in comparison with a traditional two-mirror Bragg resonator. The output power was about 50 MW at a frequency of 30.7 GHz with the optimal parameters of the resonator, which corresponds to the efficiency of 35%, which is the highest for millimeter wavelength FEL. Radiation at the fundamental mode and the two side modes with the frequencies coincided to the 'cold' microwave testing was separately observed depending on the magnetic fields of the wiggler and solenoid.

  9. Camera for coherent diffractive imaging and holography with a soft-x-ray free-electron laser

    International Nuclear Information System (INIS)

    Bajt, Sasa; Chapman, Henry N.; Spiller, Eberhard A.; Alameda, Jennifer B.; Woods, Bruce W.; Frank, Matthias; Bogan, Michael J.; Barty, Anton; Boutet, Sebastien; Marchesini, Stefano; Hau-Riege, Stefan P.; Hajdu, Janos; Shapiro, David

    2008-01-01

    We describe a camera to record coherent scattering patterns with a soft-x-ray free-electron laser (FEL). The camera consists of a laterally graded multilayer mirror, which reflects the diffraction pattern onto a CCD detector. The mirror acts as a bandpass filter for both the wavelength and the angle, which isolates the desired scattering pattern from nonsample scattering or incoherent emission from the sample. The mirror also solves the particular problem of the extreme intensity of the FEL pulses, which are focused to greater than 10 14 W/cm 2 . The strong undiffracted pulse passes through a hole in the mirror and propagates onto a beam dump at a distance behind the instrument rather than interacting with a beam stop placed near the CCD. The camera concept is extendable for the full range of the fundamental wavelength of the free electron laser in Hamburg (FLASH) FEL (i.e., between 6 and 60 nm) and into the water window. We have fabricated and tested various multilayer mirrors for wavelengths of 32, 16, 13.5, and 4.5 nm. At the shorter wavelengths mirror roughness must be minimized to reduce scattering from the mirror. We have recorded over 30,000 diffraction patterns at the FLASH FEL with no observable mirror damage or degradation of performance

  10. Status of RF system for the JAERI energy-recovery linac FEL

    International Nuclear Information System (INIS)

    Sawamura, Masaru; Nagai, Ryoji

    2006-01-01

    The two types of the RF sources are used for the JAERI ERL-FEL. One is an all-solid state amplifier and the other is an inductive output tube (IOT). There are advantages of little failure and wide bandwidth for the all-solid state amplifier, low cost and high efficiency for IOT. The property of low cost with the IOT is suitable for a large machine like an energy recovery linac (ERL)

  11. Mode Dynamics in the Bragg FEL Based on Coupling of Propagating and Trapped Waves

    CERN Document Server

    Ginzburg, N S; Peskov, N Yu; Rozental, R M; Sergeev, A; Zaslavsky, V Yu

    2005-01-01

    A novel Bragg FEL scheme is discussed in which an electron beam synchronously interacts with a propagating wave, and the latter is coupled to a quasi cut-off mode. This coupling is realized by either helical or asimuthally symmetric corrugation of the waveguide walls. The quasi cut-off mode provides feedback in the system leading to self-excitation of the whole system while the efficiency in steady-state regime of generation is almost completely determined by the propagating mode, synchronous to the beam. Analysis based on averaged time domain approach as well as on direct PIC code simulation shows that the efficiency of such a device in the single mode single frequency regime can be rather high. The main advantage of the novel Bragg resonator is provision of higher selectivity over transverse index than traditional scheme of Bragg FEL. The cold microwave testing of the Bragg structure based on coupling of propagating and trapped waves in the Ka band demonstrated a good agreement with theoretical consideratio...

  12. Amplification of a bi-phase shift-key modulated signal by a mm-wave FEL

    International Nuclear Information System (INIS)

    Prosnitz, D.; Scharlemann, E.T.; Sheaffer, M.K.

    1991-10-01

    Bi-phase shift keying (BPSK) is a modulation scheme used in communications and radar in which the phase of a transmitted rf signal is switched in a coded pattern between discrete values differing by π radians. The transmitted information rate (in communications) or resolution (in imaging radar) depends on the rate at which the transmitted signal can be modulated. Modulation rates of greater than 1 GHz are generally desired. Although the instantaneous gain bandwidth of a mm-wave FEL amplifier can be much greater than 10 GHz, slippage may limit the BPSK modulation rate that can be amplified. Qualitative slippage arguments would limit the modulation rate to relatively low values; nevertheless, simulations with a time-dependent FEL code (GINGER) indicate that rates of 2 GHz or more are amplified without much loss in modulation integrity. In this paper we describe the effects of slippage in the simulations and discuss the limits of simple arguments

  13. Comments on advanced, time-resolved imaging techniques for free-electron laser (FEL) experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.

