WorldWideScience

Sample records for european waste management

  1. Radioactive waste management in European Union countries

    International Nuclear Information System (INIS)

    Vico, E.

    2002-01-01

    Although the Euratom Treaty does not assign direct authorities to the European Union in the Field of radioactive waste, the Commission has developed a series of activities related to this type of waste. The article deals with these Community initiatives, and the problems of radioactive waste management in the different Member States, and future plans in the field in the light of forthcoming European Union enlargement in 2004. (Author)

  2. Decommissioning and radioactive waste management. The European Commission overview

    International Nuclear Information System (INIS)

    Rehak, M

    2010-01-01

    In this lecture author deals with the European Commission overview on the decommissioning and radioactive waste management. Financial support of European Commission of decommissioning of the Ignalina NPP, Bohunice V1 NPP and Kozloduy Units 1 and 2 is presented.

  3. Radioactive Waste Management in the European Union: Initiatives for New Legislation

    International Nuclear Information System (INIS)

    Taylor, D.

    2003-01-01

    Improving the management of radioactive waste in the European Union is a major theme of the ''nuclear package'' recently adopted by the European Commission. Included in the package are proposals for new legislation that would bring about the development of common safety standards in Europe covering the full nuclear sector, segregated funds to cover all nuclear liabilities that remain after the operating lifetime of an installation and clearly defined waste programs for radioactive waste management in each of the Member States of the Union. Included in these programs must be firm dates for a number decision points leading to disposal of all forms of radioactive waste. The package also puts significant emphasis on more, and better coordinated, research on radioactive waste management as the present levels are thought to be inadequate

  4. Radioactive waste management in the European Union: initiatives for new legislation

    International Nuclear Information System (INIS)

    Taylor, Derek M.

    2003-01-01

    Improving the management of radioactive waste in the European Union is a major theme of the 'nuclear package' recently adopted by the European Commission. Included in the package are proposals for new legislation that would bring about the development of common safety standards in Europe covering the full nuclear sector, segregated funds to cover all nuclear liabilities that remain after the operating lifetime of an installation and clearly defined waste programmes for radioactive waste management in each of the Member States of the Union. Included in these programmes must be firm dates for a number decision points leading to disposal of all forms of radioactive waste. The package also puts significant emphasis on more, and better coordinated, research on radioactive waste management as the present levels are thought to be inadequate. (author)

  5. Current policy and research on radioactive waste management in the European Union

    International Nuclear Information System (INIS)

    Forsstroem, H.; Taylor, D.M.

    2000-01-01

    Each Member State of the European Union is responsible for the safe management and disposal of the radioactive waste produced on its own territory. This includes setting the policy and taking the necessary steps to ensure that the radioactive waste does not constitute a threat to the health of workers and to the general public. For the practical implementation of the policy, specific waste management organizations have been established. Extensive cooperation, not least in the area of research, is taking place between these organizations and between the regulatory authorities, both bilaterally and through the European Commission. Cooperation takes place through the European Commission by two different mechanisms, the Community Plan of Action in the field of radioactive waste and the EURATOM framework programme on research and training. In view of the future enlargement of the European Union, the Commission is also actively involved in the development of waste management practices in the Central and Eastern European countries. Waste management is also an important aspect of the Tacis and other nuclear safety support programmes to the States of the former Soviet Union. The general policies for waste management in all Member States are in harmony with the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. The specific policies are, however, dependent on the specific conditions of that State, e.g. the existence, size and time perspective of the nuclear power programme, the geological formations available for disposal (clay, salt, crystalline rock), etc. The management of short lived waste is an established practice in many Member States and the research needs are consequently low. Most of the policy efforts and research are thus dedicated to the management, treatment, conditioning and geological disposal of long lived waste and spent fuel. Each Member State with a nuclear power programme also has an important

  6. European research project 'Metrology for radioactive waste management'

    International Nuclear Information System (INIS)

    Suran, J.

    2014-01-01

    The three-year European research project M etrology for Radioactive Waste Management' was launched in October 2011 under the EMRP (European Metrology Research Programme). It involves 13 European national metrology institutes and a total budget exceeds four million Euros. The project is coordinated by the Czech Metrology Institute and is divided into five working groups. This poster presents impact, excellence, relevance to EMPR objectives, and implementation and management of this project.(author)

  7. European trends in greenhouse gases emissions from integrated solid waste management.

    Science.gov (United States)

    Calabrò, Paolo S; Gori, Manuela; Lubello, Claudio

    2015-01-01

    The European Union (EU) has 28 member states, each with very different characteristics (e.g. surface, population density, per capita gross domestic product, per capita municipal solid waste (MSW) production, MSW composition, MSW management options). In this paper several integrated waste management scenarios representative of the European situation have been generated and analysed in order to evaluate possible trends in the net emission of greenhouse gases and in the required landfill volume. The results demonstrate that an integrated system with a high level of separate collection, efficient energy recovery in waste-to-energy plants and very limited landfill disposal is the most effective according to the indices adopted. Moreover, it is evident that a fully integrated system can make MSW management a carbon sink with a potentiality of up to approximately 40 Mt CO2eq year(-1).

  8. Nuclear waste management, a European task

    International Nuclear Information System (INIS)

    Strassburg, W.

    1989-01-01

    The coming into force of the Single European Act on July 1, 1987, which is to stepwise create a truly frontierless internal market of the European Community up to the year 1992, will have an effect also on the nuclear waste management sector. The goals of the energy policy and fuel cycle policy of the FRG, however, will not be changed by this. The contribution in hand discusses in particular some problems encountered at the back-end of the nuclear fuel cycle, namely nuclear spent fuel reprocessing. Activities in this branch of nuclear industry for more than ten years already have been a joint, European task. Spent fuel elements from West German reactors have been sent for reprocessing to facilities in France and in Great Britain, for example. The task of spent fuel reprocessing in the eyes of the author has a dimension exceeding the scope of the European single market: cooperation in this field for years has been including Switzerland and Sweden, for example, and is likely to include in future some countries of the Eastern Bloc. (orig.) [de

  9. COMPAS: a European project on the ''comparison of alternative waste management strategies for long-lived radioactive wastes''. Scope, working methods and conclusions

    International Nuclear Information System (INIS)

    Dutton, L.M.C.; Hillis, Z.K.; Roehlig, K.J.

    2004-01-01

    The paper presents the content and major findings of a project on the ''COMParison of Alternative waste management Strategies for long-lived radioactive wastes'' (COMPAS) carried out within the 5 th framework programme of the European commission. Under the leadership of NNC (UK), the project was carried out by individuals representing waste management organisations from 15 European countries. After having compiled information on the nature and amount of long-lived radioactive waste to be managed, issues influencing the selection of waste management strategies and options, presently adopted national strategies as well as options for the future were addressed. Conclusions concerning key issues for the success or otherwise of strategies and management solutions were drawn. (orig.)

  10. Public opinion, public information and public implication in radioactive waste management in the European Union

    International Nuclear Information System (INIS)

    Taylor, D.; Webster, S.

    2004-01-01

    The nuclear industry in European must address the issue of the lack of Public acceptance. In particular, the public are very concerned about radioactive waste. It is clear that there is a need to better inform the public about radioactive waste and to consult them as part of the decision-making process concerning the management of these wastes. Existing and proposed new European legislation not only encourage this provision of information and involvement in the decision-making process, but actually require it. The paper examines Public opinion and European legislation in this area and reports on the latest research on societal issues in radioactive waste management carried out under the Community's Euratom Framework Programme. (Author)

  11. Foreign travel report: Visits to UK, Belgium, Germany, and France to benchmark European spent fuel and waste management technology

    International Nuclear Information System (INIS)

    Ermold, L.F.; Knecht, D.A.

    1993-08-01

    The ICPP WINCO Spent Fuel and Waste Management Development Program recently was funded by DOE-EM to develop new technologies for immobilizing ICPP spent fuels, sodium-bearing liquid waste, and calcine to a form suitable for disposal. European organizations are heavily involved, in some cases on an industrial scale in areas of waste management, including spent fuel disposal and HLW vitrification. The purpose of this trip was to acquire first-hand European efforts in handling of spent reactor fuel and nuclear waste management, including their processing and technical capabilities as well as their future planning. Even though some differences exist in European and U.S. DOE waste compositions and regulations, many aspects of the European technologies may be applicable to the U.S. efforts, and several areas offer potential for technical collaboration

  12. Foreign travel report: Visits to UK, Belgium, Germany, and France to benchmark European spent fuel and waste management technology

    Energy Technology Data Exchange (ETDEWEB)

    Ermold, L.F.; Knecht, D.A.

    1993-08-01

    The ICPP WINCO Spent Fuel and Waste Management Development Program recently was funded by DOE-EM to develop new technologies for immobilizing ICPP spent fuels, sodium-bearing liquid waste, and calcine to a form suitable for disposal. European organizations are heavily involved, in some cases on an industrial scale in areas of waste management, including spent fuel disposal and HLW vitrification. The purpose of this trip was to acquire first-hand European efforts in handling of spent reactor fuel and nuclear waste management, including their processing and technical capabilities as well as their future planning. Even though some differences exist in European and U.S. DOE waste compositions and regulations, many aspects of the European technologies may be applicable to the U.S. efforts, and several areas offer potential for technical collaboration.

  13. The radioactive waste management program of The Commission of the European Communities: Past, present, and future trends

    International Nuclear Information System (INIS)

    Orlowski, S.M.

    1983-01-01

    The radioactive waste management program started in the mid-1970s is being carried out by the Commission of European Communities (CEC) Joint Research Centre and by research bodies within the European community under CEC coordination and partial financing. The program deals with the management of the radioactive waste resulting from uranium-plutonium fuel cycle. During its first phase (1973-1979), various treatment and conditioning processes were investigated; high temperature incineration and acid digestion of alpha-bearing waste, immobilization of highly active waste in borosilicate glasses, inter alia, appeared promising. Geological disposal was recognized as a feasible option; transmutation of long-lived products did not appear to be an advantageous alternative to geological disposal, and the studies were discontinued. The second phase (1980-1984) of the program is a followup to the first. The needs of the European nuclear industry and of the national radioactive waste agencies or operators recently created are, however, taken into account. The continuity of the RandD effort is ensured by a ''Community plan of action on waste management,'' (1980-1992). A third phase, 1984-1989, should demonstrate the availability and validity of the waste management techniques and be convincing about their safety

  14. Fifth Situation Report - Radioactive Waste Management in the Enlarged European Union

    International Nuclear Information System (INIS)

    Webster, S.

    2003-02-01

    The present report is the fifth in the series of reports on radioactive waste management in the European Union (EU). It presents, in the form of tables, the status in current EU Member States and in Candidate Countries of Central and Eastern Europe at the end of the year 2000. The fourth situation report was published in January 1999 and contained an in-depth evaluation of the situation and prospects for radioactive waste management in the Community, including such topics as waste generation, financing, transport, research and social issues. The report contains a comprehensive set of tables of waste generation, storage, disposal and predicted trends in the various waste categories, based on the status at the end of 1994. In comparison, the present report is an interim re-evaluation only and concentrates on waste quantities at the end of the year 2000, though it also presents a summary of national strategies and other pertinent information. (author)

  15. COWAM 2 : A European Contribution to the Improvement of Governance in the Field of Radioactive Waste Management

    International Nuclear Information System (INIS)

    Heriard Dubreuil, Gilles

    2006-01-01

    The quality of decision-making processes in radioactive waste management (RWM) was explored within the European 5th Framework Research Programme, through a Concerted Action project known as COWAM (Community Waste Management). COWAM (2000-2003) was established as a network, gathering European local communities, together with representatives of regulators, implementers and experts. The project made a major contribution to framing the governance of radioactive waste management by identifying key needs: early involvement of local stakeholders in the decision making processes on radioactive waste management; effective implementation of local democracy; access to expertise; influence of local actors on a defined national framework for radioactive waste management; and sustainable regional development of communities hosting radioactive waste management facilities. As a follow-on project from COWAM, COWAM 2 has been established within the European 6th Framework Research Programme. COWAM 2 started in January 2004 and will be completed at the end of 2006. The project format evolved from that of a network for collective reflection into a pluralistic research partnership, aimed at practical implementation. The involvement of stakeholders continues to be an essential element of the project, in terms of the quality, legitimacy and robustness of the results. Representatives of local communities and NGOs as well as institutional stakeholders contribute expertise on issues with which they are directly concerned, working in conjunction with specialists from various fields of study relevant to the governance of radioactive waste management. A stakeholder Steering Committee oversees the project. The objective of COWAM 2 is to contribute to a concrete improvement in RWM governance, by: better identifying and understanding societal expectations, needs and concerns as regards decision-making processes, notably at the local and regional levels, taking into account past and ongoing

  16. COWAM 2 : A European Contribution to the Improvement of Governance in the Field of Radioactive Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Heriard Dubreuil, Gilles [MUTADIS, Paris (FR)] (and others)

    2006-09-15

    The quality of decision-making processes in radioactive waste management (RWM) was explored within the European 5th Framework Research Programme, through a Concerted Action project known as COWAM (Community Waste Management). COWAM (2000-2003) was established as a network, gathering European local communities, together with representatives of regulators, implementers and experts. The project made a major contribution to framing the governance of radioactive waste management by identifying key needs: early involvement of local stakeholders in the decision making processes on radioactive waste management; effective implementation of local democracy; access to expertise; influence of local actors on a defined national framework for radioactive waste management; and sustainable regional development of communities hosting radioactive waste management facilities. As a follow-on project from COWAM, COWAM 2 has been established within the European 6th Framework Research Programme. COWAM 2 started in January 2004 and will be completed at the end of 2006. The project format evolved from that of a network for collective reflection into a pluralistic research partnership, aimed at practical implementation. The involvement of stakeholders continues to be an essential element of the project, in terms of the quality, legitimacy and robustness of the results. Representatives of local communities and NGOs as well as institutional stakeholders contribute expertise on issues with which they are directly concerned, working in conjunction with specialists from various fields of study relevant to the governance of radioactive waste management. A stakeholder Steering Committee oversees the project. The objective of COWAM 2 is to contribute to a concrete improvement in RWM governance, by: better identifying and understanding societal expectations, needs and concerns as regards decision-making processes, notably at the local and regional levels, taking into account past and ongoing

  17. National system for radioactive waste management in Lithuania and its harmonization with the European Union legislation

    International Nuclear Information System (INIS)

    Adomaitis, J. E.; Poshkas, P.

    1999-01-01

    Radioactive waste management philosophies and technologies are still emerging, and there is therefore a need to reorganize and improve the national system for radioactive waste management in Lithuania. Lithuania's Law on Radioactive Waste Management and the new regulations will be harmonized with the European Union legislation in this field, with the IAEA general principles and with the obligations of the Republic of Lithuania under the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. Different organizational and financial schemes available in the EU countries for radioactive waste management are described and analyzed. The most important aspects needed to establish the Lithuania's Radioactive Waste Management Agency and Fund are defined and developed. (author)

  18. ALARA in radioactive waste management- Summary and recommendations of the 11. European ALARA Network Workshop

    International Nuclear Information System (INIS)

    Shaw, P.; Crouail, P.; Drouet, F.

    2008-01-01

    The 11. European ALARA Network (E.A.N.) workshop on 'ALARA in radioactive waste management' took place in Athens (Greece) in April 2008. The aim of that workshop was to focus on the implementation of the ALARA principle with regard to occupational and public exposures arising from the management of radioactive waste in all sectors (nuclear, medical, industrial, etc.). This workshop consisted of invited oral presentations, which highlighted the main issues, and half of the programme was devoted to discussions within working groups on specific topics. Individual presentations (papers and slides) are available to download from the E.A.N. web site (http://www.eu-alara.net). Based on report backs from the groups and discussions with all the participants, five formal recommendations have been formulated. These recommendations, addressed to international organisations (International Atomic Energy Agency, European Commission, Nuclear Energy Agency), national authorities, national and local stake holders and to E.A.N. itself, deal with the following themes: international guidance on ALARA in radioactive waste management, harmonization issues at the international level, ALARA approach in non-nuclear waste management, 'broader approach' in the radioactive waste management process, stake holder involvement. The objective of this paper is to present the main conclusions and the five recommendations produced during the workshop. (authors)

  19. European legislation on radioactive waste management - opportunities and areas of uncertainty in case of shared competence

    International Nuclear Information System (INIS)

    Borisova, O.

    2013-01-01

    The aim of this study is to establish the regularities characterizing the European legislative framework for the radioactive waste management, the basic principles, legislative mechanism and relevant alternative methods of co-regulation and self-regulation, as well as characterization of areas of uncertainty in the radioactive waste management in case of shared competence and capabilities to improve the system involved in management of dangerous to health and the environment wastes from nuclear applications. Subject of study is the EU legislative framework on the management of radioactive waste, in particular the possibilities of existing mechanisms to achieve balance in the distribution of powers between the Community and national legislation regarding the responsibilities related to the radioactive waste management

  20. The role and the results of the European Community's R and D work on radioactive waste management

    International Nuclear Information System (INIS)

    Orlowski, S.; Girardi, F.

    1986-01-01

    The role and results of the European Community's research and development (R and D) work on radioactive waste management are described. The R and D work includes: radioactive waste conditioning, characterization and storage, materials science studies for the storage, geological media confinement studies, and radionuclide migration investigations. Financial management and the long term, and the socio-political aspects of waste management, are also discussed. (U.K.)

  1. Risks, regulation responsibilities and costs in nuclear waste management: a preliminary survey in the European Community

    International Nuclear Information System (INIS)

    Orlowski, S.

    1980-01-01

    The use of nuclear energy produces radioactive waste which may present risks of pollution for man and his environment. Their protection must be ensured by technical or institutional controls. The report examines the second, i.e. the administrative, legal and financial measures, dealing with the management of radioactive waste in existence or under consideration within the Member States of the European Community. The following aspects are studied: laws and regulations, authorities concerned, costs and financing of radioactive waste management, civil liability, national policies, international aspects of radioactive waste management

  2. Radioactive waste management: outline of the research programme of the Commission of the European Communities

    International Nuclear Information System (INIS)

    Bresesti, M.

    1980-01-01

    The lines of activity, the main achievements and the perspectives of the research programme of the Commission of the European Communities on radioactive waste management, are presented. In particular an overall view of the activity on chemical separation and nuclear transmutation of actinides is given, as introduction to the various presentations of the JRC staff on specific aspects of this waste management strategy

  3. Management of tritium contaminated wastes national strategies and practices at some European countries, USA and Canada

    International Nuclear Information System (INIS)

    Mannone, F.

    1992-01-01

    The European Tritium Handling Experiment Laboratory (ETHEL) is the Commission of European Communities facility designed for handling multigram quantities of tritium for safety inherent R and D purposes. Tritium contamined wastes in gaseous, liquid and solid forms will be generated in ETHEL during the experiments as well as during the maintenance operations. All such wastes must be adequately managed under the safest operating conditions to minimize the releases of tritium to the environment and the consequent radiological risks to workers and general population. This safety requirement can be met by carefully defining strategies and practices to be applied for the safe management of these wastes. To this end an adequate background information must be collected which is the intent of this report. Through an exhaustive literature survey current strategies and practices applied in Europe, USA and Canada for managing tritiated wastes from specific tritium handling laboratories and plant have been assessed. For some countries, where only tritium bearing wastes simultaneously contaminated with nuclear fission products are generated, the attention has been focused on the strategies and practices currently applied for managing fission wastes. Operational criteria for waste collection, sorting, classification, conditioning and packaging as well as acceptance criteria for their storage or disposal have been identified. Waste storage or disposal options already applied in various countries or still being investigated in terms of safety have also been considered. Even if the radwaste management strategy is submitted to a nearly continuing process of review, some general comments resulting from the assessment of the present waste management scenario are presented. 60 refs., 16 figs., 13 tabs

  4. The management of financial resources intended for radioactive waste and decommissioning of the nuclear facilities in the european union

    International Nuclear Information System (INIS)

    Tatar, F.; Dima, A.; Glodeanu, F.; Miller, B.; Mosmonea, R.

    2015-01-01

    The European Commission has developed policies and made recommendations on how financial resources should be established and managed by Member States for the purpose of radioactive waste management. The manner in which these recommendations have been accepted, and are applied, varies between European countries. To some extent, this variation reflects the maturity of the nuclear programs in each country and whether or not nuclear facilities are largely state or privately owned and operated. This paper reviews the European Commission.s policy on financial resourcing for radioactive waste management and decommissioning and evaluates how financial resources are practically established and managed by Member States. The findings from the review are then used to benchmark the situation in Romania. (authors)

  5. Towards more sustainable management of European food waste: Methodological approach and numerical application.

    Science.gov (United States)

    Manfredi, Simone; Cristobal, Jorge

    2016-09-01

    Trying to respond to the latest policy needs, the work presented in this article aims at developing a life-cycle based framework methodology to quantitatively evaluate the environmental and economic sustainability of European food waste management options. The methodology is structured into six steps aimed at defining boundaries and scope of the evaluation, evaluating environmental and economic impacts and identifying best performing options. The methodology is able to accommodate additional assessment criteria, for example the social dimension of sustainability, thus moving towards a comprehensive sustainability assessment framework. A numerical case study is also developed to provide an example of application of the proposed methodology to an average European context. Different options for food waste treatment are compared, including landfilling, composting, anaerobic digestion and incineration. The environmental dimension is evaluated with the software EASETECH, while the economic assessment is conducted based on different indicators expressing the costs associated with food waste management. Results show that the proposed methodology allows for a straightforward identification of the most sustainable options for food waste, thus can provide factual support to decision/policy making. However, it was also observed that results markedly depend on a number of user-defined assumptions, for example on the choice of the indicators to express the environmental and economic performance. © The Author(s) 2016.

  6. Arenas for risk governance in nuclear waste management - The European Union ARGONA Project

    International Nuclear Information System (INIS)

    Jonsson, Josefin P.; Wetzel, Carina; Andersson, Kjell; Lidberg, Maria

    2009-12-01

    There is a large knowledge base about governance issues but how to implement the new processes of transparency and participation is not self-evident. In other words there is a common demand for bridging the gap between research and implementation for the governance of nuclear waste management. There are legal, organizational, historical and cultural factors that set conditions which have to be understood for effective implementation. We must also understand how deliberative methods and the transparency approach relate to each other, and to formal decision-making in representative democracy. Therefore, the ARGONA project intends to demonstrate how participation and transparency link to the political and legal systems and how new approaches can be implemented in nuclear waste management programmes. For this purpose, the project includes: Studies of the context within which processes of participation and transparency take place, in order to understand how the processes can be used in the waste management programs. Studies of theory - in order to build participation and transparency on a firm ground; Case studies - to understand how different processes work; Implementation - to make a difference, learn and demonstrate. The project now approaches its finalization and it is foreseen that the reporting, in addition to 25 deliverables to the European Commission, will include a full final report, a summary final report and recommendations with proposed guidelines that can be considered by national actors of nuclear waste programmes as well as the European Commission

  7. Arenas for risk governance in nuclear waste management - The European Union ARGONA Project

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Josefin P.; Wetzel, Carina (Swedish Radiation Safety Authority, SE-171 16 Stockholm (Sweden)); Andersson, Kjell; Lidberg, Maria (Karita Research AB, Box 6048, SE-187 06 Taeby (Sweden))

    2009-12-15

    There is a large knowledge base about governance issues but how to implement the new processes of transparency and participation is not self-evident. In other words there is a common demand for bridging the gap between research and implementation for the governance of nuclear waste management. There are legal, organizational, historical and cultural factors that set conditions which have to be understood for effective implementation. We must also understand how deliberative methods and the transparency approach relate to each other, and to formal decision-making in representative democracy. Therefore, the ARGONA project intends to demonstrate how participation and transparency link to the political and legal systems and how new approaches can be implemented in nuclear waste management programmes. For this purpose, the project includes: Studies of the context within which processes of participation and transparency take place, in order to understand how the processes can be used in the waste management programs. Studies of theory - in order to build participation and transparency on a firm ground; Case studies - to understand how different processes work; Implementation - to make a difference, learn and demonstrate. The project now approaches its finalization and it is foreseen that the reporting, in addition to 25 deliverables to the European Commission, will include a full final report, a summary final report and recommendations with proposed guidelines that can be considered by national actors of nuclear waste programmes as well as the European Commission

  8. European Community legislation and recommendations in the field of radioactive waste management and disposal

    International Nuclear Information System (INIS)

    Schaller, K.H.; Orlowski, S.

    1993-01-01

    Radiation protection principles are the foundation for national and European Community legislation and recommendations in the field of management and disposal of radioactive waste. Directives set up at Community level, which are to be implemented in the national legislative framework of the Member States are summarized. Policies and strategies in radioactive waste management are of national competence, as well as ensuring safety of all steps of handling, storage and final disposal; recommendations at Community level are developed to assist national authorities and agencies in determining their strategy. Existing recommendations are described and a preview of recommendations under preparation is given. Legislation in this field is mainly aimed at radioactive waste arising from operation and decommissioning of nuclear installations; for radioactive waste produced outside the nuclear fuel cycle and for material with significant levels of naturally occurring radionuclides special situations exist, and harmonization of legislation and the development of common practices on the management of such wastes may be desirable

  9. Waste management - sewage - special wastes

    International Nuclear Information System (INIS)

    1987-01-01

    The 27 papers represent a cross-section of the subject waste management. Particular attention is paid to the following themes: waste avoidance, waste product utilization, household wastes, dumping technology, sewage sludge treatments, special wastes, seepage from hazardous waste dumps, radioactive wastes, hospital wastes, purification of flue gas from waste combustion plants, flue gas purification and heavy metals, as well as combined sewage sludge and waste product utilization. The examples given relate to plants in Germany and other European countries. 12 papers have been separately recorded in the data base. (DG) [de

  10. The fourth radioactive waste management program of the Commission of the European Communities (1990-1994)

    International Nuclear Information System (INIS)

    Orlowski, S.; Schaller, K.H.; Simon, R.

    1992-01-01

    The fourth radioactive waste management program 1990-1994 is aimed at perfecting and demonstrating a system of management of radioactive waste, including unprocessed irradiated fuels where these are considered as waste, which will ensure, at the various stages, the best possible protection of man and the environment. In particular, research continues on the characterization and qualification of the various barriers, both engineered and natural (geological) considered in the multiple barrier disposal concept, and the findings are used to evaluate the long-term safety of this waste disposal concept. The program is implemented mainly through shared-cost research contracts with appropriate organizations, undertakings and companies - public or private - established in the European Community Member States. It is composed of two parts; Part A deals with waste management studies and associated research and development actions, whereas in Part B, the construction and operation of underground pilot and/or site validation facilities for deep geological disposal of radioactive waste open to Community joint activities are covered. (author)

  11. Waste management as provided for by the atomic energy law and the waste legislation

    International Nuclear Information System (INIS)

    Muehlenweg, U.; Brasser, T.

    1991-01-01

    Radioactive waste management is subject to the Atomic Energy Act, whereas non-radioactive waste management is provided for by the waste legislation. This two-partite applicability of laws in the field of waste management originates from the treaties establishing the European Communities. The founder members of the European Community in 1957 concluded the Euratom Treaty for the purpose of creating a European framework for the peaceful uses of atomic energy. Based on this treaty, the European Community has been passing a number of directives and regulations aimed at providing protection of workers from the harmful effects of ionizing radiation. EC law does not define any implementing provisions relating to the management of radioactive waste for instance, which is a task remaining within the competence of the national governments. (orig.) [de

  12. Battery waste management status

    International Nuclear Information System (INIS)

    Barnett, B.M.; Sabatini, J.C.; Wolsky, S.

    1993-01-01

    The paper consists of a series of slides used in the conference presentation. The topics outlined in the slides are: an overview of battery waste management; waste management of lead acid batteries; lead acid recycling; typical legislation for battery waste; regulatory status in European countries; mercury use in cells; recent trends in Hg and Cd use; impact of batteries to air quality at MSW incinerators; impact of electric vehicles; new battery technologies; and unresolved issues

  13. Radioactive waste management and disposal

    International Nuclear Information System (INIS)

    Simon, R.; Orlowski, S.

    1980-01-01

    The first European Community conference on Radioactive Waste Management and Disposal was held in Luxembourg, where twenty-five papers were presented by scientists involved in European Community contract studies and by members of the Commission's scientific staff. The following topics were covered: treatment and conditioning technology of solid intermediate level wastes, alpha-contaminated combustible wastes, gaseous wastes, hulls and dissolver residues and plutonium recovery; waste product evaluation which involves testing of solidified high level wastes and other waste products; engineering storage of vitrified high level wastes and gas storage; and geological disposal in salt, granite and clay formations which includes site characterization, conceptual repository design, waste/formation interactions, migration of radionuclides, safety analysis, mathematical modelling and risk assessment

  14. Assessment Strategies for Municipal Selective Waste Collection – Regional Waste Management

    Directory of Open Access Journals (Sweden)

    Agnieszka Boas Berg

    2018-01-01

    Full Text Available Waste disposal in landfill sites causes a potentialhazard for the human health, as they release substantial amounts of gas, odours and pollutants to the environment. There have been vast reductions in the volume of waste being landfilledin many European countries and a reduction in the number of illegal landfills The European Parliament’s laws obliged the Member States to amend the national waste law; the main objectives of the implemented directives are to create the conditions for the prevention of excessive waste. Directive 2008/98/EC establishes, as a goal for 2020, that waste reuse and recycling reach 50% of the total waste produced. Poland, having joined the European Union, committed itself to implementing many changes related to waste management. The amendment of the law on the maintenance of cleanliness and order in the municipalities imposed new obligations regarding the waste management (WM on the local government and residents. By adopting a municipal waste management system, the selected municipality made all its residents responsible for their waste. However, the fact of introducing changes does not solve the waste problem. The implementation of EU directives and the development of strategic documents such as the National Waste Management Plan (NWMP have made a clear change in the WM approach. One of the changes was the establishment of selective collection of municipal selective waste (MSW, with the issue of collecting the waste by the residents being a priority. This work describes the legal context of selective collection of MSW as one of the most effective means of reducing the amount of waste being landfilled.

  15. The European Communities' research programme on management of low and intermediate level wastes

    International Nuclear Information System (INIS)

    Simon, R.; Cecille, L.

    1989-01-01

    In the European Communities' third R and D programme on Management and Disposal of Radioactive Wastes a large number of projects have been commissioned to develop treatment and conditioning processes for low and intermediate level wastes and to qualify the conditioned waste forms. The paper presents the main objectives of this research and summarizes some of the more important studies. In liquid waste treatment, the research includes processes to separate actinides by new extractive methods and application of selective inorganic ion exchangers as well as electrochemically controlled ion exchange processes and a series of purification methods involving membrane techniques. The most important issue of solid waste management in the programme is the treatment and conditioning of plutonium containing wastes, for which a strategic study had been commissioned to optimize the choice between different treatment and conditioning options. Processes being studied include two advanced decontamination techniques and a variety of conditioning methods for incinerator ash and fuel element hulls. Another task of the programme is devoted to the qualification of waste forms. This comprises the characterization of the most common low and intermediate level waste products with respect to leaching, waste form stability, radiation resistance and compatibility with the respective disposal environments. In the course of the programme, the development of methods for quality assurance and in particular quality control has become an important issue: the control of the nuclide inventory, of the chemical composition of the wastes and of the correct operation of treatment and conditioning processes is being investigated in special laboratories. (author). 21 refs, 4 tabs

  16. Radioactive waste management

    International Nuclear Information System (INIS)

    Balek, V.

    1994-01-01

    This booklet is a publication by International Atomic Energy Agency for general awareness of citizens and policy-makers to clarify their concept of nuclear wastes. In a very simple way it tells what is radioactivity, radiations and radioactive wastes. It further hints on various medial and industrial uses of radiations. It discusses about different types of radioactive wastes and radioactive waste management. Status of nuclear power plants in Central and Eastern European countries are also discussed

  17. Assessing the 'Waste Hierarchy' a social cost-benefit analyse of MSW management in the European Union

    International Nuclear Information System (INIS)

    Brisson, I. E.

    1997-01-01

    This paper discusses, in the context of an impending 'waste crisis', the concept of optimal waste generation and an optimal mix of municipal solid waste (MSW) management methods. It argues that excessive quantities of MSW are likely to be generated, and consequently excessive demand for waste services will exist, as long as the marginal cost of waste services facing the household is zero. In order to avoid this excess demand, households should be charged for waste services according to their use of it, and not as presently at a flat rate. In the price to be paid by householders should be included financial as well as external costs. With respect to the optimal mix of MSW management methods, the paper asserts that this would be attained when the marginal net social costs of each management methods were equal. After setting out the theoretical background, the paper then proceeds to undertake a social cost-benefit analysis of waste management methods currently employed by the 12 'old' European Union Member States, including external and financial costs of landfill, incineration, recycling and composting. The estimates obtained from this analysis are used to assess the validity of the 'waste hierarchy', which has won widespread acceptance, and is used as a guideline in a number of countries' waste policies. In the light of the widespread focus on increasing recycling efforts, a sensitivity analysis is carried out to ascertain whether particular materials are especially suited for recycling, and whether there are other materials for which recycling should not be encouraged. (au) 16 refs

  18. Nuclear Waste Management in Sweden in Comparison with other European Countries - NGO Experiences of the COWAM Process

    International Nuclear Information System (INIS)

    Holmstrand, Olov

    2003-01-01

    This paper describes opinions on nuclear waste management from the viewpoint of the local NGOs in Sweden co-operating in The Waste Network (Avfallskedjan), These opinions have been encouraged and developed by active participation in the COWAM process. The COWAM process has shown both the similarities and the differences in the nuclear waste management in several European countries. However the similarities dominate concerning the key issues of decision-making and the fundamentals of the relations between operators and regulators on one side and local citizens at proposed repository sites on the other side. The mistrust between different actors is a fundamental reason for the failure to make progress in the nuclear waste management. Normally it is argued that ordinary people and NGOs distrust established operators, agencies and governments. But there is also an obvious distrust for citizens' groups and NGOs by the operators. At least, this is the opinion of the NGO groups in Sweden

  19. Research and development on radioactive waste management and storage: Third annual progress report (1982) of the European Community programme 1980-1984

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    This book examines the European Community's program for nuclear waste management and storage. Topics considered include the characterization of conditioned low and medium activity waste forms, conditioning of high activity solid waste, treatment and conditioning processes for low and medium activity liquid waste, processing of alpha-contaminated waste, testing and evaluation of solidified high activity waste forms, immobilization and storage of gaseous waste, shallow land burial of solid low activity waste, storage and disposal in geological formations, and the performance and safety evaluation of radioactive waste disposed in geological formations

  20. Towards a coherent European approach for taxation of combustible waste

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, Maarten, E-mail: maarten.dubois@kuleuven.be

    2013-08-15

    Highlights: • Current European waste taxes do not constitute a level playing field. • Integrating waste incineration in EU ETS avoids regional tax competition. • A differentiated incineration tax is a second-best instrument for NO{sub x} emissions. • A tax on landfilled incineration residues stimulates ash treatment. - Abstract: Although intra-European trade of combustible waste has grown strongly in the last decade, incineration and landfill taxes remain disparate within Europe. The paper proposes a more coherent taxation approach for Europe that is based on the principle of Pigovian taxation, i.e. the internalization of environmental damage costs. The approach aims to create a level playing field between European regions while reinforcing incentives for sustainable management of combustible waste. Three important policy recommendations emerge. First, integrating waste incineration into the European Emissions Trading System for greenhouse gases (EU ETS) reduces the risk of tax competition between regions. Second, because taxation of every single air pollutant from waste incineration is cumbersome, a differentiated waste incineration tax based on NO{sub x} emissions can serve as a second-best instrument. Finally, in order to strengthen incentives for ash treatment, a landfill tax should apply for landfilled incineration residues. An example illustrates the coherence of the policy recommendations for incineration technologies with diverse environmental effects.

  1. Towards a coherent European approach for taxation of combustible waste

    International Nuclear Information System (INIS)

    Dubois, Maarten

    2013-01-01

    Highlights: • Current European waste taxes do not constitute a level playing field. • Integrating waste incineration in EU ETS avoids regional tax competition. • A differentiated incineration tax is a second-best instrument for NO x emissions. • A tax on landfilled incineration residues stimulates ash treatment. - Abstract: Although intra-European trade of combustible waste has grown strongly in the last decade, incineration and landfill taxes remain disparate within Europe. The paper proposes a more coherent taxation approach for Europe that is based on the principle of Pigovian taxation, i.e. the internalization of environmental damage costs. The approach aims to create a level playing field between European regions while reinforcing incentives for sustainable management of combustible waste. Three important policy recommendations emerge. First, integrating waste incineration into the European Emissions Trading System for greenhouse gases (EU ETS) reduces the risk of tax competition between regions. Second, because taxation of every single air pollutant from waste incineration is cumbersome, a differentiated waste incineration tax based on NO x emissions can serve as a second-best instrument. Finally, in order to strengthen incentives for ash treatment, a landfill tax should apply for landfilled incineration residues. An example illustrates the coherence of the policy recommendations for incineration technologies with diverse environmental effects

  2. European Community research on improving the governance of nuclear waste management and other risks

    International Nuclear Information System (INIS)

    Forsstroem, H.; Kelly, N.

    2002-01-01

    Increasing attention is being given to broader socio-economic issues (eg, science and society, governance of risk, etc) within the European Commission's research programmes. This reflects the recognition of the importance of such issues for science policy and decision making with respect to nuclear and other technologies. This paper summarises those projects, supported by the Commission's Euratom research programme, which focus on socio-economic as opposed to narrower technical issues. These projects are concerned with risk governance in general, the governance of nuclear waste management and stakeholder involvement in the off-site management of accidents. (author)

  3. Regulation of solid waste management at Brazilian ports: Analysis and proposals for Brazil in light of the European experience

    International Nuclear Information System (INIS)

    Jaccoud, Cristiane; Magrini, Alessandra

    2014-01-01

    Highlights: • Analysis of the regulatory framework relating to solid waste management in Brazilian ports. • Comparison between European best practices and Brazilian structure. • Initiatives are suggested in order to improve Brazilian ports solid waste management regulation. - Abstract: With a coastline of 8500 km, Brazil has 34 public ports and various private terminals, which together in 2012 handled 809 million tonnes of goods. The solid wastes produced (from port activities, ships and cargoes) pose a highly relevant problem, both due to the quantity and diversity, requiring a complex and integrated set of practices resulting from legal requirements and proactive initiatives. The main Brazilian law on solid waste management is recent (Law 12,305/2010) and the specific rules on solid waste in ports are badly in need of revision to meet the challenges caused by expansion of the sector and to harmonize them with the best global practices. This paper analyzes the current legal/regulatory framework for solid waste management at Brazilian ports and compares this structure with the practice in Europe. At the end, we suggest initiatives to improve the regulation of solid wastes at Brazilian ports

  4. Global warming factor of municipal solid waste management in Europe

    DEFF Research Database (Denmark)

    Gentil, Emmanuel; Clavreul, Julie; Christensen, Thomas Højlund

    2009-01-01

    The global warming factor (GWF; CO2-eq. tonne—1 waste) performance of municipal waste management has been investigated for six representative European Member States: Denmark, France, Germany, Greece, Poland and the United Kingdom. The study integrated European waste statistical data for 2007...

  5. Towards a coherent European approach for taxation of combustible waste.

    Science.gov (United States)

    Dubois, Maarten

    2013-08-01

    Although intra-European trade of combustible waste has grown strongly in the last decade, incineration and landfill taxes remain disparate within Europe. The paper proposes a more coherent taxation approach for Europe that is based on the principle of Pigovian taxation, i.e. the internalization of environmental damage costs. The approach aims to create a level playing field between European regions while reinforcing incentives for sustainable management of combustible waste. Three important policy recommendations emerge. First, integrating waste incineration into the European Emissions Trading System for greenhouse gases (EU ETS) reduces the risk of tax competition between regions. Second, because taxation of every single air pollutant from waste incineration is cumbersome, a differentiated waste incineration tax based on NO(x) emissions can serve as a second-best instrument. Finally, in order to strengthen incentives for ash treatment, a landfill tax should apply for landfilled incineration residues. An example illustrates the coherence of the policy recommendations for incineration technologies with diverse environmental effects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Waste management of ENM-containing solid waste in Europe

    DEFF Research Database (Denmark)

    Heggelund, Laura Roverskov; Boldrin, Alessio; Hansen, Steffen Foss

    2015-01-01

    the Danish nanoproduct inventory (www.nanodb.dk) to get a general understanding of the fate of ENM during waste management in the European context. This was done by: 1. assigning individual products to an appropriate waste material fraction, 2. identifying the ENM in each fraction, 3. comparing identified...... waste fractions with waste treatment statistics for Europe, and 4. illustrating the general distribution of ENM into incineration, recycling and landfilling. Our results indicate that ╲plastic from used product containers╡ is the most abundant and diverse waste fraction, comprising a variety of both...... nanoproducts and materials. While differences are seen between individual EU countries/regions according to the local waste management system, results show that all waste treatment options are significantly involved in nanowaste handling, suggesting that research activities should cover different areas...

  7. The European Community's research and development activities on the management of radioactive waste from decommissioning

    International Nuclear Information System (INIS)

    Huber, B.

    1984-01-01

    The Commission of the European Communities is conducting an R and D programme on the decommissioning of nuclear power plants. The activities carried out within this framework that concern, in particular, management of the radioactive waste arising from the decommissioning are outlined. Characterization of the radioactivity inventory of nuclear power plants at the end of their useful life is of fundamental importance in this context. Research in this field comprises analyses of the trace elements in reactor materials which are relevant for the formation of long-lived radionuclides by neutron activation, as well as examinations of samples taken from activated and contaminated plant components. Most of the radioactive plant components are only surface contaminated. Highly efficient decontamination techniques are being developed with the objective of achieving conditions permitting unrestricted release of the material treated. Other activities concern the conditioning of steel and concrete waste for disposal, and the management of graphite waste from gas-cooled reactors. Large containers are being developed for transport and disposal of radioactive components. Finally, the methods of radiological evaluation and measurement are being studied which are required to decide whether material from the dismantling of nuclear power plants has to be disposed of as radioactive waste or not. (author)

  8. Management of waste electrical and electronic equipment in Romania: A mini-review.

    Science.gov (United States)

    Ciocoiu, Carmen Nadia; Colesca, Sofia Elena; Rudăreanu, Costin; Popescu, Maria-Loredana

    2016-02-01

    Around the world there are growing concerns for waste electrical and electronic equipment. This is motivated by the harmful effects of waste electrical and electronic equipment on the environment, but also by the perspectives of materials recovery. Differences between countries regarding waste electrical and electronic equipment management are notable in the European Union. Romania is among the countries that have made significant efforts to comply with European Union regulations, but failed reaching the collection target. The article presents a mini review of the waste electrical and electronic equipment management system in Romania, based on legislation and policy documents, statistical data, research studies and reports published by national and international organisations. The article debates subjects like legislative framework, the electrical and electronic equipment Romanian market, the waste electrical and electronic equipment collection system, waste electrical and electronic equipment processing and waste electrical and electronic equipment behaviour. The recast of the European directive brings new challenges to national authorities and to other stakeholders involved in the waste electrical and electronic equipment management. Considering the fact that Romania has managed a collection rate of roughly 1 kg capita(-1) in the last years, the new higher collection targets established by the waste electrical and electronic equipment Directive offer a serious challenge for the management system. Therefore, another aim of the article is to highlight the positive and negative aspects in the Romanian waste electrical and electronic equipment field, in order to identify the flows that should be corrected and the opportunities that could help improve this system to the point of meeting the European standards imposed by the European Directive. © The Author(s) 2015.

  9. Radioactive waste management and disposal strategies in the European community

    International Nuclear Information System (INIS)

    Orlowski, S.

    1986-01-01

    This paper presents an overview of the various radioactive waste management strategies, as they are defined, or even envisaged, in the EC Member States committed to nuclear power. The two main components of these strategies are looked at: content and basic supporting choices; and schedule of implementation. Most EC Countries currently have in common a nuclear history of several decades. Early approaches and local practices are progressively replaced by centralised management systems and by strategies making the best use of many years of research and technological development. All these strategies are aiming at a safe management of all waste types up to, and including, their final disposal. The various management steps are well in hand and very similar in the EC Countries. However, the final step ''disposal'', has been implemented only for low-level waste, and remains to be demonstrated for long lived and high level waste (or spent fuel)

  10. Proceedings of the European Forum on Nuclear Waste governance

    International Nuclear Information System (INIS)

    2004-01-01

    Electronuclear production is a component of France's and Europe's energy supplies. However, populations remain worried as nuclear electricity produces dangerous radioactive waste for many generations. They are all the more worried so as they are not enough informed and involved in decision-making. After having analysed in 2003 the issue of national choices and their compatibility with a European directive, the European talks' ambition is to clarify the responsibilities of the different stakeholders for a good governance. Indeed, these have to make their strategies for everlasting solutions understood, inform about costs that correspond to an efficient and long-term management of nuclear waste and about their financing. How are roles shared between States, producers, managers, researchers and local entities? The European Talks has organised the dialog between stakeholders from several member States of the EU around two series of questions: - What are industrial and economic actors strategies? In which public framework are they included? How do they anticipate the future? The speakers have analysed their own experiences in order to examine what could an efficient and fair regulation and costs sharing be. - What are nuclear stakeholders commitments on the field? What kind of projects could be initiated? How could these stakeholders become partners for sustainable development? Here again, experiences have been shared in the perspective of mobilizing energies on concrete projects. This document is the proceedings of this second European Forum on this topic. Content: 1 - Opening by Christian Namy, president of the Meuse General Council; Message from Patrick Devedjian, French vice- minister of Industry. 2 - First round table 'The stakeholders strategy and their management of nuclear waste in France and in Europe' (Moderator: Alejo Vidal Quadras Roca, vice-president of the European Parliament, Spain): Speaker: Yves Le Bars, chairman, ANDRA, Discussants: Jozsef Hegyhati

  11. Technological progress in the management of radioactive waste

    International Nuclear Information System (INIS)

    Proost, J.; Frognet, J.P.

    1980-01-01

    In the framework of a contract with the Commission of the European Communities, literature data on present practice in Europe and development work related to the management of radioactive waste have been compiled and evaluated. The main purpose of the study is to provide to the Commission of the European Communities a possible framework for the orientation of future R and D in the field of waste management. The present report covers the third phase of this study and gives the major conclusions and recommendations from this study

  12. Radioactive waste management at WWER type reactors

    International Nuclear Information System (INIS)

    1993-05-01

    This report was prepared within the framework of the Technical Assistance Regional Project on Advice on Waste Management at WWER Type Reactors, which was initiated by the IAEA in 1991. The Regional Project is an integral part of the IAEA's activities directed towards improvement of the safety and reliability of nuclear power plants with WWER type reactors (Soviet designed PWRs). Forty-five WWER type units are currently in operation and twenty-five are under construction in Bulgaria, Czechoslovakia, Finland, Hungary and the former USSR. The idea of regional collaboration between eastern European countries under the auspices of the IAEA was discussed for the first time during the last meeting of the Council for Mutual Economic Assistance (CMEA) on spent fuel and radioactive waste management, held in Rez, Czechoslovakia, in October 1990. Since then, the CMEA and some of its former Member States have ceased to exist. However, there are many reasons for eastern European countries to continue their regional collaboration at a higher level. The USSR, the designer and supplier of WWER type reactors in eastern European countries, participated in the first phase of the project. The majority of WWER type reactors are situated in States of the former USSR (Russia and Ukraine). The main results of the first phase of the Regional Project are: (i) Re-establishment of communication channels among eastern European countries operating WWER type reactors by incorporating the IAEA's technical assistance; (ii) Identification of common waste management problems (administrative and technical) requiring resolution; (iii) Familiarization with radioactive waste management systems at nuclear power plants with WWER type reactors - Paks (Hungary), Loviisa (Finland), Jaslovske Bohunice (Czechoslovakia) and Novovoronezh (Russian Federation). Tabs

  13. Solid wastes management in Lebanon

    International Nuclear Information System (INIS)

    Daniel, Simon E.

    1999-01-01

    The paper describes the problem of wastes in Lebanon and their management according to international (European and French) descriptions. It presents the situation in Lebanon including the policies taken by the ministry of environment towards the treatment of different types of wastes especially solid wastes. It is estimated that the production of wastes in Lebanon is 5854 tones per day and it is distributed as follows: Domestic wastes 3200 t/d; industrial wastes 1300 t/d; commercial wastes 1000 t/d; slaughter-houses 150 t/d; waste oils 100 t/d; hospital wastes 64 t/d; vehicle wheels 40 t/d. The annual production within regions is also presented in tables. Collection, transportation, recycling, composting and incineration of wastes are included

  14. Household hazardous waste management: a review.

    Science.gov (United States)

    Inglezakis, Vassilis J; Moustakas, Konstantinos

    2015-03-01

    This paper deals with the waste stream of household hazardous waste (HHW) presenting existing management systems, legislation overview and other relevant quantitative and qualitative information. European Union legislation and international management schemes are summarized and presented in a concise manner by the use of diagrams in order to provide crucial information on HHW. Furthermore, sources and types, numerical figures about generation, collection and relevant management costs are within the scope of the present paper. The review shows that the term used to refer to hazardous waste generated in households is not clearly defined in legislation, while there is absence of specific acts regulating the management of HHW. The lack of obligation to segregate HHW from the household waste and the different terminology used makes it difficult to determine the quantities and composition of this waste stream, while its generation amount is relatively small and, therefore, is commonly overlooked in waste statistics. The paper aims to cover the gap in the related literature on a subject that is included within the crucial waste management challenges at world level, considering that HHW can also have impact on other waste streams by altering the redox conditions or causing direct reactions with other non hazardous waste substances. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Challenges in Waste Electrical and Electronic Equipment Management: A Profitability Assessment in Three European Countries

    Directory of Open Access Journals (Sweden)

    Idiano D’Adamo

    2016-07-01

    Full Text Available Waste electrical and electronic equipment (WEEE is known as an important source of secondary raw materials. Since decades, its treatment allowed to recover great amounts of basic resources. However, the management of electronic components embedded in WEEE still presents many challenges. The purpose of the paper is to cope with some of these challenges through the definition of an economic model able to identify the presence of profitability within the recovery process of waste printed circuit boards (WPCBs. To this aim, a set of common economic indexes is used within the paper. Furthermore, a sensitivity analysis on a set of critical variables is conducted to evaluate their impact on the results. Finally, the combination of predicted WEEE volumes (collected during the 2015–2030 period in three European countries (Germany, Italy and the United Kingdom and related economic indexes quantify the potential advantage coming from the recovery of this kind of waste in the next future.

  16. Waste management from pulp and paper production in the European Union

    International Nuclear Information System (INIS)

    Monte, M.C.; Fuente, E.; Blanco, A.; Negro, C.

    2009-01-01

    Eleven million tonnes of waste are produced yearly by the European pulp and paper industry, of which 70% originates from the production of deinked recycled paper. Wastes are very diverse in composition and consist of rejects, different types of sludges and ashes in mills having on-site incineration treatment. The production of pulp and paper from virgin pulp generates less waste but the waste has similar properties to waste from the production of deinked pulp, although with less inorganics. Due to legislation and increased taxes, landfills are quickly being eliminated as a final destination for wastes in Europe, and incineration with energy recovery is becoming the main waste recovery method. Other options such as pyrolysis, gasification, land spreading, composting and reuse as building material are being applied, although research is still needed for optimization of the processes. Due to the large volumes of waste generated, the high moisture content of the waste and the changing waste composition as a result of process conditions, recovery methods are usually expensive and their environmental impact is still uncertain. For this reason, it is necessary to continue research on different applications of wastes, while taking into account the environmental and economic factors of these waste treatments

  17. Waste policies gone soft: An analysis of European and Swedish waste prevention plans.

    Science.gov (United States)

    Johansson, Nils; Corvellec, Hervé

    2018-04-30

    This paper presents an analysis of European and Swedish national and municipal waste prevention plans to determine their capability of preventing the generation of waste. An analysis of the stated objectives in these waste prevention plans and the measures they propose to realize them exposes six problematic features: (1) These plans ignore what drives waste generation, such as consumption, and (2) rely as much on conventional waste management goals as they do on goals with the aim of preventing the generation of waste at the source. The Swedish national and local plans (3) focus on small waste streams, such as food waste, rather than large ones, such as industrial and commercial waste. Suggested waste prevention measures at all levels are (4) soft rather than constraining, for example, these plans focus on information campaigns rather than taxes and bans, and (5) not clearly connected to incentives and consequences for the actors involved. The responsibility for waste prevention has been (6) entrusted to non-governmental actors in the market such as companies that are then free to define which proposals suit them best rather than their being guided by planners. For improved waste prevention regulation, two strategies are proposed. First, focus primarily not on household-related waste, but on consumption and production of products with high environmental impact and toxicity as waste. Second, remove waste prevention from the waste hierarchy to make clear that, by definition, waste prevention is not about the management of waste. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Public opinion, public information and public implication in radioactive waste management in the European Union; La opinion publica, informacion publica e implicacion publica en la gestion de residuos radiactivos en la Union Europea

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, D.; Webster, S.

