WorldWideScience

Sample records for european spallation source

  1. New science at the European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Finney, J L [University Coll., London (United Kingdom). Dept. of Physics and Astronomy

    1996-05-01

    The European Spallation Source is a trans-European project aimed at the ultimate construction of a next-generation pulsed spallation neutron source that will deliver 30 times the beam power of ISIS. The reference design for the proposed source has been set, and work is in progress to develop an updated scientific case for the construction of the source early in the next century. Together with improvements in instrumentation, effective flux gains of over two orders of magnitude are likely in some areas, opening up major new opportunities for the exploitation of neutron studies in fundamental, strategic, and applied science. (author)

  2. Fundamental physics possibilities at the European Spallation Source

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Soldner, Torsten

    2016-01-01

    The construction of the European Spallation Source ESS is ongoing in Lund, Sweden. This new high power spallation source with its long-pulse structure opens up new possibilities for fundamental physics experiments. This paper focusses on two proposals for fundamental physics at the ESS: The ANNI...

  3. Licensing review process of the European Spallation Source (ESS) research facility

    International Nuclear Information System (INIS)

    Brewitz, Erica

    2014-01-01

    On 3 January 2012 a license application under the Radiation Protection Act (SFS, 1988b) for the European Spallation Source research facility was submitted to the Swedish Radiation Safety Authority. The European Spallation Source research facility will be the site of a new and quite unusual kind of neutron source, based on a large proton accelerator that bombards a heavy material with protons. The Swedish Radiation Safety Authority is now reviewing the application. (authors)

  4. Linac design for the European spallation source

    Energy Technology Data Exchange (ETDEWEB)

    Klein, H. [Universitaet Postfach, Frankfurt am Main (Germany)

    1995-10-01

    A study group has started to develop a conceptual design for a European Spallation Source (ESS). This pulsed 5 MW source presently consists of a 1.334 GeV linac and two compressor rings. In the following mainly the high intensity linac part will be discussed, which has some features of interest for accelerators for transmutation of radioactive waste too.

  5. Neutron moderators for the European Spallation Source

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Zanini, L.; Batkov, K.

    The design of the neutron moderators for the European Spallation Source, intended to be installed at the start of operations of the facility in 2019 has now been finalized and the moderators are being fabricated. Among the driving principles in the design have been flexibility for instruments...... to have access to cold and thermal neutrons with highest possible source brightness. Different design and configuration options were evaluated. The final configuration accepted for construction foresees two moderators with identical para-hydrogen (so-called "butterfly") shape, but different heights......, placed above and below the spallation target. Both moderators are able to serve the full 2 x 120° beam extraction sectors of instrument suite. The top, 3-cm tall moderator, has both high thermal and high cold brightness, more than by a factor of 2.5 compared to the previous design of the Technical Design...

  6. Decommissioning Plan for European Spallation Source

    Directory of Open Access Journals (Sweden)

    Ene Daniela

    2017-01-01

    Full Text Available This paper is a survey of the European Spallation Source initial decommissioning plan developed in compliance with Swedish Regulatory Authority requirements. The report outlines the decommissioning strategy selected and the baseline plan for decommissioning. Types and quantities of radioactive waste estimated to be generated at the final shut-down of the facility are further provided. The paper ends up with the analysis of the key elements of the decommissioning plan and the recommendations to the ESS management team..

  7. "Innovation and Intellectual Property Policies in European Research Infrastructure Consortia - PART I: The Case of the European Spallation Source ERIC"

    DEFF Research Database (Denmark)

    Yu, Helen; Wested, Jakob; Minssen, Timo

    2017-01-01

    , the European Spallation Source ERIC is required to adopt various policy documents relating to the operation and management of the facility. These cover a wide variety of issues such as user access, public procurement, intellectual property rights (IPR), data management, and dissemination. One of the main goals...... of the problems society is facing today. To facilitate the creation and operation of such RIs, the EU adopted legal frameworks for European Research Infrastructure Consortia (ERIC). On August 31, 2015, the European Spallation Source (ESS) was established as an ERIC. Under the ERIC Regulations and ESS Statutes...... international research collaborations? The complex relationship between scientific excellence, innovation, and IPRs must be carefully considered. Taking the European Spallation Source ERIC as an example, this article investigates ERIC Regulations and EU policies and discusses what issues and perspectives ERICs...

  8. "Innovation and Intellectual Property Policies in European Research Infrastructure Consortia - PART I: The Case of the European Spallation Source ERIC"

    DEFF Research Database (Denmark)

    Yu, Helen; Wested, Jakob; Minssen, Timo

    2017-01-01

    of the problems society is facing today. To facilitate the creation and operation of such RIs, the EU adopted legal frameworks for European Research Infrastructure Consortia (ERIC). On August 31, 2015, the European Spallation Source (ESS) was established as an ERIC. Under the ERIC Regulations and ESS Statutes......, the European Spallation Source ERIC is required to adopt various policy documents relating to the operation and management of the facility. These cover a wide variety of issues such as user access, public procurement, intellectual property rights (IPR), data management, and dissemination. One of the main goals...

  9. Radiation physics of high power spallation targets. State of the art simulation methods and experiments, the 'European Spallation Source' (ESS)

    International Nuclear Information System (INIS)

    Filges, D.; Cloth, P.; Neef, R.D.; Schaal, H.

    1998-01-01

    Particle transport and nuclear interactions of planned high power spallation targets with GeV proton beams can be simulated using widely developed Monte Carlo transport methods. This includes available high energy radiation transport codes and systems for low energy, earlier developed for reactor physics and fusion technology. Monte Carlo simulation codes and applied methods are discussed. The capabilities of the world-wide existing state-of-the-art computer code systems are demonstrated. Results of computational studies for the 'European Spallation Source' (ESS) mercury high power target station are given. The needs for spallation related data and planned experiments are shown. (author)

  10. European Neutrons form Parasitic Research to Global Strategy: Realizing Plans for a Transnational European Spallation Source in the Wake of the Cold War

    Science.gov (United States)

    Kaiserfeld, Thomas

    2016-03-01

    Studies of Big Science have early on focused on instrumentation and scientific co-operation in large organizations, later on to take into account symbolic values and specific research styles while more recently also involving the relevance of commercial interests and economic development as well as the assimilation of research traditions. In accordance with these transformed practices, this presentation will analyze how an organization with the purpose of realizing a Big-Science facility, The European Spallation Source, has successfully managed to present the project as relevant to different national and international policy-makers, to the community of European neutron researchers as well as to different industrial interests. All this has been achieved in a research-policy environment, which has been the subject to drastic transformations, from calls to engage researchers from the former eastern bloc in the early 1990s via competition with American and Asian researchers at the turn of the century 2000 to intensified demands on business applications. During this process, there has also been fierce competition between different potential sites in the U.K., Germany, Spain, Hungary and Sweden, not once, but twice. The project has in addition been plagued by withdrawals of key actors as well as challenging problems in the field of spallation-source construction. Nevertheless, the European Spallation Source has survived from the early 1990s until today, now initiating the construction process at Lund in southern Sweden. In this presentation, the different measures taken and arguments raised by the European Spallation Source project in order to realize the facility will be analysed. Especially the different designs of the European Spallation Source will be analysed as responses to external demands and threats.

  11. Design specification for the European Spallation Source neutron generating target element

    International Nuclear Information System (INIS)

    Aguilar, A.; Sordo, F.; Mora, T.; Mena, L.; Mancisidor, M.; Aguilar, J.; Bakedano, G.; Herranz, I.; Luna, P.; Magan, M.; Vivanco, R.; Jimenez-Villacorta, F.; Sjogreen, K.; Oden, U.; Perlado, J.M.

    2017-01-01

    The paper addresses some of the most relevant issues concerning the thermal hydraulics and radiation damage of the neutron generation target to be built at the European Spallation Source as recently approved after a critical design review. The target unit consists of a set of Tungsten blocks placed inside a wheel of 2.5 m diameter which rotates at some 0.5 Hz in order to distribute the heat generated from incoming protons which reach the target in the radial direction. The spallation material elements are composed of an array of Tungsten pieces which rest on a rotating steel support (the cassette) and are distributed in a cross-flow configuration. The thermal, mechanical and radiation effects resulting from the impact of a 2 GeV proton pulse are analysed in detail as well as an evaluation of the inventory of spallation products. The current design is found to conform to specifications and found to be robust enough to deal with several accident scenarios.

  12. Design specification for the European Spallation Source neutron generating target element

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, A. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Sordo, F., E-mail: fernando.sordo@essbilbao.org [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Instituto de Fusión Nuclear, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Mora, T. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Mena, L. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Instituto de Fusión Nuclear, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Mancisidor, M.; Aguilar, J.; Bakedano, G.; Herranz, I.; Luna, P. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Magan, M.; Vivanco, R. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Instituto de Fusión Nuclear, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Jimenez-Villacorta, F. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Sjogreen, K.; Oden, U. [European Spallation Source ERIC, P.O Box 176, SE-221 00 Lund (Sweden); Perlado, J.M. [Instituto de Fusión Nuclear, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); and others

    2017-06-01

    The paper addresses some of the most relevant issues concerning the thermal hydraulics and radiation damage of the neutron generation target to be built at the European Spallation Source as recently approved after a critical design review. The target unit consists of a set of Tungsten blocks placed inside a wheel of 2.5 m diameter which rotates at some 0.5 Hz in order to distribute the heat generated from incoming protons which reach the target in the radial direction. The spallation material elements are composed of an array of Tungsten pieces which rest on a rotating steel support (the cassette) and are distributed in a cross-flow configuration. The thermal, mechanical and radiation effects resulting from the impact of a 2 GeV proton pulse are analysed in detail as well as an evaluation of the inventory of spallation products. The current design is found to conform to specifications and found to be robust enough to deal with several accident scenarios.

  13. Neutron PSDs for the next generation of spallation neutron sources

    CERN Document Server

    Eijk, C W

    2002-01-01

    A review of R and D for neutron PSDs to be used at anticipated new spallation neutron sources: the Time-of-Flight system facility, European Spallation Source, Spallation Neutron Source and Neutron Arena, is presented. The gas-filled detectors, scintillation detectors and hybrid systems are emphasized.

  14. The European Spallation Source (ESS) project

    International Nuclear Information System (INIS)

    Clausen, K.N.

    2001-01-01

    The European Spallation Source (ESS) is a proposal for a next generation neutron source in Europe. The first phase of the project - establishing the scientific case and the technical feasibility - is now followed by an intensive period of R and D activities. Three target station options: l) a 5 MW 50 Hz short pulse station, 2) a 1 MW 10 Hz short pulse station and 3) a 4 to 5 MW 16 2/3 Hz 2.5 ms long pulse station, and the use of novel advanced cold moderators will be studied. A superconducting option for the accelerator will be investigated in a Europe-wide feasibility study for a multipurpose facility (CONCERT) with potential applications in areas such as neutron scattering, high power irradiation, R and D on transmutation and radioactive beams. It will explore possible synergies of such a facility compared with a standalone solution for the ESS. The milestones for the next three years are: June 2001 - Decision on neutron parameters and target station options, June 2002 - Conclusion of the Concert multipurpose accelerator study and June 2003 - Proposal ready for submission to funding agencies. The facility could be ready for operation around 2010. (author)

  15. Cooperative effort between Consorcio European Spallation Source--Bilbao and Oak Ridge National Laboratory spallation neutron source for manufacturing and testing of the JEMA-designed modulator system

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, David E [ORNL

    2017-01-02

    The JEMA modulator was originally developed for the European Spallation Source (ESS) when Spain was under consideration as a location for the ESS facility. Discussions ensued and the Spallation Neutron Source Research Accelerator Division agreed to form a collaboration with ESS-Bilbao (ESS-B) consortium to provide services for specifying the requirements for a version of the modulator capable of operating twelve 550 kW klystrons, monitoring the technical progress on the contract with JEMA, installing and commissioning the modulator at SNS, and performing a 30 day full power test. This work was recently completed, and this report discusses those activities with primary emphasis on the installation and testing activities.

  16. Cooperative effort between Consorcio European Spallation Source--Bilbao and Oak Ridge National Laboratory spallation neutron source for manufacturing and testing of the JEMA-designed modulator system

    International Nuclear Information System (INIS)

    Anderson, David E.

    2017-01-01

    The JEMA modulator was originally developed for the European Spallation Source (ESS) when Spain was under consideration as a location for the ESS facility. Discussions ensued and the Spallation Neutron Source Research Accelerator Division agreed to form a collaboration with ESS-Bilbao (ESS-B) consortium to provide services for specifying the requirements for a version of the modulator capable of operating twelve 550 kW klystrons, monitoring the technical progress on the contract with JEMA, installing and commissioning the modulator at SNS, and performing a 30 day full power test. This work was recently completed, and this report discusses those activities with primary emphasis on the installation and testing activities.

  17. VESPA: The vibrational spectrometer for the European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Fedrigo, Anna, E-mail: anna.fedrigo@nbi.ku.dk [Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen Ø (Denmark); Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, 50019 Sesto Fiorentino (Italy); European Spallation Source ESS AB, SE-221 00 Lund (Sweden); Colognesi, Daniele; Grazzi, Francesco; Zoppi, Marco [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, 50019 Sesto Fiorentino (Italy); Bertelsen, Mads; Strobl, Markus [Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen Ø (Denmark); European Spallation Source ESS AB, SE-221 00 Lund (Sweden); Hartl, Monika; Deen, Pascale P. [European Spallation Source ESS AB, SE-221 00 Lund (Sweden); Lefmann, Kim [Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen Ø (Denmark)

    2016-06-15

    VESPA, Vibrational Excitation Spectrometer with Pyrolytic-graphite Analysers, aims to probe molecular excitations via inelastic neutron scattering. It is a thermal high resolution inverted geometry time-of-flight instrument designed to maximise the use of the long pulse of the European Spallation Source. The wavelength frame multiplication technique was applied to provide simultaneously a broad dynamic range (about 0-500 meV) while a system of optical blind choppers allows to trade flux for energy resolution. Thanks to its high flux, VESPA will allow the investigation of dynamical and in situ experiments in physical chemistry. Here we describe the design parameters and the corresponding McStas simulations.

  18. Linac-driven spallation-neutron source

    International Nuclear Information System (INIS)

    Jason, A.J.

    1995-01-01

    Strong interest has arisen in accelerator-driven spallation-neutron sources that surpass existing facilities (such as ISIS at Rutherford or LANSCE at Los Alamos) by more than an order of magnitude in beam power delivered to the spallation target. The approach chosen by Los Alamos (as well as the European Spallation Source) provides the full beam energy by acceleration in a linac as opposed to primary acceleration in a synchrotron or other circular device. Two modes of neutron production are visualized for the source. A short-pulse mode produces 1 MW of beam power (at 60 pps) in pulses, of length less than 1 ms, by compression of the linac macropulse through multi-turn injection in an accumulator ring. A long-pulse mode produces a similar beam power with 1-ms-long pulses directly applied to a target. This latter mode rivals the performance of existing reactor facilities to very low neutron energies. Combination with the short-pulse mode addresses virtually all applications

  19. Development of nuclear design criteria for neutron spallation sources

    Energy Technology Data Exchange (ETDEWEB)

    Sordo, F.; Abanades, A. [E.T.S. Industriales, Madrid Polytechnic University, UPM, J.Gutierrez Abascal, 2 -28006 Madrid (Spain)

    2008-07-01

    Spallation neutron sources allow obtaining high neutronic flux for many scientific and industrial applications. In recent years, several proposals have been made about its use, notably the European Spallation Source (ESS), the Japanese Spallation Source (JSNS) and the projects of Accelerator-Driven Subcritical reactors (ADS), particularly in the framework of EURATOM programs. Given their interest, it seems necessary to establish adequate design basis for guiding the engineering analysis and construction projects of this kind of installations. In this sense, all works done so far seek to obtain particular solutions to a particular design, but there has not been any general development to set up an engineering methodology in this field. In the integral design of a spallation source, all relevant physical processes that may influence its behaviour must be taken into account. Neutronic aspects (emitted neutrons and their spectrum, generation performance..), thermomechanical (energy deposition, cooling conditions, stress distribution..), radiological (spallation waste activity, activation reactions and residual heat) and material properties alteration due to irradiation (atomic displacements and gas generation) must all be considered. After analysing in a systematic manner the different options available in scientific literature, the main objective of this thesis was established as making a significant contribution to determine the limiting factors of the main aspects of spallation sources, its application range and the criteria for choosing optimal materials. To achieve this goal, a series of general simulations have been completed, covering all the relevant physical processes in the neutronic and thermal-mechanical field. Finally, the obtained criteria have been applied to the particular case of the design of the spallation source of subcritical reactors PDX-ADS and XT-ADS. These two designs, developed under the European R and D Framework Program, represent nowadays

  20. Development of nuclear design criteria for neutron spallation sources

    International Nuclear Information System (INIS)

    Sordo, F.; Abanades, A.

    2008-01-01

    Spallation neutron sources allow obtaining high neutronic flux for many scientific and industrial applications. In recent years, several proposals have been made about its use, notably the European Spallation Source (ESS), the Japanese Spallation Source (JSNS) and the projects of Accelerator-Driven Subcritical reactors (ADS), particularly in the framework of EURATOM programs. Given their interest, it seems necessary to establish adequate design basis for guiding the engineering analysis and construction projects of this kind of installations. In this sense, all works done so far seek to obtain particular solutions to a particular design, but there has not been any general development to set up an engineering methodology in this field. In the integral design of a spallation source, all relevant physical processes that may influence its behaviour must be taken into account. Neutronic aspects (emitted neutrons and their spectrum, generation performance..), thermomechanical (energy deposition, cooling conditions, stress distribution..), radiological (spallation waste activity, activation reactions and residual heat) and material properties alteration due to irradiation (atomic displacements and gas generation) must all be considered. After analysing in a systematic manner the different options available in scientific literature, the main objective of this thesis was established as making a significant contribution to determine the limiting factors of the main aspects of spallation sources, its application range and the criteria for choosing optimal materials. To achieve this goal, a series of general simulations have been completed, covering all the relevant physical processes in the neutronic and thermal-mechanical field. Finally, the obtained criteria have been applied to the particular case of the design of the spallation source of subcritical reactors PDX-ADS and XT-ADS. These two designs, developed under the European R and D Framework Program, represent nowadays

  1. Challenges and design solutions of the liquid hydrogen circuit at the European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Gallimore, S.; Nilsson, P.; Sabbagh, P.; Takibayev, A.; Weisend II, J. G. [European Spallation Source ESS AB, SE-22100 Lund (Sweden); Beßler, Y. [Forschungzentrum Jülich, Jülich (Germany); Klaus, M. [Technische Universität Dresden, Dresden (Germany)

    2014-01-29

    The European Spallation Source (ESS), Lund, Sweden will be a 5MW long-pulse neutron spallation research facility and will enable new opportunities for researchers in the fields of life sciences, energy, environmental technology, cultural heritage and fundamental physics. Neutrons are produced by accelerating a high-energy proton beam into a rotating helium-cooled tungsten target. These neutrons pass through moderators to reduce their energy to an appropriate range (< 5 meV for cold neutrons); two of which will use liquid hydrogen at 17 K as the moderating and cooling medium. There are several technical challenges to overcome in the design of a robust system that will operate under such conditions, not least the 20 kW of deposited heat. These challenges and the associated design solutions will be detailed in this paper.

  2. Towards the construction of the European spallation source–The ...

    Indian Academy of Sciences (India)

    The possible realization of the European spallation source has been a long and winding story. However, thanks to the conjunction of a number of events it now looks highly probable that in 2008 there will indeed be a decision on the site and on a funding partnership of European countries who will together build and ...

  3. Spallation neutron sources

    International Nuclear Information System (INIS)

    Fraser, J.S.; Bartholomew, G.A.

    1983-01-01

    The principles and theory of spallation neutron sources are outlined and a comparison is given with other types of neutron source. A summary of the available accelerator types for spallation neutron sources and their advantages and disadvantages is presented. Suitable target materials are discussed for specific applications, and typical target assemblies shown. (U.K.)

  4. Improved design of proton source and low energy beam transport line for European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Neri, L., E-mail: neri@lns.infn.it; Celona, L.; Gammino, S.; Mascali, D.; Castro, G.; Ciavola, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Torrisi, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Ingegneria dell’Informazione, delle Infrastrutture e dell’Energia Sostenibile, Università Mediterranea di Reggio Calabria, Via Graziella, 89122 Reggio Calabria (Italy); Cheymol, B.; Ponton, A. [European Spallation Source ESS AB, Lund (Sweden); Galatà, A. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell' università 2, 35020 Legnaro (Italy); Patti, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell' università 2, 35020 Legnaro (Italy); Gozzo, A.; Lega, L. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Ingegneria Informatica e delle Telecomunicazioni, Università degli Studi di Catania, Viale Andrea Doria 6, 95123 Catania (Italy)

    2014-02-15

    The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). The design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.

  5. Characterization of the radiation background at the Spallation Neutron Source

    International Nuclear Information System (INIS)

    DiJulio, Douglas D.; Cherkashyna, Nataliia; Scherzinger, Julius; Khaplanov, Anton; Pfeiffer, Dorothea; Cooper-Jensen, Carsten P.; Fissum, Kevin G.; Kanaki, Kalliopi; Kirstein, Oliver; Hall-Wilton, Richard J.; Bentley, Phillip M.; Ehlers, Georg; Gallmeier, Franz X.; Hornbach, Donald E.; Iverson, Erik B.; Newby, Robert J.

    2016-01-01

    We present a survey of the radiation background at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, TN, USA during routine daily operation. A broad range of detectors was used to characterize primarily the neutron and photon fields throughout the facility. These include a WENDI-2 extended range dosimeter, a thermoscientific NRD, an Arktis 4 He detector, and a standard NaI photon detector. The information gathered from the detectors was used to map out the neutron dose rates throughout the facility and also the neutron dose rate and flux profiles of several different beamlines. The survey provides detailed information useful for developing future shielding concepts at spallation neutron sources, such as the European Spallation Source (ESS), currently under construction in Lund, Sweden. (paper)

  6. Beam commission of the high intensity proton source developed at INFN-LNS for the European Spallation Source

    Science.gov (United States)

    Neri, L.; Celona, L.; Gammino, S.; Miraglia, A.; Leonardi, O.; Castro, G.; Torrisi, G.; Mascali, D.; Mazzaglia, M.; Allegra, L.; Amato, A.; Calabrese, G.; Caruso, A.; Chines, F.; Gallo, G.; Longhitano, A.; Manno, G.; Marletta, S.; Maugeri, A.; Passarello, S.; Pastore, G.; Seminara, A.; Spartà, A.; Vinciguerra, S.

    2017-07-01

    At the Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS) the beam commissioning of the high intensity Proton Source for the European Spallation Source (PS-ESS) started in November 2016. Beam stability at high current intensity is one of the most important parameter for the first steps of the ongoing commissioning. Promising results were obtained since the first source start with a 6 mm diameter extraction hole. The increase of the extraction hole to 8 mm allowed improving PS-ESS performances and obtaining the values required by the ESS accelerator. In this work, extracted beam current characteristics together with Doppler shift and emittance measurements are presented, as well as the description of the next phases before the installation at ESS in Lund.

  7. MEGAPIE-TEST: A European Project on Spallation Target Testing

    International Nuclear Information System (INIS)

    Knebel, Joachim U.; Klein, Jean-Christophe; Gorse, Dominique; Agostini, Pietro; Groeschel, Friedrich; Kupschus, Peter; Kirchner, Thomas; Vogt, Jean-Bernard

    2002-01-01

    Within the Euratom 5. Framework Programme (5FP) the European Commission is funding the MEGAPIE-TEST Project (Megawatt Pilot Experiment - Testing) over a period of three years, starting in September 2001. The project is combining the efforts of 8 main associations. MEGAPIE is a liquid metal spallation target of 1 MW of beam power. The main results of the MEGAPIE-TEST project will be: Development and comprehensive testing of a liquid metal spallation target both under beam-off and beam-on conditions, and the set up of a handbook on the design of a neutron spallation source in general. The operation of MEGAPIE within the accelerator complex SINQ at Paul Scherrer Institute (PSI), Switzerland, is envisaged in 2004. MEGAPIE is a first decisive step to realize a liquid metal spallation target in Europe. This report is giving an overview of the MEGAPIE-TEST Project, the overall work plan, and preliminary results from the design support and validation, which form an important basis for the project. (authors)

  8. Spallation source neutron target systems

    International Nuclear Information System (INIS)

    Russell, G.; Brown, R.; Collier, M.; Donahue, J.

    1996-01-01

    This is the final report for a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project sought to design a next-generation spallation source neutron target system for the Manuel Lujan, Jr., Neutron Scattering Center (LANSCE) at Los Alamos. It has been recognized for some time that new advanced neutron sources are needed in the US if the country is to maintain a competitive position in several important scientific and technological areas. A recent DOE panel concluded that the proposed Advanced Neutron Source (a nuclear reactor at Oak Ridge National Laboratory) and a high-power pulsed spallation source are both needed in the near future. One of the most technically challenging designs for a spallation source is the target station itself and, more specifically, the target-moderator-reflector arrangement. Los Alamos has demonstrated capabilities in designing, building, and operating high-power spallation-neutron-source target stations. Most of the new design ideas proposed worldwide for target system design for the next generation pulsed spallation source have either been conceived and implemented at LANSCE or proposed by LANSCE target system designers. These concepts include split targets, flux-trap moderators, back scattering and composite moderators, and composite reflectors

  9. A Very Intense Neutrino Super Beam Experiment for Leptonic CP Violation Discovery based on the European Spallation Source Linac: A Snowmass 2013 White Paper

    CERN Document Server

    Baussan, E; Bogomilov, M.; Bouquerel, E.; Cederkäll, J.; Christiansen, P.; Coloma, P.; Cupial, P.; Danared, H.; Densham, C.; Dracos, M.; Ekelöf, T.; Eshraqi, M.; Fernandez Martinez, E.; Gaudiot, G.; Hall-Wilton, R.; Koutchouk, J.P.; Lindroos, M.; Matev, R.; McGinnis, D.; Mezzetto, M.; Miyamoto, R.; Mosca, L.; Ohlsson, T.; Öhman, H.; Osswald, F.; Peggs, S.; Poussot, P.; Ruber, R.; Tang, J.Y.; Tsenov, R.; Vankova-Kirilova, G.; Vassilopoulos, N.; Wildner, E.; Wurtz, J.

    2014-01-01

    Very intense neutrino beams and large neutrino detectors will be needed in order to enable the discovery of CP violation in the leptonic sector. We propose to use the proton linac of the European Spallation Source currently under construction in Lund, Sweden to deliver, in parallel with the spallation neutron production, a very intense, cost effective and high performance neutrino beam. The baseline program for the European Spallation Source linac is that it will be fully operational at 5 MW average power by 2022, producing 2 GeV 2.86 ms long proton pulses at a rate of 14 Hz. Our proposal is to upgrade the linac to 10 MW average power and 28 Hz, producing 14 pulses/s for neutron production and 14 pulses/s for neutrino production. Furthermore, because of the high current required in the pulsed neutrino horn, the length of the pulses used for neutrino production needs to be compressed to a few $\\mu$s with the aid of an accumulator ring. A long baseline experiment using this Super Beam and a megaton underground ...

  10. Spallation Neutron Sources For Science And Technology

    International Nuclear Information System (INIS)

    Comsan, M.N.H.

    2011-01-01

    Spallation Neutron Facilities Increasing interest has been noticed in spallation neutron sources (SNS) during the past 20 years. The system includes high current proton accelerator in the GeV region and spallation heavy metal target in the Hg-Bi region. Among high flux currently operating SNSs are: ISIS in UK (1985), SINQ in Switzerland (1996), JSNS in Japan (2008), and SNS in USA (2010). Under construction is the European spallation source (ESS) in Sweden (to be operational in 2020). The intense neutron beams provided by SNSs have the advantage of being of non-reactor origin, are of continuous (SINQ) or pulsed nature. Combined with state-of-the-art neutron instrumentation, they have a diverse potential for both scientific research and diverse applications. Why Neutrons? Neutrons have wavelengths comparable to interatomic spacings (1-5 A) Neutrons have energies comparable to structural and magnetic excitations (1-100 meV) Neutrons are deeply penetrating (bulk samples can be studied) Neutrons are scattered with a strength that varies from element to element (and isotope to isotope) Neutrons have a magnetic moment (study of magnetic materials) Neutrons interact only weakly with matter (theory is easy) Neutron scattering is therefore an ideal probe of magnetic and atomic structures and excitations Neutron Producing Reactions Several nuclear reactions are capable of producing neutrons. However the use of protons minimises the energetic cost of the neutrons produced solid state physics and astrophysics Inelastic neutron scattering

  11. A comparison between short pulse spallation source and long pulse spallation source

    Energy Technology Data Exchange (ETDEWEB)

    Aizawa, Kazuya; Watanabe, Noboru; Suzuki, Jun-ichi; Niimura, Nobuo; Morii, Yukio; Katano, Susumu; Osakabe, Toyotaka; Teshigawara, Makoto [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Mezei, F.

    1997-11-01

    The performance for a 5 MW short pulse spallation source (SPSS) and a 4.5 MW long pulse spallation source (LPSS) in a JAERI program which is based on the availability of a 1.5 GeV superconducting linac with a 30 mA peak current for both proton and H{sup -} beams is discussed. We have examined the superiority of SPSS to LPSS. While a LPSS facility is a second option, we propose an SPSS facility as a first option. (author)

  12. A comparison between short pulse spallation source and long pulse spallation source

    International Nuclear Information System (INIS)

    Aizawa, Kazuya; Watanabe, Noboru; Suzuki, Jun-ichi; Niimura, Nobuo; Morii, Yukio; Katano, Susumu; Osakabe, Toyotaka; Teshigawara, Makoto; Mezei, F.

    1997-01-01

    The performance for a 5 MW short pulse spallation source (SPSS) and a 4.5 MW long pulse spallation source (LPSS) in a JAERI program which is based on the availability of a 1.5 GeV superconducting linac with a 30 mA peak current for both proton and H - beams is discussed. We have examined the superiority of SPSS to LPSS. While a LPSS facility is a second option, we propose an SPSS facility as a first option. (author)

  13. The test beamline of the European Spallation Source – Instrumentation development and wavelength frame multiplication

    International Nuclear Information System (INIS)

    Woracek, R.; Hofmann, T.; Bulat, M.; Sales, M.; Habicht, K.; Andersen, K.; Strobl, M.

    2016-01-01

    The European Spallation Source (ESS), scheduled to start operation in 2020, is aiming to deliver the most intense neutron beams for experimental research of any facility worldwide. Its long pulse time structure implies significant differences for instrumentation compared to other spallation sources which, in contrast, are all providing short neutron pulses. In order to enable the development of methods and technology adapted to this novel type of source well in advance of the first instruments being constructed at ESS, a test beamline (TBL) was designed and built at the BER II research reactor at Helmholtz-Zentrum Berlin (HZB). Operating the TBL shall provide valuable experience in order to allow for a smooth start of operations at ESS. The beamline is capable of mimicking the ESS pulse structure by a double chopper system and provides variable wavelength resolution as low as 0.5% over a wide wavelength band between 1.6 Å and 10 Å by a dedicated wavelength frame multiplication (WFM) chopper system. WFM is proposed for several ESS instruments to allow for flexible time-of-flight resolution. Hence, ESS will benefit from the TBL which offers unique possibilities for testing methods and components. This article describes the main capabilities of the instrument, its performance as experimentally verified during the commissioning, and its relevance to currently starting ESS instrumentation projects.

  14. The test beamline of the European Spallation Source – Instrumentation development and wavelength frame multiplication

    Energy Technology Data Exchange (ETDEWEB)

    Woracek, R., E-mail: robin.woracek@esss.se [European Spallation Source ESS ERIC, P.O. Box 176, SE-22100 Lund (Sweden); Hofmann, T.; Bulat, M. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Sales, M. [Technical University of Denmark, Fysikvej, 2800 Kgs. Lyngby (Denmark); Habicht, K. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Andersen, K. [European Spallation Source ESS ERIC, P.O. Box 176, SE-22100 Lund (Sweden); Strobl, M. [European Spallation Source ESS ERIC, P.O. Box 176, SE-22100 Lund (Sweden); Technical University of Denmark, Fysikvej, 2800 Kgs. Lyngby (Denmark)

    2016-12-11

    The European Spallation Source (ESS), scheduled to start operation in 2020, is aiming to deliver the most intense neutron beams for experimental research of any facility worldwide. Its long pulse time structure implies significant differences for instrumentation compared to other spallation sources which, in contrast, are all providing short neutron pulses. In order to enable the development of methods and technology adapted to this novel type of source well in advance of the first instruments being constructed at ESS, a test beamline (TBL) was designed and built at the BER II research reactor at Helmholtz-Zentrum Berlin (HZB). Operating the TBL shall provide valuable experience in order to allow for a smooth start of operations at ESS. The beamline is capable of mimicking the ESS pulse structure by a double chopper system and provides variable wavelength resolution as low as 0.5% over a wide wavelength band between 1.6 Å and 10 Å by a dedicated wavelength frame multiplication (WFM) chopper system. WFM is proposed for several ESS instruments to allow for flexible time-of-flight resolution. Hence, ESS will benefit from the TBL which offers unique possibilities for testing methods and components. This article describes the main capabilities of the instrument, its performance as experimentally verified during the commissioning, and its relevance to currently starting ESS instrumentation projects.

  15. The biological shield of a high-intensity spallation source: a monte Carlo design study

    International Nuclear Information System (INIS)

    Koprivnikar, I.; Schachinger, E.

    2004-01-01

    The design of high-intensity spallation sources requires the best possible estimates for the biological shield. The applicability of three-dimensional Monte Carlo simulation in the design of the biological shield of a spallation source will be discussed. In order to achieve reasonable computing times along with acceptable accuracy, biasing techniques are to be employed and it was the main purpose of this work to develop a strategy for an effective Monte Carlo simulation in shielding design. The most prominent MC computer codes, namely MCNPX and FLUKA99, have been applied to the same model spallation source (the European Spallation Source) and on the basis of the derived strategies, the design and characteristics of the target station shield are discussed. It is also the purpose of the paper to demonstrate the application of the developed strategy for the design of beam lines with their shielding using as an example the target-moderator-reflector complex of the ESS as the primary particle source. (author)

  16. GEM-based thermal neutron beam monitors for spallation sources

    International Nuclear Information System (INIS)

    Croci, G.; Claps, G.; Caniello, R.; Cazzaniga, C.; Grosso, G.; Murtas, F.; Tardocchi, M.; Vassallo, E.; Gorini, G.; Horstmann, C.; Kampmann, R.; Nowak, G.; Stoermer, M.

    2013-01-01

    The development of new large area and high flux thermal neutron detectors for future neutron spallation sources, like the European Spallation Source (ESS) is motivated by the problem of 3 He shortage. In the framework of the development of ESS, GEM (Gas Electron Multiplier) is one of the detector technologies that are being explored as thermal neutron sensors. A first prototype of GEM-based thermal neutron beam monitor (bGEM) has been built during 2012. The bGEM is a triple GEM gaseous detector equipped with an aluminum cathode coated by 1μm thick B 4 C layer used to convert thermal neutrons to charged particles through the 10 B(n, 7 Li)α nuclear reaction. This paper describes the results obtained by testing a bGEM detector at the ISIS spallation source on the VESUVIO beamline. Beam profiles (FWHM x =31 mm and FWHM y =36 mm), bGEM thermal neutron counting efficiency (≈1%), detector stability (3.45%) and the time-of-flight spectrum of the beam were successfully measured. This prototype represents the first step towards the development of thermal neutrons detectors with efficiency larger than 50% as alternatives to 3 He-based gaseous detectors

  17. In pursuit of a promise perspectives on the political process to establish the European Spallation Source (ESS) in Lund, Sweden

    CERN Document Server

    2012-01-01

    On 28 May 2009, at a closed meeting in Brussels, ministers and state secretaries of education and science from several EU countries decided to build the European Spallation Source (ESS) in Lund, Sweden. Or did they? It is common for big European science projects to be surrounded by secrecy and political deceit, but the ESS is extraordinary in its elusiveness. There is a remarkable lack of concrete economic, political, technical and scientific underpinnings to the project - but a boasting certainty in the promises of future paybacks. The ESS is an accelerator-based neutron spallation facility that will cost billions of Euros to build and run. It is expected to bring new knowledge in several fields including materials science, energy research, and the life sciences. But its financing is not yet certain, and future returns hard to predict. How then could the decision to build ESS occur? Why was there so little organized resistance? This book places the ESS project in its political and scientific context. It link...

  18. Materials for spallation neutron sources

    International Nuclear Information System (INIS)

    Sommer, W.F.; Daemen, L.L.

    1996-03-01

    The Workshop on Materials for Spallation Neutron Sources at the Los Alamos Neutron Science Center, February 6 to 10, 1995, gathered scientists from Department of Energy national laboratories, other federal institutions, universities, and industry to discuss areas in which work is needed, successful designs and use of materials, and opportunities for further studies. During the first day of the workshop, speakers presented overviews of current spallation neutron sources. During the next 3 days, seven panels allowed speakers to present information on a variety of topics ranging from experimental and theoretical considerations on radiation damage to materials safety issues. An attempt was made to identify specific problems that require attention within the context of spallation neutron sources. This proceedings is a collection of summaries from the overview sessions and the panel presentations

  19. Disposal strategy of proton irradiated mercury from high power spallation sources

    International Nuclear Information System (INIS)

    Chiriki, Suresh

    2010-01-01

    Large spallation sources are intended to be constructed in Europe (EURISOL: nuclear physics research facility and ESS: European Spallation Source). These facilities would accumulate more than 20 metric tons of irradiated mercury in the target, which has to be treated as highly radioactive and chemo-toxic waste. Liquid waste cannot be tolerated in European repositories. As part of this work on safety/decommissioning of high-power spallation sources, our investigations were focused mainly to study experimentally and theoretically the solidification of liquid mercury waste (selection of an adequate solid mercury form and of an immobilization matrix, chemical engineering process studies on solidification/stabilization and on encapsulating in a matrix). Based on experimental results and supported by literature Hg-chalcogens (HgS, HgSe) will be more stable in repositories than amalgams. Our irradiation experimental studies on mercury waste revealed that mercury sulfide is a reasonable solid for disposal and shows larger stability in possible accidents with water ingress in a repository. Additionally immobilization of mercury in a cement matrix and polysiloxane matrix were tested. HgS formation from liquid target mercury by a wet process is identified as a suitable formation procedure. These investigations reveal that an almost 99.9% elementary Hg conversion can be achieved and that wet process can be reasonably handled under hot cell conditions. (orig.)

  20. Disposal strategy of proton irradiated mercury from high power spallation sources

    Energy Technology Data Exchange (ETDEWEB)

    Chiriki, Suresh

    2010-07-01

    Large spallation sources are intended to be constructed in Europe (EURISOL: nuclear physics research facility and ESS: European Spallation Source). These facilities would accumulate more than 20 metric tons of irradiated mercury in the target, which has to be treated as highly radioactive and chemo-toxic waste. Liquid waste cannot be tolerated in European repositories. As part of this work on safety/decommissioning of high-power spallation sources, our investigations were focused mainly to study experimentally and theoretically the solidification of liquid mercury waste (selection of an adequate solid mercury form and of an immobilization matrix, chemical engineering process studies on solidification/stabilization and on encapsulating in a matrix). Based on experimental results and supported by literature Hg-chalcogens (HgS, HgSe) will be more stable in repositories than amalgams. Our irradiation experimental studies on mercury waste revealed that mercury sulfide is a reasonable solid for disposal and shows larger stability in possible accidents with water ingress in a repository. Additionally immobilization of mercury in a cement matrix and polysiloxane matrix were tested. HgS formation from liquid target mercury by a wet process is identified as a suitable formation procedure. These investigations reveal that an almost 99.9% elementary Hg conversion can be achieved and that wet process can be reasonably handled under hot cell conditions. (orig.)

  1. Spallation Neutron Source (SNS)

    Data.gov (United States)

    Federal Laboratory Consortium — The SNS at Oak Ridge National Laboratory is a next-generation spallation neutron source for neutron scattering that is currently the most powerful neutron source in...

  2. The concept of a European spallation neutron source (ESS)

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G.S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-11-01

    The next generation neutron source in Europe, which was studied by a collaboration between twelve laboratories, has been conceived as a 5 MW short pulse spallation source because of the superior overall scientific potential attributed to such a facility relative to all other options considered. While the accelerator side can use essentially established technology with some extensions in performance, a novel target concept based on the use of Mercury as a flowing liquid metal target was developed, which is not only expected to lead the way further into the future, but which was also found to give the best neutronic performance of all known choices. Close permanent interaction with a large user community yielded important input for the concept in general and for the upcoming R and D and design phases in particular. (author)

  3. Targets for neutron beam spallation sources

    International Nuclear Information System (INIS)

    Bauer, G.S.

    1980-01-01

    The meeting on Targets for Neutron Beam Spallation Sources held at the Institut fuer Festkoerperforschung at KFA Juelich on June 11 and 12, 1979 was planned as an informal get-together for scientists involved in the planning, design and future use of spallation neutron sources in Europe. These proceedings contain the papers contributed to this meeting. For further information see hints under relevant topics. (orig./FKS)

  4. Neutronics of pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Watanabe, Noboru

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, poisoning, etc are discussed, aiming at a high performance pulsed spallation source

  5. Materials performance experience at spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, W.F. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    There is a growing, but not yet substantial, data base for materials performance at spallation neutron sources. Specially designed experiments using medium energy protons (650 MeV) have been conducted at the Proton Irradiation Experiment (PIREX) facility at the Swiss Nuclear Institute accelerator (SIN). Specially designed experiments using 760-800 MeV copper target have been completed at the Los Alamos Spallation Radiation Effects Facility (LASREF) at Los Alamos Meson Physics Facility (LAMPF). An extensive material testing program was initiated at LASREF in support of the German spallation neutron source (SNQ) project, before it terminated in 1985.

  6. Benchmarking shielding simulations for an accelerator-driven spallation neutron source

    Directory of Open Access Journals (Sweden)

    Nataliia Cherkashyna

    2015-08-01

    Full Text Available The shielding at an accelerator-driven spallation neutron facility plays a critical role in the performance of the neutron scattering instruments, the overall safety, and the total cost of the facility. Accurate simulation of shielding components is thus key for the design of upcoming facilities, such as the European Spallation Source (ESS, currently in construction in Lund, Sweden. In this paper, we present a comparative study between the measured and the simulated neutron background at the Swiss Spallation Neutron Source (SINQ, at the Paul Scherrer Institute (PSI, Villigen, Switzerland. The measurements were carried out at several positions along the SINQ monolith wall with the neutron dosimeter WENDI-2, which has a well-characterized response up to 5 GeV. The simulations were performed using the Monte-Carlo radiation transport code geant4, and include a complete transport from the proton beam to the measurement locations in a single calculation. An agreement between measurements and simulations is about a factor of 2 for the points where the measured radiation dose is above the background level, which is a satisfactory result for such simulations spanning many energy regimes, different physics processes and transport through several meters of shielding materials. The neutrons contributing to the radiation field emanating from the monolith were confirmed to originate from neutrons with energies above 1 MeV in the target region. The current work validates geant4 as being well suited for deep-shielding calculations at accelerator-based spallation sources. We also extrapolate what the simulated flux levels might imply for short (several tens of meters instruments at ESS.

  7. Outline of spallation neutron source engineering

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Noboru [Center for Neutron Science, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    2001-01-01

    Slow neutrons such as cold and thermal neutrons are unique probes which can determine structures and dynamics of condensed matter in atomic scale. The neutron scattering technique is indispensable not only for basic sciences such as condensed matter research and life science, but also for basic industrial technology in 21 century. It is believed that to survive in the science-technology competition in 21 century would be almost impossible without neutron scattering. However, the intensity of neutrons presently available is much lower than synchrotron radiation sources, etc. Thus, R and D of intense neutron sources become most important. The High-Intensity Proton Accelerator Project is now being promoted jointly by Japan Atomic Energy Research Institute and High Energy Accelerator Research Organization, but there has so far been no good text which covers all the aspects of pulsed spallation neutron sources. The present review was prepare aiming at giving a better understanding on pulsed spallation neutron sources not only to neutron source researchers but also more widely to neutron scattering researchers and accelerator scientists in this field. The contents involve, starting from what is neutron scattering and what neutrons are necessary for neutron scattering, what is the spallation reaction, how to produce neutrons required for neutron scattering more efficiently, target-moderator-reflector neutronics and its engineering, shielding, target station, material issues, etc. The author have engaged in R and D of pulsed apallation neutron sources and neutron scattering research using them over 30 years. The present review is prepared based on the author's experiences with useful information obtained through ICANS collaboration and recent data from the JSNS (Japanese Spallation Neutron Source) design team. (author)

  8. Conceptual design of a cold methane moderator system for the European Spallation Source (ESS)

    CERN Document Server

    Barnert-Wiemer, H

    2002-01-01

    As part of the work for the target station of the planned European spallation source (ESS) the Central Department of Technology at the Forschungszentrum Juelich GmbH is also concerned with the moderators, particular attention being given to the development of cold methane moderators. This report discusses the technical feasibility of solid methane moderators. Methods to tailor the neutron output by adding absorption materials (decouplers or poisons) are not considered here, neither are composite moderators. Based on the given target-moderator-reflector assembly of the ESS project a concept for the ESS cold methane moderators has been developed and is being examined at the Forschungszentrum Juelich. According to this moderator concept the moderator is a fixed bed of small spheres, which makes moderator container filling homogeneous and reproducible. Since spheres form a defined packed bed, cooling of the moderator bed by H sub 2 is reliable. The process of filling the moderator container and of removing the pe...

  9. Neutron scattering instrumentation for biology at spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Pynn, R. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    Conventional wisdom holds that since biological entities are large, they must be studied with cold neutrons, a domain in which reactor sources of neutrons are often supposed to be pre-eminent. In fact, the current generation of pulsed spallation neutron sources, such as LANSCE at Los Alamos and ISIS in the United Kingdom, has demonstrated a capability for small angle scattering (SANS) - a typical cold- neutron application - that was not anticipated five years ago. Although no one has yet built a Laue diffractometer at a pulsed spallation source, calculations show that such an instrument would provide an exceptional capability for protein crystallography at one of the existing high-power spoliation sources. Even more exciting is the prospect of installing such spectrometers either at a next-generation, short-pulse spallation source or at a long-pulse spallation source. A recent Los Alamos study has shown that a one-megawatt, short-pulse source, which is an order of magnitude more powerful than LANSCE, could be built with today`s technology. In Europe, a preconceptual design study for a five-megawatt source is under way. Although such short-pulse sources are likely to be the wave of the future, they may not be necessary for some applications - such as Laue diffraction - which can be performed very well at a long-pulse spoliation source. Recently, it has been argued by Mezei that a facility that combines a short-pulse spallation source similar to LANSCE, with a one-megawatt, long-pulse spallation source would provide a cost-effective solution to the global shortage of neutrons for research. The basis for this assertion as well as the performance of some existing neutron spectrometers at short-pulse sources will be examined in this presentation.

  10. Pulsed spallation Neutron Sources

    International Nuclear Information System (INIS)

    Carpenter, J.M.

    1994-01-01

    This paper reviews the early history of pulsed spallation neutron source development at Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provides a few examples of applications in fundamental condensed matter physics, materials science and technology

  11. Pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Carpenter, J.M.

    1996-01-01

    This paper reviews the early history of pulsed spallation neutron source development ar Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provide a few examples of applications in fundamental condensed matter physics, materials science and technology

  12. HEKATE—A novel grazing incidence neutron scattering concept for the European Spallation Source

    Science.gov (United States)

    Glavic, Artur; Stahn, Jochen

    2018-03-01

    Structure and magnetism at surfaces and buried interfaces on the nanoscale can only be accessed by few techniques, one of which is grazing incidence neutron scattering. While the technique has its strongest limitation in a low signal and large background, due to the low scattering probability and need for high resolution, it can be expected that the high intensity of the European Spallation Source in Lund, Sweden, will make many more such studies possible, warranting a dedicated beamline for this technique. We present an instrument concept, Highly Extended K range And Tunable Experiment (HEKATE), for surface scattering that combines the advantages of two Selene neutron guides with unique capabilities of spatially separated distinct wavelength frames. With this combination, it is not only possible to measure large specular reflectometry ranges, even on free liquid surfaces, but also to use two independent incident beams with tunable sizes and resolutions that can be optimized for the specifics of the investigated samples. Further the instrument guide geometry is tuned for reduction of high energy particle background and only uses low to moderate supermirror coatings for high reliability and affordable cost.

  13. HEKATE-A novel grazing incidence neutron scattering concept for the European Spallation Source.

    Science.gov (United States)

    Glavic, Artur; Stahn, Jochen

    2018-03-01

    Structure and magnetism at surfaces and buried interfaces on the nanoscale can only be accessed by few techniques, one of which is grazing incidence neutron scattering. While the technique has its strongest limitation in a low signal and large background, due to the low scattering probability and need for high resolution, it can be expected that the high intensity of the European Spallation Source in Lund, Sweden, will make many more such studies possible, warranting a dedicated beamline for this technique. We present an instrument concept, Highly Extended K range And Tunable Experiment (HEKATE), for surface scattering that combines the advantages of two Selene neutron guides with unique capabilities of spatially separated distinct wavelength frames. With this combination, it is not only possible to measure large specular reflectometry ranges, even on free liquid surfaces, but also to use two independent incident beams with tunable sizes and resolutions that can be optimized for the specifics of the investigated samples. Further the instrument guide geometry is tuned for reduction of high energy particle background and only uses low to moderate supermirror coatings for high reliability and affordable cost.

  14. Structural materials for fusion and spallation sources

    International Nuclear Information System (INIS)

    Cottrell, G.A.; Baker, L.J.

    2003-01-01

    Experimental investigation of neutron-induced irradiation damage in structural materials is fundamental to the development of magnetic confinement fusion. Proposals for the testing of candidate materials are described, indicating that a period of at least 10 years will elapse before a suitable high neutron fluence fusion test facility becomes available. In this circumstance, the possibility that neutron spallation sources could be exploited to shorten the time-scale of fusion materials development is attractive. Although fusion displacement and transmutation reaction rates can be replicated in spallation sources, there are significant differences arising from the harder neutron spectra and the presence of energetic protons. These differences, including higher energy PKA, electron heating effects, transmutation rates and pulsing are described and their consequences discussed, together with the concomitant development of theoretical models, needed to understand the effects. It is concluded that spallation source experiments could make a significant contribution to the database required for the validation of theoretical models, and hence reduce the time scale of fusion materials development

  15. Spallation neutrons pulsed sources

    International Nuclear Information System (INIS)

    Carpenter, J.

    1996-01-01

    This article describes the range of scientific applications which can use these pulsed neutrons sources: Studies on super fluids, measures to verify the crawling model for the polymers diffusion; these sources are also useful to study the neutron disintegration, the ultra cold neutrons. In certain applications which were not accessible by neutrons diffusion, for example, radiations damages, radionuclides production and activation analysis, the spallation sources find their use and their improvement will bring new possibilities. Among others contributions, one must notice the place at disposal of pulsed muons sources and neutrinos sources. (N.C.). 3 figs

  16. Future prospects of imaging at spallation neutron sources

    International Nuclear Information System (INIS)

    Strobl, M.

    2009-01-01

    The advent of state-of-the-art spallation neutron sources is a major step forward in efficient neutron production for most neutron scattering techniques. Although they provide lower time-averaged neutron flux than high flux reactor sources, advantage for different instrumental techniques can be derived from the pulsed time structure of the available flux, which can be translated into energy, respectively, wavelength resolution. Conventional neutron imaging on the other hand relies on an intense continuous beam flux and hence falls short in profiting from the new development. Nevertheless, some recently developed novel imaging techniques require and some can benefit from energy resolution. The impact of the emerging spallation sources on different imaging techniques has been investigated, ways to benefit will be identified (where possible) and prospects of future imaging instruments and possible options and layouts at a spallation neutron source will be discussed and outlined.

  17. Status of spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Existing and planned facilities using proton accelerator driven spallation neutron source are reviewed. These include new project of neutron science proposed from Japan Atomic Energy Research Institute. The present status of facility requirement and accelerator technology leads us to new era of neutron science such as neutron scattering research and nuclear transmutation study using very intense neutron source. (author)

  18. Radiation effects concerns at a spallation source

    International Nuclear Information System (INIS)

    Sommer, W.F.

    1990-01-01

    Materials used at spallation neutron sources are exposed to energetic particle and photon radiation. Mechanical and physical properties of these materials are altered; radiation damage on the atomic scale leads to radiation effects on the macroscopic scale. Most notable among mechanical-property radiation effects in metals and metal alloys are changes in tensile strength and ductility, changes in rupture strength, dimensional stability and volumetric swelling, and dimensional changes due to stress-induced creep. Physical properties such as electrical resistivity also are altered. The fission-reactor community has accumulated a good deal of data on material radiation effects. However, when the incident particle energy exceeds 50 MeV or so, a new form of radiation damage ensues; spallation reactions lead to more energetic atom recoils and the subsequent temporal and spatial distribution of point defects is much different from that due to a fission-reactor environment. In addition, spallation reactions cause atomic transmutations with these new atoms representing an impurity in the metal. The higher-energy case is of interest at spallation sources; limited detailed data exist for material performance in this environment. 35 refs., 13 figs., 1 tab

  19. Neutronics of pulsed spallation neutron sources

    CERN Document Server

    Watanabe, N

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, po...

  20. Impact assessment of radionuclides released to environment from the European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, S.; Andersson, K. [Technical University of Denmark (Denmark); Ene, D. [European Spallation Soure AB - ESS, Lund (Sweden)

    2014-07-01

    The European Spallation Source (ESS) is a large science and technology infrastructure project currently under construction in Lund, Sweden, with operation planned by 2019. The facility design and construction includes a linear proton accelerator, a heavy-metal target station, neutron instruments, laboratories, and a data management and software development centre. During operation the ESS will produce a wide range of radionuclides via spallation and activation processes. Radiological assessments are needed to ensure that operational discharges and releases from potential incidents/accidents are within acceptable limits. The spectrum of radionuclides produced at ESS is quite different from that produced in nuclear power plants and assessment work has therefore been challenged by lack of information on less well-known radionuclides. Traditional assessment methodologies have been applied focusing on releases to air and public sewer systems and calculating radiation doses to representative persons living in and near Lund close to the ESS site. Exposure pathways considered include external radiation from radionuclides in air, external radiation from radionuclides deposited on ground and skin, inhalation of radionuclides and ingestion of locally produced contaminated food. Atmospheric dispersion has been simulated with the Gaussian plume model which is considered adequate within a few kilometres. Effects of release height have been investigated and site specific values of other parameters such as wind speed, wind direction, rain fall etc. have been used. Contamination of food has been calculated from the (ECOSYS) food dose model used in the RODOS and ARGOS decision support systems. The food dose model does not contain specific data for a number of ESS relevant radionuclides, e.g. {sup 7}Be, {sup 32}P and {sup 35}S. The data required include mobility of these isotopes, soil-to-plant concentration ratios and equilibrium transfer factors of daily intake by ingestion of meat

  1. The spallation neutron source: New opportunities

    Indian Academy of Sciences (India)

    The spallation neutron source (SNS) facility became operational in the spring of ... the opportunity to develop science and instrumentation programs which take ... in telecommunications, manufacturing, transportation, information technology, ...

  2. Rationale for a spallation neutron source target system test facility at the 1-MW Long-Pulse Spallation Source

    International Nuclear Information System (INIS)

    Sommer, W.F.

    1995-12-01

    The conceptual design study for a 1-MW Long-Pulse Spallation Source at the Los Alamos Neutron Science Center has shown the feasibility of including a spallation neutron test facility at a relatively low cost. This document presents a rationale for developing such a test bed. Currently, neutron scattering facilities operate at a maximum power of 0.2 MW. Proposed new designs call for power levels as high as 10 MW, and future transmutation activities may require as much as 200 MW. A test bed will allow assessment of target neutronics; thermal hydraulics; remote handling; mechanical structure; corrosion in aqueous, non-aqueous, liquid metal, and molten salt systems; thermal shock on systems and system components; and materials for target systems. Reliable data in these areas are crucial to the safe and reliable operation of new high-power facilities. These tests will provide data useful not only to spallation neutron sources proposed or under development, but also to other projects in accelerator-driven transmutation technologies such as the production of tritium

  3. Status of spallation neutron source program in High Intensity Proton Accelerator Project

    International Nuclear Information System (INIS)

    Oyama, Yukio

    2001-01-01

    Japan Atomic Energy Research Institute and High Energy Accelerator Organization are jointly designing a 1 MW spallation neutron source as one of the research facilities planned in the High Intensity Proton Accelerator Project. The spallation neutron source is driven by 3 GeV proton beam with a mercury target and liquid hydrogen moderators. The present status of design for these spallation source and relevant facility is overviewed. (author)

  4. Los Alamos pulsed spallation neutron source target systems - present and future

    International Nuclear Information System (INIS)

    Russell, G.J.; Daemen, L.L.; Pitcher, E.J.; Brun, T.O.; Hjelm, R.P. Jr.

    1993-01-01

    For the past 16 yr, spallation target-system designers have devoted much time and effort to the design and optimization of pulsed spallation neutron sources. Many concepts have been proposed, but, in practice, only one has been implemented horizontal beam insertion with moderators in wing geometry i.e., until we introduced the innovative split-target/flux-trap-moderator design with a composite reflector shield at the Manuel Lujan, Jr., Neutron Scattering Center (LANSCE). The LANSCE target system design is now considered a classic by spallation target system designers worldwide. LANSCE, a state-of-the-art pulsed spallation neutron source for materials science and nuclear physics research, uses 800-MeV protons from the Clinton P. Anderson Meson Physics Facility. These protons are fed into the proton storage ring to be compressed to 250-ns pulses before being delivered to LANSCE at 20 Hz. LANSCE produces the highest peak neutron flux of any pulsed spallation neutron source in the world

  5. A linac for the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Jason, A.J.

    1998-01-01

    The Spallation Neutron Source Project (SNS), to be constructed at Oak Ridge National Laboratory, accelerates H - ions to an energy of 1.0 GeV with an average current of 1-mA for injection into an accumulator ring that produces the short intense burst of protons needed for the spallation-neutron source. The linac will be the most intense source of H - ions and as such requires advanced design techniques to meet project technical goals. In particular, low beam loss is stressed for the chopped beam placing strong requirements on the beam dynamics and linac construction. Additionally, the linac is to be upgraded to the 2- and 4-MW beam-power levels with no increase in duty factor. The author gives an overview of the linac design parameters and design choices made

  6. Comparison of different target material options for the European Spallation Source based on certain aspects related to the final disposal

    Science.gov (United States)

    Kókai, Zsófia; Török, Szabina; Zagyvai, Péter; Kiselev, Daniela; Moormann, Rainer; Börcsök, Endre; Zanini, Luca; Takibayev, Alan; Muhrer, Günter; Bevilacqua, Riccardo; Janik, József

    2018-02-01

    Different target options have been examined for the European Spallation Source, which is under construction in Lund, Sweden. During the design update phase, parameters and characteristics for the target design have been optimized not only for neutronics but also with respect to the waste characteristics related to the final disposal of the target. A rotating, solid tungsten target was eventually selected as baseline concept; the other options considered included mercury and lead-bismuth (LBE) targets suitable for a pulsed source. Since the licensee is obliged to present a decommissioning plan even before the construction phase starts, the radioactive waste category of the target after full operation time is of crucial importance. The results obtained from a small survey among project partners of 7th Framework Program granted by EU 202247 contract have been used. Waste characteristics of different potential spallation target materials were compared. Based on waste index, the tungsten target is the best alternative and the second one is the mercury target. However, all alternatives have HLW category after a 10 year cooling. Based on heat generation alone all of the options would be below the HLW limit after this cooling period. The LBE is the least advantageous alternative based on waste index and heat generation comparison. These results can be useful in compiling the licensing documents of the ESS facility as the target alternatives can be compared from various aspects related to their disposal.

  7. Physics and technology of spallation neutron sources

    International Nuclear Information System (INIS)

    Bauer, G.S.

    1998-08-01

    Next to fission and fusion, spallation is an efficient process for releasing neutrons from nuclei. Unlike the other two reactions, it is an endothermal process and can, therefore, not be used per se in energy generation. In order to sustain a spallation reaction, an energetic beam of particles, most commonly protons, must be supplied onto a heavy target. Spallation can, however, play an important role as a source of neutrons whose flux can be easily controlled via the driving beam. Up to a few GeV of energy, the neutron production is roughly proportional to the beam power. Although sophisticated Monte Carlo codes exist to compute all aspects of a spallation facility, many features can be understood on the basis of simple physics arguments. Technically a spallation facility is very demanding, not only because a reliable and economic accelerator of high power is needed to drive the reaction, but also, and in particular, because high levels of radiation and heat are generated in the target which are difficult to cope with. Radiation effects in a spallation environment are different from those commonly encountered in a reactor and are probably even more temperature dependent than the latter because of the high gas production rate. A commonly favored solution is the use of molten heavy metal targets. While radiation damage is not a problem in this case, except for the container, a number of other issues are discussed. (author)

  8. Design and implementation of low-Q diffractometers at spallation sources

    International Nuclear Information System (INIS)

    Seeger, P.A.; Hjelm, R.P.

    1993-01-01

    Low-Q diffractometers at spallation sources that use time of flight methods have been successfully implemented at several facilities, including the Los Alamos Neutron Scattering Center. The proposal to build new, more powerful, advanced spallation sources using advanced moderator concepts will provide luminosity greater than 20 times the brightest spallation source available today. These developments provide opportunity and challenge to expand the capabilities of present instruments with new designs. The authors review the use of time of flight for low-Q measurements and introduce new designs to extend the capabilities of present-day instruments. They introduce Monte Carlo methods to optimize design and simulate the performance of these instruments. The expected performance of the new instruments are compared to present day pulsed source- and reactor-based small-angle neutron scattering instruments. They review some of the new developments that will be needed to use the power of brighter sources effectively

  9. Shielding concerns at a spallation source

    International Nuclear Information System (INIS)

    Russell, G.J.; Robinson, H.; Legate, G.L.; Woods, R.

    1989-01-01

    Neutrons produced by 800-MeV proton reactions at the Los Alamos Neutron Scattering Center spallation neutron source cause a variety of challenging shielding problems. We identify several characteristics distinctly different from reactor shielding and compute the dose attenuation through an infinite slab/shield composed of iron (100 cm) and borated polyethylene (15 cm). Our calculations show that (for an incident spallation spectrum characteristic of neutrons leaking from a tungsten target at 90/degree/) the dose through the shield is a complex mixture of neutrons and gamma rays. High-energy (> 20 MeV) neutron production from the target is ≅5% of the total, yet causes ≅68% of the dose at the shield surface. Primary low-energy (< 20 MeV) neutrons from the target contribute negligibly (≅0.5%) to the dose at the shield surface yet cause gamma rays, which contribute ≅31% to the total dose at the shield surface. Low-energy neutrons from spallation reactions behave similarly to neutrons with a fission spectrum distribution. 6 refs., 8 figs., 1 tab

  10. THE SPALLATION NEUTRON SOURCE PROJECT - PHYSICAL CHALLENGES.

    Energy Technology Data Exchange (ETDEWEB)

    WEI,J.

    2002-06-03

    The Spallation Neutron Source (SNS) is designed to reach an average proton beam power of 1.4 MW for pulsed neutron production. This paper summarizes design aspects and physical challenges to the project.

  11. Detection of supernova neutrinos at spallation neutron sources

    Science.gov (United States)

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2016-07-01

    After considering supernova shock effects, Mikheyev-Smirnov-Wolfenstein effects, neutrino collective effects, and Earth matter effects, the detection of supernova neutrinos at the China Spallation Neutron Source is studied and the expected numbers of different flavor supernova neutrinos observed through various reaction channels are calculated with the neutrino energy spectra described by the Fermi-Dirac distribution and the “beta fit” distribution respectively. Furthermore, the numerical calculation method of supernova neutrino detection on Earth is applied to some other spallation neutron sources, and the total expected numbers of supernova neutrinos observed through different reactions channels are given. Supported by National Natural Science Foundation of China (11205185, 11175020, 11275025, 11575023)

  12. Exploration of the Challenges of Neutron Optics and Instrumentation at Long Pulsed Spallation Sources

    DEFF Research Database (Denmark)

    Klenø, Kaspar Hewitt

    In this thesis I have explored the challenges of long guides and instrumentation for the long pulsed European Spallation Source. I have derived the theory needed for quantifying the performance of a guide using brilliance transfer. With this tool it is easier to objectively compare how well diffe...... the simulations and optimisations of one particular instrument, the Compact SANS, on which I have worked on the design of the guide, collimation, and chopper systems....