    1992-01-01

    An extensive set of time-resolved imaging experiments has been performed on rf-linac driven free-electron lasers (FELs) over the past few years. These experiments have addressed both micropulse and macropulse timescales on both the charged-particle beam and the wiggler/undulator outputs (spontaneous emission and lasing). A brief review of first measurements on photoinjecter micropulse elongation, submacropulse phase slew in drive lasers, submacropulse wavelength shifts in lasers, etc. is presented. This is followed by discussions of new measurements of 35-MeV electron beam micropulse bunch length (<10 ps) using optical transition radiation, some of the first single bend synchrotron radiation beam profile measurements at gamma <80, and comments on the low-jitter synchroscan streak camera tuner. These techniques will be further developed on the 200-650 MeV linac test stand at the Advanced Photon Source (APS) in the next few years. Such techniques should be adaptable to many of the present FEL designs and to some aspects of the next generation of light sources.

  14. Comments on advanced, time-resolved imaging techniques for free-electron laser (FEL) experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.

    1992-11-01

    An extensive set of time-resolved imaging experiments has been performed on rf-linac driven free-electron lasers (FELs) over the past few years. These experiments have addressed both micropulse and macropulse timescales on both the charged-particle beam and the wiggler/undulator outputs (spontaneous emission and lasing). A brief review of first measurements on photoinjecter micropulse elongation, submacropulse phase slew in drive lasers, submacropulse wavelength shifts in lasers, etc. is presented. This is followed by discussions of new measurements of 35-MeV electron beam micropulse bunch length (<10 ps) using optical transition radiation, some of the first single bend synchrotron radiation beam profile measurements at gamma <80, and comments on the low-jitter synchroscan streak camera tuner. These techniques will be further developed on the 200-650 MeV linac test stand at the Advanced Photon Source (APS) in the next few years. Such techniques should be adaptable to many of the present FEL designs and to some aspects of the next generation of light sources.

  15. Digital low level RF control system for the DESY TTF VUV-FEL Linac

    International Nuclear Information System (INIS)

    Ayvazyan, V.; Choroba, S.; Matyushin, A.; Moeller, G.; Petrosyan, G.; Rehlich, K.; Simrock, S.N.; Vetrov, P.

    2005-01-01

    In the RF system for the Vacuum Ultraviolet Free Electron Laser (VUV-FEL) Linac each klystron supplies RF power to up to 32 cavities. The superconducting cavities are operated in pulsed mode and high accelerating gradients close to the performance limit. The RF control of the cavity fields to the level of 10 -4 for amplitude and 0.1 degree for phase however presents a significant technical challenge due to the narrow bandwidth of the cavities which results in high sensitivity to perturbations of the resonance frequency by mechanical vibrations (microphonics) and Lorenz force detuning. The VUV-FEL Linac RF control system employs a completely digital feedback system to provide flexibility in the control algorithms, precise calibration of the accelerating field vector-sum, and extensive diagnostics and exception handling capabilities. The RF control algorithm is implemented in DSP (Digital Signal Processor) firmware and DOOCS (Distributed Object Oriented Control System) servers. The RF control system design objectives are discussed. Hardware and software design of the DSP based RF control are presented. (orig.)

  16. Digital low level RF control system for the DESY TTF VUV-FEL Linac

    Energy Technology Data Exchange (ETDEWEB)

    Ayvazyan, V.; Choroba, S.; Matyushin, A.; Moeller, G.; Petrosyan, G.; Rehlich, K.; Simrock, S.N.; Vetrov, P.

    2005-07-01

    In the RF system for the Vacuum Ultraviolet Free Electron Laser (VUV-FEL) Linac each klystron supplies RF power to up to 32 cavities. The superconducting cavities are operated in pulsed mode and high accelerating gradients close to the performance limit. The RF control of the cavity fields to the level of 10{sup -4} for amplitude and 0.1 degree for phase however presents a significant technical challenge due to the narrow bandwidth of the cavities which results in high sensitivity to perturbations of the resonance frequency by mechanical vibrations (microphonics) and Lorenz force detuning. The VUV-FEL Linac RF control system employs a completely digital feedback system to provide flexibility in the control algorithms, precise calibration of the accelerating field vector-sum, and extensive diagnostics and exception handling capabilities. The RF control algorithm is implemented in DSP (Digital Signal Processor) firmware and DOOCS (Distributed Object Oriented Control System) servers. The RF control system design objectives are discussed. Hardware and software design of the DSP based RF control are presented. (orig.)