    2004-07-01

    The nuclear industry in European must address the issue of the lack of Public acceptance. In particular, the public are very concerned about radioactive waste. It is clear that there is a need to better inform the public about radioactive waste and to consult them as part of the decision-making process concerning the management of these wastes. Existing and proposed new European legislation not only encourage this provision of information and involvement in the decision-making process, but actually require it. The paper examines Public opinion and European legislation in this area and reports on the latest research on societal issues in radioactive waste management carried out under the Community's Euratom Framework Programme. (Author)

  19. CHALLENGES OF MUNICIPAL WASTE MANAGEMENT IN HUNGARY

    Directory of Open Access Journals (Sweden)

    ZOLTÁN OROSZ

    2008-06-01

    Full Text Available Aims, tasks and priorities of medium term development plans of national waste management were defined in the National Waste Management Plan, which was made for the period of 2003–2008 in Hungary. Supporting of the European Union is indispensable for carrying out of plan. The most important areas are related to the developing projects of municipal solid waste treatment (increasingthe capacity of landfills, accomplishment of the infrastructure of selective waste collection, building of new composting plants. The national environmental policy does not focus sufficiently on the prevention of waste production. Due to the high expenses of investment and operation the energetic recovery and the incineration of municipal solid waste do not compete with the deposition. We inclined to think that the waste management of Hungary will be deposition-orientated until 2015. The main problems to the next years will be the lack of reprocessing industry of plastic and glass packaging waste. The high number of to-be-recultivated landfills and the attainability of necessary financial sources are also serious problems. There are many questions. What is the future in national waste management? How can we reduce the quantity of dumped waste? What are challenges of national waste management on the short and long term?

  20. The management of household hazardous waste in the United Kingdom.

    Science.gov (United States)

    Slack, R J; Gronow, J R; Voulvoulis, N

    2009-01-01

    Waste legislation in the United Kingdom (UK) implements European Union (EU) Directives and Regulations. However, the term used to refer to hazardous waste generated in household or municipal situations, household hazardous waste (HHW), does not occur in UK, or EU, legislation. The EU's Hazardous Waste Directive and European Waste Catalogue are the principal legislation influencing HHW, although the waste categories described are difficult to interpret. Other legislation also have impacts on HHW definition and disposal, some of which will alter current HHW disposal practices, leading to a variety of potential consequences. This paper discusses the issues affecting the management of HHW in the UK, including the apparent absence of a HHW-specific regulatory structure. Policy and regulatory measures that influence HHW management before disposal and after disposal are considered, with particular emphasis placed on disposal to landfill.

  1. Global warming factors modelled for 40 generic municipal waste management scenarios

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Simion, F.; Tonini, Davide

    2009-01-01

    Global warming factors (kg CO2-eq.-tonne—1 of waste) have been modelled for 40 different municipal waste management scenarios involving a variety of recycling systems (paper, glass, plastic and organics) and residual waste management by landfilling, incineration or mechanical—biological waste...... treatment. For average European waste composition most waste management scenarios provided negative global warming factors and hence overall savings in greenhouse gas emissions: Scenarios with landfilling saved 0—400, scenarios with incineration saved 200—700, and scenarios with mechanical...

  2. Increase of Technogenic Safety of a Waste Management Company

    Directory of Open Access Journals (Sweden)

    Cudečka-Puriņa Natālija

    2017-11-01

    Full Text Available Waste management is often recognised in the society as an activity sector possessing an extensive potential harm on technogenic safety. As most of the European Union countries have experienced at least theoretical shift from waste management to resource management, it is now extremely important to implement this shift in practice, moving from disposing waste or by-products to developing a cooperation network that allows different industries to use each other’s waste as resources. This shift will lead to saving of primary resources and raw materials and develop recycling and reuse, bringing them to a higher level.

  3. Methodology for the cost evaluation of radioactive waste management routes

    International Nuclear Information System (INIS)

    Kowa, S.; Stenersen, F.; Shamsi, T.; Thiels, G.M.

    1990-01-01

    One of the significant aspects of radioactive waste management is cost. To determine plant costs for radioactive waste management routes, a method was developed by the Joint Venture Kraftanlagen Heidelberg (FRG) and Task R ampersand S (Italy) to perform a realistic, economic cost assessment of different waste management schemes. This assessment procedure was first developed for System Studies concerning the Management and Storage of radioactive waste in the frame of the 2nd R ampersand D program of the Commission of the European Communities (CEC) and is presently being applied in the 3rd R ampersand D program to assess the costs of different management schemes for LWR Waste and Zircaloy hulls. 9 refs., 4 figs., 3 tabs

  4. ETHEL's systems and facilities for safe management of tritiated wastes

    International Nuclear Information System (INIS)

    Mannone, F.; Dworschak, H.; Vassallo, G.

    1992-01-01

    The European Tritium Handling Experimental Laboratory (ETHEL) is a new tritium facility at the Commission of the European Community's Joint Research Centre, Ispra Site. The laboratory, destined to handle multigram amounts of tritium for safety related R and D purposes, is foreseen to start radioactive operations in late 1992. The general operation and maintenance of laboratory systems and future experiments will generate tritiated wastes in gaseous, liquid and solid forms. The management of such wastes under safe working conditions is a stringent laboratory requirement aimed at minimizing the risk of unacceptable tritium exposures to workers and the general public. This paper describes the main systems and facilities installed in ETHEL for the safe management of tritiated wastes

  5. Waste management '05; Entsorgung '05

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The pocket book comprises two sections. The first part discusses waste management issues in Germany: Refuse-derived fuels, emission trading, domestic waste management market, separate collecting of the biogenic waste fraction, waste management in Canada, the Belgian system Recupel for electric and electronic scrap, contracting and energy efficiency, treatment of organic waste in the EU, industrial safety, Deutsche Bundesstiftung Umwelt (DBU), funding of environmental projects, recycling and utilisation, renewables in new products, quality assurance. Part 2 contains data and figures of the waste management industry: Waste market, data of waste management organisations, waste volumes of the federal states, disposal and recycling, waste wood, water management, members of the BDE and its regional associations, press departments, European associations, authorities, environmental consulting, research institutions, energy agencies, journals. (uke) [German] Das Taschenbuch gliedert sich in 2 Teile. Der 1. Teile eroertert Themen der Entsorgungswirtschaft in Deutschland: Einsatz von Sekundaerbrennstoffen, Emissionshandel, Abfallwirtschaft im Binnenmarkt, Anspruch auf Beibehaltung der getrennten Bioabfall-Erfassung, Abfallwirtschaft und Abfallentsorgung in Kanade, das belgische System Recupelzur Sammlung und Entsorgungvon Elektro- und Electronik-Altgeraeten, Contracting und Energieeffizienz, Behandlung organische Abfaelle in der EU, Arbeitssicherheit, Deutsche Bundesstiftung Umwelt (DBU) Umweltfoerderung, Kreislaufwirtschaft, Recycling von Stoffstroemen und Einsatz nachwachsender Rohstoffe in neuen Produkten, Qualitaetsicherung. Im 2. Teil werden Daten und Zahlen der Entsorgungswirtschaft zusammengetragen: Abfallmarkt, Wirtschaftsdaten der Unternehmen, Abfallmengen in den Bundeslaendern, Entsorgung und Verwertung, Altholz, Wasserwirtschaft, Mitglieder des BDE und seiner Regionalverbaende, Pressestellen, europaeische Fachverbaende, Behoerden

  6. Industrial aspects of radioactive waste management in Western Europe

    International Nuclear Information System (INIS)

    Marcus, F.R.; Seynaeve, F.

    1977-01-01

    In 1980 there will be about 120 nuclear power reactors with 70,000 MWe in operation in Western Europe, and this number will be doubled by 1985, when the nuclear capacity in operation is expected to be 180,000 MWe. Predictions are made of the waste management requirements resulting from this nuclear expansion. Until a few years ago waste from nuclear research and from the use of isotopes in medicine has been the dominating source. Now there is a much larger proportion from the day to day operation of nuclear power reactors. Waste amounts from reprocessing of spent reactor fuel will rise more slowly. Waste production in other fuel cycle industries is relatively insignificant. There will be around 30 reactors and other nuclear plants to take out of operation in Western Europe around 1990. The large-scale handling of these wastes calls for overall management schemes, based on clear policies for storage and disposal. Questions are identified which have to be answered within the next few years in order to allow the orderly development of such large-scale waste management. These questions deal with: (i) rules and regulations, (ii) new technical evidence, (iii) administrative frameworks and responsibilities. Several areas of waste management are well suited to commercial waste operating firms, already established at present in a number of European countries. The scope for waste operators may include waste transportation, operating of own or government owned treatment and storage installations, and the carrying out of disposal operations. In the paper, development needs originally suggested by the Foratom waste study group will be discussed in the light of a late 1976 review to be carried through by European industry

  7. Industrial aspects of radioactive waste management in Western Europe

    International Nuclear Information System (INIS)

    Marcus, F.R.; Seynaeve, F.

    1977-01-01

    In 1980 about 120 nuclear power reactors with 70,000MW(e) will be in operation in Western Europe, and this number will be doubled by the second half of the 1980s, when the nuclear capacity in operation is expected to be 180,000MW(e). Predictions are made of the waste management requirements resulting from this nuclear expansion. Until a few years ago nuclear research and the use of isotopes in medicine have been the dominating source of radioactive waste. Now there is a much larger proportion from the day-to-day operation of nuclear power reactors. The amount of waste from reprocessing spent reactor fuel will rise more slowly. Waste production in other fuel cycle industries is relatively insignificant. Approximately 30 reactors and other nuclear plants will be taken out of operation in Western Europe by about 1990. The large-scale handling of these wastes calls for overall management schemes based on clear policies for storage and disposal. Questions are identified which will have to be answered within the next few years in order to allow the orderly development of such large-scale waste management. These questions deal with (i) rules and regulations, (ii) new technical evidence, (iii) administrative framework and responsibilities. Several areas of waste management are well suited to commercial waste operating firms already established in a number of European countries. The scope for waste operators may include transport of waste, operation of own or government-owned treatment and storage installations, and disposal operations. Development requirements originally suggested by the Foratom waste study group are discussed in the light of the latest developments as seen by European industry. (author)

  8. Radioactive waste management - with evidence

    International Nuclear Information System (INIS)

    1988-01-01

    The select committee was appointed to report on the present (1988) situation and future prospects in the field of radioactive waste management in the European Community. The report covers all aspects of the subject. After an introduction the parts of the report are concerned with the control of radiation hazards, the nuclear fuel cycle and radioactive waste, the control of radioactive effluents, storage and disposal of solid radioactive wastes, research programmes, surface storage versus deep geological disposal of long-term wastes, the future of reprocessing and the public debate. Part 10 is a resume of the main conclusions and recommendations. It is recommended that the House of Lords debate the issue. The oral and written evidence presented to the committee is included in the report. (U.K.)

  9. Objectives, standards and criteria for radioactive waste disposal in the European Community

    International Nuclear Information System (INIS)

    Orlowski, S.; Schaller, K.H.

    1989-01-01

    The present report, edited by a working group within the framework of the European Commission research programme on radioactive waste management and disposal, reviews the objectives, standards and criteria for radioactive waste disposal in the European Community with a view to identifying common features and differences in the regulatory frameworks of its Member States. Suggestions for possible harmonization are made. A few common general principles form the basis for legal and regulatory measures. These principles apply to and are discussed for the following: radiation protection (with the systems of dose limitation and control), ethical and sociological questions, environmental and natural resources protection, and nuclear safeguards. A description is given of the implementation of common principles, standards and requirements at Community level, in line with requirements laid down in the European Community Treaties, and in international conventions and recommendations. This is followed by a review of the implementation of basic criteria by national safety authorities. Regulatory measures and national policies, and the approaches used in devising criteria are discussed for both near-surface disposal of low-level waste, and for deep geological disposal of waste in continental geological formations. Finally, the roles and duties of the operators of radioactive waste facilities are reported. More detailed information on particular aspects is presented in the annexes

  10. Strategy on radioactive waste management in Lithuania

    International Nuclear Information System (INIS)

    Poskas, P.; Adomaitis, J.E.

    2003-01-01

    In Lithuania about 70-80% of all electricity is generated at a single power station, Ignalian NPP which has two non-upgradable RBMK-1500 type reactors. The unit 1 will be closed by 2005. The decision on unit 2 should be made in Lithuanian Parliament very soon taking into consideration substantial long-term financial assistance from the EU, G7 and other states as well as international institutions. The Government approved the Strategy on Radioactive Waste Management in 2002. Objectives of this strategy are to develop the radioactive waste management infrastructure based on modern technologies and provide for the set of practical actions that shall bring management of radioactive waste in Lithuania in compliance with radioactive waste management principles of IAEA and with good practices in force in EU Member States. Ignalina NPP is undertaking a program of decommissioning support projects, financed by grants from the International Ignalina Decommissioning Support Fund, administered by the European Bank for Reconstruction and Development. This program comprises also the implementation of investment projects in a number of pre-decommissioning facilities including the management of radioactive waste and spent nuclear fuel. (orig.)

  11. Issues for the long term management of radioactive waste

    International Nuclear Information System (INIS)

    Schneider, T.; Schieber, C.; Lavelle, S.

    2006-01-01

    High-level radioactive waste are currently managed in interim storage installations, providing an adequate protection of the public and the workers for the short term period. However, the long-term persistence of the radioactivity of the waste gives a new timescale dimension, never experimented by the society for the development of protection systems. In the framework of the European Commission research project 'COWAM-2' (COmmunity WAste Management) dedicated to the governance of radioactive waste management, the issues of 'long term governance' have been addressed by exploring the elements which can contribute to a better integration of the technical and societal time dimensions, taking into account technical, ethical, economic and organizational considerations. The originality of this project is to address the various issues within working groups involving stakeholders from different origins and European countries together with a research team. After a discussion on the time dimensions to be taken into account from the technical and societal perspective, this paper presents, mainly based on the findings of the COWAM-2 project, a brief analysis of the ethical criteria to be considered when future generations are concerned as well as some performance criteria regarding long term governance. Finally, it proposes a discussion on the interest for the radiation protection experts to engage a process with stakeholders concerned by radioactive waste management in order to favour the emergence of a sustainable management responding to the issues at stake and including radiation protection considerations for long term periods. (authors)

  12. The ETSON study on treatment processes for the sustainable management of radioactive waste

    International Nuclear Information System (INIS)

    Besnus, Francois; Metcalf, Phil; Wasselin-Trupin, Virginie; Pfingsten, Wilfred; Smidts, Olivier; Miksova, Jitka; Tokaresvski, Oleksei

    2016-01-01

    ETSON (European Technical Safety Organisation Network): • European association of nuclear assessment bodies; • Objective: - develop and promote best practice in nuclear safety assessment; - foster the convergence of technical nuclear safety practices within the EU and beyond; - assist with planning of nuclear safety research programmes; - facilitate the application of the European directives on nuclear, radiation and radioactive waste and spent fuel safety. • ETSON Activities: - forum for voluntary exchange on both analyses and R&D in the fields of nuclear, radiation and radioactive waste safety; - Issue technical and scientific opinions; - 13 expert groups; one dedicated to Waste management and decommissioning issues (WM&D Group); • WM&D work programme: - Elaborate a common position on decommissioning strategies; - Prepare elements for technical guidance on the operational safety of underground disposal facilities; - Organise an international workshop on sustainable waste management processes prior to disposal

  13. Waste management issues, a set of technologies

    International Nuclear Information System (INIS)

    Gautrot, J.J.

    2000-01-01

    As any other industry, nuclear fuel cycle back-end raises the major issue of waste management. In France, spent fuel is considered as valuable materials and only the ultimate waste are considered as actual waste. Accordingly, waste issue is as follows: a sorting out has to be done, in order to separate valuable materials from actual wastes, put any outlet flow under a stable form and condition them appropriately to their respective recycling or disposal routes. This implies the implementation of a comprehensive set of technologies. Actually, it is an industrial reality, as the COGEMA Group has for a long time set up a reprocessing and conditioning strategy in its plants. Waste management issues are common to many activities. European as well as French regulators already introduced the twofold necessity to reduce waste volumes, and to dispose of only ''ultimate waste'' as concerns industrial and household waste mainly. In this objective, French nuclear reprocessing and recycling industry may be seen as a breeding ground of well-proven technologies and management options. Actually, processes used can also give an answer to such different issues as excess plutonium immobilization, sites cleaning up (including for instance treatment of the liquid HLW legacy), dismantling wastes management. There are a number of operations to be dealt with worldwide that will find a solution in any of the technologies implemented and optimized in COGEMA facilities. Based on the COGEMA Group know-how, the present paper will describe those technologies and explain how they can solve the other stringent waste management issues worldwide. (author)

  14. Metrology for radioactive waste management. (WP2, WP3)

    International Nuclear Information System (INIS)

    Suran, J.

    2014-01-01

    The three-year European research project M etrology for Radioactive Waste Management' was launched in October 2011 under the EMRP (European Metrology Research Programme). It involves 13 European national metrology institutes and a total budget exceeds four million Euros. The project is coordinated by the Czech Metrology Institute and is divided into five working groups. In this presentation the Project is described. (author)

  15. Management of tritium-contaminated wastes a survey of alternative options

    International Nuclear Information System (INIS)

    Mannone, F.

    1990-01-01

    The European Tritium Handling Experimental Laboratory (ETHEL) under construction on the site of Ispra Joint Research Centre of the Commission of European Communities has been commissioned to experimentally develop operational and environmental safety aspects related to the tritium technology in fusion, i.e. dealing with the behaviour and reliability of materials, equipment and containment systems under tritium impact. For this reason a part of the experimental activities to be performed in ETHEL will be devoted to laboratory research on tritiated waste management. However, since all experimental activities planned for the execution in ETHEL will by itselves generate tritiated wastes, current strategies and practices to be applied for the routine management of these wastes need also to be defined. To attain this target an adequate background information must be provided, which is the intent of this report. Through an exhaustive literature survey tritiated waste management options till now investigated or currently applied in several countries have been assessed. A particular importance has been attached to the tritium leach test programmes, whose results enable to assess the tritium retention efficiency of the various waste immobilization options. The conclusions resulting from the overall assessment are presented

  16. Current and future prospects for heat recovery from waste in European district heating systems: A literature and data review

    International Nuclear Information System (INIS)

    Persson, Urban; Münster, Marie

    2016-01-01

    Municipal solid waste has seen increasing annual volumes for many decades in contemporary Europe and constitutes, if not properly managed, an environmental problem due to local pollution and greenhouse gas emissions. From an energy perspective, waste is also an alternative fuel for power and heat generation; energy recovery from waste represents an effective measure to reduce landfilling and avoid disposal emissions while simultaneously reducing the equivalent demand for primary energy supply. A key factor for obtaining the full synergetic benefits of this energy recovery is the presence of local heat distribution infrastructures, without which no large-scale recovery and utilisation of excess heat is possible. In this paper, which aims to estimate municipal solid waste volumes available for heat recovery in European district heating systems in 2030, a literature and data review is performed to establish and assess current and future EU (European Union) waste generation and management. Main conclusions are that more heat can be recovered from current Waste-to-Energy facilities operating at low average heat recovery efficiencies, that efficient incineration capacity is geographically concentrated, and that waste available for heat recovery in 2030 is equally determined by total generation volumes by this year as by future EU deployment levels of district heating. - Highlights: • European municipal solid waste time series data analysed from 1995 to 2012. • Review of modelling approaches to assess future European waste generation. • Weather corrected district heat data for EU Member States in 1995 and 2012. • Low average heat recovery efficiency in current European waste incineration. • Future heat recovery efficiencies as determinant as future generation volumes.

  17. Regulations for the safe management of radioactive wastes and spent nuclear fuel

    International Nuclear Information System (INIS)

    Voica, Anca

    2007-01-01

    The paper presents the national, international and European regulations regarding radioactive waste management. ANDRAD is the national authority charged with nation wide coordination of safe management of spent fuel and radioactive waste including their final disposal. ANDRAD's main objectives are the following: - establishing the National Strategy concerning the safety management of radioactive waste and spent nuclear fuel; - establishing the national repositories for the final disposal of the spent nuclear fuel and radioactive waste; - developing the technical procedures and establishing norms for all stages of management of spent nuclear fuel and radioactive waste, including the disposal and the decommissioning of the nuclear and radiologic facilities

  18. The CEC contribution to radioactive waste management, decommissioning and related radiation protection issues

    International Nuclear Information System (INIS)

    Finzi, S.

    1991-01-01

    The Commission of the European Communities has, for more than 15 years, supported Research and Development (R and D) programmes on ''Radioactive Waste Management'' (since 1975) as well as on ''Decommissioning of Nuclear Installations'' (since 1979), which are carried out by research laboratories, universities, public organisations and private companies of the EC Member states, under shared-cost contracts. Under these contracts, the Commission of the European Communities generally funds up to 50% of the total cost of a research project. The main objective of the ''Radioactive Waste Management Programme'' is to ensure the safety of the waste management and disposal systems with the goal that the scientific and technological results can be used in practice on industrial scale with full respect for safety and environmental protection requirements. Studies have been performed on three main components of the radioactive waste management system, (i) the waste packages, (ii) the geological repository and (iii) the performance assessment, either through experiments or by theoretical evaluation. The current programme which has two main components, one on waste management, the other on the construction and operation of underground storage facilities, is discussed. (author)

  19. Current and future prospects for heat recovery from waste in European district heating systems: A literature and data review

    DEFF Research Database (Denmark)

    Persson, Urban; Münster, Marie

    2016-01-01

    Municipal solid waste has seen increasing annual volumes for many decades in contemporary Europe and constitutes, if not properly managed, an environmental problem due to local pollution and greenhouse gas emissions. From an energy perspective, waste is also an alternative fuel for power and heat...... to establish and assess current and future EU (European Union) waste generation and management. Main conclusions are that more heat can be recovered from current Waste-to-Energy facilities operating at low average heat recovery efficiencies, that efficient incineration capacity is geographically concentrated...... heat distribution infrastructures, without which no large-scale recovery and utilisation of excess heat is possible. In this paper, which aims to estimate municipal solid waste volumes available for heat recovery in European district heating systems in 2030, a literature and data review is performed...

  20. Radioactive Waste Management - Community Policy and Research Initiatives. The sixth international conference on the management and disposal of radioactive waste - Euradwaste '04

    Energy Technology Data Exchange (ETDEWEB)

    Forsstroem, Hans [Research Directorate Energy, Nuclear Fission and Radiation Protection, European Commission, MO-75 5/37, 200 avenue de la Loi, B-1049 Brussels (Belgium); Ruiz, P Fernandez [DG Research, Energy, Consejo de Seguridad Nuclear, CSN, C/ Justo Dorado, 11, E-28040 Madrid (Spain)

    2004-07-01

    The sixth international conference on the management and disposal of radioactive waste organized be European Commission, held on 29-31 March 2004 in Luxembourg aimed to cover the following objectives: - To present EC policy in waste management, in particular the proposed 'Directive on the Management of Spent Nuclear Fuel and Radioactive Waste' and to discuss relating issues such as the effect on national programmes, site selection, EU added value, the case for EU safety standards, and various socio-political aspects; - To highlight the main results of the Fifth Framework Programme (FP5) of EURATOM for 'Nuclear Energy, Fission Research and Training Activities' in the field of waste in spent fuel management and disposal, and partitioning and transmutation; - To present examples of activities under FP5 and to discuss further research European integration through FP6. The program was divided into two main groups: 1. 'Community Policy and Socio-Political Aspects' which included sessions on community policy initiatives, disposal option, common safety standards and public involvement and acceptance; 2. 'Community Research Activities - FP5' which included sessions on partitioning and transmutation, geological disposal and research networking. There were 29 oral presentations and 36 poster presentations which, for the latter, allowed detailed presentations of the results of the EU-funded research projects. The conference was attended by some 240 participants from 27 countries.

  1. Optimization of waste management by actions taken at source

    International Nuclear Information System (INIS)

    Strachan, N.R.; Wakerley, M.W.

    1988-01-01

    The purpose of this document is to collate and review information on those measures and practices adopted within nuclear facilities to optimize the management of radioactive waste at the point at which it arises. The information on which it has been based has been obtained by a review of the literature and by visits to a number of different types of facilities within the European Community. The search revealed mainly references to waste-management optimization at US LWRs, whereas the visits have tried to cover as wide a range of European facilities as practicable. There are a number of different respects in which radioactive waste can be minimized: - minimizing the amount of activity appearing in the wastes. This is best achieved by the design of process equipment; - minimizing the volume of waste with which radioactivity is associated. This is best achieved by a combination of administrative controls and equipment design; - minimizing the amount of material which for administrative or measurement reasons is considered to be radioactive. Many examples of minimization at source by means of developments in equipment and administrative controls that were encountered during our visits, or identified in the literature search, are described

  2. Optimization of waste management by actions taken at source

    International Nuclear Information System (INIS)

    Strachan, N.R.; Wakerley, M.W.

    1988-01-01

    The purpose of this document is to collate and review information on those measures and practices adopted within nuclear facilities to optimize the management of radioactive waste at the point of arising. The information on which it has been based has been obtained by literature review and by visits to a number of different types of facilities within the European Community. The search revealed mainly references to waste management optimization at US LWRs, whereas the visits have tried to cover as wide a range of European facilities as practicable. There are a number of different respects in which radioactive waste can be minimized: minimizing the amount of activity appearing in the wastes. This is best achieved by the design of process equipment; minimizing the volume of waste with which radioactivity is associated. This is best achieved by a combination of administrative controls and equipment design; minimizing the amount of material which for administrative or measurement reasons is considered to be radioactive. Many examples of minimization at source by means of equipment developments and administrative controls that were encountered during our visits or identified in the literature search are described. (author)

  3. Waste management, waste resource facilities and waste conversion processes

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2011-01-01

    In this study, waste management concept, waste management system, biomass and bio-waste resources, waste classification, and waste management methods have been reviewed. Waste management is the collection, transport, processing, recycling or disposal, and monitoring of waste materials. A typical waste management system comprises collection, transportation, pre-treatment, processing, and final abatement of residues. The waste management system consists of the whole set of activities related to handling, treating, disposing or recycling the waste materials. General classification of wastes is difficult. Some of the most common sources of wastes are as follows: domestic wastes, commercial wastes, ashes, animal wastes, biomedical wastes, construction wastes, industrial solid wastes, sewer, biodegradable wastes, non-biodegradable wastes, and hazardous wastes.

  4. Issues for the long term management of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, T.; Schieber, C. [CEPN, 92 - Fontenay-aux-Roses (France); Lavelle, S. [ICAM, 59 - Lille (France)

    2006-07-01

    High-level radioactive waste are currently managed in interim storage installations, providing an adequate protection of the public and the workers for the short term period. However, the long-term persistence of the radioactivity of the waste gives a new timescale dimension, never experimented by the society for the development of protection systems. In the framework of the European Commission research project 'COWAM-2' (COmmunity WAste Management) dedicated to the governance of radioactive waste management, the issues of 'long term governance' have been addressed by exploring the elements which can contribute to a better integration of the technical and societal time dimensions, taking into account technical, ethical, economic and organizational considerations. The originality of this project is to address the various issues within working groups involving stakeholders from different origins and European countries together with a research team. After a discussion on the time dimensions to be taken into account from the technical and societal perspective, this paper presents, mainly based on the findings of the COWAM-2 project, a brief analysis of the ethical criteria to be considered when future generations are concerned as well as some performance criteria regarding long term governance. Finally, it proposes a discussion on the interest for the radiation protection experts to engage a process with stakeholders concerned by radioactive waste management in order to favour the emergence of a sustainable management responding to the issues at stake and including radiation protection considerations for long term periods. (authors)

  5. Externalities in solid waste managements: Values, instruments and control

    International Nuclear Information System (INIS)

    Brisson, I. E.

    1997-01-01

    This thesis was stimulated by and completed against the backdrop of the unfolding 'waste crisis'. It critically examines whether the crisis is real or whether it merely reflects mis-perceptions. Three principal problems associated with the disposal of solid waste are identified. First, there is increasing concern over the environmental pollution of waste disposal, reflecting not just the increase in actual waste arisings, but also the increased public awareness of environmental pollution. Secondly, there is concern over the financial costs of waste collection and disposal, which can constitute a considerable drain on available public revenues. Lastly, there is the perceived scarcity of suitable land for siting disposal facilities. Although some low-lying, densely populated regions are inappropriate for the sitting of landfills, the scarcity more often reflects political constraints rather than a genuine shortage. This thesis asserts that a non-optimal quantity of waste, together with the concomitant environmental pollution and financial costs of disposal, partly result from government failure. Current practice fails to ensure that the parties generating the waste face a price at the point of disposal and that such a price reflects the full social costs of disposal. A model is presented which argues that the socially optimal configuration of waste management is that where the marginal social costs of each waste treatment method equals those of the others. In an empirical section, the external costs of landfill, incineration, recycling and composting are estimated for the European Union, based on existing studies of damage costs for different pollutants. This is followed by estimations of the financial costs of municipal solid waste management. Combining financial and external cost estimates, a cost-benefit analysis of municipal solid waste management in the European Union is undertaken. (Abstract Truncated)

  6. ORION - A Global Approach to Waste Management.

    Science.gov (United States)

    Heinzelmann, Elsbeth

    2015-01-01

    In the ORION project supported by the European Commission, 20 partners work together to manage organic waste from agro-food industries. The goal is to develop a small, automatic and user-friendly digestion machine to facilitate the domestic on-site treatment of a wide range of organic waste from around 100 and up to 5000 tonnes per year at low cost and with limited maintenance. Simon Crelier at the HES-SO Valais/Wallis is part of the network.

  7. Improvement of public administration in the sphere of solid household waste management

    Directory of Open Access Journals (Sweden)

    I. P. Krynychna

    2017-08-01

    Positive trends in the sphere of state regulation of the waste management system can be seen in recent years, but Ukraine has not created the appropriate legal and regulatory framework yet that would gradually reach the requirements of the European legislation. Conclusions of the research. The enshrined regulations of national rules on disposal and solid waste management are currently not implemented fully. This calls for the improvement of enforcement practice on this issue, as well as the introduction of amendments and additions to existing legal acts. It is necessary to develop an effective state program that would include a complex of state measures for the creation of specialized enterprises for sorting and processing of solid waste in Ukraine, to conduct a series of educational actions among citizens. Ukrainian legislation on the effective solution of the problem of solid household waste management should be based on national characteristics and positive experience of relevant European legislation in this sphere. And the attraction of foreign investments in the waste recycling industry will definitely contribute to the improvement of the ecological situation in Ukraine.

  8. Radioactive Waste Management - Community Policy and Research Initiatives. The sixth international conference on the management and disposal of radioactive waste - Euradwaste '04

    Energy Technology Data Exchange (ETDEWEB)

    Forsstroem, Hans [Research Directorate Energy, Nuclear Fission and Radiation Protection, European Commission, MO-75 5/37, 200 avenue de la Loi, B-1049 Brussels (Belgium); Ruiz, P. Fernandez (ed.) [DG Research, Energy, Consejo de Seguridad Nuclear, CSN, C/ Justo Dorado, 11, E-28040 Madrid (Spain)

    2004-07-01

    The sixth international conference on the management and disposal of radioactive waste organized be European Commission, held on 29-31 March 2004 in Luxembourg aimed to cover the following objectives: - To present EC policy in waste management, in particular the proposed 'Directive on the Management of Spent Nuclear Fuel and Radioactive Waste' and to discuss relating issues such as the effect on national programmes, site selection, EU added value, the case for EU safety standards, and various socio-political aspects; - To highlight the main results of the Fifth Framework Programme (FP5) of EURATOM for 'Nuclear Energy, Fission Research and Training Activities' in the field of waste in spent fuel management and disposal, and partitioning and transmutation; - To present examples of activities under FP5 and to discuss further research European integration through FP6. The program was divided into two main groups: 1. 'Community Policy and Socio-Political Aspects' which included sessions on community policy initiatives, disposal option, common safety standards and public involvement and acceptance; 2. 'Community Research Activities - FP5' which included sessions on partitioning and transmutation, geological disposal and research networking. There were 29 oral presentations and 36 poster presentations which, for the latter, allowed detailed presentations of the results of the EU-funded research projects. The conference was attended by some 240 participants from 27 countries.

  9. Waste management

    International Nuclear Information System (INIS)

    Chmielewska, E.

    2010-01-01

    In this chapter formation of wastes and basic concepts of non-radioactive waste management are explained. This chapter consists of the following parts: People in Peril; Self-regulation of nature as a guide for minimizing and recycling waste; The current waste management situation in the Slovak Republic; Categorization and determination of the type of waste in legislative of Slovakia; Strategic directions waste management in the Slovak Republic.

  10. Achieving compliance with healthcare waste management regulations : empirical evidence from small European healthcare units

    OpenAIRE

    Botelho, Anabela

    2011-01-01

    Healthcare units generate substantial amounts of hazardous or potentially hazardous wastes as by-products of their medical services. The inappropriate management of these wastes poses significant risks to people and the environment. In Portugal, as in other EU countries, the collection, storage, treatment and disposal of healthcare waste is regulated by law. Although legal provisions covering the safe management of healthcare waste date back to the 1990s, little is known about the compliance ...

  11. Carbon-14 waste management

    International Nuclear Information System (INIS)

    Bush, R.P.

    1984-01-01

    As part of their research programme on Radioactive Waste Management, the Commission of the European Communities has provided financial support for a detailed study of wastes containing 14 C and the options for their management. The main results of this study are outlined. Carbon-14 is formed by neutron activation reactions in core materials and is therefore present in a variety of waste streams both at reactors and at reprocessing plants. Data on the production and release of 14 C from various reactor systems are presented. A possible management strategy for 14 C might be reduction of 14 N impurity levels in core materials, but only reductions of about a factor of five in arisings could be achieved in this way. The key problem in 14 C management is its retention in off-gas streams, particularly in the dissolver off-gas stream at reprocessing plants. In this stream the nuclide is present as carbon dioxide and is extensively isotopically diluted by the carbon dioxide content of the air. Processes for trapping 14 C from these off-gases must be integrated with the other processes in the overall off-gas treatment system, and should provide for conversion to a stable solid compound of carbon, suitable for subsequent immobilization and disposal. Three trapping processes that convert carbon dioxide into insoluble carbonates can be identified: the double alkali (NaOH/Ca(OH) 2 ) process, the direct calcium hydroxide slurry process, and the barium ocathydrate gas/solid process. Calcium or barium carbonates, produced in the above processes, could probably be incorporated into satisfactory immobilized waste forms. However, the stability of such waste forms to prolonged irradiation and to leaching remains to be investigated. (author)

  12. Euro-trash. Searching Europe for a more sustainable approach to waste management

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, E.J. [Centre Entreprise-Environnement, IAG, Catholic University of Louvain, Institut d' Administration et de Gestion, Place des Doyons, 1-B-1348 Louvain-la-Neuve (Belgium); McDougall, F.R. [Corporate Sustainable Development, Procter and Gamble, Technical Centres Ltd., P.O. Box Forest Hall No. 2, Whitley Road, Longbenton, NE 12 9TS Newcastle upon Tyne (United Kingdom); Willmore, J. [Resource Integration Systems Ltd., Pear Tree Cottage, Chalford Hill, Stroud, GL6 8EW Glocs. (United Kingdom)

    2001-04-01

    How an economically affordable, environmentally effective and socially acceptable municipal solid waste management system can be developed is currently unclear. Considerable research has been carried out on the practical aspects of municipal waste management (i.e. transport, treatment and disposal) and how citizens feel about source separation, recycling, incineration and landfill but the perspective of the waste manager within the context of long term planning is often ignored. In this study, waste managers from 11 different leading-edge European municipal solid waste programs in nine different countries were interviewed. The economic, social, political, environmental, legal and technical factors of their specific programs were explored and analyzed. The transition of municipal solid waste management to urban resources management was observed and key 'system drivers' for more sustainable waste management practices were identified. Programs visited were: Brescia (I), Copenhagen (DK), Hampshire (UK), Helsinki (FI), Lahn-Dill-Kreis (D), Malmoe (SE), Pamplona (E), Prato (I), Saarbruecken (D), Vienna (A), and Zuerich (CH)

  13. Development of integrated waste management options for irradiated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Wareing, Alan; Abrahamsen-Mills, Liam; Fowler, Linda; Jarvis, Richard; Banford, Anthony William [National Nuclear Laboratory, Warrington (United Kingdom); Grave, Michael [Doosan Babcock, Gateshead (United Kingdom); Metcalfe, Martin [National Nuclear Laboratory, Gloucestershire (United Kingdom); Norris, Simon [Radioactive Waste Management Limited, Oxon (United Kingdom)

    2017-08-15

    The European Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project sought to develop best practices in the retrieval, treatment, and disposal of irradiated graphite including other irradiated carbonaceous waste such as structural material made of graphite, nongraphitized carbon bricks, and fuel coatings. Emphasis was given on legacy irradiated graphite, as this represents a significant inventory in respective national waste management programs. This paper provides an overview of the characteristics of graphite irradiated during its use, primarily as a moderator material, within nuclear reactors. It describes the potential techniques applicable to the retrieval, treatment, recycling/reuse, and disposal of these graphite wastes. Considering the lifecycle of nuclear graphite, from manufacture to final disposal, a number of waste management options have been developed. These options consider the techniques and technologies required to address each stage of the lifecycle, such as segregation, treatment, recycle, and ultimate disposal in a radioactive waste repository, providing a toolbox to aid operators and regulators to determine the most appropriate management strategy. It is noted that national waste management programs currently have, or are in the process of developing, respective approaches to irradiated graphite management. The output of the Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project is intended to aid these considerations, rather than dictate them.

  14. Options for Healthcare Waste Management and Treatment in China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Healthcare waste management and treatment is one of the national priority tasks of China's Tenth Five-Year Plan.Numerous installations disposing medical waste have already operated the project or under construction to the operation in 2006. This paper focuses on the assessment of existing and fu~re options to handle medical waste (MW). Internationally available and so far in China applied technologies and management practice are analysed, including the problems how to materials. Non-hazardous MW can be managed and treated in analogue to municipal solid waste (MSW). In most of the European countries decentralised hospital incinerators have been, because of high operation costs and pollution problems,widely banned and replaced by pre-treatment technologies at the source and centralised incineration plants for hazardous MW.Information for adapting and further developing MW management solutions and treatment technologies in China and applying the most appropriate MWM practice is provided.

  15. Civil nuclear and responsibilities related to radioactive wastes. The 'cumbersome' wastes of the civil nuclear; The Parliament and the management of wastes from the civil nuclear; The Swiss legal framework related to the shutting down of nuclear power stations and to the management of radioactive wastes; Economic theory and management of radioactive wastes: to dare the conflict

    International Nuclear Information System (INIS)

    Rambour, Muriel; Pauvert, Bertrand; Zuber-Roy, Celine; Thireau, Veronique

    2015-01-01

    This publication presents the contributions to a research seminar organised by the European Centre of research on Risk, Collective Accident and Disasters Law (CERDACC) on the following theme: civil nuclear and responsibilities related to radioactive wastes. Three main thematic issues have been addressed: the French legal framework for waste processing, the comparison with the Swiss case, and the controversy about the exposure of societies to waste-induced risks. The first contribution addressed the cumbersome wastes of the civil nuclear industry: characterization and management solutions, the hypothesis of reversibility of the storage of radioactive wastes. The second one comments the commitment of the French Parliament in the management of wastes of the civil nuclear industry: role of Parliamentary Office of assessment of scientific and technological choices (OPECST) to guide law elaboration, assessment by the Parliament of the management of nuclear wastes (history and evolution of legal arrangements). The next contribution describes the Swiss legal framework for the shutting down of nuclear power stations (decision and decommissioning) and for the management of radioactive wastes (removal, financing). The last contribution discusses the risk related to nuclear waste management for citizen and comments how economists address this issue

  16. Overview of management of low and intermediate level radioactive wastes at the Institute for Nuclear Research for to save management of the waste from decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Bujoreanu, D.; Bujoreanu, L.

    2010-01-01

    The national policy of radioactive waste management fully complies with the international requirements established by 'Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management and with the EURATOM treaty, directives, recommendations and policy of radioactive waste management promoted at the level of the European Union. The Institute for Nuclear Research Pitesti (INR) has its own Radwaste Treatment Plant. The object of activity is to treat and condition radioactive waste resulted from the nuclear facility. According to the National Nuclear Program, the institute is the main support for implementation of the methods and technologies for conditioning and disposal of radioactive waste generated by Cernavoda NPP. For all these, in accordance with the Governmental order no. 11/2003, INR shall must prepare and manage the decommissioning projects of its own facilities and to upgrade the facilities for the management of the radioactive waste resulting from decommissioning activities. (authors)

  17. Nuclear wastes management

    International Nuclear Information System (INIS)

    2005-01-01

    This document is the proceedings of the debate that took place at the French Senate on April 13, 2005 about the long-term French policy of radioactive wastes management. The different points tackled during the debate concern: the 3 axes of research of the 1991 law, the public acceptance about the implementation of repositories, the regional economic impact, the cost and financing, the lack of experience feedback, the reversibility or irreversibility of the storage, the share of nuclear energy in the sustainable development policy, the European Pressurized Reactor (EPR) project, the privatization of Electricite de France (EdF) etc. (J.S.)

  18. Why European Entrepreneurs in the Water and Waste Management Sector Are Willing to Go beyond Environmental Legislation

    Directory of Open Access Journals (Sweden)

    Adrián Rabadán

    2017-02-01

    Full Text Available Sustainability in the water sector in Europe is a major concern, and compliance with the current legislation alone does not seem to be enough to face major challenges like climate change or population growth and concentration. The greatest potential for improvement appears when companies decide to take a step forward and go beyond environmental legislation. This study focuses on the environmental responsibility (ER of European small and medium-sized enterprises (SMEs in the water and waste management sector and analyzes the drivers that lead these firms to the adoption of more sustainable practices. Our results show that up to 40% of European SMEs within this industry display environmental responsibility. Market pull has a low incidence in encouraging ER, while values and the strategic decisions of entrepreneurs seem decisive. Policy makers should prioritize subsidies over fiscal incentives because they show greater potential to promote the adoption of environmental responsibility among these firms.

  19. Cleaning up eastern Europe: Proposals for a coordinated European hazardous waste management regime

    International Nuclear Information System (INIS)

    Cassidy, B.E.

    1993-01-01

    In the past century, technological development has stimulated tremendous advances in manufacturing productivity and raised living standards throughout the many industrialized nations of the modern world. Only in the last quarter century, however, has the global community begun to recognize the environmental costs of this technological progress. Of principal concern is the large-scale generation by virtually all commercial and industrial sources of waste by-products posing substantial risks to human health or the environment. Methods of the appropriate management of these hazardous or toxic waste streams have received considerable attention in most developed states during the past two decades. More recently, the international community has recognized that hazardous waste management practices adopted by individual nations may pose significant transboundary environmental concerns. Extra-territorial impacts may arise directly, from the exportation of hazardous waste from one state to another, or indirectly, from the contamination of open-quotes migratory mediaclose quotes like air resources and water supplies. Recognition in the scientific community of hazardous waste's contribution to global pollution has progressed at the same time that a new sense of responsibility for the global environment has evolved in the international legal community. Accordingly, the international community has recently initiated several efforts to address the transboundary nature of hazardous waste management practices

  20. Development of integrated waste management options for irradiated graphite

    Directory of Open Access Journals (Sweden)

    Alan Wareing

    2017-08-01

    Full Text Available The European Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project sought to develop best practices in the retrieval, treatment, and disposal of irradiated graphite including other irradiated carbonaceous waste such as structural material made of graphite, nongraphitized carbon bricks, and fuel coatings. Emphasis was given on legacy irradiated graphite, as this represents a significant inventory in respective national waste management programs. This paper provides an overview of the characteristics of graphite irradiated during its use, primarily as a moderator material, within nuclear reactors. It describes the potential techniques applicable to the retrieval, treatment, recycling/reuse, and disposal of these graphite wastes. Considering the lifecycle of nuclear graphite, from manufacture to final disposal, a number of waste management options have been developed. These options consider the techniques and technologies required to address each stage of the lifecycle, such as segregation, treatment, recycle, and ultimate disposal in a radioactive waste repository, providing a toolbox to aid operators and regulators to determine the most appropriate management strategy. It is noted that national waste management programs currently have, or are in the process of developing, respective approaches to irradiated graphite management. The output of the Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project is intended to aid these considerations, rather than dictate them.

  1. Radioactive waste management

    International Nuclear Information System (INIS)

    Kawakami, Yutaka

    2008-01-01

    Radioactive waste generated from utilization of radioisotopes and each step of the nuclear fuel cycle and decommissioning of nuclear facilities are presented. On the safe management of radioactive waste management, international safety standards are established such as ''The Principles of Radioactive Waste Management (IAEA)'' and T he Joint Convention on the Safety of Radioactive Waste Management . Basic steps of radioactive waste management consist of treatment, conditioning and disposal. Disposal is the final step of radioactive waste management and its safety is confirmed by safety assessment in the licensing process. Safety assessment means evaluation of radiation dose rate caused by radioactive materials contained in disposed radioactive waste. The results of the safety assessment are compared with dose limits. The key issues of radioactive waste disposal are establishment of long term national strategies and regulations for safe management of radioactive waste, siting of repository, continuity of management activities and financial bases for long term, and security of human resources. (Author)

  2. Environmental performance of household waste management in Europe - an example of 7 countries

    DEFF Research Database (Denmark)

    Andreasi Bassi, Susanna; Christensen, Thomas Højlund; Damgaard, Anders

    2017-01-01

    compositions, waste management practices, technologies, and energy systems. National data were collected from a range of sources regarding household waste composition, household sorting efficiency, collection, waste treatments, recycling, electricity and heat composition, and technological efficiencies......An attributional life cycle assessment (LCA) of the management of 1 ton of household waste was conducted in accordance with ISO 14044:2006 and the ILCD Handbook for seven European countries, namely Germany, Denmark, France, UK, Italy, Poland and Greece, representing different household waste....... The objective was to quantify the environmental performance in the different countries, in order to analyze the sources of the main environmental impacts and national differences which affect the results. In most of the seven countries, household waste management provides environmental benefits when considering...

  3. Educational and training needs in radioactive waste management

    International Nuclear Information System (INIS)

    Mele, I.; Mavko, B.; Jencic, I.

    2005-01-01

    For further safe use of nuclear technology it is highly important to maintain the achieved level of knowledge and expertise. The risk of losing nuclear knowledge accumulated in the past is being increasingly discussed in many countries. As part of this debate the knowledge of radioactive waste management is also being closely watched. The current position and future needs of education and training in radioactive waste management were investigated within the coordination action CETRAD as part of the 6 th Framework Programme of the EU. Twenty partners from 17 European countries, including Slovenia, took part in this investigation. The review focused on geological disposal. It has considered the training and education needs of national radioactive waste management organisations, regulatory and government advisory organisations, and other nuclear industry organisations employing staff in this area, and also the provision of education and training by university and non-university organisations to address these needs. The results and conclusions of this research are presented in this paper. Emphasis is given to the national survey results and estimations of our E and T needs in radioactive waste management. (author)

  4. The importance of international cooperation in the field of high level radioactive waste management

    International Nuclear Information System (INIS)

    Isaacs, Thomas H.

    1992-01-01

    This paper discusses the importance of international collaboration in the field of radioactive waste management and points out how cooperation has benefited the U.S. civilian waste management program. The U.S. Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM) oversees the handling, transportation, storage, and final deposition of high-level radioactive wastes for the U.S. commercial sector. Because OCRWM shares many of the same waste management concerns as various other countries with nuclear programs, and since one country's waste management program will ultimately have an impact on the waste management programs of other countries, it is clearly in the interest of all countries to work together in search of solutions to common waste management problems. To facilitate this. cooperation, OCRWM is a participating member of international organizations, such as the IAEA and the OECD/NEA. OCRWM further has in place several bilateral agreements with various individual countries and with the Commission of the European Communities (CEC). Other international waste management initiatives are also currently being considered. (author)

  5. Managing our Nuclear Waste: Choosing Safety and Sustainable Development. Proceedings of the European Forum 2005

    International Nuclear Information System (INIS)

    Fischer, Claude; SCHNEITER, Jean-Louis; Lamoureux, Francois; ); Haug, Peter; Flueler, Thomas; Bouzon, Jean-Luc; Carlsson, Torsten; DEMET, Michel; Marsily, Ghislain de; Gadbois, Serge; Gatignol, Claude; Hooft, Evelyn; Jordan Cizelj, Romana; Rollinger, Francois; Bataille, Christian; Shaver, Kathryn; Linkohr, Rolf; Castellan, Angelo; Collard, Daniel; Devezeaux, Jean-Guy; Dose, Francois; Dupraz, Bernard; Gonnot, Francois-Michel; Leclere, Robert; Pradel, Philippe; Webster, Simon; ); Herzog, Philippe

    2005-01-01

    , professor of geology, member of CNE, Academy of Sciences and Academy of Technologies, Serge Gadbois, sociologist, member of Mutadis and COWAM, Claude Gatignol, Manche representative at the French Parliament, member of OPECST, Evelyn Hooft, ONDRAF, Belgium; Romana Jordan Cizelj, Member of the European Parliament, Slovenia, Francois Rollinger, CFDT - CSSIN. 4 - Audition: Christian Bataille, Nord representative at the French Parliament, member of OPECST, Kathryn Shaver, Head of NWMO, Canada. 5 - 2. round table 'Research laboratories and disposal sites: opportunities for dynamics based on sustainable development' (Chairman: Rolf Linkohr, nuclear physicist, Head of C.E.R.E.S. (DE)). The idea is to increase awareness of the fact that our system of production is tending towards eco-production. The nuclear industry has been a pioneer in this respect, by developing new technologies. In fact, the management and storage of waste is a very high-tech industry which can create a range of businesses with added value e.g. storage, safety etc. Moreover, the producers of waste 'have other expertise' which can be called upon by 'departements' that have agreed to the siting of such disposal sites, using the expertise in a way that takes account of the 'departement's' specific advantages (biomass from farming and forestry, control of energy requirements for small businesses etc.). This presupposes that all local and industrial stakeholders will shoulder their responsibilities and make a commitment, along with the local people, to create new training and businesses in the area concerned. A number of questions will be looked at in detail: - the social and environmental responsibility of waste producers: the technologies and expertise that should be used to further sustainable development (nuclear safety and security, bio-fuels, control of energy demands etc.) - partnerships in contracts of agreed objectives; the involvement of all players; the issue of public/private sector partnerships to fund

  6. Radioactive waste management: review on clearance levels and acceptance criteria legislation, requirements and standards.

    Science.gov (United States)

    Maringer, F J; Suráň, J; Kovář, P; Chauvenet, B; Peyres, V; García-Toraño, E; Cozzella, M L; De Felice, P; Vodenik, B; Hult, M; Rosengård, U; Merimaa, M; Szücs, L; Jeffery, C; Dean, J C J; Tymiński, Z; Arnold, D; Hinca, R; Mirescu, G

    2013-11-01

    In 2011 the joint research project Metrology for Radioactive Waste Management (MetroRWM)(1) of the European Metrology Research Programme (EMRP) started with a total duration of three years. Within this project, new metrological resources for the assessment of radioactive waste, including their calibration with new reference materials traceable to national standards will be developed. This paper gives a review on national, European and international strategies as basis for science-based metrological requirements in clearance and acceptance of radioactive waste. © 2013 Elsevier Ltd. All rights reserved.

  7. Environmental performance of household waste management in Europe - An example of 7 countries.

    Science.gov (United States)

    Andreasi Bassi, Susanna; Christensen, Thomas H; Damgaard, Anders

    2017-11-01

    An attributional life cycle assessment (LCA) of the management of 1ton of household waste was conducted in accordance with ISO 14044:2006 and the ILCD Handbook for seven European countries, namely Germany, Denmark, France, UK, Italy, Poland and Greece, representing different household waste compositions, waste management practices, technologies, and energy systems. National data were collected from a range of sources regarding household waste composition, household sorting efficiency, collection, waste treatments, recycling, electricity and heat composition, and technological efficiencies. The objective was to quantify the environmental performance in the different countries, in order to analyze the sources of the main environmental impacts and national differences which affect the results. In most of the seven countries, household waste management provides environmental benefits when considering the benefits of recycling of materials and recovering and utilization of energy. Environmental benefits come from paper recycling and, to a lesser extent, the recycling of metals and glass. Waste-to-energy plants can lead to an environmental load (as in France) or a saving (Germany and Denmark), depending mainly on the composition of the energy being substituted. Sensitivity analysis and a data quality assessment identified a range of critical parameters, suggesting from where better data should be obtained. The study concluded that household waste management is environmentally the best in European countries with a minimum reliance on landfilling, also induced by the implementation of the Waste Hierarchy, though environmental performance does not correlate clearly with the rate of material recycling. From an environmental point of view, this calls for a change in the waste management paradigm, with less focus on where the waste is routed and more of a focus on the quality and utilization of recovered materials and energy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. National briefing summaries: Nuclear fuel cycle and waste management

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.J.; Bradley, D.J.; Fletcher, J.F.; Konzek, G.J.; Lakey, L.T.; Mitchell, S.J.; Molton, P.M.; Nightingale, R.E.

    1991-04-01

    Since 1976, the International Program Support Office (IPSO) at the Pacific Northwest Laboratory (PNL) has collected and compiled publicly available information concerning foreign and international radioactive waste management programs. This National Briefing Summaries is a printout of an electronic database that has been compiled and is maintained by the IPSO staff. The database contains current information concerning the radioactive waste management programs (with supporting information on nuclear power and the nuclear fuel cycle) of most of the nations (except eastern European countries) that now have or are contemplating nuclear power, and of the multinational agencies that are active in radioactive waste management. Information in this document is included for three additional countries (China, Mexico, and USSR) compared to the prior issue. The database and this document were developed in response to needs of the US Department of Energy.

  9. National briefing summaries: Nuclear fuel cycle and waste management

    International Nuclear Information System (INIS)

    Schneider, K.J.; Bradley, D.J.; Fletcher, J.F.; Konzek, G.J.; Lakey, L.T.; Mitchell, S.J.; Molton, P.M.; Nightingale, R.E.

    1991-04-01

    Since 1976, the International Program Support Office (IPSO) at the Pacific Northwest Laboratory (PNL) has collected and compiled publicly available information concerning foreign and international radioactive waste management programs. This National Briefing Summaries is a printout of an electronic database that has been compiled and is maintained by the IPSO staff. The database contains current information concerning the radioactive waste management programs (with supporting information on nuclear power and the nuclear fuel cycle) of most of the nations (except eastern European countries) that now have or are contemplating nuclear power, and of the multinational agencies that are active in radioactive waste management. Information in this document is included for three additional countries (China, Mexico, and USSR) compared to the prior issue. The database and this document were developed in response to needs of the US Department of Energy

  10. The programme and objectives of the Commission of the European Communities concerning radioactive wastes

    International Nuclear Information System (INIS)

    Orlowski, S.; Cricchio, A.; Girardi, F.

