WorldWideScience

Sample records for european safeguard research development association

  1. The European Safeguards Research and Development Association Addresses Safeguards and Nonproliferation

    International Nuclear Information System (INIS)

    Janssens-Maenhout, Greet; Kusumi, R.; Daures, Pascal A.; Janssens, Willem; Dickman, Deborah A.

    2010-01-01

    The renaissance of efforts to expand the use of nuclear energy requires the parallel development of a renewed and more sophisticated work force. Growth in the nuclear sector with high standard of safety, safeguards and security requires skilled staff for design, operations, inspections etc. High-quality nuclear technology educational programs are diminished from past years, and the ability of universities to attract students and to meet future staffing requirements of the nuclear industry is becoming seriously compromised. Thus, education and training in nuclear engineering and sciences is one of the cornerstones for the nuclear sector. Teaching in the nuclear field still seems strongly influenced by national history but it is time to strengthen resources and collaborate. Moreover with the current nuclear security threats it becomes critical that nuclear technology experts master the basic principles not only of safety, but also of nuclear safeguards, nonproliferation and nuclear security. In Europe the European Nuclear Education Network (ENEN) Association has established the certificate 'European Master of Science in Nuclear Engineering (EMSNE)' as the classic nuclear engineering program covering reactor operation and nuclear safety. However, it does not include courses on nonproliferation, safeguards, or dual-use technologies. The lack of education in nuclear safeguards was tackled by the European Safeguards Research and Development Association (ESARDA), through development and implementation of safeguards course modules. Since 2005 the ESARDA Working Group, called the Training and Knowledge Management Working Group, (TKMWG) has worked with the Joint Research Centre (JRC) in Ispra, Italy to organize a Nuclear Safeguards and Nonproliferation course. This five-day course is held each spring at the JRC, and continues to show increasing interest as evidenced by the positive responses of international lecturers and students. The standard set of lectures covers a broad

  2. Welcome from ESARDA (European Safeguards Research and Development Association)

    International Nuclear Information System (INIS)

    Van der Meer, K.

    2015-01-01

    ESARDA, on the one hand being part of that European family and on the other hand working in practice to support peace by the non-proliferation of nuclear weapons, can be considered as a perfect representative of that European peace process. Going now from the European to the global perspective, peace should be our motivating force and this is also expressed in the basis of safeguards: the non-proliferation Treaty. Several articles of the Treaty deal with not developing nuclear weapons and not supporting the development of nuclear weapons by other countries, and one article (Article VI) deals with the general and complete nuclear disarmament. What is ESARDA doing in practice- First we provide a forum to exchange scientific information for the benefit of all safeguards stakeholders. The most important forum is the biannual open ESARDA safeguards symposium that will be held next year from 19-21 May in Manchester. Next to the ESARDA symposia, we coordinate European safeguards research via our ESARDA Working Groups. Also non-members are welcome in these WG as observers. JRC Ispra maintains the ESARDA website that also supports exchange of safeguards information

  3. Nuclear safeguards research and development

    Science.gov (United States)

    Henry, C. N.

    1981-11-01

    The status of a nuclear safeguard research and development program is presented. Topics include nondestructive assay technology development and applications, international safeguards, training courses, technology transfer, analytical chemistry methods for fissionable materials safeguards, the Department of Energy Computer Security Technical Center, and operational security.

  4. A selection of recent achievements and future challenges in safeguards R and D as identified by the European safeguards research and development association

    International Nuclear Information System (INIS)

    Janssens, W.A.M.; Sevini, F.; Bril, L.V.; Janssens-Maenhout, G.G.A.; Goncalves, J.G.M.; Peerani, P.; Autrusson, B.; Boella, M.; Martikka, E.; Toivonen, H.; Mayer, K.; Rezniczek, A.; Richard, M.; Richter, B.; Stein, G.; Weh, R.

    2010-01-01

    In the year of its 40. anniversary, ESARDA can look back on a wealth of achievements in the European safeguards area, to which its members have substantially contributed. Also today, ESARDA is more active then ever, both due to an extended partnership (with many new members joining in recent years) and a pro-active attitude to tackle new and upcoming issues through its many Working Groups. ESARDA constitutes today of 9 working groups: Non Destructive Analysis (NDA), Destructive Analysis (DA), Containment and Surveillance (C/S), Verification Technologies and Methodologies (VTM), Implementation of Safeguards (IS), Nuclear Material Accounting and Control Audit Group (NMACAG), Training and Knowledge Management (TKM), Editorial Committee (EDC) and the newly established Novel technologies and approaches (NT/NA). The Fuel Fabrications Plants WG has recently been stopped and part of the activities possibly moved into IS WG. Most of these working groups organise regular meetings in which they discuss the progress, achievements, problems, challenges and future needs for R and D. They jointly work out solutions to problems and stay abreast of the latest safeguards R and D aspects. This paper will provide an overview of some most relevant recent achievements of the ESARDA Working Groups and will provide an insight in the challenges identified for safeguards R and D in the near and medium term future. (authors)

  5. U.S. safeguards history and the evolution of safeguards research and development

    International Nuclear Information System (INIS)

    Brenner, L.M.; McDowell, S.C.T.

    1989-01-01

    In discussing the U.S. safeguards history and the evolution of safeguards research and development, five significant eras are identified. The period ending January 1, 1947, may be called the first era. Safeguards as known today did not exist and the classic military approach of security protection applied. The second era covers the period from 1947 to 1954 (when the Atomic Energy Act was completely rewritten to accommodate the then foreseen Civil uses Program and international cooperation in peaceful uses of nuclear energy), and the first steps were taken by the Atomic Energy Commission to establish material accounting records for all source and fissionable materials on inventory. The third era covers the period 1954 through 1968, which focused on nuclear safeguards in its domestic activities and made major policy changes in its approach to material control and accountability. The fourth era, 1968 to 1972 saw a quantum jump in the recognition and need for a significant safeguards research and development program, answered by the formation of a safeguards technical support organization at Brookhaven National Laboratory and a safeguards Laboratory at Los Alamos Scientific Laboratory for the development and application of non-destructive assay technology. The fifth era had its beginning in 1972 with the burgeoning of international terrorism. The corresponding need for a strong physical protection research and development support program was responded to by the Sandia National Laboratory

  6. Some developments in safeguards techniques

    International Nuclear Information System (INIS)

    Beets, C.

    1977-01-01

    The fundamental principles of safeguards and the research and development of safeguards techniques are described. Safeguard accountancy based upon the partition of the fuel cycle into suitable material balance areas will be further improved. Implementation of international safeguards in the European fuel fabrication and reprocessing facilities is described. The effectiveness of a material accounting system depends on the quality of the quantitative data. The allocation of the tasks in the framework of an integrated safeguards is concerned with R and D work only and has no bearing on the allocation of the implementation costs. Bulk measurements, sampling and destructive or non-destructive analysis of samples are described for the determination of batch data. Testing of the safeguards techniques as a keystone in relation to plant instrumentation programmes are still being developed throughout the world. In addition to accountancy and control, it also includes an effective physical security program. The system of international safeguards that prevailed in the sixties has been re-modelled to comply with the new requirements of the Non-Proliferation Treaty and with the growth of nuclear energy

  7. Safeguards technology research and development at CIAE

    International Nuclear Information System (INIS)

    Yang Qun

    2001-01-01

    Full text: China Institute of Atomic Energy (CIAE) is a multi-disciplinary institute under the leadership of China National Nuclear Corporation (CNNC). The Laboratory of Technical Research for Nuclear Safeguards was established at CIAE in 1991 to develop safeguards technology and to provide technical assistance to competent authorities for nuclear material management and control, which became one of the key laboratories approved by CNNC in 1993. The main research works for safeguards at CIAE include: nuclear material control and accounting, facilities license review and assessment, domestic inspection, NDA and DA analysis, physical protection and technical training. Research and development of equipment and technique for safeguards has been continuing at CIAE. A variety of NDA equipment that has different resolution and analysis capability has been developed. Method of NDA measurement has been investigated for nuclear material with different characteristics. Mathematics method such as Monte Carlo simulation is applied in NDA. Advanced destructive analysis (DA) instrument is installed at laboratory of CIAE, such as TIMS, ICP-MS and electronic chemistry analyzing system. The high accuracy results of element analysis and isotopic analysis for nuclear material can be obtained. It is possible to measure the types and quantities of nuclear material in a given area by means of NDA and DA. Physical protection system has also been developed. It consists of access control and management, various alarm (including perimeter alarm, intrusion alarms, fire alarms), video and audio monitors, intercommunication set and central console. The system can meet technical requirement for safeguards of first rank. Nuclear material accounting is an important aspect of safeguards research at CIAE. The computer software related to material accounting has been developed. It is the important task for scientists at CIAE to design and review nuclear accounting systems in various facilities. For

  8. Survey of nuclear safeguards in the European Community

    International Nuclear Information System (INIS)

    Gmelin, W.

    1992-01-01

    The control of the peaceful use of nuclear energy comprises activities related to nuclear safety, to the protection of persons and of the environment, to physical protection of the nuclear materials against theft or terrorism and to nuclear safeguards. Nuclear safeguards means the set of measures performed by the IAEA in the context of non-proliferation safeguards and, in the framework of the Euratom Treaty, those measures enabling the European Commission to satisfy itself that the nuclear material is not diverted from its intended and declared uses (particularly to unlawful non-peaceful applications) and that the obligations arising from International Agreements are complied with. This contribution to the International Conference on Peaceful Application of Nuclear Energy at Liege briefly reviews the history of nuclear safeguards in Europe since the early 1960ies. It also notes the practical aspects for, constraints and impacts to the nuclear operators imposed on them by the European law such as inspections, accountancy, reporting and describes the trend of the future development of the safeguards operation. The paper finally addresses non-proliferation issues and, notably, the relations between the IAEA and Euratom which in an exemplary way resulted in effective international safeguards and high non-proliferation credentials of the European Community. (author)

  9. A Legal Analysis of Safeguard Measures in the European Community

    Directory of Open Access Journals (Sweden)

    Guang Ma

    2006-12-01

    Full Text Available In 2002, the European Community imposed its first safeguard measure since the establishment of the WTO. And in 2003, it introduced two new regulations on safeguard measures, namely the “Council Regulation on a transitional product- specific safeguard mechanism for imports originating in the People's Republic of China” and the “Council Regulation on measures that the Community may take in relation to the combined effect of anti-dumping or anti-subsidy measures with safeguard measures." In this article, the author analyzes these safeguard measures and the European Commission's practice of such measures. By comparing the safeguard laws and their practice, it is the author's intention to clarify whether the safeguard measures in thIn 2002, the European Community imposed its first safeguard measure since the establishment of the WTO. And in 2003, it introduced two new regulations on safeguard measures, namely the "Council Regulation on a transitional product- specific safeguard mechanism for imports originating in the People's Republic of China" and the "Council Regulation on measures that the Community may take in relation to the combined effect of anti-dumping or anti-subsidy measures with safeguard measures." In this article, the author analyzes these safeguard measures and the European Commission's practice of such measures. By comparing the safeguard laws and their practice, it is the author's intention to clarify whether the safeguard measures in the European Community comply with the WTO Agreement on Safeguards. In conclusion, based on the analysis of safeguard measures in the European Community's legal system and their practice in actual cases, it apparent that the European Community is making a serious effort to comply with the standards of the WTO Safeguards Agreement. In certain respects, the European Community has a comparatively higher level of standards than the WTO. Nevertheless, there continue to be challenges to WTO

  10. The European experience in safeguarding nuclear fuel recycle processes and Pu stores

    International Nuclear Information System (INIS)

    Synetos, Sotiris

    2013-01-01

    Civil nuclear programs in the European Union member states have from their onset included fuel recycling as an option. The EURATOM Treaty gives to the European Commission the obligation to apply safeguards controls to all civil Nuclear Material in the European Union, and to facilitate the implementation of IAEA safeguards. The European Commission (EURATOM) has thus gained years of experience in safeguarding reprocessing plants, Pu storages, and MOX fuel fabrication plants and is currently participating in the development of approaches and measures for safeguarding long term repositories. The aim of this paper is to present the regulator's views and experience on safeguarding nuclear fuel recycle processes and Pu stores, which is based on the following principles: -) Early involvement of the control organizations in the design of the safeguards measures to be developed for a plant (currently referred to as Safeguards by Design); -) Early definition of a safeguards strategy including key measurement points; -) The design and development of plant specific Safeguards equipment, including an on site laboratory for sample analysis; -) The development by the operator of an appropriate Nuclear Material accountancy system to facilitate their declaration obligations; -) The introduction of an inspection regime allowing comprehensive controls under the restrictions imposed by financial and Human Resources limitations; -) Optimization of the inspection effort by using unattended measuring stations, containment and surveillance systems and secure remote transmission of data to the regulator's headquarters. The paper is followed by the slides of the presentation. (authors)

  11. Nuclear safeguards research and development program. Status report, January--April 1977

    Energy Technology Data Exchange (ETDEWEB)

    Sapir, J.L. (comp.)

    1977-06-01

    The status of the Nuclear Safeguards Research and Development program pursued by LASL Safeguards Groups Q-1, Q-2, Q-3, and Q-4 is presented . Topics covered include nondestructive assay technology development and applications, international safeguards, perimeter safeguards and surveillance, concepts and subsystems development (e.g., DYMAC program), integrated safeguards systems, training courses, and technology transfer.

  12. Nuclear safeguards research and development program. Status report, January--April 1977

    International Nuclear Information System (INIS)

    Sapir, J.L.

    1977-06-01

    The status of the Nuclear Safeguards Research and Development program pursued by LASL Safeguards Groups Q-1, Q-2, Q-3, and Q-4 is presented . Topics covered include nondestructive assay technology development and applications, international safeguards, perimeter safeguards and surveillance, concepts and subsystems development (e.g., DYMAC program), integrated safeguards systems, training courses, and technology transfer

  13. Safeguards systems analysis research and development and the practice of safeguards at DOE facilities

    International Nuclear Information System (INIS)

    Zack, N.R.; Thomas, K.E.; Markin, J.T.; Tape, J.W.

    1991-01-01

    Los Alamos Safeguards Systems Group personnel interact with Department of Energy (DOE) nuclear materials processing facilities in a number of ways. Among them are training courses, formal technical assistance such as developing information management or data analysis software, and informal ad hoc assistance especially in reviewing and commenting on existing facility safeguards technology and procedures. These activities are supported by the DOE Office of Safeguards and Security, DOE Operations Offices, and contractor organizations. Because of the relationships with the Operations Office and facility personnel, the Safeguards Systems Group research and development (R and D) staff have developed an understanding of the needs of the entire complex. Improved safeguards are needed in areas such as materials control activities, accountability procedures and techniques, systems analysis and evaluation methods, and material handling procedures. This paper surveys the generic needs for efficient and cost effective enhancements in safeguards technologies and procedures at DOE facilities, identifies areas where existing safeguards R and D products are being applied or could be applied, and sets a direction for future systems analysis R and D to address practical facility safeguards needs

  14. Agreement reached on integrated safeguards in European Union

    International Nuclear Information System (INIS)

    2010-01-01

    Full text: The International Atomic Energy Agency (IAEA), in cooperation with the European Commission, has reached agreement on arrangements to implement 'integrated safeguards' in all non-nuclear-weapon States of the European Union with significant nuclear activities. 'This important milestone is the result of the constructive common efforts of all parties concerned. It is a clear signal of the importance attributed by the EU and its Member States, as well as the IAEA, to the reinforcement of the nuclear non-proliferation regime,' said Andris Piebalgs, Member of the European Commission in charge of Energy. 'Once we have sufficient confidence that a State' s nuclear activities are purely peaceful, we can apply safeguards measures in a less prescriptive, more customised manner. This reduces the inspection burden on the State and the inspection effort of the IAEA, while enabling the IAEA to maintain the conclusion that all nuclear material has remained in peaceful activities,' said Olli Heinonen, Deputy Director General and Head of IAEA Safeguards Department. Background The Nuclear Non-Proliferation Treaty (NPT) is the main international Treaty prohibiting the spread of nuclear weapons. It entrusts the IAEA to verify that nuclear material is not diverted to nuclear weapons or other nuclear explosive devices through the application of 'safeguards'. IAEA safeguards include comprehensive safeguards agreements and additional protocols that enable the IAEA to conclude that all nuclear material has remained in peaceful activities in a State. Integrated Safeguards refers to the optimum combination of all safeguards measures available to the Agency under comprehensive safeguards agreements and additional protocols to achieve maximum effectiveness and efficiency in meeting the Agency ' s safeguards obligations. In the European Union, nuclear safeguards are implemented on the basis of the Euratom Treaty and trilateral agreements between Euratom, its Member States and the IAEA

  15. The Nuclear Safeguards and Security Activities under Euratom Research and Training Programme

    International Nuclear Information System (INIS)

    Abousahl, S.; Palajova, Z.; Janssens, W.A.M.; Luetzenkirchen, K.; Goncalves, J.G.M.; Aregbe, Y.; )

    2015-01-01

    Nuclear safeguards and security are absolute priorities for the EU. At technical level, the Joint Research Centre (JRC) as the European Commission's in-house science service plays an important role in the field of nuclear research, training and education that include nuclear safety, safeguards and security. The JRC's nuclear research activities are defined in a Council Regulation on the research and training programme of the European Atomic Energy Community. The JRC works closely with EC safeguards authority, whose mission is to ensure that nuclear material within the EU is not diverted from its intended use according to Euratom treaty. Technologies, methodologies and trainings are developed according to the Euratom Safeguards inspectorate's needs. In the area of nuclear security, the JRC contributes to the development of specific expertise in the field of nuclear forensics and border security detection as well as related training efforts for first front-line responders and national experts. The JRC provides its expert support for the implementation of internal EU action plans mainly in the field of radiological and nuclear security. At an international level, the JRC cooperates with the IAEA mainly through the EC support programme on the control of nuclear materials and facilities in order to avoid proliferation or diversion. Close cooperation with IAEA nuclear security is developed through the recent signature of a dedicated practical arrangement. Key partnerships have also been developed in the field of safeguards and security with the US-DoE, Russia, Japan and China. In addition, JRC contributes significantly to the EU nuclear safeguards and security outreach activities implemented under the Instrument for Nuclear Safety Cooperation and Instrument contributing to Stability and Peace. In this paper we will highlight some of the JRC contributions to the enhancement of nuclear safeguards and security at EU and international levels. (author)

  16. Canadian safeguards research and development in support of the IAEA

    International Nuclear Information System (INIS)

    1980-03-01

    Canada has established a safeguards research and development program whose purpose is to supplement the resources of the IAEA. The program of support is a coordinated effort for the development and application of safeguards techniques and instruments to reactors of Canadian design. This document sets forth those tasks that make up the program

  17. Safeguard sleuths

    International Nuclear Information System (INIS)

    Lowry, D.

    1989-01-01

    A report of the conference of the European Safeguards Research and Development Association, which tries to prevent the diversion of nuclear materials to military uses is given. Some of the problems encountered by safeguards inspectors are mentioned, such as being able to follow the material through the maze of piping in a reprocessing plant, the linguistic difficulties if the inspector does not speak the operator's language, the difference between precision and accuracy and the necessity of human inspection, containment and surveillance systems. Unexplained outages at a reprocessing plant are always treated as suspicious, as are power failures which prevent normal surveillance. The UK practice of allocating civil fuel temporarily to military use at Harwell also makes safeguard policing more difficult. (UK)

  18. Nuclear safeguards research and development. Program status report, October 1980-January 1981

    International Nuclear Information System (INIS)

    Henry, C.N.

    1981-11-01

    This report presents the status of the Nuclear Safeguards Research and Development Program pursued by the Energy, Chemistry-Materials Science, and Operational Security/Safeguards Divisions of the Los Alamos National Laboratory. Topics include nondestructive assay technology development and applications, international safeguards systems. Also discussed are training courses, technology transfer, analytical chemistry methods for fissionable materials safeguards, the Department of Energy Computer Security Technical Center, and operational security

  19. Nuclear safeguards research and development. Program status report, October 1980-January 1981

    Energy Technology Data Exchange (ETDEWEB)

    Henry, C.N. (comp.)

    1981-11-01

    This report presents the status of the Nuclear Safeguards Research and Development Program pursued by the Energy, Chemistry-Materials Science, and Operational Security/Safeguards Divisions of the Los Alamos National Laboratory. Topics include nondestructive assay technology development and applications, international safeguards systems. Also discussed are training courses, technology transfer, analytical chemistry methods for fissionable materials safeguards, the Department of Energy Computer Security Technical Center, and operational security.

  20. Course modules on nuclear safeguards and non-proliferation

    International Nuclear Information System (INIS)

    Bril, L.-V.; Janssens-Maenhout, G.

    2004-01-01

    Full text: One of major current concern in the nuclear field is the conservation of developed knowledge and expertise. The relevance of this subject is steadily increasing for several reasons: retirement of the generation of first industrial development of nuclear energy, only one new reactor under construction in Europe while several in Eastern and Asian countries, the public's concern on safety, radioactive waste and safeguards aspects, and some lack of interest common to many activities in engineering and physics. Moreover nuclear safeguards is nowadays characterised with an enlarged scope and no longer strictly limited to the accountancy of nuclear material; today it encompasses non proliferation of nuclear material, and deals with the control of dual use equipment and technologies, illicit trafficking and External Security. Some higher education networks, such as the European Nuclear Engineering Network (ENEN), have been established to make better use of dwindling teaching capacity, scientific equipment and research infrastructure, through co-operation amongst universities and research centres. The European Safeguards Research and Development Association (ESARDA) initiated the set-up of course modules under an e-learning medium, to preserve knowledge in nuclear safeguards. These course modules should be considered as basic pedagogical documentation, which will be accessible via the Internet. Monitoring or controlling of the accesses will be ensured. The modules are structured with an increasing level of detail, in function of the audience. On one hand the course modules should be attractive to University students in nuclear, chemical or mechanical engineering, in radiochemistry, statistics, law, political science etc. at universities or specialised institutes. On the other hand the course modules aim to give professionals, working on specific safeguards or non-proliferation issues an overview and detailed technical information on the wide variety of nuclear

  1. Safeguarding values in the European Union: : The European Parliament, Article 7 and Hungary

    NARCIS (Netherlands)

    Bonelli, Matteo

    2015-01-01

    The recent constitutional crisis in Hungary and other political developments in several EU member states have raised concerns over the capacity of the European Union to safeguard its fundamental values: democracy, the rule of law and human rights. Mechanisms in the hands of the institutions are

  2. Technology development for safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Dong; Kang, H. Y.; Song, D. Y. [and others

    2005-04-01

    The objective of this project are to establish the safeguards technology of the nuclear proliferation resistance to the facilities which handle with high radioactivity nuclear materials like the spent fuel, to provide the foundation of the technical independency for the establishment of the effective management of domestic spent fuels, and to construct the base of the early introduction of the key technology relating to the back-end nuclear fuel cycle through the development of the safeguards technology of the DFDF of the nuclear non-proliferation. The essential safeguards technologies of the facility such as the measurement and account of nuclear materials and the C/S technology were carried out in this stage (2002-2004). The principal results of this research are the development of error reduction technology of the NDA equipment and a new NDA system for the holdup measurement of process materials, the development of the intelligent surveillance system based on the COM, the evaluation of the safeguardability of the Pyroprocessing facility which is the core process of the nuclear fuel cycle, the derivation of the research and development items which are necessary to satisfy the safeguards criteria of IAEA, and the presentation of the direction of the technology development relating to the future safeguards of Korea. This project is the representative research project in the field of the Korea's safeguards. The safeguards technology and equipment developed while accomplishing this project can be applied to other nuclear fuel cycle facilities as well as DFDF and will be contributed to increase the international confidence in the development of the nuclear fuel cycle facility of Korea and its nuclear transparency.

  3. Safeguards and Security Research and Development progress report, October 1990--September 1991

    International Nuclear Information System (INIS)

    Smith, D.B.; Jaramillo, G.R.

    1992-07-01

    This report describes the activities carried out by the Los Alamos Safeguards and Security Research And Development (R ampersand D) program from October 1990 through September 1991. The activities presented in the first three parts--Science and Technology Base Development, Basic Systems Design, and Onsite Test and Evaluation and Facility Support--were, for the most part, sponsored by the Department of Energy's Office of Safeguards and Security (DOE/OSS). The activities described in Part 4--International Safeguards--were supported by the International Safeguards Division of the Office of Arms Control and Nonproliferation (OACN/IS). Part 5 describes several safeguards or safeguards-related activities that have sponsors other than the DOE/OSS or OACN/IS. The final part of the report lists titles and abstracts of Los Alamos safeguards R ampersand D reports, technical journal articles, and conference papers that were published in 1991

  4. ESARDA - safeguards in the wake of politics

    International Nuclear Information System (INIS)

    Ehrfeld, U.

    1983-01-01

    As the number of facilities to be put under safeguards control in accordance with non-proliferation aspects increases, the scope and priorities of surveillance measures are becoming more and more of a politica issue. This problem also arises for ESARDA, the association of European research centers and operators of nuclear facilities working on research and development in the safeguards field with the participation of Euratom. It involves the need to keep politics out of this scientific and technical field, also because of the composition of ESARDA. (orig.) [de

  5. European Commission and IAEA Celebrate 30 Years Co-operation on Nuclear Safeguards

    International Nuclear Information System (INIS)

    2011-01-01

    reprocessing plant in Japan and is now being installed in other facilities in Europe - Secure Sealing: During the last 30 years, the Seal and Identification Laboratory (SILab) of the JRC developed and produced ultrasonic bolt seals requested by the IAEA in order to seal underwater nuclear spent fuel assemblies. In 2011, after a training session at JRC in Ispra, Italy, a joint team of inspectors from the IAEA and EURATOM Safeguards and the European Commission's Directorate-General for Energy successfully sealed the first nuclear fuel bundles produced by the Cernavoda II reactor in Romania. Joint Research Centre (JRC): The JRC is the European Commission's in-house science service. Its mission is to provide customer-driven scientific and technical support for the conception, development, implementation and monitoring of European Union policies. The JRC serves the common interest of the Member States, while being independent of special interests, whether private or national. International Atomic Energy Agency (IAEA): The IAEA serves as the world's foremost intergovernmental forum for scientific and technical co-operation in the peaceful use of nuclear technology. Established as an autonomous organization under the United Nations (UN) in 1957, the IAEA carries out programmes to maximize the useful contribution of nuclear technology to society while verifying its peaceful use. (IAEA)

  6. Challenges for development and provision of metrological quality control tools in nuclear safeguards, nuclear forensics and nuclear security

    International Nuclear Information System (INIS)

    Aregbe, Y.; Richter, S.; Jakopic, R.; Bauwens, J.; Truyens, J.; Sturm, M.; Bujak, R.; Eykens, R.; Kehoe, F.; Kuehn, H.; Hennessy, C.

    2013-01-01

    Joint advancements in quality control tools and measurement sciences of international reference and safeguards laboratories include: -) successful integration of the Modified Total Evaporation technique (MTE) as a new tool for routine thermal ionization mass spectrometry in nuclear safeguards and security, -) research and feasibility studies for the development of new materials standard, particularly for nuclear forensics (Certified Reference Materials - CRMs for age-dating), -) quality control tools to support the additional protocol and nuclear security (particle CRMs, NUSIMEP (inter-laboratory comparisons for U particle analysis), and -) scientific/technical advice, training and knowledge transfer. The European Safeguards Research and Development Association (ESARDA), the Institute of Nuclear Materials Management (INMM) and the CETAMA Commission from the French Commission of Atomic Energy and Alternative Energies (CEA/CETAMA) and the International Atomic Energy Agency (IAEA) Technical Meetings are the platforms to exchange views on the needs and challenges for new Quality Control tools for nuclear safeguards and security. The paper is followed by the slides of the presentation

  7. Safeguards and security research and development progress report, October 1993--September 1994

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.B.; Jaramillo, G.R. [comp.

    1995-08-01

    This report describes the activities carried out by the Los Alamos Safeguards and Security Research and Development (R&D) program from October 1993 through September 1994. The activities presented in the first part of the report were directed primarily to domestic US safeguards applications and were, for the most part, sponsored by the Department of Energy`s Office of Safeguards and Security (DOE/OSS, NN-50). The activities described in Part 2, International Safeguards, were supported by the International Safeguards Division of the Office of Arms Control and Nonproliferation (DOE/OACN, NN-40). Part 3 describes several safeguards or safeguards-related activities that have other sponsors. The final part of the report lists titles and abstracts of Los Alamos safeguards R&D reports, technical journal articles, and conference papers that were published or presented in 1994.

  8. Safeguards and security research and development progress report, October 1993--September 1994

    International Nuclear Information System (INIS)

    Smith, D.B.; Jaramillo, G.R.

    1995-08-01

    This report describes the activities carried out by the Los Alamos Safeguards and Security Research and Development (R ampersand D) program from October 1993 through September 1994. The activities presented in the first part of the report were directed primarily to domestic US safeguards applications and were, for the most part, sponsored by the Department of Energy's Office of Safeguards and Security (DOE/OSS, NN-50). The activities described in Part 2, International Safeguards, were supported by the International Safeguards Division of the Office of Arms Control and Nonproliferation (DOE/OACN, NN-40). Part 3 describes several safeguards or safeguards-related activities that have other sponsors. The final part of the report lists titles and abstracts of Los Alamos safeguards R ampersand D reports, technical journal articles, and conference papers that were published or presented in 1994

  9. Safeguards and security research and development: Program status report, February-July 1981

    International Nuclear Information System (INIS)

    Henry, C.N.; Walton, R.B.

    1982-04-01

    This report, one of a series of biannual progress reports, describes the status of research and development in the Safeguards and Security Program at Los Alamos from February-July 1981. Most work covered here is sponsored by the Office of Safeguards and Security of the Department of Energy; however, project activities that are technically closely related to nuclear safeguards and security also are included where appropriate for conveying information useful to the nuclear community. The report comprises four major subject areas: Security Development and Support; Nuclear Materials Measurement and Engineering; Nuclear Facility Safeguards Support; and International Safeguards, Technology Transfer, and Training. Some technical topics included in the subject areas are computer and informational security, chemical and nondestructive analysis of nuclear materials, process modeling and analysis, nuclear materials accounting systems, evaluation of prototype measurement instrumentation and procedures in nuclear facilities, design and consultation for facilities, technical exchange, training courses, and international safeguards

  10. Safeguards and security research and development: Program status report, February-July 1981

    Energy Technology Data Exchange (ETDEWEB)

    Henry, C.N.; Walton, R.B. (comps.)

    1982-04-01

    This report, one of a series of biannual progress reports, describes the status of research and development in the Safeguards and Security Program at Los Alamos from February-July 1981. Most work covered here is sponsored by the Office of Safeguards and Security of the Department of Energy; however, project activities that are technically closely related to nuclear safeguards and security also are included where appropriate for conveying information useful to the nuclear community. The report comprises four major subject areas: Security Development and Support; Nuclear Materials Measurement and Engineering; Nuclear Facility Safeguards Support; and International Safeguards, Technology Transfer, and Training. Some technical topics included in the subject areas are computer and informational security, chemical and nondestructive analysis of nuclear materials, process modeling and analysis, nuclear materials accounting systems, evaluation of prototype measurement instrumentation and procedures in nuclear facilities, design and consultation for facilities, technical exchange, training courses, and international safeguards.

  11. Strengthening IAEA Safeguards for Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Bruce D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Anzelon, George A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Budlong-Sylvester, Kory [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-01

    During their December 10-11, 2013, workshop in Grenoble France, which focused on the history and future of safeguarding research reactors, the United States, France and the United Kingdom (UK) agreed to conduct a joint study exploring ways to strengthen the IAEA’s safeguards approach for declared research reactors. This decision was prompted by concerns about: 1) historical cases of non-compliance involving misuse (including the use of non-nuclear materials for production of neutron generators for weapons) and diversion that were discovered, in many cases, long after the violations took place and as part of broader pattern of undeclared activities in half a dozen countries; 2) the fact that, under the Safeguards Criteria, the IAEA inspects some reactors (e.g., those with power levels under 25 MWt) less than once per year; 3) the long-standing precedent of States using heavy water research reactors (HWRR) to produce plutonium for weapons programs; 4) the use of HEU fuel in some research reactors; and 5) various technical characteristics common to some types of research reactors that could provide an opportunity for potential proliferators to misuse the facility or divert material with low probability of detection by the IAEA. In some research reactors it is difficult to detect diversion or undeclared irradiation. In addition, infrastructure associated with research reactors could pose a safeguards challenge. To strengthen the effectiveness of safeguards at the State level, this paper advocates that the IAEA consider ways to focus additional attention and broaden its safeguards toolbox for research reactors. This increase in focus on the research reactors could begin with the recognition that the research reactor (of any size) could be a common path element on a large number of technically plausible pathways that must be considered when performing acquisition pathway analysis (APA) for developing a State Level Approach (SLA) and Annual Implementation Plan (AIP). To

  12. The European Hematology Association Roadmap for European Hematology Research

    DEFF Research Database (Denmark)

    Engert, Andreas; Balduini, Carlo; Brand, Anneke

    2016-01-01

    The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology...... research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness...... of the burden of blood disorders on European society, which purely in economic terms is estimated at €23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology...

  13. Cost/Benefit Prioritization for Advanced Safeguards Research and Development

    International Nuclear Information System (INIS)

    DeMuth, S.F.; Adeli, R.; Thomas, K.E.

    2008-01-01

    A system level study utilizing commercially available Extend TM software, has been initiated to perform cost/benefit analyses for advanced safeguards research and development. The methodology is focused on estimating standard error in the inventory difference (SEID) for reprocessing and fuel fabrication facilities, for various proposed advanced safeguards measurement technologies. The inventory duration, and consequent number of inventories per year, is dictated by the detection of a significant quantity of special nuclear material (SNM). Detection is limited by the cumulative measurement uncertainty for the entire system. The cost of inventories is then compared with the cost of advanced instrumentation and/or process design changes. Current progress includes development of the methodology, future efforts will be focused on ascertaining estimated costs and performance. Case studies will be provided as examples of the methodology. (author)

  14. Potential development of non-destructive assay for nuclear safeguards

    International Nuclear Information System (INIS)

    Benoit, R.; Cuypers, M.; Guardini, S.

    1983-01-01

    After a brief summary on the role of non-destructive assay in safeguarding the nuclear fuel cycle, its evolution from NDA methods development to other areas is illustrated. These areas are essentially: a) the evaluation of the performances of NDA techniques in field conditions; b) introduction of full automation of measurement instrument operation, using interactive microprocessors and of measurement data handling evaluation and retrieval features; c) introduction of the adequate link and compatibility to assure NDA measurement data transfer in an integrated safeguards data evaluation scheme. In this field, the Joint Research Centre (JRC) of the Commission of the European Communities (CEC) is developing and implementing a number of techniques and methodologies allowing an integrated and rational treatment of the large amount of safeguards data produced. In particular for the non-destructive assay measurements and techniques, the JRC has studied and tested methodologies for the automatic generation and validation of data of inventory verification. In order to apply these techniques successfully in field, the JRC has studied the design requirements of NDA data management and evaluation systems. This paper also discusses the functional requirements of an integrated system for NDA safeguards data evaluation

  15. An analysis of a regional nuclear safeguards organisation: the European Atomic Energy Community (EURATOM) and the development of nuclear safeguards in Western Europe

    International Nuclear Information System (INIS)

    Howlett, Darryl.

    1988-08-01

    This thesis argues that the nuclear safeguards system implemented by EURATOM in Western Europe has come to fruition as a result of a complex political process. This process has involved negotiations over the exact limits on safeguards interventions into the nuclear affairs of the European Community. There are two dimensions to these negotiations. On the one hand, they involve EURATOM and its member states over the necessary limits on safeguards intervention in member states' domestic nuclear affairs. On the other, there are negotiations between EURATOM and several actors outside the region, particularly the International Atomic Energy Agency. The thesis concludes by arguing that international safeguards organisations, of which EURATOM is a regional example, have made important contributions to arms control and international security. In the process, certain kinds of precedents and procedures which have potential for broader application have been established. (author)

  16. Leveraging physical protection technology for international safeguards applications

    International Nuclear Information System (INIS)

    Glidewell, Don

    2001-01-01

    Full text: In an effort to improve the effectiveness, efficiency, and reliability of equipment used for International Safeguards, the European Safeguards Research and Development Association (ESARDA) Reflection Group requested the ESARDA Containment and Surveillance Working Group to investigate the feasibility of employing physical protection technologies for international safeguards applications. The physical protection market has traditionally been much greater than the international safeguards market. Consequently, physical protection technology has been subjected to greater testing and evaluation, and has enjoyed much greater real world experience. The larger market yields economies of scale, and the greater testing and experience should arguably result in improved reliability. This paper will compare requirements for physical protection versus international safeguards equipment, and identify types of physical protection equipment, which have potential for safeguards applications. It will evaluate both Commercial Off-the-Shelf (COTS) and non-COTS equipment. Finally, for selected physical protection equipment, the paper will evaluate the degree of modification that would be needed to make it acceptable for safeguards applications. (author)

  17. Advanced safeguards research and development plan with an emphasis on its impact on nuclear power-plant design

    International Nuclear Information System (INIS)

    Tobin, S.J.; Demuth, S.F.; Miller, M.C.; Swinhoe, M.T.; Thomas, K.E.

    2007-01-01

    One tool for reducing the concern of nuclear proliferation is enhanced safeguards. Present safeguards have evolved over the past 40 years, and future safeguards will grow from this strong base to implement new technologies for improving our ability to quantify nuclear material. This paper will give an overview of the advanced technology research and development plan for safeguarding. One of the research facilities planned by the Department of Energy is the Advanced Fuel Cycle Facility (AFCF), to develop a novel nuclear fuel recycling program. Since the Advanced Fuel Cycle Facility will receive and reprocess spent fuel and will fabricate fast-reactor fuel, a wide breadth of safeguards technologies is involved. A fundamental concept in safeguards is material control and accounting (MCA). 4 topics concerning MCA and requiring further research have been identified: 1) measuring spent fuel, 2) measuring the plutonium content in the electro-refiner with pyro-processing, 3) measuring plutonium in the presence of other actinides, and 4) measuring neptunium and americium in the presence of other actinides. As for the long-term research and development plan for the AFCF, it will include improving MCA techniques as well as introducing new techniques that are not related to MCA, for example, enhanced containment and surveillance, or enhanced process monitoring. The top priority will stay quantifying the plutonium as accurately as possible and to reach this purpose 4 relevant technologies have been identified: 1) the microcalorimeter, 2) the passive neutron-albedo reactivity, 3) list-mode data acquisition, and 4) a liquid-scintillator multiplicity counter. Incorporating safeguards into the initial design of AFCF (safeguards by design) is a central concept. As the technology research and development plan for the Advanced Fuel Cycle Facility is examined, particular attention will be given to safeguards technologies that may affect the physical design of nuclear power plants

  18. IAEA symposium on international safeguards

    International Nuclear Information System (INIS)

    1999-01-01

    The eighth IAEA Symposium on International Safeguards was organized by the IAEA in cooperation with the Institute of Nuclear Materials Management and the European Safeguards Research and Development Association. It was attended by over 350 specialists and policy makers in the field of nuclear safeguards and verification from more than 50 countries and organizations. The purpose of the Symposium was to foster a broad exchange of information on concepts and technologies related to important developments in the areas of international safeguards and security. For the first time in the history of the symposia, the IAEA is issuing proceedings free of charge to participants on CD-ROM. The twenty-two plenary, technical, and poster sessions featured topics related to technological and policy aspects from national, regional and global perspectives. The theme of the Symposium: Four Decades of Development - Safeguarding into the New Millennium set the stage for the commemoration of a number of significant events in the annals of safeguards. 1997 marked the Fortieth Anniversary of the IAEA, the Thirtieth Anniversary of the Tlatelolco Treaty, and the Twentieth Anniversary of the Department of Safeguards Member State Support Programmes. There were special events and noted presentations featuring these anniversaries and giving the participants an informative retrospective view of safeguards development over the past four decades. The proceedings of this symposium provide the international community with a comprehensive view of where nuclear safeguards and verification stood in 1997 in terms of the growing demands and expectations. The Symposium offered thoughtful perspectives on where safeguards are headed within the broader context of verification issues. As the world of international nuclear verification looks towards the next millennium, the implementation of the expanding and strengthened safeguards system presents formidable challenges

  19. The European Hematology Association Roadmap for European Hematology Research: a consensus document.

    Science.gov (United States)

    Engert, Andreas; Balduini, Carlo; Brand, Anneke; Coiffier, Bertrand; Cordonnier, Catherine; Döhner, Hartmut; de Wit, Thom Duyvené; Eichinger, Sabine; Fibbe, Willem; Green, Tony; de Haas, Fleur; Iolascon, Achille; Jaffredo, Thierry; Rodeghiero, Francesco; Salles, Gilles; Schuringa, Jan Jacob

    2016-02-01

    The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at €23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap.The EHA Roadmap identifies nine 'sections' in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders.The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients. Copyright© Ferrata Storti Foundation.

  20. AFCI Safeguards Enhancement Study: Technology Development Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Leon E.; Dougan, A.; Tobin, Stephen; Cipiti, B.; Ehinger, Michael H.; Bakel, A. J.; Bean, Robert; Grate, Jay W.; Santi, P.; Bryan, Steven; Kinlaw, M. T.; Schwantes, Jon M.; Burr, Tom; Lehn, Scott A.; Tolk, K.; Chichester, David; Menlove, H.; Vo, D.; Duckworth, Douglas C.; Merkle, P.; Wang, T. F.; Duran, F.; Nakae, L.; Warren, Glen A.; Friedrich, S.; Rabin, M.

    2008-12-31

    The Advanced Fuel Cycle Initiative (AFCI) Safeguards Campaign aims to develop safeguards technologies and processes that will significantly reduce the risk of proliferation in the U.S. nuclear fuel cycle of tomorrow. The Safeguards Enhancement Study was chartered with identifying promising research and development (R&D) directions over timescales both near-term and long-term, and under safeguards oversight both domestic and international. This technology development roadmap documents recognized gaps and needs in the safeguarding of nuclear fuel cycles, and outlines corresponding performance targets for each of those needs. Drawing on the collective expertise of technologists and user-representatives, a list of over 30 technologies that have the potential to meet those needs was developed, along with brief summaries of each candidate technology. Each summary describes the potential impact of that technology, key research questions to be addressed, and prospective development milestones that could lead to a definitive viability or performance assessment. Important programmatic linkages between U.S. agencies and offices are also described, reflecting the emergence of several safeguards R&D programs in the U.S. and the reinvigoration of nuclear fuel cycles across the globe.

  1. Development of DUPIC safeguards neutron counter

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Gil; Cha, Hong Ryul; Kim, Ho Dong; Hong, Jong Sook; Kang, Hee Young

    1999-08-01

    KAERI, in cooperation with LANL, developed DSNC (DUPIC Safeguards Neutron Counter) for safeguards implementing on DUPIC process which is under development by KAERI for direct use of spent PWR fuel in CANDU reactors. DSNC is a well-type neutron coincidence counter with substantial shielding to protect system from high gamma radiation of spent fuel. General development procedures in terms of design, manufacturing, fabrication, cold and hot test, performance test for DSNC authentication by KAERI-IAEA-LANL are described in this report. It is expected that the techniques related DSNC development and associated neutron detection and evaluation method could be applied for safeguards improvement. (Author). 20 refs., 16 tabs. 98 figs.

  2. Safeguarding research reactors

    International Nuclear Information System (INIS)

    Powers, J.A.

    1983-03-01

    The report is organized in four sections, including the introduction. The second section contains a discussion of the characteristics and attributes of research reactors important to safeguards. In this section, research reactors are described according to their power level, if greater than 25 thermal megawatts, or according to each fuel type. This descriptive discussion includes both reactor and reactor fuel information of a generic nature, according to the following categories. 1. Research reactors with more than 25 megawatts thermal power, 2. Plate fuelled reactors, 3. Assembly fuelled reactors. 4. Research reactors fuelled with individual rods. 5. Disk fuelled reactors, and 6. Research reactors fuelled with aqueous homogeneous fuel. The third section consists of a brief discussion of general IAEA safeguards as they apply to research reactors. This section is based on IAEA safeguards implementation documents and technical reports that are used to establish Agency-State agreements and facility attachments. The fourth and last section describes inspection activities at research reactors necessary to meet Agency objectives. The scope of the activities extends to both pre and post inspection as well as the on-site inspection and includes the examination of records and reports relative to reactor operation and to receipts, shipments and certain internal transfers, periodic verification of fresh fuel, spent fuel and core fuel, activities related to containment and surveillance, and other selected activities, depending on the reactor

  3. Safeguards and security research and development: Progress report, October 1994--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, D.R.; Henriksen, P.W. [comp.

    1997-03-01

    The primary goal of the Los Alamos Safeguards and Security Technology Development Program, International Safeguards, and other Safeguards and Security Programs is to continue to be the center of excellence in the field of Safeguards and Security. This annual report for 1995 describes those scientific and engineering projects that contribute to all of the aforementioned programs. The authors have presented the information in a different format from previous annual reports. Part I is devoted to Nuclear Material Measurement Systems. Part II contains projects that are specific to Integrated Safeguards Systems. Part III highlights Safeguards Systems Effectiveness Evaluations and Part IV is a compilation of highlights from Information Assurance projects. Finally Part V highlights work on the projects at Los Alamos for International Safeguards. The final part of this annual report lists titles and abstracts of Los Alamos Safeguards and Security Technology Development reports, technical journal articles, and conference papers that were presented and published in 1995. This is the last annual report in this format. The authors wish to thank all of the individuals who have contributed to this annual report and made it so successful over the years.

  4. Safeguards and security research and development: Progress report, October 1994--September 1995

    International Nuclear Information System (INIS)

    Rutherford, D.R.; Henriksen, P.W.

    1997-03-01

    The primary goal of the Los Alamos Safeguards and Security Technology Development Program, International Safeguards, and other Safeguards and Security Programs is to continue to be the center of excellence in the field of Safeguards and Security. This annual report for 1995 describes those scientific and engineering projects that contribute to all of the aforementioned programs. The authors have presented the information in a different format from previous annual reports. Part I is devoted to Nuclear Material Measurement Systems. Part II contains projects that are specific to Integrated Safeguards Systems. Part III highlights Safeguards Systems Effectiveness Evaluations and Part IV is a compilation of highlights from Information Assurance projects. Finally Part V highlights work on the projects at Los Alamos for International Safeguards. The final part of this annual report lists titles and abstracts of Los Alamos Safeguards and Security Technology Development reports, technical journal articles, and conference papers that were presented and published in 1995. This is the last annual report in this format. The authors wish to thank all of the individuals who have contributed to this annual report and made it so successful over the years

  5. Contribution of the 'safeguarded' to the development of safeguards

    International Nuclear Information System (INIS)

    Anderson, A.R.

    1977-01-01

    The development of an efficient system of international safeguards requires close and detailed interaction between the safeguarding authority and those being safeguarded, i.e. the plant operator and the State System to which he belongs. Such interaction is found in other control systems but the degree of international collaboration involved in safeguards is perhaps unique and it is valuable to review and analyse the contributions which have arisen from prudent management considerations. The familiar ''Blue Book'' (INFCIRC 153) recognizes clearly the need for an effective State's System of accounting for and control of nuclear materials as a necessary pre-requisite for the development and implementation of an effective IAEA system of safeguards. It is therefore helpful to summarize the relevant contributions from the 'safeguarded' in terms of the components of the State's System specified in paragraph 32 of the Blue Book. This paper reviews the continuing contributions stemming from plant and national experience, with particular emphasis on the development of measurement systems and physical inventory procedures relevant to safeguards. Attention is also drawn to those areas where the specific objectives of IAEA Safeguards lead to requirements additional to those required for management purposes. (author)

  6. The european hematology association roadmap for european hematology research : A consensus document

    NARCIS (Netherlands)

    A. Engert (Andreas); C.L. Balduini (Carlo); A. Brand (Anneke); B. Coiffier (Bertrand); C. Cordonnier (Charlotte); H. Döhner (Hartmut); De Wit, T.D. (Thom Duyvené); Eichinger, S. (Sabine); W.E. Fibbe (Willem); Green, T. (Tony); De Haas, F. (Fleur); A. Iolascon (Achille); T. Jaffredo (Thierry); F. Rodeghiero (Francesco); G. Salles (Gilles); J.J. Schuringa (Jan Jacob)

    2016-01-01

    textabstractThe European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European

  7. The European Hematology Association Roadmap for European Hematology Research : A consensus document

    NARCIS (Netherlands)

    Engert, Andreas; Balduini, Carlo; Brand, Anneke; Coiffier, Bertrand; Cordonnier, Catherine; Döhner, Hartmut; de Wit, Thom Duyvené; Eichinger, Sabine; Fibbe, Willem; Green, Tony; de Haas, Fleur; Iolascon, Achille; Jaffredo, Thierry; Rodeghiero, Francesco; Salles, Gilles; Schuringa, Jan Jacob

    The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology

  8. Contribution of the ''safeguarded'' to the development of safeguards

    International Nuclear Information System (INIS)

    Anderson, A.R.

    1977-01-01

    The development of an efficient system of international safeguards requires close and detailed interaction between the safeguarding authority and those being safeguarded, i.e. the plant operator and the State System to which he belongs. Such interaction is found in other control systems but the degree of international collaboration involved in Safeguards is perhaps unique and it is valuable to review and analyse the contributions which have arisen from prudent management considerations. Management has many reasons to exercise stringent control of nuclear materials stemming from the value and hazardous nature of the materials being used, and the requirements of relevant national legislation. Because systems at a plant and within a State are generally designed to control quantities of nuclear materials within limits smaller than those specified in the I.A.E.A.'s Safeguards objectives, experience at the plant level has contributed significantly to the development of International Safeguards procedures. In making such contributions, plant management and the national authorities have a common objective with that of the I.A.E.A. in developing a Safeguards system which is both technically-effective and cost-effective. The pursuit of this objective requires that implementation of the Safeguards system can be modified in the light of relevant practical experience of plant operators and of the I.A.E.A. The familiar Blue Book (INFCIRC 153) recognises clearly the need for an effective State's System of accounting for and control of nuclear materials as a necessary pre-requisite for the development and implementation of an effective I.A.E.A. system of Safeguards. It is therefore helpful to review the relevant contributions from the 'Safeguarded' in terms of the components of the State's System specified in paragraph 32 of the Blue Book. This paper reviews the continuing contributions stemming from plant and national experience, with particular emphasis on the development of

  9. Canadian safeguards research and development in support of the IAEA program document outlining the various tasks which comprise the program

    International Nuclear Information System (INIS)

    1985-12-01

    Canada has established a safeguards research and development program, the purpose of which is to supplement the resources of the International Atomic Energy Agency. The program of support is a coordinated effort for the development and application of safeguards techniques and instruments to facilities safeguarded by the IAEA. This document sets forth those tasks which comprise the program

  10. Nuclear safeguards in the European Union carried out by the European Commission or: the EURATOM treaty. The unknown nature

    International Nuclear Information System (INIS)

    Kilb, Wolfgang

    2016-01-01

    Nuclear safeguards in the 28 Member States of the European Union are based on a complex structure of national, supranational and international legal acts: A first approach are the three ''S'' to be met: security, safety, safeguards. The EURATOM safeguards are based on two pillars: the control of nuclear material itself, as well as different types of international agreements: the first refers to ''agreements with a third State'', the second on ''agreement with an international organization''.

  11. Enabling International Safeguards Research and Development in the United States

    International Nuclear Information System (INIS)

    Dwight, John E.; Schanfein, Mark J.; Bjornard, Trond A.

    2009-01-01

    Idaho National Laboratory (INL) is the lead laboratory in nuclear energy research and development within the U.S. Department of Energy national laboratory complex. INL is tasked with the advancement of nuclear energy research and development, and leadership in the renaissance of nuclear power globally. INL scientists have been central to the assessment of needs and the integration of technical programs aimed at the world-wide growth of nuclear power. One of the grand challenges of the nuclear energy resurgence is nuclear nonproliferation. Nonproliferation technology development is key to meeting this challenge. The needed advances in nonproliferation technologies are being made more difficult by the growing gap between increasing demands for nuclear materials to support technology development, and reduced availability of these materials. The gap is caused by the reduction, consolidation and more stringent lockdown of nuclear materials, made necessary by heightened and evolving security concerns, in the face of increased demand for materials to support technology development. Ironically, the increased demand for materials for technology development is made necessary by these same security concerns. The situation will continue to worsen if safeguards and security budgets remain limited for the International Atomic Energy Agency (IAEA) and many member states, while growth in global nuclear energy becomes a reality. Effective U.S. leadership in the closing of this gap is vital to homeland security and global stability. INL has taken positive steps, described in this paper, to close this gap by reestablishing a viable base for the development, testing and demonstration of safeguards and security technologies. Key attributes of this technology development base are (1) the availability of a wide variety of special nuclear materials in forms that allow for enhanced accessibility; (2) ease of access by U.S. government, national laboratory, industry and academic institution

  12. Technology development of nuclear material safeguards for DUPIC fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jong Sook; Kim, Ho Dong; Kang, Hee Young; Lee, Young Gil; Byeon, Kee Ho; Park, Young Soo; Cha, Hong Ryul; Park, Ho Joon; Lee, Byung Doo; Chung, Sang Tae; Choi, Hyung Rae; Park, Hyun Soo

    1997-07-01

    During the second phase of research and development program conducted from 1993 to 1996, nuclear material safeguards studies system were performed on the technology development of DUPIC safeguards system such as nuclear material measurement in bulk form and product form, DUPIC fuel reactivity measurement, near-real-time accountancy, and containment and surveillance system for effective and efficient implementation of domestic and international safeguards obligation. By securing in advance a optimized safeguards system with domestically developed hardware and software, it will contribute not only to the effective implementation of DUPIC safeguards, but also to enhance the international confidence build-up in peaceful use of spent fuel material. (author). 27 refs., 13 tabs., 89 figs.

  13. Research and development of safeguards measures for the large scale reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Masahiro; Sato, Yuji; Yokota, Yasuhiro; Masuda, Shoichiro; Kobayashi, Isao; Uchikoshi, Seiji; Tsutaki, Yasuhiro; Nidaira, Kazuo [Nuclear Material Control Center, Tokyo (Japan)

    1994-12-31

    The Government of Japan agreed on the safeguards concepts of commercial size reprocessing plant under the bilateral agreement for cooperation between the Japan and the United States. In addition, the LASCAR, that is the forum of large scale reprocessing plant safeguards, could obtain the fruitful results in the spring of 1992. The research and development of safeguards measures for the Rokkasho Reprocessing Plant should be progressed with every regard to the concepts described in both documents. Basically, the material accountancy and monitoring system should be established, based on the NRTA and other measures in order to obtain the timeliness goal for plutonium, and the un-attended mode inspection approach based on the integrated containment/surveillance system coupled with radiation monitoring in order to reduce the inspection efforts. NMCC has been studying on the following measures for a large scale reprocessing plant safeguards (1) A radiation gate monitor and integrated surveillance system (2) A near real time Shipper and Receiver Difference monitoring (3) A near real time material accountancy system operated for the bulk handling area (4) A volume measurement technique in a large scale input accountancy vessel (5) An in-process inventory estimation technique applied to the process equipment such as the pulse column and evaporator (6) Solution transfer monitoring approach applied to buffer tanks in the chemical process (7) A timely analysis technique such as a hybrid K edge densitometer operated in the on-site laboratory (J.P.N.).

  14. Recent developments in the implementation of Euratom safeguards

    International Nuclear Information System (INIS)

    Gmelin, W.; Bommelle, P.; Sharpe, B.W.; Love, B.

    1983-01-01

    The EURATOM safeguards system is based legally on the 1958 Treaty of Rome establishing the original Community of six (now 10) countries. Under this safeguards system, the Commission has, inter alia, ''to satisfy itself that any particular safeguarding obligations assumed by the Community under an agreement concluded with a third state or an international organisation are complied with'' (art. 77b). The practical implementation of safeguards within the Community is significantly influenced by the requirements of: (a) the three different agreements between the Community, its Member States and the IAEA, concerning the application of IAEA safeguards to some or all of the civil nuclear materials in the Community, and (b) the various agreements between the Community and certain third countries, concerning inter alia the application of safeguards within the Community to nuclear materials supplied, directly or indirectly, by these third countries. Within the past four years significant developments have occurred in both groups of agreements. The EURATOM safeguards organisation is the only multinational safeguards organisation in the world, and currently has a staff of some 120 inspectors, with appropriate administrative support, and can draw for research and development work on the resources of the Community's Joint Research Centre. The recent changes in inspection techniques, particularly in relation to non-destructive assay techniques, and the implementation of containment and surveillance measures, are discussed. A description is given of the experience gained in recent years in the operation of ''Joint Teams'' of EURATOM and IAEA inspectors in certain plants as well as the continuing experience gained under the normal regime, using the observation principle, as foreseen in the respective Agreement

  15. ESARDA approach to facility oriented safeguards problems

    International Nuclear Information System (INIS)

    Stewart, R.

    1979-01-01

    The paper outlines the brief history of a Working Group composed of nuclear fuel plant operators, safeguards research workers and safeguards inspectors who are examining facility orientated problems of nuclear materials control and verification activities. The working program is reviewed together with some examples of various problems and the way the group is collaborating to develop solutions by pooling resources and effort. Work in European low enriched uranium fabrication plants from UF 6 to finished fuel is discussed in connection with mesurement practices, real time accounting, error propagation and analysis, verification and surveillance

  16. The European Fusion Research and Development Programme and the ITER Project

    International Nuclear Information System (INIS)

    Green, B J

    2006-01-01

    The EURATOM fusion research and development programme is a well integrated and coordinated programme. It has the objective of ''developing the technology for a safe, sustainable, environmentally responsible and economically viable energy source.'' The programme is focussed on the magnetic confinement approach and supports 23 Associations which involve research entities (many with experimental and technology facilities) each having a bilateral contractual relationship with the European Commission. The paper will describe fusion reactions and present their potential advantages as an energy source. Further, it will describe the EURATOM programme and how it is organised and implemented. The success of the European programme and that of other national programmes, have provided the basis for the international ITER Project, which is the next logical step in the development of fusion energy. The paper will describe ITER, its aims, its design, and the supporting manufacture of prototype components. The European contribution to ITER, the exploitation of the Joint European Torus (JET), and the long-term reactor technology R and D are carried out under the multilateral European Fusion Development Agreement (EFDA)

  17. Nuclear Safeguards Infrastructure Development and Integration with Safety and Security

    International Nuclear Information System (INIS)

    Kovacic, Donald N.; Raffo-Caiado, Ana Claudia; McClelland-Kerr, John; Van sickle, Matthew; Bissani, Mo

    2009-01-01

    Faced with increasing global energy demands, many developing countries are considering building their first nuclear power plant. As a country embarks upon or expands its nuclear power program, it should consider how it will address the 19 issues laid out in the International Atomic Energy Agency (IAEA) document Milestones in Development of a National Infrastructure for Nuclear Power. One of those issues specifically addresses the international nonproliferation treaties and commitments and the implementation of safeguards to prevent diversion of nuclear material from peaceful purposes to nuclear weapons. Given the many legislative, economic, financial, environmental, operational, and other considerations preoccupying their planners, it is often difficult for countries to focus on developing the core strengths needed for effective safeguards implementation. Typically, these countries either have no nuclear experience or it is limited to the operation of research reactors used for radioisotope development and scientific research. As a result, their capacity to apply safeguards and manage fuel operations for a nuclear power program is limited. This paper argues that to address the safeguards issue effectively, a holistic approach must be taken to integrate safeguards with the other IAEA issues including safety and security - sometimes referred to as the '3S' concept. Taking a holistic approach means that a country must consider safeguards within the context of its entire nuclear power program, including operations best practices, safety, and security as well as integration with its larger nonproliferation commitments. The Department of Energy/National Nuclear Security Administration's International Nuclear Safeguards and Engagement Program (INSEP) has been involved in bilateral technical cooperation programs for over 20 years to promote nonproliferation and the peaceful uses of nuclear energy. INSEP is currently spearheading efforts to promote the development of

  18. European Association of Echocardiography: Research Grant Programme.

    Science.gov (United States)

    Gargani, Luna; Muraru, Denisa; Badano, Luigi P; Lancellotti, Patrizio; Sicari, Rosa

    2012-01-01

    The European Society of Cardiology (ESC) offers a variety of grants/fellowships to help young professionals in the field of cardiological training or research activities throughout Europe. The number of grants has significantly increased in recent years with contributions from the Associations, Working Groups and Councils of the ESC. The European Association of Echocardiography (EAE) is a registered branch of the ESC and actively takes part in this initiative. One of the aims of EAE is to promote excellence in research in cardiovascular ultrasound and other imaging modalities in Europe. Therefore, since 2008, the EAE offers a Research Grant Programme to help young doctors to obtain research experience in a high standard academic centre (or similar institution oriented to clinical or pre-clinical research) in an ESC member country other than their own. This programme can be considered as a valorization of the geographical mobility as well as cultural exchanges and professional practice in the field of cardiovascular imaging. The programme has been very successful so far, therefore in 2012 the EAE has increased its offer to two grants of 25,000 euros per annum each.

  19. Planning of Medium- and Long-Term Strategy for the Safeguards Technology Development

    International Nuclear Information System (INIS)

    Shin, Dong Hoon; Ahn, Gil Hoon; Choi, Kwan Gyu

    2009-01-01

    In Rep. of Korea, active safeguards technology development suitable to phase of a nuclear advanced country is necessary because of below reasons. First reasons are '6th ranked position in the nuclear energy generation all over the world', 'continuously increased outcomes in the various nuclear fields such as research or patent', 'strengthened intention of the new government for nuclear industries', and 'weakness of the R and D foundation related to the safeguards technology'. Second reasons are optimization necessity of the effectiveness and efficiency of safeguards according to enlargement of the SSAC (State Systems of Accounting for and Control) role. The reason of the enlargement of the SSAC is IAEA IS (Integrated Safeguards) application for Korea. Third reasons are necessity for the systematic national development plan considering the Korea R and D level and the degree of the difficulty of technology. This is to say, there is necessity of the system construction of safeguards technology development connected to the NuTRM(Nuclear Technology Road Map), integrated national nuclear energy promotion plans because of necessity for concentration of the technology level and development abilities which are spread in the industry fields, the academic world and research fields. So, in this study, the foundation of the advanced safeguards technology is provided through determining the priority of the individual technology of National Safeguards, establishing development strategy for the middle or long term of Safeguards technology, based on domestic and foreign status

  20. Development of DUPIC safeguards technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H D; Ko, W I; Song, D Y [and others

    2000-03-01

    During the first phase of R and D program conducted from 1997 to 1999, nuclear material safeguards studies system were performed on the technology development of DUPIC safeguards system such as nuclear material measurement in bulk form and product form, DUPIC fuel reactivity measurement, near-real-time accountancy, and containment and surveillance system for effective and efficient implementation of domestic and international safeguards obligation. For the nuclear material measurement system, the performance test was finished and received IAEA approval, and now is being used in DUPIC Fuel Fabrication Facility(DFDF) for nuclear material accounting and control. Other systems being developed in this study were already installed in DFDF and being under performance test. Those systems developed in this study will make a contribution not only to the effective implementation of DUPIC safeguards, but also to enhance the international confidence build-up in peaceful use of spent fuel material. (author)

  1. Safeguards and security deficiencies fulfilled through technology development

    International Nuclear Information System (INIS)

    Smoot, W.

    1996-01-01

    The Office of Safeguards and Security (OSS) sponsors research and development activities based on identified field and headquarters customer requirements. Annually, a formal solicitation of safeguards and security user needs is conducted. Currently, there are over 300 valid safeguards and security deficiencies that have been identified. These user needs serve as the basis for formulating the OSS Technology Development Program (TDP). Due to budget constraints, the TDP can only address approximately 47% of these needs in FY 1996. This paper will discuss, in a general sense, the current deficiencies and how the TDP is responding to each. Specifically, the paper will highlight technologies in the areas of Material Control and Accounting, Physical Security, and Information Security. A brief discussion of unfulfilled user requirements will also be presented as a catalyst for leveraging available or developing technologies from other similar programs or from private industry

  2. Beyond Human Capital Development: Balanced Safeguards Workforce Metrics and the Next Generation Safeguards Workforce

    International Nuclear Information System (INIS)

    2014-01-01

    Since its establishment in 2008, the Next Generation Safeguards Initiative (NGSI) has achieved a number of objectives under its five pillars: concepts and approaches, policy development and outreach, international nuclear safeguards engagement, technology development, and human capital development (HCD). As a result of these efforts, safeguards has become much more visible as a critical U.S. national security interest across the U.S. Department of Energy (DOE) complex. However, limited budgets have since created challenges in a number of areas. Arguably, one of the more serious challenges involves NGSI's ability to integrate entry-level staff into safeguards projects. Laissez fair management of this issue across the complex can lead to wasteful project implementation and endanger NGSI's long-term sustainability. The authors provide a quantitative analysis of this problem, focusing on the demographics of the current safeguards workforce and compounding pressures to operate cost-effectively, transfer knowledge to the next generation of safeguards professionals, and sustain NGSI safeguards investments.

  3. Technological developments and safeguards instrumentation: Responding to new challenges

    International Nuclear Information System (INIS)

    Naito, K.; Rundquist, D.E.