  17. An MCNP-based model of a medical linear accelerator x-ray photon beam.

    Science.gov (United States)

    Ajaj, F A; Ghassal, N M

    2003-09-01

    The major components in the x-ray photon beam path of the treatment head of the VARIAN Clinac 2300 EX medical linear accelerator were modeled and simulated using the Monte Carlo N-Particle radiation transport computer code (MCNP). Simulated components include x-ray target, primary conical collimator, x-ray beam flattening filter and secondary collimators. X-ray photon energy spectra and angular distributions were calculated using the model. The x-ray beam emerging from the secondary collimators were scored by considering the total x-ray spectra from the target as the source of x-rays at the target position. The depth dose distribution and dose profiles at different depths and field sizes have been calculated at a nominal operating potential of 6 MV and found to be within acceptable limits. It is concluded that accurate specification of the component dimensions, composition and nominal accelerating potential gives a good assessment of the x-ray energy spectra.

  18. Neutron dose rate at the SwissFEL injector test facility: first measurements

    International Nuclear Information System (INIS)

    Hohmann, E.; Frey, N.; Fuchs, A.; Harm, C.; Hoedlmoser, H.; Luescher, R.; Mayer, S.; Morath, O.; Philipp, R.; Rehmann, A.; Schietinger, T.

    2014-01-01

    At the Paul Scherrer Institute, the new SwissFEL Free Electron Laser facility is currently in the design phase. It is foreseen to accelerate electrons up to a maximum energy of 7 GeV with a pulsed time structure. An injector test facility is operated at a maximum energy of 300 MeV and serves as the principal test and demonstration plant for the SwissFEL project. Secondary radiation is created in unavoidable interactions of the primary beam with beamline components. The resulting ambient dose-equivalent rate due to neutrons was measured along the beamline with different commercially available survey instruments. The present study compares the readings of these neutron detectors (one of them is specifically designed for measurements in pulsed fields). The experiments were carried out in both, a normal and a diagnostic mode of operation of the injector. Measurements were taken at the SwissFEL injector test facility using three different types of commercially available survey instruments for normal and diagnostic mode of operation at different positions inside the accelerator vault. During normal operation, the doses indicated by the different instruments agree within the measurement uncertainty except for the beam dump region. There, due to its limited energy range and high sensitivity, the LB6411 shows significantly lower dose values than the other instruments. The photon background in the vault associated with each pulse causes the scintillator used by the LB6419 to saturate. As a result, only the channel using the delayed 12 C(n,p)12-reaction could be used during the measurements. The highest doses per pulse were measured next to the beam dump and the bunch compressor. For the optimisation of the accelerator, luminescent screens can be inserted into the beam path causing a dose distributed over several metres depending on the screen type. The dose arise to 40 % from neutrons with energies of >20 MeV. Although the charge of each pulse were reduced to decrease

  19. The simultaneous measurement of energy and linear polarization of the scattered radiation in resonant inelastic soft x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Braicovich, L., E-mail: lucio.braicovich@polimi.it; Minola, M.; Dellea, G.; Ghiringhelli, G. [CNR-SPIN and Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo Da Vinci 32, Milano I-20133 (Italy); Le Tacon, M. [Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart (Germany); Moretti Sala, M.; Morawe, C.; Peffen, J.-Ch.; Yakhou, F.; Brookes, N. B. [European Synchrotron Radiation Facility, 71 Avenue des Martyrs, Grenoble F-38043 (France); Supruangnet, R. [Synchrotron Light Research Institute, Nakhon Ratchasima (Thailand)