    1984-01-01

    The radioactive waste management programme of the Commission of the European Communities offers a good opportunity for co-operation between Member States. The Commission's principal objectives are: (1) to implement a Community action plan adopted in 1980 for a twelve-year period; (2) to promote research and development; (3) to ensure that radioactive waste management is conducted in conformity with environmental concerns and radiation protection norms. Under the action plan the current situation and prospects for radioactive waste management in the Community were evaluated in 1981-82. Other activities under the plan relate to the promotion of Community co-operation in final disposal and to the institution of a mechanism for Community consultations on criteria for the acceptance of conditioned wastes. The promotion of research and development involves a high degree of co-operation and effort to optimize or select procedures and to establish pilot or demonstration facilities. A budget of US$ 20 million at present supports these activities. With regard to radiation protection, in 1982 the Commission issued a recommendation for an investigation, at Community level, into the impact on all the Member States of operations such as waste treatment, dumping at sea, burial in the ground and storage of radioactive wastes. These objectives suggest that the solutions now under consideration for the management of high-level and long-lived wastes will by the end of this century be introduced alongside those already adopted in practice for low- and medium-level wastes. (author)

  11. Radioactive waste management

    International Nuclear Information System (INIS)

    2013-01-01

    This eighth chapter presents the radioactive wastes and waste disposal; classification of radioactive wastes; basis requests of the radioactive waste management; conditions for a radioactive waste disposal; registers and inventories; transport of radioactive wastes from a facility to another and the radioactive waste management plan

  12. Solid waste management

    OpenAIRE

    Srebrenkoska, Vineta; Golomeova, Saska; Zhezhova, Silvana

    2013-01-01

    Waste is unwanted or useless materials from households, industry, agriculture, hospitals. Waste materials in solid state are classified as solid waste. Increasing of the amount of solid waste and the pressure what it has on the environment, impose the need to introduce sustainable solid waste management. Advanced sustainable solid waste management involves several activities at a higher level of final disposal of the waste management hierarchy. Minimal use of material and energy resources ...

  13. European Union

    International Nuclear Information System (INIS)

    Schaller, K.

    1995-01-01

    Different instruments used by European Commission of the European Union for financial support radioactive waste management activities in the Russian Federation are outlined. Three particular programmes in the area are described

  14. Situation and prospects of radioactive waste disposal in the member states of the European Community

    International Nuclear Information System (INIS)

    Schaller, K.H.; Orlowski, S.

    1990-01-01

    All Member States of the European Community with a nuclear power production programme are preparing for the disposal of radioactive waste produced in the nuclear fuel cycle and through the use of radionuclides in health care, research and industry. The situation of storage and planned, on-going - and already performed - disposal of radioactive waste in these States is first summarised. Suitable sites for disposal of radioactive waste of all categories exist in all Member States concerned. The general principles and international recommendations, and common principles, standards and requirements applicable to disposal in the European Community are then presented, followed by a description of existing disposal facilities and of those which are in an advanced planning stage, and the implementation of basic criteria by national authorities. Finally, policies and strategies for long-term storage and disposal for definitively shut-down nuclear installations, and contributions to research in this field in the ''Communities' Radioactive Waste Management Programme'' are discussed. (author)

  15. Technological progress in the management of radioactive waste

    International Nuclear Information System (INIS)

    Proost, J.; Frognet, J.P.

    1980-01-01

    The expansion of industrial nuclear activities gives rise to increasing amounts of radioactive waste. In addition criticisms on nuclear energy are being focused on the management of radioactive waste. In this context the Commission of European Communities has set up major 'indirect' programmes for the promotion, financial support and coordination of various R and D activities for the period 1975-1979. For the definition of its future policies in this field, it is interesting to evaluate the state of the art and the impact of present and future development work. The study should help in selecting those areas where further research is necessary and in defining priorities for developing new waste disposal techniques. The present report, gives a review of the present situation in Europe. It covers: - general considerations on waste management and policies adopted or proposed in various countries; - major sources of radioactive waste with detailed analysis of the quantities and types of waste generated by reference facilities for the LWR fuel cycle; - evaluation of the techniques as applied at present on an industrial scale in Europe at reactor plants or waste handling centres

  16. THE CONDITION OF WASTE MANAGEMENT IN ROMANIA

    Directory of Open Access Journals (Sweden)

    Diana ZAGAN ZELTER

    2009-01-01

    Full Text Available The present article approaches a very important and actual theme andthat is the problem of generating waste in Romania which, on one hand,affects the environment and human health, and on the other hand itreflects the inefficient way of using the natural resources in society.Probably the majority of us have thought or hoped that the naturalresources are inexhaustible, but we can see today that the unwiseexploitation of these resources is threatening our future.Waste management is a difficult and complex problem in Romania whichis far from being solved according to the environment rules of theEuropean Union. The worsening of the waste problem, especially of thedomestic waste is generated by the significant increase of its quantity, aswell as by the inappropriate way of solving different stages of wasteprocessing.

  17. Management of Conventional Wastes (Non Radioactive) in Spanish Landfills

    International Nuclear Information System (INIS)

    Carreras, N.; Pena, J. M.; Ramos, J. L.; Millan, R.

    2011-01-01

    This report is the result of a collaboration agreement between CIEMAT and ENRESA. The goal of the report is to analyze the existing legislation on solid conventional waste, according to the European Community, the Spanish State and its Autonomous Communities, focusing on the latest regulation applicable to the final management in controlled landfills. In addition, information about the legal frame, production, composition and characteristics of conventional waste (i.e. urban, inert, dangerous industrial and non dangerous industrial) is given. Also, the final management that is carried out nowadays in Spain for each of the waste is analyzed and evaluated. Finally, the fulfilment of the in force regulation by the different types of Spanish controlled landfills is evaluated. (Author) 52 refs.

  18. Introduction to Waste Management

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    Solid waste management is as old as human civilization, although only considered an engineering discipline for about one century. The change from the previous focus on public cleansing of the cities to modern waste management was primarily driven by industrialization, which introduced new materials...... and chemicals, dramatically changing the types and composition of waste, and by urbanization making waste management in urban areas a complicated and costly logistic operation. This book focuses on waste that commonly appears in the municipal waste management system. This chapter gives an introduction to modern...... waste management, including issues as waste definition, problems associated with waste, waste management criteria and approaches to waste management. Later chapters introduce aspects of engineering (Chapter 1.2), economics (Chapter 1.3) and regulation (Chapter 1.4)....

  19. Strategic municipal solid waste management: A quantitative model for Italian regions

    International Nuclear Information System (INIS)

    Cucchiella, Federica; D’Adamo, Idiano; Gastaldi, Massimo

    2014-01-01

    Highlights: • Definition of new plan waste management based on incineration. • Profitability of waste facilities based on economic and financial indicators. • The amount of wastes generated are considered not annually constant and with a regional detail. • A sensitivity analysis is used to test some of the initial assumptions. • Regional strategies are proposed for optimize benefits from correct waste management. - Abstract: Current economic crisis brought to light the structural deficiencies of European economy. This paper aims to improve the performances of a policy on sustainable municipal solid waste management strategies. Specifically, the attention is focused on Italian country that reports a high rate of landfilling. Waste to Energy plant is an attractive technological option in municipal solid waste, but it is a subject of intense debate. Incinerators require effective and efficient controls to avoid emissions of harmful pollutants into the air, land and water, which may influence human health and environment. To address waste management situation, this study uses a multi-objective mathematical programming. A new plan is presented to evaluate and quantify the effects of initiatives for diversion of current waste from landfill. In an attempt to better simulate realistic waste management scenarios, the amount of waste generated is not annually constant and changes are accounted in waste diversion rates. Moreover, due to the geographical characteristics of Italy, the realization of new facilities is replicated with a regional detail. In this paper economic and financial indicators are used to define the profitability of waste facilities. Moreover, a sensitivity analysis is used to test some of the initial assumptions. Once identified the efficient Waste to Energy plant, regional strategies of waste management are proposed to optimize financial and environmental benefits of the sector. The proposed waste management framework provides a concrete scheme

  20. Renewable energy and greenhouse gas emissions from the waste sectors of European Union member states: a panel data analysis.

    Science.gov (United States)

    Domingos, Hélde Araujo; De Melo Faria, Alexandre Magno; Fuinhas, José Alberto; Marques, António Cardoso

    2017-08-01

    In the last two decades, there has been a rich debate about the environmental degradation that results from exposure to solid urban waste. Growing public concern with environmental issues has led to the implementation of various strategic plans for waste management in several developed countries, especially in the European Union. In this paper, the relationships were assessed between economic growth, renewable energy extraction and greenhouse gas (GHG) emissions in the waste sector. The Environmental Kuznets Curve hypothesis was analysed for the member states of the European Union, in the presence of electricity generation, landfill and GHG emissions for the period 1995 to 2012. The results revealed that there is no inverted-U-shaped relationship between income and GHG emissions in European Union countries. The renewable fuel extracted from waste contributes to a reduction in GHG, and although the electricity produced also increases emissions somewhat, they would be far greater if the waste-based generation of renewable energy did not take place. The waste sector needs to strengthen its political, economic, institutional and social communication instruments to meet its aims for mitigating the levels of pollutants generated by European economies. To achieve the objectives of the Horizon 2020 programme, currently in force in the countries of the European Union, it will be necessary to increase the share of renewable energy in the energy mix.

  1. Waste Management Program management plan. Revision 1

    International Nuclear Information System (INIS)

    1997-02-01

    As the prime contractor to the Department of Energy Idaho Operations Office (DOE-ID), Lockheed Martin Idaho Technologies Company (LMITCO) provides comprehensive waste management services to all contractors at the Idaho National Engineering and Environmental Laboratory (INEEL) through the Waste Management (WM) Program. This Program Management Plan (PMP) provides an overview of the Waste Management Program objectives, organization and management practices, and scope of work. This document will be reviewed at least annually and updated as needed to address revisions to the Waste Management's objectives, organization and management practices, and scope of work. Waste Management Program is managed by LMITCO Waste Operations Directorate. The Waste Management Program manages transuranic, low-level, mixed low-level, hazardous, special-case, and industrial wastes generated at or transported to the INEEL

  2. Radioactive wastes. Management

    International Nuclear Information System (INIS)

    Guillaumont, R.

    2001-01-01

    Many documents (journal articles, book chapters, non-conventional documents..) deal with radioactive wastes but very often this topic is covered in a partial way and sometimes the data presented are contradictory. The aim of this article is to precise the definition of radioactive wastes and the proper terms to describe this topic. It describes the main guidelines of the management of radioactive wastes, in particular in France, and presents the problems raised by this activity: 1 - goal and stakes of the management; 2 - definition of a radioactive waste; 3 - radionuclides encountered; 4 - radio-toxicity and radiation risks; 5 - French actors of waste production and management; 6 - French classification and management principles; 7 - wastes origin and characteristics; 8 - status of radioactive wastes in France per categories; 9 - management practices; 10 - packages conditioning and fabrication; 11 - storage of wastes; 12 - the French law from December 30, 1991 and the opportunities of new ways of management; 13 - international situation. (J.S.)

  3. Mine waste management legislation. Gold mining areas in Romania

    Science.gov (United States)

    Maftei, Raluca-Mihaela; Filipciuc, Constantina; Tudor, Elena

    2014-05-01

    Agency for Mineral Resources (NAMR) manages, on behalf of the state, the mineral resources. Waste management framework Nowadays, Romania, is trying to align its regulation concerning mining activity to the European legislation taking into consideration waste management and their impact on the environment. Therefore the European Waste Catalog (Commission Decision 2001/118/EC) has been updated and published in the form of HG 856/2002 Waste management inventory and approved wastes list, including dangerous wastes. The HG 349/2005 establishes the legal framework for waste storage activity as well as for the monitoring of the closing and post-closing existing deposits, taking into account the environment protection and the health of the general population. Based on Directive 2000/60/EC the Ministry of Waters Administration, Forests and Environment Protection from Romania issued the GO No 756/1997 (amended by GO 532/2002 and GO 1144/2002),"Regulations for environment pollution assessment" that contains alarm and intervention rates for soil pollution for contaminants such as metals, metalloids (Sb, Ag, As, Be, Bi, B, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Se, Sn, TI, V, Zn) and cyanides. Also GO No 756/1997 was amended and updated by Law No 310/2004 and 112/2006 in witch technical instructions concerning general framework for the use of water sources in the human activities including mining industry, are approved. Chemical compounds contained in industrial waters are fully regulated by H. G. 352/2005 concerning the contents of waste water discharged. Directive 2006/21/EC of the European Parliament and of the Council relating to the management of waste from extractive industries and amending Directive 2004/35/EC is transposed into the national law of the Romanian Government under Decision No 856/2008. The 856/2008 Decision on the management of waste from extractive industries establishes "the legal framework concerning the guidelines, measures and procedures to prevent or reduce as far

  4. Quality assurance in the management of radioactive waste in the European Community

    International Nuclear Information System (INIS)

    Simon, R.A.

    1991-01-01

    The current situation and the prospects of quality assurance (QA) as well as the research efforts in this field in most of the EC Member States with an important nuclear industry are summarized. Some of the particular issues concerning QA for future deep geological disposal of radioactive waste and for the associated scientific work are outlined. Finally, the conclusions and recommendations drawn from the report and the discussions within the working group stress the necessity of sound and systematic QA methods and suggest ways to improve the technical application, the management practices and the regulatory/institutional control of QA programmes for the management of radioactive waste

  5. Waste Management Program management plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    As the prime contractor to the Department of Energy Idaho Operations Office (DOE-ID), Lockheed Martin Idaho Technologies Company (LMITCO) provides comprehensive waste management services to all contractors at the Idaho National Engineering and Environmental Laboratory (INEEL) through the Waste Management (WM) Program. This Program Management Plan (PMP) provides an overview of the Waste Management Program objectives, organization and management practices, and scope of work. This document will be reviewed at least annually and updated as needed to address revisions to the Waste Management`s objectives, organization and management practices, and scope of work. Waste Management Program is managed by LMITCO Waste Operations Directorate. The Waste Management Program manages transuranic, low-level, mixed low-level, hazardous, special-case, and industrial wastes generated at or transported to the INEEL.

  6. Re-defining the concepts of waste and waste management:evolving the Theory of Waste Management

    OpenAIRE

    Pongrácz, E. (Eva)

    2002-01-01

    Abstract In an attempt to construct a new agenda for waste management, this thesis explores the importance of the definition of waste and its impact on waste management, and the role of ownership in waste management. It is recognised that present legal waste definitions are ambiguous and do not really give an insight into the concept of waste. Moreover, despite its explicit wish of waste prevention, when according to present legislation a thing is assigned the label...

  7. Taking into account the long term dimension associated with radioactive waste management

    International Nuclear Information System (INIS)

    Schieber, C.; Schneider, T.; Lavelle, S.

    2008-01-01

    Radioactive waste introduces a new time dimension in the field of risk management. This is why, for more than 10 years, there have been reflections on the societal and organisational mechanisms allowing a responsible management over the long term of the risk associated with radioactive waste. These reflections lead one to ask questions regarding interactions between what is at stake for societal and radiation protection criteria, demanding a multidisciplinary approach to the problem. Within the framework of the European project C.O.W.A.M. 2, dedicated to the improvement of governance of radioactive waste management in Europe, a working group involving experts, authorities, waste managers, locally elected representatives and N.G.O.s, discussed the stakes associated with the long term dimension. This article presents the main results of this working group, organised around four themes: meaning of the long term and what is at stake, the ethical dimension regarding long term issues, continuity and sustainability of the surveillance and control of radioactive waste facilities, effectiveness of financing schemes for the long term management of radioactive waste. (authors)

  8. 6th Workshop on waste management contracts

    International Nuclear Information System (INIS)

    2000-01-01

    The workshop was intended for participants from industry and the service sector and municipalities responsible in particular for the legal aspects involved in the waste management business, namely for concluding the contracts with customers and contractors and for contract management in compliance with the laws and regulations of Germany and the European Union, including the relevant pollution control and monitoring obligations. Participants of the workshop received in-depth information and guidance through discussion of contracts and document types of relevance in this context. (orig./CB) [de

  9. SOME ECONOMIC AND ECOLOGIC ASPECTS OF WASTE MANAGEMENT IN A MIDDLE SIZED TOWN

    Directory of Open Access Journals (Sweden)

    Florin Dumescu

    2013-09-01

    Full Text Available Regulations of the European Union establish for local authorities obligations concerning waste management inside their area of competence. Carrying out these obligations need to connect result in economic and municipal fields to those in environment protection. After a short presentation of these obligations the paper contains a study of waste management in Lipova, a middle sized town in Arad County, Romania. The study is focused mainly on the waste dump of the town, which is planned to be shut down during the following years. This makes necessary to carry out preparing concerning waste management in the new conditions and also to assure environment protection on the actual emplacement after shutting down the existing dump.

  10. Municipal solid waste development phases: Evidence from EU27.

    Science.gov (United States)

    Vujić, Goran; Gonzalez-Roof, Alvaro; Stanisavljević, Nemanja; Ragossnig, Arne M

    2015-12-01

    Many countries in the European Union (EU) have very developed waste management systems. Some of its members have managed to reduce their landfilled waste to values close to zero during the last decade. Thus, European Union legislation is very stringent regarding waste management for their members and candidate countries, too. This raises the following questions: Is it possible for developing and developed countries to comply with the European Union waste legislation, and under what conditions? How did waste management develop in relation to the economic development in the countries of the European Union? The correlation between waste management practices and economic development was analysed for 27 of the European Union Member States for the time period between 1995 and 2007. In addition, a regression analysis was performed to estimate landfilling of waste in relation to gross domestic product for every country. The results showed a strong correlation between the waste management variables and the gross domestic product of the EU27 members. The definition of the municipal solid waste management development phases followed a closer analysis of the relation between gross domestic product and landfilled waste. The municipal solid waste management phases are characterised by high landfilling rates at low gross domestic product levels, and landfilling rates near zero at high gross domestic product levels. Hence the results emphasize the importance of wider understanding of what is required for developing countries to comply with the European Union initiatives, and highlight the importance of allowing developing countries to make their own paths of waste management development. © The Author(s) 2015.

  11. Waste management

    International Nuclear Information System (INIS)

    Soule, H.F.

    1975-01-01

    Current planning for the management of radioactive wastes, with some emphasis on plutonium contaminated wastes, includes the provision of re-positories from which the waste can be safely removed to permanent disposal. A number of possibilities for permanent disposal are under investigation with the most favorable, at the present time, apparently disposal in a stable geological formation. However, final choice cannot be made until all studies are completed and a pilot phase demonstrates the adequacy of the chosen method. The radioactive wastes which result from all portions of the fuel cycle could comprise an important source of exposure to the public if permitted to do so. The objectives of the AEC waste management program are to provide methods of treating, handling and storing these wastes so that this exposure will not occur. This paper is intended to describe some of the problems and current progress of waste management programs, with emphasis on plutonium-contaminated wastes. Since the technology in this field is advancing at a rapid pace, the descriptions given can be regarded only as a snapshot at one point in time. (author)

  12. The Link between e-Waste and GDP—New Insights from Data from the Pan-European Region

    Directory of Open Access Journals (Sweden)

    Sigrid Kusch

    2017-03-01

    Full Text Available Waste electrical and electronic equipment (WEEE is difficult to sustainably manage. One key issue is the challenge of planning for WEEE flows as current and future quantities of waste are difficult to predict. To address this, WEEE generation and gross domestic product (GDP data from 50 countries of the pan-European region were assessed. A high economic elasticity was identified, indicating that WEEE and GDP are closely interlinked. More detailed analyses revealed that GDP at purchasing power parity (GDP PPP is a more meaningful measure when looking at WEEE flows, as a linear dependency between WEEE generation and GDP PPP was identified. This dependency applies to the whole region, regardless of the economic developmental stage of individual countries. In the pan-European region, an increase of 1000 international $ GDP PPP means an additional 0.5 kg WEEE is generated that requires management.

  13. Activation/waste management

    International Nuclear Information System (INIS)

    Maninger, C.

    1984-10-01

    The selection of materials and the design of the blankets for fusion reactors have significant effects upon the radioactivity generated by neutron activation in the materials. This section considers some aspects of materials selection with respect to waste management. The activation of the materials is key to remote handling requirements for waste, to processing and disposal methods for waste, and to accident severity in waste management operations. In order to realize the desirable evnironmental potentials of fusion power systems, there are at least three major goals for waste management. These are: (a) near-surface burial; (b) disposal on-site of the fusion reactor; (c) acceptable radiation doses at least cost during and after waste management operations

  14. Handbook of hazardous waste management

    International Nuclear Information System (INIS)

    Metry, A.A.

    1980-01-01

    The contents of this work are arranged so as to give the reader a detailed understanding of the elements of hazardous waste management. Generalized management concepts are covered in Chapters 1 through 5 which are entitled: Introduction, Regulations Affecting Hazardous Waste Management, Comprehensive Hazardous Waste Management, Control of Hazardous Waste Transportation, and Emergency Hazardous Waste Management. Chapters 6 through 11 deal with treatment concepts and are entitled: General Considerations for Hazardous Waste Management Facilities, Physical Treatment of Hazardous Wastes, Chemical Treatment of Hazardous Wastes, Biological Treatment of Hazardous Wastes, Incineration of Hazardous Wastes, and Hazardous Waste Management of Selected Industries. Chapters 12 through 15 are devoted to ultimate disposal concepts and are entitled: Land Disposal Facilities, Ocean Dumping of Hazardous Wastes, Disposal of Extremely Hazardous Wastes, and Generalized Criteria for Hazardous Waste Management Facilities

  15. Mine waste management

    International Nuclear Information System (INIS)

    Hutchinson, I.P.G.; Ellison, R.D.

    1992-01-01

    This book reports on mine waste management. Topics covered include: Performance review of modern mine waste management units; Mine waste management requirements; Prediction of acid generation potential; Attenuation of chemical constituents; Climatic considerations; Liner system design; Closure requirements; Heap leaching; Ground water monitoring; and Economic impact evaluation

  16. Municipal wastes prevention and recycling: some approaches in european towns; Prevention et recyclage des dechets municipaux: un eventail d'approches dans 18 villes europeennes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In 1975, the Community Institutions began to introduce policies and measures to improve waste management. For example, the Member States were required to draft waste management plans and to introduce policies for prevention, recovery and recycling, with incineration and landfills considered less desirable solutions. Cities, where population density and therefore production of waste are higher, play an essential role in the management of municipal waste. For this reason, two networks of European cities, the ACR-AVR (Association of Cities for Recycling) and Energie-Cites along with Agrital Ricerche, an Italian research and study centre, jointly presented a proposal to the European Commission (DG Environment) for a project intended to increase awareness on the part of local authorities and the media in four EU Member States (Spain, Italy, Ireland and the UK) concerning the need to elaborate local waste management strategies. This project is based on the experience of the REMECOM network (European Network of Measures for Classification of Household Waste) as an example of exchanges between cities regarding methods of analysis and measurement of the volume of household waste at local level. As a result of this proposal they have produced Media-com, a method for raising awareness of waste management based on descriptions of good practices in 18 cities in eleven countries of the EU. All these practices are described in an attractive, non-technical style and are supported by statistics and simple technical information, as well as illustrations. This document, which could also be termed a collection of good practices, constitutes a source of information and ideas for local authorities and the media. (A.L.B.)

  17. 8. European sewage and refuse symposium. Documentation

    International Nuclear Information System (INIS)

    1990-01-01

    The subject of the 8. European Sewage and Refuse Symposium is covered under the following headings: collection and control in sewers, industrial waste water management, pretreatment, combined treatment, special cases, industrial waste water sludges disposal and the European waste business. (orig./BBR)

  18. Municipal Solid Waste management

    OpenAIRE

    Mirakovski, Dejan; Hadzi-Nikolova, Marija; Doneva, Nikolinka

    2010-01-01

    Waste management covers newly generated waste or waste from an onging process. When steps to reduce or even eliminate waste are to be considered, it is imperative that considerations should include total oversight, technical and management services of the total process.From raw material to the final product this includes technical project management expertise, technical project review and pollution prevention technical support and advocacy.Waste management also includes handling of waste, in...

  19. Concept of sustainable waste management in the city of Zagreb: Towards the implementation of circular economy approach.

    Science.gov (United States)

    Ribić, Bojan; Voća, Neven; Ilakovac, Branka

    2017-02-01

    Improvement of the current waste management is one of the main challenges for most municipalities in Croatia, mainly due to legal obligations set in different European Union (EU) directives regarding waste management, such as reduction of waste generation and landfilling, or increase of separately collected waste and recycling rates. This paper highlights the current waste management in the city of Zagreb by analyzing the waste generation, collection, and disposal scenario along with the regulatory and institutional framework. Since the present waste management system mainly depends upon landfilling, with the rate of separate waste collection and recycling far from being adequate, it is necessary to introduce a new system that will take into account the current situation in the city as well as the obligations imposed by the EU. Namely, in the coming years, the Waste Framework and Landfill Directives of the European Union will be a significant driver of change in waste management practices and governance of the city of Zagreb. At present, the yearly separate waste collection makes somewhat less than 5 kg per capita of various waste fractions, i.e., far below the average value for the (28) capital cities of the EU, which is 108 kg per capita. This is possible to achieve only by better and sustainable planning of future activities and facilities, taking into account of environmental, economic, and social aspects of waste management. This means that the city of Zagreb not only will have to invest in new infrastructure to meet the targets, but also will have to enhance public awareness in diverting this waste at the household level. The solution for the new waste management proposed in this paper will certainly be a way of implementing circular economy approach to current waste management practice in the city of Zagreb. Municipal waste management in the developing countries in the EU (new eastern EU members) is often characterized by its limited utilization of recycling

  20. Knowledge, attitudes and behaviour regarding waste management options in Romania: results from a school questionnaire

    Directory of Open Access Journals (Sweden)

    Karin KOLBE

    2014-12-01

    The analysis revealed that knowledge is highly developed in Romania regarding the potential of recycling, while the concepts of waste management technologies are far less known about and understood. Landfill is seen as a problem for human health and the environment. However, recycling behaviour is low - partly as a result of limited possibilities. In general, the treatment hierarchy that is recommended in the "European waste hierarchy" is only partly reflected in students’ attitudes towards waste management options.

  1. Prevention of Waste in the Circular Economy: Analysis of Strategies and Identification of Sustainable Targets - The food waste example

    OpenAIRE

    CRISTOBAL GARCIA JORGE; VILA Marta; GIAVINI Michele; TORRES DE MATOS CRISTINA; MANFREDI SIMONE

    2016-01-01

    This report continues and further advances the work conducted by the JRC in the field of sustainable management of food waste, which resulted in the publication of the 2015 report “Improving Sustainability and Circularity of European Food Waste Management with a Life Cycle Approach”. It focuses on the broad European waste management context and, in particular, provides insight and analysis on the sustainability of food waste prevention strategies. Among other municipal waste streams, food ...

  2. The Community's research and development programme on radioactive waste management and storage

    International Nuclear Information System (INIS)

    Orlowski, S.; Gandolfo, J.M.

    1988-01-01

    This is the first annual progress report of the European Community's 1985-89 programme of research on radioactive waste management and disposal, carried out by public organizations and private firms in the Community under cost-sharing contracts with the Commission of the European Communities. The 1985-89 programme is aiming at perfecting and demonstrating a system for managing the radioactive waste produced by the nuclear industry, ensuring at the various stages the best possible protection of man and the environment. This first report describes the work to be carried out under the research contracts already concluded before end of 1986 as well as the initial work performed and the first results obtained. For each contract, paragraph C ''Progress of work and obtained results'' was prepared by the contractor under the responsibility of the project leader

  3. WASTE ELECTRICAL AND ELECTRONIC EQUIPMENT FRAMEWORK LEGISLATION AND MANAGEMENT SYSTEM IN EUROPE

    Directory of Open Access Journals (Sweden)

    Maria-Loredana NICOLESCU

    2015-07-01

    Full Text Available Waste electrical and electronic equipment (WEEE has become one of the most significant waste streams due to the increasing amounts and environmental impact. It is very important to know how to manage the WEEE quantities, what laws are in force in this field and what policies are available to apply. This paper presents the e-waste legislation and management system from some of the European countries, as examples. The hierarchy of the management systems is presented according to the framework Directive and legislative approaches. There are also shown the "take-back" policy, the "polluter pays" principle and the "extended producer responsibility" principle. The goal of this research is to highlight the WEEE framework legislation in Europe and to present the EU policies for the WEEE management system.

  4. Nuclear waste management

    International Nuclear Information System (INIS)

    1982-12-01

    The subject is discussed, with special reference to the UK, under the headings: radiation; origins of the waste (mainly from nuclear power programme; gas, liquid, solid; various levels of activity); dealing with waste (methods of processing, storage, disposal); high-active waste (storage, vitrification, study of means of eventual disposal); waste management (UK organisation to manage low and intermediate level waste). (U.K.)

  5. Waste management

    DEFF Research Database (Denmark)

    Bruun Hansen, Karsten; Jamison, Andrew

    2000-01-01

    The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark.......The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark....

  6. Design, construction and commissioning of the new solid waste management and storage facilities of Ignalina NPP, Lithuania

    Energy Technology Data Exchange (ETDEWEB)

    Goehring, R.; Wenninger, K. [RWE NUKEM GmbH, Alzenau (Germany)

    2006-04-15

    The contract for the design, construction and commissioning (turn-key) of the New Solid Waste Management and Storage Facilities (SWMSF) has been awarded to RWE NUKEM GmbH. The contract was signed on the 30.11.2005. The New Solid Waste Management and Storage Facilities (SWMSF) are financed by the Ignalina Decommissioning Support Fund which is managed by European Bank for Reconstruction and Development (EBRD). The new facilities are required on the Ignalina Nuclear Power Plant (INPP) in order to support ongoing decomissioning work, including removal of waste from existing waste storage buildings. (orig.)

  7. Radioactive waste management registry. A software tool for managing information on waste inventory

    International Nuclear Information System (INIS)

    Miaw, S.T.W.

    2001-01-01

    The IAEA developed a software tool, the RWM Registry (Radioactive Waste Management Registry) which is primarily concerned with the management and recording of reliable information on the radioactive waste during its life-cycle, i.e. from generation to disposal and beyond. In the current version, it aims to assist the management of waste from nuclear applications. the Registry is a managerial tool and offers an immediate overview of the various waste management steps and activities. This would facilitate controlling, keeping track of waste and waste package, planning, optimizing of resources, monitoring of related data, disseminating of information, taking actions and making decisions related to the waste management. Additionally, the quality control of waste products and a Member State's associated waste management quality assurance programme are addressed. The tool also facilitates to provide information on waste inventory as required by the national regulatory bodies. The RWM Registry contains two modules which are described in detail

  8. Waste predisposal management

    International Nuclear Information System (INIS)

    2005-01-01

    All Member States have to a large or small extent nuclear activities that generate radioactive wastes. Hospitals, research in biomedicine or in agriculture, and some industrial applications, beside other large nuclear activities such as Nuclear Power Plants and Nuclear Research, generate unconditioned liquid or solid radioactive wastes that have to be treated, conditioned and stored prior final disposal. Countries with small nuclear activities require of organizations and infrastructure as to be able to manage, in a safe manner, the wastes that they generate. Predisposal management of radioactive waste is any step carried out to convert raw waste into a stable form suitable for the safe disposal, such as pre-treatment, treatment, storage and relevant transport. Transport of radioactive waste do not differ, in general, from other radioactive material and so are not considered within the scope of this fact sheet (Nevertheless the Agency, within the Nuclear Safety Department, has created a special Unit that might give advise Member States in this area). Predisposal management is comprised of a set of activities whose implementation may take some time. In most of the cases, safety issues and strategic and economical considerations have to be solved prior the main decisions are taken. The International Atomic Energy Agency provides assistance for the management of radioactive waste at national and operating level, in the definition and/or implementation of the projects. The services could include, but are not limited to guidance in the definition of national waste management strategy and its implementation, definition of the most adequate equipment and practices taking into account specific Member State conditions, as well as assisting in the procurement, technical expertise for the evaluation of current status of operating facilities and practical guidance for the implementation of corrective actions, assistance in the definition of waste acceptance criteria for

  9. Safe Management of Waste Generated during Shale Gas Operations

    Science.gov (United States)

    Kukulska-Zając, Ewa; Król, Anna; Holewa-Rataj, Jadwiga

    2017-04-01

    Exploration and exploitation of hydrocarbon deposits, regardless of their type, are connected with the generation of waste, which may have various environmental effects. Such wastes may pose a serious risk to the surrounding environment and public health because they usually contain numerous potentially toxic chemicals. Waste associated with exploration and exploitation of unconventional hydrocarbon deposits is composed of a mixture of organic and inorganic materials, the qualitative and quantitative composition of which changes widely over time, depending on numerous factors. As a result the proper characteristic of this type of waste is very important. Information gained from detailed chemical analyses of drilling chemicals, drilling wastes, and flowback water can be used to manage shale gas-related wastes more appropriately, to develop treatment methods, to store the waste, and assess the potential environmental and health risk. The following paper will focus mainly on the results of research carried out on waste samples coming from the unconventional hydrogen exploration sites. Additionally, regulatory frameworks applicable to the management of wastes produced during this type of works will be discussed. The scope of research concerning physicochemical parameters for this type of wastes will also be presented. The presented results were obtained during M4ShaleGas project realization. The M4ShaleGas project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 640715.

  10. Safety of radioactive waste management. Proceedings of an international conference

    International Nuclear Information System (INIS)

    2000-01-01

    The principal objective of the Conference was to enable members of the scientific community and representatives of facilities which produce radioactive waste, of bodies responsible for radioactive waste management, of nuclear regulatory bodies and of public interest groups, among others, to engage in an open dialogue. The open dialogue which took place may, by providing policy and decision makers with a basis for political action, prove to be an important step in the search for the international consensus so essential in the area of radioactive waste management. The relevant policies and activities of the IAEA, the European Commission, the OECD Nuclear Energy Agency and the World Health Organization were presented. The evolution, under the aegis of the IAEA, of a de facto international radiation and nuclear safety regime was noted. In the area of radioactive waste safety, this regime consists of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, the body of international waste safety standards established by the IAEA and other international organizations, and the IAEA's mechanisms for providing for the application of those standards. The topics covered by the Conference were: Current international co-operative efforts; Recommendations from the International Commission on Radiological Protection; Recommendations from the International Nuclear Safety Advisory Group; Conclusions and recommendations of the International Symposium on the Restoration of Environments with Radioactive Residues; Siting of radioactive waste management facilities; Participation of interested parties; Legislative and general radiation safety aspects; Removal of material from regulatory control (exclusion, exemption and clearance); Predisposal management (dilution, recycling, transmutation, etc.); Near surface disposal; Residues from the mining and processing of radioactive ores; Long term institutional control; Geological disposal

  11. Radioactive Waste Management Basis

    International Nuclear Information System (INIS)

    Perkins, B.K.

    2009-01-01

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  12. Healthcare waste management practice in the West Black Sea Region, Turkey: A comparative analysis with the developed and developing countries.

    Science.gov (United States)

    Ciplak, Nesli; Kaskun, Songul

    2015-12-01

    The need for proper healthcare waste management has been a crucial issue in many developing countries as it is in Turkey. The regulation regarding healthcare wastes in Turkey was updated in 2005 in accordance with the European Union (EU) waste directives, but it still falls behind meeting the requirements of current waste treatment technologies. Therefore, this study aims to reveal deficiencies, inconsistencies, and improper applications of healthcare waste management in the western part of the Turkish Black Sea Region. In this study, it was revealed that nearly 1 million people live in the region, resulting in 5 million hospital admissions annually. All the healthcare waste produced (1000 tons yr(-1)) is treated in an autoclave plant. However, treating some categories of healthcare wastes in autoclave units mismatches with the EU waste regulations, as alternative treatment technologies are not technically able to treat all types of healthcare wastes. A proper waste management system, therefore, requires an internal segregation scheme to divert these wastes from the main healthcare waste stream. The existing malpractice in the region could cause serious health problems if no measure is taken urgently. It is expected that healthcare waste management in the region and then all across Turkey will be improved with the significant deficiencies and inconsistencies pointed out in this research. In developed countries, specific rules and regulations have already been implemented along with the recommendations for handling of healthcare waste. However, in Turkey, these wastes are treated in autoclave units, which mismatches with the European Union waste regulations, as alternative treatment technologies are not technically capable to treat all types of healthcare wastes. The existing malpractice could cause serious health problems if no measure is taken urgently. The authors demonstrated the existing status of Turkish waste management and revealed deficiencies

  13. JET experience on managing radioactive waste and implications for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Stephen, E-mail: Stephen.reynolds@ccfe.ac.uk [EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); CCFE/Power and Active Operations Department, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Newman, Mark; Coombs, Dave; Witts, David [EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); CCFE/Power and Active Operations Department, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2016-11-01

    Highlights: • We describe the current waste management structure and processes in place for managing radioactive waste generated as part of JET operations. • We detail the key lessons to be learnt for future fusion experiments and specifically ITER. • Early involvement of specialist waste management advisors and representatives are recommended. • Implementation of a complete integrated electronic waste tracking system will streamline the waste management process. - Abstract: The reduced radiotoxicity and half-life of radioactive waste arisings from nuclear fusion reactors as compared to current fission reactors is one of the key benefits of nuclear fusion. As a result of the research programme at the Joint European Torus (JET), significant experience on the management of radioactive waste has been gained which will be of benefit to ITER and the nuclear fusion community. The successful management of radioactive waste is dependent on accurate and efficient tracking and characterisation of waste streams. To accomplish this all items at JET which are removed from radiological areas are identified and pre-characterised, by recording the radiological history, before being removed from or moved between radiological areas. This system ensures a history of each item is available when it is finally consigned as radioactive waste and also allows detailed forecasting of future arisings. All radioactive waste generated as part of JET operations is transferred to dedicated, on-site, handling facilities for further sorting, sampling and final streaming for off-site disposal. Tritium extraction techniques including leaching, combustion and thermal treatment followed by liquid scintillation counting are used to determine tritium content. Recent changes to government legislation and Culham specific disposal permit conditions have allowed CCFE to adopt additional disposal routes for fusion wastes requiring new treatment and analysis techniques. Facilities currently under

  14. Integrated waste management - Looking beyond the solid waste horizon

    International Nuclear Information System (INIS)

    Seadon, J.K.

    2006-01-01

    Waste as a management issue has been evident for over four millennia. Disposal of waste to the biosphere has given way to thinking about, and trying to implement, an integrated waste management approach. In 1996 the United Nations Environmental Programme (UNEP) defined 'integrated waste management' as 'a framework of reference for designing and implementing new waste management systems and for analysing and optimising existing systems'. In this paper the concept of integrated waste management as defined by UNEP is considered, along with the parameters that constitute integrated waste management. The examples used are put into four categories: (1) integration within a single medium (solid, aqueous or atmospheric wastes) by considering alternative waste management options (2) multi-media integration (solid, aqueous, atmospheric and energy wastes) by considering waste management options that can be applied to more than one medium (3) tools (regulatory, economic, voluntary and informational) and (4) agents (governmental bodies (local and national), businesses and the community). This evaluation allows guidelines for enhancing success: (1) as experience increases, it is possible to deal with a greater complexity; and (2) integrated waste management requires a holistic approach, which encompasses a life cycle understanding of products and services. This in turn requires different specialisms to be involved in the instigation and analysis of an integrated waste management system. Taken together these advance the path to sustainability

  15. What about radioactive waste management in the reorganization of the Russian nuclear industry?

    International Nuclear Information System (INIS)

    Krone, Juergen

    2008-01-01

    Even in the light of rising government revenues, the expansion of the Russian nuclear industry cannot be considered on safe grounds as far as funding is concerned. Decisions about new investments depend on proof that nuclear power is by far more profitable than investments into the development of new gas fields. For a long time, the way in which the unsolved issues of radioactive waste management were to be integrated into the reorganization of the Russian nuclear industry was an open question. Current developments demonstrate the efforts made by the Rosatom management to establish a sound basis for the sustainable management of radioactive waste. In late June 2008, the committees of the Russian parliament started deliberations of the draft legislation introduced by Rosatom about the management of radioactive waste, which includes the legal prerequisites for a sustainable national waste management system. The government-operated waste management company, FGUP 'RosRAO' (Sole Federal Government Enterprise, 'Russian Radioactive Waste'), was founded as a Rosatom subsidiary henceforth to be responsible also for the final storage of radioactive waste. Mainly recommendations of the R4.04/04, 'Strategy Definition for Russian Federation NPP Back End Radioactive Waste Management, including Draft Legislation and Institutional Framework', Tacis project were taken up, which had been elaborated by a consortium of 6 West European waste management organizations in close cooperation with Russian experts from Rosatom. The analysis conducted is described in an outline of the present situation of radioactive waste management in Russia and the recommendations derived from it. In addition, the most recent steps towards building a sustainable government-operated management system for radioactive waste of the Russian nuclear industry are explained. (orig.)

  16. Waste management progress report

    International Nuclear Information System (INIS)

    1997-06-01

    During the Cold War era, when DOE and its predecessor agencies produced nuclear weapons and components, and conducted nuclear research, a variety of wastes were generated (both radioactive and hazardous). DOE now has the task of managing these wastes so that they are not a threat to human health and the environment. This document is the Waste Management Progress Report for the U.S. Department of Energy dated June 1997. This progress report contains a radioactive and hazardous waste inventory and waste management program mission, a section describing progress toward mission completion, mid-year 1997 accomplishments, and the future outlook for waste management

  17. Wastes Characterisation from Foundry Activities on European Level

    International Nuclear Information System (INIS)

    Andres, I.; Ruiz, C.; Ibanez, R.; Viguri, J.; Irabien, A.

    1999-01-01

    This work presents The results of the eco toxicological characterisation of 22 defined wastes from steel foundry activities. The wastes have been selected from three processes, steel mill (smelting). sand casting and cleaning and finishing of steel products,with the common characteristics of represent an important industrial activity in the area and generated the wastes considered in this study. The eco toxicological characterisation obtained applying the Spanish regulations on hazardous waste is compared to the hazardous attributions considered by the European Union in order to characterise a waste as hazardous (non hazardous). The results allow to conclude that a acceptable concordance between both methodologies is reached and remark the need to split the broad generic types of wastes given by the Spanish regulation (Eco toxic / non eco toxic) into clearly identifiable specific types of waste

  18. Radioactive waste management

    International Nuclear Information System (INIS)

    1984-07-01

    The purpose of this document is to set out the Government's current strategy for the long term in the management of radioactive wastes. It takes account of the latest developments, and will be subject to review in the light of future developments and studies. The subject is discussed under the headings: what are radioactive wastes; who is responsible; what monitoring takes place; disposal as the objective; low-level wastes; intermediate-level wastes; discharges from Sellafield; heat generating wastes; how will waste management systems and procedures be assessed; how much more waste is there going to be in future; conclusion. (U.K.)

  19. Nuclear waste management

    International Nuclear Information System (INIS)

    Rodger, W.A.

    1985-01-01

    Most of our activities have always produced waste products of one sort or another. Huxley gives a humorous account of wastes throughout antiquity. So it should come as no surprise that some radioactive materials end up as waste products requiring management and disposal. Public perception of nuclear waste hazards places them much higher on the ''worry scale'' than is justified by the actual hazard involved. While the public perception of these hazards appears to revolve mostly around high-level wastes, there are several other categories of wastes that must also be controlled and managed. The major sources of radioactive wastes are discussed

  20. Nuclear waste management

    International Nuclear Information System (INIS)

    Wyatt, A.

    1978-01-01

    The Canadian Nuclear Association has specific views on the following aspects of waste management: a) public information and public participation programs should be encouraged; b) positive political leadership is essential; c) a national plan and policy are necessary; d) all hazardous materials should receive the same care as radioactive wastes; e) power plant construction need not be restricted as long as there is a commitment to nuclear waste management; f) R and D should be funded consistently for nuclear waste management and ancillary topics like alternative fuel cycles and reprocessing. (E.C.B.)

  1. FOUNDRY WASTE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Borut Kosec

    2008-06-01

    Full Text Available Waste management in foundries is gaining a higher ecological and economical importance. Waste is becoming an increasingly traded product, where excellent profits can be made. Due to the cost reduction and successful business operation in companies, waste has to be regenerated and used again as a material to the maximum possible extent. Such research is long lasting and expensive and is a great challenge for companies. In the frame of our research, a total waste management case study for the Slovenian foundry Feniks was carried out. From the sustainable development point of view, waste management is most suitable, since it ensures the material utilization of waste, reduces the consumption of natural renewable or non-renewable resources and makes efficient production capacity utilization possible. Properly treated ecologically safe waste with a suitable physical characteristic, long-term existence, is a substitute for natural materials. Sand, dust, slag and other mineral waste from foundries are increasingly being used as materials in other industries. The foundry Feniks was awarded with certification of the environmental management system according to the standard SIST EN ISO 14001 and confirmed its environmental credentials.

  2. Low-level Radioactive waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    This meeting describes low-level radioactive waste management problems and contains 8 papers: 1 Low-level radioactive waste management: exemption concept and criteria used by international organizations. 2 Low-level radioactive waste management: french and foreign regulations 3 Low-level radioactive waste management in EDF nuclear power plants (FRANCE) 4 Low-level radioactive waste management in COGEMA (FRANCE) 5 Importance of low-level radioactive wastes in dismantling strategy in CEA (FRANCE) 6 Low-level radioactive waste management in hospitals 7 Low-level radioactive waste disposal: radiation protection laws 8 Methods of low-level radioactive materials measurements during reactor dismantling or nuclear facilities demolition (FRANCE)

  3. Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Kirner, N.; Kelly, J.; Faison, G.; Johnson, D. [Foster Wheeler Environmental Corp. (United States)

    1995-05-01

    In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ``Can mixed waste be managed out of existence?`` That study found that most, but not all, of the Nation`s mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation`s mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ``Which mixed waste has no treatment option?`` Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology.

  4. Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program

    International Nuclear Information System (INIS)

    Kirner, N.; Kelly, J.; Faison, G.; Johnson, D.

    1995-05-01

    In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ''Can mixed waste be managed out of existence?'' That study found that most, but not all, of the Nation's mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation's mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ''Which mixed waste has no treatment option?'' Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology

  5. Uncertainties in the dosimetric assessments of NORM management in conventional waste repository

    International Nuclear Information System (INIS)

    Mora, J. C.; Robles, B.

    2012-01-01

    Naturally Occurring Radioactive Materials (NORM) are generated in huge quantities in several industries-NORM industries-and their management has been formerly carried out in most countries under considerations of industrial non radioactive wastes, with varying considerations on their radioactive content. As the concentration of non radioactive tonics in several of those materials is relatively high, they were treated as toxic materials. This implies that the materials must be previously conditioned using conventional methods and that the waste disposal itself must be prepared to isolate the toxic from the environment for long periods of time. Spanish regulation for these conventional toxic waste disposals include conditions that assure adequate isolation, also including considerations on their radioactive content in such a way that their management way guarantee radiological protection on the people and the environment. After the 96/29 European Directive (the European BSS), radiological implications on NORM industries and their residual materials must be considered. One option that can be considered for the disposal of NORM with activity concentrations above the established unconditional clearance level is the use of the same industrial waste disposals, if guarantees for corresponding radiological criteria are accomplished, according to Authorities establishment. This work analyses the radiological implications of the management of NORM under the considerations applicable for their management as conventional waste, emphasising in activity concentrations slightly over unconditional clearance levels specifically from 1 Bq up to 50 Bq.g - 1. Resulting generic dose assessments are usually carried out under highly conservative hypothesis. This study discusses uncertainties that should be considered to include possible variation due to climate factors or other parameters used in the assessment models. (Author)13 refs.

  6. Solid waste management in Malaysia

    International Nuclear Information System (INIS)

    Nadzri Yahaya

    2010-01-01

    All of the countries over the world have their own policies about how waste were managed. Malaysia as one of the developing country also faces this problems. So, the government was established Department of National Solid Waste Management under Ministry of Housing and Local Government to control and make sure all of these problem on waste will managed systematically. Guiding principle on these issues was mentioned in 3rd Outline Perspective Plan (2000 until 2010), National Policy on Solid Waste Management, National Strategic Plan on Solid Waste Management and also 10th Malaysian Plan. In 10th Malaysian Plan, the government will complete restructuring efforts in this Solid Waste Management sector with the federalization of solid waste management and public cleansing and full enforcement of the Solid Waste and Public Cleansing Management Act 2007. The key outcomes of these efforts will include providing support to local authorities, delivering comprehensive and sanitary services and ensuring that waste is managed in a sustainable manner. These presentations cover all aspect of solid waste management in Malaysia. What are guiding principle, paradigm shift, strategies approach, monitoring and enforcement and also mention about some issues and constraint that appear in Solid waste management in Malaysia.

  7. NDA generic research programme for higher activity waste management issues - 16390

    International Nuclear Information System (INIS)

    McKinney, James; Brownridge, Melanie

    2009-01-01

    NDA has a responsibility to ensure decommissioning activities are sufficiently technically underpinned and appropriate Research and Development (Rand D) is carried out. The NDA funds research and development (R and D) indirectly via the Site Licence Companies (SLCs) or directly. The main component of directly funded R and D is the NDA Direct Research Portfolio (DRP). The DRP is split into four framework areas: - University Interactions; - Waste Processing; - Material Characterisation; - Actinide and Strategic Nuclear Materials. These four framework areas were competed through an Official Journal of European Union (OJEU) process in 2008. Although all four areas involve waste management, Waste Processing and Material Characterisation specifically deal with Higher Activity Waste (HAW) waste management issues. The Waste Processing area was awarded to three groups: (i) National Nuclear Laboratory (NNL), (ii) Consortium led by Hyder Consulting Ltd, and (iii) Consortium led by UKAEA Ltd. The Material Characterisation area was awarded to three groups: (i) NNL, (ii) Serco, and (iii) Consortium led by UKAEA Ltd. The initial work in Waste Processing and Material Characterisation was centered on establishing a forward research programme to address the generic needs of the UK civil nuclear industry and the NDA strategic drivers for waste management and land quality. This has been achieved by the four main framework contractors from the Waste Processing and Materials Characterisation areas working together with the NDA to identify the key research themes and begin the development of the NDA's HAW Management Research Programme. The process also involves active engagement with both industry and regulators via the Nuclear Waste Research Forum (NWRF). The NDA's HAW Management Research Programme includes a number of themes: - Optimisation of Interim Store Operation and Design; - Alternative Waste Encapsulants; - Waste Package Integrity; - Alternative Waste treatment methods

  8. Waste management safety

    International Nuclear Information System (INIS)

    Boehm, H.

    1983-01-01

    All studies carried out by competent authors of the safety of a waste management concept on the basis of reprocessing of the spent fuel elements and storage in the deep underground of the radioactive waste show that only a minor technical risk is involved in this step. This also holds true when evaluating the accidents which have occurred in waste management facilities. To explain the risk, first the completely different safety aspects of nuclear power plants, reprocessing plants and repositories are outlined together with the safety related characteristics of these plants. Also this comparison indicates that the risk of waste management facilities is considerably lower than the, already very small, risk of nuclear power plants. For the final storage of waste from reprocessing and for the direct storage of fuel elements, the results of safety analyses show that the radiological exposure following an accident with radioactivity releases, even under conservative assumptions, is considerably below the natural radiation exposure. The very small danger to the environment arising from waste management by reprocessing clearly indicates that aspects of technical safety alone will hardly be a major criterion for the decision in favor of one or the other waste management approach. (orig.) [de

  9. Norm waste management in Malaysia

    International Nuclear Information System (INIS)

    Muhamat Omar

    2000-01-01

    There are a number of industries generating NORM wastes in Malaysia. These include oil and gas and minerals/ores processing industries. A safe management of radioactive wastes is required. The existing guidelines are insufficient to help the management of oil and gas wastes. More guidelines are required to deal with NORM wastes from minerals/ores processing industries. To ensure that radioactive wastes are safely managed and disposed of, a National Policy on the Safe Management of Radioactive Waste is being developed which also include NORM waste. This paper describes the current status of NORM waste management in Malaysia. (author)

  10. Ademe et Vous. International Newsletter No. 24, Jan.-Feb. 2013. European week for waste reduction: put a stop to waste

    International Nuclear Information System (INIS)

    Martin, Valerie; Seguin-Jacques, Catherine; Tappero, Denis

    2013-01-01

    Introduced in 2009, the European week for waste reduction (EWWR) aims to provide householders, businesses and communities with the keys to significantly reduce waste. Introduced in 2009, the European week for waste reduction (EWWR) aims to provide householders, businesses and communities with the keys to significantly reduce waste. In 2008, the partnership with the Indian Bureau of Energy Efficiency (BEE) was stepped up. It led to the creation of tools and the roll-out of concrete measures

  11. A joint European and African research & innovation agenda on waste management. Waste as a resource: Recycling & recovery of raw materials (2014-2020)

    CSIR Research Space (South Africa)

    Godfrey, Linda K

    2014-01-01

    Full Text Available Research and Innovation Agenda, provides the platform for addressing these basic waste management practices in our municipalities, in innovative ways that will realise the potential provided by waste as a renewable resource and thus grow the waste economy...

  12. Radioactive waste management profiles. Compilation from the Waste Management Database. No. 3

    International Nuclear Information System (INIS)

    2000-07-01

    In 1989, the International Atomic Energy Agency began development of the Waste Management Data Base (WMDB) to, primarily, establish a mechanism for the collection, archival and dissemination of information about radioactive waste management in Member States. This current report is a summary and compilation of waste management collected from Member States from February 1998 to December 1999 in response to the Agency's 1997/98 WMDB Questionnaire. Member States were asked to report waste accumulations up to the end of 1996 and to predict waste accumulations up to the end of 2014

  13. Waste management provisions in the political focus again

    International Nuclear Information System (INIS)

    Heller, W.