    1994-01-01

    Entering the 1990s, technological tools that were in the research and development stage not so long ago are changing the way inspectors are able to verify nuclear materials at many facilities around the world. Many new instruments - ranging from advanced video monitoring systems to miniature detectors and analysers - already are in place. In some cases, they have been custom-made for specific safeguards tasks, or for placement in locations, such as underwater storage pools for spent reactor fuel, where inspectors cannot go. Standing behind the development of many of these new safeguards instruments are a number of factors. They include: technological advances In computer related fields, such as microprocessing and electronics, and specific areas of instrumentation; technical developments in the nuclear industry and Efficiency improvements and efforts to reduce the costs of safeguards implementation

  4. European nuclear education initiatives

    International Nuclear Information System (INIS)

    Glatz, Jean-Paul

    2011-01-01

    international and bilateral information exchange on operating experience. Within the European Safeguards Research and Development Association (ESARDA), academically recognised nuclear safeguards and non-proliferation courses are organised by the JRC. Those should in the future be part of a newly created European Nuclear Safety and Security School with the goal to make JRC's nuclear research facilities better accessible for graduate and post-graduate training and education programmes in Europe. Furthermore the JRC is running the Actinide User Laboratory (ACTUSLAB), offering researchers the possibility to use its unique facilities and associated expertise on basic research related to the actinides elements of both fundamental and applied interest. Similarly the JRC is pooling its facilities to the partners in the ACTINET network, to facilitate the efficient use of major nuclear research facilities by the scientific community. E and T is a key element in order to reach students and young scientists in the EU by organising summer schools and supporting students to attend international conferences, workshops, seminars or to participate in traineeships. (author)

  5. The development of safeguards for geological repositories

    International Nuclear Information System (INIS)

    Van der Meer, K.

    2009-01-01

    Traditionally, research and development on geological repositories for High Level Waste (HLW) focuses on the short- and long-term safety aspects of the repository. If the repository will also be used for the disposal of spent fuel, safeguards aspects have to be taken into account. Safety and safeguards requirements may be contradictory; the safety of a geological repository is based on the non-intrusion of the geological containment, while safeguards require regular inspections of position and amount of the spent fuel. Examples to reconcile these contradictory requirements are the use of information required for the safety assessment of the geological repository for safeguards purposes and the adaptation of the safeguards approach to use non-intrusive inspection techniques. The principles of an inspection approach for a geological repository are now generally accepted within the IAEA. The practical applicability of the envisaged inspection techniques is still subject to investigation. It is specifically important for the Belgian situation that an inspection technique can be used in clay, the geological medium in which Belgium intends to dispose its HLW and spent fuel. The work reported in this chapter is the result of an international cooperation in the framework of the IAEA, in which SCK-CEN participates

  6. EURATOM safeguards efforts in the development of spent fuel verification methods by non-destructive assay

    Energy Technology Data Exchange (ETDEWEB)

    Matloch, L.; Vaccaro, S.; Couland, M.; De Baere, P.; Schwalbach, P. [Euratom, Communaute europeenne de l' energie atomique - CEEA (European Commission (EC))

    2015-07-01

    The back end of the nuclear fuel cycle continues to develop. The European Commission, particularly the Nuclear Safeguards Directorate of the Directorate General for Energy, implements Euratom safeguards and needs to adapt to this situation. The verification methods for spent nuclear fuel, which EURATOM inspectors can use, require continuous improvement. Whereas the Euratom on-site laboratories provide accurate verification results for fuel undergoing reprocessing, the situation is different for spent fuel which is destined for final storage. In particular, new needs arise from the increasing number of cask loadings for interim dry storage and the advanced plans for the construction of encapsulation plants and geological repositories. Various scenarios present verification challenges. In this context, EURATOM Safeguards, often in cooperation with other stakeholders, is committed to further improvement of NDA methods for spent fuel verification. In this effort EURATOM plays various roles, ranging from definition of inspection needs to direct participation in development of measurement systems, including support of research in the framework of international agreements and via the EC Support Program to the IAEA. This paper presents recent progress in selected NDA methods. These methods have been conceived to satisfy different spent fuel verification needs, ranging from attribute testing to pin-level partial defect verification. (authors)

  7. Next Generation Safeguards Initiative: Human Capital Development

    International Nuclear Information System (INIS)

    Scholz, M.; Irola, G.; Glynn, K.

    2015-01-01

    Since 2008, the Human Capital Development (HCD) subprogramme of the U.S. National Nuclear Security Administration's (NNSA) Next Generation Safeguards Initiative (NGSI) has supported the recruitment, education, training, and retention of the next generation of international safeguards professionals to meet the needs of both the International Atomic Energy Agency (IAEA) and the United States. Specifically, HCD's efforts respond to data indicating that 82% of safeguards experts at U.S. Laboratories will have left the workforce within 15 years. This paper provides an update on the status of the subprogramme since its last presentation at the IAEA Safeguards Symposium in 2010. It highlights strengthened, integrated efforts in the areas of graduate and post-doctoral fellowships, young and midcareer professional support, short safeguards courses, and university engagement. It also discusses lessons learned from the U.S. experience in safeguards education and training as well as the importance of long-range strategies to develop a cohesive, effective, and efficient human capital development approach. (author)

  8. Development of DUPIC safeguards technology

    International Nuclear Information System (INIS)

    Kim, H. D.; Kang, H. Y.; Ko, W. I.

    2002-05-01

    DUPIC safeguards R and D in the second phase has focused on the development of nuclear material measurement system and its operation and verification, the development of nuclear material control and accounting system, and the development of remote and unmanned containment/surveillance system. Of them, the nuclear material measurement system was authenticated from IAEA and officially used for IAEA and domestic safeguards activities in DFDF. It was also verified that the system could be used for quality control of DUPIC process. It is recognised that the diagnostic software using neural network and remote and unmanned containment/surveillance system developed here could be key technologies to go into remote and near-real time monitoring system. The result of this project will eventually contribute to similar nuclear fuel cycles like MOX and pyroprocessing facility as well as the effective implementation of DUPIC safeguards. In addition, it will be helpful to enhance international confidence build-up in the peaceful use of spent fuel material

  9. The DOE safeguards and security technology development program

    International Nuclear Information System (INIS)

    Cherry, R.C.; Wheelock, A.J.

    1991-01-01

    This paper reports that strategic planning for safeguards and security within the Department of Energy emphasizes the contributions of advanced technologies to the achievement of Departmental protection program goals. The Safeguards and Security Technology Development Program provides state-of-the-art technologies, systems and technical services in support of the policies and programmatic requirements for the protection of Departmental assets. The Program encompasses research and development in physical security, nuclear material control and accountability, information security and personnel security, and the integration of these disciplines in advanced applications. Technology development tasks serve goals that range from the maintenance of an effective technology base to the development, testing and evaluation of applications to meet field needs. A variety of factors, from the evolving threat to reconfiguration of the DOE complex and the technical requirements of new facilities, are expected to influence safeguards and security technology requirements and development efforts. Implementation of the Program is based on the systematic identification, prioritization and alignment of technology development tasks and needs. Initiatives currently underway are aimed at enhancing technology development project management. Increased management attention is also being placed on efforts to promote the benefits of the Program through technology transfer and interagency liaison

  10. Safeguards technology development for spent fuel storage and disposal

    International Nuclear Information System (INIS)

    Sanders, K.E.

    1991-01-01

    This paper reports on facilities for monitored retrievable storage and geologic repository that will be operating in the US by 1998 and 2010 respectively. The international safeguards approach for these facilities will be determined broadly by the Safeguards Agreement and the IAEA Safeguards Criteria (currently available for 1991-1995) and defined specifically in the General Subsidiary Arrangements and Specific Facility Attachments negotiated under the US/IAEA Safeguards Agreement. Design information for these facilities types, as it is conceptualized, will be essential input to the safeguards approach. Unique design and operating features will translate into equally unique challenges to the application of international safeguards. The development and use of new safeguards technologies offers the greatest potential for improving safeguards. The development and use of new safeguards technologies offers the greatest potential for improving safeguards by enabling efficient and effective application with regard to the operator's interest, US policies, and the IAEA's statutorial obligations. Advanced unattended or remote measurement, authentication of operator's measurement, authentication of operator's measurement data, and integration of monitoring and containment/surveillance potentially are among the most fruitful areas of technology development. During the next year, a long range program plan for international safeguard technology development for monitored retrievable storage and geologic repository will be developed by the International Branch in close coordination with the Office of Civilian Radioactive Waste Management. This presentation preliminarily identifies elements of this long range program

  11. The Canadian safeguards program

    International Nuclear Information System (INIS)

    Zarecki, C.W.; Smith, R.M.

    1981-12-01

    In support of the Treaty on the Non-Proliferation of Nuclear Weapons Canada provides technical support to the International Atomic Energy Agency for the development of safeguards relevant to Canadian designed and built nuclear facilities. Some details of this program are discussed, including the philosophy and development of CANDU safeguards systems; the unique equipment developed for these systems; the provision of technical experts; training programs; liaison with other technical organizations; research and development; implementation of safeguards systems at various nuclear facilities; and the anticipated future direction of the safeguards program

  12. ENEN - European Nuclear Educational Network Association

    International Nuclear Information System (INIS)

    De Regge, P.

    2006-01-01

    After the pioneering initiative of BNEN, the Belgian Nuclear higher Education Network, other countries, e.g. Italy, United Kingdom, Germany, Switzerland, etc., created their own pool of education. At the European level the ENEN Association (European Nuclear Education Network) is a sustainable product generated by an FP5 project. The main objective of the ENEN Association is the preservation and the further development of higher nuclear education and expertise. This objective is realized through the co-operation between European universities, involved in education and research in the nuclear engineering field, nuclear research centres and nuclear industry

  13. Application of a portable briefcase personal computer to research reactor safeguards

    International Nuclear Information System (INIS)

    Ryan, R.D.

    1985-01-01

    The Kookaburra Portable Briefcase Personal Computer (PBPC) has been applied to safeguards inspections at the HIFAR research reactor. A complete portable measuring system provides for non-destructive assay on both fresh and spent fuel. Application programs developed for the PBPC make it possible to immediately analyse the results of the measurements to verify the amounts of nuclear material declared by the operator. This contributes significantly to meeting the essential safeguards criteria of timely detection of diversion

  14. Euratom experience in safeguarding reprocessing and thermal reactor mixed oxide fuel fabrication facilities within the European Community

    International Nuclear Information System (INIS)

    1978-11-01

    The legal basis and instruments for the application of safeguards in the European Community are described. Euratom safeguards apply throughout the fuel cycle starting at the ore stage. Euratom has had experience in the application of safeguards to small and medium size reprocessing and MOX fabrication plants. In reprocessing plants accountancy, containment and surveillance methods are applied and the plant is divided into three material balance areas. Similar procedures are applied at fabrication plants. Euratom inspectors apply their main verification activities at strategic points but have the right of access at any time to all places which contain nuclear material. Under the Euratom-IAEA Agreements 'Joint Teams' of Euratom and IAEA inspectors will operate together to minimise the burden on operators and to avoid duplication of effort while enabling both organisations to achieve their safeguards objectives

  15. The 50 Years of Safeguards and Non-Proliferation in Poland

    International Nuclear Information System (INIS)

    Pawlak, A.; Jurkowski, M.; Zagrajek, M.

    2015-01-01

    Milestones of safeguards and non-proliferation activities are presented. Poland has declared its compliance with non-proliferation regime by ratification of Treaty of Nonproliferation of Nuclear Weapons in 1969. Poland concluded in 1972 Agreement with IAEA for application of safeguards — INFCIRC/153. Next steps in implementation of international safeguards were: ratification of Additional Protocol and introduction of Integrated Safeguards. After accession to European Union, Poland fulfils its safeguards obligations according to following international legal instruments: Treaty establishing Euratom, Agreement between Poland, European Commission and International Atomic Energy Agency in connection with implementation of Article III of Treaty of Non-proliferation of Nuclear Weapons — INFCIRC/193 and Additional Protocol to this Agreement — INFCIRC/193 Add.8. Detailed safeguards requirements are established by domestic Act of Parliament of 29th November 2000 — Atomic law and European Union's Regulations of Commission (Euratom) No 302/2005 on application of Euratom safeguards and the Commission Recommendation on guidelines for the application of Regulation (Euratom) No 302/2005. SSAC was established in 1972 as required by CSA. Activities related to accounting for and control of nuclear material were conducted from 1970s till 1990s by Central Laboratory for Radiological Protection and National Inspectorate for Radiation and Nuclear Safety. Currently, NAEA is responsible for collecting and maintenance of accounting data and safeguards inspections at all MBAs. Around 30 routine inspections/year are performed by the NAEA, Euratom and IAEA. In addition, usually 2 unannounced inspections/year under framework of Integrated Safeguards are conducted. In accordance with implementation of Global Threat Reduction Initiative seven shipments of high enriched nuclear fuel from research reactor to Russian Federation under supervision of safeguards inspectors from NAEA

  16. Inspection technologies -Development of national safeguards technology-

    International Nuclear Information System (INIS)

    Hong, J. S.; Kim, B. K.; Kwack, E. H.

    1996-12-01

    17 facility regulations prepared by nuclear facilities according to the Ministerial Notices were evaluated. Safeguards inspection activities under Safeguards are described. Safeguards inspection equipments and operation manuals to be used for national inspection are also described. Safeguards report are produced and submitted to MOST by using the computerized nuclear material accounting system at state level. National inspection support system are developed to produce the on-site information for domestic inspection. Planning and establishment of policy for nuclear control of nuclear materials, international cooperation for nuclear control, CTBT, strengthening of international safeguards system, and the supply of PWRs to North Korea are also described. (author). 43 tabs., 39 figs

  17. Safeguards research at Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Dunn, D.R.; Huebel, J.G.; Poggio, A.J.

    1980-01-01

    The LLL safeguards research program includes inspection methods, facility assessment methodologies, value-impact analysis, vulnerability analysis of accounting systems, compliance with regulations, process monitoring, etc. Each of those projects is described as are their goals and progress

  18. Causality in Europeanization Research

    DEFF Research Database (Denmark)

    Lynggaard, Kennet

    2012-01-01

    to develop discursive institutional analytical frameworks and something that comes close to the formulation of hypothesis on the effects of European Union (EU) policies and institutions on domestic change. Even if these efforts so far do not necessarily amount to substantive theories or claims of causality......Discourse analysis as a methodology is perhaps not readily associated with substantive causality claims. At the same time the study of discourses is very much the study of conceptions of causal relations among a set, or sets, of agents. Within Europeanization research we have seen endeavours......, it suggests that discourse analysis and the study of causality are by no means opposites. The study of Europeanization discourses may even be seen as an essential step in the move towards claims of causality in Europeanization research. This chapter deals with the question of how we may move from the study...

  19. Nuclear material safeguards technology development in the new structure of BATAN organization

    International Nuclear Information System (INIS)

    Ilyas, Zurias

    2001-01-01

    Full text: The implementation of Nuclear Energy Act No. 10/97 has led to a restructuring in BATAN organization in July 1999. A new unit, Center for Nuclear Material Safeguards Technology (PTPBN), was established to be especially in charge of safeguards facilities. The main responsibility of this unit is to develop the technology of safeguards and physical protection. The function of this unit is also to analyze the operational technical aspect of the International Convention of Nuclear. The duties of Center for Nuclear Material Safeguards Technology can be seen from the various programs set up for every fiscal year. The programs for the year 2000 were: Analyses of SSAC implementation in BATAN; Development of Safeguards information system; Creation of database of physical protection technology; Physical protection simulator for Bandung reactor research; Development of detector technology for physical protection system; Identification of BATAN activities and facilities submitted to IAEA in order to be in line with the Additional Protocol to the agreement between the Republic of Indonesia and the International Atomic Energy Agency for the Application of Safeguards in connection with the Treaty on Non-Proliferation on Nuclear Weapons, which was ratified on September 29th, 1999 in Vienna, Austria; Seminar on Safeguards technology held in Jakarta in September 2000. The program of 2001 will be focusing on the continuation of the previous year's program as well as the creation of new ones, such as: Collaboration with other countries. At initial stage experts from JBC-Japan were invited to share their expertise on their safeguards information system; Development of education and training for safeguards operators by emphasizing more on the techniques of nuclear materials measurement; Seminar on Safeguards technology scheduled for December 2001 by inviting experts from IAEA and modem countries; Field survey to determine the location of radionuclide station in Indonesia in

  20. Working Group 2: Future Directions for Safeguards and Verification, Technology, Research and Development

    International Nuclear Information System (INIS)

    Zykov, S.; Blair, D.

    2013-01-01

    For traditional safeguards it was recognized that the hardware presently available is, in general, addressing adequately fundamental IAEA needs, and that further developments should therefore focus mainly on improving efficiencies (i.e. increasing cost economies, reliability, maintainability and user-friendliness, keeping abreast of continual advancements in technologies and of the evolution of verification approaches). Specific technology areas that could benefit from further development include: -) Non-destructive measurement systems (NDA), in particular, gamma-spectroscopy and neutron counting techniques; -) Containment and surveillance tools, such as tamper indicating seals, video-surveillance, surface identification methods, etc.; -) Geophysical methods for design information verification (DIV) and safeguarding of geological repositories; and -) New tools and methods for real-time monitoring. Furthermore, the Working Group acknowledged that a 'building block' (or modular) approach should be adopted towards technology development, enabling equipment to be upgraded efficiently as technologies advance. Concerning non-traditional safeguards, in the area of satellite-based sensors, increased spatial resolution and broadened spectral range were identified as priorities. In the area of wide area surveillance, the development of LIDAR-like tools for atmospheric sensing was discussed from the perspective of both potential benefits and certain limitations. Recognizing the limitations imposed by the human brain in terms of information assessment and analysis, technologies are needed that will enable the more effective utilization of all information, regardless of its format and origin. The paper is followed by the slides of the presentation. (A.C.)

  1. The European Nuclear Education Network Association - ENEN

    International Nuclear Information System (INIS)

    De Regge, P.P.

    2005-01-01

    The temporary network, established through the European 5 th Framework Programme project ENEN, was given a more permanent character by the foundation of the European Nuclear Education Network Association, a non-profit-making association according to the French law of 1901, pursuing a pedagogic and scientific aim. Its main objective is the preservation and the further development of higher nuclear education and expertise. This objective is realized through the co-operation between the European universities, involved in education and research in the nuclear engineering field, the nuclear research centres and the nuclear industry. The membership of the ENEN Association now consists of 35 universities members and 6 research centres. The paper briefly describes the history and structure of the ENEN Association and elaborates on the objectives and activities of its five committees during its first two years of operation. Supported by the 5 th and 6 th Framework Programme of the European Community, the ENEN Association established the delivery of the European Master of Science in Nuclear Engineering certificate. In particular, education and training courses have been developed and offered to materialise the core curricula and optional fields of study in a European exchange structure. Pilot editions of those courses and try-outs of training programmes have been successfully organised with a satisfying interest, attendance and performance by the students and the support of nuclear industries and international organisations. The involvement of ENEN in the 6 th EC Framework project EUROTRANS will further enlarge its field of activities into a realm of nuclear disciplines. The ENEN Association further contributes to the management of nuclear knowledge within the European Union as well as on a world-wide level, through contacts with its sister Network ANENT in Asia, and by its participation to activities of the World Nuclear University. (author)

  2. The European Nuclear Education Network Association - ENEN

    International Nuclear Information System (INIS)

    Gentile, D.

    2006-01-01

    The temporary network, established through the European 5. Framework Programme project ENEN, was given a more permanent character by the foundation of the European Nuclear Education Network Association, a non-profit-making association according to the French law of 1901, pursuing a pedagogic and scientific aim. Its main objective is the preservation and the further development of higher nuclear education and expertise. This objective is realized through the co-operation between the European universities, involved in education and research in the nuclear engineering field, the nuclear research centres and the nuclear industry. The membership of the ENEN Association now consists of 35 universities members and 6 research centres. The paper briefly describes the history and structure of the ENEN Association and elaborates on the objectives and activities of its five committees during its first two years of operation. Supported by the 5. and 6. Framework Programme of the European Community, the ENEN Association established the delivery of the European Master of Science in Nuclear Engineering certificate. In particular, education and training courses have been developed and offered to materialize the core curricula and optional fields of study in a European exchange structure. Pilot editions of those courses and try-outs of training programmes have been successfully organised with a satisfying interest, attendance and performance by the students and the support of nuclear industries and international organisations. The involvement of ENEN in the 6. EC Framework project EUROTRANS will further enlarge its field of activities into a realm of nuclear disciplines. The ENEN Association further contributes to the management of nuclear knowledge within the European Union as well as on a world-wide level, through contacts with its sister Network ANENT in Asia, and by its participation to activities of the World Nuclear University. (author)

  3. The European Nuclear Education Network Association - ENEN

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, D. [Institut des Sciences et Techniques Nucleaires, CEA - Centre de Saclay, Bat. 395, F-91191 Gif-sur-Yvette (France)

    2006-07-01

    The temporary network, established through the European 5. Framework Programme project ENEN, was given a more permanent character by the foundation of the European Nuclear Education Network Association, a non-profit-making association according to the French law of 1901, pursuing a pedagogic and scientific aim. Its main objective is the preservation and the further development of higher nuclear education and expertise. This objective is realized through the co-operation between the European universities, involved in education and research in the nuclear engineering field, the nuclear research centres and the nuclear industry. The membership of the ENEN Association now consists of 35 universities members and 6 research centres. The paper briefly describes the history and structure of the ENEN Association and elaborates on the objectives and activities of its five committees during its first two years of operation. Supported by the 5. and 6. Framework Programme of the European Community, the ENEN Association established the delivery of the European Master of Science in Nuclear Engineering certificate. In particular, education and training courses have been developed and offered to materialize the core curricula and optional fields of study in a European exchange structure. Pilot editions of those courses and try-outs of training programmes have been successfully organised with a satisfying interest, attendance and performance by the students and the support of nuclear industries and international organisations. The involvement of ENEN in the 6. EC Framework project EUROTRANS will further enlarge its field of activities into a realm of nuclear disciplines. The ENEN Association further contributes to the management of nuclear knowledge within the European Union as well as on a world-wide level, through contacts with its sister Network ANENT in Asia, and by its participation to activities of the World Nuclear University. (author)

  4. Analysis on approach of safeguards implementation at research reactor handling item count and bulk material

    International Nuclear Information System (INIS)

    Kim, Hyun Jo; Lee, Sung Ho; Lee, Byung Doo; Jung, Juang

    2016-01-01

    KiJang research reactor (KJRR) will be constructed to produce the radioisotope such as Mo-99 etc., provide the neutron transmutation doping (NTD) service of silicon, and develop the core technologies of research reactor. In this paper, the features of the process and nuclear material flow are reviewed and the material balance area (MBA) and key measurement point (KMP) are established based on the nuclear material flow. Also, this paper reviews the approach on safeguards and nuclear material accountancy at the facility level for Safeguards-by-Design at research reactor handling item count and bulk material. In this paper, MBA and KMPs are established through the analysis on facility features and major process at KJRR handling item count and bulk material. Also, this paper reviews the IAEA safeguards implementation and nuclear material accountancy at KJRR. It is necessary to discuss the safeguards approach on the fresh FM target assemblies and remaining uranium in the intermediate level liquid wastes

  5. Analysis on approach of safeguards implementation at research reactor handling item count and bulk material

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Jo; Lee, Sung Ho; Lee, Byung Doo; Jung, Juang [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    KiJang research reactor (KJRR) will be constructed to produce the radioisotope such as Mo-99 etc., provide the neutron transmutation doping (NTD) service of silicon, and develop the core technologies of research reactor. In this paper, the features of the process and nuclear material flow are reviewed and the material balance area (MBA) and key measurement point (KMP) are established based on the nuclear material flow. Also, this paper reviews the approach on safeguards and nuclear material accountancy at the facility level for Safeguards-by-Design at research reactor handling item count and bulk material. In this paper, MBA and KMPs are established through the analysis on facility features and major process at KJRR handling item count and bulk material. Also, this paper reviews the IAEA safeguards implementation and nuclear material accountancy at KJRR. It is necessary to discuss the safeguards approach on the fresh FM target assemblies and remaining uranium in the intermediate level liquid wastes.

  6. Perspectives for food research and European collaboration in the European Research Area and the new Framework Programme.

    Science.gov (United States)

    Breslin, L

    2001-08-01

    Since 1987, successive framework programmes have contributed to strengthen European food research through the establishment of networks between research institutions, universities and companies from various European countries. In the FAIR programme (1994-1998), 118 research projects comprising nearly 1,000 participants from the European Union and Associated States have been supported in the food area with a European funding of about [symbol: see text] 108 million. Within the Quality of Life and Management of Living Resources programme (1998-2002), food research is mostly supported within the key action 'food, nutrition and health' with a budget of [symbol: see text] 290 million. After the first four deadlines, 735 eligible research proposals have already been received. Further to their evaluation by a panel of independent experts, 108 proposals have been funded or selected for funding representing a total contribution of about [symbol: see text] 168 million. Among those, several clusters of projects are now running on important topics such as probiotics, coeliac diseases, mycotoxins, GMO, safety and food for the elderly. In addition, technology stimulation measures are largely benefiting SMEs to foster their innovation potential. In January 2000, the European Commission adopted a Communication entitled "Towards the European Research Area (ERA)" with the objective to contribute to developing better framework conditions for research in Europe. On 21 February 2001, the Commission adopted proposals to be submitted to the European Parliament and Council for the next framework programme for research and innovation (2002-2006). The new framework programme that is becoming one of the financial instruments of the ERA aims at catalysing the integration of European research by: strengthening of links between the Community research effort and national and regional research policies; concentrating on a limited number of priority fields or research to which activities at the

  7. Safeguards in Pyroprocessing: an Integrated Model Development and Measurement Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinsuo [The Ohio State Univ., Columbus, OH (United States). Nuclear Engineering Program, Dept. of Mechanical and Aerospace Engineering

    2017-10-01

    Pyroprocessing is an electrochemical method based on the molten salt electrolyte, mainly the LiCl-KCl eutectic molten salt, to recycle the used nuclear fuel. For a conceptual design of commercial pyroprocessing facility, tons of special nuclear materials, namely U and Pu, may be involved, which could be used for non-peaceful purposes if they are diverted. Effective safeguards approaches have to be developed prior to the development and construction of a pyroprocessing facility. Present research focused on two main objectives, namely calculating the properties of nuclear species in LiCl-KCl molten salt and developing integrated model to safeguard a pyroprocessing facility. Understanding the characteristics of special nuclear materials in LiCl-KCl eutectic salt is extremely important to understand their behaviors in an electrorefiner. The model development for the separation processes in the pyroprocessing, including electrorefining, actinide drawdown, and rare earth drawdown benefits the understanding of material transport and separation performance of these processes under various conditions. The output signals, such as potential, current, and species concentration contribute to the material balance closure and provide safeguards signatures to detect the scenarios of diversion. U and Pu are the two main elements concerned in this study due to our interest in safeguards.

  8. Influence of ethical safeguards on research participation: comparison of perspectives of people with schizophrenia and psychiatrists.

    Science.gov (United States)

    Roberts, Laura W; Hammond, Katherine A Green; Warner, Teddy D; Lewis, Rae

    2004-12-01

    Several safeguards have been developed to protect research volunteers, but little is known about how the people involved in this research-the stakeholders-view these efforts to assure participant rights and well-being. The authors' goal was to examine these perspectives. As part of a larger study, 60 people with schizophrenia and 69 psychiatrists rated the protectiveness and influence on patients' willingness to participate in research of five safeguards: informed consent, alternative decision makers, institutional review boards, data safety monitoring boards, and confidentiality measures. All safeguards were perceived by both the participants with schizophrenia and by the psychiatrists as protective: on a scale of 1-5 on which 1=not protective at all and 5=very much protects, the mean scores ranged from 3.54 to 4.07. Four of the five safeguards were perceived by both the people with schizophrenia and by the psychiatrists as positively influencing patients' participation decisions. On a scale of 1-5 on which 1=much less willing and 5=much more willing to participate, the mean scores for these four safeguards ranged from 3.86 to 4.30. The mean score for the safeguard of an alternative decision maker, however, was 3.09. The ratings of protectiveness made by both the people with schizophrenia and the psychiatrists were correlated with their ratings of patients' willingness to participate in studies. Ethical commitment to research volunteers is expressed in safeguards. These efforts appear to be viewed positively by key stakeholders and may influence research participation decision making.

  9. Strategies for public health research in European Union countries.

    Science.gov (United States)

    Grimaud, Olivier; McCarthy, Mark; Conceição, Claudia

    2013-11-01

    'Health' is an identifiable theme within the European Union multi-annual research programmes. Public Health Innovation and Research in Europe (PHIRE), led by the European Public Health Association, sought to identify public health research strategies in EU member states. Within PHIRE, national public health associations reviewed structures for health research, held stakeholder workshops and produced reports. This information, supplemented by further web searches, including using assisted translation, was analysed for national research strategies and health research strategies. All countries described general research strategies, outlining organizational and capacity objectives. Thematic fields, including health, are mentioned in some strategies. A health research strategy was identified for 15 EU countries and not for 12. Ministries of health led research strategies for nine countries. Public health research was identified in only three strategies. National research strategies did not refer to the European Union's health research programme. Public health research strategies of European countries need to be developed by ministries of health, working with the research community to achieve the European Research Area.

  10. Need for Strengthening Nuclear Non-Proliferation and Safeguards Education to Prepare the Next Generation of Experts

    International Nuclear Information System (INIS)

    Janssens, W.A.M.; Peerani, P.; ); Gariazzo, C.; Ward, S.; Crete, J.-M.; Braunegger-Guelich, A.

    2015-01-01

    Although nuclear non-proliferation and safeguards are a continuous concern of the international community and discussed frequently at international fora and conferences, the academic world is not really on board with these topics. What we mean by this is that nuclear non-proliferation and safeguards is only very seldom part of a university curriculum. In the few cases where it does appear in the curriculum, whether in a nuclear engineering course or a political sciences master programme, it is typically covered only partially. Nuclear non-proliferation and safeguards are multidisciplinary and embrace, inter alia, historical, legal, technical, and political aspects. This is perhaps the reason why it is challenging for a single professor or university to develop and implement a comprehensive academic course or programme in this area. Professional organizations in this field, like the European Safeguards Research and Development Association (ESARDA) and the Institute for Nuclear Materials Management (INMM), have made first steps to address this issue by implementing specific educational activities. However, much more needs to be done. Therefore, ESARDA, INMM and the International Atomic Energy Agency (IAEA) are in the process of joining efforts to identify key elements and priorities to support universities in establishing appropriate and effective academic programmes in this area. This paper will share best practices, achievements and lessons learned by ESARDA, INMM and the IAEA in providing education and training to develop and maintain the expertise of nuclear non-proliferation and safeguards professionals. In addition, it will suggest potential ways on how to assist universities to get prepared for building-up the next generation of experts able to meet any future challenges in the area of non-proliferation and safeguards. (author)

  11. Safeguards and Security Technology Development Directory. FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    The Safeguards and Security Technology Development Directory is published annually by the Office of Safeguards and Security (OSS) of the US Department of Energy (DOE), and is Intended to inform recipients of the full scope of the OSS R&D program. It is distributed for use by DOE headquarters personnel, DOE program offices, DOE field offices, DOE operating contractors, national laboratories, other federal agencies, and foreign governments. Chapters 1 through 7 of the Directory provide general information regarding the Technology Development Program, including the mission, program description, organizational roles and responsibilities, technology development lifecycle, requirements analysis, program formulation, the task selection process, technology development infrastructure, technology transfer activities, and current research and development tasks. These chapters are followed by a series of appendices which contain more specific information on aspects of the Program. Appendix A is a summary of major technology development accomplishments made during FY 1992. Appendix B lists S&S technology development reports issued during FY 1992 which reflect work accomplished through the OSS Technology Development Program and other relevant activities outside the Program. Finally, Appendix C summarizes the individual task statements which comprise the FY 1993 Technology Development Program.

  12. Developing the information management system for safeguards national inspection

    International Nuclear Information System (INIS)

    Park, S. J.; Jeon, I.; Park, W. S.; Min, K. S.

    2003-01-01

    The inspection information management system for safeguards national inspection is aimed to do the national safeguards inspection with efficiency, and to decrease the inspector's load to write inspection report by systematizing the inspection jobs and sharing the inspection data. National safeguards inspection is consisted two large jobs. The first is the national safeguards supporting job of managing to support the national inspection mission. The other is the writing a national inspection report after completing the national inspection. Before the developing of inspection information management system, the official tools(spread sheet, word processor) are usually used. But there is problem to share the data, to produce the statistics data. To solve the these problem, we developed the inspection information management system that process the job from initial to final inspection work, and opened user education. This paper explain the procedure of developing the inspection information management system for safeguards national inspection

  13. The European fusion research and development programme and the ITER Project

    International Nuclear Information System (INIS)

    Green, B.J.

    2004-01-01

    The EURATOM fusion R and D programme is a well integrated and co-ordinated programme a good example of a European Research Area. Its goal is 'the joint creation of prototype reactors for power stations to meet the needs of society: operational safety, environmental compatibility, economic viability'. The programme is focussed on the magnetic confinement approach to fusion energy and supports 21 associated laboratories and a range of experimental and fusion technology facilities. The paper will briefly describe this programme and how it is organised and implemented. Its success and that of other national programmes has defined the international ITER Project, which is the next logical step in fusion R and D. The paper will describe ITER, its aims, its design, and the supporting manufacture of prototype components. The European contribution to ITER, as well as the exploitation of the Joint European Torus (JET) and long-term fusion reactor technology R and D are carried out under the European Fusion Development Agreement (EFDA). Finally, the potential advantages of fusion as an energy source will be presented. (author)

  14. Measurements Matter in Nuclear Safeguards & Security

    International Nuclear Information System (INIS)

    Aregbe, Y.; Jakopic, R.; Richter, S.; Schillebeeckx, P.; Hult, M.

    2015-01-01

    The deliverable of any laboratory is a measurement result with stated uncertainty and traceability (ISO/IEC 17025: 2005). Measurement results, particularly in safeguards, have to be accurate, comparable and traceable to a stated reference, preferably to the SI. Results provided by operator-, safeguards- or network laboratories have to be in compliance with specific quality goals for nuclear material and environmental sample analysis. Metrological quality control tools are prerequisites to build up confidence in measurement results that have to be translated into meaningful safeguards conclusions or to demonstrate conformity of findings with declared processes. The European Commission—Joint Research Centre (EC–JRC) has dedicated facilities, laboratories and projects to provide certified nuclear reference materials (CRM), to develop reference methods and to organize inter-laboratory comparisons (ILC) in compliance with ISO Guide 34, ISO17025 and ISO17043, including respective training. Recent examples are: – cooperation with the JAEA to investigate on the application of Neutron Resonance Densitometry (NRD) to quantify the amount of special nuclear material in particlelike debris of melted fuel as formed in the nuclear accident in Fukushima – training in metrology and gamma-ray spectrometry for EURATOM safeguards inspectors – development of uranium reference particle standards under a new EC support task to the IAEA. Currently, the JRC puts major efforts in producing CRMs and conformity assessment tools for “age-dating” of uranium and plutonium samples. They are needed for method validation in determining the date of the last chemical separation of uranium or plutonium from their daughter nuclides. These type of CRMs are not only needed in nuclear safeguards and forensics, but could support in the future a possible new type of “verification mechanism” as part of the Fissile Material Cut-off Treaty (FMCT), since measurements and measurement standards

  15. Pebble bed modular reactor safeguards: developing new approaches and implementing safeguards by design

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Brian David [Los Alamos National Laboratory; Beddingfield, David H [Los Alamos National Laboratory; Durst, Philip [INL; Bean, Robert [INL

    2010-01-01

    The design of the Pebble Bed Modular Reactor (PBMR) does not fit or seem appropriate to the IAEA safeguards approach under the categories of light water reactor (LWR), on-load refueled reactor (OLR, i.e. CANDU), or Other (prismatic HTGR) because the fuel is in a bulk form, rather than discrete items. Because the nuclear fuel is a collection of nuclear material inserted in tennis-ball sized spheres containing structural and moderating material and a PBMR core will contain a bulk load on the order of 500,000 spheres, it could be classified as a 'Bulk-Fuel Reactor.' Hence, the IAEA should develop unique safeguards criteria. In a multi-lab DOE study, it was found that an optimized blend of: (i) developing techniques to verify the plutonium content in spent fuel pebbles, (ii) improving burn-up computer codes for PBMR spent fuel to provide better understanding of the core and spent fuel makeup, and (iii) utilizing bulk verification techniques for PBMR spent fuel storage bins should be combined with the historic IAEA and South African approaches of containment and surveillance to verify and maintain continuity of knowledge of PBMR fuel. For all of these techniques to work the design of the reactor will need to accommodate safeguards and material accountancy measures to a far greater extent than has thus far been the case. The implementation of Safeguards-by-Design as the PBMR design progresses provides an approach to meets these safeguards and accountancy needs.

  16. Developing the information management system for safeguards national inspection

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. J.; Jeon, I.; Park, W. S.; Min, K. S. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    The inspection information management system for safeguards national inspection is aimed to do the national safeguards inspection with efficiency, and to decrease the inspector's load to write inspection report by systematizing the inspection jobs and sharing the inspection data. National safeguards inspection is consisted two large jobs. The first is the national safeguards supporting job of managing to support the national inspection mission. The other is the writing a national inspection report after completing the national inspection. Before the developing of inspection information management system, the official tools(spread sheet, word processor) are usually used. But there is problem to share the data, to produce the statistics data. To solve the these problem, we developed the inspection information management system that process the job from initial to final inspection work, and opened user education. This paper explain the procedure of developing the inspection information management system for safeguards national inspection.

  17. Technology Development of Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Dong; Kang, H. Y.; Ko, W. I. (and others)

    2007-04-15

    The objective of this project is to perform R and D on the essential technologies in nuclear material measurement and surveillance and verification system, and to improve the state of being transparent on the nuclear material management of DUPIC Fuel Development Facility (DFDF) through the evaluation of safeguard ability on non-proliferation fuel cycle and nuclear proliferation resistance. Nuclear material position scan system for the reduction of measurement error was developed for the spatial distribution search of spent fuel in DUPIC facility. Web-based realtime remote monitoring system was designed and constructed for satisfying the IAEA's performance criteria of continuous monitoring, and also developed a software for the function of remote control and message. And diversion paths in a proliferation resistant pyroprocess for SFR were analyzed and its protecting system against the diversion paths were suggested for enhancing proliferation resistance of advanced nuclear fuel cycle. These results could be used for planning the further R and D items in the area of safeguards. Those R and D results mentioned above would be helpful for increasing Korean nuclear transparency in the future.

  18. Nuclear research and development in the European community

    International Nuclear Information System (INIS)

    1979-01-01

    Research programmes undertaken by the European Atomic Energy Community and the European Economic Community are discussed. These programmes are carried out both at the Communities own Joint Research Centres (at Ispra, Karlsruhe, Geel and Petten) and also, although centrally managed by the Commission, at research organizations in the Member States. Such research projects include radioactive waste management and storage, decommissioning of nuclear power stations and nuclear fusion. Culham Laboratory is not only the centre for the UKAEA's research into controlled thermonuclear fusion but is also host to the Joint European Torus Joint Undertaking. (U.K.)

  19. Preliminary Performance Analysis Program Development for Safety System with Safeguard Vessel

    International Nuclear Information System (INIS)

    Kang, Han-Ok; Lee, Jun; Park, Cheon-Tae; Yoon, Ju-Hyeon; Park, Keun-Bae

    2007-01-01

    SMART is an advanced modular integral type pressurized water reactor for a seawater desalination and an electricity production. Major components of the reactor coolant system such as the pressurizer, Reactor Coolant Pump (RCP), and steam generators are located inside the reactor vessel. The SMART can fundamentally eliminate the possibility of large break loss of coolant accidents (LBLOCAs), improve the natural circulation capability, and better accommodate and thus enhance a resistance to a wide range of transients and accidents. The safety goals of the SMART are enhanced through highly reliable safety systems such as the passive residual heat removal system (PRHRS) and the safeguard vessel coupled with the passive safety injection feature. The safeguard vessel is a steel-made, leak-tight pressure vessel housing the RPV, SIT, and the associated valves and pipelines. A primary function of the safeguard vessel is to confine any radioactive release from the primary circuit within the vessel under DBAs related to loss of the integrity of the primary system. A preliminary performance analysis program for a safety system using the safeguard vessel is developed in this study. The developed program is composed of several subroutines for the reactor coolant system, passive safety injection system, safeguard vessel including the pressure suppression pool, and PRHRS. A small break loss of coolant accident at the upper part of a reactor is analyzed and the results are discussed

  20. European Nuclear Education Network (ENEN) Association Initiative

    International Nuclear Information System (INIS)

    Comsa, Olivia; Meglea, Claudia; Banutoiu, Marina; Paraschiva, M. V.; Meglea, S.

    2003-01-01

    The main objective of the ENEN Association is the preservation and further development of a higher nuclear education and expertise. This objective should be achieved through the co-operation between European universities involved in education and research in the nuclear engineering field, research centers and the nuclear industry. To reach this objective, the ENEN Association has to: Promote and develop the collaboration in nuclear engineering education of engineers and researchers required by the nuclear industry and the regulatory bodies; Ensure the quality of nuclear academic engineering education and training; Increase the attractiveness for engagement in the nuclear field for students and young academics. The basic objectives of the ENEN Association shall be to: Deliver an European Master of Science Degree in Nuclear Engineering and promote PhD studies; Promote exchange of students and teachers participating in the frame of this network; Increase the number of students by providing incentives; Establish a framework for mutual recognition; Foster and strengthen the relationship with research laboratories and networks, industry and regulatory bodies, by involving them in (or association them with) nuclear academic education and by offering continuous training. The aims of the ENEN Association shall be achieved by: Discussion on educational objectives, methods and course contents among the members and with external partners, particularly national European industries; Organization of internal audits on the quality of nuclear engineering curricula; Awarding the label of 'European Master degree of Science in Nuclear Engineering' to the curricula satisfying the criteria set up by the ENEN Association; Cooperation between the members, and with the research centers and the nuclear industry for enhancement of mobility of teachers and students, organization of training and advanced courses, use of large research and teaching facilities or infrastructures; Cooperation

  1. Analysis on safeguard approach of radioactive waste at KIJANG research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Jo; Lee, Sung Ho; Lee, Byung Doo; Kim, In Chul; Kim, Hyun Sook; Jung, Juang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    KIJANG Research Reactor (KJRR) will be constructed in Busan in order to provide the self-sufficiency of RI demand including Mo-99, to increase the neutron transmutation doping (NTD) capacity and to develop and validate technologies related to the research reactor. Considering the categorization of nuclear facility such as item counting and bulk facility, HANARO which is another research reactors in Korea is item counting facility because physical/chemical forms of nuclear material are not changes. During the dissolving process, radioactive wastes containing nuclear material are occurred at KJRR. In this paper, the features of the KJRR are described and safeguards approach on the radioactive wastes containing nuclear material occurred at KJRR are reviewed. This paper reviews the safeguards approach on radioactive wastes containing nuclear materials occurred during FM production at KJRR. Most uranium dissolved during FM production process are collected in U filter cakes and very tiny amount of uranium will be remained in the ILLW.

  2. Tokai Advanced Safeguards Technology Exercise (TASTEX). An experience in international co-operation on safeguards

    International Nuclear Information System (INIS)

    Fukuda, G.; Koizumi, T.; Higuchi, K.

    1983-01-01

    TASTEX stands for Tokai Advanced Safeguards Technology Exercise, and was the joint programme of Japan, the United States of America, France and the International Atomic Energy Agency for developing, testing and evaluating advanced safeguards technology to be used in reprocessing facilities. The TASTEX programme, which started early in 1978 and successfully ended in May 1981, consisted of thirteen safeguards-technology-related tasks, from Task A to M. They were classified into four groups from the viewpoints of their usefulness and effectiveness: (1) Tasks technically feasible for international safeguards application in the near future: Tasks E, G, H and part of Task A (underwater CCTV and monitoring cameras); (2) Tasks which can be used in the future if research and development are continued: Tasks F, I, J, C and the other part of Task A (exclusive of the themes shown in (1)); (3) Tasks which may be used in future at the Tokai Reprocessing Facility if research and development are continued: Tasks K and L; and (4) Tasks which are difficult to be used at the Tokai Reprocessing Facility: Tasks B, D and M. The tasks classified under Group (1) are being developed further as part of the JASPAS (Japan Support Programme for Agency's Safeguards) project. (author)

  3. European meteorological data: contribution to research, development, and policy support

    Science.gov (United States)

    Biavetti, Irene; Karetsos, Sotiris; Ceglar, Andrej; Toreti, Andrea; Panagos, Panos

    2014-08-01

    The Joint Research Centre of the European Commission has developed Interpolated Meteorological Datasets available on a regular 25x25km grid both to the scientific community and the general public. Among others, the Interpolated Meteorological Datasets include daily maximum/minimum temperature, cumulated daily precipitation, evapotranspiration and wind speed. These datasets can be accessed through a web interface after a simple registration procedure. The Interpolated Meteorological Datasets also serve the Crop Growth Monitoring System (CGMS) at European level. The temporal coverage of the datasets is more than 30 years and the spatial coverage includes EU Member States, neighboring European countries, and the Mediterranean countries. The meteorological data are highly relevant for the development, implementation and assessment of a number of European Union (EU) policy areas: agriculture, soil protection, environment, agriculture, food security, energy, climate change. An online user survey has been carried out in order to assess the impact of the Interpolated Meteorological Datasets on research developments. More than 70% of the users have used the meteorological datasets for research purposes and more than 50% of the users have used those sources as main input for their models. The usefulness of the data scored more than 70% and it is interesting to note that around 25% of the users have published their scientific outputs based on the Interpolated Meteorological Datasets. Finally, the user feedback focuses mostly on improving the data distribution process as well as the visibility of the web platform.

  4. IAEA safeguards instrumentation: Development, implementation and control

    International Nuclear Information System (INIS)

    Rundquist, D.E.

    1983-01-01

    Extensive development efforts over the last 5 years have produced a number of new instruments to help the IAEA meet its safeguards obligations. Implementation of these new instruments is proceeding at a necessarily slower pace. To optimize the performance and reliability of the instrumentation systems when used in safeguards applications, increasing attention is needed to be spent on performance monitoring and control of the instruments. (author)

  5. U.S. next generation safeguards initiative: the human capital development program

    International Nuclear Information System (INIS)

    Scholz, M.A.

    2013-01-01

    The Human Capital Development (HCD) subprogram of the U.S. Next Generation Safeguards Initiative (NGSI) is developing sustainable academic and technical programs that support the recruitment, education, training, and retention of the next generation of international safeguards professionals. This wide-ranging HCD effort endeavors to develop additional human resources to address current shortfalls, encourage U.S. experts to seek employment at the IAEA, and identify and train a new cadre of safeguards experts to meet the needs of both the United States and the IAEA for decades to come. In recent years, a convergence of factors has challenged the IAEA's ability to carry out its safeguards mission effectively. A staffing study shows that less than 20% of the international safeguards specialists in the U.S. workforce are 44 years of age or younger and that over 80% of the international safeguards specialists at the National Laboratories will be retired or otherwise resigned within 15 years. An aging workforce nearing retirement and growing workload, coupled with a safeguards budget that has remained essentially flat in real terms for nearly two decades, have posed particular challenges to the IAEA's Department of Safeguards. Recognizing the trends, the National Nuclear Security Administration's (NNSA) Office of Nonproliferation and International Security (NIS) launched NGSI in the fall of 2007. Since that time, the HCD subprogram of NGSI has sponsored over 300 safeguards internships at U.S. National Labs, organized eight annual short safeguards policy and technical courses, worked with ten universities to develop new undergraduate and graduate course-work on international safeguards and nonproliferation, established a highly competitive graduate fellowship program, and completed a human capital requirements study that closely examined the safeguards workforce within the U.S. National Lab complex. Of past NGSI students and interns, nearly four in ten pursue multiple NGSI

  6. A European Research Area

    International Nuclear Information System (INIS)

    Caro, R.

    2001-01-01

    This article is a summary of the presentation of the European Commissioner, Philippe Busquen, to the European Parliament (beginning of year 2000) with the proposal and method for a revival of the Research and Development in this wider sense in the European Union. The starting point of his thesis is that Europe performs less, and more disorderly, activities in this field that her main competitors. USA and Japan. His basic proposal is a larger coordination among the european research projects, with a previous phase of informatics intoxicator among the european research centres and the cross-linked participation, real of virtual in the experiments and projects. (Author)

  7. A functional integrated data evaluation system for safeguards

    International Nuclear Information System (INIS)

    Argentesi, F.; Benoit, R.; Cuypers, M.; Guardini, S.; De Grandi, G.F.; Franklin, M.; Muller, K.; Rota, A.

    1983-01-01

    The quantitative assurance provided by the safeguards of nuclear material is based on the analysis of a very large amount of data of different origins and quality. They are generated by operators on a regular basis, or provided during discussions of facility attachments or declaration of production schedules. They are also generated by inspectors during their verification activities which are related to accountancy data, auditing, independent measurements, sealing, surveillance, etc. The Joint Research Centre and Safeguards Directorate of the Commission of the European Communities are studying a Functional Integrated Data Evaluation System (FIDES) for safeguards. A preliminary outline of such a system was presented at the 3rd ESARDA symposium at Karlsruhe. This paper first emphasises the decisional thread which underlies the ESARDA activities and, second, gives a progress report on JRC work which is designed to give effect to these ideas. This progess, reported below, covers two activities. The first is the automatic co-ordination of the operator's measurement system information with the operator's accounting declaration. The second element is the development of a functional structure for NDA data generation evaluation and transmission. (author)

  8. Facility Safeguardability Analysis in Support of Safeguards by Design

    International Nuclear Information System (INIS)

    Wonder, E.F.

    2010-01-01

    The idea of 'Safeguards-by-Design' (SBD) means designing and incorporating safeguards features into new civil nuclear facilities at the earliest stages in the design process to ensure that the constructed facility is 'safeguardable,' i.e. will meet national and international nuclear safeguards requirements. Earlier consideration of safeguards features has the potential to reduce the need for costly retrofits of the facility and can result in a more efficient and effective safeguards design. A 'Facility Safeguardability Analysis' (FSA) would be a key step in Safeguards-by-Design that would link the safeguards requirements with the 'best practices', 'lessons learned', and design of the safeguards measures for implementing those requirements. The facility designer's nuclear safeguards experts would work closely with other elements of the project design team in performing FSA. The resultant analysis would support discussions and interactions with the national nuclear regulator (i.e. State System of Accounting for and Control of Nuclear Material - SSAC) and the IAEA for development and approval of the proposed safeguards system. FSA would also support the implementation of international safeguards by the IAEA, by providing them with a means to analyse and evaluate the safeguardability of facilities being designed and constructed - i.e. by independently reviewing and validating the FSA as performed by the design team. Development of an FSA methodology is part of a broader U.S. National Nuclear Security Administration program to develop international safeguards-by-design tools and guidance documents for use by facility designers. The NNSA NGSI -sponsored project team is looking, as one element of its work, at how elements of the methodology developed by the Generation IV International Forum's Working Group on Proliferation Resistance and Physical Protection can be adapted to supporting FSA. (author)

  9. Strengthening of Organizational Infrastructure for Meeting IAEA Nuclear Safeguards Obligations: Bangladesh Perspective

    International Nuclear Information System (INIS)

    Mollah, A.S.

    2010-01-01

    Safeguards are arrangements to account for and control the use of nuclear materials. This verification is a key element in the international system which ensures that uranium in particular is used only for peaceful purposes. The only nuclear reactor in Bangladesh achieved critically on September 14, 1986. Reactor Operation and Maintenance Unit routinely carries out certain international obligations which need to undertake as signatory of different treaties, agreements and protocols in the international safeguards regime. Pursuant to the relevant articles of these agreements/protocols, the reactor and associated facilities of Bangladesh (Facility code: BDA- and BDZ-) are physically inspected by the designated IAEA safeguards inspectors. The Bangladesh Atomic Energy Commission (BAEC) has recently created a new division called 'Nuclear Safeguards and Security Division' for enhancing the safeguards activities as per international obligations. This division plays a leading role in the planning, implementation, and evaluation of the BAEC's nuclear safeguards and nuclear security activities. This division is actively working with USDOE, IAEA and EU to enhance the nuclear safeguards and security activities in the following areas: - Analysis of nuclear safeguards related reports of 3 MW TRIGA Mark-II research reactor; - Upgrading of physical protection system of 3 MW TRIGA Mark-II research reactor, gamma irradiation facilities, central radioactive storage and processing facility and different radiation oncology facilities of Bangladesh under GTRI programme; - Supervision for installation of radiation monitoring system of the Chittagong port under USDOE Megaports Initiative Programmes for detection of illicit trafficking of nuclear and radioactive materials; - Development of laboratory capabilities for analysis of nuclear safeguards related samples; - Planning for development of organizational infrastructure to carry out safeguards related activities under IAEA different

  10. The international safeguards and domestic safeguards and security interface

    International Nuclear Information System (INIS)

    Whitworth, A.

    1996-01-01

    The International Safeguards Division, in conjunction with the Office of Safeguards and Security, organized a workshop on the international safeguards/domestic safeguards and security interface that was held in March 1996. The purpose of the workshop was to identify and resolve domestic safeguards and security issues associated with the implementation of International Atomic Energy Agency (IAEA) safeguards in the Department of Energy (DOE) complex. The workshop drew heavily upon lessons learned in the application of IAEA safeguards at storage facilities in oak Ridge, Hanford, and Rocky Flats. It was anticipated that the workshop would facilitate a consistent DOE safeguards and security approach for the implementation of IAEA safeguards in the DOE complex. This paper discusses the issues and resolutions of several issues raised at the workshop that involve primarily the domestic material control and accountability program

  11. INL Human Resource Development and the Next-Generation Safeguards Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Gouveia, Fernando; Metcalf, Richard Royce Madison

    2010-07-01

    It is the stated goal of the Next Generation Safeguards Initiative (NGSI) to promote the development of a strengthened nuclear safeguards base, one with the potential to advance the secure and peaceful implementation of nuclear energy world-wide. To meet this goal, the initiative, among other things, has sought to develop a revitalized effort to ensure the continued availability of next generation safeguards professionals. Accordingly, this paper serves to outline the human capital building strategies taken by Idaho National Laboratory (INL) in line with the NGSI. Various components are presented in detail, including INL’s efforts directed at university outreach, in particular the laboratory’s summer internship program, along with the development of various innovative training programs and long-term oriented strategies for student professional development. Special highlights include a video training series, developed by INL in cooperation with LLNL and other laboratories, which sought to expose students and entry-level professionals to the concept and practice of international nuclear safeguards.

  12. Fibre optic networks for safeguards applications

    International Nuclear Information System (INIS)

    Smith, B.G.R.; Chare, P.; Barrier, A.

    1991-01-01

    The Euratom Safeguards Directorate has recently installed a fibre optic network in a new large scale nuclear facility in the European Communities. The selection, installation and commissioning of the fibre optic network is discussed from the viewpoint of network topology, physical testing, trouble shooting and authentication. The future use of fibre optic networks for safeguards applications is discussed

  13. Safeguards by design - The early consideration of safeguards concepts

    International Nuclear Information System (INIS)

    Killeen, T.; Moran, B.; Pujol, E.

    2009-01-01

    Full-text: The IAEA Department of Safeguards is in the process of formalizing its approach to long-range strategic planning. As a result of this activity new endeavours are being identified. One of these endeavours is to develop a concept known as Safeguards by Design. Safeguarding nuclear material and facilities can be made more effective and cost efficient by improving the safeguardability of the system. By taking into account design features that facilitate the implementation of international safeguards early in the design phase, a concept known as safeguards by design, the proliferation resistance of the system can be improved. This improvement process requires an understanding by designers and operators of safeguards and its underlying principles. To advance the safeguards by design approach, the IAEA determined that there is a need to develop written guidance. This guidance would help the major stakeholders - the designers, operators, owners, and regulatory bodies - to better understand how a facility could be designed, built and operated in such a way that effective safeguards could be implemented at reduced cost and with minimal burden to facility operations. By enlisting the cooperation of Member States through the support programme structure, the IAEA is working to first develop a document that describes the basic principles of safeguards, and the fundamental design features and measures that facilitate the implementation of international safeguards. Facility-specific guidance will then be developed utilizing the resources, expertise and experience of the IAEA and its Member States. This paper will review the foundation for the development of this task, describe the progress that has been made and outline the path forward. (author)

  14. CONSIDERATIONS ON EUROPEAN POLICY OF RESEARCH, DEVELOPMENT, INNOVATION. CASE OF ROMANIA

    Directory of Open Access Journals (Sweden)

    Roxana Elena Lazăr

    2011-06-01

    Full Text Available The evolution of the European policy in the field of research, development, innovation reflects the maturity process of the European construction, through the very understanding of the particular role of knowledge in economy. An important aspect is the connection with the acknowledgment of the professional’s diplomas, which is based on the principle of automatism, on the mutual trust of the Member States in the qualifications obtained within the territory of any of them, on the tradition regarding the existence of a democratic and elitist education system. The improvement of the quality of education and the avoidance of sideslips are required. For the existence of a functional Euro-market in the field of research, development,innovation the differences between the European Union Member States have to be reduced, before attempting to catch up with the United States of America, Japan or China. Because knowledge is the inexhaustible resource of mankind in general, of the European Union, in particular, we should talk about a Union of Research, as we talk about the Monetary Union, for example. The strategy of economic growth in Romania was based on encouraging the consumers to spend money, but they didn’t consider a coherent policy based on innovations.

  15. Research Data Services in European Academic Research Libraries

    OpenAIRE

    Tenopir, Carol; Talja, Sanna; Horstmann, Wolfram; Late, Elina; Hughes, Dane; Pollock, Danielle; Schmidt, Birgit; Baird, Lynn; Sandusky, Robert J.; Allard, Suzie

    2017-01-01

    Research data is an essential part of the scholarly record, and management of research data is increasingly seen as an important role for academic libraries. This article presents the results of a survey of directors of the Association of European Research Libraries (LIBER) academic member libraries to discover what types of research data services (RDS) are being offered by European academic research libraries and what services are planned for the future. Overall, the survey found that librar...

  16. Long-term research plan for human factors affecting safeguards at nuclear power plants. Volume 1. Summary and users' guide. Vol. 1

    International Nuclear Information System (INIS)

    O'Brien, J.N.; Fainberg, A.

    1984-04-01

    This report presents a long-term research plan for addressing human factors which can adversely affect safeguards at nuclear power plants. It was developed in order to prioritize and propose research for NRC in regulating power plant safeguards. Research efforts addressing human factors in safeguards were developed and prioritized according to the importance of human factors areas. Research was also grouped to take advantage of common research approaches and data sources where appropriate. Four main program elements emerged from the analysis, namely (1) Training and Performance Evaluation, (2) Organizational Factors, (3) Man-Machine Interface, and (4) Trustworthiness and Reliability. Within each program element, projects are proposed with results and information flowing between program elements where useful. An overall research plan was developed for a 4-year period and it would lead ultimately to regulatory activities including rulemaking, regulatory guides, and technical bases for regulatory action. The entire plan is summarized in Volume 1 of this report

  17. TRANSVAC research infrastructure - Results and lessons learned from the European network of vaccine research and development.

    Science.gov (United States)

    Geels, Mark J; Thøgersen, Regitze L; Guzman, Carlos A; Ho, Mei Mei; Verreck, Frank; Collin, Nicolas; Robertson, James S; McConkey, Samuel J; Kaufmann, Stefan H E; Leroy, Odile

    2015-10-05

    TRANSVAC was a collaborative infrastructure project aimed at enhancing European translational vaccine research and training. The objective of this four year project (2009-2013), funded under the European Commission's (EC) seventh framework programme (FP7), was to support European collaboration in the vaccine field, principally through the provision of transnational access (TNA) to critical vaccine research and development (R&D) infrastructures, as well as by improving and harmonising the services provided by these infrastructures through joint research activities (JRA). The project successfully provided all available services to advance 29 projects and, through engaging all vaccine stakeholders, successfully laid down the blueprint for the implementation of a permanent research infrastructure for early vaccine R&D in Europe. Copyright © 2015. Published by Elsevier Ltd.

  18. Licensee safeguards contingency plans

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The Nuclear Regulatory Commission is amending its regulations to require that licensees authorized to operate a nuclear reactor (other than certain research and test reactors), and those authorized to possess strategic quantities of plutonium, uranium-233, or uranium-235 develop and implement acceptable plans for responding to threats, thefts, and industrial sabotage of licensed nuclear materials and facilities. The plans will provide a structured, orderly, and timely response to safeguards contingencies and will be an important segment of NRC's contingency planning programs. Licensee safeguards contingency plans will result in organizing licensee's safeguards resources in such a way that, in the unlikely event of a safeguards contingency, the responding participants will be identified, their several responsibilities specified, and their responses coordinated

  19. Euratom Safeguards: Improving Safeguards by Cooperation in R&D and Implementation

    International Nuclear Information System (INIS)

    Schwalbach, P.; Schoop, K.; Ancius, D.; Marszalek, Y.; Smejkal, A.; Vaccaro, S.; De Baere, P.; Koutsoyannopoulos, C.; Meylemans, P.; Murtezi, M.; Persson, L.; Synetos, S.; Tempesta, S.; Canadell Bofarull, V.; Turner, D.; Goncalves, J.G.M.; Peerani, P.; Berndt, R.; Stringa, E.; Richir, P.; Sequeira, V.; Tagziria, H.; Janssens, W.A.M.; Zuleger, E.; Luetzenkirchen, K.; )

    2015-01-01

    Euratom Safeguards, implemented on the basis of the Euratom Treaty by the European Commission's Directorate Nuclear Safeguards, is the largest Regional Safeguards System and involved in many R&D activities of its own, often in close cooperation with external partners. Most of the results of these activities are shared with or offered to the IAEA. The work described in this paper is complementary to the projects run by the European Commission Cooperative Support Programme (ECSP) to the IAEA. The ECSP activities will be described elsewhere at this conference. The present paper will provide an overview on R&D activities run in addition to the ECSP, and will attempt to link them to the capabilities discussed by the IAEA in the Long Term R&D Plan. The range of topics will include work on unattended data acquisition systems (hard- and software), advanced data analysis tools, news from seals related technology, containment and design verification applications of 3D lasers, activities to keep standard measurement technologies sustainable etc. Work done with the IAEA in preparation of new facilities and facility types will be discussed briefly. The paper will also highlight some current challenges and make suggestions how to address them. (author)

  20. Nuclear safeguards project

    International Nuclear Information System (INIS)

    Mache, H.R.

    1978-10-01

    The present report describes the major activities carried out in 1977 in the framework of the Nuclear Safeguards Project by the institutes of the Kernforschungszentrum Karlsruhe, Kernforschungsanlage Juelich, the European Institute of Transuranium Elements and some industrial firms. (orig.) 891 HP 892 AP [de

  1. Research on seal control systems for international nuclear safeguard and the vulnerability assessment on the seals

    International Nuclear Information System (INIS)

    Zhang Hongjian; Liu Tianshu; Cao Fangfang; Xu Chunyan

    2014-01-01

    Safeguard seals, also called Tamper-indicating devices (TIDs), are widely used to detect tampering or unauthorized entry in the international safeguard and security systems, Seal control systems consist of seal implementing plan, seal development and the vulnerability assessment on tbe seals, effective implementing procedures and methods of the seals. The vulnerability assessment contents of safeguard seals, thermo-shrinked film seals being as an example, and seals control systems in the implementation program are researched. The seal control systems discuss task assignment, seals management flow and seals program data flow to promote applying effectively seals. The vulnerability assessment program of seals studies assurance level to some different tampering techniques and measures. The researches must promote utilizing seals effectively for nuclear security, non-proliferation of nuclear weapons, radioactive waste management, and the nuclear material accounting and control. (authors)

  2. Safeguarding arms control

    International Nuclear Information System (INIS)

    Flanagan, S.J.

    1988-01-01

    This essay reviews the evolution of various safeguards concepts associated with U.S. Soviet arms control negotiations over the past twenty-five years. It explore in some detail the origins, nature, and effectiveness of the safeguards packages associated with six agreements: the Limited Test Ban Treaty (1963), the SALT I Interim Agreement (1972), the Anti-Ballistic Missile (ABM) Treaty (1972), the Threshold Test Ban Treaty (1974), the Peaceful Nuclear Explosions Treaty (1976) and the SALT II Treaty (1979). Finally, the implications of this historical record for developing future nuclear and conventional arms control accords and for shoring up existing pacts, such as the ABM Treaty, are assessed with a view towards practicable prescriptions for Western policymakers. The treaty eliminating intermediate-range nuclear forces (INF) incorporates several verification safeguards, and it is very likely that analogous measures would be attached to any accord constraining conventional forces in Europe

  3. Current technical issues in international safeguards

    International Nuclear Information System (INIS)

    Bennett, C.A.

    1977-01-01

    Safeguards systems, and the associated need for technical and systems development, reflect changing conditions and concerns associated with the nuclear fuel cycle and the safety and security of nuclear materials and facilities. In particular, the implementation of international safeguards has led to the recognition of certain technical issues, both old and new, which are in need of resolution. These are: 1. The grading of nuclear materials and facilities with respect to their relative safeguards significance. 2. The extension and upgrading of safeguards techniques to maintain adequate protection in view of constantly increasing amounts of material to be safeguarded. 3. The balance between safeguards mechanisms based on physical protection and material accounting, and the role of surveillance and containment in each case. 4. The role of information systems as a basis for both analytical feedback and the determination of the factors affecting system effectiveness and their interrelationship. 5. A determination of the degree to which the overall technical effectiveness of international inspection activities can be quantified. Each of these technical issues must be considered in light of the specific objectives of international safeguards, which differ from domestic safeguards in terms of the level of the threat, the safeguards mechanisms available, and the diversion strategies assumed. Their resolution in this international context is essential if the effectiveness and viability of international safeguards are to be maintained

  4. European research and development strategy for clean power

    International Nuclear Information System (INIS)

    Linkohr, R.

    2006-01-01

    We need more rather than less money for research, energy research in particular, research being an important contributor to progress, in order to achieve peak performance, comply with the quest for knowledge about the structure of the world, or to be able to further improve our quality of life at far less expense of materials and energy. This latter concept is in line with European identity. If we succeed in demonstrating to the world that people can live a better life if they manage their affairs sustainably, we Europeans will have won a new trademark: a sustainable Europe which can be left to future generations. For this purpose Europeans, more than before, must perceive Europe as a space of knowledge. Science policy must be geared to Europe, not just to a national territory. Also, Europe should devote more attention to fundamental research. Some outstanding projects are needed, particularly in energy research, with the participation of industry in order to reduce materials consumption and avoid emissions. Education, too, must be given much attention. In the absence of enthusiastic young scientists, engineers, and skilled workers who know their neighboring countries and their technologies and languages from an early age, European energy policy is bound to remain fragmented. (orig.)