  13. New spallation neutron sources, their performance and applications

    International Nuclear Information System (INIS)

    1985-01-01

    Pulsed spallation sources now operating in the world are at the KEK Laboratory in Japan (the KENS source), at Los Alamos National Laboratory (WNR) and at Argonne National Laboratory (IPNS), both the latter being in the US. The Intense Pulsed Neutron Source (IPNS) is currently the world's most intense source with a peak neutron flux of 4 x 10 14 n cm -2 s -1 at a repetition rate of 30 Hz, and globally producing approx. 1.5 x 10 15 n/sec. Present pulsed sources are still relatively weak compared to their potential. In 1985 the Rutherford Spallation Neutron Source will come on line, and eventually be approx. 30 more intense than the present IPNS. Later, in 1986 the WNR/PSR option at Los Alamos will make that facility of comparable intensity, while a subcritical fission booster at IPNS will keep IPNS competitive. These new sources will expand the applications of pulsed neutrons but are still based on accelerators built for other scientific purposes, usually nuclear or high-energy physics. Accelerator physicists are now designing machines expressly for spallation neutron research, and the proton currents attainable appear in the milliamps. (IPNS now runs at 0.5 GeV and 14 μA). Such design teams are at the KFA Laboratory Julich, Argonne National Laboratory and KEK. Characteristics, particularly the different time structure of the pulses, of these new sources will be discussed. Such machines will be expensive and require national, if not international, collaboration across a wide spectrum of scientific disciplines. The new opportunities for neutron research will, of course, be dramatic with these new sources

  14. Target development for the SINQ high-power neutron spallation source

    International Nuclear Information System (INIS)

    Wagner, Werner

    2002-01-01

    SINQ is a 1 MW class research spallation neutron source, driven by the PSI proton accelerator system. In terms of beam power, it is, by a large margin, the most powerful spallation neutron source currently in operation worldwide. As a consequence, target load levels prevail in SINQ which are beyond the realm of existing experience. Therefore, an extensive materials irradiation program (STIP) is currently underway which will help to select the proper structural material and make dependable life time estimates accounting for the real operating conditions that prevail in the facility. In parallel, both theoretical and experimental work is going on within the MEGAPIE (MEGAwatt Pilot Experiment) project, to develop a liquid lead-bismuth spallation target for a beam power level of 1MW

  15. Neutron scattering instruments for the Spallation Neutron Source (SNS)

    International Nuclear Information System (INIS)

    Crawford, R.K.; Fornek, T.; Herwig, K.W.

    1998-01-01

    The Spallation Neutron Source (SNS) is a 1 MW pulsed spallation source for neutron scattering planned for construction at Oak Ridge National Laboratory. This facility is being designed as a 5-laboratory collaboration project. This paper addresses the proposed facility layout, the process for selection and construction of neutron scattering instruments at the SNS, the initial planning done on the basis of a reference set of ten instruments, and the plans for research and development (R and D) to support construction of the first ten instruments and to establish the infrastructure to support later development and construction of additional instruments

  16. Decommissioning and safety issues of liquid-mercury waste generated from high power spallation sources with particle accelerators

    CERN Document Server

    Chiriki, S; Odoj, R; Moormann, R; Hinssen, H. K; Bukaemskiy, A

    2009-01-01

    Large spallation sources are intended to be constructed in Europe (EURISOL nuclear physics facility and ESS-European Spallation Source). These facilities accumulate more than 20 metric tons of irradiated mercury in the target, which has to be treated as highly radioactive and chemo-toxic waste. Because solids are the only appropriate (immobile) form for this radiotoxic and toxic type of waste solidification is required for irradiated mercury. Our irradiation experimental studies on mercury waste revealed that mercury sulfide is a reasonable solid for disposal and shows larger stability in assumed accidents with water ingress in a repository compared to amalgams. For preparation of mercury sulfide a wet process is more suitable than a dry one. It is easier to perform under hot cell conditions and allows complete Hg-conversion. Embedding HgS in a cementitious matrix increases its stability.

  17. A proposal for a long-pulse spallation source at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Pynn, R.; Weinacht, D.

    1995-01-01

    Los Alamos National Laboratory is proposing a new spallation neutron source that will provide the US with an internationally competitive facility for neutron science and technology that can be built in approximately three years for less than $100 million. The establishment of a 1-MW, long-pulse spallation source (LPSS) at the Los Alamos Neutron Science Center (LANSCE) will meet many of the present needs of scientists in the neutron scattering community and provide a significant boost to neutron research in the US. The new facility will support the development of a future, more intense spallation neutron source, that is planned by DOE's Office of Energy Research. Together with the existing short pulse spallation source (SPSS) at the Manual Lujan, Jr. Neutron Scattering Center (MLNSC) at Los Alamos, the new LPSS will provide US scientists with a complementary pair of high-performance neutron sources to rival the world's leading facilities in Europe

  18. A proposal for a long-pulse spallation source at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Pynn, R; Weinacht, D [Los Alamos National Lab., NM (United States)

    1995-11-01

    Los Alamos National Laboratory is proposing a new spallation neutron source that will provide the U.S. with an internationally competitive facility for neutron science and technology that can be built in approximately three years for less than $100 million. The establishment of a 1-MW long-pulse spallation source (LPSS) at the Los Alamos Neutron Science Center (LANSCE) will meet many of the present needs of scientists in the neutron scattering community and provide a significant boost to neutron research in the U.S. The new facility will support the development of a future, more intense spallation neutron source, that is planned by DOE`s Office of Energy Research. Together with the existing short pulse spallation source (SPSS) at the Manual Lujan, Jr. Neutron Scattering Center (MLNSC) at Los Alamos, the new LPSS will provide U.S. scientists with a complementary pair of high-performance neutron sources to rival the world`s leading facilities in Europe. (author) 1 ref.

  19. A proposal for a long-pulse spallation source at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Pynn, R.; Weinacht, D.

    1995-01-01

    Los Alamos National Laboratory is proposing a new spallation neutron source that will provide the U.S. with an internationally competitive facility for neutron science and technology that can be built in approximately three years for less than $100 million. The establishment of a 1-MW long-pulse spallation source (LPSS) at the Los Alamos Neutron Science Center (LANSCE) will meet many of the present needs of scientists in the neutron scattering community and provide a significant boost to neutron research in the U.S. The new facility will support the development of a future, more intense spallation neutron source, that is planned by DOE's Office of Energy Research. Together with the existing short pulse spallation source (SPSS) at the Manual Lujan, Jr. Neutron Scattering Center (MLNSC) at Los Alamos, the new LPSS will provide U.S. scientists with a complementary pair of high-performance neutron sources to rival the world's leading facilities in Europe. (author) 1 ref

  20. New neutron physics using spallation sources

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1988-01-01

    The extraordinary neutron intensities available from the new spallation pulsed neutron sources open up exciting opportunities for basic and applied research in neutron nuclear physics. The energy range of neutron research which is being explored with these sources extends from thermal energies to almost 800 MeV. The emphasis here is on prospective experiments below 100 keV neutron energy using the intense neutron bursts produced by the Proton Storage Ring (PSR) at Los Alamos. 30 refs., 10 figs

  1. A Proposal for a Next Generation European Neutron Source

    International Nuclear Information System (INIS)

    Andersen, K.H.; Carlile, C.J.

    2016-01-01

    We argue that it is not too early to begin the planning process for a next generation neutron source for Europe, even as the European Spallation Source is being constructed. We put forward three main arguments. Firstly, nowadays the period between the first scientific concept of a new facility being proposed and its actual realisation is approaching half a century. We show evidence for this. Secondly, there is a straightforward development of the short pulse/long pulse spallation concepts that will deliver gains in neutron brightness of more than a factor 30 over what the ESS will soon deliver and provide the optimum balance between resolution and intensity. We describe our concept, which is a spallation source where the proton pulse length is matched to the moderating time of slow neutrons. Thirdly, when we look at our colleagues in astronomy and high energy physics, we see that they have a totally different, more global and more ambitious approach to the coming generations of large facilities. We argue that it is time for the neutron community not simply to rest upon its laurels and take what is given but to be proactive.. (paper)

  2. Simulation of a suite of generic long-pulse neutron instruments to optimize the time structure of the European Spallation Source.

    Science.gov (United States)

    Lefmann, Kim; Klenø, Kaspar H; Birk, Jonas Okkels; Hansen, Britt R; Holm, Sonja L; Knudsen, Erik; Lieutenant, Klaus; von Moos, Lars; Sales, Morten; Willendrup, Peter K; Andersen, Ken H

    2013-05-01

    We here describe the result of simulations of 15 generic neutron instruments for the long-pulsed European Spallation Source. All instruments have been simulated for 20 different settings of the source time structure, corresponding to pulse lengths between 1 ms and 2 ms; and repetition frequencies between 10 Hz and 25 Hz. The relative change in performance with time structure is given for each instrument, and an unweighted average is calculated. The performance of the instrument suite is proportional to (a) the peak flux and (b) the duty cycle to a power of approximately 0.3. This information is an important input to determining the best accelerator parameters. In addition, we find that in our simple guide systems, most neutrons reaching the sample originate from the central 3-5 cm of the moderator. This result can be used as an input in later optimization of the moderator design. We discuss the relevance and validity of defining a single figure-of-merit for a full facility and compare with evaluations of the individual instrument classes.

  3. Simulation of a suite of generic long-pulse neutron instruments to optimize the time structure of the European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Lefmann, Kim; Kleno, Kaspar H.; Holm, Sonja L.; Sales, Morten [Nanoscience and eScience Centers, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen O (Denmark); Danish Workpackage for the ESS Design Update Phase, Universitetsparken 5, 2100 Copenhagen O (Denmark); Birk, Jonas Okkels [Nanoscience and eScience Centers, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen O (Denmark); Danish Workpackage for the ESS Design Update Phase, Universitetsparken 5, 2100 Copenhagen O (Denmark); Laboratory for Quantum Magnetism, Ecole Polytecnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Hansen, Britt R.; Knudsen, Erik; Willendrup, Peter K. [Institute of Physics, Technical University of Denmark, 2800 Lyngby (Denmark); Danish Workpackage for the ESS Design Update Phase, 2800 Lyngby (Denmark); Lieutenant, Klaus [Institute for Energy Technology, Instituttveien 18, 2007 Kjeller (Norway); Helmholtz Center for Energy and Materials, Hahn-Meitner Platz, 14109 Berlin (Germany); German Work Package for the ESS Design Update, Hahn-Meitner Platz, 14109 Berlin (Germany); Moos, Lars von [Department of Energy Conversion and Storage, Technical University of Denmark, 4000 Roskilde (Denmark); Danish Workpackage for the ESS Design Update Phase, 2800 Lyngby (Denmark); Institute for Energy Conversion, Technical University of Denmark, 4000 Roskilde (Denmark); Andersen, Ken H. [European Spallation Source ESS AB, 22100 Lund (Sweden)

    2013-05-15

    We here describe the result of simulations of 15 generic neutron instruments for the long-pulsed European Spallation Source. All instruments have been simulated for 20 different settings of the source time structure, corresponding to pulse lengths between 1 ms and 2 ms; and repetition frequencies between 10 Hz and 25 Hz. The relative change in performance with time structure is given for each instrument, and an unweighted average is calculated. The performance of the instrument suite is proportional to (a) the peak flux and (b) the duty cycle to a power of approximately 0.3. This information is an important input to determining the best accelerator parameters. In addition, we find that in our simple guide systems, most neutrons reaching the sample originate from the central 3-5 cm of the moderator. This result can be used as an input in later optimization of the moderator design. We discuss the relevance and validity of defining a single figure-of-merit for a full facility and compare with evaluations of the individual instrument classes.

  4. Simulation of a suite of generic long-pulse neutron instruments to optimize the time structure of the European Spallation Source

    International Nuclear Information System (INIS)

    Lefmann, Kim; Klenø, Kaspar H.; Holm, Sonja L.; Sales, Morten; Birk, Jonas Okkels; Hansen, Britt R.; Knudsen, Erik; Willendrup, Peter K.; Lieutenant, Klaus; Moos, Lars von; Andersen, Ken H.

    2013-01-01

    We here describe the result of simulations of 15 generic neutron instruments for the long-pulsed European Spallation Source. All instruments have been simulated for 20 different settings of the source time structure, corresponding to pulse lengths between 1 ms and 2 ms; and repetition frequencies between 10 Hz and 25 Hz. The relative change in performance with time structure is given for each instrument, and an unweighted average is calculated. The performance of the instrument suite is proportional to (a) the peak flux and (b) the duty cycle to a power of approximately 0.3. This information is an important input to determining the best accelerator parameters. In addition, we find that in our simple guide systems, most neutrons reaching the sample originate from the central 3–5 cm of the moderator. This result can be used as an input in later optimization of the moderator design. We discuss the relevance and validity of defining a single figure-of-merit for a full facility and compare with evaluations of the individual instrument classes.

  5. Conceptual design of the time-of-flight backscattering spectrometer, MIRACLES, at the European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Tsapatsaris, N., E-mail: nikolaos.tsapatsaris@esss.se, E-mail: ruep.lechner@gmail.com, E-mail: bordallo@nbi.ku.dk; Bordallo, H. N., E-mail: nikolaos.tsapatsaris@esss.se, E-mail: ruep.lechner@gmail.com, E-mail: bordallo@nbi.ku.dk [Niels Bohr Institute, The University of Copenhagen, Copenhagen 2100 (Denmark); European Spallation Source ERIC, Tunavägen 24, 22100 Lund (Sweden); Lechner, R. E., E-mail: nikolaos.tsapatsaris@esss.se, E-mail: ruep.lechner@gmail.com, E-mail: bordallo@nbi.ku.dk [European Spallation Source ERIC, Tunavägen 24, 22100 Lund (Sweden); Markó, M. [Neutron Spectroscopy Department, Wigner Research Centre for Physics, H-1525 Budapest (Hungary)

    2016-08-15

    In this work, we present the conceptual design of the backscattering time-of-flight spectrometer MIRACLES approved for construction at the long-pulse European Spallation Source (ESS). MIRACLES’s unparalleled combination of variable resolution, high flux, extended energy, and momentum transfer (0.2–6 Å{sup −1}) ranges will open new avenues for neutron backscattering spectroscopy. Its remarkable flexibility can be attributed to 3 key elements: the long-pulse time structure and low repetition rate of the ESS neutron source, the chopper cascade that tailors the moderator pulse in the primary part of the spectrometer, and the bent Si(111) analyzer crystals arranged in a near-backscattering geometry in the secondary part of the spectrometer. Analytical calculations combined with instrument Monte-Carlo simulations show that the instrument will provide a variable elastic energy resolution, δ(ħ ω), between 2 and 32 μeV, when using a wavelength of λ ≈ 6.267 Å (Si(111)-reflection), with an energy transfer range, ħ ω, centered at the elastic line from −600 to +600 μeV. In addition, when selecting λ ≈ 2.08 Å (i.e., the Si(333)-reflection), δ(ħ ω) can be relaxed to 300 μeV and ħ ω from about 10 meV in energy gain to ca −40 meV in energy loss. Finally, the dynamic wavelength range of MIRACLES, approximately 1.8 Å, can be shifted within the interval of 2–20 Å to allow the measurement of low-energy inelastic excitations.

  6. Conceptual design of the time-of-flight backscattering spectrometer, MIRACLES, at the European Spallation Source

    International Nuclear Information System (INIS)

    Tsapatsaris, N.; Bordallo, H. N.; Lechner, R. E.; Markó, M.

    2016-01-01

    In this work, we present the conceptual design of the backscattering time-of-flight spectrometer MIRACLES approved for construction at the long-pulse European Spallation Source (ESS). MIRACLES’s unparalleled combination of variable resolution, high flux, extended energy, and momentum transfer (0.2–6 Å"−"1) ranges will open new avenues for neutron backscattering spectroscopy. Its remarkable flexibility can be attributed to 3 key elements: the long-pulse time structure and low repetition rate of the ESS neutron source, the chopper cascade that tailors the moderator pulse in the primary part of the spectrometer, and the bent Si(111) analyzer crystals arranged in a near-backscattering geometry in the secondary part of the spectrometer. Analytical calculations combined with instrument Monte-Carlo simulations show that the instrument will provide a variable elastic energy resolution, δ(ħ ω), between 2 and 32 μeV, when using a wavelength of λ ≈ 6.267 Å (Si(111)-reflection), with an energy transfer range, ħ ω, centered at the elastic line from −600 to +600 μeV. In addition, when selecting λ ≈ 2.08 Å (i.e., the Si(333)-reflection), δ(ħ ω) can be relaxed to 300 μeV and ħ ω from about 10 meV in energy gain to ca −40 meV in energy loss. Finally, the dynamic wavelength range of MIRACLES, approximately 1.8 Å, can be shifted within the interval of 2–20 Å to allow the measurement of low-energy inelastic excitations.

  7. Synchrotron-driven spallation sources

    CERN Document Server

    Bryant, P J

    1996-01-01

    The use of synchrotrons for pulsed neutron spallation sources is an example of scientific and technological spin-off from the accelerator development for particle physics. Accelerator-driven sources provide an alternative to the continuous-flux, nuclear reactors that currently furnish the majority of neutrons for research and development. Although the present demand for neutrons can be adequately met by the existing reactors, this situation is unlikely to continue due to the increasing severity of safety regulations and the declared policies of many countries to close down their reactors within the next decade or so. Since the demand for neutrons as a research tool is, in any case,expected to grow, there has been a corresponding interest in sources that are synchrotron-driven or linac-driven with a pulse compression ring and currently several design studies are being made. These accelerator-driven sources also have the advantage of a time structure with a high peak neutron flux. The basic requirement is for a...

  8. Measurement and analysis of turbulent liquid metal flow in a high-power spallation neutron source-EURISOL

    CERN Document Server

    Samec, K; Blumenfeld, L; Kharoua, C; Dementjevs, S; Milenkovic, R Z

    2011-01-01

    The European Isotope Separation On-Line (EURISOL) design study completed in 2009 examined means of producing exotic nuclei for fundamental research. One of the critical components identified in the study was a high-power neutron spallation source in which a target material is impacted by a proton beam producing neutrons by a process known as spallation. Due to the high heat power deposition, liquid metal, in this case mercury, is the only viable choice as target material. Complex issues arise from the use of liquid metal. It is characterised by an unusually low Prandtl number and a higher thermal expansivity than conventional fluids. The turbulence structure in LM is thereby affected and still an object of intense research, hampered in part by measurement difficulties. The use of Computational Fluid Dynamics (CFD) allowed a satisfactory design for the neutron source to be found rapidly with little iteration. However it was feared that the development of the boundary layer and associated turbulence would not b...

  9. Conceptual design of a cold methane moderator system for the European Spallation Source (ESS)

    International Nuclear Information System (INIS)

    Barnert-Wiemer, H.

    2002-02-01

    As part of the work for the target station of the planned European spallation source (ESS) the Central Department of Technology at the Forschungszentrum Juelich GmbH is also concerned with the moderators, particular attention being given to the development of cold methane moderators. This report discusses the technical feasibility of solid methane moderators. Methods to tailor the neutron output by adding absorption materials (decouplers or poisons) are not considered here, neither are composite moderators. Based on the given target-moderator-reflector assembly of the ESS project a concept for the ESS cold methane moderators has been developed and is being examined at the Forschungszentrum Juelich. According to this moderator concept the moderator is a fixed bed of small spheres, which makes moderator container filling homogeneous and reproducible. Since spheres form a defined packed bed, cooling of the moderator bed by H 2 is reliable. The process of filling the moderator container and of removing the pellets is batchwise to ensure complete removal of the pellets, so that no spent methane pellets accumulate in the system. For removal of the moderator spheres the fixed bed in the moderator container is fluidized with subsequent hydraulic transport of the pellets. The spent methane pellets are separated from the transport fluid and the methane is released over the stack or purified and reused. Depending on the kind and amount of the radioactive isotopes present these may have to be separated and stored. (orig.)

  10. Spallation neutron source moderator design

    International Nuclear Information System (INIS)

    Charlton, L.A.; Barnes, J.M.; Gabriel, T.A.; Johnson, J.O.

    1998-01-01

    This paper describes various aspects of the spallation neutron source (SNS) moderator design. Included are the effects of varying the moderator location, interaction effects between moderators, and the impact on neutron output when various reflector materials are used. Also included is a study of the neutron output from composite moderators, where it is found that a combination of liquid H 2 O and liquid H 2 can produce a spectrum very similar to liquid methane (L-CH 4 ). (orig.)

  11. Neutrino physics at the spallation neutron source. Pt. 2

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Lillie, R.A.; Bishop, B.L.; Wilczynski, J.; Zeitnitz, B.

    1981-06-01

    The shielding and detector analysis associated with a contemplated low energy (approx. equal to10 to 50 MeV) neutrino experiment at a spallation neutron source are presented and discussed. This analysis includes neutrino production and interaction rates, time dependence of the neutrino pulse, shielding considerations for neutrons coming directly from the spallation source and those which are scattered from other experimental areas, shielding considerations for galactic sources especially muons and finally detector responses to neutrino and background radiations. In general for a 1 mA (200 ns/pulse, 100 Hz), 1.1 GeV proton beam incident on a lead target surrounded by a moderator system, approximately 8 m of iron are required to reduce the background so that the event rate in the detector systems is approx. [de

  12. Feasibility and applications of the spin-echo modulation option for a small angle neutron scattering instrument at the European Spallation Source

    Science.gov (United States)

    Kusmin, A.; Bouwman, W. G.; van Well, A. A.; Pappas, C.

    2017-06-01

    We describe theoretical and practical aspects of spin-echo modulated small-angle neutron scattering (SEMSANS) as well as the potential combination with SANS. Based on the preliminary technical designs of SKADI (a SANS instrument proposed for the European Spallation Source) and a SEMSANS add-on, we assess the practicability, feasibility and scientific merit of a combined SANS and SEMSANS setup by calculating tentative SANS and SEMSANS results for soft matter, geology and advanced material samples that have been previously studied by scattering methods. We conclude that lengths from 1 nm up to 0.01 mm can be observed simultaneously in a single measurement. Thus, the combination of SANS and SEMSANS instrument is suited for the simultaneous observation of a wide range of length scales, e.g. for time-resolved studies of kinetic processes in complex multiscale systems.

  13. Research activities on structure materials of spallation neutron source at SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G.S.; Dai, Y. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    With the growing interests on powerful spallation neutron sources, especially with liquid metal targets, and accelerator driven energy systems, spallation materials science and technology have been received wide attention. At SINQ, material research activities are focused on: a) liquid metal corrosion; b) radiation damage; and c) interaction of corrosion and radiation damage. (author) 1 fig., refs.

  14. Overview of the national spallation neutron source with emphasis on the target station

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Barnes, J.N.; Charlton, L.A.

    1997-01-01

    The technologies that are being utilized to design and build a state-of-the-art neutron spallation source, the National Spallation Neutron Source (NSNS), are discussed. Emphasis is given to the technology issues that present the greatest scientific challenges. The present facility configuration, ongoing analysis and the planned hardware research and development program are also described

  15. SUPERCONDUCTING LINAC FOR THE SPALLATION NEUTRON SOURCE

    International Nuclear Information System (INIS)

    STOVALL, J.; NATH, S.

    2000-01-01

    The Spallation Neutron Source (SNS) linac is comprised of both normal and superconducting rf (SRF) accelerating structures. The SRF linac accelerates the beam from 186 to 1250 MeV through 117 elliptical, multi-cell niobium cavities. This paper describes the SRF linac architecture, physics design considerations, cavity commissioning, and the expected beam dynamics performance

  16. Delayed neutrons in liquid metal spallation targets

    International Nuclear Information System (INIS)

    Ridikas, D.; Bokov, P.; David, J.C.; Dore, D.; Giacri, M.L.; Van Lauwe, A.; Plukiene, R.; Plukis, A.; Ignatiev, S.; Pankratov, D.

    2003-01-01

    The next generation spallation neutron sources, neutrino factories or RIB production facilities currently being designed and constructed around the world will increase the average proton beam power on target by a few orders of magnitude. Increased proton beam power results in target thermal hydraulic issues leading to new target designs, very often based on flowing liquid metal targets such as Hg, Pb, Pb-Bi. Radioactive nuclides produced in liquid metal targets are transported into hot cells, past electronics, into pumps with radiation sensitive components, etc. Besides the considerable amount of photon activity in the irradiated liquid metal, a significant amount of the delayed neutron precursor activity can be accumulated in the target fluid. The transit time from the front of a liquid metal target into areas, where delayed neutrons may be important, can be as short as a few seconds, well within one half-life of many delayed neutron precursors. Therefore, it is necessary to evaluate the total neutron flux (including delayed neutrons) as a function of time and determine if delayed neutrons contribute significantly to the dose rate. In this study the multi-particle transport code MCNPX combined with the material evolution program CINDER'90 will be used to evaluate the delayed neutron flux and spectra. The following scientific issues will be addressed in this paper: - Modeling of a typical geometry of the liquid metal spallation target; - Predictions of the prompt neutron fluxes, fission fragment and spallation product distributions; - Comparison of the above parameters with existing experimental data; - Time-dependent calculations of delayed neutron precursors; - Neutron flux estimates due to the prompt and delayed neutron emission; - Proposal of an experimental program to measure delayed neutron spectra from high energy spallation-fission reactions. The results of this study should be directly applicable in the design study of the European MegaPie (1 MW

  17. The US spallation neutron source (SNS) project

    International Nuclear Information System (INIS)

    Alonso, J.R.

    1999-01-01

    The SNS is a 1 MW pulsed spallation neutron source that will be sited at Oak Ridge. It will consist of a high-current, normal-conducting linac accelerating an H - beam to 1 GeV, an accumulator ring which compresses each 1 ms linac pulse into a 600 ns bunch which is then extracted in a single turn onto a liquid mercury target. Neutron pulses emerge at a 60 Hz rate from the two ambient, and two cryogenic moderators. Eighteen beam ports surrounding the target station are available for neutron-scattering instrumentation. Funds for ten instruments are included in the construction project; these instruments will provide basic measurement capability for the many and varied research activities at the SNS facility. The new spallation source is being built by a consortium of laboratories; the partners are LBNL, LANL, BNL, ANL and ORNL. The breadth and depth of experience and resources brought by such a wide-spread team offers very significant advantages. Construction will start in October of 1998, operation will begin in October, 2005. (J.P.N.)

  18. Invited talks (Abstracts only) The spallation neutron source: New ...

    Indian Academy of Sciences (India)

    The spallation neutron source (SNS) facility became operational in the spring of 2006, and is ... torate at ORNL providing the opportunity to develop science and instrumentation pro- ... tion, information technology, biotechnology, and health.

  19. Advanced spallation neutron sources for condensed matter research

    International Nuclear Information System (INIS)

    Lovesey, S.W.; Stirling, G.C.

    1984-03-01

    Advanced spallation neutron sources afford significant advantages over existing high flux reactors. The effective flux is much greater than that currently available with reactor sources. A ten-fold increase in neutron flux will be a major benefit to a wide range of condensed matter studies, and it will realise important experiments that are marginal at reactor sources. Moreover, the high intensity of epithermal neutrons open new vistas in studies of electronic states and molecular vibrations. (author)

  20. New scientific horizons with pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Carlile, C.J.; Finney, J.L.

    1991-01-01

    Pulsed spallation sources are not just another way of producing neutrons: the time structure of the neutron pulse has consequences which allow new scientific areas to be investigated and traditional areas to be explored afresh. In addition to the high epithermal neutron component traditionally associated with pulsed sources the recent development of cold neutron techniques at ISIS illustrates that very high energy and momentum resolutions can be achieved on pulsed sources over a surprisingly wide range. (orig.)

  1. Overcoming High Energy Backgrounds at Pulsed Spallation Sources

    CERN Document Server

    Cherkashyna, Nataliia; DiJulio, Douglas D.; Khaplanov, Anton; Pfeiffer, Dorothea; Scherzinger, Julius; Cooper-Jensen, Carsten P.; Fissum, Kevin G.; Ansell, Stuart; Iverson, Erik B.; Ehlers, Georg; Gallmeier, Franz X.; Panzner, Tobias; Rantsiou, Emmanouela; Kanaki, Kalliopi; Filges, Uwe; Kittelmann, Thomas; Extegarai, Maddi; Santoro, Valentina; Kirstein, Oliver; Bentley, Phillip M.

    2015-01-01

    Instrument backgrounds at neutron scattering facilities directly affect the quality and the efficiency of the scientific measurements that users perform. Part of the background at pulsed spallation neutron sources is caused by, and time-correlated with, the emission of high energy particles when the proton beam strikes the spallation target. This prompt pulse ultimately produces a signal, which can be highly problematic for a subset of instruments and measurements due to the time-correlated properties, and different to that from reactor sources. Measurements of this background have been made at both SNS (ORNL, Oak Ridge, TN, USA) and SINQ (PSI, Villigen, Switzerland). The background levels were generally found to be low compared to natural background. However, very low intensities of high-energy particles have been found to be detrimental to instrument performance in some conditions. Given that instrument performance is typically characterised by S/N, improvements in backgrounds can both improve instrument pe...

  2. The Spallation Neutron Source RF Reference System

    CERN Document Server

    Piller, Maurice; Crofford, Mark; Doolittle, Lawrence; Ma, Hengjie

    2005-01-01

    The Spallation Neutron Source (SNS) RF Reference System includes the master oscillator (MO), local oscillator(LO) distribution, and Reference RF distribution systems. Coherent low noise Reference RF signals provide the ability to control the phase relationships between the fields in the front-end and linear accelerator (linac) RF cavity structures. The SNS RF Reference System requirements, implementation details, and performance are discussed.

  3. Target station design for a 1 MW pulsed spallation neutron source

    International Nuclear Information System (INIS)

    Russell, G.J.; Baker, G.D.; Brewton, R.J.

    1993-01-01

    Target stations are vital components of the 1 MW, next generation spallation neutron source proposed for LANSCE. By and large, target stations design determines the overall performance of the facility. Many traditional concepts will probably have to be rethought, and many new concepts will have to be put forward to meet the 1 MW challenge. This article gives a brief overview of the proposed neutron spallation source from the target station viewpoint, as well as the general philosophy adopted for the design of the LANSCE-II target stations. Some of the saliant concepts and features envisioned for LANSCE-II are briefly described

  4. Pulsed TRIGA reactor as substitute for long pulse spallation neutron source

    International Nuclear Information System (INIS)

    Whittemore, W.L.

    1999-01-01

    TRIGA reactor cores have been used to demonstrate various pulsing applications. The TRIGA reactor fuel (U-ZrH x ) is very robust especially in pulsing applications. The features required to produce 50 pulses per second have been successfully demonstrated individually, including pulse tests with small diameter fuel rods. A partially optimized core has been evaluated for pulses at 50 Hz with peak pulsed power up to 100 MW and an average power up to 10 MW. Depending on the design, the full width at half power of the individual pulses can range between 2000 μsec to 3000 μsec. Until recently, the relatively long pulses (2000 μsec to 3000 μsec) from a pulsed thermal reactor or a long pulse spallation source (LPSS) have been considered unsuitable for time-of-flight measurements of neutron scattering. More recently considerable attention has been devoted to evaluating the performance of long pulse (1000 to 4000 μs) spallation sources for the same type of neutron measurements originally performed only with short pulses from spallation sources (SPSS). Adequate information is available to permit meaningful comparisons between CW, SPSS, and LPSS neutron sources. Except where extremely high resolution is required (fraction of a percent), which does require short pulses, it is demonstrated that the LPSS source with a 1000 msec or longer pulse length and a repetition rate of 50 to 60 Hz gives results comparable to those from the 60 MW ILL (CW) source. For many of these applications the shorter pulse is not necessarily a disadvantage, but it is not an advantage over the long pulse system. In one study, the conclusion is that a 5 MW 2000 μsec LPSS source improves the capability for structural biology studies of macromolecules by at least a factor of 5 over that achievable with a high flux reactor. Recent studies have identified the advantages and usefulness of long pulse neutron sources. It is evident that the multiple pulse TRIGA reactor can produce pulses comparable to

  5. Thin and thick target benchmark investigations to validate spallation physics models

    International Nuclear Information System (INIS)

    Filges, D.; Neef, R.D.; Goldenbaum, F.; Nuenighoff, K.; Galin, J.; Letourneau, A.; Lott, B.; Patois, Y.; Schroeder, W.N.

    1999-01-01

    In the ESS (European Spallation Source) study report several areas have been identified where further spallation physics research and code validation is urgently needed: Neutron and charged particle production and multiplicities above one GeV incident protons, energy deposition and heating, material damage parameters, radioactivity and after heat, and high energy source shielding. All simulation calculations will be done using the Juelich HERMES code system. For this purpose various collaborations were organised. One of the collaborations is NESSI (Neutron Scintillator Silicon Detector), which concerns fundamental data as cross-section measurements on neutron multiplicities and charged particles for different ESS relevant materials. (author)

  6. Final environmental impact statement, construction and operation of the Spallation Neutron Source Facility. Summary

    International Nuclear Information System (INIS)

    1999-04-01

    DOE proposes to construct and operate a state-of-the-art, short-pulsed, spallation neutron source comprised of an ion source, a linear accelerator, a proton accumulator ring, and an experiment building containing a liquid mercury target and a suite of neutron scattering instrumentation. The proposed Spallation Neutron Source would be designed to operate at a proton beam power of 1 megawatt. The design would accommodate future upgrades to a peak operating power of 4 megawatts. These upgrades may include construction of a second proton accumulator ring and a second target. This document analyzes the potential environmental impacts from the proposed action and the alternatives. The analysis assumes a facility operating at a power of 1 MW and 4 MW over the life of the facility. The two primary alternatives analyzed in this FEIS are: the proposed action (to proceed with building the Spallation Neutron Source) and the No-Action Alternative. The No-Action Alternative describes the expected condition of the environment if no action were taken. Four siting alternatives for the Spallation Neutron Source are evaluated: Oak Ridge National Laboratory, Oak Ridge, TN, (preferred alternative); Argonne National Laboratory, Argonne, IL; Brookhaven National Laboratory, Upton, NY; and Los Alamos National Laboratory, Los Alamos, NM

  7. Final environmental impact statement, construction and operation of the Spallation Neutron Source. Volume 1

    International Nuclear Information System (INIS)

    1999-04-01

    DOE proposes to construct and operate a state-of-the-art, short-pulsed, spallation neutron source comprised of an ion source, a linear accelerator, a proton accumulator ring, and an experiment building containing a liquid mercury target and a suite of neutron scattering instrumentation. The proposed Spallation neutron Source would be designed to operate at a proton beam power of 1 megawatt. The design would accommodate future upgrades to a peak operating power of 4 megawatts. These upgrades may include construction of a second proton accumulator ring and a second target. This document analyzes the potential environmental impacts from the proposed action and the alternatives. The analysis assumes a facility operating at a power of 1 MW and 4 MW over the life of the facility. The two primary alternatives analyzed in this FEIS are: the proposed action (to proceed with building the Spallation Neutron Source) and the No-Action Alternative. The No-Action Alternative describes the expected condition of the environment if no action were taken. Four siting alternatives for the Spallation Neutron Source are evaluated: Oak Ridge National Laboratory, Oak Ridge, TN, (preferred alternative); Argonne National Laboratory, Argonne, IL; Brookhaven National Laboratory, Upton, NY; and Los Alamos National Laboratory, Los Alamos, NM

  8. 8 May 2013 - Swedish European Spallation Source Chief Executive Officer J. H. Yeck in the ATLAS visitor centre and experimental cavern with Collaboration Spokesperson D. Charlton (also present M. Nessi, R. Garoby and E. Tsesmelis); signing the guest book with International Relations Adviser E. Tsesmelis.

    CERN Multimedia

    Jean-Claude Gadmer

    2013-01-01

    8 May 2013 - Swedish European Spallation Source Chief Executive Officer J. H. Yeck in the ATLAS visitor centre and experimental cavern with Collaboration Spokesperson D. Charlton (also present M. Nessi, R. Garoby and E. Tsesmelis); signing the guest book with International Relations Adviser E. Tsesmelis.

  9. Neutronic Design Calculations on Moderators for the Spallation Neutron Source (SNS)

    International Nuclear Information System (INIS)

    Murphy, D.B.

    1999-01-01

    The Spallation Neutron Source (SNS) to be built at the Oak Ridge National Laboratory will provide an intense source of neutrons for a large variety of experiments. It consists of a high-energy (1-GeV) and high-power (∼1-MW) proton accelerator, an accumulator ring, together with a target station and an experimental area. In the target itself, the proton beam will produce neutrons via the spallation process and these will be converted to low-energy ( 2 O moderators. Extensive engineering design work has been conducted on the moderator vessels. For our studies we have produced realistic neutronic representations of these moderators. We report on neutronic studies conducted on these representations of the moderators using Monte Carlo simulation techniques

  10. Radiation problems expected for the German spallation neutron source

    International Nuclear Information System (INIS)

    Goebel, K.

    1981-01-01

    The German project for the construction of a Spallation Neutron Source with high proton beam power (5.5 MW) will have to cope with a number of radiation problems. The present report describes these problems and proposes solutions for keeping exposures for the staff and release of activity and radiation into the environment as low as reasonably achievable. It is shown that the strict requirements of the German radiation protection regulations can be met. The main problem will be the exposure of maintenance personnel to remanent gamma radiation, as is the case at existing proton accelerators. Closed ventilation and cooling systems will reduce the release of (mainly short-lived) activity to acceptable levels. Shielding requirements for different sections are discussed, and it is demonstrated by calculations and extrapolations from experiments that fence-post doses well below 150 mrem/y can be obtained at distances of the order of 100 metres from the principal source points. The radiation protection system proposed for the Spallation Neutron Source is discussed, in particular the needs for monitor systems and a central radiation protection data base and alarm system. (orig.)

  11. Construction and operation of the Spallation Neutron Source: Draft environmental impact statement. Volume 1

    International Nuclear Information System (INIS)

    1998-12-01

    DOE proposes to construct and operate a state-of-the-art, short-pulsed spallation neutron source comprised of an ion source, a linear accelerator, a proton accumulator ring, and an experiment building containing a liquid mercury target and a suite of neutron scattering instrumentation. The proposed Spallation Neutron Source would be designed to operate at a proton beam power of 1 megawatt. The design would accommodate future upgrades to a peak operating power of 4 megawatts. These upgrades may include construction of a second proton accumulation ring and a second target. The US needs a high-flux, short-pulsed neutron source to provide the scientific and industrial research communities with a much more intense source of pulsed neutrons for neutron scattering research than is currently available, and to assure the availability of a state-of-the-art facility in the decades ahead. This next-generation neutron source would create new scientific and engineering opportunities. In addition, it would help replace the neutron science capacity that will be lost by the eventual shutdown of existing sources as they reach the end of their useful operating lives in the first half of the next century. This document analyzes the potential environmental impacts from the proposed action and the alternatives. The analysis assumes a facility operating at a power of 1 MW and 4 MW over the life of the facility. The two primary alternatives analyzed in this EIS are: the proposed action (to proceed with building the Spallation Neutron Source) and the No-Action Alternative. The No-Action Alternative describes the expected condition of the environment if no action were taken. Four siting alternatives for the Spallation Neutron Source are evaluated: Oak Ridge National Laboratory, Oak Ridge, TN, (preferred alternative); Argonne National Laboratory, Argonne, IL (US); Brookhaven National Laboratory, Upton, NY; and Los Alamos National Laboratory, Los Alamos, NM

  12. Irradiation facilities at the spallation neutron source SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, E.; Ledermann, J.; Aebersold, H.; Kuehne, G.; Kohlik, K. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Four independent experiments for sample irradiation are under construction and in preparation for operational tests at the spallation source SINQ. Three of them are located inside a thermal beam port with end positions inside or near the moderator tank. The other experiment will be established at the end position of a super mirror lined neutron guide for applications with cold neutrons. (author) 3 figs., 1 tab., 6 refs.

  13. Technical design report of spallation neutron source facility in J-PARC

    International Nuclear Information System (INIS)

    Sakamoto, Shinichi

    2012-02-01

    One of the experimental facilities in Japan Proton Accelerator Research Complex (J-PARC) is the Materials and Life Science Experimental Facility (MLF), where high-intensity neutron beams are used as powerful probes for basic research on materials and life science, as well as research and development in industrial engineering. Neutrons are generated with nuclear spallation reaction by bombarding a mercury target with high-intensity proton beams. The neutrons are slowed down with supercritical hydrogen moderators and then extracted as beams to each experimental apparatus. The principal design of the spallation neutron source is compiled in this comprehensive report. (author)

  14. Calculations of radiation damage in target, container and window materials for spallation neutron sources

    International Nuclear Information System (INIS)

    Wechsler, M.S.; Mansur, L.K.

    1996-01-01

    Radiation damage in target, container, and window materials for spallation neutron sources is am important factor in the design of target stations for accelerator-driver transmutation technologies. Calculations are described that use the LAHET and SPECTER codes to obtain displacement and helium production rates in tungsten, 316 stainless steel, and Inconel 718, which are major target, container, and window materials, respectively. Results are compared for the three materials, based on neutron spectra for NSNS and ATW spallation neutron sources, where the neutron fluxes are normalized to give the same flux of neutrons of all energies

  15. Electron cloud instabilities in the Proton Storage Ring and Spallation Neutron Source

    Directory of Open Access Journals (Sweden)

    M. Blaskiewicz

    2003-01-01

    Full Text Available Electron cloud instabilities in the Los Alamos Proton Storage Ring and those foreseen for the Oak Ridge Spallation Neutron Source are examined theoretically, numerically, and experimentally.

  16. Accumulator ring lattice for the national spallation neutron source

    International Nuclear Information System (INIS)

    Gardner, C.J.; Lee, Y.Y.; Luccio, A.U.

    1997-01-01

    The Accumulator Ring for the proposed National Spallation Neutron Source (NSNS) is to accept a 1.03 millisecond beam pulse from a 1 GeV Proton Linac at a repetition rate of 60 Hz. For each beam pulse, 10 14 protons are to be accumulated via charge-exchange injection. A 295 nanosecond gap in the beam, maintained by an rf system, will allow for extraction to an external target for the production of neutrons by spallation. This paper describes the four-fold symmetric lattice that has been chosen for the ring. The lattice contains four long dispersion-free straight sections to accomodate injection, extraction, rf cavities, and beam scraping respectively. The four-fold symmetry allows for easy adjustment of the tunes and flexibility in the placement of correction elements, and ensures that potentially dangerous betatron structure resonances are avoided

  17. Introduction to spallation physics and spallation-target design

    Energy Technology Data Exchange (ETDEWEB)

    Russell, G.J.; Pitcher, E.J.; Daemen, L.L. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    When coupled with the spallation process in appropriate target materials, high-power accelerators can be used to produce large numbers of neutrons, thus providing an alternate method to the use of nuclear reactors for this purpose. Spallation offers exciting new possibilities for generating intense neutron fluxes for a variety of applications, including: (a) spallation-neutron sources for materials science research; (b) accelerator-based production of tritium; (c) accelerator-based transmutation of waste; (d) accelerator-based destruction of plutonium; and (e) radioisotope production for medical and energy applications. Target design plays a key role in these applications, with neutron production/leakage being strongly dependent on the incident particle type and energy, and target material and geometry.

  18. Spallation neutron source target station issues

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Barnes, J.N.; Charlton, L.A.

    1996-01-01

    In many areas of physics, materials and nuclear engineering, it is extremely valuable to have a very intense source of neutrons so that the structure and function of materials can be studied. One facility proposed for this purpose is the National Spallation Neutron Source (NSNS). This facility will consist of two parts: (1) a high-energy (∼1 GeV) and high powered (∼ 1 MW) proton accelerator, and (2) a target station which converts the protons to low-energy (≤ 2 eV) neutrons and delivers them to the neutron scattering instruments. This paper deals with the second part, i.e., the design and development of the NSNS target station and the scientifically challenging issues. Many scientific and technical disciplines are required to produce a successful target station. These include engineering, remote handling, neutronics, materials, thermal hydraulics, and instrumentation. Some of these areas will be discussed

  19. Neutronic moderator design for the Spallation Neutron Source (SNS)

    International Nuclear Information System (INIS)

    Charlton, L.A.; Barnes, J.M.; Johnson, J.O.; Gabriel, T.A.

    1998-01-01

    Neutronics analyses are now in progress to support the initial selection of moderator design parameters for the Spallation Neutron Source (SNS). The results of the initial optimization studies involving moderator poison plate location, moderator position, and premoderator performance for the target system are presented in this paper. Also presented is an initial study of the use of a composite moderator to produce a liquid methane like spectrum

  20. Thermal-hydraulic performance of a water-cooled tungsten-rod target for a spallation neutron source

    International Nuclear Information System (INIS)

    Poston, D.I.

    1997-08-01

    A thermal-hydraulic (T-H) analysis is conducted to determine the feasibility and limitations of a water-cooled tungsten-rod target at powers of 1 MW and above. The target evaluated has a 10-cm x 10-cm cross section perpendicular to the beam axis, which is typical of an experimental spallation neutron source - both for a short-pulse spallation source and long-pulse spallation source. This report describes the T-H model and assumptions that are used to evaluate the target. A 1-MW baseline target is examined, and the results indicate that this target should easily handle the T-H requirements. The possibility of operating at powers >1 MW is also examined. The T-H design is limited by the condition that the coolant does not boil (actual limits are on surface subcooling and wall heat flux); material temperature limits are not approached. Three possible methods of enhancing the target power capability are presented: reducing peak power density, altering pin dimensions, and improving coolant conditions (pressure and temperature). Based on simple calculations, it appears that this target concept should have little trouble reaching the 2-MW range (from a purely T-H standpoint), and possibly much higher powers. However, one must keep in mind that these conclusions are based solely on thermal-hydraulics. It is possible, and perhaps likely, that target performance could be limited by structural issues at higher powers, particularly for a short-pulse spallation source because of thermal shock issues

  1. Preliminary radiation transport analysis for the proposed National Spallation Neutron Source (NSNS)

    International Nuclear Information System (INIS)

    Johnson, J.O.; Lillie, R.A.

    1997-01-01

    The use of neutrons in science and industry has increased continuously during the past 50 years with applications now widely used in physics, chemistry, biology, engineering, and medicine. Within this history, the relative merits of using pulsed accelerator spallation sources versus reactors for neutron sources as the preferred option for the future. To address this future need, the Department of Energy (DOE) has initiated a pre-conceptual design study for the National Spallation Neutron Source (NSNS) and given preliminary approval for the proposed facility to be built at Oak Ridge National Laboratory (ORNL). The DOE directive is to design and build a short pulse spallation source in the 1 MS power range with sufficient design flexibility that it can be upgraded and operated at a significantly higher power at a later stage. The pre-conceptualized design of the NSNS initially consists of an accelerator system capable of delivering a 1 to 2 GeV proton beam with 1 MW of beam power in an approximate 0.5 microsecond pulse at a 60 Hz frequency onto a single target station. The NSNS will be upgraded in stages to a 5 MW facility with two target stations (a high power station operating at 60 Hz and a low power station operating at 10 Hz). Each target station will contain four moderators (combinations of cryogenic and ambient temperature) and 18 beam liens for a total of 36 experiment stations. This paper summarizes the radiation transport analysis strategies for the proposed NSNS facility

  2. Accelerator system of neutron spallation source for nuclear energy technology development

    International Nuclear Information System (INIS)

    Silakhuddin; Mulyaman, Maman

    2002-01-01

    High intensity proton accelerators are at present and developed for applications in neutron spallation sources. The advantages of this source are better safety factor, easy in controlling and spent fuel free. A study of conceptual design of required accelerator system has been carried out. Considering the required proton beam and feasibility in the development stages, a stepped linac system is an adequate choice for now

  3. Neutronic performance issues for the Spallation Neutron Source moderators

    International Nuclear Information System (INIS)

    Iverson, E.B.; Murphy, B.D.

    2001-01-01

    We continue to develop the neutronic models of the Spallation Neutron Source target station and moderators in order to better predict the neutronic performance of the system as a whole and in order to better optimize that performance. While we are not able to say that every model change leads to more intense neutron beams being predicted, we do feel that such changes are advantageous in either performance or in the accuracy of the prediction of performance. We have computationally and experimentally studied the neutronics of hydrogen-water composite moderators such as are proposed for the SNS Project. In performing these studies, we find that the composite moderator, at least in the configuration we have examined, does not provide performance characteristics desirable for the instruments proposed and being designed for this neutron scattering facility. The pulse width as a function of energy is significantly broader than for other moderators, limiting attainable resolution-bandwidth combinations. Furthermore, there is reason to expect that higher-energy (0.1-1 eV) applications will be significantly impacted by bimodal pulse shapes requiring enormous effort to parameterize. As a result of these studies, we have changed the SNS design, and will not use a composite moderator at this time. We have analyzed the depletion of a gadolinium poison plate in a hydrogen moderator at the Spallation Neutron Source, and found that conventional poison thicknesses will be completely unable to last the desired component lifetime of three operational years. A poison plate 300-600 μm thick will survive for the required length of time, but will somewhat degrade the intensity (by as much as 15% depending on neutron energy) and the consistency of the neutron source performance. Our results should scale fairly easily to other moderators on this or any other spallation source. While depletion will be important for all highly-absorbing materials in high-flux regions, we feel it likely that

  4. Construction and operation of the Spallation Neutron Source: Draft environmental impact statement. Volume 2

    International Nuclear Information System (INIS)

    1998-12-01

    DOE proposes to construct and operate a state-of-the-art, short-pulsed spallation neutron source comprised of an ion source, a linear accelerator, a proton accumulator ring, and an experiment building containing a liquid mercury target and a suite of neutron scattering instrumentation. The proposed Spallation Neutron Source would be designed to operate at a proton beam power of 1 megawatt. The design would accommodate future upgrades to a peak operating power of 4 megawatts. These upgrades may include construction of a second proton accumulation ring and a second target. Volume 1 of this document analyzes the potential environmental impacts from the proposed action and the alternatives. The analysis assumes a facility operating at a power of 1 MW and 4 MW over the life of the facility. The two primary alternatives analyzed in this EIS are: the proposed action (to proceed with building the Spallation Neutron Source) and the No-Action Alternative. This volume contains the following appendices: (A) SNS accident source terms for EIS input; (B) Reports on the selection of alternative sites for the SNS; (C) Letters of consultation on protected species and cultural resources; (D) Ecological resource survey reports and summaries; (E) Descriptions of ORNL research projects in the Walker Branch Watershed; (F) Atmospheric dispersion and dose calculations for normal and accident conditions; (G) Projected air quality modeling effects at NOAA's Walker Branch Monitoring Tower

  5. Proceedings of the workshop on neutron instrumentation for a long-pulse spallation source

    International Nuclear Information System (INIS)

    Alonso, J.; Schroeder, L.; Pynn, R.

    1995-01-01

    This workshop was carried out under the auspices of the Lawrence Berkeley National Laboratory Pulsed Spallation Source activity and its Pulsed Spallation Source Committee (PSSC). One of our activities has been the sponsorship of workshops related to neutron production by pulsed sources. At the Crystal City PSSC meeting a decision was made to hold a workshop on the instrumentation opportunities at a long-pulse spallation source (LPSS). The enclosed material represents the results of deliberations of the three working groups into which the participants were divided, covering elastic scattering, inelastic scattering and fundamental physics, as well as contributions from individual participants. We hope that the material in this report will be useful to the neutron scattering community as it develops a road-map for future neutron sources. The workshop was held at LBNL in mid-April with about sixty very dedicated participants from the US and abroad. This report presents the charge for the workshop: Based on the bench mark source parameters provided by Gary Russell, determine how a suite of spectrometers in each of the three working group's area of expertise would perform at an LPSS and compare this performance with that of similar spectrometers at a continuous source or a short-pulse source. Identify and discuss modifications to these spectrometers that would enhance their performance at an LPSS. Identify any uncertainties in the analysis of spectrometer performance that require further research. Describe what R ampersand D is needed to resolve these issues. Discuss how the performance of instruments would be affected by changes in source parameters such as repetition rate, proton pulse length, and the characteristic time of pulse tails. Identify beneficial changes that could become goals for target/moderator designers. Identify novel methods that might be applied at an LPSS. Selected papers are indexed separately for inclusion in the Energy Science and Technology

  6. SINQ - a continuous spallation neutron source (an approach to 1 MWatt of beam power)

    International Nuclear Information System (INIS)

    Fischer, W.E.

    1995-01-01

    In this status report we describe the continuous spallation source at PSI, which will come into operation in fall 1996. We present the present state of the construction work and review the expected performance of the source. (author) 10 figs., 2 tabs., refs

  7. SINQ - a continuous spallation neutron source (an approach to 1 MWatt of beam power)

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1995-11-01

    In this status report we describe the continuous spallation source at PSI, which will come into operation in fall 1996. We present the present state of the construction work and review the expected performance of the source. (author) 10 figs., 2 tabs., refs.

  8. BEAM-LOSS DRIVEN DESIGN OPTIMIZATION FOR THE SPALLATION NEUTRON SOURCE (SNS) RING.

    Energy Technology Data Exchange (ETDEWEB)

    WEI,J.; BEEBE-WANG,J.; BLASKIEWICZ,M.; CAMERON,P.; DANBY,G.; GARDNER,C.J.; JACKSON,J.; LEE,Y.Y.; LUDEWIG,H.; MALITSKY,N.; RAPARIA,D.; TSOUPAS,N.; WENG,W.T.; ZHANG,S.Y.

    1999-03-29

    This paper summarizes three-stage design optimization for the Spallation Neutron Source (SNS) ring: linear machine design (lattice, aperture, injection, magnet field errors and misalignment), beam core manipulation (painting, space charge, instabilities, RF requirements), and beam halo consideration (collimation, envelope variation, e-p issues etc.).

  9. Beam-Loss Driven Design Optimization for the Spallation Neutron Source (SNS) Ring

    International Nuclear Information System (INIS)

    Wei, J.

    1999-01-01

    This paper summarizes three-state design optimization for the Spallation Neutron Source (SNS) ring: linear machine design (lattice, aperture, injection, magnet field errors and misalignment), beam core manipulation (painting, space charge, instabilities, RF requirements), and beam halo consideration (collimation, envelope variation, e-p issues etc.)

  10. Qualification tests of materials for spallation neutron sources

    International Nuclear Information System (INIS)

    Sommer, W.F.; Maloy, S.; Wechsler, M.S.

    1997-01-01

    Several laboratories will take part in an extensive materials qualification program that includes irradiation in the proton beam and neutron field available at the Los Alamos Spallation Radiation Damage Facility (LASREF). A number of candidate materials will be exposed to prototypic spallation producing particle radiation. Studies of corrosion-related phenomena and the mitigation of these effects will also be accomplished

  11. RF H-minus ion source development in China spallation neutron source

    Science.gov (United States)

    Chen, W.; Ouyang, H.; Xiao, Y.; Liu, S.; Lü, Y.; Cao, X.; Huang, T.; Xue, K.

    2017-08-01

    China Spallation Neutron Source (CSNS) phase-I project currently uses a Penning surface plasma H- ion source, which has a life time of several weeks with occasional sparks between high voltage electrodes. To extend the life time of the ion source and prepare for the CSNS phase-II, we are trying to develop a RF negative hydrogen ion source with external antenna. The configuration of the source is similar to the DESY external antenna ion source and SNS ion source. However several changes are made to improve the stability and the life time. Firstly, Si3N4 ceramic with high thermal shock resistance, and high thermal conductivity is used for plasma chamber, which can endure an average power of 2000W. Secondly, the water-cooled antenna is brazed on the chamber to improve the energy efficiency. Thirdly, cesium is injected directly to the plasma chamber if necessary, to simplify the design of the converter and the extraction. Area of stainless steel exposed to plasma is minimized to reduce the sputtering and degassing. Instead Mo, Ta, and Pt coated materials are used to face the plasma, which makes the self-cleaning of the source possible.

  12. Synchrotron based spallation neutron source concepts

    International Nuclear Information System (INIS)

    Cho, Y.

    1998-01-01

    During the past 20 years, rapid-cycling synchrotrons (RCS) have been used very productively to generate short-pulse thermal neutron beams for neutron scattering research by materials science communities in Japan (KENS), the UK (ISIS) and the US (IPNS). The most powerful source in existence, ISIS in the UK, delivers a 160-kW proton beam to a neutron-generating target. Several recently proposed facilities require proton beams in the MW range to produce intense short-pulse neutron beams. In some proposals, a linear accelerator provides the beam power and an accumulator ring compresses the pulse length to the required ∼ 1 micros. In others, RCS technology provides the bulk of the beam power and compresses the pulse length. Some synchrotron-based proposals achieve the desired beam power by combining two or more synchrotrons of the same energy, and others propose a combination of lower and higher energy synchrotrons. This paper presents the rationale for using RCS technology, and a discussion of the advantages and disadvantages of synchrotron-based spallation sources

  13. BNL feasibility studies of spallation neutron sources

    International Nuclear Information System (INIS)

    Lee, Y.Y.; Ruggiero, A.G.; Van Steenbergen, A.; Weng, W.T.

    1995-01-01

    This paper is the summary of conceptual design studies of a 5 MW Pulsed Spallation Neutron Source (PSNS) conducted by an interdepartmental study group at Brookhaven National Laboratory. The study was made of two periods. First, a scenario based on the use of a 600 MeV Linac followed by two fast-cycling 3.6 GeV Synchrotrons was investigated. Then, in a subsequent period, the attention of the study was directed toward an Accumulator scenario with two options: (1) a 1.25 GeV normal conducting Linac followed by two Accumulator Rings, and (2) a 2.4 GeV superconducting Linac followed by a single Accumulator Ring. The study did not make any reference to a specific site

  14. Studies Performed in Preparation for the Spallation Neutron Source Accumulator Ring Commissioning

    CERN Document Server

    Cousineau, Sarah M; Henderson, Stuart; Holmes, Jeffrey Alan; Plum, Michael

    2005-01-01

    The Spallation Neutron Source accumulator ring will compress 1.5?1014, 1 GeV protons from a 1 ms bunch train to a single 695 ns proton bunch for use in neutron spallation. Due to the high beam power, unprecedented control of beam loss will be required in order to control radiation and allow for hands-on maintenance in most areas of the ring. A number of detailed investigations have been performed to understand the primary sources of beam loss and to predict and mitigate problems associated with radiation hot spots in the ring. The ORBIT particle tracking code is used to perform realistic simulations of the beam accumulation in the ring, including detailed modeling of the injection system, transport through the measured magnet fields including higher order multipoles, and beam loss and collimation. In this paper we present the results of a number of studies performed in preparation for the 2006 commissioning of the accumulator ring.

  15. Analysis of the monitoring system for the spallation neutron source 'SINQ'

    International Nuclear Information System (INIS)

    Badreddin, E.

    1998-01-01

    Petri Net models (PN) and Fault-Tree Analysis (FTA) are employed for the purpose of reliability analysis of the spallation neutron source SINQ. The monitoring and shut-down system (SDS) structure is investigated using a Petri-Net model. The reliability data are processed using a Fault-Tree model of the dominant part. Finally, suggestions for the improvement of system availability are made. (author)

  16. Plans for a new pulsed spallation source at Los Alamos

    International Nuclear Information System (INIS)

    Pynn, R.

    1993-01-01

    Los Alamos National Laboratory has proposed to change the emphasis of research at its Meson Physics Facility (LAWF) by buabg a new pulsed spallation source for neutron scattering research. The new source would have a beam power of about one megawatt shared between two neutron production targets, one operating at 20 Hz and the other at 40 Hz. It would make use of much of the existing proton linac and would be designed to accommodate a later upgrade to a beam power of 5 MW or so. A study of technical feasibility is underway and will be published later this year

  17. Study on induced radioactivity of China Spallation Neutron Source

    International Nuclear Information System (INIS)

    Wu Qingbiao; Wang Qingbin; Wu Jingmin; Ma Zhongjian

    2011-01-01

    China Spallation Neutron Source (CSNS) is the first High Energy Intense Proton Accelerator planned to be constructed in China during the State Eleventh Five-Year Plan period, whose induced radioactivity is very important for occupational disease hazard assessment and environmental impact assessment. Adopting the FLUKA code, the authors have constructed a cylinder-tunnel geometric model and a line-source sampling physical model, deduced proper formulas to calculate air activation, and analyzed various issues with regard to the activation of different tunnel parts. The results show that the environmental impact resulting from induced activation is negligible, whereas the residual radiation in the tunnels has a great influence on maintenance personnel, so strict measures should be adopted.(authors)

  18. Characteristics of the WNR: a pulsed spallation neutron source

    International Nuclear Information System (INIS)

    Russell, G.J.; Lisowski, P.W.; Howe, S.D.; King, N.S.P.; Meier, M.M.

    1982-01-01

    The Weapons Neutron Research facility (WNR) is a pulsed spallation neutron source in operation at the Los Alamos National Laboratory. The WNR uses part of the 800-MeV proton beam from the Clinton P. Anderson Meson Physics Facility accelerator. By choosing different target and moderator configurations and varying the proton pulse structure, the WNR can provide a white neutron source spanning the energy range from a few MeV to 800 MeV. The neutron spectrum from a bare target has been measured and is compared with predictions using an Intranuclear Cascade model coupled to a Monte Carlo transport code. Calculations and measurements of the neutronics of WNR target-moderator assemblies are presented

  19. Complementarity of long pulse and short pulse spallation sources

    Energy Technology Data Exchange (ETDEWEB)

    Mezei, F [Hahn-Meitner-Institut Berlin GmbH (Germany)

    1995-11-01

    The complementarity of short pulse spallation sources (SPSS) and steady state (CW) reactors is a widely accepted concept. SPSS and long pulse spallation sources (LPSS) are complementary in two ways: (a) in their performance in neutron scattering experiments LPSS closely emulate CW reactors. In this respect two facets of the time-of-flight (TOF) monochromator method adequate for LPSS will be discussed: the superiority of the TOF approach to the crystal monochromator method in high resolution powder diffraction, and the novel technique of repetition rate multiplication in TOF spectroscopy, (b) LPSS combined with adequate chopper systems can also emulate SPSS in a number of applications. It will be shown that the LPSS method of producing short neutron pulses is more efficient for cold and thermal neutrons (below an energy of about 100 MeV), while SPSS is the more favourable approach for hot, epithermal neutrons, i.e. in the slowing down regime in contrast to the moderated regime. These two aspects of complementarity of LPSS and SPSS lead to the conclusions that for about 75% of the spectrum of neutron scattering experiments as known of today the LPSS approach is the most advantageous one with a feasible neutron intensity exceeding that available at ILL by a factor of about 30, while for the remaining 25% of applications the SPSS technique is superior with a well-known potential of a similar gain over present day performances. (author) 7 figs., 6 refs.

  20. Complementarity of long pulse and short pulse spallation sources

    International Nuclear Information System (INIS)

    Mezei, F.

    1995-01-01

    The complementarity of short pulse spallation sources (SPSS) and steady state (CW) reactors is a widely accepted concept. SPSS and long pulse spallation sources (LPSS) are complementary in two ways: a) in their performance in neutron scattering experiments LPSS closely emulate CW reactors. In this respect two facets of the time-of-flight (TOF) monochromator method adequate for LPSS will be discussed: the superiority of the TOF approach to the crystal monochromator method in high resolution powder diffraction, and the novel technique of repetition rate multiplication in TOF spectroscopy, b) LPSS combined with adequate chopper systems can also emulate SPSS in a number of applications. It will be shown that the LPSS method of producing short neutron pulses is more efficient for cold and thermal neutrons (below an energy of about 100 MeV), while SPSS is the more favourable approach for hot, epithermal neutrons, i.e. in the slowing down regime in contrast to the moderated regime. These two aspects of complementarity of LPSS and SPSS lead to the conclusions that for about 75% of the spectrum of neutron scattering experiments as known of today the LPSS approach is the most advantageous one with a feasible neutron intensity exceeding that available at ILL by a factor of about 30, while for the remaining 25% of applications the SPSS technique is superior with a well-known potential of a similar gain over present day performances. (author) 7 figs., 6 refs

  1. Target for a spallation source

    International Nuclear Information System (INIS)

    Fassbender, J.; Meister, G.

    1983-01-01

    This invention concerns a liquid metal target for a spallation source. It is composed of a flow channel in which liquid metal flows at a sufficiently high rate. The flow channel has an aperture to let in the proton beam; it is shaped in a way as to generate by appropriately diverting the liquid flow inertial forces which are designed so that they avoid liquid metal penetrating through the aperture. This is achieved by the fact that the combined effect of inertial forces and gravitational forces causes near the aperture the formation of a liquid surface of the channel sides that is more or less parallel to the channel side having the aperture. According to the invention this effect can be obtained by using a bent channel piece with the aperture placed in the side pointing towards the centre of curvature or by constricting the flow of liquid before it gets to the aperture and subsequent expansion behind it. A combination of the two methods is possible according to the invention. (orig./PW)

  2. Target for a spallation source

    International Nuclear Information System (INIS)

    Fassbender, J.; Meister, G.

    1981-01-01

    This invention concerns a liquid metal target for a spallation source. It is composed of a flow channel in which liquid metal flows at a sufficiently high rate. The flow channel has an aperture to let in the proton beam; it is shaped in a way as to generate by appropriately diverting the liquid flow inertial forces which are designed so that they avoid liquid metal penetrating through the aperture. This is achieved by the fact that the combined effect of inertial forces and gravitational forces causes near the aperture the formation of a liquid surface of the channel sides that is more or less parallel the channel side having the aperture. According to the invention this effect can be obtained by using a bent channel piece with the aperture placed in the side pointing towards the centre of curvature or by constricting the flow of liquid before it gets to the aperture and subsequent expansion behind it. A combination of the two methods is possible according to the invention. (orig.) [de

  3. Materials considerations for the National Spallation Neutron Source target

    International Nuclear Information System (INIS)

    Mansur, L.K.; DiStefano, J.R.; Farrell, K.; Lee, E.H.; Pawel, S.J.; Wechsler, M.S.