    2008-01-01

    In early January 2008, before the elections to the state parliament, the Social Democratic Party (SPD) in Hesse surprisingly announced that a state government led by the SPD would launch a legal initiative right away through the Federal Council 'to do away with the indirect subsidizing of nuclear power plant operators in connection with the provisions made for nuclear waste management and in the form of extensive exemptions from adequate nuclear liability'. The practice of making waste management provisions is subjected to a detailed analysis under aspects of law, business economics, the national economy, and fiscal regulations. The outcome shows that the legal provisions, confirmed also by a ruling of the European Court of Justice of December 2007, constitute neither a concession in the sense of a government subsidy nor a competitive advantage or a tax privilege. (orig.)

  14. Transuranic waste management program waste form development

    International Nuclear Information System (INIS)

    Bennett, W.S.; Crisler, L.R.

    1981-01-01

    To ensure that all technology necessary for long term management of transuranic (TRU) wastes is available, the Department of Energy has established the Transuranic Waste Management Program. A principal focus of the program is development of waste forms that can accommodate the very diverse TRU waste inventory and meet geologic isolation criteria. The TRU Program is following two approaches. First, decontamination processes are being developed to allow removal of sufficient surface contamination to permit management of some of the waste as low level waste. The other approach is to develop processes which will allow immobilization by encapsulation of the solids or incorporate head end processes which will make the solids compatible with more typical waste form processes. The assessment of available data indicates that dewatered concretes, synthetic basalts, and borosilicate glass waste forms appear to be viable candidates for immobilization of large fractions of the TRU waste inventory in a geologic repository

  15. Waste management research abstracts no. 14

    International Nuclear Information System (INIS)

    1983-04-01

    The present 14th issue is the second of the new series of Waste Management Research Abstracts, which are reappearing after a three-year suspension. The new series appears in a substantially innovated form. Although the objective of the publication is the same as before, namely to collect and disseminate information on research in progress in the field of nuclear waste management, the format for presentation of the information is a new data sheet in a standardized form, access to which will be made possible by different indexes. The 408 research data sheets contained in this issue have been collected during recent months, ending 15 January 1983, and reflect research currently in progress. They were sent by the Governments of twenty-five Member States, by the International Atomic Energy Agency, and by the Commission of the European Communities. Though the information contained in this publication covers a wide range of subjects in various countries, the WMRA should not be interpreted as providing a complete survey of on-going research in IAEA Member States

  16. Tribal Waste Management Program

    Science.gov (United States)

    The EPA’s Tribal Waste Management Program encourages environmentally sound waste management practices that promote resource conservation through recycling, recovery, reduction, clean up, and elimination of waste.

  17. International waste management conference

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    This book contains the proceedings of the international waste management conference. Topics covered include: Quality assurance in the OCR WM program; Leading the spirit of quality; Dept. of Energy hazardous waste remedial actions program; management of hazardous waste projects; and System management and quality assurance

  18. Radioactive waste management

    International Nuclear Information System (INIS)

    1992-01-01

    This book highlights the main issues of public concern related to radioactive waste management and puts them into perspective. It provides an overview of radioactive waste management covering, among other themes, policies, implementation and public communication based on national experiences. Its purpose is to assists in increasing the understanding of radioactive waste management issues by public and national authorities, organizations involved in radioactive waste management and the nuclear industry; it may also serve as a source book for those who communicate with the public. Even in the unlikely event that nuclear power does not further develop around the world, the necessity for dealing with nuclear waste from past usages, from uranium mining and milling, decontamination and decommissioning of existing nuclear facilities and from the uses of radioactive materials in medicine, industry and research would still exist. In many countries, radioactive waste management planning involves making effective institutional arrangements in which responsibilities and liabilities are well established for the technical operation and long term surveillance of disposal systems. Financing mechanisms are part of the arrangements. Continuous quality assurance and quality control, at all levels of radioactive waste management, are essential to ensure the required integrity of the system. As with any other human activity, improvements in technology and economics may be possible and secondary problems avoided. Improvements and confirmation of the efficiency of processes and reduction of uncertainties can only be achieved by continued active research, development and demonstration, which are the goals of many national programmes. International co-operation, also in the form of reviews, can contribute to increasing confidence in the ongoing work. The problem of radioactive wastes is not a unique one; it may be compared with other problems of toxic wastes resulting from many other

  19. Radioactive waste management

    International Nuclear Information System (INIS)

    Morley, F.

    1980-01-01

    A summary is given of the report of an Expert Group appointed in 1976 to consider the 1959 White Paper 'The Control of Radioactive Wastes' in the light of the changes that have taken place since it was written and with the extended remit of examining 'waste management' rather than the original 'waste disposal'. The Group undertook to; review the categories and quantities present and future of radioactive wastes, recommend the principles for the proper management of these wastes, advise whether any changes in practice or statutory controls are necessary and make recommendations. (UK)

  20. Hanford Site Waste Management Plan

    International Nuclear Information System (INIS)

    1988-12-01

    The Hanford Site Waste Management Plan (HWMP) was prepared in accordance with the outline and format described in the US Department of Energy Orders. The HWMP presents the actions, schedules, and projected costs associated with the management and disposal of Hanford defense wastes, both radioactive and hazardous. The HWMP addresses the Waste Management Program. It does not include the Environmental Restoration Program, itself divided into the Environmental Restoration Remedial Action Program and the Decontamination and Decommissioning Program. The executive summary provides the basis for the plans, schedules, and costs within the scope of the Waste Management Program at Hanford. It summarizes fiscal year (FY) 1988 including the principal issues and the degree to which planned activities were accomplished. It further provides a forecast of FY 1989 including significant milestones. Section 1 provides general information for the Hanford Site including the organization and administration associated with the Waste Management Program and a description of the Site focusing on waste management operations. Section 2 and Section 3 describe radioactive and mixed waste management operations and hazardous waste management, respectively. Each section includes descriptions of the waste management systems and facilities, the characteristics of the wastes managed, and a discussion of the future direction of operations

  1. Management of radioactive waste of scientific and industrial centers

    International Nuclear Information System (INIS)

    Sobolev, I.A.; Dmitriev, S.A.; Barinov, A.S.; Ojovan, M.I.; Timofeev, E.M.

    1995-01-01

    Available for the time being in the Russian Federation, a system of management of institutional and industrial radioactive waste (e.g. radioactive waste from industry, medicine, scientific organizations and other, which are not related to the nuclear fuel cycle or defense) provides for its collection, transportation, storage, treatment, immobilization and disposal by a network of special enterprises. Russia has 16 such enterprises. Moscow Scientific and Industrial Association Radon deals with the problems of radioactive waste from Central European part of Russia, which includes Moscow, Moscow Region and also Tverskaya, Yaroslavskaya, Vladimirskaya, Kostromskaya, Kaluzhskaya, Bryanskaya, Smolenskaya, Tulskaya, Ryazanskaya regions. The population of the central part of Russia constitutes about 40 million people. At the same time about 80% of the radioactive waste, which is collected for treatment and disposal from the territory of Russia, is included in this region. The average volume of the waste to be treated at SIA Radon is 3,000 m 3 per year for solid waste and 350 m 3 per year for liquid waste. Total radioactivity of processed waste is up to 4 PBq per year

  2. Greening waste management

    CSIR Research Space (South Africa)

    Godfrey, Linda K

    2014-11-01

    Full Text Available ). Countries are moving waste up the waste management hierarchy away from landfilling towards waste prevention, reuse, recycling and recovery. According to the International Solid Waste Association (ISWA, 2012:5), around “70% of the municipal waste produced...

  3. Considering Risk Associated with the Realization of Waste Management Investment Plans in Cracow

    Directory of Open Access Journals (Sweden)

    Hajduga Gabriela

    2017-01-01

    Full Text Available To fulfill obligations to the European Union on waste management, the authorities of the city of Cracow, decided to build a waste incineration plant. Such investment involves considerable risks, not only financial but also social. The paper conducted a risk analysis based on the index net present value, identifies factors which are particularly exposed, and proposes solutions for reducing its level.

  4. Waste management: products and services

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    A number of products and services related to radioactive waste management are described. These include: a portable cement solidification system for waste immobilization; spent fuel storage racks; storage and transport flasks; an on-site low-level waste storage facility; supercompactors; a mobile waste retrieval and encapsulation plant; underwater crushers; fuel assembly disposal; gaseous waste management; environmental restoration and waste management services; a waste treatment consultancy. (UK)

  5. The Communities R and D Programme: radioactive waste management and storage

    International Nuclear Information System (INIS)

    1977-01-01

    The European Community's programme is the first and to this date the only joint international action dealing with those issues, which might well become decisive for the future of nuclear energy -the management and storage of radioactive waste. The first Annual Progress Report describes the scope and the state of advancement of this indirect action programme. At present 24 research contracts with research institutes in almost every member country of the EC are either signed or in the final stages of negociation. The objective of the R and D actions to be achieved by 1980 is the demonstration of either the technical potential or, for further advanced projects, the feasibility and even the industrial availability of methods for treating and stoping radwaste. The following aspects are investigated: processing of solid waste from reactors, reprocessing plants and the plutonium manufacture; intermediate and terminal storage of high activity and alpha wastes; advanced waste management methods as the storage of gaseous waste and the separation and transmutation of actinides. In addition to the scientific-technical R and D actions, a survey of the legal, administrative and financial problems encountered in radwaste management and storage is an essential part of the Communities' programme

  6. Risk management for noncombustion wastes

    International Nuclear Information System (INIS)

    Connor, K.K.; Rice, J.S.

    1991-01-01

    The Noncombustion Waste Risk Management Project is designed to incorporate the insights and information developed in these projects into tools that will help utilities make better noncombustion waste management decisions. Specific project goals are to synthesize information useful to utilities on noncombustion wastes, emphasize waste reduction as a priority over end-of-pipe management, develop methods to manage the costs and risks associated with noncombustion wastes (e.g., direct costs, permitting costs, liability costs, public relations costs), develop software and documentation to deliver the information and analysis methods to the industry. This project was initiated EPRI's Environment Division in late 1988. The early phases of the project involved gathering information on current noncombustion waste management practices, specific utility problems and concerns with respect to these wastes, current and potential future regulations, and current and emerging management options. Recent efforts have focused on characterizing the direct and indirect (e.g., lawsuits, remedial action) costs of managing these wastes and on developing and implementing risk management methods for a subset of wastes. The remainder of this paper describes the specific issues addressed by and the results and insights from the three completed waste-specific studies

  7. Management of solid waste

    International Nuclear Information System (INIS)

    Thompson, W.T.; Stinton, L.H.

    1980-01-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste requires the application of numerous qualitative and quantitative criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were identified as being applicable to the management of the various types of solid waste. This paper highlights the current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste. Capital and operational costs are included for both disposal and storage options

  8. Management of solid waste

    International Nuclear Information System (INIS)

    Thompson, W.T.; Stinton, L.H.

    1980-01-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste requires the application of numerous qualitative and quantitative criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC several waste management options were identified as being applicable to the management of the various types of solid waste. This paper highlights the current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste. Capital and operational costs are included for both disposal and storage options

  9. Problems on radioactive waste and spent nuclear fuel management in the European Arctic Region of Russia

    International Nuclear Information System (INIS)

    Krukov, Evgeny B.

    1999-01-01

    In the Arkhangelsk and Murmansk regions of Russia, radioactive wastes and spent nuclear fuel from the Northern Fleet and Mineconomiki, the technological repairing plant Atomflot and the Kola nuclear power plant and other activities is accumulating steadily and there is no adequate waste management system in the region. There is an action plan to remedy the situation, but it has been delayed because of insufficient funds. This presentation lists the volumes of liquid and solid radioactive wastes from these sources in 1996 and the expected volumes in 2020. It also lists the specific problems of the present waste management and main proposals of the action plan. In addition to federal funds, a number of projects are financed through international co-operation

  10. Radioactive waste management

    International Nuclear Information System (INIS)

    Blomek, D.

    1980-01-01

    The prospects of nuclear power development in the USA up to 2000 and the problems of the fuel cycle high-level radioactive waste processing and storage are considered. The problems of liquid and solidified radioactive waste transportation and their disposal in salt deposits and other geologic formations are discussed. It is pointed out that the main part of the high-level radioactive wastes are produced at spent fuel reprocessing plants in the form of complex aqueous mixtures. These mixtures contain the decay products of about 35 isotopes which are the nuclear fuel fission products, about 18 actinides and their daughter products as well as corrosion products of fuel cans and structural materials and chemical reagents added in the process of fuel reprocessing. The high-level radioactive waste management includes the liquid waste cooling which is necessary for the short and middle living isotope decay, separation of some most dangerous components from the waste mixture, waste solidification, their storage and disposal. The conclusion is drawn that the seccessful solution of the high-level radioactive waste management problem will permit to solve the problem of the fuel cycle radioactive waste management as a whole. The salt deposits, shales and clays are the most suitable for radioactive waste disposal [ru

  11. The Net Enabled Waste Management Database in the context of radioactive waste classification

    International Nuclear Information System (INIS)

    Csullog, G.W.; Burcl, R.; Tonkay, D.; Petoe, A.

    2002-01-01

    There is an emerging, international consensus that a common, comprehensive radioactive waste classification system is needed, which derives from the fact that the implementation of radioactive waste classification within countries is highly diverse. Within IAEA Member States, implementation ranges from none to complex systems that vary a great deal from one another. Both the IAEA and the European Commission have recommended common classification schemes but only for the purpose of facilitating communication with the public and national- and international-level organizations and to serve as the basis for developing comprehensive, national waste classification schemes. In the context described above, the IAEA's newly developed Net Enabled Waste Management Database (NEWMDB) contains a feature, the Waste Class Matrix, that Member States use to describe the waste classification schemes they use and to compare them with the IAEA's proposed waste classification scheme. Member States then report waste inventories to the NEWMDB according to their own waste classification schemes, allowing traceability back to nationally based reports. The IAEA uses the information provided in the Waste Class Matrix to convert radioactive waste inventory data reported according to a wide variety of classifications into an single inventory according to the IAEA's proposed scheme. This approach allows the international community time to develop a comprehensive, common classification scheme and allows Member States time to develop and implement effective, operational waste classification schemes while, at the same time, the IAEA can collect the information needed to compile a comprehensive, international radioactive waste inventory. (author)

  12. Eurosafe 2006 radioactive waste management: long term safety requirements and societal expectations

    International Nuclear Information System (INIS)

    2006-01-01

    The EUROSAFE Forum is part of the EUROSAFE approach, which consists of two further elements: the EUROSAFE Tribune and the EUROSAFE web site. The general aim of EUROSAFE is to contribute to fostering the convergence of technical nuclear safety practices in a broad European context. This is done by providing technical safety and research organisations, safety authorities, power utilities, the rest of the industry and non-governmental organisations mainly from the European Union and East-European countries, and international organisations with a platform for the presentation of recent analyses and R and D in the field of nuclear safety, to share experiences, exchange technical and scientific opinions, and conduct debates on key issues in the fields of nuclear safety and radiation protection. The EUROSAFE Forum 2006 focuses on 'Radioactive Waste Management: Long Term Safety Requirements and Societal Expectations' from the point of view of the authorities, TSOs and industry and presents the latest work in nuclear installation safety and research, waste management, radiation safety as well as nuclear material and nuclear facilities security carried out by GRS, IRSN, AVN and their partners in the European Union, Switzerland and Eastern Europe. A high level of nuclear safety is a priority for Europe. The technical safety organisations play an important role in contributing to that objective through appropriate approaches to major safety issues as part of their assessments and research activities. The challenges to nuclear safety are international. Changes in underlying technologies such as instrumentation and control, the impact of electricity market deregulation, demands for improved safety and safety management, the ageing of nuclear facilities, waste management, maintaining and improving scientific and technical knowledge, and the need for greater transparency - these are all issues where the value of an international approach is gaining increasing recognition. This

  13. Eurosafe 2006 radioactive waste management: long term safety requirements and societal expectations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The EUROSAFE Forum is part of the EUROSAFE approach, which consists of two further elements: the EUROSAFE Tribune and the EUROSAFE web site. The general aim of EUROSAFE is to contribute to fostering the convergence of technical nuclear safety practices in a broad European context. This is done by providing technical safety and research organisations, safety authorities, power utilities, the rest of the industry and non-governmental organisations mainly from the European Union and East-European countries, and international organisations with a platform for the presentation of recent analyses and R and D in the field of nuclear safety, to share experiences, exchange technical and scientific opinions, and conduct debates on key issues in the fields of nuclear safety and radiation protection. The EUROSAFE Forum 2006 focuses on 'Radioactive Waste Management: Long Term Safety Requirements and Societal Expectations' from the point of view of the authorities, TSOs and industry and presents the latest work in nuclear installation safety and research, waste management, radiation safety as well as nuclear material and nuclear facilities security carried out by GRS, IRSN, AVN and their partners in the European Union, Switzerland and Eastern Europe. A high level of nuclear safety is a priority for Europe. The technical safety organisations play an important role in contributing to that objective through appropriate approaches to major safety issues as part of their assessments and research activities. The challenges to nuclear safety are international. Changes in underlying technologies such as instrumentation and control, the impact of electricity market deregulation, demands for improved safety and safety management, the ageing of nuclear facilities, waste management, maintaining and improving scientific and technical knowledge, and the need for greater transparency - these are all issues where the value of an international approach is gaining increasing recognition. This

  14. Eurosafe 2006 radioactive waste management: long term safety requirements and societal expectations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The EUROSAFE Forum is part of the EUROSAFE approach, which consists of two further elements: the EUROSAFE Tribune and the EUROSAFE web site. The general aim of EUROSAFE is to contribute to fostering the convergence of technical nuclear safety practices in a broad European context. This is done by providing technical safety and research organisations, safety authorities, power utilities, the rest of the industry and non-governmental organisations mainly from the European Union and East-European countries, and international organisations with a platform for the presentation of recent analyses and R and D in the field of nuclear safety, to share experiences, exchange technical and scientific opinions, and conduct debates on key issues in the fields of nuclear safety and radiation protection. The EUROSAFE Forum 2006 focuses on 'Radioactive Waste Management: Long Term Safety Requirements and Societal Expectations' from the point of view of the authorities, TSOs and industry and presents the latest work in nuclear installation safety and research, waste management, radiation safety as well as nuclear material and nuclear facilities security carried out by GRS, IRSN, AVN and their partners in the European Union, Switzerland and Eastern Europe. A high level of nuclear safety is a priority for Europe. The technical safety organisations play an important role in contributing to that objective through appropriate approaches to major safety issues as part of their assessments and research activities. The challenges to nuclear safety are international. Changes in underlying technologies such as instrumentation and control, the impact of electricity market deregulation, demands for improved safety and safety management, the ageing of nuclear facilities, waste management, maintaining and improving scientific and technical knowledge, and the need for greater transparency - these are all issues where the value of an international approach is gaining increasing recognition

  15. Prospects of nuclear waste management and radioactive waste management

    International Nuclear Information System (INIS)

    Koprda, V.

    2015-01-01

    The policy of radioactive waste management in the Slovak Republic is based on the principles defined by law on the National Nuclear Fund (NJF) and sets basic objectives: 1 Safe and reliable nuclear decommissioning; 2 The minimization of radioactive waste; 3. Selection of a suitable fuel cycle; 4 Safe storage of radioactive waste (RAW) 5 Security chain management of radioactive waste and spent nuclear fuel (SNF); 6 Nuclear safety; 7 The application of a graduated approach; 8 Respect of the principle 'a polluter pays'; 9 Objective decision-making process; 10 Responsibility. In connection with the above objectives, it appears necessary to build required facilities that are listed in this article.

  16. Waste management - an integral part of environmental management systems

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, Ulrich

    1998-12-01

    To consider waste as a resource instead of an annoyance with which the management has to cope with, has become an unavoidable task for modern managers. The task the management has to take to secure competitiveness in an environment of rising complexity of production processes and further increasing legal requirements, is to manage waste as much as other recourses are managed. Waste has to be considered an aspect of planning and decision process just as business plans or logistics are. Main themes discussed in this publication comprise waste management, implementation of waste management as an integral part of environmental management systems, and management approach to waste - the results. 4 figs.

  17. Management of solid waste

    Science.gov (United States)

    Thompson, W. T.; Stinton, L. H.

    1980-04-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were of solid waste. The current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste are highlighted. Capital operational costs are included for both disposal and storage options.

  18. Management of solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.J. [University of Queensland, St. Lucia, Qld. (Australia). Dept. of Civil Engineering

    1996-12-31

    This chapter introduces the range of solid waste materials produced in the mining and mineral processing industries, with particular reference to Australia. The waste materials are characterised and their important geotechnical engineering properties are discussed. Disposal management techniques for metalliferous, coal, heavy mineral sand, fly ash and bauxite solid wastes are described. Geo-technical techniques for the management of potential contaminants are presented. Minimisation and utilisation of solid wastes, and the economics of solid waste management, are discussed from the perspectives of policy, planning, costing and rehabilitation. 19 figs., 2 tabs.

  19. Waste Management Process Improvement Project

    International Nuclear Information System (INIS)

    Atwood, J.; Borden, G.; Rangel, G. R.

    2002-01-01

    The Bechtel Hanford-led Environmental Restoration Contractor team's Waste Management Process Improvement Project is working diligently with the U.S. Department of Energy's (DOE) Richland Operations Office to improve the waste management process to meet DOE's need for an efficient, cost-effective program for the management of dangerous, low-level and mixed-low-level waste. Additionally the program must meet all applicable regulatory requirements. The need for improvement was highlighted when a change in the Groundwater/Vadose Zone Integration Project's waste management practices resulted in a larger amount of waste being generated than the waste management organization had been set up to handle

  20. Radioactive waste management

    International Nuclear Information System (INIS)

    Pahissa Campa, Jaime; Pahissa, Marta H. de

    2000-01-01

    Throughout this century, the application of nuclear energy has produced many benefits, in industry, in research, in medicine, and in the generation of electricity. These activities generate wastes in the same way as do other human activities. The primary objective of radioactive waste management is to protect human health and environment now and in the future without imposing undue burden on future generations, through sound, safe and efficient radioactive waste management. This paper briefly describes the different steps of the management of short lived low and intermediate level wastes, and presents and overview of the state of art in countries involved in nuclear energy, describing their organizations, methodologies used in the processing of these wastes and the final disposal concepts. It also presents the Argentine strategy, its technical and legal aspects. Worldwide experience during the past 50 years has shown that short lived low and intermediate level wastes can be successfully isolated from human and environment in near surface disposal facilities. (author)

  1. Low-level waste management

    International Nuclear Information System (INIS)

    Levin, G.B.

    1980-01-01

    An overview of the current situation in the United States and a look to the future of low-level waste management are presented. Current problems and challenges are discussed, such as: the need of additional disposal sites in the future; risks and costs involved in transport of low-level wastes; reduction of low-level waste volume through smelting, incineration, and storage for wastes containing nuclides with short half lives; development of a national policy for the management of low-level waste, and its implementation through a sensible system of regulations. Establishing a success with low-level waste management should provide the momentum and public confidence needed to continue on and to resolve the technical and politically more difficult low-level waste problems

  2. Waste Management Technical Manual

    Energy Technology Data Exchange (ETDEWEB)

    Buckingham, J.S. [ed.

    1967-08-31

    This Manual has been prepared to provide a documented compendium of the technical bases and general physical features of Isochem Incorporated`s Waste Management Program. The manual is intended to be used as a means of training and as a reference handbook for use by personnel responsible for executing the Waste Management Program. The material in this manual was assembled by members of Isochem`s Chemical Processing Division, Battelle Northwest Laboratory, and Hanford Engineering Services between September 1965 and March 1967. The manual is divided into the following parts: Introduction, contains a summary of the overall Waste Management Program. It is written to provide the reader with a synoptic view and as an aid in understanding the subsequent parts; Feed Material, contains detailed discussion of the type and sources of feed material used in the Waste Management Program, including a chapter on nuclear reactions and the formation of fission products; Waste Fractionization Plant Processing, contains detailed discussions of the processes used in the Waste Fractionization Plant with supporting data and documentation of the technology employed; Waste Fractionization Plant Product and Waste Effluent Handling, contains detailed discussions of the methods of handling the product and waste material generated by the Waste Fractionization Plant; Plant and Equipment, describes the layout of the Waste Management facilities, arrangement of equipment, and individual equipment pieces; Process Control, describes the instruments and analytical methods used for process control; and Safety describes process hazards and the methods used to safeguard against them.

  3. 40 CFR 273.13 - Waste management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.13 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Small Quantity Handlers of Universal Waste § 273.13 Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage...

  4. 40 CFR 273.33 - Waste management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.33 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste § 273.33 Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage...

  5. Waste management units - Savannah River Site

    International Nuclear Information System (INIS)

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only

  6. Managing mixed wastes: technical issues

    International Nuclear Information System (INIS)

    Lytle, J.E.; Eyman, L.D.; Burton, D.W.; McBrayer, J.F.

    1986-01-01

    The US Department of Energy manages wastes that are both chemically hazardous and radioactive. These mixed wastes are often unique and many have national security implications. Management practices have evolved over the more than forty years that the Department and its predecessor agencies have been managing these wastes, both in response to better understanding of the hazards involved and in response to external, regulatory influences. The Department has recently standarized its waste management practices and has initited an R and D program to address priority issues identified by its operating contractor organizations. The R and D program is guided by waste management strategy that emphasizes reduction of human exposure to hazardous wastes in the environment, reduction of the amount and toxicity of wastes generated, treatment of wastes that are generated to reduce volumes and toxicities, and identification of alternatives to land disposal of wastes that remain hazardous following maximum practicable treatment

  7. Position paper on irradiated fuel and waste management. The Achille's heel of the nuclear industry?

    International Nuclear Information System (INIS)

    Bonin, Bernard

    2014-01-01

    The management and final disposal of irradiated fuel and nuclear waste is often presented by the media and perceived by the public as being an unsolved problem that restricts the future of nuclear energy. However, the nuclear industry focused on this problem very early on and has developed proven technical solutions. Nuclear energy will continue developing worldwide, in spite of the Fukushima accident. Even in those European countries that have decided to phase-out nuclear energy there is a legacy of nuclear waste that must be dealt with. The scientific and technical expertise needed for waste management already exists. Management decisions must be taken. Now is the time for political courage. (orig.)

  8. AVLIS production plant waste management plan

    International Nuclear Information System (INIS)

    1984-01-01

    Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables

  9. Solid domestic wastes as a renewable resource: European experience

    Science.gov (United States)

    Fridland, V. S.; Livshits, I. M.

    2011-01-01

    Ways in which different types of solid domestic wastes, such as wastepaper, crushed glass, plastics and worn-out tires, can be efficiently included into the production, raw-material, and energy balances of the national economy are shown taking Germany and other European countries an example. Methods for recycling these solid domestic wastes and application fields of the obtained products are discussed.

  10. Hazardous industrial waste management

    International Nuclear Information System (INIS)

    Quesada, Hilda; Salas, Juan Carlos; Romero, Luis Guillermo

    2007-01-01

    The appropriate managing of hazardous wastes is a problem little dealed in the wastes management in the country. A search of available information was made about the generation and handling to internal and external level of the hazardous wastes by national industries. It was worked with eleven companies of different types of industrial activities for, by means of a questionnaire, interviews and visits, to determine the degree of integral and suitable handling of the wastes that they generate. It was concluded that exist only some isolated reports on the generation of hazardous industrial wastes and handling. The total quantity of wastes generated in the country was impossible to establish. The companies consulted were deficient in all stages of the handling of their wastes: generation, accumulation and storage, transport, treatment and final disposition. The lack of knowledge of the legislation and of the appropriate managing of the wastes is showed as the principal cause of the poor management of the residues. The lack of state or private entities entrusted to give services of storage, transport, treatment and final disposition of hazardous wastes in the country was evident. (author) [es

  11. Identification and development of waste management alternatives for Strategic Environmental Assessment (SEA)

    International Nuclear Information System (INIS)

    Desmond, Margaret

    2009-01-01

    The European Union Strategic Environmental Assessment (SEA) Directive (2001/42/EC) requires the assessment of likely significant effects on the environment of implementing plans or programmes and reasonable alternatives. While SEA regulations and guidelines emphasize rigour and objectivity in the assessment of alternatives they have little to say on their actual identification. Therefore, criteria should be developed which would aid decision makers in the identification of alternatives appropriate to the tier of decision-making and which meet the objectives of SEA. A methodology is set out in this paper for identifying SEA alternatives for a proposed waste management plan/programme. Specifically, the methodology describes a set of alternatives identification criteria, which will meet the requirements and objectives of SEA and waste management legislation. The outputs from the methodology will help focus on the identification of more sustainable alternatives for waste management planning in Ireland

  12. Radioactive Waste Management BasisApril 2006

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, B K

    2011-08-31

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  13. Management of radioactive waste

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P.; Volckaert, G.; Wacquier, W.

    1998-09-01

    The document gives an overview of of different aspects of radioactive waste management in Belgium. The document discusses the radioactive waste inventory in Belgium, the treatment and conditioning of radioactive waste as well as activities related to the characterisation of different waste forms. A separate chapter is dedicated to research and development regarding deep geological disposal of radioactive waste. In the Belgian waste management programme, particular emphasis is on studies for disposal in clay. Main results of these studies are highlighted and discussed

  14. Radioactive waste management profiles

    International Nuclear Information System (INIS)

    1991-10-01

    In 1989, the International Atomic Energy Agency began development of the Waste Management Data Base (WMDB) to, primarily, establish a mechanism for the collection, integration, storage, and retrieval of information relevant to radioactive waste management in Member States. This report is a summary and compilation of the information contained in the data base. The WMDB contains information and data on several aspects of waste management and offer a ready source of information on such activities as R and D efforts, waste disposal plans and programmes, important programme milestones, waste volume projections, and national and regulatory policies. This report is divided into two parts. Part one describes the Waste Management Data Base system and the type of information it contains. The second part contains data provided by Member States between August 1989 and December 1990 in response to a questionnaire sent by the Agency. However, if a Member State did not respond to the questionnaire, data from IAEA sources, such as technical assistance mission reports, were used - where such data exist. The WMDB system became operational in January 1991. The type of information contained in the data base includes radioactive waste management plans, policies and activities in Member States

  15. Development of waste management regulations

    International Nuclear Information System (INIS)

    Elnour, E.G.

    2012-04-01

    Radioactive wastes are generated during nuclear fuel cycle operation, production and application of radioisotope in medicine, industry, research, and agriculture, and as a by product of natural resource exploitation, which includes mining and processing of ores. To ensure the protection of human health and the environment from the hazard of these wastes, a planned integrated radioactive waste management practice should be applied. The purpose of this study is to develop regulations for radioactive waste management for low and intermediate radioactive level waste (LILW), and other purpose of regulations is to establish requirements with which all organizations must comply in Sudan from LILW in particular disused/spent sources, not including radioactive waste for milling and mining practices. The national regulations regarding the radioactive waste management, should prescribe the allocation of responsibilities and roles of the Country, the regulatory body, user/owner, waste management organization, including regulations on transport packaging of waste and applied a quality assurance programme, to ensure that radioactive waste management is done safely and securely. (author)

  16. Municipal waste management in the urban areas; La gestione dei R.S.U. nei centri urbani

    Energy Technology Data Exchange (ETDEWEB)

    Andreoni, Piero [ENEA, Coordinamento Funzioni di Esercente, Rome (Italy); Capalbo, Anna [Gruppo ENI, Rome (Italy)

    1997-03-01

    Nowadays one of the most important deterioration regarding the environment comes from the high production of solid waste and the way of approaching their management. In Italy (in this report the authors examine in particular the case of Rome) there is still a situation of low efficacy (very few instruments) and low efficiency (costs/benefits ratio) in household waste management. As it results from the analysis of more advanced European examples,, the waste management policy must be based on two key factors: quantity control and reduction, on the one side, and specific instruments for different type/quality of waste on the other side. In order to manage the waste quantity and quality it is necessary to modify consumer and producer behaviour. Only new behaviour models and technical innovation in all production sectors can reduce the problem upstream, because all downstream processes, however sophisticated, are expensive and have a negative environmental impact. There are three instruments to produce an efficient and integrated policy of waste management: a system of pricing (Tax and subsidy), prohibitions in some cases, but especially information and education.

  17. The Net Enabled Waste Management Database as an international source of radioactive waste management information

    International Nuclear Information System (INIS)

    Csullog, G.W.; Friedrich, V.; Miaw, S.T.W.; Tonkay, D.; Petoe, A.

    2002-01-01

    The IAEA's Net Enabled Waste Management Database (NEWMDB) is an integral part of the IAEA's policies and strategy related to the collection and dissemination of information, both internal to the IAEA in support of its activities and external to the IAEA (publicly available). The paper highlights the NEWMDB's role in relation to the routine reporting of status and trends in radioactive waste management, in assessing the development and implementation of national systems for radioactive waste management, in support of a newly developed indicator of sustainable development for radioactive waste management, in support of reporting requirements for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, in support of IAEA activities related to the harmonization of waste management information at the national and international levels and in relation to the management of spent/disused sealed radioactive sources. (author)

  18. National choices in a European perspective. Proceedings of the European Forum 2003

    International Nuclear Information System (INIS)

    Sido, Bruno; Lamoureux, Francois; ); Herzog, Philippe; ); Barre, Bertrand; Bataille, Christian; Colombani, Pascal; Gonzalez Gomez, Jose Luis; Lescoeur, DBruno; Perez, Serge; Weh, Rudolf; Westerlind, Magnus; Houssin, Didier; Nagashima, Hideo; Pavlopoulos, Panagiotis; Linkohr, Rolf; ); Allemeersch, Antoine; Beveridge, George; Bonnemains, Jacky; Fritschi, Markus; Piguet, Jack-Pierre; Rigny, Paul; Streydio, Jean-Marie; Tallec, Michele; Vasa, Ivo; Pancher, Bertrand

    2003-01-01

    In 2003, the 'Entretiens europeens' engaged a dialogue between stakeholders of various socio-professional backgrounds from several countries and with the European Commission, in order to compare the selected options of management of radioactive waste and materials and to emphasize the best experiments, which could inspire an innovating European policy in the world. This document is the proceedings of this first European Forum on this topic. Content: 1 - Introduction by Bruno Sido, senator and chairman of the County Council of Haute-Marne; 2 - talk by Francois Lamoureux, General Director of DG TREN, European Commission. 3 - Debate with the audience. 4 - First round table chaired by Philippe Herzog, Member of the European Parliament and President of Confrontations Europe: Is a European directive feasible? Within what time frame? What flexibility is required? What democratic process is needed? With the contributions from: Bertrand Barre, Manager in charge of Scientific Communications (AREVA), Christian Bataille, Member of the French Parliament, author of the 'Bataille Law', Pascal Colombani, Administrator, British Energy (nuclear power producer in UK), Jose Luis Gonzalez Gomez, ENRESA (Spain), Bruno Lescoeur, Director of the Energy sector, EDF, Serge Perez, Trade Unionist, Member of the National Bureau, FNME CGT (France), Rudolf Weh, Head of Department Spent Fuel and Waste Management Services/Interim Storage, GNS Gesellschaft fuer Nuklear-Service mbH (Germany), Magnus Westerlind, Manager Nuclear Security, SKI (Sweden). 5 - Hearing Didier Houssin, Director, Raw Materials and Hydrocarbons, DGEMP. 6 - Interventions of Hideo Nagashima, Executive Director, NUMO (Japan) and of Panagiotis Pavlopoulos, Research Director CERN, Geneva. 7 - Second round table chaired by Rolf Linkohr, Member of the European Parliament and chairman of European Energy Foundation: 'The scientific and social importance of the various options for the management of nuclear waste' With the contributions

  19. Aspects of radioactive waste management

    International Nuclear Information System (INIS)

    Cutoiu, Dan

    2003-01-01

    The origin and types of radioactive waste, the objective and the fundamental principles of radioactive waste management and the classification of radioactive waste are presented. Problems of the radioactive waste management are analyzed. (authors)

  20. Long term radioactive waste management

    International Nuclear Information System (INIS)

    Lavie, J.M.

    1984-01-01

    In France, waste management, a sensitive issue in term of public opinion, is developing quickly, and due to twenty years of experience, is now reaching maturity. With the launching of the French nuclear programme, the use of radioactive sources in radiotherapy and industry, waste management has become an industrial activity. Waste management is an integrated system dealing with the wastes from their production to the long term disposal, including their identification, sortage, treatment, packaging, collection and transport. This system aims at guaranteing the protection of present and future populations with an available technology. In regard to their long term management, and the design of disposals, radioactive wastes are divided in three categories. This classification takes into account the different radioisotopes contained, their half life and their total activity. Presently short-lived wastes are stored in the shallowland disposal of the ''Centre de la Manche''. Set up within the French Atomic Energy Commission (CEA), the National Agency for waste management (ANDRA) is responsible within the framework of legislative and regulatory provisions for long term waste management in France [fr

  1. Perspectives concerning radioactive waste management

    International Nuclear Information System (INIS)

    Noynaert, L.

    2013-01-01

    The article presents a general overview of the principles of radioactive waste management as established by the International Atomic Energy Agency. Subsequently, research and development related to radioactive waste management at the Belgian Nuclear Research Center SCK·CEN is discussed. Different topical areas are treated including radioactive waste characterisation, decontamination and the long-term management of radioactive waste. The decommissioning of the BR3 reactor and the construction and the exploitation of the underground research laboratory HADES are cited as examples of the pioneering role that SCK·CEN has played in radioactive waste management.

  2. Understanding the side effects of emission trading: implications for waste management.

    Science.gov (United States)

    Braschel, Nina; Posch, Alfred; Pierer, Magdalena

    2014-01-01

    The trading of emission allowances is an important market instrument in climate policy. However, the inclusion of certain branches of industry in the trading system not only provides incentives for emission reduction, it also entails unwanted side effects. Thus, the objective of the present study is to identify such side effects-positive and negative-by examining the potential impact of waste management inclusion in the European Union Emissions Trading Scheme (EU ETS). Desk research was supplemented with qualitative and quantitative empirical analysis (based on expert interviews and a questionnaire) in order to analyse the related perceptions and expectations of actors and stakeholders. The impact of waste management inclusion in the EU ETS is analysed in terms of the following three areas: (i) costs and cost pass-through, (ii), competitiveness and market position, and (iii) carbon leakage. Concerning expectations in the area of costs, both the interviewed experts and the practitioners surveyed thought that costs were likely to increase or that they could be passed on to customers. However, experts and practitioners differed with respect to the possibility of carbon leakage. Clearly, increased knowledge of the possible impact arising from inclusion of the waste sector in the EU ETS would enable managers to become more proactive and to manage waste streams and treatment options more economically.

  3. Disaster waste management: A review article

    International Nuclear Information System (INIS)

    Brown, Charlotte; Milke, Mark; Seville, Erica

    2011-01-01

    Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.; however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems.

  4. Radioactive waste management at AECL

    International Nuclear Information System (INIS)

    Gadsby, R.D.; Allan, C.J.

    2003-01-01

    AECL has maintained an active program in radioactive waste management since 1945, when the Canadian nuclear program commenced activities at the Chalk River Laboratories (CRL). Waste management activities have included operation of waste management storage and processing facilities at AECL's CRL and Whiteshell Laboratories (WL); operation of the Low Level Radioactive Waste Management Office on behalf of Natural Resources Canada to resolve historic radioactive waste problems (largely associated with radioactive ore recovery, transport and processing operations) that are the responsibility of the Federal Government; development of the concept and related technology for geological disposal of Canada's nuclear fuel waste; development of the Intrusion-Resistant Underground Structure (IRUS) disposal concept for low-level nuclear waste; development of dry storage technology for the interim storage of used fuel; and development and assessment of waste processing technology for application in CANDU nuclear power plants and at CRL and WL. Today these activities are continuing. In addition, AECL is: preparing to decommission the nuclear facilities at WL; carrying out a number of smaller decommissioning projects at CRL; putting in place projects to upgrade the low-level liquid waste processing capabilities of the CRL Waste Treatment Centre, recover and process highly active liquid wastes currently in storage, and recover, condition and improve the storage of selected fuel wastes currently stored in below-ground standpipes in the CRL waste management areas; and assessing options for additional remediation projects to improve the management of other wastes currently in storage and to address environmental contamination from past practices. (author)

  5. Solid Waste Management In Kosova

    OpenAIRE

    , F. Tahiri; , A. Maçi; , V. Tahiri; , K. Tahiri

    2016-01-01

    Waste management accordingly from concept and practices that are used in different countries there are differences, particularly between developed and developing countries. Our country takes part in the context of small developing countries where waste management right is almost at the beginning. In order to have better knowledge about waste management in Kosovo is done a research. The research has included the institutions that are responsible for waste management, including central and loca...

  6. Radioactive waste management

    International Nuclear Information System (INIS)

    Tang, Y.S.; Saling, J.H.

    1990-01-01

    The purposes of the book are: To create a general awareness of technologies and programs of radioactive waste management. To summarize the current status of such technologies, and to prepare practicing scientists, engineers, administrative personnel, and students for the future demand for a working team in such waste management

  7. Mixed waste management options

    International Nuclear Information System (INIS)

    Owens, C.B.; Kirner, N.P.

    1992-01-01

    Currently, limited storage and treatment capacity exists for commercial mixed waste streams. No commercial mixed waste disposal is available, and it has been estimated that if and when commercial mixed waste disposal becomes available, the costs will be high. If high disposal fees are imposed, generators may be willing to apply extraordinary treatment or regulatory approaches to properly dispose of their mixed waste. This paper explores the feasibility of several waste management scenarios and management options. Existing data on commercially generated mixed waste streams are used to identify the realm of mixed waste known to be generated. Each waste stream is evaluated from both a regulatory and technical perspective in order to convert the waste into a strictly low-level radioactive or a hazardous waste. Alternative regulatory approaches evaluated in this paper include a delisting petition) no migration petition) and a treatability variance. For each waste stream, potentially available treatment options are identified that could lead to these variances. Waste minimization methodology and storage for decay are also considered. Economic feasibility of each option is discussed broadly. Another option for mixed waste management that is being explored is the feasibility of Department of Energy (DOE) accepting commercial mixed waste for treatment, storage, and disposal. A study has been completed that analyzes DOE treatment capacity in comparison with commercial mixed waste streams. (author)

  8. Radioactive Waste Management BasisSept 2001

    International Nuclear Information System (INIS)

    Goodwin, S.S.

    2011-01-01

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this RWMB is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  9. Radioactive waste management

    International Nuclear Information System (INIS)

    Tsoulfanidis, N.

    1991-01-01

    The management of radioactive waste is a very important part of the nuclear industry. The future of the nuclear power industry depends to a large extent on the successful solution of the perceived or real problems associated with the disposal of both low-level waste (LLW) and high-level waste (HLW). All the activities surrounding the management of radioactive waste are reviewed. The federal government and the individual states are working toward the implementation of the Nuclear Waste Policy Act and the Low-Level Waste Policy Act. The two congressional acts are reviewed and progress made as of early 1990 is presented. Spent-fuel storage and transportation are discussed in detail as are the concepts of repositories for HLW. The status of state compacts for LLW is also discussed. Finally, activities related to the decommissioning of nuclear facilities are also described

  10. Multi-criteria decision analysis for waste management in Saharawi refugee camps

    International Nuclear Information System (INIS)

    Garfi, M.; Tondelli, S.; Bonoli, A.

    2009-01-01

    The aim of this paper is to compare different waste management solutions in Saharawi refugee camps (Algeria) and to test the feasibility of a decision-making method developed to be applied in particular conditions in which environmental and social aspects must be considered. It is based on multi criteria analysis, and in particular on the analytic hierarchy process (AHP), a mathematical technique for multi-criteria decision making (Saaty, T.L., 1980. The Analytic Hierarchy Process. McGraw-Hill, New York, USA; Saaty, T.L., 1990. How to Make a Decision: The Analytic Hierarchy Process. European Journal of Operational Research; Saaty, T.L., 1994. Decision Making for Leaders: The Analytic Hierarchy Process in a Complex World. RWS Publications, Pittsburgh, PA), and on participatory approach, focusing on local community's concerns. The research compares four different waste collection and management alternatives: waste collection by using three tipper trucks, disposal and burning in an open area; waste collection by using seven dumpers and disposal in a landfill; waste collection by using seven dumpers and three tipper trucks and disposal in a landfill; waste collection by using three tipper trucks and disposal in a landfill. The results show that the second and the third solutions provide better scenarios for waste management. Furthermore, the discussion of the results points out the multidisciplinarity of the approach, and the equilibrium between social, environmental and technical impacts. This is a very important aspect in a humanitarian and environmental project, confirming the appropriateness of the chosen method.

  11. Recycling and recovery of post-consumer plastic solid waste in a European context

    Directory of Open Access Journals (Sweden)

    Dewil Raf

    2012-01-01

    Full Text Available The disposal of waste plastics has become a major worldwide environmental problem. The USA, Europe and Japan generate annually about 50 million tons of post-consumer plastic waste, previously landfilled, generally considered as a non-sustainable and environmentally questionable option. Landfill sites and their capacity are, moreover, decreasing rapidly, and legislation is stringent. Several European Directives and US legislation concern plastic wastes and the required management. They are briefly discussed in this paper. New processes have emerged, i.e., advanced mechanical recycling of plastic waste as virgin or second grade plastic feedstock, and thermal treatments to recycle the waste as virgin monomer, as synthetic fuel gas, or as heat source (incineration with energy recovery. These processes avoid land filling, where the non-biodegradable plastics remain a lasting environmental burden. The paper reviews these alternative options through mostly thermal processing (pyrolysis, gasification and waste-to-energy. Additional research is, however, still needed to confirm the potential on pilot and commercial scale. [Acknowledgments. The research was partly funded by the Fundamental Research Funds for the Central Universities RC1101 (PR China and partly funded by Project KP/09/005 (SCORES4CHEM Knowledge Platform of the Industrial Research Council of the KU Leuven (Belgium.

  12. Disaster waste management: a review article.

    Science.gov (United States)

    Brown, Charlotte; Milke, Mark; Seville, Erica

    2011-06-01

    Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.; however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Healthcare liquid waste management.

    Science.gov (United States)

    Sharma, D R; Pradhan, B; Pathak, R P; Shrestha, S C

    2010-04-01

    The management of healthcare liquid waste is an overlooked problem in Nepal with stern repercussions in terms of damaging the environment and affecting the health of people. This study was carried out to explore the healthcare liquid waste management practices in Kathmandu based central hospitals of Nepal. A descriptive prospective study was conducted in 10 central hospitals of Kathmandu during the period of May to December 2008. Primary data were collected through interview, observation and microbiology laboratory works and secondary data were collected by records review. For microbiological laboratory works,waste water specimens cultured for the enumeration of total viable counts using standard protocols. Evidence of waste management guidelines and committees for the management of healthcare liquid wastes could not be found in any of the studied hospitals. Similarly, total viable counts heavily exceeded the standard heterotrophic plate count (p=0.000) with no significant difference in such counts in hospitals with and without treatment plants (p=0.232). Healthcare liquid waste management practice was not found to be satisfactory. Installation of effluent treatment plants and the development of standards for environmental indicators with effective monitoring, evaluation and strict control via relevant legal frameworks were realized.

  14. Energy from waste: a wholly acceptable waste-management solution

    International Nuclear Information System (INIS)

    Porteous, A.

    1997-01-01

    This paper briefly reviews the 'waste management hierarchy' and why it should be treated as a checklist and not a piece of unquestioning dogma. The role of energy from waste (EfW) is examined in depth to show that it is a rigorous and environmentally sound waste-management option which complements other components of the waste-management hierarchy and assists resource conservation. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  15. 40 CFR 273.52 - Waste management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department of...

  16. Radioactive waste management - turning options into solutions. 3rd scientific forum

    International Nuclear Information System (INIS)

    2001-03-01

    The objective of the Scientific Forum was to bring to the attention of senior governmental representatives present at the IAEA General Conference some of the important scientific and technical issues in the field of radioactive waste management and to promote awareness of the international dimension of current developments. The Forum was intended, in part, to disseminate and build upon the observations, conclusions and recommendations of the International Conference on the Safety of Radioactive Waste Management organised by the IAEA, in co-operation with the European Commission, the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development and the World Health Organisation, and hosted in Cordoba by the Government of Spain. This report presents an overview of the issues raised in the discussions

  17. Radioactive waste management

    International Nuclear Information System (INIS)

    Alfredson, P.G.; Levins, D.M.

    1975-08-01

    Present and future methods of managing radioactive wastes in the nuclear industry are reviewed. In the stages from uranium mining to fuel fabrication, the main purpose of waste management is to limit and control dispersal into the environment of uranium and its decay products, particularly radium and radon. Nuclear reactors produce large amounts of radioactivity but release rates from commercial power reactors have been low and well within legal limits. The principal waste from reprocessing is a high activity liquid containing essentially all the fission products along with the transuranium elements. Most high activity wastes are currently stored as liquids in tanks but there is agreement that future wastes must be converted into solids. Processes to solidify wastes have been demonstrated in pilot plant facilities in the United States and Europe. After solidification, wastes may be stored for some time in man-made structures at or near the Earth's surface. The best method for ultimate disposal appears to be placing solid wastes in a suitable geological formation on land. (author)

  18. Transuranic waste management program and facilities

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Cook, L.A.; Stallman, R.M.; Hunter, E.K.

    1986-01-01

    Since 1954, defense-generated transuranic (TRU) waste has been received at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). Prior to 1970, approximately 2.2 million cubic feet of transuranic waste were buried in shallow-land trenches and pits at the RWMC. Since 1970, an additional 2.1 million cubic feet of waste have been retrievably stored in aboveground engineered confinement. A major objective of the Department of Energy (DOE) Nuclear Waste Management Program is the proper management of defense-generated transuranic waste. Strategies have been developed for managing INEL stored and buried transuranic waste. These strategies have been incorporated in the Defense Waste Management Plan and are currently being implemented with logistical coordination of transportation systems and schedules for the Waste Isolation Pilot Plant (WIPP). The Stored Waste Examination Pilot Plant (SWEPP) is providing nondestructive examination and assay of retrievably stored, contact-handled TRU waste. Construction of the Process Experimental Pilot Plant (PREPP) was recently completed, and PREPP is currently undergoing system checkout. The PRFPP will provide processing capabilities for contact-handled waste not meeting WIPP-Waste Acceptance Criteria (WAC). In addition, ongoing studies and technology development efforts for managing the TRU waste such as remote-handled and buried TRU waste, are being conducted

  19. Transuranic Waste Management Program and Facilities

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Cook, L.A.; Stallman, R.M.; Hunter, E.K.

    1986-02-01

    Since 1954, defense-generated transuranic (TRU) waste has been received at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). Prior to 1970, approximately 2.2 million cubic feet of transuranic waste were buried in shallow-land trenches and pits at the RWMC. Since 1970, an additional 2.1 million cubic feet of waste have been retrievably stored in aboveground engineered confinement. A major objective of the Department of Energy (DOE) Nuclear Waste Management Program is the proper management of defense-generated transuranic waste. Strategies have been developed for managing INEL stored and buried transuranic waste. These strategies have been incorporated in the Defense Waste Management Plan and are currently being implemented with logistical coordination of transportation systems and schedules for the Waste Isolation Pilot Plant (WIPP). The Stored Waste Examination Pilot Plant (SWEPP) is providing nondestructive examination and assay of retrievably stored, contact-handled TRU waste. Construction of the Process Experimental Pilot Plant (PREPP) was recently completed, and PREPP is currently undergoing system checkout. The PREPP will provide processing capabilities for contact-handled waste not meeting WIPP-Waste Acceptance Criteria (WAC). In addition, ongoing studies and technology development efforts for managing the TRU waste such as remote-handled and buried TRU waste, are being conducted

  20. Integrated solid waste management: a palliative to existing waste ...

    African Journals Online (AJOL)

    As a concept, Integrated Solid Waste Management (ISWM) is a sustainable ... on the perspective of consumers on waste generation, collection and disposal. ... to effective solid waste management in the case study area; non-sorting and ...

  1. Management of small quantities of radioactive waste

    International Nuclear Information System (INIS)

    1998-09-01

    The main objective of this publication is to provide practical guidance primarily to developing Member States on the predisposal management of small quantities of radioactive waste arising from hospitals, laboratories, industries, institutions, research reactors and research centres.The publication covers the management of liquid, solid and gaseous radioactive wastes at the users' premises and gives general guidance on procedures at a centralized waste management facility. Predisposal management of radioactive waste includes handling, treatment, conditioning, storage and transportation. This publication provides information and guidance on the following topics: national waste management framework; origin and characteristics of radioactive waste arising from users generating small quantities of waste; radioactive waste management concepts appropriate for small quantities; local waste management; the documentation and approval necessary for the consignment of waste to a centralized waste management facility; centralized waste management; exemption of radionuclides from the regulatory body; transportation; environmental monitoring; quality assurance for the whole predisposal process; regional co-operation aspects

  2. Waste Management

    OpenAIRE

    Anonymous

    2006-01-01

    The Productivity Commission’s inquiry report into ‘Waste Management’ was tabled by Government in December 2006. The Australian Government asked the Commission to identify policies that would enable Australia to address market failures and externalities associated with the generation and disposal of waste, and recommend how resource efficiencies can be optimised to improve economic, environmental and social outcomes. In the final report, the Commission maintains that waste management policy sh...

  3. Waste management

    International Nuclear Information System (INIS)

    Dworschak, H.; Mannone, F.; Rocco, P.