  5. The Role of NMAC Audits in Euratom Safeguards - Development of an audit framework

    Energy Technology Data Exchange (ETDEWEB)

    Alique Moya, O.; Hill, C.; Kahnmeyer, W.; Koutsoyannopoulos, C.; Boella, M. [European Commission, DG ENERGY, Unit DDG2.E.1, Design, Planning and Evaluation of inspections, Logistical support, Luxembourg (Luxembourg)

    2011-12-15

    The use of audits of nuclear facility operators' nuclear material accountancy and control (NMAC) systems has evolved since the idea was launched some years ago. The European Commission has developed a framework that enables the use of NMAC system audits as an effective and efficient tool in nuclear safeguards. The framework includes elements like audit definition and concept, a procedure, audit criteria and the approach for using audits. The main elements of this framework have been built upon ESARDA working group recommendations and were widely consulted with Member States and nuclear operators. The framework and experience from its application are presented.

  6. Novel technologies for safeguards

    International Nuclear Information System (INIS)

    Annese, C.; Monteith, A.; Whichello, J.

    2009-01-01

    Full-text: The International Atomic Energy Agency (IAEA) Novel Technologies Project is providing access to a wider range of methods and instruments, as well as establishing a systematic mechanism to analyse gaps in the inspectorate's technical support capabilities. The project also targets emerging and future inspectorate needs in the areas of verification and the detection of undeclared nuclear activities, materials, and facilities, providing an effective pathway to technologies in support of safeguards implementation. The identification of safeguards-useful nuclear fuel cycle (NFC) indicators and signatures (I and S) is a fundamental sub-task within the Project. It interfaces with other IAEA efforts currently underway to develop future safeguards approaches through undertaking an in-depth review of NFC processes. Primarily, the sub-task aims to identify unique and safeguards-useful 'indicators', which identify the presence of a particular process, and 'signatures', which emanate from that process when it is in operation. The matching of safeguards needs to detection tool capabilities facilitates the identification of gaps where no current method or instrument exists. The Project has already identified several promising technologies based on atmospheric gas sampling and analysis, laser spectrometry and optically stimulated luminescence. Instruments based on these technologies are presently being developed through support programme tasks with Member States. This paper discusses the IAEA's project, Novel Technologies for the Detection of Undeclared Nuclear Activities, Materials and Facilities and its goal to develop improved methods and instruments. The paper also describes the method that has been devised within the Project to identify safeguards-useful NFC I and S and to determine how the sub-task interfaces with other IAEA efforts to establish emerging safeguards approaches. As with all safeguards-targeted research and development (R and D), the IAEA depends

  7. Development of safeguards information treatment system at the facility level

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Doo; Song, Dae Yong; So, Dong Sup; Kwack, Eun Ho [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-04-01

    Safeguards Information Treatment System(SITS) at the facility level is required to implement efficiently the obligations under the Korea-IAEA Safeguards Agreement, bilateral agreements with other countries and domestic law. In this report, the requirements and major functions of SITS were considered, and the error checking methods and the relationships of safeguards information were reviewed. SITS will be developed to cover the different accounting procedures and methods applied at the various facilities under IAEA safeguards. Also, the resolved result of the Y2K problem in the existing nuclear material accounting program was described. 3 tabs. (Author)

  8. Strategic plan for the development of IAEA safeguards equipment

    International Nuclear Information System (INIS)

    Khlebnikov, N.

    2001-01-01

    Full text: The need for a top-down Safeguards Strategy to focus departmental objectives was recognized by the Programme Performance Appraisal System (PPAS) performed on the Equipment Development Project in 1999. The Department of Safeguards prepared at the end of 2000 a 5-year Strategic Plan to identify the changes and improvements expected to take place over the 2001-2005 period. Those Strategic Objectives were supposed to be used to properly plan IAEA Safeguards activities and define appropriate and coherent R and D programmes. The present paper describes the strategic directions that the IAEA will follow in the area of equipment development in order to meet the Safeguards Department long-term objectives for 2001-2005. The paper, which is derived from the IAEA Strategic Equipment Development Plan, prepared by the Division of Technical Support, includes two parts: general principles and policies applicable to all equipment development tasks; specific strategic guidance. The paper will not describe the detailed plans which are prepared based on the strategic plan on a biannual basis. Equipment development activities have been divided in five major projects (NDA, Seals, Surveillance, Unattended Monitoring and Remote Monitoring). Strategic directions for each of these projects will be described in the paper. Separate sections will deal with equipment development strategic guidance in the area of additional protocol inspections, JNFL projects, illicit trafficking and Trilateral Initiative. (author)

  9. Future development, innovation and promotion of European unique food: an interdisciplinary research framework perspective.

    Science.gov (United States)

    Byrne, Derek V; Waehrens, Sandra S; O'Sullivan, Maurice G

    2013-11-01

    Unique food products constitute a very important element of European food business, culture, identity and heritage. Understanding the uniqueness of food in Europe from a research-based interdisciplinary perspective will be a critical factor in promoting the competitiveness of artisanal food industries going forward both locally and internationally. Success will support the competitiveness of the European food industry, in particular, small and medium enterprises, by enabling substantial product differentiation potential for producers and providing ample variety in food choice for the consumer. In addition, it will contribute to promotion of sustainable agriculture and development of rural areas, protecting them from depopulation. In order to meet the demands of a developing fundamental shift in European Union agricultural focus to greener, sustainable farming practices and wider rural development and to ensure success for local small-scale producers, this paper discusses the future direction of research in the field of unique European foods. The paper presents a perspective which promotes optimisation and innovation in unique food products in Europe through the integration of advanced knowledge and technologies. A framework is presented covering location, identity, perception and well-being as research areas needing synergy to bridge the research knowledge deficit in determination and specification of food identity in the European Union. The ultimate aim being promotion of sustainable agriculture and rural development, particularly in territories across the European Union where unique food is strategically and scientifically under-defined. © 2013 Society of Chemical Industry.

  10. European Research Reloaded : Cooperation and Integration Among Europeanized States

    NARCIS (Netherlands)

    Holzhacker, Ron; Haverland, Markus

    2006-01-01

    European integration has had an ever deepening impact on the member states. The first wave of research concerned the process of institution building and policy developments at the European Union (EU) level. The second wave, on Europeanization used the resulting integration as an explanatory factor

  11. Research and development activities of the Joint Research Centre -JRC and its involvement in the development of future nuclear energy systems

    International Nuclear Information System (INIS)

    Schenkel, R.

    2007-01-01

    Besides the policy driven support which the JRC gives to the European Commission and its Member States, the nuclear activities of the JRC also fulfil the Research and Development obligations as enshrined in the EURATOM Treaty. These have for objectives to develop and assemble knowledge in the field of nuclear energy and concern basic actinide research, nuclear data and nuclear measurements, radiation monitoring and radionuclides in the environment, health and nuclear medicine, management of spent fuel and waste, safety of reactors and fuel cycle and nuclear safeguards and non proliferation. The European Union currently imports 50% of its energy and, going by the present trend, this may increase to 70% within 20 years. One third of the electricity in Europe is currently been produced via nuclear fission and the move to innovative reactor systems holds great promise. In May 2006, the European Atomic Energy Community became a Party to the Framework Agreement for International Collaboration on Research and Development of Generation IV Nuclear Energy Systems (GIF Framework Agreement). The 'Generation IV' initiative concerns concepts for nuclear energy systems that can be operated in a manner that will provide a competitive and reliable supply of energy, while satisfactorily addressing nuclear safety, waste, proliferation and public perception concerns. The JRC with its strong international dimension is not only the implementing agent for EURATOM in the Generation IV international forum, but also participates actively in related Research and Development projects. The Research and Development projects are focused on fuel development, reprocessing and irradiation testing, fuel cladding interaction and corrosion, basic data for fuel and reprocessing, reprocessing and waste treatment. In this paper the Research and Development the nuclear activities of the JRC will be presented especially those related to its participation to GIF

  12. Research Projects at Chulalongkorn University for the Master Degree Programme in Nuclear Security and Safeguard

    International Nuclear Information System (INIS)

    Nilsuwankosit, S.

    2015-01-01

    The Department of Nuclear Engineering, Faculty of Engineering, Chulalongkorn University, Thailand, began its master degree programme in nuclear security and safeguard in November 2013 with the support from the CBRN-Center of Excellence, European Union. This programme was planned as a way to raise the awareness of various local agencies in ASEAN countries regarding the threat of CBRN events. In the long run, the programme will also serve as the platform to develop the human resource and to provide the professional assistance required to counter such threat in the region. The programme closely follows the guideline as given by the IAEA and employs its materials as the main source of references. The first batch of 20 students came from countries in the ASEAN community. Due to the nature of the program, each student is required to conduct the research and a thesis based on such research is to be submitted as part of the requirement for the graduation. Currently, the research subjects that are readily available to the students can be classified into 5 categories: 1. subjects with neutron generator, 2. subjects with nuclear electronics and instruments, 3. subjects with industrial applications, 4. subjects with computer simulations, and 5. subjects with policy research. (author)

  13. Safeguards research: assessing material control and accounting systems

    International Nuclear Information System (INIS)

    Maimoni, A.

    1977-01-01

    The Laboratory is working for the Nuclear Regulatory Commission to improve the safeguarding of special nuclear material at nuclear fuel processing facilities, to provide a basis for improved regulations for material control and accounting systems, and to develop an assessment procedure for verifying compliance with these regulations. Early work included setting up a hierarchy of safeguard objectives and a set of measurable parameters with which systems performance to meet those objectives can be measured. Present work has focused on developing a computerized assessment procedure. We have also completed a test bed (based on a plutonium nitrate storage area) to identify and correct problems in the procedure and to show how this procedure can be used to evaluate the performance of an applicant's material control and accounting system

  14. Nuclear safeguards research. Program status report. Progress report, September--December 1975

    International Nuclear Information System (INIS)

    1976-04-01

    This report presents the status of the Nondestructive Assay R and D program of the LASL Nuclear Safeguards Research Group, R-1, covering the period September-December 1975. It covers: holdup measurements at the Kerr-McGee Pu facility at Crescent, Okla.; calculations for Random Driver; instrument development and measurement controls; ERDA nondestructive assay training program; and in-plant dynamic materials control (DYMAC) program. 22 figures, 5 tables

  15. European Social Work Research Association SIG to Study Decisions, Assessment, and Risk.

    Science.gov (United States)

    Taylor, Brian; Killick, Campbell; Bertotti, Teresa; Enosh, Guy; Gautschi, Joel; Hietamäki, Johanna; Sicora, Alessandro; Whittaker, Andrew

    2018-01-01

    The increasing interest in professional judgement and decision making is often separate from the discourse about "risk," and the time-honored focus on assessment. The need to develop research in and across these topics was recognized in the founding of a Decisions, Assessment, and Risk Special Interest Group (DARSIG) by the European Social Work Research Association in 2014. The Group's interests include cognitive judgements; decision processes with clients, families, other professionals and courts; assessment tools and processes; the assessment, communication, and management of risk; and legal, ethical, and emotional aspects of these. This article outlines the founding and scope of DARSIG; gives an overview of decision making, assessment, and risk for practice; illustrates connections between these; and highlights future research directions. Professional knowledge about decision making, assessment, and risk complements knowledge about effectiveness of interventions. DARSIG promises to be a useful mechanism for the purpose.

  16. Peaceful nuclear development and the three 'S' ('Safety', 'Security' and 'Safeguards')

    International Nuclear Information System (INIS)

    Julio Gonzalez, Abel; Abel Gonzalez, Martin

    2010-01-01

    We should agree on a comprehensive solution for a commensurate international control of both nuclear and radioactive material designed to ensure that peaceful nuclear developments will not cause harm to humanity. The concept of an international security system is clouded by the confusing semantics of its parts: the English concepts 'safeguards', 'safety' and 'security', on one hand, and nuclear and radioactive materials on the other hand. The objectives should be: to ensure, through appropriate safeguards, that nuclear materials are not diverted to non-peaceful activities; to prevent, through appropriate security, the unauthorized possession or use, illegal or malicious, of nuclear and radioactive materials; and, to ensure, through appropriate safety, that the use of nuclear and radioactive material will not cause harm to people and the environment. Security must be understood as an integral part of safeguards and safety, because materials that are secure are not necessarily safeguarded or safe, and materials may not be safeguarded or safe unless they are secure. Security is a necessary but not sufficient condition for safeguards and safety; security is an important but subsidiary condition of safeguards and safety; security is necessary but not sufficient to ensure nuclear control via safeguards and safety. In conclusion an International Treaty for the Control ('safeguards', 'safety' and 'security') of the Peaceful Development of Nuclear Energy and its Byproducts is proposed. It should clearly regulate the obligations and (non-compliance) penalties of the Parties, and, based on existing agreements, should be clear, logical, rational, fundamental, methodical, systematic, universal, equitable, impartial, fair and non discriminatory. (author)

  17. European Union Energy Research

    International Nuclear Information System (INIS)

    Valdalbero, D.R.; Schmitz, B.; Raldow, W.; Poireau, M.

    2007-01-01

    This article presents an extensive state of the art of the energy research conducted at European Union level between 1984 and 2006, i.e. from the first to the sixth European Community Framework Programmes (FP1-FP6) for Research, Technological Development and Demonstration (RTD and D). The FP is the main legal tool and financial instrument of EU RTD and D policy. It sets the objectives, priorities and budgets for a period of several years. It has been complemented over time with a number of policy oriented initiatives and notably with the launch of the European Research Area. FP7 will cover the period 2007-2013 and will have a total budget of more than euros 50 billion. Energy has been a main research area in Europe since the founding Treaties (European Coal and Steel Community, European Atomic Energy Community-Euratom and European Economic Community), and energy RTD and D has always been a substantial part of common EU research. Nevertheless, when inflation and successive European enlargements are taken into account, over time the RTD and D effort in the field of energy has decreased significantly in relative terms. In nominal terms it has remained relatively stable at about euros 500 million per year. For the next years (FP7), it is expected that energy will still represent about 10 % of total EU research effort but with an annual budget of more than euros 800 million per year. This article presents a detailed review of the thematic areas and budget in both European nuclear energy research (fusion and fission) and non-nuclear energy research (energy efficiency/rational use of energy, fossil fuels, CO 2 capture and storage, fuel cells and hydrogen, renewable energy sources, strategic energy research/socio-economy). (authors)

  18. Safeguards

    International Nuclear Information System (INIS)

    Carchon, R.

    1998-01-01

    Safeguards activities at the Belgian Nuclear Research Centre SCK/CEN answer internal needs, support the Belgian authorities, and support the IAEA. The main objectives of activities concerning safeguards are: (1) to contribute to a prevention of the proliferation of nuclear materials by maintaining an up-to-date expertise in the field of safeguards and providing advice and guidance as well as scientific and technical support to the Belgian authorities and nuclear industry; (2) to improve the qualification and quantification of nuclear materials via nondestructive assay. The main achievements for 1997 are described

  19. Preliminary considerations on developing IAEA technical safeguards for LMFBR power systems

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1980-09-01

    Nuclear fuel cycles safeguards should be considered in the dynamic context of a world deployment of various reactor types and varying availability of fuel-cycle services. There will be a close interaction between thermal-reactor cycles and the future deployment of fast breeders. The quantitites of plutonium and the reprocessing, conversion, fabrication, and storage methods of the fuel for the fast breeders will have a significant impact on safeguards techniques. The approach to the fast breeder fuel cycle safeguards follows the general safeguards system approach proposed by the IAEA. Objective of IAEA safeguards is the detection of diversion of nuclear material and deterrence of such diversion. To achieve independent verification of material balance accountancy requires the capability to monitor inventory status and verify material flows and quantities of all nuclear materials subject to safeguards. Containment and surveillance measures are applied to monitor key measurement points, maintain integrity of material balance, and complement material accountancy. The safeguards study attempts to develop a generic reference IAEA Safeguards System and explores various system options using containment/surveillance and material accountancy instrumentation and integrated systems designs

  20. Proliferation Resistance and Safeguards by Design: The Safeguardability Assessment Tool Provided by the INPRO Collaborative Project ''INPRO'' (Proliferation Resistance and Safeguardability Assessment)

    International Nuclear Information System (INIS)

    Haas, E.; Chang, H.-L.; Phillips, J.R.; Listner, C.

    2015-01-01

    Since the INPRO Collaborative Project on Proliferation Resistance and Safeguardability Assessment Tools (PROSA) was launched in 2011, Member State experts have worked with the INPRO Section and the IAEA Department of Safeguards to develop a revised methodology for self-assessment of sustainability in the area of proliferation resistance of a nuclear energy system (NES). With the common understanding that there is ''no proliferation resistance without safeguards'' the revised approach emphasizes the evaluation of a new 'User Requirement' for ''safeguardability'', that combines metrics of effective and efficient implementation of IAEA Safeguards including ''Safeguards-by-Design'' principles. The assessment with safeguardability as the key issue has been devised as a linear process evaluating the NES against a ''Basic Principle'' in the area of proliferation resistance, answering fundamental questions related to safeguards: 1) Do a State's legal commitments, policies and practices provide credible assurance of the exclusively peaceful use of the NES, including a legal basis for verification activities by the IAEA? 2) Does design and operation of the NES facilitate the effective and efficient implementation of IAEA safeguards? To answer those questions, a questionnaire approach has been developed that clearly identifies gaps and weaknesses. Gaps include prospects for improvements and needs for research and development. In this context, the PROSA approach assesses the safeguardability of a NES using a layered ''Evaluation Questionnaire'' that defines Evaluation Parameters (EP), EP-related questions, Illustrative Tests and Screening Questions to present and structure the evidence of findings. An integral part of the assessment process is Safeguards-by-Design, the identification of potential diversion, misuse and concealment strategies (coarse diversion path

  1. Mission Specific Platforms: Past achievements and future developments in European led ocean research drilling.

    Science.gov (United States)

    Cotterill, Carol; McInroy, David; Stevenson, Alan

    2013-04-01

    Mission Specific Platform (MSP) expeditions are operated by the European Consortium for Ocean Research Drilling (ECORD). Each MSP expedition is unique within the Integrated Ocean Drilling Program (IODP). In order to complement the abilities of the JOIDES Resolution and the Chikyu, the ECORD Science Operator (ESO) must source vessels and technology suitable for each MSP proposal on a case-by-case basis. The result is that ESO can meet scientific requirements in a flexible manner, whilst maintaining the measurements required for the IODP legacy programme. The process of tendering within EU journals for vessels and technology means that the planning process for each MSP Expedition starts many years in advance of the operational phase. Involvement of proposal proponents from this early stage often leads to the recognition for technological research and development to best meet the scientific aims and objectives. One example of this is the planning for the Atlantis Massif proposal, with collaborative development between the British Geological Survey (BGS) and MARUM, University of Bremen, on suitable instruments for seabed drills, with the European Petrophysics Consortium (EPC) driving the development of suitable wireline logging tools that can be used in association with such seabed systems. Other technological developments being undertaken within the European IODP community include in-situ pressure sampling for gas hydrate expeditions, deep biosphere and fluid sampling equipment and CORK technology. This multi-national collaborative approach is also employed by ESO in the operational phase. IODP Expedition 302 ACEX saw vessel and ice management support from Russia and Sweden to facilitate the first drilling undertaken in Arctic sea ice. A review of MSP expeditions past, present and future reveal the significant impact of European led operations and scientific research within the current IODP programme, and also looking forward to the start of the new International

  2. US enrichment safeguards program development activities with potential International Atomic Energy Agency safeguards applications. Part 1. Executive summaries

    International Nuclear Information System (INIS)

    Swindle, D.W. Jr.

    1984-07-01

    The most recent progress, results, and plans for future work on the US Enrichment Safeguards Program's principal development activities are summarized. Nineteen development activities are reported that have potential International Atomic Energy Agency (IAEA) safeguards applications. Part 1 presents Executive Summaries for these, each of which includes information on (1) the purpose and scope of the development activity; (2) the potential IAEA safeguards application and/or use if adopted; (3) significant development work, results, and/or conclusions to date; and where appropriate (4) future activities and plans for continued work. Development activities cover: measurement technology for limited-frequency-unannounced-access stategy inspections; integrated data acquisition system; enrichment-monitoring system; load-cell-based weighing system for UF 6 cylinder mass verifications; vapor phase versus liquid phase sampling of UF 6 cylinders; tamper-safing hardware and systems; an alternative approach to IAEA nuclear material balance verifications resulting from intermittent inspections; UF 6 sample bottle enrichment analyzer; crated waste assay monitor; and compact 252 Cf shuffler for UF 6 measurements

  3. EURATOM safeguards. Safeguards verifications in reprocessing plants

    International Nuclear Information System (INIS)

    Heppleston, M.

    1999-01-01

    This paper provides a brief historical view of the legal basis for EURATOM. The specific application of safeguards to large scale reprocessing plants, from the theoretical model to the practical application of inspection is considered. The challenge to adequately safeguard major commercial reprocessing facilities has led to many novel approaches being developed. These lessons will also benefit other safeguard projects as a result. Good cooperation between the operator and regulator is essential for the satisfactory installation of adequate safeguard controls. The use of modern data processing technology combined with other diverse monitoring techniques has shown that a major industrial scale reprocessing plant can be controlled under international safeguards to provide a high level of assurance [ru

  4. Multidisciplinary European Low Dose Initiative (MELODI). Strategic research agenda for low dose radiation risk research

    Energy Technology Data Exchange (ETDEWEB)

    Kreuzer, M. [Federal Office for Radiation Protection, BfS, Department of Radiation Protection and Health, Neuherberg (Germany); Auvinen, A. [University of Tampere, Tampere (Finland); STUK, Helsinki (Finland); Cardis, E. [ISGlobal, Barcelona Institute for Global Health, Barcelona (Spain); Durante, M. [Institute for Fundamental Physics and Applications, TIFPA, Trento (Italy); Harms-Ringdahl, M. [Stockholm University, Centre for Radiation Protection Research, Stockholm (Sweden); Jourdain, J.R. [Institute for Radiological Protection and Nuclear Safety, IRSN, Fontenay-aux-roses (France); Madas, B.G. [MTA Centre for Energy Research, Environmental Physics Department, Budapest (Hungary); Ottolenghi, A. [University of Pavia, Physics Department, Pavia (Italy); Pazzaglia, S. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome (Italy); Prise, K.M. [Queens University Belfast, Belfast (United Kingdom); Quintens, R. [Belgian Nuclear Research Centre, SCK-CEN, Mol (Belgium); Sabatier, L. [French Atomic Energy Commission, CEA, Paris (France); Bouffler, S. [Public Health England, PHE, Chilton (United Kingdom)

    2018-03-15

    MELODI (Multidisciplinary European Low Dose Initiative) is a European radiation protection research platform with focus on research on health risks after exposure to low-dose ionising radiation. It was founded in 2010 and currently includes 44 members from 18 countries. A major activity of MELODI is the continuous development of a long-term European Strategic Research Agenda (SRA) on low-dose risk for radiation protection. The SRA is intended to identify priorities for national and European radiation protection research programs as a basis for the preparation of competitive calls at the European level. Among those key priorities is the improvement of health risk estimates for exposures close to the dose limits for workers and to reference levels for the population in emergency situations. Another activity of MELODI is to ensure the availability of European key infrastructures for research activities, and the long-term maintenance of competences in radiation research via an integrated European approach for training and education. The MELODI SRA identifies three key research topics in low dose or low dose-rate radiation risk research: (1) dose and dose rate dependence of cancer risk, (2) radiation-induced non-cancer effects and (3) individual radiation sensitivity. The research required to improve the evidence base for each of the three key topics relates to three research lines: (1) research to improve understanding of the mechanisms contributing to radiogenic diseases, (2) epidemiological research to improve health risk evaluation of radiation exposure and (3) research to address the effects and risks associated with internal exposures, differing radiation qualities and inhomogeneous exposures. The full SRA and associated documents can be downloaded from the MELODI website (http://www.melodi-online.eu/sra.html). (orig.)

  5. Development of Measurement Techniques For Strengthening Nuclear Safeguards

    International Nuclear Information System (INIS)

    Badawy, I.

    2007-01-01

    The strategy of nuclear safeguards is based on the accounting and control of nuclear materials, nuclear technologies and activities in a State in order to attain its ''Legal'' goals of the application of atomic energy. The present paper investigates the development in the measurement techniques used in the verification and control of NMs for the purpose of strengthening safeguards. Its focus is to review the recent nuclear measurement techniques used for the identification and verification of nuclear materials.The different levels of verification and the accuracy of these techniques are discussed. The implementation of stregthened safeguards; and nuclear materials verification and control in the world are mentioned. Also, the recently proposed measures to enhance the ability to detect undeclared nuclear materials, nuclear activities and facilities that would need advanced measurement techniques are indicated.

  6. Process monitoring for reprocessing plant safeguards: a summary review

    International Nuclear Information System (INIS)

    Kerr, H.T.; Ehinger, M.H.; Wachter, J.W.; Hebble, T.L.

    1986-10-01

    Process monitoring is a term typically associated with a detailed look at plant operating data to determine plant status. Process monitoring has been generally associated with operational control of plant processes. Recently, process monitoring has been given new attention for a possible role in international safeguards. International Safeguards Project Office (ISPO) Task C.59 has the goal to identify specific roles for process monitoring in international safeguards. As the preliminary effort associated with this task, a review of previous efforts in process monitoring for safeguards was conducted. Previous efforts mentioned concepts and a few specific applications. None were comprehensive in addressing all aspects of a process monitoring application for safeguards. This report summarizes the basic elements that must be developed in a comprehensive process monitoring application for safeguards. It then summarizes the significant efforts that have been documented in the literature with respect to the basic elements that were addressed

  7. Project Report on Development of a Safeguards Approach for Pyroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Robert Bean

    2010-09-01

    The Idaho National Laboratory has undertaken an effort to develop a standard safeguards approach for international commercial pyroprocessing facilities. This report details progress for the fiscal year 2010 effort. A component by component diversion pathway analysis has been performed, and has led to insight on the mitigation needs and equipment development needed for a valid safeguards approach. The effort to develop an in-hot cell detection capability led to the digital cloud chamber, and more importantly, the significant potential scientific breakthrough of the inverse spectroscopy algorithm, including the ability to identify energy and spatial location of gamma ray emitting sources with a single, non-complex, stationary radiation detector system. Curium measurements were performed on historical and current samples at the FCF to attempt to determine the utility of using gross neutron counting for accountancy measurements. A solid cost estimate of equipment installation at FCF has been developed to guide proposals and cost allocations to use FCF as a test bed for safeguards measurement demonstrations. A combined MATLAB and MCNPX model has been developed to perform detector placement calculations around the electrorefiner. Early harvesting has occurred wherein the project team has been requested to provide pyroprocessing technology and safeguards short courses.

  8. Preliminary concepts: safeguards for spent light-water reactor fuels

    International Nuclear Information System (INIS)

    Cobb, D.D.; Dayem, H.A.; Dietz, R.J.

    1979-06-01

    The technology available for safeguarding spent nuclear fuels from light-water power reactors is reviewed, and preliminary concepts for a spent-fuel safeguards system are presented. Essential elements of a spent-fuel safeguards system are infrequent on-site inspections, containment and surveillance systems to assure the integrity of stored fuel between inspections, and nondestructive measurements of the fuel assemblies. Key safeguards research and development activities necessary to implement such a system are identified. These activities include the development of tamper-indicating fuel-assembly identification systems and the design and development of nondestructive spent-fuel measurement systems

  9. Technology development for DUPIC process safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Hong, J S; Kim, H D; Lee, Y G; Kang, H Y; Cha, H R; Byeon, K H; Park, Y S; Choi, H N [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-07-01

    As the strategy for DUPIC(Direct Use of spent PWR fuel In CANDU reactor) process safeguards, the neutron detection method was introduced to account for nuclear materials in the whole DUPIC process by selectively measuring spontaneous fission neutron signals from {sup 244}Cm. DSNC was designed and manufactured to measure the account of curium in the fuel bundle and associated process samples in the DUPIC fuel cycle. The MCNP code had response profile along the length of the CANDU type fuel bundle. It was found experimentally that the output signal variation due to the overall azimuthal asymmetry was less than 0.2%. The longitudinal detection efficiency distribution at every position including both ends was kept less than 2% from the average value. Spent fuel standards almost similar to DUPIC process material were fabricated from a single spent PWR fuel rod and the performance verification of the DSNC is in progress under very high radiation environment. The results of this test will be eventually benchmarked with other sources such as code simulation, chemical analysis and gamma analysis. COREMAS-DUPIC has been developed for the accountability management of nuclear materials treated by DUPIC facility. This system is able to track the controlled nuclear materials maintaining the material inventory in near-real time and to generate the required material accountability records and reports. Concerning the containment and surveillance technology, a focused R and D effort is given to the development of unattended continuous monitoring system. Currently, the component technologies of radiation monitoring and surveillance have been established, and continued R and D efforts are given to the integration of the components into automatic safeguards diagnostics. (author).

  10. Status of safeguards instrumentation

    International Nuclear Information System (INIS)

    Higinbotham, W.A.

    The International Atomic Energy Agency is performing safeguards at some nuclear power reactors, 50 bulk processing facilities, and 170 research facilities. Its verification activities require the use of instruments to measure nuclear materials and of surveillance instruments to maintain continuity of knowledge of the locations of nuclear materials. Instruments that are in use and under development to measure weight, volume, concentration, and isotopic composition of nuclear materials, and the major surveillance instruments, are described in connection with their uses at representative nuclear facilities. The current status of safeguards instrumentation and the needs for future development are discussed

  11. Safeguards at the Central Institute for Nuclear Research at Rossendorf/GDR

    International Nuclear Information System (INIS)

    Helming, M.; Rehak, W.; Schillert, B.

    1989-01-01

    Experience in the implementation of domestic and international safeguards at the Central Institute for Nuclear Research at Rossendorf is reported covering the following topics: overview of the main nuclear installations belonging to the Institute; structure of its material balance areas; responsibilities for the different aspects of accounting for and control of nuclear material at facility level; the various types of nuclear materials handled and their flow, accessibility and strategic significance; the assessment of IAEA safeguards effectiveness. 2 tabs., 2 figs. (author)

  12. Developing a simulation for border safeguarding

    CSIR Research Space (South Africa)

    Van Rooyen, S

    2011-09-01

    Full Text Available Border safeguarding is the defence of territorial integrity and sovereignty, and this is a joint responsibility of the military and the police. Military doctrine for conventional warfare is not sufficient for Border Safeguarding operations due...

  13. Safeguards and Security progress report, January--December 1989

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.B.; Jaramillo, G.R. (comps.)

    1990-11-01

    From January to December 1989, the Los Alamos Safeguards and Security Research and Development (R D) program carried out the activities described in the first four parts of this report: Science and Technology Base Development, Basic Systems Design, Onsite Test and Evaluation and Facility Support, and International Safeguards. For the most part, these activities were sponsored by the Department of Energy's Office of Safeguards and Security. Part 1 covers development of the basic technology essential to continuing improvements in the practice of safeguards and security. It includes our computer security R D and the activities of the DOE Center for Computer Security, which provides the basis for encouraging and disseminating this important technology. Part 2 treats activities aimed at developing methods for designing and evaluating safeguards systems, with special emphasis on the integration of the several subsystems into a real safeguards system. Part 3 describes efforts of direct assistance to the DOE and its contractors and includes consultation on materials control and accounting problems, development and demonstration of specialized techniques and instruments, and comprehensive participation in the design and demonstration of advanced safeguards systems. Part 3 also reports a series of training courses in various aspects of safeguards that makes the technology more accessible to those who must apply it. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Part 5 reports several safeguards-related activities that have sponsors other than the DOE/OSS. 87 refs., 52 figs.

  14. Research on prisoners - a comparison between the IOM Committee recommendations (2006) and European regulations.

    Science.gov (United States)

    Elger, Bernice S; Spaulding, Anne

    2010-01-01

    The Institute of Medicine (IOM) Committee on Ethical Considerations for Revisions to DHHS Regulations for Protection of Prisoners Involved in Research published its report in 2006. It was charged with developing an ethical framework for the conduct of research with prisoners and identifying the safeguards and conditions necessary to ensure that research with prisoners is conducted ethically. The recommendations contained in the IOM report differ from current European regulations in several ways, some being more restrictive and some less so. For example, the IOM report suggests limiting the percentage of prisoners that should be involved in a biomedical study to 50%, a limit that does not exist in Europe. However, the report does not specifically advise against research without a direct benefit to an individual prisoner: the European regulations are more restrictive than the IOM committee recommendations in this respect. The definition of minimal risk varies, as well as the proposed role of the minimal risk requirement and of the principle of subsidiarity (research that can only be done effectively in prisons). The IOM report proposes a number of thoughtful suggestions, which it would be beneficial to implement everywhere, such as registers of research on prisoners. The European regulations offer pragmatic solutions to several thorny issues. In summary, the IOM committee report represents an admirable effort to tackle the present inconsistencies and deficiencies of federal regulations in the US on research on prisoners (45 CFR 46 Subpart C). Nonetheless, before acting on the recommendations, US regulators might consider revisiting international guidelines such as those published by the Council for International Organizations of Medical Science (CIOMS) and the Declaration of Helsinki.

  15. A Study on Comparison of HANARO and KIJANG Research Reactor in Nuclear Safeguards

    International Nuclear Information System (INIS)

    Jung, Juang; Lee, Sung Ho; Kim, Hyun-Jo

    2015-01-01

    As one of major national projects for nuclear science and engineering in Korea, the KIJANG Research Reactor(KJRR) project was commenced in order to develop the core research reactor(RR) technologies for strengthening the competitiveness of the RR export and also to stabilize the supply of key radioisotopes for medical and industrial applications. This paper is about applying IAEA safeguards at new nuclear facility (KJRR). The beginning of this project is comparing of HANARO and KIJANG research reactor in nuclear safeguards for nuclear material accountancy method. As mentioned before, research reactor is basically item counting facility. In Fig 1, first two processes are belonging to item counting. But last two processes are for bulk handling. So KIJANG RR would be treated item counting facility as well as bulk handling facility by fission moly production facility. For this reason, nuclear material accountancy method for KJRR is not easy compared to existing one. This paper accounted for solution of KJRR nuclear material accountancy briefly. Future study on the suitable nuclear material accountancy method for mixed facility between item counting facility and bulk handling facility will be conducted more specifically

  16. A Study on Comparison of HANARO and KIJANG Research Reactor in Nuclear Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Juang; Lee, Sung Ho; Kim, Hyun-Jo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    As one of major national projects for nuclear science and engineering in Korea, the KIJANG Research Reactor(KJRR) project was commenced in order to develop the core research reactor(RR) technologies for strengthening the competitiveness of the RR export and also to stabilize the supply of key radioisotopes for medical and industrial applications. This paper is about applying IAEA safeguards at new nuclear facility (KJRR). The beginning of this project is comparing of HANARO and KIJANG research reactor in nuclear safeguards for nuclear material accountancy method. As mentioned before, research reactor is basically item counting facility. In Fig 1, first two processes are belonging to item counting. But last two processes are for bulk handling. So KIJANG RR would be treated item counting facility as well as bulk handling facility by fission moly production facility. For this reason, nuclear material accountancy method for KJRR is not easy compared to existing one. This paper accounted for solution of KJRR nuclear material accountancy briefly. Future study on the suitable nuclear material accountancy method for mixed facility between item counting facility and bulk handling facility will be conducted more specifically.

  17. Safeguards activities in Japan

    International Nuclear Information System (INIS)

    Osabe, Takeshi

    1998-01-01

    Current Japanese State System for Accountancy and Control (SSAC) has been developing and fully satisfies requirements of both IAEA Safeguards and bilateral partners. However, the public attention on the national and international safeguards activities were increased and the safeguards authorities were required to promote the objective assessment of safeguards implementation to avoid mistrust in safeguards activities which directly influence the public acceptance of nuclear energy in itself. Additionally, since Japan has promoted to complete nuclear fuel cycle including spent fuel reprocessing, enrichment and mixed oxide fuel fabrication this would require further assurance of Japanese non-proliferation commitment. Japan supports the introduction of strengthened safeguards. In this context it is particularly important to strengthen the relationship between national and the IAEA safeguards to contribute actively to the IAEA safeguards in development and utilization of new technologies towards more effective and efficient IAEA safeguards

  18. Gas Cooled Fast Reactor Research and Development in the European Union

    Directory of Open Access Journals (Sweden)

    Richard Stainsby

    2009-01-01

    Full Text Available Gas-cooled fast reactor (GFR research is directed towards fulfilling the ambitious goals of Generation IV (Gen IV, that is, to develop a safe, sustainable, reliable, proliferation-resistant and economic nuclear energy system. The research is directed towards developing the GFR as an economic electricity generator, with good safety and sustainability characteristics. Fast reactors maximise the usefulness of uranium resources by breeding plutonium and can contribute to minimising both the quantity and radiotoxicity nuclear waste by actinide transmutation in a closed fuel cycle. Transmutation is particularly effective in the GFR core owing to its inherently hard neutron spectrum. Further, GFR is suitable for hydrogen production and process heat applications through its high core outlet temperature. As such GFR can inherit the non-electricity applications that will be developed for thermal high temperature reactors in a sustainable manner. The Euratom organisation provides a route by which researchers in all European states, and other non-European affiliates, can contribute to the Gen IV GFR system. This paper summarises the achievements of Euratom's research into the GFR system, starting with the 5th Framework programme (FP5 GCFR project in 2000, through FP6 (2005 to 2009 and looking ahead to the proposed activities within the 7th Framework Programme (FP7.

  19. The Agency programme for the development of safeguards techniques and instrumentation

    International Nuclear Information System (INIS)

    Lopez-Menchero, E.; Waligura, A.J.

    1976-01-01

    The programme of the Division of Development concentrates attention upon a variety of technical problems and tasks to enable the Agency safeguards system to achieve its safeguards objectives most economically for the Agency, the Member States and the nuclear facility operators. The programme must take into account the changes which may occur in the Agency's tasks as a consequence of implementation of safeguards in States with important nuclear activities. This paper attempts to summarize where the Agency methods and techniques development programme stands on meeting defined technical objectives, to point out where the main problems lie and to offer some guidelines for their solution. (author)

  20. Safeguards effectiveness evaluations in safeguards planning

    International Nuclear Information System (INIS)

    Al-Ayat, R.A.

    1987-01-01

    This paper describes analytic tools we developed to quantify the effectiveness of safeguards against theft of special nuclear material by insiders. These tools help identify vulnerabilities in existing safeguards, suggest potential improvements, and help assess the benefits of these upgrades prior to implementation. Alone, these tools are not sufficient for safeguards planning, since the cost of implementing all suggested upgrades almost always exceeds the available resources. This paper describes another tool we developed to allow comparsion of benefits of various upgrades to identify those upgrade packages that achieve the greatest improvement in protection for a given cost and to provide a priority ranking among cost-effective packages, thereby helping decision-makers select the upgrades to implement and highlight the mount of residual risk. 5 refs., 3 figs

  1. The growth of European fusion research

    International Nuclear Information System (INIS)

    Palumbo, D.

    1988-01-01

    The Euratom initial research programme with fusion as a modest element was constituted in 1958. Progress in fusion research mainly in the USA, USSR and UK was reported at the Geneva Conference held in September 1958. A network of national laboratories cooperating in fusion research was constituted under Association Contracts rather than founding a single Euratom laboratory. Emergence of the Tokamak became evident in 1968, and in 1969 a team from Culham travelled to Moscow to measure the electron plasma temperature and confirmed the previous Russian results. Collaboration between Culham and the European Fusion programme developed before the entrance of the UK into the European Community. The JET design team began its work in 1973. The site selected was at Culham and construction of JET commenced in 1978. Subsequent international discussions including the USA and USSR resulted in detailed design studies for a large device known as the INTOR Tokamak which will probably lead to further international cooperation. (U.K.)

  2. Increasing European Support for Neglected Infectious Disease Research

    Directory of Open Access Journals (Sweden)

    Ole F. Olesen

    Full Text Available Neglected infectious diseases (NIDs are a persistent cause of death and disability in low-income countries. Currently available drugs and vaccines are often ineffective, costly or associated with severe side-effects. Although the scale of research on NIDs does not reflect their disease burden, there are encouraging signs that NIDs have begun to attract more political and public attention, which have translated into greater awareness and increased investments in NID research by both public and private donors. Using publicly available data, we analysed funding for NID research in the European Union's (EU's 7th Framework Programme for Research and Technological Development (FP7, which ran from 2007 to 2013. During FP7, the EU provided €169 million for 65 NID research projects, and thereby placed itself among the top global funders of NID research. Average annual FP7 investment in NID research exceeded €24 million, triple that committed by the EU before the launch of FP7. FP7 NID projects involved research teams from 331 different institutions in 72 countries on six continents, underlining the increasingly global nature of European research activities. NID research has remained a priority in the current EU Framework Programme for research and innovation, Horizon 2020, launched in 2014. This has most notably been reflected in the second programme of the European & Developing Countries Clinical Trials Partnership (EDCTP, which provides unprecedented opportunities to advance the clinical development of new medical interventions against NIDs. Europe is thus better positioned than ever before to play a major role in the global fight against NIDs.

  3. Evolution of safeguards systems design

    International Nuclear Information System (INIS)

    Shipley, J.P.; Christensen, E.L.; Dietz, R.J.

    1979-01-01

    Safeguards systems play a vital detection and deterrence role in current nonproliferation policy. These safeguards systems have developed over the past three decades through the evolution of three essential components: the safeguards/process interface, safeguards performance criteria, and the technology necessary to support effective safeguards. This paper discusses the background and history of this evolutionary process, its major developments and status, and the future direction of safeguards system design

  4. Inventory of safeguards software

    International Nuclear Information System (INIS)

    Suzuki, Mitsutoshi; Horino, Koichi

    2009-03-01

    The purpose of this survey activity will serve as a basis for determining what needs may exist in this arena for development of next-generation safeguards systems and approaches. 23 software tools are surveyed by JAEA and NMCC. Exchanging information regarding existing software tools for safeguards and discussing about a next R and D program of developing a general-purpose safeguards tool should be beneficial to a safeguards system design and indispensable to evaluate a safeguards system for future nuclear fuel facilities. (author)

  5. Proposals for the 1989/90 Safeguards R and D programme and associated meetings

    International Nuclear Information System (INIS)

    1987-07-01

    The R and D programme of the IAEA Department of Safeguards as carried out by or undertaken on behalf of the Division of Development and Technical Support, the Division of Safeguards Evaluation and the Division of Safeguards Information Treatment is set out in tables which give the objective of the programme elements, a description of the activities to be performed and a number of items of information required for assessment of the activities. The linkage between R and D activities and planned meetings on safeguards topics in 1989/90 is shown in a table too. 4 tabs

  6. The present status of IAEA safeguards on nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    1978-11-01

    The present IAEA approach to safeguarding various types of nuclear facilities is examined. The IAEA safeguards objectives, criteria and specific techniques are addressed, with reference e.g. to concepts like timely detection, quantities of safeguards significance, and conversion times. Material accountancy and containment and surveillance as basic features of IAEA safeguards verification are discussed. Safeguards measures for specific facility types are considered and corresponding levels of IAEA safeguards experience are assessed. Outlines of expected IAEA safeguard approaches to large bulk handling facilities are discussed. The evolutionary nature of safeguards based on experience and research and development is mentioned

  7. Advanced Safeguards Technology Road-map for the Global Nuclear Energy Partnership

    International Nuclear Information System (INIS)

    Miller, M.C.; Tobin, S.; Smith, L.E.; Ehinger, M.; Dougan, A.; Cipiti, B.; Bakel, A.; Bean, R.

    2008-01-01

    Strengthening the nonproliferation regime, including advanced safeguards, is a cornerstone of the Global Nuclear Energy Partnership (GNEP). To meet these challenges, the Safeguards Campaign was formed, whose mission is to provide research and technology development for the foundation of next generation safeguards systems for implementation in U.S. GNEP facilities. The Safeguards Campaign works closely with the Nuclear Nonproliferation and International Security department (NA-24) of NNSA (National Nuclear Safety Administration) to ensure that technology developed for domestic safeguards applications are optimum with respect to international safeguards use. A major milestone of the program this year has been the development of the advanced safeguards technology road-map. This paper will broadly describe the road-map, which provides a path to next generation safeguards systems including advanced instrumentation; process monitoring; data integration, protection, and analysis; and system level evaluation and knowledge extraction for real time applications. (authors)

  8. Fifty Years of Safeguards under the EURATOM Treaty. A Regulatory Review

    International Nuclear Information System (INIS)

    Patel, B.; Chare, P.

    2007-01-01

    March 2007 marked the 50th anniversary of the signing of one of the founding treaties of the European Community. The EURATOM Treaty has its origins at a time when the stability of energy supplies in Europe was a major concern. Recently, much debate has centred on the possible reform or repeal of some parts of the treaty, given that its original aim was to promote and oversee the development of nuclear energy in Europe. This debate has focused attention on the future contribution of nuclear power to increasing energy demands in an enlarged Europe. However, despite these issues there is near universal agreement that the EURATOM Treaty has played a vital role in the protection of European citizens through the controls required for nuclear materials. Chapter 7 of the treaty (Safeguards) confers wide regulatory powers to the European Commission to ensure that civil nuclear materials are not diverted from their intended use as declared by the operators. This paper describes the early period of operation of the safeguards inspectorate, and gives statistics on the numbers and types of inspections carried out by the EURATOM inspectors, and discusses from an operational point of view the value of inspection activities. Further, a critical appraisal of Articles 77-85 within Chapter 7 is made. The paper also considers those safeguards requirements that are important to strengthen, in order to maintain a strong regulatory system to oversee future challenges, particularly in the context of increasing decommissioning activities within Europe. It is noteworthy that fifty-years after the founding of the treaty, many of the concerns about security of energy supply have re-emerged. It is a measure of the vision and forward thinking of its founders that the treaty has successfully overseen the safe and secure development of nuclear power in Europe (which currently provides a third of its electricity needs) and despite the many changes and developments that have occurred, that the

  9. Development of safeguards approach for the Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Johnson, S.J.; Abedin-Zadeh, R.; Pearsall, C.; Chesnay, B.; Creusot, C.; Ehinger, M.; Kuhn, E.; Robson, N.; Higuchi, H.; Takeda, S.; Fujimaki, K.; Ai, H.; Uehara, S.; Amano, H.; Hoshi, K.

    2001-01-01

    Full text: The Rokkasho Reprocessing Plant (RRP), which is currently undergoing construction and commissioning by the Japan Nuclear Fuels Limited (JNFL), is scheduled to begin active operations in 2005. The planned operating capacity is 800 tonnes of spent fuel per year containing approximately 8 tonnes of plutonium. The International Atomic Energy Agency (IAEA) and the Japan safeguards authorities are working with JNFL to develop a Safeguards Approach that is both effective and efficient. In order to accomplish this goal, a number of advanced concepts are being introduced and many currently applied safeguards measures are being enhanced. These new and improved techniques and procedures will provide for more sensitive and reliable verification of nuclear material and facility operations while reducing the required inspection effort. The Safeguards Approach incorporates systematic Design Information Examination and Verification (DIE/DIV) during all phases of construction, commissioning and operation. It incorporates installed, unattended radiation and solution measurement and monitoring systems along with a number of inspector attended measurement systems. While many of the measurement systems will be independent-inspector controlled, others will require authentication of a split signal from operator controlled systems. The independent and/or authenticated data from these systems will be transmitted over a network to a central inspector center for evaluation. Near-Real-Time-Accountancy (NRTA) will be used for short period sequential analysis of the operator and inspector data which, when combined with Solution Monitoring data, will provide higher assurance in the verification of nuclear material for timeliness and of the operational status of the facility. Samples will be taken using a facility installed, but IAEA authenticated, automatic sampling system and will then be transferred to a jointly used IAEA-JSGO On-Site Laboratory (OSL). This paper provides an

  10. Safeguards approach for conditioning facility for spent fuel

    International Nuclear Information System (INIS)

    Younkin, J.M.; Barham, M.; Moran, B.W.

    1999-01-01

    A safeguards approach has been developed for conditioning facilities associated with the final disposal of spent fuel in geologic repositories. The proposed approach is based on a generic conditioning facility incorporating common features of conditioning facility designs currently proposed. The generic facility includes a hot cell for consolidation of spent fuel pins and repackaging of spent fuel items such as assemblies and cans of pins. The consolidation process introduces safeguards concerns which have not previously been addressed in traditional safeguards approaches. In developing the safeguards approach, diversion of spent fuel was assessed in terms of potential target items, operational activities performed on the items, containment of the items, and concealment activities performed on the items. The combination of these factors defines the potential diversion pathways. Diversion pathways were identified for spent fuel pellets, pins, assemblies, canisters, and casks. Diversion activities provide for opportunities of detection along the diversion paths. Potential detection methods were identified at several levels of diversion activities. Detection methods can be implemented through safeguards measures. Safeguards measures were proposed for each of the primary safeguards techniques of design information verification (DIV), containment and surveillance (C/S), and material accountancy. Potential safeguards approaches were developed by selection of appropriate combinations of safeguards measures. For all candidate safeguards approaches, DIV is a fundamental component. Variations in the approaches are mainly in the degree of C/S measures and in the types and numbers of material accountancy verification measures. The candidate safeguards approaches were evaluated toward the goal of determining a model safeguards approach. This model approach is based on the integrated application of selected safeguards measures to use International Atomic Energy Agency resources

  11. Building safeguards infrastructure

    International Nuclear Information System (INIS)

    Stevens, Rebecca S.; McClelland-Kerr, John

    2009-01-01

    Much has been written in recent years about the nuclear renaissance - the rebirth of nuclear power as a clean and safe source of electricity around the world. Those who question the nuclear renaissance often cite the risk of proliferation, accidents or an attack on a facility as concerns, all of which merit serious consideration. The integration of these three areas - sometimes referred to as 3S, for safety, security and safeguards - is essential to supporting the growth of nuclear power, and the infrastructure that supports them should be strengthened. The focus of this paper will be on the role safeguards plays in the 3S concept and how to support the development of the infrastructure necessary to support safeguards. The objective of this paper has been to provide a working definition of safeguards infrastructure, and to discuss xamples of how building safeguards infrastructure is presented in several models. The guidelines outlined in the milestones document provide a clear path for establishing both the safeguards and the related infrastructures needed to support the development of nuclear power. The model employed by the INSEP program of engaging with partner states on safeguards-related topics that are of current interest to the level of nuclear development in that state provides another way of approaching the concept of building safeguards infrastructure. The Next Generation Safeguards Initiative is yet another approach that underscored five principal areas for growth, and the United States commitment to working with partners to promote this growth both at home and abroad.

  12. International safeguards for reprocessing plants. Final report

    International Nuclear Information System (INIS)

    Kratzer, M.; Scheinman, L.; Sievering, N.; Wonder, E.; Lipman, D.; Immerman, W.; Elliott, J.M.; Crane, F.

    1981-04-01

    Proliferation risks inherent in reprocessing show the need to employ technically effective safeguards which can detect, with a high degree of assurance and on a timely basis, the diversion of significant quantities of fissionable material. A balance must be struck between what is technically feasible and effective and what is institutionally acceptable. Purpose of this report is to examine the several technical approaches to safeguards in light of their prospective acceptability. This study defines the economic, political and institutional nature of the safeguards problem; surveys generically alternative technical approaches to international safeguards including their effectiveness and relative development; characterizes the institutional implications and uncertainties associated with the acceptance and implementation of each technical alternative; and integrates these assessments into a set of overall judgments on feasible directions for reprocessing plant safeguards systems

  13. International safeguards for reprocessing plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kratzer, M.; Scheinman, L.; Sievering, N.; Wonder, E.; Lipman, D.; Immerman, W.; Elliott, J.M.; Crane, F.

    1981-04-01

    Proliferation risks inherent in reprocessing show the need to employ technically effective safeguards which can detect, with a high degree of assurance and on a timely basis, the diversion of significant quantities of fissionable material. A balance must be struck between what is technically feasible and effective and what is institutionally acceptable. Purpose of this report is to examine the several technical approaches to safeguards in light of their prospective acceptability. This study defines the economic, political and institutional nature of the safeguards problem; surveys generically alternative technical approaches to international safeguards including their effectiveness and relative development; characterizes the institutional implications and uncertainties associated with the acceptance and implementation of each technical alternative; and integrates these assessments into a set of overall judgments on feasible directions for reprocessing plant safeguards systems.

  14. AIDA – pushing the boundaries of European particle detector research

    CERN Multimedia

    Naomi Gilraen Wyles

    2011-01-01

    AIDA (Advanced European Infrastructures for Detectors at Accelerators), a new project co-funded by the European Union and worth a total of 26 million euros, will be officially launched at CERN next week. The kick-off meeting will take place on 16-18 February, during which Europe-wide detector physicists will come together to begin work on detector infrastructure developments for future particle physics experiments.   Coordinated by CERN, AIDA involves more than 80 institutes and laboratories from 23 countries as beneficiaries or associate partners (the full list can be found here). This four-year project will receive 8 million euros from the European Commission's FP7 Research Infrastructures programme. AIDA will develop facilities covering the four main goals identified by the European Strategy for Particle Physics. These are the LHC upgrade, Linear Colliders, Neutrino facilities and Super-B factories. These facilities will also be available for other researchers in the fields of nuclear and par...

  15. Nuclear safeguards and security: we can do better.

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, R. G. (Roger G.); Warner, Jon S.; Garcia, A. R. E. (Anthony R. E.); Martinez, R. K. (Ronald K.); Lopez, L. N. (Leon N.); Pacheco, A. N. (Adam N.); Trujillo, S. J. (Sonia J.); Herrera, A. M. (Alicia M.); Bitzer, E. G. (Edward G.), III

    2005-01-01

    There are a number of practical ways to significantly improve nuclear safeguards and security. These include recognizing and minimizing the insider threat; using adversarial vulnerability assessments to find vulnerabilities and countermeasures; fully appreciating the disparate nature of domestic and international nuclear safeguards; improving tamper detection and tamper-indicating seals; not confusing the inventory and security functions; and recognizing the limitations of GPS tracking, contact memory buttons, and RFID tags. The efficacy of nuclear safeguards depends critically on employing sophisticated security strategies and effective monitoring hardware. The Vulnerability Assessment Team (VAT) at Los Alamos National Laboratory has extensively researched issues associated with nuclear safeguards, especially in the areas of tamper/intrusion detection, transport security, and vulnerability assessments. This paper discusses some of our findings, recommendations, and warnings.

  16. Development of nuclear materials accounting for international safeguards

    International Nuclear Information System (INIS)

    Markin, J.T.; Augustson, R.H.; Eccleston, G.W.; Hakkila, E.A.

    1991-01-01

    This paper reports that nuclear materials accountancy was introduced as a primary safeguards measure in international safeguards at the inception of the EURATOM safeguards directorate in 1959 and in IAEA safeguards in 1961 with the issuance of INFCIRC 26. As measurement technology evolved and safeguarded facilities increased in both number and size, measurement methodology requirements increased as reflected in INFCIRC 66 (Rev 2.) in 1968 and later in INFCIRC 153 in 1972. Early measurements relied heavily on chemical analysis, but in the 1960s the measurements evolved more and more toward nondestructive assay. Future nuclear materials accountancy systems will increase in complexity, driven by larger and more complex facilities; more stringent health, safety, and environmental considerations; and unattended automation in facility operations

  17. IAEA safeguards for geological repositories

    International Nuclear Information System (INIS)

    Moran, B.W.

    2005-01-01

    In September. 1988, the IAEA held its first formal meeting on the safeguards requirements for the final disposal of spent fuel and nuclear material-bearing waste. The consensus recommendation of the 43 participants from 18 countries at this Advisory Group Meeting was that safeguards should not terminate of spent fuel even after emplacement in, and closure of, a geologic repository.' As a result of this recommendation, the IAEA initiated a series of consultants' meetings and the SAGOR Programme (Programme for the Development of Safeguards for the Final Disposal of Spent Fuel in Geologic Repositories) to develop an approach that would permit IAEA safeguards to verify the non-diversion of spent fuel from a geologic repository. At the end of this process, in December 1997, a second Advisory Group Meeting, endorsed the generic safeguards approach developed by the SAGOR Programme. Using the SAGOR Programme results and consultants' meeting recommendations, the IAEA Department of Safeguards issued a safeguards policy paper stating the requirements for IAEA safeguards at geologic repositories. Following approval of the safeguards policy and the generic safeguards approach, the Geologic Repository Safeguards Experts Group was established to make recommendations on implementing the safeguards approach. This experts' group is currently making recommendations to the IAEA regarding the safeguards activities to be conducted with respect to Finland's repository programme. (author)

  18. The 19th Annual Congress of European Public Relations Education and Research Association (EUPRERA 2017)

    NARCIS (Netherlands)

    Kviatek, Beata

    2017-01-01

    The European Public Relations Education and Research Association (EUPRERA) is an independent organization that aims at stimulating and promoting innovative knowledge and practices of strategic communication, organizational communication and Public Relations across Europe. Founded in 1959 and

  19. The European Social Survey and European research policy

    DEFF Research Database (Denmark)

    Kropp, Kristoffer

    2017-01-01

    This article analyses the history of the European Social Survey (ESS) and its relationship to changes in European research policy, using Bourdieu’s field-analytical approach. It argues that the success of the ESS relied on three interwoven processes that we can understand theoretically in terms...... of the establishment of homological structures and the formation of conjunctural alliances between the field of European social-scientific research and the field of European policy. The three interwoven processes that I depict are: first, the production of a European field of social research, connected to both...... European and national scientific institutions; second, the establishment of European Union (EU) institutions and organisations that were able to identify and link up with social researchers; and third, the formation of conjunctural alliances between the two fields (social science and EU research policy...

  20. Safeguards instrumentation: a computer-based catalog. Second edition

    International Nuclear Information System (INIS)

    Auerbach, C.

    1985-04-01

    This catalog contains entries on new developments and on items listed in BNL 51450, which have either been carried over unchanged or been updated. More than 70 entries were deleted because of either obsolescence, insufficient interest in terms of safeguards, or lack of documentable development activities in recent years. Some old listings as well as new material was consolidated into more generic entries. As in the earlier document, the emphasis is on devices and instruments that are either in field use at this time or under active development. A few items such as NDA reference materials, instrument vans and certain shipping containers are included because they are important adjuncts to optimum utilization of safeguards instrumentation. This catalog does not include devices for physical protection. As was the case with its predecessor, most of the material in this catalog originated in the US and Canada; a few contributions came from member states of the European Community

  1. Safeguards instrumentation: a computer-based catalog. Second edition

    Energy Technology Data Exchange (ETDEWEB)

    Auerbach, C.

    1985-04-01

    This catalog contains entries on new developments and on items listed in BNL 51450, which have either been carried over unchanged or been updated. More than 70 entries were deleted because of either obsolescence, insufficient interest in terms of safeguards, or lack of documentable development activities in recent years. Some old listings as well as new material was consolidated into more generic entries. As in the earlier document, the emphasis is on devices and instruments that are either in field use at this time or under active development. A few items such as NDA reference materials, instrument vans and certain shipping containers are included because they are important adjuncts to optimum utilization of safeguards instrumentation. This catalog does not include devices for physical protection. As was the case with its predecessor, most of the material in this catalog originated in the US and Canada; a few contributions came from member states of the European Community.

  2. New safeguards system and JNC's activities in the new safeguards system

    International Nuclear Information System (INIS)

    Iwanaga, Masayuki

    2000-01-01

    The Japan Nuclear Fuel Cycle Development Institute (JNC) has been developing the various area of the technology in the nuclear fuel cycle more than 30 years, as the leading organization. Standing on the accumulated experiences through those activities, JNC will construct the new fuel cycle concept based on the principle for safety, environment, economy and nonproliferation. In this process, evaluation of the specific nonproliferation features with the nuclear material control methods taking in to account of the safegurdability might have one of the major importance. On the other hand, recently, in addition to the conventional safeguards (INFCIRC153), an additional protocol (INFCIRC540) which defines the activities that complement the integrity of a member country's declaration has come into effect in several countries, including Japan. IAEA and other international organizations are now discussing the safeguards concept, which integrates the conventional as well as new safeguards measures. In JNC's efforts to construct the new fuel cycle concept, it is necessary to give sufficient consideration to reflect the integrated safeguards concept. In the process of implementing the concept of the new integrated safeguards system, we presume that changes will have to be made in the traditional approach, which mainly deals with nuclear material. It will become necessary to develop a concrete method and approach in order to analyze and evaluate information, and work will have to be undertaken to optimize such a method based on its effects and efficiency. JNC will make contributions to international society by making the best use of its experience and technological infrastructure to reflect further safeguards development program in JNC so that the new IAEA safeguards can be firmly established. Related to this point of view, the following two subjects is to be introduced on the whole; 1. JNC's experiences and expertise of the development of safeguards technology with the fuel

  3. Study on the development of safeguards information treatment system at the facility level

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B. D.; Song, D. Y.; So, D. S.; Kwak, E. H. [KAERI, Taejon (Korea, Republic of)

    2000-05-01

    Safeguards Information Treatment System(SITS) at the facility level is required to implement efficiently the obligations under the Korea-IAEA Safeguards Agreement, bilateral agreements with other countries and domestic law. In this paper, the requirements and major functions of SITS were considered, and the error checking methods and the relationships of safeguards information were reviewed. SITS will be developed to cover the different accounting procedures and methods applied at the various facilities under IAEA safeguards. Also, the resolved result of the Y2K problem in the existing nuclear material accounting program was described.

  4. Lessons Learned from the Development of an Example Precision Information Environment for International Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Gastelum, Zoe N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Henry, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burtner, IV, E. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Doehle, J. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hampton, S. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); La Mothe, R. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nordquist, P. L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zarzhitsky, D. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-01

    The International Atomic Energy Agency (IAEA) is interested in increasing capabilities of IAEA safeguards inspectors to access information that would improve their situational awareness on the job. A mobile information platform could potentially provide access to information, analytics, and technical and logistical support to inspectors in the field, as well as providing regular updates to analysts at IAEA Headquarters in Vienna or at satellite offices. To demonstrate the potential capability of such a system, Pacific Northwest National Laboratory (PNNL) implemented a number of example capabilities within a PNNL-developed precision information environment (PIE), and using a tablet as a mobile information platform. PNNL’s safeguards proof-of-concept PIE intends to; demonstrate novel applications of mobile information platforms to international safeguards use cases; demonstrate proof-of-principle capability implementation; and provide “vision” for capabilities that could be implemented. This report documents the lessons learned from this two-year development activity for the Precision Information Environment for International Safeguards (PIE-IS), describing the developed capabilities, technical challenges, and considerations for future development, so that developers working to develop a similar system for the IAEA or other safeguards agencies might benefit from our work.

  5. Lessons Learned from the Development of an Example Precision Information Environment for International Safeguards

    International Nuclear Information System (INIS)

    Gastelum, Zoe N.; Henry, Michael J.; Burtner, IV E.R.; Doehle, J. R.; Hampton, S. D.; La Mothe, R. R.; Nordquist, P. L.; Zarzhitsky, D. V.

    2014-01-01

    The International Atomic Energy Agency (IAEA) is interested in increasing capabilities of IAEA safeguards inspectors to access information that would improve their situational awareness on the job. A mobile information platform could potentially provide access to information, analytics, and technical and logistical support to inspectors in the field, as well as providing regular updates to analysts at IAEA Headquarters in Vienna or at satellite offices. To demonstrate the potential capability of such a system, Pacific Northwest National Laboratory (PNNL) implemented a number of example capabilities within a PNNL-developed precision information environment (PIE), and using a tablet as a mobile information platform. PNNL's safeguards proof-of-concept PIE intends to; demonstrate novel applications of mobile information platforms to international safeguards use cases; demonstrate proof-of-principle capability implementation; and provide ''vision''@ for capabilities that could be implemented. This report documents the lessons learned from this two-year development activity for the Precision Information Environment for International Safeguards (PIE-IS), describing the developed capabilities, technical challenges, and considerations for future development, so that developers working to develop a similar system for the IAEA or other safeguards agencies might benefit from our work.

  6. Los Alamos safeguards program overview and NDA in safeguards

    International Nuclear Information System (INIS)

    Keepin, G.R.

    1988-01-01

    Over the years the Los Alamos safeguards program has developed, tested, and implemented a broad range of passive and active nondestructive analysis (NDA) instruments (based on gamma and x-ray detection and neutron counting) that are now widely employed in safeguarding nuclear materials of all forms. Here very briefly, the major categories of gamma ray and neutron based NDA techniques, give some representative examples of NDA instruments currently in use, and cite a few notable instances of state-of-the-art NDA technique development. Historical aspects and a broad overview of the safeguards program are also presented

  7. Safeguards against Takeover after Volkswagen

    DEFF Research Database (Denmark)

    Werlauff, Erik

    2009-01-01

    The article analyses the significance of the European Court's decision on the effects of the rules on the free movement of capital on the takeover safeguards in Volkswagen AG for restrictions on the right to vote, ownership ceilings, division into A and B share classes, increased majority require...

  8. Office of Safeguards and Security - Operational Interface

    International Nuclear Information System (INIS)

    Hammond, G.A.