    1997-08-01

    The National Spallation Neutron Source (NSNS), in which neutrons are generated by bombarding a liquid mercury target with 1 GeV protons, will place extraordinary demands on materials performance. The target structural material will operate in an aggressive environment, subject to intense fluxes of high energy protons, neutrons, and other particles, while exposed to liquid mercury and to water. Components that require special consideration include the Hg liquid target container and protective shroud, beam windows, support structures, moderator containers, and beam tubes. In response to these demands a materials R and D program has been developed for the NSNS that includes: selection of materials; calculations of radiation damage; irradiations, post irradiation testing, and characterization; compatibility testing and characterization; design and implementation of a plan for monitoring of materials performance in service; and materials engineering and technical support to the project. Irradiations are being carried out in actual and simulated spallation environments. Compatibility experiments in Hg are underway to ascertain whether the phenomena of liquid metal embrittlement and temperature gradient mass transfer will be significant. Results available to date are assessed in terms of the design and operational performance of the facility

  4. Nondiffractive applications of neutrons at the spallation source SINQ

    International Nuclear Information System (INIS)

    Lehmann, E.

    1996-01-01

    The paper delivers an overview about experiments with neutrons from the spallation source SINQ which are not especially devoted to neutron scattering. A total of six experimental facilities are under construction using thermal as well as cold neutrons. Starting with some general considerations about the interaction of neutrons with matter, the principles, boundary conditions and the experimental set up of these experiments are described briefly. Some more details are given for the neutron radiography facility NEUTRA as the author's special interest and research field. (author) 7 figs., 2 tabs., 9 refs

  5. Nondiffractive applications of neutrons at the spallation source SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    The paper delivers an overview about experiments with neutrons from the spallation source SINQ which are not especially devoted to neutron scattering. A total of six experimental facilities are under construction using thermal as well as cold neutrons. Starting with some general considerations about the interaction of neutrons with matter, the principles, boundary conditions and the experimental set up of these experiments are described briefly. Some more details are given for the neutron radiography facility NEUTRA as the author`s special interest and research field. (author) 7 figs., 2 tabs., 9 refs.

  6. CLEAR: Prospects for a low threshold neutrino experiment at the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Scholberg, Kate

    2008-01-01

    A low-threshold neutrino scattering experiment at a high intensity stopped-pion neutrino source has the potential to measure coherent neutral current neutrino-nucleus elastic scattering. A promising prospect for the measurement of this process is a proposed noble-liquid-based experiment, dubbed CLEAR (Coherent Low Energy A (Nuclear) Recoils), at the Spallation Neutron Source. This poster will describe the CLEAR proposal and its physics reach.

  7. ELECTRON CLOUD AT COLLIMATOR AND INJECTION REGION OF THE SPALLATION NEUTRON SOURCE ACCUMULATOR RING

    International Nuclear Information System (INIS)

    WANG, L.; HSEUH, H.-C.; LEE, Y.Y.; RAPARIA, D.; WEI, J.; COUSINEAU, S.

    2005-01-01

    The beam loss along the Spallation Neutron Source's accumulator ring is mainly located at the collimator region and injection region. This paper studied the electron cloud build-up at these two regions with the three-dimension program CLOUDLAND

  8. Stabilized operation of the Spallation Neutron Source radio-frequency quadrupole

    Directory of Open Access Journals (Sweden)

    Sang-ho Kim

    2010-07-01

    Full Text Available The Spallation Neutron Source (SNS radio-frequency quadrupole (RFQ had resonance control instabilities at duty factors higher than approximately 4%. Systematic investigations have been carried out to understand the cause of the instability and to ensure the operational stability of the RFQ. The most critical source of the instability is revealed to be an interaction between hydrogen released by beam bombardments and the RFQ rf field resulting in a discharge, which consumes additional rf power and could cause the RFQ to operate in an unstable region. This paper reports improvement of the SNS RFQ operational stability based on the findings during the SNS operation.

  9. A compact time-of-flight SANS instrument optimised for measurements of small sample volumes at the European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Kynde, Søren, E-mail: kynde@nbi.ku.dk [Niels Bohr Institute, University of Copenhagen (Denmark); Hewitt Klenø, Kaspar [Niels Bohr Institute, University of Copenhagen (Denmark); Nagy, Gergely [SINQ, Paul Scherrer Institute (Switzerland); Mortensen, Kell; Lefmann, Kim [Niels Bohr Institute, University of Copenhagen (Denmark); Kohlbrecher, Joachim, E-mail: Joachim.kohlbrecher@psi.ch [SINQ, Paul Scherrer Institute (Switzerland); Arleth, Lise, E-mail: arleth@nbi.ku.dk [Niels Bohr Institute, University of Copenhagen (Denmark)

    2014-11-11

    The high flux at European Spallation Source (ESS) will allow for performing experiments with relatively small beam-sizes while maintaining a high intensity of the incoming beam. The pulsed nature of the source makes the facility optimal for time-of-flight small-angle neutron scattering (ToF-SANS). We find that a relatively compact SANS instrument becomes the optimal choice in order to obtain the widest possible q-range in a single setting and the best possible exploitation of the neutrons in each pulse and hence obtaining the highest possible flux at the sample position. The instrument proposed in the present article is optimised for performing fast measurements of small scattering volumes, typically down to 2×2×2 mm{sup 3}, while covering a broad q-range from about 0.005 1/Å to 0.5 1/Å in a single instrument setting. This q-range corresponds to that available at a typical good BioSAXS instrument and is relevant for a wide set of biomacromolecular samples. A central advantage of covering the whole q-range in a single setting is that each sample has to be loaded only once. This makes it convenient to use the fully automated high-throughput flow-through sample changers commonly applied at modern synchrotron BioSAXS-facilities. The central drawback of choosing a very compact instrument is that the resolution in terms of δλ/λ obtained with the short wavelength neutrons becomes worse than what is usually the standard at state-of-the-art SANS instruments. Our McStas based simulations of the instrument performance for a set of characteristic biomacromolecular samples show that the resulting smearing effects still have relatively minor effects on the obtained data and can be compensated for in the data analysis. However, in cases where a better resolution is required in combination with the large simultaneous q-range characteristic of the instrument, we show that this can be obtained by inserting a set of choppers.

  10. The continued development of the Spallation Neutron Source external antenna H- ion source

    International Nuclear Information System (INIS)

    Welton, R. F.; Carmichael, J.; Fuga, R.; Goulding, R. H.; Han, B.; Kang, Y.; Lee, S. W.; Murray, S. N.; Pennisi, T.; Potter, K. G.; Santana, M.; Stockli, M. P.; Desai, N. J.

    2010-01-01

    The U.S. Spallation Neutron Source (SNS) is an accelerator-based, pulsed neutron-scattering facility, currently in the process of ramping up neutron production. In order to ensure that the SNS will meet its operational commitments as well as provide for future facility upgrades with high reliability, we are developing a rf-driven, H - ion source based on a water-cooled, ceramic aluminum nitride (AlN) plasma chamber. To date, early versions of this source have delivered up to 42 mA to the SNS front end and unanalyzed beam currents up to ∼100 mA (60 Hz, 1 ms) to the ion source test stand. This source was operated on the SNS accelerator from February to April 2009 and produced ∼35 mA (beam current required by the ramp up plan) with availability of ∼97%. During this run several ion source failures identified reliability issues, which must be addressed before the source re-enters production: plasma ignition, antenna lifetime, magnet cooling, and cooling jacket integrity. This report discusses these issues, details proposed engineering solutions, and notes progress to date.

  11. Tool for the study of matter - the spallation neutron source. Werkzeug zur Erforschung der Materie - die Spallations-Neutronenquelle

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    It deals with the optimal use of a whole series of matter penetrating radiation types at the construction of a spallation neutron source which the Kernforschungsanlage Juelich will realize in agreement with its associated. This new big science device for the fundamental research in the Federal Republic of Germany shall as the most modern and intense source of neutrons, protons, pions, muons, and neutrinos permits to proceed in the fields of solid state physics, chemistry, molecular biology, intermediate-energy nuclear physics, radiochemistry and radiopharmacology, medicine, and materials science to virgin territory and to provide top research. All interested German groups of researchers and also scientists of foreign countries shall be able to work with this directive big science device.

  12. Spallation neutron source target station design, development, and commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Haines, J.R., E-mail: hainesjr@ornl.gov; McManamy, T.J.; Gabriel, T.A.; Battle, R.E.; Chipley, K.K.; Crabtree, J.A.; Jacobs, L.L.; Lousteau, D.C.; Rennich, M.J.; Riemer, B.W.

    2014-11-11

    The spallation neutron source target station is designed to safely, reliably, and efficiently convert a 1 GeV beam of protons to a high flux of about 1 meV neutrons that are available at 24 neutron scattering instrument beam lines. Research and development findings, design requirements, design description, initial checkout testing, and results from early operation with beam are discussed for each of the primary target subsystems, including the mercury target, neutron moderators and reflector, surrounding vessels and shielding, utilities, remote handling equipment, and instrumentation and controls. Future plans for the mercury target development program are also briefly discussed.

  13. Modelling of an experiment for the study of neutron spallation source at JINR

    International Nuclear Information System (INIS)

    Kumawat, Harphool; Goyal, Uttam; Kumar, V.; Barashenkov, V.S.

    2002-01-01

    Intense neutron spallation source (INSS) is a necessary requirement of accelerator driven sub-critical systems. INSS are proposed to be generated using the high current proton beams. Some studies are conducted for the neutron flux, transmutation rates and energy gains and a larger number of related experiments are being planned

  14. HYSPEC : A CRYSTAL TIME OF FLIGHT HYBRID SPECTROMETER FOR THE SPALLATION NEUTRON SOURCE

    International Nuclear Information System (INIS)

    SHAPIRO, S.M.; ZALIZNYAK, I.A.

    2002-01-01

    This document lays out a proposal by the Instrument Development Team (IDT) composed of scientists from leading Universities and National Laboratories to design and build a conceptually new high-flux inelastic neutron spectrometer at the pulsed Spallation Neutron Source (SNS) at Oak Ridge. This instrument is intended to supply users of the SNS and scientific community, of which the IDT is an integral part, with a platform for ground-breaking investigations of the low-energy atomic-scale dynamical properties of crystalline solids. It is also planned that the proposed instrument will be equipped with a polarization analysis capability, therefore becoming the first polarized beam inelastic spectrometer in the SNS instrument suite, and the first successful polarized beam inelastic instrument at a pulsed spallation source worldwide. The proposed instrument is designed primarily for inelastic and elastic neutron spectroscopy of single crystals. In fact, the most informative neutron scattering studies of the dynamical properties of solids nearly always require single crystal samples, and they are almost invariably flux-limited. In addition, in measurements with polarization analysis the available flux is reduced through selection of the particular neutron polarization, which puts even more stringent limits on the feasibility of a particular experiment. To date, these investigations have mostly been carried out on crystal spectrometers at high-flux reactors, which usually employ focusing Bragg optics to concentrate the neutron beam on a typically small sample. Construction at Oak Ridge of the high-luminosity spallation neutron source, which will provide intense pulsed neutron beams with time-averaged fluxes equal to those at medium-flux reactors, opens entirely new opportunities for single crystal neutron spectroscopy. Drawing upon experience acquired during decades of studies with both crystal and time-of-flight (TOF) spectrometers, the IDT has developed a conceptual

  15. HYSPEC : A CRYSTAL TIME OF FLIGHT HYBRID SPECTROMETER FOR THE SPALLATION NEUTRON SOURCE.

    Energy Technology Data Exchange (ETDEWEB)

    SHAPIRO,S.M.; ZALIZNYAK,I.A.

    2002-12-30

    This document lays out a proposal by the Instrument Development Team (IDT) composed of scientists from leading Universities and National Laboratories to design and build a conceptually new high-flux inelastic neutron spectrometer at the pulsed Spallation Neutron Source (SNS) at Oak Ridge. This instrument is intended to supply users of the SNS and scientific community, of which the IDT is an integral part, with a platform for ground-breaking investigations of the low-energy atomic-scale dynamical properties of crystalline solids. It is also planned that the proposed instrument will be equipped with a polarization analysis capability, therefore becoming the first polarized beam inelastic spectrometer in the SNS instrument suite, and the first successful polarized beam inelastic instrument at a pulsed spallation source worldwide. The proposed instrument is designed primarily for inelastic and elastic neutron spectroscopy of single crystals. In fact, the most informative neutron scattering studies of the dynamical properties of solids nearly always require single crystal samples, and they are almost invariably flux-limited. In addition, in measurements with polarization analysis the available flux is reduced through selection of the particular neutron polarization, which puts even more stringent limits on the feasibility of a particular experiment. To date, these investigations have mostly been carried out on crystal spectrometers at high-flux reactors, which usually employ focusing Bragg optics to concentrate the neutron beam on a typically small sample. Construction at Oak Ridge of the high-luminosity spallation neutron source, which will provide intense pulsed neutron beams with time-averaged fluxes equal to those at medium-flux reactors, opens entirely new opportunities for single crystal neutron spectroscopy. Drawing upon experience acquired during decades of studies with both crystal and time-of-flight (TOF) spectrometers, the IDT has developed a conceptual

  16. Opportunities for Neutrino Physics at the Spallation Neutron Source: A White Paper

    Energy Technology Data Exchange (ETDEWEB)

    Bolozdynya, A. [Moscow Phys. Eng. Inst.; Cavanna, F. [INFN, Aquila; Efremenko, Y. [Tennessee U.; Garvey, G. T. [Los Alamos; Gudkov, V. [South Carolina U.; Hatzikoutelis, A. [Tennessee U.; Hix, W. R. [Oak Ridge; Louis, W. C. [Los Alamos; Link, J. M. [Virginia Tech.; Markoff, D. M. [North Carolina Central U.; Mills, G. B. [Los Alamos; Patton, K. [North Carolina State U.; Ray, H. [Florida U.; Scholberg, K. [Duke U.; Van de Water, R. G. [Los Alamos; Virtue, C. [Laurentian U.; White, D. H. [Los Alamos; Yen, S. [TRIUMF; Yoo, J. [Fermilab

    2012-11-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, Tennessee, provides an intense flux of neutrinos in the few tens-of-MeV range, with a sharply-pulsed timing structure that is beneficial for background rejection. In this document, the product of a workshop at the SNS in May 2012, we describe this free, high-quality stopped-pion neutrino source and outline various physics that could be done using it. We describe without prioritization some specific experimental configurations that could address these physics topics.

  17. Quasielastic high-resolution time-of-flight spectrometers employing multi-disk chopper cascades for spallation sources

    International Nuclear Information System (INIS)

    Lechner, R.E.

    2001-01-01

    The design of multi-disk chopper time-of-flight (MTOF) spectrometers for high-resolution quasielastic and low-energy inelastic neutron scattering at spallation sources is discussed in some detail. A continuously variable energy resolution (1 μeV to 10 meV), and a large dynamic range (1 μeV to 100 meV), are outstanding features of this type of instrument, which are easily achieved also at a pulsed source using state-of-the-art technology. The method of intensity-resolution optimization of MTOF spectrometers at spallation sources is treated on the basis of the requirement of using (almost) 'all the neutrons of the pulse', taking into account the constant, but wavelength-dependent duration of the source pulse. It follows, that the optimization procedure (which is slightly different from that employed in the steady-state source case) should give priority to the highest resolution, whenever such a choice becomes necessary. This leads to long monochromator distances (L l2 ) of the order of 50 m, for achieving resolutions now available at reactor sources. A few examples of spectrometer layout and corresponding design parameters for large-angle and for small-angle quasielastic scattering instruments are given. In the latter case higher energy resolution than for large-angle scattering is required and achieved. The use of phase-space transformers, neutron wavelength band-pass filters and multichromatic operation for the purpose of intensity-resolution optimization are discussed. This spectrometer can be designed to make full use of the pulsed source peak flux. Therefore, and because of a number of improvements, high resolution will be available at high intensity: for any given resolution the total intensity at the detectors, when placed at one of the planned new spallation sources (SNS, JSNS, ESS, AUSTRON) will be larger by at least three orders of magnitude than the total intensity of any of the presently existing instruments of this type in routine operation at steady

  18. Status of SINQ, the only MW spallation neutron source-highlighting target development and industrial applications

    International Nuclear Information System (INIS)

    Wagner, Werner; Dai, Yong; Glasbrenner, Heike; Grosse, Mirco; Lehmann, Eberhard

    2006-01-01

    SINQ is a continuous spallation neutron source, driven by PSI's 590 MeV proton accelerator. Receiving a stable proton current of 1.3 mA, SINQ is the presently most powerful accelerator-driven facility worldwide. Besides the primary designation of SINQ to serve as user facility for neutron scattering and neutron imaging, PSI seeks to play a leading role in the development of the facility, focusing on spallation targets and materials research for high-dose radiation environments. Accompanying these activities, SINQ has established several projects serving a more general, profound development towards high-power spallation targets: the most prominent ones being SINQ Target Irradiation Program (STIP) and megawatt pilot experiment for a liquid metal target (MEGAPIE), complemented by LiSoR and VIMOS. Within the user program, SINQ is aspiring to attract an appropriate contingent of industrial applications. The paper highlights the potential for industrial applications by means of selected examples from strain mapping and neutron imaging

  19. A neutron booster for spallation sources--application to accelerator driven systems and isotope production

    CERN Document Server

    Galy, J; Van Dam, H; Valko, J

    2002-01-01

    One can design a critical system with fissile material in the form of a thin layer on the inner surface of a cylindrical neutron moderator such as graphite or beryllium. Recently, we have investigated the properties of critical and near critical systems based on the use of thin actinide layers of uranium, plutonium and americium. The thickness of the required fissile layer depends on the type of fissile material, its concentration in the layer and on the geometrical arrangement, but is typically in the mu m-mm range. The resulting total mass of fissile material can be as low as 100 g. Thin fissile layers have a variety of applications in nuclear technology--for example in the design neutron amplifiers for medical applications and 'fast' islands in thermal reactors for waste incineration. In the present paper, we investigate the properties of a neutron booster unit for spallation sources and isotope production. In those applications a layer of fissile material surrounds the spallation source. Such a module cou...

  20. Beam Instrumentation for the Spallation Neutron Source Ring

    International Nuclear Information System (INIS)

    Witkover, R. L.; Cameron, P. R.; Shea, T. J.; Connolly, R. C.; Kesselman, M.

    1999-01-01

    The Spallation Neutron Source (SNS) will be constructed by a multi-laboratory collaboration with BNL responsible for the transfer lines and ring. The 1 MW beam power necessitates careful monitoring to minimize un-controlled loss. This high beam power will influence the design of the monitors in the high energy beam transport line (HEBT) from linac to ring, in the ring, and in the ring-to-target transfer line (RTBT). The ring instrumentation must cover a 3-decade range of beam intensity during accumulation. Beam loss monitoring will be especially critical since un-controlled beam loss must be kept below 10 -4 . A Beam-In-Gap (BIG) monitor is being designed to assure out-of-bucket beam will not be lost in the ring

  1. Characterization of γ-ray background at IMAT beamline of ISIS Spallation Neutron Source

    Science.gov (United States)

    Festa, G.; Andreani, C.; Arcidiacono, L.; Burca, G.; Kockelmann, W.; Minniti, T.; Senesi, R.

    2017-08-01

    The environmental γ -ray background on the IMAT beamline at ISIS Spallation Neutron Source, Target Station 2, is characterized via γ spectroscopy. The measurements include gamma exposure at the imaging detector position, along with the gamma background inside the beamline. Present results are discussed and compared with previous measurements recorded at INES and VESUVIO beamlines operating at Target Station 1. They provide new outcome for expanding and optimizing the PGAA experimental capability at the ISIS neutron source for the investigation of materials, engineering components and cultural heritage objects at the ISIS neutron source.

  2. Characterization of γ-ray background at IMAT beamline of ISIS Spallation Neutron Source

    International Nuclear Information System (INIS)

    Festa, G.; Andreani, C.; Arcidiacono, L.; Senesi, R.; Burca, G.; Kockelmann, W.; Minniti, T.

    2017-01-01

    The environmental γ -ray background on the IMAT beamline at ISIS Spallation Neutron Source, Target Station 2, is characterized via γ  spectroscopy. The measurements include gamma exposure at the imaging detector position, along with the gamma background inside the beamline. Present results are discussed and compared with previous measurements recorded at INES and VESUVIO beamlines operating at Target Station 1. They provide new outcome for expanding and optimizing the PGAA experimental capability at the ISIS neutron source for the investigation of materials, engineering components and cultural heritage objects at the ISIS neutron source.

  3. The performance of neutron spectrometers AR a long-pulse spallation source

    International Nuclear Information System (INIS)

    Pynn, R.; Daemen, L.L.

    1995-01-01

    At a recent workshop at Lawrence Berkeley National Laboratory members of the international neutron scattering community discussed the performance to be anticipated from neutron scattering instruments installed at a 1 MW long-pulse spallation source (LPSS). Although the report of this workshop is long, its principal conclusions can be easily summarised and almost as easily understood. This article presents such a synthesis for a 60 Hz LPSS with 1 msec proton pulses. We discuss some of the limitations of the workshop conclusions and suggest a simple analysis of the performance differences that might be expected between short- and long-pulse sources both of which exploit coupled moderators

  4. CHINA SPALLATION NEUTRON SOURCE PROJECT: DESIGN ITERATIONS AND R AND D STATUS

    International Nuclear Information System (INIS)

    WEI, J.

    2006-01-01

    The China Spallation Neutron Source (CSNS) is an accelerator based high power project currently under preparation in China. The accelerator complex is based on an H - linear accelerator and a rapid cycling proton synchrotron. During the past year, the design of most accelerator systems went through major iterations, and initial research and developments were started on the prototyping of several key components. This paper summarizes major activities of the past year

  5. The thermal triple-axis-spectrometer EIGER at the continuous spallation source SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Stuhr, U., E-mail: uwe.stuhr@psi.ch [Laboratory of Neutron Scattering and Imaging, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Roessli, B.; Gvasaliya, S. [Laboratory of Neutron Scattering and Imaging, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Rønnow, H.M. [Laboratory for Quantum Magnetism, Institute of Physics, Ecole Polytechnique Féderale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Filges, U.; Graf, D.; Bollhalder, A.; Hohl, D.; Bürge, R.; Schild, M.; Holitzner, L.; Kaegi, C.; Keller, P.; Mühlebach, T. [Laboratory for Scientific Development and Novel Materials, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)

    2017-05-01

    EIGER is the new thermal triple-axis-spectrometer at the continuous spallation SINQ at PSI. The shielding of the monochromator consists only of non- or low magnetizable materials, which allows the use of strong magnetic fields with the instrument. This shielding reduces the high energy neutron contamination to a comparable level of thermal spectrometers at reactor sources. The instrument design, the performance and first results of the spectrometer are presented.

  6. Improvements to the internal and external antenna H(-) ion sources at the Spallation Neutron Source.

    Science.gov (United States)

    Welton, R F; Dudnikov, V G; Han, B X; Murray, S N; Pennisi, T R; Pillar, C; Santana, M; Stockli, M P; Turvey, M W

    2014-02-01

    The Spallation Neutron Source (SNS), a large scale neutron production facility, routinely operates with 30-40 mA peak current in the linac. Recent measurements have shown that our RF-driven internal antenna, Cs-enhanced, multi-cusp ion sources injects ∼55 mA of H(-) beam current (∼1 ms, 60 Hz) at 65-kV into a Radio Frequency Quadrupole (RFQ) accelerator through a closely coupled electrostatic Low-Energy Beam Transport system. Over the last several years a decrease in RFQ transmission and issues with internal antennas has stimulated source development at the SNS both for the internal and external antenna ion sources. This report discusses progress in improving internal antenna reliability, H(-) yield improvements which resulted from modifications to the outlet aperture assembly (applicable to both internal and external antenna sources) and studies made of the long standing problem of beam persistence with the external antenna source. The current status of the external antenna ion source will also be presented.

  7. Proton injection and RF capture in the national spallation neutron source

    International Nuclear Information System (INIS)

    Luccio, A.U.; Beebe-Wang, J.; Maletic, D.

    1997-01-01

    The accelerator system for the 1 to 5 MW National Spallation Neutron Source (NSNS) consists of a linac followed by a 1 GeV proton accumulator ring. Since the ring is a very high current machine, the injection and rf capture of the protons is deeply affected by transverse and longitudinal space charge effects. Results of numerical simulation of the process are presented together with considerations on methods and results of space charge treatment in high intensity proton storage rings

  8. PROCEEDINGS ON SYNCHROTRON RADIATION: China Spallation Neutron Source - an overview of application prospects

    Science.gov (United States)

    Wei, Jie; Fu, Shi-Nian; Tang, Jing-Yu; Tao, Ju-Zhou; Wang, Ding-Sheng; Wang, Fang-Wei; Wang, Sheng

    2009-11-01

    The China Spallation Neutron Source (CSNS) is an accelerator-based multidisciplinary user facility to be constructed in Dongguan, Guangdong, China. The CSNS complex consists of an H- linear accelerator, a rapid cycling synchrotron accelerating the beam to 1.6 GeV, a solid-tungsten target station, and instruments for spallation neutron applications. The facility operates at 25 Hz repetition rate with an initial design beam power of 120 kW and is upgradeable to 500 kW. Construction of the CSNS project will lay the foundation of a leading national research center based on advanced proton-accelerator technology, pulsed neutron-scattering technology, and related programs including muon, fast neutron, and proton applications as well as medical therapy and accelerator-driven subcritical reactor (ADS) applications to serve China's strategic needs in scientific research and technological innovation for the next 30 plus years.

  9. Spallation neutron production on thick target at saturne

    International Nuclear Information System (INIS)

    David, J.C.; David, J.C.; Varignon, C.; Borne, F.; Boudard, A.; Brochard, F.; Crespin, S.; Duchazeaubeneix, J.C.; Durand, D.; Durand, J.M.; Frehaut, J.; Hannappe, F.; Lebrun, C.; Lecolley, J.F.; Ledoux, X.; Lefebvres, F.; Legrain, R.; Leray, S.; Louvel, M.; Martinez, E.; Menard, S.; Milleret, G.; Patin, Y.; Petitbon, E.; Plouin, F.; Schapira, J.P.; Stugge, L.; Terrien, Y.; Thun, J.; Volant, C.; Whittal, D.M.

    2003-01-01

    In view of the new spallation neutron source projects, we discuss the characteristics of the neutron spectra on thick targets measured at SATURNE. Some comparisons to spallation models, and especially INCL4/ABLA implemented in the LAHET code, are done. (orig.)

  10. The Spallation Neutron Source accelerator system design

    Science.gov (United States)

    Henderson, S.; Abraham, W.; Aleksandrov, A.; Allen, C.; Alonso, J.; Anderson, D.; Arenius, D.; Arthur, T.; Assadi, S.; Ayers, J.; Bach, P.; Badea, V.; Battle, R.; Beebe-Wang, J.; Bergmann, B.; Bernardin, J.; Bhatia, T.; Billen, J.; Birke, T.; Bjorklund, E.; Blaskiewicz, M.; Blind, B.; Blokland, W.; Bookwalter, V.; Borovina, D.; Bowling, S.; Bradley, J.; Brantley, C.; Brennan, J.; Brodowski, J.; Brown, S.; Brown, R.; Bruce, D.; Bultman, N.; Cameron, P.; Campisi, I.; Casagrande, F.; Catalan-Lasheras, N.; Champion, M.; Champion, M.; Chen, Z.; Cheng, D.; Cho, Y.; Christensen, K.; Chu, C.; Cleaves, J.; Connolly, R.; Cote, T.; Cousineau, S.; Crandall, K.; Creel, J.; Crofford, M.; Cull, P.; Cutler, R.; Dabney, R.; Dalesio, L.; Daly, E.; Damm, R.; Danilov, V.; Davino, D.; Davis, K.; Dawson, C.; Day, L.; Deibele, C.; Delayen, J.; DeLong, J.; Demello, A.; DeVan, W.; Digennaro, R.; Dixon, K.; Dodson, G.; Doleans, M.; Doolittle, L.; Doss, J.; Drury, M.; Elliot, T.; Ellis, S.; Error, J.; Fazekas, J.; Fedotov, A.; Feng, P.; Fischer, J.; Fox, W.; Fuja, R.; Funk, W.; Galambos, J.; Ganni, V.; Garnett, R.; Geng, X.; Gentzlinger, R.; Giannella, M.; Gibson, P.; Gillis, R.; Gioia, J.; Gordon, J.; Gough, R.; Greer, J.; Gregory, W.; Gribble, R.; Grice, W.; Gurd, D.; Gurd, P.; Guthrie, A.; Hahn, H.; Hardek, T.; Hardekopf, R.; Harrison, J.; Hatfield, D.; He, P.; Hechler, M.; Heistermann, F.; Helus, S.; Hiatt, T.; Hicks, S.; Hill, J.; Hill, J.; Hoff, L.; Hoff, M.; Hogan, J.; Holding, M.; Holik, P.; Holmes, J.; Holtkamp, N.; Hovater, C.; Howell, M.; Hseuh, H.; Huhn, A.; Hunter, T.; Ilg, T.; Jackson, J.; Jain, A.; Jason, A.; Jeon, D.; Johnson, G.; Jones, A.; Joseph, S.; Justice, A.; Kang, Y.; Kasemir, K.; Keller, R.; Kersevan, R.; Kerstiens, D.; Kesselman, M.; Kim, S.; Kneisel, P.; Kravchuk, L.; Kuneli, T.; Kurennoy, S.; Kustom, R.; Kwon, S.; Ladd, P.; Lambiase, R.; Lee, Y. Y.; Leitner, M.; Leung, K.-N.; Lewis, S.; Liaw, C.; Lionberger, C.; Lo, C. C.; Long, C.; Ludewig, H.; Ludvig, J.; Luft, P.; Lynch, M.; Ma, H.; MacGill, R.; Macha, K.; Madre, B.; Mahler, G.; Mahoney, K.; Maines, J.; Mammosser, J.; Mann, T.; Marneris, I.; Marroquin, P.; Martineau, R.; Matsumoto, K.; McCarthy, M.; McChesney, C.; McGahern, W.; McGehee, P.; Meng, W.; Merz, B.; Meyer, R.; Meyer, R.; Miller, B.; Mitchell, R.; Mize, J.; Monroy, M.; Munro, J.; Murdoch, G.; Musson, J.; Nath, S.; Nelson, R.; Nelson, R.; O`Hara, J.; Olsen, D.; Oren, W.; Oshatz, D.; Owens, T.; Pai, C.; Papaphilippou, I.; Patterson, N.; Patterson, J.; Pearson, C.; Pelaia, T.; Pieck, M.; Piller, C.; Plawski, T.; Plum, M.; Pogge, J.; Power, J.; Powers, T.; Preble, J.; Prokop, M.; Pruyn, J.; Purcell, D.; Rank, J.; Raparia, D.; Ratti, A.; Reass, W.; Reece, K.; Rees, D.; Regan, A.; Regis, M.; Reijonen, J.; Rej, D.; Richards, D.; Richied, D.; Rode, C.; Rodriguez, W.; Rodriguez, M.; Rohlev, A.; Rose, C.; Roseberry, T.; Rowton, L.; Roybal, W.; Rust, K.; Salazer, G.; Sandberg, J.; Saunders, J.; Schenkel, T.; Schneider, W.; Schrage, D.; Schubert, J.; Severino, F.; Shafer, R.; Shea, T.; Shishlo, A.; Shoaee, H.; Sibley, C.; Sims, J.; Smee, S.; Smith, J.; Smith, K.; Spitz, R.; Staples, J.; Stein, P.; Stettler, M.; Stirbet, M.; Stockli, M.; Stone, W.; Stout, D.; Stovall, J.; Strelo, W.; Strong, H.; Sundelin, R.; Syversrud, D.; Szajbler, M.; Takeda, H.; Tallerico, P.; Tang, J.; Tanke, E.; Tepikian, S.; Thomae, R.; Thompson, D.; Thomson, D.; Thuot, M.; Treml, C.; Tsoupas, N.; Tuozzolo, J.; Tuzel, W.; Vassioutchenko, A.; Virostek, S.; Wallig, J.; Wanderer, P.; Wang, Y.; Wang, J. G.; Wangler, T.; Warren, D.; Wei, J.; Weiss, D.; Welton, R.; Weng, J.; Weng, W.-T.; Wezensky, M.; White, M.; Whitlatch, T.; Williams, D.; Williams, E.; Wilson, K.; Wiseman, M.; Wood, R.; Wright, P.; Wu, A.; Ybarrolaza, N.; Young, K.; Young, L.; Yourd, R.; Zachoszcz, A.; Zaltsman, A.; Zhang, S.; Zhang, W.; Zhang, Y.; Zhukov, A.

    2014-11-01

    The Spallation Neutron Source (SNS) was designed and constructed by a collaboration of six U.S. Department of Energy national laboratories. The SNS accelerator system consists of a 1 GeV linear accelerator and an accumulator ring providing 1.4 MW of proton beam power in microsecond-long beam pulses to a liquid mercury target for neutron production. The accelerator complex consists of a front-end negative hydrogen-ion injector system, an 87 MeV drift tube linear accelerator, a 186 MeV side-coupled linear accelerator, a 1 GeV superconducting linear accelerator, a 248-m circumference accumulator ring and associated beam transport lines. The accelerator complex is supported by ~100 high-power RF power systems, a 2 K cryogenic plant, ~400 DC and pulsed power supply systems, ~400 beam diagnostic devices and a distributed control system handling ~100,000 I/O signals. The beam dynamics design of the SNS accelerator is presented, as is the engineering design of the major accelerator subsystems.

  11. H- radio frequency source development at the Spallation Neutron Source.

    Science.gov (United States)

    Welton, R F; Dudnikov, V G; Gawne, K R; Han, B X; Murray, S N; Pennisi, T R; Roseberry, R T; Santana, M; Stockli, M P; Turvey, M W

    2012-02-01

    The Spallation Neutron Source (SNS) now routinely operates nearly 1 MW of beam power on target with a highly persistent ∼38 mA peak current in the linac and an availability of ∼90%. H(-) beam pulses (∼1 ms, 60 Hz) are produced by a Cs-enhanced, multicusp ion source closely coupled with an electrostatic low energy beam transport (LEBT), which focuses the 65 kV beam into a radio frequency quadrupole accelerator. The source plasma is generated by RF excitation (2 MHz, ∼60 kW) of a copper antenna that has been encased with a thickness of ∼0.7 mm of porcelain enamel and immersed into the plasma chamber. The ion source and LEBT normally have a combined availability of ∼99%. Recent increases in duty-factor and RF power have made antenna failures a leading cause of downtime. This report first identifies the physical mechanism of antenna failure from a statistical inspection of ∼75 antennas which ran at the SNS, scanning electron microscopy studies of antenna surface, and cross sectional cuts and analysis of calorimetric heating measurements. Failure mitigation efforts are then described which include modifying the antenna geometry and our acceptance∕installation criteria. Progress and status of the development of the SNS external antenna source, a long-term solution to the internal antenna problem, are then discussed. Currently, this source is capable of delivering comparable beam currents to the baseline source to the SNS and, an earlier version, has briefly demonstrated unanalyzed currents up to ∼100 mA (1 ms, 60 Hz) on the test stand. In particular, this paper discusses plasma ignition (dc and RF plasma guns), antenna reliability, magnet overheating, and insufficient beam persistence.

  12. Plans for a Collaboratively Developed Distributed Control System for the Spallation Neutron Source

    International Nuclear Information System (INIS)

    DeVan, W.R.; Gurd, D.P.; Hammonds, J.; Lewis, S.A.; Smith, J.D.

    1999-01-01

    The Spallation Neutron Source (SNS) is an accelerator-based pulsed neutron source to be built in Oak Ridge, Tennessee. The facility has five major sections - a ''front end'' consisting of a 65 keV H - ion source followed by a 2.5 MeV RFQ; a 1 GeV linac; a storage ring; a 1MW spallation neutron target (upgradeable to 2 MW); the conventional facilities to support these machines and a suite of neutron scattering instruments to exploit them. These components will be designed and implemented by five collaborating institutions: Lawrence Berkeley National Laboratory (Front End), Los Alamos National Laboratory (Linac); Brookhaven National Laboratory (Storage Ring); Argonne National Laboratory (Instruments); and Oak Ridge National Laboratory (Neutron Source and Conventional Facilities). It is proposed to implement a fully integrated control system for all aspects of this complex. The system will be developed collaboratively, with some degree of local autonomy for distributed systems, but centralized accountability. Technical integration will be based upon the widely-used EPICS control system toolkit, and a complete set of hardware and software standards. The scope of the integrated control system includes site-wide timing and synchronization, networking and machine protection. This paper discusses the technical and organizational issues of planning a large control system to be developed collaboratively at five different institutions, the approaches being taken to address those issues, as well as some of the particular technical challenges for the SNS control system

  13. The spallation neutron source SINQ. A new large facility for research at PSI

    International Nuclear Information System (INIS)

    Bauer, G.S.; Crawford, J.F.

    1994-01-01

    This document is intended to familiarize the non-specialist with the principles of neutron scattering and some of its applications. It presents an overview of the foundations of neutron scattering, the basic types of instruments used, and their principles of operation. The design concept and some technical details of the spallation neutron source are described for the benefit of the scientifically or technically interested reader. In future this source will form the heart of the instruments available to PSI's wide community of neutron scattering researchers. (author) 32 figs., 1 tab

  14. Overview of the Spallation Neutron Source Linac Low-Level RF Control System

    CERN Document Server

    Champion, Mark; Doolittle, Lawrence; Kasemir, Kay-Uwe; Ma, Hengjie; Piller, Maurice; Ratti, Alessandro

    2005-01-01

    The design and production of the Spallation Neutron Source Linac Low-Level RF control system is complete, and installation will be finished in Spring 2005. The warm linac beam commissioning run in Fall 2004 was the most extensive test to date of the LLRF control system, with fourteen (of an eventual 96) systems operating simultaneously. In this paper we present an overview of the LLRF control system, the experience in designing, building and installing the system, and operational results.

  15. The Spallation Neutron Source (SNS) conceptual design shielding analysis

    International Nuclear Information System (INIS)

    Johnson, J.O.; Odano, N.; Lillie, R.A.

    1998-03-01

    The shielding design is important for the construction of an intense high-energy accelerator facility like the proposed Spallation Neutron Source (SNS) due to its impact on conventional facility design, maintenance operations, and since the cost for the radiation shielding shares a considerable part of the total facility costs. A calculational strategy utilizing coupled high energy Monte Carlo calculations and multi-dimensional discrete ordinates calculations, along with semi-empirical calculations, was implemented to perform the conceptual design shielding assessment of the proposed SNS. Biological shields have been designed and assessed for the proton beam transport system and associated beam dumps, the target station, and the target service cell and general remote maintenance cell. Shielding requirements have been assessed with respect to weight, space, and dose-rate constraints for operating, shutdown, and accident conditions. A discussion of the proposed facility design, conceptual design shielding requirements calculational strategy, source terms, preliminary results and conclusions, and recommendations for additional analyses are presented

  16. Proton and Ion Sources for High Intensity Accelerators

    CERN Multimedia

    Scrivens, R

    2004-01-01

    Future high intensity ion accelerators, including the Spallation Neutron Source (SNS), the European Spallation Source (ESS), the Superconducting Proton Linac (SPL) etc, will require high current and high duty factor sources for protons and negative hydrogen ions. In order to achieve these goals, a comparison of the Electron Cyclotron Resonance, radio-frequency and Penning ion sources, among others, will be made. For each of these source types, the present operational sources will be compared to the state-of-the-art research devices with special attention given to reliability and availability. Finally, the future research and development aims will be discussed.

  17. Beginnings of remote handling at the RAL Spallation Neutron Source

    International Nuclear Information System (INIS)

    Liska, D.J.; Hirst, J.

    1985-01-01

    Expenditure of funds and resources for remote maintenance systems traditionally are delayed until late in an accelerator's development. However, simple remote-surveillance equipment can be included early in facility planning to set the stage for future remote-handling needs and to identify appropriate personnel. Some basic equipment developed in the UK at the Spallation Neutron Source (SNS) that serves this function and that has been used to monitor beam loss during commissioning is described. A photograph of this equipment, positioned over the extractor septum magnet, is shown. This method can serve as a pattern approach to the problem of initiating remote-handling activities in other facilities

  18. Magnets for the national spallation neutron source accumulator ring

    International Nuclear Information System (INIS)

    Tuozzolo, J.; Brodowski, J.; Danby, G.

    1997-01-01

    The National Spallation Neutron Source Accumulator Ring will require large aperture dipole magnets, strong focusing quadrupole magnets, and smaller low field dipole, quadrupole, and sextupole correcting magnets. All of the magnets will provide a fixed magnetic field throughout the accumulator's fill/storage/extraction cycle. Similar fixed field magnets will also be provided for the beam transport systems. Because of the high intensity in the accumulator, the magnets must be designed with high tolerances for optimum field quality and for the high radiation environment which may be present at the injection/extraction areas, near the collimators, and near the target area. Field specifications and field plots are presented as well as planned fabrication methods and procedures, cooling system design, support, and installation

  19. Spallation Neutron Source Accident Terms for Environmental Impact Statement Input

    Energy Technology Data Exchange (ETDEWEB)

    Devore, J.R.; Harrington, R.M.

    1998-08-01

    This report is about accidents with the potential to release radioactive materials into the environment surrounding the Spallation Neutron Source (SNS). As shown in Chap. 2, the inventories of radioactivity at the SNS are dominated by the target facility. Source terms for a wide range of target facility accidents, from anticipated events to worst-case beyond-design-basis events, are provided in Chaps. 3 and 4. The most important criterion applied to these accident source terms is that they should not underestimate potential release. Therefore, conservative methodology was employed for the release estimates. Although the source terms are very conservative, excessive conservatism has been avoided by basing the releases on physical principles. Since it is envisioned that the SNS facility may eventually (after about 10 years) be expanded and modified to support a 4-MW proton beam operational capability, the source terms estimated in this report are applicable to a 4-MW operating proton beam power unless otherwise specified. This is bounding with regard to the 1-MW facility that will be built and operated initially. See further discussion below in Sect. 1.2.

  20. Materials compatibility studies for the Spallation Neutron Source

    International Nuclear Information System (INIS)

    DiStefano, J.R.; Pawel, S.J.; Manneschmidt, E.T.

    1998-01-01

    The Spallation Neutron Source (SNS) is a high power facility for producing neutrons that utilizes flowing liquid mercury inside an austenitic stainless steel container as the target for a 1.0 GeV proton beam. Type 316 SS has been selected as the container material for the mercury and consequences of exposure of 316 SS to radiation, thermal shock, thermal stress, cavitation and hot, flowing mercury are all being addressed by R and D programs. In addition, corrosion studies also include evaluation of Inconel 718 because it has been successfully used in previous spallation neutron systems as a window material. Two types of compatibility issues relative to 316 SS/mercury and Inconel 718/mercury are being examined: (1) liquid metal embrittlement (LME) and (2) temperature gradient mass transfer. Studies have shown that mercury does not easily wet type 316 SS below 275 C. In the LME experiments, attempts were made to promote wetting of the steel by mercury either by adding gallium to the mercury or coating the specimen with a tin-silver solder that the mercury easily wets. The latter proved more reliable in establishing wetting, but there was no evidence of LME in any of the constant extension rate tensile tests either at 23 or 100 C. Inconel 718 also showed no change in room temperature properties when tested in mercury or mercury-gallium. However, there was evidence that the fracture was less ductile. Preliminary evaluation of mass transfer of either type 316 SS or Inconel 718 in mercury or mercury-gallium at 350 C (maximum temperature) did not reveal significant effects. Two 5,000 h thermal convection loop tests of type 316 SS are in progress, with specimens in both hot and cold test regions, at 300 and 240 C, respectively

  1. Proceedings of the workshop on ion source issues relevant to a pulsed spallation neutron source: Part 1: Workshop summary

    International Nuclear Information System (INIS)

    Schroeder, L.; Leung, K.N.; Alonso, J.

    1994-10-01

    The workshop reviewed the ion-source requirements for high-power accelerator-driven spallation neutron facilities, and the performance of existing ion sources. Proposals for new facilities in the 1- to 5-MW range call for a widely differing set of ion-source requirements. For example, the source peak current requirements vary from 40 mA to 150 mA, while the duty factor ranges from 1% to 9%. Much of the workshop discussion centered on the state-of-the-art of negative hydrogen ion source (H - ) technology and the present experience with Penning and volume sources. In addition, other ion source technologies, for positive ions or CW applications were reviewed. Some of these sources have been operational at existing accelerator complexes and some are in the source-development stage on test stands

  2. Pressure and stress waves in a spallation neutron source mercury target generated by high-power proton pulses

    CERN Document Server

    Futakawa, M; Conrad, H; Stechemesser, H

    2000-01-01

    The international ASTE collaboration has performed a first series of measurements on a spallation neutron source target at the Alternating Gradient Synchrotron (AGS) in Brookhaven. The dynamic response of a liquid mercury target hit by high-power proton pulses of about 40 ns duration has been measured by a laser Doppler technique and compared with finite elements calculations using the ABAQUS code. It is shown that the calculation can describe the experimental results for at least the time interval up to 100 mu s after the pulse injection. Furthermore, it has been observed that piezoelectric pressure transducers cannot be applied in the high gamma-radiation field of a spallation target.

  3. Monte Carlo modeling of neutron imaging at the SINQ spallation source

    International Nuclear Information System (INIS)

    Lebenhaft, J.R.; Lehmann, E.H.; Pitcher, E.J.; McKinney, G.W.

    2003-01-01

    Modeling of the Swiss Spallation Neutron Source (SINQ) has been used to demonstrate the neutron radiography capability of the newly released MPI-version of the MCNPX Monte Carlo code. A detailed MCNPX model was developed of SINQ and its associated neutron transmission radiography (NEUTRA) facility. Preliminary validation of the model was performed by comparing the calculated and measured neutron fluxes in the NEUTRA beam line, and a simulated radiography image was generated for a sample consisting of steel tubes containing different materials. This paper describes the SINQ facility, provides details of the MCNPX model, and presents preliminary results of the neutron imaging. (authors)

  4. New perspectives from new generations of neutron sources

    International Nuclear Information System (INIS)

    Mezei, F.

    2007-01-01

    Since the early fifties the vital multidisciplinary progress in understanding condensed matter is, in a substantial fraction, based on results of neutron scattering experiments. Neutron scattering is an inherently intensity limited method and after 50 years of considerable advance - primarily achieved by improving the scattering instruments - the maturation of the technique of pulsed spallation sources now opens up the way to provide more neutrons with improved cost and energy efficiency. A quantitative analysis of the figure-of-merit of the specialized instruments for pulsed source operation shows that up to 2 orders of magnitude intensity gains can be achieved in the next decade, with the advent of high power spallation sources. The first stations on this road, the MW class short pulse spallation sources SNS in the Usa (under commissioning), and J-PARC in Japan (under construction) will be followed by the 5 MW long pulse European Spallation Source (ESS). Further progress, that can be envisaged on the longer term, could amount to as much as another factor of 10 improvement. (author)

  5. New perspectives from new generations of neutron sources

    Science.gov (United States)

    Mezei, Ferenc

    2007-09-01

    Since the early 1950s the vital multidisciplinary progress in understanding condensed matter is, in a substantial fraction, based on results of neutron scattering experiments. Neutron scattering is an inherently intensity limited method and after 50 years of considerable advance—primarily achieved by improving the scattering instruments—the maturation of the technique of pulsed spallation sources now opens up the way to provide more neutrons with improved cost and energy efficiency. A quantitative analysis of the figure-of-merit of the specialized instruments for pulsed source operation shows that up to 2 orders of magnitude intensity gains can be achieved in the next decade, with the advent of high power spallation sources. The first stations on this road, the MW class short pulse spallation sources SNS in the USA (under commissioning), and J-PARC in Japan (under construction) will be followed by the 5 MW long pulse European Spallation Source (ESS). Further progress, that can be envisaged on the longer term, could amount to as much as another factor of 10 improvement. To cite this article: F. Mezei, C. R. Physique 8 (2007).

  6. H{sup -} radio frequency source development at the Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Welton, R. F.; Gawne, K. R.; Han, B. X.; Murray, S. N.; Pennisi, T. R.; Roseberry, R. T.; Santana, M.; Stockli, M. P. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37830-6471 (United States); Dudnikov, V. G. [Muons, Inc., 552 N. Batavia Avenue, Batavia, Illinois 60510 (United States); Turvey, M. W. [Villanova University, 800E. Lancaster Ave, Villanova, Pennsylvania 19085 (United States)

    2012-02-15

    The Spallation Neutron Source (SNS) now routinely operates nearly 1 MW of beam power on target with a highly persistent {approx}38 mA peak current in the linac and an availability of {approx}90%. H{sup -} beam pulses ({approx}1 ms, 60 Hz) are produced by a Cs-enhanced, multicusp ion source closely coupled with an electrostatic low energy beam transport (LEBT), which focuses the 65 kV beam into a radio frequency quadrupole accelerator. The source plasma is generated by RF excitation (2 MHz, {approx}60 kW) of a copper antenna that has been encased with a thickness of {approx}0.7 mm of porcelain enamel and immersed into the plasma chamber. The ion source and LEBT normally have a combined availability of {approx}99%. Recent increases in duty-factor and RF power have made antenna failures a leading cause of downtime. This report first identifies the physical mechanism of antenna failure from a statistical inspection of {approx}75 antennas which ran at the SNS, scanning electron microscopy studies of antenna surface, and cross sectional cuts and analysis of calorimetric heating measurements. Failure mitigation efforts are then described which include modifying the antenna geometry and our acceptance/installation criteria. Progress and status of the development of the SNS external antenna source, a long-term solution to the internal antenna problem, are then discussed. Currently, this source is capable of delivering comparable beam currents to the baseline source to the SNS and, an earlier version, has briefly demonstrated unanalyzed currents up to {approx}100 mA (1 ms, 60 Hz) on the test stand. In particular, this paper discusses plasma ignition (dc and RF plasma guns), antenna reliability, magnet overheating, and insufficient beam persistence.

  7. Electron Cloud Mitigation in the Spallation Neutron Source Ring

    International Nuclear Information System (INIS)

    Wei, J.; Blaskiewicz, Michael; Brodowski, J.; Cameron, P.; Davino, Daniele; Fedotov, A.; He, P.; Hseuh, H.; Lee, Y.Y.; Ludewig, H.; Meng, W.; Raparia, D.; Tuozzolo, J.; Zhang, S.Y.; Catalan-Lasheras, N.; Macek, R.J.; Furman, Miguel A.; Aleksandrov, A.; Cousineau, S.; Danilov, V.; Henderson, S.

    2008-01-01

    The Spallation Neutron Source (SNS) accumulator ring is designed to accumulate, via H - injection, protons of 2 MW beam power at 1 GeV kinetic energy at a repetition rate of 60 Hz [1]. At such beam intensity, electron-cloud is expected to be one of the intensity-limiting mechanisms that complicate ring operations. This paper summarizes mitigation strategy adopted in the design, both in suppressing electron-cloud formation and in enhancing Landau damping, including tapered magnetic field and monitoring system for the collection of stripped electrons at injection, TiN coated beam chamber for suppression of the secondary yield, clearing electrodes dedicated for the injection region and parasitic on BPMs around the ring, solenoid windings in the collimation region, and planning of vacuum systems for beam scrubbing upon operation

  8. Electron-cloud mitigation in the spallation neutron source ring

    International Nuclear Information System (INIS)

    Wei, J.; Blaskiewicz, M.; Brodowski, J.; Cameron, P.; Davino, D.; Fedotov, A.; He, P.; Hseuh, H.; Lee, Y.Y.; Meng, W.; Raparia, D.; Tuozzolo, J.; Zhang, S.Y.; Danilov, V.; Henderson, S.; Furman, M.; Pivi, M.; Macek, R.

    2003-01-01

    The Spallation Neutron Source (SNS) accumulator ring is designed to accumulate, via H- injection, protons of 2 MW beam power at 1 GeV kinetic energy at a repetition rate of 60 Hz [1]. At such beam intensity, electron cloud is expected to be one of the intensity-limiting mechanisms that complicate ring operations. This paper summarizes mitigation strategy adopted in the design, both in suppressing electron-cloud formation and in enhancing Landau damping, including tapered magnetic field and monitoring system for the collection of stripped electrons at injection, TiN coated beam chamber for suppression of the secondary yield, clearing electrodes dedicated for the injection region and parasitic on BPMs around the ring, solenoid windings in the collimation region, and planning of vacuum systems for beam scrubbing upon operation

  9. Dynamically Polarized Sample for Neutron Scattering At the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Pierce, Josh; Zhao, J. K.; Crabb, Don

    2009-01-01

    The recently constructed Spallation Neutron Source at the Oak Ridge National Laboratory is quickly becoming the world's leader in neutron scattering sciences. In addition to the world's most intense pulsed neutron source, we are continuously constructing state of the art neutron scattering instruments as well as sample environments to address today and tomorrow's challenges in materials research. The Dynamically Polarized Sample project at the SNS is aimed at taking maximum advantage of polarized neutron scattering from polarized samples, especially biological samples that are abundant in hydrogen. Polarized neutron scattering will allow us drastically increase the signal to noise ratio in experiments such as neutron protein crystallography. The DPS project is near completion and all key components have been tested. Here we report the current status of the project.

  10. Thermal features of spallation window targets

    International Nuclear Information System (INIS)

    Martinez-Val, J. M.; Sordo, F.; Leon, P. T.

    2007-01-01

    Subcritical nuclear reactors have been proposed for a number of applications, from energy production to fertile-to-fissile conversion, and to transmutation of long-lived radio nuclei into stable or much shorter-lived nuclei. The main advantage of subcritical reactors is their large reactivity margin for not to attain prompt-supercritical power surges. On the contrary, subcritical reactors present some economic drawbacks and technical complexities that deserve suitable attention in the Research and Development phase. Namely, they need a very intense neutron source in order to keep the neutron flux and the reactor power at the required level. The most intense neutron source seems to be based on the proton-induced (or deuteron-induced) spallation reaction in heavy nuclei targets, which present very demanding thermal features that must be properly limited. Those limits pose upper bounds to the neutron yield of the target. In turn, the limits depend on the features of the impinging particle beam and the material composition and geometry of the target. Although the potential design window for spallation targets is rather wide, the analysis presented in this paper identifies specific topics that must properly be covered in the detailed project of a spallation source, in order to avoid unacceptable temperatures and mechanical stresses in the most critical parts of the source. In this paper, some calculations are reported on solid targets (water cooled or helium cooled) and molten metals targets. It is seen that thermal-hydraulic and mechanical calculations of spallation targets are fundamental elements in the coherent design of this type of very intense neutron sources. This coherence implies the need of a suitable trade-off among the relevant beam parameters (proton energy, total intensity and cross-section shape) and the features of the target (structural materials, coolant characteristics and target geometry). The goal of maximizing the neutron yield has to be checked

  11. Spallation Neutron Source Second Target Station Integrated Systems Update

    Energy Technology Data Exchange (ETDEWEB)

    Ankner, John Francis [ORNL; An, Ke [ORNL; Blokland, Willem [ORNL; Charlton, Timothy R. [ORNL; Coates, Leighton [ORNL; Dayton, Michael J. [ORNL; Dean, Robert A. [ORNL; Dominguez-Ontiveros, Elvis E. [ORNL; Ehlers, Georg [ORNL; Gallmeier, Franz X. [ORNL; Graves, Van B. [ORNL; Heller, William T. [ORNL; Holmes, Jeffrey A. [ORNL; Huq, Ashfia [ORNL; Lumsden, Mark D. [ORNL; McHargue, William M. [ORNL; McManamy, Thomas J. [ORNL; Plum, Michael A. [ORNL; Rajic, Slobodan [ORNL; Remec, Igor [ORNL; Robertson, Lee [ORNL; Sala, Gabriele [ORNL; Stoica, Alexandru Dan [ORNL; Trotter, Steven M. [ORNL; Winn, Barry L. [ORNL; Abudureyimu, Reheman [ORNL; Rennich, Mark J. [ORNL; Herwig, Kenneth W. [ORNL

    2017-04-01

    The Spallation Neutron Source (SNS) was designed from the beginning to accommodate both an accelerator upgrade to increase the proton power and a second target station (STS). Four workshops were organized in 2013 and 2014 to identify key science areas and challenges where neutrons will play a vital role [1-4]. Participants concluded that the addition of STS to the existing ORNL neutron sources was needed to complement the strengths of High Flux Isotope Reactor (HFIR) and the SNS first target station (FTS). To address the capability gaps identified in the workshops, a study was undertaken to identify instrument concepts that could provide the required new science capabilities. The study outlined 22 instrument concepts and presented an initial science case for STS [5]. These instrument concepts formed the basis of a planning suite of instruments whose requirements determined an initial site layout and moderator selection. An STS Technical Design Report (TDR) documented the STS concept based on those choices [6]. Since issue of the TDR, the STS concept has significantly matured as described in this document.

  12. Fundamental neutron physics at a 1 MW long pulse spallation neutron source

    International Nuclear Information System (INIS)

    Greene, G.L.

    1995-01-01

    Modern neutron sources and modern neutron science share a common origin in mid twentieth century scientific investigations concerned with the study of the fundamental interactions between elementary particles. Since the time of that common origin, neutron science and the study of elementary particles have evolved into quite disparate disciplines. The neutron became recognized as a powerful tool for the study of condensed matter with modern neutron sources being primarily used (and primarily justified) as tools for condensed matter research. The study of elementary particles has, of course, led to the development of rather different tools and is now dominated by activities carried out at extremely high energies. Notwithstanding this trend, the study of fundamental interactions using neutrons has continued and remains a vigorous activity at many contemporary neutron sources. This research, like neutron scattering research, has benefited enormously by the development of modern high flux neutron facilities. Future sources, particularly high power spallation sources, offer exciting possibilities for the continuation of this program of research

  13. Low-energy beam transport studies supporting the spallation neutron source 1-MW beam operation.

    Science.gov (United States)

    Han, B X; Kalvas, T; Tarvainen, O; Welton, R F; Murray, S N; Pennisi, T R; Santana, M; Stockli, M P

    2012-02-01

    The H(-) injector consisting of a cesium enhanced RF-driven ion source and a 2-lens electrostatic low-energy beam transport (LEBT) system supports the spallation neutron source 1 MW beam operation with ∼38 mA beam current in the linac at 60 Hz with a pulse length of up to ∼1.0 ms. In this work, two important issues associated with the low-energy beam transport are discussed: (1) inconsistent dependence of the post-radio frequency quadrupole accelerator beam current on the ion source tilt angle and (2) high power beam losses on the LEBT electrodes under some off-nominal conditions compromising their reliability.

  14. The Spallation Neutron Source Beam Commissioning and Initial Operations

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Stuart [Argonne National Lab. (ANL), Argonne, IL (United States); Aleksandrov, Alexander V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Allen, Christopher K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Assadi, Saeed [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bartoski, Dirk [University of Texas, Houston, TX (United States). Anderson Cancer Center; Blokland, Willem [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Casagrande, F. [Michigan State Univ., East Lansing, MI (United States); Campisi, I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chu, C. [Michigan State Univ., East Lansing, MI (United States); Cousineau, Sarah M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Crofford, Mark T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Danilov, Viatcheslav [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deibele, Craig E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dodson, George W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Feshenko, A. [Inst. for Nuclear Research (INR), Moscow (Russian Federation); Galambos, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Han, Baoxi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hardek, T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holmes, Jeffrey A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holtkamp, N. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Howell, Matthew P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jeon, D. [Inst. for Basic Science, Daejeon (Korea); Kang, Yoon W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kasemir, Kay [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kim, Sang-Ho [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kravchuk, L. [Institute for Nuclear Research (INR), Moscow (Russian Federation); Long, Cary D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McManamy, T. [McManamy Consulting, Inc., Middlesex, MA (United States); Pelaia, II, Tom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Piller, Chip [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Plum, Michael A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pogge, James R. [Tennessee Technological Univ., Cookeville, TN (United States); Purcell, John David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shea, T. [European Spallation Source, Lund (Sweden); Shishlo, Andrei P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sibley, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stockli, Martin P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stout, D. [Michigan State Univ., East Lansing, MI (United States); Tanke, E. [European Spallation Source, Lund (Sweden); Welton, Robert F [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhang, Y. [Michigan State Univ., East Lansing, MI (United States); Zhukov, Alexander P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    The Spallation Neutron Source (SNS) accelerator delivers a one mega-Watt beam to a mercury target to produce neutrons used for neutron scattering materials research. It delivers ~ 1 GeV protons in short (< 1 us) pulses at 60 Hz. At an average power of ~ one mega-Watt, it is the highest-powered pulsed proton accelerator. The accelerator includes the first use of superconducting RF acceleration for a pulsed protons at this energy. The storage ring used to create the short time structure has record peak particle per pulse intensity. Beam commissioning took place in a staged manner during the construction phase of SNS. After the construction, neutron production operations began within a few months, and one mega-Watt operation was achieved within three years. The methods used to commission the beam and the experiences during initial operation are discussed.

  15. Computational Benchmark Calculations Relevant to the Neutronic Design of the Spallation Neutron Source (SNS)

    International Nuclear Information System (INIS)

    Gallmeier, F.X.; Glasgow, D.C.; Jerde, E.A.; Johnson, J.O.; Yugo, J.J.

    1999-01-01

    The Spallation Neutron Source (SNS) will provide an intense source of low-energy neutrons for experimental use. The low-energy neutrons are produced by the interaction of a high-energy (1.0 GeV) proton beam on a mercury (Hg) target and slowed down in liquid hydrogen or light water moderators. Computer codes and computational techniques are being benchmarked against relevant experimental data to validate and verify the tools being used to predict the performance of the SNS. The LAHET Code System (LCS), which includes LAHET, HTAPE ad HMCNP (a modified version of MCNP version 3b), have been applied to the analysis of experiments that were conducted in the Alternating Gradient Synchrotron (AGS) facility at Brookhaven National Laboratory (BNL). In the AGS experiments, foils of various materials were placed around a mercury-filled stainless steel cylinder, which was bombarded with protons at 1.6 GeV. Neutrons created in the mercury target, activated the foils. Activities of the relevant isotopes were accurately measured and compared with calculated predictions. Measurements at BNL were provided in part by collaborating scientists from JAERI as part of the AGS Spallation Target Experiment (ASTE) collaboration. To date, calculations have shown good agreement with measurements

  16. Study on bulk shielding for a spallation neutron source facility in the high-intensity proton accelerator project

    CERN Document Server

    Maekawa, F; Takada, H; Teshigawara, M; Watanabe, N

    2002-01-01

    Under the JAERI-KEK High-Intensity Proton Accelerator Project, a spallation neutron source driven by a 3 GeV-1 MW proton beam is planed to be constructed in a main part of the Materials and Life Science Facility. This report describes results of a study on bulk shielding performance of a biological shield for the spallation neutron source by means of a Monte Carlo calculation method, that is important in terms of radiation safety and cost reduction. A shielding configuration was determined as a reference case by considering preliminary studies and interaction with other components, then shielding thickness that was required to achieve a target dose rate of 1 mu Sv/h was derived. Effects of calculation conditions such as shielding materials and dimensions on the shielding performance was investigated by changing those parameters. By taking all the results and design margins into account, a shielding configuration that was identified as the most appropriate was finally determined as follows. An iron shield regi...

  17. Commissioning of the Superconducting Linac at the Spallation Neutron Source (SNS)

    International Nuclear Information System (INIS)

    Kim, Sang-Ho; Campisi, Isidoro E.

    2007-01-01

    The use of superconducting radiofrequency (SRF) cavities in particle accelerator is becoming more widespread. Among the projects that make use of that technology is the Spallation Neutron Source, where H-ions are accelerated to about 1 GeV, mostly making use of niobium elliptical cavities. SNS will use the accelerated short (about 700 ns) sub-bunches of protons to generate neutrons by spallation, which will in turn allow probing structural and magnetic properties of new and existing materials. The SNS superconducting linac is the largest application of RF superconductivity to come on-line in the last decade. The SRF cavities, operated at 805 MHz, were designed, built and integrated into cryomodules at Jefferson Lab and installed and tested at SNS. SNS is also the first proton-like accelerator which uses SRF cavities in a pulse mode. Many of the details of the cavity performance are peculiar to this mode of operation, which is also being applied to lepton accelerators (TESLA test facility and X-FEL at DESY and the international linear collider project). Thanks to the low frequency of the SNS superconducting cavities, operation at 4.2 K has been possible without beam energy degradation, even though the cavities and cryogenic systems were originally designed for 2.1 K operation. The testing of the superconducting cavities, the operating experience with beam and the performance of the superconducting linac will be presented

  18. Analysis of phase velocity designing on superconducting section of proton Linac for spallation neutron source

    International Nuclear Information System (INIS)

    Ouyang Huafu; Xu Taoguang; Yu Qingchang; Guan Xialing; Luo Zihua

    2001-01-01

    A preliminary design of superconducting section of proton linac for spallation neutron source is made, which includes the design and optimization of the cavity shape and the architecture design of the superconducting section. In addition, the choice of the cell number of the superconducting cavity, the value of the geometric β G , the optimization principles of cavity and the beam dynamic properties are discussed

  19. Triple GEM gas detectors as real time fast neutron beam monitors for spallation neutron sources

    International Nuclear Information System (INIS)

    Murtas, F; Claps, G; Croci, G; Tardocchi, M; Pietropaolo, A; Cippo, E Perelli; Rebai, M; Gorini, G; Frost, C D; Raspino, D; Rhodes, N J; Schooneveld, E M

    2012-01-01

    A fast neutron beam monitor based on a triple Gas Electron Multiplier (GEM) detector was developed and tested for the ISIS spallation neutron source in U.K. The test on beam was performed at the VESUVIO beam line operating at ISIS. The 2D fast neutron beam footprint was recorded in real time with a spatial resolution of a few millimeters thanks to the patterned detector readout.