    1995-01-01

    The presence of tritium in tritium-burning devices to be built for large scale research on thermonuclear fusion poses many problems especially in terms of occupational and environmental safety. One of these problems derives from the production of tritiated wastes in gaseous, liquid and solid forms. All these wastes need to be adequately processed and conditioned to minimize tritium releases to an acceptably low occupational and environmental level and consequently to protect workers and the public against the risks of unacceptable doses from exposure to tritium. Since all experimental thermonuclear fusion devices of the Tokomak type to be built and operated in the near future as well as all experimental activities undertaken in tritium laboratories like ETHEL will generate tritiated wastes, current strategies and practices to be applied for the routine management of these wastes need to be defined. Adequate background information is provided through an exhaustive literature survey. In this frame alternative tritiated waste management options so far investigated or currently applied to this end in Europe, USA and Canada have been assessed. The relevance of tritium in waste containing gamma-emitters, originated by the neutron activation of structural materials is assessed in relation to potential final disposal options. Particular importance has been attached to the tritium retention efficiency achievable by the various waste immobilization options. 19 refs., 2 figs., 1 tab

  4. The management of radioactive wastes in Canada

    International Nuclear Information System (INIS)

    1979-01-01

    Ten papers are presented, dealing with the management and environmental impact of radioactive wastes, environmental considerations related to uranium mining and milling, the management of uranium refining wastes, reactor waste management, proposals for the disposal of low- and intermediate-level wastes, disposal of nuclear fuel wastes, federal government policy on radioactive waste management, licensing requirements, environmental assessment, and internatioal cooperation in wast management. (LL)

  5. A SWOT Analysis on the Waste Management Problem in Romania in 2010

    Directory of Open Access Journals (Sweden)

    Elena ENACHE

    2010-03-01

    Full Text Available From human activities are resulting huge amounts of waste, with different types of impact: lands changing, visual discomfort, air pollution, surface water pollution, soil fertility changes etc. Romania, a European Union member state, faces in turn with annual generation of significant quantities of waste, which cause problems of storage, recycling, reappraisal or their destruction. Romania has to involve - without exception - all institutions and each and every citizen in this action and to spend whatever is needed to get a clean and bright face. We present below a SWOT analysis on waste management in our country at the beginning of the year 2010.

  6. The management of radioactive wastes

    International Nuclear Information System (INIS)

    1998-01-01

    This educative booklet describes the role and missions of the ANDRA, the French national agency for the management of radioactive wastes, and the different aspects of the management of radioactive wastes: goal, national inventory, classification, transport (organisation, regulation, safety), drumming, labelling, surface storage of short life wastes, environmental control, management of long life wastes (composition, research, legal aspects) and the underground research laboratories (description, public information, projects, schedules). (J.S.)

  7. Radioactive waste management and regulation

    International Nuclear Information System (INIS)

    Willrich, M.; Lester, R.K.; Greenberg, S.C.; Mitchell, H.C.; Walker, D.A.

    1977-01-01

    Purpose of this book is to assist in developing public policy and institutions for the safe management of radioactive waste, currently and long term. Both high-level waste and low-level waste containing transuranium elements are covered. The following conclusions are drawn: the safe management of post-fission radioactive waste is already a present necessity and an irreversible long-term commitment; the basic goals of U.S. radioactive waste policy are unclear; the existing organization for radioactive waste management is likely to be unworkable if left unchanged; and the existing framework for radioactive waste regulation is likely to be ineffective if left unchanged. The following recommendations are made: a national Radioactive Waste Authority should be established as a federally chartered public corporation; with NRC as the primary agency, a comprehensive regulatory framework should be established to assure the safety of all radioactive waste management operations under U.S. jurisdiction or control; ERDA should continue to have primary government responsibility for R and D and demonstration of radioactive waste technology; and the U.S. government should propose that an international Radioactive Waste Commission be established under the IAEA

  8. Managing a mixed waste program

    International Nuclear Information System (INIS)

    Koch, J.D.

    1994-01-01

    IT Corporation operates an analytical laboratory in St. Louis capable of analyzing environmental samples that are contaminated with both chemical and radioactive materials. Wastes generated during these analyses are hazardous in nature; some are listed wastes others exhibit characteristic hazards. When the original samples contain significant quantities of radioactive material, the waste must be treated as a mixed waste. A plan was written to document the waste management program describing the management of hazardous, radioactive and mixed wastes. This presentation summarizes the methods employed by the St. Louis facility to reduce personnel exposures to the hazardous materials, minimize the volume of mixed waste and treat the materials prior to disposal. The procedures that are used and the effectiveness of each procedure will also be discussed. Some of the lessons that have been learned while dealing with mixed wastes will be presented as well as the solutions that were applied. This program has been effective in reducing the volume of mixed waste that is generated. The management program also serves as a method to manage the costs of the waste disposal program by effectively segregating the different wastes that are generated

  9. Radioactive waste management for reactors

    International Nuclear Information System (INIS)

    Rodger, W.A.

    1974-01-01

    Radioactive waste management practices at nuclear power plants are summarized. The types of waste produced and methods for treating various types of wastes are described. The waste management systems, including simplified flow diagrams, for typical boiling water reactors and pressurized water reactors are discussed. (U.S.)

  10. The Activities of Nuclear Training Centre Ljubljana in the Area of Radioactive Waste Management

    International Nuclear Information System (INIS)

    Jencic, I.

    2006-01-01

    Nuclear Training Centre Ljubljana has several activities related to radioactive waste management. These activities include training of professionals in the area of nuclear physics and nuclear technology, radiation protection courses, organization of international courses and workshops in the area of radioactive waste management, and public information on radioactivity and waste management. The paper will describe the specifics and the extent of training related to radioactive waste. Recently we have participated in a European coordination action CETRAD and an overview of the results of this project will also be presented. Very important component of our activity is public information that is based on an information centre and live lectures to organized groups of visitors, mostly schoolchildren. About one half of one school generation of Slovenia visits the Information centre every year. A poll is conducted among visitors every year and its results are a very useful tool to follow the evolution of public opinion on nuclear energy and radioactive waste disposal. The latter is, at least in Slovenia, still considered as the major obstacle against the use of nuclear energy. (authors)

  11. National waste management infrastructure in Ghana

    International Nuclear Information System (INIS)

    Darko, E.O.; Fletcher, J.J.

    1998-01-01

    Radioactive materials have been used in Ghana for more than four decades. Radioactive waste generated from their applications in various fields has been managed without adequate infrastructure and any legal framework to control and regulate them. The expanded use of nuclear facilities and radiation sources in Ghana with the concomitant exposure to human population necessitates effective infrastructure to deal with the increasing problems of waste. The Ghana Atomic Energy Act 204 (1963) and the Radiation Protection Instrument LI 1559 (1993) made inadequate provision for the management of waste. With the amendment of the Atomic Energy Act, PNDCL 308, a radioactive waste management centre has been established to take care of all waste in the country. To achieve the set objectives for an effective waste management regime, a waste management regulation has been drafted and relevant codes of practice are being developed to guide generators of waste, operators of waste management facilities and the regulatory authority. (author)

  12. Predisposal Radioactive Waste Management

    International Nuclear Information System (INIS)

    2014-01-01

    Recognition of the importance of the safe management of radioactive waste means that, over the years, many well-established and effective techniques have been developed, and the nuclear industry and governments have gained considerable experience in this field. Minimization of waste is a fundamental principle underpinning the design and operation of all nuclear operations, together with waste reuse and recycling. For the remaining radioactive waste that will be produced, it is essential that there is a well defined plan (called a waste treatment path) to ensure the safe management and ultimately the safe disposal of radioactive waste so as to guarantee the sustainable long term deployment of nuclear technologies

  13. Radioactive wastes management

    International Nuclear Information System (INIS)

    Albert, Ph.

    1999-01-01

    This article presents the French way to deal with nuclear wastes. 4 categories of radioactive wastes have been defined: 1) very low-level wastes (TFA), 2) low or medium-wastes with short or medium half-life (A), 3) low or medium-level wastes with long half-life (B), and 4) high-level wastes with long half-life (C). ANDRA (national agency for the management of radioactive wastes) manages 2 sites of definitive surface storage (La-Manche and Aube centers) for TFA-wastes. The Aube center allows the storage of A-wastes whose half-life is less than 30 years. This site will receive waste packages for 50 years and will require a regular monitoring for 300 years after its decommissioning. No definitive solutions have been taken for B and C wastes, they are temporarily stored at La Hague processing plant. Concerning these wastes the French parliament will have to take a decision by 2006. At this date and within the framework of the Bataille law (1991), scientific studies concerning the definitive or retrievable storage, the processing techniques (like transmutation) will have been achieved and solutions will be proposed. These studies are numerous, long and complex, they involve fresh knowledge in geology, chemistry, physics,.. and they have implied the setting of underground facilities in order to test and validate solutions in situ. This article presents also the transmutation technique. (A.C.)

  14. Nuclear waste management: options and implications

    International Nuclear Information System (INIS)

    Bartlett, J.W.

    1976-01-01

    This paper addresses three topics relevant to the technology of waste management: an overview describing the types of waste and the status of technologies used to manage them, a review of high-level waste management, and final disposition of the waste

  15. Laboratory Waste Management. A Guidebook.

    Science.gov (United States)

    American Chemical Society, Washington, DC.

    A primary goal of the American Chemical Society Task Force on Laboratory Waste Management is to provide laboratories with the information necessary to develop effective strategies and training programs for managing laboratory wastes. This book is intended to present a fresh look at waste management from the laboratory perspective, considering both…

  16. Report of the colloquium: the management of energy resources in Europe: what can be done with ''Euro-wastes''?

    International Nuclear Information System (INIS)

    Pellizzari, M.

    2003-01-01

    The 12. colloquium of the young members of the French society of nuclear energy (SFEN) brought together about 200 young French and foreign professionals, experts and students. The subject of the colloquium was the European energy choices and the problem of wastes production. This article summarizes the content of the conferences given on December 9 about the management of energy and wastes: status of world energy resources and consumption; fossil fuel reserves; status of development of renewable energy sources; the economical and environmental efficiency of nuclear energy; the wastes generated by the energy activities in general and by the nuclear energy in particular: the Swedish approach of the nuclear waste management problem, the Russian nuclear wastes, the management of municipal wastes in Belgium; the bio-energies (combustion, fermentation, gasification); and the future prospects of the evolution of energy sources. (J.S.)

  17. The radioactive waste management program of the C.E.C. Achievements, planning and perspectives

    International Nuclear Information System (INIS)

    Girardi, F.; Orlowski, S.

    1986-01-01

    The achievements of twelve years of waste management research, carried out by shared-cost actions with laboratories of member countries of the European Communities and by direct research at its Joint Research Center are being reviewed. Activities were essentially directed to reach three goals: (a) to develop the necessary waste treatment and conditioning technologies, (b) to study disposal concepts in various types of geological formations in the European Community, (c) to address problems connected with their implementation such as safety assessment, quality assurance, financing, etc., which are particularly suited to the Community framework. Planning and perspectives for the next decade are also given. Implementation and optimization of concepts presently under development is indicated as the prevailing objective

  18. Radioactive waste management glossary

    International Nuclear Information System (INIS)

    1988-01-01

    The Waste Management Glossary defines over 300 terms in the English language that have special meanings when they are used in the context of radioactive waste management. The Glossary is intended to provide a consistent reference for these terms for specialists in this field. It also will assist non-specialists who read IAEA reports dealing with waste management. This is the second edition of the Glossary. It is intended to update and replace its predecessor, TECDOC-264, that was issued in 1982. (author)

  19. Integrated solid waste management in megacities

    Directory of Open Access Journals (Sweden)

    M.A. Abdoli

    2016-05-01

    Full Text Available Rapid urbanization and industrialization, population growth and economic growth in developing countries make management of municipal solid waste more complex comparing with developed countries. Furthermore, the conventional municipal solid waste management approach often is reductionists, not tailored to handle complexity. Therefore, the need to a comprehensive and multi-disciplinary approach regarding the municipal solid waste management problems is increasing. The concept of integrated solid waste management is accepted for this aim all over the world. This paper analyzes the current situation as well as opportunities and challenges regarding municipal solid waste management in Isfahan according to the integrated solid waste management framework in six aspects: environmental, political/legal, institutional, socio-cultural, financial/economic, technical and performance aspects. Based on the results obtained in this analysis, the main suggestions for future integrated solid waste management of Isfahan are as i promoting financial sustainability by taking the solid waste fee and reducing the expenses through the promoting source collection of recyclable materials, ii improving compost quality and also marketing the compost products simultaneously, iii promoting the private sector involvements throughout the municipal solid waste management system.

  20. DOE waste management program-current and future

    International Nuclear Information System (INIS)

    Coleman, J.A.

    1993-01-01

    The back end of the nuclear fuel cycle, as well as many operations in the Department of Energy, involves management of radioactive and hazardous waste and spent nuclear fuel. Described herein is the current and anticipated Department's Waste Management Program and general information about the Program for managing and disposing of waste that will illustrate the importance of air cleaning and treatment in assuring protection of the public and our environment. The structure and responsibilities of the Office of Environmental Restoration and Waste Management (EM) are described. The categories of waste managed by the Office of Waste Management (OWM) are defined. The problems of waste management, waste minimization, and waste treatment, storage, and disposal are discussed. 4 figs

  1. Waste management in NUCEF

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y.; Maeda, A.; Sugikawa, S.; Takeshita, I. [Japan Atomic Energy Research Institute, Dept. of Safety Research Technical Support, Tokai-Mura, Naka-Gun, Ibaraki-Ken (Japan)

    2000-07-01

    In the NUCEF, the researches on criticality safety have been performed at two critical experiment facilities, STACY and TRACY in addition to the researches on fuel cycle such as advanced reprocessing and partitioning in alpha-gamma concrete cells and glove boxes. Many kinds of radioactive wastes have been generated through the research activities. Furthermore, the waste treatment itself may produce some secondary wastes. In addition, the separation and purification of plutonium of several tens-kg from MOX powder are scheduled in order to supply plutonium nitrate solution fuel for critical experiments at STACY. A large amount of wastes containing plutonium and americium will be generated from the plutonium fuel treatment. From the viewpoint of safety, the proper waste management is one of important works in NUCEF. Many efforts, therefore, have been made for the development of advanced waste treatment techniques to improve the waste management in NUCEF. Especially the reduction of alpha-contaminated wastes is a major interest. For example, the separation of americium is planned from the liquid waste evolved alter plutonium purification by application of tannin gel as an adsorbent of actinide elements. The waste management and the relating technological development in NUCEF are briefly described in this paper. (authors)

  2. Waste management in NUCEF

    International Nuclear Information System (INIS)

    Suzuki, Y.; Maeda, A.; Sugikawa, S.; Takeshita, I.

    2000-01-01

    In the NUCEF, the researches on criticality safety have been performed at two critical experiment facilities, STACY and TRACY in addition to the researches on fuel cycle such as advanced reprocessing and partitioning in alpha-gamma concrete cells and glove boxes. Many kinds of radioactive wastes have been generated through the research activities. Furthermore, the waste treatment itself may produce some secondary wastes. In addition, the separation and purification of plutonium of several tens-kg from MOX powder are scheduled in order to supply plutonium nitrate solution fuel for critical experiments at STACY. A large amount of wastes containing plutonium and americium will be generated from the plutonium fuel treatment. From the viewpoint of safety, the proper waste management is one of important works in NUCEF. Many efforts, therefore, have been made for the development of advanced waste treatment techniques to improve the waste management in NUCEF. Especially the reduction of alpha-contaminated wastes is a major interest. For example, the separation of americium is planned from the liquid waste evolved alter plutonium purification by application of tannin gel as an adsorbent of actinide elements. The waste management and the relating technological development in NUCEF are briefly described in this paper. (authors)

  3. Waste management in a Europe in the process of unification; Abfallwirtschaft in einem zusammenwachsenden Europa

    Energy Technology Data Exchange (ETDEWEB)

    Hangen, H.O. [comp.

    1998-12-31

    In a Europe in the process of unification, waste management is an important and topical issue. Decisions in the environmental protection and waste management sectors are increasingly being taken in Brussels, at the European level, and no longer by national parliaments and governments. A unified economy calls for unified conditions of production. Environmental protection cannot stop at state frontiers.- The principle of waste disposal at short distance from the source of pollution, and the demand for Europe-wide tenders and contracts for services encompass a large field of tension, not only at first glance. The European sanitary landfills recommendation, valid also for the countries of the Mediterranean, and the ambitious aims of the technical code on municipal waste are an indication of the range of the economic and political issues due to arise at least transiently. The meeting should sharpen the problem awareness of persons involved with waste management and point out the dynamics of the process leading Europe into a unified waste management. (orig.) [Deutsch] Abfallwirtschaft in einem zusammenwachsenden Europa ist ein wichtiges und aktuelles Problem. Immer mehr Entscheidungen im Bereich des Umweltschutzes und der Abfallwirtschaft werden in Bruessel auf europaeischer Ebene und nicht mehr von den nationalen Parlamenten und Regierungen getroffen. Ein einheitlicher Wirtschaftsstandort verlangt auch einheitliche Produktionsbedingungen. Umweltschutz kann an Laendergrenzen nicht Halt machen. Das Prinzip der Naehe bei der Abfallbeseitigung und die Forderung der europaweiten Ausschreibung und Vergabe von Leistungen beinhaltet nicht nur auf den ersten Anschein ein grosses Spannungsfeld. Europaeische Deponierichtlinie, gueltig auch fuer die Laender des Mittelmeerraumes, und die hochgesteckten Ziele der TA-Siedlungsabfall zeigen die Spannweite und die wirtschaftliche und politische Problematik auf, die zumindest uebergangsweise auftritt. Die Tagung soll das

  4. Technology for commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    The scope of this report is limited to technology for management of past-fission wastes produced in the commercial nuclear power light water reactor fuel cycle. Management of spent fuel (as a waste), high-level and other transuranic wastes, and gaseous wastes are characterized. Non-transuranic wastes are described, but management of these wastes, except for gaseous wastes, is excluded from the scope of this report. Volume 1 contains the summary and the bases and background information

  5. Nuclear wastes management; Gestion des dechets nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document is the proceedings of the debate that took place at the French Senate on April 13, 2005 about the long-term French policy of radioactive wastes management. The different points tackled during the debate concern: the 3 axes of research of the 1991 law, the public acceptance about the implementation of repositories, the regional economic impact, the cost and financing, the lack of experience feedback, the reversibility or irreversibility of the storage, the share of nuclear energy in the sustainable development policy, the European Pressurized Reactor (EPR) project, the privatization of Electricite de France (EdF) etc. (J.S.)

  6. ALTENER. Strategic framework municipal solid waste. Waste for energy network

    International Nuclear Information System (INIS)

    Kwant, K.W.; Van Halen, C.; Pfeiffer, A.E.

    1997-01-01

    General objective of European, national and regional waste for energy (WfE) policies is to support sustainable development. In each of the Altener WfE countries (Austria, Denmark, Finland, Italy, Netherlands, Portugal, Spain, Sweden and UK) general waste management strategies have been implemented. Common aspects are waste management hierarchies and general objectives such as: (1) to reduce the amount of wastes; (2) to make the best use of the wastes that are produced; and (3) to choose waste management practices, which (4) minimise the risks of immediate and future environmental pollution and harm to human health. All WfE countries have defined an order of preference for waste handling, starting with prevention as most preferred option, through re-use and recycling, thermal treatment with energy-recovery to landfill as a least desired option. In all Altener WfE countries, waste management structures are in a phase of transformation. At least three general transition processes can be recognized to take place, which are of great importance for the waste for energy future of the Altener countries: (1) increased energy recovery from MSW; (2) increased separation of MSW for recycling and recovery; and (3) reorganization of landfills. Two groups of instruments to stimulate the use of waste to energy are distinguished: (1) instruments, aiming to create improved WfE solutions; and (2) instruments, aiming to create a WfE market. In this framework document an overview is given of today's WfE situation in 9 European countries, as well as up-to-date national waste and energy policies, including the available instruments and future goals

  7. Waste Management Strategy in The Netherlands. Part 2. Strategy Principles and Influencing Issues

    International Nuclear Information System (INIS)

    Haverkate, B.R.W.

    2002-01-01

    This report reflects the Dutch input prepared in the framework of work package 2 of the EU thematic network COMPAS, which deals with the identification of alternative waste management strategies and issues influencing strategy selection in EU member states and their applicant countries. All elements that could have an effect in identifying alternative policies to manage (long-lived) radioactive wastes are addressed in this report. After a short introduction, in chapter 1, about some general issues influencing decision-making such as public acceptance, involvement, perception and (European) legislation, the considered disposal methods and disposal requirements are given in chapter 2. Chapter 3 of this report deals with the background topics of the current waste management strategy in The Netherlands. A detailed overview of (basic) strategy principles and their influencing issues is the subject of chapter 4. Issues considered include: safety and environmental impact; technical limitations; nuclear materials safeguards; monitoring and retrievability; ethical issues; public acceptance; (timing of) strategy development and implementation; and economical considerations. Relevant additional issues that could have an effect in identifying alternative waste management strategy are provided in appendices, including signed treaties (appendix B) and nuclear statutory regulations (appendix C)

  8. IAEA Mission Says France Committed to Safe, Responsible Management of Radioactive Waste

    International Nuclear Information System (INIS)

    2018-01-01

    An International Atomic Energy Agency (IAEA) team of experts said France demonstrated a comprehensive commitment to safety with a responsible approach to the management of radioactive waste and spent nuclear fuel. The team also made suggestions aimed at further enhancements and noted several good practices. The Integrated Review Service for Radioactive Waste and Spent Fuel Management, Decommissioning and Remediation (ARTEMIS) team concluded an 11-day mission to France on 24 January. The mission, requested by the Government of France, was hosted by the Directorate General of Energy and Climate (DGEC), with the participation of officials from several relevant organizations including the French National Radioactive Waste Agency (ANDRA) and the Nuclear Safety Authority (ASN), which is responsible for nuclear and radiation safety regulation in the country. ARTEMIS missions provide independent expert advice from an international team of specialists convened by the IAEA. Reviews are based on the IAEA safety standards as well as international good practices. The mission to France aimed to help the country meet European Union obligations that require an independent peer review of national programmes for the safe and responsible management of spent fuel and radioactive waste. Nuclear power currently generates more than 70 percent of France’s electricity. The country has 58 operating nuclear power reactors, which will require the continuing safe management of radioactive waste and spent fuel. France operates facilities for the disposal of very low-level and low-level wastes, and is developing a deep geological repository for the disposal of high-level waste.

  9. Goals for nuclear waste management

    International Nuclear Information System (INIS)

    Watson, R.A.

    1978-01-01

    Establishing a publicly, politically, economically, and technologically acceptable waste management system for the fuel cycle is a necessary condition for accepting the nuclear program as a national energy option. Findings are given on the technology, politics, economics, morality, aesthetics, and societal impact of waste management. Proposed goals are outlined for the regulation of waste management

  10. Charging generators for waste management costs

    International Nuclear Information System (INIS)

    Berry, J.B.; Homan, F.J.

    1987-01-01

    DOE-Oak Ridge Operations (DOE-ORO) has recognized that an effective waste management program focuses on control at the source and that the burden for responsible waste management can be placed on generators by charging for waste management costs. The principle of including the waste management costs in the total cost of the product, even when the product is research and development, is being implemented at Oak Ridge National Laboratory (ORNL). Charging waste management costs to the pollutor creates an incentive to optimize processes so that less waste is produced and provides a basis for determining the cost effectiveness. 2 refs., 1 fig., 1 tab

  11. Radioactive Waste Management Program Activities in Croatia

    International Nuclear Information System (INIS)

    Matanic, R.

    2000-01-01

    The concept of radioactive waste management in Croatia comprises three major areas: management of low and intermediate level radioactive waste (LILRW), spent fuel management and decommissioning. All the work regarding radioactive waste management program is coordinated by Hazardous Waste Management Agency (APO) and Croatian Power Utility (HEP) in cooperation with other relevant institutions. Since the majority of work has been done in developing low and intermediate level radioactive waste management program, the paper will focus on this part of radioactive waste management, mainly on issues of site selection and characterization, repository design, safety assessment and public acceptance. A short description of national radioactive waste management infrastructure will also be presented. (author)

  12. The management of radioactive waste

    International Nuclear Information System (INIS)

    1991-08-01

    One of the key questions asked about nuclear power production is whether the industry can manage its waste safely and economically. Management must take account of long term safety, since some radioisotopes take a very long time to decay. This long term decay, which can take millions of years, focused attention for the first time on the need for some wastes to be managed for a very long time beyond the lifetime of those who generated the waste. This paper reviews what the different types of waste are, what the technical consensus is on the requirements for their safe management, and how the present state of knowledge developed. It describes how radioactive waste management is practised and planned within the fuel cycle and indicates the moderate scale of the costs in relation to the total cost of producing electricity. Country annexes give more information about what is being done in a selection of countries, in order to indicate how radioactive waste management is carried out in practice. (Author)

  13. Integrating Total Quality Management (TQM) and hazardous waste management

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Nancy [Colorado State Univ., Fort Collins, CO (United States)

    1993-11-01

    The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

  14. Integrating Total Quality Management (TQM) and hazardous waste management

    International Nuclear Information System (INIS)

    Kirk, N.

    1993-01-01

    The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ''cradle to grave'' management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ''front-end'' treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ''mixed waste'' at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components

  15. Position paper on irradiated fuel and waste management. The Achille's heel of the nuclear industry?

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, Bernard [European Nuclear Society (ENS), Brussel (Belgium). ENS High Scientific Council

    2014-07-15

    The management and final disposal of irradiated fuel and nuclear waste is often presented by the media and perceived by the public as being an unsolved problem that restricts the future of nuclear energy. However, the nuclear industry focused on this problem very early on and has developed proven technical solutions. Nuclear energy will continue developing worldwide, in spite of the Fukushima accident. Even in those European countries that have decided to phase-out nuclear energy there is a legacy of nuclear waste that must be dealt with. The scientific and technical expertise needed for waste management already exists. Management decisions must be taken. Now is the time for political courage. (orig.)

  16. Assessment of LANL waste management site plan

    International Nuclear Information System (INIS)

    Black, R.L.; Davis, K.D.; Hoevemeyer, S.S.; Jennrich, E.A.; Lund, D.M.

    1991-04-01

    The objective of this report is to present findings from evaluating the Los Alamos National Laboratory (LANL) Waste Management Plan to determine if it meets applicable DOE requirements. DOE Order 5820.2A, Radioactive Waste Management, sets forth requirements and guidelines for the establishment of a Waste Management Plan. The primary purpose of a Waste Management Plan is to describe how waste operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming year

  17. Greenhouse gas emission mitigation relevant to changes in municipal solid waste management system.

    Science.gov (United States)

    Pikoń, Krzysztof; Gaska, Krzysztof

    2010-07-01

    Standard methods for assessing the environmental impact of waste management systems are needed to underpin the development and implementation of sustainable waste management practice. Life cycle assessment (LCA) is a tool for comprehensively ensuring such assessment and covers all impacts associated with waste management. LCA is often called "from cradle to grave" analysis. This paper integrates information on the greenhouse gas (GHG) implications of various management options for some of the most common materials in municipal solid waste (MSW). Different waste treatment options for MSW were studied in a system analysis. Different combinations of recycling (cardboard, plastics, glass, metals), biological treatment (composting), and incineration as well as land-filling were studied. The index of environmental burden in the global warming impact category was calculated. The calculations are based on LCA methodology. All emissions taking place in the whole life cycle system were taken into account. The analysis included "own emissions," or emissions from the system at all stages of the life cycle, and "linked emissions," or emissions from other sources linked with the system in an indirect way. Avoided emissions caused by recycling and energy recovery were included in the analysis. Displaced emissions of GHGs originate from the substitution of energy or materials derived from waste for alternative sources. The complex analysis of the environmental impact of municipal waste management systems before and after application of changes in MSW systems according to European Union regulations is presented in this paper. The evaluation is made for MSW systems in Poland.

  18. Waste management 86. Volume 1:General interest

    International Nuclear Information System (INIS)

    Post, R.G.

    1986-01-01

    This book presents the papers given at a symposium on radioactive waste management. Topics considered at the symposium included the status of radioactive waste disposal, the status of international nuclear waste management, waste management activities at the Idaho National Engineering Laboratory, legal and liability issues, risk perceptions and public involvement, waste transportation, waste processing, remedial action, decontamination, predisposal processing and treatment processes, low-level and mixed waste management, and mixed chemical and radioactive waste disposal

  19. Charging generators for waste management costs

    International Nuclear Information System (INIS)

    Berry, J.B.; Homan, F.J.

    1988-01-01

    The Department of Energy (DOE) has recognized the need for waste management that incorporates improved waste-handling techniques and more stringent regulatory requirements to prevent future liabilities such as Superfund sites. DOE-Oak Ridge Operations (DOE-ORO) has recognized that an effective waste management program focuses on control at the source and that the burden for responsible waste management can be placed on generators by charging for waste management costs. The principle of including the waste management costs in the total cost of the product, even when the product is research and development, is being implemented at Oak Ridge National Laboratory (ORNL). This paper summarizes a plan to charge waste generators, the administrative structure of the plan, a comparison between the rate structure and changes in waste disposal operations, and issues that have surfaced as the plan is implemented

  20. Status of R and D in the field of nuclear airborne waste sponsored by the European Community

    International Nuclear Information System (INIS)

    Hebel, W.

    1985-01-01

    An overall review is given on the research activities that have been supported by the European Community for the last 8 years in the field of management of radioactive gaseous waste. The major subjects of concern are management possibilities for krypton-85, iodine-129, carbon-14 and tritium. After a short introduction to the kind and contents of this specific research activity, summary statements are given successively for each of the four radionuclides concerning the state of development not achieved within the scope of the joint program

  1. Airborne radionuclide waste-management reference document

    International Nuclear Information System (INIS)

    Brown, R.A.; Christian, J.D.; Thomas, T.R.

    1983-07-01

    This report provides the detailed data required to develop a strategy for airborne radioactive waste management by the Department of Energy (DOE). The airborne radioactive materials of primary concern are tritium (H-3), carbon-14 (C-14), krypton-85 (Kr-85), iodine-129 (I-129), and radioactive particulate matter. The introductory section of the report describes the nature and broad objectives of airborne waste management. The relationship of airborne waste management to other waste management programs is described. The scope of the strategy is defined by considering all potential sources of airborne radionuclides and technologies available for their management. Responsibilities of the regulatory agencies are discussed. Section 2 of this document deals primarily with projected inventories, potential releases, and dose commitments of the principal airborne wastes from the light water reactor (LWR) fuel cycle. In Section 3, dose commitments, technologies, costs, regulations, and waste management criteria are analyzed. Section 4 defines goals and objectives for airborne waste management

  2. Management of Radioactive Wastes

    International Nuclear Information System (INIS)

    Tchokosa, P.

    2010-01-01

    Management of Radioactive Wastes is to protect workers and the public from the radiological risk associated with radioactive waste for the present and future. It application of the principles to the management of waste generated in a radioisotope uses in the industry. Any material that contains or is contaminated with radionuclides at concentrations or radioactivity levels greater than ‘exempt quantities’ established by the competent regulatory authorities and for which no further use is foreseen or intended. Origin of the Radioactive Waste includes Uranium and Thorium mining and milling, nuclear fuel cycle operations, Operation of Nuclear power station, Decontamination and decommissioning of nuclear facilities and Institutional uses of isotopes. There are types of radioactive waste: Low-level Waste (LLW) and High-level Waste. The Management Options for Radioactive Waste Depends on Form, Activity, Concentration and half-lives of the radioactive waste, Storage and disposal methods will vary according to the following; the radionuclides present, and their concentration, and radio toxicity. The contamination results basically from: Contact between radioactive materials and any surface especially during handling. And it may occur in the solid, liquid or gas state. Decontamination is any process that will either reduce or completely remove the amount of radionuclides from a contaminated surface

  3. Radioactive waste management in Korea

    International Nuclear Information System (INIS)

    Lee, Ik Hwan

    1997-01-01

    In order to meet the increasing energy demand in Korea, continuous promotion of nuclear power program will be inevitable in the future. However, the use of nuclear energy eventually requires effective and reliable radioactive waste management. For the safe and economical management of radioactive waste, first of all, volume reduction is essentially required and hence the development of related technologies continuously be pursued. A site for overall radioactive waste management has to be secured in Korea. KEPCO-NETEC will improve public understanding by reinforcing PA and will maintain transparency of radioactive waste management. (author). 1 fig

  4. Infrastructure needs for waste management

    International Nuclear Information System (INIS)

    Takahashi, M.

    2001-01-01

    National infrastructures are needed to safely and economically manage radioactive wastes. Considerable experience has been accumulated in industrialized countries for predisposal management of radioactive wastes, and legal, regulatory and technical infrastructures are in place. Drawing on this experience, international organizations can assist in transferring this knowledge to developing countries to build their waste management infrastructures. Infrastructure needs for disposal of long lived radioactive waste are more complex, due to the long time scale that must be considered. Challenges and infrastructure needs, particularly for countries developing geologic repositories for disposal of high level wastes, are discussed in this paper. (author)

  5. Oak Ridge National Laboratory Waste Management Plan

    International Nuclear Information System (INIS)

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented

  6. Nuclear waste management at DOE

    International Nuclear Information System (INIS)

    Perge, A.F.

    1979-01-01

    DOE is responsible for interim storage for some radioactive wastes and for the disposal for most of them. Of the wastes that have to be managed a significant part are a result of treatment systems and devices for cleaning gases. The long term waste management objectives place minimal reliance on surveillance and maintenance. Thus, the concerns about the chemical, thermal, and radiolytic degradation of wastes require technology for converting the wastes to forms acceptable for long term isolation. The strategy of the DOE airborne radioactive waste management program is to increase the service life and reliability of filters; to reduce filter wastes; and in anticipation of regulatory actions that would require further reductions in airborne radioactive releases from defense program facilities, to develop improved technology for additional collection, fixation, and long-term management of gaseous wastes. Available technology and practices are adequate to meet current health and safety standards. The program is aimed primarily at cost effective improvements, quality assurance, and the addition of new capability in areas where more restrictive standards seem likely to apply in the future

  7. INFORMAL AND FORMAL SECTORS PARTNERSHIP IN URBAN WASTE MANAGEMENT (Case Study: Non-Organic Waste Management in Semarang

    Directory of Open Access Journals (Sweden)

    Djoko Indrosaptono

    2014-01-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE The urban waste management is still crucial issues in most regions in Indonesia. Urban waste is considered as a cultural issue because of its impact on various life factors , especially in big cities such as Jakarta, Semarang, Surabaya, Bandung, Palembang and Medan. Currently, the average productivity of the urban waste is 0.5 kg / capita / day. If this is multiplied by number of people in some cities in Java and Bali, the total waste will reach about 100,000 tons / day. This number will still increase by increasing population growth. Therefore, the urban waste management is very important for cities in Indonesia, alhough currently not many cities applied the urban waste management system. Urban waste management in Indonesia is not merely caused by formal sector, but it is also supported by informal sector in reducing daily production waste up to 30%. The informal sector management is mainly conducted by sorting the waste to recycleable or not. The recycleable waste is then sold back to the mills to be converted to other valuable products. This reserach was aimed to evaluate the partnership between formal and informal sector in reduction of waste production in Semarang city through urban waste management system. The research about informal sector was conducted by communal interaction and qualitative analysis focusing at Semarang City especially at Old Town area. The research has provided substantive knowledge of informal sector partnerships and formal sector in urban waste management with case inorganic waste management in the city of Semarang through 3R (recycle, reuse and reduce knwoledge management. Basic knowledge of the structure / surface is characterized by empirical knowledge which was easily caught by the direct perspective of human. Middle knowledge could be adjusted to different loci

  8. Management of hospital radioactive wastes

    International Nuclear Information System (INIS)

    Mantrana, D.

    1986-01-01

    The general structure of a regulatory scheme for the management of hospital radioactive wastes is presented. The responsabilities of an institution in the radioactive waste management, and storage conditions are defined. The radioactive wastes are classified in physical terms, and the criteria for evaluating the activity of solid wastes are described. The container characteristics and, the types of treatments given to the wastes are specified. (M.C.K.) [pt

  9. Calculation of projected waste loads for transuranic waste management alternatives

    International Nuclear Information System (INIS)

    Hong, K.; Kotek, T.; Koebnick, B.; Wang, Y.; Kaicher, C.

    1995-01-01

    The level of treatment and the treatment and interim storage site configurations (decentralized, regional, or centralized) impact transuranic (TRU) waste loads at and en route to sites in the US Department of Energy (DOE) complex. Other elements that impact waste loads are the volume and characteristics of the waste and the unit operation parameters of the technologies used to treat it. Projected annual complexwide TRU waste loads under various TRU waste management alternatives were calculated using the WASTEunderscoreMGMT computational model. WASTEunderscoreMGMT accepts as input three types of data: (1) the waste stream inventory volume, mass, and contaminant characteristics by generating site and waste stream category; (2) unit operation parameters of treatment technologies; and (3) waste management alternative definitions. Results indicate that the designed capacity of the Waste Isolation Pilot Plant, identified under all waste management alternatives as the permanent disposal facility for DOE-generated TRU waste, is sufficient for the projected complexwide TRU waste load under any of the alternatives

  10. Waste classification: a management approach

    International Nuclear Information System (INIS)

    Wickham, L.E.

    1984-01-01

    A waste classification system designed to quantify the total hazard of a waste has been developed by the Low-Level Waste Management Program. As originally conceived, the system was designed to deal with mixed radioactive waste. The methodology has been developed and successfully applied to radiological and chemical wastes, both individually and mixed together. Management options to help evaluate the financial and safety trade-offs between waste segregation, waste treatment, container types, and site factors are described. Using the system provides a very simple and cost effective way of making quick assessments of a site's capabilities to contain waste materials. 3 references

  11. Regional co-operation in radioactive waste management from an IAEA perspective

    International Nuclear Information System (INIS)

    Bonne, A.

    2000-01-01

    This paper is intended to be a lead in to a Round Table discussion on Regional Co-operation in Radioactive Waste Management at the International Conference on N uclear Option in Countries with Small and Medium Electricity Grids , which will be held from 19 to 22 June 2000 in Dubrovnik, Croatia. The Round Table discussion will focus on international co-operation in the Eastern European region

  12. LCA of Solid Waste Management Systems

    DEFF Research Database (Denmark)

    Bakas, Ioannis; Laurent, Alexis; Clavreul, Julie

    2018-01-01

    The chapter explores the application of LCA to solid waste management systems through the review of published studies on the subject. The environmental implications of choices involved in the modelling setup of waste management systems are increasingly in the spotlight, due to public health...... concerns and new legislation addressing the impacts from managing our waste. The application of LCA to solid waste management systems, sometimes called “waste LCA”, is distinctive in that system boundaries are rigorously defined to exclude all life cycle stages except from the end-of-life. Moreover...... LCA on solid waste systems....

  13. A Comparative Analysis of Solid Waste Treatment Technologies on Cost and Environmental Basis

    OpenAIRE

    Nesli Aydin

    2017-01-01

    Waste management decision making in developing countries has moved towards being more pragmatic, transparent, sustainable and comprehensive. Turkey is required to make its waste related legislation compatible with European Legislation as it is a candidate country of the European Union. Improper Turkish practices such as open burning and open dumping practices must be abandoned urgently, and robust waste management systems have to be structured. The determination of an optimum waste management...

  14. The acid digestion process for radioactive waste: The radioactive waste management series. Volume II

    International Nuclear Information System (INIS)

    Cecille, L.; Simon, R.

    1983-01-01

    This volume focuses on the acid digestion process for the treatment of alpha combustible solid waste by presenting detailed performance figures for the principal sub-assemblies of the Alona pilot plant, Belgium. Experience gained from the operation of the US RADTU plant, the only other acid digestion pilot plant, is also summarized, and the performances of these two plants compared. In addition, the research and development programmes carried out or supported by the Commission of the European Communities are reviewed, and details of an alternative to acid digestion for waste contamination described. Topics considered include review of the treatment of actinides-bearing radioactive wastes; alpha waste arisings in fuel fabrication; Alona Demonstration Facility for the acid digestion process at Eurochemic Mol (Belgium); the treatment of alpha waste at Eurochemic by acid digestion-feed pretreatment and plutonium recovery; US experience with acid digestion of combustible transuranic waste; and The European Communities R and D actions on alpha waste

  15. WASTE MANAGEMENT IN A SCHOOL RESTAURANT

    Directory of Open Access Journals (Sweden)

    Bianca Peruchin

    2013-06-01

    Full Text Available Nowadays, the amount of waste generated and its proper final destination is one of the greatest environmental issues. The higher education institutions are an important source of waste due to its diversity of teaching, researching and extension activities undertaken by academic world. The university restaurant supplies meals to the university community and ends up generating a kind of waste similar to the domestic waste, but in a bigger amount. The aim of this study was to investigate the gravimetric composition of the waste generated in the school restaurant of a higher-education institution in southern Brazil and provide a diagnostic of the current waste management. The data were obtained through a characterization process of the solid waste generated in one week; an interview with the responsible managers and direct observation of the local structure. It was found non-existence of a Management Plan for Solid Waste, as well as a lack of practices relative to its management. The waste segregation is impaired due the lack of specific and labeled bins, besides the overworked employees. Along the experimental period it were characterized 547,068 Kg of solid waste, in which more than 80% were organic waste. The paper concludes that the organic waste could be treated by composting. It is recommended the formulation and implementation of an integrated management plan for solid waste in order to provide adequate infrastructure for waste management in the school restaurant.

  16. Electronic waste management approaches: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Kiddee, Peeranart [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Mawson Lakes Campus, Adelaide, SA 5095 (Australia); Naidu, Ravi, E-mail: ravi.naidu@crccare.com [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Mawson Lakes Campus, Adelaide, SA 5095 (Australia); Wong, Ming H. [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong (China)

    2013-05-15

    Highlights: ► Human toxicity of hazardous substances in e-waste. ► Environmental impacts of e-waste from disposal processes. ► Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) to and solve e-waste problems. ► Key issues relating to tools managing e-waste for sustainable e-waste management. - Abstract: Electronic waste (e-waste) is one of the fastest-growing pollution problems worldwide given the presence if a variety of toxic substances which can contaminate the environment and threaten human health, if disposal protocols are not meticulously managed. This paper presents an overview of toxic substances present in e-waste, their potential environmental and human health impacts together with management strategies currently being used in certain countries. Several tools including Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) have been developed to manage e-wastes especially in developed countries. The key to success in terms of e-waste management is to develop eco-design devices, properly collect e-waste, recover and recycle material by safe methods, dispose of e-waste by suitable techniques, forbid the transfer of used electronic devices to developing countries, and raise awareness of the impact of e-waste. No single tool is adequate but together they can complement each other to solve this issue. A national scheme such as EPR is a good policy in solving the growing e-waste problems.

  17. Electronic waste management approaches: An overview

    International Nuclear Information System (INIS)

    Kiddee, Peeranart; Naidu, Ravi; Wong, Ming H.

    2013-01-01

    Highlights: ► Human toxicity of hazardous substances in e-waste. ► Environmental impacts of e-waste from disposal processes. ► Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) to and solve e-waste problems. ► Key issues relating to tools managing e-waste for sustainable e-waste management. - Abstract: Electronic waste (e-waste) is one of the fastest-growing pollution problems worldwide given the presence if a variety of toxic substances which can contaminate the environment and threaten human health, if disposal protocols are not meticulously managed. This paper presents an overview of toxic substances present in e-waste, their potential environmental and human health impacts together with management strategies currently being used in certain countries. Several tools including Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) have been developed to manage e-wastes especially in developed countries. The key to success in terms of e-waste management is to develop eco-design devices, properly collect e-waste, recover and recycle material by safe methods, dispose of e-waste by suitable techniques, forbid the transfer of used electronic devices to developing countries, and raise awareness of the impact of e-waste. No single tool is adequate but together they can complement each other to solve this issue. A national scheme such as EPR is a good policy in solving the growing e-waste problems

  18. Swedish waste management

    International Nuclear Information System (INIS)

    Sandwall, L.

    2004-01-01

    Sweden has a well-functioning organization for managing various types of radioactive waste. There is an interim storage facility for spent nuclear fuel, a final repository for low and intermediate level waste, and a specially-built vessel with transport casks and containers for shipping the radioactive waste between the nuclear installations. (author)

  19. The ANSTO waste management action plan

    International Nuclear Information System (INIS)

    Levins, D.

    1997-01-01

    ANSTO's Waste Management Action Plan is a five-year program which addresses legacy issues that have arisen from the accumulation of radioactive wastes at Lucas Heights over the last forty years. Following an extensive review of waste management practices, a detailed Action Plan was prepared involving seventeen projects in the areas of solid wastes, liquid wastes, control of effluents and emissions, spent reactor fuel and organisational issues. The first year of the Waste Management Action Plan has resulted in significant achievements, especially in the areas of improved storage of solid wastes, stabilisation of uranium scrap, commissioning and operation of a scanning system for low-level waste drums, treatment of intermediate-level liquid wastes and improvements in the methods for monitoring of spent fuel storage facilities. The main goal of the Waste Management Action Plan is to achieve consistency, by the year 2000, with best practice as identified in the Radioactive Waste Safety Standards and Guidelines currently under development by the IAEA

  20. Fernald waste management and disposition

    International Nuclear Information System (INIS)

    West, M.L.; Fisher, L.A.; Frost, M.L.; Rast, D.M.

    1995-01-01

    Historically waste management within the Department of Energy complex has evolved around the operating principle of packaging waste generated and storing until a later date. In many cases wastes were delivered to onsite waste management organizations with little or no traceability to origin of generation. Sites then stored their waste for later disposition offsite or onsite burial. While the wastes were stored, sites incurred additional labor costs for maintaining, inspecting and repackaging containers and capital costs for storage warehouses. Increased costs, combined with the inherent safety hazards associated with storage of hazardous material make these practices less attractive. This paper will describe the methods used at the Department of Energy's Fernald site by the Waste Programs Management Division to integrate with other site divisions to plan in situ waste characterization prior to removal. This information was utilized to evaluate and select disposal options and then to package and ship removed wastes without storage

  1. Stakeholder involvement in Swedish nuclear waste management

    International Nuclear Information System (INIS)

    Elam, Mark; Sundqvist, Goeran

    2006-09-01

    raised about whether the European Union will become an important stakeholder in Swedish waste management, if climate change means new opportunities for nuclear power, if the national government and the Environmental Court will grow stronger as stakeholders, if environmental organisations will succeed in re-opening the big issues of method and site for a final repository, and if the strong social-technical divide will dissolve

  2. Stakeholder involvement in Swedish nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Mark; Sundqvist, Goeran [Goeteborg Univ. (Sweden). Section for Science and Technology Studies

    2006-09-15

    have been raised about whether the European Union will become an important stakeholder in Swedish waste management, if climate change means new opportunities for nuclear power, if the national government and the Environmental Court will grow stronger as stakeholders, if environmental organisations will succeed in re-opening the big issues of method and site for a final repository, and if the strong social-technical divide will dissolve.

  3. Incineration of European non-nuclear radioactive waste in the USA

    International Nuclear Information System (INIS)

    Moloney, B. P.; Ferguson, D.; Stephenson, B.

    2013-01-01

    Incineration of dry low level radioactive waste from nuclear stations is a well established process achieving high volume reduction factors to minimise disposal costs and to stabilise residues for disposal. Incineration has also been applied successfully in many European Union member countries to wastes arising from use of radionuclides in medicine, nonnuclear research and industry. However, some nations have preferred to accumulate wastes over many years in decay stores to reduce the radioactive burden at point of processing. After decay and sorting the waste, they then require a safe, industrial scale and affordable processing solution for the large volumes accumulated. This paper reports the regulatory, logistical and technical issues encountered in a programme delivered for Eckert and Ziegler Nuclitec to incinerate safely 100 te of waste collected originally from German research, hospital and industrial centres, applying for the first time a 'burn and return' process model for European waste in the US. The EnergySolutions incinerators at Bear Creek, Oak Ridge, Tennessee, USA routinely incinerate waste arising from the non-nuclear user community. To address the requirement from Germany, EnergySolutions had to run a dedicated campaign to reduce cross-contamination with non-German radionuclides to the practical minimum. The waste itself had to be sampled in a carefully controlled programme to ensure the exacting standards of Bear Creek's license and US emissions laws were maintained. Innovation was required in packaging of the waste to minimise transportation costs, including sea freight. The incineration was inspected on behalf of the German regulator (the BfS) to ensure suitability for return to Germany and disposal. This first 'burn and return' programme has safely completed the incineration phase in February and the arising ash will be returned to Germany presently. The paper reports the main findings and lessons learned on this first

  4. Programme on radioactive waste management of the C.E.C.: orientations, motivations, organization and evolution

    International Nuclear Information System (INIS)

    Bishop, G.R.

    1980-01-01

    The Commission of the European Communities favours the development of nuclear energy to contribute to the solution of the energy problems. The Commission favours also the development of a complete nuclear fuel cycle including reprocessing and fast breeders. Thus the Commission is interested in the setting-up of effective solutions to problems of radioactive waste management. The Commission is operating by means of a Direct Action Programme, developed in the Joint Research Centre, and of an Indirect Action Programme, developed under contracts with national laboratories and industries. The programmes of the Commission cover all of the most important aspects of radioactive waste conditioning and disposal. The Commission is operating in strict connection with international organizations; collaboration agreements are in preparation with non-Community countries. The Plan of Action (1980 to 1992) in the Field of Radioactive Waste Management, recently approved by the Council, entrusts to the Commission a wider role in the implementation of the waste management policies

  5. Sustainable Materials Management: Non-Hazardous Materials and Waste Management Hierarchy

    Science.gov (United States)

    EPA developed the non-hazardous materials and waste management hierarchy in recognition that no single waste management approach is suitable for managing all materials and waste streams in all circumstances.

  6. The European Programme Manager

    DEFF Research Database (Denmark)

    Larson, Anne; Bergman, E.; Ehlers, S.

    The publication is a result of a cooperation between organisations in six European countries with the aim to develop a common European education for programme managers. It contains of a description of the different elements of the education together with a number of case-studies from the counties...

  7. International waste-management symposium

    International Nuclear Information System (INIS)

    Shoup, R.L.

    1977-01-01

    An International Symposium on the Management of Wastes from the LWR Fuel Cycle was held in Denver, Colo., on July 11 to 16, 1976. The symposium covered a broad range of topics, from policy issues to technology. Presentations were made by national and international speakers involved in all aspects of waste management, government and agency officials; laboratory managers, directors, and researchers; and industrial representatives. Many speakers advocated pragmatic action on programs for the management of commercial nuclear wastes to complete the light-water reactor (LWR) fuel cycle. The industrialized nations' demand for increasing supplies of energy and their increasing dependence on nuclear energy to fulfill this demand will necessitate the development of an acceptable solution to the disposal of nuclear wastes within the next decade for some industrial nations. Waste-disposal technology should be implemented on a commercial scale, but the commercialization must be accompanied by the decision to use the technology. An important issue in the use of nuclear energy is the question of sharing the technology with the less industrialized nations and with nations that may not have suitable means to dispose of nuclear wastes. The establishment of international and multinational cooperation will be an important key in realizing this objective. Pressing issues that international organizations or task groups will have to address are ocean disposal, plutonium recycling and safeguards, and disposal criteria. The importance of achieving a viable waste-management program is made evident by the increased funding and attention that the back end of the fuel cycle is now receiving

  8. Radioactive waste management centers: an approach

    International Nuclear Information System (INIS)

    Lotts, A.L.

    1980-01-01

    Radioactive waste management centers would satisfy the need for a cost-effective, sound management system for nuclear wastes by the industry and would provide a well integrated solution which could be understood by the public. The future demands for nuclear waste processing and disposal by industry and institutions outside the United States Government are such that a number of such facilities are required between now and the year 2000. Waste management centers can be organized around two general needs in the commercial sector: (1) the need for management of low-level waste generated by nuclear power plants, the once-through nuclear fuel cycle production facilities, from hospitals, and other institutions; and (2) more comprehensive centers handling all categories of nuclear wastes that would be generated by a nuclear fuel recycle industry. The basic technology for radioactive waste management will be available by the time such facilities can be deployed. This paper discusses the technical, economic, and social aspects of organizing radioactive waste managment centers and presents a strategy for stimulating their development

  9. International trends of radioactive waste management

    International Nuclear Information System (INIS)

    Luo Shanggeng

    1989-01-01

    The new trends of radioactive waste management in the world such as focusing on decreasing the amount of radioactive wastes, developing decontamination and decommissioning technology, conscientious solution for radiactive waste disposal, carrying out social services of waste treatment and quality assurance are reviewed. Besides, comments and suggestions are presented. Key words Radioactive waste management, Radioactive waste treatment, Radioactive waste disposal

  10. Oak Ridge National Laboratory Waste Management Plan

    International Nuclear Information System (INIS)

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented

  11. Oak Ridge National Laboratory Waste Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  12. Integrated waste management and the tool of life cycle inventory : a route to sustainable waste management

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, F.R.; White, P.R. [Procter and Gamble Newcastle Technical Centre, Newcastle (United Kingdom). Corporate Sustainable Development

    2000-07-01

    An overall approach to municipal waste management which integrates sustainable development principles was discussed. The three elements of sustainability which have to be balanced are environmental effectiveness, economic affordability and social acceptability. An integrated waste management (IWM) system considers different treatment options and deals with the entire waste stream. A life cycle inventory (LCI) and life cycle assessment (LCA) is used to determine the environmental burdens associated with IWM systems. LCIs for waste management are currently available for use in Europe, the United States, Canada and elsewhere. LCI is being used by waste management companies to assess the environmental attributes of future contract tenders. The models are used as benchmarking tools to assess the current environmental profile of a waste management system. They are also a comparative planning and communication tool. The authors are currently looking into publishing, at a future date, the experience of users of this LCI environmental management tool. 12 refs., 3 figs.

  13. Developing radioactive waste management policy

    International Nuclear Information System (INIS)

    Gichana, Z.