    2014-11-15

    Resonant Inelastic X-ray Scattering (RIXS) in the soft x-ray range is an element-specific energy-loss spectroscopy used to probe the electronic and magnetic excitations in strongly correlated solids. In the recent years, RIXS has been progressing very quickly in terms of energy resolution and understanding of the experimental results, but the interpretation of spectra could further improve, sometimes decisively, from a full knowledge of the polarization of incident and scattered photons. Here we present the first implementation, in a high resolution soft-RIXS spectrometer used to analyze the scattered radiation, of a device allowing the measurement of the degree of linear polarization. The system, based on a graded W/B{sub 4}C multilayer mirror installed in proximity of the CCD detector, has been installed on the AXES spectrometer at the ESRF (European Synchrotron Radiation Facility); it has been fully characterized and it has been used for a demonstration experiment at the Cu L{sub 3} edge on a high-T{sub c} superconducting cuprate. The loss in efficiency suffered by the spectrometer equipped with this test facility was a factor 17.5. We propose also a more advanced version, suitable for a routine use on the next generation of RIXS spectrometers and with an overall efficiency up to 10%.

  20. Gadolinium retention after administration of contrast agents based on linear chelators and the recommendations of the European Medicines Agency

    International Nuclear Information System (INIS)

    Dekkers, Ilona A.; Roos, Rick; Molen, Aart J. van der

    2018-01-01

    The Pharmacovigilance Risk Assessment Committee (PRAC) of the European Medicines Agency (EMA) earlier this year recommended to suspend some marketing authorisations for Gadolinium Containing Contrast Agents (GCCAs) based on linear chelators due to the potential risk of gadolinium retention in the human body. These recommendations have recently been re-evaluated by EMA's Committee for Medicinal Products for Human Use (CHMP), and confirmed the final opinion of the European Medicines Agency. This editorial provides an overview of the available GCCAs and summarises the recent evidence of gadolinium retention. Moreover, a critical appraisal of the strengths and limitations of the scientific evidence currently available on gadolinium retention is given. (orig.)

  1. Construction and Commissioning of PAL-XFEL Facility

    Directory of Open Access Journals (Sweden)

    In Soo Ko

    2017-05-01

    Full Text Available The construction of Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL, a 0.1-nm hard X-ray free-electron laser (FEL facility based on a 10-GeV S-band linear accelerator (LINAC, is achieved in Pohang, Korea by the end of 2016. The construction of the 1.11 km-long building was completed by the end of 2014, and the installation of the 10-GeV LINAC and undulators started in January 2015. The installation of the 10-GeV LINAC, together with the undulators and beamlines, was completed by the end of 2015. The commissioning began in April 2016, and the first lasing of the hard X-ray FEL line was achieved on 14 June 2016. The progress of the PAL-XFEL construction and its commission are reported here.

  2. Luminescence from ZnSe excited by picosecond mid-infrared FEL pulses

    International Nuclear Information System (INIS)

    Mitsuyu, T.; Suzuki, T.; Tomimasu, T.

    1998-01-01

    We have observed blue band-edge emission from a ZnSe crystal under irradiation of mid-infrared picosecond free electron laser (FEL) pulses. The emission characteristics including spectrum, excitation power dependence, excitation wavelength dependence, and decay time have been investigated. The experimental results have indicated that it is difficult to understand the excitation process by multiphoton excitation, thermal excitation, or excitation through mid-gap levels. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  3. Electron gun for the Fel Clio

    International Nuclear Information System (INIS)

    Chaput, R.

    1990-01-01

    A triode electron gun has been developed and manufactured at LURE (Laboratoire pour l'Utilisation du Rayonnement Electromagnetique) and LAL (Laboratoire de l'Accelerateur Lineaire) for the free electron laser CLIO 1 (Collaboration pour un laser a electrons libres dans l'infrarouge a Orsay) now under construction: this gun involves a grid-cathode assembly manufactured by EIMAC, currently used in the SLAC gun family. For the FEL requirements, the gun must be able to yield a train of short pulses at accuracy frequency or a continuous pulse. Driving together the cathode and the grid the gun produces a continous beam of 12 μs or a pulsed beam of very short pulse of 1 ns at 250 MHz, 125 MHz, 62.5 MHz or 31.25 MHz. The performances of the gun has been tested on a testing bench. A peak current of 1 Amp. for 1 ns width at any frequencies was achieved at an injection voltage of 90 kV

  4. Free Electron Lasers 1998. Proceedings of the Twentieth International Free Electron Laser Conference Held in Williamsburg, Virginia, USA, on August 16-21, 1998

    National Research Council Canada - National Science Library

    Neil, G

    1999-01-01

    .... Sessions highlighting research in the following topics were: New Lasing, FEL Theory, SASE FELs, Accelerator Technology, FEL Technology, Linac-Based FELS, Storage-Ring-Based FELs, UV and X-ray Sources, and New Concepts...