  20. A fission ionization detector for neutron flux measurements at a spallation source

    Energy Technology Data Exchange (ETDEWEB)

    Wender, S.A. (Los Alamos National Lab., Los Alamos, NM (United States)); Balestrini, S. (Los Alamos National Lab., Los Alamos, NM (United States)); Brown, A. (Los Alamos National Lab., Los Alamos, NM (United States)); Haight, R.C. (Los Alamos National Lab., Los Alamos, NM (United States)); Laymon, C.M. (Los Alamos National Lab., Los Alamos, NM (United States)); Lee, T.M. (Los Alamos National Lab., Los Alamos, NM (United States)); Lisowski, P.W. (Los Alamos National Lab., Los Alamos, NM (United States)); McCorkle, W. (Los Alamos National Lab., Los Alamos, NM (United States)); Nelson, R.O. (Los Alamos National Lab., Los Alamos, NM (United States)); Parker, W. (Los Alamos National Lab., Los Alamos, NM (United States)); Hill, N.W. (Oak Ridge National Lab., Oak Ridge, TN (United States))

    1993-11-15

    The construction of a neutron flux monitor that can measure absolute neutron intensities in the neutron energy range from below 1 MeV to over 500 MeV is described. The detector consists of an ionization chamber with several thin deposits of fissionable material. The ionization chamber is thin enough that it does not significantly affect the neutron beam and may be left in the neutron flight path during experimental measurements to continuously monitor the beam flux. The use of this monitor at the continuous-energy spallation neutron source at the WNR target area at LAMPF is described. (orig.)

  1. A fission ionization detector for neutron flux measurements at a spallation source

    International Nuclear Information System (INIS)

    Wender, S.A.; Balestrini, S.; Brown, A.; Haight, R.C.; Laymon, C.M.; Lee, T.M.; Lisowski, P.W.; McCorkle, W.; Nelson, R.O.; Parker, W.; Hill, N.W.

    1993-01-01

    The construction of a neutron flux monitor that can measure absolute neutron intensities in the neutron energy range from below 1 MeV to over 500 MeV is described. The detector consists of an ionization chamber with several thin deposits of fissionable material. The ionization chamber is thin enough that it does not significantly affect the neutron beam and may be left in the neutron flight path during experimental measurements to continuously monitor the beam flux. The use of this monitor at the continuous-energy spallation neutron source at the WNR target area at LAMPF is described. (orig.)

  2. Spallation reactions and energy deposition in heavy target materials comparison of measurements and MC-calculations

    International Nuclear Information System (INIS)

    Filges, D.; Enke, M.; Galin, J.

    2001-01-01

    A renascence of interest for energetic proton induced production of neutrons originates recently by the inception of new projects for target stations of intense spallation neutron sources (like the planned European Spallation Source ESS), accelerator-driven nuclear reactors, nuclear waste transmutation and also the application for radioactive beams. Here we verify the predictive power of transport codes currently on the market by confronting observables and quantities of interest with an exhaustive matrix of benchmark data essentially coming from two experiments being performed at the Cooler Synchrotron COSY at Juelich. Program packages like HERMES, LCS or MCNPX master the prevision of reaction cross sections, hadronic interaction lengths, averaged neutron multiplicities and neutron multiplicity distributions in thick and thin(!) targets for a wide spectrum of incident proton energies, geometrical shapes and materials of the target. While also the observables related to the energy deposition in thick targets are in a good agreement with the model predictions, the production cross section measurements however for light charged particles on thin targets point out that problems exist within these models. (author)

  3. Engineering design of the EURISOL multi-MW spallation target

    CERN Document Server

    Herrera-Martínez, A; Ashrafi-Nik, M; Samec, K; Freibergs, J; Platacis, E

    2007-01-01

    The European Isotope Separation On-Line Radioactive Ion Beam project (EURISOL) is set to design the 'next-generation' European Isotope Separation On-Line (ISOL) Radioactive Ion Beam (RIB) facility. It will extend and amplify current research on nuclear physics, nuclear astrophysics and fundamental interactions beyond the year 2010. In EURISOL, four target stations are foreseen, three direct targets of approximately 100 kW of beam power and one multi-MW target assembly, all driven by a high-power particle accelerator. In this high power target station, high-intensity RIBs of neutron-rich isotopes will be obtained by inducing fission in several actinide targets surrounding a liquid metal spallation neutron source. This article summarises the work carried out within Task 2 of the EURISOL Design Study, with special attention to the coupled neutronics of the mercury proton-to-neutron converter and the fission targets. The overall performance of the facility, which will sustain fast neutron fluxes of the order of 1...

  4. ENGINEERING DESIGN OF THE EURISOL MULTI-MW SPALLATION TARGET

    CERN Document Server

    Adonai Herrera-Martinez*, Yacine Kadi, Morteza Ashrafi-Nik, Karel Samec, Janis Freibergs, Ernests Platacis

    The European Isotope Separation On-Line Radioactive Ion Beam project (EURISOL) is set to design the ‘next-generation’ European Isotope Separation On-Line (ISOL) Radioactive Ion Beam (RIB) facility. It will extend and amplify current research on nuclear physics, nuclear astrophysics and fundamental interactions beyond the year 2010. In EURISOL, four target stations are foreseen, three direct targets of approximately 100 kW of beam power and one multi-MW target assembly, all driven by a high-power particle accelerator. In this high power target station, high-intensity RIBs of neutron-rich isotopes will be obtained by inducing fission in several actinide targets surrounding a liquid metal spallation neutron source. This article summarises the work carried out within Task 2 of the EURISOL Design Study, with special attention to the coupled neutronics of the mercury proton-to-neutron converter and the fission targets. The overall performance of the facility, which will sustain fast neutron fluxes of the order ...

  5. A long-wavelength target station for the spallation neutron source

    International Nuclear Information System (INIS)

    Carpenter, J.M.; Mason, T.E.

    2005-01-01

    The Spallation Neutron Source (SNS), a major new user facility for studies of the structure and dynamics of materials, funded by the US Department of Energy (DOE), is under construction at Oak Ridge National Laboratory (ORNL). Details about the project are available in a recent paper and on the SNS Web site [MRS Bull. 28 (12) (2003) 923]. A Long-Wavelength Target Station (LWTS) [Technical Concepts for a Long-Wavelength Target Station for the Spallation Neutron Source, Argonne National Laboratory Report ANL-02/16, Oak Ridge National Laboratory Report ORNL/SNS-TM-2001/163, November 2002. See also www.pns.anl.gov/related/] will complement the High-Power Target Station (HPTS) facility of the SNS and will build upon the significant investment in the remainder of the installation by providing important new scientific opportunities. For areas of science using the optimized long-wavelength beam lines, the LWTS will at least double the overall scientific capability of the SNS and provide for up to an order of magnitude performance gain over the initial HPTS. The fully equipped SNS has the prospect to offer capabilities for neutron-scattering studies of the structure and dynamics of materials with sensitivity, resolution, dynamic range, and speed that are unparalleled in the world. Preliminary assessments of the performance of the several instruments treated in detail in the body of the paper bear out this expectation. The LWTS concept has been developed in close consultation with the scientific community through a series of workshops and conferences jointly sponsored by DOE's Office of Basic Energy Science and the National Science Foundation. We describe the principal features of the LWTS concept, and provide a preliminary summary of some neutron scattering instruments suited to exploit the unique features of the LWTS. It remains to develop concepts and designs for a full suite of instruments that exploit the capabilities of LWTS, a process that has begun in collaboration

  6. Workshop: Research and development plans for high power spallation neutron testing at BNL

    International Nuclear Information System (INIS)

    1996-01-01

    This report consists of vugraphs from presentations at the meeting. The papers covered the following topics: (1) APS as a proton source; (2) target status for NSNS (National Spallation Neutron Source); (3) spallation neutron source in Japan; (4) liquid LiBi flow loop; and (5) research and development plans for high power tests at the AGS

  7. Target designs for the Brookhaven National Laboratory 5-MW pulsed spallation neutron source

    International Nuclear Information System (INIS)

    Ludewig, H.; Todosow, M.; Powell, J.R.

    1996-01-01

    A feasibility study of a compact high power density target for a spallation neutron source was under-taken. The target arrangement consists primarily of heavy metal, with appropriate cooling passages. A high intensity proton beam of intermediate energy is directed at the target, where it interacts with the heavy metal nuclei. The subsequent spallation reactions produce several neutrons per proton resulting in an intense neutron source. The proton beam is assumed to havean energy of 5 MW, and to be cyclic with a repetition rate of 10Hz and 50Hz. The study was divided into two broad sections. First, an analysis of preliminary target designs was undertaken to ensure the overall feasibility of the concepts involved in the design and eventual construction of such a high power density target. Second, two proposed target designs, based on the first set of analyses, are investigated in more detail. Special care is taken to ensure that the neutron fluxes in the moderator are at the desired level no material compatibility problems exist,and the target is able to operate in a reliable and safe manner. Several target materials, coolant types, and target arrangements are investigated in the first section. The second section concentrates on a single target material and geometric arrangement. However, several structural material choices continue to be investigated with the aim of minimizing the effects of structural heating, and associated thermally induced stresses. In the final section the conclusions of this preliminary study are summarized

  8. High-power spallation target using a heavy liquid metal free surface flow

    International Nuclear Information System (INIS)

    Litfin, K.; Fetzer, J.R.; Batta, A.; Class, A.G.; Wetzel, Th.

    2015-01-01

    A prototype of a heavy liquid metal free surface target as proposed for the multi-purpose hybrid research reactor for high-tech applications in Mol, Belgium, has been set up and experimentally investigated at the Karlsruhe Liquid Metal Laboratory. A stable operation was demonstrated in a wide range of operating conditions and the surface shape was detected and compared with numerical pre-calculations employing Star-CD. Results show a very good agreement of experiment and numerical predictions which is an essential input for other windowless target designs like the META:LIC target for the European Spallation Source. (author)

  9. Status of helium-production reaction studies with a spallation neutron source

    International Nuclear Information System (INIS)

    Haight, R.C.; Bateman, F.B.; Chadwick, M.B.

    1994-01-01

    Alpha--particle production cross sections and spectra are being measured at the spallation source of fast neutrons at the Los Alamos Meson Physics Facility (LAMPF). Detectors at angles of 30, 60, 90 and 135 degree are used to identify alpha particles, measure their energy spectra, and indicate the time-of-flight, and hence the energy, of the neutrons inducing the reaction. The useful neutron energy ranges from less than 1 MeV to approximately 50 MeV for the present experimental setup. Targets under study at present include C, N, O, 27 Al, Si, 51 V, 56 Fe, 59 Co, 58,60 Ni, 89 Y and 93 Nb. Results for 59 Co illustrate the capabilities of the approach

  10. The National Spallation Neutron Source Collaboration: Towards a new pulsed neutron source in the United States

    International Nuclear Information System (INIS)

    Appleton, B.R.; Ball, J.B.; Alonso, J.R.; Gough, R.A.; Weng, W.T.; Jason, A.

    1996-01-01

    The US Department of Energy has commissioned Oak Ridge National Laboratory to initiate the conceptual design for a next-generation pulsed spallation neutron source. Current expectation is for a construction start in FY 1998, with commencement of operations in 2004. For this project, ORNL has entered into a collaborative arrangement with LBNL, BNL, LANL (and most recently ANL). The conceptual design study is now well underway, building on the strong base of the extensive work already performed by various Laboratories, as well as input from the user community (from special BESAC subpanels). Study progress, including accelerator configuration and plans for resolution of critical issues, is reported in this paper

  11. Thermal chopper spectrometer for the European spallation source

    DEFF Research Database (Denmark)

    Klenø, Kaspar Hewitt; Lefmann, Kim

    2011-01-01

    One of the instruments being considered for the ESS is a thermal chopper spectrometer, intended for the study of lattice vibrations and magnetic excitations. However, as the ESS will be a long pulsed source, we propose a very long instrument (180–300 m). We here present a guide system that can ac...

  12. Irradiation damage of ferritic/martensitic steels: Fusion program data applied to a spallation neutron source

    International Nuclear Information System (INIS)

    Klueh, R.L.

    1997-01-01

    Ferritic/martensitic steels were chosen as candidates for future fusion power plants because of their superior swelling resistance and better thermal properties than austenitic stainless steels. For the same reasons, these steels are being considered for the target structure of a spallation neutron source, where the structural materials will experience even more extreme irradiation conditions than expected in a fusion power plant first wall (i.e., high-energy neutrons that produce large amounts of displacement damage and transmutation helium). Extensive studies on the effects of neutron irradiation on the mechanical properties of ferritic/martensitic steels indicate that the major problem involves the effect of irradiation on fracture, as determined by a Charpy impact test. There are indications that helium can affect the impact behavior. Even more helium will be produced in a spallation neutron target material than in the first wall of a fusion power plant, making helium effects a prime concern for both applications. 39 refs., 10 figs

  13. GEANT4 simulations of the n{sub T}OF spallation source and their benchmarking

    Energy Technology Data Exchange (ETDEWEB)

    Lo Meo, S. [Research Centre ' ' Ezio Clementel' ' , ENEA, Bologna (Italy); Section of Bologna, INFN, Bologna (Italy); Cortes-Giraldo, M.A.; Lerendegui-Marco, J.; Guerrero, C.; Quesada, J.M. [Universidad de Sevilla, Facultad de Fisica, Sevilla (Spain); Massimi, C.; Vannini, G. [Section of Bologna, INFN, Bologna (Italy); University of Bologna, Physics and Astronomy Dept. ' ' Alma Mater Studiorum' ' , Bologna (Italy); Barbagallo, M.; Colonna, N. [INFN, Section of Bari, Bari (Italy); Mancusi, D. [CEA-Saclay, DEN, DM2S, SERMA, LTSD, Gif-sur-Yvette CEDEX (France); Mingrone, F. [Section of Bologna, INFN, Bologna (Italy); Sabate-Gilarte, M. [Universidad de Sevilla, Facultad de Fisica, Sevilla (Spain); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Vlachoudis, V. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Collaboration: The n_TOF Collaboration

    2015-12-15

    Neutron production and transport in the spallation target of the n{sub T}OF facility at CERN has been simulated with GEANT4. The results obtained with different models of high-energy nucleon-nucleus interaction have been compared with the measured characteristics of the neutron beam, in particular the flux and its dependence on neutron energy, measured in the first experimental area. The best agreement at present, within 20% for the absolute value of the flux, and within few percent for the energy dependence in the whole energy range from thermal to 1 GeV, is obtained with the INCL++ model coupled with the GEANT4 native de-excitation model. All other available models overestimate by a larger factor, of up to 70%, the n{sub T}OF neutron flux. The simulations are also able to accurately reproduce the neutron beam energy resolution function, which is essentially determined by the moderation time inside the target/moderator assembly. The results here reported provide confidence on the use of GEANT4 for simulations of spallation neutron sources. (orig.)

  14. 2. International workshop on spallation materials technology

    International Nuclear Information System (INIS)

    Carsughi, F.; Mansur, L.K.; Sommer, W.F.; Ullmaier, H.

    1997-11-01

    This document contains 25 papers consisting an abstract prepared by the authors, followed by copies of the presentation viewgraphs used by speakers. The topics were: Target options for SINQ; Overview of the NSNS target system; ISIS target and moderator materials; Trispal project; JHF N-ARENA; Design, load conditions and manufacturing aspect of the ESS MERCURY TARGET unit; Radiation damage simulatiion to measure recoil spectra distribution; Radiation damage calculation to spallation neutron source materials; Hadron-induced neutron production in Pb and U targets from 1-5 GeV; Proton beam effects on W rods, surface cooled by water; Corrosion and fatigue behavior of metals and alloys in high radiation fields; compability of materials with mercury for NSNS target system; Research activities at PSI on structural materials for spallation neutron source; The accelerator production of tritium materials reserach program and Los Alamos National Laboratory; Experimental program on irradiation effects in structural materials of the Trispal project; First pulsed power materials test at Livermore; Plan of thermal shock fracture test at JAERI; Is there a hydrogen problem in target materials in high-power spatllation source?; Materials consideration for the NSNS target; Materials durability issures in spallation neutron source applications; Post-irradiation investigations at the FZJ; Microstructure and hardening of steels containing high helium concentrations; Tensile properties and microstructure of the F82H ferritic-martensitic steel after irradiation in the PIREX facility

  15. Mechanical Engineering of the Linac for the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Bultman, N.K.; Chen, Z.; Collier, M.; Erickson, J.L.; Guthrie, A.; Hunter, W.T.; Ilg, T.; Meyer, R.K.; Snodgrass, N.L.

    1999-01-01

    The linac for the Spallation Neutron Source (SNS) Project will accelerate an average current of 1 mA of H - ions from 20 MeV to 1GeV for injection into an accumulator ring. The linac will be an intense source of H - ions and as such requires advanced design techniques to meet project technical goals as well as to minimize costs. The DTL, CCDTL and CCL are 466m long and operate at 805 MHz with a maximum H - input current of 28 mA and 7% rf duty factor. The Drift Tube Linac is a copper-plated steel structure using permanent magnetic quadrupoles. The Coupled-Cavity portions are brazed copper structures and use electromagnetic quads. RF losses in the copper are 80 MW, with total rf power supplied by 52 klystrons. Additionally, the linac is to be upgraded to the 2- and 4-MW beam power levels with no increase in duty factor. The authors give an overview of the linac mechanical engineering effort and discuss the special challenges and status of the effort

  16. General-purpose readout electronics for white neutron source at China Spallation Neutron Source.

    Science.gov (United States)

    Wang, Q; Cao, P; Qi, X; Yu, T; Ji, X; Xie, L; An, Q

    2018-01-01

    The under-construction White Neutron Source (WNS) at China Spallation Neutron Source is a facility for accurate measurements of neutron-induced cross section. Seven spectrometers are planned at WNS. As the physical objectives of each spectrometer are different, the requirements for readout electronics are not the same. In order to simplify the development of the readout electronics, this paper presents a general method for detector signal readout. This method has advantages of expansibility and flexibility, which makes it adaptable to most detectors at WNS. In the WNS general-purpose readout electronics, signals from any kinds of detectors are conditioned by a dedicated signal conditioning module corresponding to this detector, and then digitized by a common waveform digitizer with high speed and high precision (1 GSPS at 12-bit) to obtain the full waveform data. The waveform digitizer uses a field programmable gate array chip to process the data stream and trigger information in real time. PXI Express platform is used to support the functionalities of data readout, clock distribution, and trigger information exchange between digitizers and trigger modules. Test results show that the performance of the WNS general-purpose readout electronics can meet the requirements of the WNS spectrometers.

  17. γ-Ray background sources in the VESUVIO spectrometer at ISIS spallation neutron source

    International Nuclear Information System (INIS)

    Pietropaolo, A.; Perelli Cippo, E.; Gorini, G.; Tardocchi, M.; Schooneveld, E.M.; Andreani, C.; Senesi, R.

    2009-01-01

    An investigation of the gamma background was carried out in the VESUVIO spectrometer at the ISIS spallation neutron source. This study, performed with a yttrium-aluminum-perovskite (YAP) scintillator, follows high resolution pulse height measurements of the gamma background carried out on the same instrument with the use of a high-purity germanium detector. In this experimental work, a mapping of the gamma background was attempted, trying to find the spatial distribution and degree of directionality of the different contributions identified in the previous study. It is found that the gamma background at low times is highly directional and mostly due to the gamma rays generated in the moderator-decoupler system. The other contributions, consistently to the findings of a previous experiment, are identified as a nearly isotropic one due to neutron absorption in the walls of the experimental hall, and a directional one coming from the beam dump.

  18. γ-Ray background sources in the VESUVIO spectrometer at ISIS spallation neutron source

    Science.gov (United States)

    Pietropaolo, A.; Perelli Cippo, E.; Gorini, G.; Tardocchi, M.; Schooneveld, E. M.; Andreani, C.; Senesi, R.

    2009-09-01

    An investigation of the gamma background was carried out in the VESUVIO spectrometer at the ISIS spallation neutron source. This study, performed with a yttrium-aluminum-perovskite (YAP) scintillator, follows high resolution pulse height measurements of the gamma background carried out on the same instrument with the use of a high-purity germanium detector. In this experimental work, a mapping of the gamma background was attempted, trying to find the spatial distribution and degree of directionality of the different contributions identified in the previous study. It is found that the gamma background at low times is highly directional and mostly due to the gamma rays generated in the moderator-decoupler system. The other contributions, consistently to the findings of a previous experiment, are identified as a nearly isotropic one due to neutron absorption in the walls of the experimental hall, and a directional one coming from the beam dump.

  19. {gamma}-Ray background sources in the VESUVIO spectrometer at ISIS spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Pietropaolo, A. [CNISM Milano-Bicocca, Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' G. Occhialini' , Piazza della Scienza 3, 20126 Milano (Italy); NAST Center (Nanoscienze-Nanotecnologie-Strumentazione), Universita degli Studi di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Roma (Italy)], E-mail: antonino.pietropaolo@mib.infn.it; Perelli Cippo, E. [Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' G. Occhialini' , Piazza della Scienza 3, 20126 Milano (Italy); Gorini, G. [CNISM Milano-Bicocca, Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' G. Occhialini' , Piazza della Scienza 3, 20126 Milano (Italy); NAST Center (Nanoscienze-Nanotecnologie-Strumentazione), Universita degli Studi di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Roma (Italy); Tardocchi, M. [Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' G. Occhialini' , Piazza della Scienza 3, 20126 Milano (Italy); Schooneveld, E.M. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire 0QX OX11 (United Kingdom); Andreani, C.; Senesi, R. [Universia degli Studi di Roma Tor Vergata, Dipartimento di Fisica and NAST Center (Nanoscienze-Nanotecnologie-Strumentazione), via della Ricerca Scientifica 1, 00133 Roma (Italy)

    2009-09-01

    An investigation of the gamma background was carried out in the VESUVIO spectrometer at the ISIS spallation neutron source. This study, performed with a yttrium-aluminum-perovskite (YAP) scintillator, follows high resolution pulse height measurements of the gamma background carried out on the same instrument with the use of a high-purity germanium detector. In this experimental work, a mapping of the gamma background was attempted, trying to find the spatial distribution and degree of directionality of the different contributions identified in the previous study. It is found that the gamma background at low times is highly directional and mostly due to the gamma rays generated in the moderator-decoupler system. The other contributions, consistently to the findings of a previous experiment, are identified as a nearly isotropic one due to neutron absorption in the walls of the experimental hall, and a directional one coming from the beam dump.

  20. Application of on-line HPLC-ICP-MS for the determination of the nuclide abundances of lanthanides produced via spallation reactions in an irradiated tantalum target of a spallation neutron source

    International Nuclear Information System (INIS)

    Kerl, W.; Becker, J.S.; Dietze, H.J.

    1998-01-01

    An analytical procedure has been developed for the determination of spallation nuclides in an irradiated tantalum target using HPLC coupled on-line to ICP-MS after dissolution and separation of the tantalum matrix. Pieces of tantalum were taken from different locations of the irradiated tantalum target which had been used as the target material in a spallation neutron source. Tantalum was dissolved in a HNO 3 /HF mixture and the tantalum matrix was separated by liquid-liquid extraction so that only the spallation nuclides were left in the sample solutions. The major fraction of the spallation nuclides in the tantalum target are lanthanide metals in the μg g -1 concentration range determined in the present study. Additional reaction products are formed by the irradiation of trace impurities in the original tantalum target. The nuclide abundances of the lanthanide metals measured in the tantalum target differ significantly from the natural isotopic composition so that a lot of isobaric interferences of long-lived radionuclides and stable isotopes in the mass spectrum are to be expected. Therefore, all the lanthanide metals had to be separated chemically prior to their mass spectrometric determination. The separation of all rare earth elements was performed by ion chromatography on-line to ICP-MS. The nuclide abundances of each lanthanide were determined using a sensitive double-focusing sector field inductively coupled plasma mass spectrometer. The nuclide abundances of the lanthanides in the irradiated tantalum target calculated theoretically and the experimental results obtained by on-line HPLC-ICP-MS proved to be in good agreement. (orig.)

  1. Multi-MW Spallation Neutron Sources: Current Challenges and Future Prospects, 16th, 17th and 18th March 2009 in Bilbao (Spain)

    International Nuclear Information System (INIS)

    2009-01-01

    The strategy of building a multi MW, accelerator based spallation neutron source as the next generation neutron facility for Europe has been validated by the successful commissioning and operation of the SNS in the US (now operating close to 1 MW beam power) and the JPARC facility in Japan. However, since the original baseline design of ESS was completed in 2002, the underlying technology has advanced and some considerable experience has been gathered from these new facilities. Hence as Europe prepares for the construction of ESS, the time is ripe to learn from ongoing experience and define the development areas which would allow the ESS to take the most advantage from recent advances in technology while maintaining a reliable, low risk, design. The goal of the workshop, organized by the ESS Bilbao consortium, was to assess the current challenges facing multi-MW spallation sources and, taking into account synergies with other international projects of a similar nature, outline a road map for a collaborative Research and Development program that would enable Europe to meet these challenges for the timely construction of ESS. The full reports and recommendations from the various working groups are provided in the following pages. They lay the foundation for a road map for a collaborative development program which will enable the ESS to take full advantage of the relevant expertise which is distributed across various facilities and countries within Europe to produce a truly European facility at the forefront of the technology. This report is a witness to the willingness of a great many people to share their experiences and knowledge in an open and cooperative environment. (Author)

  2. Spallation reactions - physics and applications

    International Nuclear Information System (INIS)

    Kelic, A.; Ricciardi, M.; Schmidt, K-H.

    2009-01-01

    Spallation reactions have become an ideal tool for studying the equation of state and thermal instabilities of nuclear matter. In astrophysics, the interactions of cosmic rays with the interstellar medium have to be understood in detail for deducing their original composition and their production mechanisms. Renewed interest in spallation reactions with protons around 1 GeV came up recently with the developments of spallation neutron sources. The project of an accelerator-driven system (ADS) as a technological solution for incinerating the radioactive waste even intensified the efforts for better understanding the physics involved in the spallation process. Experiments on spallation reactions were performed for determining the production cross sections and properties of particles, fragments and heavy residues. Traditional experiments on heavy residues, performed in direct kinematics, were limited to the direct observation of long-lived radioactive nuclides and did not provide detailed information on the kinematics of the reaction. Therefore, an innovative experimental method has been developed, based on inverse kinematics, which allowed to identify all reaction residues in-flight, using the high resolution magnetic spectrometer FRS of GSL Darmstadt. It also gives direct access to the reaction kinematics. An experimental campaign has been carried out in a Europe-wide collaboration, investigating the spallation of several nuclei ranging from 56 Fe to 238 U Complementary experiments were performed with a full-acceptance detection system, yielding total fission cross sections. Recently, another detection system using the large acceptance ALADIN dipole and the LAND neutron detector was introduced to measure light particles in coincidence with the heavy residues. Another intense activity was dedicated to developing codes, which cover nuclear reactions occurring in an ADS. The first phase of the reaction is successfully described by a sequence of quasi-free nucleon

  3. Deriving profiles of incident and scattered neutrons for TOF experiments with the spallation sources

    International Nuclear Information System (INIS)

    Watanabe, Hidehiro

    1993-01-01

    A formula that closely matches the incident profile of epi-thermal and thermal neutrons for time of flight experiments carried out with a spallation neutron source and moderator scheme is derived based on the slowing-down and diffusing-out processes in a moderator. This analytical description also enables us to predict burst-function profiles; these profiles are verified by a comparison with a diffraction pattern. The limits of the analytical model are discussed through the predictable peak position shift brought about by the slowing-down process. (orig.)

  4. EURAC: the JRC proposal for an European fusion reactor materials test and development facility

    International Nuclear Information System (INIS)

    Kley, W.; Bishop, G.R.

    1986-01-01

    For the last 7 years we examined the use of a Spallation Neutron Source (SNS) as an altenative European Option to FMIT. For an optimized spallation neutron source design we find now for the same beam power the following design parameters: - Linear Accelerator: 600 MeV, 6 m-A-proton beam on liquid lead target - irradiation parameters: 320 dpa/year in 20 cm 3 or 274 dpa/year in 31.5 cm 3 6 -1 sec -1 in order to simulate the Pulsed Mode of Tokamak Power Reactors. The deflected beam can be used for other experiments

  5. The Design and Performance of the Spallation Neutron Source Low-Level RF Control System

    CERN Document Server

    Champion, M; Kasemir, K; Ma, H; Piller, C

    2004-01-01

    The Spallation Neutron Source linear accelerator low-level RF control system has been developed within a collaboration of Lawrence Berkeley, Los Alamos, and Oak Ridge national laboratories. Three distinct generations of the system, described in a previous publication [1], have been used to support beam commissioning at Oak Ridge. The third generation system went into production in early 2004, with installation in the coupled-cavity and superconducting linacs to span the remainder of the year. The final design of this system will be presented along with results of performance measurements.

  6. Facility for fast neutron irradiation tests of electronics at the ISIS spallation neutron source

    International Nuclear Information System (INIS)

    Andreani, C.; Pietropaolo, A.; Salsano, A.; Gorini, G.; Tardocchi, M.; Paccagnella, A.; Gerardin, S.; Frost, C. D.; Ansell, S.; Platt, S. P.

    2008-01-01

    The VESUVIO beam line at the ISIS spallation neutron source was set up for neutron irradiation tests in the neutron energy range above 10 MeV. The neutron flux and energy spectrum were shown, in benchmark activation measurements, to provide a neutron spectrum similar to the ambient one at sea level, but with an enhancement in intensity of a factor of 10 7 . Such conditions are suitable for accelerated testing of electronic components, as was demonstrated here by measurements of soft error rates in recent technology field programable gate arrays

  7. Department of Energy review of the National Spallation Neutron Source Project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    A Department of Energy (DOE) review of the Conceptual Design Report (CDR) for the National Spallation Neutron Source (NSNS) was conducted. The NSNS will be a new high-power spallation neutron source; initially, it will operate at 1 megawatt (MW), but is designed to be upgradeable to significantly higher power, at lower cost, when accelerator and target technologies are developed for higher power. The 53-member Review Committee examined the projected cost, schedule, technical scope, and management structure described in the CDR. For each of the major components of the NSNS, the Committee determined that the project team had produced credible designs that can be expected to work well. What remains to be done is to integrate the design of these components. With the exception of the liquid mercury target, the NSNS Project will rely heavily on proven technologies and, thus, will face a relatively low risk to successful project completion. The Total Project Cost (TPC) presented to the Committee in the CDR was $1.266 billion in as-spent dollars. In general, the Committee felt that the laboratory consortium had presented a credible estimate for each of the major components but that value engineering might produce some savings. The construction schedule presented to the Committee covered six years beginning in FY 1999. The Committee questioned whether all parts of the project could be completed according to this schedule. In particular, the linac and the conventional facilities appeared to have overly optimistic schedules. The NSNS project team was encouraged to reexamine these activities and to consider a more conservative seven-year schedule. Another concern of the Committee was the management structure. In summary, the Committee felt that this Conceptual Design Report was a very credible proposal, and that there is a high probability for successful completion of this major project within the proposed budget, although the six-year proposed schedule may be optimistic.

  8. Department of Energy review of the National Spallation Neutron Source Project

    International Nuclear Information System (INIS)

    1997-06-01

    A Department of Energy (DOE) review of the Conceptual Design Report (CDR) for the National Spallation Neutron Source (NSNS) was conducted. The NSNS will be a new high-power spallation neutron source; initially, it will operate at 1 megawatt (MW), but is designed to be upgradeable to significantly higher power, at lower cost, when accelerator and target technologies are developed for higher power. The 53-member Review Committee examined the projected cost, schedule, technical scope, and management structure described in the CDR. For each of the major components of the NSNS, the Committee determined that the project team had produced credible designs that can be expected to work well. What remains to be done is to integrate the design of these components. With the exception of the liquid mercury target, the NSNS Project will rely heavily on proven technologies and, thus, will face a relatively low risk to successful project completion. The Total Project Cost (TPC) presented to the Committee in the CDR was $1.266 billion in as-spent dollars. In general, the Committee felt that the laboratory consortium had presented a credible estimate for each of the major components but that value engineering might produce some savings. The construction schedule presented to the Committee covered six years beginning in FY 1999. The Committee questioned whether all parts of the project could be completed according to this schedule. In particular, the linac and the conventional facilities appeared to have overly optimistic schedules. The NSNS project team was encouraged to reexamine these activities and to consider a more conservative seven-year schedule. Another concern of the Committee was the management structure. In summary, the Committee felt that this Conceptual Design Report was a very credible proposal, and that there is a high probability for successful completion of this major project within the proposed budget, although the six-year proposed schedule may be optimistic

  9. Technology and science at a high-power spallation source: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    These proceedings cover many aspects of the usefulness of spallation neutrons. Nine different areas are considered: surfaces and interfaces, engineering, materials science, polymers and complex fluids, chemistry, structural biology, nuclear engineering and radiation effects, condensed matter physics and fundamental physics.

  10. Technology and science at a high-power spallation source: Proceedings

    International Nuclear Information System (INIS)

    1994-01-01

    These proceedings cover many aspects of the usefulness of spallation neutrons. Nine different areas are considered: surfaces and interfaces, engineering, materials science, polymers and complex fluids, chemistry, structural biology, nuclear engineering and radiation effects, condensed matter physics and fundamental physics

  11. Testing Procedures and Results of the Prototype Fundamental Power Coupler for the Spallation Neutron Source

    International Nuclear Information System (INIS)

    M. Stirbet; I.E. Campisi; E.F. Daly; G.K. Davis; M. Drury; P. Kneisel; G. Myneni; T. Powers; W.J. Schneider; K.M. Wilson; Y. Kang; K.A. Cummings; T. Hardek

    2001-01-01

    High-power RF testing with peak power in excess of 500 kW has been performed on prototype Fundamental Power Couplers (FPC) for the Spallation Neutron Source superconducting (SNS) cavities. The testing followed the development of procedures for cleaning, assembling and preparing the FPC for installation in the test stand. The qualification of the couplers has occurred for the time being only in a limited set of conditions (travelling wave, 20 pps) as the available RF system and control instrumentation are under improvement

  12. Operational experiences of the spallation neutron source superconducting linac and power ramp-up

    International Nuclear Information System (INIS)

    Kim, Sang-Ho

    2009-01-01

    The spallation neutron source (SNS) is a second generation pulsed neutron source and designed to provide a 1-GeV, 1.44-MW proton beam to a mercury target for neutron production. Since the commissioning of the accelerator complex in 2006, the SNS has started its operation for neutron production and beam power ramp-up has been in progress toward the design goal. All subsystems of the SNS were designed and developed for substantial improvements compared to existing accelerators because the design beam power is almost an order of magnitude higher compared to existing neutron facilities and the achievable neutron scattering performance will exceed present sources by more than a factor of 20 to 100. In this paper, the operational experiences with the SNS Superconducting Linac (SCL), Power Ramp-up Plan to reach the design goal and the Power Upgrade Plan (PUP) will be presented including machine, subsystem and beam related issues.

  13. CFD studies on thermal hydraulics of spallation targets

    International Nuclear Information System (INIS)

    Tak, N.I.; Batta, A.; Cheng, X.

    2005-01-01

    Full text of publication follows: Due to the fast advances in computer hardware as well as software in recent years, more and more interests have been aroused to use computational fluid dynamics (CFD) technology in nuclear engineering and designs. During recent many years, Forschungszentrum Karlsruhe (FZK) has been actively involved in the thermal hydraulic analysis and design of spallation targets. To understand the thermal hydraulic behaviors of spallation targets very detailed simulations are necessary because of their complex geometries, complicated boundary conditions such as spallation heat distributions, and very strict design limits. A CFD simulation is believed to be the best for this purpose even though the validation of CFD codes are not perfectly completed yet in specific topics like liquid metal heat transfer. The research activities on three spallation targets (i.e., MEGAPIE, TRADE, and XADS targets) are currently very active in Europe in order to consolidate the European ADS road-map. In the thermal hydraulics point of view, two kinds of the research activities, i.e., (1) numerical design and (2) experimental work, are required to achieve the objectives of these targets. It should be noted that CFD studies play important role on both kinds of two activities. A preliminary design of a target can be achieved by sophisticated CFD analysis and pre-and-post analyses of an experimental work using a CFD code help the design of the test section of the experiment as well as the analysis of the experimental results. The present paper gives an overview about the recent CFD studies relating to thermal hydraulics of the spallation targets recently involved in FZK. It covers numerical design studies as well as CFD studies to support experimental works. The CFX code has been adopted for the studies. Main recent results for the selected examples performed by FZK are presented and discussed with their specific lessons learned. (authors)

  14. Moderator materials for the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Charlton, L.A.

    1999-01-01

    The Spallation Neutron Source (SNS) is a neutron source providing intense neutron fluxes that will be used for performing a large variety of neutron scattering experiments. SNS is to be completed and start operation in 2005. Protons will be accelerated to 1 GeV, stored in an accumulator ring, and then injected into a neutron-producing target. After leaving the target (Hg in the ca/se of SNS), the neutrons are prepared for experiments by first using a moderator to impose energy and width requirements on the neutron pulse. One of the most important ingredients is the moderator material. Four materials that are commonly used and that were considered for use in SNS are liquid hydrogen (L-H 2 ), liquid water (L-H 2 O), liquid methane (L-CH 4 ), and solid methane (S-CH 4 ). The spectra (neutron current versus neutron energy) for these four materials are shown. As may be seen, at low neutron energies ( 4 , which produces up to four times as many neutrons in this energy range as L-H 2 . The problem with the material is the internal storage of energy that can be spontaneously and explosively released. At energies of just above 10 MeV, the most effective moderator material is L-CH 4 . Polymerization problems, however, preclude its use at high powers (again such as in SNS), where the buildup of undesirable materials becomes prohibitive. This is, however, an important energy range for neutron experiments. Preliminary consideration is being given to a composite moderator that contains two adjacent sections, one of L-H 2 and one of L-H 2 O, which produces a spectrum that is very similar to L-CH 4

  15. GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, S C; Lomov, I; Roberts, J J

    2012-01-19

    Geothermal power promises clean, renewable, reliable and potentially widely-available energy, but is limited by high initial capital costs. New drilling technologies are required to make geothermal power financially competitive with other energy sources. One potential solution is offered by Thermal Spallation Drilling (TSD) - a novel drilling technique in which small particles (spalls) are released from the rock surface by rapid heating. While TSD has the potential to improve drilling rates of brittle granitic rocks, the coupled thermomechanical processes involved in TSD are poorly described, making system control and optimization difficult for this drilling technology. In this paper, we discuss results from a new modeling effort investigating thermal spallation drilling. In particular, we describe an explicit model that simulates the grain-scale mechanics of thermal spallation and use this model to examine existing theories concerning spalling mechanisms. We will report how borehole conditions influence spall production, and discuss implications for macro-scale models of drilling systems.

  16. Shielding design study for the JAERI/KEK spallation neutron source

    International Nuclear Information System (INIS)

    Maekawa, Fujio; Teshigawara, Makoto; Konno, Chikara; Ikeda, Yujiro; Watanabe, Noboru

    2001-01-01

    Shielding design for the JAERI/KEK spallation neutron source was studied. Bulk shielding characteristics and optimization of a beam shutter were investigated by using Monte Carlo calculation code NMTC/JAM and MCNP with LA-150 neutron cross-section library. The following remarks were derived. (1) Neutron dose outside of the concrete shield at 6.6 m from the center is ∼10 μSv/hr regardless of angles with respect to the proton beam axis. The neutron dose can be reduced more than a factor of 30 by adding natural boron of 5 wt% in the concrete. (2) When a beam shutter position just outside the void vessel and the shutter length of 2 m are assumed, a shutter made of copper (1.7 m) with polyethylene (0.3 m) is the optimum in terms of shielding performance as well as cost merit. A shutter made of tungsten is not so effective. (3) Further studies are needed for optimization of beam shutter position. (author)

  17. A Long-Pulse Spallation Source at Los Alamos: Facility description and preliminary neutronic performance for cold neutrons

    International Nuclear Information System (INIS)

    Russell, G.J.; Weinacht, D.J.; Pitcher, E.J.; Ferguson, P.D.

    1998-03-01

    The Los Alamos National Laboratory has discussed installing a new 1-MW spallation neutron target station in an existing building at the end of its 800-MeV proton linear accelerator. Because the accelerator provides pulses of protons each about 1 msec in duration, the new source would be a Long Pulse Spallation Source (LPSS). The facility would employ vertical extraction of moderators and reflectors, and horizontal extraction of the spallation target. An LPSS uses coupled moderators rather than decoupled ones. There are potential gains of about a factor of 6 to 7 in the time-averaged neutron brightness for cold-neutron production from a coupled liquid H 2 moderator compared to a decoupled one. However, these gains come at the expense of putting ''tails'' on the neutron pulses. The particulars of the neutron pulses from a moderator (e.g., energy-dependent rise times, peak intensities, pulse widths, and decay constant(s) of the tails) are crucial parameters for designing instruments and estimating their performance at an LPSS. Tungsten is the reference target material. Inconel 718 is the reference target canister and proton beam window material, with Al-6061 being the choice for the liquid H 2 moderator canister and vacuum container. A 1-MW LPSS would have world-class neutronic performance. The authors describe the proposed Los Alamos LPSS facility, and show that, for cold neutrons, the calculated time-averaged neutronic performance of a liquid H 2 moderator at the 1-MW LPSS is equivalent to about 1/4th the calculated neutronic performance of the best liquid D 2 moderator at the Institute Laue-Langevin reactor. They show that the time-averaged moderator neutronic brightness increases as the size of the moderator gets smaller

  18. Estimation of thermochemical behavior of spallation products in mercury target

    International Nuclear Information System (INIS)

    Kobayashi, Kaoru; Kaminaga, Masanori; Haga, Katsuhiro; Kinoshita, Hidetaka; Aso, Tomokazu; Teshigawara, Makoto; Hino, Ryutaro

    2002-02-01

    In order to examine the radiation safety of a spallation mercury target system, especially source term evaluation, it is necessary to clarify the chemical forms of spallation products generated by spallation reaction with proton beam. As for the chemical forms of spallation products in mercury that involves large amounts of spallation products, these forms were estimated by using the binary phase diagrams and the thermochemical equilibrium calculation based on the amounts of spallation product. Calculation results showed that the mercury would dissolve Al, As, B, Be, Bi, C, Co, Cr, Fe, Ga, Ge, Ir, Mo, Nb, Os, Re, Ru, Sb, Si, Ta, Tc, V and W in the element state, and Ag, Au, Ba, Br, Ca, Cd, Ce, Cl, Cs, Cu, Dy, Er, Eu, F, Gd, Hf, Ho, I, In, K, La, Li, Lu, Mg, Mn, Na, Nd, Ni, O, Pb, Pd, Pr, Pt, Rb, Rh, S, Sc, Se, Sm, Sn, Sr, Tb, Te, Ti, Tl, Tm, Y, Yb, Zn and Zr in the form of inorganic mercury compounds. As for As, Be, Co, Cr, Fe, Ge, Ir, Mo, Nb, Os, Pt, Re, Ru, Se, Ta, V, W and Zr, precipitation could be occurred when increasing the amounts of spallation products with operation time of the spallation target system. On the other hand, beryllium-7 (Be-7), which is produced by spallation reaction of oxygen in the cooling water of a safety hull, becomes the main factor of the external exposure to maintain the cooling loop. Based on the thermochemical equilibrium calculation to Be-H 2 O binary system, the chemical forms of Be in the cooling water were estimated. Then the Be could exist in the form of cations such as BeOH + , BeO + and Be 2+ under the condition of less than 10 -8 of the Be mole fraction in the cooling water. (author)

  19. A 10-GeV, 5-MW proton source for a pulsed spallation source

    International Nuclear Information System (INIS)

    Cho, Y.; Chae, Y.C.; Crosbie, E.

    1995-01-01

    A feasibility study for a pulsed spallation source based on a 5-MW, 10-GeV rapid proton synchrotron (RCS) is in progress. The integrated concept and performance parameters of the facility are discussed. The 10-GeV synchrotron uses as its injector the 2-GeV accelerator system of a 1-MW source described elsewhere. The 1-MW source accelerator system consists of a 400-MeV H - linac with 2.5 MeV energy spread in the 75% chopped (25% removed) beam and a 30-Hz RCS that accelerates the 400-MeV beam to 2 GeV. The time averaged current of the accelerator system is 0.5 mA, equivalent to 1.04 x 10 14 protons per pulse. The 10-GeV RCS accepts the 2 GeV beam and accelerates it to 10 GeV. Beam transfer from the 2-GeV synchrotron to the 10-GeV machine u highly efficient bunch-to-bucket injection, so that the transfer can be made without beam loss. The synchrotron lattice uses FODO cells of 90 degrees phase advance. Dispersion-free straight sections are obtained using a missing magnet scheme. The synchrotron magnets are powered by dual-frequency resonant circuits. The magnets are excited at a 20-Hz rate and de-excited at 60-Hz. resulting in an effective 30-Hz rate. A key feature of the design of this accelerator system is that beam losses are minimized from injection to extraction, reducing activation to levels consistent with hands-on maintenance. Details of the study are presented

  20. Some results of applied spallation physics research at Los Alamos

    International Nuclear Information System (INIS)

    Russell, G.J.; Gilmore, J.S.

    1983-01-01

    At the Los Alamos National Laboratory, we have an active effort in the general area of Applied Spallation Physics Research. The main emphasis of this activity has been on obtaining basic data relevant to spallation neutron source development, accelerator breeder technology, and validation of computer codes used in these applications. We present here an overview of our research effort and show some measured and calculated results of differential and clean integral experiments

  1. Spallation Neutron Source Accelerator Facility Target Safety and Non-safety Control Systems

    International Nuclear Information System (INIS)

    Battle, Ronald E.; DeVan, B.; Munro, John K. Jr.

    2006-01-01

    The Spallation Neutron Source (SNS) is a proton accelerator facility that generates neutrons for scientific researchers by spallation of neutrons from a mercury target. The SNS became operational on April 28, 2006, with first beam on target at approximately 200 W. The SNS accelerator, target, and conventional facilities controls are integrated by standardized hardware and software throughout the facility and were designed and fabricated to SNS conventions to ensure compatibility of systems with Experimental Physics Integrated Control System (EPICS). ControlLogix Programmable Logic Controllers (PLCs) interface to instruments and actuators, and EPICS performs the high-level integration of the PLCs such that all operator control can be accomplished from the Central Control room using EPICS graphical screens that pass process variables to and from the PLCs. Three active safety systems were designed to industry standards ISA S84.01 and IEEE 603 to meet the desired reliability for these safety systems. The safety systems protect facility workers and the environment from mercury vapor, mercury radiation, and proton beam radiation. The facility operators operated many of the systems prior to beam on target and developed the operating procedures. The safety and non-safety control systems were tested extensively prior to beam on target. This testing was crucial to identify wiring and software errors and failed components, the result of which was few problems during operation with beam on target. The SNS has continued beam on target since April to increase beam power, check out the scientific instruments, and continue testing the operation of facility subsystems

  2. Quantum molecular dynamics approach to estimate spallation yield ...

    Indian Academy of Sciences (India)

    Consequently, the need for reliable data to design and construct spallation neutron sources has prompted ... A major disadvantage of the QMD code .... have estimated the average neutron multiplicities per primary reaction and kinetic energy.

  3. Spallator - accelerator breeder

    International Nuclear Information System (INIS)

    Steinberg, M.

    1985-01-01

    The concept involves the use of spallation neutrons produced by interaction of a high energy proton (1 to 2 GeV) from a linear accelerator (LINAC) with a heavy metal target (uranium). The principal spallator concept is based on generating fissile fuel for use in LWR nuclear power plants. The spallator functions in conjunction with a reprocessing plant to regenerate and produce the Pu-239 or U-233 for fabrication into fresh LWR reactor fuel elements. Advances in proton accelerator technology has provided a solid base for predicting performance and optimizing the design of a reliable, continuous wave, high-current LINAC required by a fissile fuel production machine

  4. Thermal-hydraulic design concept of the solid-target system of spallation neutron source

    International Nuclear Information System (INIS)

    Tanaka, F.; Hibiki, T.; Saito, Y.; Takeda, T.; Mishima, K.

    2001-01-01

    In relation to thermal-hydraulic design of the N-Arena solid-target system of the JHF project, heat transfer experiments were performed to obtain experimental data systematically on heat transfer coefficient and CHF for vertical upward and horizontal flows in a thin rectangular channel simulating a coolant channel of the proposed spallation neutron source. Thermal-hydraulic correlations which can be used for design calculations were proposed based on the obtained data. Finally tentative results of feasibility study on maximum beam power which could be attained with a solid target were presented. The result indicated that the condition for the onset of nucleate boiling is the most significant limiting factor to the maximum beam power. (author)

  5. Cold moderators at pulsed spallation sources: A personal view

    International Nuclear Information System (INIS)

    Pynn, R.

    1991-01-01

    When Maier-Leibnitz built the ILL, he came first to the US and to Canada where there were several prominent neutron scattering centers. He asked what instruments he should build. The reply was unanimous: 'First you build some three-axis machines to form the base program and then you see what else you can thin of.' Maier-Leibnitz's reply was equally characteristic: 'Thank you very much hor-ellipsis there will be no three-axis spectrometers at my institute.' He wasn't quite right - there was one at the beginning. But the point is that, instead of following conventional wisdom, Maier-Leibnitz hired a bunch of young scientists who didn't know as much about neutron scattering as their colleagues on the American continent and who therefore did not know what was 'impossible.' So, they built the impossible - a cold source integrated into the reactor, several hundred meters of guides, a 40-meter SANS machine, a back-scattering spectrometer, a hedgehog - the whole works. And they changed the face of neutron scattering forever. The author is going to adopt the same philosophy - because he knows very little about cold moderators at spallation sources, he doesn't know what is possible or what is stupid. So he is going to make some outrageous comments to stimulate Peter Egelstaff's discussion session. He makes these remarks, not as Director of LANSCE, but as a research scientist looking well beyond his ares of expertise

  6. Feasibility study of a 1-MW pulsed spallation source

    International Nuclear Information System (INIS)

    Cho, Y.; Chae, Y.C.; Crosbie, E.

    1995-01-01

    A feasibility study of a 1-MW pulsed spallation source based on a rapidly cycling proton synchrotron (RCS) has been completed. The facility consists of a 400-MeV HP - linac, a 30-Hz RCS that accelerates the 400-MeV beam to 2 GeV, and two neutron-generating target stations. The design time-averaged current of the accelerator system is 0.5 mA, or 1.04x1014 protons per pulse. The linac system consists of an H - ion source, a 2-MeV RFQ, a 70-MeV DTL and a 330-MeV CCL. Transverse phase space painting to achieve a Kapchinskij-Vladimirskij (K-V) distribution of the injected particles in the RCS is accomplished by charge exchange injection and programming of the closed orbit during injection. The synchrotron lattice uses FODO cells of ∼90 degrees phase advance. Dispersion-free straight sections are obtained by using a missing magnet scheme. Synchrotron magnets are powered by a dual-frequency resonant circuit that excites the magnets at a 20-Hz rate and de-excites them at a 60-Hz rate, resulting in an effective rate of 30 Hz, and reducing the required peak rf voltage by 1/3. A key feature, of the design of this accelerator system is that beam losses are from injection to extraction, reducing activation to levels consistent with hands-on maintenance. Details of the study are presented

  7. The COHERENT Experiment at the Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Steven Ray [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

    2015-09-30

    The COHERENT collaboration's primary objective is to measure coherent elastic neutrino- nucleus scattering (CEvNS) using the unique, high-quality source of tens-of-MeV neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). In spite of its large cross section, the CEvNS process has never been observed, due to tiny energies of the resulting nuclear recoils which are out of reach for standard neutrino detectors. The measurement of CEvNS has now become feasible, thanks to the development of ultra-sensitive technology for rare decay and weakly-interacting massive particle (dark matter) searches. The CEvNS cross section is cleanly predicted in the standard model; hence its measurement provides a standard model test. It is relevant for supernova physics and supernova-neutrino detection, and enables validation of dark-matter detector background and detector-response models. In the long term, precision measurement of CEvNS will address questions of nuclear structure. COHERENT will deploy multiple detector technologies in a phased approach: a 14-kg CsI[Na] scintillating crystal, 15 kg of p-type point-contact germanium detectors, and 100 kg of liquid xenon in a two-phase time projection chamber. Following an extensive background measurement campaign, a location in the SNS basement has proven to be neutron-quiet and suitable for deployment of the COHERENT detector suite. The simultaneous deployment of the three COHERENT detector subsystems will test the N=2 dependence of the cross section and ensure an unambiguous discovery of CEvNS. This document describes concisely the COHERENT physics motivations, sensitivity and plans for measurements at the SNS to be accomplished on a four-year timescale.

  8. Neutron diffractometers for structural biology at spallation neutron sources

    International Nuclear Information System (INIS)

    Schoenborn, B.P.; Pitcher, E.

    1994-01-01

    Spallation neutron sources are ideal for diffraction studies of proteins and oriented molecular complexes. With spoliation neutrons and their time dependent wavelength structure, it is easy to electronically select data with an optimal wavelength bandwidth and cover the whole Laue spectrum as time (wavelength) resolved snapshots. This optimized data quality with best peak-to-background ratios and provides adequate spatial and energy resolution to eliminate peak overlaps. The application of this concept will use choppers to select the desired Laue wavelength spectrum and employ focusing optics and large cylindrical 3 He detectors to optimize data collection rates. Such a diffractometer will cover a Laue wavelength range from 1 to 5 Angstrom with a flight path length of 10m and an energy resolution of 0.25 Angstrom. Moderator concepts for maximal flux distribution within this energy range will be discussed using calculated flux profiles. Since the energy resolution required for such timed data collection in this super Laue techniques is not very high, the use of a linac only (LAMPF) spoliation target is an exciting possibility with an order of magnitude increase in flux

  9. Neutron diffractometers for structural biology at spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Schoenborn, B.P.; Pitcher, E. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    Spallation neutron sources are ideal for diffraction studies of proteins and oriented molecular complexes. With spoliation neutrons and their time dependent wavelength structure, it is easy to electronically select data with an optimal wavelength bandwidth and cover the whole Laue spectrum as time (wavelength) resolved snapshots. This optimized data quality with best peak-to-background ratios and provides adequate spatial and energy resolution to eliminate peak overlaps. The application of this concept will use choppers to select the desired Laue wavelength spectrum and employ focusing optics and large cylindrical {sup 3}He detectors to optimize data collection rates. Such a diffractometer will cover a Laue wavelength range from 1 to 5{Angstrom} with a flight path length of 10m and an energy resolution of 0.25{Angstrom}. Moderator concepts for maximal flux distribution within this energy range will be discussed using calculated flux profiles. Since the energy resolution required for such timed data collection in this super Laue techniques is not very high, the use of a linac only (LAMPF) spoliation target is an exciting possibility with an order of magnitude increase in flux.

  10. Reliability model of SNS linac (spallation neutron source-ORNL)

    International Nuclear Information System (INIS)

    Pitigoi, A.; Fernandez, P.

    2015-01-01

    A reliability model of SNS LINAC (Spallation Neutron Source at Oak Ridge National Laboratory) has been developed using risk spectrum reliability analysis software and the analysis of the accelerator system's reliability has been performed. The analysis results have been evaluated by comparing them with the SNS operational data. This paper presents the main results and conclusions focusing on the definition of design weaknesses and provides recommendations to improve reliability of the MYRRHA ( linear accelerator. The reliability results show that the most affected SNS LINAC parts/systems are: 1) SCL (superconducting linac), front-end systems: IS, LEBT (low-energy beam transport line), MEBT (medium-energy beam transport line), diagnostics and controls; 2) RF systems (especially the SCL RF system); 3) power supplies and PS controllers. These results are in line with the records in the SNS logbook. The reliability issue that needs to be enforced in the linac design is the redundancy of the systems, subsystems and components most affected by failures. For compensation purposes, there is a need for intelligent fail-over redundancy implementation in controllers. Enough diagnostics has to be implemented to allow reliable functioning of the redundant solutions and to ensure the compensation function

  11. Spallation neutron source target design for radioactive waste transmutation

    International Nuclear Information System (INIS)

    Beard, C.A.

    1992-01-01

    The disposal of high-level radioactive waste has long been one of the most serious problems facing the nuclear industry. Transmutation of this waste through particle bombardment has been suggested numerous times as a possible method of enhancing the waste management process. Due to advances in accelerator technology, the feasibility of an accelerator based transmutation system has increased enough to allow serious investigation of this process. Therefore, in pursuit of this goal, an accelerator target was designed for use in an accelerator based transmutation system. The target design consists of an array of tantalum rods, cooled by liquid sodium, which are arranged in a cylindrical configuration 40 cm in diameter and 125 cm in height. Tantalum was chosen as the target material over tungsten, lead, bismuth, and a lead-bismuth alloy (55 w/o bismuth) due to a large neutron yield, low activation, low chemical toxicity, and the fact that it does not produce significant amounts of long-lived isotopes through spallation or activation. The target yields a neutron source of 29.7 neutrons/proton when exposed to a 1600 MeV proton beam, and is suitable for use with both thermal or fast spectrum transmutation systems

  12. Efficiency of an LBE spallation target in an accelerator-driven molten salt subcritical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bak, Sang-In [Sungkyunkwan University, Suwon (Korea, Republic of); Hong, Seung-Woo [Sungkyunkwan University, Suwon (Korea, Republic of); Kadi, Yacine [CERN, Geneva (Switzerland)

    2016-10-15

    An Accelerator-Driven System (ADS) combined with a subcritical Molten Salt Reactor (MSR) is a type of hybrid reactor originally designed to breed uranium from thorium or to incinerate long-lived minor actinides in nuclear wastes. In an MSR, the salt material is used not only as a nuclear fuel but also as a primary coolant. In addition, this material is used as a target for inducing spallation neutrons in most AD-MSR concepts. A high energy proton beam impinges on a heavy metal target to induce spallation reactions and produces neutrons. Accordingly, a reliable proton accelerator is needed to feed the source neutrons. As ADSs have been criticized for requiring high power accelerators, minimization of beam power is an important aspect of ADS design. A primary concern associated with ADS development is stable high-power accelerators. We therefore studied the neutron source efficiencies of an AD-MSR involving chloride fuels by including a Pb-Bi eutectic (LBE) spallation target. The proton source efficiency and the accelerator beam power required have been studied for an AD-MSR. Adoption of an LBE spallation target induces an increase in proton source efficiencies in comparison to the case without a spallation target. Thus the presence of an efficient spallation target is useful in the reduction of the beam power of an accelerator. Almost 33 % of the beam power can be reduced in comparison to the case without the target for NaCl-Th/{sup 233}U fuel, and about 16 % for NaCl-U/TRU fuel. The beam power amplifications increase by 1.5 times for NaCl-Th/{sup 233}U and 1.2 times for NaCl-U/TRU in comparison with the no target AD-MSR.

  13. Spallation neutron production and the current intra-nuclear cascade and transport codes

    International Nuclear Information System (INIS)

    Filges, D.; Goldenbaum, F.

    2001-01-01

    A recent renascent interest in energetic proton-induced production of neutrons originates largely from the inception of projects for target stations of intense spallation neutron sources, like the planned European Spallation Source (ESS), accelerator-driven nuclear reactors, nuclear waste transmutation, and also from the application for radioactive beams. In the framework of such a neutron production, of major importance is the search for ways for the most efficient conversion of the primary beam energy into neutron production. Although the issue has been quite successfully addressed experimentally by varying the incident proton energy for various target materials and by covering a huge collection of different target geometries --providing an exhaustive matrix of benchmark data-- the ultimate challenge is to increase the predictive power of transport codes currently on the market. To scrutinize these codes, calculations of reaction cross-sections, hadronic interaction lengths, average neutron multiplicities, neutron multiplicity and energy distributions, and the development of hadronic showers are confronted with recent experimental data of the NESSI collaboration. Program packages like HERMES, LCS or MCNPX master the prevision of reaction cross-sections, hadronic interaction lengths, averaged neutron multiplicities and neutron multiplicity distributions in thick and thin targets for a wide spectrum of incident proton energies, geometrical shapes and materials of the target generally within less than 10% deviation, while production cross-section measurements for light charged particles on thin targets point out that appreciable distinctions exist within these models. (orig.)

  14. Spallation neutron production and the current intra-nuclear cascade and transport codes

    Science.gov (United States)

    Filges, D.; Goldenbaum, F.; Enke, M.; Galin, J.; Herbach, C.-M.; Hilscher, D.; Jahnke, U.; Letourneau, A.; Lott, B.; Neef, R.-D.; Nünighoff, K.; Paul, N.; Péghaire, A.; Pienkowski, L.; Schaal, H.; Schröder, U.; Sterzenbach, G.; Tietze, A.; Tishchenko, V.; Toke, J.; Wohlmuther, M.

    A recent renascent interest in energetic proton-induced production of neutrons originates largely from the inception of projects for target stations of intense spallation neutron sources, like the planned European Spallation Source (ESS), accelerator-driven nuclear reactors, nuclear waste transmutation, and also from the application for radioactive beams. In the framework of such a neutron production, of major importance is the search for ways for the most efficient conversion of the primary beam energy into neutron production. Although the issue has been quite successfully addressed experimentally by varying the incident proton energy for various target materials and by covering a huge collection of different target geometries --providing an exhaustive matrix of benchmark data-- the ultimate challenge is to increase the predictive power of transport codes currently on the market. To scrutinize these codes, calculations of reaction cross-sections, hadronic interaction lengths, average neutron multiplicities, neutron multiplicity and energy distributions, and the development of hadronic showers are confronted with recent experimental data of the NESSI collaboration. Program packages like HERMES, LCS or MCNPX master the prevision of reaction cross-sections, hadronic interaction lengths, averaged neutron multiplicities and neutron multiplicity distributions in thick and thin targets for a wide spectrum of incident proton energies, geometrical shapes and materials of the target generally within less than 10% deviation, while production cross-section measurements for light charged particles on thin targets point out that appreciable distinctions exist within these models.

  15. Electron cloud development in the Proton Storage Ring and in the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Pivi, M.T.F.; Furman, M.A.

    2002-01-01

    We have applied our simulation code ''POSINST'' to evaluate the contribution to the growth rate of the electron-cloud instability in proton storage rings. Recent simulation results for the main features of the electron cloud in the storage ring of the Spallation Neutron Source(SNS) at Oak Ridge, and updated results for the Proton Storage Ring (PSR) at Los Alamos are presented in this paper. A key ingredient in our model is a detailed description of the secondary emitted-electron energy spectrum. A refined model for the secondary emission process including the so-called true secondary, rediffused and backscattered electrons has recently been included in the electron-cloud code

  16. A feasibility study for a one-megawatt pulsed spallation source at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Pynn, R.

    1994-01-01

    Over the past two decades, high-intensity proton accelerators have been designed and developed to support nuclear physics research and defense applications. This technology has now matured to the point where it can support simultaneous and cost-effective exploitation of a number of important areas of both basic and applied science. Examples include neutron scattering, the production of radioisotopes, tests of technologies to transmute nuclear waste, radiation damage studies, nuclear physics, and muon spin research. As part of a larger program involving these and other areas, a team at Los Alamos National Laboratory has undertaken a feasibility study for a 1-MW pulsed spallation neutron source (PSS) based on the use of an 800-MeV proton linac and an accumulator ring. In January 1994, the feasibility study was reviewed by a large, international group of experts in the design of accelerators and neutron spallation targets. This group confirmed the viability of the proposed neutron source. In this paper, I describe the approach Los Alamos has taken to the feasibility study, which has involved a synergistic application of the Laboratory's expertise in nuclear science and technology, computation, and particle-beam technologies. Several examples of problems resolved by the study are described, including chopping of low-energy proton beam, interactions between H - particles and the stripper foil used to produce protons for injection into an accumulator ring, and the inclusion of engineering realities into the design of a neutron production target. These examples are chosen to illustrate the breadth of the expertise that has been brought to bear on the feasibility study and to demonstrate that there are real R ampersand D issues that need to be resolved before a next-generation spoliation source can be built

  17. The performance of neutron scattering spectrometers at a long-pulse spallation source

    International Nuclear Information System (INIS)

    Pynn, R.