    1987-01-01

    The mission of the Office of Safeguards and Security (OSS), Department of Energy (DOE) is to: Develop policy and programs to protect DOE facilities, nuclear materials, and classified information; Provide oversight for safeguards and security operations; Direct research and development (RandD) to support the protection program; and Strengthen international safeguards in support of nonproliferation policy. Objectives are to maintain an integrated safeguards and security system that is effective against a wide range of threats, and do so in a manner to minimize impacts on facility operation. Implementation is the responsibility of field offices and contractors operating DOE facilities. The OSS-operational interface is the focus of this discussion with emphasis on RandD to meet user needs. The scope and project selection process will be discussed along with information required for evaluation, and field operational planning and budgeting commitments to permit implementation of successful RandD results

  9. The safeguards options study

    Energy Technology Data Exchange (ETDEWEB)

    Hakkila, E.A.; Mullen, M.F.; Olinger, C.T.; Stanbro, W.D. [Los Alamos National Lab., NM (United States); Olsen, A.P.; Roche, C.T.; Rudolph, R.R. [Argonne National Lab., IL (United States); Bieber, A.M.; Lemley, J. [Brookhaven National Lab., Upton, NY (United States); Filby, E. [Idaho National Engineering Lab., Idaho Falls, ID (United States)] [and others

    1995-04-01

    The Safeguards Options Study was initiated to aid the International Safeguards Division (ISD) of the DOE Office of Arms Control and Nonproliferation in developing its programs in enhanced international safeguards. The goal was to provide a technical basis for the ISD program in this area. The Safeguards Options Study has been a cooperative effort among ten organizations. These are Argonne National Laboratory, Brookhaven National Laboratory, Idaho National Engineering Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Mound Laboratory, Oak Ridge National Laboratory, Pacific Northwest Laboratories, Sandia National Laboratories, and Special Technologies Laboratory. Much of the Motivation for the Safeguards Options Study is the recognition after the Iraq experience that there are deficiencies in the present approach to international safeguards. While under International Atomic Energy Agency (IAEA) safeguards at their declared facilities, Iraq was able to develop a significant weapons program without being noticed. This is because negotiated safeguards only applied at declared sites. Even so, their nuclear weapons program clearly conflicted with Iraq`s obligations under the Nuclear Nonproliferation Treaty (NPT) as a nonnuclear weapon state.

  10. The safeguards options study

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Mullen, M.F.; Olinger, C.T.; Stanbro, W.D.; Olsen, A.P.; Roche, C.T.; Rudolph, R.R.; Bieber, A.M.; Lemley, J.; Filby, E.

    1995-04-01

    The Safeguards Options Study was initiated to aid the International Safeguards Division (ISD) of the DOE Office of Arms Control and Nonproliferation in developing its programs in enhanced international safeguards. The goal was to provide a technical basis for the ISD program in this area. The Safeguards Options Study has been a cooperative effort among ten organizations. These are Argonne National Laboratory, Brookhaven National Laboratory, Idaho National Engineering Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Mound Laboratory, Oak Ridge National Laboratory, Pacific Northwest Laboratories, Sandia National Laboratories, and Special Technologies Laboratory. Much of the Motivation for the Safeguards Options Study is the recognition after the Iraq experience that there are deficiencies in the present approach to international safeguards. While under International Atomic Energy Agency (IAEA) safeguards at their declared facilities, Iraq was able to develop a significant weapons program without being noticed. This is because negotiated safeguards only applied at declared sites. Even so, their nuclear weapons program clearly conflicted with Iraq's obligations under the Nuclear Nonproliferation Treaty (NPT) as a nonnuclear weapon state

  11. Fiscal Year 2014 Annual Report on BNLs Next Generation Safeguards Initiative Human Capital Development Activities

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, Susan E. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-10-10

    Brookhaven National Laboratory’s (BNL’s) Nonproliferation and National Security Department contributes to the National Nuclear Security Administration Office of Nonproliferation and International Security Next Generation Safeguards Initiative (NGSI) through university engagement, safeguards internships, safeguards courses, professional development, recruitment, and other activities aimed at ensuring the next generation of international safeguards professionals is adequately prepared to support the U.S. safeguards mission. This report is a summary of BNL s work under the NGSI program in Fiscal Year 2014.

  12. IAEA safeguards

    International Nuclear Information System (INIS)

    1985-01-01

    IAEA safeguards are a system of technical measures within the framework of international non-proliferation policy entrusted to the IAEA in its Statute and by other treaties. About 98% of the world's nuclear installations outside the nuclear-weapon countries are now under safeguards. This paper gives a review of IAEA activities in this field: objectives, agreements, work and development of staff of the IAEA's Department of Safeguards, instruments and techniques for direct measurement and verification of nuclear material. (author)

  13. Safeguards culture on 3S interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yon Hong; Lee, Na Young; Han, Jae-Jun [Korea Institute of Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2015-05-15

    But when proliferation of nuclear weapon does happen due to violation of safeguards, the impact would be no smaller compare to the others. Therefore, it should be treated as important as the others. In fact, safeguards culture wasn't issued first time in this paper. However, the past safeguards culture only meant the conception based upon specific purpose. But it should be generalized to extend the target and scope enough to cover any possible misbehavior. The aforementioned NMAC will be a quite meaningful research subject not just for strengthening safeguards culture, but also for the security and safeguards interface. Recognizing the importance of this, the , IAEA has developed a set of technical criteria based on the IAEA implementing guide entitled Use of Nuclear Material Accounting and Control for Nuclear Security Purposes at Facilities(in publication) and a methodology to assess the use of a facility's NMAC system for nuclear security. IAEA has established an expert team to continuously evaluate and apply NMAC systems going forward. In the process of such efforts, the ROK should work to select and apply appropriate features so as to build a more improved safeguards culture and to determine the best practice.

  14. Safeguards culture on 3S interfaces

    International Nuclear Information System (INIS)

    Jeong, Yon Hong; Lee, Na Young; Han, Jae-Jun

    2015-01-01

    But when proliferation of nuclear weapon does happen due to violation of safeguards, the impact would be no smaller compare to the others. Therefore, it should be treated as important as the others. In fact, safeguards culture wasn't issued first time in this paper. However, the past safeguards culture only meant the conception based upon specific purpose. But it should be generalized to extend the target and scope enough to cover any possible misbehavior. The aforementioned NMAC will be a quite meaningful research subject not just for strengthening safeguards culture, but also for the security and safeguards interface. Recognizing the importance of this, the , IAEA has developed a set of technical criteria based on the IAEA implementing guide entitled Use of Nuclear Material Accounting and Control for Nuclear Security Purposes at Facilities(in publication) and a methodology to assess the use of a facility's NMAC system for nuclear security. IAEA has established an expert team to continuously evaluate and apply NMAC systems going forward. In the process of such efforts, the ROK should work to select and apply appropriate features so as to build a more improved safeguards culture and to determine the best practice

  15. Validation of safeguards monitoring systems and their simulations

    International Nuclear Information System (INIS)

    Standley, V.; Boeck, H.; Villa, M.

    2001-01-01

    Research is underway at the Atominstitut in Vienna Austria where the objective is to design and validate quantitatively a safeguards monitoring system (SMS) and its simulation. The work is novel because the simulation is also used as the basis for automated evaluation of SMS data. Preliminary results indicate that video and radiation data can be automatically interpreted using this approach. Application of the technique promises that an investment in a simulation supports directly the safeguards objective, which is to catch diversion of nuclear material. Consequently, it is easier for a safeguards agency to also realize other benefits associated with simulation-based acquisition, in addition to having a quantitative method for validation

  16. Development of Laser-Induced Breakdown Spectroscopy Technologies for Nuclear Safeguards and Forensic Applications

    International Nuclear Information System (INIS)

    Chen, S.; El-Jaby, A.; Doucet, F.; Bouchard, P.; Sabsabi, M.

    2015-01-01

    Under the IAEA Task A1855, the Canadian Safeguards Support Program (CSSP) undertook the development of laser-induced breakdown spectroscopy (LIBS) technologies for safeguards applications. Collaboration between the Canadian Nuclear Safety Commission (CNSC), the National Research Council Canada, and the IAEA has demonstrated that the LIBS technique combined with chemometrics can determine the origins of yellowcake, identify maraging steels, aluminium alloys, and magnesium alloys, among other materials involved in the nuclear industry; and determine heavy water content as well as the isotope ratios of other actinides. As part of the task, the CSSP has developed a portable LIBS system to enable inspectors to characterize specific nuclear and non-nuclear material during complementary access and inspections. This device was recently tested by the IAEA in both Vienna and Siebersdorf for various metals and uranium bearing materials. The laser source proved to be stable and the chemometrics software was able to identify various materials. The device is ready for further in-depth testing. The chemometrics algorithm that has been developed for LIBS can also be adapted to nuclear forensics for the querying database. Multi-stage pattern recognition algorithms can reliably identify unknown materials among database populations (e.g., identify origins of yellowcake). Further work in this field is being undertaken as part of the CNSC's National Nuclear Forensics Library (NNFL) development activities for the Canadian National Nuclear Forensics Capability Project (CNNFCP). The paper will provide an overview of the LIBS techniques being developed for safeguards and forensic applications, and of progress in integrating all components into a compact unit. (author)

  17. The role of nuclear energy in the European Community

    International Nuclear Information System (INIS)

    Maniatopoulos, C.S.; Gmelin, W.; Schenkel, R.

    1991-01-01

    The overall objective of the energy policy of the European Community is to achieve a secure supply of energy at reasonable cost and low environmental impact. This overall objective is embedded in the steps taken by the European Community towards the Single European Market. This subject will be addressed briefly, as well as the developments in Eastern Europe including the European Energy Charter. With regard to nuclear energy in the community, facts and issues related to electricity production, the front end and back end of the nuclear fuel cycle and current environmental and safety issues will be presented. A common industrial strategy is required in the community including safety regulations, technical specifications and products for international markets. Concerning safeguards, the Commission is fully committed to the obligations from Chapter VII of the Treaty and to any relevant international agreements concluded by the Community. This is reflected in the close cooperation of the Commission with the IAEA and in the increase of resources, both in staff and budget, which the Commission has allocated to the Safeguards Directorate to cope with the increasing requirements, for example for bulk handling facilities. Based on a request from the European Parliament, the Commission has issued in 1989 a first report on the operation of Euratom Safeguards. The Commission services are currently preparing the second report of this type. Finally, some remarks with regard to the future of nuclear energy and challenges of safeguards in the Community will be made

  18. Measurement trends for future safeguards systems

    International Nuclear Information System (INIS)

    Baloga, S.M.; Hakkila, E.A.

    1980-01-01

    Safeguards for future commercial-scale nuclear facilities may employ three materials control and accounting concepts: classical accounting, dynamic materials balancing, and independent verification of inventories and materials balances. Typical measurement needs associated with the implementation of these concepts at high-throughput facilities are discussed. Promising measurement methods for meeting these needs are described and recent experience is cited. General directions and considerations for meeting advanced safeguards systems needs through measurement technology development over the next decade are presented

  19. CIPSS [computer-integrated process and safeguards system]: The integration of computer-integrated manufacturing and robotics with safeguards, security, and process operations

    International Nuclear Information System (INIS)

    Leonard, R.S.; Evans, J.C.

    1987-01-01

    This poster session describes the computer-integrated process and safeguards system (CIPSS). The CIPSS combines systems developed for factory automation and automated mechanical functions (robots) with varying degrees of intelligence (expert systems) to create an integrated system that would satisfy current and emerging security and safeguards requirements. Specifically, CIPSS is an extension of the automated physical security functions concepts. The CIPSS also incorporates the concepts of computer-integrated manufacturing (CIM) with integrated safeguards concepts, and draws upon the Defense Advance Research Project Agency's (DARPA's) strategic computing program

  20. Status and Prospect of Safeguards By Design for Pyroprocessing Facility

    International Nuclear Information System (INIS)

    Kim, Ho-Dong; Shin, H.S.; Ahn, S.K.

    2010-01-01

    The concept of Safeguards-By-Design (SBD), which is proposed and developed by the United States and the IAEA, is now widely acknowledged as a fundamental consideration for the effective and efficient implementation of safeguards. The application of a SBD concept is of importance especially for developmental nuclear facilities which have new technological features and relevant challenges to their safeguards approach. At this point of time, the examination of the applicability of SBD on a pyroprocessing facility, which has been being developed in the Republic of Korea (ROK), would be meaningful. The ROK developed a safeguards system with the concept of SBD for Advanced spent fuel Conditioning Process Facility (ACPF) and DUPIC Fuel Development Facility (DFDF) before the SBD concept was formally suggested. Currently. The PRIDE (PyRoprocess Integrated Inactive Demonstration) facility for the demonstration of pyroprocess using 10 ton of non-radioactive nuclear materials per year is being constructed in the ROK. The safeguards system for the facility has been designed in cooperation with a facility designer from the design phase, and the safeguards system would be established according to the future construction schedule. In preparing the design of Engineering Scale Pyroprocess Facility (ESPF), which will use spent fuels in an engineering scale and be constructed in 2016, a research on the safeguards system for this facility is also being conducted. In this connection, a project to support for development of safeguards approach for a reference pyroprocessing facility has been carried out by KAERI in cooperation with KINAC and the IAEA through an IAEA Member State Support Program (MSSP). When this MSSP project is finished in August, 2011, a safeguards system model and safeguards approach for a reference pyroprocessing facility would be established. Maximizing these early experiences and results, a safeguards system of ESPF based on the concept of SBD would be designed and

  1. Measuring Safeguards Culture

    International Nuclear Information System (INIS)

    Frazar, Sarah L.; Mladineo, Stephen V.

    2011-01-01

    As the International Atomic Energy Agency (IAEA) implements a State Level Approach to its safeguards verification responsibilities, a number of countries are beginning new nuclear power programs and building new nuclear fuel cycle faculties. The State Level approach is holistic and investigatory in nature, creating a need for transparent, non-discriminatory judgments about a state's nonproliferation posture. In support of this need, the authors previously explored the value of defining and measuring a state's safeguards culture. We argued that a clear definition of safeguards culture and an accompanying set of metrics could be applied to provide an objective evaluation and demonstration of a country's nonproliferation posture. As part of this research, we outlined four high-level metrics that could be used to evaluate a state's nuclear posture. We identified general data points. This paper elaborates on those metrics, further refining the data points to generate a measurable scale of safeguards cultures. We believe that this work could advance the IAEA's goals of implementing a safeguards system that is fully information driven, while strengthening confidence in its safeguards conclusions.

  2. Promoting Safeguards Best Practice through the Asia-Pacific Safeguards Network (APSN)

    International Nuclear Information System (INIS)

    Floyd, R.; Everton, C.; Lestari, S.

    2015-01-01

    There is a growing international focus on effective regulatory oversight of nuclear energy across the three pillars of nuclear safety, security and safeguards. Regarding nuclear safeguards, States in the Asia-Pacific region recognize the importance of cooperation and sharing of experiences to ensure that this is implemented to high international standards. For this reason the Asia-Pacific Safeguards Network (APSN) was formed in 2009 - an informal network of departments, agencies and regulatory authorities with safeguards responsibilities from some 15 countries across the Asia-Pacific region. The objective of APSN it to bring States in the region together to develop practical measures for enhancing effective safeguards implementation, through workshops, sharing experiences and other safeguards projects. APSN works closely with the IAEA to achieve these objectives. This paper will outline the role and objectives of APSN and provide examples of how APSN work together to enhance safeguards effectiveness and raise awareness. The paper will also explore how this model of a broad community of States working together on safeguards could enhance implementation and awareness in other regions of the world. (author)

  3. Japan-IAEA Workshops on Advanced Safeguards for Future Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Hoffheins, B.; Hori, M.; Suzuki, M.; Kuno, Y.; Kimura, N.; Naito, K.; Hosoya, M.; Khlebnikov, N.; Whichello, J.; Zendel, M.

    2010-01-01

    Beginning in 2007, the Japan Atomic Energy Agency (JAEA) and the International Atomic Energy Agency (IAEA) Department of Safeguards initiated a workshop series focused on advanced safeguards technologies for the future nuclear fuel cycle (NFC). The goals for these workshops were to address safeguards challenges, to share implementation experiences, to discuss fuel cycle plans and promising research and development, and to address other issues associated with safeguarding new fuel cycle facilities. Concurrently, the workshops also served to promote dialog and problem solving, and to foster closer collaborations for facility design and planning. These workshops have sought participation from IAEA Member States' support programmes (MSSP), the nuclear industry, R and D organizations, state systems of accounting and control (SSAC), regulators and inspectorates to ensure that all possible stakeholder views can be shared in an open process. Workshop presentations have covered, inter alia, national fuel cycle programs and plans, research progress in proliferation resistance (PR) and safeguardability, approaches for nuclear measurement accountancy of large material throughputs and difficult to access material, new and novel radiation detectors with increased sensitivity and automation, and lessons learned from recent development and operation of safeguards systems for complex facilities and the experiences of integrated safeguards (IS) in Japan. Although the title of the workshops presumes an emphasis on technology, participants recognized that early planning and organization, coupled with close cooperation among stakeholders, that is, through the application of 'Safeguards by Design' (SBD) processes that include nuclear safety and security coordination, 'Remote Inspections' and 'Joint-Use of Equipment (JUE)' would be required to enable more successful implementations of safeguards at future NFC facilities. The needs to cultivate the future workforce, effectively preserve

  4. Nuclear Safeguards Culture

    International Nuclear Information System (INIS)

    Findlay, T.

    2015-01-01

    The paper will consider safeguards culture both at the IAEA and among member states. It will do so through the lens of organizational culture theory and taking into account developments in safeguards since the Iraq case of the early 1990s. The study will seek to identify the current characteristics of safeguards culture and how it has evolved since the 93+2 programme was initiated, as well as considering the roles of the most important purveyors of such culture, including member states and their national safeguards authorities, the General Conference and Board of Governors, the Director General, the Secretariat as a whole, the Safeguards Department and the inspectorate. The question of what might be an optimal safeguards culture at the Agency and among member states will be investigated, along with the issue of how such a culture might be engendered or encouraged. (author)

  5. Safeguards '85

    International Nuclear Information System (INIS)

    Gruemm, H.

    1981-01-01

    IAEA safeguards watch over the pledge of those non-nuclear weapon countries, which are signatories to the NPT, to refrain from using nuclear installations for military purposes. At present, some 700 installations are inspected in 50 countries, among them 117 nuclear power plants. Further advancement of these safeguards measures serves to develop new methods and equipment for safeguards inspection, ensure that the growing numbers of new plants are inspected, and achieve complete coverage of the eleven countries not signatories to the NPT. However, the long term effectiveness of safeguards will depend on progress being made in the contractual obligations fur nuclear disarmament and in assuring the continuity of supply to non-nuclear weapon countries by the atomic powers and the supplier countries. (orig.) [de

  6. European network for research in global change (ENRICH)

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, A [European Commission, Bruxelles (Belgium). DG XII/JRC

    1996-12-31

    While approaching the beginning of the twenty first century, the scientific community is faced with the formidable tasks of monitoring and detecting, understanding and predicting changes in the Earth System and its interactions with human beings. A crucial challenge is to make scientific research results accessible and usable for those involved in the decision making process related to the concept of Sustainable Development. Major international scientific programmes under the umbrella of ICSU, such as the IGBP and WCRP, are dealing with these issues. Although there exist many well developed global change research programmes in several European countries and effective collaboration networks between research institutes, there is an urgent need for overall communication with a view to promoting wider international links ensuring complementarity, synergy and coherence. Recognizing the importance of promoting coherence in research and utilising research results for various European Union (EU) policies, the European Commissioner responsible for Science, Research and Development wrote in March 1992 to all the EU Research Ministers to propose an initiative in this domain. In a rapid response, a group of Senior Experts from the EU Member States was set up in April 1992. This Group established a Task Force to develop the concept of the European Network for Research In Global CHange (ENRICH) which was approved in July 1993

  7. European network for research in global change (ENRICH)

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, A. [European Commission, Bruxelles (Belgium). DG XII/JRC

    1995-12-31

    While approaching the beginning of the twenty first century, the scientific community is faced with the formidable tasks of monitoring and detecting, understanding and predicting changes in the Earth System and its interactions with human beings. A crucial challenge is to make scientific research results accessible and usable for those involved in the decision making process related to the concept of Sustainable Development. Major international scientific programmes under the umbrella of ICSU, such as the IGBP and WCRP, are dealing with these issues. Although there exist many well developed global change research programmes in several European countries and effective collaboration networks between research institutes, there is an urgent need for overall communication with a view to promoting wider international links ensuring complementarity, synergy and coherence. Recognizing the importance of promoting coherence in research and utilising research results for various European Union (EU) policies, the European Commissioner responsible for Science, Research and Development wrote in March 1992 to all the EU Research Ministers to propose an initiative in this domain. In a rapid response, a group of Senior Experts from the EU Member States was set up in April 1992. This Group established a Task Force to develop the concept of the European Network for Research In Global CHange (ENRICH) which was approved in July 1993

  8. Analysis of UREX+1a and Pyroprocessing Technologies from Safeguards Aspects

    International Nuclear Information System (INIS)

    Musembi, Mutava Victor; Jeong, Seung Young; Kwon, Eun Ha

    2013-01-01

    Various advanced and more easily safeguard-able reprocessing technologies have been proposed and are currently at different stages of development. This paper briefly analyses two proposed next generation reprocessing technologies, i. e. UREX+1a and pyroprocessing. It goes on to suggest various measures that can be taken to safeguard these technologies against nuclear proliferation. Due to the significant proliferation risks associated with PUREX, more proliferation resistant technologies are required in spent fuel reprocessing. UREX+1a and pyroprocessing can be suitable replacements since Pu is not separated from other TRUs after reprocessing. Implementations of technology specific safeguard measures can help enhance the proliferation resistance of these technologies. Since there is no technology which is foolproof, a MUF uncertainty estimation/quantification technology needs to be developed. These uncertainty estimates can then be used in a safeguards probabilistic risk assessment (PRA) system to quantify the risks associated with a particular reprocessing technology. To further safeguard these technologies, additional safeguard measures are needed for defense in depth. This may include implementation of multiple, independent, and redundant layers of defense such that no single layer, no matter how robust, is solely relied upon. Quantification of safeguard uncertainties related to UREX+1a and pyroprocessing can be used to benchmark these technologies against PUREX and between themselves for policy making

  9. Analysis of UREX+1a and Pyroprocessing Technologies from Safeguards Aspects

    Energy Technology Data Exchange (ETDEWEB)

    Musembi, Mutava Victor [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Jeong, Seung Young [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kwon, Eun Ha [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    Various advanced and more easily safeguard-able reprocessing technologies have been proposed and are currently at different stages of development. This paper briefly analyses two proposed next generation reprocessing technologies, i. e. UREX+1a and pyroprocessing. It goes on to suggest various measures that can be taken to safeguard these technologies against nuclear proliferation. Due to the significant proliferation risks associated with PUREX, more proliferation resistant technologies are required in spent fuel reprocessing. UREX+1a and pyroprocessing can be suitable replacements since Pu is not separated from other TRUs after reprocessing. Implementations of technology specific safeguard measures can help enhance the proliferation resistance of these technologies. Since there is no technology which is foolproof, a MUF uncertainty estimation/quantification technology needs to be developed. These uncertainty estimates can then be used in a safeguards probabilistic risk assessment (PRA) system to quantify the risks associated with a particular reprocessing technology. To further safeguard these technologies, additional safeguard measures are needed for defense in depth. This may include implementation of multiple, independent, and redundant layers of defense such that no single layer, no matter how robust, is solely relied upon. Quantification of safeguard uncertainties related to UREX+1a and pyroprocessing can be used to benchmark these technologies against PUREX and between themselves for policy making.

  10. Nuclear Safeguards and Non-Proliferation Education at Texas A&M University

    International Nuclear Information System (INIS)

    Gariazzo, C.; Charlton, W.

    2015-01-01

    The MS degree in Nuclear Engineering - Non-proliferation at Texas A&M University is administered by the Nuclear Security Science and Policy Institute (NSSPI). The oldest and largest of its kind in the US, 45 M.S. and 15 Ph.D. students conducted technical research in relevant areas: safeguards, nuclear security, non-proliferation, and arms control. In addition to focusing on graduate education with a wide combination of internationally-recognized talent, NSSPI faculty lead research and service activities in safeguarding of nuclear materials and reducing nuclear threats. Texas A&M Nuclear Engineering students take relevant nonproliferation and safeguards courses (within the College of Engineering and the Texas A&M Bush School of Government) as well as conduct their research under competent experts. The complete educational experience here is unique because of the strong research and educational support NSSPI provides. This paper will detail these endeavors and convey contributions from NSSPI for developing next-generation safeguards experts via practical experiences and strong affiliations with real-world practitioners. The safeguards and non-proliferation education programme blends historical, legal, technical and policy aspects that is unique for a technical university such as Texas A&M. Beyond classroom lectures, NSSPI provides opportunities for students ranging from asynchronous learning modules to practical experiences. Publicly-available self-paced, online course modules in basic and advanced safeguards education have been developed by NSSPI as supplemental nuclear education for students and professionals. By leveraging NSSPI's contacts, students participate in exchange programmes with international institutions as well as partake in experiences like engaging safeguards practitioners at nuclear fuel cycle facilities around the world, conducting experiments at internationally-renowned laboratories, and representing their communities at workshops worldwide

  11. Development of a Safeguards Approach for a Pyroprocessing Plant by IAEA Member State Support Program

    International Nuclear Information System (INIS)

    Shin, H. S.; Kim, H. D.; Song, D. Y.; Eom, S. H.; Lee, T. H.; Ahn, S. K.; Park, S. H.; Han, B. Y.; Choi, Y.

    2012-01-01

    The objective of this project is to analyze the safeguard ability of pyroprocess facility and to establish the safeguards system for pyroprocess by developing the technology of nuclear material accounting for unit process, surveillance technology and nuclear characteristic analysis technology which are needed to demonstrate the safeguards technology of pyroprocess. Therefore, the development of a safeguards approach for pyroprocessing facilities is required as the interest of pyroprocessing increases. Regarding this issue, the IAEA made a contract the 3-years long Member State Support Program (MSSP) for the 'Support for Development of a Safeguards Approach for a Pyroprocessing Plant' with the Republic of Korea (ROK) in July 2008. Even though the pyroprocess technology is currently being developed all over the world, its safeguards approach has not been established yet, and especially, nuclear material accountancy technology which is the core of safeguards has not been established as well. Therefore, the development of new accountancy technology which is appropriate for the construction of pyroprocess facility is needed. Due to the nature of the process, pyroprocess has various kinds of process material form, and the composition of Pu and U isotopes included in process material is not homogeneous. Also, the existing nuclear material accountancy technology for a wet reprocessing facility is hard to apply because of a large quantity of gamma-ray radiation which is emitted from the fissile products in process material. In this report, the study for the development of a safeguards approach for a pyroprocessing plant pyroprocessing has been described. As the previous results six pyroprocessing facility concepts suggested by US, Japan, and Republic of Korea had been summarized and analyzed, and the determination principles were established to determine a reference pyroprocessing facility concept. The reference pyroprocessing facility was determined to be the ESPF of KAERI

  12. The European Research Infrastructures of the ESFRI Roadmap in Biological and Medical Sciences: status and perspectives

    Directory of Open Access Journals (Sweden)

    Alessia Calzolari

    2014-06-01

    Full Text Available INTRODUCTION. Since 2002, the European Strategy Forum on Research Infrastructures identified the needs for Research Infrastructures (RIs in Europe in priority fields of scientific research and drafted a strategic document, the ESFRI Roadmap, defining the specific RIs essential to foster European research and economy. The Biological and Medical Sciences RIs (BMS RIs were developed thanks to the active participation of many institutions in different European member states associated to address the emerging needs in biomedicine and, among these, the Italian National Institute of Health (ISS, in virtue of its role in public health and research, has been specifically involved in the national development and implementation of three RIs: the Biobanking and Biomolecular Resources Research Infrastructure (BBMRI, the European Advanced Translational Research Infrastructure in Medicine (EATRIS and the European Clinical Research Infrastructures Network (ECRIN. AIM. This article outlines the design and development of these RIs up to the recent achievement of the ERIC status, their importance in the Horizon 2020 programme and their societal and economic potential impact, with special attention to their development and significance in Italy. CONCLUSIONS. The ISS plays a unique role in fostering a coordinated participation of excellence Italian institutes/facilities to different European biomedical RIs, thus contributing to health innovation, healthcare optimization, and healthcare cost containment.

  13. UK Safeguards R and D Project progress report for the period May 1987 -April 1988

    International Nuclear Information System (INIS)

    Packer, T.W.

    1988-09-01

    The main categories of task included in the United Kingdom safeguards research and development programme are summarised in the first section. These are: tasks concerned with the development of instruments and techniques for reprocessing and centrifuge enrichment plant safeguards; tasks concerned with the development of instruments and techniques for general application in the field of safeguards; tasks which are services to the International Atomic Energy Authority and exploratory and short term tasks which occur from time to time. The next three sections contain progress reports on the individual tasks and section 6 lists reports and papers relevant to work on UK safeguards research and development published between May 1987 and April 1988. (U.K.)

  14. Summary of achievements in safeguards implementation at the Nukem plant

    International Nuclear Information System (INIS)

    Bigliocca, C.

    1983-01-01

    This document reviews the achievements in safeguards development studies and in safeguards implementation in a highly enriched uranium fuel fabrication plant. The study was performed at the Nukem plant of Wolfgang-Hanau (Federal Republic of Germany). The report is the result of the combined efforts of the Joint Research Centre (Ispra Establishment, Safeguards and fissile material management project) and the Safegards Directorate of Euratom, with the continuous collaboration of the operator of the plant

  15. The future of IAEA safeguards: challenges and responses

    International Nuclear Information System (INIS)

    Pilat, Joseph F.; Budlong-Sylvester, Kory W.

    2011-01-01

    For nearly two decades, the International Atomic Energy Agency (lAEA) has been transforming its safeguards system to address the challenges posed by undeclared nuclear programs, the associated revelation of an extensive non-State nuclear procurement network and other issues, including past limits to its verification mandate and the burden of noncompliance issues. Implementing the new measures, including those in the Additional Protocol, and integrating new and old safeguards measures, remains a work in progress. Implementation is complicated by factors including the limited teclmological tools that are available to address such issues as safeguarding bulk handling facilities, detection of undeclared facilities/activities, especially related to enrichment, etc. As this process continues, new challenges are arising, including the demands of expanding nuclear power production worldwide, so-called safeguards by design for a new generation of facilities, the possible IAEA role in a fissile material cutoff treaty and other elements of the arms control and disarmament agenda, the possible role in 'rollback' cases, etc. There is no doubt safeguards will need to evolve in the future, as they have over the last decades. In order for the evolutionary path to proceed, there will inter alia be a need to identify technological gaps, especially with respect to undeclared facilities, and ensure they are filled by adapting old safeguards technologies, by developing and introducing new and novel safeguards teclmologies and/or by developing new procedures and protocols. Safeguards will also need to respond to anticipated emerging threats and to future, unanticipated threats. This will require strategic planning and cooperation among Member States and with the Agency. This paper will address challenges to IAEA safeguards and the technological possibilities and R and D strategies needed to meet those challenges in the context of the forty-year evolution of safeguards, including the

  16. Safeguards Knowledge Management & Retention at U.S. National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Haddal, Risa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Rebecca [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bersell, Bridget [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Frazar, Sarah [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burbank, Roberta [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stevens, Rebecca [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cain, Ron [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kirk, Bernadette [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Morell, Sean [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    In 2017, four U.S. National Laboratories collaborated on behalf of DOE/NNSA to explore the safeguards knowledge retention problem, identify possible approaches, and develop a strategy to address it. The one-year effort consisted of four primary tasks. First, the project sought to identify critical safeguards information at risk of loss. Second, a survey and workshop were conducted to assess nine U.S. National Laboratories' efforts to determine current safeguards knowledge retention practices and challenges, and identify best practices. Third, specific tools were developed to identify and predict critical safeguards knowledge gaps and how best to recruit in order to fill those gaps. Finally, based on findings from the first three tasks and research on other organizational approaches to address similar issues, a strategy was developed on potential knowledge retention methods, customized HR policies, and best practices that could be implemented across the National Laboratory Complex.

  17. Measuring Safeguards Culture

    Energy Technology Data Exchange (ETDEWEB)

    Frazar, Sarah L.; Mladineo, Stephen V.

    2011-07-19

    As the International Atomic Energy Agency (IAEA) implements a State Level Approach to its safeguards verification responsibilities, a number of countries are beginning new nuclear power programs and building new nuclear fuel cycle faculties. The State Level approach is holistic and investigatory in nature, creating a need for transparent, non-discriminatory judgments about a state's nonproliferation posture. In support of this need, the authors previously explored the value of defining and measuring a state's safeguards culture. We argued that a clear definition of safeguards culture and an accompanying set of metrics could be applied to provide an objective evaluation and demonstration of a country's nonproliferation posture. As part of this research, we outlined four high-level metrics that could be used to evaluate a state's nuclear posture. We identified general data points. This paper elaborates on those metrics, further refining the data points to generate a measurable scale of safeguards cultures. We believe that this work could advance the IAEA's goals of implementing a safeguards system that is fully information driven, while strengthening confidence in its safeguards conclusions.

  18. White paper of the European Association of Nuclear Medicine (EANM) and the European Society of Radiology (ESR) on multimodality imaging

    International Nuclear Information System (INIS)

    Bischof Delaloye, Angelika; Carrio, Ignasi; Cuocolo, Alberto; Knapp, Wolfram; Gourtsoyiannis, Nicholas; McCall, Iain; Reiser, Maximilian; Silberman, Bruno

    2007-01-01

    New multimodality imaging systems bring together anatomical and molecular information and require the competency and accreditation of individuals from both nuclear medicine and radiology. This paper sets out the positions and aspirations of the European Association of Nuclear Medicine (EANM) and the European Society of Radiology (ESR) working together on an equal and constructive basis for the future benefit of both specialties. EANM and ESR recognise the importance of coordinating working practices for multimodality imaging systems and that undertaking the nuclear medicine and radiology components of imaging with hybrid systems requires different skills. It is important to provide adequate and appropriate training in the two disciplines in order to offer a proper service to the patient using hybrid systems. Training models are proposed with the overall objective of providing opportunities for acquisition of special competency certification in multimodality imaging. Both organisations plan to develop common procedural guidelines and recognise the importance of coordinating the purchasing and management of hybrid systems to maximise the benefits to both specialties and to ensure appropriate reimbursement of these examinations. European multimodality imaging research is operating in a highly competitive environment. The coming years will decide whether European research in this area manages to defend its leading position or whether it falls behind research in other leading economies. Since research teams in the Member States are not always sufficiently interconnected, more European input is necessary to create interdisciplinary bridges between research institutions in Europe and to stimulate excellence. EANM and ESR will work with the European Institute for Biomedical Imaging Research (EIBIR) to develop further research opportunities across Europe. European Union grant-funding bodies should allocate funds to joint research initiatives that encompass clinical research

  19. White paper of the European Society of Radiology (ESR) and the European Association of Nuclear Medicine (EANM) on multimodality imaging

    International Nuclear Information System (INIS)

    Gourtsoyiannis, Nicholas; McCall, Iain; Reiser, Maximilian; Silberman, Bruno; Bischof Delaloye, Angelika; Carrio, Ignacio; Cuocolo, Alberto; Knapp, Wolfram

    2007-01-01

    New multimodality imaging systems bring together anatomical and molecular information and require the competency and accreditation of individuals from both radiology and nuclear medicine. This paper sets out the positions and aspirations of the European Society of Radiology (ESR) and the European Association of Nuclear Medicine (EANM) working together on an equal and constructive basis for the future benefit of both specialties. ESR and EANM recognise the importance of coordinating working practices for multimodality imaging systems and that undertaking the radiology and nuclear medicine components of imaging with hybrid systems requires different skills. It is important to provide adequate and appropriate training in the two disciplines in order to offer a proper service to the patient using hybrid systems. Training models are proposed with the overall objective of providing opportunities for acquisition of special competency certification in multimodality imaging. Both organisations plan to develop common procedural guidelines and recognise the importance of coordinating the purchasing and management of hybrid systems to maximise the benefits to both specialties and to ensure appropriate reimbursement of these examinations. European multimodality imaging research is operating in a highly competitive environment. The coming years will decide whether European research in this area manages to defend its leading position or whether it falls behind research in other leading economies. Since research teams in the member states are not always sufficiently interconnected, more European input is necessary to create interdisciplinary bridges between research institutions in Europe and to stimulate excellence. ESR and EANM will work with the European Institute for Biomedical Imaging Research (EIBIR) to develop further research opportunities across Europe. European Union grant-funding bodies should allocate funds to joint research initiatives that encompass clinical research

  20. Development of the strengthened safeguards system and the Additional Protocol

    International Nuclear Information System (INIS)

    Vidaurre-Henry, Jaime

    2001-01-01

    For the past 30 years, the IAEA's safeguards system has contributed to the international non-proliferation regime by providing, inter alia, assurances regarding the peaceful uses of declared nuclear material. However, the discovery of a clandestine nuclear weapons program in Iraq in 1991 drew world-wide attention to the need to strengthen the system to address the absence of undeclared nuclear material and activities. Efforts to strengthen the IAEA's safeguards system began in 1991 and culminated in 1997 when the IAEA's Board of Governors approved a Model Protocol Additional to IAEA Safeguards Agreements which greatly expands the legal basis and scope of IAEA safeguards. Within this strengthened system it is expected that the IAEA be able to provide assurance not only of the absence of diversion of declared nuclear material but also on the absence of undeclared nuclear material and activities. This is to be done within a safeguards system that uses an optimal combination of all safeguards measures available, thereby achieving maximum effectiveness and efficiency within the available resources. The paper summarizes the evolution of the safeguards system, describes strengthened safeguards, reports on the status of implementing the strengthening measures, and outlines plans for integrating all available safeguards measures. (author)

  1. Integrated safeguards and the role of the SSAC: an Australian perspective

    International Nuclear Information System (INIS)

    Carlson, John

    1998-01-01

    'Classical' safeguards retain a strong emphasis on facility-based materials accountancy, and are primarily concerned with verifying nuclear activities as declared by the State - the correctness of States' declarations. This decade, failure to adequately address the possibility of undeclared nuclear activities - the issue of the completeness of States' declarations - has been recognised as a major shortcoming in the classical safeguards system, and major efforts are being made to establish the Agency's capabilities in this regard. Current priorities include, ensuring the wide-spread conclusion of individual Additional Protocols so the Strengthened Safeguards System enters into general application without delay, and continuing the development of new methodologies - including associated quality assurance and evaluation. A major theme in current safeguards thinking is integration, the rationalisation of classical safeguards with the new safeguards strengthening measures. The strengthening of the IAEA safeguards system is a matter of the highest priority to Australia. Australia has had a major influence in this process, that is provision of consultancy services to the Agency on new safeguards and analytical techniques, and in the development and field testing of new safeguards technology such as remote surveillance. (Yi, J. H.)

  2. Development of safeguards information treatment system at facility level in Korea

    International Nuclear Information System (INIS)

    So, D.S.; Lee, B.D.; Song, D.Y.

    2001-01-01

    Safeguards Information Treatment System (SITS) at Facility level was developed to implement efficiently the obligations under IAEA comprehensive Safeguards Agreement, bilateral nuclear cooperation Agreements with other countries and domestic law, and to manage efficiently the information related to safeguards implementation at facility level in Korea. Nuclear facilities in Korea are categorized into 8 types based on its accounting characteristics as follows: (1) Item counting facility or bulk handling facility; (2) Batch follow-up facility or not; (3) MUF (Material Unaccounted For) occurrence or not; (4) Nuclear production facility or not; (5) Operation status of facility; (6) Information management of nuclear material transfer status between KMPs or not; (7) Indication of inventory KMP on the inventory change of nuclear material is required or not. Hardware and Software for SITS can be loaded on a personal computer under operation system of Window 2000 or Window NT. MS SQL server 7 and MS Internet Information Server were adopted for database management system and Web server, respectively. Network environment of SITS was designed to include nuclear research institute, nuclear power plants of PWR and CANDU, nuclear fuel fabrication facilities and other facilities. SITS can be operated standalone or under the client-server system if intranet exists. More detailed contents of SITS are described elsewhere. Each module of SITS will be tested during incorporation of existing data into SITS and SITS will be distributed to nuclear facilities in Korea

  3. Annual report of the Nuclear Safeguards Project 1980

    International Nuclear Information System (INIS)

    Mache, H.R.

    1981-10-01

    The present report describes the major activities carried out in 1980 in the framework of the Nuclear Safeguards Project by the Institutes of the Kernforschungszentrum Karlsruhe and the European Institute of Transuranium Elements. (orig.) [de

  4. Status and Prospect of Safeguards By Design for the Pyroprocessing Facility

    International Nuclear Information System (INIS)

    Kim, Hodong; Shin, H.S.; Ahn, S.K.

    2010-01-01

    The concept of Safeguards-By-Design (SBD), which is proposed and developed by the United States and the IAEA, is now widely acknowledged as a fundamental consideration for the effective and efficient implementation of safeguards. The application of a SBD concept is of importance especially for developmental nuclear facilities which have new technological features and relevant challenges to their safeguards approach. At this point of time, the examination of the applicability of SBD on a pyroprocessing facility, which has been being developed in the Republic of Korea (ROK), would be meaningful. The ROK developed a safeguards system with the concept of SBD for Advanced spent fuel Conditioning Process Facility (ACPF) and DUPIC Fuel Development Facility (DFDF) before the SBD concept was formally suggested. Currently. The PRIDE (PyRoprocess Integrated Inactive Demonstration) facility for the demonstration of pyroprocess using 10 ton of non-radioactive nuclear materials per year is being constructed in the ROK. The safeguards system for the facility has been designed in cooperation with a facility designer from the design phase, and the safeguards system would be established according to the future construction schedule. In preparing the design of Engineering Scale Pyroprocess Facility (ESPF), which will use spent fuels in an engineering scale and be constructed in 2016, a research on the safeguards system for this facility is also being conducted. In this connection, a project to support for development of safeguards approach for a reference pyroprocessing facility has been carried out by KAERI in cooperation with KINAC and the IAEA through an IAEA Member State Support Program (MSSP). When this MSSP project is finished in August, 2011, a safeguards system model and safeguards approach for a reference pyroprocessing facility would be established. Maximizing these early experiences and results, a safeguards system of ESPF based on the concept of SBD would be designed and

  5. 2. JAPAN-IAEA workshop on advanced safeguards technology for the future nuclear fuel cycle. Abstracts

    International Nuclear Information System (INIS)

    2009-01-01

    This international workshop addressed issues and technologies associated with safeguarding the future nuclear fuel cycle. The workshop discussed issues of interest to the safeguards community, facility operators and State Systems of accounting and control of nuclear materials. Topic areas covered were as follows: Current Status and Future Prospects of Developing Safeguards Technologies for Nuclear Fuel Cycle Facilities, Technology and Instrumentation Needs, Advanced Safeguards Technologies, Guidelines on Developing Instrumentation to Lead the Way for Implementing Future Safeguards, and Experiences and Lessons learned. This workshop was of interest to individuals and organizations concerned with future nuclear fuel cycle technical developments and safeguards technologies. This includes representatives from the nuclear industry, R and D organizations, safeguards inspectorates, State systems of accountancy and control, and Member States Support Programmes

  6. Safeguards resource management

    International Nuclear Information System (INIS)

    Strait, R.S.

    1986-01-01

    Protecting nuclear materials is a challenging problem for facility managers. To counter the broad spectrum of potential threats, facility managers rely on diverse safeguards measures, including elements of physical protection, material control and accountability, and human reliability programs. Deciding how to upgrade safeguards systems involves difficult tradeoffs between increased protection and the costs and operational impact of protection measures. Effective allocation of safeguards and security resources requires a prioritization of system upgrades based on a relative measure of upgrade benefits to upgrade costs. Analytical tools are needed to help safeguards managers measure the relative benefits and costs and allocate their limited resources to achieve balanced, cost-effective protection against the full spectrum of threats. This paper presents a conceptual approach and quantitative model that have been developed by Lawrence Livermore National Laboratory to aid safeguards managers. The model is in the preliminary stages of implementation, and an effort is ongoing to make the approach and quantitative model available for general use. The model, which is designed to complement existing nuclear safeguards evaluation tools, incorporates a variety of factors and integrates information on the likelihood of potential threats, safeguards capabilities to defeat threats, and the relative consequences if safeguards fail. The model uses this information to provide an overall measure for comparing safeguards upgrade projects at a facility

  7. Safeguards in the Slovak Republic

    International Nuclear Information System (INIS)

    Vaclav, J.

    2010-01-01

    The former Czechoslovakia acceded to the Non-Proliferation Treaty in 1968. Based on requirements of the Safeguard Agreement the State System of Accounting for and Control of nuclear material has been established. After dissolution of Czechoslovakia the Slovak Republic succeeded to the Safeguards Agreement. As a regulator the Nuclear Regulatory Authority of the Slovak Republic (UJD) has been constituted. After European Union (EU) accession EU legislation became valid in the Slovak republic. Atomic Law No. 541/2004 Coll. on Peaceful Use of Nuclear Energy adopts this legislation. In the frame of strengthening the IAEA safeguards an implementation of the Protocol Additional became actual. The Protocol Additional was signed by the government of the Slovak Republic in September 1999. On 1 December 2005 safeguards agreement INFCIRC/193 including the relevant Additional Protocol entered into force. As an instrument supporting non-proliferation of nuclear weapons a control of export/import of nuclear material, nuclear related and dual-use material following the EC regulation 428/2009 of 5 May 2009 setting up a Community regime for the control of exports, transfer, brokering and transit of dual use items. The execution of accountancy and control of nuclear material inspection activities has been considerably influenced by the implementation of integrated safeguards, implemented in the Slovak Republic on 1 September 2009. The aim of mentioned integrated safeguards regime is to decrease the amount and difficulty of inspections. At the same time the possibility of accountancy and control of nuclear material inspections announced 24 hours in advance took effect. The execution of Protocol Additional inspections remains the same. Additionally to international safeguards system UJD has kept the national safeguards system which observes all nuclear material on the territory of the Slovak Republic. The government of the Slovak Republic plays active role within activities of the NSG

  8. The newsletter 'European Research in Radiological Sciences'

    International Nuclear Information System (INIS)

    Pihet, P.; D'Errico, F.; Doerr, W.; Gruenberger, M.; Schofield, P.

    2004-01-01

    The newsletter 'European Research in Radiological Sciences' is jointly published by the European Late Effects Project Group and the European Radiation Dosimetry Group to disseminate information about research projects and activities carried out under the EURATOM Framework Programme. Since May 2003, the Newsletter is operated interactively from the Internet. The new site uses a dedicated database that automatically generates HTML pages. This system developed at the Univ. of Cambridge provides an innovative approach to improve the dissemination of project information. (authors)

  9. The European Expression Of Interest For High Purity U-233 Materials

    Energy Technology Data Exchange (ETDEWEB)

    Giaquinto, Joseph M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Younkin, James R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    The purpose of this letter report is to document the response for an Expression of Interest (EOI) sent to the European Safeguards and research and development (R&D) scientific communities for the distribution of small amounts of high purity 233U materials for use in safeguards, nonproliferation, and basic R&D in the nuclear disciplines. The intent for the EOI was to gauge the level of international interest for these materials from government and research institutions with programmatic missions in the nuclear security or nuclear R&D arena. The information contained herein is intended to provide information to assist key decision makers in DOE as to the ultimate disposition path for the high purity materials currently being recovered at Oak Ridge National Laboratory (ORNL) and only those items for which there is no United States (U.S.) sponsor identified.

  10. Fusion research in the European Community

    International Nuclear Information System (INIS)

    Wolf, G.H.

    1988-01-01

    Centering around the European joint project Joint European Torus (JET), in the framework of which hot fusion plasmas are already brought close to thermonuclear ignition, the individual research centres in Europe have taken over different special tasks. In Germany research concentrates above all on the development of super-conductive magnets, the stage of plasma-physical fundamentals or the investigation of the interaction between the plasma boundary layer and the material of the vessel wall. On this basis the development stage following JET, the Next European Torus (NET), is planned, with its main aim being the production and maintenance of a thermonuclear burning plasma, i.e. a plasma which maintains its active state from the gain of energy of its own fusion reactions. In the framework of a contractually agreed cooperation between the European Community, Japan, the USSR and the USA, the establishment of an international study group (with seat in Garching) was decided upon, which is to develop the concept of an 'International Thermonuclear Experimental Reactor (ITER)' jointly supported by these countries. The results of the studies presented show that the differences in the design data of ITER and NET are negligible. (orig./DG) [de

  11. International safeguards for critical facilities

    International Nuclear Information System (INIS)

    Ney, J.F.; Todd, J.L.

    1979-01-01

    A study was undertaken to investigate various approaches to provide international safeguards for critical facilities and to select an optimized system. Only high-inventory critical facilities were considered. The goal of the study was to detect and confirm the protracted or abrupt diversion of 8kg of plutonium or 25kg of the uranium isotope 235 within approximately a week of the diversion. The general safeguards alternatives considered were (1) continuous inspections by resident inspectors, with varying degrees of comprehensiveness, (2) periodic inspections by regional inspectors at varying time intervals, (3) unattended containment/surveillance measures, and (4) various combinations of the above. It was concluded that a practical and effective international safeguards system can be achieved by employing a method of continuously monitoring facility activities which could lead to diversion. This is in addition to the routine inspections typical of current international safeguards. Monitoring detects inventory discrepancies and violations of agreed-upon procedural restrictions, as well as unauthorized removal of Special Nuclear Materials (SNM). A special inventory is used following detection to confirm any suspected diversion. Comparison of 28 safeguards options led to the selection of a system for further development which uses a combination of surveillance and inspection by resident IAEA personnel, containment/surveillance by unattended equipment, and routine inventory sampling. A development programme is described which is intended to demonstrate the feasibility of several containment and surveillance measures proposed in the study. Included are a personnel portal and an instrument/material pass-through as well as associated recording and tamper-protection features. (author)

  12. Safeguards Culture: lesson learned

    International Nuclear Information System (INIS)

    Frazar, S.; Mladineo, S.V.

    2010-01-01

    After the discovery of Iraq's clandestine nuclear program in 1991, the international community developed new tools for evaluating and demonstrating states' nuclear intentions. The International Atomic Energy Agency (IAEA) developed a more holistic approach toward international safeguards verification to garner more complete information about states' nuclear activities. This approach manifested itself in State Level Evaluations, using information from a variety of sources, including the implementation of integrated safeguards in Member States, to reach a broader conclusion. Those wishing to exhibit strong nonproliferation postures to a more critical international community took steps to demonstrate their nonproliferation 'bona fides'. As these Member States signed and brought into force the Additional Protocol, submitted United Nations Security Council Resolution 1540 reports and strengthened their export control laws, the international community began to consider the emergence of so-called safeguards cultures. Today, safeguards culture can be a useful tool for measuring nonproliferation postures, but so far its impact on the international safeguards regime has been under appreciated. There is no agreed upon definition for safeguards culture nor agreement on how it should be measured.

  13. Educational Research Capacity Building in the European Union: A Critique of the Lived Experiences of Emerging Researchers

    Science.gov (United States)

    Hallet, Fiona; Fidalgo, Patricia

    2014-01-01

    The purpose of this article is to explore the extent to which European Union (EU) policies impact upon the activities of associations such as the European Educational Research Association (EERA) and the experiences of emerging researchers aligned to such associations. In essence, the authors explore potential tensions between policy and the lived…

  14. Obstacles to European research projects with data and tissue: solutions and further challenges.

    Science.gov (United States)

    van Veen, Evert-Ben

    2008-07-01

    Most European biomedical research projects are about data. Research with tissue is about data as well; data will accompany the tissue, and data will be derived from analysing the tissue. Data can be merged with data from various sources, copied and re-analysed in the context of European projects. Privacy enhancing technologies (PET) should be used for transferring data from participating centres to the level where data are being merged. PET provide coding techniques which allow donors to be anonymous and still uniquely discernable. It is defended that under certain conditions two-way coded data can be considered as anonymous data in the sense of the European Data Protection Directive. Divergent interpretations of this Directive and most of all about the concept of coded-anonymous data is one of the main obstacles to observational research in Europe. The Data Protection Authorities will have to relax the extremely high threshold before data cannot be considered personal data anymore. Arguments are given for such relaxation. Besides the logic and logistics of data transfer in European projects, it is also about trust and a realistic risk assessment. In spite of the massive dataflow in European research projects no breach of confidentiality has ever been reported. The ethical rationale of such projects can be based on the principles of citizenship and solidarity provided that certain safeguards are met by which that research will remain observational. However, if the project does not preclude individual feed-back on the outcomes of research, as in theory would be possible with two-way coded tissue, that tissue cannot be considered anonymous. It is argued that in most tissuebanking projects individual feed-back should be excluded. Tissuebanking for research should not turn into medical screening without applying the established criteria for screening to it. If individual feed-back is not foreseen, two-way tissue should be considered anonymous, under the same conditions

  15. The development and function of the IAEA's safeguards information system

    International Nuclear Information System (INIS)

    Dell'Acqua, F.; Gmelin, W.; Issaev, L.; Hough, G.; Nardi, J.

    1981-01-01

    The history of the creation and development of ISIS (International Safeguards Information System), a system for processing information received from Safeguards inspectors about both NPT and non-NPT states, is described. The main procedures for the evaluation of information received from inspectors are also described. ISIS was created on the basis of a commercially available Adaptable DAta-BAse Management System (ADABAS). At the outset, the main efforts of ISIS were devoted to processing the information reported by individual states themselves. The processing of this information fell into three stages: the putting of the information into an intermediate file, then loading the data into logical files, and the quality control of the information. The purpose and motives behind the creation of the new system GULUS (Generalized User Load and Update System) are described, together with its main characteristics. This system is an additional tool for the processing of information provided by inspectors and available even to the not very qualified user. The quick growth of the volume of Safeguards information required more computer power and motivated the buying of a new computer (IBM 3033) which permits the further development of ISIS

  16. Safeguards resource management

    International Nuclear Information System (INIS)

    Strait, R.S.

    1986-01-01

    Protecting nuclear materials is a challenging problem for facility managers. To counter the broad spectrum of potential threats, facility managers rely on diverse safeguards measures, including elements of physical protection, material control and accountability, and human reliability programs. Deciding how to upgrade safeguards systems involves difficult tradeoffs between increased protection and the costs and operational impact of protection measures. Effective allocation of safeguards and security resources requires a prioritization of systems upgrades based on a relative measure of upgrade benefits to upgrade costs. Analytical tools are needed to help safeguards managers measure the relative benefits and cost and allocate their limited resources to achieve balanced, cost-effective protection against the full spectrum of threats. This paper presents a conceptual approach and quantitative model that have been developed by Lawrence Livermore National Laboratory to aid safeguards managers

  17. Advanced-safeguards systems development for chemical-processing plants. Final report for FY 1980

    International Nuclear Information System (INIS)

    Cartan, F.O.

    1981-04-01

    The program is installing a computer system to test and evaluate process monitoring as a new Safeguards function to supplement the usual physical security and accountability functions. Safeguards development sensors and instruments installed in the Idaho Chemical Processing Plant (ICPP) provide information via a data acquisition system to a Safeguards analysis computer. The monitoring function can significantly enhance current material control (accountability) and containment surveillance capabilities for domestic and international Safeguards uses. Installation of sensors and instruments in the ICPP was more than 75% complete in FY-1980. Installation work was halted at the request of ICPP operations near the end of the year to eliminate possible conflict with instrument calibrations prior to plant startup. Some improvements to the computer hardware were made during FY-1980. Sensor and instrument development during FY-1980 emphasized device testing for ICPP monitoring applications. Pressure transducers, pressure switches, a bubble flowmeter, and load cells were tested; an ultrasonic liquid-in-line sensor was developed and tested. Work on the portable, isotope-ratio mass spectrometer led to the comparison of the HP quadrupole instrument with a small magnetic instrument and to the selection of the quadrupole

  18. The Commission's research action programme on the development of nuclear fission energy

    International Nuclear Information System (INIS)

    1984-01-01

    For its 'Framework Programme 1984-1987' the Commission has defined the major goals for a European Scientific and Technical Strategy. One of the means to reduce the energy dependence of the Community, which is an important objective, is to favour the development of nuclear fission energy. As electricity production by nuclear reactors has reached industrial maturity, the Community activities are directed mainly to safety aspects, in order to ensure the protection of workers and the general public, against hazards linked to operations in the nuclear fuel cycle. A description of the main features of the five sub-programmes on nuclear fission energy is given below; these programmes are: reactor safety; nuclear fuels and actinides research; management of radioactive waste; safeguarding and management of fissile materials; decommissioning of nuclear installations. The research and development work is carried out either by the Commission's Joint Research Center or by organizations and companies of the Member Countries, with the Commission's financial support. (author)

  19. Next Generation Safeguards Initiative Workshop on Enhanced Recruiting for International Safeguards

    International Nuclear Information System (INIS)

    Pepper, S.E.; Rosenthal, M.D.; Fishbone, L.G.; Occhogrosso, D.M.; Lockwood, D.; Carroll, C.J.; Dreicer, M.; Wallace, R.; Fankhauser, J.

    2009-01-01

    Brookhaven National Laboratory (BNL) hosted a Workshop on Enhanced Recruiting for International Safeguards October 22 and 23, 2008. The workshop was sponsored by DOE/NA-243 under the Next Generation Safeguards Initiative (NGSI). Placing well-qualified Americans in sufficient number and in key safeguards positions within the International Atomic Energy Agency's (IAEA's) Department of Safeguards is an important U.S. non-proliferation objective. The goal of the NGSI Workshop on Enhanced Recruiting for International Safeguards was to improve U.S. efforts to recruit U.S. citizens for IAEA positions in the Department of Safeguards. The participants considered the specific challenges of recruiting professional staff, safeguards inspectors, and managers. BNL's International Safeguards Project Office invited participants from the U.S. Department of Energy, the IAEA, U.S. national laboratories, private industry, academia, and professional societies who are either experts in international safeguards or who understand the challenges of recruiting for technical positions. A final report for the workshop will be finalized and distributed in early 2009. The main finding of the workshop was the need for an integrated recruitment plan to take into account pools of potential candidates, various government and private agency stakeholders, the needs of the IAEA, and the NGSI human capital development plan. There were numerous findings related to and recommendations for maximizing the placement of U.S. experts in IAEA Safeguards positions. The workshop participants offered many ideas for increasing the pool of candidates and increasing the placement rate. This paper will provide details on these findings and recommendations

  20. Next Generation Safeguards Initiative Workshop on Enhanced Recruiting for International Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Pepper,S.E.; Rosenthal, M.D.; Fishbone, L.G.; Occhogrosso, D.M.; Lockwood, D.; Carroll, C.J.; Dreicer, M.; Wallace, R.; Fankhauser, J.

    2009-07-12

    Brookhaven National Laboratory (BNL) hosted a Workshop on Enhanced Recruiting for International Safeguards October 22 and 23, 2008. The workshop was sponsored by DOE/NA-243 under the Next Generation Safeguards Initiative (NGSI). Placing well-qualified Americans in sufficient number and in key safeguards positions within the International Atomic Energy Agency’s (IAEA’s) Department of Safeguards is an important U.S. non-proliferation objective. The goal of the NGSI Workshop on Enhanced Recruiting for International Safeguards was to improve U.S. efforts to recruit U.S. citizens for IAEA positions in the Department of Safeguards. The participants considered the specific challenges of recruiting professional staff, safeguards inspectors, and managers. BNL’s International Safeguards Project Office invited participants from the U.S. Department of Energy, the IAEA, U.S. national laboratories, private industry, academia, and professional societies who are either experts in international safeguards or who understand the challenges of recruiting for technical positions. A final report for the workshop will be finalized and distributed in early 2009. The main finding of the workshop was the need for an integrated recruitment plan to take into account pools of potential candidates, various government and private agency stakeholders, the needs of the IAEA, and the NGSI human capital development plan. There were numerous findings related to and recommendations for maximizing the placement of U.S. experts in IAEA Safeguards positions. The workshop participants offered many ideas for increasing the pool of candidates and increasing the placement rate. This paper will provide details on these findings and recommendations

  1. West European magnetic confinement fusion research

    International Nuclear Information System (INIS)

    McKenney, B.L.; McGrain, M.; Hogan, J.T.; Porkolab, M.; Thomassen, K.I.

    1990-01-01

    This report presents a technical assessment and review of the West European program in magnetic confinement fusion by a panel of US scientists and engineers active in fusion research. Findings are based on the scientific and technical literature, on laboratory reports and preprints, and on the personal experiences and collaborations of the panel members. Concerned primarily with developments during the past 10 years, from 1979 to 1989, the report assesses West European fusion research in seven technical areas: tokamak experiments; magnetic confinement technology and engineering; fusion nuclear technology; alternate concepts; theory; fusion computations; and program organization. The main conclusion emerging from the analysis is that West European fusion research has attained a position of leadership in the international fusion program. This distinction reflects in large measure the remarkable achievements of the Joint European Torus (JET). However, West European fusion prominence extends beyond tokamak experimental physics: the program has demonstrated a breadth of skill in fusion science and technology that is not excelled in the international effort. It is expected that the West European primacy in central areas of confinement physics will be maintained or even increased during the early 1990s. The program's maturity and commitment kindle expectations of dramatic West European advances toward the fusion energy goal. For example, achievement of fusion breakeven is expected first in JET, before 1995

  2. IAEA safeguards glossary. 2001 ed

    International Nuclear Information System (INIS)

    2002-01-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  3. IAEA safeguards glossary. 2001 ed

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  4. IAEA safeguards glossary. 2001 ed

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  5. IAEA safeguards glossary. 2001 ed

    International Nuclear Information System (INIS)

    2002-01-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  6. Transit Matching for International Safeguards

    International Nuclear Information System (INIS)

    Gilligan, K.; Whitaker, M.; Oakberg, J.

    2015-01-01

    In 2013 the U.S. Department of Energy / National Nuclear Security Administration Office of Non-proliferation and International Security (NIS) supported a study of the International Atomic Energy Agency's (IAEA) processes and procedures for ensuring that shipments of nuclear material correspond to (match) their receipts (i.e., transit matching). Under Comprehensive Safeguards Agreements, Member States are obliged to declare such information within certain time frames. Nuclear weapons states voluntarily declare such information under INFCIRC/207. This study was funded by the NIS Next Generation Safeguards Initiative (NGSI) Concepts and Approaches program. Oak Ridge National Laboratory led the research, which included collaboration with the U.S. Nuclear Regulatory Commission, the U.S. Nuclear Material Management and Safeguards System (NMMSS), and the IAEA Section for Declared Information Analysis within the Department of Safeguards. The project studied the current transit matching methodologies, identified current challenges (e.g., level of effort and timeliness), and suggested improvements. This paper presents the recommendations that resulted from the study and discussions with IAEA staff. In particular, it includes a recommendation to collaboratively develop a set of best reporting practices for nuclear weapons states under INFCIRC/207. (author)

  7. Nuclear safeguards in challenging times [Experts on nuclear safeguards and verification assess the global picture

    International Nuclear Information System (INIS)

    Park, W.S.; Hillerman, J.

    2007-01-01

    Meeting at the IAEA's International Safeguards Symposium in October 2006, more than 500 experts from 60-plus countries and organizations addressed current and future challenges related to safeguards concepts, approaches, technologies, and experience. Sessions addressed five main issues driving developments: Current challenges to the safeguards system; Further strengthening safeguards practices and approaches; Improving the collection and analysis of safeguards information; Advances in safeguards techniques and technology; and Future challenges. Every four to five years, the IAEA brings together safeguards experts from all over the world at international symposia. In October 2001, they met in the shadow of 9/11 and the symposium included a special session on the prevention of nuclear terrorism

  8. Changing governance of research and technology policy : The European research area

    NARCIS (Netherlands)

    Edler, Jakob; Kuhlmann, Stefan; Behrens, Maria

    2003-01-01

    This collection analyses and comments on the development of the ERA, which seeks to coordinate national research and advance European wide projects. The contributors include leading scholars of European integration and technology policy and high-level administrators. They discuss the potential

  9. Developing a European research network to address unmet needs in anxiety disorders.

    Science.gov (United States)

    Baldwin, David S; Pallanti, Stefano; Zwanzger, Peter

    2013-12-01

    Anxiety disorders are common, typically have an early onset, run a chronic or relapsing course, cause substantial personal distress, impair social and occupational function, reduce quality of life, and impose a substantial economic burden: they are often comorbid with major depression, bipolar disorder, schizophrenia, substance misuse and physical illness, and are associated with increased risks of suicidal behaviour. As such, anxiety disorders should be regarded as a significant public health problem. However the causes of anxiety disorders remain largely unknown, which hinders accurate diagnosis, the prediction of prognosis, and the development of refined treatment approaches. In clinical practice, many patients with anxiety disorders do not present or are not recognised, the standard of care they receive is often sub-optimal, and the effectiveness of pharmacological and psychological treatment interventions in real-world clinical practice can be disappointing. The current substantial unmet public health, clinical and research needs in anxiety disorders could be addressed in part by developing independent collaborative European networks. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Annual report of the nuclear safeguards project 1978

    International Nuclear Information System (INIS)

    Mache, H.R.

    1980-05-01

    The present report describes the major activities carried out in 1978 in the framework of the Nuclear Safeguards Project by the institutes of the Kernforschungszentrum Karlsruhe, Kernforschungsanlage Juelich, the European Institute of Transuranium Elements and some industrial firms. (orig.) [de

  11. Human-Centred Computing for Assisting Nuclear Safeguards

    International Nuclear Information System (INIS)

    Szoke, I.

    2015-01-01

    With the rapid evolution of enabling hardware and software, technologies including 3D simulation, virtual reality (VR), augmented reality (AR), advanced user interfaces (UI), and geographical information systems (GIS) are increasingly employed in many aspects of modern life. In line with this, the nuclear industry is rapidly adopting emerging technologies to improve efficiency and safety by supporting planning and optimization of maintenance and decommissioning work, as well as for knowledge management, surveillance, training and briefing field operatives, education, etc. For many years, the authors have been involved in research and development (R&D) into the application of 3D simulation, VR, and AR, for mobile, desktop, and immersive 3D systems, to provide a greater sense of presence and situation awareness, for training, briefing, and in situ work by field operators. This work has resulted in a unique software base and experience (documented in numerous reports) from evaluating the effects of the design of training programmes and briefing sessions on human performance and training efficiency when applying various emerging technologies. In addition, the authors are involved in R&D into the use of 3D simulation, advanced UIs, mobile computing, and GIS systems to support realistic visualization of the combined radiological and geographical environment, as well as acquisition, analyzes, visualization and sharing of radiological and other data, within nuclear installations and their surroundings. The toolkit developed by the authors, and the associated knowledge base, has been successfully applied to various aspects of the nuclear industry, and has great potential within the safeguards domain. It can be used to train safeguards inspectors, brief inspectors before inspections, assist inspectors in situ (data registration, analyzes, and communication), support the design and verification of safeguards systems, conserve data and experience, educate future safeguards

  12. DOE/ABACC safeguards cooperation

    International Nuclear Information System (INIS)

    Whitaker, J.M.; Toth, P.; Rubio, J.