  5. Upgrade of a control system for the JAERI ERL-FEL

    International Nuclear Information System (INIS)

    Kikuzawa, Nobuhiro

    2004-01-01

    The accelerator control system used for the JAERI ERL-FEL is a PC-based distributed control system that has been in operation since 1992. Since an interface bus of the PCs is obsolete, interface boards for the PCs are difficult to obtain in recent years. Thus we have been developing the CAMAC controller with μITRON operating system to replace the old PCs connected with CAMAC. We will introduce a Java and CORBA environment in the new control system. The control system upgrade, including hardware upgrading and applications rewriting, is described in this paper. (author)

  6. Design study of a far-infrared free electron laser with a 20 MeV RF linear accelerator

    International Nuclear Information System (INIS)

    Nakata, S.; Tsukishima, C.; Hifumi, T.; Okuda, S.; Sato, S.; Yosojima, Y.

    1991-01-01

    A FEL in the far-infrared region has been designed using a low energy RF linear accelerator. First we estimate a small signal gain from spontaneous emission using the Madey's theorem. In the calculation following effects are included: an actual field distribution (using a measured magnetic field), beam envelope in the phase space through the undulator, energy spread, and electron beam mis-alignment to the undulator axis. We have developed a code which can simulate three dimensional processes of the electron interaction with multi-mode laser fields in the undulator. From this code we could obtain the time dependent bunching process of electrons and amplification of the laser field. During the calculation we assume an electron beam of 20 MeV, 100 mA with a pulse length of 3 μs, and an undulator of 28 periods, 6 cm periodic length and 2.5 kG peak field. The results from these calculations show that the small-signal gain over 40 % can be obtained, but mis-alignment of the beam severely degrades the gain. The results also show that the output power of several MW can be obtained under the above conditions. Considering the simulation results, a FEL beam line was constructed and the beam size at the undulator was measured. And electrons were focused enough for the FEL experiment. (author)

  7. X-ray topographic studies of organic and non-linear optical materials

    International Nuclear Information System (INIS)

    Halfpenny, P. J.; Sherwood, J. N.; Simpson, G. S.

    1997-01-01

    The flexible and non-destructive nature of X-ray topography is ideally suited to the study of large single crystals for both fundamental research and technological applications as well as the optimisation of crystal growth processes. Three examples are discussed, illustrating the application of X-ray topographic methods to non-linear optical (NLO) crystals. Synchrotron radiation section topography has been applied to the examination of large organic crystals. X-ray topography has been used to examine growth defects and the quality of crystals of m-nitroaniline (mNA) grown by the Bridgeman method. These studies allow evaluation of growth parameters together with their influence on defect density and show that in the case of mNA, remarkably low defect densities can be achieved under optimum growth conditions. Double-crystal reflection topography, with synchrotron radiation has been used to image defects intersecting the (011) faces of the inorganic NLO material potassium titanyl phosphate (KTP). X-ray images have been combined with optical microscopy and interferometry to provide valuable information on the crystal growth process

  8. Two-beam accelerator

    International Nuclear Information System (INIS)

    Sessler, A.M.; Hopkins, D.B.

    1986-06-01

    The Two-Beam Accelerator (TBA) consists of a long high-gradient accelerator structure (HGS) adjacent to an equal-length Free Electron Laser (FEL). In the FEL, a beam propagates through a long series of undulators. At regular intervals, waveguides couple microwave power out of the FEL into the HGS. To replenish energy given up by the FEL beam to the microwave field, induction accelerator units are placed periodically along the length of the FEL. In this manner it is expected to achieve gradients of more than 250 MV/m and thus have a serious option for a 1 TeV x 1 TeV linear collider. The state of present theoretical understanding of the TBA is presented with particular emphasis upon operation of the ''steady-state'' FEL, phase and amplitude control of the rf wave, and suppression of sideband instabilities. Experimental work has focused upon the development of a suitable HGS and the testing of this structure using the Electron Laser Facility (ELF). Description is given of a first test at ELF with a seven-cell 2π/3 mode structure which without preconditioning and with a not-very-good vacuum nevertheless at 35 GHz yielded an average accelerating gradient of 180 MV/m

  9. Selected applications of planar permanent magnet multipoles in FEL insertion device design

    International Nuclear Information System (INIS)

    Tatchyn, R.