    1997-01-01

    In this document the author considers the performance of a long pulse spallation source for those neutron scattering experiments that are usually performed with a monochromatic beam at a continuous wave (CW) source such as a nuclear reactor. The first conclusion drawn is that comparison of the performance of neutron scattering spectrometers at CW and pulsed sources is simpler for long-pulsed sources than it is for the short-pulse variety. Even though detailed instrument design and assessment will require Monte Carlo simulations (which have already been performed at Los Alamos for SANS and reflectometry), simple arguments are sufficient to assess the approximate performance of spectrometers at an LPSS and to support the contention that a 1 MW long-pulse source can provide attractive performance, especially for instrumentation designed for soft-condensed-matter science. Because coupled moderators can be exploited at such a source, its time average cold flux is equivalent to that of a research reactor with a power of about 15 MW, so only a factor of 4 gain from source pulsing is necessary to obtain performance that is comparable with the ILL. In favorable cases, the gain from pulsing can be even more than this, approaching the limit set by the peak flux, giving about 4 times the performance of the ILL. Because of its low duty factor, an LPSS provides the greatest performance gains for relatively low resolution experiments with cold neutrons. It should thus be considered complementary to short pulse sources which are most effective for high resolution experiments using thermal or epithermal neutrons

  18. Optimization of Pulsed Operation of the Superconducting Radio-Frequency (SRF) Cavities at the Spallation Neutron Source (SNS)

    International Nuclear Information System (INIS)

    Kim, Sang-Ho; Campisi, Isidoro E.

    2007-01-01

    In order to address the optimization in a pulsed operation, a systematic computational analysis has been made in comparison with operational experiences in superconducting radio-frequency (SRF) cavities at the Spallation Neutron Source (SNS). From the analysis it appears that the SNS SRF cavities can be operated at temperatures higher than 2.1 K, a fact resulting from both the pulsed nature of the superconducting cavities, the specific configuration of the existing cryogenic plant and the operating frequency

  19. A target development program for beamhole spallation neutron sources in the megawatt range

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G.S.; Atchison, F. [Rutherford Appleton Laboratory, Oxon (United Kingdom)] [and others

    1995-10-01

    Spallation sources as an alternative to fission neutron sources have been operating successfully up to 160 kW of beam power. With the next generation of these facilities aiming at the medium power range between 0.5 and 5 MW, loads on the targets will be high enough to make present experience of little relevance. With the 0.6 MW continuous facility SINQ under construction, and a 5 MW pulsed facility (ESS) under study in Europe, a research and development program is about to be started which aimes at assessing the limits of stationary and moving solid targets and the feasibility and potential benefits of flowing liquid metal targets. Apart from theoretical work and examination of existing irradiated material, including used targets from ISIS, it is intended to take advantage of the SINQ solid rod target design to improve the relevant data base by building the target in such a way that individual rods can be equipped as irradiation capsules.

  20. Estimation of thermochemical behavior of spallation products in mercury target

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Kaoru; Kaminaga, Masanori; Haga, Katsuhiro; Kinoshita, Hidetaka; Aso, Tomokazu; Teshigawara, Makoto; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-02-01

    In order to examine the radiation safety of a spallation mercury target system, especially source term evaluation, it is necessary to clarify the chemical forms of spallation products generated by spallation reaction with proton beam. As for the chemical forms of spallation products in mercury that involves large amounts of spallation products, these forms were estimated by using the binary phase diagrams and the thermochemical equilibrium calculation based on the amounts of spallation product. Calculation results showed that the mercury would dissolve Al, As, B, Be, Bi, C, Co, Cr, Fe, Ga, Ge, Ir, Mo, Nb, Os, Re, Ru, Sb, Si, Ta, Tc, V and W in the element state, and Ag, Au, Ba, Br, Ca, Cd, Ce, Cl, Cs, Cu, Dy, Er, Eu, F, Gd, Hf, Ho, I, In, K, La, Li, Lu, Mg, Mn, Na, Nd, Ni, O, Pb, Pd, Pr, Pt, Rb, Rh, S, Sc, Se, Sm, Sn, Sr, Tb, Te, Ti, Tl, Tm, Y, Yb, Zn and Zr in the form of inorganic mercury compounds. As for As, Be, Co, Cr, Fe, Ge, Ir, Mo, Nb, Os, Pt, Re, Ru, Se, Ta, V, W and Zr, precipitation could be occurred when increasing the amounts of spallation products with operation time of the spallation target system. On the other hand, beryllium-7 (Be-7), which is produced by spallation reaction of oxygen in the cooling water of a safety hull, becomes the main factor of the external exposure to maintain the cooling loop. Based on the thermochemical equilibrium calculation to Be-H{sub 2}O binary system, the chemical forms of Be in the cooling water were estimated. Then the Be could exist in the form of cations such as BeOH{sup +}, BeO{sup +} and Be{sup 2+} under the condition of less than 10{sup -8} of the Be mole fraction in the cooling water. (author)

  1. Spallation Neutron Source High Power RF Installation and Commissioning Progress

    CERN Document Server

    McCarthy, Michael P; Bradley, Joseph T; Fuja, Ray E; Gurd, Pamela; Hardek, Thomas; Kang, Yoon W; Rees, Daniel; Roybal, William; Young, Karen A

    2005-01-01

    The Spallation Neutron Source (SNS) linac will provide a 1 GeV proton beam for injection into the accumulator ring. In the normal conducting (NC) section of this linac, the Radio Frequency Quadupole (RFQ) and six drift tube linac (DTL) tanks are powered by seven 2.5 MW, 402.5 MHz klystrons and the four coupled cavity linac (CCL) cavities are powered by four 5.0 MW, 805 MHz klystrons. Eighty-one 550 kW, 805 MHz klystrons each drive a single cavity in the superconducting (SC) section of the linac. The high power radio frequency (HPRF) equipment was specified and procured by LANL and tested before delivery to ensure a smooth transition from installation to commissioning. Installation of RF equipment to support klystron operation in the 350-meter long klystron gallery started in June 2002. The final klystron was set in place in September 2004. Presently, all RF stations have been installed and high power testing has been completed. This paper reviews the progression of the installation and testing of the HPRF Sys...

  2. Pre-Test Analysis of the MEGAPIE Spallation Source Target Cooling Loop Using the TRAC/AAA Code

    International Nuclear Information System (INIS)

    Bubelis, Evaldas; Coddington, Paul; Leung, Waihung

    2006-01-01

    A pilot project is being undertaken at the Paul Scherrer Institute in Switzerland to test the feasibility of installing a Lead-Bismuth Eutectic (LBE) spallation target in the SINQ facility. Efforts are coordinated under the MEGAPIE project, the main objectives of which are to design, build, operate and decommission a 1 MW spallation neutron source. The technology and experience of building and operating a high power spallation target are of general interest in the design of an Accelerator Driven System (ADS) and in this context MEGAPIE is one of the key experiments. The target cooling is one of the important aspects of the target system design that needs to be studied in detail. Calculations were performed previously using the RELAP5/Mod 3.2.2 and ATHLET codes, but in order to verify the previous code results and to provide another capability to model LBE systems, a similar study of the MEGAPIE target cooling system has been conducted with the TRAC/AAA code. In this paper a comparison is presented for the steady-state results obtained using the above codes. Analysis of transients, such as unregulated cooling of the target, loss of heat sink, the main electro-magnetic pump trip of the LBE loop and unprotected proton beam trip, were studied with TRAC/AAA and compared to those obtained earlier using RELAP5/Mod 3.2.2. This work extends the existing validation data-base of TRAC/AAA to heavy liquid metal systems and comprises the first part of the TRAC/AAA code validation study for LBE systems based on data from the MEGAPIE test facility and corresponding inter-code comparisons. (authors)

  3. Feasibility study for the spallation neutron source (SNQ). Pt. 1

    International Nuclear Information System (INIS)

    Bauer, G.S.; Sebening, H.; Vetter, J.E.; Willax, H.

    1981-06-01

    A concept for a new neutron source for fundamental research has been developed and is described in this report. The spallation neutron source SNQ is characterized in its first stage by a time average thermal neutron flux of 7 x 10 14 cm -2 s -1 and a peak flux of 1.3 x 10 16 cm -2 s -1 at 100 Hz repetition rate. The scientific case is presented with particular emphasis on solid state and nuclear physics. In these research domains, unique conditions are given for experimental use. The proposed machine consists in its basic stage of a 1.1 GeV, 5 mA time average, 100 mA peak current proton linear accelerator, a rotating lead target, and H 2 O and D 2 O moderators. Additional beam channels are provided for experiments with protons at 350 MeV and at the final energy. Construction of the SNQ is considered feasible within eight years at a cost of 680 million DM. As future options, use of uranium as a target material, increase of the accelerator beam power by a factor of 2, addition of a pulse compressor and a second target station for pulsed neutron and neutrino research are described. As a back-up solution to the rotating target, a liquid metal target was studied. (orig.) [de

  4. Overview of the Conceptual Design of the Future VENUS Neutron Imaging Beam Line at the Spallation Neutron Source

    Science.gov (United States)

    Bilheux, Hassina; Herwig, Ken; Keener, Scott; Davis, Larry

    VENUS (Versatile Neutron Imaging Beam line at the Spallation Neutron Source) will be a world-class neutron-imaging instrument that will uniquely utilize the Spallation Neutron Source (SNS) time-of-flight (TOF) capabilities to measure and characterize objects across several length scales (mm to μm). When completed, VENUS will provide academia, industry and government laboratories with the opportunity to advance scientific research in areas such as energy, materials, additive manufacturing, geosciences, transportation, engineering, plant physiology, biology, etc. It is anticipated that a good portion of the VENUS user community will have a strong engineering/industrial research focus. Installed at Beam line 10 (BL10), VENUS will be a 25-m neutron imaging facility with the capability to fully illuminate (i.e., umbra illumination) a 20 cm x 20 cm detector area. The design allows for a 28 cm x 28 cm field of view when using the penumbra to 80% of the full illumination flux. A sample position at 20 m will be implemented for magnification measurements. The optical components are comprised of a series of selected apertures, T0 and bandwidth choppers, beam scrapers, a fast shutter to limit sample activation, and flight tubes filled with Helium. Techniques such as energy selective, Bragg edge and epithermal imaging will be available at VENUS.

  5. Spallation Neutron Source Drift Tube Linac Resonance Control Cooling System Modeling

    CERN Document Server

    Tang, Johnny Y; Champion, Marianne M; Feschenko, Alexander; Gibson, Paul; Kiselev, Yuri; Kovalishin, A S; Kravchuk, Leonid V; Kvasha, Adolf; Schubert, James P

    2005-01-01

    The Resonance Control Cooling System (RCCS) for the warm linac of the Spallation Neutron Source was designed by Los Alamos National Laboratory. The primary design focus was on water cooling of individual component contributions. The sizing the RCCS water skid was accomplished by means of a specially created SINDA/FLUINT model tailored to these system requirements. A new model was developed in Matlab Simulink and incorporates actual operational values and control valve interactions. Included is the dependence of RF input power on system operation, cavity detuning values during transients, time delays that result from water flows through the heat exchanger, the dynamic process of water warm-up in the cooling system due to dissipated RF power on the cavity surface, differing contributions on the cavity detuning due to drift tube and wall heating, and a dynamic model of the heat exchanger with characteristics in close agreement to the real unit. Because of the Matlab Simulink model, investigation of a wide range ...

  6. Low-level rf control of Spallation Neutron Source: System and characterization

    Directory of Open Access Journals (Sweden)

    Hengjie Ma

    2006-03-01

    Full Text Available The low-level rf control system currently commissioned throughout the Spallation Neutron Source (SNS LINAC evolved from three design iterations over 1 yr intensive research and development. Its digital hardware implementation is efficient, and has succeeded in achieving a minimum latency of less than 150 ns which is the key for accomplishing an all-digital feedback control for the full bandwidth. The control bandwidth is analyzed in frequency domain and characterized by testing its transient response. The hardware implementation also includes the provision of a time-shared input channel for a superior phase differential measurement between the cavity field and the reference. A companion cosimulation system for the digital hardware was developed to ensure a reliable long-term supportability. A large effort has also been made in the operation software development for the practical issues such as the process automations, cavity filling, beam loading compensation, and the cavity mechanical resonance suppression.

  7. Spallation: understanding for predicting !?

    International Nuclear Information System (INIS)

    David, J.-C.

    2012-01-01

    This HDR report summarizes about ten years spent around spallation reaction modelling. Spallation reactions are defined as interaction of a light particle, say a nucleon, and a nucleus at an incident energy from 100 MeV up to 2-3 GeV. These reactions are divided in two steps. A first and fast phase, direct reactions also called intranuclear cascade, following by a slower phase, deexcitation of the remnant nucleus. Using the combination of INCL4, the intranuclear cascade model developed by the group, and the deexcitation code Abla from GSI, as a connecting thread, the multi-faceted spallation is presented. Chapter one deals with physics and codes, then different types of benchmarks are addressed, followed by several domains where spallation modelling plays a role, and finally, taking advantage of what has been said previously and of what can be read in the literature, new developments are suggested. (author) [fr

  8. EURAC: A liquid target neutron spallation

    Energy Technology Data Exchange (ETDEWEB)

    Perlado, J.M.; Minguez, E.; Sanz, J. [Universidad Politecnica de Madrid (Spain)] [and others

    1995-10-01

    Euratom/JRC Ispra led some years ago the design of an accelerator based neutron spallation source EURAC, with special emphasis as a fusion material testing device. DENIM was involved in the development of the last version of this source. EURAC proposes to use a beam of 600 MeV or 1.5 GeV protons, produced by an effective and low cost ring cyclotron with a current of 6 mA impinging in a liquid lead, or lead-bismuth, target. It will use an advanced cyclotron technology which can be implemented in the next future, in the line of the actual technology of the upgraded SIN-type cyclotron. The adjacent rows to the target correspond to the lead, or Li{sub 17}Pb{sub 83}, cooled channels where the samples will be located. The available volumes there were shown enough for material testing purposes. Here, proposal of using those experimental areas to introduce small masses of radioactive wastes for testing of transmutation in spallation source is made. In addition, extrapolation of present conceptual design to make available larger volumes under flexible conditions seems to be possible. Neutrons leaking from the test zone drive a subcritical booster (<10 MW) which could provide a thermal neutron flux trap with a liquid hydrogen moderator in the center.

  9. Triple ion-beam studies of radiation damage effects in a 316LN austenitic alloy for a high power spallation neutron source

    International Nuclear Information System (INIS)

    Lee, E.H.; Rao, G.R.; Hunn, J.D.; Rice, P.M.; Lewis, M.B.; Cook, S.W.; Farrell, K.; Mansur, L.K.

    1997-09-01

    Austenitic 316LN alloy was ion-irradiated using the unique Triple Ion Beam Facility (TIF) at ORNL to investigate radiation damage effects relevant to spallation neutron sources. The TIF was used to simulate significant features of GeV proton irradiation effects in spallation neutron source target materials by producing displacement damage while simultaneously injecting helium and hydrogen at appropriately high gas/dpa ratios. Irradiations were carried out at 80, 200, and 350 C using 3.5 MeV Fe ++ , 360 keV He + , and 180 keV H + to accumulate 50 dpa by Fe, 10,000 appm of He, and 50,000 appm of H. Irradiations were also carried out at 200 C in single and dual ion beam modes. The specific ion energies were chosen to maximize the damage and the gas accumulation at a depth of ∼ 1 microm. Variations in microstructure and hardness of irradiated specimens were studied using transmission electron microscopy (TEM) and a nanoindentation technique, respectively. TEM investigation yielded varying damage defect microstructures, comprising black dots, faulted and unfaulted loops, and a high number density of fine bubbles (typically less than 1 nm in diameter). With increasing temperature, faulted loops had a tendency to unfault, and bubble microstructure changed from a bimodal size distribution to a unimodal distribution. Triple ion irradiations at the three temperatures resulted in similar increases in hardness of approximately a factor of two. Individually, Fe and He ions resulted in a similar magnitude of hardness increase, whereas H ions showed only a very small effect. The present study has yielded microstructural information relevant to spallation neutron source conditions and indicates that the most important concern may be radiation induced hardening and associated ductility loss

  10. Triple Ion-Beam Studies of Radiation Damage Effects in a 316LN Austenitic Alloy for a High Power Spallation Neutron Source

    International Nuclear Information System (INIS)

    Lee, E.H.

    2001-01-01

    Austenitic 316LN alloy was ion-irradiated using the unique Triple Ion Beam Facility (TIF) at ORNL to investigate radiation damage effects relevant to spallation neutron sources. The TIF was used to simulate significant features of GeV proton irradiation effects in spallation neutron source target materials by producing displacement damage while simultaneously injecting helium and hydrogen at appropriately high gas/dpa ratios. Irradiations were carried out at 80, 200, and 350 C using 3.5 MeV Fe 2 , 360 keV He + , and 180 keV H + to accumulate 50 dpa by Fe, 10,000 appm of He, and 50,000 appm of H. Irradiations were also carried out at 200 C in single and dual ion beam modes. The specific ion energies were chosen to maximize the damage and the gas accumulation at a depth of ∼ 1 microm. Variations in microstructure and hardness of irradiated specimens were studied using transmission electron microscopy (TEM) and a nanoindentation technique, respectively. TEM investigation yielded varying damage defect microstructures, comprising black dots, faulted and unfaulted loops, and a high number density of fine bubbles (typically less than 1 nm in diameter). With increasing temperature, faulted loops had a tendency to unfault, and bubble microstructure changed from a bimodal size distribution to a unimodal distribution. Triple ion irradiations at the three temperatures resulted in similar increases in hardness of approximately a factor of two. Individually, Fe and He ions resulted in a similar magnitude of hardness increase, whereas H ions showed only a very small effect. The present study has yielded microstructural information relevant to spallation neutron source conditions and indicates that the most important concern may be radiation induced hardening and associated ductility loss

  11. Thermal neutron source study

    International Nuclear Information System (INIS)

    Holden, T.M.

    1983-05-01

    The value of intense neutron beams for condensed matter research is discussed with emphasis on the complementary nature of steady state and pulsed neutron sources. A large body of information on neutron sources, both existing and planned, is then summarized under four major headings: fission reactors, electron accelerators with heavy metal targets, pulsed spallation sources and 'steady state' spallation sources. Although the cost of a spallation source is expected to exceed that of a fission reactor of the same flux by a factor of two, there are significant advantages for a spallation device such as the proposed Electronuclear Materials Test Facility (EMTF)

  12. Mitigation technologies for damage induced by pressure waves in high-power mercury spallation neutron sources (1). Material surface improvement

    International Nuclear Information System (INIS)

    Naoe, Takashi; Futakawa, Masatoshi; Wakui, Takashi; Kogawa, Hiroyuki; Shoubu, Takahisa; Takeuchi, Hirotsugu; Kawai, Masayoshi

    2008-01-01

    Liquid-mercury target systems for MW-class spallation neutron sources are being developed in the world. Proton beams will be used to induce the spallation reaction. At the moment the proton beam hits the target, pressure waves are generated in the mercury because of the abrupt heat deposition. The pressure waves interact with the target vessel leading to negative pressure that may cause cavitation along the vessel wall. Localized impacts by microjets and/or shock waves that are caused by cavitation bubble collapse impose pitting damage on the vessel wall. Bubble collapse behavior was observed by using a high-speed video camera, as well as simulated numerically. Localized impact due to cavitation bubble collapse was quantitatively estimated through comparison between numerical simulation and experiment. A novel surface treatment technique that consists of carburizing and nitriding processes was developed and the treatment condition was optimized to mitigate the pitting damage due to localized impacts. (author)

  13. Overview of ten-year operation of the superconducting linear accelerator at the Spallation Neutron Source

    Science.gov (United States)

    Kim, S.-H.; Afanador, R.; Barnhart, D. L.; Crofford, M.; Degraff, B. D.; Doleans, M.; Galambos, J.; Gold, S. W.; Howell, M. P.; Mammosser, J.; McMahan, C. J.; Neustadt, T. S.; Peters, C.; Saunders, J. W.; Strong, W. H.; Vandygriff, D. J.; Vandygriff, D. M.

    2017-04-01

    The Spallation Neutron Source (SNS) has acquired extensive operational experience of a pulsed proton superconducting linear accelerator (SCL) as a user facility. Numerous lessons have been learned in its first 10 years operation to achieve a stable and reliable operation of the SCL. In this paper, an overview of the SNS SCL design, qualification of superconducting radio frequency (SRF) cavities and ancillary subsystems, an overview of the SNS cryogenic system, the SCL operation including SCL output energy history and downtime statistics, performance stability of the SRF cavities, efforts for SRF cavity performance recovery and improvement at the SNS, and maintenance activities for cryomodules are introduced.

  14. Overview of ten-year operation of the superconducting linear accelerator at the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Kim, Sang-Ho; Afanador, Ralph; Barnhart, Debra L.; Crofford, Mark T.; Degraff, Brian D.

    2017-01-01

    The Spallation Neutron Source (SNS) has acquired extensive operational experience of a pulsed proton superconducting linear accelerator (SCL) as a user facility. Numerous lessons have been learned in its first 10 years operation to achieve a stable and reliable operation of the SCL. In this paper, an overview of the SNS SCL design, qualification of superconducting radio frequency (SRF) cavities and ancillary subsystems, an overview of the SNS cryogenic system, the SCL operation including SCL output energy history and downtime statistics, performance stability of the SRF cavities, efforts for SRF cavity performance recovery and improvement at the SNS, and maintenance activities for cryomodules are introduced.

  15. PRISMA - a spectrometer for the measurement of coherent excitations on a pulsed spallation neutron source

    International Nuclear Information System (INIS)

    Andreani, C.; Cilloco, F.; Petrillo, C.; Sacchetti, F.; Windsor, C.G.

    1986-04-01

    The measurement of nuclear and magnetic excitation spectra from single crystal samples remains central to condensed matter physics. The requirements in terms of the range and resolution of the scattering vector Q and energy transfer h/2πω are reviewed and typical experiments with a well defined cross-section are chosen. The performance and limitations of existing instruments are reviewed. A design for a new spectrometer, PRISMA, to be installed on the UK spallation neutron source, ISIS, is presented. Its performance for chosen experiments is given in terms of the Q and h/2πω range covered in a single scan, the resolution and the count rate. (author)

  16. Investigation of GeV proton-induced spallation reactions

    International Nuclear Information System (INIS)

    Hilscher, D.; Herbach, C.-M.; Jahnke, U.

    2003-01-01

    A reliable and precise modeling of GeV proton-induced spallation reactions is indispensable for the design of the spallation module and the target station of future accelerator driven hybrid reactors (ADS) or spallation neutron sources (ESS), in particular, to provide precise predictions for the neutron production, the radiation damage of materials (window), and the production of radioactivity ( 3 H, 7 Be etc.) in the target medium. Detailed experimental nuclear data are needed for sensitive validations and improvements of the models, whose predictive power is strongly dependent on the correct physical description of the three main stages of a spallation reaction: (i) the Intra-Nuclear-Cascade (INC) with the fast heating of the target nucleus, (ii) the de-excitation due to pre-equilibrium emission including the possibility of multi-fragmentation, and (iii) the statistical decay of thermally excited nuclei by evaporation of light particles and fission in the case of heavy nuclei. Key experimental data for this endeavour are absolute production cross sections and energy spectra for neutrons and light charged-particles (LCPs), emission of composite particles prior and post to the attainment of an equilibrated system, distribution of excitation energies deposited in the nuclei after the INC, and fission probabilities. The correlations of these quantities are particularly important to detect and identify possible deficiencies of the theoretical modeling of the various stages of a spallation reaction. Systematic measurements of such data are furthermore needed over large ranges of target nuclei and incident proton energies. Such data has been measured with the NESSI detector. An overview of new and previous results will be given. (authors)

  17. Proceedings of the international workshop on spallation materials technology

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, L.K.; Ullmaier, H. [comps.

    1996-10-01

    This document contains papers which were presented at the International Workshop on Spallation Materials Technology. Topics included: overviews and thermal response; operational experience; materials experience; target station and component design; particle transport and damage calculations; neutron sources; and compatibility.

  18. Proceedings of the international workshop on spallation materials technology

    International Nuclear Information System (INIS)

    Mansur, L.K.; Ullmaier, H.

    1996-01-01

    This document contains papers which were presented at the International Workshop on Spallation Materials Technology. Topics included: overviews and thermal response; operational experience; materials experience; target station and component design; particle transport and damage calculations; neutron sources; and compatibility

  19. Preliminary assessment of the nuclide migration from the activation zone around the proposed Spallation Neutron Source facility

    International Nuclear Information System (INIS)

    Dole, L.R.

    1998-09-01

    The purpose of this study is to investigate the potential impacts of migrating radionuclides from the activation zone around the proposed Spallation Neutron Source (SNS). Using conservatively high estimates of the potential inventory of radioactive activation products that could form in the proposed compacted-soil shield berm around an SNS facility on the Oak Ridge Reservation (ORR), a conservative, simplified transport model was used to estimate the potential worst-case concentrations of the 12 long-lived isotopes in the groundwater under a site with the hydrologic characteristics of the ORR

  20. Preliminary assessment of the nuclide migration from the activation zone around the proposed Spallation Neutron Source facility

    Energy Technology Data Exchange (ETDEWEB)

    Dole, L.R.

    1998-09-01

    The purpose of this study is to investigate the potential impacts of migrating radionuclides from the activation zone around the proposed Spallation Neutron Source (SNS). Using conservatively high estimates of the potential inventory of radioactive activation products that could form in the proposed compacted-soil shield berm around an SNS facility on the Oak Ridge Reservation (ORR), a conservative, simplified transport model was used to estimate the potential worst-case concentrations of the 12 long-lived isotopes in the groundwater under a site with the hydrologic characteristics of the ORR.

  1. Mercury purification in the megawatt liquid metal spallation target of EURISOL-DS

    CERN Document Server

    Neuhausen, Joerg; Eller, Martin; Schumann, Dorothea; Eichler, Bernd; Horn, Susanne

    High power spallation targets are going to be used extensively in future research and technical facilities such as spallation neutron sources, neutrino factories, radioactive beam facilities or accelerator driven systems for the transmutation of long-lived nuclear waste. Within EURISOL-DS, a 4 MW liquid metal spallation target is designed to provide neutrons for a fission target, where neutron rich radionuclides will be produced. For the spallation target, mercury is planned to be used as target material. A large amount of radionuclides ranging from atomic number Z=1 to 81 will be produced in the liquid metal during long term irradiation. It is planned to remove those radionuclides by chemical or physicochemical methods to reduce its radioactivity. For the development of a purification procedure, knowledge about the chemical state of the different elements present in the mixture is required. We present a general concept of applicable separation techniques in a target system and show some results of experiment...

  2. A sistematical study of spallation reaction

    International Nuclear Information System (INIS)

    Foshina, M.

    1982-01-01

    A four-parameter semi-empirical formulae is proposed to calculate photo-spallation cross sections. This formulae is deduced starting from a nuclear model considered as a particle mixture without differences among them and the spallation phenomenous is considered as sucessive nucleon emission ruled by determined probability law. The formulae parameters are obtained from photo-spallation yields experimentally determined and available in literature. A variation study of the values of different parameters with the mass number of the 'seed' nucleus and incident energy is made. A parallel study for the spallation reactions induced by protons of a sampling of 720 data is also presented. (L.C.) [pt

  3. Energy dependence of isotopic spectra from spallation residues; Dependance en energie des spectres isotopiques de residus de spallation

    Energy Technology Data Exchange (ETDEWEB)

    Audouin, L

    2003-09-01

    Spallation reactions are collisions between heavy nuclei and light particle with an energy of a few hundreds MeV. The y are considered as a suitable way to create high- flux neutrons sources, which may used for example for the transmutation of nuclear wastes (hybrid reactors). The study of the residues from such reactions is both a way to understand the physics of the spallation and to provide information required for the design of industrial targets. The residues from the spallation of lead by proton at 500 MeV have been measured using the inverse kinematics technique in the FRS (fragments recoil separator). spectrometer from GSI (Barmstadt). This low energy required the use of new technique, for the experimental setup as well as during the analysis. The fragments were identified in-flight, prior to {beta} decay. Complete isotopic distributions are obtained with an accuracy ranging between 10 and 30%. Detailed information on the reaction kinematics are also obtained. Data are in excellent agreement with radio-chemical measurements, and bring new insights about the spallation process. The comparison with data measured on the same system with an incident energy of 1 GeV allows to discuss the influence of the projectile energy on the residues formation. It is concluded that the independence of the shape of the isobaric production cross sections regarding mass and energy of the projectile is preserved at low incident energies. The behaviour of Monte-Carlo codes is discussed with respect to those sets of data. The calculations show an improving agreement with decreasing energy, indicating that high-energy phenomena, for which some common assumptions become questionable, are the main reason for the observed discrepancies. (author)

  4. Spallation Neutron Source Availability Top-Down Apportionment Using Characteristic Factors and Expert Opinion

    International Nuclear Information System (INIS)

    Haire, M.J.; Schryver, J.C.

    1999-01-01

    Apportionment is the assignment of top-level requirements to lower tier elements of the overall facility. A method for apportioning overall facility availability requirements among systems and subsystems is presented. Characteristics that influence equipment reliability and maintainability are discussed. Experts, using engineering judgment, scored each characteristic for each system whose availability design goal is to be established. The Analytic Hierarchy Process (AHP) method is used to produce a set of weighted rankings for each characteristic for each alternative system. A mathematical model is derived which incorporates these weighting factors. The method imposes higher availability requirements on those systems in which an incremental increase in availability is easier to achieve, and lower availability requirements where greater availability is more difficult and costly. An example is given of applying this top-down apportionment methodology to the Spallation Neutron Source (SNS) facility

  5. Commissioning of cryogenic system for China Spallation Neutron Source

    Science.gov (United States)

    Ye, Bin; He, Chongchao; Li, Na; Ding, Meiying; Wang, Yaqiong; Yu, Zhang; He, Kun

    2017-12-01

    China Spallation Neutron Source(CSNS) cryogenic system provides supercritical cryogenic hydrogen to neutron moderators, including a helium refrigerator, hydrogen loop and hydrogen safety equipment. The helium refrigerator is provided by Linde with cooling capacity of 2200 W at 20 K. Hydrogen loop system mainly includes cryogenic hydrogen pipes, hydrogen circulator cold-box and accumulator cold-box. Cryogenic hydrogen pump, ortho-para convertor, helium-hydrogen heat-exchanger, hydrogen heater and accumulator are integrated in hydrogen circulation cold-box, and accumulator cold-box. Hydrogen safety equipment includes safety valves, rupture disk, hydrogen sensor, flame detector and other equipment to ensure that cryogenic system in dangerous situations will go down, vents, or takes other measures. The cryogenic system commissioning work includes four steps. First, in order to test the refrigerating capacity of refrigerator, when acceptance testing, refrigerator internal heater was used as thermal load. Second, using simulation load as heat load of moderator, hydrogen loop use helium instead of hydrogen, and cooled down to 20 K, then re-warming and test the leak detection of hydrogen loop system. Third, base on the step 2, using hydrogen as working medium, and optimized the control logic. Forth, cryogenic system with the moderators joint commissioning. Now, cryogenic system is connected with the moderators, and the forth step will be carried out in the near future.

  6. Safety techniques in the change of nuclear systems. Radiation protection at spallation neutron sources and transmutation facilities

    International Nuclear Information System (INIS)

    Nuenighoff, Kay

    2009-01-01

    To push the boundary towards higher neutron fluxes concepts based on spallation reactions have been discussed. Here neutrons are produced by bombarding a heavy metal target (e.g. mercury, tungsten, or tantalum) with high energetic protons. Up to now such facilities could not be realised because of the high power particle accelerators needed. Recent developments of the accelerator technology open the possibility of construction and operating proton accelerators in the MW region. This is demonstrated by construction and commissioning of two MW spallation neutron sources, namely SNS (Oak Ridge, Tennessee, USA) with a power of 1.4 MW and J-PARC (Japan) with 1 MW. The realisation of proton accelerators at this power level will open the way towards energy amplifiers, as proposed e.g. by Carlo Rubbia. Such a facility will not only produce electric power. Furthermore longliving radionuclides can be transmutated into shortlived or even stable nuclides by neutron induced nuclear reactions. A mitigation of the problem of nuclear waste disposal. The above discussed developments prove that accelerators are not only constructed for research, moreover application of these technology became state of the art. With the emergence of particle accelerators in the MW region, radiation protection is confronted with new kind of problems to be solved. Especially the higher kinetic energies of the primary beam particles requires modification and expansion of computer programs well known in nuclear engineering. In contrast to nuclear reactors with kinetic energies up to 2-3 MeV, in spallation reaction secondary particles up to the incident energy in the GeV region will be produced. Problems related to radiation protection have to be considered in an energy range three orders of magnitude higher than known from nuclear reactors. In this thesis existing computer codes are compared and validated with data from selected experiments. Questions concerning radiation protection covers a broad range

  7. Present status of spallation target development. JAERI/KEK Joint Project

    International Nuclear Information System (INIS)

    Hino, R.; Kaminaga, M.; Haga, K.

    2001-01-01

    The Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK) are promoting a plan to construct a neutron scattering facility under the JAERI/KEK Joint Project. Design and R and D works are being carried out vigorously for realizing the mercury target system consisting of the mercury target, moderators and reflectors working as a spallation neutron source, as well as a remote handling system for exchanging such components which will be highly irradiated. This report introduces an outline of the present status of design and development activities on the spallation target system. (author)

  8. Spallation as a dominant source of pusher-fuel and hot-spot mix in inertial confinement fusion capsules

    Science.gov (United States)

    Orth, Charles D.

    2016-02-01

    We suggest that a potentially dominant but previously neglected source of pusher-fuel and hot-spot "mix" may have been the main degradation mechanism for fusion energy yields of modern inertial confinement fusion (ICF) capsules designed and fielded to achieve high yields—not hydrodynamic instabilities. This potentially dominant mix source is the spallation of small chunks or "grains" of pusher material into the fuel regions whenever (1) the solid material adjacent to the fuel changes its phase by nucleation and (2) this solid material spalls under shock loading and sudden decompression. We describe this mix mechanism, support it with simulations and experimental evidence, and explain how to eliminate it and thereby allow higher yields for ICF capsules and possibly ignition at the National Ignition Facility.

  9. Spallator: a new option for nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, M.; Grand, P.; Takahashi, H.; Powell, J.R.; Kouts, H.J.

    1983-06-01

    The principles of the spallator reactor are reviewed. Advances in linear accelerator technology allow the design and construction of high current (hundreds of mA) continuous wave high energy (thousands of MeV) proton machines in the near term. Spallation neutronic calculations building on existing experimental results, indicate substantial neutron yields on uranium targets. Spallator target assembly designs based on water cooled reactor technology indicate operable efficient systems. Fuel cycles are presented which supply fissile material to thermal power reactors and reduce fission product waste. Preliminary comparative analysis indicates an economically competitive system in which a single purpose self-sufficient spallator supplies fuel to a number of LWRs. The spallator assures a long-term LWR power reactor economy. International interest in advancing the technology is indicated.

  10. Spallator: a new option for nuclear power

    International Nuclear Information System (INIS)

    Steinberg, M.; Grand, P.; Takahashi, H.; Powell, J.R.; Kouts, H.J.

    1983-06-01

    The principles of the spallator reactor are reviewed. Advances in linear accelerator technology allow the design and construction of high current (hundreds of mA) continuous wave high energy (thousands of MeV) proton machines in the near term. Spallation neutronic calculations building on existing experimental results, indicate substantial neutron yields on uranium targets. Spallator target assembly designs based on water cooled reactor technology indicate operable efficient systems. Fuel cycles are presented which supply fissile material to thermal power reactors and reduce fission product waste. Preliminary comparative analysis indicates an economically competitive system in which a single purpose self-sufficient spallator supplies fuel to a number of LWRs. The spallator assures a long-term LWR power reactor economy. International interest in advancing the technology is indicated

  11. 5 MW pulsed spallation neutron source, Preconceptual design study

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This report describes a self-consistent base line design for a 5 MW Pulsed Spallation Neutron Source (PSNS). It is intended to establish feasibility of design and as a basis for further expanded and detailed studies. It may also serve as a basis for establishing project cost (30% accuracy) in order to intercompare competing designs for a PSNS not only on the basis of technical feasibility and technical merit but also on the basis of projected total cost. The accelerator design considered here is based on the objective of a pulsed neutron source obtained by means of a pulsed proton beam with average beam power of 5 MW, in {approx} 1 {mu}sec pulses, operating at a repetition rate of 60 Hz. Two target stations are incorporated in the basic facility: one for operation at 10 Hz for long-wavelength instruments, and one operating at 50 Hz for instruments utilizing thermal neutrons. The design approach for the proton accelerator is to use a low energy linear accelerator (at 0.6 GeV), operating at 60 Hz, in tandem with two fast cycling booster synchrotrons (at 3.6 GeV), operating at 30 Hz. It is assumed here that considerations of cost and overall system reliability may favor the present design approach over the alternative approach pursued elsewhere, whereby use is made of a high energy linear accelerator in conjunction with a dc accumulation ring. With the knowledge that this alternative design is under active development, it was deliberately decided to favor here the low energy linac-fast cycling booster approach. Clearly, the present design, as developed here, must be carried to the full conceptual design stage in order to facilitate a meaningful technology and cost comparison with alternative designs.

  12. 5 MW pulsed spallation neutron source, Preconceptual design study

    International Nuclear Information System (INIS)

    1994-06-01

    This report describes a self-consistent base line design for a 5 MW Pulsed Spallation Neutron Source (PSNS). It is intended to establish feasibility of design and as a basis for further expanded and detailed studies. It may also serve as a basis for establishing project cost (30% accuracy) in order to intercompare competing designs for a PSNS not only on the basis of technical feasibility and technical merit but also on the basis of projected total cost. The accelerator design considered here is based on the objective of a pulsed neutron source obtained by means of a pulsed proton beam with average beam power of 5 MW, in ∼ 1 μsec pulses, operating at a repetition rate of 60 Hz. Two target stations are incorporated in the basic facility: one for operation at 10 Hz for long-wavelength instruments, and one operating at 50 Hz for instruments utilizing thermal neutrons. The design approach for the proton accelerator is to use a low energy linear accelerator (at 0.6 GeV), operating at 60 Hz, in tandem with two fast cycling booster synchrotrons (at 3.6 GeV), operating at 30 Hz. It is assumed here that considerations of cost and overall system reliability may favor the present design approach over the alternative approach pursued elsewhere, whereby use is made of a high energy linear accelerator in conjunction with a dc accumulation ring. With the knowledge that this alternative design is under active development, it was deliberately decided to favor here the low energy linac-fast cycling booster approach. Clearly, the present design, as developed here, must be carried to the full conceptual design stage in order to facilitate a meaningful technology and cost comparison with alternative designs

  13. Preconceptual design of a Long-Pulse Spallation Source (LPSS) at the LANSCE Facility: Target system, facility, and material handling considerations

    International Nuclear Information System (INIS)

    Sommer, W.F.

    1995-12-01

    This report provides a summary of a preconceptual design study for the proposed Long-Pulse Spallation. Source (LPSS) at the Los Alamos Neutron Science Center (LANSCE). The LPSS will use a 0.8-MW proton beam to produce neutrons from a tungsten target. This study focuses on the design of the target station and changes to the existing building that would be made to accommodate the LPSS. The LPSS will provide fifteen flight paths to neutron scattering instruments. In addition, options for generating ultracold neutrons, pions, and muons will be available. Flight-energy, forward-scattered neutrons on the downstream side of the target will also be available for autoradiography studies. A Target Test Bed (TTB) is also proposed for full-beam tests of component materials and advanced spallation neutron sources. The design allows for separation of the experiment hall from the beam line, target, and flight paths. The target and moderator systems and the systems/components to be tested in the TTB will be emplaced and removed separately by remotely operated, shielded equipment. Irradiated materials will be transported to a hot cell adjacent to the target chamber for testing by remotely operated instruments. These tests will provide information about how materials properties are affected by proton and neutron beams

  14. Small-angle scattering instruments on a 1 MW long pulse spallation source

    Energy Technology Data Exchange (ETDEWEB)

    Olah, G.A. [Los Alamos National Lab., Chemical Science and Tehcnology Div., Biosciences and Biotechnology Group, Los aalamos, NM (United States); Hjelm, R.P. [Los Alamos National Lab., Neutron Scattering Center, Los Alamos, NM (United States); Seeger, P.A.

    1995-11-01

    We have designed and optimized two small-angle neutron scattering instruments for installation at a 1 MW long pulse spallation source. The first of these instruments measures a Q-domain from 0.002 to 0.44 A{sup -1}, and the second instrument from 0.00069-0.17 A{sup -1}, Design characteristics were determined and optimization was done using a Monte Carlo instrument simulation package under development at Los alamos. A performance comparison was made between these instruments with D11 at the ILL by evaluating the scattered intensity and rms resolution for the instrument response function at different Q values for various instrument configurations needed to spn a Q-range of 0.0007-0.44 A{sup -1}. We concluded that the first of these instruments outperforms D11 in both intensity and resolution over most of the Q-domain and that the second is comparable to D11. Comparisons were also made of the performance of the optimized long pulse instruments with different reflectors and with a short pulse source, from which we concluded that there is an optimal moderator-reflector combination, and that a short pulse does not substantially improve the instrument performance. (author) 7 figs., 2 tabs., 9 refs.

  15. Small-angle scattering instruments on a 1 MW long pulse spallation source

    International Nuclear Information System (INIS)

    Olah, G.A.; Hjelm, R.P.; Seeger, P.A.

    1995-01-01

    We have designed and optimized two small-angle neutron scattering instruments for installation at a 1 MW long pulse spallation source. The first of these instruments measures a Q-domain from 0.002 to 0.44 A -1 , and the second instrument from 0.00069-0.17 A -1 , Design characteristics were determined and optimization was done using a Monte Carlo instrument simulation package under development at Los alamos. A performance comparison was made between these instruments with D11 at the ILL by evaluating the scattered intensity and rms resolution for the instrument response function at different Q values for various instrument configurations needed to spn a Q-range of 0.0007-0.44 A -1 . We concluded that the first of these instruments outperforms D11 in both intensity and resolution over most of the Q-domain and that the second is comparable to D11. Comparisons were also made of the performance of the optimized long pulse instruments with different reflectors and with a short pulse source, from which we concluded that there is an optimal moderator-reflector combination, and that a short pulse does not substantially improve the instrument performance. (author) 7 figs., 2 tabs., 9 refs

  16. A target-moderator-reflector concept of the JAERI 5 MW pulsed spallation neutron source

    International Nuclear Information System (INIS)

    Watanabe, Noboru; Teshigawara, Makoto; Aizawa, Kazuya; Suzuki, Jyunichi; Oyama, Yukio

    1998-03-01

    In Japan Atomic Energy Research Institute the construction of a 5 MW (short) pulsed spallation neutron source is under planning using a projected high power superconducting proton (or H - ) linac of 8 MW in total beam power. In the present paper we report our consideration on target-moderator-reflector concept, based on the layout of the tentative neutron instruments for the assumed neutron scattering experiments in future. The choice of cold neutron moderators for high resolution and high intensity experiments, thermal and epithermal neutron moderators for high resolution uses was discussed and a reference layout of target-moderator-reflector system was proposed for detailed neutronic calculation and optimization. The proposed system was designed like that it can provide, at least, 30 beam lines for more than 40 instruments. (author)

  17. Beam dynamics simulation of the Spallation Neutron Source linear accelerator

    International Nuclear Information System (INIS)

    Takeda, H.; Billen, J.H.; Bhatia, T.S.

    1998-01-01

    The accelerating structure for Spallation Neutron Source (SNS) consists of a radio-frequency-quadrupole-linac (RFQ), a drift-tube-linac (DTL), a coupled-cavity-drift-tube-linac (CCDTL), and a coupled-cavity-linac (CCL). The linac is operated at room temperature. The authors discuss the detailed design of linac which accelerates an H - pulsed beam coming out from RFQ at 2.5 MeV to 1000 MeV. They show a detailed transition from 402.5 MHz DTL with a 4 βλ structure to a CCDTL operated at 805 MHz with a 12 βλ structure. After a discussion of overall feature of the linac, they present an end-to-end particle simulation using the new version of the PARMILA code for a beam starting from the RFQ entrance through the rest of the linac. At 1000 MeV, the beam is transported to a storage ring. The storage ring requires a large (±500-keV) energy spread. This is accomplished by operating the rf-phase in the last section of the linac so the particles are at the unstable fixed point of the separatrix. They present zero-current phase advance, beam size, and beam emittance along the entire linac

  18. Investigation of the energy correlations of spallation neutrons by the MCNPX code

    International Nuclear Information System (INIS)

    Szieberth, Mate; Radocz, Gabor

    2011-01-01

    Earlier works have suggested that the energy correlations in a spallation source may influence the neutron noise measurements in an ADS. For the calculation of this effect not only the generally known and used one-particle spectrum is needed but also the so-called two particle spectrum, which describes also the energy correlations. Since measured data are not available for the energy distribution of the neutrons from a single spallation event the physical models of the MCNPX code have been used to investigate the effect. The calculational model has been successfully validated with measurements of the number distribution of spallation neutrons. The simulated one- and two-particle energy distributions and spectra proved that the energy correlations exist and have an important effect in low multiplicity spallation events and in thin targets. On the other hand for thick targets this effect appears negligible and the factorization of the two-particle spectrum seems an acceptable approximation. Further investigations are in hand to quantify the actual effect of the energy correlations on the neutron noise measurements. (author)

  19. On the use of lead/tin alloys as target material for the production of spallation neutrons

    International Nuclear Information System (INIS)

    Atchison, F.; Baumann, P.; Brys, T.; Daum, M.; Egorov, A.; Fierlinger, P.; Fuchs, P.; Henneck, R.; Joray, St.; Keil, R.; Kirch, K.; Krutova, R.; Kuehne, G.; Lebedev, V.T.; Obermeier, H.; Orlova, D.N.; Perret, Ch.; Pichlmaier, A.; Richard, Ph.; Serebrov, A.; Thies, S.

    2005-01-01

    We have examined the suitability of lead (Pb)/tin (Sn) alloys with atomic ratios between 4:1 and 12:1 for use as a spallation target material for the PSI spallation ultracold neutron source. The measured corrosion rate with distilled water, R c -5 cm/year, is more than a factor of 80, less than for normal Pb; this corrosion rate is satisfactory. Microscopic investigations of the surface after the exposure to water revealed no visual changes. Small angle neutron scattering showed that the alloy is mechanically stable under thermal cycling. An experimental simulation of a water-cooled spallation neutron target made of Pb/Sn pebbles with a filling factor of 60% was investigated; the pulsed proton beam was simulated using hot and cold water in the target 'cooling' circuit. With realistic operational parameters for the cooling circuit, serious deformation of the PbSn pebbles occurred which finally blocked the cooling circuit. The Pb/Sn alloys solve the corrosion problem but its mechanical properties are inadequate leading to too short a lifetime to be practical in the PSI spallation source

  20. Radiation effects in structural materials of spallation targets

    Science.gov (United States)

    Jung, P.

    2002-02-01

    Effects of radiation damage by protons and neutrons in structural materials of spallation neutron sources are reviewed. Effects of atomic displacements, defect mobility and transmutation products, especially hydrogen and helium, on physical and mechanical properties are discussed. The most promising candidate materials (austenitic stainless steels, ferritic/martensitic steels and refractory alloys) are compared, and needed investigations are identified.

  1. Spallation target-moderator-reflector studies at the Weapons Neutron Research facility

    International Nuclear Information System (INIS)

    Russell, G.J.; Gilmore, J.S.; Prael, S.D.; Robinson, H.; Howe, S.D.

    1980-01-01

    Basic neutronics data, initiated by 800-MeV proton spallation reactions, are important to spallation neutron source development and electronuclear fuel production. Angle-dependent and energy-dependent neutron production cross sections, energy-dependent and total neutron yields, thermal and epithermal neutron surface and beam fluxes, and fertile-to-fissile conversion ratios are being measured. The measurements are being done at the Weapons Neutron Research facility on a variety of targets and target-moderator-reflector configurations. The experiments are relevant to the above applications, and provide data to validate computer codes. Preliminary results are presented and compared to calculated predictions. 13 figures

  2. Space charge beam dynamics studies for a pulsed spallation source accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Y.; Lessner, E.

    1995-12-31

    Feasibility studies for 2-GeV, 1-MW and 10-GeV, 5-MW rapid cycling synchrotrons (RCS) for spallation neutron sources have been completed. Both synchrotrons operate at a repetition rate of 30 Hz, and accelerate 1.04 {times} 10{sup 14} protons per pulse. The injection energy of the 2-GeV ring is 400 MeV, and the 10-GeV RCS accepts the beam from the 2-GeV machine. Work performed to-date includes calculation of the longitudinal space charge effects in the 400-MeV beam transfer line, and of both longitudinal and transverse space charge effects during the injection, capture and acceleration processes in the two rings. Results of space charge calculations in the rings led to proper choices of the working points and of rf voltage programs that prevents beam loss. Space charge effects in the 2-GeV synchrotron, in both transverse and longitudinal phase space, have major impact on the design due to the fact that the injection energy is 400 MeV. The design achieves the required performance while alleviating harmful effects due to space charge.

  3. Cumulative beam break-up study of the spallation neutron source superconducting linac

    CERN Document Server

    Jeon, D; Krafft, G A; Yunn, B; Sundelin, R; Delayen, J; Kim, S; Doleans, M

    2002-01-01

    Beam instabilities due to High Order Modes (HOMs) are a concern to superconducting (SC) linacs such as the Spallation Neutron Source (SNS) linac. The effects of pulsed mode operation on transverse and longitudinal beam breakup instability are studied for H sup - beam in a consistent manner for the first time. Numerical simulation indicates that cumulative transverse beam breakup instabilities are not a concern in the SNS SC linac, primarily due to the heavy mass of H sup - beam and the HOM frequency spread resulting from manufacturing tolerances. As little as +-0.1 MHz HOM frequency spread stabilizes all the instabilities from both transverse HOMs, and also acts to stabilize the longitudinal HOMs. Such an assumed frequency spread of +-0.1 MHz HOM is small, and hence conservative compared with measured values of sigma=0.00109(f sub H sub O sub M -f sub 0)/f sub 0 obtained from Cornell and the Jefferson Lab Free Electron Laser cavities. However, a few cavities may hit resonance lines and generate a high heat lo...

  4. An update on measurements of helium-production reactions with a spallation neutron source

    International Nuclear Information System (INIS)

    Haight, R.C.; Bateman, F.B.; Chadwick, M.B.

    1995-01-01

    This report gives the status, updated since the last Research Coordination Meeting, of alpha-particle production cross sections, emission spectra and angular distributions which we are measuring at the spallation source of fast neutrons at the Los Alamos Meson Physics Facility (LAMPF). Detectors at angles of 30, 60, 90 and 135 degrees are used to identify alpha particles, measure their energy spectra, and indicate the time-of-flight, and hence the energy, of the neutrons inducing the reaction. The useful neutron energy ranges from less than 1 MeV to approximately 50 MeV for the present experimental setup. Targets under study at present include C, N, 0, 27 Al, Si, 51 V, 56 Fe, 59 CO, 58,60 Ni, 89 Y and 93 Nb. Data for 59 Co have been re-analyzed. The results illustrate the capabilities of the approach, agreement with literature values, and comparisons with nuclear reaction model calculations

  5. An update on measurements of helium-production reactions with a spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Haight, R.C.; Bateman, F.B.; Chadwick, M.B. [and others

    1995-10-01

    This report gives the status, updated since the last Research Coordination Meeting, of alpha-particle production cross sections, emission spectra and angular distributions which we are measuring at the spallation source of fast neutrons at the Los Alamos Meson Physics Facility (LAMPF). Detectors at angles of 30, 60, 90 and 135{degrees} are used to identify alpha particles, measure their energy spectra, and indicate the time-of-flight, and hence the energy, of the neutrons inducing the reaction. The useful neutron energy ranges from less than 1 MeV to approximately 50 MeV for the present experimental setup. Targets under study at present include C, N, 0, {sup 27}Al, Si, {sup 51}V, {sup 56}Fe, {sup 59}CO, {sup 58,60}Ni, {sup 89}Y and {sup 93}Nb. Data for {sup 59}Co have been re-analyzed. The results illustrate the capabilities of the approach, agreement with literature values, and comparisons with nuclear reaction model calculations.

  6. Lattice design of medium energy beam transport line for n spallation neutron source

    International Nuclear Information System (INIS)

    Dhingra, Rinky; Kulkarni, Nita S.; Kumar, Vinit

    2015-01-01

    A 1 GeV H - injector linac is being designed at RRCAT for the proposed Indian Spallation Neutron Source (ISNS). The front-end of the injector linac will consist of Radiofrequency Quadrupole (RFQ) linac, which will accelerate the H - beam from 50 keV to 3 MeV. The beam will be further accelerated in superconducting Single Spoke Resonators (SSRs). A Medium Energy Beam Transport (MEBT) line will be used to transport the beam from the exit of RFQ to the input of SSR. The main purpose of MEBT is to carry out beam matching from RFQ to SSR, and beam chopping. In this paper, we describe the optimization criteria for the lattice design of MEBT. The optimized lattice element parameters are presented for zero and full (15 mA) current case. Beam dynamics studies have been carried out using an envelope tracing code Trace-3D. Required beam deflection angle due to the chopper housed inside the MEBT for beam chopping has also been estimated. (author)

  7. Target-moderator-reflector optimization for JAERI 5 MW pulsed spallation neutron source

    International Nuclear Information System (INIS)

    Watanabe, Noboru; Teshigawara, Makoto; Kai, Tetsuya

    1999-01-01

    Optimization studies on the target-moderator-reflector neutronics for the projected intense pulsed-spallation-neutron-source in JAERI are reported. In order to obtain the highest possible performance of the source a new target-moderator-reflector system has been proposed and effects of various parameters, such as material and the shape/dimensions of the target, the profile/distribution of the proton beam, material and dimensions of the reflector, the coupling scheme of the target-moderator, moderator parameters, etc., on slow neutron performance and energy deposition in cryogenic moderators have extensively been studied by neutronic calculations. A cold neutron moderator for high-resolution together with high-intensity experiments has newly been proposed. It was found that, by adopting a flat target with a flat beam profile, the slow neutron intensities from the moderators could be rather insensitive to the target/beam dimensions, providing more flexibility to the engineering design of the target and the moderators. The moderator position relative to the target is another important issue to be optimized. It was confirmed that the proposed target-moderator-reflector layout made it possible to put all the moderators almost at the best position (It has not been possible so far), resulting in a higher performance. The predicted performance obtained with nearly optimized parameters was compared with those of similar projects in the world to justify the present concept. (author)

  8. Evaluation of the transmutation of transuranic using neutrons spectrum from the spallation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Gilberti, Mauricio; Pereira, Claubia, E-mail: mgilber@eletronuclear.gov.br [Eletrobras Termonuclear S.A. (ELETRONUCLEAR), Angra dos Reis, RJ (Brazil); Veloso, Maria A. Fortini, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizante, MG (Brazil). Dept. de Engenharia Nuclear

    2013-07-01

    The transmutation of transuranic was analyzed by simulating the neutron flux from different spallation sources across arrays of fissile material with isotopic composition PWR reprocessing. A simplified model of Accelerator-Driven Systems (ADS) containing target, moderator graphite, lead-bismuth coolant or sodium coolant, is used. The simulation was made using the particles transport code MCNPX 2.6.0 which allowed to evaluate the rate of transmutation of actinides (Np, Pu, Am, and Cm) at different locations in the system. The objective of the study is to evaluate which the behavior and influences the spectrum of the spallation in the transmutation without the contribution or interference of multiplier, medium subcritical, which would add the contribution of fission neutrons generated, thus interfering in the analysis. The arrangement enable to infer the influence of hardened neutron flux from the spallation reaction in the transmutation, the results show that this is independent of the target material chosen, and the spectrum of spallation has a negligible importance compared to the influence of moderation and scattering generated by the coolant or moderator used. (author)

  9. Evaluation of the transmutation of transuranic using neutrons spectrum from the spallation reaction

    International Nuclear Information System (INIS)

    Gilberti, Mauricio; Pereira, Claubia; Veloso, Maria A. Fortini

    2013-01-01

    The transmutation of transuranic was analyzed by simulating the neutron flux from different spallation sources across arrays of fissile material with isotopic composition PWR reprocessing. A simplified model of Accelerator-Driven Systems (ADS) containing target, moderator graphite, lead-bismuth coolant or sodium coolant, is used. The simulation was made using the particles transport code MCNPX 2.6.0 which allowed to evaluate the rate of transmutation of actinides (Np, Pu, Am, and Cm) at different locations in the system. The objective of the study is to evaluate which the behavior and influences the spectrum of the spallation in the transmutation without the contribution or interference of multiplier, medium subcritical, which would add the contribution of fission neutrons generated, thus interfering in the analysis. The arrangement enable to infer the influence of hardened neutron flux from the spallation reaction in the transmutation, the results show that this is independent of the target material chosen, and the spectrum of spallation has a negligible importance compared to the influence of moderation and scattering generated by the coolant or moderator used. (author)

  10. Energy dependence of isotopic spectra from spallation residues

    International Nuclear Information System (INIS)

    Audouin, L.

    2003-09-01

    Spallation reactions are collisions between heavy nuclei and light particle with an energy of a few hundreds MeV. The y are considered as a suitable way to create high- flux neutrons sources, which may used for example for the transmutation of nuclear wastes (hybrid reactors). The study of the residues from such reactions is both a way to understand the physics of the spallation and to provide information required for the design of industrial targets. The residues from the spallation of lead by proton at 500 MeV have been measured using the inverse kinematics technique in the FRS (fragments recoil separator). spectrometer from GSI (Barmstadt). This low energy required the use of new technique, for the experimental setup as well as during the analysis. The fragments were identified in-flight, prior to β decay. Complete isotopic distributions are obtained with an accuracy ranging between 10 and 30%. Detailed information on the reaction kinematics are also obtained. Data are in excellent agreement with radio-chemical measurements, and bring new insights about the spallation process. The comparison with data measured on the same system with an incident energy of 1 GeV allows to discuss the influence of the projectile energy on the residues formation. It is concluded that the independence of the shape of the isobaric production cross sections regarding mass and energy of the projectile is preserved at low incident energies. The behaviour of Monte-Carlo codes is discussed with respect to those sets of data. The calculations show an improving agreement with decreasing energy, indicating that high-energy phenomena, for which some common assumptions become questionable, are the main reason for the observed discrepancies. (author)

  11. Photonuclear spallation reactions in Cu

    International Nuclear Information System (INIS)

    Shibata, S.; Imamura, M.; Miyachi, T.

    1986-06-01

    Formation yields of 24 radioactive nuclides by the interaction of bremsstrahlung in the maximum end-point energies of 100 MeV - 1 GeV with Cu have been measured by direct γ-ray counting of irradiated targets. The yields in the mass range of 42 to 60 except for 60 Cu were analysed by non-linear least-squares fit to construct the mass yield and charge dispersion curves in spallation reactions. From the parameter values obtained, the energy dependence of the slope of the mass yield curve and the relationship between target N/Z and the most probable product N/Z were investigated in comparison with the results of proton, α and heavy ion-induced spallations of Cu. The characteristics of photon-induced spallations are discussed. (author)

  12. Tensile mechanical properties of a stainless steel irradiated up to 19 dpa in the Swiss spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Shigeru, E-mail: saito.shigeru@jaea.go.jp [JAEA, J-PARC Center, Tokai-mura, Ibaraki-ken 319-1195 (Japan); Kikuchi, Kenji [Ibaraki Univ., iFRC, Tokai-mura, Ibaraki-ken 319-1106 (Japan); Hamaguchi, Dai [JAEA, J-PARC Center, Tokai-mura, Ibaraki-ken 319-1195 (Japan); Usami, Kouji; Endo, Shinya; Ono, Katsuto; Matsui, Hiroki [JAEA, Dept. of Hot Laboratories, Tokai-mura, Ibaraki-ken 319-1195 (Japan); Kawai, Masayoshi [KEK, Tsukuba-shi, Ibaraki-ken 305-0801 (Japan); Dai, Yong [PSI, Spallation Source Division, Villigen PSI (Switzerland)

    2012-12-15

    To evaluate the lifetime of the beam window of an accelerator-driven transmutation system (ADS), post irradiation examination (PIE) of the STIP (SINQ target irradiation program, SINQ; Swiss spallation neutron source) specimens was carried out. The specimens tested in this study were made from the austenitic steel Japan primary candidate alloy (JPCA). The specimens were irradiated at SINQ Target 4 (STIP-II) with high-energy protons and spallation neutrons. The irradiation conditions were as follows: the proton energy was 580 MeV, irradiation temperatures ranged from 100 to 430 Degree-Sign C, and displacement damage levels ranged from 7.1 to 19.5 dpa. Tensile tests were performed in air at room temperature (RT), 250 Degree-Sign C and 350 Degree-Sign C. Fracture surface observation after the tests was done by Scanning electron microscope (SEM). Results of the tensile tests performed at R.T. showed the extra hardening of JPCA at higher dose compared to the fission neutron irradiated data. At the higher temperatures, 250 Degree-Sign C and 350 Degree-Sign C, the extra hardening was not observed. Degradation of ductility bottomed around 10 dpa, and specimens kept their ductility until 19.5 dpa. All specimens fractured in ductile manner.

  13. Sweden to host a new neutron source

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    The first European neutron source, currently under development, should commence operations by the end of this decade. Its aim: to produce beams of neutrons that can penetrate into the heart of matter without damaging it and reveal its secrets.   An artist's impression of what the ESS should look like in 2019. At the southern end of Sweden, a town called Lund is preparing for the arrival of the world's most powerful neutron source: the European Spallation Source (ESS). Construction is scheduled to start at the beginning of next year, and the facility is expected to become operational by 2019, when it will produce its first neutron beams. “The ESS is the result of an idea that began 20 years ago!” underlines Mats Lindroos, in charge of the ESS Accelerator Division. “Today, 17 European countries support the project, including Sweden, Denmark and Norway, who together account for 50% of the construction funding.” The ESS, whose design is al...

  14. Safety concept for spallation target system. JAERI/KEK joint project

    International Nuclear Information System (INIS)

    Kobayashi, K.; Kaminaga, M.; Haga, K.; Kinoshita, H.; Hino, R.

    2001-01-01

    A MW-class mercury target of the spallation target generates much larger amounts of radioactive nuclides than existing spallation neutron sources. To estimate the maximum level of public exposure under the guillotine break of mercury pipelines that is one of the major accidents of the target system, the hazard analyses were carried out by using a transportation model which considers heat transmission of mercury decay heat, diffusion of evaporated radioactive nuclides, etc. In the analyses, mercury, iodine, bromine and noble gas were selected as the effective source term because of their high vapor pressures and activation levels. From the preliminary analytical results obtained under the conservative conditions of 2 m/s of the air velocity around the mercury leakage area, the maximum level of the public exposure was approximately 5.8 x 10 -3 mSv. This level is negligible in comparison with 1 mSV one-year natural radiation exposure. (author)

  15. Results from the IAEA benchmark of spallation models

    International Nuclear Information System (INIS)

    Leray, S.; David, J.C.; Khandaker, M.; Mank, G.; Mengoni, A.; Otsuka, N.; Filges, D.; Gallmeier, F.; Konobeyev, A.; Michel, R.

    2011-01-01

    Spallation reactions play an important role in a wide domain of applications. In the simulation codes used in this field, the nuclear interaction cross-sections and characteristics are computed by spallation models. The International Atomic Energy Agency (IAEA) has recently organised a benchmark of the spallation models used or that could be used in the future into high-energy transport codes. The objectives were, first, to assess the prediction capabilities of the different spallation models for the different mass and energy regions and the different exit channels and, second, to understand the reason for the success or deficiency of the models. Results of the benchmark concerning both the analysis of the prediction capabilities of the models and the first conclusions on the physics of spallation models are presented. (authors)

  16. Structural design study of a proton beam window for a 1-MW spallation neutron source

    CERN Document Server

    Teraoku, T; Ishikura, S; Kaminaga, M; Maekawa, F; Meigo, S I; Terada, A

    2003-01-01

    A 1-MW spallation neutron source aiming at materials and life science researches will be constructed under the JAERI-KEK High-intensity Proton Accelerator Project (J-PARC). A proton beam passes through a proton beam window, and be injected into a target of the neutron source. The proton beam window functions as a boundary wall between a high vacuum area in the proton beam line and a helium atmosphere at about atmospheric pressure in a helium vessel which contains the target and moderators. The proton beam window is cooled by light water because high heat-density is generated in the window material by interactions with the proton beam. Then, uniformity of the water flow is requested at the window to suppress a hot-spot that causes excessive thermal stress and cooling water boiling. Also, the window has to be strong enough in its structure for inner stress due to water pressure and thermal stress due to heat generation. In this report, we propose two types of proton beam windows; one flat-type that is easy to m...

  17. Strong neutron sources - How to cope with weapon material production capabilities of fusion and spallation neutron sources?

    International Nuclear Information System (INIS)

    Englert, M.; Franceschini, G.; Liebert, W.