    1995-01-01

    In 1994, the US Department of Energy (DOE) and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) signed a safeguards cooperation agreement. The agreement provides for cooperation in the areas of nuclear material control, accountancy, verification, and advanced containment and surveillance technologies for international safeguards applications. ABACC is an international safeguards organization responsible for verifying the commitments of a 1991 bilateral agreement between Argentina and Brazil in which both countries agreed to submit all nuclear material in all nuclear activities to a Common System of Accounting and Control of Nuclear Materials (SCCC). DOE provides critical assistance (including equipment and training) through the Office of Nonproliferation and National Security to countries and international organizations to enhance their capabilities to control and verify nuclear material inventories. Specific activities initiated under the safeguards agreement include: (1) active US participation in ABACC's safeguards training courses, (2) joint development of specialized measurement training workshops, (3) characterization of laboratory standards, and (4) development and application of an extensive analytical laboratory comparison program. The results realized from these initial activities have been mutually beneficial in regard to strengthening the application of international safeguards in Argentina and Brazil

  13. The present status of IAEA safeguards on nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    1979-02-01

    This paper examines the present approach of the International Atomic Energy Agency (IAEA) to safeguarding various types of facilities in the nuclear fuel cycle, in the hope that it will serve as useful background material for several of the various working groups of the International Nuclear Fuel Cycle Evaluation (INFCE). The objectives and criteria of safeguards as well as the specific safeguards techniques which are utilized by the Agency, are addressed. In Part I, a general overview of safeguards as well as a discussion of procedures applicable to most if not all IAEA safeguarded facilities are included. Part II is broken down into specific facility types and focusses on the particular safeguards measures applied to them. Safeguards have reached different degrees of development for different types of facilities, in part because the Agency's experience in safeguarding certain types is considerably greater than for other types. Thus the Agency safeguards described herein are not static, but are continuously evolving. This evolution results not only from the fact that larger and more complex facilities have been coming under safeguards. Changes are also continually being introduced based on practical experience and research and development aimed at improving safeguards efficiency, reducing intrusiveness into plant operations, minimizing operator and inspector radiation exposure, and reducing subjective evaluations in determining the effectiveness of safeguards. To these ends, the technical support programmes of various countries are playing an important role. It is emphasized that this paper is not intended to evaluate the effectiveness of Agency safeguards or to highlight problem areas. It is simply aimed at providing a picture of what safeguards are or are planned to be at various stages of the fuel cycle

  14. Third International Meeting on Next Generation Safeguards: Safeguards-by-Design at Enrichment Facilities

    International Nuclear Information System (INIS)

    Long, Jon D.; McGinnis, Brent R.; Morgan, James B.; Whitaker, Michael; Lockwood, Dunbar; Shipwash, Jacqueline L.

    2011-01-01

    The Third International Meeting on Next Generation Safeguards (NGS3) was hosted by the U.S. Department of Energy (DOE)/National Nuclear Security Administration's (NNSA) Office of Nonproliferation and International Security (NIS) in Washington, D.C. on 14-15 December 2010; this meeting focused on the Safeguards-by-Design (SBD) concept. There were approximately 100 participants from 13 countries, comprised of safeguards policy and technical experts from government and industry. Representatives also were present from the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), the European Atomic Energy Agency (Euratom), and the International Atomic Energy Agency (IAEA). The primary objective of this meeting was to exchange views and provide recommendations on implementation of the SBD concept for four specific nuclear fuel cycle facility types: gas centrifuge enrichment plants (GCEPs), GEN III and GEN IV reactors, aqueous reprocessing plants, and mixed oxide fuel fabrication facilities. The general and facility-specific SBD documents generated from the four working groups, which were circulated for comment among working group participants, are intended to provide a substantive contribution to the IAEA's efforts to publish SBD guidance for these specific types of nuclear facilities in the near future. The IAEA has described the SBD concept as an approach in which 'international safeguards are fully integrated into the design process of a new nuclear facility from the initial planning through design, construction, operation, and decommissioning.' As part of the Next Generation Safeguards Initiative (NGSI), the DOE is working to establish SBD as a global norm through DOE laboratory studies, international workshops, engagement with industry and the IAEA, and setting an example through its use in new nuclear facilities in the United States. This paper describes the discussion topics and final recommendations of the Enrichment Facilities Working

  15. Structure of safeguards systems

    International Nuclear Information System (INIS)

    Shipley, J.P.

    1978-06-01

    An effective safeguards system for domestic nuclear fuel cycle facilities consists of several important subsystems that must coordinate their functions with plant management and process control. The safeguards system must not unnecessarily disrupt plant operations, compromise safety requirements, or infringe on employee working conditions. This report describes concepts, which have been developed with the cooperation of the nuclear industry and the safeguards community, for achieving these objectives

  16. IAEA safeguard system

    International Nuclear Information System (INIS)

    Pontes, B.C.

    1987-01-01

    The intents of IAEA safeguards, analysing into the IAEA statutes, are presented. The different types of safeguard agreements; the measurements of accounting, containment and caution used by the operator and; the information to be provided and the verification to be developed by IAEA are described. (M.C.K.) [pt

  17. Safeguards for geological repositories

    International Nuclear Information System (INIS)

    Fattah, A.

    2000-01-01

    Direct disposal of spent nuclear fuel in geological repositories is a recognised option for closing nuclear fuel cycles. Geological repositories are at present in stages of development in a number of countries and are expected to be built and operated early next century. A State usually has an obligation to safely store any nuclear material, which is considered unsuitable to re-enter the nuclear fuel cycle, isolated from the biosphere. In conjunction with this, physical protection has to be accounted for to prevent inadvertent access to such material. In addition to these two criteria - which are fully under the State's jurisdiction - a third criterion reflecting international non-proliferation commitments needs to be addressed. Under comprehensive safeguards agreements a State concedes verification of nuclear material for safeguards purposes to the IAEA. The Agency can thus provide assurance to the international community that such nuclear material has been used for peaceful purposes only as declared by the State. It must be emphasised that all three criteria mentioned constitute a 'unit'. None can be sacrificed for the sake of the other, but compromises may have to be sought in order to make their combination as effective as possible. Based on comprehensive safeguards agreements signed and ratified by the State, safeguards can be terminated only when the material has been consumed or diluted in such a way that it can no longer be utilised for any nuclear activities or has become practicably irrecoverable. As such safeguards for nuclear material in geological repositories have to be continued even after the repository has been back-filled and sealed. The effective application of safeguards must assure continuity-of-knowledge that the nuclear material in the repository has not been diverted for an unknown purpose. The nuclear material disposed in a geological repository may eventually have a higher and long term proliferation risk because the inventory is

  18. Safeguards Culture

    Energy Technology Data Exchange (ETDEWEB)

    Frazar, Sarah L.; Mladineo, Stephen V.

    2012-07-01

    The concepts of nuclear safety and security culture are well established; however, a common understanding of safeguards culture is not internationally recognized. Supported by the National Nuclear Security Administration, the authors prepared this report, an analysis of the concept of safeguards culture, and gauged its value to the safeguards community. The authors explored distinctions between safeguards culture, safeguards compliance, and safeguards performance, and evaluated synergies and differences between safeguards culture and safety/security culture. The report concludes with suggested next steps.

  19. Ethical and practical issues regarding research in children: The European perspective

    International Nuclear Information System (INIS)

    Sauer, P.J.J.

    2005-01-01

    Children, like all humans, are exposed to compounds in the environment and sometimes to drugs. The effect of this exposure cannot simply be deducted from studies in adults or animals. Effects might be different and even more dramatic than in adults due to the stage of growth and development of the infant. Around 80% of drugs used in young individuals are not licensed for use in this age group. Almost three new chemical compounds enter the environment each day. Toxicological studies in infants and children therefore are needed and ethically acceptable. However, appropriate safeguards must be taken into account. According to the Good Clinical Practice Directive of the European Parliament (2001/20) not only therapeutic, but also non-therapeutic research in infants and children is allowed, provided the study can only be conducted in children, and the results of the study in children will be of benefit to the group represented and no more than minimal harm and risk is inflicted to the children. Many more toxicological studies are needed in children and infants. Not conducting these studies is detrimental for this age group

  20. Recent advances in IAEA safeguards systems analysis

    International Nuclear Information System (INIS)

    Bahm, W.; Ermakov, S.; Kaniewski, J.; Lovett, J.; Pushkarjov, V.; Rosenthal, M.D.

    1983-01-01

    Efficient implementation of effective safeguards, the objective of the IAEA's Department of Safeguards, would be unthinkable without carrying out systematic studies on many different problems related to technical and other aspects of safeguards. The System Studies Section of the Department concentrates its efforts on such studies with the purpose of elaborating concepts, criteria, approaches and rules for the implementation of safeguards. In particular, the Section elaborates concepts and approaches for applying safeguards at the complex facilities that are expected to enter under safeguards in the future, develops approaches and rules in the areas where the Agency is still gaining experience, and assists in the implementation of safeguards whenever problems requiring non-routine solutions arise. This paper presents examples of the present activities of the System Studies Section: development of guidelines for use by facility designers in order to make safeguards easier and more effective, studies on near-real-time material accountancy, preparation of safeguards approaches for specific facility types, preparation of model inspection activity lists for different facility types and alternative safeguards approaches and preparation of safeguards policy papers containing the rules and regulations to be followed in the design and implementation of safeguards. (author)

  1. Current research and development at the Nuclear Research Center Karlsruhe

    International Nuclear Information System (INIS)

    Kuesters, H.

    1982-01-01

    The Nuclear Research Center Karlsruhe (KfK) is funded to 90% by the Federal Republic of Germany and to 10% by the State of Baden-Wuerttemberg. Since its foundation in 1956 the main objective of the Center is research and development (R and D) in the aera of the nuclear technology and about 2/3 of the research capacity is now devoted to this field. Since 1960 a major activity of KfK is R and D work for the design of fast breeder reactors, including material research, physics, and safety investigations; a prototype of 300 MWe is under construction now in the lower Rhine Valley. For enrichment of 235 U fissile material KfK developed the separation nozzle process; its technical application is realized within an international contract between the Federal Republic of Germany and Brazil. Within the frame of the European Programme on fusion technology KfK develops and tests superconducting magnets for toroidal fusion systems; a smaller activity deals with research on inertial confinement fusion. A broad research programme is carried through for safety investigations of nuclear installations, especially for PWRs; this activity is supplemented by research and development in the field of nuclear materials' safeguards. Development of fast reactors has to initiate research for the reprocessing of spent fuel and waste disposal. In the pilot plant WAK spent fuel from LKWs is reprocessed; research especially tries e.g. to improve the PUREX-process by electrochemical means, vitrification of high active waste is another main activity. First studies are being performed now to clarify the necessary development for reprocessing fast reactor fuel. About 1/3 of the research capacity of KfK deals with fundamental research in nuclear physics, solid state physics, biology and studies on the impact of technology on environment. Promising new technologies as e.g. the replacement of gasoline by hydrogen cells as vehicle propulsion are investigated. (orig.)

  2. Information-Driven Safeguards: A Country Officer's Perspective

    International Nuclear Information System (INIS)

    Gyane, E.

    2010-01-01

    Since the transition from 'traditional' to strengthened safeguards, the evaluation and analysis of information has played an increasingly important role in the Agency's safeguards activities. During the State evaluation process, the Agency utilizes all available information for drawing credible safeguards conclusions. Besides State declared information and data gathered during inspections, a large number of information sources are reviewed for any indications of safeguards relevance. The State level approach - in contrast to the facility-based approach under traditional safeguards - considers the acquisition paths available to a State and adjusts safeguards intensity accordingly. An additional protocol widens the information base available to the Agency for analysis and evaluation and it extends the Agency's access rights in the field. The use of information for determining safeguards activities is often referred to as 'information-driven safeguards'. Country officers are inspectors in the Department of Safeguards Operations Divisions who are responsible for States and thus form the base of the Agency's information chain. The information-driven safeguards approach has led to a significant change in the role of inspector country officers: While the verification of declared nuclear material remains the cornerstone of the IAEA Safeguards System, country officers are now not only expected to be knowledgeable about the inspection-related aspects in their countries. They also need to act on information on their States coming from a variety of sources on an ongoing basis, in order to identify proliferation indicators at an early stage. Country officers thus analyse developments in their States as well as their States' relations with other States. They review scientific literature for research that could potentially be of safeguards relevance. They observe their States' nuclear facilities from satellite imagery. They evaluate reports on nuclear trade between their States

  3. Guarantying and testing the nuclear safeguards

    International Nuclear Information System (INIS)

    Turcu, Ilie

    2002-01-01

    Apparently, the nuclear power will ensure an important share of the world energy demand at least for the next decades because there is no viable alternative in the fan of energy sources neither one complying with the environment preservation requirements. The nuclear energy future depends not only on technical and economical aspects but also on preventing any danger of nuclear safeguards nature. The main international legal instrument which provides concrete commitments for nations in this field is the Nuclear Safeguard Convention. It provides guarantees and testings of the nuclear safeguards over the entire service life of the nuclear power plants. In the two general conferences (of 1999 and 2002) the status and measures adopted in the field of nuclear safeguards by the states adhering to the convention were discussed and reviewed, as well as the issues of financial resources, licensing and the adequate measures in emergency cases. The nuclear safeguards is a major issue among the criteria of integration in UE. Essential for maintaining and endorsing the provisions of nuclear safeguards in Romania are specific research and development activities aiming at integrating the equipment and structures, solving the operation problems of nuclear facilities, studying the behavior of installations in transient regimes, investigating the reliability and probabilistic assessing of nuclear safeguards, examining the phenomenology and simulating severe accidents or human factor behavior. Of major importance appears to be the international cooperation aiming that a permanent exchange of information and experience, dissemination of the best results, solutions and practices. The paper presents the status and trends at the world level, as well as in Romania, underlining the main issues of the strategy in this field and stressing the financial and human resources implied the implementing the nuclear safeguards provisions

  4. Remote monitoring: A global partnership for safeguards

    International Nuclear Information System (INIS)

    Bardsley, J.

    1996-01-01

    With increased awareness of the significant changes of the past several years and their effect on the expectations to international safeguards, it is necessary to reflect on the direction for development of nuclear safeguards in a new era and the resulting implications. The time proven monitoring techniques, based on quantitative factors and demonstrated universal application, have shown their merit. However, the new expectations suggest a possibility that a future IAEA safeguards system could rely more heavily on the value of a comprehensive, transparent, and open implementation regime. With the establishment of such a regime, it is highly likely that remote monitoring will play a significant role. Several states have seen value in cooperating with each other to address the many problems associated with the remote interrogation of integrated monitoring systems. As a consequence the International Remote Monitoring Project was organized to examine the future of remote monitoring in International Safeguards. This paper provides an update on the technical issues, the future plans, and the safeguards implications of cooperative programs relating to remote monitoring. Without providing answers to the policy questions involved, it suggests that it is timely to begin addressing these issues

  5. International safeguards

    International Nuclear Information System (INIS)

    Sanders, B.; Ha Vinh Phuong

    1976-01-01

    Since the start of the post-war era, international safeguards were considered essential to ensure that nuclear materials should not be diverted to unauthorised uses. In parallel, it was proposed to set up an international atomic energy agency within the United Nations through which international cooperation in nuclear matters would be channelled and controlled. Created in 1957, the IAEA was authorized to administer safeguards in connection with any assistance it provided as well as at the request of Member State and of any party to bilateral or multilateral arrangements in its ambit. Today, there are two international treaties requiring that its parties should accept Agency safeguards unilaterally, the Latin America Tlatelolco Treaty of 1967, and the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), operative since 1970, which requires in particular that non-nuclear weapon states should accept Agency safeguards on its peaceful nuclear activities. Thus while NPT covers peaceful nuclear activities indiscriminately in a country, the Agency's original safeguards system is applied according to specific agreements and to given facilities. A basic conflict has now emerged between commercial interests and the increasing wish that transfer of nuclear equipment and know-how should not result in proliferation of military nuclear capacity; however, serious efforts are currently in progress to ensure universal application of IAEA safeguards and to develop them in step with the uses of nuclear energy. (N.E.A.) [fr

  6. Network of Research Infrastructures for European Seismology (NERIES)—Web Portal Developments for Interactive Access to Earthquake Data on a European Scale

    OpenAIRE

    A. Spinuso; L. Trani; S. Rives; P. Thomy; F. Euchner; Danijel Schorlemmer; Joachim Saul; Andres Heinloo; R. Bossu; T. van Eck

    2009-01-01

    The Network of Research Infrastructures for European Seismology (NERIES) is European Commission (EC) project whose focus is networking together seismological observatories and research institutes into one integrated European infrastructure that provides access to data and data products for research. Seismological institutes and organizations in European and Mediterranean countries maintain large, geographically distributed data archives, therefore this scenario suggested a design approach bas...

  7. FY09 Advanced Instrumentation and Active Interrogation Research for Safeguards

    International Nuclear Information System (INIS)

    Chichester, D.L.; Pozzi, S.A.; Seabury, E.H.; Dolan, J.L.; Flaska, M.; Johnson, J.T.; Watson, S.M.; Wharton, J.

    2009-01-01

    Multiple small-scale projects have been undertaken to investigate advanced instrumentation solutions for safeguard measurement challenges associated with advanced fuel cycle facilities and next-generation fuel reprocessing installations. These activities are in support of the U.S. Department of Energy's Fuel Cycle Research and Development program and its Materials Protection, Accounting, and Control for Transmutation (MPACT) campaign. (1) Work was performed in a collaboration with the University of Michigan (Prof. Sara Pozzi, co-PI) to investigate the use of liquid-scintillator radiation detectors for assaying mixed-oxide (MOX) fuel, to characterize its composition and to develop advanced digital pulse-shape discrimination algorithms for performing time-correlation measurements in the MOX fuel environment. This work included both simulations and experiments and has shown that these techniques may provide a valuable approach for use within advanced safeguard measurement scenarios. (2) Work was conducted in a collaboration with Oak Ridge National Laboratory (Dr. Paul Hausladen, co-PI) to evaluate the strengths and weaknesses of the fast-neutron coded-aperture imaging technique for locating and characterizing fissile material, and as a tool for performing hold-up measurements in fissile material handling facilities. This work involved experiments at Idaho National Laboratory, using MOX fuel and uranium metal, in both passive and active interrogation configurations. A complete analysis has not yet been completed but preliminary results suggest several potential uses for the fast neutron imaging technique. (3) Work was carried out to identify measurement approaches for determining nitric acid concentration in the range of 1-4 M and beyond. This work included laboratory measurements to investigate the suitability of prompt-gamma neutron activation analysis for this measurement and product reviews of other commercial solutions. Ultrasonic density analysis appears to be

  8. Evolution of a safeguards support program: POTAS past and future

    International Nuclear Information System (INIS)

    Kessler, J.C.; Reisman, A.W.

    1992-01-01

    When the Non-Proliferation Treaty came into force, the International Atomic Energy Agency (IAEA) became for the first time responsible for implementing full-scope safeguards in many countries, including countries with large and sophisticated nuclear programs. The IAEA's Department of Safeguards did not have the safeguards technology appropriate for these rapidly expanding responsibilities, nor did it have a research and development program to respond to that need. In response to this situation, the United States initiated the US Program of Technical Assitance to IAEA Safeguards (POTAS) in 1977. This program was originally intended to be a 5-yr, $5 million program. As the United States and the IAEA began to implement this program, several things rapidly became clear. Meeting the evolving safeguards technology needs would require much more than $5 million; within the first 5 yr, the United States allocated more than $20 million. This paper summarizes the policies activities, and practices POTAS has employed in support of IAEA safeguards program

  9. Status of Safeguards and Separations Model Development at Plant and Molecular Levels

    Energy Technology Data Exchange (ETDEWEB)

    de Almeida, Valmor F [ORNL; Hay, Benjamin [ORNL; DePaoli, David W [ORNL

    2009-10-01

    A primary goal of the Safeguards and Separations IPSC effort is the development of process modeling tools that allow dynamic simulations of separations plant operations under various configurations and conditions, and integration of relevant safeguards analyses. A requirement of the effort is to develop codes on modern, expandable architectures, with flexibility to explore and evaluate a wide range of process options. During FY09, efforts at ORNL have been focused on two priority tasks toward achieving the IPSC goal: (1) a top-down exploration of architecture - Subtask 1: Explore framework for code development and integration for plant-level simulation; and (2) a bottom-up fundamental modeling effort - Subtask 2: Development of molecular-level agent design code. Subtask 1 is important because definition and development of architecture is a key issue for the overall effort, as selection of an overall approach and code/data requirements is a necessary first step in the organization, design and development of separations and safeguards codes that will be incorporated. The agent design effort of Subtask 2 is a molecular-level modeling effort that has a direct impact on a near-term issue of the Separations and Waste Forms Campaign. A current focus of experimental efforts is the development of robust agents and processes for separation of Am/Cm. Development of enhanced agent-design codes will greatly accelerate discovery and experimental testing.

  10. Status of Safeguards and Separations Model Development at Plant and Molecular Levels

    International Nuclear Information System (INIS)

    de Almeida, Valmor F.; Hay, Benjamin; DePaoli, David W.

    2009-01-01

    A primary goal of the Safeguards and Separations IPSC effort is the development of process modeling tools that allow dynamic simulations of separations plant operations under various configurations and conditions, and integration of relevant safeguards analyses. A requirement of the effort is to develop codes on modern, expandable architectures, with flexibility to explore and evaluate a wide range of process options. During FY09, efforts at ORNL have been focused on two priority tasks toward achieving the IPSC goal: (1) a top-down exploration of architecture - Subtask 1: Explore framework for code development and integration for plant-level simulation; and (2) a bottom-up fundamental modeling effort - Subtask 2: Development of molecular-level agent design code. Subtask 1 is important because definition and development of architecture is a key issue for the overall effort, as selection of an overall approach and code/data requirements is a necessary first step in the organization, design and development of separations and safeguards codes that will be incorporated. The agent design effort of Subtask 2 is a molecular-level modeling effort that has a direct impact on a near-term issue of the Separations and Waste Forms Campaign. A current focus of experimental efforts is the development of robust agents and processes for separation of Am/Cm. Development of enhanced agent-design codes will greatly accelerate discovery and experimental testing.

  11. The Association between dietary flavonoid and lignan intakes and incident type 2 diabetes in European populations

    NARCIS (Netherlands)

    Zamora-Ros, R.; Forouhi, N.G.; Buijsse, B.; Schouw, van der Y.T.; Boeing, H.; Feskens, E.J.M.

    2013-01-01

    OBJECTIVE To study the association between dietary flavonoid and lignan intakes, and the risk of development of type 2 diabetes among European populations. RESEARCH DESIGN AND METHODS The European Prospective Investigation into Cancer and Nutrition-InterAct case-cohort study included 12,403 incident

  12. European Research Reactor Conference (RRFM) 2015: Conference Proceedings

    International Nuclear Information System (INIS)

    2015-01-01

    In 2015 the European Research Reactor Conference, RRFM, took place in Bucharest, Romania. The conference programme resolved around a series of plenary sessions dedicated to the latest global developments with regards to research reactor technology and management. Parallel sessions focused on all areas of the fuel cycle of research reactors, their utilisation, operation and management as well as new research reactor projects and Innovative methods in reactor physics and thermo-hydraulics. The European Research Reactor Conference also gave special attention to safety and security of research reactors

  13. European Research Reactor Conference (RRFM) 2016: Conference Proceedings

    International Nuclear Information System (INIS)

    2016-01-01

    The 2016 European Research Reactor Conference, RRFM, took place in Berlin, Germany. The conference programme resolved around a series of plenary sessions dedicated to the latest global developments with regards to research reactor technology and management. Parallel sessions focused on all areas of the fuel cycle of research reactors, their utilisation, operation and management as well as new research reactor projects and Innovative methods in reactor physics and thermo-hydraulics. The European Research Reactor Conference also gave special attention to safety and security of research reactors.

  14. Investigation of novel spent fuel verification system for safeguard application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haneol; Yim, Man-Sung [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    Radioactive waste, especially spent fuel, is generated from the operation of nuclear power plants. The final stage of radioactive waste management is disposal which isolates radioactive waste from the accessible environment and allows it to decay. The safety, security, and safeguard of a spent fuel repository have to be evaluated before its operation. Many researchers have evaluated the safety of a repository. These researchers calculated dose to public after the repository is closed depending on their scenario. Because most spent fuel repositories are non-retrievable, research on security or safeguards of spent fuel repositories have to be performed. Design based security or safeguard have to be developed for future repository designs. This study summarizes the requirements of future spent fuel repositories especially safeguards, and suggests a novel system which meets the safeguard requirements. Applying safeguards to a spent fuel repository is becoming increasingly important. The future requirements for a spent fuel repository are suggested by several expert groups, such as ASTOR in IAEA. The requirements emphasizes surveillance and verification. The surveillance and verification of spent fuel is currently accomplished by using the Cerenkov radiation detector while spent fuel is being stored in a fuel pool. This research investigated an advanced spent fuel verification system using a system which converts spent fuel radiation into electricity. The system generates electricity while it is conveyed from a transportation cask to a disposal cask. The electricity conversion system was verified in a lab scale experiment using an 8.51GBq Cs-137 gamma source.

  15. Investigation of novel spent fuel verification system for safeguard application

    International Nuclear Information System (INIS)

    Lee, Haneol; Yim, Man-Sung

    2016-01-01

    Radioactive waste, especially spent fuel, is generated from the operation of nuclear power plants. The final stage of radioactive waste management is disposal which isolates radioactive waste from the accessible environment and allows it to decay. The safety, security, and safeguard of a spent fuel repository have to be evaluated before its operation. Many researchers have evaluated the safety of a repository. These researchers calculated dose to public after the repository is closed depending on their scenario. Because most spent fuel repositories are non-retrievable, research on security or safeguards of spent fuel repositories have to be performed. Design based security or safeguard have to be developed for future repository designs. This study summarizes the requirements of future spent fuel repositories especially safeguards, and suggests a novel system which meets the safeguard requirements. Applying safeguards to a spent fuel repository is becoming increasingly important. The future requirements for a spent fuel repository are suggested by several expert groups, such as ASTOR in IAEA. The requirements emphasizes surveillance and verification. The surveillance and verification of spent fuel is currently accomplished by using the Cerenkov radiation detector while spent fuel is being stored in a fuel pool. This research investigated an advanced spent fuel verification system using a system which converts spent fuel radiation into electricity. The system generates electricity while it is conveyed from a transportation cask to a disposal cask. The electricity conversion system was verified in a lab scale experiment using an 8.51GBq Cs-137 gamma source

  16. Safeguardability of advanced spent fuel conditioning process

    Energy Technology Data Exchange (ETDEWEB)

    Li, T. K. (Tien K.); Lee, S. Y. (Sang Yoon); Burr, Tom; Russo, P. A. (Phyllis A.); Menlove, Howard O.; Kim, H. D.; Ko, W. I. (Won Il); Park, S. W.; Park, H. S.

    2004-01-01

    The Advanced Spent Fuel Conditioning Process (ACP) is an electro-metallurgical treatment technique to convert oxide-type spent nuclear fuel into a metallic form. The Korea Atomic Energy Research Institute (KAERI) has been developing this technology since 1977 for the purpose of spent fuel management and is planning to perform a lab-scale demonstration in 2006. By using of this technology, a significant reduction of the volume and heat load of spent fuel is expected, which would lighten the burden of final disposal in terms of disposal size, safety and economics. In the framework of collaboration agreement to develop the safeguards system for the ACP, a joint study on the safeguardability of the ACP technology has been performed by the Los Alamos National Laboratory (LANL) and the KAERI since 2002. In this study, the safeguardability of the ACP technology was examined for the pilot-scale facility. The process and material flows were conceptually designed, and the uncertainties in material accounting were estimated with international target values.

  17. Advanced Nuclear Measurements - Sensitivity Analysis Emerging Safeguards, Problems and Proliferation Risk

    International Nuclear Information System (INIS)

    Dreicer, J.S.

    1999-01-01

    During the past year this component of the Advanced Nuclear Measurements LDRD-DR has focused on emerging safeguards problems and proliferation risk by investigating problems in two domains. The first is related to the analysis, quantification, and characterization of existing inventories of fissile materials, in particular, the minor actinides (MA) formed in the commercial fuel cycle. Understanding material forms and quantities helps identify and define future measurement problems, instrument requirements, and assists in prioritizing safeguards technology development. The second problem (dissertation research) has focused on the development of a theoretical foundation for sensor array anomaly detection. Remote and unattended monitoring or verification of safeguards activities is becoming a necessity due to domestic and international budgetary constraints. However, the ability to assess the trustworthiness of a sensor array has not been investigated. This research is developing an anomaly detection methodology to assess the sensor array

  18. European health research and globalisation: is the public-private balance right?

    Science.gov (United States)

    McCarthy, Mark

    2011-03-22

    The creation and exchange of knowledge between cultures has benefited world development for many years. The European Union now puts research and innovation at the front of its economic strategy. In the health field, biomedical research, which benefits the pharmaceutical and biotechnology industries, has been well supported, but much less emphasis has been given to public health and health systems research. A similar picture is emerging in European support for globalisation and health Two case-studies illustrate the links of European support in global health research with industry and biomedicine. The European Commission's directorates for (respectively) Health, Development and Research held an international conference in Brussels in June 2010. Two of six thematic sessions related to research: one was solely concerned with drug development and the protection of intellectual property. Two European Union-supported health research projects in India show a similar trend. The Euro-India Research Centre was created to support India's participation in EU research programmes, but almost all of the health research projects have been in biotechnology. New INDIGO, a network led by the French national research agency CNRS, has chosen 'Biotechnology and Health' and funded projects only within three laboratory sciences. Research for commerce supports only one side of economic development. Innovative technologies can be social as well as physical, and be as likely to benefit society and the economy. Global health research agendas to meet the Millenium goals need to prioritise prevention and service delivery. Public interest can be voiced through civil society organisations, able to support social research and public-health interventions. Money for health research comes from public budgets, or indirectly through healthcare costs. European 'Science in Society' programme contrasts research for 'economy', using technical solutions, commercialisation and a passive consumer voice for

  19. Development of DUPIC safeguards technology; development of web based nuclear material accounting program

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. T.; Choi, S. H.; Choi, S. J. [Kongju National University, Kongju (Korea)

    2002-04-01

    The purpose of this project is to develop the web-based digital image processing system with the client/server architecture based on TCP/IP to be able to search and manage image data at the remote place. This system provides a nuclear facility with the ability to track the movement of nuclear material and to control and account nuclear material at anywhere and anytime. Also, this system will be helpful to increase the efficiency of safeguards affairs. The developed web-based digital image processing system for tracking the movement of nuclear material and MC and A can be applied to DUPIC facility. The result of this project will eventually contribute to similar nuclear facilities as well as the effective implementation of DUPIC safeguards. In addition, it will be helpful to enhance international confidence build-up in the peaceful use of spent fuel material. 15 refs., 33 figs., 4 tabs. (Author)

  20. European innovation and technology development

    International Nuclear Information System (INIS)

    Johnson, R.W.

    1991-01-01

    The promotion of technological innovation by European national governments and the EC in pursuit of both increased recovery and the anchoring of technology in supply, manufacturing and service sector companies has been a feature of the strategic involvement by European states in exploration and production research and development. This paper summaries past trends in this activity and reviews the targets for future industry innovation which will enable European (primarily the North Sea) production to be sustained for a further generation

  1. Implementing Safeguards-by-Design

    International Nuclear Information System (INIS)

    Bjornard, Trond; Bean, Robert; Durst, Phillip Casey; Hockert, John; Morgan, James

    2010-01-01

    Excerpt Safeguards-by-Design (SBD) is an approach to the design and construction of nuclear facilities whereby safeguards are designed-in from the very beginning. It is a systematic and structured approach for fully integrating international and national safeguards (MC and A), physical security, and other proliferation barriers into the design and construction process for nuclear facilities. SBD is primarily a project management or project coordination challenge, and this report focuses on that aspect of SBD. The present report continues the work begun in 2008 and focuses specifically on the design process, or project management and coordination - the planning, definition, organization, coordination, scheduling and interaction of activities of the safeguards experts and stakeholders as they participate in the design and construction of a nuclear facility. It delineates the steps in a nuclear facility design and construction project, in order to provide the project context within which the safeguards design activities take place, describes the involvement of safeguards experts in the design process, the nature of their analyses, interactions and decisions, as well as describing the documents created and how they are used. Designing and constructing a nuclear facility is an extremely complex undertaking. The stakeholders in an actual project are many - owner, operator, State regulators, nuclear facility primary contractor, subcontractors (e.g. instrument suppliers), architect engineers, project management team, safeguards, safety and security experts, in addition to the IAEA and its team. The purpose of the present report is to provide a common basis for discussions amongst stakeholders to collaboratively develop a SBD approach that will be both practically useful and mutually beneficial. The principal conclusions from the present study are: (1) In the short term, the successful implementation of SBD is principally a project management problem. (2) Life-cycle cost

  2. Next Generation Safeguards Initiative Workshop on Enhanced Recruiting for International Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Pepper,S.; Rosenthal, M.; Fishbone, L.; Occhiogrosso, D.; Carroll, C.; Dreicer, M.; Wallace, R.; Rankhauser, J.

    2008-10-22

    In 2007, the National Nuclear Security Administration's Office of Nonproliferation and International Security (NA-24) completed a yearlong review of the challenges facing the international safeguards system today and over the next 25 years. The study found that without new investment in international safeguards, the U.S. safeguards technology base, and our ability to support International Atomic Energy Agency (IAEA) safeguards, will continue to erode and soon may be at risk. To reverse this trend, the then U.S. Secretary of Energy, Samuel Bodman, announced at the 2007 IAEA General Conference that the Department of Energy (DOE) would launch the Next Generation Safeguards Initiative (NGSI). He stated 'IAEA safeguards must be robust and capable of addressing proliferation threats. Full confidence in IAEA safeguards is essential for nuclear power to grow safely and securely. To this end, the U.S. Department of Energy will seek to ensure that modern technology, the best scientific expertise, and adequate resources are available to keep pace with expanding IAEA responsibilities.' To meet this goal, the NGSI objectives include the recruitment of international safeguards experts to work at the U.S. national laboratories and to serve at the IAEA's headquarters. Part of the latter effort will involve enhancing our existing efforts to place well-qualified Americans in a sufficient number of key safeguards positions within the IAEA's Department of Safeguards. Accordingly, the International Safeguards Project Office (ISPO) at Brookhaven National Laboratory (BNL) hosted a Workshop on Enhanced Recruiting for International Safeguards (ERIS) on October 22 and 23, 2008. The ISPO used a workshop format developed earlier with Sonalysts, Inc., that was followed at the U.S. Support Program's (USSP's) technology road-mapping sessions. ISPO invited participants from the U.S. DOE, the IAEA, the U.S. national laboratories, private industry, academia, and

  3. Application of safeguards procedures

    International Nuclear Information System (INIS)

    1977-01-01

    The earliest applications of safeguards procedures took place in a political and technical climate far different from that of today. In the early 1960's there was a fear of the proliferation possibilities which could arise as more and more countries acquired nuclear power plants. Today nuclear power is being produced in some 20 countries without resulting in nuclear weapons proliferation. The export of equipment and technology for the nuclear fuel cycle, however, has become the subject of current concern. In view of these developments, it is not surprising that techniques in the application of safeguards have also changed. In order to appreciate the nature of these changes, it is important to be aware of the original general attitude towards the technical problems of safeguards applications. Originally, the common attitude was that the objectives of safeguards were self-evident and the methods, while in need of development, were known at least in outline. Today, it has become evident that before a safeguards procedure can be applied, the objectives must first be carefully defined, and the criteria against which success in meeting those objectives can be measured must also be developed. In line with this change, a significant part of the effort of the safeguards inspectorate is concerned with work preliminary and subsequent to the actual inspection work in the field. Over the last two years, for example, a considerable part of the work of experienced safeguards staff has been spent in analysing the possibilities of diverting material at each facility to be safeguarded. These analyses are carried out in depth by a 'facility officer' and are subjected to constructive criticism by teams composed of staff responsible for similar types of facilities as well as other technical experts. The analyses consider the measures currently considered practicable, to meet the diversion possibilities and where necessary list the development work needed to overcome any present

  4. How the Office of Safeguards and Security Technology development program facilitates safeguarding and securing the DOE complex

    International Nuclear Information System (INIS)

    Smoot, W.

    1995-01-01

    The technology development program's (TDP's) mission is to provide technologies or methodologies that address safeguards and security requirements throughout the U.S. DOE complex as well as to meet headquarters' policy needs. This includes developing state-of-the-art technologies or modifying existing technologies in physical security, material control and accountability, information security, and integrated safeguards systems. The TDP has an annual process during which it solicits user requirements from the field. These requirements are analyzed by DOE headquarters and laboratory personnel for technical merit. The requirements are then prioritized at headquarters, and the highest priorities are incorporated into our budget. Although this user-needs process occurs formally once a year, user requirements are accepted at any time. The status of funded technologies is communicated through briefings, programs reviews, and various documents that are available to all interested parties. Participants in several interagency groups allows our program to benefit from what others are doing and to prevent duplications of efforts throughout the federal community. Many technologies are transferred to private industry

  5. Annual report of the Nuclear Safeguards Project l976

    International Nuclear Information System (INIS)

    1977-07-01

    The present report describes the major activities carried out in 1976 in the framework of the Nuclear Safeguards Project by the institutes of the Gesellschaft fuer Kernforschung Karlsruhe, the European Institute of Transuranium Elements and some industrial firms. (orig.) [de

  6. The perspective of European researchers of national occupational safety and health institutes for contributing to a European research agenda: a modified Delphi study

    Science.gov (United States)

    Gagliardi, Diana; Rondinone, Bruna M; Mirabile, Marco; Buresti, Giuliana; Ellwood, Peter; Hery, Michel; Paszkiewicz, Peter; Valenti, Antonio; Iavicoli, Sergio

    2017-01-01

    Objectives This study, developed within the frame of the Partnership for European Research on Occupational Safety and Health joint research activities and based on the frame designed by the 2013 European Agency for Safety and Health at Work (EU-OSHA) study, is the first example of using the points of view of European occupational safety and health (OSH) researchers. The objective is to identify priorities for OSH research that may contribute to the achievement of present and future sustainable growth objectives set by the European strategies. Methods The study was carried out using a modified Delphi method with a two-round survey. Each round involved a panel of about 110 researchers representing the network member institutes was selected according to specific criteria, including the ownership of research expertise in at least one of the four macroareas identified by the reference report developed by EU-OSHA in 2013. Results The study identified some innovative research topics (for example, ‘Emerging technological devices’ and ‘OSH consequences of markets integration’) and research priorities (ie, crowdsourcing, e-work, zero-hours contracts) that are not reflected in previous studies of this nature. The absence of any reference to violence and harassment at work among the researchers’ proposals is a major difference from previous similar studies, while topics related to gender issues and electromagnetic fields show a lower importance. Conclusions The innovative design of a research priorities identification process, which takes advantage of a large, representative and qualified panel of European researchers allowed the definition of a number of research priorities able to support the inclusion of innovative OSH research issues in the scope of the next European research agenda. PMID:28645965

  7. Facility Safeguardability Analysis In Support of Safeguards-by-Design

    Energy Technology Data Exchange (ETDEWEB)

    Philip Casey Durst; Roald Wigeland; Robert Bari; Trond Bjornard; John Hockert; Michael Zentner

    2010-07-01

    The following report proposes the use of Facility Safeguardability Analysis (FSA) to: i) compare and evaluate nuclear safeguards measures, ii) optimize the prospective facility safeguards approach, iii) objectively and analytically evaluate nuclear facility safeguardability, and iv) evaluate and optimize barriers within the facility and process design to minimize the risk of diversion and theft of nuclear material. As proposed by the authors, Facility Safeguardability Analysis would be used by the Facility Designer and/or Project Design Team during the design and construction of the nuclear facility to evaluate and optimize the facility safeguards approach and design of the safeguards system. Through a process of “Safeguards-by-Design” (SBD), this would be done at the earliest stages of project conceptual design and would involve domestic and international nuclear regulators and authorities, including the International Atomic Energy Agency (IAEA). The benefits of the Safeguards-by-Design approach is that it would clarify at a very early stage the international and domestic safeguards requirements for the Construction Project Team, and the best design and operating practices for meeting these requirements. It would also minimize the risk to the construction project, in terms of cost overruns or delays, which might otherwise occur if the nuclear safeguards measures are not incorporated into the facility design at an early stage. Incorporating nuclear safeguards measures is straight forward for nuclear facilities of existing design, but becomes more challenging with new designs and more complex nuclear facilities. For this reason, the facility designer and Project Design Team require an analytical tool for comparing safeguards measures, options, and approaches, and for evaluating the “safeguardability” of the facility. The report explains how preliminary diversion path analysis and the Proliferation Resistance and Physical Protection (PRPP) evaluation

  8. Integrated safeguards: Australian views and experience

    International Nuclear Information System (INIS)

    Carlson, J.; Bragin, V.; Leslie, R.

    2001-01-01

    Full text: Australia has had a pioneering role in assisting the IAEA to develop the procedures and methods for strengthened safeguards, both before and after the conclusion of Australia's additional protocol. Australia played a key role in the negotiation of the model additional protocol, and made ratification a high priority in order to encourage early ratification by other States. Australia was the first State to ratify an additional protocol, on 10 December 1997, and was the first State in which the IAEA exercised complementary access and managed access under an additional protocol. Australia has undergone three full cycles of evaluation under strengthened safeguards measures, enabling the Agency to conclude it was appropriate to commence implementation of integrated safeguards. In January 2001 Australia became the first State in which integrated safeguards are being applied. As such, Australia's experience will be of interest to other States as they consult with the IAEA on the modalities for the introduction of integrated safeguards in their jurisdictions. The purpose of the paper is to outline Australia's experience with strengthened safeguards and Australia's views on the implementation of integrated safeguards. Australia has five Material Balance Areas (MBAs), the principal one covering the 10 MWt research reactor at Lucas Heights and the associated inventory of fresh and irradiated HEU fuel. Under classical safeguards, generally Australia was subject to annual Physical Inventory Verifications (PIVs) for the four MBAs at Lucas Heights, plus quarterly interim inspections, making a total of four inspections a year (PIVs for the different MBAs were conducted concurrently with each other or with interim inspections in other MBAs), although there was a period when the fresh fuel inventory exceeded one SQ, requiring monthly inspections. Under strengthened safeguards, this pattern of four inspections a year was maintained, with the addition of complementary

  9. Recent advances in safeguards operations

    International Nuclear Information System (INIS)

    Agu, B.; Iwamoto, H.

    1983-01-01

    The facilities and nuclear materials under IAEA safeguards have steadily increased in the past few years with consequent increases in the manpower and effort required for the implementation of effective international safeguards. To meet this challenge, various techniques and instruments have been developed with the assistance, support and cooperation of the Member States. Improved NDA equipment now permits accurate verification of plutonium and HEU bearing items; and optical and TV surveillance systems have improved remarkably. Experience in safeguarding nuclear facilities now includes fast-reactor fuel reprocessing and enrichment plants, even though the Hexapartite Safeguards Project is yet to define an agreed approach for safeguarding enrichment plants. The establishment of field offices now enables the IAEA to adequately implement safeguards at important facilities and also with more effective use of manpower. Closer cooperation with Member States via liaison or similar committees makes for effective safeguards implementation and the speedy solution of attendant problems. The technical support programmes from the Member States continue to provide the basis of the recent advances in safeguards techniques and instrumentation. (author)

  10. Towards the development of European networks

    International Nuclear Information System (INIS)

    Hanreich, G.

    2004-01-01

    The second AFG (French Gas Association) forum, held on June 17, addressed the issue of links between European networks with presentations by Guenther Hainreich, Director of Trans-European Networks for the European Commission Energy and Transport DG, and Loannis Galanis, Assistant Unit Director for the European Commission Energy and Transport DG. The choice for this topic has been influenced by the opening of gas markets in Europe which supposes that two conditions are fulfilled: first, the existence of gas availabilities, and second, the development of transportation, storage and LNG terminal infrastructures. In this context, the national policies are today the regional variations of a European policy at the service of the reinforcement of isolated areas and of the sustain of expanding areas. It is thus necessary to consider the European point-of-view about the existing infrastructures, their development and their financing means

  11. IAEA safeguards: Challenges and opportunities

    International Nuclear Information System (INIS)

    1993-01-01

    The history of the IAEA safeguards regime is described. New challenges and opportunities are discussed in connection with the discovery in Iraq of a clandestine nuclear weapons development programme, the difficulties experienced in the implementation of the safeguards agreement with the Democratic People's Republic of Korea, the conclusion of a comprehensive safeguards agreement with Argentina, Brazil and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials, recent developments in South Africa, the emergence of newly independent States that made up the former USSR. 2 figs

  12. Safeguards effectiveness criteria and safeguards efficiency

    International Nuclear Information System (INIS)

    Stein, G.; Canty, M.J.; Knapp, U.; Munch, E.

    1983-01-01

    A critical examination of current tendencies in quantification, assessment and enhancement of the effectiveness of international safeguards is undertaken. It is suggested that the present narrow and overly technical interpretation of some elements of international safeguards is both impractical and detrimental. A pragmatic, case-bycase approach is called for to implement the provisions of safeguards agreements in a more balanced, efficient way

  13. Administrative History of the European Office of Aerospace Research and Development from 1952 through 1975

    Science.gov (United States)

    2012-06-01

    than would an equal expenditure in the domestic market contributed to the expansion of the European Office program by the end of 1956. The fact that...ore1gn researc • On 22 March 1968, the DCS/Research and Development’s (USAF) Assistant for Foreign Development inserted himself into the discussions

  14. The perspective of European researchers of national occupational safety and health institutes for contributing to a European research agenda: a modified Delphi study.

    Science.gov (United States)

    Gagliardi, Diana; Rondinone, Bruna M; Mirabile, Marco; Buresti, Giuliana; Ellwood, Peter; Hery, Michel; Paszkiewicz, Peter; Valenti, Antonio; Iavicoli, Sergio

    2017-06-23

    This study, developed within the frame of the Partnership for European Research on Occupational Safety and Health joint research activities and based on the frame designed by the 2013 European Agency for Safety and Health at Work (EU-OSHA) study, is the first example of using the points of view of European occupational safety and health (OSH) researchers.The objective is to identify priorities for OSH research that may contribute to the achievement of present and future sustainable growth objectives set by the European strategies. The study was carried out using a modified Delphi method with a two-round survey. Each round involved a panel of about 110 researchers representing the network member institutes was selected according to specific criteria, including the ownership of research expertise in at least one of the four macroareas identified by the reference report developed by EU-OSHA in 2013. The study identified some innovative research topics (for example, 'Emerging technological devices' and 'OSH consequences of markets integration') and research priorities (ie, crowdsourcing, e-work, zero-hours contract s ) that are not reflected in previous studies of this nature.The absence of any reference to violence and harassment at work among the researchers' proposals is a major difference from previous similar studies, while topics related to gender issues and electromagnetic fields show a lower importance. The innovative design of a research priorities identification process, which takes advantage of a large, representative and qualified panel of European researchers allowed the definition of a number of research priorities able to support the inclusion of innovative OSH research issues in the scope of the next European research agenda. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Is Safety in the Eye of the Beholder? Safeguards in Research With Adults With Intellectual Disability.

    Science.gov (United States)

    McDonald, Katherine E; Conroy, Nicole E; Kim, Carolyn I; LoBraico, Emily J; Prather, Ellis M; Olick, Robert S

    2016-12-01

    Human subjects research has a core commitment to participant well-being. This obligation is accentuated for once exploited populations such as adults with intellectual disability. Yet we know little about the public's views on appropriate safeguards for this population. We surveyed adults with intellectual disability, family members and friends, disability service providers, researchers, and Institutional Review Board (IRB) members to compare views on safeguards. We found many points of convergence of views, particularly for decision-making and participation. One trend is that adults with intellectual disability perceive greater safety in being engaged directly in recruitment, and recruitment by specific individuals. Researchers and IRB members need to consider community views to facilitate the safe and respectful inclusion of adults with intellectual disability.

  16. European health research and globalisation: is the public-private balance right?

    Directory of Open Access Journals (Sweden)

    McCarthy Mark

    2011-03-01

    Full Text Available Abstract Background The creation and exchange of knowledge between cultures has benefited world development for many years. The European Union now puts research and innovation at the front of its economic strategy. In the health field, biomedical research, which benefits the pharmaceutical and biotechnology industries, has been well supported, but much less emphasis has been given to public health and health systems research. A similar picture is emerging in European support for globalisation and health Case studies Two case-studies illustrate the links of European support in global health research with industry and biomedicine. The European Commission's directorates for (respectively Health, Development and Research held an international conference in Brussels in June 2010. Two of six thematic sessions related to research: one was solely concerned with drug development and the protection of intellectual property. Two European Union-supported health research projects in India show a similar trend. The Euro-India Research Centre was created to support India's participation in EU research programmes, but almost all of the health research projects have been in biotechnology. New INDIGO, a network led by the French national research agency CNRS, has chosen 'Biotechnology and Health' and funded projects only within three laboratory sciences. Discussion Research for commerce supports only one side of economic development. Innovative technologies can be social as well as physical, and be as likely to benefit society and the economy. Global health research agendas to meet the Millenium goals need to prioritise prevention and service delivery. Public interest can be voiced through civil society organisations, able to support social research and public-health interventions. Money for health research comes from public budgets, or indirectly through healthcare costs. European 'Science in Society' programme contrasts research for 'economy', using technical

  17. European health research and globalisation: is the public-private balance right?

    Science.gov (United States)

    2011-01-01

    Background The creation and exchange of knowledge between cultures has benefited world development for many years. The European Union now puts research and innovation at the front of its economic strategy. In the health field, biomedical research, which benefits the pharmaceutical and biotechnology industries, has been well supported, but much less emphasis has been given to public health and health systems research. A similar picture is emerging in European support for globalisation and health Case studies Two case-studies illustrate the links of European support in global health research with industry and biomedicine. The European Commission's directorates for (respectively) Health, Development and Research held an international conference in Brussels in June 2010. Two of six thematic sessions related to research: one was solely concerned with drug development and the protection of intellectual property. Two European Union-supported health research projects in India show a similar trend. The Euro-India Research Centre was created to support India's participation in EU research programmes, but almost all of the health research projects have been in biotechnology. New INDIGO, a network led by the French national research agency CNRS, has chosen 'Biotechnology and Health' and funded projects only within three laboratory sciences. Discussion Research for commerce supports only one side of economic development. Innovative technologies can be social as well as physical, and be as likely to benefit society and the economy. Global health research agendas to meet the Millenium goals need to prioritise prevention and service delivery. Public interest can be voiced through civil society organisations, able to support social research and public-health interventions. Money for health research comes from public budgets, or indirectly through healthcare costs. European 'Science in Society' programme contrasts research for 'economy', using technical solutions, commercialisation

  18. Nuclear safeguards in the Federal Republic of Germany by the Commission of the European Communities, EURATOM, and the International Atomic Energy Agency (IAEA)

    International Nuclear Information System (INIS)

    Brueckner, C.

    1979-10-01

    The author reviews the developement of the legal and contractual bases for nuclear safeguards. In doing so, he deals with the EURATOM treaty, the non-proliferation treaty, the verification treaty; adjustment of control by means of the EURATOM regulation no. 3222/76 and the implementary law on the verification treaty. In the second part, he examines the control concept which is based on keeping books on materials, making-out balance sheets and on balance-sheet auditing. He sees problems arising as nuclear safeguards are introduced in nuclear installations in the endeavour to develop nuclear safeguards any further. (HSCH) [de

  19. Development of an international safeguards approach to the final disposal of spent fuel in geological repositories

    International Nuclear Information System (INIS)

    Murphey, W.M.; Moran, B.W.; Fattah, A.

    1996-01-01

    The International Atomic Energy Agency (IAEA) is currently pursuing development of an international safeguards approach for the final disposal of spent fuel in geological repositories through consultants meetings and through the Program for Development of Safeguards for Final Disposal of Spent Fuel in Geological Repositories (SAGOR). The consultants meetings provide policy guidance to IAEA; SAGOR recommends effective approaches that can be efficiently implemented by IAEA. The SAGOR program, which is a collaboration of eight Member State Support Programs (MSSPs), was initiated in July 1994 and has identified 15 activities in each of three areas (i.e. conditioning facilities, active repositories, and closed repositories) that must be performed to ensure an efficient, yet effective safeguards approach. Two consultants meetings have been held: the first in May 1991 and the last in November 1995. For nuclear materials emplaced in a geological repository, the safeguards objectives were defined to be (1) to detect the diversion of spent fuel, whether concealed or unconcealed, from the repository and (2) to detect undeclared activities of safeguards concern (e.g., tunneling, underground reprocessing, or substitution in containers)

  20. NEMO-SN1 observatory developments in view of the European Research Infrastructures EMSO and KM3NET

    Energy Technology Data Exchange (ETDEWEB)

    Favali, Paolo, E-mail: emsopp@ingv.i [Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sect. Roma 2, Via di Vigna Murata 605, 00143 Roma (Italy); Beranzoli, Laura [Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sect. Roma 2, Via di Vigna Murata 605, 00143 Roma (Italy); Italiano, Francesco [Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sect. Palermo, Via Ugo La Malfa 153, 90146 Palermo (Italy); Migneco, Emilio; Musumeci, Mario; Papaleo, Riccardo [Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali del Sud, Via di S. Sofia 62, 95125 Catania (Italy)

    2011-01-21

    NEMO-SN1 (Western Ionian Sea off Eastern Sicily), the first real-time multiparameter observatory operating in Europe since 2005, is one of the nodes of the upcoming European ESFRI large-scale research infrastructure EMSO (European Multidisciplinary Seafloor Observatory), a network of seafloor observatories placed at marine sites on the European Continental Margin. NEMO-SN1 constitutes also an important test-site for the study of prototypes of Kilometre Cube Neutrino Telescope (KM3NeT), another European ESFRI large-scale research infrastructure. Italian resources have been devoted to the development of NEMO-SN1 facilities and logistics, as with the PEGASO project, while the EC project ESONET-NoE is funding a demonstration mission and a technological test. EMSO and KM3NeT are presently in the Preparatory Phase as projects funded under the EC-FP7.

  1. Protocol Additional to the agreement between France, the European Atomic Energy Community and the International Atomic Energy Agency for the application of safeguards in France

    International Nuclear Information System (INIS)

    2005-01-01

    The text of the Protocol Additional to the Agreement between France, the European Atomic Energy Community and the International Atomic Energy Agency for the Application of Safeguards in France is reproduced in the Annex to this document for the information of all Members. The Additional Protocol was approved by the Board of Governors on 11 June 1998. It was signed in Vienna on 22 September 1998. Pursuant to Article 16 of the Additional Protocol, the Protocol entered into force on 30 April 2004, the date on which the Agency received written notification that the European Atomic Energy Community and France had met their respective internal requirements for entry into force

  2. Safeguards as an evolutionary system

    International Nuclear Information System (INIS)

    Carlson, J.

    1998-01-01

    NPT safeguards pursuant to INFCIRC/153 retain a strong emphasis on materials accountancy, and are primarily concerned with verifying nuclear activities as declared by the State - the correctness of States' declarations. This decade, failure to adequately address the possibility of undeclared nuclear activities - the issue of the completeness of States' declarations - has been recognized as a major shortcoming in the safeguards system. Since the 'classical' safeguards system is unable to provide credible assurance of the absence of clandestine nuclear activities, substantial efforts are being made to strengthen the IAEA's capabilities in this regard. Agreement has been reached on a Model Protocol substantially extending the Agency's authority, and good progress has been made in developing the new approaches, technologies and techniques required to ensure this authority is used effectively. Increasingly, safeguards will involve more qualitative judgements. Transparency will be very important - without a clear understanding by Member States of how the Agency goes about its new tasks and reaches its conclusions about the absence of undeclared activities, the safeguards system will not fulfil its vital confidence-building role. A major theme in current safeguards thinking is integration, the rationalization of classical safeguards with the new safeguards strengthening measures. As part of the rationalization process, it is timely to re-assess traditional safeguards implementation practices. One of these is uniformity in the way safeguards activities are implemented in different States. Another is whether the traditional concept of safeguards confidentiality is consistent with the increasing importance of transparency. (author)

  3. [The development of European Union common research and development policy and programs with special regard to life sciences].

    Science.gov (United States)

    Pörzse, Gábor

    2009-08-09

    Research and development (R&D) has been playing a leading role in the European Community's history since the very beginning of European integration. Its importance has grown in recent years, after the launch of the Lisbon strategy. Framework programs have always played a considerable part in community research. The aim of their introduction was to fine tune national R&D activities, and to successfully divide research tasks between the Community and the member states. The Community, from the very outset, has acknowledged the importance of life sciences. It is no coincidence that life sciences have become the second biggest priority in the last two framework programs. This study provides a historical, and at the same time analytical and evaluative review of community R&D policy and activity from the starting point of its development until the present day. It examines in detail how the changes in structure, conditional system, regulations and priorities of the framework programs have followed the formation of social and economic needs. The paper puts special emphasis on the analysis of the development of life science research, presenting how they have met the challenges of the age, and how they have been built into the framework programs. Another research area of the present study is to elaborate how successfully Hungarian researchers have been joining the community research, especially the framework programs in the field of life sciences. To answer these questions, it was essential to survey, process and analyze the data available in the national and European public and closed databases. Contrary to the previous documents, this analysis doesn't concentrate on the political and scientific background. It outlines which role community research has played in sustainable social and economic development and competitiveness, how it has supported common policies and how the processes of integration have been deepening. Besides, the present paper offers a complete review of

  4. ENEN - European nuclear engineering network

    International Nuclear Information System (INIS)

    Comsa, Olivia; Paraschiva, M.V.; Banutoiu, Maria

    2002-01-01

    The paper presents the main objectives and expected results of European Project FP5 - ENEN - 'European Nuclear Engineering Network'. The underlying objective of the work is safeguarding the nuclear knowledge and expertise through the preservation of higher nuclear engineering education. Co-operation between universities and universities and research centres, will entail a better use of dwindling teaching capacity, scientific equipment and research infrastructure. 'Today, the priorities of the scientific community regarding basic research lie elsewhere than in nuclear sciences. Taken together, these circumstances create a significantly different situation from three to four decades ago when much of the present competence base was in fact generated. In addition, many of the highly competent engineers and scientists, who helped create the present nuclear industry, and its regulatory structure, are approaching retirement age. These competence issues need to be addressed at Community level and a well designed Community research and training programme should play a role that is more important than ever before. This is an area where the concept of an European research area should be further explored'. The outcome from this project should be a clear road map for the way ahead in nuclear engineering education in Europe. The underlying objective of the concerted action is the preservation of nuclear knowledge and expertise through the preservation of higher nuclear engineering education. 'Many diverse technologies, currently serving nations world-wide, would be affected by an inadequate number of future nuclear scientists and engineers. Nuclear technology is widespread and multidisciplinary: nuclear and reactor physics, thermal hydraulics and mechanics, material science, chemistry, health science, information technology and a variety of other areas. Yet the advancement of this technology, with all its associated benefits, will be threatened if not curtailed unless the

  5. Development of molecular imaging in the European radiological community

    International Nuclear Information System (INIS)

    Grenier, Nicolas; Sardanelli, Francesco; Becker, Christoph D.; Walecki, Jerzy; Sebag, Guy; Lomas, David John; Krestin, Gabriel P.

    2009-01-01

    The recent and concomitant advances in molecular biology and imaging for diagnosis and therapy will place in vivo imaging techniques at the centre of their clinical transfer. Before that, a wide range of multidisciplinary preclinical research is already taking place. The involvement of radiologists in this new field of imaging sciences is therefore absolutely mandatory during these two phases of development. Achievement of such objectives requires the refinement of strategy within the European radiological community and the European Society of Radiology (ESR) will have to drive a number of actions to stimulate the younger generation of radiologists and to facilitate their access to knowledge. For that purpose, a molecular imaging (MI) subcommittee of the ESR Research Committee based on a group of involved radiologists will be constituted to develop contacts with other constitutive committees and associated societies to provide proposals to our community. (orig.)

  6. Safeguards on nuclear materials

    International Nuclear Information System (INIS)

    Cisar, V.; Keselica, M.; Bezak, S.

    2001-01-01

    The article describes the implementation of IAEA safeguards for nuclear materials in the Czech and Slovak Republics, the establishment and development of the State System of Accounting for and Control of Nuclear Material (SSAC) at the levels of the state regulatory body and of the operator, particularly at the Dukovany nuclear power plant. A brief overview of the historical development is given. Attention is concentrated on the basic concepts and legal regulation accepted by the Czech and Slovak Republics in accordance with the new approach to create a complete legislative package in the area of nuclear energy uses. The basic intention is to demonstrate the functions of the entire system, including safeguards information processing and technical support of the system. Perspectives of the Integrated Safeguards System are highlighted. The possible ways for approximation of the two national systems to the Safeguards System within the EU (EURATOM) are outlined, and the necessary regulatory and operators' roles in this process are described. (author)

  7. The IAEA safeguards information system

    International Nuclear Information System (INIS)

    Gmelin, W.R.; Parsick, R.

    1976-01-01

    The IAEA safeguards under the Non-Proliferation Treaty is meant to follow the model agreement developed by the Safeguards Committee in 1970 and formulated in document INFCIRC/153, which contains provisions that Member States, having concluded Safeguards Agreements with the Agency, should provide design information and reports on initial inventories, changes in the inventories and material balances in respect of each nuclear facility and material balance area for all nuclear materials subject to safeguards. The Agency, on the other hand, should establish and maintain an accountancy system which would provide the data on the location and the movements of all nuclear material subject to safeguards on the basis of the reported information and information obtained during inspections in order to support the Agency's verification activities in the field, to enable the preparation of safeguards statements and to adjust the inspection intensity. Following these requirements, a computer-based information system has been developed and is being implemented and used routinely for input manipulations and queries on a limited scale. This information system comprises two main parts: Part 1 for processing the information as provided by the States, and Part 2 (still under development) for processing the inspection data obtained during verification. This paper describes the characteristics of the Agency information system for processing data under the Non-Proliferation Treaty as well as recent operational experience. (author)

  8. Visualizing Safeguards: Software for Conceptualizing and Communicating Safeguards Data

    Energy Technology Data Exchange (ETDEWEB)

    Gallucci, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-07-12

    The nuclear programs of states are complex and varied, comprising a wide range of fuel cycles and facilities. Also varied are the types and terms of states’ safeguards agreements with the IAEA, each placing different limits on the inspectorate’s access to these facilities. Such nuances make it difficult to draw policy significance from the ground-level nuclear activities of states, or to attribute ground-level outcomes to the implementation of specific policies or initiatives. While acquiring a firm understanding of these relationships is critical to evaluating and formulating effective policy, doing so requires collecting and synthesizing large bodies of information. Maintaining a comprehensive working knowledge of the facilities comprising even a single state’s nuclear program poses a challenge, yet marrying this information with relevant safeguards and verification information is more challenging still. To facilitate this task, Brookhaven National Laboratory has developed a means of capturing the development, operation, and safeguards history of all the facilities comprising a state’s nuclear program in a single graphic. The resulting visualization offers a useful reference tool to policymakers and analysts alike, providing a chronology of states’ nuclear development and an easily digestible history of verification activities across their fuel cycles.

  9. Development of analytical techniques for safeguards environmental samples at JAEA

    International Nuclear Information System (INIS)

    Sakurai, Satoshi; Magara, Masaaki; Usuda, Shigekazu; Watanabe, Kazuo; Esaka, Fumitaka; Hirayama, Fumio; Lee, Chi-Gyu; Yasuda, Kenichiro; Inagawa, Jun; Suzuki, Daisuke; Iguchi, Kazunari; Kokubu, Yoko S.; Miyamoto, Yutaka; Ohzu, Akira

    2007-01-01

    JAEA has been developing, under the auspices of the Ministry of Education, Culture, Sports, Science and Technology of Japan, analytical techniques for ultra-trace amounts of nuclear materials in environmental samples in order to contribute to the strengthened safeguards system. Development of essential techniques for bulk and particle analysis, as well as screening, of the environmental swipe samples has been established as ultra-trace analytical methods of uranium and plutonium. In January 2003, JAEA was qualified, including its quality control system, as a member of the JAEA network analytical laboratories for environmental samples. Since 2004, JAEA has conducted the analysis of domestic and the IAEA samples, through which JAEA's analytical capability has been verified and improved. In parallel, advanced techniques have been developed in order to expand the applicability to the samples of various elemental composition and impurities and to improve analytical accuracy and efficiency. This paper summarizes the trace of the technical development in environmental sample analysis at JAEA, and refers to recent trends of research and development in this field. (author)

  10. A study on the national safeguards system -Current status and suggested development-

    International Nuclear Information System (INIS)

    Park, Wan Su; Kwack, Eun Ho; An, Jong Sung; Kim, Hyun Tae; Min, Kyung Sik; Park, Chan Sik

    1995-03-01

    In Korea, 17 nuclear facilities are currently under IAEA's safeguards and it is expected that more than 25 nuclear facilities will be under IAEA's safeguards in the year 2000 according to nuclear R and D and industry expansion. In connection with unlimited extension of NPT in 1995 and IAEA's measures to strengthen the safeguards like 'Programme 93+2', the international non-proliferation regime will be strengthened more and nuclear advanced countries will require the transparency and credibility of nuclear activities in recipient countries instead of transferring advanced nuclear technologies and nuclear material. In 1995, the Korean government had revised the Atomic Energy Law to control increasing nuclear facilities and nuclear material effectively and to establish international transparency and credibility. In the revised Atomic Energy Law, it is provided that the national inspection, other than IAEA inspection, will be started from 1996. Currently, necessary arrangements for national inspection are being prepared by MOST and TCNC at KAERI. However, the safeguards system in Korea is still beginning stage, Korea's safeguards activity was passive and fragmentary that leads non-attainment of safeguards goal in many facilities. The reasons were; absence of systematic safeguards system (SSAC); lack of understanding safeguards concepts; lack of manpower, designated organization for safeguards, etc. As Korea ranked world top 10 nuclear power generation country and has a plan to be a nuclear advanced country, Korea should have appropriate safeguards system and should not spare necessary assistance to that system. 14 tabs., 15 figs., 29 refs. (Author)

  11. EURATOM safeguards implementation in France and cooperation with the IAEA

    International Nuclear Information System (INIS)

    Oddou, J.