    1993-08-01

    In recent work, a new class of magnetic multipoles based on planar configurations of permanent magnet (PM) material has been developed. These structures, in particular the quadrupole and sextupole, feature fully open horizontal apertures, and are comparable in effectiveness to conventional iron multipole structures. In this paper results of recent measurements of planar PM quadrupoles and sextupoles are reported and selected applications to FEL insertion device design are considered

  10. The effects of magnetic fringe fields on beam dynamics in a beam transport line of a terahertz FEL source

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Han [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Xiong, Yongqian, E-mail: yqxiong@mail.hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Pei, Yuanji [National Synchrotron Radiation laboratory, University of Science and Technology of China, Hefei 230029, Anhui (China)

    2014-11-11

    The transport line used in a terahertz FEL device has to transport electron beam through the entire system efficiently and meet the requirements of the beam parameters at the undulator entrance. Due to space limitations, the size of the magnets (five quadrupoles and two bending magnets) employed in the transport line was limited, and some devices were densely packed. In this paper, analyses of the effect of fringe fields and magnetic interference of magnets are presented. 3D models of these magnets are built and their linear optical properties are compared with those obtained by hard edge models. The results indicated that the effects of these factors are significant and they would cause a mismatch of the beam at the exit of the transport line under the preliminary lattice design. To solve this problem, the beam was re-matched using the particle swarm optimization algorithm.

  11. Plasma Wakefield Accelerated Beams for Demonstration of FEL Gain at FLASHForward

    OpenAIRE

    Niknejadi, Pardis; Aschikhin, Alexander; Hu, Zhanghu; Karstensen, Sven; Knetsch, Alexander; Kononenko, Olena; Libov, Vladyslav; Ludwig, Kai; Martinez de la Ossa, Alberto; Marutzky, Frank; Mehrling, Timon; Osterhoff, Jens; Behrens, Christopher; Palmer, Charlotte; Poder, Kristjan

    2017-01-01

    FLASHForward is the Future-ORiented Wakefield Accelerator Research and Development project at the DESY free-electron laser (FEL) facility FLASH. It aims to produce high-quality, GeV-energy electron beams over a plasma cell of a few centimeters. The plasma is created by means of a 25 TW Ti:Sapphire laser system. The plasma wakefield will be driven by high-current-density electron beams extracted from the FLASH accelerator. The project focuses on the advancement of plasma-based particle acceler...

  12. Design of a bolometer for total-energy measurement of the linear coherent light source pulsed X-ray laser

    International Nuclear Information System (INIS)

    Friedrich, S.; Li, L.; Ott, L.L.; Kolgani, Rajeswari M.; Yong, G.J.; Ali, Z.A.; Drury, O.B.; Ables, E.; Bionta, R.M.

    2006-01-01

    We are developing a cryogenic bolometer to measure the total energy of the linear coherent light source (LCLS) free electron X-ray laser to be built at the Stanford Linear Accelerator Center. The laser will produce ultrabright X-ray pulses in the energy range between 0.8 and 8 keV with ∼10 12 photons per ∼200 fs pulse at a repeat interval of 8 ms, and will be accompanied by a halo of spontaneous undulator radiation. The bolometer is designed to determine the total energy of each laser pulse to within (1- x ) Sr x MnO 3 sensor array at the metal-insulator transition, where the composition x is adjusted to produce the desired transition temperature. We discuss design considerations and material choices, and present numerical simulations of the thermal response

  13. Comprehensive z-dependent measurements of electron-beam microbunching using COTR in a saturated SASE FEL

    CERN Document Server

    Lumpkin, Alex H; Lewellen, J W; Berg, W; Biedron, S G; Borland, M; Chae, Y; Erdmann, M; Huang, Z; Kim, K J; Li, Y; Milton, S V; Moog, E; Rule, D W; Sajaev, Vadim; Yang, B X

    2002-01-01

    We report the initial, comprehensive set of z-dependent measurements of electron-beam microbunching using coherent optical transition radiation (Cot) in a saturated self-amplified spontaneous emission (SASE) free-electron laser (FEL) experiment. In this case the FEL was operated near 530 nm using an enhanced facility including a bunch-compressed photocathode gun electron beam, linac, and 21.6 m of undulator length. The longitudinal microbunching was tracked by inserting a metal foil and mirror after each of the nine 2.4-m-long undulators and measuring the visible COTR spectra, intensity, angular, distribution, and spot size. We observed for the first time the z-dependent transition of the COTR spectra from simple lines to complex structure/sidebands near saturation. We also observed the change in the microbunching fraction after saturation, multiple fringes in the COTR interferogram that are consistent with involvement of a smaller core of the e-beam transverse distribution, and the second harmonic content of...