    2012-04-01

    A policy for radioactive waste management with defined goals and requirements is needed as a basis for the preparation of legislation, review or revision of related legislation and to define roles and responsibilities for ensuring the safe management of radioactive waste. A well defined policy and associated strategies are useful in promoting consistency of emphasis and direction within all of the sectors involved in radioactive waste management. The absence of policy and strategy can lead to confusion or lack of coordination and direction. A policy and/or strategy may sometimes be needed to prevent inaction on a particular waste management issue or to resolve an impasse. (author)

  14. Substance management in thermal waste treatment plants. Final report; Stoffmanagement in thermischen Abfallbehandlungsanlagen. Stand und Perspektiven der thermischen Abfallbehandlung in Europa. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Leclaire, T; Meyer, B; Neumann, P; Schiemann, J; Schmidt, K G [Institut fuer Umwelttechnologie und Umweltanalytik e.V. (IUTA), Duisburg (Germany); Mast, P G [TAUW Umwelt GmbH, Mannheim (Germany)

    1996-08-01

    The report gives a general view of the actual state of development of the thermal waste treatment and the further need of research. It mentions the importance of the standarization of legal framework in the european waste management and the problems, that result from the internationalization of waste management and the conversion of European guidelines into national law. In 19 lectures with following discussions, which results are written down summed up together with the lectures, - the situation of the (thermal) waste treatment in different european states - the technologies of - municipal waste incineration - alternative thermal treatment methods - mechanical-biological waste treatment (in integrated treatment conceptions) - technical and organizational pretreatment methods and - posttreatment methods for residues mainly in the field of substance management - the present development, results of actual R and D plans and new trends are described. (orig.) [Deutsch] Der Bericht bietet einen Ueberblick ueber den aktuellen Entwicklungsstand der thermischen Abfallbehandlung und den weiteren Forschungsbedarf. Er nennt die Bedeutung der Vereinheitlichung rechtlicher Rahmenbedingungen in der europaeischen Abfallwirtschaft und Probleme, die aus der Internationalisierung der Abfallwirtschaft und der Umsetzung europaeischer Vorgaben in nationales Recht entstehen. In 19 Vortraegen und anschliessenden Diskussionen, deren Ergebnisse zusammengefasst gemeinsam mit den Vortragsmanuskripten dargestellt sind, werden - die Situation der (thermischen) Abfallbehandlung mehrerer europaeischer Staaten - die Technologien der - Siedlungsabfallverbrennung - alternativen thermischen Behandlungsverfahren - mechanisch-biologischen Restabfallbehandlung (in integrierten Behandlungskonzepten) - technischen und organisatorischen Vorbehandlungsmassnahmen und - Nachbehandlungsverfahren fuer Verbrennungsrueckstaende mit Schwerpunkt im Bereich des Stoffmanagements - die derzeitige Entwicklung

  15. Radioactive waste management: International peer reviews

    International Nuclear Information System (INIS)

    Warnecke, E.; Bonne, A.

    1995-01-01

    The Agency's peer review service for radioactive waste management - known as the Waste Management Assessment and Technical Review Programme (WATRP) - started in 1989, building upon earlier types of advisory programmes. WATRP's international experts today provide advice and guidance on proposed or ongoing radioactive waste management programmes; planning, operation, or decommissioning of waste facilities; or on legislative, organizational, and regulatory matters. Specific topics often cover waste conditioning, storage, and disposal concepts or facilities; or technical and other aspects of ongoing or planned research and development programmes. The missions can thus contributed to improving waste management systems and plans, and in raising levels of public confidence in them, as part of IAEA efforts to assist countries in the safe management of radioactive wastes. This article presents a brief overview of recent WATRP missions in Norway, Slovak Republic, Czech Republic and Finland

  16. Implementation of SAP Waste Management System

    International Nuclear Information System (INIS)

    Frost, M.L.; LaBorde, C.M.; Nichols, C.D.

    2008-01-01

    The Y-12 National Security Complex (Y-12) assumed responsibility for newly generated waste on October 1, 2005. To ensure effective management and accountability of newly generated waste, Y-12 has opted to utilize SAP, Y-12's Enterprise Resource Planning (ERP) tool, to track low-level radioactive waste (LLW), mixed waste (MW), hazardous waste, and non-regulated waste from generation through acceptance and disposal. SAP Waste will include the functionality of the current waste tracking system and integrate with the applicable modules of SAP already in use. The functionality of two legacy systems, the Generator Entry System (GES) and the Waste Information Tracking System (WITS), and peripheral spreadsheets, databases, and e-mail/fax communications will be replaced by SAP Waste. Fundamentally, SAP Waste will promote waste acceptance for certification and disposal, not storage. SAP Waste will provide a one-time data entry location where waste generators can enter waste container information, track the status of their waste, and maintain documentation. A benefit of the new system is that it will provide a single data repository where Y-12's Waste Management organization can establish waste profiles, verify and validate data, maintain inventory control utilizing hand-held data transfer devices, schedule and ship waste, manage project accounting, and report on waste handling activities. This single data repository will facilitate the production of detailed waste generation reports for use in forecasting and budgeting, provide the data for required regulatory reports, and generate metrics to evaluate the performance of the Waste Management organization and its subcontractors. SAP Waste will replace the outdated and expensive legacy system, establish tools the site needs to manage newly generated waste, and optimize the use of the site's ERP tool for integration with related business processes while promoting disposition of waste. (authors)

  17. Draft directive on the management of radioactive wastes based on deep geological disposal

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    The European Commission works on a legal framework to assure that all the member states apply the same standards in all the stages of the management of spent fuels and radioactive wastes till their definitive disposal. The draft propositions are the following. The standards to follow are those proposed by the IAEA. First, each member state has to set a national program dedicated to the management of radioactive wastes. This program will have to detail: the chosen solution, the description of the project, a time schedule, costs and financing. Secondly, the exportation of nuclear wastes for definitive disposal is not allowed unless the 2 countries have agreed to build a common nuclear waste disposal center. Thirdly, the population will have to be informed on the project and will have to take part in the decision process. Fourthly, the standards set by IAEA will be enforced by law. There is a broad consensus between scientists and international organizations like IAEA to consider that the disposal in deep geological layers of high-level radioactive wastes is the most adequate solution. (A.C.)

  18. The Integrated Waste Tracking Systems (IWTS) - A Comprehensive Waste Management Tool

    International Nuclear Information System (INIS)

    Robert S. Anderson

    2005-01-01

    The US Department of Energy (DOE) Idaho National Laboratory (INL) site located near Idaho Falls, ID USA, has developed a comprehensive waste management and tracking tool that integrates multiple operational activities with characterization data from waste declaration through final waste disposition. The Integrated Waste Tracking System (IWTS) provides information necessary to help facility personnel properly manage their waste and demonstrate a wide range of legal and regulatory compliance. As a client?server database system, the IWTS is a proven tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of flexibility. This paper describes some of the history involved with the development and current use of IWTS as a comprehensive waste management tool as well as a discussion of IWTS deployments performed by the INL for outside clients. Waste management spans a wide range of activities including: work group interactions, regulatory compliance management, reporting, procedure management, and similar activities. The IWTS documents these activities and performs tasks in a computer-automated environment. Waste characterization data, container characterization data, shipments, waste processing, disposals, reporting, and limit compliance checks are just a few of the items that IWTS documents and performs to help waste management personnel perform their jobs. Throughout most hazardous and radioactive waste generating, storage and disposal sites, waste management is performed by many different groups of people in many facilities. Several organizations administer their areas of waste management using their own procedures and documentation independent of other organizations. Files are kept, some of which are treated as quality records, others not as stringent. Quality records maintain a history of: changes performed after approval, the reason for the change(s), and a record of whom and when

  19. Waste management and treatment or disguised disposal?

    International Nuclear Information System (INIS)

    Drum, D.A.; Lauber, J.

    1992-01-01

    A number of political action groups, environmental groups, and waste management industries have purposely used medical waste data and municipal solid waste test results to mislead public officials and communities. Waste management schemes and waste treatment technologies must be measured and compared by the same test criteria. For example, anti-incineration groups often use the toxic dioxin/furan data and/or toxic metal arguments to oppose waste-to-energy incineration technologies. Comparable test data on waste management techniques such as waste composting, autoclaving, and landfilling are either nonexistent or often inappropriately applied. Integrated waste management systems require technologically accurate and complete data, environmentally-appropriate designed systems, and fiscal responsibility. The primary emphasis of waste management and treatment practices must be directed toward minimization, reuse, destruction, and detoxification of municipal solid wastes and medical wastes. The issues and alternatives will be examined

  20. WASTE-ACC: A computer model for analysis of waste management accidents

    International Nuclear Information System (INIS)

    Nabelssi, B.K.; Folga, S.; Kohout, E.J.; Mueller, C.J.; Roglans-Ribas, J.

    1996-12-01

    In support of the U.S. Department of Energy's (DOE's) Waste Management Programmatic Environmental Impact Statement, Argonne National Laboratory has developed WASTE-ACC, a computational framework and integrated PC-based database system, to assess atmospheric releases from facility accidents. WASTE-ACC facilitates the many calculations for the accident analyses necessitated by the numerous combinations of waste types, waste management process technologies, facility locations, and site consolidation strategies in the waste management alternatives across the DOE complex. WASTE-ACC is a comprehensive tool that can effectively test future DOE waste management alternatives and assumptions. The computational framework can access several relational databases to calculate atmospheric releases. The databases contain throughput volumes, waste profiles, treatment process parameters, and accident data such as frequencies of initiators, conditional probabilities of subsequent events, and source term release parameters of the various waste forms under accident stresses. This report describes the computational framework and supporting databases used to conduct accident analyses and to develop source terms to assess potential health impacts that may affect on-site workers and off-site members of the public under various DOE waste management alternatives

  1. Nuclear waste management: a perspective

    International Nuclear Information System (INIS)

    Leuze, R.E.

    1980-01-01

    The scope of our problems with nuclear waste management is outlined. Present and future inventories of nuclear wastes are assessed for risk. A discussion of what is presently being done to solve waste management problems and what might be done in the future are presented

  2. Regulation of radioactive waste management

    International Nuclear Information System (INIS)

    2002-01-01

    This bulletin contains information about activities of the Nuclear Regulatory Authority of the Slovak Republic (UJD). In this leaflet the regulation of radioactive waste management of the UJD are presented. Radioactive waste (RAW) is the gaseous, liquid or solid material that contains or is contaminated with radionuclides at concentrations or activities greater than clearance levels and for which no use is foreseen. The classification of radioactive waste on the basis of type and activity level is: - transition waste; - short lived low and intermediate level waste (LlLW-SL); - long lived low and intermediate level waste (LlLW-LL); - high level waste. Waste management (in accordance with Act 130/98 Coll.) involves collection, sorting, treatment, conditioning, transport and disposal of radioactive waste originated by nuclear facilities and conditioning, transport to repository and disposal of other radioactive waste (originated during medical, research and industrial use of radioactive sources). The final goal of radioactive waste management is RAW isolation using a system of engineered and natural barriers to protect population and environment. Nuclear Regulatory Authority of the Slovak Republic regulates radioactive waste management in accordance with Act 130/98 Coll. Inspectors regularly inspect and evaluate how the requirements for nuclear safety at nuclear facilities are fulfilled. On the basis of safety documentation evaluation, UJD issued permission for operation of four radioactive waste management facilities. Nuclear facility 'Technologies for treatment and conditioning contains bituminization plants and Bohunice conditioning centre with sorting, fragmentation, evaporation, incineration, supercompaction and cementation. Final product is waste package (Fibre reinforced container with solidified waste) acceptable for near surface repository in Mochovce. Republic repository in Mochovce is built for disposal of short lived low and intermediate level waste. Next

  3. Understanding the role of waste prevention in local waste management: A literature review.

    Science.gov (United States)

    Zacho, Kristina O; Mosgaard, Mette A

    2016-10-01

    Local waste management has so far been characterised by end-of-pipe solutions, landfilling, incineration, and recycling. End-of-pipe solutions build on a different mind-set than life cycle-based approaches, and for this reason, local waste managers are reluctant to consider strategies for waste prevention. To accelerate the transition of waste and resource management towards a more integrated management, waste prevention needs to play a larger role in the local waste management. In this review article, we collect knowledge from the scientific community on waste prevention of relevance to local waste management. We analyse the trends in the waste prevention literature by organising the literature into four categories. The results indicate an increasing interest in waste prevention, but not much literature specifically concerns the integration of prevention into the local waste management. However, evidence from the literature can inform local waste management on the prevention potential; the environmental and social effects of prevention; how individuals in households can be motivated to reduce waste; and how the effects of prevention measures can be monitored. Nevertheless, knowledge is still lacking on local waste prevention, especially regarding the methods for monitoring and how local waste management systems can be designed to encourage waste reduction in the households. We end the article with recommendations for future research. The literature review can be useful for both practitioners in the waste sector and for academics seeking an overview of previous research on waste prevention. © The Author(s) 2016.

  4. Assessment of the waste electrical and electronic equipment management systems profile and sustainability in developed and developing European Union countries.

    Science.gov (United States)

    Ibanescu, Dumitrita; Cailean Gavrilescu, Daniela; Teodosiu, Carmen; Fiore, Silvia

    2018-03-01

    The assessment of waste management systems for electrical and electronic equipment (WEEE) from developed economies (Germany, Sweden and Italy) and developing countries (Romania and Bulgaria), is discussed covering the period 2007-2014. The WEEE management systems profiles are depicted by indicators correlated to WEEE life cycle stages: collection, transportation and treatment. The sustainability of national WEEE management systems in terms of greenhouse gas emissions is presented, together with the greenhouse gas efficiency indicator that underlines the efficiency of WEEE treatment options. In the countries comparisons, the key elements are: robust versus fragile economies, the overall waste management performance and the existence/development of suitable management practices on WEEE. Over the life cycle perspective, developed economies (Germany, Sweden and Italy) manage one order of magnitude higher quantities of WEEE compared to developing countries (Romania and Bulgaria). Although prevention and reduction measures are encouraged, all WEEE quantities were larger in 2013, than in 2007. In 2007-2014, developed economies exceed the annual European collection target of 4 kg WEEE/capita, while collection is still difficult in developing countries. If collection rates are estimated in relationship with products placed on market, than similar values are registered in Sweden and Bulgaria, followed by Germany and Italy and lastly Romania. WEEE transportation shows different patterns among countries, with Italy as the greatest exporter (in 2014), while Sweden treats the WEEE nationally. WEEE reuse is a common practice in Germany, Sweden (from 2009) and Bulgaria (from 2011). By 2014, recycling was the most preferred WEEE treatment option, with the same kind of rates performance, over 80%, irrespective of the country, with efforts in each of the countries in developing special collection points, recycling facilities and support instruments. The national total and the

  5. Waste management considerations in nuclear facility decommissioning

    International Nuclear Information System (INIS)

    Elder, H.K.; Murphy, E.S.

    1981-01-01

    Decommissioning of nuclear facilities involves the management of significant quantities of radioactive waste. This paper summarizes information on volumes of waste requiring disposal and waste management costs developed in a series of decommissioning studies performed for the U.S. Nuclear Regulatory Commission by the Pacific Northwest Laboratory. These studies indicate that waste management is an important cost factor in the decommissioning of nuclear facilities. Alternatives for managing decommissioning wastes are defined and recommendations are made for improvements in waste management practices

  6. ITER waste management

    International Nuclear Information System (INIS)

    Rosanvallon, S.; Na, B.C.; Benchikhoune, M.; Uzan, J. Elbez; Gastaldi, O.; Taylor, N.; Rodriguez, L.

    2010-01-01

    ITER will produce solid radioactive waste during its operation (arising from the replacement of components and from process and housekeeping waste) and during decommissioning (de-activation phase and dismantling). The waste will be activated by neutrons of energies up to 14 MeV and potentially contaminated by activated corrosion products, activated dust and tritium. This paper describes the waste origin, the waste classification as a function of the French national agency for radioactive waste management (ANDRA), the optimization process put in place to reduce the waste radiotoxicity and volumes, the estimated waste amount based on the current design and maintenance procedure, and the overall strategy from component removal to final disposal anticipated at this stage of the project.

  7. Energy recovery from Municipal Solid Waste in EU: proposals to assess the management performance under a circular economy perspective

    Directory of Open Access Journals (Sweden)

    Rada Elena Cristina

    2017-01-01

    Full Text Available In 2015 the European Commission issued a package of documents on Circular Economy concerning an integrated revision of legislative proposals on waste management. The aim was to stimulate a European transition towards a circular economy concept, which is expected to foster competitiveness, sustainable economic growth and new jobs generation. Three indicators are proposed in this paper to contribute to the assessment of the energy recovery management performance from MSW in a scenario of circular economy: a referring to MSW directly used (RMSW or indirectly used (SRF as input of thermochemical plants, an indicator can be the percentage of waste having LHV > 13MJ/kg; b referring to the MSW directly or indirectly used as input of thermochemical plants, the percentage of waste having ash recovered; c referring to food waste, percentage of this stream sent to anaerobic digestion. The above indicators, proposed and discussed in this paper, have to be integrated with other ones in order to complete the quantification of the role of MSW management in term of energy recovery under a circular economy strategy. It is not the aim of the present paper to give a comprehensive solution to this complex issue.

  8. Enresa's Participation in the Technical Assistance Programmes to the Eastern European Countries

    International Nuclear Information System (INIS)

    Beceiro, A. R.; Vico, E.

    2000-01-01

    This article briefly describes the participation of ENRESA in the technical assistance programmes to the Central and Eastern European countries (PHARE) and to the New Independent States (TACIS) as well as in the co-operation programmes all of them established by the European Commission. It is worth to point out the active role of ENRESA within the European Consortium CASSIOPEE, formed in 1993 by the six radioactive waste management companies in existence in the European Union at that time. CASSIOPEE was created to assist the European Commission in the area of radioactive waste management of the PHARE and TACIS technical assistance programmes. (Author)

  9. Los Alamos Waste Management Cost Estimation Model

    International Nuclear Information System (INIS)

    Matysiak, L.M.; Burns, M.L.

    1994-03-01

    This final report completes the Los Alamos Waste Management Cost Estimation Project, and includes the documentation of the waste management processes at Los Alamos National Laboratory (LANL) for hazardous, mixed, low-level radioactive solid and transuranic waste, development of the cost estimation model and a user reference manual. The ultimate goal of this effort was to develop an estimate of the life cycle costs for the aforementioned waste types. The Cost Estimation Model is a tool that can be used to calculate the costs of waste management at LANL for the aforementioned waste types, under several different scenarios. Each waste category at LANL is managed in a separate fashion, according to Department of Energy requirements and state and federal regulations. The cost of the waste management process for each waste category has not previously been well documented. In particular, the costs associated with the handling, treatment and storage of the waste have not been well understood. It is anticipated that greater knowledge of these costs will encourage waste generators at the Laboratory to apply waste minimization techniques to current operations. Expected benefits of waste minimization are a reduction in waste volume, decrease in liability and lower waste management costs

  10. Law on the management of radioactive waste

    International Nuclear Information System (INIS)

    1999-01-01

    This law regulate the relations of legal persons, enterprises without the rights of legal persons, and natural persons in the management of radioactive waste in Lithuania and establish the legal grounds for the management of radioactive waste. Thirty one article of the law deals with the following subjects: principles of radioactive waste management, competence of the Government, State Nuclear Power Safety Inspectorate, Ministry of Economy, Ministry of Environment and Radiation Protection Center in the sphere of regulation of the radioactive waste management, activities subject to licensing, issue of licences and authorisations, duties and responsibilities of the waste producer, founding of the radioactive waste management agency, its basic status and principles of the activities, functions of the agency, management of the agency, transfer of the radioactive waste to the agency, assessment of the existing waste management facilities and their past practices, siting, design and construction, safety assessment, commissioning and operation of the radioactive waste management facilities, radiation protection, quality assurance, emergency preparedness, decommissioning of radioactive waste storage and other facilities, post-closure surveillance of the repository, disused sealed sources, transportation, export and transit of radioactive waste

  11. Management of Radioactive Wastes in Developing Countries

    International Nuclear Information System (INIS)

    Abdel Ghani, A.H.

    1999-01-01

    The management of radioactive wastes is one area of increasing interest especially in developing countries having more and more activities in the application of radioisotopes in medicine, research and industry. For a better understanding of radioactive waste management in developing countries this work will discuss the following items:Classification of countries with respect to waste management programs. Principal Radionuclides used in medicine, biological research and others and the range of radioactivity commonly used. Estimation of radioactive waste volumes and activities. Management of liquid wastes Collection. Treatment. Management of small volumes of organic liquid waste. Collection Treatment. Packaging and storage of radioactive wastes

  12. Intelligent Information System for Waste Management; Jaetehuollon aelykaes tietojaerjestelmae - iWaste

    Energy Technology Data Exchange (ETDEWEB)

    Mustonen, T. [Kuopio Univ. (Finland); Isoaho, S. [Tampere Univ. (Finland)

    2004-07-01

    ''Waste'' - Intelligent Information System for Waste Management - is a joint project of the University of Kuopio and the Tampere University of Technology. The main objective of the project is to create a basis for more comprehensive utilisation and management of waste management data and for the development of database management systems. The results of the project are numerous. A study of the present state of data management in the field of waste management was carried out. The studied aspects were for example information needs of different actors and their requirements for the information quality, interfaces for information exchange between different actors, and the characteristics of the software products. During the second phase of the project, a hyper document describing waste management systems, and a software application for describing material flows and their management will be finalized. Also methodologies and practices for processing data into information, which is needed in the decision making process, will be developed. The developed methodologies include e.g. data mining techniques, and the practices include e.g. the prediction of waste generation and optimisation of waste collection and transport. (orig.)

  13. Integrated solid waste management in Germany

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This report covers Germany`s experience with integrated solid waste management programs. The municipal solid waste practices of four cities include practices and procedures that waste facility managers with local or state governments may consider for managing their own day-to-day operations.

  14. From waste management into resource management; Von der Entsorgungswirtschaft zur Ressourcenwirtschaft

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, K.; Bergs, C.G.; Kosak, G.; Wallmann, R.; Vogtmann, H. (eds.)

    2005-07-01

    The main topic of the meeting was the development of waste management away from deposition management into resource management. The volume contains 63 contributions, which are compiled in several sections: legal and political development; status quo, concepts and prospects of thermal and mechanical waste treatment; sanitary landfills; outage associations; wastes and resources management; international waste management. (uke)

  15. Influence of assumptions about household waste composition in waste management LCAs

    International Nuclear Information System (INIS)

    Slagstad, Helene; Brattebø, Helge

    2013-01-01

    Highlights: ► Uncertainty in waste composition of household waste. ► Systematically changed waste composition in a constructed waste management system. ► Waste composition important for the results of accounting LCA. ► Robust results for comparative LCA. - Abstract: This article takes a detailed look at an uncertainty factor in waste management LCA that has not been widely discussed previously, namely the uncertainty in waste composition. Waste composition is influenced by many factors; it can vary from year to year, seasonally, and with location, for example. The data publicly available at a municipal level can be highly aggregated and sometimes incomplete, and performing composition analysis is technically challenging. Uncertainty is therefore always present in waste composition. This article performs uncertainty analysis on a systematically modified waste composition using a constructed waste management system. In addition the environmental impacts of several waste management strategies are compared when applied to five different cities. We thus discuss the effect of uncertainty in both accounting LCA and comparative LCA. We found the waste composition to be important for the total environmental impact of the system, especially for the global warming, nutrient enrichment and human toxicity via water impact categories.

  16. High Level Radioactive Waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    The proceedings of the second annual international conference on High Level Radioactive Waste Management, held on April 28--May 3, 1991, Las Vegas, Nevada, provides information on the current technical issue related to international high level radioactive waste management activities and how they relate to society as a whole. Besides discussing such technical topics as the best form of the waste, the integrity of storage containers, design and construction of a repository, the broader social aspects of these issues are explored in papers on such subjects as conformance to regulations, transportation safety, and public education. By providing this wider perspective of high level radioactive waste management, it becomes apparent that the various disciplines involved in this field are interrelated and that they should work to integrate their waste management activities. Individual records are processed separately for the data bases

  17. Reflecting socio-technical combinations in radioactive waste management. Results from the InSOTEC European research project

    International Nuclear Information System (INIS)

    Kallenbach-Herbert, Beate; Bergmans, Anne; Martell, Meritxell; Schroeder, Jantine

    2015-01-01

    InSOTEC is a three-year collaborative social sciences research project funded under the European Atomic Energy Community's 7th Framework Programme FP7. The project aims to generate a better understanding of the complex interplay between the technical and the social in the context of geological disposal of radioactive waste. In doing so, InSOTEC has moved beyond the social and technical division that is frequently being found in this context by - investigating the consideration of social sciences and the recognition of socio-technical combinations in research programs on geological disposal, - analyzing the socio-technical entanglement in selected contexts like siting, reversibility and retrievability, demonstrating safety and technology transfer on the basis of case studies, and - exploring the integration of diverse stakeholders in technology oriented networks. The analyses reveal that activities in the context of geological disposal, whether related to research, planning, siting etc., rather support the divide of social and technical aspects than fostering the consideration of their entanglement. Reasons identified for this are manifold. The wish to reduce complexity by focusing stakeholder involvement on social questions and fixing the technical part ''when acceptance is reached'' is only one of them. However, the analyses also show that over the long timescales of repository planning and implementation, robust management strategies must provide the flexibility to adapt to both technical and social developments and demands. Understanding the socio-technical interplay and creating structures for its consideration provides the basis for dealing with this challenge. This presentation will focus on the main findings of the InSOTEC project with regard to the consideration of socio-technical combinations in practice. These insights are currently under development and will be finalized at the end of the project in June 2014. We will reflect on

  18. Reflecting socio-technical combinations in radioactive waste management. Results from the InSOTEC European research project

    Energy Technology Data Exchange (ETDEWEB)

    Kallenbach-Herbert, Beate [Oeko-Institut e.V., Darmstadt (Germany); Bergmans, Anne [Antwerp Univ. (Belgium); Martell, Meritxell [Merience Strategic Thinking, Olerdola (Spain); Schroeder, Jantine [Antwerp Univ. (Belgium); SCK - CEN, Mol (Belgium)

    2015-07-01

    InSOTEC is a three-year collaborative social sciences research project funded under the European Atomic Energy Community's 7th Framework Programme FP7. The project aims to generate a better understanding of the complex interplay between the technical and the social in the context of geological disposal of radioactive waste. In doing so, InSOTEC has moved beyond the social and technical division that is frequently being found in this context by - investigating the consideration of social sciences and the recognition of socio-technical combinations in research programs on geological disposal, - analyzing the socio-technical entanglement in selected contexts like siting, reversibility and retrievability, demonstrating safety and technology transfer on the basis of case studies, and - exploring the integration of diverse stakeholders in technology oriented networks. The analyses reveal that activities in the context of geological disposal, whether related to research, planning, siting etc., rather support the divide of social and technical aspects than fostering the consideration of their entanglement. Reasons identified for this are manifold. The wish to reduce complexity by focusing stakeholder involvement on social questions and fixing the technical part ''when acceptance is reached'' is only one of them. However, the analyses also show that over the long timescales of repository planning and implementation, robust management strategies must provide the flexibility to adapt to both technical and social developments and demands. Understanding the socio-technical interplay and creating structures for its consideration provides the basis for dealing with this challenge. This presentation will focus on the main findings of the InSOTEC project with regard to the consideration of socio-technical combinations in practice. These insights are currently under development and will be finalized at the end of the project in June 2014. We will reflect on

  19. Commercial nuclear-waste management

    International Nuclear Information System (INIS)

    Andress, D.A.

    1981-04-01

    This report is primarily concerned with nuclear waste generated by commercial power operations. It is clear, however, that the total generation of commercial nuclear waste does not tell the whole story, there are sizeable stockpiles of defense nuclear wastes which will impact areas such as total nuclide exposure to the biosphere and the overall economics of waste disposal. The effects of these other nuclear waste streams can be factored in as exogenous inputs. Their generation is essentially independent of nuclear power operations. The objective of this report is to assess the real-world problems associated with nuclear waste management and to design the analytical framework, as appropriate, for handling nuclear waste management issues in the International Nuclear Model. As such, some issues that are not inherently quantifiable, such as the development of environmental Impact Statements to satisfy the National Environmental Protection Act requirements, are only briefly mentioned, if at all

  20. The Integrated Waste Tracking Systems (IWTS) - A Comprehensive Waste Management Tool

    Energy Technology Data Exchange (ETDEWEB)

    Robert S. Anderson

    2005-09-01

    The US Department of Energy (DOE) Idaho National Laboratory (INL) site located near Idaho Falls, ID USA, has developed a comprehensive waste management and tracking tool that integrates multiple operational activities with characterization data from waste declaration through final waste disposition. The Integrated Waste Tracking System (IWTS) provides information necessary to help facility personnel properly manage their waste and demonstrate a wide range of legal and regulatory compliance. As a client?server database system, the IWTS is a proven tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of flexibility. This paper describes some of the history involved with the development and current use of IWTS as a comprehensive waste management tool as well as a discussion of IWTS deployments performed by the INL for outside clients. Waste management spans a wide range of activities including: work group interactions, regulatory compliance management, reporting, procedure management, and similar activities. The IWTS documents these activities and performs tasks in a computer-automated environment. Waste characterization data, container characterization data, shipments, waste processing, disposals, reporting, and limit compliance checks are just a few of the items that IWTS documents and performs to help waste management personnel perform their jobs. Throughout most hazardous and radioactive waste generating, storage and disposal sites, waste management is performed by many different groups of people in many facilities. Several organizations administer their areas of waste management using their own procedures and documentation independent of other organizations. Files are kept, some of which are treated as quality records, others not as stringent. Quality records maintain a history of: changes performed after approval, the reason for the change(s), and a record of whom and when

  1. Waste management at KKP

    International Nuclear Information System (INIS)

    Blaser, W.; Grundke, E.; Majunke, J.

    1997-01-01

    The smooth management of radioactive plant waste is an integral, essential part of safe and economic operation of a nuclear power plant. The Philippsburg Nuclear Power Station (KKP) addressed these problems early on. The stationary facilities installed, with an organization established in the lights of the objectives to be met, allow problems to be solved largely independent of external factors and make for operational flexibility and optimum utilization of plant and personnel capacities. The good performance achieved in volume reduction and product quality of the conditioned radioactive waste justifies the capital investments made. In this way, KKP has met the ecological and economic requirements of orderly waste management. At KKP, waste management is considered an interdisciplinary duty. Existing resources in KKP's organization were used to achieve synergy effects. The Central Monitoring Unit is responsible for the cooperation of all groups involved with the objective of generating a product fit for final storage. The necessary coordination and monitoring efforts are made by a small team of specialists with extensive know-how in waste management. Four persons are responsible for coordination and monitoring, and another ten or twelve persons for direct execution of the work. (orig.) [de

  2. Proposed goals for radioactive waste management

    International Nuclear Information System (INIS)

    Bishop, W.P.; Frazier, D.H.; Hoos, I.R.; McGrath, P.E.; Metlay, D.S.; Stoneman, W.C.; Watson, R.A.

    1977-04-01

    Goals are proposed for the national radioactive waste management program to establish a policy basis for the guidance and coordination of the activities of government, business, and academic organizations whose responsibility it will be to manage radioactive wastes. The report is based on findings, interpretations, and analyses of selected primary literature and interviews of personnel concerned with waste management. Public concerns are identified, their relevance assessed, and a conceptual framework is developed that facilitates understanding of the dimensions and demands of the radioactive waste management problem. The nature and scope of the study are described along with the approach used to arrive at a set of goals appropriately focused on waste management

  3. Radioactive waste management - an educational challenge

    International Nuclear Information System (INIS)

    Tulenko, J.S.

    1991-01-01

    University Radioactive Waste Management educational programs are being actively advanced by the educational support activities of the Offices of Civilian Radioactive Waste Management (OCRWM) and Environmental Restoration and Waste Management (ERWM) of the DOE. The DOE fellowship program formats of funding students and requiring a practical research experience (practicum) at a DOE site has helped to combine the academic process with a practical work experience. Support for faculty in these programs is augmenting the benefits of the fellowship programs. The many job opportunities and funding sources for students which currently exists in the radioactive waste management area are fueling an increase in academic programs seeking recognition of their radioactive waste management curriculums

  4. Waste Management System Description Document (WMSD)

    International Nuclear Information System (INIS)

    1992-02-01

    This report is an appendix of the ''Waste Management Description Project, Revision 1''. This appendix is about the interim approach for the technical baseline of the waste management system. It describes the documentation and regulations of the waste management system requirements and description. (MB)

  5. Croatian radioactive waste management program: Current status

    International Nuclear Information System (INIS)

    Matanic, R.; Lebegner, J.

    2001-01-01

    Croatia has a responsibility to develop a radioactive waste management program partly due to co-ownership of Krsko nuclear power plant (Slovenia) and partly because of its own medical and industrial radioactive waste. The total amount of generated radioactive waste in Croatia is stored in temporary storages located at two national research institutes, while radioactive waste from Krsko remains in temporary storage on site. National power utility Hrvatska Elektroprivreda (HEP) and Hazardous Waste Management Agency (APO) coordinate the work regarding decommissioning, spent fuel management and low and intermediate level radioactive waste (LILRW) management in Croatia. Since the majority of work has been done in developing the LILRW management program, the paper focuses on this part of radioactive waste management. Issues of site selection, repository design, safety assessment and public acceptance are being discussed. A short description of the national radioactive waste management infrastructure has also been presented. (author)

  6. Radioactive waste management and regulation

    International Nuclear Information System (INIS)

    Willrich, M.

    1976-12-01

    The following conclusions are reached: (1) safe management of post-fission radioactive waste is already a present necessity and an irreversible long-term commitment; (2) basic goals of U.S. radioactive waste policy are unclear; (3) the existing organization for radioactive waste management is likely to be unworkable if left unchanged; and (4) the existing framework for radioactive waste regulation is likely to be ineffective if left unchanged

  7. Streamlined approach to waste management at CRL

    International Nuclear Information System (INIS)

    Adams, L.; Campbell, B.

    2011-01-01

    Radioactive, mixed, hazardous and non-hazardous wastes have been and continue to be generated at Chalk River Laboratories (CRL) as a result of research and development activities and operations since the 1940s. Over the years, the wastes produced as a byproduct of activities delivering the core missions of the CRL site have been of many types, and today, over thirty distinct waste streams have been identified, all requiring efficient management. With the commencement of decommissioning of the legacy created as part of the development of the Canadian nuclear industry, the volumes and range of wastes to be managed have been increasing in the near term, and this trend will continue into the future. The development of a streamlined approach to waste management is a key to successful waste management at CRL. Waste management guidelines that address all of the requirements have become complex, and so have the various waste management groups receiving waste, with their many different processes and capabilities. This has led to difficulties for waste generators in understanding all of the requirements to be satisfied for the various CRL waste receivers, whose primary concerns are to be safe and in compliance with their acceptance criteria and license conditions. As a result, waste movement on site can often be very slow, especially for non-routine waste types. Recognizing an opportunity for improvement, the Waste Management organization at CRL has implemented a more streamlined approach with emphasis on early identification of waste type and possible disposition path. This paper presents a streamlined approach to waste identification and waste management at CRL, the implementation methodology applied and the early results achieved from this process improvement. (author)

  8. Limit values used in the European Union for managing excavated land and contaminated soils

    International Nuclear Information System (INIS)

    Soto Diaz, E.; Rodriguez Abad, R.

    2014-01-01

    In this paper, which is a summary of the minor thesis of the same title, a qualitative comparison is made between mean limit values applied in different member countries of the European Union (EU) for the proper management of excavated lands and contaminated soils. This management can be carried out as a byproduct through its reuse, recycling or previous treatment, or through its consideration as a waste and its subsequent admission to a particular type of landfill. Three types of comparisons of UE limit values are done in this paper: between those established in six member countries for the use of excavated lands as a byproduct, between those existing in 15 European countries for contaminated soils, and finally between those required in 12 EU countries for their land filling. (Author)

  9. Environmental remediation and waste management information systems

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, M.W.; Harlan, C.P.

    1993-12-31

    The purpose of this paper is to document a few of the many environmental information systems that currently exist worldwide. The paper is not meant to be a comprehensive list; merely a discussion of a few of the more technical environmental database systems that are available. Regulatory databases such as US Environmental Protection Agency`s (EPA`s) RODS (Records of Decision System) database [EPA, 1993] and cost databases such as EPA`s CORA (Cost of Remedial Action) database [EPA, 1993] are not included in this paper. Section 2 describes several US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) information systems and databases. Section 3 discusses several US EPA information systems on waste sites and technologies. Section 4 summarizes a few of the European Community environmental information systems, networks, and clearinghouses. And finally, Section 5 provides a brief overview of Geographical Information Systems. Section 6 contains the references, and the Appendices contain supporting information.

  10. Environmental remediation and waste management information systems

    International Nuclear Information System (INIS)

    Harrington, M.W.; Harlan, C.P.

    1993-01-01

    The purpose of this paper is to document a few of the many environmental information systems that currently exist worldwide. The paper is not meant to be a comprehensive list; merely a discussion of a few of the more technical environmental database systems that are available. Regulatory databases such as US Environmental Protection Agency's (EPA's) RODS (Records of Decision System) database [EPA, 1993] and cost databases such as EPA's CORA (Cost of Remedial Action) database [EPA, 1993] are not included in this paper. Section 2 describes several US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) information systems and databases. Section 3 discusses several US EPA information systems on waste sites and technologies. Section 4 summarizes a few of the European Community environmental information systems, networks, and clearinghouses. And finally, Section 5 provides a brief overview of Geographical Information Systems. Section 6 contains the references, and the Appendices contain supporting information

  11. Domestic Waste Management In Samarinda City

    Directory of Open Access Journals (Sweden)

    Florentinus Sudiran

    2017-11-01

    Full Text Available Garbage is solid wastes which have mostly organic composition and the rest consists of plastic paper cloth rubber bone and others. Garbage disposal in urban areas is often a burden because it involves financing for waste transport disposal sites health and environmental hygiene. The burden of waste management is increasing as the volume of waste increases due to population growth and community behavior. Samarinda as a developing city also experienced the problem. Problems encountered include low service coverage especially for domestic waste high landfill demand and high government subsidies that resulted in the community no matter the amount of waste generated. The purpose of this study is to determine whether the waste management by the government of Samarinda City from management management aspects institutional capacity and financing system is environmentally sound. The method used is non experimental method and do direct observation in the field. Data collection with questionnaires field observations document analysis and literature. Based on the results of the study concluded as follows Waste management by the Government of Samarinda City as a whole has been good and has environmentally minded by running the system of collecting transporting and destruction and separating waste from waste processing and sources into compost fertilizer though still very limited in scope. Waste management by the capital intensive Samarinda City Government leads to high costs by the operational costs of trucks and other vehicles.

  12. Municipal waste - management and treatment

    International Nuclear Information System (INIS)

    Paudel, E.S.R.

    2005-01-01

    Though per capita waste generation in Nepalese urban cities is not so high, the lack of proper waste management is considered one of the severe problems to be faced by urban people in future. With rapid urbanization, life style of people is changing their habits and consuming more materials and producing a large volume of waste in urban areas in Nepal. The nature and amount of waste generated in municipality is dependent of demography and geography. But most common aspect of municipal waste in Nepal is more than 60% of the waste biodegradable. Whatever the nature and amount of waste generated, the most common practice of managing municipal waste is to dispose in the riverside nearby or dumped elsewhere. The involvement of private sector in waste management is a new concept adopted by many municipalities in Nepal. One of the most progress approaches, 4R (reduces, reuse, recycle and refuse) principle is being practiced. The need of awareness progressive like segregation of wastes at collection point also being practiced in Nepal. Finally, Proper formulation of program and legislation and its application is one of the major challenges for local authorities in Nepal. (author)

  13. Environmental restoration and waste management

    International Nuclear Information System (INIS)

    Middleman, L.I.

    1989-01-01

    The purpose of this Five-Year Plan is to establish an agenda for compliance and cleanup against which progress will be measured. DOE is committed to an open and participatory process for developing a national priority system for expenditure of funds. This system will be based on scientific principles and risk reduction in terms that are understandable to the public. The Plan will be revised annually, with a five-year planning horizon. For FY 1991--1995, this Plan encompasses total program activities and costs for DOE Corrective Activities, Environmental Restoration, Waste Management Operations, and Applied R ampersand D. It addresses hazardous wastes, radioactive wastes, mixed wastes (radioactive and hazardous), and sanitary wastes. It also addresses facilities and sites contaminated with or used in the management of those wastes. The Plan does not include the Safety and Health Program (Office of the Assistant Secretary for Environment, Safety, and Health) or programs of the Office of Civilian Radioactive Waste Management. It does include the annual Defense Programs contribution to the Nuclear Waste Fund for disposal of defense high-level waste and research toward characterizing the defense waste form for repository disposal

  14. CEGB's radioactive waste management strategy

    International Nuclear Information System (INIS)

    Passant, F.H.; Maul, P.R.

    1989-01-01

    The Central Electricity Generating Board (CEGB) produces low-level and intermediate-level radioactive wastes in the process of operating its eight Magnox and five Advanced Gas Cooled Reactor (AGR) nuclear power stations. Future wastes will also arise from a programme of Pressurised Water Reactors (PWRs) and the decommissioning of existing reactors. The paper gives details of how the UK waste management strategy is put into practice by the CEGB, and how general waste management principles are developed into strategies for particular waste streams. (author)

  15. Federal facilities compliance act waste management

    International Nuclear Information System (INIS)

    Bowers, J.; Gates-Anderson, D.; Hollister, R.; Painter, S.

    1999-01-01

    Site Treatment Plans (STPs) developed through the Federal Facilities Compliance Act pose many technical and administrative challenges. Legacy wastes managed under these plans require Land Disposal Restriction (LDR) compliance through treatment and ultimate disposal. Although capacity has been defined for most of the Department of Energy wastes, many waste streams require further characterization and many need additional treatment and handling beyond LDR criteria to be able to dispose of the waste. At Lawrence Livermore National Laboratory (LLNL), the Hazardous Waste Management Division has developed a comprehensive Legacy Waste Program. The program directs work to manage low level and mixed wastes to ensure compliance with nuclear facility rules and its STP. This paper provides a survey of work conducted on these wastes at LLNL. They include commercial waste treatment and disposal, diverse forms of characterization, inventory maintenance and reporting, on-site treatment, and treatability studies. These activities are conducted in an integrated fashion to meet schedules defined in the STP. The processes managing wastes are dynamic due to required integration of administrative, regulatory, and technical concerns spanning the gamut to insure safe proper disposal

  16. Radioactive waste management

    International Nuclear Information System (INIS)

    1982-07-01

    In response to the Sixth Report of the Royal Commission on Environmental Pollution, a White Paper was published in 1977, announcing a number of steps to deal with the problems presented by wastes from the nuclear industry and setting out the position of the then government. The present White paper is in four sections. i. A brief description of the nature of radioactive wastes, and the general objectives of waste management. ii. What has been achieved, the role of the Radioactive Waste Management Advisory Committee, the expansion of research, and the conclusions from the review of existing controls. iii. The present position for each major category of waste, including relevant current action and research, transport and decommissioning. iv. The next steps. Research and development must continue; shallow land burial and the carefully controlled disposal of certain wastes to the sea will continue to play a role; and, for some wastes, new disposal facilities are needed at an early date. For others, the appropriate course of action at the moment is properly controlled storage. New developments are also required in organisation. Throughout, the public must be kept fully informed about what is being done, and there must be proper scope for public discussion. (U.K.)

  17. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposl of radioactive and hazardous waste. Volume II

    International Nuclear Information System (INIS)

    1997-01-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type.Volume II is an integral part of the Office of Environmental Management''s (EM''s) Waste Management Programmatic Environmental Impact Statement (WM PEIS), which portrays the impacts of EM''s waste management activities at each of the 17 major DOE sites evaluated in the WM PEIS

  18. Radioactive waste management solutions

    International Nuclear Information System (INIS)

    Siemann, Michael

    2015-01-01

    One of the more frequent questions that arise when discussing nuclear energy's potential contribution to mitigating climate change concerns that of how to manage radioactive waste. Radioactive waste is produced through nuclear power generation, but also - although to a significantly lesser extent - in a variety of other sectors including medicine, agriculture, research, industry and education. The amount, type and physical form of radioactive waste varies considerably. Some forms of radioactive waste, for example, need only be stored for a relatively short period while their radioactivity naturally decays to safe levels. Others remain radioactive for hundreds or even hundreds of thousands of years. Public concerns surrounding radioactive waste are largely related to long-lived high-level radioactive waste. Countries around the world with existing nuclear programmes are developing longer-term plans for final disposal of such waste, with an international consensus developing that the geological disposal of high-level waste (HLW) is the most technically feasible and safe solution. This article provides a brief overview of the different forms of radioactive waste, examines storage and disposal solutions, and briefly explores fuel recycling and stakeholder involvement in radioactive waste management decision making

  19. Hospital Waste Management - Case Study

    Directory of Open Access Journals (Sweden)

    Beatriz Edra

    2017-07-01

    Full Text Available The importance of waste management in hospitals is indisputable in preserving the environment and protecting public health, but management models are rarely discussed. This study presents the legal and conceptual frameworks of good waste management practices applicable to hospitals and associated indicators. As a case study, the overall performance of Hospital Centre of São João, in Porto, was analysed based on published reports. Data on the production of waste in their different typologies were collected from 2010 to 2016, enabling a correlation of the waste production with the kg/bed/day indicator. The aim of this study was to gather data and discuss trends in a real scenario of evolution over a six-year period in order to contribute to a future research proposal on indicators that can be used as reference for benchmarking the construction of methodological guides for hospital waste management.

  20. Status of nuclear waste management

    International Nuclear Information System (INIS)

    Kittel, J.H.

    1980-01-01

    This paper discusses what nuclear waste is and where it comes from, what the technical strategies are for disposing of this waste, compares the toxicity of nuclear waste to other materials that are more familiar to us, and finally, comments on why it is taking so long to get on with the job of isolating nuclear waste permanently. The author believes that the technical solutions for the management and disposal of high-level and low-level nuclear waste are adequately in hand. The issues that are delaying the implementation of this technology are almost entirely related to sociological and political considerations. High-level nuclear waste can be safely stored and isolated through a multiple barrier approach. Although it is a hazardous material and must be handled properly, its toxicity diminishes rapidly. It then becomes less hazardous than other materials that we deal with everyday in routine industrial or household operations. The disposal of low-level waste has not attracted as much public attention as high-level waste management. Nevertheless, it is just as important to the public. For example, the use of radioactive isotopes in medicine, and the many lives that are saved as a result, would be very greatly reduced if medical institutions had no place to dispose of their radioactive waste. The management of uranium mill tailings is similar in many technical aspects to low-level waste management. Institutional issues, however, have not become as important in the case of mill tailings disposal

  1. Oak Ridge Reservation Waste Management Plan

    International Nuclear Information System (INIS)

    Turner, J.W.

    1995-02-01

    This report presents the waste management plan for the Oak Ridge Reservation facilities. The primary purpose is to convey what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year

  2. Oak Ridge Reservation Waste Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Turner, J.W. [ed.

    1995-02-01

    This report presents the waste management plan for the Oak Ridge Reservation facilities. The primary purpose is to convey what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year.

  3. Waste management plan for the APT

    International Nuclear Information System (INIS)

    England, J.L.

    1997-01-01

    This revision of the APT Waste Management Plan details the waste management requirements and issues specific to the APT plant for design considerations, construction, and operation. The APT Waste Management Plan is by its nature a living document and will be reviewed at least annually and revised as required

  4. Nuclear waste management policy in France

    International Nuclear Information System (INIS)

    Lefevre, J.F.

    1983-01-01

    The object of the nuclear waste management policy in France has always been to protect the worker and the public from unacceptable risks. The means and the structures developed to reach this objective, however, have evolved with time. One fact has come out ever more clearly over the years: Nuclear waste problems cannot be considered in a piecemeal fashion. The French nuclear waste management structure and policy aim at just this global approach. Responsibilities have been distributed between the main partners: the waste producers and conditioners, the research teams, the safety authorities, and the long-term waste manager, National Radioactive Waste Management Agency. The main technical options adopted for waste forms are embedding in hydraulic binders, bitumen, or thermosetting resins for low-level waste (LLW) and medium-level waste (MLW), and vitrification for high-level, liquid wastes. One shallow land disposal site for LLW and MLW has been in operation since 1969, the Centre of La Manche. Alpha-bearing and high-level waste will be disposed of by deep geological storage, possibly in granite formations. Further RandD aims mainly at improving present-day practices, developing more durable, long-term, alpha-bearing waste for all solid waste forms and going into all aspects of deep geological disposal characterization

  5. Overview of radioactive waste management

    International Nuclear Information System (INIS)

    Ritter, G.L.

    1980-01-01

    The question of what to do with radioactive wastes is discussed. The need to resolve this issue promptly is pointed out. Two significant events which have occurred during the Carter administration are discussed. An Interagency Review Group (IRG) on waste management was formed to formulate recommendations leading to the establishment of a National policy for managing radioactive wastes. The technical findings in the IRG report are listed. The author points out some issues not addressed by the report. President Carter issued a national policy statement on Radioactive Waste Management in February 1980. The most significant elements of this statement are summarized. The cancellation of the Waste Isolation Pilot Plant is currently meeting opposition in Congress. This and other items in the National Policy Statement are discussed

  6. Radioactive waste management in developing countries

    International Nuclear Information System (INIS)

    Thomas, K.T.; Baehr, W.; Plumb, G.R.

    1989-01-01

    The activities of the Agency in waste management have therefore laid emphasis on advising developing Member States on the management of wastes from the uses of radioactive materials. At the present time, developing countries are mostly concerned with the management of nuclear wastes generated from medical centres, research institutes, industrial facilities, mining operations, and research reactors. In certain instances, management of such wastes has lapsed causing serious accidents. Radiation source mismanagement has resulted in fatalities to the public in Mexico (1962), Algeria (1978), Morocco (1984), and Brazil (1987). The objective of these activities is to support the countries to develop the required expertise for self-sufficiency in safe management of radioactive wastes. What follows are details of the Agency mechanisms in place to meet the above objectives

  7. Involving the citizens. Radioactive waste management and the EU

    International Nuclear Information System (INIS)

    Ferraro, Gianluca

    2014-01-01

    The European Union (EU) has been often criticized for its democratic deficit, which has been studied in the academic literature at multiple levels: in the polity (macro-level), the institutions (meso-level) and the policies (micro-level) of the EU. The paper presents counterarguments in favour of the democratic nature of the EU and focuses on the micro-level, particularly the process of implementation of EU policies. Policy implementation and the democratic involvement of citizens are discussed with regard to radioactive waste management and the Directive 2011/70/EURATOM. The Directive's clause on transparency and the recent development of a centre of knowledge for public participation in energy policy implementation by the European Commission (EC) are expression of the democratic nature of the EU and provide further counterarguments to the claim of democratic deficit.

  8. Integrating the radioactive waste management system into other management systems

    International Nuclear Information System (INIS)

    Silva, Ana Cristina Lourenco da; Nunes Neto, Carlos Antonio

    2007-01-01

    Radioactive waste management is to be included in the Integrated Management System (IMS) which pursues the continuous improvement of the company's quality, occupational safety and health, and environment protection processes. Radioactive waste management is based on the following aspects: optimization of human and material resources for execution of tasks, including the provision of a radiation protection supervisor to watch over the management of radioactive waste; improved documentation (management plan and procedures); optimization of operational levels for waste classification and release; maintenance of generation records and history through a database that facilitates traceability of information; implementation of radioactive waste segregation at source (source identification, monitoring and decontamination) activities intended to reduce the amount of radioactive waste; licensing of initial storage site for radioactive waste control and storage; employee awareness training on radioactive waste generation; identification and evaluation of emergency situations and response planning; implementation of preventive maintenance program for safety related items; development and application of new, advanced treatment methodologies or systems. These aspects are inherent in the concepts underlying quality management (establishment of administrative controls and performance indicators), environment protection (establishment of operational levels and controls for release), occupational health and safety (establishment of operational controls for exposure in emergency and routine situations and compliance with strict legal requirements and standards). It is noted that optimizing the addressed aspects of a radioactive waste management system further enhances the efficiency of the Integrated Management System for Quality, Environment, and Occupational Safety and Health. (author)

  9. Hanford Waste Management Plan, 1987

    International Nuclear Information System (INIS)

    1987-01-01

    The purpose of the Hanford Waste Management Plan (HWMP) is to provide an integrated plan for the safe storage, interim management, and disposal of existing waste sites and current and future waste streams at the Hanford Site. The emphasis of this plan is, however, on the disposal of Hanford Site waste. The plans presented in the HWMP are consistent with the preferred alternative which is based on consideration of comments received from the public and agencies on the draft Hanford Defense Waste Environmental Impact Statement (HDW-EIS). Low-level waste was not included in the draft HDW-EIS whereas it is included in this plan. The preferred alternative includes disposal of double-shell tank waste, retrievably stored and newly generated TRU waste, one pre-1970 TRU solid waste site near the Columbia River and encapsulated cesium and strontium waste

  10. Nuclear knowledge management in radioactive waste management programmes

    International Nuclear Information System (INIS)

    Vetere, Claudia L.; Gomiz, Pablo R.; Lavalle, Myriam; Masset, Elvira

    2015-01-01

    In late 2007, the Nuclear Knowledge Management (NKM) group of the Argentine Atomic Energy Commission (CNEA), understanding the need to preserve knowledge related with radioactive waste, formulated the CONRRaD Project with the aim of developing and implementing a sustainable knowledge management system. The CONRRaD Project was highly focused on minimising the loss of radioactive waste management knowledge related to processes and facilities as a consequence of staff ageing and retiring, promoting transfer and preservation so as to ensure that future generations interpret and improve the management of waste, protecting the environment and people's health. The National Programme for Radioactive Waste Management (NPRWM) has the responsibility of maintaining a documented record system to preserve the knowledge that is available and relates to the facilities for radioactive wastes treatment, conditioning, packaging, storing and disposal of low-level radioactive wastes. The STOReR system has been designed with the aim of ensuring traceability through all the steps of radioactive waste management from generation to storage or disposal. Apart from upgrading an application in use since 2001, the new software includes improvements in the inventory calculations according to the current regulations. Basically, the system consists of two applications. One application called PAGE is on the Net and it is available for the producers. These producers are the facilities that generate radioactive waste as a consequence of their normal operation. PAGE enables the producers to access all the services provided by AGE more easily. Not only are producers the users of PAGE, but there are also authorised owners of radioactive sources and devices because AGE provides transitory or permanent storage of these elements. The other application called STOReR is the main one which provides the capabilities needed to support the whole system, such as the databases storage and management. STORe

  11. Understanding low-level radioactive waste. National Low-Level Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    1983-10-01

    Chapters are devoted to: background and policymaking for low-level waste management; commercial low-level waste generation; Department of Energy low-level waste generation; low-level waste treatment; packaging and transportation; commercial low-level waste disposal; Department of Energy low-level waste disposal; Department of Energy low-level waste management program; and laws and regulations

  12. A review of waste management practices and their impact on human health

    International Nuclear Information System (INIS)

    Giusti, L.