    2013-01-01

    International safeguards in France are applied both by: -) the European Commission (EC), through the Chapter 7 of the EURATOM Treaty; -) the International Atomic Energy Agency (IAEA) as France is a party to the NPT and has concluded a safeguards agreement with IAEA. With the exception of mining, France has a complete nuclear fuel cycle from ore concentrates to waste. Based on the legal framework of the EURATOM Treaty, all civil nuclear facilities and all civil nuclear materials are safeguarded by EURATOM wherever they are in France. Therefore the two conversion plants, the two enrichment plants, the three fuel fabrication plants, the 59 nuclear power plants including the EPR of Flamanville under construction, the 2 reprocessing plants in La Hague, the five facilities for waste treatment and numerous research centers and reactors of CEA are declared and controlled by the European Commission. The activities of the EURATOM inspectors are of various kind depending of the facility and the type of inspection. The most common checks are: identification and counting of the nuclear material, verification of accountancy declaration vs. physical follow-up of the nuclear material, non-destructive analysis and destructive analysis after sampling in large bulk handling facilities. There is a strong cooperation between IAEA and EC: the majority of IAEA inspections in France are joint team inspections with the EC. This pooling of equipment and teams can save money and human resources. Equipment for containment and surveillance are paid whether by the EC or by the IAEA and can be used by both bodies of inspectors. With the principle of 'One Job One Person', verification activities are done only once and it saves time for the inspectors and the operators. The paper is followed by the slides of the presentation. (A.C.)

  12. Safeguards and nonproliferation aspects of a dry fuel recycling technology

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1993-01-01

    Los Alamos National Laboratory undertook an independent assessment of the proliferation potentials and safeguardability of a dry fuel recycling technology, whereby spent pressurized-water reactor (PWR) fuels are used to fuel canadian deuterium uranium (CANDU) reactors. Objectives of this study included (1) the evaluation of presently available technologies that may be useful to safeguard technology options for dry fuel recycling (2) and identification of near-term and long-term research needs to develop process-specific safeguards requirements. The primary conclusion of this assessment is that like all other fuel cycle alternatives proposed in the past, the dry fuel recycle entails prolfferation risks and that there are no absolute technical fixes to eliminate such risks. This study further concludes that the proliferation risks of dry fuel recycling options are relatively minimal and presently known safeguards systems and technologies can be modified and/or adapted to meet the requirements of safeguarding such fuel recycle facilities

  13. Safeguards and security progress report, January-December 1985

    International Nuclear Information System (INIS)

    1987-03-01

    From January to December 1985, the Los Alamos Safeguards and Security Program was involved in the activities described in the first four parts of this report: Safeguards Operations, Security Development and Support, Safeguards Technology Development, and International Support. Part 1 covers efforts of direct assistance to the Department of Energy and Nuclear Regulatory Commission licensee facilities. This assistance includes consultation on materials accounting problems, development and demonstration of specialized techniques and instruments, and comprehensive participation in the design and evaluation of advanced safeguards systems. In addition, a series of training courses in various aspects of safeguards makes the technology more accessible to those who must apply it. Part 2 treats activities aimed at the security of information and computer systems. Our focus this period was on continuing the activities of the Center for Computer Security, which provides the basis for encouraging and disseminating this emerging technology, and on the development and demonstration of secure computer systems. Part 3 describes the broad development efforts essential to continuing improvements in the practice of safeguards. Although these projects are properly classified as developmental, they address recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Enrichment plant safeguards and international safeguards for reprocessing plants required a significant portion of our resources. All of these efforts are beginning to provide substantial returns on our investment in technology transfer, not only in raising the level of safeguards effectiveness but also in our benefiting from field experiences in operating environments

  14. Safeguards and security progress report, January-December 1985

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    From January to December 1985, the Los Alamos Safeguards and Security Program was involved in the activities described in the first four parts of this report: Safeguards Operations, Security Development and Support, Safeguards Technology Development, and International Support. Part 1 covers efforts of direct assistance to the Department of Energy and Nuclear Regulatory Commission licensee facilities. This assistance includes consultation on materials accounting problems, development and demonstration of specialized techniques and instruments, and comprehensive participation in the design and evaluation of advanced safeguards systems. In addition, a series of training courses in various aspects of safeguards makes the technology more accessible to those who must apply it. Part 2 treats activities aimed at the security of information and computer systems. Our focus this period was on continuing the activities of the Center for Computer Security, which provides the basis for encouraging and disseminating this emerging technology, and on the development and demonstration of secure computer systems. Part 3 describes the broad development efforts essential to continuing improvements in the practice of safeguards. Although these projects are properly classified as developmental, they address recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Enrichment plant safeguards and international safeguards for reprocessing plants required a significant portion of our resources. All of these efforts are beginning to provide substantial returns on our investment in technology transfer, not only in raising the level of safeguards effectiveness but also in our benefiting from field experiences in operating environments.

  15. Overview of decommissioning research and development activities in the European Community

    International Nuclear Information System (INIS)

    Huber, B.

    1982-01-01

    The European Community's research program on the decommissioning of nuclear power plants is managed by the Commission of the European Communities and carried out by national laboratories and private firms under cost-sharing contracts. Starting in 1980, about fifty research contracts covering a large variety of topics have been let so far. The paper outlines the content, progress and selected results of the seven projects composing the program. These projects concern the following subjects: maintaining disused plants in a safe condition; decontamination for decommissioning purposes; dismantling techniques; treatment of waste materials; large waste containers; estimation of waste arisings; and plant design features facilitating decommissioning. 4 references

  16. Safeguard Vulnerability Analysis Program (SVAP)

    International Nuclear Information System (INIS)

    Gilman, F.M.; Dittmore, M.H.; Orvis, W.J.; Wahler, P.S.

    1980-01-01

    This report gives an overview of the Safeguard Vulnerability Analysis Program (SVAP) developed at Lawrence Livermore National Laboratory. SVAP was designed as an automated method of analyzing the safeguard systems at nuclear facilities for vulnerabilities relating to the theft or diversion of nuclear materials. SVAP addresses one class of safeguard threat: theft or diversion of nuclear materials by nonviolent insiders, acting individually or in collusion. SVAP is a user-oriented tool which uses an interactive input medium for preprocessing the large amounts of safeguards data. Its output includes concise summary data as well as detailed vulnerability information

  17. Report of the LASCAR forum: Large scale reprocessing plant safeguards

    International Nuclear Information System (INIS)

    1992-01-01

    This report has been prepared to provide information on the studies which were carried out from 1988 to 1992 under the auspices of the multinational forum known as Large Scale Reprocessing Plant Safeguards (LASCAR) on safeguards for four large scale reprocessing plants operated or planned to be operated in the 1990s. The report summarizes all of the essential results of these studies. The participants in LASCAR were from France, Germany, Japan, the United Kingdom, the United States of America, the Commission of the European Communities - Euratom, and the International Atomic Energy Agency

  18. Next Generation Safeguards Initiative: 2010 and Beyond

    International Nuclear Information System (INIS)

    Whitney, J.M.; LaMontagne, S.; Sunshine, A.; Lockwood, D.; Peranteau, D.; Dupuy, G.

    2010-01-01

    Strengthening the international safeguards system is a key element of the U.S. non-proliferation policy agenda as evidenced by President Obama's call for more 'resources and authority to strengthen international inspections' in his April 2009 Prague speech. Through programs such as the recently-launched Next Generation Safeguards Initiative (NGSI) and the long standing U.S. Program of Technical Assistance to IAEA Safeguards, the United States is working to implement this vision. The U.S. Department of Energy's National Nuclear Security Administration launched NGSI in 2008 to develop the policies, concepts, technologies, expertise, and international safeguards infrastructure necessary to strengthen and sustain the international safeguards system as it evolves to meet new challenges. Following a successful 2009, NGSI has made significant progress toward these goals in 2010. NGSI has recently completed a number of policy studies on advanced safeguards concepts and sponsored several workshops, including a second international meeting on Harmonization of International Safeguards Infrastructure Development in Vienna. The program is also continuing multi-year projects to investigate advanced non-destructive assay techniques, enhance recruitment and training efforts, and strengthen international cooperation on safeguards. In December 2010, NGSI will host the Third Annual International Meeting on International Safeguards in Washington, DC, which will draw together key stakeholders from government, the nuclear industry, and the IAEA to further develop and promote a common understanding of Safeguards by Design principles and goals, and to identify opportunities for practical application of the concept. This paper presents a review of NGSI program activities in 2010 and previews plans for upcoming activities. (author)

  19. Developing the Next Generation of International Safeguards and Nonproliferation Experts: Highlights of Select Activities at the National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Reed, J; Mathews, C; Kirk, B; Lynch, P; Doyle, J; Meek, E; Pepper, S; Metcalf, R

    2010-03-31

    With many safeguards experts in the United States at or near retirement age, and with the growing and evolving mission of international safeguards, attracting and educating a new generation of safeguards experts is an important element of maintaining a credible and capable international safeguards system. The United States National Laboratories, with their rich experience in addressing the technical and policy challenges of international safeguards, are an important resource for attracting, educating, and training future safeguards experts. This presentation highlights some of the safeguards education and professional development activities underway at the National Laboratories. These include university outreach, summer courses, internships, mid-career transition, knowledge retention, and other projects. The presentation concludes with thoughts on the challenge of interdisciplinary education and the recruitment of individuals with the right balance of skills and backgrounds are recruited to meet tomorrow's needs.

  20. How safe are nuclear safeguards

    International Nuclear Information System (INIS)

    Sullivan, E.

    1979-01-01

    Reports of weaknesses in IAEA safeguards have alarmed the US and since September 1977, US officials have refused to certify that the IAEA can adequately safeguard nuclear material the US exports. For political reasons, the IAEA safeguards system cannot perform an actual policing role or physically protect strategic material. The IAEA can only send out inspectors to verify bookkeeping and install cameras to sound the alarm should a diversion occur. Based on these IAEA reports and on interviews with scientists and US officials, the following serious problems hampering the Agency's safeguards effort can be identified: no foolproof safeguards for commercial reprocessing plants, uranium enrichment facilities, or fast breeder reactors; equipment failure and unreliable instruments; faulty accounting methods; too few well-trained inspectors; restrictions on where inspectors can go; commercial conflicts. Programs by the US, Canada, West Germany, Japan, and developing nations devised to better safeguards are briefly discussed. Some experts question whether international safeguards can be improved quickly enough to successfully deter nuclear weapons proliferation, given the rapid spread of nuclear technology to the third world

  1. Oak Ridge National Laboratory Next-Generation Safeguards Initiative: Human Capital Development

    Energy Technology Data Exchange (ETDEWEB)

    Gilligan, Kimberly [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-01-01

    In 2007, the US Department of Energy National Nuclear Security Administration (DOE/NNSA) Office of Nonproliferation and International Security (NA-24) completed a comprehensive review of the current and potential future challenges facing the international safeguards system. The review examined: trends and events that have an effect on the mission of international safeguards; the implications of expanding and evolving mission requirements of the legal authorities and institutions that serve as the foundation of the international safeguards system; and, the technological, financial, and human resources required for effective safeguards implementation. The review’s findings and recommendations were summarized in the report International Safeguards: Challenges and Opportunities for the 21st Century (October 2007). The executive summary is available at the following link: http://nnsa.energy.gov/sites/default/files/nnsa/inlinefiles/NGSI_Report.pdf.

  2. IAEA safeguards in new nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Catton, A. [International Atomic Energy Agency, Vienna (Austria); Durbin, K. [United States Department of Energy, Washington, D.C. (United States); Hamilton, A. [International Atomic Energy Agency, Vienna (Austria); Martikka, E. [STUK, Helsinki (Finland); Poirier, S.; Sprinkle, J. K.; Stevens, R. [International Atomic Energy Agency, Vienna (Austria); Whitlock, J. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    The inclusion of international safeguards early in the design of nuclear facilities offers an opportunity to reduce project risk. It also has the potential to minimize the impact of safeguards activities on facility operations. Safeguards by design (SBD) encourages stakeholders to become familiar with the requirements of their safeguards agreements and to decide when and how they will fulfil those requirements. As one example, modular reactors are at a design stage where SBD can have a useful impact. Modular reactors might be turnkey projects where the operator takes ownership after commissioning. This comes with a legal obligation to comply with International Atomic Energy Agency (IAEA) safeguards requirements. Some of the newcomer countries entering the reactor market have little experience with IAEA safeguards and the associated non-proliferation obligations. To reduce delays or cost increments, one can embed safeguards considerations in the bid and design phases of the project, along with the safety and security considerations. SBD does not introduce any new requirements - it is a process whereby facility designers facilitate the implementation of the existing safeguards requirements. In short, safeguards experts share their expertise with the designers and vice versa. Once all parties understand the fundamentals of all of the operational constraints, they are better able to decide how best to address them. This presentation will provide an overview of SBD activities. (author)

  3. Evaluation of a Business Case for Safeguards by Design in Nuclear Power Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Thomas W.; Seward, Amy M.; Lewis, Valerie A.; Gitau, Ernest TN; Zentner, Michael D.

    2012-12-01

    Safeguards by Design (SbD) is a well-known paradigm for consideration and incorporation of safeguards approaches and associated design features early in the nuclear facility development process. This paradigm has been developed as part of the Next Generation Safeguards Initiative (NGSI), and has been accepted as beneficial in many discussions and papers on NGSI or specific technologies under development within NGSI. The Office of Nuclear Safeguards and Security funded the Pacific Northwest National Laboratory to examine the business case justification of SbD for nuclear power reactors. Ultimately, the implementation of SbD will rely on the designers of nuclear facilities. Therefore, it is important to assess the incentives which will lead designers to adopt SbD as a standard practice for nuclear facility design. This report details the extent to which designers will have compelling economic incentives to adopt SbD.

  4. Achieving the Benefits of Safeguards by Design

    International Nuclear Information System (INIS)

    Bjornard, Trond; Bean, Robert; Hebditch, David; Morgan, Jim; Meppen, Bruce; DeMuth, Scott; Ehinger, Michael; Hockert, John

    2008-01-01

    The overarching driver for developing a formalized process to achieve safeguards by design is to support the global growth of nuclear power while reducing 'nuclear security' risks. This paper discusses an institutional approach to the design process for a nuclear facility, for designing proliferation resistance, international safeguards and U.S. national safeguards and security into new nuclear facilities. In the United States, the need exists to develop a simple, concise, formalized, and integrated approach for incorporating international safeguards and other non-proliferation considerations into the facility design process. An effective and efficient design process is one which clearly defines the functional requirements at the beginning of the project and provides for the execution of the project to achieve a reasonable balance among competing objectives in a cost effective manner. Safeguards by Design is defined as 'the integration of international and national safeguards, physical security and non-proliferation features as full and equal partners in the design process of a nuclear energy system or facility,' with the objective to achieve facilities that are intrinsically more robust while being less expensive to safeguard and protect. This Safeguards by Design process has been developed such that it: (sm b ullet) Provides improved safeguards, security, and stronger proliferation barriers, while reducing the life cycle costs to the operator and regulatory agencies, (sm b ullet) Can be translated to any international context as a model for nuclear facility design, (sm b ullet) Fosters a culture change to ensure the treatment of 'nuclear security' considerations as 'full and equal' partners in the design process, (sm b ullet) Provides a useful tool for the project manager responsible for the design, construction, and start-up of nuclear facilities, and (sm b ullet) Addresses the key integration activities necessary to efficiently incorporate International Atomic

  5. Safeguards and Physics Measurements: Services

    International Nuclear Information System (INIS)

    Carchon, R.

    2000-01-01

    SCK-CEN's department of Safeguards and Physics Measurements provides a wide variety of internal and external services including dosimetry, calibration, instrumentation, whole body counting, safeguards and non-destructive analysis. Main developments in these areas in 1999 are described

  6. Safeguarding the Plutonium Fuel Cycle

    International Nuclear Information System (INIS)

    Johnson, S.J.; Lockwood, D.

    2013-01-01

    In developing a Safeguards Approach for a plutonium process facility, two general diversion and misuse scenarios must be addressed: 1) Unreported batches of undeclared nuclear material being processed through the plant and bypassing the accountancy measurement points, and 2) The operator removing plutonium at a rate that cannot be detected with confidence due to measurement uncertainties. This paper will look at the implementation of international safeguards at plutonium fuel cycle facilities in light of past lessons learned and current safeguards approaches. It will then discuss technical areas which are currently being addressed as future tools to improve on the efficiency of safeguards implementation, while maintaining its effectiveness. The discussion of new improvements will include: safeguards by design (SBD), process monitoring (PM), measurement and monitoring equipment, and data management. The paper is illustrated with the implementation of international safeguards at the Rokkasho Reprocessing Plant in Japan and its accountancy structure is detailed. The paper is followed by the slides of the presentation

  7. IAEA Safeguards Information System (ISIS)

    International Nuclear Information System (INIS)

    1984-10-01

    Publication of this technical document should serve for better understanding of the technical and functional features of the IAEA Safeguards Information System (ISIS) within the Agency, as well as in the National Systems of accounting for and control of nuclear material. It will also serve as a foundation for further development and improvement of the design and modifications of the Safeguards Information System and its services as a function of Safeguards implementation

  8. Safeguards in the European Union: The new partnership approach

    International Nuclear Information System (INIS)

    Thorstensen, S.; Chitumbo, K.

    1995-01-01

    This article highlights the circumstances surrounding the birth of the New Partnership Approach (NPA) and the status of its implementation. It particularly looks at elements of the NPA and practical arrangements that are being followed for specific types of nuclear and related facilities. Since elements of the NPA have been put into practice, significant savings have been realized in the allocation of safeguards inspection resources for Euratom countries, while ensuring effective verification. 1 graph, 1 tab

  9. Symposium on International Safeguards: Preparing for Future Verification Challenges

    International Nuclear Information System (INIS)

    2010-01-01

    The purpose of the symposium is to foster dialogue and information exchange involving Member States, the nuclear industry and members of the broader nuclear non-proliferation community to prepare for future verification challenges. Topics addressed during the 2010 symposium include the following: - Supporting the global nuclear non-proliferation regime: Building support for strengthening international safeguards; Enhancing confidence in compliance with safeguards obligations; Legal authority as a means to enhance effectiveness and efficiency; Verification roles in support of arms control and disarmament. - Building collaboration and partnerships with other international forums: Other verification and non-proliferation regimes; Synergies between safety, security and safeguards regimes. - Improving cooperation between IAEA and States for safeguards implementation: Strengthening State systems for meeting safeguards obligations; Enhancing safeguards effectiveness and efficiency through greater cooperation; Lessons learned: recommendations for enhancing integrated safeguards implementation. - Addressing safeguards challenges in an increasingly interconnected world: Non-State actors and covert trade networks; Globalization of nuclear information and technology. - Preparing for the global nuclear expansion and increasing safeguards workload: Furthering implementation of the State-level concept and integrated safeguards; Information-driven safeguards; Remote data-driven safeguards inspections; Safeguards in States without comprehensive safeguards agreements. - Safeguarding advanced nuclear facilities and innovative fuel cycles: Proliferation resistance; Safeguards by design; Safeguards approaches for advanced facilities. - Advanced technologies and methodologies: For verifying nuclear material and activities; For detecting undeclared nuclear material and activities; For information collection, analysis and integration. - Enhancing the development and use of safeguards

  10. Safeguards Export-Import Training: Adapting to Changes in the Department of Safeguards Over 6 Years of Experience

    International Nuclear Information System (INIS)

    Chatelus, R.; ); Crete, J.-M.; Schot, P.-M.; Hushbeck, E.C.; Heine, P.

    2015-01-01

    Safeguards relevant information encompasses information available to the Agency in exercising its rights and fulfiling its obligations under relevant safeguards agreement(s). It includes information relating to nuclear or nuclear related trade like international transfers of nuclear material, or export (or import upon request by the Agency) of specified equipment described in annex 2 of the Additional Protocol. It may also include information provided by States on a voluntary basis. In 2005, the General Conference (see GC(49)/RES/13) encouraged the provision of information on procurement enquiries, export denials and other nuclear related information. Objectively and independently assessing this information and combining it with other Safeguards data and knowledge requires relevant expertise and well defined processes. Since 2008, the bi-annual Export-Import (EXIM) Training Workshop, jointly run by the IAEA Department of Safeguards and the U.S. Department of Energy, enables SG staff to develop competencies required for collecting, processing and drawing objective conclusions in this area. Over the years, more than 150 SG staff have been exposed to technical information on relevant non-nuclear material and equipment, trade data from different origins, analytical processes, and exercises to use this knowledge in realistic safeguards work scenarios. The EXIM training has also been an opportunity to develop analytical best practices and explore how this analytical work finds it place in the verification process. The paper describes the background and purpose of the EXIM training, how it helps Safeguards to independently collect and analyze relevant trade information to fulfil its obligations. It also touches on the lessons learned from six years of training experience, observing how the Department of Safeguards develops and implements structured processes to collect, process and evaluate safeguards relevant trade information, in order to establish findings and draw

  11. Development of environmental sample analysis techniques for safeguards

    International Nuclear Information System (INIS)

    Magara, Masaaki; Hanzawa, Yukiko; Esaka, Fumitaka

    1999-01-01

    JAERI has been developing environmental sample analysis techniques for safeguards and preparing a clean chemistry laboratory with clean rooms. Methods to be developed are a bulk analysis and a particle analysis. In the bulk analysis, Inductively-Coupled Plasma Mass Spectrometer or Thermal Ionization Mass Spectrometer are used to measure nuclear materials after chemical treatment of sample. In the particle analysis, Electron Probe Micro Analyzer and Secondary Ion Mass Spectrometer are used for elemental analysis and isotopic analysis, respectively. The design of the clean chemistry laboratory has been carried out and construction will be completed by the end of March, 2001. (author)

  12. Safeguards and Non-destructive Assay

    International Nuclear Information System (INIS)

    Carchon, R.; Bruggeman, M.

    2001-01-01

    SCK-CEN's programme on safeguards and non-destructive assay includes: (1) various activities to assure nuclear materials accountancy; (2) contributes to the implementation of Integrated Safeguards measures in Belgium and to assist the IAEA through the Belgian Support Programme; (3) renders services to internal and external customers in the field of safeguards; (4) improves passive neutron coincidence counting techniques for waste assay and safeguards verification measurements by R and D on correlation algorithms implemented via software or dedicated hardware; (5) improves gamma assay techniques for waste assay by implementing advanced scanning techniques and different correlation algorithms; and (6) develops numerical calibration techniques. Major achievements in these areas in 2000 are reported

  13. Safeguards and security progress report, January-December 1983

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.B. (comp.)

    1984-09-01

    From January to December 1983, the Los Alamos Safeguards and Security Program was involved in the activities described in the first four parts of this report: Nuclear Facility Support, Security Development and Support, Safeguards Technology Development, and International Safeguards. Part 1 covers efforts of direct assistance to the Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) licensee facilities. This assistance includes consultation on materials accounting problems, development of specialized techniques and instruments, and comprehensive participation in the design and implementation of advanced safeguards systems. In addition, a series of training courses in various aspects of safeguards makes the technology more accessible to those who must apply it. Part 2 treats activities aimed at the security of information and computer systems. Our focus this peiod was on continuing the activities of the Computer Security Center, which provides the basis for encouraging and disseminating this emerging technology, and on the development and demonstration of secure computer systems. Part 3 describes the broad development efforts essential to continuing improvements in the practice of safeguards. Although these projects are properly classified as developmental, they address recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Enrichment plant safeguards, especially those concerning the Gas Centrifuge Enrichment Plant, required a significant portion of our resources. These efforts are beginning to provide substantial returns on our investment in technology transfer, not only in raising the level of safeguards effectiveness but also in our benefiting from field experiences in operating environments.

  14. Safeguards and security progress report, January-December 1983

    International Nuclear Information System (INIS)

    Smith, D.B.

    1984-09-01

    From January to December 1983, the Los Alamos Safeguards and Security Program was involved in the activities described in the first four parts of this report: Nuclear Facility Support, Security Development and Support, Safeguards Technology Development, and International Safeguards. Part 1 covers efforts of direct assistance to the Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) licensee facilities. This assistance includes consultation on materials accounting problems, development of specialized techniques and instruments, and comprehensive participation in the design and implementation of advanced safeguards systems. In addition, a series of training courses in various aspects of safeguards makes the technology more accessible to those who must apply it. Part 2 treats activities aimed at the security of information and computer systems. Our focus this peiod was on continuing the activities of the Computer Security Center, which provides the basis for encouraging and disseminating this emerging technology, and on the development and demonstration of secure computer systems. Part 3 describes the broad development efforts essential to continuing improvements in the practice of safeguards. Although these projects are properly classified as developmental, they address recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Enrichment plant safeguards, especially those concerning the Gas Centrifuge Enrichment Plant, required a significant portion of our resources. These efforts are beginning to provide substantial returns on our investment in technology transfer, not only in raising the level of safeguards effectiveness but also in our benefiting from field experiences in operating environments

  15. Building safeguards infrastructure

    International Nuclear Information System (INIS)

    McClelland-Kerr, J.; Stevens, J.

    2010-01-01

    Much has been written in recent years about the nuclear renaissance - the rebirth of nuclear power as a clean and safe source of electricity around the world. Those who question the nuclear renaissance often cite the risk of proliferation, accidents or an attack on a facility as concerns, all of which merit serious consideration. The integration of three areas - sometimes referred to as 3S, for safety, security and safeguards - is essential to supporting the clean and safe growth of nuclear power, and the infrastructure that supports these three areas should be robust. The focus of this paper will be on the development of the infrastructure necessary to support safeguards, and the integration of safeguards infrastructure with other elements critical to ensuring nuclear energy security

  16. Action Research in European perspective

    DEFF Research Database (Denmark)

    Rasmussen, Lauge Baungaard

    2004-01-01

    The article gives an overview of how different Italian and Danish contributions to action research can be viewed in an European perspective.......The article gives an overview of how different Italian and Danish contributions to action research can be viewed in an European perspective....

  17. Safeguards System for the Advanced Spent Fuel Conditioning Process Facility

    International Nuclear Information System (INIS)

    Kim, Ho-dong; Lee, T.H.; Yoon, J.S.; Park, S.W; Lee, S.Y.; Li, T.K.; Menlove, H.; Miller, M.C.; Tolba, A.; Zarucki, R.; Shawky, S.; Kamya, S.

    2007-01-01

    The advanced spent fuel conditioning process (ACP) which is a part of a pyro-processing has been under development at Korean Atomic Energy Research Institute (KAERI) since 1997 to tackle the problem of an accumulation of spent fuel. The concept is to convert spent oxide fuel into a metallic form in a high temperature molten salt in order to reduce the heat energy, volume, and radioactivity of a spent fuel. Since the inactive tests of the ACP have been successfully implemented to confirm the validity of the electrolytic reduction technology, a lab-scale hot test will be undertaken in a couple of years to validate the concept. For this purpose, the KAERI has built the ACP Facility (ACPF) at the basement of the Irradiated Material Examination Facility (IMEF) of KAERI, which already has a reserved hot-cell area. Through the bilateral arrangement between US Department of Energy (DOE) and Korean Ministry of Science and Technology (MOST) for safeguards R and D, the KAERI has developed elements of safeguards system for the ACPF in cooperation with the Los Alamos National Laboratory (LANL). The reference safeguards design conditions and equipment were established for the ACPF. The ACPF safeguards system has many unique design specifications because of the particular characteristics of the pyro-process materials and the restrictions during a facility operation. For the material accounting system, a set of remote operation and maintenance concepts has been introduced for a non-destructive assay (NDA) system. The IAEA has proposed a safeguards approach to the ACPF for the different operational phases. Safeguards measures at the ACPF will be implemented during all operational phases which include a 'Cold Test', a 'Hot Test' and at the end of a 'Hot test'. Optimization of the IAEA's inspection efforts was addressed by designing an effective safeguards approach that relies on, inter alia, remote monitoring using cameras, installed NDA instrumentation, gate monitors and seals

  18. Safeguards technology: present posture and future impact

    International Nuclear Information System (INIS)

    Keepin, G.R.

    1976-01-01

    With widespread and growing concern over the issues of nuclear safeguards, international nuclear trade and nuclear weapons proliferation, the full development of the world's nuclear energy potential could well depend on how effectively the strategic nuclear materials that fuel nuclear power are controlled and safeguarded. The broad U.S. program in nuclear safeguards and security is directed toward a balanced safeguards system incorporating the two major components of physical security and materials control. The current posture of modern safeguards technology, its impact on plant operations, and the key role it must play in the implementation of stringent cost-effective safeguards systems in facilities throughout the nuclear fuel cycle are outlined

  19. The European initiative on low-dose risk research: from the HLEG to MELODI

    International Nuclear Information System (INIS)

    Belli, Mauro; Tabocchini, Maria Antonella; Jourdain, Jean-Rene; Repussard, Jacques; Salomaa, Sisko

    2015-01-01

    The importance of low-dose risk research for radiation protection is now widely recognised. The European Commission (EC) and five European Union (EU) Member States involved in the Euratom Programme set up in 2008 a 'High Level and Expert Group on European Low Dose Risk Research' (HLEG) aimed at identifying research needs and proposing a better integration of European efforts in the field. The HLEG revised the research challenges and proposed a European research strategy based on a 'Multidisciplinary European Low Dose Initiative' (MELODI). In April 2009, five national organisations, with the support of the EC, created the initial core of MELODI (http://www.melodi-online.eu) with a view to integrate the EU institutions with significant programmes in the field, while being open to other scientific organisations and stakeholders, and to develop an agreed strategic research agenda (SRA) and roadmap. Since then, open workshops have been organised yearly, exploring ideas for SRA implementation. As of October 2014, 31 institutions have been included as members of MELODI. HLEG recommendations and MELODI SRA have become important reference points in the radiation protection part of the Euratom Research Programme. MELODI has established close interactions through Memorandum of Understanding with other European platforms involved in radiation protection (Alliance, NERIS and EURADOS) and, together with EURADOS, with the relevant medical European Associations. The role of Joint Programming in priority setting, foreseen in the forthcoming EU Horizon 2020, calls for keeping MELODI an open, inclusive and transparent initiative, able to avoid redundancies and possible conflicts of interest, while promoting common initiatives in radiation protection research. An important issue is the establishment of a proper methodology for managing these initiatives, and this includes the set-up of an independent MELODI Scientific Committee recently extended to Alliance, NERIS

  20. The European initiative on low-dose risk research: from the HLEG to MELODI.

    Science.gov (United States)

    Belli, Mauro; Tabocchini, Maria Antonella; Jourdain, Jean-René; Salomaa, Sisko; Repussard, Jacques

    2015-09-01

    The importance of low-dose risk research for radiation protection is now widely recognised. The European Commission (EC) and five European Union (EU) Member States involved in the Euratom Programme set up in 2008 a 'High Level and Expert Group on European Low Dose Risk Research' (HLEG) aimed at identifying research needs and proposing a better integration of European efforts in the field. The HLEG revised the research challenges and proposed a European research strategy based on a 'Multidisciplinary European LOw Dose Initiative' (MELODI). In April 2009, five national organisations, with the support of the EC, created the initial core of MELODI (http://www.melodi-online.eu) with a view to integrate the EU institutions with significant programmes in the field, while being open to other scientific organisations and stakeholders, and to develop an agreed strategic research agenda (SRA) and roadmap. Since then, open workshops have been organised yearly, exploring ideas for SRA implementation. As of October 2014, 31 institutions have been included as members of MELODI. HLEG recommendations and MELODI SRA have become important reference points in the radiation protection part of the Euratom Research Programme. MELODI has established close interactions through Memorandum of Understanding with other European platforms involved in radiation protection (Alliance, NERIS and EURADOS) and, together with EURADOS, with the relevant medical European Associations. The role of Joint Programming in priority setting, foreseen in the forthcoming EU Horizon 2020, calls for keeping MELODI an open, inclusive and transparent initiative, able to avoid redundancies and possible conflicts of interest, while promoting common initiatives in radiation protection research. An important issue is the establishment of a proper methodology for managing these initiatives, and this includes the set-up of an independent MELODI Scientific Committee recently extended to Alliance, NERIS and EURADOS, with

  1. The status of United States R and D programs in safeguards and physical protection

    International Nuclear Information System (INIS)

    Mangan, D.L.; Tape, J.W.

    1993-01-01

    The breakup of former Soviet Union and the strategic nuclear arms reduction agreements, START 1 and 2, when fully implemented, will result in the significant reduction and dismantlement of nuclear weapons. These events will produce the significant increase of stored nuclear materials requiring the utmost control and care for indefinite future. Some of these materials in addition to existing wastes and residues may need further processing. The control of nuclear materials through safeguards, both domestic and international, is one of only a few effective barriers to nuclear proliferation. The improved technology is the key to the cost effective safeguards of nuclear materials. The Department of Energy carries out the research and development programs at its national laboratories. As the most notable demonstration and training efforts of new technologies, there is International Training Courses on the State System of Accounting and Control and the Physical Protection of Nuclear Facilities and Materials. The Office of Research and Development of the Office of Intelligence and National Security Affairs, the Department of Energy, the Office of Safeguards and Security, International Safeguards Division and so on carry out the activities of the R and D on safeguards and physical protection. (K.I.)

  2. Safeguards and security progress report, January-December 1984

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.B. (comp.)

    1986-01-01

    From January to December 1984, the Los Alamos Safeguards and Security Program was involved in the activities described in the first four parts of this report: Nuclear Facility Support, Security Development and Support, Safeguards Technology Development, and International Safeguards. Part 1 covers efforts of direct assistance to the Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) licensee facilities. Part 2 treats activities aimed at the security of information and computer systems. was Part 3 describes the broad development efforts essential to continuing improvements in the practice of safeguards. Although these projects are properly classified as developmental, they address recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Enrichment plant safeguards, especially those concerning the Gas Centrifuge Enrichment Plant, required a significant portion of our resources. These efforts are beginning to provide substantial returns on our investment in technology transfer, not only in raising the level of safeguards effectiveness but also in benefiting from field experiences in operating environments.

  3. Safeguards and security progress report, January-December 1984

    International Nuclear Information System (INIS)

    Smith, D.B.

    1986-01-01

    From January to December 1984, the Los Alamos Safeguards and Security Program was involved in the activities described in the first four parts of this report: Nuclear Facility Support, Security Development and Support, Safeguards Technology Development, and International Safeguards. Part 1 covers efforts of direct assistance to the Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) licensee facilities. Part 2 treats activities aimed at the security of information and computer systems. was Part 3 describes the broad development efforts essential to continuing improvements in the practice of safeguards. Although these projects are properly classified as developmental, they address recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Enrichment plant safeguards, especially those concerning the Gas Centrifuge Enrichment Plant, required a significant portion of our resources. These efforts are beginning to provide substantial returns on our investment in technology transfer, not only in raising the level of safeguards effectiveness but also in benefiting from field experiences in operating environments

  4. Safeguards Strategy in Physical Protection System for Nuclear Installation

    International Nuclear Information System (INIS)

    Ade lndra B; Kasturi; Tatang Eryadi

    2004-01-01

    Safeguards strategy is directed at efforts of eliminating theft of nuclear materials and sabotage of nuclear installation. For achieving the above objective, it is necessary to set up safeguards strategy in physical protection of nuclear materials and installation. The safeguards strategy starts from anticipated security condition, list of thefts, planning referred to as safeguards planning. Safeguards planning are implemented in safeguards implementation, followed up then by evaluation. Results of evaluation are equipped with results of safeguards survey already developed. Safeguards' planning is made from these results and serve as guidelines for next safeguards implementation and is repeated to form a safeguard cycle. One safeguard cycle is made on a periodical basis, at least annually. (author)

  5. Assurance of the effectiveness of safeguards in light of their objectives

    International Nuclear Information System (INIS)

    Kennedy, R.T.; Lyon, H.E.

    1977-01-01

    The purpose of nuclear safeguards is to prevent unauthorized use of SNM or sabotage of facilities in which significant quantities of SNM are located. A balanced safeguards system includes the three elements of material accountability, material control, and physical protection. These safeguard systems must detect unauthorized activities, initiate timely response and, as necessary, provide sufficient delay for an appropriate action to be taken. Methods used to assure effectiveness of safeguards systems for both ERDA and licensed facilities will be reviewed in this paper. The respective responsibilities of ERDA and NRC are briefly outlined as are the procedures and methods used for implementing these responsibilities. The objective of achieving overall comparability between ERDA and licensed facilities is discussed. The manner in which adequacy of safeguards is assessed is discussed. New techniques which are beginning to be employed and further refined is presented. These involve characterization of the representative threats, development of modeling of outsider and insider threats, site specific analysis of facility vulnerabilities to threats and selection of critical paths. Modeling is used to assess effectiveness with which a system protects against a postulated threat along critical attack paths. Assumptions with regard to the protection provided by the different elements can be varied to improve (decrease) vulnerability along any path. This method along with graphic analysis techniques can be used to: - Identify current weaknesses in existing or as designed systems. - Evaluate upgrading plans. - Develop design trade-offs. - Identify hardware or other developments required. Research and development is required to deal with the problems identified in these assessments and in the safeguards related studies conducted by both ERDA and NRC. These efforts and a summary of the areas currently under review will be described briefly. The practical problems of proof testing

  6. The European radioecology alliance: encouraging the coordination and integration of research activities in radioecology

    Energy Technology Data Exchange (ETDEWEB)

    Real, A. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas - CIEMAT (Spain); European Radioecology Alliance Association, French Institute for Radiological Protection and Nuclear Safety - IRSN, 31 Avenue de la Division Leclerc, BP 17, 92262 Fontenay-aux-Roses Cedex (France); Currivan, Lorraine [Radiological Protection Institute of Ireland - RPII (Ireland); Gariel, Jean-Christophe [Institut de Radioprotection et de Surete Nucleaire - IRSN (France); Hardeman, Frank [SCK.CEN (Belgium); Howard, Brenda [Natural Environment Research Council - NERC, UK (United Kingdom); Lukashenko, Sergey [Kazakhstan Republic Institute of Nuclear Physics - NNCRK (Kazakhstan); Lund, Ingemar [Swedish Radiation Safety Authority - SSM (Sweden); Sabatier, Laure [Commissariat a l' energie atomique et aux energies alternatives - CEA (France); Sachs, Susanne [Helmholtz-Zentrum Dresden-Rossendorf - HZDR (Germany); Salomaa, Sisko [Radiation and Nuclear Safety Authority - STUK (Finland); Smith, James [University of Portsmouth - UoP (United Kingdom); Steiner, Martin [Federal Office for Radiation Protection - BfS (Germany); Strand, Per [Norwegian Radiation Protection Authority - NRPA (Norway); Tschiersch, Jochen [Helmholtz Zentrum Muenchen - HMGU (Germany); Hinton, Thomas [Strategy for Allied Radioecology - STAR Coordinator, IRSN (France); Vandenhove, Hildegarde [COordination and iMplementation of a pan-European instrumenT for radioecology - COMET Coordinator, SCK.CEN (Belgium)

    2014-07-01

    The European Radioecology Alliance was established in 2009 with a firm conviction from its eight founding European organizations that joining forces would enhance the competence of radioecology science in Europe. The main objective of the Radioecology Alliance is to progressively strengthen the coordination and integration of research in the field of radioecology at national, European and international level. The integration of the European radioecology community will be a key aspect facing the upcoming EURATOM Horizon 2020 framework programme. In 2012, the Radioecology Alliance was officially constituted as an Association, and in June 2013 grew from 8 to 14 members from 10 different countries (Belgium, Finland, France, Germany, Ireland, Kazakhstan, Norway, Spain, Sweden and United Kingdom). Within the framework of the Radioecology Alliance, a Network of Excellence in Radioecology STAR (Strategy for Allied Radioecology) was created in 2011 with financial support of the EC FP7. More recently, the project COMET (Coordination and implementation of a pan-European instrument for radioecology) has been also funded by the EC to strengthen the pan-European research initiative on the radiation impact on man and the environment by facilitating the integration of the Research and Development activities in radioecology. The Radioecology Alliance, in close collaboration with STAR in the first phase, and more recently with COMET, has developed for the first time a Strategic Research Agenda (SRA) on Radioecology. The SRA identifies three challenges: (1) To predict human and wildlife exposure more robustly by quantifying the key processes that most influence radionuclide transfers; (2) To determine ecological consequences under realistic exposure conditions and (3) To improve human and environmental protection by integrating radioecology. Within these 3 challenges, 15 research lines have been identified. After a consultation process which included not only the scientific community

  7. Advanced safeguards systems development for chemical processing plants. Final report for Fiscal Year 1979

    International Nuclear Information System (INIS)

    Johnson, C.E.

    1980-01-01

    A computer system is being installed by INEL to test and evaluate safeguards monitoring concepts in an operating nuclear fuel processing plant. Safeguards development sensors and instruments installed in the ICPP provide plant information to a computer data acquisition and analysis system. Objective of the system is to collect data from process and safeguards sensors and show how this data can be analyzed to detect diversion operations or improper plant operation, and to test the performance of the monitoring devices. Approximately one-third of the installation designs and one-eighth of the installations were completed in FY 1979. The ICPP processing schedule for FY 1980 permits installation of the remaining monitoring devices before process startup in the fourth quarter of FY 1980. All computer hardware was delivered and checked out in FY 1979. Computer software system designs were completed with the majority of the programming scheduled for FY 1980. Sensor and instrument development in FY 1979 emphasized device testing for ICPP monitoring applications

  8. A European Flood Database: facilitating comprehensive flood research beyond administrative boundaries

    Directory of Open Access Journals (Sweden)

    J. Hall

    2015-06-01

    Full Text Available The current work addresses one of the key building blocks towards an improved understanding of flood processes and associated changes in flood characteristics and regimes in Europe: the development of a comprehensive, extensive European flood database. The presented work results from ongoing cross-border research collaborations initiated with data collection and joint interpretation in mind. A detailed account of the current state, characteristics and spatial and temporal coverage of the European Flood Database, is presented. At this stage, the hydrological data collection is still growing and consists at this time of annual maximum and daily mean discharge series, from over 7000 hydrometric stations of various data series lengths. Moreover, the database currently comprises data from over 50 different data sources. The time series have been obtained from different national and regional data sources in a collaborative effort of a joint European flood research agreement based on the exchange of data, models and expertise, and from existing international data collections and open source websites. These ongoing efforts are contributing to advancing the understanding of regional flood processes beyond individual country boundaries and to a more coherent flood research in Europe.

  9. Inspection methods for safeguards systems at nuclear facilities

    International Nuclear Information System (INIS)

    Minichino, C.; Richard, E.W.

    1981-01-01

    A project team at Lawrence Livermore National Laboratory has been developing inspection procedures and training materials for the NRC inspectors of safeguards systems at licensed nuclear facilities. This paper describes (1) procedures developed for inspecting for compliance with the Code of Federal Regulations, (2) training materials for safeguards inspectors on technical topics related to safeguards systems, such as computer surety, alarm systems, sampling techniques, and power supplies, and (3) an inspector-oriented methodology for evaluating the overall effectiveness of safeguards systems

  10. Design and evaluation of an integrated safeguards system: principles

    International Nuclear Information System (INIS)

    Markin, J.T.; Coulter, C.A.; Gutmacher, R.G.; Whitty, W.J.

    1984-01-01

    An integrated safeguards system is defined as a collection of safeguards activities in which system components are coordinated to meet safeguards objectives efficiently within constraints imposed by safeguards resources, facility operations, potential adversaries, and regulatory requirements. This paper describes principles for designing and evaluating an integrated safeguards system that consists of four parts: a problem definition phase that specifies resources and constraints composing the problem boundary values, a system analysis/synthesis phase that describes how to select and integrate safeguards activities for efficient attainment of system objectives, a system evaluation/optimization phase that defines measures of safeguards performance and develops methods for evaluating them, and a decision-making phase that develops principles for selecting admissible designs and preference-ordering designs

  11. Part 7. Safeguards

    International Nuclear Information System (INIS)

    Amundson, P.I.; Rusch, G.K.

    1980-01-01

    This report describes fissile nuclear material safeguards technology, both current and developmental, and discusses the possible application of this technology to FBR systems. The proliferation risks associated with both subnational and national-level diversion are addressed

  12. Paying tribute to 25 years of safeguards leadership

    International Nuclear Information System (INIS)

    1994-01-01

    After phases of intensive development in the 1970s and consolidation in the 1980s, the IAEA's international safeguards system is now in a phase of transition. The 1990s look to be a time when verification activities are further expanded in response to global developments and challenges in the field of nuclear non-proliferation. How far have safeguards come, and where are they headed? This article offers some thoughts and perspectives on the main challenges and opportunities facing IAEA safeguards, in the context of some recent developments and the overall evolution of the safeguards system

  13. A European Perspective on Security Research

    Science.gov (United States)

    Liem, Khoen; Hiller, Daniel; Castex, Christoph

    Tackling the complexity and interdependence of today's security environment in the globalized world of the 21st century is an everlasting challenge. Whereas the end of the Cold War presented a caesura of global dimension for the political and economic architecture and a realignment of power distribution and international relations between former adversaries, September 11th of 2001 may be seen as another caesura. Since then, specifically among countries of the Western hemisphere, traditional security paradigms and theories have been critically questioned and the different security cultures and perceptions have resulted in diverse security and defence policies as well as in security research efforts of individual countries. Consensus, it seems, exists on the question of what the threats are that our modern interconnected societies are facing. Whether looking at international terrorism, organized crime, climate change, the illegal trafficking of goods and people or naturally caused catastrophes, these phenomena all have in common that they are in most cases of transnational nature. Formerly existing dividing lines between internal and external security continue to fade, presenting an enormous challenge for those in charge of designing security policy and even more so for the various institutions safeguarding European security. That is why dissent often revolves around the question on how to get hold of these complex problems. Geographic location, cultural background, ethical make-up of society as well as relations with neighbouring countries are all important aspects to be considered when assessing the security culture and policy of individual countries.

  14. Oak Ridge National Laboratory Office of International Nuclear Safeguards: Human Capital Development Activity in FY16

    International Nuclear Information System (INIS)

    Gilligan, Kimberly V.; Gaudet, Rachel N.

    2016-01-01

    In 2007, the U.S. Department of Energy National Nuclear Security Administration (DOE NNSA) Office of Nonproliferation and Arms Control (NPAC) completed a comprehensive review of the current and potential future challenges facing the international safeguards system. One of the report's key recommendations was for DOE NNSA to launch a major new program to revitalize the international safeguards technology and human resource base. In 2007, at the International Atomic Energy Agency (IAEA) General Conference, then Secretary of Energy Samuel W. Bodman announced the newly created Next Generation Safeguards Initiative (NGSI). NGSI consists of five program elements: policy development and outreach, concepts and approaches, technology and analytical methodologies, human capital development (HCD), and infrastructure development. This report addresses the HCD component of NGSI. The goal of the HCD component as defined in the NNSA Program Plan is ''to revitalize and expand the international safeguards human capital base by attracting and training a new generation of talent.'' The major objectives listed in the HCD goal include education and training, outreach to universities and professional societies, postdoctoral appointments, and summer internships at national laboratories.

  15. Oak Ridge National Laboratory Office of International Nuclear Safeguards: Human Capital Development Activity in FY16

    Energy Technology Data Exchange (ETDEWEB)

    Gilligan, Kimberly V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Nuclear Security and Isotope Technology Division; Gaudet, Rachel N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Nuclear Security and Isotope Technology Division

    2016-09-30

    In 2007, the U.S. Department of Energy National Nuclear Security Administration (DOE NNSA) Office of Nonproliferation and Arms Control (NPAC) completed a comprehensive review of the current and potential future challenges facing the international safeguards system. One of the report’s key recommendations was for DOE NNSA to launch a major new program to revitalize the international safeguards technology and human resource base. In 2007, at the International Atomic Energy Agency (IAEA) General Conference, then Secretary of Energy Samuel W. Bodman announced the newly created Next Generation Safeguards Initiative (NGSI). NGSI consists of five program elements: policy development and outreach, concepts and approaches, technology and analytical methodologies, human capital development (HCD), and infrastructure development. This report addresses the HCD component of NGSI. The goal of the HCD component as defined in the NNSA Program Plan is “to revitalize and expand the international safeguards human capital base by attracting and training a new generation of talent.” The major objectives listed in the HCD goal include education and training, outreach to universities and professional societies, postdoctoral appointments, and summer internships at national laboratories.

  16. International safeguards 1979

    International Nuclear Information System (INIS)

    Fischer, D.

    1979-01-01

    First, the nature of the nuclear proliferation problem is reviewed. Afterward, the extent to which the risk of further horizontal proliferation of nuclear weapons is being contained by international agreements and by the application of the IAEA's safeguards under these agreements is investigated. The geographical scope of such safeguards, the gaps in safeguards coverage, and the political and technical effectiveness of such safeguards are examined. In conclusion, it is pointed out that IAEA safeguards are the cutting edge of almost every nonproliferation measure that has so far been applied or put forward. Safeguards would also play a part in any international scheme for limiting vertical proliferation. If the cutting edge of safeguards is blunted or if, for one reason or another, safeguards cannot be or are not being applied, the nonproliferation regime will suffer commensurate damage

  17. Biotechnology worldwide and the 'European Biotechnology Thematic Network' Association (EBTNA).

    Science.gov (United States)

    Bruschi, F; Dundar, M; Gahan, P B; Gartland, K; Szente, M; Viola-Magni, M P; Akbarova, Y

    2011-09-01

    The European Biotechnology Congress 2011 held under the auspices of the European Biotechnology Thematic Network Association (EBTNA) in conjunction with the Turkish Medical Genetics Association brings together a broad spectrum of biotechnologists from around the world. The subsequent abstracts indicate the manner in which biotechnology has permeated all aspects of research from the basic sciences through to small and medium enterprises and major industries. The brief statements before the presentation of the abstracts aim to introduce not only Biotechnology in general and its importance around the world, but also the European Biotechnology Thematic Network Association and its aims especially within the framework of education and ethics in biotechnology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Mass spectrometric analysis for nuclear safeguards

    OpenAIRE

    BOULYGA S.; KONEGGER-KAPPEL S.; RICHTER Stephan; SANGELY L.

    2014-01-01

    Mass spectrometry is currently being implemented in a wide spectrum of research and industrial areas, such as material sciences, cosmo- and geochemistry, biology and medicine, to name just a few. Research and development in nuclear safeguards is closely related to the general field of “Peace Research”; representing a specific application area for analytical sciences in general and for mass spectrometry in particular. According to Albert Einstein “peace cannot be kept by force. It only can be ...

  19. European Network of Bipolar Research Expert Centre (ENBREC)

    DEFF Research Database (Denmark)

    Henry, Chantal; Andreassen, Ole A; Barbato, Angelo

    2013-01-01

    Bipolar disorders rank as one of the most disabling illnesses in working age adults worldwide. Despite this, the quality of care offered to patients with this disorder is suboptimal, largely due to limitations in our understanding of the pathology. Improving this scenario requires the development...... centres across Europe can collaborate on a wide range of basic science and clinical programmes using shared protocols. This paper is to describe the network and how it aims to improve the quality and effectiveness of research in a neglected priority area....... of a critical mass of expertise and multicentre collaborative projects. Within the framework of the European FP7 programme, we developed a European Network of Bipolar Research Expert Centres (ENBREC) designed specifically to facilitate EU-wide studies. ENBREC provides an integrated support structure...... facilitating research on disease mechanisms and clinical outcomes across six European countries (France, Germany, Italy, Norway, Spain and the UK). The centres are adopting a standardised clinical assessment that explores multiple aspects of bipolar disorder through a structured evaluation designed to inform...

  20. Safeguards and security by design (SSBD) for the domestic threat - theft and sabotage

    International Nuclear Information System (INIS)

    Demuth, Scott F.; Mullen, Mark

    2011-01-01

    Safeguards by Design (SBD) is receiving significant interest with respect to international safeguards objectives. However, less attention has been focused on the equally important topic of domestic Safeguards and Security by Design (SSBD), which addresses requirements such as those of the Nuclear Regulatory Commission (NRC) in the United States. While international safeguards are concerned with detecting State diversion of nuclear material from peaceful to nuclear explosives purposes, domestic Material Protection, Control and Accounting measures (MPC and A) are focused on non-State theft and sabotage. The International Atomic Energy Agency (IAEA) has described the Safeguards by Design (SBD) concept as an approach in which 'international safeguards are fully integrated into the design process of a new nuclear facility from the initial planning through design, construction, operation, and decommissioning.' This same concept is equally applicable to SSBD for domestic requirements. The United States Department of Energy (DOE) has initiated a project through its Office of Nuclear Energy (NE) and more specifically its Fuel Cycle Research and Development (FCRD) program, to develop a domestic SSBD discipline and methodology in parallel with similar efforts sponsored by the DOE Next Generation Safeguards Initiative (NGSI) and the IAEA for international safeguards. This activity includes the participation of industry (through DOE-sponsored contracts) and DOE National Laboratories. This paper will identify the key domestic safeguards and security requirements (i.e. MC and A and physical protection) and explain how and why Safeguards and Security by Design (SSBD) is important and beneficial for the design of future US nuclear energy systems.

  1. EPERC: The European Pressure Equipment Research Council

    International Nuclear Information System (INIS)

    Darlaston, J.; McAllister, S.

    1998-01-01

    The European Pressure Equipment Research Council (EPERC) is a European Network of industries, research laboratories, inspection bodies and governmental institutions set up to foster co-operative research for the greater benefit of the European industry. The concept of a European Research Council originated at the PVRC meeting in Cannes in 1989 and since this time volunteers from the industry, research laboratories and of the European Commission Joint Research Centre, Petten have worked together to create a Statute for EPERC. In the context of the pressure equipment industry, the creation of EPERC is extremely pertinent, since in the near future, a Council directive on pressure equipment will replace the existing national regulations. In parallel to this, work is in progress for the elaboration of European Standards. It is useful to recall that ''Harmonised Standards'' will be the privileged means of complying with the Essential Safety Requirements of the directive. (author)

  2. Containment and surveillance - A principal IAEA safeguards measure

    International Nuclear Information System (INIS)

    Drayer, D.D.; Dupree, S.A.; Sonnier, C.S.

    1997-01-01

    The growth of the safeguards inspectorate of the Agency, spanning more than 40 years, has produced a variety of interesting subjects (legal, technical, political, etc.) for recollection, discussion, and study. Although the Agency was established in 1957, the first practical inspections did not occur until the early 1960s. In the early inspections, thee was little C/S equipment available, and no optical surveillance was used. However, by the third decade of the IAEA, the 1980s, many technology advances were made, and the level of C/S equipment activities increased. By the late 1980s, some 200 Twin Minolta film camera systems were deployed by the Agency for safeguards use. At the present time, the Agency is evaluating and beginning to implement remote monitoring as part of the Strengthened Safeguards System. However, adoption of remote monitoring by international agencies cannot occur rapidly because of the many technical and policy issues associated with this activity. A glimpse into the future indicates that an important element of safeguards instrumentation will be the merging of C/S and NDA equipment into integrated systems. The use of modern interior area monitors in International Safeguards also offers a great potential for advancing C/S measures. The research in microsensors is in its infancy, and the opportunities for their reducing the cost, increasing the life time, and increasing the reliability of sensors for safeguards applications are manifold. A period may be approaching in which the terminology of C/S will no longer have its original meaning, as integrated systems combining NDA instruments and C/S instruments are already in use and are expected to be the norm in the near future

  3. Safeguards planning in a plant design process

    International Nuclear Information System (INIS)

    Heinrich, L.A.

    1977-01-01

    The safeguards efforts for the partitioning fuel cycle are considered. Included in the discussion are the organization of the safeguards study, the development of safeguards criteria, the expression of these criteria as requirements for facility design, and some preliminary details of the implementation of these requirements in facility and process layout

  4. European nuclear safeguards and terrorism: a personal perspective

    International Nuclear Information System (INIS)

    Jacchia, E.

    1987-01-01

    This analysis is divided into two parts that, in the authors view, deal with two fundamentally different types of terrorism: national and state sponsored. The information is drawn from his experience and recollections of data and events. In terms of potential access to nuclear and chemical materials, the most dangerous possibility is the state-sponsored terrorist group, and it poses a difficult situation. The sponsor state may or may not be a member of the NPT and may or may not have accepted IAEA safeguards. Even if it had accepted them, given the technical and political limitations on the agency's activities, it is almost impossible for the IAEA to guarantee that illegal transfers do not occur

  5. Network adaptable information systems for safeguard applications

    International Nuclear Information System (INIS)

    Rodriguez, C.; Burczyk, L.; Chare, P.; Wagner, H.

    1996-01-01

    While containment and surveillance systems designed for nuclear safeguards have greatly improved through advances in computer, sensor, and microprocessor technologies, the authors recognize the need to continue the advancement of these systems to provide more standardized solutions for safeguards applications of the future. The benefits to be gained from the use of standardized technologies are becoming evident as safeguard activities are increasing world-wide while funding of these activities is becoming more limited. The EURATOM Safeguards Directorate and Los Alamos National Laboratory are developing and testing advanced monitoring technologies coupled with the most efficient solutions for the safeguards applications of the future

  6. Engineered safeguards system activities at Sandia Laboratories for back-end fuel cycle facilities

    International Nuclear Information System (INIS)

    Sellers, T.A.; Fienning, W.C.; Winblad, A.E.

    1978-01-01

    Sandia Laboratories have been developing concepts for safeguards systems to protect facilities in the back-end of the nuclear fuel cycle against potential threats of sabotage and theft of special nuclear material (SNM). Conceptual designs for Engineered Safeguards Systems (ESSs) have been developed for a Fuel Reprocessing Facility (including chemical separations, plutonium conversion, and waste solidification), a Mixed-Oxide Fuel Fabrication Facility, and a Plutonium Transport Vehicle. Performance criteria for the various elements of these systems and a candidate systematic design approach have been defined. In addition, a conceptual layout for a large-scale Fuel-Cycle Plutonium Storage Facility has been completed. Work is continuing to develop safeguards systems for spent fuel facilities, light-water reactors, alternative fuel cycles, and improved transportation systems. Additional emphasis will be placed on the problems associated with national diversion of special nuclear material. The impact on safeguards element performance criteria for surveillance and containment to protect against national diversion in various alternative fuel cycle complexes is also being investigated

  7. Scientific and technical information as a source for IAEA safeguards state evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Barletta, M.; Feldman, Y.; Ferguson, M. [International Atomic Energy Agency, Vienna (Austria)

    2014-07-01

    The IAEA Department of Safeguards is continually working to refine its methodologies and procedures for the analysis of information relevant to the evaluation of the nuclear fuel cycle in States that have safeguards agreements with the IAEA. This analysis is required to achieve an understanding of States' nuclear-related activities against which a State's declarations are evaluated for correctness as well as completeness, and to provide credible assurances on the peaceful uses of nuclear material in the State. To achieve this end, diversification of sources and comparison for consistency among available information is essential to ensure an accurate assessment of a State's nuclear activities. Open sources of information on scientific and technical (S&T) developments and research provide the Department of Safeguards with an enhanced basis to evaluate the technical capabilities of States. These information sources are regularly and systematically assessed to provide information about industrial capabilities, patenting activities and research and development activities in States as reflected through published scientific and technical literature. Using such sources, in addition to other, long-established safeguards information sources, helps the IAEA to draw soundly-based safeguards conclusions. The utility of this category of information in terms of the State evaluation process lies primarily in the comparison with other sources of information, especially State-declared information, and in the assessment of consistency of all safeguards-relevant information regarding nuclear fuel cycle technologies and activities in a State. The current paper aims to describe the use of S&T literature, how information from different sources is consolidated, how it is analysed and how it contributes in the overall process of State evaluation in the IAEA Department of Safeguards. (author)

  8. Key Nuclear Verification Priorities: Safeguards and Beyond

    International Nuclear Information System (INIS)

    Carlson, J.

    2010-01-01

    In addressing nuclear verification priorities, we should look beyond the current safeguards system. Non-proliferation, which the safeguards system underpins, is not an end in itself, but an essential condition for achieving and maintaining nuclear disarmament. Effective safeguards are essential for advancing disarmament, and safeguards issues, approaches and techniques are directly relevant to the development of future verification missions. The extent to which safeguards challenges are successfully addressed - or otherwise - will impact not only on confidence in the safeguards system, but on the effectiveness of, and confidence in, disarmament verification. To identify the key nuclear verification priorities, we need to consider the objectives of verification, and the challenges to achieving these. The strategic objective of IAEA safeguards might be expressed as: To support the global nuclear non-proliferation regime by: - Providing credible assurance that states are honouring their safeguards commitments - thereby removing a potential motivation to proliferate; and - Early detection of misuse of nuclear material and technology - thereby deterring proliferation by the risk of early detection, enabling timely intervention by the international community. Or to summarise - confidence-building, detection capability, and deterrence. These will also be essential objectives for future verification missions. The challenges to achieving these involve a mix of political, technical and institutional dimensions. Confidence is largely a political matter, reflecting the qualitative judgment of governments. Clearly assessments of detection capability and deterrence have a major impact on confidence. Detection capability is largely thought of as 'technical', but also involves issues of legal authority, as well as institutional issues. Deterrence has both political and institutional aspects - including judgments on risk of detection and risk of enforcement action being taken. The

  9. Key Nuclear Verification Priorities - Safeguards and Beyond

    International Nuclear Information System (INIS)

    Carlson, J.

    2010-01-01

    In addressing nuclear verification priorities, we should look beyond the current safeguards system. Non-proliferation, which the safeguards system underpins, is not an end in itself, but an essential condition for achieving and maintaining nuclear disarmament. Effective safeguards are essential for advancing disarmament, and safeguards issues, approaches and techniques are directly relevant to the development of future verification missions. The extent to which safeguards challenges are successfully addressed - or otherwise - will impact not only on confidence in the safeguards system, but on the effectiveness of, and confidence in, disarmament verification. To identify the key nuclear verification priorities, we need to consider the objectives of verification, and the challenges to achieving these. The strategic objective of IAEA safeguards might be expressed as: To support the global nuclear non-proliferation regime by: - Providing credible assurance that states are honouring their safeguards commitments - thereby removing a potential motivation to proliferate; and - Early detection of misuse of nuclear material and technology - thereby deterring proliferation by the risk of early detection, enabling timely intervention by the international community. Or to summarise - confidence-building, detection capability, and deterrence. These will also be essential objectives for future verification missions. The challenges to achieving these involve a mix of political, technical and institutional dimensions. Confidence is largely a political matter, reflecting the qualitative judgment of governments. Clearly assessments of detection capability and deterrence have a major impact on confidence. Detection capability is largely thought of as 'technical', but also involves issues of legal authority, as well as institutional issues. Deterrence has both political and institutional aspects - including judgments on risk of detection and risk of enforcement action being taken. The

  10. Design and evaluation of an integrated safeguards system: principles

    International Nuclear Information System (INIS)

    Markin, J.T.; Coulter, C.A.; Gutmacher, R.G.; Whitty, W.J.

    1984-07-01

    An integrated safeguards system is defined as a collection of safeguards activities in which system components are coordinated to meet safeguards objectives efficiently within constraints imposed by safeguards resources, facility operations, potential adversaries, and regulatory requirements. This paper describes principles for designing and evaluating an integrated safeguards system that consists of four parts: (1) a problem definition phase that specifies resources and constraints composing the problem boundary values; (2) a system analysis/synthesis phase that describes how to select and integrate safeguards activities for efficient attainment of system objectives; (3) a system evaluation/optimization phase that defines measures of safeguards performance and develops methods for evaluating them; and (4) a decision-making phase that develops principles for selecting admissible designs and preference-ordering designs. 6 references, 4 figures, 5 tables

  11. Lessons learned: Experiences with Integrated Safeguards in Norway

    International Nuclear Information System (INIS)

    Sekse, T.; Hornkjol, S.

    2010-01-01

    Integrated safeguards (IS) was implemented in Norway in 2002 as one of the first countries in the world. The implementation of IS has provided both advantages and disadvantages for Norway. Lessons learned will be discussed. The concept of unannounced inspections under the integrated safeguards regime compared to traditional safeguards is one of the major issues. Small users with depleted uranium as shielding containers and the effort used to safeguard them is an aspect of this issue. Recently there has been an interest from the IAEA to investigate the historical boundaries between a research reactor site and a neighboring defense research site. The paper will address this issue as a part of the implementation of IS. Lately, we have seen that several commercial parties have started research on nuclear fuel cycle related projects. This raises some questions concerning what to declare under Article 2 of the Additional Protocol (AP). Today anyone with a computer connected to the internet could carry out research amenable to declaration under the AP. This paper will discuss this issue. (author)

  12. The European Community's research and development programme on the decommissioning of nuclear installations

    International Nuclear Information System (INIS)

    Skupinski, E.