  14. The Israeli EA-FEL Upgrade Towards Long Pulse Operation for Ultra-High Resolution Single Pulse Coherent Spectroscopy

    CERN Document Server

    Gover, A; Kanter, M; Kapilevich, B; Litvak, B; Peleg, S; Socol, Y; Volshonok, M

    2005-01-01

    The Israeli Electrostatic Accelerator FEL (EA-FEL) is now being upgraded towards long pulse (1005s) operation and ultra-high resolution (10(-6)) single pulse coherent spectroscopy. We present quantitative estimations regarding the applications of controlled radiation chirp for spectroscopic applications with pulse-time Fourier Transform limited spectral resolution. Additionally, we describe a novel extraction-efficiency-improving scheme based on increase of accelerating voltage (boosting) after saturation is achieved. The efficiency of the proposed scheme is confirmed by theoretical and numerical calculations. The latter are performed using software, based on 3D space-frequency domain model. The presentation provides an overview of the upgrade status: the high-voltage terminal is being reconfigured to accept the accelerating voltage boost system; a new broad band low-loss resonator is being manufactured; multi-stage depressed collector is assembled.

  15. Special issue on compact x-ray sources

    Science.gov (United States)

    Hooker, Simon; Midorikawa, Katsumi; Rosenzweig, James

    2014-04-01

    Journal of Physics B: Atomic, Molecular and Optical Physics is delighted to announce a forthcoming special issue on compact x-ray sources, to appear in the winter of 2014, and invites you to submit a paper. The potential for high-brilliance x- and gamma-ray sources driven by advanced, compact accelerators has gained increasing attention in recent years. These novel sources—sometimes dubbed 'fifth generation sources'—will build on the revolutionary advance of the x-ray free-electron laser (FEL). New radiation sources of this type have widespread applications, including in ultra-fast imaging, diagnostic and therapeutic medicine, and studies of matter under extreme conditions. Rapid advances in compact accelerators and in FEL techniques make this an opportune moment to consider the opportunities which could be realized by bringing these two fields together. Further, the successful development of compact radiation sources driven by compact accelerators will be a significant milestone on the road to the development of high-gradient colliders able to operate at the frontiers of particle physics. Thus the time is right to publish a peer-reviewed collection of contributions concerning the state-of-the-art in: advanced and novel acceleration techniques; sophisticated physics at the frontier of FELs; and the underlying and enabling techniques of high brightness electron beam physics. Interdisciplinary research connecting two or more of these fields is also increasingly represented, as exemplified by entirely new concepts such as plasma based electron beam sources, and coherent imaging with fs-class electron beams. We hope that in producing this special edition of Journal of Physics B: Atomic, Molecular and Optical Physics (iopscience.iop.org/0953-4075/) we may help further a challenging mission and ongoing intellectual adventure: the harnessing of newly emergent, compact advanced accelerators to the creation of new, agile light sources with unprecedented capabilities

  16. Design and realization of a fast digital system for the protection of a linear accelerator

    International Nuclear Information System (INIS)

    Hamdi, A.

    2004-07-01

    The new generation of light sources based on SASE Free-Electron-Lasers driven by LINACs operate with electron beams with high beam currents and duty cycles. This is especially true for the superconducting machines like TTF 2 and the X-RAY FEL, under construction or planning at DESY. Elaborate fast protections systems are required not only to protect the machine from electron beams hitting and destroying the vacuum chamber, but also to prevent the machine from running at high loss levels, dangerous for components like the FEL undulator. This document presents the different protection systems currently under construction for TTF 2. The very fast systems, based on transmission measurements and distributed loss detection monitors, are described in detail. This description includes the fast electronics to collect and to transmit the different interlock and status signals: analog to digital converters, DSP and FPGA, interfaces, toroid protection system (TPS) card. The implementation and validation (simulation and tests) of the TPS card at DESY is presented

  17. Scheme for generating and transporting THz radiation to the X-ray experimental hall at the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Decking, Winfried; Kocharyan, Vitali; Saldin, Evgeni; Zagorodnov, Igor [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany)