    2009-01-01

    This work reviews (i) the most recent information on waste arisings and waste disposal options in the world, in the European Union (EU), in Organisation for Economic Co-operation and Development (OEDC) countries, and in some developing countries (notably China) and (ii) the potential direct and indirect impact of waste management activities on health. Though the main focus is primarily on municipal solid waste (MSW), exposure to bioaerosols from composting facilities and to pathogens from sewage treatment plants are considered. The reported effects of radioactive waste are also briefly reviewed. Hundreds of epidemiological studies reported on the incidence of a wide range of possible illnesses on employees of waste facilities and on the resident population. The main conclusion of the overall assessment of the literature is that the evidence of adverse health outcomes for the general population living near landfill sites, incinerators, composting facilities and nuclear installations is usually insufficient and inconclusive. There is convincing evidence of a high risk of gastrointestinal problems associated with pathogens originating at sewage treatment plants. In order to improve the quality and usefulness of epidemiological studies applied to populations residing in areas where waste management facilities are located or planned, preference should be given to prospective cohort studies of sufficient statistical power, with access to direct human exposure measurements, and supported by data on health effect biomarkers and susceptibility biomarkers.

  13. Radioactive waste management

    International Nuclear Information System (INIS)

    Slansky, C.M.

    1975-01-01

    High-level radioactive waste is produced at Idaho Chemical Processing Plant (ICPP) during the recovery of spent highly enriched nuclear fuels. Liquid waste is stored safely in doubly contained tanks made of steel. The liquid waste is calcined to a solid and stored safely in a retrievable form in doubly contained underground bins. The calcine can be treated further or left untreated in anticipation of ultimate storage. Fluidized bed calcination has been applied to many kinds of high-level waste. The environmental impact of high-level waste management at the ICcP has been negligible and should continue to be negligible. 13 refs

  14. Waste management advisory missions to developing countries

    International Nuclear Information System (INIS)

    Thomas, K.T.

    1990-01-01

    The IAEA's Waste Management Advisory Programme (WAMAP) was initiated in 1987 as an interregional technical co-operation project to complement other activities in radioactive waste management. Its creation gave greater recognition to the importance of the safe management of radioactive wastes and promotion of long-term waste management technical assistance strategies for developing countries. Over the past 4 years, international experts have reviewed the radioactive waste management programmes of 29 developing countries. Missions have been conducted within the framework of the IAEA's Waste Management Advisory Programme (WAMAP). Ten of these countries have nuclear power plants in operation or under construction or have nuclear fuel cycle facilities. Altogether, 23 have research reactors or centres, eight have uranium or thorium processing programmes or wastes, and nine essentially have only isotope applications involving the use of radiation sources

  15. Screening criteria for siting waste management facilities: Regional Management Plan

    International Nuclear Information System (INIS)

    1986-01-01

    The Midwest Interstate Low-Level Radioactive Waste Commission (Midwest Compact) seeks to define and place into operation a system for low-level waste management that will protect the public health and safety and the environment from the time the waste leaves its point of origin. Once the system is defined it will be necessary to find suitable sites for the components of that waste management system. The procedure for siting waste management facilities that have been chosen by the compact is one in which a host state is chosen for each facility. The host state is then given the freedom to select the site. Sites will be needed of low-level waste disposal facilities. Depending on the nature of the waste management system chosen by the host state, sites may also be needed for regional waste treatment facilities, such as compactors or incinerators. This report provides example criteria for use in selecting sites for low-level radioactive waste treatment and disposal facilities. 14 refs

  16. National perspective on waste management

    International Nuclear Information System (INIS)

    Crandall, J.L.

    1980-01-01

    Sources of nuclear wastes are listed and the quantities of these wastes per year are given. Methods of processing and disposing of mining and milling wastes, low-level wastes, decommissioning wastes, high-level wastes, reprocessing wastes, spent fuels, and transuranic wastes are discussed. The costs and safeguards involved in the management of this radioactive wastes are briefly covered in this presentation

  17. Radioactive waste management in Mexico

    International Nuclear Information System (INIS)

    Paredes, L.; Reyes L, J.; Jimenez D, J.

    2000-01-01

    This paper describes the radioactive waste management in Mexico, particularly the activities that the National Institute of Nuclear Research (NINR) is undertaking in this field. Classification and annual generation of radioactive waste, together with practices and facilities relating to the management of radioactive waste are addressed. The respective national legal framework and policy are outlined. (author)

  18. Feed Materials Production Center Waste Management Plan

    International Nuclear Information System (INIS)

    Watts, R.E.; Allen, T.; Castle, S.A.; Hopper, J.P.; Oelrich, R.L.

    1986-01-01

    In the process of producing uranium metal products used in Department of Energy (DOE) defense programs at other DOE facilities, various types of wastes are generated at the Feed Materials Production Center (FMPC). Process wastes, both generated and stored, are discussed in the Waste Management Plan and include low-level radioactive waste (LLW), mixed hazardous/radioactive waste, and sanitary/industrial waste. Scrap metal waste and wastes requiring special remediation are also addressed in the Plan. The Waste Management Plan identifies the comprehensive programs developed to address safe storage and disposition of all wastes from past, present, and future operations at the FMPC. Waste streams discussed in this Plan are representative of the waste generated and waste types that concern worker and public health and safety. Budgets and schedules for implementation of waste disposition are also addressed. The waste streams receiving the largest amount of funding include LLW approved for shipment by DOE/ORO to the Nevada Test Site (NTS) (MgF 2 , slag leach filter cake, and neutralized raffinate); remedial action wastes (waste pits, K-65 silo waste); thorium; scrap metal (contaminated and noncontaminated ferrous and copper scrap); construction rubble and soil generated from decontamination and decommissioning of outdated facilities; and low-level wastes that will be handled through the Low-Level Waste Processing and Shipping System (LLWPSS). Waste Management milestones are also provided. The Waste Management Plan is divided into eight major sections: Introduction; Site Waste and Waste Generating Process; Strategy; Projects and Operations; Waste Stream Budgets; Milestones; Quality Assurance for Waste Management; and Environmental Monitoring Program

  19. Elements of a radioactive waste management course

    International Nuclear Information System (INIS)

    Fentiman, A.W.

    1994-01-01

    The demand for scientists, engineers, and technicians with expertise in radioactive waste management is growing rapidly. Many universities, government agencies, and private contractors are developing courses in radioactive waste management. Two such courses have been developed at The Ohio State University. In support of that course development, two surveys were conducted. One survey went to all nuclear engineering programs in the US to determine what radioactive waste management courses are currently being taught. The other went to 600 waste management professionals, asking them to list the topics they think should be included in a radioactive waste management course. Four key elements of a course in radioactive waste management were identified. They are (a) technical information, (b) legal and regulatory framework, (c) communicating with the public, and (d) sources of information on waste management. Contents of each of the four elements are discussed, and results of the surveys are presented

  20. Principles and objective of radioactive waste management

    International Nuclear Information System (INIS)

    Warnecke, E.

    1995-01-01

    Radioactive waste is generated in various nuclear applications, for example, in the use of radionuclides in medicine, industry and research or in the nuclear fuel cycle. It must be managed in a safe way independent of its very different characteristics. Establishing the basic safety philosophy is an important contribution to promoting and developing international consensus in radioactive waste management. The principles of radioactive waste management were developed with supporting text to provide such a safety philosophy. They cover the protection of human health and the environment now and in the future within and beyond national borders, the legal framework, the generation and management of radioactive wastes, and the safety of facilities. Details of the legal framework are provided by defining the roles and responsibilities of the Member State, the regulatory body and the waste generators and operators of radioactive waste management facilities. These principles and the responsibilities in radioactive waste management are contained in two recently published top level documents of the Radioactive Waste Safety Standards (RADWASS) programme which is the IAEA's contribution to foster international consensus in radioactive waste management. As the two documents have to cover all aspects of radioactive waste management they have to be formulated in a generic way. Details will be provided in other, more specific documents of the RADWASS programme as outlined in the RADWASS publication plant. The RADWASS documents are published in the Agency's Safety Series, which provides recommendations to Member Sates. Using material from the top level RADWASS documents a convention on the safety of radioactive waste management is under development to provide internationally binding requirements for radioactive waste management. (author). 12 refs

  1. Final disposal of spent fuels and high activity waste: the European model for a shared regional repository. Part 3

    International Nuclear Information System (INIS)

    Herscovich de Pahissa, Marta

    2009-01-01

    Geological disposal is a essential element and the only available approach to the management strategy for spent nuclear fuel and high level radioactive waste from reprocessing and also for other long-lived waste from nuclear technology applications. It is technically feasible and offers the required long term safety. The growth of existing nuclear programmes and the expansion of nuclear technology to new countries will have effects on the fuel cycle because of the increased concern on proliferation and waste management. The crucial task is to ensure that all countries that use nuclear energy now or will do it in the future, have defined and agreed safety and security standards for all facilities and a credible waste disposal strategy , accepted by the community, when this become necessary. Multinational cooperation on essential aspects of fuel cycle, particularly the geological disposal, is required for several countries with relatively small nuclear energy programmes or small quantities of radioactive waste. For these countries, that can be in different stages of development, the possibility to share a deep geological repository could be convenient. The European Union SAPIERR project is described in this paper as an example of a regional multinational cooperation. (author) [es

  2. Waste management research abstracts no. 21

    International Nuclear Information System (INIS)

    1992-12-01

    The 21th issue of this publication contains over 700 abstracts from 35 IAEA Member Countries comprehending various aspects of radioactive waste management. Radioactive waste disposal, processing and storage, geochemical and geological investigations related to waste management, mathematical models and environmental impacts are reviewed. Many programs involve cooperation among several countries and further international cooperation is expected to be promoted through availability of compiled information on research programs, institutions and scientists engaged in waste management

  3. Waste management research abstracts. No. 20

    International Nuclear Information System (INIS)

    1990-10-01

    The 20th issue of this publication contains over 700 abstracts from 32 IAEA Member Countries comprehending various aspects of radioactive waste management. Radioactive waste disposal, processing and storage, geochemical and geological investigations related to waste management, mathematical models and environmental impacts are reviewed. Many programs involve cooperation among several countries and further international cooperation is expected to be promoted through availability of compiled information on research programs, institutions and scientists engaged in waste management

  4. An international approach to radioactive waste management

    International Nuclear Information System (INIS)

    Barlett, J.W.

    1994-01-01

    Needs and opportunities for an international approach to management and disposal of radioactive wastes are discussed. Deficiencies in current national radioactive waste management programs are described, and the impacts of management of fissile materials from nuclear weapons on waste management are addressed. Value-added services that can be provided by an international organization for waste management are identified, and candidate organizations that could provide these services are also identified

  5. Alternatives for radioactive waste management

    International Nuclear Information System (INIS)

    Bartlett, J.W.

    1975-10-01

    The safety aspects of waste management alternatives are emphasized. The options for waste management, their safety characteristics, and the methods that might be used to evaluate the options and their safety are outlined

  6. Radioactive waste engineering and management

    CERN Document Server

    Nakayama, Shinichi

    2015-01-01

    This book describes essential and effective management for reliably ensuring public safety from radioactive wastes in Japan. This is the first book to cover many aspects of wastes from the nuclear fuel cycle to research and medical use, allowing readers to understand the characterization, treatment and final disposal of generated wastes, performance assessment, institutional systems, and social issues such as intergenerational ethics. Exercises at the end of each chapter help to understand radioactive waste management in context.

  7. Benefits of a formal waste management program

    International Nuclear Information System (INIS)

    Wolfe, R.A.

    1974-01-01

    The proper management of waste is of vital importance in the conservation of our environment. Mound Laboratory, which is operated by Monsanto Research Corporation for the U. S. Atomic Energy Commission, has embarked upon a waste management program designed to assure that the generation, processing, storage, and disposal of waste is conducted in such a manner as to have a minimum impact on the environment. The organizational approach taken toward waste management is discussed and some of the benefits of the waste management program at Mound Laboratory are described. Ithas been shown that the utilization of proper waste management techniques can have economic, as well as environmental protection, benefits. (U.S.)

  8. Coal combustion waste management study

    International Nuclear Information System (INIS)

    1993-02-01

    Coal-fired generation accounted for almost 55 percent of the production of electricity in the United States in 1990. Coal combustion generates high volumes of ash and flue gas desulfurization (FGD) wastes, estimated at almost 90 million tons. The amount of ash and flue gas desulfurization wastes generated by coal-fired power plants is expected to increase as a result of future demand growth, and as more plants comply with Title IV of the 1990 Clean Air Act Amendments. Nationwide, on average, over 30 percent of coal combustion wastes is currently recycled for use in various applications; the remaining percentage is ultimately disposed in waste management units. There are a significant number of on-site and off-site waste management units that are utilized by the electric utility industry to store or dispose of coal combustion waste. Table ES-1 summarizes the number of disposal units and estimates of waste contained at these unites by disposal unit operating status (i.e, operating or retired). Further, ICF Resources estimates that up to 120 new or replacement units may need to be constructed to service existing and new coal capacity by the year 2000. The two primary types of waste management units used by the industry are landfills and surface impoundments. Utility wastes have been exempted by Congress from RCRA Subtitle C hazardous waste regulation since 1980. As a result of this exemption, coal combustion wastes are currently being regulated under Subtitle D of RCRA. As provided under Subtitle D, wastes not classified as hazardous under Subtitle C are subject to State regulation. At the same time Congress developed this exemption, also known as the ''Bevill Exclusion,'' it directed EPA to prepare a report on coal combustion wastes and make recommendations on how they should be managed

  9. Strategic areas in radioactive waste management. The viewpoint and work orientations of the Nea radioactive waste management committee

    International Nuclear Information System (INIS)

    1999-01-01

    The NEA Radioactive Waste Management Committee (RWMC) is a forum of senior operators, regulators, policy makers, and senior representatives of R and D institutions in the field of radioactive waste management. The Committee assists Member countries by providing objective guidance on the solution of radioactive waste problems, and promotes Safety in the short- and long-term management of radioactive waste. This report identifies some of the major challenges currently faced by national waste management programmes, and describes the strategic areas in which the RWMC should focus its efforts in future years. (author)

  10. Waste Management Pinch Analysis (WAMPA): Application of Pinch Analysis for greenhouse gas (GHG) emission reduction in municipal solid waste management

    International Nuclear Information System (INIS)

    Ho, Wai Shin; Hashim, Haslenda; Lim, Jeng Shiun; Lee, Chew Tin; Sam, Kah Chiin; Tan, Sie Ting

    2017-01-01

    Highlights: • A novel method known as Waste Management Pinch Analysis (WAMPA) is presented. • WAMPA aims to identify waste management strategies based on specific target. • WAMPA is capable to examine the capacity of waste management strategies through graphical representation. - Abstract: Improper waste management happened in most of the developing country where inadequate disposal of waste in landfill is commonly practiced. Apart from disposal, MSW can turn into valuable product through recycling, energy recovery, and biological recovery action as suggested in the hierarchy of waste management. This study presents a method known as Waste Management Pinch Analysis (WAMPA) to examine the implication of a dual-objective – landfill and GHG emission reduction target in sustainable waste management. WAMPA is capable to identify the capacity of each waste processing strategy through graphical representation. A general methodology of WAMPA is presented through a demonstration of a SWM case followed by a detailed representation of WAMPA for five waste types. Application of the WAMPA is then applied on a case study for sustainable waste management planning from year 2015 to 2035. Three waste management strategies are incorporated into the case study – landfill, Waste-to-Energy (WtE), and reduce, reuse, and recycle (3R). The results show a 13.5% of total GHG emission reduction and 54.6% of total reduction of landfill are achieved. The major contributor of GHG emission which are from food waste (landfill emission) and plastic (WtE emission) is reduced.

  11. Avoidable waste management costs

    International Nuclear Information System (INIS)

    Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

    1995-01-01

    This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP

  12. Avoidable waste management costs

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

    1995-01-01

    This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP.

  13. The radioactive waste management conference

    International Nuclear Information System (INIS)

    Fareeduddin, S.; Hirling, J.

    1983-01-01

    The international conference on radioactive waste management was held in Seattle, Washington, from 16 to 20 May 1983. The response was gratifying, reflecting world-wide interest: it was attended by 528 participants from 29 Member States of the IAEA and eight international organizations. The conference programme was structured to permit reviews and presentation of up-to-date information on five major topics: - waste management policy and its implementation: national and international approaches; legal, economic, environmental, and social aspects (four sessions with 27 papers from 16 countries and four international organizations); - handling, treatment, and conditioning of wastes from nuclear facilities, nuclear power plants and reprocessing plants, including the handling and treatment of gaseous wastes and wastes of specific types (five sessions with 35 papers); - storage and underground disposal of radioactive wastes: general, national concepts, underground laboratories, and designs of repositories for high-level, and low- and intermediate-level waste disposal (five sessions with 35 papers); - environmental and safety assessment of waste management systems: goals methodologies, assessments for geological repositories, low- and intermediate-level wastes, and mill tailings (four sessions with 26 papers); - radioactive releases to the environment from nuclear operations: status and perspectives, environmental transport processes, and control of radioactive waste disposal into the environment (three sessions with 23 papers)

  14. Hospital waste management and other small producers

    International Nuclear Information System (INIS)

    Herbst, H.; Roy, J.C.

    1992-01-01

    This paper describes waste management in hospitals and other waste producers. Low-level radioactive wastes are collected by ANDRA (French Agency for radioactive waste management) and informations on waste processing or regulations on radiation sources are given

  15. Waste management - textbook for secondary schools

    International Nuclear Information System (INIS)

    Chmielewska, E.; Kuruc, J.

    2010-09-01

    This text-book consist of five parts: (I) Waste management; (II) Solid waste management; (III) Recovery and recycling of secondary raw materials; (IV) Radioactive waste management; Examples of verification knowledge and testing of the secondary students through the worksheet. (V) Suggestions for leisure time activities. This text-book is assigned for high school students.

  16. Hazardous Waste Remedial Actions Program: integrating waste management

    International Nuclear Information System (INIS)

    Petty, J.L.; Sharples, F.E.

    1986-01-01

    The Hazardous Waste Remedial Actions Program was established to integrate Defense Programs' activities in hazardous and mixed waste management. The Program currently provides centralized planning and technical support to the Office of the Assistant Secretary for Defense Programs. More direct project management responsibilities may be assumed in the future. The Program, under the direction of the ASDP's Office of Defense Waste and Transportation Management, interacts with numerous organizational entities of the Department. The Oak Ridge Operations Office has been designated as the Lead Field Office. The Program's four current components cover remedial action project identification and prioritization; technology adaptation; an informative system; and a strategy study for long-term, ''corporate'' project and facility planning

  17. Proposed goals for radioactive waste management

    International Nuclear Information System (INIS)

    Bishop, W.P.; Hoos, I.R.; McGrath, P.E.; Metlay, D.S.; Stoneman, W.C.

    1978-05-01

    A special, seven member, interdisciplinary task group of consultants was established in January 1976 to propose goals for the national waste management program. This is the report of that group. The proposed goals are intended as a basis for the NRC to establish a policy by which to guide and coordinate the activities of government, business, and academic organizations whose responsibility it will be to manage radioactive wastes. The report is based on findings, interpretations and analysis by the authors who examined selected primary literature and interviewed many individuals concerned with waste management. The authors extended the scope of their inquiry and proposed goals to cover 'all technical and societal aspects necessary to an operating waste management system, rather than dealing with the regulatory process alone.' The waste management goals as developed are simple statements of principles which appear to the authors to be important conditions to insure the proper establishment and operation of a system to manage radioactive wastes.' In brief, the goals are designed to protect people and things of value in an equitable manner

  18. Environmental aspects of commercial radioactive waste management

    International Nuclear Information System (INIS)

    1979-05-01

    Volume 2 contains chapters 6 through 10: environmental effects related to radioactive waste management associated with LWR fuel reprocessing - mixed-oxide fuel fabrication plant; environmental effects related to transporting radioactive wastes associated with LWR fuel reprocessing and fabrication; environmental effects related to radioactive waste management associated with LWR fuel reprocessing - retrievable waste storage facility; environmental effects related to geologic isolation of LWR fuel reprocessing wastes; and integrated systems for commercial radioactive waste management

  19. Waste law. November 2013 - September 2014

    International Nuclear Information System (INIS)

    Lanoy, Laurence

    2014-01-01

    The author comments the main evolution noticed regarding legal aspects (laws, decrees, jurisprudence, and so on) about wastes between November 2013 and September 2014. The main events have been the adoption of the bill on social and solidarity economy which contained some measures related to waste prevention, and the transposition of a European directive related to waste electric and electronic equipment. The author addresses the different concerned domains: the modalities of waste management (prescriptions applied to installations receiving wastes, the waste status, the case of radioactive wastes, the case of waste electronic and electric equipment, waste cross-border transfers, general orientations of the French and European waste laws), and the responsibility for wastes (administrative responsibility, waste related taxation, producer responsibility)

  20. Estimating and understanding DOE waste management costs'

    International Nuclear Information System (INIS)

    Kang, J.S.; Sherick, M.J.

    1995-01-01

    This paper examines costs associated with cleaning up the US Department of Energy's (DOE's) nuclear facilities, with particular emphasis on the waste management program. Life-cycle waste management costs have been compiled and reported in the DOE Baseline Environmental Management Report (BEMR). Waste management costs are a critical issue for DOE because of the current budget constraints. The DOE sites are struggling to accomplish their environmental management objectives given funding scenarios that are well below anticipated waste management costs. Through the BEMR process, DOE has compiled complex-wide cleanup cost estimates and has begun analysis of these costs with respect to alternative waste management scenarios and policy strategies. From this analysis, DOE is attempting to identify the major cost drivers and prioritize environmental management activities to achieve maximum utilization of existing funding. This paper provides an overview of the methodology DOE has used to estimate and analyze some waste management costs, including the key data requirements and uncertainties

  1. The Radioactive Waste Management Advisory Committee's report on radioactive waste management practices in Switzerland

    International Nuclear Information System (INIS)

    1998-01-01

    Radioactive Waste Management Advisory Committee (RWMAC) is the independent body that advises the Secretary of State for the Environment, Transport and the Regions and the Secretaries of State for Scotland and for Wales on issues relating to radioactive waste management. The terms of reference of the RWMAC, and a list of its Members, are given in Annex 1 to this Report. A group of 16 RWMAC Members examined the management of radioactive waste in Switzerland during a study visit to that country made between 8 and 12 October 1996. The aim of the visit was to acquire first hand knowledge of a set of practices adopted outside the United Kingdom by visiting radioactive waste management facilities and holding discussions with those involved, whether as operators, regulators or advisors to Government. This Report describes what the group saw, records the information collected, and sets out its findings. Switzerland's political system, with the emphasis placed on referenda, encourages popular participation in the democratic process. This may appear to have slowed down the provision of management facilities for radioactive wastes. From a longer term perspective, however, it is clear that such facilities may only really be viable in locations where there is sufficient local support. The quality of the arguments, from both supporters and opponents of nuclear power, is clear evidence of the importance which needs to be attached to the views of those affected. In order to build on what has already been achieved, notably in storage and research, those concerned with radioactive waste management in Switzerland continue to recognise this underlying principle

  2. Hanford Site Waste Managements Units reports

    International Nuclear Information System (INIS)

    1992-01-01

    The Hanford Site Waste Management Units Report (HSWMUR) was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments (HSWA) of the 1984 United States Code (USC 1984). This report provides a comprehensive inventory of all types of waste management units at the Hanford Site, including a description of the units and the waste they contain. Waste management units in this report include: (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment, storage, and disposal (TSD) units, and (6) other storage areas. Because of the comprehensive nature of this report, the listing of sites is more extensive than required by Section 3004(u) of HSWA. The information in this report is extracted from the Waste Information Data System (WIDS). The WIDS provides additional information concerning the waste management units contained in this report and is maintained current with changes to these units. This report is updated annually if determined necessary per the Hanford Federal Facility Agreement and Consent Order Order (commonly referred to as the Tri-Party Agreement, Ecology et al. 1990). This report identifies 1,414 waste management units. Of these, 1,015 units are identified as solid waste management units (SWMU), and 342 are RCRA treatment, storage, and disposal units. The remaining 399 are comprised mainly of one-time spills to the environment, sanitary waste disposal facilities (i.e., septic tanks), and surplus facilities awaiting decontamination and decommissioning

  3. Intelligent Information System for Waste Management; Jaetehuollon aelykaes tietojaerjestelmae iWaste

    Energy Technology Data Exchange (ETDEWEB)

    Mustonen, T. [Kuopio Univ. (Finland)

    2003-07-01

    'iWaste' is a project for developing and testing intelligent computational methods for more comprehensive waste management. Important issues are automated reporting, optimisation of waste collection, forecasting of waste formation, data handling of waste disposal sites and simulation and modelling of regional waste management. The main objective of the project is to identify and analyse known sources of information and to link them to the existing information processing systems in the field of waste management. Additionally, the goal is to identify and test functional elements that could be developed further to software products and services. The results of the project can be categorized into three sectors. Firstly, the guidelines for a comprehensive information system in waste management will be created. This includes the requirement specifications of different parties, definitions for the data exchange interfaces and an architectural plan for software products capable of co-operative processing. Secondly, the central parts of the intelligent information system will be piloted using the research database collected in the early stage of the project. The main topics investigated are data quality, the use of Geographical Information Systems (GIS), automated reporting, optimisation of waste collection and forecasting of waste formation. Additionally, the pilot information system can be utilized in derivative projects to speed up the starting phases of them. This makes it possible to create persistent development of waste management information systems both academically and commercially. (orig.)

  4. Technological and organizational aspects of radioactive waste management

    International Nuclear Information System (INIS)

    2005-01-01

    This document comprises collected lecture on radioactive waste management which were given by specialists of the Radioactive Waste Management Section of the IAEA, scientific-industrial enterprise 'Radon' (Moscow, RF) and A.A. Bochvar's GNTs RF VNIINM (Moscow, RF) on various courses, seminars and conferences. These lectures include the following topics: basic principles and national systems of radioactive waste management; radioactive waste sources and their classification; collection, sorting and initial characterization of radioactive wastes; choice of technologies of radioactive waste processing and minimization of wastes; processing and immobilization of organic radioactive wastes; thermal technologies of radioactive waste processing; immobilization of radioactive wastes in cements, asphalts, glass and polymers; management of worked out closed radioactive sources; storage of radioactive wastes; deactivation methods; quality control and assurance in radioactive waste management

  5. Sustainable waste management: Waste to energy plant as an alternative to landfill

    International Nuclear Information System (INIS)

    Cucchiella, Federica; D’Adamo, Idiano; Gastaldi, Massimo

    2017-01-01

    Highlights: • WTE plant is a reasonable and sustainable alternative technology to landfill. • A 150 kt plant in the only electrical configuration for Abruzzo region. • The percentage of energy recovery ranges from 21% to 25% in examined scenarios. • Financial Net Present Value is equal to 25.4 € per kiloton of treated waste. • The annual reduction of emissions is equal to 370 kgCO_2eq per ton of treated waste. - Abstract: The management of municipal solid waste (MSW) has been identified as one of the global challenges that must be carefully faced in order to achieve sustainability goals. European Union (EU) has defined as Waste to Energy (WTE) technology is able to create synergies with EU energy and climate policy, without compromising the achievement of higher reuse and recycling rates. The methodology used in this paper is based on two levels. A strategy analysis defines the amount of waste to incinerate with energy recovery considering different approaches based on unsorted waste, landfilled waste and separated collection rate, respectively. Consequently, it is evaluated the sustainability of a WTE plant as an alternative to landfill for a specific area. Two indicators are used: the Reduction of the Emissions of equivalent Carbon Dioxide (ER_C_O_2_e_q) and Financial Net Present Value (FNPV). Furthermore, a social analysis is conducted through interviews to identify the most critical elements determining the aversion toward the WTE realization. The obtained results show the opportunity to realize a 150 kt plant in the only electrical configuration. In fact, the cogenerative configuration reaches better environmental performances, but it is not profitable for this size. Profits are equal to 25.4 € per kiloton of treated waste and 370 kgCO_2eq per ton of treated waste are avoided using a WTE plant as an alternative to landfill. In this way, the percentage of energy recovery ranges from 21% to 25% in examined scenarios and disposal waste is minimised

  6. Clinical laboratory waste management in Shiraz, Iran.

    Science.gov (United States)

    Askarian, Mehrdad; Motazedian, Nasrin; Palenik, Charles John

    2012-06-01

    Clinical laboratories are significant generators of infectious waste, including microbiological materials, contaminated sharps, and pathologic wastes such as blood specimens and blood products. Most waste produced in laboratories can be disposed of in the general solid waste stream. However, improper management of infectious waste, including mixing general wastes with infectious wastes and improper handling or storage, could lead to disease transmission. The aim of this study was to assess waste management processes used at clinical laboratories in Shiraz, Iran. One hundred and nine clinical laboratories participated In this cross sectional study, Data collection was by questionnaire and direct observation. Of the total amount of waste generated, 52% (by weight) was noninfectious domestic waste, 43% was non-sharps infectious waste and 5% consisted of sharps. There was no significant relationship between laboratory staff or manager education and the score for quality of waste collection and disposal at clinical laboratories. Improvements in infectious waste management processes should involve clearer, more uniformly accepted definitions of infectious waste and increased staff training.

  7. Waste Management Information System (WMIS) User Guide

    International Nuclear Information System (INIS)

    Broz, R.E.

    2008-01-01

    This document provides the user of the Waste Management Information System (WMIS) instructions on how to use the WMIS software. WMIS allows users to initiate, track, and close waste packages. The modular design supports integration and utilization of data through the various stages of waste management. The phases of the waste management work process include generation, designation, packaging, container management, procurement, storage, treatment, transportation, and disposal

  8. Waste Management Information System (WMIS) User Guide

    Energy Technology Data Exchange (ETDEWEB)

    R. E. Broz

    2008-12-22

    This document provides the user of the Waste Management Information System (WMIS) instructions on how to use the WMIS software. WMIS allows users to initiate, track, and close waste packages. The modular design supports integration and utilization of data throuh the various stages of waste management. The phases of the waste management work process include generation, designation, packaging, container management, procurement, storage, treatment, transportation, and disposal.

  9. Conceptual Model for Systematic Construction Waste Management

    OpenAIRE

    Abd Rahim Mohd Hilmi Izwan; Kasim Narimah

    2017-01-01

    Development of the construction industry generated construction waste which can contribute towards environmental issues. Weaknesses of compliance in construction waste management especially in construction site have also contributed to the big issues of waste generated in landfills and illegal dumping area. This gives sign that construction projects are needed a systematic construction waste management. To date, a comprehensive criteria of construction waste management, particularly for const...

  10. Radioactive waste computerized management

    International Nuclear Information System (INIS)

    Communaux, M.; Lantes, B.

    1993-01-01

    Since December 31, 1990, the management of the nuclear wastes for all the power stations has been computerized, using the DRA module of the Power Generation and Transmission Group's data processing master plan. So now EDF has a software package which centralizes all the data, enabling it to declare the characteristics of the nuclear wastes which are to be stored on the sites operated by the National Radioactive Waste Management Agency (ANDRA). Among other uses, this application makes it possible for EDF, by real time data exchange with ANDRA, to constitute an inventory of validated, shippable packs. It also constitutes a data base for all the wastes produced on the various sites. This application was developed to meet the following requirements: give the producers of radioactive waste a means to fully manage all the characteristics and materials that are necessary to condition their waste correctly; guarantee the traceability and safety of data and automatically assure the transmission of this data in real time between the producers and the ANDRA; give the Central Services of EDF an operation and statistical tool permitting an experienced feed-back based on the complete national production (single, centralized data base); and integrate the application within the products of the processing master plan in order to assure its maintenance and evolution

  11. Recent Developments in Nuclear Waste Management in Canada

    International Nuclear Information System (INIS)

    King, F.

    2002-01-01

    This paper describes recent developments in the field of nuclear waste management in Canada with a focus on management of nuclear fuel waste. Of particular significance is the April 2001 tabling in the Canadian House of Commons of Bill C-27, An Act respecting the long-term management of nuclear fuel waste. At the time of finalizing this paper (January 15, 2002), Bill C-27 is in Third Reading in the House of Commons and is expected to move to the Senate in February. The Nuclear Fuel Waste Act is expected to come into force later in 2002. This Act requires the three nuclear utilities in Canada owning nuclear fuel waste to form a waste management organization and deposit funds into a segregated fund for nuclear fuel waste long-term management. The waste management organization is then required to perform a study of long-term management approaches for nuclear fuel waste and submit the study to the federal government within three years. The federal government will select an approach for implementation by the waste management organization. The paper discusses the activities that the nuclear fuel waste owners currently have underway to prepare for the formation of the waste management organization. As background, the paper reviews the status of interim storage of nuclear fuel waste in Canada, and describes previous initiatives related to the development of a national strategy for nuclear fuel waste long-term management

  12. Management situation and prospect of radioactive waste

    International Nuclear Information System (INIS)

    Han, Pil Jun

    1985-04-01

    This book tell US that management situation and prospect of radioactive waste matter, which includes importance of energy, independence, limitation of fossil fuel energy, density of nuclear energy, strategy of supply of energy resource in Korea, nuclear energy development and radioactive waste matter, summary of management of radioactive waste, statistics of radioactive waste, disposal principle of radioactive waste, management on radioactive waste after using, disposal of Trench, La Marche in French, and Asse salt mine in Germany.

  13. Waste management assessment and technical review programme. WATRP. An international peer review service for radioactive waste management activities

    International Nuclear Information System (INIS)

    1994-09-01

    International Atomic Energy Agency provides international peer review services in radioactive waste management to those Member States that have established radioactive waste management programmes. Such services are provided within Waste Management Assessment and Technical Review Programme (WATRP). The main objective of WATRP is to provide international expertise and information on a requested subject in the field of radioactive waste management and to validate that programmes and activities are sound and performing well. Refs, figs and tabs

  14. Analysis of waste hierarchy in the European waste directive 2008/98/EC.

    Science.gov (United States)

    Gharfalkar, Mangesh; Court, Richard; Campbell, Callum; Ali, Zulfiqur; Hillier, Graham

    2015-05-01

    Loss of recoverable resources in linear resource flow systems is likely to contribute to the depletion of natural resources and environmental degradation. The 'waste hierarchy' in the European Commission's latest Waste Framework Directive 2008/98/EC (WFD2008) makes recommendations on how to address this issue. The WFD2008 is analysed in this work for its adequacy in ensuring return of 'recoverable waste' as a 'resource' into the productive system. Despite the release of guidance documents by the DG Environment, DEFRA and WRAP UK on the interpretation of key provisions of the WFD2008, lack of clarity still exists around the WFD2008 'waste hierarchy'. There is also an overlap between measures such as 'prevention' and 'reduction', 'preparing for reuse' and 'reuse' and lack of clarity on why the measure of 'reuse' is included in the WFD2008 definition of 'prevention'. Finally, absence of the measures of 'recovery' and 'reuse' from the WFD2008 'waste hierarchy' reduces its effectiveness as a resource efficiency tool. Without clarity on the WFD2008 'waste hierarchy', it is challenging for decision makers to take direct action to address inefficiencies existing within their operations or supply chains. This paper proposes the development of an alternative 'hierarchy of resource use' and alternative 'definitions' that attempt to fill identified gaps in the WFD2008 and bring clarity to the key measures of waste prevention, reduction and recovery. This would help the key stakeholders in driving resource effectiveness, which in turn would assist in conservation of natural resources and prevention of environmental degradation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Developing Tribal Integrated Waste Management Plans

    Science.gov (United States)

    An IWMP outlines how the tribe will reduce, manage, and dispose of its waste. It identifies existing waste systems, assesses needs, and sets forth the ways to design, implement, and monitor a more effective and sustainable waste management program.

  16. Assessing waste management systems using reginalt software

    International Nuclear Information System (INIS)

    Meshkov, N.K.; Camasta, S.F.; Gilbert, T.L.

    1988-03-01

    A method for assessing management systems for low-level radioactive waste is being developed for US Department of Energy. The method is based on benefit-cost-risk analysis. Waste management is broken down into its component steps, which are generation, treatment, packaging, storage, transportation, and disposal. Several different alternatives available for each waste management step are described. A particular waste management system consists of a feasible combination of alternatives for each step. Selecting an optimal waste management system would generally proceed as follows: (1) qualitative considerations are used to narrow down the choice of waste management system alternatives to a manageable number; (2) the costs and risks for each of these system alternatives are evaluated; (3) the number of alternatives is further reduced by eliminating alternatives with similar risks but higher costs, or those with similar costs but higher risks; (4) a trade-off factor between cost and risk is chosen and used to compute the objective function (sum of the cost and risk); and (5) the selection of the optimal waste management system among the remaining alternatives is made by choosing the alternative with the smallest value for the objective function. The authors propose that the REGINALT software system, developed by EG and G Idaho, Inc., as an acid for managers of low-level commerical waste, be augmented for application to the managment of DOE-generated waste. Specific recommendations for modification of the REGINALT system are made. 51 refs., 3 figs., 2 tabs

  17. Perspectives of the waste management and raw materials industry in Germany; Perspektiven der Entsorgungs- und Rohstoffwirtschaft in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Kurth, Peter [Bundesverband der Deutschen Entsorgungs-, Wasser- und Rohstoffwirtschaft e.V. (BDE), Berlin (Germany)

    2012-11-01

    In order to provide the industrial structures that are necessary for ecologically and economically effective waste management and recycling - from the collecting of valuable waste materials to the marketing of the secondary raw materials obtained -, the BDE (Bundesverband der Deutschen Entsorgungswirtschaft e.V., Federal Association of the German Waste Management Industry) considers that free movement of goods must be ensured in the whole European Union. This means Europe-wide prohibition of dumping of untreated waste, common European environmental standards and their enforcement. If the potential of waste materials is to be developed in Europe, politicians must develop consequent understanding of waste as a raw material and commodity. Europe needs open frontiers and free trade in this important sector. (orig.) [German] Um die fuer eine oekologisch und oekonomisch effektive Kreislaufwirtschaft zwingend erforderlichen industriellen Strukturen - von der Sammlung werthaltiger Abfaelle bis hin zur Vermarktung der gewonnenen Sekundaerrohstoffe - zu schaffen, muss aus Sicht des BDE fuer alle Abfallstroeme der Grundsatz der Warenverkehrsfreiheit im gesamten Bereich der Europaeischen Union gelten. Voraussetzungen dafuer sind ein europaweites Deponieverbot fuer unbehandelte Abfaelle, europaweit einheitliche Umweltstandards und ein einheitlicher Vollzug. Wenn wir tatsaechlich das Potenzial, das im europaeischen Abfallberg steckt, heben wollen, muss auch die Politik ein konsequentes Verstaendnis fuer die Ressource Abfall als Ware entwickeln. Wir brauchen in Europa fuer diesen wichtigen Stoffstrom offene Grenzen und freien Handel. (orig.)

  18. Radioactive waste management of health services

    International Nuclear Information System (INIS)

    Silva, Eliane Magalhaes Pereira da; Miaw, Sophia Teh Whei

    2001-01-01

    In health care establishment, radioactive waste is generated from the use of radioactive materials in medical applications such as diagnosis, therapy and research. Disused sealed sources are also considered as waste. To get the license to operate from Comissao Nacional de Energia Nuclear - CNEN, the installation has to present a Radiation Protection Plan, in which the Waste Management Programme should be included. The Waste Management Programme should contain detailed description on methodologies and information on technical and administrative control of generated waste. This paper presents the basic guidelines for the implementation of a safe waste management by health care establishments, taking into account the regulations from CNEN and recommendations from the International Atomic Energy Agency - IAEA. (author)

  19. Radioactive waste management in Slovenia

    International Nuclear Information System (INIS)

    Fink, K.

    1992-01-01

    The problem of radioactive waste management is both scientifically and technically complex and also deeply emotional issue. In the last twenty years the first two aspects have been mostly resolved up to the point of safe implementation. In the Republic of Slovenia, certain fundamentalist approaches in politics and the use of radioactive waste problem as political marketing tool, make things even more complex. Public involvement in planning and development of radioactive waste management program must be perceived as essential for the success of the program. Education is a precursor to public comprehension and confidence which lead to adequate waste management decisions that will protect the public health, safety and environment without jeopardizing further progress and development. (author) [sl

  20. The effect of food waste disposers on municipal waste and wastewater management.

    Science.gov (United States)

    Marashlian, Natasha; El-Fadel, Mutasem

    2005-02-01

    This paper examines the feasibility of introducing food waste disposers as a waste minimization option within urban waste management schemes, taking the Greater Beirut Area (GBA) as a case study. For this purpose, the operational and economic impacts of food disposers on the solid waste and wastewater streams are assessed. The integration of food waste disposers can reduce the total solid waste to be managed by 12 to 43% under market penetration ranging between 25 and 75%, respectively. While the increase in domestic water consumption (for food grinding) and corresponding increase in wastewater flow rates are relatively insignificant, wastewater loadings increased by 17 to 62% (BOD) and 1.9 to 7.1% (SS). The net economic benefit of introducing food disposers into the waste and wastewater management systems constitutes 7.2 to 44.0% of the existing solid waste management cost under the various scenarios examined. Concerns about increased sludge generation persist and its potential environmental and economic implications may differ with location and therefore area-specific characteristics must be taken into consideration when contemplating the adoption of a strategy to integrate food waste disposers in the waste-wastewater management system.

  1. Electronic waste management approaches: an overview.

    Science.gov (United States)

    Kiddee, Peeranart; Naidu, Ravi; Wong, Ming H

    2013-05-01

    Electronic waste (e-waste) is one of the fastest-growing pollution problems worldwide given the presence if a variety of toxic substances which can contaminate the environment and threaten human health, if disposal protocols are not meticulously managed. This paper presents an overview of toxic substances present in e-waste, their potential environmental and human health impacts together with management strategies currently being used in certain countries. Several tools including life cycle assessment (LCA), material flow analysis (MFA), multi criteria analysis (MCA) and extended producer responsibility (EPR) have been developed to manage e-wastes especially in developed countries. The key to success in terms of e-waste management is to develop eco-design devices, properly collect e-waste, recover and recycle material by safe methods, dispose of e-waste by suitable techniques, forbid the transfer of used electronic devices to developing countries, and raise awareness of the impact of e-waste. No single tool is adequate but together they can complement each other to solve this issue. A national scheme such as EPR is a good policy in solving the growing e-waste problems. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  2. Current DOE direction in low-level waste management

    International Nuclear Information System (INIS)

    Wilhite, E.L.; Dolenc, M.R.; Shupe, M.W.; Waldo, L.C.

    1989-01-01

    The U.S. Department of Energy (DOE) is implementing revised DOE Order 5820.2A Radioactive Waste Management. Chapter III of the revised order provides prescriptive requirements for managing low-level waste and is the subject of this paper. The revised order requires that all DOE low-level radioactive and mixed waste be systematically managed, using an approach that considers the combination of waste management practices used in waste generation reduction, segregation, treatment, packaging, storage, and disposal. The Order defines performance objectives for protecting groundwater, for protecting against intrusion, and for maintaining adequate operational practices. A performance assessment will be required to ensure that waste management operations comply with these performance objectives. DOE implementation of the revised Order includes work in the areas of leach testing, waste stabilization, waste certification, facility monitoring, and management of unique waste streams. This paper summarizes the status of this work and the current direction DOE is taking in managing low-level waste under DOE 5820.2A

  3. Waste management research abstracts. Information on radioactive waste management research in progress or planned. Vol. 28

    International Nuclear Information System (INIS)

    2003-11-01

    This issue contains 184 abstracts that describe research in progress in the field of radioactive waste management. The research abstracts contained in the Waste Management Research Abstracts Volume 28 (WMRA 28) were collected between October 1, 2002 and September 30, 2003. The abstracts reflect research in progress, or planned, in the field of radioactive waste management. They present ongoing work in various countries and international organizations. Although the abstracts are indexed by country, some programmes are actually the result of cooperation among several countries. Indeed, a primary reason for providing this compilation of programmes, institutions and scientists engaged in research into radioactive waste management is to increase international co-operation and facilitate communications

  4. Solid-Waste Management

    Science.gov (United States)

    Science Teacher, 1973

    1973-01-01

    Consists of excerpts from a forthcoming publication of the United States Environmental Protection Agency, Student's Guide to Solid-Waste Management.'' Discusses the sources of wastes from farms, mines, factories, and communities, the job of governments, ways to collect trash, methods of disposal, processing, and suggests possible student action.…

  5. The European Crisis Management: An Organizational Narrative

    Directory of Open Access Journals (Sweden)

    Patrícia Kaplánová

    2016-12-01

    Full Text Available The debate of scholars in the field of international relations in last years has put the European Union’s role into the consideration. The European Foreign and Security Policy has positioned itself through its development to the constructive and normative line of research of world politics. With this respect, this article examines a character of crisis management of the European Common Foreign Policy based on the institutional development. Besides the European Union does not possess a unified foreign and security policy, regardless one army and single institutional mechanism, the recent crisis management actions have shaped the policies into a comprehensive nature. The paper overviews briefly the history of Common Foreign and Security Policy as well as Common Security and Defence Policy and focuses on crisis management of civilian and military missions. The author claims that the development has a significant impact on a character of crisis management analyzed from the institutional and financial capacities of the European Security and Defence Policy. Consequently, the character of crisis management performs complex mechanisms of responsive, political/administrative, legal, economic and human help to crisis-affected territories in the world. Respectfully, the character of crisis management has thus more pre-crisis nature of a resilience.

  6. Solid waste management in faisalabad using GIS

    International Nuclear Information System (INIS)

    Nasir, A.; Ali, S.; Khan, F.H.

    2011-01-01

    Waste management is a global environmental issue which concerns about a very significant problem in today's world. There is a considerable amount of disposal of waste without proper segregation which has lead to both economic and environment sufferings. It is still practiced in many cities. There is a tremendous amount of loss in terms of environmental degradation, health hazards and economic descend due to direct disposal of waste. It is better to segregate the waste at the initial stages where it is generated, rather than going for a later option which is inconvenient and expensive. There has to be appropriate planning for proper waste management by means of analysis of the waste situation of the area. This paper would deal with, how Geographical Information System can be used as a decision support tool for planning waste management. A model is designed for the case study area in Pakistan city for the purpose of planning waste management. The suggestions for amendments in the system through GIS based model would reduce the waste management workload to some extent and exhibit remedies for some of the SWM problems in the case study area. The waste management issues are considered to solve some of the present situation problems like proper allocation and relocation of waste bins, check for unsuitability and proximity convenience due to waste bin to the users, proposal of recyclable waste bins for the required areas and future suggestions. The model will be implemented on the Faisalabad city's case study area data for the analysis and results will suggest some modification in the existing system which is expected to reduce the waste management workload to a certain extent. (author)

  7. Long-term management plan INEL transuranic waste

    International Nuclear Information System (INIS)

    McKinney, J.D.

    1978-12-01

    The Idaho National Engineering Laboratory stores large quantities of transuranic-contaminated waste at its Radioactive Waste Management Complex. This report presents a 10-year plan for management of this transuranic waste and includes descriptions of projects involving nuclear waste storage, retrieval, processing, systems analysis, and environmental science. Detailed project schedules and work breakdown charts are provided to give the reader a clear view of transuranic waste management objectives

  8. Medical Waste Management in Community Health Centers.

    Science.gov (United States)

    Tabrizi, Jafar Sadegh; Rezapour, Ramin; Saadati, Mohammad; Seifi, Samira; Amini, Behnam; Varmazyar, Farahnaz

    2018-02-01

    Non-standard management of medical waste leads to irreparable side effects. This issue is of double importance in health care centers in a city which are the most extensive system for providing Primary Health Care (PHC) across Iran cities. This study investigated the medical waste management standards observation in Tabriz community health care centers, northwestern Iran. In this triangulated cross-sectional study (qualitative-quantitative), data collecting tool was a valid checklist of waste management process developed based on Iranian medical waste management standards. The data were collected in 2015 through process observation and interviews with the health center's staff. The average rate of waste management standards observance in Tabriz community health centers, Tabriz, Iran was 29.8%. This case was 22.8% in dimension of management and training, 27.3% in separating and collecting, 31.2% in transport and temporary storage, and 42.9% in sterilization and disposal. Lack of principal separation of wastes, inappropriate collecting and disposal cycle of waste and disregarding safety tips (fertilizer device performance monitoring, microbial cultures and so on) were among the observed defects in health care centers supported by quantitative data. Medical waste management was not in a desirable situation in Tabriz community health centers. The expansion of community health centers in different regions and non-observance of standards could predispose to incidence the risks resulted from medical wastes. So it is necessary to adopt appropriate policies to promote waste management situation.

  9. Waste management research abstracts No. 18

    International Nuclear Information System (INIS)

    1987-12-01

    The eighteenth issue of this publication contains over 750 abstracts from 33 IAEA member countries comprehending various aspects of radioactive waste management. Radioactive waste disposal, processing and storage, geochemical and geological investigations related to waste management, mathematical models and environmental impacts are reviewed

  10. Strategy plan for management of Hanford tank wastes

    International Nuclear Information System (INIS)

    Humphreys, L.L.; Morgan, S.R.

    1993-01-01

    The Secretary of Energy in 1992 directed Hanford to plan for the retrieval and processing of all stored high level waste at Hanford for disposal at an offsite repository. This substantial change in the tank disposal program's assignment has resulted in a reevaluation of the entire Tank Waste Remediation System (TWRS) strategy. This strategic plan covers that portion of the TWRS strategy related to management of stored tank waste until it is retrieved, processed, and disposed by the disposal program and covers the responsibilities assigned to the ''manage tank waste'' function. The ''manage tank waste'' function is one of the level 2 functions as set forth in the Tank Waste Remediation System Mission Analysis Report (Baynes et al. 1993) and depicted in Figure 1. The following level 3 functions have been developed below the level 2, ''manage tank waste'' function: (1) Store waste; (2) Transfer waste; (3) Characterize, surveil and monitor waste; (4) Restore and upgrade systems; (5) Manage tank waste management system

  11. Proceedings of emerging technologies for hazardous waste management

    International Nuclear Information System (INIS)

    Tedder, D.W.

    1992-01-01

    This book contains proceedings of emerging technologies for hazardous waste management. Topics covered include: Low-temperature oxidation of organic chemical wastes; Advanced waste minimization strategies; Treatment of manufactured gas plant (MGP) and similar wastes; Bioremediation of soils and sediments; Advances in radioactive waste treatment; Computer aides approaches to hazardous waste management; Advances in soil remediation; Low-temperature oxidation of organic chemical waste; Boremediation: Micro, meso, and macro-scale processes; In situ remediation techniques; Treatment of hazardous organics with radiation or solar energy; Technologies for management of municipal waste combustion residues; Environmental restoration and waste management; and Advanced separation and stabilization technologies

  12. Involving the citizens. Radioactive waste management and the EU

    International Nuclear Information System (INIS)

    Ferraro, G.

    2014-01-01

    The European Union (EU) has been often criticized for its democratic deficit, which has been studied in the academic literature at multiple levels: in the polity (macro-level), the institutions (meso-level) and the policies (micro-level) of the EU. The paper presents counter-arguments in favour of the democratic nature of the EU and focuses on the micro-level, particularly the process of implementation of EU policies. Policy implementation and the democratic involvement of citizens are discussed with regard to radioactive waste management and the Directive 2011/70/EURATOM. The Directive's clause on transparency and the recent development of a centre of knowledge for public participation in energy policy implementation by the European Commission (EC) are expression of the democratic nature of the EU and provide further counter-arguments to the claim of democratic deficit. (authors)

  13. Regulation of solid waste management at Brazilian ports: analysis and proposals for Brazil in light of the European experience.

    Science.gov (United States)

    Jaccoud, Cristiane; Magrini, Alessandra

    2014-02-15

    With a coastline of 8500 km, Brazil has 34 public ports and various private terminals, which together in 2012 handled 809 million tonnes of goods. The solid wastes produced (from port activities, ships and cargoes) pose a highly relevant problem, both due to the quantity and diversity, requiring a complex and integrated set of practices resulting from legal requirements and proactive initiatives. The main Brazilian law on solid waste management is recent (Law 12,305/2010) and the specific rules on solid waste in ports are badly in need of revision to meet the challenges caused by expansion of the sector and to harmonize them with the best global practices. This paper analyzes the current legal/regulatory framework for solid waste management at Brazilian ports and compares this structure with the practice in Europe. At the end, we suggest initiatives to improve the regulation of solid wastes at Brazilian ports. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    TW, CRAWFORD

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  15. Managing nuclear waste: a better idea

    International Nuclear Information System (INIS)

    1984-12-01

    This report presents the findings and recommendations of the Advisory Panel with regard to alternative approaches to financing and managing the construction and operation of civilian radioactive waste management facilities. Ten organizational alternatives are considered and four of them are focussed on. These four are: present DOE waste management structure; alternative governmental approach; public/private entity; and private corporation. Advantages and disadvantages of each alternative are covered. The preferred alternative is the Federal Corporation for Waste Management (FEDCORP)

  16. French regulations and waste management

    International Nuclear Information System (INIS)

    Sousselier, Y.