    1988-01-01

    The Commission of the European Communities (CEC) continued with a second research programme on the decommissioning of nuclear installations (1984-88), after having completed a first programme on the decommissioning of nuclear power plants (1979-83). The programme, which has about 70 research contracts with organisations or private firms in the member states, includes the development and testing of advanced techniques, such as decontamination and dismantling, and the consideration of the radioactive waste arising therefrom. Work is done at laboratory scale or in the context of large-scale decommissioning operations. The paper will give an overview on the technical content and on some selected results. (author)

  13. Technical aspects of nuclear nonproliferation: safeguards. Hearings before the Subcommittee on Energy Research and Production of the Committee on Science and Technology, US House of Representatives, Ninety-Seventh Congress, Second Session, August 3-4, 1982

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Ten witnesses from federal agencies, national laboratories, the nuclear industry, and the American Nuclear Society participated in a two-day hearing on research and development on domestic safeguards against theft and sabotage and international research and development on safeguards against the diversion of nuclear materials for weapons use. Speaking as individuals and in panels, the witnesses described the purpose and nature of current research programs and the coordination of these activities on the domestic and international levels to avoid duplication. Additional materials for the record follow the statements and responses of the witnesses

  14. The Association Between Dietary Flavonoid and Lignan Intakes and Incident Type 2 Diabetes in European Populations

    DEFF Research Database (Denmark)

    Zamora-Ros, Raul; Forouhi, Nita G.; Sharp, Stephen J.

    2013-01-01

    OBJECTIVE To study the association between dietary flavonoid and lignan intakes, and the risk of development of type 2 diabetes among European populations.RESEARCH DESIGN AND METHODS The European Prospective Investigation into Cancer and Nutrition-InterAct case-cohort study included 12,403 incide...... demonstrate inverse associations between flavonoids, particularly flavanols and flavonols, and incident type 2 diabetes. This suggests a potential protective role of eating a diet rich in flavonoids, a dietary pattern based on plant-based foods, in the prevention of type 2 diabetes....

  15. Australian Safeguards and Non-Proliferation Office, Annual Report 2001-2002

    International Nuclear Information System (INIS)

    2002-01-01

    During the year Australian Safeguards and Non-Proliferation Office (ASNO) continued our substantial contribution to the development and strengthening of international verification regimes concerned with weapons of mass destruction (WMD). Domestically, ASNO conducted, or contributed to, review of WMD- related legislation and administration, amending permits to enhance security arrangements, and beginning development of supporting legislative changes. Another major area of work is the replacement research reactor project, where ASNO has been closely involved through safeguards and security aspects. This year has been dominated by the terrorist attacks of 11 September 2001 on the United States, and ongoing consequences. These events, and the concern that terrorists would use WMD if they were able to acquire them, have served to emphasise the importance of effective counter-proliferation and counter-terrorism measures to complement the non-proliferation regimes. They have also focused attention on the need to deal with non- compliance with WMD treaty commitments. The key achivements reported for the year under review include: 1. All treaty and statutory requirements met in respect of: nuclear material and nuclear items in Australia, Australian uranium exports (Australian Obligated Nuclear Material), chemicals covered by the CWC (Chemical Weapons Convention) and establishment of CTBT(Comprehensive Nuclear-Test-Ban Treaty) monitoring stations; 2. Effective contribution to strengthening non-proliferation verification regimes and counter terrorism initiatives: ongoing support for IAEA safeguards development, regional outreach on IAEA safeguards, CWC implementation and encouraging CTBT ratification, ANSTO security upgraded; security plan approved for construction of replacement research reactor, review, with other responsible authorities, of security of CWC related chemicals, and radiation sources

  16. Objectives and techniques of an advanced safeguards system for the CANDU reactor

    International Nuclear Information System (INIS)

    Smith, R.M.; Zarecki, C.W.; Head, D.A.

    1981-01-01

    In 1975, Canada began to actively assist the IAEA with manpower and research and development efforts to meet this requirement for CANDU reactors. This paper describes various aspects of the CANDU safeguards scheme, including the containment and surveillance equipment that has been developed. It includes consideration of the following: objectives of the safeguards system, role of equipment in meeting system objectives, cost and maintenance of equipment, capabilities and limitations of equipment, and effectiveness of the scheme and equipment in providing assurance of diversion detection. 11 refs

  17. Nuclear safeguards implementations in Taiwan

    International Nuclear Information System (INIS)

    Hou, R-H.; Chang, C-K.; Lin, C-R.; Gone, J-K.; Chen, W-L.; Yao, D.

    2006-01-01

    Full text: Now with six Nuclear Power Plant (NPP) units in operation, two Advanced Boiling Water Reactor (ABWR) units under construction, and other peaceful applications of nuclear and radiation technology expanding in great pace, the Atomic Energy Council (AEC) has been focused on reactor safety regulation, radiation protection, radioactive waste administration, environmental monitoring and R and D for technology development and other civilian nuclear applications. Despite Taiwan's departure from the United Nations and therefore its family member International Atomic Energy Agency (IAEA) in 1971, Taiwan remains its commitment to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). To date, Taiwan is still part of the international nuclear safeguards system and accepts IAEA's inspections in accordance with its regulations on nuclear safeguards. In 1998, Taiwan further agreed, through exchange of letters between the AEC and IAEA, to implementation of the measures provided for in the model Protocol Additional to its safeguards agreement. In this paper, we will introduce Taiwan's nuclear safeguards history and describe some highlights of safeguards implementation in recent years, such as complementary accesses, transparency visits, remote monitoring inspections, unannounced inspections, facility attachment termination for the decommissioned facilities, and annual safeguards implementation meeting with IAEA

  18. Development of an advanced safeguards system as a proliferation deterrent

    International Nuclear Information System (INIS)

    Ayers, A.A.; Barnes, L.D.

    1978-11-01

    The Advanced Safeguards System consists of Computerized Nuclear Materials Control and Accounting System, Physical Protection System, and Safeguards Coordination Center (SCC). Should all the computer-based monitoring systems be overcome (i.e., the NMC computer programmed not to recognize a materials inventory change, the SCC computer programmed to accept a falsified area and personnel authorization, and the physical security system programmed not to alarm for area intrusion), the requirements of the physical security system remain formidable barriers to successful theft since all SNM is separated from the uncontrolled areas by at least one entry control portal. An egress from the protected area--by either a vehicle through the vehicle access portal, or on foot through the personnel access portal--requires that the individuals be subjected to a search for metal and SNM before egress is permitted. The material access areas are further controlled by an interior access portal imposing the same SNM and metal search criteria. The portal search criteria are not subject to computer interpretation, but direct positive--negative indications to the portal patrolman. The physical security system then provides an independent backup should the computerized systems be defeated. Thus, the computer systems themselves will not, if defeated, guarantee an adversary success. The corollary also holds true; a defeat of the physical search elements of the physical security system will not guarantee adversary success because of the monitoring/surveillance function of the computerized systems. The complementary and overlapping nature of the safeguards systems is intended to provide multiple layers of safeguards, each layer providing an effective element of protection. Tests to date indicate that it appears feasible to meet operational objectives and maintain a high safeguards performance level using these concepts which are being incorporated into the Advanced Safeguards System.None

  19. Observations on European Education and Educational Research: The "European Educational Research Journal" at Work, 2002-2014

    Science.gov (United States)

    Lindblad, Sverker

    2014-01-01

    This is a review of the "European Educational Research Journal" ("EERJ") since the start in 2002 and up to 2014. Three questions were put forward: what are the ambitions with the journal, how has the journal developed over time, and what are its possible futures? The review is based on minutes and emails from the late 1990s up…

  20. An Approach to Building Capacity for Nuclear Security and Safeguards in Thailand and the Southeast Asian Region

    International Nuclear Information System (INIS)

    Pengvanich, P.; Chanyotha, S.; Nilsuwankosit, S.

    2016-01-01

    Full text: A master’s degree programme in nuclear security and safeguards has been developed and offered at Chulalongkorn University for the first time in 2013 in order to develop necessary human resources in the fields of nuclear security and safeguards who can continue to work, conduct research, or serve as educators in these fields in Thailand and the Southeast Asian region. The first group of 20 students joined the programme in 2013 and recently graduated. The programme was one-of-its-kind, as there have not been many similar specialized programmes in nuclear security and safeguards in the past. In this paper, challenges and lessons learned throughout the programme are reported. Experience from the pilot programme will be used to improve the next round of the programme which is expected to start in 2017. With this program, more nuclear knowledge can be shared and maintained among the Association of South East Asian Nations (ASEAN) countries to ensure the peaceful utilization of nuclear technology in the region. (author

  1. Open source information acquisition, analysis and integration in the IAEA Department of Safeguards

    International Nuclear Information System (INIS)

    Barletta, M.; Zarimpas, N.; Zarucki, R.

    2010-10-01

    Acquisition and analysis of open source information plays an increasingly important role in the IAEA strengthened safeguards system. The Agency's focal point for open source information collection and analysis is the Division of Safeguards Information Management (SGIM) within the IAEA Department of Safeguards. In parallel with the approval of the Model Additional Protocol in 1997, a new centre of information acquisition and analysis expertise was created within SGIM. By acquiring software, developing databases, retraining existing staff and hiring new staff with diverse analytical skills, SGIM is pro actively contributing to the future implementation of information-driven safeguards in collaboration with other Divisions within the Department of Safeguards. Open source information support is now fully integrated with core safeguards processes and activities, and has become an effective tool in the work of the Department of Safeguards. This provides and overview of progress realized through the acquisition and use of open source information in several thematic areas: evaluation of additional protocol declarations; support to the State Evaluation process; in-depth investigation of safeguards issues, including assisting inspections and complementary access; research on illicit nuclear procurement networks and trafficking; and monitoring nuclear developments. Demands for open source information have steadily grown and are likely to continue to grow in the future. Coupled with the enormous growth and accessibility in the volume and sources of information, new challenges are presented, both technical and analytical. This paper discusses actions taken and future plans for multi-source and multi-disciplinary analytic integration to strengthen confidence in safeguards conclusions - especially regarding the absence of undeclared nuclear materials and activities. (Author)

  2. All-Source Information Acquisition and Analysis in the IAEA Department of Safeguards

    International Nuclear Information System (INIS)

    Ferguson, Matthew; Norman, Claude

    2010-01-01

    All source information analysis enables proactive implementation of in-field verification activities, supports the State Evaluation process, and is essential to the IAEA's strengthened safeguards system. Information sources include State-declared nuclear material accounting and facility design information; voluntarily supplied information such as nuclear procurement data; commercial satellite imagery; open source information and information/results from design information verifications (DIVs), inspections and complementary accesses (CAs). The analysis of disparate information sources directly supports inspections, design information verifications and complementary access, and enables both more reliable cross-examination for consistency and completeness as well as in-depth investigation of possible safeguards compliance issues. Comparison of State-declared information against information on illicit nuclear procurement networks, possible trafficking in nuclear materials, and scientific and technical information on nuclear-related research and development programmes, provides complementary measures for monitoring nuclear developments and increases Agency capabilities to detect possible undeclared nuclear activities. Likewise, expert analysis of commercial satellite imagery plays a critical role for monitoring un-safeguarded sites and facilities. In sum, the combination of these measures provides early identification of possible undeclared nuclear material or activities, thus enhancing deterrence of safeguards system that is fully information driven, and increasing confidence in Safeguards conclusions. By increasing confidence that nuclear materials and technologies in States under Safeguards are used solely for peaceful purposes, information-driven safeguards will strengthen the nuclear non-proliferation system. Key assets for Agency collection, processing, expert analysis, and integration of these information sources are the Information Collection and Analysis

  3. IAEA to implement Safeguards Additional Protocols in the EU

    International Nuclear Information System (INIS)

    2004-01-01

    Full text: IAEA Director General Mohamed ElBaradei welcomed the entry into force today of the Additional Protocols for 15 States of the European Union - France, the United Kingdom and the 13 non-nuclear weapon States of the EU - and the European Atomic Energy Community (EURATOM). The Protocols, which provide the Agency with better tools to verify compliance with nuclear non-proliferation commitments, entered into force when the European Commission informed the Agency that EURATOM's own requirements for entry into force had been met. The 15 States had provided similar notifications over the past years since signing the Protocols in 1998. The simultaneous entry into force of Additional Protocols for the 15 EU States is 'a very positive development and a milestone in our efforts to strengthen the verification regime', said Dr. ElBaradei. 'In my view, the Additional Protocol should become the standard for verification under the Treaty on the Non-Proliferation of Nuclear Weapons (NPT).' He added that the Agency had been preparing for the entry into force of the EU protocols and was confident that, in co-operation with the 15 States and EURATOM, it would be able to ensure effective and efficient implementation in the EU States. The Model Additional Protocol was developed following the discovery of Iraq's clandestine nuclear weapons programme to ensure that the IAEA is given the information and access it needs for timely discovery of any similar activities in States that have pledged not to use nuclear material and activities for weapons purposes. In the past year, Additional Protocols entered into force for 22 countries, and the Agency will now implement Additional Protocols in 58 States, which includes the 15 EU States. The 10 countries joining the EU on 1 May 2004 - seven of which already have brought into force Additional Protocols to their respective safeguards agreements - are expected to gradually accede to the Safeguards Agreement and Additional Protocol covering

  4. A Safeguardability Check-List for Safeguards by Design

    Energy Technology Data Exchange (ETDEWEB)

    Sevini, F. [European Commission - Joint Research Centre, Institute for Transuranium Elements, Nuclear Security Unit, Ispra (Italy); Renda, G. [European Commission, DG Energy, Directorate E ' Nuclear Safeguards' , Unit 4 ' Inspections: reactors, storages and others facilities, Luxembourg (Luxembourg); Sidlova, V. [European Commission - Joint Research Centre, Institute for Transuranium Elements, Nuclear Security Unit, Ispra (Italy)

    2011-12-15

    Safeguards by design is a complex step-by-step interactive decision process involving various stake-holders and design choices to be made over a certain period of time. The resulting plant design should be a compromise among economical, safety, security and safeguards implementation constraints. Access to technology and equipment, as well as to the nuclear fuel cycle, determines the basic choices that the designer has to make. Once the boundary conditions for a given facility have been fixed, the designer still faces the challenge of setting several design and operational parameters that will require various trade-offs . Concerning safeguards, these can be seen in three groups, i.e. those related to the general design and its intrinsic proliferation resistance; those related to the specific lay-out and planning; those related to the actual safeguards instrumentation, its effectiveness and efficiency. The paper aims at describing a model for a phased, or 'layered' approach to safeguards-by-design, focusing on the example of off-load reactors.

  5. European Nuclear Education Network Association - Support for nuclear education, training and knowledge management

    International Nuclear Information System (INIS)

    Ghitescu, Petre

    2009-01-01

    Developed in 2002-2003 the FP5 EURATOM project 'European Nuclear Engineering Network - ENEN' aimed to establish the basis for conserving nuclear knowledge and expertise, to create an European Higher Education Area for nuclear disciplines and to facilitate the implementation of the Bologna declaration in the nuclear disciplines. In order to ensure the continuity of the achievements and results of the ENEN project, on 22 September 2003, the European Nuclear Higher Education Area was formalized by creating the European Nuclear Education Network Association. ENEN Association goals are oriented towards universities by developing a more harmonized approach for education in the nuclear sciences and engineering in Europe, integrating European education and training in nuclear safety and radiation protection and achieving a better cooperation and sharing of resources and capabilities at the national and international level. At the same time it is oriented towards the end-users (industries, regulatory bodies, research centers, universities) by creating a secure basis of knowledge and skills of value to the EU. It maintains an adequate supply of qualified human resources for design, construction, operation and maintenance of nuclear infrastructures and plants. Also it maintains the necessary competence and expertise for the continued safe use of nuclear energy and applications of radiation in industry and medicine. In 2004-2005, 35 partners continued and expanded the started in FP 5 ENEN Association activities with the FP6 project 'NEPTUNO- Nuclear Education Platform for Training and Universities Organizations'. Thus ENEN established and implemented the European Master of Science in Nuclear Engineering, expanded its activities from education to training, organized and coordinated training sessions and pilot courses and included in its activities the Knowledge Management. At present, the ENEN Association gathers 45 universities, 7 research centers and one multinational company

  6. The state-level approach: moving beyond integrated safeguards

    International Nuclear Information System (INIS)

    Tape, James W.

    2008-01-01

    The concept of a State-Level Approach (SLA) for international safeguards planning, implementation, and evaluation was contained in the Conceptual Framework for Integrated Safeguards (IS) agreed in 2002. This paper describes briefly the key elements of the SLA, including State-level factors and high-level safeguards objectives, and considers different cases in which application of the SLA methodology could address safeguards for 'suspect' States, 'good' States, and Nuclear Weapons States hosting fuel cycle centers. The continued use and further development of the SLA to customize safeguards for each State, including for States already under IS, is seen as central to effective and efficient safeguards for an expanding nuclear world.

  7. Croatian Support for Strengthening International Safeguards

    International Nuclear Information System (INIS)

    Cizmek, Ankica; Novosel, Nevenka

    2010-01-01

    Nuclear science and technology has the potential to contribute to health and prosperity. However, it is also the basis for the development of nuclear weapons. The acceptance and implementation of IAEA safeguards therefore serve as important confidence building measures, through which a State can demonstrate, and other States can be assured, that nuclear energy is being used only for peaceful purpose. Practically, all countries around the world use nuclear techniques for a variety of peaceful purposes, including food and water security, energy, industrial application and human health. Only a few of these activities involve the type of nuclear material that could potentially be diverted to make nuclear weapons or other explosive devices. And here the safeguards are on duty. The safeguards system aims at detecting the diversion of nuclear material. In this paper will be presented international conventions and bilateral agreements in the field of nuclear safety as well as the Croatian cooperation with international organizations and associations in the nuclear area, such as Nuclear Supplier Group, Zangger Committee, Wassenaar Arrangement, Comprehensive Nuclear-Test- Ban treaty Organization, Euratom and civil expert groups of NATO. (author)

  8. Future directions for international safeguards - ESARDA WG on integrated safeguards

    International Nuclear Information System (INIS)

    Rezniczek, A.

    2013-01-01

    Reducing IAEA inspection effort does not mean that the overall safeguards effort will be reduced. There will be compensation and additional effort spent by states and SSACs (State Systems of Accounting and Control). State and/or regional authorities take very serious their responsibilities to safeguard the nuclear material. Enhanced cooperation between all players should be more seriously considered by the IAEA. A more effective implementation of the principle 'one job - one person' and sub-delegation of verification tasks should be taken into account for future evolution. At present, the state level approach is still based on a bottom up approach and not developed top down. The basis is still an aggregation of the facility specific safeguards approaches with some minor adjustments by state specific factors. The touchstone for a true state level approach would be a top-down development process with the result that safeguards effort spent in a state is no longer strongly correlated to the amount and quality of nuclear material in that state. The limitation of the Physical Model is that only the technical aspects are reflected. To actually perform a proliferation, the technical capability is a necessary but insufficient condition. Besides the pure technical capabilities, one has to consider the feasibility for a state to actually implement a proliferation action in its given environment. Factors to be considered are for example institutional factors, ownership of facilities and social and political structures in the state. The help a purely technical assessment can provide is also limited in cases where states have a well developed fuel cycle and thus have at their disposal all required technical capabilities. The paper is followed by the slides of the presentation. (authors)

  9. The European Network of Coloproctology: a strategy towards the European research and healthcare system.

    Science.gov (United States)

    Rubbini, Michele

    2016-12-01

    Many documents from the International Institutions point out that Health represents an engine of economic and social development. Based on these documents and concepts, the European Parliament decided to create a system of European Reference Networks as a synthesis of clinical and research activities, particularly in the field of rare diseases. This initiative, properly implemented, could be first step towards a new European health system. This article instead, wanting to deepen this perspective, postulates that the ERNs may also be related to widespread diseases, such as those of coloproctological interest, with the aim of setting up a European Network of Coloproctology (ENCP). Here are analyzed: (a) the documents related to ERNs and others related to research and training, the characteristics of the coloproctological diseases, and proposal of the ENCP; (b) a survey that involves 14 out of 25 of the National and Regional Representative of the European Society of Coloproctology. Hundred percent of the people interviewed agree to the ENCP project. The percentage of the approved proposed fields of activity of the ENCP are: Healthcare 71%, Research 100%, Training 86%, Support to legislation 78%, Professional Mobility 64%, Patient Database 71%, and Expenditure control 64%. From the analysis of the documents and the result of the survey, ERNs are appropriate not only in relation to rare diseases but also in those fields with higher diffusion and the creation of a European Network of Coloproctology is then postulated.

  10. Nuclear Safeguards and Electricity (Finance) Act 1978

    International Nuclear Information System (INIS)

    1978-01-01

    This Act of 30 June 1978 gives effect to the Agreement concluded on 6 September 1976 between the United Kingdom, the European Atomic Energy Community and the International Atomic Energy Agency for the application of safeguards in the territory of the United Kingdom in connection with the Treaty on the Non-Proliferation of nuclear Weapons. It also deals with the financial support provided by the State for the generating station at Drax. (NEA) [fr

  11. Program of enhancing the Korea-USA cooperation research for the development of proliferation resistant fuel cycle technology

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Ahn, D. H.; Ko, W. I.

    2007-03-01

    The objective of the Program is to develop the fuel cycle technology of GEN-IV SFR (Sodium Fast Reactor) system through the Korea-USA cooperation research in order to improve the efficiency of the technology development and to increase the transparency of the research. Since the pyroprocessing research by using actual spent nuclear fuel can not be performed in Korea at present, the active demonstration research will be performed by using the USA national research facilities under the Korea-USA cooperation. Moreover, the development of safeguards technology and the methodology for the evaluation of the proliferation resistance will also be performed under the cooperation. The current cooperation national laboratories of the safeguards and pyroprocessing technology development are LANL (Los Alamos National Lab.) and INL (Idaho National Lab.), respectively. Practical research experience and technical data for the pyroprocessing technology can be achieved through the demonstration of the inactive research results, which was performed in Korea, by using actual spent nuclear fuel. The scope of the cooperation study encompass the electrolytic reduction of oxide spent fuel, electrorefining, liquid cadmium cathode process, TRU fuel fabrication, fuel performance evaluation and related safeguards technology development

  12. Implementation of remove monitoring in facilities under safeguards with unattended systems

    International Nuclear Information System (INIS)

    Beddingfield, David H.; Nordquist, Heather A.; Umebayaashi, Eiji

    2009-01-01

    Remote monitoring is being applied by the International Atomic Energy Agency (IAEA) at nuclear facilities around the world. At the Monju Reactor in Japan we have designed, developed and implemented a remote monitoring approach that can serve as a model for applying remote monitoring to facilities that are already under full-scope safeguards using unattended instrumentation. Remote monitoring implementations have historically relied upon the use of specialized data collection hardware and system design features that integrate remote monitoring into the safeguards data collection system. The integration of remote monitoring and unattended data collection increases the complexity of safeguards data collection systems. This increase in complexity necessarily produces a corresponding reduction of system reliability compared to less-complex unattended monitoring systems. At the Monju facility we have implemented a remote monitoring system that is decoupled from the activity of safeguards data collection. In the completed system the function of remote data transfer is separated from the function of safeguards data collection. As such, a failure of the remote monitoring function cannot produce an associated loss of safeguards data, as is possible with integrated remote-monitoring implementations. Currently, all safeguards data from this facility is available to the IAEA on a 24/7 basis. This facility employs five radiation-based unattended systems, video surveillance and numerous optical seal systems. The implementation of remote monitoring at this facility, while increasing the complexity of the safeguards system, is designed to avoid any corresponding reduction in reliability of the safeguards data collection systems by having decoupled these functions. This design and implementation can serve as a model for implementation of remote monitoring at nuclear facilities that currently employ unattended safeguards systems.

  13. Safeguards training at Pacific Northwest Laboratory

    International Nuclear Information System (INIS)

    Dickman, D.A.

    1988-01-01

    In recent years considerable attention has been given to upgrading security education programs at facilities across the country. At Pacific Northwest Laboratory (PNL), a Laboratory-wide Safeguard Awareness Training Program has been established in order to raise the cognizance of the entire staff with regard to safeguards issues and concerns. This aggressive safeguards program involves a strong interface of physical security measure and material control and accountability systems. Within PNL, four distinct audiences were defined and a needs assessment analysis performed for each to determine specific training requirements. The target audiences identified were: material balance area (MBA) custodians, managers of material balance areas, material handlers, and new employees. Five safeguards training courses were created to meet the needs of those audiences. This paper discusses the development of the Safeguards Awareness Program at PNL and its benefits to the Laboratory

  14. Separations and safeguards model integration.

    Energy Technology Data Exchange (ETDEWEB)

    Cipiti, Benjamin B.; Zinaman, Owen

    2010-09-01

    Research and development of advanced reprocessing plant designs can greatly benefit from the development of a reprocessing plant model capable of transient solvent extraction chemistry. This type of model can be used to optimize the operations of a plant as well as the designs for safeguards, security, and safety. Previous work has integrated a transient solvent extraction simulation module, based on the Solvent Extraction Process Having Interaction Solutes (SEPHIS) code developed at Oak Ridge National Laboratory, with the Separations and Safeguards Performance Model (SSPM) developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The goal of this work was to strengthen the integration by linking more variables between the two codes. The results from this integrated model show expected operational performance through plant transients. Additionally, ORIGEN source term files were integrated into the SSPM to provide concentrations, radioactivity, neutron emission rate, and thermal power data for various spent fuels. This data was used to generate measurement blocks that can determine the radioactivity, neutron emission rate, or thermal power of any stream or vessel in the plant model. This work examined how the code could be expanded to integrate other separation steps and benchmark the results to other data. Recommendations for future work will be presented.

  15. Oak Ridge National Laboratory Next Generation Safeguards Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Bernadette Lugue [ORNL; Eipeldauer, Mary D [ORNL; Whitaker, J Michael [ORNL

    2011-12-01

    In 2007, the Department of Energy's National Nuclear Security Administration (DOE/NNSA) Office of Nonproliferation and International Security (NA-24) completed a comprehensive review of the current and potential future challenges facing the international safeguards system. The review examined trends and events impacting the mission of international safeguards and the implications of expanding and evolving mission requirements on the legal authorities and institutions that serve as the foundation of the international safeguards system, as well as the technological, financial, and human resources required for effective safeguards implementation. The review's findings and recommendations were summarized in the report, 'International Safeguards: Challenges and Opportunities for the 21st Century (October 2007)'. One of the report's key recommendations was for DOE/NNSA to launch a major new program to revitalize the international safeguards technology and human resource base. In 2007, at the International Atomic Energy Agency's General Conference, then Secretary of Energy Samuel W. Bodman announced the newly created Next Generation Safeguards Initiative (NGSI). NGSI consists of five program elements: (1) Policy development and outreach; (2) Concepts and approaches; (3) Technology and analytical methodologies; (4) Human resource development; and (5) Infrastructure development. The ensuing report addresses the 'Human Resource Development (HRD)' component of NGSI. The goal of the HRD as defined in the NNSA Program Plan (November 2008) is 'to revitalize and expand the international safeguards human capital base by attracting and training a new generation of talent.' One of the major objectives listed in the HRD goal includes education and training, outreach to universities, professional societies, postdoctoral appointments, and summer internships at national laboratories. ORNL is a participant in the NGSI program, together

  16. Making the Outcomes of the Doha Development Round Favourable for Developing Countries: Reflections on a Feasible Proposal for a Special Safeguard Mechanism

    Directory of Open Access Journals (Sweden)

    Francis Shasha Matambalya

    2010-06-01

    Full Text Available In principle, there is consensus among World Trade organisation members (WTO on the need to establish Special Safeguard Mechanisms (SSM for use by developing countries. Building on a survey of literature, empirical studies, and exchange of ideas through participation in the international debate on the subject matter, this paper outlines the architecture of a pro-development SSM. The elaboration is based on ten dimensions: country eligibility, criteria for selection of special products, triggers of safeguard action, precondition for application of safeguard action, geographic coverage, permissible remedies, restrictions on the levels of compensation, time scale, other rules, and treatment of developing countries. Compared to the SSG, it allows trigger levels at lower volumes and higher prices. Also, it differentiates demand increase and import surges, maintains linkages of domestic producers to long-run world market dynamics, and allows the computation of the price trigger on consignment by consignment basis.

  17. Academic Development and Educational Developers: Perspectives from Different European Higher Education Contexts

    Science.gov (United States)

    Di Napoli, Roberto; Fry, Heather; Frenay, Mariane; Verhesschen, Piet; Verburgh, An

    2010-01-01

    This paper reports research in five European universities, in four countries between 2004 and 2008. The research explored and compared institutional contexts for academic development and the interpretations and reflections of a number of academic developers on the organizational position and role of academic development, and of…

  18. Assessment of Process Monitoring Techniques for Pyro processing Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Y. E.; Kim, C. M.; Yim, M. S. [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    PM technologies can be used to inspect normal/off-normal operation with various data obtained from facility operations in real time to meet safeguards objectives. To support the use of PM technologies for the purpose of pyroprocessing safeguards, this study aims at identifying technologies that could be useful for PM purposes and evaluating their applicability to a pyroprocessing facility. This paper describes the development of the assessment criteria to evaluate the practicality of candidate technologies for PM based on a variety of requirements and considerations. By using the developed assessment criteria, application of technologies in the oxide reduction process was assessed as a test case example. Research is necessary to validate the criteria according to the needs of each unit process, perhaps based on expert elicitation and/or international collaboration with other expert organization(s). These advanced assessment criteria will serve a useful guideline for selecting appropriate candidate PM technologies for pyroprocessing safeguards. Based on the results of using these evaluation criteria, the optimum technologies can be successfully selected for use at a large scale pyroprocessing facility.

  19. Safeguards for the atom

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-10-15

    Concern over the destructive potentialities of nuclear energy has grown all over the world. In fact, it was this concern, coupled with an awareness of the equally great potentialities for peaceful prosperity, that led to the establishment of the International Atomic Energy Agency. That nuclear energy should be used solely for peaceful purposes is an ideal to which all people would subscribe. Realization of this ideal, however, is dependent on many complex factors which are outside the scope of the Agency. In its own limited sphere, however, the Agency has the responsibility to ensure that in its efforts to promote the peaceful uses it does not in any way increase the potentiality of military use. The possibility of military application is not the only danger that the Agency must guard against, it has a further function arising from the nature of the materials needed in atomic energy work. Since the basic materials are radioactive and since all ionizing radiation is potentially dangerous, the Agency must ensure that in helping its Member States to develop the peaceful uses of atomic energy it does not increase the hazards of nuclear radiation or radioactive contamination. It must establish standards of safe practice for activities carried out under its auspices or with its assistance. Since the safeguards will have two distinct objectives, a distinction can be made between those which will be designed to prevent the diversion of Agency assistance to military use and those against health and safety hazards. So far as the health and safety measures are concerned, a good deal of work has already been done in determining the standards of safe practice which will be the basis for the relevant rules. The Agency has published the first in its series of safety manuals, 'Safe Handling of Radioisotopes', which deals with such standards. Safeguards against the diversion or loss of nuclear materials and facilities are more difficult to devise. It is not considered feasible for

  20. Safeguards for the atom

    International Nuclear Information System (INIS)

    1959-01-01

    Concern over the destructive potentialities of nuclear energy has grown all over the world. In fact, it was this concern, coupled with an awareness of the equally great potentialities for peaceful prosperity, that led to the establishment of the International Atomic Energy Agency. That nuclear energy should be used solely for peaceful purposes is an ideal to which all people would subscribe. Realization of this ideal, however, is dependent on many complex factors which are outside the scope of the Agency. In its own limited sphere, however, the Agency has the responsibility to ensure that in its efforts to promote the peaceful uses it does not in any way increase the potentiality of military use. The possibility of military application is not the only danger that the Agency must guard against, it has a further function arising from the nature of the materials needed in atomic energy work. Since the basic materials are radioactive and since all ionizing radiation is potentially dangerous, the Agency must ensure that in helping its Member States to develop the peaceful uses of atomic energy it does not increase the hazards of nuclear radiation or radioactive contamination. It must establish standards of safe practice for activities carried out under its auspices or with its assistance. Since the safeguards will have two distinct objectives, a distinction can be made between those which will be designed to prevent the diversion of Agency assistance to military use and those against health and safety hazards. So far as the health and safety measures are concerned, a good deal of work has already been done in determining the standards of safe practice which will be the basis for the relevant rules. The Agency has published the first in its series of safety manuals, 'Safe Handling of Radioisotopes', which deals with such standards. Safeguards against the diversion or loss of nuclear materials and facilities are more difficult to devise. It is not considered feasible for

  1. International safeguards data management system

    International Nuclear Information System (INIS)

    Argentesi, F.; Costantini, L.; Franklin, M.; Dondi, M.G.

    1981-01-01

    The data base management system ''ISADAM'' (i.e. International Safeguards Data Management System) described in this report is intended to facilitate the safeguards authority in making efficient and effective use of accounting reports. ISADAM has been developed using the ADABAS data base management system and is implemented on the JRC-Ispra computer. The evaluation of safeguards declarations focuses on three main objectives: - the requirement of syntactical consistency with the legal conventions of data recording for safeguards accountancy; - the requirement of accounting evidence that there is no material unaccounted for (MUF); - the requirement of semantic consistency with the technological characteristics of the plant and the processing plans of the operator. Section 2 describes in more detail the facilities which ISADAM makes available to a safeguards inspector. Section 3 describes how the MUF variance computation is derived from models of measurement error propagation. Many features of the ISADAM system are automatically provided by ADABAS. The exceptions to this are the utility software designed to: - screen plant declarations before loading into the data base, - prepare variance summary files designed to support real-time computation of MUF and variance of MUF, - provide analyses in response to user requests in interactive or batch mode. Section 4 describes the structure and functions of this software which have been developed by JRC-Ispra

  2. Integrated Safeguards Information System for Japan (ISIS-J) - Strengthening SSAC for Enhancing Confidence in Compliance with Safeguards Obligations -

    International Nuclear Information System (INIS)

    Iso, S.; Nishiyama, N.; Kumakura, S.; Takizawa, K.; Yoshida, H.; Kobayashi, I.; Kikuchi, M.; Kimura, N.; Matsubara, T.; Yatsu, S.

    2010-01-01

    IAEA has stated the importance of enhancing cooperation with SSAC. Therefore, Japan has developed the Integrated Safeguards Information System for enhancing confidence in compliance with the national obligation under the safeguards agreement and the additional protocol. Japan already established the National System including national inspections with NDA and DA verification functions and evaluation of data obtained from national inspections and has maintained the National System of safeguards as a SSAC in accordance with the safeguards agreement. Nuclear Material Control Center (NMCC) is engaged in national safeguards activities as designated organization of national inspectorate and information treatment including safeguards data analysis. Recently, purpose of IAEA's safeguards activities may shift to detection of proliferation based on plausible proliferation paths from detection of diversion by certain material accountancy measures. Major safeguards activities of IAEA have changed from quantitative aspects to qualitative them. As supplements for declining the quantitative measures such as the activities based on the safeguards criteria the IAEA would expect the SSAC functions for maintaining the activities of quantitative manners. Japan believes that the State's responsibility for enhancing cooperation between the National System and the IAEA must assure the confidence level of correctness and completeness of the State declarations with accurate and precise accountability as findings from SSAC. Japan has started the development of the strengthened and autonomous national system namely the Integrated safeguards Information System for Japan (ISIS-J) in order to fulfil our responsibility. Japan would seek to improve quality of information including nuclear material accounting data as well as expanded declaration relevant to nuclear activities in Japan, and to increase abilities for explaining safeguards relevant events in Japan. The enhanced findings could include

  3. Development of data acquisition and processing software based on MS-Windows 3.X for safeguards

    International Nuclear Information System (INIS)

    Tan Yajun

    1996-01-01

    The development method of data acquisition and processing software based on MS-Windows 3.X for safeguards is presented. The paper describes the design methods of graphical user interface (GUI), multiwindow and multitask-based spectrum graph display, data acquisition and processing and the application of object-oriented programming (OOP). Using the package, an effective prototype design path can be found for MS-Windows-based software. The methods and programs have been applied in some safeguard non-destructive assay system

  4. Safeguards Envelope Progress FY10

    International Nuclear Information System (INIS)

    Metcalf, Richard

    2010-01-01

    The Safeguards Envelope is a strategy to determine a set of specific operating parameters within which nuclear facilities may operate to maximize safeguards effectiveness without sacrificing safety or plant efficiency. This paper details the additions to the advanced operating techniques that will be applied to real plant process monitoring (PM) data from the Idaho Chemical Processing Plant (ICPP). Research this year focused on combining disparate pieces of data together to maximize operating time with minimal downtime due to safeguards. A Chi-Square and Croiser's cumulative sum were both included as part of the new analysis. Because of a major issue with the original data, the implementation of the two new tests did not add to the existing set of tests, though limited one-variable optimization made a small increase in detection probability. Additional analysis was performed to determine if prior analysis would have caused a major security or safety operating envelope issue. It was determined that a safety issue would have resulted from the prior research, but that the security may have been increased under certain conditions.

  5. Open source information acquisition, analysis and integration in the IAEA Department of Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Barletta, M.; Zarimpas, N.; Zarucki, R., E-mail: M.Barletta@iaea.or [IAEA, Wagramerstrasse 5, P.O. Box 100, 1400 Vienna (Austria)

    2010-10-15

    Acquisition and analysis of open source information plays an increasingly important role in the IAEA strengthened safeguards system. The Agency's focal point for open source information collection and analysis is the Division of Safeguards Information Management (SGIM) within the IAEA Department of Safeguards. In parallel with the approval of the Model Additional Protocol in 1997, a new centre of information acquisition and analysis expertise was created within SGIM. By acquiring software, developing databases, retraining existing staff and hiring new staff with diverse analytical skills, SGIM is pro actively contributing to the future implementation of information-driven safeguards in collaboration with other Divisions within the Department of Safeguards. Open source information support is now fully integrated with core safeguards processes and activities, and has become an effective tool in the work of the Department of Safeguards. This provides and overview of progress realized through the acquisition and use of open source information in several thematic areas: evaluation of additional protocol declarations; support to the State Evaluation process; in-depth investigation of safeguards issues, including assisting inspections and complementary access; research on illicit nuclear procurement networks and trafficking; and monitoring nuclear developments. Demands for open source information have steadily grown and are likely to continue to grow in the future. Coupled with the enormous growth and accessibility in the volume and sources of information, new challenges are presented, both technical and analytical. This paper discusses actions taken and future plans for multi-source and multi-disciplinary analytic integration to strengthen confidence in safeguards conclusions - especially regarding the absence of undeclared nuclear materials and activities. (Author)

  6. The Safeguards Analytical Laboratory (SAL) in the Agency's safeguards measurement system activity in 1990

    International Nuclear Information System (INIS)

    Bagliano, G.; Cappis, J.; Deron, S.; Parus, J.L.

    1991-05-01

    The IAEA applies Safeguards at the request of a Member State to whole or part of its nuclear materials. The verification of nuclear material accountability still constitutes the fundamental method of control, although sealing and surveillance procedures play an important complementary and increasing role in Safeguards. A small fraction of samples must still be analyzed at independent analytical laboratories using conventional Destructive Analytical (DA) methods of highest accuracy in order to verify that small potential biases in the declarations of the State are not masking protracted diversions of significant quantities of fissile materials. The Safeguards Analytical Laboratory (SAL) is operated by the Agency's Laboratories at Seibersdorf to provide to the Department of Safeguards and its inspectors such off-site Analytical Services, in collaboration with the Network of Analytical Laboratories (NWAL) of the Agency. In the last years SAL and the Safeguards DA Services have become more directly involved in the qualification and utilization of on-site analytical instrumentation such as K-edge X-Ray absorptiometers and quadrupole mass spectrometers. The nature and the origin of the samples analyzed, the measurements usually requested by the IAEA inspectors, the methods and the analytical techniques available at SAL and at the Network of Analytical Laboratories (NWAL) with the performances achieved during the past years are described and discussed in several documents. This report gives an evaluation compared with 1989 of the volume and the quality of the analyses reported in 1990 by SAL and by the NWAL in reply to requests of IAEA Safeguards inspectors. The reports summarizes also on-site DA developments and support provided by SAL to the Division of Safeguards Operation and special training courses to the IAEA Safeguards inspectors. 55 refs, 7 figs, 15 tabs

  7. From safeguards to treaty verification and the future

    International Nuclear Information System (INIS)

    Harry, J.

    1997-01-01

    Changes in safeguards techniques and changes in the context in which it has to be applied have led to a continuous evolution of safeguards. Nuclear material accountancy and its verification is still the basis of safeguards. But also other, less technical, tools are developed for the future. Will safeguards not become an idle story but continue to lay effectively and efficiently a concrete foundation for international trust and peace, there is a need for more investment in new methods and techniques to allow safeguards to keep pace with the developments, both politically and technically. Safeguards serves the international community by enhancing the mutual trust that leads to national security. That also enabled the rapid growth of international co-operation on the applications of nuclear energy. But international security is based on confidence. It is not a priori the technique that creates that sphere of confidence, the human and political interactions are at least equally important. In different cultures there are marked differences in behaviour and such differences can be easily misinterpreted. Therefore also the new safeguards has to be equally objectively established and critically executed under the close attention of all parties concerned

  8. Safeguards and security. Progress report, August 1982-January 1983

    International Nuclear Information System (INIS)

    Smith, D.B.

    1983-11-01

    Activities are described in the first four parts of this report: Nuclear Facility Support, Security Development and Support, Safeguards Technology Development, and International Safeguards. Part 1 covers efforts of direct assistance to the Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) licensee facilities. This assistance includes consultation on materials accounting problems, development of specialized techniques and instruments, and comprehensive participation in the design and implementation of advanced safeguards systems. In addition, a series of training courses in various aspects of safeguards makes the technology more accessible to those who must apply it. Part 2 treats a relatively new set of Los Alamos activities aimed at the security of information and computer systems. Our focus this period was on continuing the activities of the Computer Security Center, which provides the basis for encouraging and disseminating this emerging technology, and on the development and demonstration of secure computer systems. Part 3 describes the broad development efforts essential to continuing improvements in the practice of safeguards. Although these projects are properly classified as developmental, in every case they address recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Enrichment plant safeguards, especially those concerning the Gas Centrifuge Enrichment Plant, required a significant portion of our resources. These efforts are beginning to provide substantial returns on our investment in technology transfer, not only in raising the level of safeguards effectiveness but also in benefiting from field experiences in operating environments

  9. Safeguards and security status report, August 1981-January 1982

    Energy Technology Data Exchange (ETDEWEB)

    Shipley, J.P. (comp.)

    1982-09-01

    From August 1981 through January 1982, the Los Alamos Safeguards and Security Program was involved in many activities that are described in the four parts of this report: Nuclear Facility Safeguards Support, Security Development and Support, Safeguards Technology Development, and International Support. Part 1 covers those efforts of direct assistance to the Department of Energy and the Nuclear Regulatory Commission licensee facilities. This assistance varies from consultation on materials accounting problems, through development of specialized techniques and devices, to comprehensive participation in the design and implementation of advanced safeguards systems. In addition, a series of training courses in various aspects of safeguards helps make the technology more accessible to those who must apply it. Part 2 concerns a relatively new set of activities at Los Alamos aimed at the security of information and computer systems. The focus this period has been on furthering the development of the Computer Security Center, which provides the basis for encouraging and disseminating the emerging technology. Part 3 describes the development efforts that are essential to continued improvements in the practice of safeguards. Although these projects are properly classified as developmental, in every case they are directed ultimately at recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. In addition, enrichment plant safeguards, especially those concerning the Gaseous Centrifuge Enrichment Plant, required a significant portion of our resources. These efforts are beginning to provide substantial returns on our investment in technology transfer.

  10. Safeguards and security status report, August 1981-January 1982

    International Nuclear Information System (INIS)

    Shipley, J.P.

    1982-09-01

    From August 1981 through January 1982, the Los Alamos Safeguards and Security Program was involved in many activities that are described in the four parts of this report: Nuclear Facility Safeguards Support, Security Development and Support, Safeguards Technology Development, and International Support. Part 1 covers those efforts of direct assistance to the Department of Energy and the Nuclear Regulatory Commission licensee facilities. This assistance varies from consultation on materials accounting problems, through development of specialized techniques and devices, to comprehensive participation in the design and implementation of advanced safeguards systems. In addition, a series of training courses in various aspects of safeguards helps make the technology more accessible to those who must apply it. Part 2 concerns a relatively new set of activities at Los Alamos aimed at the security of information and computer systems. The focus this period has been on furthering the development of the Computer Security Center, which provides the basis for encouraging and disseminating the emerging technology. Part 3 describes the development efforts that are essential to continued improvements in the practice of safeguards. Although these projects are properly classified as developmental, in every case they are directed ultimately at recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. In addition, enrichment plant safeguards, especially those concerning the Gaseous Centrifuge Enrichment Plant, required a significant portion of our resources. These efforts are beginning to provide substantial returns on our investment in technology transfer

  11. Strengthened safeguards: Present and future challenges

    International Nuclear Information System (INIS)

    Goldschmidt, Pierre

    2001-01-01

    Full text: The safeguards system is experiencing what has been seen as a revolution and, in doing so, it is confronting a series of challenges. These can be grouped into three areas. Drawing and maintaining safeguards conclusions - The process by which the safeguards conclusions are derived is based upon the analysis, evaluation and review of all the information available to the Agency. This process is on- going, but the State Evaluation Reports are compiled and reviewed periodically. For States with an additional protocol in force, the absence of indicators of the presence of undeclared nuclear material or activities provides the basis for the safeguards conclusion. Future challenges center on States' expectations of, and reactions to, the results of the evaluation and review process. Designing and implementing integrated safeguards - The conceptual framework of integrated safeguards is being actively pursued. Basic principles have been defined and integrated safeguards approaches have been developed for various types of facilities. Work is also progressing on the design of integrated safeguards approaches for specific States. Complementary access is being successfully implemented, and procedures for the use of unannounced inspections are being developed with the prospect of cost- effectiveness gains. Costs neutrality vs. quality and credibility - The Department faces serious staff and financial challenges. It has succeeded so far in 'doing more' and 'doing better' within a zero-real growth budget, but the scope for further significant efficiency gains is exhausted. There is no capacity to absorb new or unexpected tasks. Difficulties in recruiting and retaining qualified and experienced staff exacerbate the problems and add to costs. The Director General of the IAEA has referred to the need for new initiatives to bridge the budgetary gap; a possible measure is proposed. The tasks of meeting the challenges and demands of strengthened safeguards have been added to

  12. Proceedings of the European Review Meeting on Severe Accident Research - ERMSAR 2005

    International Nuclear Information System (INIS)

    2005-01-01

    The SARNET network has been set up under the aegis of the Framework Programmes (FP) of the European Commission on research. Two projects have been defined, both coordinated by IRSN (France), in the FP6 (2004-08) and FP7 (2009-13), with the following key objectives: Improving knowledge on severe accidents (SA) in order to reduce the uncertainties on the pending issues, thereby enhancing the plant safety, Coordinating research resources and expertise available in Europe, Preserving the research data and disseminating knowledge. The network members commit to contribute to a Joint Programme of Activities that can be broken into several elements: - Implementing an advanced communication tool for fostering exchange of information; - Harmonizing and re-orienting the research programmes, and defining commonly new ones; - Analysing commonly the experimental results provided by research programmes in order to elaborate a common understanding of concerned phenomena; - Developing ASTEC, which capitalizes in terms of models the knowledge produced within SARNET; - Developing Scientific Databases, in which all the results of research programmes are stored; - Developing a common methodology for Probabilistic Safety Assessment (PSA) of NNPs; - Developing educational courses and text (source) books; - Promoting personnel mobility between the various European organisations. SARNET provides an appropriate frame for achieving within a couple of years a sustainable integration of the European research capacities on SA. By capitalizing the acquired knowledge in ASTEC and in Scientific Databases, SARNET produces necessary conditions for preserving the knowledge produced by thousands of men-years and diffusing it to a large number of end-users. By fostering collaborative work on developing and validating ASTEC, SARNET makes this code as the European reference for any kind of water-cooled NPP existing in Europe. By fostering collaborative work in the domain of code development and PSA

  13. IAEA Safeguards: Present status and experience gained

    International Nuclear Information System (INIS)

    Thorne, L.; Buechler, C.; Haegglund, E.

    1983-01-01

    IAEA safeguards are at the present under critical review with regard to their purpose and effectiveness. This paper describes the development of the IAEA Safeguards System from the early days, when procedures were developed on an ad hoc basis, to the present day. The development of State Systems of Accounting for and Control of Nuclear Material (SSAC), and of sophisticated instrumentation, has been necessary to deal with the rapid growth in the quantities of nuclear material and in the number of facilities under safeguards. The paper also discusses some of the managerial and organizational issues that are inherent in such a large international inspectorate. (author)

  14. USSP-IAEA WORKSHOP ON ADVANCED SENSORS FOR SAFEGUARDS

    International Nuclear Information System (INIS)

    PEPPER, S.; QUEIROLO, A.; ZENDEL, M.; WHICHELLO, J.; ANNESE, C.; GRIEBE, J.; GRIEBE, R.

    2007-01-01

    The IAEA Medium Term Strategy (2006-2011) defines a number of specific goals in respect to the IAEA's ability to provide assurances to the international community regarding the peaceful use of nuclear energy through States adherences to their respective non-proliferation treaty commitments. The IAEA has long used and still needs the best possible sensors to detect and measure nuclear material. The Department of Safeguards, recognizing the importance of safeguards-oriented R and D, especially targeting improved detection capabilities for undeclared facilities, materials and activities, initiated a number of activities in early 2005. The initiatives included letters to Member State Support Programs (MSSPs), personal contacts with known technology holders, topical meetings, consultant reviews of safeguards technology, and special workshops to identify new and novel technologies and methodologies. In support of this objective, the United States Support Program to IAEA Safeguards hosted a workshop on ''Advanced Sensors for Safeguards'' in Santa Fe, New Mexico, from April 23-27, 2007. The Organizational Analysis Corporation, a U.S.-based management consulting firm, organized and facilitated the workshop. The workshop's goal was to help the IAEA identify and plan for new sensors for safeguards implementation. The workshop, which was attended by representatives of seven member states and international organizations, included presentations by technology holders and developers on new technologies thought to have relevance to international safeguards, but not yet in use by the IAEA. The presentations were followed by facilitated breakout sessions where the participants considered two scenarios typical of what IAEA inspectors might face in the field. One scenario focused on an enrichment plant; the other scenario focused on a research reactor. The participants brainstormed using the technologies presented by the participants and other technologies known to them to propose

  15. Light water reactor safeguards system evaluation

    International Nuclear Information System (INIS)

    Varnado, G.B.; Ericson, D.M. Jr.; Bennett, H.A.; Hulme, B.L.; Daniel, S.L.

    1978-01-01

    A methodology for assessing the effectiveness of safeguards systems was developed in this study and was applied to a typical light water reactor plant. The relative importance of detection systems, barriers, response forces and other safeguards system components was examined in extensive parameter variation studies. (author)

  16. Safeguards and retrievability from waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Danker, W.

    1996-05-01

    This report describes issues discussed at a session from the PLutonium Stabilization and Immobilization Workshop related to safeguards and retrievability from waste forms. Throughout the discussion, the group probed the goals of disposition efforts, particularly an understanding of the {open_quotes}spent fuel standard{close_quotes}, since the disposition material form derives from these goals. The group felt strongly that not only the disposition goals but safeguards to meet these goals could affect the material form. Accordingly, the Department was encouraged to explore and apply safeguards as early in the implementation process as possible. It was emphasized that this was particularly true for any planned use of existing facilities. It is much easier to build safeguards approaches into the development of new facilities, than to backfit existing facilities. Accordingly, special safeguards challenges are likely to be encountered, given the cost and schedule advantages offered by use of existing facilities.

  17. INSTITUTIONALIZING SAFEGUARDS-BY-DESIGN: HIGH-LEVEL FRAMEWORK

    Energy Technology Data Exchange (ETDEWEB)

    Trond Bjornard PhD; Joseph Alexander; Robert Bean; Brian Castle; Scott DeMuth, Ph.D.; Phillip Durst; Michael Ehinger; Prof. Michael Golay, Ph.D.; Kevin Hase, Ph.D.; David J. Hebditch, DPhil; John Hockert, Ph.D.; Bruce Meppen; James Morgan; Jerry Phillips, Ph.D., PE

    2009-02-01

    The application of a Safeguards-by-Design (SBD) process for new nuclear facilities can reduce proliferation risks. A multi-laboratory team was sponsored in Fiscal Year (FY) 2008 to define a SBD process and determine how it could be incorporated into existing facility design and construction processes. The possibility to significantly influence major design features, such as process selection and plant layout, largely ends with the conceptual design step. Therefore SBD’s principal focus must be on the early inclusion of safeguards requirements and the early identification of beneficial design features. The result could help form the basis for a new international norm for integrating safeguards into facility design. This is an interim report describing progress and project status as of the end of FY08. In this effort, SBD is defined as a structured approach to ensure the timely, efficient, and cost-effective integration of international and national safeguards, physical security, and other nonproliferation objectives into the overall design process for a nuclear facility. A key objective is to ensure that security and nonproliferation issues are considered when weighing facility design alternatives. Central to the work completed in FY08 was a study in which a SBD process was developed in the context of the current DOE facility acquisition process. The DOE study enabled the development of a “SBD design loop” that is suitable for use in any facility design process. It is a graded, iterative process that incorporates safeguards concerns throughout the conceptual, preliminary and final design processes. Additionally, a set of proposed design principles for SBD was developed. A “Generic SBD Process” was then developed. Key features of the process include the initiation of safeguards design activities in the pre-conceptual planning phase, early incorporation of safeguards requirements into the project requirements, early appointment of an SBD team, and

  18. INSTITUTIONALIZING SAFEGUARDS-BY-DESIGN: HIGH-LEVEL FRAMEWORK

    International Nuclear Information System (INIS)

    Bjornard, Trond; Alexander, Joseph; Bean, Robert; Castle, Brian; DeMuth, Scott; Durst, Phillip; Ehinger, Michael; Golay, Michael; Hase, Kevin; Hebditch, David J.; Hockert, John; Meppen, Bruce; Morgan, James; Phillips, Jerry

    2009-01-01

    The application of a Safeguards-by-Design (SBD) process for new nuclear facilities can reduce proliferation risks. A multi-laboratory team was sponsored in Fiscal Year (FY) 2008 to define a SBD process and determine how it could be incorporated into existing facility design and construction processes. The possibility to significantly influence major design features, such as process selection and plant layout, largely ends with the conceptual design step. Therefore SBD's principal focus must be on the early inclusion of safeguards requirements and the early identification of beneficial design features. The result could help form the basis for a new international norm for integrating safeguards into facility design. This is an interim report describing progress and project status as of the end of FY08. In this effort, SBD is defined as a structured approach to ensure the timely, efficient, and cost-effective integration of international and national safeguards, physical security, and other nonproliferation objectives into the overall design process for a nuclear facility. A key objective is to ensure that security and nonproliferation issues are considered when weighing facility design alternatives. Central to the work completed in FY08 was a study in which a SBD process was developed in the context of the current DOE facility acquisition process. The DOE study enabled the development of a 'SBD design loop' that is suitable for use in any facility design process. It is a graded, iterative process that incorporates safeguards concerns throughout the conceptual, preliminary and final design processes. Additionally, a set of proposed design principles for SBD was developed. A 'Generic SBD Process' was then developed. Key features of the process include the initiation of safeguards design activities in the pre-conceptual planning phase, early incorporation of safeguards requirements into the project requirements, early appointment of an SBD team, and participation in

  19. Nuclear safeguards technology 1986

    International Nuclear Information System (INIS)

    1987-01-01

    This publication presents the results of the sixth in a series of international symposia on nuclear material safeguards. Development efforts related to safeguards for reprocessing plants constituted over twenty per cent of the programme. Other papers present results of over four years of field testing of near real time material accountancy at a plant in Japan, and results for a lesser period of time at a plant in Scotland. Papers reporting work on destructive and non-destructive measurement procedures or equipment constituted another thirty per cent of the programme, more if measurements in reprocessing and poster presentations are included. In honour of the tenth anniversary of the founding of the Safeguards Analytical Laboratory, two sessions were devoted to a review of destructive analytical measurement procedures. Some subjects received only minor attention during the Symposium. The statistical theory of random sampling, safeguards for uranium enrichment plants, material accountancy systems and several other topics appear only incidentally in the programme, but primarily because there are few remaining problems, not because there is little remaining interest

  20. Feasibility Study of Implementing a Mobile Collaborative Information Platform for International Safeguards Inspections

    Energy Technology Data Exchange (ETDEWEB)

    Gastelum, Zoe N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gitau, Ernest T. N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Doehle, Joel R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Toomey, Christopher M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-01

    In response to the growing pervasiveness of mobile technologies such as tablets and smartphones, the International Atomic Energy Agency and the U.S. Department of Energy National Laboratories have been exploring the potential use of these platforms for international safeguards activities. Specifically of interest are information systems (software, and accompanying servers and architecture) deployed on mobile devices to increase the situational awareness and productivity of an IAEA safeguards inspector in the field, while simultaneously reducing paperwork and pack weight of safeguards equipment. Exploratory development in this area has been met with skepticism regarding the ability to overcome technology deployment challenges for IAEA safeguards equipment. This report documents research conducted to identify potential challenges for the deployment of a mobile collaborative information system to the IAEA, and proposes strategies to mitigate those challenges.

  1. The next generation safeguards initiative

    International Nuclear Information System (INIS)

    Tobey, William

    2008-01-01

    education, and in particular regional programs and exchanges of experts, practitioners, and students, can therefore play an important role in building safeguards expertise. (5) NGSI will work with the IAEA and international partners to develop a safeguards conscious nuclear infrastructure, especially among states with limited nuclear power programs or those expressing interest in such programs. The IAEA milestones process will help advance such a culture, as will linking safeguards with safety and security, as set forth in the 38's concept introduced by Japan and endorsed recently by the G-8. Recognizing this we support the just announced World Institute for Nuclear Security

  2. The standing advisory group on safeguards implementation

    International Nuclear Information System (INIS)

    Jennekens, J.H.F.

    1982-09-01

    In 1975 the Director General of the IAEA called together ten persons from member states with nuclear programs at varying stages of development to form the Standing Advisory Group on Safeguards Implementation. The group was later expanded to twelve. The Director General asked the group to evaluate the technical objectives of Agency safeguards, assess the effectiveness and efficiency of specific safeguards operating methods in meeting these technical objectives, advise on techniques to be employed in safeguards operations, and recommend areas where further work is needed. This paper reviews the work of the Standing Advisory Group on Safeguards Implementation since its formation in 1975, summarizes the subjects that have been examined and the advice rendered, and outlines the problem areas requiring further study

  3. Safeguards equipment of the future integrated monitoring systems and remote monitoring

    International Nuclear Information System (INIS)

    Sonnier, C.S.; Johnson, C.S.

    1994-01-01

    Becoming aware of the significant events of the past four years and their effect on the expectations to international safeguards, it is necessary to reflect on which direction the development of nuclear safeguards in a new era needs to take and the implications. The lime proven monitoring techniques, based on quantitative factor's and demonstrated universal application, have shown their merit. However, the new expectations suggest a possibility that a future IAEA safeguards system could rely more heavily on the value of a comprehensive, transparent and open implementation regime. Within such a regime, the associated measures need to be determined and technological support identified. This paper will identify the proven techniques which, with appropriate implementation support, could most quickly make available additional measures for a comprehensive, transparent and open implementation regime. In particular, it will examine the future of Integrated Monitoring Systems and Remote Monitoring in international safeguards, including technical and other related factors

  4. Strengthened International Nuclear Safeguards; burdens and Effects on Nuclear Technology Development

    International Nuclear Information System (INIS)

    Badawy, I.

    2000-01-01

    The present paper deals with the recent direction of strengthening the international nuclear safeguards and the effects on the development of nuclear technology for peaceful applications. The new basic principles for strengthening the international nuclear control in the direction of undeclared nuclear activities are elaborated, and the national obligations are indicated. The burdens on the development of nuclear technology are discussed. Approaches are proposed in this work for coping with the present and future situations

  5. 16 CFR 314.3 - Standards for safeguarding customer information.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Standards for safeguarding customer... OF CONGRESS STANDARDS FOR SAFEGUARDING CUSTOMER INFORMATION § 314.3 Standards for safeguarding customer information. (a) Information security program. You shall develop, implement, and maintain a...

  6. Coordination of Croatian National Legislative with EU Commission Regulation on the Application of Euratom Safeguards

    International Nuclear Information System (INIS)

    Ilijas, B.; Medakovic, S.

    2012-01-01

    Having regard to the Treaty establishing the European Atomic Energy Community (Euratom) in the view of increasing quantities of nuclear materials produced, used, carried and recycled in the Community, and also development of trade in these materials, especially in the scope of the successive enlargements of the EU, it is essential to ensure effectiveness of safeguards. Commission Regulation on the application of Euratom safeguards of 8 February 2005 is a comprehensive regulation dealing with basic technical characteristics and particular safeguard provisions of installations for the production, separation, reprocessing, storage or other use of source material or special fissile material, as well as nuclear material accountancy, transfer between states and some specific provisions. Croatia signed the 'Agreement Between the Republic of Croatia and the International Atomic Energy Agency for the Application of Safeguards in Connection with the Treaty on the Non-proliferation of Nuclear Weapons (NPT)' and a few years later 'Protocol Additional' to this Agreement that stipulates strict obligations of the Republic of Croatia under Safeguards in connection with NPT. Also, in Croatia is on power 'Act on Radiological and Nuclear Safety' which, beside others, establishes measures for ensuring the safe performance of practices involving ionising radiation sources, nuclear activities, radioactive waste disposal and the physical protection of ionising radiation sources and nuclear facilities. But on power is also 'Ordinance on control of the nuclear materials and special equipment' which refers to an old 'Act on nuclear safety', and also takes into account provisions of the NPT and 'Protocol Additional' regarding safeguards. A new ordinance should be promulgated in accordance with new act. As a new act also should be corrected before Croatia joins EU, an extensive job must be done in adjusting Croatian national legislative to Euratom safeguards.(author).

  7. Development of solution monitoring software for enhanced safeguards at a large scale reprocessing facility

    Energy Technology Data Exchange (ETDEWEB)

    Van Handenhove, Carl; Breban, Domnica; Creusot, Christophe [International Atomic Energy Agency, Vienna (Austria); Dransart, Pascal; Dechamp, Luc [Joint Research Centre, European Commission, Ispra, Varese, (Italy); Jarde, Eric [Euriware, Equeurdreville (France)

    2011-12-15

    The implementation of an effective and efficient IAEA safeguards approach at large scale reprocessing facilities with large throughput and continuous flow of nuclear material requires the introduction of enhanced safeguards measures to provide added assurance about the absence of diversion of nuclear material and confirmation that the facility is operated as declared. One of the enhanced safeguards measures, a Solution Monitoring and Measurement System (SMMS), comprising data collection instruments, data transmission equipment and an advanced Solution Monitoring Software (SMS), is being implemented at a large scale reprocessing plant in Japan. SMS is designed as a tool to enable automatic calculations of volumes, densities and flow-rates in selected process vessels, including most of the vessels of the main nuclear material stream. This software also includes automatic features to support the inspectorate in verifying inventories and inventory changes. The software also enables one to analyze the flows of nuclear material within the process and of specified 'cycles' of operation, and, in order to provide assurance that the facility is being operated as declared to compare these with those expected (reference signatures). The configuration and parameterization work (especially the analytical and comparative work) for the implementation and configuration of the SMS has been carried out jointly between the IAEA, Euriware-France (the software developer) and the Joint Research Centre (JRC)-Ispra. This paper describes the main features of the SMS, including the principles underlying the automatic analysis functionalities. It then focuses on the collaborative work performed by the JRC-Ispra, Euriware and the IAEA for the parameterization of the software (vessels and cycles of operation), including the current status and the future challenges.

  8. Understanding the infrastructure of European Research Infrastructures

    DEFF Research Database (Denmark)

    Lindstrøm, Maria Duclos; Kropp, Kristoffer

    2017-01-01

    European Research Infrastructure Consortia (ERIC) are a new form of legal and financial framework for the establishment and operation of research infrastructures in Europe. Despite their scope, ambition, and novelty, the topic has received limited scholarly attention. This article analyses one ER....... It is also a promising theoretical framework for addressing the relationship between the ERIC construct and the large diversity of European Research Infrastructures.......European Research Infrastructure Consortia (ERIC) are a new form of legal and financial framework for the establishment and operation of research infrastructures in Europe. Despite their scope, ambition, and novelty, the topic has received limited scholarly attention. This article analyses one ERIC...... became an ERIC using the Bowker and Star’s sociology of infrastructures. We conclude that focusing on ERICs as a European standard for organising and funding research collaboration gives new insights into the problems of membership, durability, and standardisation faced by research infrastructures...

  9. Safeguards-By-Design: Guidance and Tools for Stakeholders

    Energy Technology Data Exchange (ETDEWEB)

    Mark Schanfein; Shirley Johnson

    2012-02-01

    Effective implementation of the Safeguards-by-Design (SBD) approach can help meet the challenges of global nuclear energy growth, by designing facilities that have improved safeguardability and reduced safeguards-related life cycle costs. The ultimate goal of SBD is to implement effective and efficient safeguards that reduce the burden to both the facility operator and the International Atomic Energy Agency. Since 2008, the National Nuclear Security Administration's Next Generation Safeguards Initiative's Safeguards By Design Project has initiated multiple studies and workshops with industry and regulatory stakeholders, including the IAEA, to develop relevant documents to support the implementation of SBD. These 'Good Practices Guides' describe facility and process design features that will facilitate implementation of effective nuclear material safeguards starting in the earliest phases of design through to final design. These guides, which are in their final editorial stages, start at a high level and then narrow down to specific nuclear fuel cycle facilities such as Light Water Reactors, Generation III/IV Reactors, High Temperature Gas Cooled Reactors, and Gas Centrifuge Enrichment Plants. Most recently, NGSI has begun development of a facility safeguardability assessment toolkit to assist the designer. This paper will review the current status of these efforts, provide some examples of these documents, and show some standard IAEA Unattended Instrumentation that is permanently installed in nuclear facilities for monitoring.