    2013-01-01

    In this article we investigate the potential and relevance for weapon material production in future fusion power plants and spallation neutron sources (SNS) and sketch what should be done to strengthen these technologies against a non-peaceful use. It is shown that future commercial fusion reactors may have military implications: first, they provide an easy source of tritium for weapons, an element that does not fall under safeguards and for which diversion from a plant could probably not be detected even if some tritium accountancy is implemented. Secondly, large fusion reactors - even if not designed for fissile material breeding - could easily produce several hundred kg Pu per year with high weapon quality and very low source material requirements. If fusion-only reactors will prevail over fission-fusion hybrids in the commercialization phase of fusion technology, the safeguard challenge will be more of a legal than of a technical nature. In pure fusion reactors (and in most SNS) there should be no nuclear material present at any time by design. The presence of undeclared nuclear material would indicate a military use of the plant. This fact offers a clear-cut detection criterion for a covert use of a declared facility. Another important point is that tritium does not fall under the definition of 'nuclear material', so a pure fusion reactor or a SNS that do not use nuclear materials are not directly falling under any international non-proliferation treaty requirements. Non-proliferation treaties have to be amended to take into account that fact. (A.C.)

  18. Design progress of cryogenic hydrogen system for China Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G. P.; Zhang, Y.; Xiao, J.; He, C. C.; Ding, M. Y.; Wang, Y. Q.; Li, N.; He, K. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. (China)

    2014-01-29

    China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat load from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.

  19. Synthesis of neutron-rich transuranic nuclei in fissile spallation targets

    Energy Technology Data Exchange (ETDEWEB)

    Mishustin, Igor, E-mail: mishustin@fias.uni-frankfurt.de [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); “Kurchatov Institute”, National Research Center, 123182 Moscow (Russian Federation); Malyshkin, Yury, E-mail: malyshkin@fias.uni-frankfurt.de [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow (Russian Federation); Pshenichnov, Igor, E-mail: pshenich@fias.uni-frankfurt.de [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow (Russian Federation); Greiner, Walter [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany)

    2015-04-15

    A possibility of synthesizing neutron-rich superheavy elements in spallation targets of Accelerator Driven Systems (ADS) is considered. A dedicated software called Nuclide Composition Dynamics (NuCoD) was developed to model the evolution of isotope composition in the targets during a long-time irradiation by intense proton and deuteron beams. Simulation results show that transuranic elements up to {sup 249}Bk can be produced in multiple neutron capture reactions in macroscopic quantities. However, the neutron flux achievable in a spallation target is still insufficient to overcome the so-called fermium gap. Further optimization of the target design, in particular, by including moderating material and covering it by a reflector could turn ADS into an alternative source of transuranic elements in addition to nuclear fission reactors.

  20. Analysis and simulation of a small-angle neutron scattering instrument on a 1 MW long pulse spallation source

    International Nuclear Information System (INIS)

    Olah, G.A.; Hjelm, R.P.; Lujan, M. Jr.

    1996-01-01

    We studied the design and performance of a small-angle neutron scattering (SANS) instrument for a proposed 1 MW, 60 Hz long pulsed spallation source at the Los Alamos Neutron Science Center (LANSCE). An analysis of the effects of source characteristics and chopper performance combined with instrument simulations using the LANSCE Monte Carlo instrument simulations package shows that the T 0 chopper should be no more than 5 m from the source with the frame overlap and frame definition choppers at 5.6 and greater than 7 m, respectively. The study showed that an optimal pulse structure has an exponential decaying tail with τ ∼ 750 μs. The Monte Carlo simulations were used to optimize the LPSS SANS, showing that an optimal length is 18 m. The simulations show that an instrument with variable length is best to match the needs of a given measurement. The performance of the optimized LPSS instrument was found to be comparable with present world standard instruments

  1. Dynamically polarized samples for neutron protein crystallography at the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Zhao, Jinkui; Pierce, Josh; Robertson, J. L.; Herwig, Kenneth W.; Myles, Dean; Cuneo, Matt; Li, Le; Meilleur, Flora; Standaert, Bob

    2016-01-01

    To prepare for the next generation neutron scattering instruments for the planned second target station at the Spallation Neutron Source (SNS) and to broaden the scientific impact of neutron protein crystallography at the Oak Ridge National Laboratory, we have recently ramped up our efforts to develop a dynamically polarized target for neutron protein crystallography at the SNS. Proteins contain a large amount of hydrogen which contributes to incoherent diffraction background and limits the sensitivity of neutron protein crystallography. This incoherent background can be suppressed by using polarized neutron diffraction, which in the same time also improves the coherent diffraction signal. Our plan is to develop a custom Dynamic Nuclear Polarization (DNP) setup tailored to neutron protein diffraction instruments. Protein crystals will be polarized at a magnetic field of 5 T and temperatures of below 1 K. After the dynamic polarization process, the sample will be brought to a frozen-spin mode in a 0.5 T holding field and at temperatures below 100 mK. In a parallel effort, we are also investigating various ways of incorporating polarization agents needed for DNP, such as site specific spin labels, into protein crystals. (paper)

  2. Dead beat filling and feedforward rf control for the spallation neutron source SNQ

    International Nuclear Information System (INIS)

    Schulze, D.

    1982-01-01

    For the 1.1 GeV-100 mA Spallation Neutron Source SNQ operation costs and beam losses ask for the possible potential of rf control improvements. Two novel methods are investigated. First, in order to increase the overall rf efficiency, the cavity field is built up as fast as possible in the open loop state of feedback control and in detuned position of the cavity in such a manner that the cavity with beam is matched to the generator. It is shown that this requires the simulataneous application of a generator amplitude and a generator phase step. Secondly, a feedforward control system is proposed, which reduces the amplitude and phase control error caused by an arbitrary beam transient into the limits of +-0.1% and +-0.1 0 and maintains these error limits also in the presence of parameter drift. This is done by an adaptive parameter adjustment procedure using a digital model of the control system. The system structure and a promising digital simulation are discussed

  3. Stripper foil failure modes and cures at the Oak Ridge Spallation Neutron Source

    Directory of Open Access Journals (Sweden)

    M. A. Plum

    2011-03-01

    Full Text Available The Oak Ridge Spallation Neutron Source comprises a 1 GeV, 1.5 MW linear accelerator followed by an accumulator ring and a liquid mercury target. To manage the beam loss caused by the H^{0} excited states created during the H^{-} charge-exchange injection into the accumulator ring, the stripper foil is located inside one of the chicane dipoles. This has some interesting consequences that were not fully appreciated until the beam power reached about 840 kW. One consequence was sudden failure of the stripper foil system due to convoy electrons stripped from the incoming H^{-} beam, which circled around to strike the foil bracket and cause bracket failure. Another consequence is that convoy electrons can reflect back up from the electron catcher and strike the foil and bracket. An additional contributor to foil system failure is vacuum breakdown due to the charge developed on the foil by secondary electron emission. In this paper we detail these and other interesting failure mechanisms and describe the improvements we have made to mitigate them.

  4. Study of the spallation residues in the reaction Au (800 MeV/nucleon) + p; Etude des residus de spallation dans la reaction Au (800 MeV par nucleon) + p

    Energy Technology Data Exchange (ETDEWEB)

    Mustapha, Brahim [Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)

    1999-09-09

    As a neutron source, the spallation reaction is of importance for different fields of research and for a possible hybrid reactor. The study of spallation residues, their cross sections and their energetic properties, is necessary for such applications and for a better understanding of this process. Several studies of spallation products were done using spectroscopic methods. Only radioactive nuclides were detected. Aiming at a more precise measurement, covering the whole range of spallation residues, this study was done using the reverse kinematics method. A liquid hydrogen target was irradiated by an 800 MeV/nucleon gold beam. The produced nuclei were detected in flight before any radioactive decay with about 10% precision. Independent cross section were then obtained. Velocity distributions were completely reconstructed. In their present forms, the theoretical calculations based upon the two-step model, 'intra-nuclear cascade' + 'evaporation', are unable to reproduce the whole set of experimental aspects. An inter-comparison using different INC/EVA combinations permitted to identify the more significant points in these calculations. The important behaviour of this codes were examined. Due to compensation effects between both steps, cascade and evaporation, this study did not lead to a definite conclusion. (author)

  5. Spallation-mechanism and characteristics

    International Nuclear Information System (INIS)

    Strugalski, Z.; Strugalska-Gola, E.; Wojciechowski, A.

    1996-01-01

    Mechanism of spallation is revealed experimentally. Spallation is a complicated nuclear reaction initiated by fast hadron in which three stages may be distinguished: a) the first stage in which the target nucleus is locally damaged, it lasts ∼10 -24 +10 -22 s; b) the slow stage which lasts ∼10 -22 +10 -17 s after the collision started, the damaged and excited nucleus uses to emit the black track leaving particles; c) the final stage in which residual target nucleus uses to split into two or more fragments. Quantitative characteristics of each of the stages are presented. 35 refs

  6. AGS Spallation Target Experiment (ASTE) Collaboration

    International Nuclear Information System (INIS)

    Oyama, Yukio

    1999-01-01

    An experiment on mercury spallation target with high energy proton beam, called as the AGS Spallation Target Experiment (ASTE) Collaboration, has been performed at Alternating Gradient Synchrotron (AGS) of Brookhaven National Laboratory (BNL) in USA, in cooperation among the laboratories in Japan, Europe and USA. The experimental setup, scope and preliminary results are presented in the paper. (author)

  7. Behavior of structural and target materials irradiated in spallation neutron environments

    Energy Technology Data Exchange (ETDEWEB)

    Stubbins, J.F. [Univ. of Illinois, Urbana, IL (United States); Wechsler, M. [North Carolina State Univ., Raleigh, NC (United States); Borden, M. [Los Alamos National Laboratory, NM (United States)] [and others

    1995-10-01

    This paper describes considerations for selection of structural and target materials for accelerator-driven neutron sources. Due to the operating constraints of proposed accelerator-driven neutron sources, the criteria for selection are different than those commonly applied to fission and fusion systems. Established irradiation performance of various alloy systems is taken into account in the selection criteria. Nevertheless, only limited materials performance data are available which specifically related to neutron energy spectra anticipated for spallation sources.

  8. Behavior of structural and target materials irradiated in spallation neutron environments

    International Nuclear Information System (INIS)

    Stubbins, J.F.; Wechsler, M.; Borden, M.

    1995-01-01

    This paper describes considerations for selection of structural and target materials for accelerator-driven neutron sources. Due to the operating constraints of proposed accelerator-driven neutron sources, the criteria for selection are different than those commonly applied to fission and fusion systems. Established irradiation performance of various alloy systems is taken into account in the selection criteria. Nevertheless, only limited materials performance data are available which specifically related to neutron energy spectra anticipated for spallation sources

  9. Basic design of shield blocks for a spallation neutron source under the high-intensity proton accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Katsuhiko; Maekawa, Fujio; Takada, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Under the JAERI-KEK High-Intensity Proton Accelerator Project (J-PARC), a spallation neutron source driven by a 3 GeV-1 MW proton beam is planed to be constructed as a main part of the Materials and Life Science Facility. Overall dimensions of a biological shield of the neutron source had been determined by evaluation of shielding performance by Monte Carlo calculations. This report describes results of design studies on an optimum dividing scheme in terms of cost and treatment and mechanical strength of shield blocks for the biological shield. As for mechanical strength, it was studied whether the shield blocks would be stable, fall down or move to a horizontal direction in case of an earthquake of seismic intensity of 5.5 (250 Gal) as an abnormal load. For ceiling shielding blocks being supported by both ends of the long blocks, maximum bending moment and an amount of maximum deflection of their center were evaluated. (author)

  10. Basic design of shield blocks for a spallation neutron source under the high-intensity proton accelerator project

    CERN Document Server

    Yoshida, K; Takada, H

    2003-01-01

    Under the JAERI-KEK High-Intensity Proton Accelerator Project (J-PARC), a spallation neutron source driven by a 3 GeV-1 MW proton beam is planed to be constructed as a main part of the Materials and Life Science Facility. Overall dimensions of a biological shield of the neutron source had been determined by evaluation of shielding performance by Monte Carlo calculations. This report describes results of design studies on an optimum dividing scheme in terms of cost and treatment and mechanical strength of shield blocks for the biological shield. As for mechanical strength, it was studied whether the shield blocks would be stable, fall down or move to a horizontal direction in case of an earthquake of seismic intensity of 5.5 (250 Gal) as an abnormal load. For ceiling shielding blocks being supported by both ends of the long blocks, maximum bending moment and an amount of maximum deflection of their center were evaluated.

  11. Spallation reactions; Reactions de spallation

    Energy Technology Data Exchange (ETDEWEB)

    Cugon, J.

    1996-12-31

    Spallation reactions dominate the interactions of hadrons with nuclei in the GeV range (from {approx} 0.1 to {approx} 10 GeV). They correspond to a sometimes important ejection of light particles leaving most of the time a residue of mass commensurate with the target mass. The main features of the experimental data are briefly reviewed. The most successful theoretical model, namely the intranuclear cascade + evaporation model, is presented. Its physical content, results and possible improvements are critically discussed. Alternative approaches are shortly reviewed. (author). 84 refs.

  12. HYSPEC: A crystal time-of-flight hybrid spectrometer for the spallation neutron source with polarization capabilities

    International Nuclear Information System (INIS)

    Shapiro, S.M.; Zaliznyak, I.A.; Passell, L.; Ghosh, V.J.; Leonhardt, W.J.; Hagen, M.E.

    2006-01-01

    The hybrid spectrometer (HYSPEC) is a unique direct geometry inelastic scattering instrument under construction at the spallation neutron source (SNS). It combines the intensity enhancement features of focusing Bragg crystals with time-of-flight energy analysis. It will be located at beam-line 14B, which views a coupled liquid hydrogen moderator. A neutron beam from the moderator will travel along a curved guide, through a Fermi chopper and will then be focused onto a sample in an external building, 39 m from the source. In this configuration the intensity at the sample position is more than an order of magnitude larger than for other planned inelastic instrument. A movable detector bank 4.5 m from the sample will cover an angular range of 60 deg. in the horizontal plane and 15 deg. in the vertical direction. An important feature of HYSPEC is the ability to do neutron polarization analysis experiments. A Heusler crystal, which polarizes the neutron beam, can be used as the focusing crystal and a series of bender analyzers will analyze the polarization of the scattered beam

  13. Study of the spallation residues in the reaction Au (800 MeV/nucleon) + p

    International Nuclear Information System (INIS)

    Mustapha, Brahim

    1999-01-01

    As a neutron source, the spallation reaction is of importance for different fields of research and for a possible hybrid reactor. The study of spallation residues, their cross sections and their energetic properties, is necessary for such applications and for a better understanding of this process. Several studies of spallation products were done using spectroscopic methods. Only radioactive nuclides were detected. Aiming at a more precise measurement, covering the whole range of spallation residues, this study was done using the reverse kinematics method. A liquid hydrogen target was irradiated by an 800 MeV/nucleon gold beam. The produced nuclei were detected in flight before any radioactive decay with about 10% precision. Independent cross section were then obtained. Velocity distributions were completely reconstructed. In their present forms, the theoretical calculations based upon the two-step model, 'intra-nuclear cascade' + 'evaporation', are unable to reproduce the whole set of experimental aspects. An inter-comparison using different INC/EVA combinations permitted to identify the more significant points in these calculations. The important behaviour of this codes were examined. Due to compensation effects between both steps, cascade and evaporation, this study did not lead to a definite conclusion. (author)

  14. Experimental and Theoretical Investigations to Improve the Predictive Power of Nuclear Reaction Models in Spallation Neutron Production

    International Nuclear Information System (INIS)

    Nuenighoff, K.; Filges, D.; Goldenbaum, F.; Neef, R.D.; Nuenighoff, K.; Paul, N.; Schaal, H.; Sterzenbach, G.; Wohlmuther, M.; Enke, M.; Herbach, C.M.; Hilscher, D.; Jahnke, U.; Tishchenko, V.; Galin, J.; Letourneau, A.; Lott, B.; Peghaire, A.; Pienkowski, L.; Schroeder, U.; Toke, J.; Tietze, A.

    2002-01-01

    In order to design the target station of the European Spallation Source ESS measurements of the neutron production in possible target materials like Pb, Hg and W were performed. The aim of these measurements was to validate the simulation codes and to proof their predictive power. The NESSI experiment allows for the comparison of neutron multiplicity distributions between experiment and simulation, which is a much more sensitive method than only comparing the mean neutron multiplicities. An agreement of better than 10 % was achieved. Various target geometries with diameters up to 15 cm and lengths up to 35 cm over a range from 0.4 till 2.5 GeV incident proton energy were studied. The Monte-Carlo Simulations were performed with the HERMES, LCS, and MCNPX code system. (authors)

  15. Deep spallation of medium mass isotopes by protons

    International Nuclear Information System (INIS)

    Kolsky, K.L.; Karol, P.J.

    1993-01-01

    Spallation systematics have been extended into the deep spallation mass region. Production cross sections of scandium radioisotopes from 0.8 GeV protons on 89 Y, 92,96,100 Mo, and 130 Te targets were measured and the cross sections were used to generate isobaric yield curves at A p =47. In the latter target, this corresponds to a mass loss of >80 nucleons. At ∼10 MeV/nucleon and for products outside the multifragmentation region, this is an extreme manifestation of the spallation process. The results prove to fit smooth extrapolations from trends developed in earlier work on less deep spallation. The influence of target composition is still evident even from 130 Te, in contrast to expectations, based on evaporation considerations, that this so-called memory effect would wash out

  16. Initial testing of a Compact Crystal Positioning System for the TOPAZ Single-Crystal Diffractometer at the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Frost, Matthew J.; Austin, Michael D.; Viola, Robert; Thomison, Jack; Carmen, Peter; Hoffmann, Christina; Miller, Echo M.; Mosier, Lisa B.; Overbay, Mark A.

    2009-01-01

    A precise, versatile, and automated method of orienting a sub-millimeter crystal in a focused neutron beam is required for e cient operation of the TOPAZ Single Crystal Di ractometer at the Spallation Neutron Source at Oak Ridge National Laboratory. To ful ll this need, a Compact Crystal Positioning System (CCPS) has been developed in collaboration with Square One Systems Design in Jackson, Wyoming. The system incorporates a tripod design with six vacuum-compatible piezoelectric linear motors capable of < 1 m resolution. National Instruments LabVIEW provides a means of system automation while at the same time accommodating the modular nature of the SNS sample environment control software for straightforward system integration. Initial results in a cryogenic test environment will be presented, as well as results from ambient tests performed at the Advanced Photon Source at Argonne National Laboratory.

  17. Fault-tolerant superconducting linac design for a 5-MW neutron spallation source

    International Nuclear Information System (INIS)

    Swain, G.R.

    1993-01-01

    An 805-MHz superconducting linac is proposed which could accelerate protons from 0.1 to 2.0 GeV in less than 730 m for a peak surface field in the cavities of 17 MV/m. The linac would furnish 5 MW of beam for a neutron spallation source, plus up to 10 additional MW of beam for other purposes. The design uses 454 elliptical cavities arranged in twelve groups, identical cavities being used within each group. Characterization of elliptical cavities for betas from 0.44 to 0.94 and the steps of the design procedure are presented. The effective peak power fed by each rf coupler would be less than 100 kW for all of the cavities. 6.5 kW of power at 2 deg K would need to be extracted by the cryogenic system. Space charge was found to have a negligible effect on emittance growth. The design is such that one cavity per group could be inoperable, and the gradient in the remaining cavities could be increased to compensate. The longitudinal and transverse acceptances of the linac would not be significantly degraded under such fault conditions. A corresponding 402.5 MHz linac design is being developed

  18. Spallation reactions studied with 4-detector arrays

    Indian Academy of Sciences (India)

    Recently there has been a renewed interest in the study of spallation reactions in basic nuclear physics as well as in potential applications. Spallation reactions induced by light projectiles (protons, antiprotons, pions, etc.) in the GeV range allow the formation of hot nuclei which do not suffer the collective excitations ...

  19. The CENNS-10 liquid argon detector to measure CEvNS at the Spallation Neutron Source

    Science.gov (United States)

    Tayloe, R.

    2018-04-01

    The COHERENT collaboration is deploying a suite of low-energy detectors in a low-background corridor of the ORNL Spallation Neutron Source (SNS) to measure coherent elastic neutrino-nucleus scattering (CEvNS) on an array of nuclear targets employing different detector technologies. A measurement of CEvNS on different nuclei will test the N2-dependence of the CEvNS cross section and further the physics reach of the COHERENT effort. The first step of this program has been realized recently with the observation of CEvNS in a 14.6 kg CsI detector. Operation and deployment of Ge and NaI detectors are also underway. A 22 kg, single-phase, liquid argon detector (CENNS-10) started data-taking in Dec. 2016 and will provide results on CEvNS from a lighter nucleus. Initial results indicate that light output, pulse-shape discrimination, and background suppression are sufficient for a measurement of CEvNS on argon.

  20. A Large Neutrino Detector Facility at the Spallation Neutron Source at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Efremenko, Y.V.

    1999-01-01

    The ORLaND (Oak Ridge Large Neutrino Detector) collaboration proposes to construct a large neutrino detector in an underground experimental hall adjacent to the first target station of the Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory. The main mission of a large (2000 ton) Scintillation-Cherenkov detector is to measure bar ν μ -> bar ν e neutrino oscillation parameters more accurately than they can be determined in other experiments, or significantly extending the covered parameter space below (sin'20 le 10 -4 ). In addition to the neutrino oscillation measurements, ORLaND would be capable of making precise measurements of sin 2 θ W , search for the magnetic moment of the muon neutrino, and investigate the anomaly in the KARMEN time spectrum, which has been attributed to a new neutral particle. With the same facility an extensive program of measurements of neutrino nucleus cross sections is also planned to support nuclear astrophysics

  1. CFD analysis of a liquid mercury target for the National Spallation Neutron Source

    International Nuclear Information System (INIS)

    Wendel, M.W.; Tov, M.S.

    1997-01-01

    Computational fluid dynamics (CFD) is being used to analyze the design of the National Spallation Neutron Source (NSNS) target. The target is subjected to the neutronic (internal) heat generation that results from the proton collisions with the mercury nuclei. The liquid mercury simultaneously serves as the neutronic target medium, transports away the heat generated within itself, and cools the metallic target structure. Recirculation and stagnation zones within the target are of particular concern because of the likelihood that they will result in local hot spots. These zones exist because the most feasible target designs include a complete U-turn flow redirection. Although the primary concern is that the target is adequately cooled, the pressure drop from inlet to outlet must also be considered because pressure drop directly affects structural loading and required pumping power. Various design options have been considered in an effort to satisfy these design criteria. Significant improvements to the design have been recommended based on the results. Detailed results are presented for the current target design including a comparison with published pressure-drop data. Comparisons are also made with forced convection heat transfer data for liquid mercury flow in circular tubes

  2. Development of a nuclear spallation simulation code and calculations of primary spallation products

    International Nuclear Information System (INIS)

    Nishida, Takahiko; Nakahara, Yasuaki; Tsutsui, Tsuneo

    1986-08-01

    In order to make evaluations of computational models for the nuclear spallation reaction from a nuclear physics point of view, a simulation code NUCLEUS has been developed by modifying and combining the Monte Carlo codes NMTC/JAERI and NMTA/JAERI for calculating only the nuclear spallation reaction (intranuclear cascade + evaporation and/or fast fission) between a nucleus and a projectile without taking into consideration of internuclear transport. New several plotting routines have been provided for the rapid process of much more event data, obtained by using the ARGUS plotting system. The results obtained by our code can be directly compared with the experimental results using by thin foil experiments in which internuclear multiple collisions have little effects, and will serve to upgrade the calculational methods and the values of nuclear parameters currently used in the calculations. Some discussions are done about the preliminary computational results obtained by using NUCLEUS. The mass distribution and charge dispersion of reaction products are examined in some detail for the nuclear spallation reaction between incident protons and target nuclei, such as U, Pb and Ag, in the energy range from 0.5 GeV to 3.0 GeV. These results show that the distribution of reaction products ceases to change its form as the proton energy increases over about 2 GeV. The same tendency is seen in the energy dependence of the number of primary particles emitted from a nucleus. After spallation reactions, a variety of nuclei, especially many neutron deficient nuclides with nuclear charges nearly equal to ones of a target nucleus, are produced. Due to their short lifetime most of them will change to stable nuclides in due time. Finally, some important issues are discussed to improve the present simulation method. (author)

  3. The WNR facility - a pulsed spallation neutron source at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Russell, G.J.; Lisowski, P.W.; King, N.S.P.

    1978-01-01

    The Weapons Neutron Research facility (WNR) at the Los Alamos Scientific Laboratory is the first operating example of a new class of pulsed neutron sources using the X(p,n)Y spallation reaction. At present, up to 10 microamperes of 800-MeV protons from the Clinton P. Anderson Meson Physics Facility (LAMPF) linear accelerator bombard a Ta target to produce an intense white-neutron spectrum from about 800 MeV to 100 keV. The Ta target can be coupled with CH 2 and H 2 O moderators to produce neutrons of lower energy. The time structure of the WNR proton beam may be varied to optimize neutron time-of-flight (TOF) measurements covering the energy range from several hundred MeV to a few meV. The neutronics of the WNR target and target/moderator configurations have been calculated from 800 MeV to 0.5 eV. About 11 neutrons per proton are predicted for the existing Ta target. Some initial neutron TOF data are presented and compared with calculations

  4. How should the JAERI neutron source be designed?

    International Nuclear Information System (INIS)

    Watanabe, Noboru

    1996-01-01

    The importance of a next-generation neutron source in JAERI is discussed. The feasibility and the performances of three types of neutron sources, namely continuous wave spallation source (CWSS), long-pulse spallation source (LPSS) and short-pulse spallation source (SPSS), are compared based on a proposed JAERI accelerator, a superconducting (SC) proton linac (1-1.5 GeV, 25-16 mA in peak current, finally CW). How to realize one of the world's best neutron source using such a linac with a modest beam-current and what type of neutron source is the best for such a linac are the most important current problems. Since the accelerator is not favorable for LPSS due to a lower peak current and there exist serious technical problems for a CWSS target, a short-pulse spallation source would be the best candidate to realize a 5 MW-class SPSS like ESS, provided that the H - -injection to a compressor ring over a long pulse duration (>2 ms) is feasible. (author)

  5. Management of Tritium in European Spallation Source

    DEFF Research Database (Denmark)

    Ene, Daniela; Andersson, Kasper Grann; Jensen, Mikael

    2015-01-01

    with the country regulation criteria. The aim of this paper is to give an overview of the different aspects of the tritium management in ESS facility. Besides the design parameter study of the helium coolant purification system of the target the consequences of the tritium releasing into the environment were also...... of the results on soil examinations. With the assumption of 100% release of tritium to the atmosphere during the occurring of the extreme accidents, it was found as well that the total dose complies with the constraint....

  6. Active beam position stabilization of pulsed lasers for long-distance ion profile diagnostics at the Spallation Neutron Source (SNS).

    Science.gov (United States)

    Hardin, Robert A; Liu, Yun; Long, Cary; Aleksandrov, Alexander; Blokland, Willem

    2011-02-14

    A high peak-power Q-switched laser has been used to monitor the ion beam profiles in the superconducting linac at the Spallation Neutron Source (SNS). The laser beam suffers from position drift due to movement, vibration, or thermal effects on the optical components in the 250-meter long laser beam transport line. We have designed, bench-tested, and implemented a beam position stabilization system by using an Ethernet CMOS camera, computer image processing and analysis, and a piezo-driven mirror platform. The system can respond at frequencies up to 30 Hz with a high position detection accuracy. With the beam stabilization system, we have achieved a laser beam pointing stability within a range of 2 μrad (horizontal) to 4 μrad (vertical), corresponding to beam drifts of only 0.5 mm × 1 mm at the furthest measurement station located 250 meters away from the light source.

  7. The Development of Automatic Sequences for the RF and Cryogenic Systems at the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Gurd, Pamela; Casagrande, Fabio; Mccarthy, Michael; Strong, William; Ganni, Venkatarao

    2005-01-01

    Automatic sequences both ease the task of operating a complex machine and ensure procedural consistency. At the Spallation Neutron Source project (SNS), a set of automatic sequences have been developed to perform the start up and shut down of the high power RF systems. Similarly, sequences have been developed to perform backfill, pump down, automatic valve control and energy management in the cryogenic system. The sequences run on Linux soft input-output controllers (IOCs), which are similar to ordinary EPICS (Experimental Physics and Industrial Control System) IOCs in terms of data sharing with other EPICS processes, but which share a Linux processor with other such processors. Each sequence waits for a command from an operator console and starts the corresponding set of instructions, allowing operators to follow the sequences either from an overview screen or from detail screens. We describe each system and our operational experience with it.

  8. Status of Cryogenic System for Spallation Neutron Source's Superconducting Radiofrequency Test Facility at Oak Ridge National Lab

    International Nuclear Information System (INIS)

    Xu, Ting; Casagrande, Fabio; Ganni, Venkatarao; Knudsen, Peter N.; Strong, William Herb

    2011-01-01

    Spallation Neutron Source (SNS) at Oak Ridge National Lab (ORNL) is building an independent cryogenic system for its Superconducting Radiofrequency Test Facility (SRFTF). The scope of the system is to support the SNS cryomodule test and cavity test at 2-K (using vacuum pump) and 4.5K for the maintenance purpose and Power Upgrade Project of SNS, and to provide the part of the cooling power needed to backup the current CHL to keep Linac at 4.5-K during CHL maintenance period in the future. The system is constructed in multiple phases. The first phase is to construct an independent 4K helium refrigeration system with helium Dewar and distribution box as load interface. It is schedule to be commissioned in 2013. Here we report the concept design of the system and the status of the first phase of this project.

  9. Accelerator based continuous neutron source.

    CERN Document Server

    Shapiro, S M; Ruggiero, A G

    2003-01-01

    Until the last decade, most neutron experiments have been performed at steady-state, reactor-based sources. Recently, however, pulsed spallation sources have been shown to be very useful in a wide range of neutron studies. A major review of neutron sources in the US was conducted by a committee chaired by Nobel laureate Prof. W. Kohn: ''Neutron Sources for America's Future-BESAC Panel on Neutron Sources 1/93''. This distinguished panel concluded that steady state and pulsed sources are complementary and that the nation has need for both to maintain a balanced neutron research program. The report recommended that both a new reactor and a spallation source be built. This complementarity is recognized worldwide. The conclusion of this report is that a new continuous neutron source is needed for the second decade of the 20 year plan to replace aging US research reactors and close the US neutron gap. it is based on spallation production of neutrons using a high power continuous superconducting linac to generate pr...

  10. Design of the MYRRHA Spallation Target Assembly

    International Nuclear Information System (INIS)

    Keijers, S.; Fernandez, R.; Stankovskiy, A.; Kennedy, G.; Van Tichelen, K.

    2015-01-01

    MYRRHA (Multi-purpose hybrid Research Reactor for High-tech Applications) is a multi-purpose research facility currently being developed at SCK.CEN. MYRRHA is based on the ADS (Accelerator Driven System) concept where a proton accelerator, a spallation target and a subcritical reactor are coupled. MYRRHA will demonstrate the ADS full concept by coupling these three components at a reasonable power level. As a flexible irradiation facility, the MYRRHA research reactor will be able to work in both critical and subcritical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material research for GEN IV and fusion reactors, and radioisotope production for medical and industrial applications. MYRRHA will be cooled by Lead Bismuth Eutectic (LBE) and will play an important role in the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor) GEN IV concept. This paper describes the evolution of the MYRRHA spallation target design. In the early phase of the MYRRHA project (XT-ADS), the target design was based on a dedicated spallation loop inside the primary reactor vessel. Within the core, the 3 central fuel assembly positions were occupied by the spallation target, which enabled a windowless design created by a free surface of LBE facing the proton beam. The windowless option was preferred because of high heat loads in combination with severe irradiation damage in the target region would result in unacceptably short lifetimes of a target window. The LBE in the loop served as spallation target and as target coolant, but was separated from the LBE cooling the reactor core. The loop was equipped with its own pump, heat exchanger and conditioning system. The change from cyclotron to linear accelerator allowed the increase in proton energy from 350 MeV to 600 MeV. This modification led to an important reduction of the specific heat load at the target level and an improvement of the neutronic performance. In addition to

  11. COSMIC-RAY SPALLATION IN RADIO-QUIET ACTIVE GALACTIC NUCLEI: A CASE STUDY OF NGC 4051

    International Nuclear Information System (INIS)

    Turner, T. J.; Miller, L.

    2010-01-01

    We investigate conditions for and consequences of spallation in radio-quiet Seyfert galaxies. The work is motivated by the recent discovery of significant line emission at 5.44 keV in Suzaku data from NGC 4051. The energy of the new line suggests an identification as Cr I Kα emission; however, the line is much stronger than would be expected from material with cosmic abundances, leading to a suggestion of enhancement owing to nuclear spallation of Fe by low-energy cosmic rays from the active nucleus. We find that the highest abundance enhancements are likely to take place in gas out of the plane of the accretion disk and that timescales for spallation could be as short as a few years. The suggestion of a strong nuclear flux of cosmic rays in a radio-quiet active Seyfert galaxy is of particular interest in light of the recent suggestion from Pierre Auger Observatory data that ultra-high-energy cosmic rays may originate in such sources.

  12. High current ion source development at Frankfurt

    Energy Technology Data Exchange (ETDEWEB)

    Volk, K.; Klein, H.; Lakatos, A.; Maaser, A.; Weber, M. [Frankfurt Univ. (Germany). Inst. fuer Angewandte Physik

    1995-11-01

    The development of high current positive and negative ion sources is an essential issue for the next generation of high current linear accelerators. Especially, the design of the European Spallation Source facility (ESS) and the International Fusion Material Irradiation Test Facility (IFMIF) have increased the significance of high brightness hydrogen and deuterium sources. As an example, for the ESS facility, two H{sup -}-sources each delivering a 70 mA H{sup -}-beam in 1.45 ms pulses at a repetition rate of 50 Hz are necessary. A low emittance is another important prerequisite. The source must operate, while meeting the performance requirements, with a constancy and reliability over an acceptable period of time. The present paper summarizes the progress achieved in ion sources development of intense, single charge, positive and negative ion beams. (author) 16 figs., 7 refs.

  13. High current ion source development at Frankfurt

    International Nuclear Information System (INIS)

    Volk, K.; Klein, H.; Lakatos, A.; Maaser, A.; Weber, M.

    1995-01-01

    The development of high current positive and negative ion sources is an essential issue for the next generation of high current linear accelerators. Especially, the design of the European Spallation Source facility (ESS) and the International Fusion Material Irradiation Test Facility (IFMIF) have increased the significance of high brightness hydrogen and deuterium sources. As an example, for the ESS facility, two H - -sources each delivering a 70 mA H - -beam in 1.45 ms pulses at a repetition rate of 50 Hz are necessary. A low emittance is another important prerequisite. The source must operate, while meeting the performance requirements, with a constancy and reliability over an acceptable period of time. The present paper summarizes the progress achieved in ion sources development of intense, single charge, positive and negative ion beams. (author) 16 figs., 7 refs

  14. Thermal stabilities and optimal operating parameters for the Oak Ridge Spallation Neutron Source superconducting linear accelerator

    International Nuclear Information System (INIS)

    Kim, Sang-Ho; Campisi, Isidoro E.

    2007-01-01

    The baseline Spallation Neutron Source (SNS) accelerator will provide a 1 GeV, 1.4 MW proton beam to a mercury target for the production of neutrons. The main acceleration for the H- beam is provided by 81 superconducting cavities installed in 23 cryomodules operating at 805 MHz. The design of the superconducting linac includes a 2.1 K, 2.5 kW cryogenic plant to maintain the cavities below the helium lambda point for efficient operation at high accelerating gradients. In this paper operating conditions are analyzed rather than the design ones, which still guarantees a high gradient operation without any temperature constraint. From the analysis it appears that the SNS superconducting linac can be operated at temperatures higher than 2.1 K, a fact resulting from both the pulsed nature of the superconducting cavities, the specific configuration of the existing cryogenic plant and the operating frequency. General conditions are also given regarding the operation of pulsed superconducting cavities resonating at different frequencies

  15. Accelerator driven reactors, - the significance of the energy distribution of spallation neutrons on the neutron statistics

    Energy Technology Data Exchange (ETDEWEB)

    Fhager, V

    2000-01-01

    In order to make correct predictions of the second moment of statistical nuclear variables, such as the number of fissions and the number of thermalized neutrons, the dependence of the energy distribution of the source particles on their number should be considered. It has been pointed out recently that neglecting this number dependence in accelerator driven systems might result in bad estimates of the second moment, and this paper contains qualitative and quantitative estimates of the size of these efforts. We walk towards the requested results in two steps. First, models of the number dependent energy distributions of the neutrons that are ejected in the spallation reactions are constructed, both by simple assumptions and by extracting energy distributions of spallation neutrons from a high-energy particle transport code. Then, the second moment of nuclear variables in a sub-critical reactor, into which spallation neutrons are injected, is calculated. The results from second moment calculations using number dependent energy distributions for the source neutrons are compared to those where only the average energy distribution is used. Two physical models are employed to simulate the neutron transport in the reactor. One is analytical, treating only slowing down of neutrons by elastic scattering in the core material. For this model, equations are written down and solved for the second moment of thermalized neutrons that include the distribution of energy of the spallation neutrons. The other model utilizes Monte Carlo methods for tracking the source neutrons as they travel inside the reactor material. Fast and thermal fission reactions are considered, as well as neutron capture and elastic scattering, and the second moment of the number of fissions, the number of neutrons that leaked out of the system, etc. are calculated. Both models use a cylindrical core with a homogenous mixture of core material. Our results indicate that the number dependence of the energy

  16. Accelerator driven reactors, - the significance of the energy distribution of spallation neutrons on the neutron statistics

    International Nuclear Information System (INIS)

    Fhager, V.

    2000-01-01

    In order to make correct predictions of the second moment of statistical nuclear variables, such as the number of fissions and the number of thermalized neutrons, the dependence of the energy distribution of the source particles on their number should be considered. It has been pointed out recently that neglecting this number dependence in accelerator driven systems might result in bad estimates of the second moment, and this paper contains qualitative and quantitative estimates of the size of these efforts. We walk towards the requested results in two steps. First, models of the number dependent energy distributions of the neutrons that are ejected in the spallation reactions are constructed, both by simple assumptions and by extracting energy distributions of spallation neutrons from a high-energy particle transport code. Then, the second moment of nuclear variables in a sub-critical reactor, into which spallation neutrons are injected, is calculated. The results from second moment calculations using number dependent energy distributions for the source neutrons are compared to those where only the average energy distribution is used. Two physical models are employed to simulate the neutron transport in the reactor. One is analytical, treating only slowing down of neutrons by elastic scattering in the core material. For this model, equations are written down and solved for the second moment of thermalized neutrons that include the distribution of energy of the spallation neutrons. The other model utilizes Monte Carlo methods for tracking the source neutrons as they travel inside the reactor material. Fast and thermal fission reactions are considered, as well as neutron capture and elastic scattering, and the second moment of the number of fissions, the number of neutrons that leaked out of the system, etc. are calculated. Both models use a cylindrical core with a homogenous mixture of core material. Our results indicate that the number dependence of the energy

  17. Analysis of radiation environmental safety for China's Spallation Neutron Source (CSNS)

    International Nuclear Information System (INIS)

    Wang Qingbin; Wu Qingbiao; Ma Zhongjian; Zhang Qingjiang; Li Nan; Wu Jingmin; Liu Jian; Zhang Gang

    2010-01-01

    The China Spallation Neutron Source (CSNS) is going to be located in Dalang Town, Dongguan City in the Guangdong Province.In this paper we report the results of the parameters related with environment safety based on experiential calculations and Monte Carlo simulations. The main project of the accelerator is an under ground construction.On top there is a 0.5 m concrete and 5.0 m soil covering for shielding,which can reduce the dose out of the tunnel's top down to 0.2 μSv/h. For the residents on the boundary of the CSNS, the dose produced by skyshine, which is caused by the penetrated radiation leaking from the top of the accelerator, is no more than 0.68 μSv/a. When CSNS is operating normally, the maximal annual effective dose due to the emission of gas from the tunnel is 2.40 x 10 -3 mSv/a to the public adult, and 2.29 x 10 -3 mSv/a to a child, both values are two orders of magnitude less than the limiting value for control and management. CSNS may give rise to an activation of the soil and groundwater in the nearest tunnels, where the main productions are 3 H, 7 Be, 22 Na, 54 Mn, etc. But the specific activity is less than the exempt specific activity in the national standard GB13376-92. So it is safe to say that the environmental impact caused by the activation of soil and groundwater is insignificant. To sum up, for CSNS, as a powerful neutron source device, driven by a high-energy high-current proton accelerator, a lot of potential factors affecting the environment exist. However, as long as effective shieldings for protection are adopted and strict rules are drafted, the environmental impact can be kept under control within the limits of the national standard. (authors)

  18. Status of the Spallation Neutron Source with focus on target materials

    International Nuclear Information System (INIS)

    Mansur, L.K.; Haines, J.R.

    2006-01-01

    An overview of the design and construction of the Spallation Neutron Source (SNS) is presented. Key facility performance parameters are summarized and plans for initial operation are described. Early efforts produced a conceptual design in 1997; the project itself was initiated in 1999, with the official groundbreaking taking place in December of 1999. As of April 2005 building construction was complete and the overall project was more than 90% complete. The design of the target and surrounds are finished and the first target was installed in June 2005. First beam on target is expected in June, 2006. The engineering design of the target region is described. The key systems comprise the mercury target, moderator and reflector assemblies, remote handling systems, utilities and shielding. Through interactions with the 1 GeV proton beam, the target, moderators and reflectors produce short pulse neutrons in thermal energy ranges, which are transported to a variety of neutron scattering instruments. The mercury target module itself is described in more detail. Materials issues are expected to govern the overall lifetime and have influenced the design, fabrication and planned operation. A wide range of materials research and development has been carried out to provide experimental data and analyses to ensure the satisfactory performance of the target and to set initial design conditions. Materials R and D concentrated mainly on cavitation erosion, radiation effects, and mercury compatibility issues, including investigations of the mechanical properties during exposure to mercury. Questions that would require future materials research are discussed

  19. Characterization of Crystallographic Structures Using Bragg-Edge Neutron Imaging at the Spallation Neutron Source

    Directory of Open Access Journals (Sweden)

    Gian Song

    2017-12-01

    Full Text Available Over the past decade, wavelength-dependent neutron radiography, also known as Bragg-edge imaging, has been employed as a non-destructive bulk characterization method due to its sensitivity to coherent elastic neutron scattering that is associated with crystalline structures. Several analysis approaches have been developed to quantitatively determine crystalline orientation, lattice strain, and phase distribution. In this study, we report a systematic investigation of the crystal structures of metallic materials (such as selected textureless powder samples and additively manufactured (AM Inconel 718 samples, using Bragg-edge imaging at the Oak Ridge National Laboratory (ORNL Spallation Neutron Source (SNS. Firstly, we have implemented a phenomenological Gaussian-based fitting in a Python-based computer called iBeatles. Secondly, we have developed a model-based approach to analyze Bragg-edge transmission spectra, which allows quantitative determination of the crystallographic attributes. Moreover, neutron diffraction measurements were carried out to validate the Bragg-edge analytical methods. These results demonstrate that the microstructural complexity (in this case, texture plays a key role in determining the crystallographic parameters (lattice constant or interplanar spacing, which implies that the Bragg-edge image analysis methods must be carefully selected based on the material structures.

  20. Radiation damage for the spallation target of ADS

    International Nuclear Information System (INIS)

    Fan Sheng; Ye Yanlin; Xu Chuncheng; Chen Tao; Sobolevsky, N.M.

    2000-01-01

    By using SHIELD codes system, the authors investigate the radiation damage, such as radiation damage cross section, displacement atom cross section and the rate of displacement atom, gas production cross section, the rate of gas production and the ratio, R, of the helium and displacement production rates in target, container window and spallation neutron source materials as W and Pb induced from intermediate energy proton and neutron incident. And the study of radiation damage in the thick Pb target with long 60 cm, radius 20 cm is presented

  1. Multi-criteria comparative evaluation of spallation reaction models

    Science.gov (United States)

    Andrianov, Andrey; Andrianova, Olga; Konobeev, Alexandr; Korovin, Yury; Kuptsov, Ilya

    2017-09-01

    This paper presents an approach to a comparative evaluation of the predictive ability of spallation reaction models based on widely used, well-proven multiple-criteria decision analysis methods (MAVT/MAUT, AHP, TOPSIS, PROMETHEE) and the results of such a comparison for 17 spallation reaction models in the presence of the interaction of high-energy protons with natPb.

  2. Simulation of a high energy neutron irradiation facility at beamline 11 of the China Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Tairan, Liang [School of Physics and Electronic Information Inner Mongolia University for the Nationalities, Tongliao 028043 (China); Zhiduo, Li [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China); Wen, Yin, E-mail: wenyin@aphy.iphy.ac.cn [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China); Institute of Physics, CAS, P.O. Box 603, Beijing 100190 (China); Fei, Shen [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China); Quanzhi, Yu [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China); Institute of Physics, CAS, P.O. Box 603, Beijing 100190 (China); Tianjiao, Liang [Dongguan Branch, Institute of High Energy Physics, CAS, Beijing 100049 (China)

    2017-07-11

    The China Spallation Neutron Source (CSNS) will accommodate 20 neutron beamlines at its first target station. These beamlines serve different purposes, and beamline 11 is designed to analyze the degraded models and damage mechanisms, such as Single Event Effects in electronic components and devices for aerospace electronic systems. This paper gives a preliminary discussion on the scheme of a high energy neutron irradiation experiment at the beamline 11 shutter based on the Monte Carlo simulation method. The neutron source term is generated by calculating the neutrons scattering into beamline 11 with a model that includes the target-moderator-reflector area. Then, the neutron spectrum at the sample position is obtained. The intensity of neutrons with energy of hundreds of MeV is approximately 1E8 neutron/cm{sup 2}/s, which is useful for experiments. The displacement production rate and gas productions are calculated for common materials such as tungsten, tantalum and SS316. The results indicate that the experiment can provide irradiation dose rate ranges from 1E-5 to 1E-4 dpa per operating year. The residual radioactivity is also calculated for regular maintenance work. These results give the basic reference for the experimental design.

  3. Fast neutron irradiation tests of flash memories used in space environment at the ISIS spallation neutron source

    Directory of Open Access Journals (Sweden)

    C. Andreani

    2018-02-01

    Full Text Available This paper presents a neutron accelerated study of soft errors in advanced electronic devices used in space missions, i.e. Flash memories performed at the ChipIr and VESUVIO beam lines at the ISIS spallation neutron source. The two neutron beam lines are set up to mimic the space environment spectra and allow neutron irradiation tests on Flash memories in the neutron energy range above 10 MeV and up to 800 MeV. The ISIS neutron energy spectrum is similar to the one occurring in the atmospheric as well as in space and planetary environments, with intensity enhancements varying in the range 108- 10 9 and 106- 10 7 respectively. Such conditions are suitable for the characterization of the atmospheric, space and planetary neutron radiation environments, and are directly applicable for accelerated tests of electronic components as demonstrated here in benchmark measurements performed on flash memories.

  4. Fast neutron irradiation tests of flash memories used in space environment at the ISIS spallation neutron source

    Science.gov (United States)

    Andreani, C.; Senesi, R.; Paccagnella, A.; Bagatin, M.; Gerardin, S.; Cazzaniga, C.; Frost, C. D.; Picozza, P.; Gorini, G.; Mancini, R.; Sarno, M.

    2018-02-01

    This paper presents a neutron accelerated study of soft errors in advanced electronic devices used in space missions, i.e. Flash memories performed at the ChipIr and VESUVIO beam lines at the ISIS spallation neutron source. The two neutron beam lines are set up to mimic the space environment spectra and allow neutron irradiation tests on Flash memories in the neutron energy range above 10 MeV and up to 800 MeV. The ISIS neutron energy spectrum is similar to the one occurring in the atmospheric as well as in space and planetary environments, with intensity enhancements varying in the range 108- 10 9 and 106- 10 7 respectively. Such conditions are suitable for the characterization of the atmospheric, space and planetary neutron radiation environments, and are directly applicable for accelerated tests of electronic components as demonstrated here in benchmark measurements performed on flash memories.

  5. Numerical Simulations of Thermo-Mechanical Processes during Thermal Spallation Drilling for Geothermal Reservoirs

    Science.gov (United States)

    Vogler, D.; Walsh, S. D. C.; Rudolf von Rohr, P.; Saar, M. O.

    2017-12-01

    Drilling expenses constitute a significant share of the upfront capital costs and thereby the associated risks of geothermal energy production. This is especially true for deep boreholes, as drilling costs per meter increase significantly with depth. Thermal spallation drilling is a relatively new drilling technique, particularly suited to the hard crystalline (e.g., basement) rocks in which many deep geothermal resources are located. The method uses a hot jet-flame to rapidly heat the rock surface, which leads to large temperature gradients in the rock. These temperature gradients cause localized thermal stresses that, in combination with the in situ stress field, lead to the formation and ejection of spalls. These spalls are then transported out of the borehole with the drilling mud. Thermal spallation not only in principle enables much faster rates of penetration than traditional rotary drilling, but is also contact-less, which significantly reduces the long tripping times associated with conventional rotary head drilling. We present numerical simulations investigating the influence of rock heterogeneities on the thermal spallation process. Special emphasis is put on different mineral compositions, stress regimes, and heat sources.

  6. Tensile property changes of metals and irradiated to low doses with fission, fusion and spallation neutrons

    International Nuclear Information System (INIS)

    Heinisch, H.L.; Hamilton, M.L.; Sommer, W.F.; Ferguson, P.D.

    1992-01-01

    The objective of this work is to investigate the effects of the neutron energy spectrum in low dose irradiations on the microstructures and mechanical properties of metals. Radiation effects due to low doses of spallation neutrons are compared directly to those produced by fission and fusion neutrons. Yield stress changes of pure Cu, alumina-dispersion-strengthened Cu and AISI 316 stainless steel irradiated at 36-55 C in the Los Alamos Spallation Radiation Effects Facility (LASREF) are compared with earlier results of irradiations at 90 C using 14 MeV D-T fusion neutrons at the Rotating Target Neutron Source and fission reactor neutrons in the Omega West Reactor. At doses up to 0.04 displacements per atom (dpa), the yield stress changes due to the three quite different neutron spectra correlate well on the basis of dpa in the stainless steel and the Cu alloy. However, in pure Cu, the measured yield stress changes due to spallation neutrons were anomalously small and should be verified by additional irradiations. With the exception of pure Cu, the low dose, low temperature experiments reveal no fundamental differences in radiation hardening by fission, fusion or spallation neutrons when compared on the basis of dpa

  7. Small-angle neutron scattering at pulsed sources compared to reactor sources

    International Nuclear Information System (INIS)

    Hjelm, R.P. Jr.; Seeger, P.A.; Thiyagarajan, P.

    1990-01-01

    Detailed comparisons of measurements made on small-angle neutron scattering instruments at pulsed spallation and reactor sources show that the results from the two types of instruments are comparable. It is further demonstrated that spallation instruments are preferable for measurements in the mid-momentum transfer domain or when a large domain is needed. 8 refs., 2 figs

  8. Mass formula dependence of calculated spallation reaction product distributions

    International Nuclear Information System (INIS)

    Nishida, Takahiko; Nakahara, Yasuaki

    1990-01-01

    A new version of the spallation reaction simulation code NUCLEUS was developed by incorporating Uno and Yamada's mass formula. This version was used to calculate the distribution of products from the spallation of uranium nuclei by high-energy protons. The dependence of the distributions on the mass formula was examined by comparing the results with those from the original version, which is based on Cameron's mass formula and the mass table compiled by Wapstra et al. As regards the fission component of spallation products, the new version reproduces the reaction product data obtained from thin foil experiments much better, especially on the neutron excess side. (orig.) [de

  9. Systematics of spallation yields with a four-parameter formula

    International Nuclear Information System (INIS)

    Foshina, M.; Martins, J.B.; Tavares, O.A.P.; Di Napoli, V.

    1982-01-01

    A semi-empirical four-parameter formula is proposed in order to systematize intermediate- and high-energy proton-induced spallation yields of target nuclei covering the 50-100 mass number interval. The measured yields are reproduced by the formula with a degree of accuracy which is comparable with or better than those obtained in previous proton-spallation systematics. The formula predicts reliable values for the most probable mass number of isotopic distributions. For a number of irradiation conditions which may be encountered in practical and physical applications, estimates of proton spallation yields can be obtained by the proposed four-parameter formula with no need of high-speed machines. (M.A.F.) [pt

  10. Some safety studies of the MEGAPIE spallation source target performed using computational fluid dynamics

    International Nuclear Information System (INIS)

    Smith, B.L.

    2011-01-01

    Such a target forms part of the evolutionary Accelerator-Driven System (ADS) concept in which neutrons are generated in an otherwise sub-critical core by spallation reactions resulting from bombardment by a proton beam. The international project MEGAPIE had the objective of demonstrating the feasibility of the spallation process for a particular target design under strict test conditions. The test was carried over a period of four months at the end of 2006 at the SINQ facility of the Paul Scherrer Institute in Switzerland. The design studies carried out for the MEGAPIE target prior to irradiation using Computational Fluid Dynamics (CFD) resulted in an optimum flow configuration being defined for the coolant circulation. Simultaneously, stresses in the structural components were examined using Finite Element Method (FEM) techniques. To this purpose, an interface program was written which enabled different specialist groups to carry out the thermal hydraulics and structural mechanics analyses within the project with fully consistent model data. Results for steady-state operation of the target show that the critical lower target components are adequately cooled, and that stresses and displacements are well within tolerances. Transient analyses were also performed to demonstrate the robustness of the design in the event of abnormal operation, including pump failure and burn-through of the target casing by the proton beam. In the latter case, the CFD analyses complemented and extended full-scale tests. (author)

  11. Some safety studies of the MEGAPIE spallation source target performed using computational fluid dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.L., E-mail: brian.smith@psi.ch [Paul Scherrer Institute, OHSA/C08, 5232 Villigen PSI (Switzerland)

    2011-07-01

    Such a target forms part of the evolutionary Accelerator-Driven System (ADS) concept in which neutrons are generated in an otherwise sub-critical core by spallation reactions resulting from bombardment by a proton beam. The international project MEGAPIE had the objective of demonstrating the feasibility of the spallation process for a particular target design under strict test conditions. The test was carried over a period of four months at the end of 2006 at the SINQ facility of the Paul Scherrer Institute in Switzerland. The design studies carried out for the MEGAPIE target prior to irradiation using Computational Fluid Dynamics (CFD) resulted in an optimum flow configuration being defined for the coolant circulation. Simultaneously, stresses in the structural components were examined using Finite Element Method (FEM) techniques. To this purpose, an interface program was written which enabled different specialist groups to carry out the thermal hydraulics and structural mechanics analyses within the project with fully consistent model data. Results for steady-state operation of the target show that the critical lower target components are adequately cooled, and that stresses and displacements are well within tolerances. Transient analyses were also performed to demonstrate the robustness of the design in the event of abnormal operation, including pump failure and burn-through of the target casing by the proton beam. In the latter case, the CFD analyses complemented and extended full-scale tests. (author)

  12. From reactors to long pulse sources

    International Nuclear Information System (INIS)

    Mezei, F.

    1995-01-01

    We will show, that by using an adapted instrumentation concept, the performance of a continuous source can be emulated by one switch on in long pulses for only about 10% of the total time. This 10 fold gain in neutron economy opens up the way for building reactor like sources with an order of magnitude higher flux than the present technological limits. Linac accelerator driven spallation lends itself favorably for the realization of this kind of long pulse sources, which will be complementary to short pulse spallation sources, the same way continuous reactor sources are

  13. Final environmental impact statement, construction and operation of the Spallation Neutron Source. Volume 2

    International Nuclear Information System (INIS)

    1999-04-01

    DOE issued the ''Draft Environmental Impact Statement: Construction and Operation of the Spallation Neutron Source'' in December 1998. This document was made available for review by federal agencies; tribal governments; the state of Tennessee, New Mexico, Illinois, and New York; local governments; and the general public. DOE invited comments on the accuracy and adequacy of the DEIS and any other matters pertaining to environmental review of the document. The formal review and comment period extended from December 24, 1998 until February 8, 1999. DOE considered all comments submitted after the review and comment period. This appendix to the Final Environmental Impact Statement (FEIS) contains the 206 comments received and the DOE responses to these comments. It consists of four chapters. Chapter 1 provides an introduction to the contents of this appendix and discusses the general methodology DOE used for documenting, considering, and responding to the review comments on the DEIS. Chapter 2 summarizes the principal issues of public concern collectively reflected by the comments and presents DOE's responses to these issues. The full texts of the comments on the DEIS are presented in Chapter 3. Chapter 4 contains DOE's written responses to these comments and the locations of textual changes in the FEIS that were made in response to the comments

  14. Investigation of flow asymmetry and instability in the liquid mercury target of the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Pointer, D.; Ruggles, A.; Wendel, M.; Crye, J.

    2000-01-01

    The Spallation Neutron Source (SNS) will utilize a liquid mercury target placed in the path of a high-energy proton beam to produce neutrons for research activities. As the high-energy protons interact with the mercury target, the majority of the beam energy is converted to thermal energy. The liquid mercury must provide sufficient heat transfer to maintain the temperature of the target structure within the thermal limits of the structural materials. Therefore, the behavior of the liquid mercury flow must be characterized in sufficient detail to ensure accurate evaluation of heat transfer in the mercury target. A combination of experimental and computational methods is utilized to characterize the flow in these preliminary analyses. Preliminary studies of the liquid mercury flow in the SNS target indicate that the flow in the exit channel may exhibit multiple recirculation zones, flow asymmetries, and possibly large-scale flow instabilities. While these studies are not conclusive, they serve to focus the efforts of subsequent CFD modeling and experimental programs to better characterize the flow patterns in the SNS mercury target

  15. On the role of secondary pions in spallation targets

    Energy Technology Data Exchange (ETDEWEB)

    Mancusi, Davide [Paris-Saclay Univ., Gif-sur-Yvette (France). Den-Service d' Etude des Reacteurs et de Mathematiques Appliquees (SERMA); Lo Meo, Sergio [ENEA, Research Centre ' ' Ezio Clementel' ' , Bologna (Italy); INFN, Bologna (Italy); Colonna, Nicola [INFN, Bari (Italy); Boudard, Alain; David, Jean-Christophe; Leray, Sylvie [Paris-Saclay Univ., Gif-sur-Yvette (France). IRFU, CEA; Cortes-Giraldo, Miguel Antonio; Lerendegui-Marco, Jorge [Sevilla Univ. (Spain). Facultad de Fisica; Cugnon, Joseph [Liege Univ. (Belgium). AGO Dept.; Massimi, Cristian [INFN, Bologna (Italy); Bologna Univ. (Italy). Physics and Astronomy Dept.; Vlachoudis, Vasilis [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2017-05-15

    We use particle-transport simulations to show that secondary pions play a crucial role for the development of the hadronic cascade and therefore for the production of neutrons and photons from thick spallation targets. In particular, for the nTOF lead spallation target, irradiated with 20 GeV/c protons, neutral pions are involved in the production of ∝ 90% of the high-energy photons; charged pions participate in ∝ 40% of the integral neutron yield. Nevertheless, photon and neutron yields are shown to be relatively insensitive to large changes of the average pion multiplicity in the individual spallation reactions. We characterize this robustness as a peculiar property of hadronic cascades in thick targets. (orig.)

  16. On the role of secondary pions in spallation targets

    CERN Document Server

    Mancusi, Davide; Colonna, Nicola; Boudard, Alain; Cortés-Giraldo, Miguel Antonio; Cugnon, Joseph; David, Jean-Christophe; Leray, Sylvie; Lerendegui-Marco, Jorge; Massimi, Cristian; Vlachoudis, Vasilis

    2017-01-01

    We use particle-transport simulations to show that secondary pions play a crucial role for the development of the hadronic cascade and therefore for the production of neutrons and photons from thick spallation targets. In particular, for the n_TOF lead spallation target, irradiated with 20-GeV/c protons, neutral pions are involved in the production of ~90% of the high-energy photons; charged pions participate in ~40% of the integral neutron yield. Nevertheless, photon and neutron yields are shown to be relatively insensitive to large changes of the average pion multiplicity in the individual spallation reactions. We characterize this robustness as a peculiar property of hadronic cascades in thick targets.

  17. The Neutron Science TeraGrid Gateway, a TeraGrid Science Gateway to Support the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Cobb, John W.; Geist, Al; Kohl, James Arthur; Miller, Stephen D; Peterson, Peter F.; Pike, Gregory; Reuter, Michael A; Swain, William; Vazhkudai, Sudharshan S.; Vijayakumar, Nithya N.

    2006-01-01

    The National Science Foundation's (NSF's) Extensible Terascale Facility (ETF), or TeraGrid (1) is entering its operational phase. An ETF science gateway effort is the Neutron Science TeraGrid Gateway (NSTG.) The Oak Ridge National Laboratory (ORNL) resource provider effort (ORNL-RP) during construction and now in operations is bridging a large scale experimental community and the TeraGrid as a large-scale national cyberinfrastructure. Of particular emphasis is collaboration with the Spallation Neutron Source (SNS) at ORNL. The U.S. Department of Energy's (DOE's) SNS (2) at ORNL will be commissioned in spring of 2006 as the world's brightest source of neutrons. Neutron science users can run experiments, generate datasets, perform data reduction, analysis, visualize results; collaborate with remotes users; and archive long term data in repositories with curation services. The ORNL-RP and the SNS data analysis group have spent 18 months developing and exploring user requirements, including the creation of prototypical services such as facility portal, data, and application execution services. We describe results from these efforts and discuss implications for science gateway creation. Finally, we show incorporation into implementation planning for the NSTG and SNS architectures. The plan is for a primarily portal-based user interaction supported by a service oriented architecture for functional implementation

  18. Safety analysis and lay-out aspects of shieldings against particle radiation at the example of spallation facilities in the megawatt range

    International Nuclear Information System (INIS)

    Hanslik, R.

    2006-08-01

    This paper discusses the shielding of particle radiation from high current accelerators, spallation neutron sources and so called ADS-facilities (Accelerator Driven Systems). ADS-facilities are expected to gain importance in the future for transmutation of long-lived isotopes from fission reactors as well as for energy production. In this paper physical properties of the radiation as well as safety relevant requirements and corresponding shielding concepts are discussed. New concepts for the layout and design of such shielding are presented. Focal point of this work will be the fundamental difference between conventional fission reactor shielding and the safety relevant issues of shielding from high-energy radiation. Key point of this paper is the safety assessment of shielding issues of high current accelerators, spallation targets and ADS-blanket systems as well as neutron scattering instruments at spallation neutron sources. Safety relevant shielding requirements are presented and discussed. For the layout and design of the shielding for spallation sources computer base calculations methods are used. A discussion and comparison of the most important methods like semi-empirical, deterministic and stochastic codes are presented. Another key point within the presented paper is the discussion of shielding materials and their shielding efficiency concerning different types of radiation. The use of recycling material, as a cost efficient solution, is discussed. Based on the conducted analysis, flowcharts for a systematic layout and design of adequate shielding for targets and accelerators have been developed and are discussed in this paper. By use of these flowcharts layout and engineering design of future ADS-facilities can be performed. (orig.)

  19. Plans for an Ultra Cold Neutron source at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Seestrom, S.J.; Bowles, T.J.; Hill, R.; Greene, G.L. [Los Alamos National Lab., NM (United States)

    1996-08-01

    Ultra Cold Neutrons (UCN) can be produced at spallation sources using a variety of techniques. To date the technique used has been to Bragg scatter and Doppler shift cold neutrons into UCN from a moving crystal. This is particularly applicable to short-pulse spallation sources. We are presently constructing a UCN source at LANSCE using method. In addition, large gains in UCN density should be possible using cryogenic UCN sources. Research is under way at Gatchina to demonstrate technical feasibility of be a frozen deuterium source. If successful, a source of this type could be implemented at future spallation source, such as the long pulse source being planned at Los Alamos, with a UCN density that may be two orders of magnitude higher than that presently available at reactors. (author)

  20. Superconducting Prototype Cavities for the Spallation Neutron Source (SNS) Project

    International Nuclear Information System (INIS)

    Ciovati, G.; Kneisel, P.; Brawley, J.; Bundy, R.; Campisi, I.; Davis, K.; Macha, K.; Machie, D.; Mammosser, J.; Morgan, S.; Sundelin, R.; Turlington, L.; Wilson, K.; Doleans, M.; Kim, S.H.; Barni, D.; Pagani, C.; Pierini, P.; Matsumoto, K.; Mitchell, R.; Schrage, D.; Parodi, R.; Sekutowicz, J.; Ylae-Oijala, P.

    2001-01-01

    The Spallation Neutron Source project includes a superconducting linac section in the energy range from 192 MeV to 1000 MeV, operating at a frequency of 805 MHz at 2.1 K. For this energy range two types of cavities are needed with geometrical beta - values of beta= 0.61 and beta= 0.81. An aggressive cavity prototyping program is being pursued at Jlab, which calls for fabricating and testing of four beta= 0.61 cavities and two beta= 0.81 cavities. Both types consist of six cells made from high purity niobium and feature one HOM coupler on each beam pipe and a port for a high power coaxial input coupler. Three of the four beta= 0.61 cavities will be used for a cryomodule test in early 2002. At this time four medium beta cavities and one high beta cavity have been completed at JLab. The first tests on the beta=0.61 cavity and the beta= 0.81 exceeded the design values for gradient and Q - value: E acc = 1 0.3 MV/m and Q = 5 x 10 9 at 2.1K for beta= 0.61 and E acc = 12.3 MV/m and Q = 5 x 10 9 at 2.1K for beta= 0.81. One of the medium beta cavities has been equipped with an integrated helium vessel and measurements of the static and dynamic Lorentz force detuning will be done and compared to the ''bare'' cavities. In addition two single cell cavities have been fabricated, equipped with welded-on HOM couplers. They are being used to evaluate the HOM couplers with respect to multipacting, fundamental mode rejection and HOM damping as far as possible in a single cell. This paper will describe the cavity design with respect to electrical and mechanical features, the fabrication efforts and the results obtained with the different cavities existing at the time of this workshop

  1. ASPUN: design for an Argonne super-intense pulsed neutron source

    International Nuclear Information System (INIS)

    Khoe, T.K.; Kustom, R.L.