    2011-12-15

    The design of a THz edge radiation source for the European XFEL is presented.We consider generation of THz radiation from the spent electron beam downstream of the SASE2 undulator in the electron beam dump area. In this way, the THz output must propagate at least for 250 meters through the photon beam tunnel to the experimental hall to reach the SASE2 X-ray hutches. We propose to use an open beam waveguide such as an iris guide as transmission line. In order to efficiently couple radiation into the iris transmission line, generation of the THz radiation pulse can be performed directly within the iris guide. The line transporting the THz radiation to the SASE2 X-ray hutches introduces a path delay of about 20 m. Since THz pump/X-ray probe experiments should be enabled, we propose to exploit the European XFEL baseline multi-bunch mode of operation, with 222 ns electron bunch separation, in order to cope with the delay between THz and X-ray pulses. We present start-to-end simulations for 1 nC bunch operation-parameters, optimized for THz pump/X-ray probe experiments.Detailed characterization of the THz and SASE X-ray radiation pulses is performed. Highly focused THz beams will approach the high field limit of 1 V/atomic size. (orig.)

  18. Phase relations and linear thermal expansion of cubic solid solutions in the Th1-xMxO2-x/2 (M=Eu, Gd, Dy) systems

    International Nuclear Information System (INIS)

    Mathews, M.D.; Ambekar, B.R.; Tyagi, A.K.

    2005-01-01

    Cell parameters and linear thermal expansion studies of the Th-M oxide systems with general compositions Th 1-x M x O 2-x/2 (M=Eu 3+ , Gd 3+ and Dy 3+ , 0.0= 1.5 in the ThO 2 lattice. The upper solid solubility limits of EuO 1.5 , GdO 1.5 and DyO 1.5 in the ThO 2 lattice under conditions of slow cooling from 1673K are represented as Th 0.50 Eu 0.50 O 1.75 , Th 0.60 Gd 0.40 O 1.80 and Th 0.85 Dy 0.15 O 1.925 , respectively. The linear thermal expansion (293-1123K) of MO 1.5 and their single-phase solid solutions with thoria were investigated by dilatometery. The average linear thermal expansion coefficients (α-bar ) of the compounds decrease on going from EuO 1.5 to DyO 1.5 . The values of α-bar for EuO 1.5 , GdO 1.5 and DyO 1.5 containing solid solutions showed a downward trend as a function of the dopant concentration. The linear thermal expansion (293-1473K) of the solid solutions investigated by high-temperature XRD also showed a similar trend

  19. X-BAND LINEAR COLLIDER R and D IN ACCELERATING STRUCTURES THROUGH ADVANCED COMPUTING

    International Nuclear Information System (INIS)

    Li, Z

    2004-01-01

    This paper describes a major computational effort that addresses key design issues in the high gradient accelerating structures for the proposed X-band linear collider, GLC/NLC. Supported by the US DOE's Accelerator Simulation Project, SLAC is developing a suite of parallel electromagnetic codes based on unstructured grids for modeling RF structures with higher accuracy and on a scale previously not possible. The new simulation tools have played an important role in the R and D of X-Band accelerating structures, in cell design, wakefield analysis and dark current studies

  20. First operation of a harmonic lasing self-seeded free electron laser

    International Nuclear Information System (INIS)

    Schneidmiller, E.A.; Faatz, B.; Kuhlmann, M.; Roensch-Schulenburg, J.; Schreiber, S.; Tischer, M.; Yurkov, M.V.

    2016-12-01

    Harmonic lasing is a perspective mode of operation of X-ray FEL user facilities that allows to provide brilliant beams of higher energy photons for user experiments. Another useful application of harmonic lasing is so called Harmonic Lasing Self-Seeded Free Electron Laser (HLSS FEL) that allows to improve spectral brightness of these facilities. In the past, harmonic lasing has been demonstrated in the FEL oscillators in infrared and visible wavelength ranges, but not in high-gain FELs and not at short wavelengths. In this paper we report on the first evidence of the harmonic lasing and the first operation of the HLSS FEL at the soft X-ray FEL user facility FLASH in the wavelength range between 4.5 nm and 15 nm. Spectral brightness was improved in comparison with Self-Amplified Spontaneous emission (SASE) FEL by a factor of six in the exponential gain regime. A better performance of HLSS FEL with respect to SASE FEL in the post-saturation regime with a tapered undulator was observed as well. The first demonstration of harmonic lasing in a high-gain FEL and at short wavelengths paves the way for a variety of applications of this new operation mode in X-ray FELs.