    1985-01-01

    The authors describe the organization and the role of safety authorities in France in matter of waste management. They precise the French policy in waste storage and treatment: basic objectives, optimization of waste management. The safety requirements are based upon the barrier principle. Safety requirements about waste conditioning and waste disposal are mentioned. In addition to the safety analysis and studies described above, the Protection and Nuclear Safety Institute assists the ministerial authorities in the drafting of ''basic safety rules (RFS)'', laying down safety objectives. Appendix 1 and Appendix 2 deal with safety aspects in spent fuel storage and in transportation of radioactive materials [fr

  17. Tribal Decisions-Makers Guide to Solid Waste Management: Chapter 2 - Developing Solid Waste Management Plans

    Science.gov (United States)

    Solid waste management plans offer a host of benefits for tribes and Alaskan Native villages. Through the preparation of these plans, you can assess your cur-rent and future waste management needs, set priorities, and allocate resources accordingly.

  18. Biomedical waste management operating plan. Revision C

    Energy Technology Data Exchange (ETDEWEB)

    1996-02-14

    Recent national incidents involving medical and/or infectious wastes indicated the need for tighter control of medical wastes. Within the last five years, improper management of medical waste resulted in the spread of disease, reuse of needles by drug addicts, and the closing of large sections of public beaches due to medical waste that washed ashore from ocean disposal. Several regulations, both at the federal and state level, govern management (i.e., handling, storage, transport, treatment, and disposal) of solid or liquid waste which may present a threat of infection to humans. This waste, called infectious, biomedical, biohazardous, or biological waste, generally includes non-liquid human tissue and body parts; laboratory waste which contains human disease-causing agents; discarded sharps; human blood, blood products, and other body fluids. The information that follows outlines and summarizes the general requirements of each standard or rule applicable to biohazardous waste management. In addition, it informs employees of risks associated with biohazardous waste management.

  19. Radioactive waste management: a utility view

    International Nuclear Information System (INIS)

    Draper, E.L.

    1982-01-01

    The management of radioactive waste continues to be a matter of public concern and discussion. There is broad agreement among members of the technical community that the various types of waste radioactive species can be managed without jeopardizing public health and safety. Despite this consensus, one of the major reasons cited by opponents of commercial nuclear power for their opposition is the lack of a fully deployed waste management program. Such a program has been suggested but implementation is not yet complete. It is essential that a program be undertaken so as to dispel the impression that past inaction on waste disposal represents an inability to deal safely with wastes

  20. Shifting paradigms in managing radioactive waste

    International Nuclear Information System (INIS)

    Le Bars, Y.; Pescatore, C.

    2004-01-01

    The Stakeholder involvement in policy making of radioactive waste management, has received considerable attention within the OECD. The Nea forum on Stakeholder confidence (FSC) was set up in 2000. A Nea recent publication entitled ''Learning and adapting to societal requirements for radioactive waste management'' brings together the key FSC findings and experience covering four years of work. Six main areas are targeted in this publication and are briefly described in this document: favourable candidates for issuing radioactive waste management policy, the design of the decision-making process, the social and ethical dimension, trust in the actors, Stakeholder involvement and the local dimension of radioactive waste management. (A.L.B.)

  1. Training waste generators: The first responder in proper waste management

    International Nuclear Information System (INIS)

    Jones, E.

    1989-01-01

    Dealing with waste effectively requires a ''cradle to grave'' approach to waste management. The first step in that chain of custody is the waste generator. The waste generator plays the key role in the correct identification, packaging, and disposal of waste. The Technical Resources and Training Section at the Oak Ridge National Laboratory (ORNL) has developed several short training programs for waste generators. This training presents a consistent approach to proper handling of waste within the ORNL waste management system. This training has been developed for generators of solid low-level radioactive waste, hazardous and mixed waste, and transuranic waste. In addition to the above, a Waste Minimization training program has been developed for use by all organizations at ORNL who generate any type of hazardous waste. These training programs represent a combined effort of the training staff and the technical staff to assure that all ORNL staff accept their responsibility for handling all types of radioactive and hazardous wastes correctly from its generation to its disposal. 4 refs

  2. Long-range low-level waste management needs

    International Nuclear Information System (INIS)

    Gloyna, E.F.

    1980-01-01

    In all waste management considerations, it is necessary to establish the waste source; characterize the waste components; determine treatability; evaluate specific details that comprise a systems approach to overall waste management; and implement practical collection, packaging, storage disposal and monitoring technology. This paper evaluates management considerations by defining the source and magnitude of low-level wastes (LLW), relating LLW disposal, defining principles of LLW burial, and listing LLW burial considerations. 17 refs

  3. Radioactive waste management of urban area

    International Nuclear Information System (INIS)

    Huang, Z.; Gu, S.X.

    1993-01-01

    The several years experience of radioactive waste management in Shanghai of China shows that the centralized management is quite successful and effective. Rad waste generated in urban area would be treated with further concern in the respect of radiation and environmental protection. In this respect, there is a need for a professional organisation to undertake the necessary regulation, and demonstrate that high standards of design, planning, management and operation could be met. The experience in China is suitable to manage and dispose rad waste generated from the civil applications in urban area, and valuable to the developing country and area in particular. It is concluded that the centralized management of intermediate level and low level radioactive waste is an optimum choice for urban area

  4. Waste to energy – key element for sustainable waste management

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, Paul H., E-mail: paul.h.brunner@tuwien.ac.at; Rechberger, Helmut

    2015-03-15

    Highlights: • First paper on the importance of incineration from a urban metabolism point of view. • Proves that incineration is necessary for sustainable waste management. • Historical and technical overview of 100 years development of MSW incineration. - Abstract: Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of “protection of men and environment” and “resource conservation”. Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas.

  5. Waste to energy – key element for sustainable waste management

    International Nuclear Information System (INIS)

    Brunner, Paul H.; Rechberger, Helmut

    2015-01-01

    Highlights: • First paper on the importance of incineration from a urban metabolism point of view. • Proves that incineration is necessary for sustainable waste management. • Historical and technical overview of 100 years development of MSW incineration. - Abstract: Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of “protection of men and environment” and “resource conservation”. Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas

  6. Management of alpha-contaminated wastes

    International Nuclear Information System (INIS)

    1980-01-01

    Full text: With the increasing use of nuclear energy throughout the world for the generation of electric power and, especially, the use of the plutonium cycle for fast breeder reactors (FBRs), close attention has to be given to the safe management of alpha-contaminated wastes arising from spent-fuel reprocessing or mixed fuel fabrication Appropriate handling, conditioning and disposal of these wastes is, therefore, an activity of highest importance to ensure adequate protection of man and his environment from the potential hazard they pose over long periods of time. As the generation of alpha-contaminated waste is expected to increase considerably in the 1990s, when FBRs and the associated plutonium recycling will reach an industrial scale, it was felt timely to review the present state of the art in this area. The symposium organized jointly by the IAEA and the Commission of European Communities (CEC) was the first international symposium dealing with this specific topic. Its principle aim was to serve as 'zero-point' stating the present technical knowledge in view of the future needs for the management of alpha-contaminated wastes, before an industrial scale of production will be reached. The programme of the symposium was drawn up in eight sessions and covered the following topics: general policies; general practices; volume reduction techniques (two sessions); conditioning; alpha-monitoring; actinides partitioning; and disposal options. A variety of techniques has been investigated in various countries for several years for managing alpha-contaminated wastes. The first target was to reduce the volume of the wastes and to study matrices for the immobilization of waste radionuclides with a view to final waste disposal. At present, operational experience has been gained at different nuclear laboratories and facilities. At the same time various disposal options have been investigated. Some of the major items discussed at the symposium might be concluded as follows

  7. Issues related to public perception of radioactive waste management options

    International Nuclear Information System (INIS)

    Taylor, D.M.

    2007-01-01

    Public perceptions about radioactive waste are generally rather or even strongly negative. They are also very poorly informed. This is rather unfortunate as it is these perceptions that appear to greatly influence the Public views on nuclear energy in general. This, in turn, has had an influence on political decisions. On the other hand, in a very clear majority of the Member States of the European Union, the Public have already indicated that they would be ready to accept the important role of nuclear in their future energy mix as long as all the radioactive wastes can be safely managed. However perceptions about nuclear energy and radioactive waste should be seen in the context of the Public wider perceptions on energy and, in particular, the role in the future of different sources. It may be wrong for political decisions on nuclear energy in the future to rely to heavily on the Public perceptions. (author)

  8. Radioactive waste management policy

    International Nuclear Information System (INIS)

    Morrison, R.W.

    1983-06-01

    The speaker discusses the development of government policy regarding radioactive waste disposal in Canada, indicates overall policy objectives, and surveys the actual situation with respect to radioactive wastes in Canada. He also looks at the public perceptions of the waste management situation and how they relate to the views of governmental decision makers

  9. Local stakeholder involvement in the perspective of nuclear waste management: lessons form the Cowam network

    International Nuclear Information System (INIS)

    Heriard Dubreuil, G.; Gadbois, S.

    2004-01-01

    The management of high level radioactive waste is nowadays recognised as a complex decision-making process entailing technical, environmental, ethical, social, political and economic dimensions where no solution can be reached solely on the basis of technical considerations. While this issue is acknowledged as a problem for the community as a whole, waste management remains a global problem looking for a local solution. Starting from this view, COWAM network (Community Waste Management), developed under the Fifth Framework Programme of the European Commission, addressed the following objectives: 1) To empower local actors through a networking process; 2) To gather and discuss the available experiences of decision-making processes at the local level within their national context in Europe; 3) To set up an arena for balanced exchanges between local actors, NGOs, regulators and implementers; 4) To promote new approaches to decision-making in national contexts in Europe. COWAM network comprises 230 delegates from 10 European countries, involving in priority local communities and NGOs. The emphasis put on the local participation enabled members of COWAM network to overcome distrust and to build common lessons and views beyond usual stakeholder positions. Through the analysis of case studies different issues were identified, among them two relate more specifically to: 1) Expertise what is the purpose of expertise on environmental impact in the decision-making process? How is this expertise linked with other scientific and non scientific issues? What is the role of stakeholders in expertise? 2) Environmental quality in the long term and sustainable development how is the impact of radioactive waste management facilities on the environment in the long term taken into account? how is this associated with the sustainable development of the hosting community? How are local stakeholders involved in these issues and what is the expected benefit from their participation? (author)

  10. Hazardous waste management in research laboratories

    International Nuclear Information System (INIS)

    Sundstrom, G.

    1989-01-01

    Hazardous waste management in research laboratories benefits from a fundamentally different approach to the hazardous waste determination from industry's. This paper introduces new, statue-based criteria for identifying hazardous wastes (such as radiological mixed wastes and waste oils) and links them to a forward-looking compliance of laboratories, the overall system integrates hazardous waste management activities with other environmental and hazard communication initiatives. It is generalizable to other waste generators, including industry. Although only the waste identification and classification aspects of the system are outlined in detail here, four other components are defined or supported, namely: routine and contingency practices; waste treatment/disposal option definition and selection; waste minimization, recycling, reuse, and substitution opportunities; and key interfaces with other systems, including pollution prevention

  11. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Summary

    International Nuclear Information System (INIS)

    1997-05-01

    This Waste Management Programmatic Environmental Impact Statement (WM PEIS) is a nationwide study examining the environmental impacts of managing five types of radioactive and hazardous wastes generated by past and future nuclear defense and research activities at a variety of sites located around the United States. The five waste types are low-level mixed waste (LLMW), low-level waste (LLW), transuranic waste (TRUW), high-level waste (HLW), and hazardous waste (HW)

  12. FY 2001 Hanford Waste Management Strategic Plan

    International Nuclear Information System (INIS)

    COLLINS, M.S.

    2001-01-01

    We are pleased to present the 2001 Hanford Waste Management Program Strategic Plan. This plan supports the newly developed U. S. Department of Energy Site outcomes strategy. The 2001 Plan reflects current and projected needs for Waste Management Program services in support of Hanford Site cleanup, and updates the objectives and actions using new waste stream oriented logic for the strategic goals: (1) waste treatment/processing, storage, and disposal; (2) interfaces; and (3) program excellence. Overall direction for the Program is provided by the Waste Management Division, Office of the Assistant Manager for Environmental Restoration and Waste Management, U. S. Department of Energy, Richland Operations Office. Fluor Hanford, Inc. is the operating contractor for the program. This Plan documents proactive strategies for planning and budgeting, with a major focus on helping meet regulatory commitments in a timely and efficient manner and concurrently assisting us in completing programs cheaper, better and quicker. Newly developed waste stream oriented logic was incorporated to clarify Site outcomes. External drivers, technology inputs, treatment/processing, storage and disposal strategies, and stream specific strategies are included for the six major waste types addressed in this Plan (low-level waste, mixed low-level waste, contact-handled transuranic waste, remote-handled transuranic waste, liquid waste, and cesium/strontium capsules). The key elements of the strategy are identification and quantification of the needs for waste management services, assessment of capabilities, and development of cost-effective actions to meet the needs and to continuously improve performance. Accomplishment of specific actions as set forth in the Plan depends on continued availability of the required resources and funding. The primary objectives of Plan are: (1) enhance the Waste Management Program to improve flexibility, become more holistic especially by implementing new

  13. Waste management facilities cost information for transuranic waste

    International Nuclear Information System (INIS)

    Shropshire, D.; Sherick, M.; Biagi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing transuranic waste. The report's information on treatment and storage modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the U.S. Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report

  14. Status report on research programmes of the Commission of European Communities related to risk evaluation of geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Girardi, F.

    1977-01-01

    The programmes of the Commission of European Communities related to risk evaluation of geological disposal of radioactive waste are presented. The Joint Research Centre carries out theoretical modelling activities and a few selected experimental activities which are related to model development and verification. A set of contractual research activities, coordinated by the General Directorate of Research, Scientific Affairs and Education and set up primarily to encourage development of optimised waste management strategies will provide the many additional experimental data which are necessary for a realistic evaluation of long term hazard to man and the environment

  15. Managing Waste Throughout Lean-Green Perspective

    Directory of Open Access Journals (Sweden)

    Lamyaa Mohammed Dawood

    2017-11-01

    Full Text Available Managing waste has been known as a crucial need as it may reduce resource consumption, rigid regulations regarded to the environment and occupational health and safety. Lean and green management are two approaches of management that validate waste. Since performance measures are crucial to improve waste management as its  goals of  to promote the performance of organizations .In this research four primary KPIs have been employed that are significant to lean-green management; operational, environmental, economic and social performance factors, subdivided further into sixteen as (Value stream mapping, life cycle assessment,---etc. Also in this research   determination and ranking of these performance measures and their influence on waste minimization is conducted. Interpretive Structural Modeling (ISM methodology is applied to the classification of Key Performance Indicators (KPIs according to the priority of their importance and the correlation between them and their impact to waste minimization. Cronbach’s Alpha coefficient is employed  to assess the reliability of performance measures to minimize waste, and increase customer  satisfaction.  Results showed that Al-Kufa Cement plant has bad overall performance toward lean green waste management perspective. The highest individual score is for operational performance (6.6 rated as medium. But  the lowest individual score is for economic performance [very bad (2.0].   

  16. Sustainable Waste Management for Green Highway Initiatives

    Directory of Open Access Journals (Sweden)

    Husin Nur Illiana

    2016-01-01

    Full Text Available Green highway initiative is the transportation corridors based on sustainable concept of roadway. It incorporates both transportation functionality and ecological requirements. Green highway also provides more sustainable construction technique that maximizes the lifespan of highway. Waste management is one of the sustainable criterias in the elements of green highway. Construction of highway consumes enormous amounts of waste in term of materials and energy. These wastes need to be reduce to sustain the environment. This paper aims to identify the types of waste produced from highway construction. Additionally, this study also determine the waste minimization strategy and waste management practiced.. This study main focus are construction and demolition waste only. The methodology process begin with data collection by using questionnaire survey. 22 concession companies listed under Lembaga Lebuhraya Malaysia acted as a respondent. The questionnaires were distributed to all technical department staffs. The data received was analyzed using IBM SPSS. The results shows the most production of waste is wood, soil, tree root and concrete. The least production of waste is metal. For waste minimization, the best waste minimization is reuse for all type of waste except for tree root and stump. Whereas, the best waste management is providing strategic plan. The least practice for waste management is recording the quantity of waste.

  17. Hanford Site waste management units report

    International Nuclear Information System (INIS)

    1993-04-01

    The Hanford Site Waste Management Units Report was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments of the 1984. This report provides a comprehensive inventory of all types of waste management units at the Hanford Site, including a description of the units and the waste they contain. Waste management units in the report include: (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment, storage, and disposal (TSD) units, and (6) other storage areas. Because of the comprehensive nature of the units report, the list of units is more extensive than required by Section 3004(u) of Hazardous and Solid Waste Amendments of the 1984. In Sections 3.0 through 6.0 of this report, the four aggregate areas are subdivided into their operable units. The operable units are further divided into two parts: (1) those waste management units assigned to the operable unit that will be remediated as part of the Environmental Restoration Remedial Actions (ERRA) Program, and (2) those waste management units located within the operable unit boundaries but not assigned to the ERRA program. Only some operable unit sections contain the second part

  18. Comparison of the waste management aspects of spent fuel disposal and reprocessing: post-disposal radiological impact

    International Nuclear Information System (INIS)

    Mobbs, S.F.; Harvey, M.P.; Martin, J.S.; Mayall, A.; Jones, M.E.

    1991-01-01

    A joint project involving contractors from France, Germany and the UK was set up by the Commission of the European Communities to assess the implications of two waste management options: the direct disposal of spent fuel and reprocessing of that fuel. This report describes the calculation of the radiological impact on the public of the management and disposal of the wastes associated with these two options. Six waste streams were considered: discharge of liquid reprocessing effluents, discharge of gaseous reprocessing effluents, disposal of low-level solid wastes arising from reprocessing, disposal of intermediate-level solid wastes arising from reprocessing, disposal of vitrified high-level reprocessing wastes, and direct disposal of spent fuel. The results of the calculations are in the form of maximum annual doses and risks to individual members of the public, and collective doses to four population groups, integrated over six time periods. These results were designed for input into a computer model developed by another contractor, Yard Ltd, which combines costs and impacts in a multi-attribute hierarchy to give an overall measure of the impact of a given option

  19. Management of radioactive waste from nuclear applications

    International Nuclear Information System (INIS)

    1997-01-01

    Radioactive waste arises from the generation of nuclear energy and from the production of radioactive materials and their applications in industry, agriculture, research and medicine. The importance of safe management of radioactive waste for the protection of human health and the environment has long been recognized and considerable experience has been gained in this field. Technical expertise is a prerequisite for safe and cost-effective management of radioactive waste. A training course is considered an effective tool for providing technical expertise in various aspects of waste management. The IAEA, in co-operation with national authorities concerned with radioactive waste management, has organized and conducted a number of radioactive waste management training courses. The results of the courses conducted by the IAEA in 1991-1995 have been evaluated at consultants meetings held in December 1995 and May 1996. This guidance document for use by Member States in arranging national training courses on the management of low and intermediate level radioactive waste from nuclear applications has been prepared as the result of that effort. The report outlines the various requirements for the organization, conduct and evaluation of training courses in radioactive waste management and proposes an annotated outline of a reference training course

  20. Influence of assumptions about household waste composition in waste management LCAs.

    Science.gov (United States)

    Slagstad, Helene; Brattebø, Helge

    2013-01-01

    This article takes a detailed look at an uncertainty factor in waste management LCA that has not been widely discussed previously, namely the uncertainty in waste composition. Waste composition is influenced by many factors; it can vary from year to year, seasonally, and with location, for example. The data publicly available at a municipal level can be highly aggregated and sometimes incomplete, and performing composition analysis is technically challenging. Uncertainty is therefore always present in waste composition. This article performs uncertainty analysis on a systematically modified waste composition using a constructed waste management system. In addition the environmental impacts of several waste management strategies are compared when applied to five different cities. We thus discuss the effect of uncertainty in both accounting LCA and comparative LCA. We found the waste composition to be important for the total environmental impact of the system, especially for the global warming, nutrient enrichment and human toxicity via water impact categories. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Life cycle model of waste to energy technologies in Spain and Portugal

    OpenAIRE

    Margallo Blanco, María

    2014-01-01

    ABSTRACT : The high rate of waste generation in the society today has brought waste management to be a priority in European Policies. The European environmental Regulation established waste prevention, reuse, recycling, and finally waste incineration and landfilling as fundamental principles. Despite landfilling remaining the most common practice, waste incineration and recycling have increased in recent years. In particular, waste incineration allows the reduction in waste mass and volume, a...

  2. Radioactive waste management at the Hanford Reservation

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    During some 30 years of plutonium production, the Hanford Reservation has accumulated large quantities of low- and high-level radioactive wastes. The high-level wastes have been stored in underground tanks, and the low-level wastes have been percolated into the soil. In recent years some programs for solidification and separation of the high-level wastes have been initiated. The Hanford waste-management system was studied by a panel of the Committee on Radioactive Waste Management of the National Academy of Sciences. The panel concluded that Hanford waste-management practices were adequate at present and for the immediate future but recommended increased research and development programs related to long-term isolation of the wastes. The panel also considered some alternatives for on-site disposal of the wastes. The Hanford Reservation was originally established for the production of plutonium for military purposes. During more than 30 years of operation, large volumes of high- and low-level radioactive wastes have been accumulated and contained at the site. The Management of these wastes has been the subject of controversy and criticism. To obtain a true technical evaluation of the Hanford waste situation, the Energy Research and Development Administration (now part of the Department of Energy) issued a contract to the National Academy of Sciences and the National Research Councilto conduct an independent review and evaluation of the Hanford waste-management practices and plans. A panel of the Committee on Radioactive Waste Management (CRWM) of the National Academy of Sciences conducted this study between the summer of 1976 and the summer of 1977. This article is a summary of the final report of that panel

  3. Management of packaging waste in Poland--development agenda and accession to the EU.

    Science.gov (United States)

    Grodzińska-Jurczak, Małgorzata; Zakowska, Hanna; Read, Adam

    2004-06-01

    In recent years the issue of the municipal waste in Poland has become increasingly topical, with a considerable rise in the waste generation, much of which can be attributed to a boom in product packaging (mainly plastic). The annual production of plastics packaging has been constantly increasing over the last 20 to 30 years, and now exceeds 3.7 million tons. Due to a lack of processing technologies and poorly developed selective segregation system, packaging waste is still treated as a part of the municipal solid waste (MSW) stream, most of which is landfilled. As a result of Poland's access to the European Union, previous legal regulations governing municipal waste management have been harmonized with those binding on the member countries. One of the main changes, the most revolutionary one, is to make entrepreneurs liable for environmental risks resulting from the introduction of packaging to the market, and for its recycling. In practice, all entrepreneurs are to ensure recovery, and recycling, of used packaging from products introduced to the market at the required level. In recent year, the required recycling levels were fulfilled for all types of materials but mainly by large institutions using grouped and transport packaging waste for that matter. Household packaging gathered in the selective segregation system at the municipalities was practically left alone. This paper is an attempt to describe the system and assess the first year of functioning of the new, revamped system of packaging waste management in Poland. Recommendations are made relating to those features that need to be included in packaging waste management systems in order to maximize their sustainability and harmonization with the EU legal system.

  4. Radioactive waste management

    International Nuclear Information System (INIS)

    2003-01-01

    Almost all IAEA Member States use radioactive sources in medicine, industry, agriculture and scientific research, and countries remain responsible for the safe handling and storage of all radioactively contaminated waste that result from such activities. In some cases, waste must be specially treated or conditioned before storage and/or disposal. The Department of Technical Co-operation is sponsoring a programme with the support of the Nuclear Energy Department aimed at establishing appropriate technologies and procedures for managing radioactive wastes. (IAEA)

  5. Radioactive waste management

    International Nuclear Information System (INIS)

    Strohl, P.

    1985-01-01

    The OECD Nuclear Energy Agency (NEA) attaches considerable importance to its cooperation with Japan. It was said in the annual conference in 1977 that the presentation of the acceptable policy regarding radioactive waste management is the largest single factor for gaining public confidence when nuclear power is adopted with assurance. The risk connected with radioactive wastes was often presented as the major obstacle to the development of nuclear energy, however, an overall impression of optimism and confidence prevailed by the technical appraisal of the situation in this field by the committee of the NEA. This evolution can be easily explained by the significant progress achieved in radioactive waste management both at the technical level and with respect to the implementation of special legislation and the establishment of specialized institutions and financing schemes. More research will focus on the optimization of the technical, safety and economic aspects of specific engineering designs at specific sites on the long term isolation of wastes, and the NEA contributes to this general effort. The implementation of disposal programs is also in progress. (Kako, I.)

  6. Database basic design for safe management radioactive waste

    International Nuclear Information System (INIS)

    Son, D. C.; Ahn, K. I.; Jung, D. J.; Cho, Y. B.

    2003-01-01

    As the amount of radioactive waste and related information to be managed are increasing, some organizations are trying or planning to computerize the management on radioactive waste. When we consider that information on safe management of radioactive waste should be used in association with national radioactive waste management project, standardization of data form and its protocol is required, Korea Institute of Nuclear Safety(KINS) will establish and operate nationwide integrated database in order to effectively manage a large amount of information on national radioactive waste. This database allows not only to trace and manage the trend of radioactive waste occurrence and in storage but also to produce reliable analysis results for the quantity accumulated. Consequently, we can provide necessary information for national radioactive waste management policy and related industry's planing. This study explains the database design which is the essential element for information management

  7. Establishment of database system for management of KAERI wastes

    International Nuclear Information System (INIS)

    Shon, J. S.; Kim, K. J.; Ahn, S. J.

    2004-07-01

    Radioactive wastes generated by KAERI has various types, nuclides and characteristics. To manage and control these kinds of radioactive wastes, it comes to need systematic management of their records, efficient research and quick statistics. Getting information about radioactive waste generated and stored by KAERI is the basic factor to construct the rapid information system for national cooperation management of radioactive waste. In this study, Radioactive Waste Management Integration System (RAWMIS) was developed. It is is aimed at management of record of radioactive wastes, uplifting the efficiency of management and support WACID(Waste Comprehensive Integration Database System) which is a national radioactive waste integrated safety management system of Korea. The major information of RAWMIS supported by user's requirements is generation, gathering, transfer, treatment, and storage information for solid waste, liquid waste, gas waste and waste related to spent fuel. RAWMIS is composed of database, software (interface between user and database), and software for a manager and it was designed with Client/Server structure. RAWMIS will be a useful tool to analyze radioactive waste management and radiation safety management. Also, this system is developed to share information with associated companies. Moreover, it can be expected to support the technology of research and development for radioactive waste treatment

  8. Waste management regroups units into Rust International

    International Nuclear Information System (INIS)

    Kirschner, E.

    1992-01-01

    Three Waste Management (Oak Brook, IL) subsidiaries have proposed merging units from Chemical Waste Management (CWM) and Wheelabrator Technologies with the Brand Companies (Park Ridge, IL). Waste Management says the new company, to be called Rust International, will become one of the US's largest environmental consulting and infrastructure organizations and will include design and construction services. Waste Management expects the merged company's 1993 revenues to reach $1.8 billion. It will be based in Birmingham, AL and have 12,000 employees

  9. Optimised management of orphan wastes in the UK

    International Nuclear Information System (INIS)

    Doudou, Slimane; McTeer, Jennifer; Wickham, Stephen; Thied, Rob; Woodcock, Richard; Turner, Tom; Hamblin, Clive; Buckley, Matthew; Walsh, Ciara

    2013-01-01

    Orphan wastes have properties preventing them from being managed according to existing or currently planned management routes, or lack characterisation so that their management is uncertain. The identification of new management opportunities for orphan wastes could realise significant benefits by reducing the number of processing facilities required, reducing waste volumes, reducing hazard or leading to the development of centres of excellence for the processing of certain types of orphan wastes. Information on the characteristics of orphan waste existing at nuclear licensed sites across the UK has been collated and a database developed to act as a repository for the information gathered. The database provides a capability to analyse the data and to explore possible treatment technologies for each orphan waste type. Thirty five distinct orphan waste types have been defined and possible treatment options considered. Treatment technologies (including chemical, high temperature, immobilisation and physical technologies) that could be applied to one or more of the generic orphan waste streams have been identified. Wiring diagrams have been used to highlight the waste treatment / lifecycle management options that are available for each of the generic orphan groups as well as identifying areas for further research and development. This work has identified the potential for optimising the management of orphan wastes in a number of areas, and many potential opportunities were identified. Such opportunities could be investigated by waste managers at waste producing nuclear sites, to facilitate the development of new management routes for orphan wastes. (authors)

  10. Radioactive waste management alternatives

    International Nuclear Information System (INIS)

    Baranowski, F.P.

    1976-01-01

    The information in the US ERDA ''Technical Alternatives Document'' is summarized. The first two points show that waste treatment, interim storage and transportation technologies for all wastes are currently available. Third, an assessment of integrated waste management systems is needed. One such assessment will be provided in our expanded waste management environmental statement currently planned for release in about one year. Fourth, geologies expected to be suitable for final geologic storage are known. Fifth, repository system assessment methods, that is a means to determine and assess the acceptability of a terminal storage facility for nonretrievable storage, must and will be prepared. Sixth, alternatives to geologic storage are not now available. Seventh, waste quantities and characteristics are sensitive to technologies and fuel-cycle modes, and therefore an assessment of these technologies and modes is important. Eighth, and most important, it is felt that the LWR fuel cycle can be closed with current technologies

  11. LOGISTICS OF WASTE MANAGEMENT IN HEALTHCARE INSTITUTIONS

    Directory of Open Access Journals (Sweden)

    Halina Marczak

    2016-07-01

    Full Text Available The waste management system in health care is a tool that allows to conduct reasonable steps to reduce their amount, collection, storage and transport, and provide a high level of utilization or disposal. Logistics solutions in waste management are intended to make full use of the infrastructure and technical resources, optimize costs, ensure the safety and health at work and meet legal requirements. The article discusses the elements of the logistics system of waste management in hospital, necessary to ensure the smooth flow of waste from its origin to landfilling. The following criteria were characterized: technical and technological, ecological and economic that can be used in the analysis and evaluation of solutions in waste management in the hospital. Finally, solutions to improve waste management system in the hospital on the example of the real object have been presented.

  12. Computer-aided waste management strategic planning and analysis

    International Nuclear Information System (INIS)

    Avci, H.I.; Kotek, T.J.; Koebnick, B.L.

    1995-01-01

    A computational model called WASTE-MGMT has been developed to assist in the evaluation of alternative waste management approaches in a complex setting involving multiple sites, waste streams, and processing options. The model provides the quantities and characteristics of wastes processed at any facility or shipped between any two sites as well as environmental emissions at any facility within the waste management system. The model input is defined by three types of fundamental waste management data: (1) waste inventories and characteristics at the point of generation; (2) treatment, storage, and disposal facility characteristics; and (3) definitions of alternative management approaches. The model has been successfully used in the preparation of the US Department of Energy (DOE) Environmental Management Programmatic.Environmental Impact Statement (EM PEIS). Certain improvements are either being implemented or planned that would extend the usefulness and applicability of the WASTE-MGMT model beyond the EM PEIS and info the. strategic planning for management of wastes under the responsibility of DOE or other agencies

  13. International co-operation for safe radioactive waste management

    International Nuclear Information System (INIS)

    1983-01-01

    As a specialised inter-governmental body, NEA pursues three main objectives for its radioactive waste management programme: - The promotion of studies to improve the data base available in support of national programmes. - The support of Research and Development through co-ordination of national activities and promotion of international projects. - An improvement in the general level of understanding of waste management issues and options, particularly in the field of waste disposal. The management of radioactive waste from nuclear activities covers several sequences of complex technical operations. However, as the ultimate objective of radioactive waste management is the disposal of the waste, the largest part of the work programme is directed towards the analysis of disposal options. In addition, NEA is active in various other areas of waste management, such as the treatment and conditioning of waste, the decommissioning of nuclear facilities and the institutional aspects of the long term management of radioactive waste

  14. The IAEA perspective on international and national radioactive waste management information systems

    International Nuclear Information System (INIS)

    Csullog, G.W.; Falck, W.E.; Miaw, S.T.W.

    2001-01-01

    individual countries. International radioactive waste management information systems are needed to provide overviews of the status of and trends in: establishing national systems for radioactive waste management, the operational state of radioactive waste management facilities (processing, storage and disposal), and annual radioactive waste arisings and the accumulated inventories of waste in storage and disposal facilities. Various international organizations use and assess information about radioactive waste management, such as the IAEA, the OECD/NEA and the European Union. At a recent international meeting on 'Information for Decision Making', experts noted that the 'lack of full and effective co-operation between departments and institutions both at the national and international levels responsible for data collection.. ..often leads to inefficient information management due to duplication of surveys, inconsistent methodologies and inefficient use of information'. Clearly, international organizations need to co-ordinate their activities in the collection and dissemination of nationally-based information about radioactive waste management. Historically, IAEA Member States have developed and implemented a variety of waste classification schemes in support of their national radioactive waste management programmes. For those Member States that have implemented waste inventory record keeping systems, their databases are used to record waste inventories according to national classification schemes. In addition, the scope and quality of information in these databases not only varies from Member State to Member State, it can also vary from organization to organization within a Member State. Differences in waste management record keeping at the national level complicates reporting at the international level, where the information is to be reported in a consistent format that facilitates comparisons between Member State submissions. The IAEA has undertaken a number of initiatives

  15. Managing nuclear waste: the underground perspective

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    A simplified, very-general overview of the history of nuclear waste management is presented. The sources of different wastes of different levels of radioactivity are discussed. The current governmental program, including three DOE programs currently studying the problems of isolating waste in geological repositories, is discussed briefly. The general thrust of ensuing articles in the same magazine dealing with different facets of the waste-management program is outlined. (BLM)

  16. Improvement actions in waste management systems at the provincial scale based on a life cycle assessment evaluation.

    Science.gov (United States)

    Rigamonti, L; Falbo, A; Grosso, M

    2013-11-01

    This paper reports some of the findings of the 'GERLA' project: GEstione Rifiuti in Lombardia - Analisi del ciclo di vita (Waste management in Lombardia - Life cycle assessment). The project was devoted to support Lombardia Region in the drafting of the new waste management plan by applying a life cycle thinking perspective. The present paper mainly focuses on four Provinces in the Region, which were selected based on their peculiarities. Life cycle assessment (LCA) was adopted as the methodology to assess the current performance of the integrated waste management systems, to discuss strengths and weaknesses of each of them and to design their perspective evolution as of year 2020. Results show that despite a usual business approach that is beneficial to all the provinces, the introduction of technological and management improvements to the system provides in general additional energy and environmental benefits for all four provinces. The same improvements can be easily extended to the whole Region, leading to increased environmental benefits from the waste management sector, in line with the targets set by the European Union for 2020. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Human factors in waste management

    International Nuclear Information System (INIS)

    Moray, N.

    1994-01-01

    This article examines the role of human factors in radioactive waste management. Although few problems and ergonomics are special to radioactive waste management, some problems are unique especially with long term storage. The entire sociotechnical system must be looked at in order to see where improvement can take place because operator errors, as seen in Chernobyl and Bhopal, are ultimately the result of management errors

  18. Legal aspects of nuclear waste management

    International Nuclear Information System (INIS)

    Hofmann, H.

    1981-01-01

    The result of the study is that the nuclear waste management defined by sect. 9a of the Atomic Energy Law cannot be realized without violating the constitution or other relevant laws. This evaluation of the nuclear waste management concept is based on an in-depth discussion of technological difficulties involved in nuclear waste management, and on the examination of all existing rules and regulations (Radiation Protection Ordinance, intermediate storage and burial, and reprocessing) at home and abroad, which lead to legal aspects of nuclear waste management which, according to established German law, are to be characterized as being 'unclear'. The author demonstrates especially the lack of precision in law of the term 'radioactive waste'. He points out that a sufficient regulation on the dismantlement of nuclear reactors is missing and he sets forth uncertainties relating to administrative law which are involved in bringing in private companies for burial as it is provided by law. The concluding constitutional assessment of the nuclear waste management regulation of the Atomic Energy Law shows that sect. 9a of the Atomic Energy Law does not meet completely constitutional requirements. (orig./HP) [de

  19. Solid waste management - Pakistan's perspective

    International Nuclear Information System (INIS)

    Hussain, M.

    2003-01-01

    The discipline of 'Solid Waste Management' is as old as human civilization itself. The problem had been felt when the human beings commenced living together in the form of communities. The situation got worsened with ever-increasing population and growing industrialization. The developed nations have endeavored to tackle the issue of the industrial and municipal wastes according to the principles of engineering and environment. Most of the developing countries have not dealt with the 'Third Pollution' in the eco-friendly manner. Ironically Pakistan is facing this serious menace because of ever-expanding population (2.2% per annum) and ill management of the wastes and effluents being generated from multifarious activities. These pollutants are degrading the land, air and water resources at alarming rates. In Pakistan about 7,250 tonnes of solid waste is generated per day. Of this quantity only 60-70% is collected and the remaining quantity is allowed to burn indiscriminately or decay in situ. Unfortunately the industrial waste, animal dung and hospital waste are allowed to mix with the municipal waste, which adds to inefficiency of the existing 'Solid Waste Management System'. Scores of faecal, fly, rodent and mosquito born diseases are caused due to open dumping of the waste besides aesthetic impairment of the surroundings. None of the scientifically recognized methods of disposal is practiced. It is not based on administrative, financial, environmental and technical consideration. There is dire necessity of educating the masses to adopt clean habits and resort to generation of minimum waste. Further, nothing is waste as the so-called 'waste material' is the raw material after reuse and recycling for another process. (author)

  20. Data feature: Status of national reprocessing and waste management programs 1992

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Successful backend management of the nuclear fuel cycle -- which includes the technical, safety and social dimensions, has been widely identified as an absolute prerequisite for nuclear power's long-term survival. This applies to all Western World countries as well as the CIS states and Eastern European countries. A number of countries are moving aggressively ahead to cope with the ever-increasing back-end problems. Other countries still lean towards interim storage of spent fuel as a half-way point until more definitive solutions arise. This article outlines radioactive waste management and disposal strategies in key country markets and highlights major events in this area for 1992

  1. The Radioactive Waste Management at Studsvik

    Energy Technology Data Exchange (ETDEWEB)

    Hedlund, R; Lindskog, A

    1966-04-15

    The report was originally prepared as a contribution to the discussions in an IAEA panel on economics of radioactive waste management held in Vienna from 13 - 17 December 1965. It contains the answers and comments to the questions of a questionnaire for the panel concerning the various operations associated with the management (collection, transport, treatment, discharge, storage, and operational monitoring) of: - radioactive liquid wastes, except high-level effluents from reactor fuel recovering operations; - solid wastes, except those produced from treatment of high level wastes; - gaseous wastes produced from treatment of the foregoing liquid and solid wastes; - equipment decontamination facilities and radioactive laundries.

  2. The Radioactive Waste Management at Studsvik

    International Nuclear Information System (INIS)

    Hedlund, R.; Lindskog, A.

    1966-04-01

    The report was originally prepared as a contribution to the discussions in an IAEA panel on economics of radioactive waste management held in Vienna from 13 - 17 December 1965. It contains the answers and comments to the questions of a questionnaire for the panel concerning the various operations associated with the management (collection, transport, treatment, discharge, storage, and operational monitoring) of: - radioactive liquid wastes, except high-level effluents from reactor fuel recovering operations; - solid wastes, except those produced from treatment of high level wastes; - gaseous wastes produced from treatment of the foregoing liquid and solid wastes; - equipment decontamination facilities and radioactive laundries

  3. INCLUSION OF GUAVA WASTES IN THE DIET OF EUROPEAN QUAILS

    Directory of Open Access Journals (Sweden)

    Luiz Carlos Lemos Camelo

    2015-07-01

    Full Text Available This experiment was conducted to analyze the performance and carcass characteristics of European quail fed agroindustry residue of guava in substitution of corn. 140 birds were used, distributed in a completely randomized design. The treatments consisted of a control diet and four diets with levels of guava waste inclusion (2.5, 5.0, 7.5 and 10.0% to a diet based on corn and soybean meal. There were no significant differences (P> 0.05 for the variables: weight gain, feed intake, feed conversion, feed efficiency, weight and carcass yield and prime cuts (breast, drumstick and thigh wings, back , neck, head, feet and foodstuffs organs (heart, liver and gizzard. The guava waste can be used as alternative ingredient in the diets of European quail in the period of 16-38 days of age, up to the level of 10% inclusion without depressing the performance and yield of poultry carcasses.

  4. TMI-2: Unique waste management technology

    International Nuclear Information System (INIS)

    Bixby, W.W.; Young, W.R.; Grant, P.J.

    1987-01-01

    The 1979 accident at TMI-2 severely damaged the reactor core and contaminated more than a million gallons of water. Subsequent activities created another million gallons of water. The damaged reactor core represented a new waste form and cleanup of the contaminated water and system components created other new waste forms requiring creative approaches to waste management. This paper focuses on technologies that were developed specific to fuel waste management, core debris shipping, processing accident generated water, and disposal of the resultant waste forms

  5. Radioactive waste management - v. 2

    International Nuclear Information System (INIS)

    1987-01-01

    In this second part, the program of waste management of non-military origin of the following countries: USA, United Kingdom, France, Canada, Federal Republic of Germany, and Japan, is presented. For each country, a brief overview on its nuclear program, to identify the reason of the major emphasis done by this country for a specific waste management, is presented. The legislation control, the classification, the treatment and, the options for waste disposal are also presented. (M.C.K.) [pt

  6. Mixed waste management at the Hanford Site

    International Nuclear Information System (INIS)

    Roberts, R.J.; Jasen, W.G.

    1991-01-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA) have led to the definition of a group of wastes called radioactive mixed wastes (RMW). As a result of the radioactive and hazardous properties of these wastes, special projects have been initiated for the management of RMW. This paper addresses the management of solid RMW. The management of bulk liquid RMW will not be described. 7 refs., 4 figs

  7. Factors influencing household participation in solid waste management (Case study: Waste Bank Malang)

    Science.gov (United States)

    Maryati, S.; Arifiani, N. F.; Humaira, A. N. S.; Putri, H. T.

    2018-03-01

    Solid waste management is very important measure in order to reduce the amount of waste. One of solid waste management form in Indonesia is waste banks. This kind of solid waste management required high level of participation of the community. The objective of this study is to explore factors influencing household participation in waste banks. Waste bank in Malang City (WBM) was selected as case study. Questionnaires distribution and investigation in WBM were conducted to identify problems of participation. Quantitative analysis was used to analyze the data. The research reveals that education, income, and knowledge about WBM have relationship with participation in WBM.

  8. Waste management and chemical inventories

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the classification and handling of waste at the Hanford Site. Waste produced at the Hanford Site is classified as either radioactive, nonradioactive, or mixed waste. Radioactive wastes are further categorized as transuranic, high-level, and low-level. Mixed waste may contain both radioactive and hazardous nonradioactive substances. This section describes waste management practices and chemical inventories at the site.

  9. Waste management and chemical inventories

    International Nuclear Information System (INIS)

    Gleckler, B.P.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the classification and handling of waste at the Hanford Site. Waste produced at the Hanford Site is classified as either radioactive, nonradioactive, or mixed waste. Radioactive wastes are further categorized as transuranic, high-level, and low-level. Mixed waste may contain both radioactive and hazardous nonradioactive substances. This section describes waste management practices and chemical inventories at the site

  10. Waste management/waste certification plan for the Oak Ridge National Laboratory Environmental Restoration Program

    International Nuclear Information System (INIS)

    Clark, C. Jr.; Hunt-Davenport, L.D.; Cofer, G.H.

    1995-03-01

    This Waste Management/Waste Certification (C) Plan, written for the Environmental Restoration (ER) Program at Oak Ridge National Laboratory (ORNL), outlines the criteria and methodologies to be used in the management of waste generated during ORNL ER field activities. Other agreed upon methods may be used in the management of waste with consultation with ER and Waste Management Organization. The intent of this plan is to provide information for the minimization, handling, and disposal of waste generated by ER activities. This plan contains provisions for the safe and effective management of waste consistent with the U.S. Environmental Protection Agency's (EPA's) guidance. Components of this plan have been designed to protect the environment and the health and safety of workers and the public. It, therefore, stresses that investigation derived waste (IDW) and other waste be managed to ensure that (1) all efforts be made to minimize the amount of waste generated; (2) costs associated with sampling storage, analysis, transportation, and disposal are minimized; (3) the potential for public and worker exposure is not increased; and (4) additional contaminated areas are not created

  11. Can we talk? Communications management for the Waste Isolation Pilot Plant, a complex nuclear waste management project

    International Nuclear Information System (INIS)

    Goldstein, S.A.; Pullen, G.M.; Brewer, D.R.

    1995-01-01

    Sandia Nuclear Waste Management Program is pursuing for DOE an option for permanently disposing radioactive waste in deep geologic repositories. Included in the Program are the Waste Isolation Pilot Plant (WIPP) Project for US defense program mixed waste the Yucca Mountain Project (YMP) for spent power reactor fuel and vitrified high-level waste, projects for other waste types, and development efforts in environmental decision support technologies. WIPP and YMP are in the public arena, of a controversial nature, and provide significant management challenges. Both projects have large project teams, multiple organization participants, large budgets, long durations, are very complex, have a high degree of programmatic risk, and operate in an extremely regulated environment requiring legal defensibility. For environmental projects like these to succeed, SNL's Program is utilizing nearly all areas in PMI's Project Management Body of Knowledge (PMBOK) to manage along multiple project dimensions such as the physical sciences (e.g., geophysics and geochemistry; performance assessment; decision analysis) management sciences (controlling the triple constraint of performance, cost and schedule), and social sciences (belief systems; public participation; institutional politics). This discussion focuses primarily on communication challenges active on WIPP. How is the WIPP team meeting the challenges of managing communications?'' and ''How are you approaching similar challenges?'' will be questions for a dialog with the audience

  12. Commercial low-level radioactive waste management

    International Nuclear Information System (INIS)

    Coleman, J.A.

    1982-01-01

    The goals, objectives and activities of the Department of Energy's Low-Level Radioactive Waste Management program are reviewed. The goal of the overall Program is to support development of an acceptable, nationwide, near surface waste disposal system by 1986. The commercial LLW program has two major functions: (1) application of the technology improvements for waste handling, treatment and disposal, and (2) assistance to states as they carry out their responsibilities under the Low-Level Radioactive Waste Policy Act of 1980. The priorities for the commercial side of the Low-Level Waste Management Program have been established to meet one goal: to support development of an effective commercial management system by 1986. The first priority is being given to supporting state efforts in forming the institutional structures needed to manage the system. The second priority is the state and industry role in transferring and demonstrating treatment and disposal technologies

  13. Waste processing practices at waste management department from INR

    International Nuclear Information System (INIS)

    Bujoreanu, D.; Bujoreanu, L.

    2010-01-01

    The Institute for Nuclear Research Pitesti (INR), subsidiary of the Romanian Authority for Nuclear Activities has its own Radioactive Waste Treatment Plant (STDR). The object of activity of STDR within the INR Pitesti is to treat and condition radioactive waste resulted from the nuclear facility. Also, it will must prepare and manage the decommissioning projects of its own facilities and to upgrade the facilities for the management of the radioactive waste resulting from other decommissioning activities. In according with the National Nuclear Program and the Governmental order no. 11/2003, the Institute for Nuclear Research is the main support for implementation of the methods and technologies for conditioning and disposal of radioactive waste generated by the decommissioning of nuclear facilities. The classes and criteria of classification for radioactive waste generated in operation and decommissioning in Romania are established in compliance with the classification recommended by IAEA and generally valid in EU countries. The general classification takes into consideration the disposal requirements to isolate the radioactive waste from environment. In Romania, waste minimization is considered by Order No. 56/2004 of CNCAN President for approval of Fundamental regulations on the safe management of radioactive waste. According to this regulation, the generation of radioactive waste is to be kept to the minimum practicable level in terms of both its activity and volume through appropriate design measures, facility operation and decommissioning practices. In order to meet this requirement, the operator must ensure: - selection and control of materials; - recycling and reuse of materials, including clearance of materials; - implementing adequate operating procedures, including those referring to the physical, chemical and radiological characterization of the waste and sorting of different type of materials. (orig.)

  14. E-waste management in India: A mini-review.

    Science.gov (United States)

    Awasthi, Abhishek Kumar; Wang, Mengmeng; Wang, Zhishi; Awasthi, Mrigendra Kumar; Li, Jinhui

    2018-05-01

    Environmental deterioration and health risk due to improper e-waste management has become a serious issue in India. The major portion of e-waste reaches an unorganized e-waste recycling sector and is then treated by using crude methods. This review article presents a brief highlight on e-waste management status, legislation, and technology uses in India. The present e-waste management needs to be more focused on environmentally sound management, by more active support from all the participants involved in the e-waste flow chain in India.

  15. Oak Ridge National Laboratory Waste Management Plan. Rev. 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  16. Radiation-protection standards and waste management

    International Nuclear Information System (INIS)

    Rowe, W.D.

    1976-01-01

    This paper reviews some of the difficult questions to be addressed in the development of fundamental environmental criteria and standards for radioactive waste management. A short discussion is included of the need to develop more precise definitions of terminology, better conceptualization of long-term problems, and new concepts to express risks from waste management and to evaluate the ability of proposed technical alternatives to control such risks. EPA's plans to develop fundamental environmental criteria and generally applicable environmental radiation-protection standards for waste disposal are summarized. Finally, the principal projects in EPA's planned near-future programs are reviewed in the areas of high-level waste, transuranic solid waste, low-level waste, residual decommissioning waste, ocean disposal, and wastes containing natural radioactivity

  17. Waste Management Facilities Cost Information Report

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Shropshire, D.

    1992-10-01

    The Waste Management Facility Cost Information (WMFCI) Report, commissioned by the US Department of Energy (DOE), develops planning life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities. This report contains PLCC estimates versus capacity for 26 different facility cost modules. A procedure to guide DOE and its contractor personnel in the use of estimating data is also provided. Estimates in the report apply to five distinctive waste streams: low-level waste, low-level mixed waste, alpha contaminated low-level waste, alpha contaminated low-level mixed waste, and transuranic waste. The report addresses five different treatment types: incineration, metal/melting and recovery, shredder/compaction, solidification, and vitrification. Data in this report allows the user to develop PLCC estimates for various waste management options.

  18. Waste Management Facilities Cost Information Report

    International Nuclear Information System (INIS)

    Feizollahi, F.; Shropshire, D.

    1992-10-01

    The Waste Management Facility Cost Information (WMFCI) Report, commissioned by the US Department of Energy (DOE), develops planning life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities. This report contains PLCC estimates versus capacity for 26 different facility cost modules. A procedure to guide DOE and its contractor personnel in the use of estimating data is also provided. Estimates in the report apply to five distinctive waste streams: low-level waste, low-level mixed waste, alpha contaminated low-level waste, alpha contaminated low-level mixed waste, and transuranic waste. The report addresses five different treatment types: incineration, metal/melting and recovery, shredder/compaction, solidification, and vitrification. Data in this report allows the user to develop PLCC estimates for various waste management options

  19. Nuclear Waste Management Program summary document, FY 1981

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, Sheldon

    1980-03-01

    The Nuclear Waste Management Program Summary Document outlines the operational and research and development (R and D) activities of the Office of Nuclear Waste Management (NEW) under the Assistant Secretary for Nuclear Energy, US Department of Energy (DOE). This document focuses on the current and planned activities in waste management for FY 1981. This Program Summary Document (PSD) was prepared in order to explain the Federal nuclear waste management and spent fuel storage programs to Congress and its committees and to interested members of the public, the private sector, and the research community. The national energy policy as it applies to waste management and spent fuel storage is presented first. The program strategy, structure, budget, management approach, and public participation programs are then identified. The next section describes program activities and outlines their status. Finally, the applicability of departmental policies to NEW programs is summarized, including field and regional activities, commercialization plans, and environmental and socioeconomic implications of waste management activities, and international programs. This Nuclear Waste Management Program Summary Document is meant to serve as a guide to the progress of R and D and other energy technology programs in radioactive waste management. The R and D objective is to provide the Nation with acceptable solutions to short- and long-term management problems for all forms of radioactive waste and spent fuel.

  20. Nuclear Waste Management Program summary document, FY 1981

    International Nuclear Information System (INIS)

    1980-03-01

    The Nuclear Waste Management Program Summary Document outlines the operational and research and development (R and D) activities of the Office of Nuclear Waste Management (NEW) under the Assistant Secretary for Nuclear Energy, US Department of Energy (DOE). This document focuses on the current and planned activities in waste management for FY 1981. This Program Summary Document (PSD) was prepared in order to explain the Federal nuclear waste management and spent fuel storage programs to Congress and its committees and to interested members of the public, the private sector, and the research community. The national energy policy as it applies to waste management and spent fuel storage is presented first. The program strategy, structure, budget, management approach, and public participation programs are then identified. The next section describes program activities and outlines their status. Finally, the applicability of departmental policies to NEW programs is summarized, including field and regional activities, commercialization plans, and environmental and socioeconomic implications of waste management activities, and international programs. This Nuclear Waste Management Program Summary Document is meant to serve as a guide to the progress of R and D and other energy technology programs in radioactive waste management. The R and D objective is to provide the Nation with acceptable solutions to short- and long-term management problems for all forms of radioactive waste and spent fuel