    1983-01-01

    Argonne pioneered the pulsed spallation neutron source with the ZING-P and IPNS-I concepts. IPNS-I is now a reliable and actively used source for pulsed spallation neutrons. The accelerator is a 500-MeV, 8 to 9 μa, 30-Hz rapid-cycling proton synchrotron. Other proton spallation sources are now in operation or in construction. These include KENS-I at the National Laboratory for High Energy Physics in Japan, the WNR/PSR at Los Alamos National Laboratory in the USA, and the SNS at the Rutherford Appleton Laboratory in England. Newer and bolder concepts are being developed for more-intense pulsed spallation neutron sources. These include SNQ at the KFA Laboratory in Juelich, Germany, ASTOR at the Swiss Institute for Nuclear Physics in Switzerland, and ASPUN, the Argonne concept. ASPUN is based on the Fixed-Field Alternating Gradient concept. The design goal is to provide a time-averaged beam of 3.5 ma at 1100 MeV on a spallation target in intense bursts, 100 to 200 nanoseconds long, at a repetition rate of no more than 60 to 85 Hz

  2. Application of optical emission spectroscopy to high current proton sources

    International Nuclear Information System (INIS)

    Castro, G; Mazzaglia, M; Nicolosi, D; Mascali, D; Reitano, R; Celona, L; Leonardi, O; Leone, F; Naselli, E; Neri, L; Torrisi, G; Gammino, S; Zaniol, B

    2017-01-01

    Optical Emission Spectroscopy (OES) represents a very reliable technique to carry out non-invasive measurements of plasma density and plasma temperature in the range of tens of eV. With respect to other diagnostics, it also can characterize the different populations of neutrals and ionized particles constituting the plasma. At INFN-LNS, OES techniques have been developed and applied to characterize the plasma generated by the Flexible Plasma Trap, an ion source used as 'testbench' of the proton source built for European Spallation Source. This work presents the characterization of the parameters of a hydrogen plasma in different conditions of neutral pressure, microwave power and magnetic field profile, along with perspectives for further upgrades of the OES diagnostics system. (paper)

  3. MEGAPIE, a 1 MW pilot experiment for a liquid metal spallation target

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G.S. [Paul Scherrer Institut, Spallation Neutron Source Division, Villigen-PSI (Switzerland); Salvatores, M. [CEA Cadarache, Direction des Reacteurs Nucleaires, Saint-Paul-lez-Durance Cedex (France); Heusener, G. [Forschungszentrum Karlsruhe, Projekt Nukleare Sicherheitsforschung, Karlsruhe (Germany)

    2001-03-01

    MEGAPIE (Megawatt Pilot Target Experiment) is an initiative launched by Commissariat a l'Energie Atomique, Cadarache (France) and Forschungszentrum Karlsruhe (Germany) in collaboration with Paul Scherrer Institut (Switzerland), to demonstrate, in an international collaboration, the feasibility of a liquid lead bismuth target for spallation facilities at a beam power level of 1 MW. Such a target is under consideration for various concepts of accelerator driven systems (ADS) to be used in transmutation of nuclear waste and other applications world-wide. It also has the potential of increasing significantly the thermal neutron flux available at the spallation neutron source (SINQ) for neutron scattering. SINQ's beam power being close to 1 MW already, this facility offers a unique opportunity to realize such an experiment with a reasonably small number of new ancillary systems. The paper describes the basic features of the experiment and its boundary conditions, the technical concept of the target and underlying research carried out at participating laboratories. (author)

  4. MEGAPIE, a 1 MW pilot experiment for a liquid metal spallation target

    International Nuclear Information System (INIS)

    Bauer, G.S.; Salvatores, M.; Heusener, G.

    2001-01-01

    MEGAPIE (Megawatt Pilot Target Experiment) is an initiative launched by Commissariat a l'Energie Atomique, Cadarache (France) and Forschungszentrum Karlsruhe (Germany) in collaboration with Paul Scherrer Institut (Switzerland), to demonstrate, in an international collaboration, the feasibility of a liquid lead bismuth target for spallation facilities at a beam power level of 1 MW. Such a target is under consideration for various concepts of accelerator driven systems (ADS) to be used in transmutation of nuclear waste and other applications world-wide. It also has the potential of increasing significantly the thermal neutron flux available at the spallation neutron source (SINQ) for neutron scattering. SINQ's beam power being close to 1 MW already, this facility offers a unique opportunity to realize such an experiment with a reasonably small number of new ancillary systems. The paper describes the basic features of the experiment and its boundary conditions, the technical concept of the target and underlying research carried out at participating laboratories. (author)

  5. Nuclear spallation of cosmic ray nuclei in the interstellar medium

    International Nuclear Information System (INIS)

    Raisbeck, G.

    1974-01-01

    Nuclear spallation of cosmic rays during propagation is qualitatively reviewed. After the problem is defined, a discussion is presented of the relevant information obtainable from studying nuclear reactions, specifically, quantity and distribution of traversed matter, time and place of propagation, and source composition. Comments are offered on the cross sections and nuclear reactions that are critical for a complete understanding in this area. This is followed by a brief look at the present status of research and possibilities for further work using the Bevalac. (U.S.)

  6. Ion source requirements for pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Alonso, J.R.

    1995-10-01

    The neutron scattering community has endorsed the need for a high- power (1 to 5 MW) accelerator-driven source of neutrons for materials research. Properly configured, the accelerator could produce very short (sub-microsecond) bursts of cold neutrons, said time structure offering advantages over the continuous flux from a reactor for a large class of experiments. The recent cancellation of the ANS reactor project has increased the urgency to develop a comprehensive strategy based on the best technological scenarios. Studies to date have built on the experience from ISIS (the 160 KW source in the UK), and call for a high-current (approx. 100 mA peak) H - source-linac combination injecting into one or more accumulator rings in which beam may be further accelerated. The 1 to 5 GeV proton beam is extracted in a single turn and brought to the target-moderator stations. The high current, high duty-factor, high brightness and high reliability required of the ion source present a very large challenge to the ion source community. A workshop held in Berkeley in October 1994, analyzed in detail the source requirements for proposed accelerator scenarios, the present performance capabilities of different H - source technologies, and identified necessary R ampersand D efforts to bridge the gap

  7. Instrumentation Around the ESS 5 MW Spallation Tungsten Target Submitted to 2 GeV Proton Pulses

    International Nuclear Information System (INIS)

    Shea, Thomas; Plewinski, Francois; Nordt, Annika; Sadeghzadeh, Atefeh; Linander, Rikard; Kharoua, Cyril

    2013-06-01

    The 5 MW European Spallation Source, currently in its design phase, includes a linear proton accelerator sending a 2.86 ms long pulse of 2 GeV protons at 14 Hz to a tungsten target. This spallation source distributes thermal and cold neutron beams to a large variety of state-of-the-art neutron instruments, supported by a suite of laboratories and a supercomputing data management and software development center. The target is a rotating wheel 2.5 m in diameter composed of helium cooled tungsten plates and produces high intensity gamma and fast neutron pulses (higher than 2E15 n/cm 2 /s). This paper focuses on the design of 2 types of instrumentation: to monitor target operation and to control the proton beam parameters. Instrumentation mounted on the rotating target (designed for a minimum lifetime of 5 years) to monitor the helium coolant flow and the evolution of irradiated tungsten plates and the target vessel, the target balance, vibrations and displacement is presented as well as a dedicated instrumentation plug installed at opposite the impinging proton beam, which will monitor the target wheel with an LDV and an infra-red camera and perform gamma scanning during and after irradiation. Upstream of the target, a suite of instrumentation will monitor the properties of the 2 GeV proton beam. This suite will consist of imaging devices and multi-wire grids to monitor the beam density distribution at the proton beam window and at the target. An additional imaging system will observe luminescence from the Helium gas between the proton beam window and the target. Beam halo will be monitored by thermocouples located near the edge of the aperture. Further upstream, electromagnetic pickups will measure the beam centroid position, the beam current, and the beam pulse's time of arrival. This time-of-arrival signal will allow precise synchronization of the target's rotation and the beam pulse structure. (authors)

  8. Structural design study of a proton beam window for a 1-MW spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Teraoku, Takuji; Terada, Atsuhiko; Maekawa, Fujio; Meigo, Shin-ichiro; Kaminaga, Masanori; Ishikura, Syuichi; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    A 1-MW spallation neutron source aiming at materials and life science researches will be constructed under the JAERI-KEK High-intensity Proton Accelerator Project (J-PARC). A proton beam passes through a proton beam window, and be injected into a target of the neutron source. The proton beam window functions as a boundary wall between a high vacuum area in the proton beam line and a helium atmosphere at about atmospheric pressure in a helium vessel which contains the target and moderators. The proton beam window is cooled by light water because high heat-density is generated in the window material by interactions with the proton beam. Then, uniformity of the water flow is requested at the window to suppress a hot-spot that causes excessive thermal stress and cooling water boiling. Also, the window has to be strong enough in its structure for inner stress due to water pressure and thermal stress due to heat generation. In this report, we propose two types of proton beam windows; one flat-type that is easy to manufacture, and the other, curved-type that has high stress resistivity. As a part of design study for the windows, evaluation of strength of structure and thermal hydraulic analysis were conducted. As a result, it was found that sufficient heat removal was assured with uniform water flow at the window, and stress caused by internal water pressure and thermal stress could be maintained below allowable stress values. Accordingly, it was confirmed that the proton beam window designs were feasible. (author)

  9. Ion source requirements for pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Alonso, J.R.

    1996-01-01

    The neutron scattering community has endorsed the need for a high-power (1 to 5 MW) accelerator-driven source of neutrons for materials research. Properly configured, the accelerator could produce very short (sub-microsecond) bursts of cold neutrons, said time structure offering advantages over the continuous flux from a reactor for a large class of experiments. The recent cancellation of the ANS reactor project has increased the urgency to develop a comprehensive strategy based on the best technological scenarios. Studies to date have built on the experience from ISIS (the 160 kW source in the UK), and call for a high-current (approx. 100 mA peak) H - source-linac combination injecting into one or more accumulator rings in which beam may be further accelerated. The 1 to 5 GeV proton beam is extracted in a single turn and brought to the target-moderator stations. The high current, high duty-factor, high brightness and high reliability required of the ion source present a very large challenge to the ion source community. A workshop held in Berkeley in October 1994, analyzed in detail the source requirements for proposed accelerator scenarios, the present performance capabilities of different H - source technologies, and identified necessary R ampersand D efforts to bridge the gap. copyright 1996 American Institute of Physics

  10. High power operation of the polyphase resonant converter modulator system for the spallation neutron source linear accelerator

    CERN Document Server

    Reass, W A; Baca, D M; Doss, J D; Gonzáles, J M; Gribble, R F; Trujillo, P G

    2003-01-01

    The spallation neutron source (SNS) is a new 1.4 MW average power beam, 1 GeV accelerator being built at Oak Ridge national laboratory. The accelerator requires 15 "long-pulse" converter-modulator stations each providing a maximum of 11 MW pulses with a 1.1 MW average power. Two variants of the converter-modulator are utilized, an 80 kV and a 140 kV design, the voltage dependant on the type of klystron load. The converter-modulator can be described as a resonant zero-voltage- switching polyphase boost inverter. As noted in Figure 1, each converter modulator derives its buss voltage from a standard 13.8 kV to 2100 Y (1.5 MVA) substation cast-core transformer. The substation also contains harmonic traps and filters to accommodate IEEE 519 and 141 regulations. Each substation is followed by an SCR preregulator to accommodate system voltage changes from no load to full load, in addition to providing a soft-start function. Energy storage and filtering is provided by special low inductance self-clearing metallized ...

  11. The Prototype Fundamental Power Coupler For The Spallation Neutron Source Superconducting Cavities: Design And Initial Test Results

    International Nuclear Information System (INIS)

    K. M. Wilson; I. E. Campisi; E. F. Daly; G. K. Davis; M. Drury; J. E. Henry; P. Kneisel; G. Myneni; T. Powers; W. J. Schneider; M. Stirbet; Y. Kang; K. Cummings; T. Hardek

    2001-01-01

    Each of the 805 MHz superconducting cavities of the Spallation Neutron Source (SNS) is powered via a coaxial Fundamental Power Coupler (FPC) with a 50 Omega impedance and a warm planar alumina window. The design is derived from the experience of other laboratories; in particular, a number of details are based on the coupler developed for the KEK B-Factory superconducting cavities. However, other design features have been modified to account for the fact that the SNS FPC will transfer a considerably lower average power than the KEK-B coupler. Four prototypes have been manufactured so far, and preliminary tests performed on two of them at Los Alamos National Laboratory (LANL). During these tests, peak powers of over 500 kW were transferred through the couplers in the test stand designed and built for this purpose. This paper gives details of the coupler design and of the results obtained from the RF tests on the test stand during the last few months. A more comprehensive set of tests is planned for the near future

  12. Overview of the conceptual design of the future VENUS beamline at the Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Bilheux, Hassina Z [ORNL; Herwig, Kenneth W [ORNL; Keener, Wylie S [ORNL; Davis, Larry E [ORNL

    2015-01-01

    VENUS will be a world-class neutron-imaging instrument that will uniquely utilize the Spallation Neutron Source (SNS) time-of-flight (TOF) capabilities to measure and characterize objects across several length scales (mm to m). When completed, VENUS will provide academia, industry and government laboratories with the opportunity to advance scientific research in areas such as energy, materials, additive manufacturing, geosciences, transportation, engineering, plant physiology, biology, etc. It is anticipated that a good portion of the VENUS user community will have a strong engineering/industrial research focus. Installed at Beamline 10 (BL10), VENUS will be a 25-m neutron imaging facility with the capability to fully illuminate (i.e., umbra illumination) a 20 cm x 20 cm detector area. The design allows for a 28 cm x 28 cm field of view when using the penumbra to 80% of the full illumination flux. A sample position at 20 m will be implemented for magnification measurements. The optical components are comprised of a series of selected apertures, T0 and bandwidth choppers, beam scrapers, a fast shutter to limit sample activation, and flight tubes filled with Helium. Techniques such as energy selective, Bragg edge and epithermal imaging will be available at VENUS

  13. In situ polarized 3He system for the Magnetism Reflectometer at the Spallation Neutron Source.

    Science.gov (United States)

    Tong, X; Jiang, C Y; Lauter, V; Ambaye, H; Brown, D; Crow, L; Gentile, T R; Goyette, R; Lee, W T; Parizzi, A; Robertson, J L

    2012-07-01

    We report on the in situ polarized (3)He neutron polarization analyzer developed for the time-of-flight Magnetism Reflectometer at the Spallation Neutron Source at Oak Ridge National Laboratory. Using the spin exchange optical pumping method, we achieved a (3)He polarization of 76% ± 1% and maintained it for the entire three-day duration of the test experiment. Based on transmission measurements with unpolarized neutrons, we show that the average analyzing efficiency of the (3)He system is 98% for the neutron wavelength band of 2-5 Å. Using a highly polarized incident neutron beam produced by a supermirror bender polarizer, we obtained a flipping ratio of >100 with a transmission of 25% for polarized neutrons, averaged over the wavelength band of 2-5 Å. After the cell was depolarized for transmission measurements, it was reproducibly polarized and this performance was maintained for three weeks. A high quality polarization analysis experiment was performed on a reference sample of Fe/Cr multilayer with strong spin-flip off-specular scattering. Using a combination of the position sensitive detector, time-of-flight method, and the excellent parameters of the (3)He cell, the polarization analysis of the two-dimensional maps of reflected, refracted, and off-specular scattered intensity above and below the horizon were obtained, simultaneously.

  14. New developments with H-sources

    International Nuclear Information System (INIS)

    Sherman, Joseph D.; Rouleau, G.

    2002-01-01

    Existing spallation neutron source upgrades, planned spallation neutron sources, and high-energy accelerators for particle physics place demanding requirements on the Hsources. These requirements ask for increased beam currents and duty factor (df) while generally maintaining state-of-the art H' source emittance. A variety of H sources are being developed to address these challenges. These include volume sources with and without the addition of cesium for enhanced He production, increased df cesiated H' Penning and magnetron sources, and cesiated surface converter H- sources. Research on surface films of tantalum metal for enhanced volume H- production is also being studied. Innovative plasma production techniques to address the longer df requirement without sacrificing H- source reliability and liktime will be reviewed. The physical bases, the goals, and perceived challenges will be discussed.

  15. Spallation reactions: calculations

    International Nuclear Information System (INIS)

    Bertini, H.W.

    1975-01-01

    Current methods for calculating spallation reactions over various energy ranges are described and evaluated. Recent semiempirical fits to existing data will probably yield the most accurate predictions for these reactions in general. However, if the products in question have binding energies appreciably different from their isotropic neighbors and if the cross section is approximately 30 mb or larger, then the intranuclear-cascade-evaporation approach is probably better suited. (6 tables, 12 figures, 34 references) (U.S.)

  16. Combined Neutron Center for European Research and Technology

    International Nuclear Information System (INIS)

    Lagniel, Jean-Michel

    2002-01-01

    High-power proton linacs are needed as driver for several applications, namely transmutation of nuclear waste using Accelerator Driven Systems (ADS), spallation neutron sources (ESS in Europe) and other fields of basic and applied research (next generation of radioactive ion beam facilities, neutrino factories, muon colliders, irradiation facilities for material testing...). The possible synergies among these projects will be pointed out and the feasibility study of high-power proton linac used as driver of a multi-user facility (CONCERT) will be presented. There was excellent scientific, technical and economic reasons to study a Combined Neutron Center for European Research and Technology (CONCERT) based on a high-power proton accelerator. Such an installation would serve condensed matter studies by spallation neutron scattering, a technological irradiation tool and R and D facility for an hybrid reactor demonstrator, a radioactive ion beam facility for nuclear physics, R and D developments for a muon/neutrino facility. The installation could therefore constitute a European center of excellence in the field of neutronics where a large number of scientific and technical executives could be trained. The CONCERT Project Team has performed the feasibility study of such a multi-user facility with: - a review of the beam needs for the different applications, - an analyze of their compatibility, - the definition of the scope of a site-independent project, - a selection of the most appropriate options regarding scientific, technical, financial, organizational and administrative aspects, - an estimation of the costs for construction, operation and the needs in manpower. The conceptual design report [17] is sufficiently detailed to minimize contingencies on those parts of the project having a large potential impact in terms of performances, costs or delays. (author)

  17. Basic aspects of spallation radiation damage to materials

    Energy Technology Data Exchange (ETDEWEB)

    Wechsler, M.S.; Lin, C. [North Carolina State Univ., Raleigh, NC (United States); Sommer, W.F. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    The nature of radiation effects, as learned from investigations using reactor neutron irradiations, is reviewed, and its relevance to spallation radiation damage to materials in accelerator-driven neutron sources is discussed. Property changes upon irradiation are due to (1) displaced atoms, producing vacancy and interstitial defect clusters, which cause radiation hardening and embrittlement; (2) helium production, the helium then forming bubbles, which engenders high-temperature grain-boundary fracture; and (3) transmutations, which means that impurity concentrations are introduced. Methods for analyzing displacement production are related, and recent calculations of displacement cross sections using SPECTER and LAHET are described, with special reference to tungsten, a major candidate for a target material in accelerator-driven neutron systems.

  18. Spin exchange optical pumping based polarized 3He filling station for the Hybrid Spectrometer at the Spallation Neutron Source.

    Science.gov (United States)

    Jiang, C Y; Tong, X; Brown, D R; Culbertson, H; Graves-Brook, M K; Hagen, M E; Kadron, B; Lee, W T; Robertson, J L; Winn, B

    2013-06-01

    The Hybrid Spectrometer (HYSPEC) is a new direct geometry spectrometer at the Spallation Neutron Source at the Oak Ridge National Laboratory. This instrument is equipped with polarization analysis capability with 60° horizontal and 15° vertical detector coverages. In order to provide wide angle polarization analysis for this instrument, we have designed and built a novel polarized (3)He filling station based on the spin exchange optical pumping method. It is designed to supply polarized (3)He gas to HYSPEC as a neutron polarization analyzer. In addition, the station can optimize the (3)He pressure with respect to the scattered neutron energies. The depolarized (3)He gas in the analyzer can be transferred back to the station to be repolarized. We have constructed the prototype filling station. Preliminary tests have been carried out demonstrating the feasibility of the filling station. Here, we report on the design, construction, and the preliminary results of the prototype filling station.

  19. Astrophysical Li-7 as a product of big bang nucleosynthesis and galactic cosmic-ray spallation

    Science.gov (United States)

    Olive, Keith A.; Schramm, David N.

    1992-01-01

    The astrophysical Li-7 abundance is considered to be largely primordial, while the Be and B abundances are thought to be due to galactic cosmic ray (GCR) spallation reactions on top of a much smaller big bang component. But GCR spallation should also produce Li-7. As a consistency check on the combination of big bang nucleosynthesis and GCR spallation, the Be and B data from a sample of hot population II stars is used to subtract from the measured Li-7 abundance an estimate of the amount generated by GCR spallation for each star in the sample, and then to add to this baseline an estimate of the metallicity-dependent augmentation of Li-7 due to spallation. The singly reduced primordial Li-7 abundance is still consistent with big bang nucleosynthesis, and a single GCR spallation model can fit the Be, B, and corrected Li-7 abundances for all the stars in the sample.

  20. Transmutation of 126Sn in spallation targets of accelerator-driven systems

    International Nuclear Information System (INIS)

    Han, Chi Young; Saito, Masaki; Sagara, Hiroshi

    2009-01-01

    The practical feasibility of 126 Sn transmutation in spallation targets of accelerator-driven systems was evaluated from the viewpoints of accumulation of radioactive spallation products and neutron production as well as transmutation amount of 126 Sn. A cylindrical liquid 126 Sn target whose length depends on proton beam energy was described, based on a Pb-Bi target design of accelerator-driven system being developed in JAEA. A proton beam of 1.5 GeV-20 mA was estimated to give the transmutation rate of 126 Sn 6.4 kg/yr, which corresponds to the amount of 126 Sn annually discharged in 27 LWRs of 1 GWt and 33 GWd/THM. The equilibrium radioactivity of spallation products would reach 9% of that of 126 Sn transmuted in the spallation target, and the equilibrium toxicity would be just 3%. Some parametric analyses showed that the effective half-life of 126 Sn could be reduced through a proper reduction of the target size. The 126 Sn target was calculated to produce 40 neutrons per proton of 1.5 GeV and give a neutron spectrum very similar to that of the reference Pb-Bi target. As a result, the transmutation of 126 Sn in the spallation target has a high feasibility in terms of better transmutation performance and comparable target performance. (author)

  1. The general concept for a spallation neutron source in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Bauer, G.S.

    1982-01-01

    In a collaborative effort between the two German nuclear research centres at Karlsruhe and at Juelich, a reference concept for a spallation neutron source has been studied which would be suitable to satisfy the medium term needs in neutrons for fundamental research and to serve a large number of other scientific disciplines as well. The reference facility, consisting of a high power proton linac for 5 mA time average current of 1.1 GeV protons and a rotating lead target with hybrid H 2 O-D 2 O moderators can deliver a thermal neutron flux equivalent to 7 x 10 14 cm -2 s -1 at the beam tube noses. Pulsed operation of the accelerator results in an intensity modulation of this flux at a repitition rate of 100 Hz with a peak flux of 1.3 x 10 16 cm -2 s -1 and a pulse width of 510 μs. Further possible improvements were considered, consisting in the use of uranium as target material and in the addition of a proton pulse compressor to increase the neutron peak flux especially in the epithermal energy range and to provide a time structure suitable for neutrino and muon research. To realize this concept in a fashion compatible with existing constraints while still serving a maximum number of users at the earliest possible date, a staged concept is being considered by KFA Juelich. (orig.) [de

  2. Spallation radiation damage and dosimetry for accelerator transmutation of waste applications

    International Nuclear Information System (INIS)

    Wechsler, M.S.; Lin, C.

    1993-01-01

    Proposals are currently being made for systems to treat radioactive waste based on the use of accelerator-driven neutron sources. A linear proton accelerator with energies as high as 1600 MeV and currents up to 250 ma are anticipated for the driver. The neutron fluxes may reach up to 10 20 neutrons/m 2 s as generated by the spallation reactions that occur when the protons strike target materials. Calculations are described to determine radiation fluxes and flux spectra inherent in such systems and to estimate likely radiation effects on system components. The calculations use LAHET, a Monte Carlo high-energy transport code, and MCNP, a generalized-geometry, coupled neutron-photon Monte Carlo transport code. Cross sections for displacement and helium production are presented for spallation neutrons of energies from 21 MeV to 1600 MeV for Inconel 718 (Ni plus 18.5, 18.5, 5.1, and 3 wt % of Cr, Fe, Nb, and Mo, respectively), an alloy that is used for the proton beam entry window in several accelerators. In addition, results for this alloy are presented for the primary knocked-on atom (PKA) spectrum and the transmutation yield for 1600 MeV incident neutrons

  3. Safety techniques in the change of nuclear systems. Radiation protection at spallation neutron sources and transmutation facilities; Sicherheitstechnik im Wandel Nuklearer Systeme. Strahlenschutz bei Spallationsneutronenquellen und Transmutationsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Nuenighoff, Kay

    2009-07-01

    To push the boundary towards higher neutron fluxes concepts based on spallation reactions have been discussed. Here neutrons are produced by bombarding a heavy metal target (e.g. mercury, tungsten, or tantalum) with high energetic protons. Up to now such facilities could not be realised because of the high power particle accelerators needed. Recent developments of the accelerator technology open the possibility of construction and operating proton accelerators in the MW region. This is demonstrated by construction and commissioning of two MW spallation neutron sources, namely SNS (Oak Ridge, Tennessee, USA) with a power of 1.4 MW and J-PARC (Japan) with 1 MW. The realisation of proton accelerators at this power level will open the way towards energy amplifiers, as proposed e.g. by Carlo Rubbia. Such a facility will not only produce electric power. Furthermore longliving radionuclides can be transmutated into shortlived or even stable nuclides by neutron induced nuclear reactions. A mitigation of the problem of nuclear waste disposal. The above discussed developments prove that accelerators are not only constructed for research, moreover application of these technology became state of the art. With the emergence of particle accelerators in the MW region, radiation protection is confronted with new kind of problems to be solved. Especially the higher kinetic energies of the primary beam particles requires modification and expansion of computer programs well known in nuclear engineering. In contrast to nuclear reactors with kinetic energies up to 2-3 MeV, in spallation reaction secondary particles up to the incident energy in the GeV region will be produced. Problems related to radiation protection have to be considered in an energy range three orders of magnitude higher than known from nuclear reactors. In this thesis existing computer codes are compared and validated with data from selected experiments. Questions concerning radiation protection covers a broad range

  4. Spallation production of neutron deficient radioisotopes in North America

    International Nuclear Information System (INIS)

    Jamriska, D.J.; Peterson, E.J.; Carty, J.

    1997-01-01

    The United States Department of Energy produces a number of neutron deficient radioisotopes by high energy proton induced spallation reactions in accelerators at Los Alamos National Laboratory in New Mexico and Brookhaven National Laboratory in New York. Research isotopes are also recovered from targets irradiated at TRIUMF in British Columbia, Canada. The radioisotopes recovered are distributed for use in nuclear medicine, environmental research, physics research, and industry worldwide. In addition to the main product line of Sr-82 from either Mo or Rb targets, Cu-67 from ZnO targets, and Ge-68 from RbBr targets, these irradiation facilities also produce some unique isotopes in quantities not available from any other source such as Be-10, Al-26, Mg-28, Si-32, El-44, Fe-52, Gd-248, and Hg-194. We will describe the accelerator irradiation facilities at the Los Alamos and Brookhaven National Laboratories. The high level radiochemical processing facilities at Los Alamos and brief chemical processes from Los Alamos and Brookhaven will be described. Chemical separation techniques have been developed to recover the radioisotopes of interest in both high radiochemical purity and yield and at the same time trying to reduce or eliminate the generation of mixed waste. nearly 75 neutron deficient radioisotopes produced in spallation targets have been produced and distributed to researchers around the world since the inception of the program in 1974

  5. Device for Writing the Time Tail from Spallation Neutron Pulses

    International Nuclear Information System (INIS)

    Langan, P.; Schoenborn, Benno P.; Daemen, L.L.

    2001-01-01

    Recent work at Los Alamos Neutron Science Center (LANSCE), has shown that there are large gains in neutron beam intensity to be made by using coupled moderators at spallation neutron sources. Most of these gains result from broadening the pulse-width in time. However the accompanying longer exponential tail at large emission times can be a problem in that it introduces relatively large beam-related backgrounds at high resolutions. We have designed a device that can reshape the moderated neutron beam by cutting the time-tail so that a sharp time resolution can be re-established without a significant loss in intensity. In this work the basic principles behind the tail-cutter and some initial results of Monte Carlo simulations are described. Unwanted neutrons in the long time-tail are diffracted out of the transmitted neutron beam by a nested stack of aperiodic multi-layers, rocking at the same frequency as the source. Nested aperiodic multi-layers have recently been used at X-ray sources and as band-pass filters in quasi-Laue neutron experiments at reactor neutron sources. Optical devices that rock in synchronization with a pulsed neutron beam are relatively new but are already under construction at LANSCE. The tail-cutter described here is a novel concept that uses existing multi-layer technology in a new way for spallation neutrons. Coupled moderators in combination with beam shaping devices offer the means of increasing flux whilst maintaining a sharp time distribution. A prototype device is being constructed for the protein crystallography station at LANSCE. The protein crystallography station incorporates a water moderator that has been judiciously coupled in order to increase the flux over neutron energies that are important to structural biology (3-80meV). This development in moderator design is particularly important because protein crystallography is flux limited and because conventional ambient water and cold hydrogen moderators do not provide relatively

  6. Safety-technical lay-out of the operational environment of a high-power spallation target system of the megawatt class with mercury as target material

    International Nuclear Information System (INIS)

    Butzek, M.

    2005-06-01

    This thesis is concerning the safety relevant layout of the environment of a mercury based 5-Megawatt-spallation target. All safety relevant aspects related to construction, operation and dismantling as well as economical issues were taken into account. Safety concerns are basically driven by the toxic and radioactive inventory as well as the kind and intensity of radiation produced by the spallation process. Due to significant differences in inventory and radiation between a spallation source and a fission reactor, for the design of the spallation source mentioned above the safety philosophy of a fission reactor must not be used unchanged. Rather than this a systematic study of all safety related boundary conditions is necessary. Within this thesis all safety relevant boundary conditions for this specific type of machine are given. Beside the spatial distribution of different areas inside the target station, influence of medias to be used as well as arising radiation and handling requirements are discussed in detail. A general layout of the target station is presented, serving as a basis for all further component and system development. An enclosure concept for the target station was developed, taking into account the safety relevant issues concerning the mercury used as target materials, the water cooling loops containing massive amounts of tritium as well as the materials used for the moderators potentially forming explosive mixtures. Concept and detailed technical layout of the enclosure system was chosen to guarantee safe operation of the source as well as taking care of requirement arising for handling needs. For design of the shielding different suitable materials have been discussed. A design for assembling the shielding is shown taking into account the safety relevant requirements during operation as well as during dismantling. The neutron beam shutters, buried inside the shielding were designed to optimize handling and positioning issued of the inner part

  7. 3-dimensional shielding design for a spallation neutron source facility in the high-intensity proton accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Masaya; Maekawa, Fujio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Evaluation of shielding performance for a 1 MW spallation neutron source facility in the Materials and Life Science Facility being constructed in the High-Intensity Proton Accelerator Project (J-PARC) is important from a viewpoint of radiation safety and optimization of arrangement of components. This report describes evaluated results for the shielding performance with modeling three-dimensionally whole structural components including gaps between them in detail. A Monte Carlo calculation method with MCNPX2.2.6 code and LA-150 library was adopted. Streaming and void effects, optimization of shield for cost reduction and optimization of arrangement of structures such as shutters were investigated. The streaming effects were investigated quantitatively by changing the detailed structure of components and gap widths built into the calculation model. Horizontal required shield thicknesses were ranged from about 6.5 m to 7.5 m as a function of neutron beam line angles. A shutter mechanism for a horizontal neutron reflectometer that was directed downward was devised, and it was shown that the shielding performance of the shutter was acceptable. An optimal biological shield configuration was finally determined according to the calculated results. (author)

  8. An accelerator based steady state neutron source

    International Nuclear Information System (INIS)

    Burke, R.J.; Johnson, D.L.

    1985-01-01

    Using high current, c.w. linear accelerator technology, a spallation neutron source can achieve much higher average intensities than existing or proposed pulsed spallation sources. With about 100 mA of 300 MeV protons or deuterons, the Accelerator Based Neutron Research Facility (ABNR) would initially achieve the 10 16 n/cm 2 .s thermal flux goal of the advanced steady state neutron source, and upgrading could provide higher steady state fluxes. The relatively low ion energy compared to other spallation sources has an important impact on R and D requirements as well as capital cost, for which a range of $300-450M is estimated by comparison to other accelerator-based neutron source facilities. The source is similar to a reactor source in most respects. It has some higher energy neutrons but fewer gamma rays, and the moderator region is free of many of the design constraints of a reactor, which helps to implement sources for various neutron energy spectra, many beam tubes, etc. With the development of multi-beam concept and the basis for currents greater than 100 mA that is assumed in the R and D plan, the ABNR would serve many additional uses, such as fusion materials development, production of proton-rich isotopes, and other energy and defense program needs

  9. Conceptual moderator studies for the Spallation Neutron Source short-pulse second target station

    Energy Technology Data Exchange (ETDEWEB)

    Gallmeier, F. X., E-mail: gallmeierfz@ornl.gov; Lu, W.; Riemer, B. W.; Zhao, J. K.; Herwig, K. W.; Robertson, J. L. [Instrument and Source Division, Oak Ridge National Laboratory, P.O. Box 2008, MS6466, Oak Ridge, Tennessee 37831 (United States)

    2016-06-15

    Candidate moderator configurations for a short-pulse second target station (STS) at the Oak Ridge National Laboratory Spallation Neutron Source (SNS) have been identified using a global optimizer framework built around the MCNPX particle transport code. Neutron brightness metrics were selected as the figure-of-merit. We assumed that STS would use one out of six proton pulses produced by an SNS accelerator upgraded to operate at 1.3 GeV proton energy, 2.8 MW power and 60 Hz repetition rate. The simulations indicate that the peak brightness can be increased by a factor of 5 and 2.5 on a per proton pulse basis compared to the SNS first target station for both coupled and decoupled para-hydrogen moderators, respectively. Additional increases by factors of 3 and 2 were demonstrated for coupled and decoupled moderators, respectively, by reducing the area of neutron emission from 100 × 100 mm{sup 2} to 20 × 20 mm{sup 2}. This increase in brightness has the potential to translate to an increase of beam intensity at the instruments’ sample positions even though the total neutron emission of the smaller moderator is less than that of the larger. This is especially true for instruments with small samples (beam dimensions). The increased fluxes in the STS moderators come at accelerated poison and de-coupler burnout and higher radiation-induced material damage rates per unit power, which overall translate into lower moderator lifetimes. A first effort was undertaken to group decoupled moderators into a cluster collectively positioning them at the peak neutron production zone in the target and having a three-port neutron emission scheme that complements that of a cylindrical coupled moderator.

  10. Source Classification Framework for an optimized European wide Emission Control Strategy

    DEFF Research Database (Denmark)

    Lützhøft, Hans-Christian Holten; Donner, Erica; Ledin, Anna

    2011-01-01

    of the PS environmental emission. The SCF also provides a well structured approach for European pollutant source and release classification and management. With further European wide implementation, the SCF has the potential or an optimized ECS in order to obtain good chemical status of European water...

  11. INFLUENCE OF MICROSTRUCTURAL ANISOTROPY ON THE SPALLATION OF 1080 EUTECTOID STEEL

    International Nuclear Information System (INIS)

    GRAY, G.T.; LOPEZ, M.F.

    2001-01-01

    While the influence of crystallographic texture on elastic and plastic constitutive response has seen extensive investigation in recent years, the influence of texture on the dynamic fracture of engineering materials remains less extensively explored. In particular, the influence of anisotropy, both textural and morphological, on the spallation behavior of materials remains poorly quantified. In this study, the spallation response of 1080-steel has been studied as a function of microstructural morphological anisotropy. In this study the influence of elongated MnS stringers, resident within a crystallographically isotropic eutectoid steel, on the spallation response of 1080 steel was investigated. That of a fully-pearlitic 1080 steel loaded to 5 GPa was found to be dominated by the heterogeneous nucleation of damage normal and orthogonal to the MnS stringers. Delamination between the matrix pearlitic microstructure and the MnS stringers was seen to correlate to a significantly lower pull-back signal during transverse loading than to that parallel to the stringer axis. The ''pull-back'' signals and post-spallation metallographic observations are discussed with reference to the influence of microstructural anisotropy on void nucleation and growth

  12. Utilization of Monte Carlo Calculations in Radiation Transport Analyses to Support the Design of the U.S. Spallation Neutron Source (SNS)

    International Nuclear Information System (INIS)

    Johnson, J.O.

    2000-01-01

    The Department of Energy (DOE) has given the Spallation Neutron Source (SNS) project approval to begin Title I design of the proposed facility to be built at Oak Ridge National Laboratory (ORNL) and construction is scheduled to commence in FY01 . The SNS initially will consist of an accelerator system capable of delivering an ∼0.5 microsecond pulse of 1 GeV protons, at a 60 Hz frequency, with 1 MW of beam power, into a single target station. The SNS will eventually be upgraded to a 2 MW facility with two target stations (a 60 Hz station and a 10 Hz station). The radiation transport analysis, which includes the neutronic, shielding, activation, and safety analyses, is critical to the design of an intense high-energy accelerator facility like the proposed SNS, and the Monte Carlo method is the cornerstone of the radiation transport analyses

  13. EXPERIMENTAL ANALYSES OF SPALLATION NEUTRONS GENERATED BY 100 MEV PROTONS AT THE KYOTO UNIVERSITY CRITICAL ASSEMBLY

    Directory of Open Access Journals (Sweden)

    CHEOL HO PYEON

    2013-02-01

    Full Text Available Neutron spectrum analyses of spallation neutrons are conducted in the accelerator-driven system (ADS facility at the Kyoto University Critical Assembly (KUCA. High-energy protons (100 MeV obtained from the fixed field alternating gradient accelerator are injected onto a tungsten target, whereby the spallation neutrons are generated. For neutronic characteristics of spallation neutrons, the reaction rates and the continuous energy distribution of spallation neutrons are measured by the foil activation method and by an organic liquid scintillator, respectively. Numerical calculations are executed by MCNPX with JENDL/HE-2007 and ENDF/B-VI libraries to evaluate the reaction rates of activation foils (bismuth and indium set at the target and the continuous energy distribution of spallation neutrons set in front of the target. For the reaction rates by the foil activation method, the C/E values between the experiments and the calculations are found around a relative difference of 10%, except for some reactions. For continuous energy distribution by the organic liquid scintillator, the spallation neutrons are observed up to 45 MeV. From these results, the neutron spectrum information on the spallation neutrons generated at the target are attained successfully in injecting 100 MeV protons onto the tungsten target.

  14. Laser-irradiated thermodynamic behaviors of spallation and recombination at solid-state interface

    International Nuclear Information System (INIS)

    Lai, H.-Y.; Huang, P.-H.

    2008-01-01

    A microscopic insight of interfacial spallation and recombination behaviors at multilayer thin-film interface induced by incident femtosecond pulsed laser is presented in this paper. Such two different aforementioned behaviors are investigated via the thermodynamic trajectories obtained by using standard Lennard-Jones (L-J) molecular dynamics (MD) simulation. Based on the simulation results, the interfacial damages of multilayer thin film are dominated by a critical threshold that induces an extraordinary expansive dynamics and phase transitions leading to the structural softened and tensile spallation at interface. The critical damage threshold is evaluated at around 8.5 J/m 2 which governs the possible occurrence of two different regimes, i.e. interfacial spallaiton and recombination. In interfacial damage region, quasi-isothermal thermodynamic trajectories can be observed after the interfacial spallation occurs. Moreover, the result of thermodynamic trajectories analyses indicates that, the relaxation of pressure wave may cause the over-heated interfacial zone to reduce volumetric density, thus leading to structural softness and even weaken interfacial structural strength. The crucial effect leading to the phenomenon of low tension spallation is identified

  15. The effect of annealing and desulfurization on oxide spallation of turbine airfoil material

    International Nuclear Information System (INIS)

    Briant, C.L.; Murphy, W.H.; Schaeffer, J.C.

    1995-01-01

    In this paper the authors report a study that addresses the sulfur-induced spallation theory. Previous work has shown that a high temperature anneal in hydrogen desulfurizes nickel-base alloys and greatly improves their resistance to oxide spallation. The authors will show that such an anneal can be applied successfully to a Ni-base airfoil material. Both Auger segregation experiments and chemical analyses show that this anneal desulfurizes the material, at least in the absence of yttrium. However, the results suggest that factors other than desulfurization may be contributing to the improvement in spallation resistance produced by the anneal

  16. Spallation impact analysis of plutonium storage container at K-Area

    International Nuclear Information System (INIS)

    Gong, C.

    2000-01-01

    A 100-pound concrete block falls 55-foot from ceiling spallation upon the top of the 9975 shipping package. This finite element analysis aims to evaluate the dynamic impact from the spallation upon the packaging. The geometric configuration of the packaging is meticulously modeled in detail. However, the drum is eliminated and the fiberboard with radius greater than 5.6 inches is conservatively omitted. The primary containment vessel and 3013 container were not included to simplify the model. The concrete block is modeled as a rigid body. The material properties are conservatively selected. The final results indicate that the secondary containment vessel is intact during this spallation impact. Consequently the primary containment vessel and 3013 container would not experience damage and containment is maintained. The secondary containment vessel protects the primary containment vessel from the dynamic impact. The top fiberboard is compressed from 3.5 inches to 0.875 inches will eventually recover to 1.8 inches according to tests performed at Savannah River Technology Center (SRTC)

  17. Spallation studies at Saturne

    Energy Technology Data Exchange (ETDEWEB)

    Frehaut, J. [Centre d`Etudes de Bruyeres-le-Chatel (France)

    1995-10-01

    SATURNE is a synchrotron accelerator which can deliver particles of momentum P and charge Z up to P/Z = 4 GeV/c. Monokinetic neutron beams of momentum up to 2 GeV/c can be produced. The spallation studies deal with measurements of: (i) differential neutron production cross sections from thin targets, (ii) neutron multiplicity distribution for proton and {sup 3}He induced reactions, and (iii) nuclide production in thin target. Measurements on thick or composite targets are under consideration.

  18. International workshop on cold neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Russell, G.J.; West, C.D. (comps.) (Los Alamos National Lab., NM (United States))

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources.

  19. International workshop on cold neutron sources

    International Nuclear Information System (INIS)

    Russell, G.J.; West, C.D.

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources

  20. Thermal hydraulic studies of lead–bismuth eutectic spallation target of CIADS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kang [Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou, Gansu 730000 (China); University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049 (China); Yang, Yongwei, E-mail: yangyongwei@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou, Gansu 730000 (China); Fan, Deliang; Gao, Yucui [Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou, Gansu 730000 (China)

    2016-08-15

    Highlights: • A 3-D fluid-solid coupling thermal-hydraulic analysis is made for the LBE target. • The reactor and the spallation target is coupled in thermal process. • The heat transfer between the inlet and outlet of the spallation target is taken into account. - Abstract: For the China Initiative Accelerator Driven System (CIADS), it includes three sub-systems: accelerator, spallation target, and sub-critical reactor. The sub-system of spallation target is an important component of the CIADS, which is coupled with the other two sub-systems. The proton beam from the accelerator with an energy of 250 MeV and a current intensity of 2 mA reacts with the nuclei of the lead–bismuth eutectic (LBE), approximately 0.5 MW of heat is deposited in the target zone, which must be removed by circulating the LBE. To reach the goal, we carried out the study by using the Computational Fluid Dynamics (CFD) software FLUENT, to study the flow patterns and temperature distribution in the target zone. For these simulations, the heat transferred from the sub-critical reactor was taken into account. The results indicated that the heat deposited in the target zone can be removed safely.

  1. Application of a controlled swirl in the XT-ADS spallation target

    International Nuclear Information System (INIS)

    Roelofs, F.; Siccama, N. B.; Jeanmart, H.; Tichelen, K. V.; Dierckx, M.; Schuurmans, P.

    2008-01-01

    Within the EUROTRANS project, a windowless spallation target is designed and assessed in which there is direct contact between the proton beamline vacuum from the accelerator and a lead-bismuth free surface flow. Windowless spallation targets, which are designed by SCK.CEN, based on their experience for the MYRRHA concept, are experimentally examined in a well instrumented water-loop at UCL. The design work and the experimental campaign are supported by numerical simulations which are performed at NRG. In the current paper, the application of a mild swirl in the windowless spallation target is assessed. For this purpose, SCK.CEN has designed and fabricate, a spallation target in which a controlled swirl is introduced in the annular feeder of the target nozzle. An experimental programme is performed at UCL in their water-loop to evaluate various swirl strengths in one specific target nozzle design. Prior to the experimental programme, numerical simulations were performed at NRG assessing the influence of various swirl strengths on the free surface behaviour. Experimental and numerical results show that a mild swirl stabilizes the free surface and also indicate that applying a stronger swirl leads to undesired free surface behaviour, ultimately leading to a strong vortex in the central downcomer. (authors)

  2. The test beamline of the European Spallation Source - Instrumentation development and wavelength frame multiplication

    DEFF Research Database (Denmark)

    Woracek, R.; Hofmann, T.; Bulat, M.

    2016-01-01

    which, in contrast, are all providing short neutron pulses. In order to enable the development of methods and technology adapted to this novel type of source well in advance of the first instruments being constructed at ESS, a test beamline (TBL) was designed and built at the BER II research reactor...... wavelength band between 1.6 A and 10 A by a dedicated wavelength frame multiplication (WFM) chopper system. WFM is proposed for several ESS instruments to allow for flexible time-of-flight resolution. Hence, ESS will benefit from the TBL which offers unique possibilities for testing methods and components....... This article describes the main capabilities of the instrument, its performance as experimentally verified during the commissioning, and its relevance to currently starting ESS instrumentation projects....

  3. An attempt to analyse spallation yelds with a four-parameter formula

    International Nuclear Information System (INIS)

    Martins, J.B.; Napoli, V. di; Tavares, O.A.P.; Terranova, M.L.; Portanova, R.

    1978-09-01

    A semiempirical four-parameter formula, following the formalism of Gupta, is proposed in order to systematise spallation yields. A preliminary test made by comparing calculated and experimentally determined cross sections for 2-GeV bremsstrahlung-induced spallation in natural copper gave very encouraging results (a coefficient of reproducibility R = 1.7 or better). The formula will be used for an exhaustive study of intermediate- and high-energy photospallation of medium-weight nuclei [pt

  4. MYRRHA, a multipurpose european ADS for R and D

    International Nuclear Information System (INIS)

    Abderrahim, Hamid Ait

    2003-01-01

    Since 1997 SCKCEN is developing MYRRHA in collaboration with various European laboratories as a multipurpose Accelerator Driven System (ADS) for R and D applications. In its present status, the MYRRHA project is based on the coupling of a (350 MeV 5 mA) LINAC proton accelerator with a liquid Pb-Bi windowless spallation target and a neutron multiplying sub-critical core (SC) cooled by Pb-Bi in a pool type configuration. The spallation target circuit is fully separated from the core coolant as a vacuum tight unit whose internal heat production is removed to the SC pool. For achieving high performance core characteristics, we had to cope with a drastic geometrical constraint during the spallation target design. Indeed, the available central hole in the core four housing the spallation source is limited to roughly 10 cm diameter and that leads to a current density of 130 μA/cm 2 on the hypothetical window target. Therefore, we decided to design the MYRRHA spallation target as a windowless target. The choice of using a 350 MeV protons is also puts a constraint in terms of heat deposition in the target. Indeed, the proton penetration in the Pb-Bi is limited to 13 cm leading to a heat deposition of 1.4 MW in a volume of 0.5 liter. This led us to choose the solution of a liquid Pb-Bi target. The SC has fast neutron spectrum properties and the capability of housing several islands with thermal spectrum regions located in In-Pile Sections (IPS) in or at the periphery of the fast core. The fast core is fuelled with typical fast reactor fuel pins arranged in hexagonal assemblies with an active length of 600 mm. The three central hexagons are housing the spallation module. The MOX fuel has Pu contents of 30% and 20%. The Pu isotopic vector is the one typical resulting from the UO2 LWR reprocessing. The facility is designed to be operated to a large extent thanks to remote handling. Therefore, the design called for a dedicated building containment arrangement. A remote handling

  5. Fragment mass distribution of proton-induced spallation reaction with intermediate energy

    International Nuclear Information System (INIS)

    Fan Sheng; Ye Yanlin; Xu Chuncheng; Chen Tao; Sobolevsky, N.M.

    2000-01-01

    The test of part benchmark of SHIELD code is finished. The fragment cross section and mass distribution and excitation function of the residual nuclei from proton-induced spallation reaction on thin Pb target with intermediate energy have been calculated by SHIELD code. And the results are in good agreement with measured data. The fragment mass distribution of the residual nuclei from proton-induced spallation reaction on thick Pb target with incident energy 1.6 GeV have been simulated

  6. Helium production for 0.8-2.5 GeV proton induced spallation reactions, damage induced in metallic window materials

    International Nuclear Information System (INIS)

    Hilscher, D.; Herbach, C.-M.; Jahnke, U.; Tishchenko, V.; Enke, M.; Filges, D.; Goldenbaum, F.; Neef, R.-D.; Nuenighoff, K.; Paul, N.; Schaal, H.; Sterzenbach, G.; Letourneau, A.; Boehm, A.; Galin, J.; Lott, B.; Peghaire, A.; Pienkowski, L.

    2001-01-01

    Production cross-sections for neutrons and charged particles as well as excitation energy distributions in spallation reactions were measured recently by the NESSI-collaboration and have been employed to test different intra nuclear cascade models and the subsequent evaporation. The INCL/GEMINI code, which describes best the experimental data has been employed to calculate the damage cross-sections in Fe and Ta as well as the He/dpa ratio as a function of proton energy. For the same amount of neutron production in a typical target of a spallation neutron source the proton beam induced radiation damage in an Fe window is shown to decrease almost linearly with proton energy. For heavier materials such as Ta a similar decrease of the radiation damage is found only for energies above about 3 GeV

  7. Validation of MC models of spallation reactions in thin and thick targets in the GeV range

    International Nuclear Information System (INIS)

    Goldenbaum, F.; Filges, D.; Neef, R.D.; Nuenighoff, K.; Paul, N.; Schaal, H.; Sterzenbach, G.; Tietze, A.; Wohlmuther, M.; Galin, J.; Letourneau, A.; Lott, B.; Peghaire, A.; Pienkowski, L.

    2001-01-01

    In the framework of new projects of intense spallation neutron sources an extensive experimental and theoretical effort is devoted to the precise prediction and optimization of the targets and shielding in terms of reaction cross sections, hadronic interaction lengths and usable neutrons produced in proton induced spallation reactions. Strong constraints on Monte-Carlo high energy transport codes are put by a measurement campaign of the NESSI (neutron scintillator and silicon detector) collaboration. While the predictive power of inter- and intra-nuclear cascade models coupled to evaporation codes and transport systems is excellent as far as neutron production in thick targets is concerned, there are considerable discrepancies not only between experiments and models, but also among the different codes themselves when regarding charged particle production in thin targets. In the current contribution a representative validation will be executed and possible deficiencies within the codes are elaborated. (orig.)

  8. Calculation of the spallation product distribution in the evaporation process

    International Nuclear Information System (INIS)

    Nishida, T.; Kanno, I.; Nakahara, Y.; Takada, H.

    1989-01-01

    Some investigations are performed for the calculational model of nuclear spallation reaction in the evaporation process. A new version of a spallation reaction simulation code NUCLEUS has been developed by incorporating the newly revised Uno ampersand Yamada's mass formula and extending the counting region of produced nuclei. The differences between the new and original mass formulas are shown in the comparisons of mass excess values. The distributions of spallation products of a uranium target nucleus bombarded by energy (0.38 - 2.9 GeV) protons have been calculated with the new and original versions of NUCLEUS. In the fission component Uno ampersand Yamada's mass formula reproduces the measured data obtained from thin foil experiments significantly better, especially in the neutron excess side, than the combination of the Cameron's mass formula and the mass table compiled by Wapstra, et al., in the original version of NUCLEUS. Discussions are also made on how the mass-yield distribution of products varies dependent on the level density parameter a characterizing the particle evaporation. 16 refs., 7 figs., 1 tab

  9. Calculation of the spallation product distribution in the evaporation process

    International Nuclear Information System (INIS)

    Nishida, T.; Kanno, I.; Nakahara, Y.; Takada, H.

    1989-01-01

    Some investigations are performed for the calculational model of nuclear spallation reaction in the evaporation process. A new version of a spallation reaction simulation code NUCLEUS has been developed by incorporating the newly revised Uno and Yamada's mass formula and extending the counting region of produced nuclei. The differences between the new and original mass formulas are shown in the comparisons of mass excess values. The distributions of spallation products of a uranium target nucleus bombarded by energy (0.38 - 2.9 GeV) protons have been calculated with the new and original versions of NUCLEUS. In the fission component Uno and Yamada's mass formula reproduces the measured data obtained from thin foil experiments significantly better, especially in the neutron excess side, than the combination of the Cameron's mass formula and the mass table compiled by Wapstra, et al., in the original version of NUCLEUS. Discussions are also made on how the mass-yield distribution of products varies dependent on the level density parameter α characterizing the particle evaporation. (author)

  10. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Mauro, N. A., E-mail: namauro@noctrl.edu [Department of Physics, North Central College, Naperville, Illinois 60540 (United States); Vogt, A. J. [Instrument and Source Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Derendorf, K. S. [Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri 63130 (United States); Johnson, M. L.; Kelton, K. F. [Department of Physics and Institute of Materials Science and Engineering, Washington University, 1 Brookings Drive, St. Louis, Missouri 63130 (United States); Rustan, G. E.; Quirinale, D. G.; Goldman, A. I. [Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Kreyssig, A. [Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Division of Materials Sciences and Engineering, Ames Laboratory, Ames, Iowa 50011 (United States); Lokshin, K. A. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Neuefeind, J. C.; An, Ke [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Wang, Xun-Li [Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Ave., Kowloon (Hong Kong); Egami, T. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Department of Physics and Astronomy, Joint Institute for Neutron Sciences, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2016-01-15

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. However, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elastic and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. To demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr{sub 64}Ni{sub 36} measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample (∼100 mg)

  11. Cosmic ray-induced spallation recoil tracks in meteoritic phosphates: simulation at the CERN synchrocyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Perron, C [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France). Inst. d` Astrophysique; [Museum National d` Histoire Naturelle, 75 - Paris (France)

    1994-12-31

    Annealed meteoritic phosphate crystals have been irradiated by 600 MeV protons to simulate cosmic ray irradiation in space. Spallation recoil tracks were then revealed, which mimic fission tracks, specially when observed in the SEM. A production yield of 9.3 {+-} 2.2 x 10{sup 8} spallation track per proton has been obtained for merrillite, and a substantially lower value (2.5 per proton) for apatite. A nominal production yield in space of 6 tracks per year has been derived, which may be used for a rough estimate of spallation track densities in chondritic merrillite. (Author).

  12. Radiochemical aspects of liquid mercury spallation targets

    CERN Document Server

    Neuhausen, Joerg; Eichler, Bernd; Eller, Martin; Horn, Susanne; Schumann, Dorothea; Stora, Thierry

    2012-01-01

    Liquid metal spallation targets using mercury as target material are used in state-of-the-art high power pulsed neutron sources that have been constructed in the USA and Japan within the last decade. Similar target concepts were also proposed for next generation ISOL, beta-beam and neutrino facilities. A large amount of radioactivity will be induced in the liquid metal during operation caused by the interaction of the target material with the intense proton beam. This radioactivity - carried by a wide range of radioisotopes of all the elements of the periodic table from hydrogen up to thallium - must be considered for the assessment of safe operation and maintenance procedures as well as for a final disposal of the used target material and components. This report presents an overview on chemical investigations performed in our laboratory that deal with the behavior of radionuclides in proton irradiated mercury samples. The solubility of elements in mercury was calculated using thermodynamical data obtained by...

  13. Awareness, Preference, Utilization, and Messaging Research for the Spallation Neutron Source and High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Bryant, Rebecca; Kszos, Lynn A.

    2011-01-01

    Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world, and the SNS is one of the world's most intense pulsed neutron beams. Management of these two resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD commissioned this survey research to develop baseline information regarding awareness of and perceptions about neutron science. Specific areas of investigative interest include the following: (1) awareness levels among those in the scientific community about the two neutron sources that ORNL offers; (2) the level of understanding members of various scientific communities have regarding benefits that neutron scattering techniques offer; and (3) any perceptions that negatively impact utilization of the facilities. NScD leadership identified users of two light sources in North America - the Advanced Photon Source (APS) at Argonne National Laboratory and the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory - as key publics. Given the type of research in which these scientists engage, they would quite likely benefit from including the neutron techniques available at SNS and HFIR among their scientific investigation tools. The objective of the survey of users of APS, NSLS, SNS, and HFIR was to explore awareness of and perceptions regarding SNS and HFIR among those in selected scientific communities. Perceptions of SNS and FHIR will provide a foundation for strategic communication plan development and for developing key educational messages. The survey was conducted in two phases. The first phase included qualitative methods of (1) key stakeholder meetings; (2) online interviews with user administrators of APS and NSLS; and (3) one-on-one interviews

  14. Awareness, Preference, Utilization, and Messaging Research for the Spallation Neutron Source and High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Rebecca [Bryant Research, LLC; Kszos, Lynn A [ORNL

    2011-03-01

    Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world, and the SNS is one of the world's most intense pulsed neutron beams. Management of these two resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD commissioned this survey research to develop baseline information regarding awareness of and perceptions about neutron science. Specific areas of investigative interest include the following: (1) awareness levels among those in the scientific community about the two neutron sources that ORNL offers; (2) the level of understanding members of various scientific communities have regarding benefits that neutron scattering techniques offer; and (3) any perceptions that negatively impact utilization of the facilities. NScD leadership identified users of two light sources in North America - the Advanced Photon Source (APS) at Argonne National Laboratory and the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory - as key publics. Given the type of research in which these scientists engage, they would quite likely benefit from including the neutron techniques available at SNS and HFIR among their scientific investigation tools. The objective of the survey of users of APS, NSLS, SNS, and HFIR was to explore awareness of and perceptions regarding SNS and HFIR among those in selected scientific communities. Perceptions of SNS and FHIR will provide a foundation for strategic communication plan development and for developing key educational messages. The survey was conducted in two phases. The first phase included qualitative methods of (1) key stakeholder meetings; (2) online interviews with user administrators of APS and NSLS; and (3) one

  15. Nanodiamond Foils for H- Stripping to Support the Spallation Neutron Source (SNS) and Related Applications

    Energy Technology Data Exchange (ETDEWEB)

    Vispute, R D [Blue Wave Semiconductors; Ermer, Henry K [Blue Wave Semiconductors; Sinsky, Phillip [Blue Wave Semiconductors; Seiser, Andrew [Blue Wave Semiconductors; Shaw, Robert W [ORNL; Wilson, Leslie L [ORNL; Harris, Gary [Howard University; Piazza, Fabrice [Pontifica Universidad Catolica Madre y Maestra, Dominican Republic

    2013-01-01

    Thin diamond foils are needed in many particle accelerator experiments regarding nuclear and atomic physics, as well as in some interdisciplinary research. Particularly, nanodiamond texture is attractive for this purpose as it possesses a unique combination of diamond properties such as high thermal conductivity, mechanical strength and high radiation hardness; therefore, it is a potential material for energetic ion beam stripper foils. At the ORNL Spallation Neutron Source (SNS), the installed set of foils must be able to survive a nominal five-month operation period, without the need for unscheduled costly shutdowns and repairs. Thus, a single nanodiamond foil about the size of a postage stamp is critical to the entire operation of SNS and similar sources in U.S. laboratories and around the world. We are investigating nanocrystalline, polycrystalline and their admixture films fabricated using a hot filament chemical vapor deposition (HFCVD) system for H- stripping to support the SNS at Oak Ridge National Laboratory. Here we discuss optimization of process variables such as substrate temperature, process gas ratio of H2/Ar/CH4, substrate to filament distance, filament temperature, carburization conditions, and filament geometry to achieve high purity diamond foils on patterned silicon substrates with manageable intrinsic and thermal stresses so that they can be released as free standing foils without curling. An in situ laser reflectance interferometry tool (LRI) is used for monitoring the growth characteristics of the diamond thin film materials. The optimization process has yielded free standing foils with no pinholes. The sp3/sp2 bonds are controlled to optimize electrical resistivity to reduce the possibility of surface charging of the foils. The integrated LRI and HFCVD process provides real time information on the growth of films and can quickly illustrate growth features and control over film thickness. The results are discussed in the light of development

  16. Observation of galactic cosmic ray spallation events from the SoHO mission 20-Year operation of LASCO

    Science.gov (United States)

    Koutchmy, S.; Tavabi, E.; Urtado, O.

    2018-05-01

    A shower of secondary Cosmic Ray (CR) particles is produced at high altitudes in the Earth's atmosphere, so the primordial Galactic Cosmic Rays (GCRs) are never directly measured outside the Earth magnetosphere and atmosphere. They approach the Earth and other planets in the complex pattern of rigidity's dependence, generally excluded by the magnetosphere. GCRs revealed by images of single nuclear reactions also called spallation events are described here. Such an event was seen on Nov. 29, 2015 using a unique LASCO C3 space coronagraph routine image taken during the Solar and Heliospheric Observatory (SoHO) mission observing uninterruptedly at the Lagrangian L1 point. The spallation signature of a GCR identified well outside the Earth's magnetosphere is obtained for the 1st time. The resulting image includes different diverging linear "tracks" of varying intensity, leading to a single pixel; this frame identifies the site on the silicon CCD chip of the coronagraph camera. There was no solar flare reported at that time, nor Coronal Mass Ejection (CME) and no evidence of optical debris around the spacecraft. More examples of smaller CR events have been discovered through the 20 years of continuous observations from SoHO. This is the first spallation event from a CR, recorded outside the Earth's magnetosphere. We evaluate the probable energy of these events suggesting a plausible galactic source.

  17. Design and operation of the wide angular-range chopper spectrometer ARCS at the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Abernathy, D. L.; Stone, M. B.; Loguillo, M. J.; Lucas, M. S.; Delaire, O.; Tang, X.; Lin, J. Y. Y.; Fultz, B.

    2012-01-01

    The wide angular-range chopper spectrometer ARCS at the Spallation Neutron Source (SNS) is optimized to provide a high neutron flux at the sample position with a large solid angle of detector coverage. The instrument incorporates modern neutron instrumentation, such as an elliptically focused neutron guide, high speed magnetic bearing choppers, and a massive array of 3 He linear position sensitive detectors. Novel features of the spectrometer include the use of a large gate valve between the sample and detector vacuum chambers and the placement of the detectors within the vacuum, both of which provide a window-free final flight path to minimize background scattering while allowing rapid changing of the sample and sample environment equipment. ARCS views the SNS decoupled ambient temperature water moderator, using neutrons with incident energy typically in the range from 15 to 1500 meV. This range, coupled with the large detector coverage, allows a wide variety of studies of excitations in condensed matter, such as lattice dynamics and magnetism, in both powder and single-crystal samples. Comparisons of early results to both analytical and Monte Carlo simulation of the instrument performance demonstrate that the instrument is operating as expected and its neutronic performance is understood. ARCS is currently in the SNS user program and continues to improve its scientific productivity by incorporating new instrumentation to increase the range of science covered and improve its effectiveness in data collection.

  18. Topical report on a preconceptual design for the Spallation-Induced Lithium Conversion (SILC) target for the accelerator production of tritium (APT)

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.; Cokinos, D.M.; Czajkowski, C.; Franz, E.M.; Kroeger, P.; Todosow, M.; Youngblood, R.; Zucker, M.

    1993-01-01

    The preconceptual design of the APT Li-Al target system, also referred to as the Spallation-Induced Lithium Conversion (SILC), target system, is summarized in this report. The system has been designed to produce a ''3/8 Goal'' quantity of tritium using the 200-mA, 1.0 GeV proton beam emerging from the LANL-designed LINAC. The SILC target system consists of a beam expander, a heavy-water-cooled lead spallation neutron source assembly surrounded by light-water-cooled Li-Al blankets, a target window, heat removal systems, and related safety systems. The preconceptual design of each of these major components is described. Descriptions are also provided for the target fabrication, tritium extraction, and waste-steam processes. Performance characteristics are presented and discussed

  19. Topical report on a preconceptual design for the Spallation-Induced Lithium Conversion (SILC) target for the accelerator production of tritium (APT)

    Energy Technology Data Exchange (ETDEWEB)

    Van Tuyle, G.J.; Cokinos, D.M.; Czajkowski, C.; Franz, E.M.; Kroeger, P.; Todosow, M.; Youngblood, R.; Zucker, M.

    1993-09-30

    The preconceptual design of the APT Li-Al target system, also referred to as the Spallation-Induced Lithium Conversion (SILC), target system, is summarized in this report. The system has been designed to produce a ``3/8 Goal`` quantity of tritium using the 200-mA, 1.0 GeV proton beam emerging from the LANL-designed LINAC. The SILC target system consists of a beam expander, a heavy-water-cooled lead spallation neutron source assembly surrounded by light-water-cooled Li-Al blankets, a target window, heat removal systems, and related safety systems. The preconceptual design of each of these major components is described. Descriptions are also provided for the target fabrication, tritium extraction, and waste-steam processes. Performance characteristics are presented and discussed.

  20. From BASIS to MIRACLES

    DEFF Research Database (Denmark)

    Tsapatsaris, Nikolaos; Willendrup, Peter Kjær; E. Lechner, Ruep

    2015-01-01

    Results based on virtual instrument models for the first high-flux, high-resolution, spallation based, backscattering spectrometer, BASIS are presented in this paper. These were verified using the Monte Carlo instrument simulation packages McStas and VITESS. Excellent agreement of the neutron count...... are pivotal to the conceptual design of the next generation backscattering spectrometer, MIRACLES at the European Spallation Source....

  1. Preliminary Assessment of the Nuclide Migration from the Activation Zone Around the Proposed Spallation Neutron Source Facility

    Energy Technology Data Exchange (ETDEWEB)

    Dole, L.R.

    1998-09-01

    The purpose of this study is to investigate the potential impacts of migrating radionuclides from the activation zone around the proposed Spallation Neutron Source (SNS). Using conservatively high estimates of the potential inventory of radioactive activation products that could form in the proposed compacted-soil shield berm around an SNS facility on the Oak Ridge Reservation (ORR), a conservative, simplified transport model was used to estimate the potential worst-case concentrations of the 12 long-lived isotopes in the groundwater under a site with the hydrologic characteristics of the ORR. Of the 12, only 3 isotopes showed any potential to exceed the U.S. Nuclear Regulatory Commission (NRC) 10 Code of Federal Regulations (CFR) Part 20 Drinking Water Limits (DWLs). These isotopes were 14C, 22Na, and 54Mn. The latter two activation products have very short half-lives of 2.6 years and 0.854 year, respectively. Therefore, these will decay before reaching an off-site receptor, and they cannot pose off-site hazards. However, for this extremely conservative model, which overestimates the mobility of the contaminant, 14C, which has a 5,730-year half-life, was shown to represent a potential concern in the context of this study's conservative assumptions. This study examines alternative modifications to the SNS shield berm and makes recommendations.

  2. Management of spent sealed radioactive sources in the European Union

    International Nuclear Information System (INIS)

    Cecille, L.; Taylor, D.

    2000-01-01

    For several years, the European Commission (EC) has been active in the field of spent sealed radioactive sources (SSRS) to improve management schemes and to prepare Euratom Directives that will impact on national legislation and regulatory schemes in European Member States (MS). The main safety issues related to the management of SSRS are described and recommendations made are presented. Additional projects are outlined. (author)

  3. Neutron Production by Muon Spallation I: Theory

    International Nuclear Information System (INIS)

    Luu, T; Hagmann, C

    2006-01-01

    We describe the physics and codes developed in the Muon Physics Package. This package is a self-contained Fortran90 module that is intended to be used with the Monte Carlo package MCNPX. We calculate simulated energy spectra, multiplicities, and angular distributions of direct neutrons and pions from muon spallation

  4. Big-bang nucleosynthesis with a long-lived CHAMP including He4 spallation process

    Science.gov (United States)

    Yamanaka, Masato; Jittoh, Toshifumi; Kohri, Kazunori; Koike, Masafumi; Sato, Joe; Sugai, Kenichi; Yazaki, Koichi

    2014-03-01

    We propose helium-4 spallation processes induced by long-lived stau in supersymmetric standard models, and investigate an impact of the processes on light elements abundances. We show that, as long as the phase space of helium-4 spallation processes is open, they are more important than stau-catalyzed fusion and hence constrain the stau property. This talk is based on the work of ref. [1].

  5. CFD Study of the Active Part of the HYPER LBE Spallation Target System

    International Nuclear Information System (INIS)

    Cho, Chung-ho; Tak, Nam-il; Lee, Yong-bum; Choi, Jae-Hyuk

    2007-01-01

    In an accelerator driven system (ADS), a high-energy proton beam impinges on a heavy metal target to produce spallation neutrons that are multiplied in a subcritical blanket. Therefore, the spallation target is one of the most important units of an ADS. A beam power of 15-25 MW is required for an operation of the HYPER system. But, the design of a 20 MW spallation target is very challenging because more than 60% of a beam power is deposited as heat in a small volume of a target system. LBE is preferred as the target material due to its high neutron production rate, effective heat removal, low melting point and vapor pressure, low neutron absorption and good radiation damage properties. In addition, it can be used simultaneously as a reactor coolant. Single hemi-spherical beam window is considered for the HYPER target. The beam window is a thin physical barrier to separate the vacuum space from the LBE. It is exposed to high thermal and irradiation loads, which affect its life time. The integrity of the beam window is crucial for a safe operation of the HYPER, for preventing the penetration of the radioactive spallation products into the accelerator island. Therefore, a sufficient cooling capability of the beam window is one of the key issues of the target design. In the previous study, a series of parametric thermal and mechanical studies were made for the optimization of the HYPER target. The optimized target has a 0.2 cm thick beam window with a diameter of 35 cm. Also, a 30 cm wide proton beam with a uniform beam distribution should be adopted for the spallation target of the HYPER. A dual injection tube is adopted to economize the LBE flow in the primary system. This paper presents the numerical studies on the optimized spallation target system. Several advanced turbulence models with different grid structures are investigated by using a commercial computational fluid dynamics (CFD) code CFX 5.7.1

  6. Spallation Neutron Spectrum on a Massive Lead/Paraffin Target Irradiated with 1 GeV Protons

    CERN Document Server

    Adam, J; Barashenkov, V S; Brandt, R; Golovatiouk, V M; Kalinnikov, V G; Katovsky, K; Krivopustov, M I; Kumar, V; Kumawat, H; Odoj, R; Pronskikh, V S; Solnyshkin, A A; Stegailov, V I; Tsoupko-Sitnikov, V M; Westmeier, W

    2004-01-01

    The spectra of gamma-ray emitted by decaying residual nuclei, produced by spallation neutrons with (n, xn), (n,xnyp), (n,p), (n,gamma) reactions in activation threshold detectors - namely, ^{209}Bi, ^{197}Au, ^{59}Co, ^{115}In, ^{232}Th, were measured in the Laboratory of Nuclear Problems (LNP), JINR, Dubna, Russia. Spallation neutrons were generated by bombarding a 20 cm long cylindrical lead target, 8 cm in diameter, surrounded by a 6 cm thick layer of paraffin moderator, with a 1 GeV proton beam from the Nuclotron accelerator. Reaction rates and spallation neutron spectrum were measured and compared with CASCADE code calculations.

  7. Legal Framework of Renewable Energy Sources in the European Union

    OpenAIRE

    Milto, Yuliya

    2017-01-01

    The thesis analyses the following issues: historical development of energy and renewable energy sources legislation in the European Economic Community (EEC): the role of energy crisis of 1973 – 1974 in development of renewable energy legislation; international cooperation in the field of energy and renewable energy between EEC and third countries and membership of the EEC in international energy organizations dealing with energy; the European Union renewable energy policy and legal fra...

  8. Study of spallation neutrons for the transmutation of long-lived nuclear waste

    International Nuclear Information System (INIS)

    Brochard, F.; Boyard, J.L.; Duchazeaubeneix, J.C.; Durand, J.M.; Faivre, J.C.; Leray, S.; Milleret, G.; Plouin, F.; Whittal, D.M.; Beau, M.; Crespin, S.; Frehaut, J.; Lochard, J.P.; Martinez, E.; Patin, Y.; Petitbon, E.; Sigaud, J.; Legrain, R.; Lepretre, A.; Terrien, Y.; Bacha, F.; Maillard, J.; Silva, J.

    1994-01-01

    With the renewed interest in accelerator-driven systems to transmute long-lived nuclear waste or to produce energy, new requirements for intermediate-energy nuclear data are now emerging. In all these systems, neutrons are produced by spallation reactions induced by around 1 GeV protons on a heavy target. These neutrons then drive a sub-critical blanket in which wastes are burned or energy is produced. A good knowledge of the spallation process (energy and angular distribution of the neutrons) is necessary to design and optimize the target-blanket system: for instance, to determine the best choices of beam energy, of composition and geometry of the target, in order to have the maximum neutron yield at the lowest cost, or to minimize the back-scattering of neutrons to the accelerator. A programme aimed at measuring the double differential cross-sections for the production of spallation neutrons induced by protons and deuterons GeV beams on different targets, is beginning at SATURNE. (authors). 3 refs., 3 figs

  9. The spallation in reverse kinematics: what for a coincidence measurement?; La spallation en cinematique inverse: pourquoi faire une mesure en coincidence?

    Energy Technology Data Exchange (ETDEWEB)

    Ducret, J.E

    2006-07-15

    The Spaladin installation has been designed to study spallation reactions in reverse kinematics. Furthermore, the heavy and light fragments are detected by coincidence which allows us to get an instantaneous picture of the reaction at a level of accuracy better than that obtained through inclusive measurement. The first part is dedicated to the theoretical description of the different mechanisms involved in the spallation reactions. In the second part we describe the Spaladin installation and report some results on the reaction: Fe{sup 56} + p at an energy of 1 GeV/nucleon. In the third part we expose the performance of the installation through its simulation with the Geant-IV model. We present a study about the sensitivity of the Spaladin installation to theoretical predictions. The fourth part is dedicated to the future experiments that will be performed with the Spaladin installation. (A.C.)

  10. Lead-Bismuth-Eutectic Spallation Neutron Source for Nuclear Transmuter

    International Nuclear Information System (INIS)

    Gohar, Y.; Herceg, J.; Krajtl, L.; Micklich, B.; Pointer, D.; Saiveau, J.; Sofu, T.; Finck, P.

    2002-01-01

    A lead-bismuth eutectic (LBE) spallation target design concept has been developed for the subcritical multiplier (SCM) design of the accelerator-driven test facility (ADTF). The design is based on a coaxial geometrical configuration, which has been carefully analyzed and designed to achieve an optimum performance. The target design description, the results from the parametric studies, and the design analyses including neutronics, heat transfer, and hydraulics analyses are given in this paper. A detailed MCNPX geometrical model for the target has been developed to generate heating rates and nuclear responses in the structural material for the design process. The beam has a uniform distribution of 600 MeV protons and 5-MW total power. A small LBE buffer is optimized to reduce the irradiation damage in the SCM fuel elements from the scatter protons and the high-energy neutrons, to maximize the neutron yield to the SCM operation, and to provide inlet and outlet manifolds for the LBE coolant. A special attention has been given to the target window design to enhance its lifetime. The window volumetric heating is 766 W/cm 3 relative to 750 W/cm 3 in LBE for a 40-μA/cm 2 current density. The results show that the nuclear heating from the proton beam diminishes at about 32 cm along the beam axis in the LBE target material. The neutron contribution to the atomic displacement is in the range of 94 to ∼100% for the structure material outside the proton beam path. In the beam window, the neutron contribution is ∼74% and the proton beam is responsible for more than 95% of the total gas production. The proton contribution to the gas production vanishes outside the beam path. The LBE average velocity is ∼2 m/s. The heat transfer and the hydraulics analyses have been iterated to reduce the maximum temperature and the thermal stress level in the target window to enhance its operating life. (authors)

  11. Thermal shock analysis of liquid-mercury spallation target

    CERN Document Server

    Ishikura, S; Futakawa, M; Hino, R; Date, H

    2002-01-01

    The developments of the neutron scattering facilities are carried out under the high-intensity proton accelerator project promoted by JAERI and KEK. To estimate the structural integrity of the heavy liquid-metal (Hg) target used as a spallation neutron source in a MW-class neutron scattering facility, dynamic stress behavior due to the incident of a 1 MW-pulsed proton beam was analyzed by using FEM code. Two-type target containers with semi-cylindrical type and flat-plate type window were used as models for analyses. As a result, it is confirmed that the stress (pressure wave) generated by dynamic thermal shock becomes the largest at the center of window, and the flat-plate type window is more advantageous from the structural viewpoint than the semi-cylindrical type window. It has been understood that the stress generated in the window by the pressure wave can be treated as the secondary stress. (author)

  12. Measured radionuclide production from copper, gold and lead spallation targets

    Energy Technology Data Exchange (ETDEWEB)

    Parish, T.A.; Belian, A.P. [Texas A & M Univ., College Station, TX (United States)

    1995-10-01

    Spallation target materials are chosen so as to produce large numbers of neutrons while at the same time avoiding the creation of long-lived radioactive wastes. While there has been considerable research to determine the number of neutrons produced per incident particle for various target materials, there has been less effort to precisely quantify the types and amounts of radionuclides produced. Accurate knowledge of the radioactive species produced by spallation reactions is important for specifying waste disposal criteria for targets. In order to verify the production rates calculated by LAHET, a study has been conducted using the Texas A&M University (TAMU) Cyclotron to measure radionuclide yields from copper, gold, and lead targets.

  13. Reactor Neutron Sources

    International Nuclear Information System (INIS)

    Aksenov, V.L.

    1994-01-01

    The present status and the prospects for development of reactor neutron sources for neutron scattering research in the world are considered. The fields of application of neutron scattering relative to synchrotron radiation, the creation stages of reactors (steady state and pulsed) and their position in comparison with spallation neutron sources at present and in the foreseen future are discussed. (author). 15 refs.; 8 figs.; 3 tabs

  14. Microstructural probing of ferritic/martensitic steels using internal transmutation-based positron source

    Energy Technology Data Exchange (ETDEWEB)

    Krsjak, Vladimir, E-mail: vladimir.krsjak@psi.ch; Dai, Yong

    2015-10-15

    This paper presents the use of an internal {sup 44}Ti/{sup 44}Sc radioisotope source for a direct microstructural characterization of ferritic/martensitic (f/m) steels after irradiation in targets of spallation neutron sources. Gamma spectroscopy measurements show a production of ∼1MBq of {sup 44}Ti per 1 g of f/m steels irradiated at 1 dpa (displaced per atom) in the mixed proton–neutron spectrum at the Swiss spallation neutron source (SINQ). In the decay chain {sup 44}Ti → {sup 44}Sc → {sup 44}Ca, positrons are produced together with prompt gamma rays which enable the application of different positron annihilation spectroscopy (PAS) analyses, including lifetime and Doppler broadening spectroscopy. Due to the high production yield, long half-life and relatively high energy of positrons of {sup 44}Ti, this methodology opens up new potential for simple, effective and inexpensive characterization of radiation induced defects in f/m steels irradiated in a spallation target.

  15. Microstructural probing of ferritic/martensitic steels using internal transmutation-based positron source

    Science.gov (United States)

    Krsjak, Vladimir; Dai, Yong

    2015-10-01

    This paper presents the use of an internal 44Ti/44Sc radioisotope source for a direct microstructural characterization of ferritic/martensitic (f/m) steels after irradiation in targets of spallation neutron sources. Gamma spectroscopy measurements show a production of ∼1MBq of 44Ti per 1 g of f/m steels irradiated at 1 dpa (displaced per atom) in the mixed proton-neutron spectrum at the Swiss spallation neutron source (SINQ). In the decay chain 44Ti → 44Sc → 44Ca, positrons are produced together with prompt gamma rays which enable the application of different positron annihilation spectroscopy (PAS) analyses, including lifetime and Doppler broadening spectroscopy. Due to the high production yield, long half-life and relatively high energy of positrons of 44Ti, this methodology opens up new potential for simple, effective and inexpensive characterization of radiation induced defects in f/m steels irradiated in a spallation target.

  16. Study of particle transport in a high power spallation target for an accelerator-driven transmutation system

    International Nuclear Information System (INIS)

    Shetty, Nikhil Vittal

    2013-01-01

    AGATE is a project envisaged to demonstrate the feasibility of transmutation in a gas (helium) cooled accelerator-driven system using solid spallation target. Development of the spallation target module and assessing its safety aspects are studied in this work. According to the AGATE concept parameters, 600 MeV protons are delivered on to the segmented tungsten spallation target. The Monte Carlo toolkit Geant4 has been used in the simulation of particle transport. Binary cascade is used to simulate intra-nuclear cascades, along with the G4NDL neutron data library for low energy neutrons (<20 MeV).

  17. Study of particle transport in a high power spallation target for an accelerator-driven transmutation system

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, Nikhil Vittal

    2013-01-31

    AGATE is a project envisaged to demonstrate the feasibility of transmutation in a gas (helium) cooled accelerator-driven system using solid spallation target. Development of the spallation target module and assessing its safety aspects are studied in this work. According to the AGATE concept parameters, 600 MeV protons are delivered on to the segmented tungsten spallation target. The Monte Carlo toolkit Geant4 has been used in the simulation of particle transport. Binary cascade is used to simulate intra-nuclear cascades, along with the G4NDL neutron data library for low energy neutrons (<20 MeV).

  18. Measurement of nuclide cross-sections of spallation residues in 1 A GeV 238U + proton collisions

    International Nuclear Information System (INIS)

    Taieb, J.; Tassan-Got, L.; Bernas, M.; Mustapha, B.; Rejmund, F.; Stephan, C.; Schmidt, K.H.; Armbruster, P.; Benlliure, J.; Enqvist, T.; Boudard, A.; Legrain, R.; Leray, S.; Volant, C.; Wlazlo, W.; Casarejos, E.; Czajkowski, S.; Pravikoff, M.

    2003-02-01

    The production of heavy nuclides from the spallation-evaporation reaction of 238 U induced by 1 GeV protons was studied in inverse kinematics. The evaporation residues from tungsten to uranium were identified in-flight in mass and atomic number. Their production cross-sections and their momentum distributions were determined. The data are compared with empirical systematics. A comparison with previous results from the spallation of 208 Pb and 197 Au reveals the strong influence of fission in the spallation of 238 U. (orig.)

  19. Stress and adhesion of chromia-rich scales on ferritic stainless steels in relation with spallation

    Directory of Open Access Journals (Sweden)

    A. Galerie

    2004-03-01

    Full Text Available The relation between chromia scale spallation during oxidation or cooling down of ferritic stainless steels is generally discussed in terms of mechanical stresses induced by volume changes or differential thermal expansion. In the present paper, growth and thermal stress measurements in scales grown on different ferritic steel grades have shown that the main stress accumulation occurs during isothermal scale growth and that thermal stresses are of minor importance. However, when spallation occurs, it is always during cooling down. Steel-oxide interface undulation seems to play a major role at this stage, thus relating spallation to the metal mechanical properties, thickness and surface preparation. A major influence on spallation of the minor stabilizing elements of the steels was observed which could not be related to any difference in stress state. Therefore, an original inverted blister test was developed to derive quantitative values of the metal-oxide adhesion energy. These values clearly confirmed that this parameter was influenced by scale thickness and by minor additions, titanium greatly increasing adhesion whereas niobium decreased it.

  20. Recent UCN source developments at Los Alamos

    International Nuclear Information System (INIS)

    Seestrom, S.J.; Anaya, J.M.; Bowles, T.J.

    1998-01-01

    The most intense sources of ultra cold neutrons (UCN) have bee built at reactors where the high average thermal neutron flux can overcome the low UCN production rate to achieve usable densities of UCN. At spallation neutron sources the average flux available is much lower than at a reactor, though the peak flux can be comparable or higher. The authors have built a UCN source that attempts to take advantage of the high peak flux available at the short pulse spallation neutron source at the Los Alamos Neutron Science Center (LANSCE) to generate a useful number of UCN. In the source UCN are produced by Doppler-shifted Bragg scattering of neutrons to convert 400-m/s neutrons down into the UCN regime. This source was initially tested in 1996 and various improvements were made based on the results of the 1996 running. These improvements were implemented and tested in 1997. In sections 2 and 3 they discuss the improvements that have been made and the resulting source performance. Recently an even more interesting concept was put forward by Serebrov et al. This involves combining a solid Deuterium UCN source, previously studied by Serebrov et al., with a pulsed spallation source to achieve world record UCN densities. They have initiated a program of calculations and measurements aimed at verifying the solid Deuterium UCN source concept. The approach has been to develop an analytical capability, combine with Monte Carlo calculations of neutron production, and perform benchmark experiments to verify the validity of the calculations. Based on the calculations and measurements they plan to test a modified version of the Serebrov UCN factory. They estimate that they could produce over 1,000 UCN/cc in a 15 liter volume, using 1 microamp of 800 MeV protons for two seconds every 500 seconds. They will discuss the result UCN production measurements in section 4

  1. Optimization of $^{178m2}$/Hf isomer production in spallation reactions at projectile energies up to 100 MeV using STAPRE and ALICE code simulations

    CERN Document Server

    Kirischuk, V I; Khomenkov, V P; Strilchuk, N V; Zheltonozhskij, V A

    2004-01-01

    /sup 178m2/Hf isomer production in different spallation reactions with protons, alpha particles and neutrons at projectile energies up to 100 MeV has been analyzed using both STAPRE and ALICE code simulations. The STAPRE code was used to calculate the isomeric ratios, while the ALICE code was used to simulate the excitation functions of the respective ground states. A number of spallation reactions have been compared taking into account not only /sup 178m2 /Hf isomer productivity but also, first, the isomeric ratios calculated by the STAPRE code; second, the accumulation of the most undesirable Hf isotopes and isomers, such as /sup 172/Hf, /sup 175 /Hf, and /sup 179m/Hf; and, third, the production of other admixtures and by-products that could degrade the quality of the produced /sup 178m2/Hf isomer sources, including all stable Hf isotopes as well. Possibilities and ways of optimizing /sup 178m2/Hf isomer production in spallation reactions at projectile energies up to 100 MeV are discussed. This can be consi...

  2. Big-bang nucleosynthesis with a long-lived charged massive particle including He4 spallation processes

    Science.gov (United States)

    Jittoh, Toshifumi; Kohri, Kazunori; Koike, Masafumi; Sato, Joe; Sugai, Kenichi; Yamanaka, Masato; Yazaki, Koichi

    2011-08-01

    We propose helium-4 spallation processes induced by long-lived stau in supersymmetric standard models, and investigate an impact of the processes on light elements abundances. We show that, as long as the phase space of helium-4 spallation processes is open, they are more important than stau-catalyzed fusion and hence constrain the stau property.

  3. Design, status and first operations of the spallation neutron source polyphase resonant converter modulator system

    Energy Technology Data Exchange (ETDEWEB)

    Reass, W. A. (William A.); Apgar, S. E. (Sean E.); Baca, D. M. (David M.); Doss, James D.; Gonzales, J. (Jacqueline); Gribble, R. F. (Robert F.); Hardek, T. W. (Thomas W.); Lynch, M. T. (Michael T.); Rees, D. E. (Daniel E.); Tallerico, P. J. (Paul J.); Trujillo, P. B. (Pete B.); Anderson, D. E. (David E.); Heidenreich, D. A. (Dale A.); Hicks, J. D. (Jim D.); Leontiev, V. N.

    2003-01-01

    The Spallation Neutron Source (SNS) is a new 1.4 MW average power beam, 1 GeV accelerator being built at Oak Ridge National Laboratory. The accelerator requires 15 converter-modulator stations each providing between 9 and 11 MW pulses with up to a 1 .I MW average power. The converter-modulator can be described as a resonant 20 kHz polyphase boost inverter. Each converter modulator derives its buss voltage from a standard substation cast-core transformer. Each substation is followed by an SCR pre-regulator to accommodate voltage changes from no load to full load, in addition to providing a soft-start function. Energy storage is provided by self-clearing metallized hazy polypropylene traction capacitors. These capacitors do not fail short, but clear any internal anomaly. Three 'H-Bridge' IGBT transistor networks are used to generate the polyphase 20 kHz transformer primary drive waveforms. The 20 kHz drive waveforms are time-gated to generate the desired klystron pulse width. Pulse width modulation of the individual 20 lcHz pulses is utilized to provide regulated output waveforms with DSP based adaptive feedforward and feedback techniques. The boost transformer design utilizes nanocrystalline alloy that provides low core loss at design flux levels and switching frequencies. Capacitors are used on the transformer secondary networks to resonate the leakage inductance. The transformers are wound for a specific leakage inductance, not turns ratio. This design technique generates multiple secondary volts per turn as compared to the primary. With the appropriate tuning conditions, switching losses are minimized. The resonant topology has the added benefit of being deQed in a klystron fault condition, with little energy deposited in the arc. This obviates the need of crowbars or other related networks. A review of these design parameters, operational performance, production status, and OWL installation and performance to date will be presented.

  4. Design, status and first operations of the spallation neutron source polyphase resonant converter modulator system

    International Nuclear Information System (INIS)

    Reass, W.A.; Apgar, S.E.; Baca, D.M.; Doss, James D.; Gonzales, J.; Gribble, R.F.; Hardek, T.W.; Lynch, M.T.; Rees, D.E.; Tallerico, P.J.; Trujillo, P.B.; Anderson, D.E.; Heidenreich, D.A.; Hicks, J.D.; Leontiev, V.N.

    2003-01-01

    The Spallation Neutron Source (SNS) is a new 1.4 MW average power beam, 1 GeV accelerator being built at Oak Ridge National Laboratory. The accelerator requires 15 converter-modulator stations each providing between 9 and 11 MW pulses with up to a 1 .I MW average power. The converter-modulator can be described as a resonant 20 kHz polyphase boost inverter. Each converter modulator derives its buss voltage from a standard substation cast-core transformer. Each substation is followed by an SCR pre-regulator to accommodate voltage changes from no load to full load, in addition to providing a soft-start function. Energy storage is provided by self-clearing metallized hazy polypropylene traction capacitors. These capacitors do not fail short, but clear any internal anomaly. Three 'H-Bridge' IGBT transistor networks are used to generate the polyphase 20 kHz transformer primary drive waveforms. The 20 kHz drive waveforms are time-gated to generate the desired klystron pulse width. Pulse width modulation of the individual 20 lcHz pulses is utilized to provide regulated output waveforms with DSP based adaptive feedforward and feedback techniques. The boost transformer design utilizes nanocrystalline alloy that provides low core loss at design flux levels and switching frequencies. Capacitors are used on the transformer secondary networks to resonate the leakage inductance. The transformers are wound for a specific leakage inductance, not turns ratio. This design technique generates multiple secondary volts per turn as compared to the primary. With the appropriate tuning conditions, switching losses are minimized. The resonant topology has the added benefit of being deQed in a klystron fault condition, with little energy deposited in the arc. This obviates the need of crowbars or other related networks. A review of these design parameters, operational performance, production status, and OWL installation and performance to date will be presented.

  5. Experimental studies of spallation on thin target; Etudes experimentales de la spallation en cible mince

    Energy Technology Data Exchange (ETDEWEB)

    Borne, F.; Crespin, S.; Drake, D.; Frehaut, J.; Ledoux, X.; Lochard, J.P.; Martinez, E.; Patin, Y.; Petibon, E.; Pras, Ph. [CEA/DAM-Ile de France, Dept. de Physique Theorique et Appliquee, DPTA, 91 - Bruyeres-Le-Chatel (France); Boudard, A.; Legrain, R.; Leray, S.; Terrien, Y. [CEA/Saclay, Dept. d' Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l' Instrumentation Associee, DAPNIA, 91 - Gif-sur-Yvette (France); Bouyer, P.; Brochard, F.; Duchazeaubeneix, J.C.; Durand, J.M.; Meigo, S.I.; Milleret, G.; Thun, J.; Whittal, D.M.; Wlazlo, W. [Laboratoire National Saturne - Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France); Lebrun, C.; Lecolley, J.F.; Lecolley, F.R.; Lefebvres, F.; Louvel, M.; Varignon, C. [Caen Univ., Lab. de Physique Corpusculaire, 14 (France); Menard, S. [Institut de Physique Nucleaire, IN2P3/CNRS, 91 - Orsay (France); Stugge, L. [Institut de Recherches Subatomiques, IReS, 67 - Strasbourg (France); Hanappe, F. [IIM, Bruxelles (Belgium)

    2000-07-01

    Angular distribution of spallation neutrons induced by protons (0.8, 1.2 and 1.6 GeV) and deuterons (0.8 and 1.6 GeV) beams on various thin targets have been measured at SATURNE (CEA Saclay/France) with two complementary experimental techniques: the time-of-flight measurement with tagged incident protons for low energy neutrons (2-400 MeV) and the use of a hydrogen converter associated are analysed, interpreted and finally compared with theoretical previsions of simulation codes using the TIERCE system including the intranuclear cascade codes of BERTINI and CUGNON. (authors)

  6. Summary of Adsorption/Desorption Experiments for the European Database on Indoor Air Pollution Sources in Buildings

    DEFF Research Database (Denmark)

    Kjær, Ulla Dorte; Tirkkonen, T.

    1996-01-01

    Experimental data for adsorption/desorption in building materials. Contribution to the European Database on Indoor Air Pollution Sources in buildings.......Experimental data for adsorption/desorption in building materials. Contribution to the European Database on Indoor Air Pollution Sources in buildings....

  7. Conceptual design of a rapid-cycling synchrotron for the KFA-Juelich spallation neutron source: working papers

    International Nuclear Information System (INIS)

    1983-01-01

    An accelerator group was established at ANL by the request of KFA-Juelich to carry out a conceptual design study and cost estimate for a rapid-cycling synchrotron as a possible first stage program on spallation neutron sources at KFA-Juelich. This set of notes is the individual notes which form the basis of the final report under this proposal prepared in January 1983. The topics covered include: SNQ Synchrotron Lattice-I; injection and extraction orbit; extraction from SNQ-SRA; SRA injection; capture and acceleration considerations in the SNQ-SRA; longitudinal coupling impedance; power supplies for SNQ synchrotron proposals; space charge limits in the SNQ-SRA; error analysis; SNQ-SRA ring magnets preliminary designs and cost; summary of CERN booster 4-ring arrangement; V-lattices for SNQ-SRA and extraction from the V-lattices; rf parameters for capture, acceleration and extraction; some parameters of the SNQ-SRA injector system; Keil-Schnell criterion; risetime of longitudinal resistive wall instability; beam scrapers; a design of the vacuum system; some aspects of vacuum consideration for SNQ-SRA; choice working points; ring magnet power supplies for shaped extaction of 1.1 GeV SNQ; ring magnet design and costs; tune shift due to the fringing field of the quadrupoles; coherent instability due to ions in the residual gas; transverse stabilization of bunched beams; rf acceleration system; injection into the SRA; Landau damping to get transverse stability; chromaticity and amplitude dependent tune controls in the SNQ-SRA; conversion of the SNQ-SRA to a compressor ring; comments on beam loss; summary of longitudinal stability study and transverse stability study for the SNQ-SRA; and the beam stay clear regions of the SNQ-SRA

  8. Studies of short-lived products of spallation fission reactions at TRIUMF

    CERN Document Server

    Bischoff, G; D'Auria, J M; Dautet, H; Lee, J K P; Pate, B D; Wiesehahn, W

    1976-01-01

    The gas-jet recoil transport technique has been used to transport products from spallation and fission reactions from a target chamber to a shielded location for nuclear spectroscopic studies. These involve X- beta - gamma coincidence measurements and (shortly) time- of-flight mass spectroscopy. It has been deduced that the proton beam at present intensities has no appreciable effect on the ability of ethylene and other cluster-producing gases to transport radioactivity. Preliminary results will be presented for shortlived fission products from uranium, and for spallation products of iodine and argon. The latter were obtained from the bombardment of gas and aerosol targets mixed with the transporting gas in the target chamber, which appears to be a generally useful technique.

  9. Moisture-Induced TBC Spallation on Turbine Blade Samples

    Science.gov (United States)

    Smialek, James

    2011-01-01

    Delayed failure of TBCs is a widely observed laboratory phenomenon, although many of the early observations went unreported. The weekend effect or DeskTop Spallation (DTS) is characterized by initial survival of a TBC after accelerated laboratory thermal cycling, then failure by exposure to ambient humidity or water. Once initiated, failure can occur quite dramatically in less than a second. To this end, the water drop test and digital video recordings have become useful techniques in studies at NASA (Smialek, Zhu, Cuy), DECHMA (Rudolphi, Renusch, Schuetze), and CNRS Toulouse/SNECMA (Deneux, Cadoret, Hervier, Monceau). In the present study the results for a commercial turbine blade, with a standard EB-PVD 7YSZ TBC top coat and Pt-aluminide diffusion bond coat are reported. Cut sections were intermittently oxidized at 1100, 1150, and 1200 C and monitored by weight change and visual appearance. Failures were distributed widely over a 5-100 hr time range, depending on temperature. At some opportune times, failure was captured by video recording, documenting the appearance and speed of the moisture-induced spallation process. Failure interfaces exhibited alumina scale grains, decorated with Ta-rich oxide particles, and alumina inclusions as islands and streamers. The phenomenon is thus rooted in moisture-induced delayed spallation (MIDS) of the alumina scale formed on the bond coat. In that regard, many studies show the susceptibility of alumina scales to moisture, as long as high strain energy and a partially exposed interface exist. The latter conditions result from severe cyclic oxidation conditions, which produce a highly stressed and partially damaged scale. In one model, it has been proposed that moisture reacts with aluminum in the bond coat to release hydrogen atoms that embrittle the interface. A negative synergistic effect with interfacial sulfur is also invoked.

  10. Spallation neutron spectra measured at Saturne

    International Nuclear Information System (INIS)

    Boyard, J.L.; Bouyer, P.; Brochard, F.; Duchazeaubeneix, J.C.; Durand, J.M.; Leray, S.; Milleret, G.; Plouin, F.; Uematsu, M.; Whittal, D.M.; Martinez, E.; Beau, M.; Boue, F.; Crespin, S.; Drake, D.; Frehaut, J.; Lochard, J.P.; Patin, Y.; Petibon, E.; Legrain, R.; Terrien, Y.

    1995-01-01

    Good knowledge of spallation reactions is necessary to design accelerator-based transmutation systems. An extensive program has begun at Saturne to measure energy and angular distributions of neutrons produced by incident protons or deuterons of up to 2 GeV on several thin targets. Our measurements will extend the available data to higher energies than the present limit of 800 MeV enabling improvements to the codes which are sometimes in poor agreement with the data. (Authors). 7 refs., 7 figs

  11. Safety analysis and lay-out aspects of shieldings against particle radiation at the example of spallation facilities in the megawatt range; Sicherheitstechnische Analyse und Auslegungsaspekte von Abschirmungen gegen Teilchenstrahlung am Beispiel von Spallationsanlagen im Megawatt Bereich

    Energy Technology Data Exchange (ETDEWEB)

    Hanslik, R.

    2006-08-15

    This paper discusses the shielding of particle radiation from high current accelerators, spallation neutron sources and so called ADS-facilities (Accelerator Driven Systems). ADS-facilities are expected to gain importance in the future for transmutation of long-lived isotopes from fission reactors as well as for energy production. In this paper physical properties of the radiation as well as safety relevant requirements and corresponding shielding concepts are discussed. New concepts for the layout and design of such shielding are presented. Focal point of this work will be the fundamental difference between conventional fission reactor shielding and the safety relevant issues of shielding from high-energy radiation. Key point of this paper is the safety assessment of shielding issues of high current accelerators, spallation targets and ADS-blanket systems as well as neutron scattering instruments at spallation neutron sources. Safety relevant shielding requirements are presented and discussed. For the layout and design of the shielding for spallation sources computer base calculations methods are used. A discussion and comparison of the most important methods like semi-empirical, deterministic and stochastic codes are presented. Another key point within the presented paper is the discussion of shielding materials and their shielding efficiency concerning different types of radiation. The use of recycling material, as a cost efficient solution, is discussed. Based on the conducted analysis, flowcharts for a systematic layout and design of adequate shielding for targets and accelerators have been developed and are discussed in this paper. By use of these flowcharts layout and engineering design of future ADS-facilities can be performed. (orig.)

  12. Design and verification experiments for the windowless spallation target of the ADS prototype Myrrha

    International Nuclear Information System (INIS)

    Kantrien Van, Tichelen; Kupschus, P.; Arien, B.; Ait Abderrahim, H.

    2003-01-01

    SCKxCEN, the Belgian Nuclear Research Centre, works on the conceptual design and basic engineering of a multipurpose ADS for R and D, dubbed MYRRHA, a small high-performance irradiation facility with fast neutron fluxes up to 1.10 15 n/cm 2 /s to start operation in about 2010. Specific to the MYRRHA ADS system is the choice for a windowless spallation target at the centre of the subcritical core. Apart from the space limitations and material property short-comings, the current and power density figures would make the design of a solid window for the spallation source next to impossible: the chosen 5 mA at the relative low energy of 350 MeV leads to a current density of order 150 μA/cm 2 (as far as we know at least a factor of 3 higher than any window design that has been attempted to meet). This is the main reason for adopting the windowless design for MYRRHA which has as a consequence that the free surface ultimately has to be compatible with the vacuum requirements of the beam transport system of the accelerator. The total beam energy will be dumped into a volume of ca 0.5 1 leading to a heating power density of ca 3 kW/cm 3 . In order to remove this heat from the LM with an average temperature increase of 100 deg C on top of the temperature of the inlet flow of 240 deg C a total flow rate of 101/s at an average flow speed of 2.5 m/s is required. It is suggested from estimates that the evaporation from 'hot spots' with elevated temperatures beyond the average 340 deg C - close to the free surface in the re-circulation zone - is then still acceptable. The design investigations are therefore directed to assess and minimise the re-circulation zone inherent in the free surface formation under the geometry and flow requirements. This paper will summarize the design programme for the windowless design of the spallation source at the centre of the subcritical core. It will include the main findings reported in (Van Tichelen, 2000) and (Van Tichelen, 2001) and the

  13. Spallation production of neutron deficient radioisotopes in North America

    International Nuclear Information System (INIS)

    Jamriska, D.J.; Peterson, E.J.; Carty, J.

    1997-01-01

    The US Department of Energy produces a number of neutron deficient radioisotopes by high energy proton induced spallation reactions in accelerators at Los Alamos National Laboratory in New Mexico and Brookhaven National Laboratory in New York. Research isotopes are also recovered from targets irradiated at TRIUMF in British Columbia, Canada. The radioisotopes recovered are distributed for use in nuclear medicine, environmental research, physics research, and industry worldwide. In addition to the main product line of Sr-82 from either Mo or Rb targets, Cu-67 from ZnO targets, and Ge-68 and RbBr targets, these irradiation facilities also produce some unique isotopes in quantities not available from any other source such as Al-26, Mg-28, Si-32, Ti-44, Fe-52, Gd-148, and Hg-194. The authors will describe the accelerator irradiation facilities at the Los Alamos and Brookhaven National Laboratories. The high level radiochemical processing facilities at Los Alamos and brief chemical processes will be described

  14. RESONANCE CONTROL FOR THE COUPLED CAVITY LINAC AND DRIFT TUBE LINAC STRUCTURES OF THE SPALLATION NEUTRON SOURCE LINAC USING A CLOSED-LOOP WATER COOLING SYSTEM

    International Nuclear Information System (INIS)

    Bernardin, J.D.; Brown, R.L.

    2001-01-01

    The Spallation Neutron Source (SNS) is a facility being designed for scientific and industrial research and development. SNS will generate and use neutrons as a diagnostic tool for medical purposes, material science, etc. The neutrons will be produced by bombarding a heavy metal target with a high-energy beam of protons, generated and accelerated with a linear particle accelerator, or linac. The low energy end of the linac consists of two room temperature copper structures, the drift tube linac (DTL), and the coupled cavity linac (CCL). Both of these accelerating structures use large amounts of electrical energy to accelerate the protons to an energy of 185 MeV. Approximately 60-80% of the electrical energy is dissipated in the copper structure and must be removed. This is done using specifically designed water cooling passages within the linac's copper structure. Cooling water is supplied to these cooling passages by specially designed resonance control and water cooling systems

  15. Geometric optimization of spallation targets for the MYRRHA reactor using MCNPX simulations

    Energy Technology Data Exchange (ETDEWEB)

    Rebello Junior, Andre Luiz P.; Martinez, Aquilino S.; Golcalves, Alessandro C., E-mail: junior.rebello@poli.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Nuclear

    2013-07-01

    The present work aims to evaluate the behavior of neutron multiplicity in a spallation target using MCNPX simulations, focusing on its application in the MYRRHA reactor. It was studied the two types of spallation target proposed for the MYRRHA project, windowless and windows target, in order to compare them and nd saturation boundaries. Some saturation boundaries were found and the windowless target proved to be as viable as the windows one. Each one produced nearly the same number of neutrons per incident proton. Using the concept of neutron cost, it was also observed that the optimum conditions on neutron production occur at about 1GeV, for both target designs. (author)

  16. Geometric optimization of spallation targets for the MYRRHA reactor using MCNPX simulations

    International Nuclear Information System (INIS)

    Rebello Junior, Andre Luiz P.; Martinez, Aquilino S.; Golcalves, Alessandro C.

    2013-01-01

    The present work aims to evaluate the behavior of neutron multiplicity in a spallation target using MCNPX simulations, focusing on its application in the MYRRHA reactor. It was studied the two types of spallation target proposed for the MYRRHA project, windowless and windows target, in order to compare them and nd saturation boundaries. Some saturation boundaries were found and the windowless target proved to be as viable as the windows one. Each one produced nearly the same number of neutrons per incident proton. Using the concept of neutron cost, it was also observed that the optimum conditions on neutron production occur at about 1GeV, for both target designs. (author)

  17. The spallation in reverse kinematics: what for a coincidence measurement?

    International Nuclear Information System (INIS)

    Ducret, J.E.

    2006-07-01

    The Spaladin installation has been designed to study spallation reactions in reverse kinematics. Furthermore, the heavy and light fragments are detected by coincidence which allows us to get an instantaneous picture of the reaction at a level of accuracy better than that obtained through inclusive measurement. The first part is dedicated to the theoretical description of the different mechanisms involved in the spallation reactions. In the second part we describe the Spaladin installation and report some results on the reaction: Fe 56 + p at an energy of 1 GeV/nucleon. In the third part we expose the performance of the installation through its simulation with the Geant-IV model. We present a study about the sensitivity of the Spaladin installation to theoretical predictions. The fourth part is dedicated to the future experiments that will be performed with the Spaladin installation. (A.C.)

  18. Standard Practice for Conducting Irradiations at Accelerator-Based Neutron Sources

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1996-01-01

    1.1 This practice covers procedures for irradiations at accelerator-based neutron sources. The discussion focuses on two types of sources, namely nearly monoenergetic 14-MeV neutrons from the deuterium-tritium T(d,n) interaction, and broad spectrum neutrons from stopping deuterium beams in thick beryllium or lithium targets. However, most of the recommendations also apply to other types of accelerator-based sources, including spallation neutron sources (1). Interest in spallation sources has increased recently due to their proposed use for transmutation of fission reactor waste (2). 1.2 Many of the experiments conducted using such neutron sources are intended to simulate irradiation in another neutron spectrum, for example, that from a DT fusion reaction. The word simulation is used here in a broad sense to imply an approximation of the relevant neutron irradiation environment. The degree of conformity can range from poor to nearly exact. In general, the intent of these simulations is to establish the fundam...

  19. Experimental Study of the Phenomenology of Spallation Neutrons in a Large Lead Block

    CERN Multimedia

    Galvez Altamirano, J; Lopez, C; Perlado, J M; Perez-Navarro, A

    2002-01-01

    %PS211 %title \\\\ \\\\The purpose of PS211 is to determine how neutrons, produced by spallation inside a large Lead volume are slowed down by undergoing a very large number of scatterings, losing each time a small fraction ($\\sim$ 1\\%) of their kinetic energy. The focus is in determining the probability for a spallation neutron produced at an energy of several MeV or more, to survive capture on Lead resonances and to reach resonance energies of materials to be transmuted, such as 5.6 eV for $^{99}$Tc. This process, of Adiabatic Resonance Crossing, involves a subtle interplay between the capture resonances of the Lead medium and of selected impurities. This phenomenology of spallation neutrons in a large Lead volume, is the physics foundation of the Fast Energy Amplifier proposed by C. Rubbia, and could open up new possibilities in the incineration of long-lived nuclear waste such as Actinides or Fission Fragments (e.g. $^{99}$Tc, $^{129}$I, etc.).\\\\ \\\\334 tons of high purity Lead, installed in t7, are exposed to...

  20. Small-angle neutron scattering at pulsed spallation sources

    International Nuclear Information System (INIS)

    Seeger, P.A.; Hjelm, R.P. Jr.

    1991-01-01

    The importance of small-angle neutron scattering (SANS) in biological, chemical, physical and engineering research mandates that all intense neutron sources be equipped with SANS instruments. Four existing instruments at pulsed sources are described and the general differences between pulsed-source and reactor-based instrument designs are discussed. The basic geometries are identical, but dynamic range is generally achieved by using a broad band of wavelengths (with time-of-flight analysis) rather than by moving the detector. This allows optimization for maximum beam intensity at a given beam size over the full dynamic range with fixed collimation. Data-acquisition requirements at a pulsed source are more severe, requiring large fast histrograming memories. Data reduction is also more complex, as all wavelength-dependent and angle-dependent backgrounds and nonlinearities must be accounted for before data can be transformed to intensity vs momentum transfer (Q). A comparison is shown between the Los Alamos pulsed instrument and D11 (Institut Laue-Langevin) and examples from the four major topics of the conference are shown. The general conclusion is that reactor-based instruments remain superior at very low Q or if only a narrow range of Q is required, but that the current generation of pulsed-source instruments is competitive of moderate Q and may be faster when a wide range of Q is required. (orig.)

  1. High energy nuclear reactions ('Spallation') and their application in calculation of the Acceleration Driven Systems (ADS)

    International Nuclear Information System (INIS)

    Rossi, Pedro Carlos Russo

    2011-01-01

    This work presents a study of high energy nuclear reactions which are fundamental to dene the source term in accelerator driven systems. These nuclear reactions, also known as spallation, consist in the interaction of high energetic hadrons with nucleons in the atomic nucleus. The phenomenology of these reactions consist in two step. In the rst, the proton interacts through multiple scattering in a process called intra-nuclear cascade. It is followed by a step in which the excited nucleus, coming from the intranuclear cascade, could either, evaporates particles to achieve a moderate energy state or fission. This process is known as competition between evaporation and fission. In this work the main nuclear models, Bertini and Cugnon are reviewed, since these models are fundamental for design purposes of the source term in ADS, due to lack of evaluated nuclear data for these reactions. The implementation and validation of the calculation methods for the design of the source is carried out to implement the methodology of source design using the program MCNPX (Monte Carlo N-Particle eXtended), devoted to calculation of transport of these particles and the validation performed by an international cooperation together with a Coordinated Research Project (CRP) of the International Atomic Energy Agency and available jobs, in order to qualify the calculations on nuclear reactions and the de-excitation channels involved, providing a state of the art of design and methodology for calculating external sources of spallation for source driven systems. The CRISP, is a brazilian code for the phenomenological description of the reactions involved and the models implemented in the code were reviewed and improved to continue the qualification process. Due to failure of the main models in describing the production of light nuclides, the multifragmentation reaction model was studied. Because the discrepancies in the calculations of production of these nuclides are attributes to the

  2. Measurement of the spallation reaction 56Fe+p in inverse kinematics

    International Nuclear Information System (INIS)

    Boehmer, M.

    2006-01-01

    In this work the spallation reaction 56 Fe+p was investigated in inverse kinematics with regard to complete identification of the heavy residues. A ring imaging Cerenkov counter was used for velocity measurements in the experimental setup located at GSI in Darmstadt. A new fast readout electronic was developed and has been operated successfully in the experiment. Momentum reconstruction was carried out with the ALADiN spectrometer and a new software package written for this purpose. Cross sections and velocity distributions for more than 100 mass separated isotopes could be extracted from the dataset and compared with empirical models and other spallation experiments. The experiences gained in this experiment will be used for systematic improvements in the setup of the new spectrometer R3B at FAIR. (orig.)

  3. A spallation-based irradiation test facility for fusion and future fission materials

    CERN Document Server

    Samec, K; Kadi, Y; Luis, R; Romanets, Y; Behzad, M; Aleksan, R; Bousson, S

    2014-01-01

    The EU’s FP7 TIARA program for developing accelerator-based facilities has recently demonstrated the unique capabilities of a compact and powerful spallation source for irradiating advanced nuclear materials. The spectrum and intensity of the neutron flux produced in the proposed facility fulfils the requirements of the DEMO fusion reactor for ITER, ADS reactors and also Gen III / IV reactors. Test conditions can be modulated, covering temperature from 400 to 550°C, liquid metal corrosion, cyclical or static stress up to 500 MPa and neutron/proton irradiation damage of up to 25 DPA per annum. The entire “TMIF” facility fits inside a cube 2 metres on a side, and is dimensioned for an accelerator beam power of 100 kW, thus reducing costs and offering great versatility and flexibility.

  4. Spallator and APEX nuclear fuel cycle: a new option for nuclear power

    International Nuclear Information System (INIS)

    Steinberg, M.

    1982-01-01

    A new nuclear fuel cycle is described which provides a long term supply of nuclear fuel for the thermal LWR nuclear power reactors and eliminates the need for long-term storage of radioactive waste. Fissile fuel is produced by the Spallator which depends on the production of spallation neutrons by the interaction of high-energy (1 to 2 GeV) protons on a heavy-metal target. The neutrons are absorbed in a surrounding natural-uranium or thorium blanket in which fissile Pu-239 to U-233 is produced. Advances in linear accelerator technology makes it possible to design and construct a high-beam-current continuous-wave proton linac for production purposes. The target is similar to a sub-critical reactor and produces heat which is converted to electricity for supplying the linac. The Spallator is a self-sufficient fuel producer, which can compete with the fast breeder. The APEX fuel cycle depends on recycling the transuranics and long-lived fission products while extracting the stable and short-lived fission products when reprocessing the fuel. Transmutation and decay within the fuel cycle and decay of short-lived fission products external to the fuel cycle eliminates the need for long-term geological age shortage of fission-product waste

  5. Spallator and APEX nuclear fuel cycle: a new option for nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, M.

    1982-01-01

    A new nuclear fuel cycle is described which provides a long term supply of nuclear fuel for the thermal LWR nuclear power reactors and eliminates the need for long-term storage of radioactive waste. Fissile fuel is produced by the Spallator which depends on the production of spallation neutrons by the interaction of high-energy (1 to 2 GeV) protons on a heavy-metal target. The neutrons are absorbed in a surrounding natural-uranium or thorium blanket in which fissile Pu-239 to U-233 is produced. Advances in linear accelerator technology makes it possible to design and construct a high-beam-current continuous-wave proton linac for production purposes. The target is similar to a sub-critical reactor and produces heat which is converted to electricity for supplying the linac. The Spallator is a self-sufficient fuel producer, which can compete with the fast breeder. The APEX fuel cycle depends on recycling the transuranics and long-lived fission products while extracting the stable and short-lived fission products when reprocessing the fuel. Transmutation and decay within the fuel cycle and decay of short-lived fission products external to the fuel cycle eliminates the need for long-term geological age shortage of fission-product waste.

  6. Sensitivity studies of the neutron multiplicity spectrum in the spallation of Pb targets

    International Nuclear Information System (INIS)

    Sinha, A.; Garg, S.B.; Srinivasan, M.

    1986-01-01

    The number of neutrons produced per incident proton in the spallation of Pb targets is of direct relevance to the design of accelerator breeders. The nuclear cascade initiated by high-energy protons in spallation targets is usually described by an intranuclear cascade evaporation (INCE) model. Even though this model describes various average nuclear properties of spallation targets fairly well, differential quantities such as energy spectra, angular spectra etc., are not reproduced within the limits of experimental uncertainty. One of the reasons for this is the uncertainty in the magnitude of the parameters involved in the model, notably the level density parameter Bsub(O) whose magnitude is quoted by different workers to be in the range of 8-20 MeV. The accuracy of Bsub(O) could be improved if we could experimentally determine a quantity which is much more sensitive to Bsub(O) than the average neutron yield. In this paper we discuss one such quantity, namely the neutron multiplicity spectrum (MS). We compute the MS due to the spallation of Pb targets of different sizes at proton energies of 1.5, 1.0 and 0.59 GeV using the Monte Carlo code HETC. It is noticed that for the 1.5 GeV proton case the probability P(ν) for leakage of ν neutrons for ν in the range of 60-65, changes by about 70% when Bsub(O) is varied from 8 to 20 MeV. The corresponding change in the average neutron yield is <20%. It is therefore suggested that an accurate measurement of the MS can serve as a useful tool to narrow down the range of uncertainty in the Bsub(O) parameter. (author)

  7. Potential containment materials for liquid-lead and lead-bismuth eutectic spallation neutron source

    International Nuclear Information System (INIS)

    Park, J.J.; Butt, D.P.; Beard, C.A.

    1997-11-01

    Lead (Pb) and lead-bismuth eutectic (44Pb-56Bi) have been the two primary candidate liquid-metal target materials for the production of spallation neutrons. Selection of a container material for the liquid-metal target will greatly affect the lifetime and safety of the target subsystem. For the lead target, niobium-1 (wt%) zirconium (Nb-1Zr) is a candidate containment material for liquid lead, but its poor oxidation resistance has been a major concern. The oxidation rate of Nb-1Zr was studied based on the calculations of thickness loss due to oxidation. According to these calculations, it appeared that uncoated Nb-1Zr may be used for a one-year operation at 900 C at P O 2 = 1 x 10 -6 torr, but the same material may not be used in argon with 5-ppm oxygen. Coating technologies to reduce the oxidation of Nb-1Zr are reviewed, as are other candidate refractory metals such as molybdenum, tantalum, and tungsten. For the Pb-Bi target, three candidate containment materials are suggested based on a literature survey of the materials compatibility and proton irradiation tests: Croloy 2-1/4, modified 9Cr-1Mo, and 12Cr-1Mo (HT-9) steel. These materials seem to be used only if the lead-bismuth is thoroughly deoxidized and treated with zirconium and magnesium

  8. New sources and instrumentation for neutron science

    International Nuclear Information System (INIS)

    Gil, Alina

    2011-01-01

    Neutron-scattering research has a lot to do with our everyday lives. Things like medicine, food, electronics, cars and airplanes have all been improved by neutron-scattering research. Neutron research also helps scientists improve materials used in a multitude of different products, such as high-temperature superconductors, powerful lightweight magnets, stronger, lighter plastic products etc. Neutron scattering is one of the most effective ways to obtain information on both, the structure and the dynamics of condensed matter. Most of the world's neutron sources were built decades ago, and although the uses and demand for neutrons have increased throughout the years, few new sources have been built. The new construction, accelerator-based neutron source, the spallation source will provide the most intense pulsed neutron beams in the world for scientific research and industrial development. In this paper it will be described what neutrons are and what unique properties make them useful for science, how spallation source is designed to produce neutron beams and the experimental instruments that will use those beams. Finally, it will be described how past neutron research has affected our everyday lives and what we might expect from the most exciting future applications.

  9. New sources and instrumentation for neutron science

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Alina, E-mail: a.gil@ajd.czest.pl [Faculty of Mathematical and Natural Sciences, JD University, Al. Armii Krajowej 13/15, 42-200 Czestochowa (Poland)

    2011-04-01

    Neutron-scattering research has a lot to do with our everyday lives. Things like medicine, food, electronics, cars and airplanes have all been improved by neutron-scattering research. Neutron research also helps scientists improve materials used in a multitude of different products, such as high-temperature superconductors, powerful lightweight magnets, stronger, lighter plastic products etc. Neutron scattering is one of the most effective ways to obtain information on both, the structure and the dynamics of condensed matter. Most of the world's neutron sources were built decades ago, and although the uses and demand for neutrons have increased throughout the years, few new sources have been built. The new construction, accelerator-based neutron source, the spallation source will provide the most intense pulsed neutron beams in the world for scientific research and industrial development. In this paper it will be described what neutrons are and what unique properties make them useful for science, how spallation source is designed to produce neutron beams and the experimental instruments that will use those beams. Finally, it will be described how past neutron research has affected our everyday lives and what we might expect from the most exciting future applications.

  10. TOF powder diffractometer on a reactor source

    International Nuclear Information System (INIS)

    Bleif, H.J.; Wechsler, D.; Mezei, F.

    1999-01-01

    Complete text of publication follows. The performance of time-of-flight (TOF) methods on Long Pulse Spallation Sources can be studied at a reactor source. For this purpose a prototype TOF monochromator instrument will be installed at the KFKI reactor in Budapest. The initial setup will be a powder diffractometer with a resolution of δd/d down to 2 x 10 -3 at a wavelength of 1 A. The instrument uses choppers to produce neutron pulses of down to 10 μs FWHM. The optimal neutron source for a chopper instrument is a Long Pulse Spallation Source, but even on a continuous source simulations have shown that this instrument outperforms a conventional crystal monochromator powder diffractometer at high resolution. The main components of the TOF instrument are one double chopper defining the time resolution and two single choppers to select the wavelength range and to prevent frame overlap. For inelastic experiments a further chopper can be added in front of the sample. The neutron guide has a super-mirror coating and a curvature of 3500m. The total flight path is 20m and there are 24 single detectors in backscattering geometry. (author)

  11. Spallation sources in support of technology

    Energy Technology Data Exchange (ETDEWEB)

    Pynn, R [Los Alamos National Lab., NM (United States)

    1996-05-01

    In this contribution I summarize a number of recent experiments at the Los Alamos Neutron Science Center (LANSCE) that have contributed to strategic and applied research. A number of new tools have been developed to address these problems, including software that allows materials texture to be obtained during Rietveld refinement, Bragg-edge diffraction, resonant-neutron and proton radiography. These tools have the potential to impact basic as well as applied research. It is clear that a new, more powerful neutron source such as the planned Japanese Hadron Project will be able to use these and other techniques to contribute in a direct way to important industrial technologies. (author)

  12. A comparison of microstructures in copper irradiated with fission, fusion, and spallation neutrons

    International Nuclear Information System (INIS)

    Muroga, T.; Heinisch, H.L.; Sommer, W.F.; Ferguson, P.D.

    1992-01-01

    The objective of this work is to investigate the effects of the neutron energy spectrum in low dose irradiations on the microstructure and mechanical properties of metals. The microstructures of pure copper irradiated to low doses at 36-90 C with spallation neutrons, fusion neutrons and fission neutrons are compared. The defect cluster densities for the spallation and fusion neutrons are very similar when compared on the basis of displacements per atom (dpa). In both cases, the density increases in proportion to the square root of the dpa. The difference in defect density between fusion neutrons and fission neutrons corresponds with differences observed in data on yield stress changes

  13. European consumers' use of and trust in information sources about fish

    DEFF Research Database (Denmark)

    Pieniak, Zuzanna; Verbeke, Wim; Scholderer, Joachim

    2007-01-01

    This paper focuses on identifying segments of consumers based on their use of and trust in information sources about fish. Cross-sectional data were collected through the SEAFOODplus pan-European consumer survey (n = 4786) with samples representative for age and region in Belgium, the Netherlands......, knowledge and behaviour towards fish, and socio-demographic profile. Recommendations for the use of multiple sources targeted to a particular audience's interest and behavioural profile were formulated....

  14. Numerical model simulation of free surface behavior in spallation target of ADS

    International Nuclear Information System (INIS)

    Chai Xiang; Su Guanyu; Cheng Xu

    2012-01-01

    The spallation target in accelerator driven sub-critical system (ADS) couples the subcritical reactor core with accelerator. The design of a windowless target has to ensure the formation of a stable free surface with desirable shape, to avoid local over- heating of the heavy liquid metal (HLM). To investigate the free surface behavior of the spallation target, OpenFOAM, an opened CFD software platform, was used to simulate the formation and features of the free surface in the windowless target. VOF method was utilized as the interface-capturing methodology. The numerical results were compared to experimental data and numerical results obtained with FLUENT code. The effects of turbulence models were studied and recommendations were made related to application of turbulence models. (authors)

  15. Yield And Transverse Momentum Of Relativistic Hydrogen Isotopes In Photonuclear Spallation Of 32S Ions At 200A GeV

    International Nuclear Information System (INIS)

    Abdelsalam, A.; Kamel, S.; Abdel-Waged, Kh.; Fashed, N.

    2005-01-01

    Production of multi-hydrogen (mH) isotopes in the spallation of 200A GeV sulphur projectile using nuclear emulsion is reported. Yield of mH isotopes is studied and compared with that of the lowest energy (3.7A GeV) data. The two-source emission picture is used to describe the transverse momentum (P T ) distribution of mH isotopes (with and without the effect of 32 S (γ,p) 31 P channel). The Rayleigh type P T -distribution seems to be in agreement with the corresponding experimental data. The contributions of low and high temperature emission sources show a dependence on the photonuclear processes. (author)

  16. An analysis of the sources of competition disipline in the European Union and in Albania

    Directory of Open Access Journals (Sweden)

    Eriona Katro

    2016-01-01

    Full Text Available Competition discipline in the European Union is a substantial component of the EU’s institutional framework. The Lisbon Treaty made the “internal market” a shared competence, while necessary competition rules for the internal market are an exclusive competence of the Union. This paper aims to analyse the sources of the competition discipline in the EU and in Albania focusing more on constitutional sources. From this analyses will emerge that sources of competition discipline are numerous and each of them plays an important role in the development of the competition policy. But arises the question if these sources are all equally important or not? This paper will focus also n the importance of each source in both levels: European Union and Albanian discipline of competition.

  17. Small-angle neutron scattering at pulsed spallation sources

    International Nuclear Information System (INIS)

    Seeger, P.A.; Hjelm, R.P. Jr.

    1990-01-01

    The importance of small-angle neutron scattering (SANS) in biological, chemical, physical, and engineering research mandates that all intense neutron sources be equipped with SANS instruments. Four existing instruments are described, and the general differences between pulsed-source and reactor-based instrument designs are discussed. The basic geometries are identical, but dynamic range is achieved by using a broad band of wavelengths (with time-of-flight analysis) rather than by moving the detector. This allows a more optimized collimation system. Data acquisition requirements at a pulsed source are more severe, requiring large, fast histogramming memories. Data reduction is also more complex, as all wave length-dependent and angle-dependent backgrounds and non-linearities must be accounted for before data can be transformed to intensity vs Q. A comparison is shown between the Los Alamos pulsed instrument and D-11 (Institute Laue-Langevin), and examples from the four major topics of the conference are shown. The general conclusion is that reactor-based instruments remain superior at very low Q or if only a narrow range of Q is required, but that the current generation of pulsed-source instruments is competitive at moderate Q and may be faster when a wide range of Q is required. In principle, a user should choose which facility to use on the basis of optimizing the experiment; in practice the tradeoffs are not severe and the choice is usually made on the basis of availability

  18. A spallation-based irradiation test facility for fusion and future fission materials

    International Nuclear Information System (INIS)

    Samec, K.; Fusco, Y.; Kadi, Y.; Luis, R.; Romanets, Y.; Behzad, M.; Aleksan, R.; Bousson, S.

    2014-01-01

    The EU's FP7 TIARA program for developing accelerator-based facilities has recently demonstrated the unique capabilities of a compact and powerful spallation source for irradiating advanced nuclear materials. The spectrum and intensity of the neutron flux produced in the proposed facility fulfils the requirements of the proposed DEMO fusion reactor, ADS reactors and also Gen III / IV reactors. Test conditions can be modulated, covering temperature from 400 to 550 deg. C, liquid metal corrosion, cyclical or static stress up to 500 MPa and neutron/proton irradiation damage of up to 25 DPA per annum over a volume occupying one litre. The entire 'TMIF' facility fits inside a cube 2 metres on a side, and is dimensioned for an accelerator beam power of 100 kW, thus reducing costs and offering great versatility and flexibility. (authors)

  19. Analytic model of heat deposition in spallation neutron target

    International Nuclear Information System (INIS)

    Findlay, D.J.S.

    2015-01-01

    A simple analytic model for estimating deposition of heat in a spallation neutron target is presented—a model that can readily be realised in an unambitious spreadsheet. The model is based on simple representations of the principal underlying physical processes, and is intended largely as a ‘sanity check’ on results from Monte Carlo codes such as FLUKA or MCNPX.

  20. Analytic model of heat deposition in spallation neutron target

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, D.J.S.

    2015-12-11

    A simple analytic model for estimating deposition of heat in a spallation neutron target is presented—a model that can readily be realised in an unambitious spreadsheet. The model is based on simple representations of the principal underlying physical processes, and is intended largely as a ‘sanity check’ on results from Monte Carlo codes such as FLUKA or MCNPX.