  10. Safeguards-By-Design: Guidance and Tools for Stakeholders

    International Nuclear Information System (INIS)

    Schanfein, Mark; Johnson, Shirley

    2012-01-01

    Effective implementation of the Safeguards-by-Design (SBD) approach can help meet the challenges of global nuclear energy growth, by designing facilities that have improved safeguardability and reduced safeguards-related life cycle costs. The ultimate goal of SBD is to implement effective and efficient safeguards that reduce the burden to both the facility operator and the International Atomic Energy Agency. Since 2008, the National Nuclear Security Administration's Next Generation Safeguards Initiative's Safeguards By Design Project has initiated multiple studies and workshops with industry and regulatory stakeholders, including the IAEA, to develop relevant documents to support the implementation of SBD. These 'Good Practices Guides' describe facility and process design features that will facilitate implementation of effective nuclear material safeguards starting in the earliest phases of design through to final design. These guides, which are in their final editorial stages, start at a high level and then narrow down to specific nuclear fuel cycle facilities such as Light Water Reactors, Generation III/IV Reactors, High Temperature Gas Cooled Reactors, and Gas Centrifuge Enrichment Plants. Most recently, NGSI has begun development of a facility safeguardability assessment toolkit to assist the designer. This paper will review the current status of these efforts, provide some examples of these documents, and show some standard IAEA Unattended Instrumentation that is permanently installed in nuclear facilities for monitoring.

  11. Long-Term Information Management (LTIM) of Safeguards Data at Repositories: Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Haddal, Risa N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    One of the challenges of implementing safeguards for geological repositories will be the long-term preservation of safeguards-related data for 100 years or more. While most countries considering the construction and operation of such facilities agree that safeguards information should be preserved, there are gaps with respect to standardized requirements, guidelines, timescales, and approaches. This study analyzes those gaps and explores research to clarify stakeholder needs, identify current policies, approaches, best practices and international standards, and explores existing safeguards information management infrastructure. The study also attempts to clarify what a safeguards data classification system might look like, how long data should be retained, and how information should be exchanged between stakeholders at different phases of a repository’s life cycle. The analysis produced a variety of recommendations on what information to preserve, how to preserve it, where to store it, retention options and how to exchange information in the long term. Key findings include the use of the globally recognized international records management standard, ISO15489, for guidance on the development of information management systems, and the development of a Key Information File (KIF). The KIF could be used to identify only the most relevant, high-level safeguards information and the history of decision making about the repository. The study also suggests implementing on-site and off-site records storage in digital and physical form; developing a safeguards data classification system; long-term records retention with periodic reviews every 5 to 10 years during each phase of the repository life cycle; and establishing transition procedures well in advance so that data shepherds and records officers can transfer information with incoming facility managers effectively and efficiently. These and other recommendations are further analyzed in this study.

  12. Long-Term Information Management (LTIM) of Safeguards Data at Repositories: Phase II

    International Nuclear Information System (INIS)

    Haddal, Risa N.

    2016-01-01

    One of the challenges of implementing safeguards for geological repositories will be the long-term preservation of safeguards-related data for 100 years or more. While most countries considering the construction and operation of such facilities agree that safeguards information should be preserved, there are gaps with respect to standardized requirements, guidelines, timescales, and approaches. This study analyzes those gaps and explores research to clarify stakeholder needs, identify current policies, approaches, best practices and international standards, and explores existing safeguards information management infrastructure. The study also attempts to clarify what a safeguards data classification system might look like, how long data should be retained, and how information should be exchanged between stakeholders at different phases of a repository's life cycle. The analysis produced a variety of recommendations on what information to preserve, how to preserve it, where to store it, retention options and how to exchange information in the long term. Key findings include the use of the globally recognized international records management standard, ISO15489, for guidance on the development of information management systems, and the development of a Key Information File (KIF). The KIF could be used to identify only the most relevant, high-level safeguards information and the history of decision making about the repository. The study also suggests implementing on-site and off-site records storage in digital and physical form; developing a safeguards data classification system; long-term records retention with periodic reviews every 5 to 10 years during each phase of the repository life cycle; and establishing transition procedures well in advance so that data shepherds and records officers can transfer information with incoming facility managers effectively and efficiently. These and other recommendations are further analyzed in this study.

  13. Prospects for the Development of Scientific Libraries of Ukrainian Research Universities in the context of the Implementation of the European Experience

    Directory of Open Access Journals (Sweden)

    Serbin Oleh O.

    2018-03-01

    Full Text Available The key directions for the long-term development of scientific libraries of research universities in Ukraine are determined to improve their strategic management system on the way toward entry into the European competitive environment. The scientific ideas, practice and legislative bases in the field of the development of scientific libraries in the European Union are highlighted. There carried out comparative characteristic of the traditional library and the modern one with the purpose of revealing distinctions of their functioning and development. The content of the seventeen main contrasts that distinguish these libraries is identified and described. On the basis of the analysis of the European experience, there identified and characterized twelve key directions for the further strategic development of Ukraine’s scientific libraries, which are in the improvement of digital content; library space; systems of automation of service processes; observance of copyrights; commercialization of library services; international exchange of the library information; depository of master works; updating of equipment; a consolidated system for detecting plagiarism; introduction of new related services; alternative financing systems; systems for staff development. The results of this study will be useful for leaders of research universities and their scientific libraries, as well as scientists and practitioners in the field of strategic management of development of research universities.

  14. Integration of the advanced transparency framework to advanced nuclear systems : enhancing Safety, Operations, Security and Safeguards (SOSS)

    International Nuclear Information System (INIS)

    Mendez, Carmen Margarita; Rochau, Gary Eugene; Cleary, Virginia D.

    2008-01-01

    The advent of the nuclear renaissance gives rise to a concern for the effective design of nuclear fuel cycle systems that are safe, secure, nonproliferating and cost-effective. We propose to integrate the monitoring of the four major factors of nuclear facilities by focusing on the interactions between Safeguards, Operations, Security, and Safety (SOSS). We proposed to develop a framework that monitors process information continuously and can demonstrate the ability to enhance safety, operations, security, and safeguards by measuring and reducing relevant SOSS risks, thus ensuring the safe and legitimate use of the nuclear fuel cycle facility. A real-time comparison between expected and observed operations provides the foundation for the calculation of SOSS risk. The automation of new nuclear facilities requiring minimal manual operation provides an opportunity to utilize the abundance of process information for monitoring SOSS risk. A framework that monitors process information continuously can lead to greater transparency of nuclear fuel cycle activities and can demonstrate the ability to enhance the safety, operations, security and safeguards associated with the functioning of the nuclear fuel cycle facility. Sandia National Laboratories (SNL) has developed a risk algorithm for safeguards and is in the process of demonstrating the ability to monitor operational signals in real-time though a cooperative research project with the Japan Atomic Energy Agency (JAEA). The risk algorithms for safety, operations and security are under development. The next stage of this work will be to integrate the four algorithms into a single framework

  15. Implementation of safeguards in Spanish NPPs: advantages of cooperation and coordination

    International Nuclear Information System (INIS)

    Estrampes Blanch, J.; Recio Santamaria, M.

    2007-01-01

    In 2002 the Spanish Ministry of Industry, Tourism and Commerce (MITYC) informed the operators of the soon entry into force of the Additional Protocol (AP) to the Safeguards Agreement, once its ratification by the Member States of the EU were completed and the Community and national legislations were adapted to the new requirements. The Spanish association for the electrical industry (UNESA) responded to that announcement setting up the UNESA's Safeguards Working Group (USWG), made up of staff of the NPPs in charge of nuclear material accountancy. The USWG was mandated to ensure coordinated implementation of the new safeguards obligation of the Additional Protocol in close cooperation with the Ministry of Industry, Tourism and Commerce (MITYC), Spanish authority for safeguards implementation follow up. Although the group was initially meant only for NPPs, later on representatives of other main nuclear facilities (i.e. ENUSA's fuel fabrication facility, the national rad waste company ENRESA, and CIEMAT national research centre) have been also participating in the group's meeting and activities when general discussion points on the entry into force of the AP were dealt with. From 2003 on, the USWG has met periodically with the aim of exchanging experiences in the field of safeguards implementation and jointly dealing with changes to EURATOM and IAEA safeguards systems lately introduced to reinforce their effectiveness and efficiency in response to the challenges posed to the international community by the recent discovery of undeclared nuclear programmes. Along the operation of the USWG, presence of Spanish nuclear industry representatives in international for a dealing with safeguards has remarkably grown up. Moreover, representatives of the USWG have also maintained an active participation in the ESARDA working groups on integrated safeguards (ISWG) and nuclear material accountancy and audit focus group (NMAC-AF)

  16. 9th Conference of the European Social Simulation Association

    CERN Document Server

    Koloch, Grzegorz

    2014-01-01

    This book is the conference proceedings of ESSA 2013, the 9th Conference of the European Social Simulation Association. ESSA conferences constitute annual events which serve as an international platform for the exchange of ideas and discussion of cutting-edge research in the field of social simulations, both from the theoretical as well as applied perspective. This book consists of 33 articles, which are divided into four themes: Methods for the development of simulation models, Applications of agent-based modeling, Adaptive behavior, social interactions and global environmental change and Using qualitative data to inform behavioral rules. We are convinced that this book will serve interested readers as a useful compendium which presents in a nutshell the most recent advances at the frontiers of social simulation research.

  17. Integrating virtual reality applications in nuclear safeguards

    International Nuclear Information System (INIS)

    Barletta, Michael; Crete, Jean-Maurice; Pickett, Susan

    2011-01-01

    Virtual reality (VR) tools have already been developed and deployed in the nuclear industry, including in nuclear power plant construction, project management, equipment and system design, and training. Recognized as powerful tools for, inter alia, integration of data, simulation of activities, design of facilities, validation of concepts and mission planning, their application in nuclear safeguards is still very limited. However, VR tools may eventually offer transformative potential for evolving the future safeguards system to be more fully information-driven. The paper focuses especially on applications in the area of training that have been underway in the Department of Safeguards of the International Atomic Energy Agency. It also outlines future applications envisioned for safeguards information and knowledge management, and information-analytic collaboration. The paper identifies some technical and programmatic pre-requisites for realizing the integrative potential of VR technologies. If developed with an orientation to integrating applications through compatible platforms, software, and models, virtual reality tools offer the long-term potential of becoming a real 'game changer,' enabling a qualitative leap in the efficiency and effectiveness of nuclear safeguards. The IAEA invites Member States, industry, and academia to make proposals as to how such integrating potential in the use of virtual reality technology for nuclear safeguards could be realized. (author)

  18. Safeguards Automated Facility Evaluation (SAFE) methodology

    International Nuclear Information System (INIS)

    Chapman, L.D.; Grady, L.M.; Bennett, H.A.; Sasser, D.W.; Engi, D.

    1978-08-01

    An automated approach to facility safeguards effectiveness evaluation has been developed. This automated process, called Safeguards Automated Facility Evaluation (SAFE), consists of a collection of a continuous stream of operational modules for facility characterization, the selection of critical paths, and the evaluation of safeguards effectiveness along these paths. The technique has been implemented on an interactive computer time-sharing system and makes use of computer graphics for the processing and presentation of information. Using this technique, a comprehensive evaluation of a safeguards system can be provided by systematically varying the parameters that characterize the physical protection components of a facility to reflect the perceived adversary attributes and strategy, environmental conditions, and site operational conditions. The SAFE procedure has broad applications in the nuclear facility safeguards field as well as in the security field in general. Any fixed facility containing valuable materials or components to be protected from theft or sabotage could be analyzed using this same automated evaluation technique

  19. International nuclear safeguards 1994: Vision for the future. V.1

    International Nuclear Information System (INIS)

    1994-01-01

    Since the last IAEA symposium on this subject, held eight years ego in 1986, the world of safeguards has experienced a number of momentous changes which have opened a new period of intensive development in safeguards. The important events were: The discoveries in Iraq during activities under United Nations Security Council resolutions, South Africa's decision to become a party to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), the IAEA-Argentina-Brazil-ABACC Quadripartite Safeguards Agreement, the break-up of the former USSR into newly independent States, and the problems encountered in the implementation of NPT safeguards in the Democratic People's Republic of Korea. The consequences for international safeguards of these events were presented in papers at this symposium, with special emphasis on verification of a State's declaration as well as on detection of undeclared activities. Other fundamental changes stem from converging relationships between nuclear arms reductions and the civil use of plutonium, and the international debate on the associated issues. Furthermore, the review and extension of the NPT is due in 1995. Events have opened the possibility for ambitious new concepts for verification regimes. These matters were addressed at the symposium in the opening session and in the closing panel discussion. Refs, figs and tabs

  20. Advancement of safeguards inspection technology for CANDU nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Park, W S; Cha, H R; Ham, Y S; Lee, Y G; Kim, K P; Hong, Y D

    1999-04-01

    The objectives of this project are to develop both inspection technology and safeguards instruments, related to CANDU safeguards inspection, through international cooperation, so that those outcomes are to be applied in field inspections of national safeguards. Furthermore, those could contribute to the improvement of verification correctness of IAEA inspections. Considering the level of national inspection technology, it looked not possible to perform national inspections without the joint use of containment and surveillance equipment conjunction with the IAEA. In this connection, basic studies for the successful implementation of national inspections was performed, optimal structure of safeguards inspection was attained, and advancement of safeguards inspection technology was forwarded. The successful implementation of this project contributed to both the improvement of inspection technology on CANDU reactors and the implementation of national inspection to be performed according to the legal framework. In addition, it would be an opportunity to improve the ability of negotiating in equal shares in relation to the IAEA on the occasion of discussing or negotiating the safeguards issues concerned. Now that the national safeguards technology for CANDU reactors was developed, the safeguards criteria, procedure and instruments as to the other item facilities and fabrication facilities should be developed for the perfection of national inspections. It would be desirable that the recommendations proposed and concreted in this study, so as to both cope with the strengthened international safeguards and detect the undeclared nuclear activities, could be applied to national safeguards scheme. (author)

  1. IAEA Guidance for Safeguards Implementation in Facility Design and Construction

    International Nuclear Information System (INIS)

    Sprinkle, J.; Hamilton, A.; Poirier, S.; Catton, A.; Ciuculescu, C.; Ingegneri, M.; Plenteda, R.

    2015-01-01

    One of the IAEA's statutory objectives is to seek to accelerate and enlarge the contribution of nuclear energy to peace, health and prosperity throughout the world. One way the IAEA works to achieve this objective is through the publication of technical series that can provide guidance to Member States. These series include the IAEA Services Series, the IAEA Safety Standard Series, the IAEA Nuclear Security Series and the IAEA Nuclear Energy Series. The Nuclear Energy Series is comprised of publications designed to encourage and assist research and development on, and practical application of, nuclear energy for peaceful purposes. This includes guidance to be used by owners and operators of utilities, academia, vendors and government officials. The IAEA has chosen the Nuclear Energy Series to publish guidance for States regarding the consideration of safeguards in nuclear facility design and construction. Historically, safeguards were often applied after a facility was designed or maybe even after it was built. However, many in the design and construction community would prefer to include consideration of these requirements from the conceptual design phase in order to reduce the need for retro-fits and modifications. One can then also take advantage of possible synergies between safeguards, security, safety and environmental protection and reduce the project risk against cost increments and schedule slippage. The IAEA is responding to this interest with a suite of publications in the IAEA Nuclear Energy Series, developed with the assistance of a number of Member State Support Programmes through a joint support programme task: · International Safeguards in Nuclear Facility Design and Construction (NP-T-2.8, 2013), · International Safeguards in the Design of Nuclear Reactors (NP-T-2.9, 2014), · International Safeguards in the Design of Spent Fuel Management (NF-T-3.1, tbd), · International Safeguards in the Design of Fuel Fabrication Plants (NF-T-4.7, tbd

  2. Introduction to nuclear material safeguards

    International Nuclear Information System (INIS)

    Kuroi, Hideo

    1986-01-01

    This article is aimed at outlining the nuclear material safeguards. The International Atomic Energy Agency (IAEA) was established in 1957 and safeguards inspection was started in 1962. It is stressed that any damage resulting from nuclear proliferation would be triggered by a human intentional act. Various measures have been taken by international societies and nations, of which the safeguards are the only means which relay mainly on technical procedures. There are two modes of diversing nuclear materials to military purposes. One would be done by national intension while the other by indivisulas or expert groups, i.e., sub-national intention. IAEA is responsible for the prevention of diversification by nations, for which the international safeguards are being used. Measures against the latter mode of diversification are called nuclear protection, for which each nation is responsible. The aim of the safeguards under the Nonproliferation Treaty is to detect the diversification of a significant amount of nuclear materials from non-military purposes to production of nuclear explosion devices such as atomic weapons or to unidentified uses. Major technical methods used for the safeguards include various destructive and non-destructive tests as well as containment and monitoring techniques. System techniques are to be employed for automatic containment and monitoring procedures. Appropriate nuclear protection system techniques should also be developed. (Nogami, K.)

  3. Networking of safeguards systems

    International Nuclear Information System (INIS)

    Chare, P.; Dutrannois, A.; Kloeckner, W.; Swinhoe, M.

    1995-01-01

    This paper discusses the design of a safeguards system that can be incorporated into a plant during the final phase of its construction to permit the acquisition and transmission of data during plant operation in the absence of an inspector. The system is an example of a networked data system of weighing, identity, and NDA information. It collects all of its non-surveillance data produced by safeguards equipment in a fuel fabrication plant. The data collection and transfer tasks are carried out by two software packages: NEGUS, a redundant data acquisition system designed to record neutron coincidence data, high-resolution gamma spectra, and sensor data for the NDA information and associated barcode identity information, and BRANCH, which deals with weighing and associated identity information. These processes collect data from local electronics using an ethernet network and provide information to the main review program

  4. Large geometry secondary ion mass spectrometry (LG-SIMS) for the enhancement of nuclear safeguards applications

    International Nuclear Information System (INIS)

    Helberg, P.M.L.; Wallenius, M.; Vincent, C.; Albert, N.; Peres, P.; Truyens, J.

    2013-01-01

    A new LG-SIMS (Large Geometry Secondary Ion Mass Spectrometry) laboratory is currently being established at the Joint Research Centre, the Institute of Transuranium Elements for the purpose of improving the analytical capabilities within the European Commission. The laboratory will mainly be used for analysing uranium bearing aerosol particles collected on cotton swipes from nuclear Safeguards inspections but it will also be used for Nuclear Forensics and other Safeguards related applications. Until recently, this type of analysis has predominantly been performed using the small geometry CAMECA IMS 3F-7F instrument series. These instruments provide both particle screening and isotope ratio capabilities. The performance of these instruments was however limited by the occurrence of isobaric interferences, in particular for the minor isotopes ( 234 U, 236 U), that could not be resolved without compromising the transmission of the instrument. A recent breakthrough to solve this problem has been the implementation of Large Geometry SIMS, the CAMECA 1270 / 1280 / 1280-HR models, for this type of analysis. This instrument has originally been developed for geosciences applications requiring both high transmission and high mass resolution capabilities. This came out to be a key instrumental advantage also for uranium particle analyses, as it allows efficient removal of common molecular interferences with minimum loss in transmission. Furthermore an electrostatic ion optical device has been added for increasing the mass dispersion which allows the simultaneous detection of all uranium isotopes. The Automated Particle Measurement (APM) software has been developed to perform screening measurement in an automated mode. Combined with the APM screening software, LG-SIMS instruments greatly improve the overall performance and throughput of isotopic analyses of U particles for nuclear Safeguards purposes. The paper is followed by the slides of the presentation. (A.C.)

  5. Proceedings of the European Research Reactor Conference - RRFM 2013 Transactions

    International Nuclear Information System (INIS)

    2013-01-01

    In 2013 RRFM, the European Research Reactor Conference is jointly organised by ENS and Atomexpo LLC. This time the Research Reactor community meet in St. Petersburg, Russia. The conference programme will revolve around a series of Plenary Sessions dedicated to the latest global developments with regards to research reactor technology and management. Parallel sessions will focus on all areas of the Fuel Cycle of Research Reactors, their Utilisation, Operation and Management as well as specific research projects and innovative methods in research reactor analysis and design. In 2013 the European Research Reactor Conference will for the first time give special attention to complementary safety assessments of Research Reactors, following the Fukushima-Dai-Ichi NPP's Accident. (authors)

  6. A Priority-Based View of Future Challenges in International Nuclear Safeguards.

    Energy Technology Data Exchange (ETDEWEB)

    Matteucci, Kayla [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-01

    The international nuclear safeguards community is faced with a host of challenges in the coming years, many of which have been outlined but have not been described in terms of their urgency. Literature regarding safeguards challenges is either broad and devoid of any reference to prioritization or tailored to a specific problem and removed from the overall goals of the safeguards community. For example, developing new methods of environmental sampling, improving containment and surveillance (C/S) technologies to increase efficiency and decrease inspection time, advancing nuclear material accountancy (NMA) techniques, and planning safeguards approaches for new types of nuclear facilities are all important. They have not, however, been distinctly prioritized at a high level within the safeguards community. Based on a review of existing literature and interviews with experts on these upcoming challenges, this paper offers a high-level summary of present and future priorities in safeguards, with attention both to what is feasible and to what is most imperative. In doing so, the paper addresses the potential repercussions for failing to prioritize, with a focus on the risk of diversion of nuclear material. Within the context of shifts in the American political landscape, and keeping in mind that nonproliferation issues may take a backseat to others in the near future, a prioritized view of safeguards objectives will be vital. In the interest of expanding upon this work, the paper offers several potential conceptual models for prioritization which can be explored in greater depth upon further research.

  7. Safeguards Implementation Practices Guide on Establishing and Maintaining State Safeguards Infrastructure

    International Nuclear Information System (INIS)

    2015-01-01

    The IAEA implements safeguards pursuant to agreements concluded with States. It is in the interests of both States and the IAEA to cooperate to facilitate the practical implementation of safeguards. Such cooperation is explicitly required under all types of safeguards agreements. Effective cooperation depends upon States and the IAEA sharing a common understanding of their respective rights and obligations. To address this, in 2012 the IAEA published Services Series 21, Guidance for States Implementing Comprehensive Safeguards Agreements and Additional Protocols, which aimed at enhancing understanding of the safeguards obligations of both States and the IAEA and at improving their cooperation in safeguards implementation. States may establish different processes and procedures at the national level, and set up different systems as required to meet their safeguards obligations. Indeed, a variety of approaches are to be expected, owing to such differences as the size and complexity of States’ nuclear programmes and their regulatory framework. The purpose of this Safeguards Implementation Practices (SIP) Guide is to share the experiences and good practices as well as the lessons learned by both States and the IAEA, acquired over the many decades of safeguards implementation. The information contained in the SIP Guides is provided for explanatory purposes and use of the Guides is not mandatory. The descriptions in the SIP Guides have no legal status and are not intended to add to, subtract from, amend or derogate from, in any way, the rights and obligations of the IAEA and the States set forth in The Structure and Content of Agreements between the Agency and States Required in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons (issued as INFCIRC/153 (Corrected)) and Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)). This

  8. Safeguards Implementation at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Juang; Lee, Sung Ho; Lee, Byung-Doo; Kim, Hyun-Sook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The main objective of the safeguards implementation activities is to assure that there are no diversions of declared nuclear material and/or no undeclared activity. The purpose of safeguards implementation activities is the assistance facility operators to meet the safeguards criteria set forth by the Atomic Energy Safety Acts and Regulations. In addition, the nuclear material and technology control team has acted as a contact point for domestic and international safeguards inspection activities and for the relevant safeguards cooperation. Domestic inspections were successfully carried out at the KAERI nuclear facilities pursuant to the domestic laws and regulations in parallel with the IAEA safeguards inspections. It is expected that safeguards work will be increased due to the pyro-related facilities such as PRIDE, ACPF and DUPIC, for which the IAEA is making an effort to establish safeguards approach. KAERI will actively cope with the plan of the NSSC by changing its domestic inspection regulations on the accounting and control of nuclear materials.

  9. Improving the Transparency of IAEA Safeguards Reporting

    International Nuclear Information System (INIS)

    Toomey, Christopher; Hayman, Aaron M.; Wyse, Evan T.; Odlaug, Christopher S.

    2011-01-01

    In 2008, the Standing Advisory Group on Safeguards Implementation (SAGSI) indicated that the International Atomic Energy Agency's (IAEA) Safeguards Implementation Report (SIR) has not kept pace with the evolution of safeguards and provided the IAEA with a set of recommendations for improvement. The SIR is the primary mechanism for providing an overview of safeguards implementation in a given year and reporting on the annual safeguards findings and conclusions drawn by the Secretariat. As the IAEA transitions to State-level safeguards approaches, SIR reporting must adapt to reflect these evolutionary changes. This evolved report will better reflect the IAEA's transition to a more qualitative and information-driven approach, based upon State-as-a-whole considerations. This paper applies SAGSI's recommendations to the development of multiple models for an evolved SIR and finds that an SIR repurposed as a 'safeguards portal' could significantly enhance information delivery, clarity, and transparency. In addition, this paper finds that the 'portal concept' also appears to have value as a standardized information presentation and analysis platform for use by Country Officers, for continuity of knowledge purposes, and the IAEA Secretariat in the safeguards conclusion process. Accompanying this paper is a fully functional prototype of the 'portal' concept, built using commercial software and IAEA Annual Report data.

  10. Building the European Research Area in nuclear fission pioneering steps in actinide science

    International Nuclear Information System (INIS)

    Forsstroem, Hans

    2004-01-01

    The concept of the European Research Area (ERA) aims at closer development of research policies in Europe and closer networking of research capacities, to reduce fragmentation of research in Europe. The goal is to make European research more effective and competitive. Several approaches are made to create ERA. The European Research Framework Programme is one tool in this context, with the introduction of the new instruments, Integrated Projects, Networks of Excellence and Integrated Infrastructure Initiatives. Actinide science is one area that could benefit from better coordination and more effective use of the research capacities, both human and physical. The European Commission is thus funding a Network of Excellence (ACTINET-6) and an Integrated Project (EUROPART) in this area within the sixth EURATOM Framework Programme. (author)

  11. IAEA safeguards: Staying ahead of the game

    International Nuclear Information System (INIS)

    2007-07-01

    What are nuclear safeguards and why are they important? Answers are provided in the booklet, describing and explaining the fundamentals of the IAEA safeguards system and its role as a key element of international security, and addressing the system's implementation, costs, requirements, resources and historical development, with an emphasis on trends and strengthening measures over the past 10-15 years. Topics discussed include the safeguards State evaluation process and and the key requirements of the safeguards system including information sources (open source information, commercial satellite imagery and nuclear trade related information) and the state of the art equipment, techniques and technology (unattended and remote monitoring equipment, environmental sampling, etc.)

  12. Optimizing the IAEA safeguards system

    International Nuclear Information System (INIS)

    Drobysz, Sonia; Sitt, Bernard

    2011-09-01

    During the 2010 Non-Proliferation Treaty Review Conference, States parties recognized that the Additional Protocol (AP) provides increased confidence about the absence of undeclared nuclear material and activities in a State as a whole. They agreed in action 28 of the final document to encourage 'all States parties that have not yet done so to conclude and bring into force an AP as soon as possible and to implement them provisionally pending their entry into force'. Today, 109 out of 189 States parties to the NPT have brought an AP in force. The remaining outliers have not yet done so for three types of reasons: they do not clearly understand what the AP entails; when they do, they refuse to accept new non-proliferation obligations either on the ground of lack of progress in the realm of disarmament, or simply because they are not ready to bear the burden of additional safeguards measures. Strong incentives are thus needed in order to facilitate universalization of the AP. While external incentives would help make the AP a de facto norm and encourage its conclusion by reducing the deplored imbalanced implementation of non-proliferation and disarmament obligations, internal incentives developed by the Agency and its member States can also play an important role. In this respect, NPT States parties recommended in action 32 of the Review Conference final document 'that IAEA safeguards should be assessed and evaluated regularly. Decisions adopted by the IAEA policy bodies aimed at further strengthening the effectiveness and improving the efficiency of IAEA safeguards should be supported and implemented'. The safeguards system should therefore be optimized: the most effective use of safeguards measures as well as safeguards human, financial and technical resources would indeed help enhance the acceptability and even attractiveness of the AP. Optimization can be attractive for States committed to a stronger verification regime independently from other claims, but still

  13. Consensus document on European brain research

    DEFF Research Database (Denmark)

    Di Luca, Monica; Baker, Mary; Corradetti, Renato

    2011-01-01

    will increase exponentially in the years to come due to ageing of the European population, it is necessary to act now in order to curb this increase and possibly reverse the trend. Thus, establishing a strong European platform supporting basic and clinical research in neuroscience is needed to confront...... version. Multinational and multidisciplinary teams have once again come together to express their views, not only on the current strengths in European research, but also on what needs to be done in priority, hoping that this update will inspire policy makers and stakeholders in directing funding...

  14. Brazilian reactors under safeguards

    International Nuclear Information System (INIS)

    1967-01-01

    Three nuclear reactors in Brazil have been placed under Agency safeguards against diversion to military use. They are used for research purposes under a bilateral treaty with the USA, and are located at Rio de Janeiro, Sao Paulo and Belo Horizonte

  15. Safeguards on nuclear waste

    International Nuclear Information System (INIS)

    Crawford, D.W.

    1995-01-01

    Safeguards and security policies within the Department of Energy (DOE) have been implemented in a graded fashion for the protection, control and accountability of nuclear materials. This graded philosophy has meant that safeguards on low-equity nuclear materials, typically considered of low diversion attractiveness such as waste, has been relegated to minimal controls. This philosophy has been and remains today an acceptable approach for the planning and implementation of safeguards on this material. Nuclear waste protection policy and guidance have been issued due to a lack of clear policy and guidance on the identification and implementation of safeguards controls on waste. However, there are issues related to safe-guarding waste that need to be clarified. These issues primarily stem from increased budgetary and resource pressures to remove materials from safeguards. Finally, there may be an unclear understanding, as to the scope and content of vulnerability assessments required prior to terminating safeguards on waste and other discardable materials and where the authority should lie within the Department for making decisions regarding safeguards termination. This paper examines these issues and the technical basis for Departmental policy for terminating safeguards on waste

  16. Safeguarding the atom

    International Nuclear Information System (INIS)

    Fischer, D.; Szasz, P.

    1985-01-01

    Safeguards play a key role in verifying the effectiveness of restraints on the spread of nuclear weapons. This book is a study of the safeguards system of the International Atomic Energy Agency, an important element of the non-proliferation regime. It focuses on the politics of safeguards, especially the political problems of the IAEA and of the day-to-day application of safeguards. It contains a critical appraisal and proposals for ways of improving existing procedures and of adapting them to the political and technological changes of recent years. IAEA safeguards represent the world's first and so far only attempt to verify an arms control agreement by systematic on-site inspection, and their applicability to other arms control measures is examined. (author)

  17. Safeguards Licensing Aspects of a Future Gen IV Test Facility - a Case Study

    International Nuclear Information System (INIS)

    Lindell, M. Aberg; Grape, S.; Hakansson, A.; Svaerd, S. Jacobsson

    2010-01-01

    The scope of this study covers safeguards licensing aspects of a possible future Gen IV demonstration facility. As a basis for the investigation, the facility was assumed to be located in Sweden, comprising a lead-cooled fast reactor and a reprocessing plant with fuel fabrication. The aim has been to identify safeguards requirements that may be set by the IAEA and the Swedish Radiation Safety Authority, and also to suggest how the safeguards system could be implemented in practice. The changed usage and handling of nuclear fuel, as compared to that of today, has been examined in order to determine how today's safeguards measures can be modified and extended to meet the needs of the demonstration facility. This work is part of GENIUS, the Swedish Gen IV research and development programme, which emphasizes lead-cooled fast reactors. (author)

  18. European research priorities for intracerebral haemorrhage

    DEFF Research Database (Denmark)

    Steiner, Thorsten; Petersson, Jesper; Al-Shahi Salman, Rustam

    2011-01-01

    and disability. The European Research Network on Intracerebral Haemorrhage EURONICH is a multidisciplinary academic research collaboration that has been established to define current research priorities and to conduct large clinical studies on all aspects of ICH........ No standardised diagnostic workup for the detection of the various underlying causes of ICH currently exists, and the evidence for medical or surgical therapeutic interventions remains limited. A dedicated European research programme for ICH is needed to identify ways to reduce the burden of ICH-related death...

  19. Safeguards techniques and equipment. 2003 ed

    International Nuclear Information System (INIS)

    2003-01-01

    The 1990s saw significant non-proliferation related developments in the world, resulting in a new period of safeguards development. Over several years an assessment was made of how to strengthen the effectiveness and improve the efficiency of IAEA safeguards. In May 1997 this culminated in the adoption by the IAEA Board of Governors of a Protocol Additional to Safeguards Agreements which significantly broadens the role of IAEA safeguards. As a consequence, the IAEA safeguards system entered a new era. In 1997 the IAEA began to publish a new series of booklets on safeguards, called the International Nuclear Verification Series (NVS). The objective of these booklets was to help in explaining IAEA safeguards, especially the new developments in safeguards, particularly for facility operators and government officers involved with these topics. The current booklet, which is a revision and update of IAEA/NVS/1, is intended to give a full and balanced description of the techniques and equipment used for both nuclear material accountancy and containment and surveillance measures, and for the new safeguards measure of environmental sampling. A completely new section on data security has been added to describe the specific features that are included in installed equipment systems in order to ensure the authenticity and confidentiality of information. As new verification measures continue to be developed the material in this booklet will be periodically reviewed and updated versions issued. The basic verification measure used by the IAEA is nuclear material accountancy. In applying nuclear material accountancy, IAEA safeguards inspectors make independent measurements to verify quantitatively the amount of nuclear material presented in the State's accounts. For this purpose, inspectors count items (e.g. fuel assemblies, bundles or rods, or containers of powdered compounds of uranium or plutonium) and measure attributes of these items during their inspections using non

  20. DISCRIMINATION BY ASSOCIATION IN EUROPEAN LAW

    Directory of Open Access Journals (Sweden)

    Cătălina-Adriana Ivănuș

    2013-11-01

    Full Text Available The european law prohibit direct and indirect discrimination and harrasment on grounds of sex, racial or ethnic, religion or belief, disability, age or sexual orientation. The question is what is the situation when someone is discriminated on can claim to be the victim of unlawful discrimination because he or she is associated with another person who has the protected characteristic. The the Court of Justice of the European Union’s judgment in Coleman v Attridge Law and Steve Law confirms, for the first time in European law, the existence of the concept of discrimination by association. In this article I examine the implications of this case on all conceps of discrimination concepts of discrimination in European law (direct discrimination, indirect discrimination and harassment. I also examine the application of discrimination by association to grounds other than disability.

  1. Fundamentals of materials accounting for nuclear safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Pillay, K.K.S. (comp.)

    1989-04-01

    Materials accounting is essential to providing the necessary assurance for verifying the effectiveness of a safeguards system. The use of measurements, analyses, records, and reports to maintain knowledge of the quantities of nuclear material present in a defined area of a facility and the use of physical inventories and materials balances to verify the presence of special nuclear materials are collectively known as materials accounting for nuclear safeguards. This manual, prepared as part of the resource materials for the Safeguards Technology Training Program of the US Department of Energy, addresses fundamental aspects of materials accounting, enriching and complementing them with the first-hand experiences of authors from varied disciplines. The topics range from highly technical subjects to site-specific system designs and policy discussions. This collection of papers is prepared by more than 25 professionals from the nuclear safeguards field. Representing research institutions, industries, and regulatory agencies, the authors create a unique resource for the annual course titled ''Materials Accounting for Nuclear Safeguards,'' which is offered at the Los Alamos National Laboratory.

  2. International seminar on safeguards information reporting and processing. Extended synopses

    International Nuclear Information System (INIS)

    1998-01-01

    Review of the safeguards of information technology, its current developments and status of safeguards in Member States are described concerning especially the role of domestic safeguards in cooperation with IAEA Safeguards. A Number of reports is dealing with declarations provided to the IAEA pursuant to Protocols Additional to Safeguard agreements. The Information Section of the IAEA Safeguards Information Technology Division is responsible for the data entry, loading and quality control od State supplied declarations. A software system is used to process information which should be readily accessible and usable in implementation of the strengthened safeguards system. Experiences in combating illegal trafficking of nuclear materials in a number of countries are included

  3. The European Community context

    International Nuclear Information System (INIS)

    Charrault, J.C.

    1984-01-01

    The chapter discusses the following: energy resources and energy policy within the European Community; political aspects in the Member States; Community involvement in the transport of radioactive materials; responsibility for safety in relation to transport lies with the governments of the Member States, but the Community through its various organizations also has certain responsibilities, e.g. to ensure that transport regulations are harmonised, to carry out safeguards checks, to provide standards for health and safety of workers and the public, and to cooperate with Member States in developing guidelines for transport safety. (U.K.)

  4. Understanding national and international safeguards: an evolutionary process

    International Nuclear Information System (INIS)

    Higinbotham, W.A.

    1983-01-01

    Domestic and international safeguards have been evolving and will continue to evolve. in the case of the United States, the concern was to protect the classified materials, at first. Then attention focussed on material accounting, then on measures to promptly detect theft by individuals with access, and later on physical protection to ward-off armed terrorists. The objective of the IAEA has always been to provide assurance that nuclear materials are not being diverted from the peaceful facilities that are under safeguards. The evolution has taken place in deciding how to provide this assurance, and in the definition of specific safeguards goals. In both cases the technology needed to meet the goals has improved due to R and D and to experience. A plea is made for more cooperation betwen those who develop and manage the policies, those who develop safeguards techniques, and those who are subject to national and IAEA safeguards. Some illustrations of the evolution of policies, inadequate coordination and general progress are given

  5. Societal risk approach to safeguards design and evaluation

    International Nuclear Information System (INIS)

    Murphey, W.M.; Sherr, T.S.; Bennett, C.A.

    1975-01-01

    A comprehensive rationale for safeguards design and evaluation, and a framework for continuing systematic assessment of the system's effectiveness and efficient allocation of available safeguards resources for balanced protection, were developed. The societal risk approach employed considers the likelihood of successful destructive acts involving nuclear materials or facilities and the magnitude of the effects on society. The safeguards problem is described in terms of events affecting societal risk and adversary actions. Structure of the safeguards system and the evaluation of its adequacy are discussed. Adversary characteristics are also discussed

  6. Comprehensive safeguards evaluation methods and societal risk analysis

    International Nuclear Information System (INIS)

    Richardson, J.M.

    1982-03-01

    Essential capabilities of an integrated evaluation methodology for analyzing safeguards systems are discussed. Such a methodology must be conceptually meaningful, technically defensible, discriminating and consistent. A decompostion of safeguards systems by function is mentioned as a possible starting point for methodology development. The application of a societal risk equation to safeguards systems analysis is addressed. Conceptual problems with this approach are discussed. Technical difficulties in applying this equation to safeguards systems are illustrated through the use of confidence intervals, information content, hypothesis testing and ranking and selection procedures

  7. European Training and Research in Peritoneal Dialysis: scientific objectives, training, implementation and impact of the programme.

    Science.gov (United States)

    Foster, Tom L; Ferrantelli, Evelina; van Wier-van der Schaaf, Tanja; Beelen, Robert H J

    2014-03-01

    Peritoneal dialysis (PD) offers many advantages over hospital-based haemodialysis, including better quality of life. Despite this, there is a general under-utilisation of PD in Europe, which, to some extent, can be attributed to a lack of knowledge and education amongst renal clinicians and nurses. The specific aim of the European Training and Research in Peritoneal Dialysis (EuTRiPD) programme is to address this lack of knowledge, to develop a minimum of five biomarkers that allow the prediction of outcome in PD and three therapeutic treatments to improve outcome in PD. EuTRiPD is a EU-wide consortium with clinical, academic and commercial partners set up to address this knowledge gap. By training through research and close collaboration between academic and commercial entities we hope to improve the outcome and uptake of PD. It is the goal of EuTRiPD to improve the currently hampered diagnostic therapeutic developments in renal replacement therapy (RRT) and structure existing high-quality PD-related research across Europe. It is hoped that EuTRiPD can and will have a significant impact on socio-economic and scientific aspects of PD. It is the aim for EuTRiPD to boost the uptake of PD throughout Europe by making PD the obvious choice for patients. © 2013 European Dialysis and Transplant Nurses Association/European Renal Care Association.

  8. India and the nuclear safeguards controversy

    International Nuclear Information System (INIS)

    Poulose, T.T.

    1979-01-01

    A brief account of the origin and development of the safeguards system to prevent diversion of nuclear material from its peaceful uses to production of nuclear explosives is given. India is firmly opposed to the discriminatory characteristics of the system. The IAEA safeguards apply to those nations (most of them developing nations) seeking Agency aid and not to the nuclear weapons powers and other advanced nuclear powers who do not need Agency aid. Even though the Tarapur Agreement does not provide for full scope safeguards, U.S.A., particularly after 1974 Pokharan explosion, is pressurisinq India to accept them by delaying the supply of enriched uranium for the Tarapur Power Plant. As is assumed by the Americans, India is not indifferent to the problem of proliferation. On the other hand, it has renounced nuclear weapons as an instrument of national policy and is committed to non-proliferation. India has all along since independence advocated universal and non-discriminating full scope safeguards system applicable to all nations, both nuclear and non-nuclear powers and to all nuclear facilities. (M.G.B.)

  9. MANAGEMENT ACCOUNTING IN EUROPEAN SOCIAL FUND FINANCED PROJECTS IN ROMANIA

    OpenAIRE

    Dogar Cristian; Tatiana Dãnescu

    2012-01-01

    Associating spent amounts in European Social Fund (ESF) financed interventions to eligible activities could be important premises for safeguarding the sound financial management principle. Incorporating management accounting in the beneficiaries accounting systems may provide primary warranties about compliance to the above mentioned principle as described in the EC Regulation 1605-2002 This study aims to explore some facts in actual accounting management implementation, as a base for future ...

  10. Safeguards at NRC licensed facilities: Are we doing enough

    International Nuclear Information System (INIS)

    Asselstine, J.K.

    1986-01-01

    Safeguards at the Nuclear Regulatory Commission (NRC) facilities are discussed in this paper. The NRC is pursuing a number of initiatives in the safeguards area. The Commission is conducting a reassessment of its safeguards design basis threat statements to consider the possible implications of an explosive-laden vehicle for U.S. nuclear safeguards and to examine the comparability of safeguards features at NRC-licensed and DOE facilities. The Commission is also completing action on measures to protect against the sabotage threat from an insider at NRC-licensed facilities, and is examining the potential safety implications of safeguards measures. Finally, the NRC has developed measures to reduce the theft potential for high-enriched uranium

  11. THIEF: An interactive simulation of nuclear materials safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Stanbro, W. D.

    1990-01-01

    The safeguards community is facing an era in which it will be called upon to tighten protection of nuclear material. At the same time, it is probable that safeguards will face more competition for available resources from other activities such as environmental cleanup. To exist in this era, it will be necessary to understand and coordinate all aspects of the safeguards system. Because of the complexity of the interactions involved, this process puts a severe burden on designers and operators of safeguards systems. This paper presents a simulation tool developed at the Los Alamos National Laboratory to allow users to examine the interactions among safeguards elements as they apply to combating the insider threat. The tool consists of a microcomputer-based simulation in which the user takes the role of the insider trying to remove nuclear material from a facility. The safeguards system is run by the computer and consists of both physical protection and MC A computer elements. All data elements describing a scenario can be altered by the user. The program can aid in training, as well as in developing threat scenarios. 4 refs.

  12. Safeguards and nuclear forensics

    International Nuclear Information System (INIS)

    Gangotra, Suresh

    2016-01-01

    Nuclear Safeguards is the detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons, or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by early detection. Safeguards implementation involves nuclear material accounting and containment and surveillance measures. The safeguards are implemented in nuclear facilities by the states, or agencies and International Atomic Energy Agency (IAEA). The measures for the safeguards include nuclear material Accounting (NUMAC) and Containment and surveillance systems. In recent times, there have been advances in safeguards like Near Real Time Monitoring (NRTM), Dynamic Nuclear Material Accounting (DNMA), Safeguards-by-Design (SBD), satellite imagery, information from open sources, remote monitoring etc

  13. Safeguards at NRC licensed facilities: Are we doing enough

    International Nuclear Information System (INIS)

    Asselstine, J.K.

    1986-01-01

    The Nuclear Regulatory Commission is pursuing a number of initiatives in the safeguards area. The Commission is conducting a reassessment of its safeguards design basis threat statements to consider the possible implications of an explosive-laden vehicle for U.S. nuclear safeguards and to examine the comparability of safeguards features at NRC-licensed and DOE facilities. The Commission is also completing action on measures to protect against the sabotage threat from an insider at NRC-licensed facilities, and is examining the potential safety implications of safeguards measures. Finally, the NRC has developed measures to reduce the theft potential for high-enriched uranium

  14. Overview of simulation applications in safeguards systems

    International Nuclear Information System (INIS)

    Dugan, V.L.

    1976-01-01

    The objective of society relative to the utilization of the nuclear fuel cycle is to maximize the benefits of the high quality energy which is available and to minimize the total ''costs'' associated with acquiring these benefits. The comparison of the resulting ''benefits'' to the ''costs'' must be sufficiently attractive for society to accept nuclear energy. In this paper a representation of the structure determined by the ''costs'' (economic, socio-political, institutional, environmental, and legal) associated with adversary action against the nuclear industry and with the measures implemented to deter, prevent, or recover from adversary actions (safeguards) is used to illustrate a broad view of a dynamic safeguards system. This system representation is then used to describe the subsystem areas to which simulation techniques are currently being applied and to suggest other areas in which various simulation applications may benefit the safeguards decision process

  15. Use of curium neutron flux from head-end pyroprocessing subsystems for the High Reliability Safeguards methodology

    Energy Technology Data Exchange (ETDEWEB)

    Borrelli, R.A., E-mail: r.angelo.borrelli@gmail.com

    2014-10-01

    The deployment of nuclear energy systems (NESs) is expanding around the world. Nations are investing in NESs as a means to establish energy independence, grow national economies, and address climate change. Transitioning to the advanced nuclear fuel cycle can meet growing energy demands and ensure resource sustainability. However, nuclear facilities in all phases of the advanced fuel cycle must be ‘safeguardable,’ where safety, safeguards, and security are integrated into a practical design strategy. To this end, the High Reliability Safeguards (HRS) approach is a continually developing safeguardability methodology that applies intrinsic design features and employs a risk-informed approach for systems assessment that is safeguards-motivated. Currently, a commercial pyroprocessing facility is used as the example system. This paper presents a modeling study that investigates the neutron flux associated with processed materials. The intent of these studies is to determine if the neutron flux will affect facility design, and subsequently, safeguardability. The results presented in this paper are for the head-end subsystems in a pyroprocessing facility. The collective results from these studies will then be used to further develop the HRS methodology.

  16. Current trends in the implementation of IAEA safeguards

    International Nuclear Information System (INIS)

    Adamson, A.; Bychkov, V.

    1993-01-01

    A practical goal, embodying the principle that a minimum amount of material is required in order to manufacture a nuclear explosive device, is that safeguards activities should enable the timely detection of the diversion of a significant quantity of nuclear material. It is important to note that the safeguards activities are not restricted to the International Atomic Energy Agency (the agency) but impose obligations on both state (and consequently on facility operators) and the agency. The beneficiaries are member states of the world community which have enhanced confidence in the competence and probity of states with safeguards agreements. Neither safeguards nor the nuclear industry have remained stationary. As new techniques have been developed, they have found applications, and as new challenges were encountered, the system has responded, for example, through improved measurements; through new or improved techniques for the operator, state or agency; and through new regulations. This paper details approaches, procedures and techniques developed for new complex nuclear facilities. Trends toward increase efficiency and effectiveness, and developments leading to more automated analysis and collection of data and the development of nondestructive assay methods are examined. Also important are trends in the presentation of safeguards results to the states and the general public

  17. International seminar on safeguards information reporting and processing. Extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-31

    Review of the safeguards of information technology, its current developments and status of safeguards in Member States are described concerning especially the role of domestic safeguards in cooperation with IAEA Safeguards. A Number of reports is dealing with declarations provided to the IAEA pursuant to Protocols Additional to Safeguard agreements. The Information Section of the IAEA Safeguards Information Technology Division is responsible for the data entry, loading and quality control od State supplied declarations. A software system is used to process information which should be readily accessible and usable in implementation of the strengthened safeguards system. Experiences in combating illegal trafficking of nuclear materials in a number of countries are included Refs, figs, 1 tab

  18. Summary of safeguards interactions between Los Alamos and Chinese scientists

    International Nuclear Information System (INIS)

    Eccleston, G.W.

    1994-01-01

    Los Alamos has been collaborating since 1984 with scientists from the Chinese Institute of Atomic Energy (CIAE) to develop nuclear measurement instrumentation and safeguards systems technologies that will help China support implementation of the nonproliferation treaty (NPT). To date, four Chinese scientists have visited Los Alamos, for periods of six months to two years, where they have studied nondestructive assay instrumentation and learned about safeguards systems and inspection techniques that are used by International Atomic Energy Agency (IAEA) inspectors. Part of this collaboration involves invitations from the CIAE to US personnel to visit China and interact with a larger number of Institute staff and to provide a series of presentations on safeguards to a wider audience. Typically, CIAE scientists, Beijing Institute of Nuclear Engineering (BINE) staff, and officials from the Government Safeguards Office attend the lectures. The BINE has an important role in developing the civilian nuclear power fuel cycle. BINE is designing a reprocessing plant for spent nuclear fuel from Chinese nuclear Power reactors. China signed the nonproliferation treaty in 1992 and is significantly expanding its safeguards expertise and activities. This paper describes the following: DOE support for US and Chinese interactions on safeguards; Chinese safeguards; impacts of US-China safeguards interactions; and possible future safeguards interactions

  19. Safeguards needs in the measurement area: the realm of measurements

    International Nuclear Information System (INIS)

    Hammond, G.; Auerbach, C.

    1978-01-01

    An effective safeguards measurement system must cover a multitude of material forms ranging from essentially pure substances to highly heterogeneous materials. In addition there are varied and sometimes conflicting demands for accuracy and timeliness. Consequently, a judicious and systematic choice must be made between methods based on sampling followed by chemical analysis or nondestructive methods based on nuclear properties. Fundamental advances in analytical chemistry made during the year preceding World War II enabled Manhattan Project scientists to develop methods which contributed to the success of both the immediate goal and the developments which have taken place since. Examples are given of evolutionary developments in the direction of timeliness through varying degrees of automation. Nondestructive methods, first introduced because of the need to measure scrap and other intractable material, are finding broader areas of application. Aided by DOE-sponsored research and development, new techniques providing greater accuracy, versatility and timeliness are being introduced. It is now recognized that an effective safeguards measurement system must make concerted use of both chemical and nondestructive methods. Recent studies have fostered understanding of the relative importance of various process streams in the material balance equations and have highlighted the need for a systematic approach to measurement solutions for safeguarding nuclear materials

  20. Improving technical support to IAEA safeguards

    International Nuclear Information System (INIS)

    Rundquist, D.

    1986-01-01

    Changes present new safeguards challenges and require that the entire safeguards process become more efficient. A development process has evolved at the Agency that aids in matching appropriate technology to the needs, primarily through the mechanism of voluntary Member States Support Programme, which gives IAEA access to many of the worlds finest nuclear laboratories. The function of these programs is discussed in this article with particular emphasis on the Agency's co-ordination role. Besides a description of the Member States Support Programme the problems involved (coordination and communication aspects) as well as the results achieved are indicated. The support is categorized under the following headlines: 1) Information and expertise; 2) Instrumentation, methods and techniques; 3) Training; 4) Test and calibration facilities. As mentioned in the article Member States also benefit from the Support Programme. Other means of technical support such as multi-national co-operation programmes and bilateral research agreements are mentioned

  1. The Concept of Goals-Driven Safeguards

    International Nuclear Information System (INIS)

    Wigeland, R.; Bjornard, T.; Castle, B.

    2009-01-01

    The IAEA, NRC, and DOE regulations and requirements for safeguarding nuclear material and facilities have been reviewed and each organization's purpose, objectives, and scope are discussed in this report. Current safeguards approaches are re-examined considering technological advancements and how these developments are changing safeguards approaches used by these organizations. Additionally, the physical protection approaches required by the IAEA, NRC, and DOE were reviewed and the respective goals, objectives, and requirements are identified and summarized in this report. From these, a brief comparison is presented showing the high-level similarities among these regulatory organizations' approaches to physical protection. The regulatory documents used in this paper have been assembled into a convenient reference library called the Nuclear Safeguards and Security Reference Library. The index of that library is included in this report, and DVDs containing the full library are available.

  2. The evolution of IAEA safeguards

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    This, second in a new series of booklets dealing with IAEA safeguards is intended for persons professionally interested in the subject as government officials responsible for non-proliferation or management of nuclear facilities, and practitioners of safeguards - the international and national officials charged with implementing IAEA safeguards. It is also aimed at the broader public concerned with the spread of nuclear weapons and interested in nuclear arms control and disarmament. It presents the situation as IAEA safeguards make `quantum jump` into new phase characterized by the IAEA as the `Strengthened Safeguards System`. It includes the historical overview of the International safeguards from 1945-1998; the aims and limitations of IAEA Safeguards; a chapter on how safeguards work in practice; as well as new challenges and opportunities

  3. The evolution of IAEA safeguards

    International Nuclear Information System (INIS)

    1998-01-01

    This, second in a new series of booklets dealing with IAEA safeguards is intended for persons professionally interested in the subject as government officials responsible for non-proliferation or management of nuclear facilities, and practitioners of safeguards - the international and national officials charged with implementing IAEA safeguards. It is also aimed at the broader public concerned with the spread of nuclear weapons and interested in nuclear arms control and disarmament. It presents the situation as IAEA safeguards make 'quantum jump' into new phase characterized by the IAEA as the 'Strengthened Safeguards System'. It includes the historical overview of the International safeguards from 1945-1998; the aims and limitations of IAEA Safeguards; a chapter on how safeguards work in practice; as well as new challenges and opportunities

  4. Safeguardability assessment on pilot-scale advanced spent fuel conditioning facility

    International Nuclear Information System (INIS)

    Lee, S.Y.; Li, T.K.; Pickett, S.E.; Miller, M.C.; Ko, W.I.; Kim, H.D.

    2006-01-01

    Full text: In South Korea, approximately 6,000 metric tons of spent nuclear fuel from commercial reactor operation has been accumulated with the expectation of more than 30,000 metric tons, three times the present storage capacity, by the end of 2040. To resolve these challenges in spent fuel management, the Korea Atomic Energy Research Institute (KAERI) has been developing a dry reprocessing technology called Advanced Spent Fuel Conditioning Process (ACP). This is an electrometallurgical treatment technique to convert oxide-type spent fuel into a metallic form, and the electrolytic reduction (ER) technology developed recently is known as a more efficient concept for spent fuel conditioning. The goal of the ACP study is to recover more than 99% of the actinide elements into a metallic form with minimizing the volume and heat load of spent fuel. The significant reduction of the volume and heat load of spent fuel is expected to lighten the burden of final disposal in terms of disposal size, safety, and economics. In the framework of R and D collaboration for the ACP safeguards, a joint study on the safeguardability of the ACP technology has been performed by the Los Alamos National Laboratory (LANL) and KAERI. The purpose of this study is to address the safeguardability of the ACP technology, through analysis of material flow and development of a proper safeguards system that meet IAEA's comprehensive safeguards objective. The sub-processes and material flow of the pilot-scale ACP facility were analyzed, and subsequently the relevant material balance area (MBA) and key measurement point (KMP) were designed for material accounting. The uncertainties in material accounting were also estimated with international target values, and design requirements for the material accounting systems were derived

  5. Experiences and challenges in developing European soil hydrological databases

    NARCIS (Netherlands)

    Lilly, A.; Nemes, A.; Wösten, J.H.M.; Hiederer, R.

    2014-01-01

    Development of the Hydraulic Properties of European Soils (HYPRES) database began in 1995 and was funded by the European Commission. The main aims of the project were to collate existing soil hydrological data held by Universities and Research Institutes into a single database and to use these data

  6. Training to raise staff awareness about safeguarding children.

    Science.gov (United States)

    Fleming, Jane

    2015-04-01

    To improve outcomes for children and young people health organisations are required to train all staff in children's safeguarding. This creates difficulties for large complex organisations where most staff provide services to the adult population. Heart of England NHS Foundation Trust is a large acute and community trust that had difficulties in engaging staff in children's safeguarding training. Compliance rates for clinical staff who were trained in children's safeguarding were low and needed to be addressed. This article sets out why safeguarding training is important for all staff and how the trust achieved staff engagement and improved compliance rates. To evaluate, maintain and develop safeguarding knowledge, understanding, skills, attitude and behaviour further resources are planned to allow access to learning resources in a variety of formats.

  7. Development and application of a safeguards system in a fabrication plant for highly enriched uranium

    International Nuclear Information System (INIS)

    Cuypers, M.; Stricht, E. van der

    1979-01-01

    This paper gives a general view of the safeguards activities performed at the Nukem Fabrication plant (Hanau, Federal Republic of Germany) during the last seven years. The main safeguards-relevant features of the plant are given and discussed. The importance is stressed of a good working relationship between the three principal partners, viz. the operator, the safeguards authority and the latter's technical support service. The definition, implementation and improvement of safeguards equipment and activities are outlined. The paper describes the internal organization established by the operator to fulfil his responsibilities, the safeguards philosophy, the Non-Destructive Assay equipment permanently installed by Euratom Safeguards, the results obtained, and the evaluation of the material balances. Conclusions are drawn (and specific comments made throughout the paper) from the experience gained over this period of seven years. (author)

  8. Research on nuclear energy within the European Commission Research Framework Programme

    International Nuclear Information System (INIS)

    Forsstroem, H.

    2000-01-01

    The strategic goal of the 5 th EURATOM RTD Framework Programme (FP5) is to help exploit the full potential of nuclear energy in a sustainable manner, by making current technologies even safer and more economical and by exploring promising new concepts. The programme covers nuclear fusion, nuclear fission and radiation protection. Part of the programme on nuclear fission and radiation protection is being implemented through ''indirect actions'', i.e. research co-sponsored (up to 50% of total costs) and co-ordinated by DG RESEARCH of the European Commission (EC) but carried out by external public and private organisations as multi-partner projects. The budget available for these indirect actions during FP5 (1998-2002) is 191 MEuro. The programme covers four different areas: safety of existing reactors, including plant life management, severe accident management and development of evolutionary systems; safety of the fuel cycle, including radioactive waste management and disposal, partitioning and transmutation and decommissioning of nuclear installation; safety of future systems, including new or revisited reactor or fuel cycle concepts; radiation protection and radiological sciences, including both basic radiobiology and radiophysics and issues connected to the application of radiation protection. After the first calls for proposals of FP5, which were evaluated in 1999 about 140 research projects have been selected for funding and is now in the process of starting. In parallel the research projects that were supported in the 4th Framework Programme (1994 - 1998) are coming to an end, and being reported, at the same time as the first thoughts on the 6 t h FP are discussed.An important new component for the future research in Europe is the concept of a European Research Area (ERA). The purpose of ERA is to create better overall framework conditions for research in Europe. Some of the concepts being discussed in this context are networking of centres of excellence, a

  9. Canada and international safeguards. Verifying nuclear non-proliferation

    International Nuclear Information System (INIS)

    1990-01-01

    The Non-Proliferation Treaty (NPT) came into force in 1970 and now has about 140 signatory nations. By creating legal barriers against proliferation and by promoting an international non-proliferation ethic, the NPT has promoted international peace and security. A key ingredient has been the confidence generated through verification by IAEA safeguards. By the end of 1988 IAEA safeguards agreements had been concluded with about 100 countries, including Canada. Over 500 nuclear facilities worldwide are under safeguards or contain safeguarded nuclear material. The existence of this credible and effective safeguards system makes international trade in nuclear equipment and materials possible, monitoring the transfer of nuclear technology to developing countries as well as between industrial countries. Canada is committed to non-proliferation and IAEA safeguards. Canadian non-proliferation policy is among the strictest in the world, even though opportunities have been lost to sell Canadian technology abroad as a result

  10. European commission research activities on iodine

    Energy Technology Data Exchange (ETDEWEB)

    Loggia, E della [European Commission, Brussels (Belgium)

    1996-12-01

    The research on iodine, as on other important fission products which would be released during a severe accident, carried out directly or organized by the European Commission stems from the Euratom Treaty, namely from Chapter III of the treaty which deals with the protection of the health of the population against radiations and from Chapter I which deals with research. In this paper we do not consider the Commission radiological protection programme: we limit ourselves to the presentation of the research carried out on Iodine as part of the most recent source term studies within the framework Programmes as are called the research programme of the European Commission, usually valid for a 4 year periods. The research activities are carried out by the European Commission either directly through the Joint Research Centres (JRC) or indirectly through collaboration with research organizations of Member States. Concerning the iodine research carried out as Direct Action in the Joint Research Centres, are mentioned here the most relevant activities carried out in this field at the JRC of Ispra and Karlsruhe (TUI). As Indirect Action, we present here the results of some studies allocated by the European Commission to experts of research organizations of Member Countries, followed by a short description of the main results achieved by the Reinforced Concerted Action, within the III Framework Programme (1992-1995). At the end of the paper are described the research on iodine being carried out or proposed within the IV Framework Programme (1995-1998). Mention is also done of the Commission participation, relevant in terms of financial and human efforts, to the PHEBUS FP Project. (author) refs.

  11. European commission research activities on iodine

    International Nuclear Information System (INIS)

    Loggia, E. della

    1996-01-01

    The research on iodine, as on other important fission products which would be released during a severe accident, carried out directly or organized by the European Commission stems from the Euratom Treaty, namely from Chapter III of the treaty which deals with the protection of the health of the population against radiations and from Chapter I which deals with research. In this paper we do not consider the Commission radiological protection programme: we limit ourselves to the presentation of the research carried out on Iodine as part of the most recent source term studies within the framework Programmes as are called the research programme of the European Commission, usually valid for a 4 year periods. The research activities are carried out by the European Commission either directly through the Joint Research Centres (JRC) or indirectly through collaboration with research organizations of Member States. Concerning the iodine research carried out as Direct Action in the Joint Research Centres, are mentioned here the most relevant activities carried out in this field at the JRC of Ispra and Karlsruhe (TUI). As Indirect Action, we present here the results of some studies allocated by the European Commission to experts of research organizations of Member Countries, followed by a short description of the main results achieved by the Reinforced Concerted Action, within the III Framework Programme (1992-1995). At the end of the paper are described the research on iodine being carried out or proposed within the IV Framework Programme (1995-1998). Mention is also done of the Commission participation, relevant in terms of financial and human efforts, to the PHEBUS FP Project. (author) refs

  12. IAEA Safeguards: Status and prospects

    International Nuclear Information System (INIS)

    Gruemm, H.

    1983-01-01

    The IAEA has just celebrated its 25th anniversary, and the first safeguards inspections were performed twenty years ago. Counting only since 1978, some 5100 inspections had been performed up to mid-1982, using a staff which now includes about 130 inspectors. Despite these impressive figures, and the fact that the IAEA has never detected any apparent diversion of nuclear materials, there are increasing public allegations that safeguards lack effectiveness. After briefly reviewing the nature of IAEA safeguards agreements, the paper examines the political and technical objectives of safeguards together with some of the criticisms which have been voiced. Allocation of limited safeguards resources is examined in terms of the sometimes conflicting allocation criteria which are contained in various safeguards documents. The paper argues that the credibility and deterrent effect of IAEA safeguards should not be underestimated. It should be of greater concern that a few States are known to be operating or constructing non-safeguarded nuclear facilities capable of producing weapons-grade nuclear materials. Thus the risk of safeguards would appear to be greatest at exactly the point where safeguards end. (author)

  13. Report from the 2012 European Gender Summit

    CERN Document Server

    European Gender Summit, 2012

    2012-01-01

    Report from the 2012 European Gender Summit to the European Parliament and the Council, the European Commission, the Council of Europe, EU Member and Associate States, Science Institutions. Developing Systematic Implementation Strategy to Advance EU Policy on Gender Equality in Science, as part of HORIZON 2020, European Research Area and Innovation Union.

  14. Safeguarding and Protecting the Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Bjornard, Trond; Garcia, Humberto; Desmond, William; Demuth, Scott

    2010-01-01

    International safeguards as applied by the International Atomic Energy Agency (IAEA) are a vital cornerstone of the global nuclear nonproliferation regime - they protect against the peaceful nuclear fuel cycle becoming the undetected vehicle for nuclear weapons proliferation by States. Likewise, domestic safeguards and nuclear security are essential to combating theft, sabotage, and nuclear terrorism by non-State actors. While current approaches to safeguarding and protecting the nuclear fuel cycle have been very successful, there is significant, active interest to further improve the efficiency and effectiveness of safeguards and security, particularly in light of the anticipated growth of nuclear energy and the increase in the global threat environment. This article will address two recent developments called Safeguards-by-Design and Security-by-Design, which are receiving increasing broad international attention and support. Expected benefits include facilities that are inherently more economical to effectively safeguard and protect. However, the technical measures of safeguards and security alone are not enough - they must continue to be broadly supported by dynamic and adaptive nonproliferation and security regimes. To this end, at the level of the global fuel cycle architecture, 'nonproliferation and security by design' remains a worthy objective that is also the subject of very active, international focus.

  15. A technical analysis of the IAEA nuclear safeguards

    International Nuclear Information System (INIS)

    Yoon, J. W.

    1998-01-01

    In the post-Cold War era, the threats of horizontal nuclear proliferation emerge as the forefront security issue while the nuclear arms races among existing nuclear weapon states reduce to a remarkable extent. In this context, there arises lots of research attention to the IAEA nuclear safeguards which have been viewed as the core of international monitoring on the clandestine nuclear activities of potential proliferators. However, previous attention tended to highlight the political aspects of the IAEA nuclear safeguards, centering on the possibilities and limitations of the IAEA's inspection authority. In contrast, this paper purports to focus on the technical aspects of the IAEA nuclear safeguards, so it can show the intrinsic problems of those safeguards in stemming the proliferation of nuclear weapons. This paper mainly deals with the technical objectives and options of the IAEA nuclear safeguards, the technical indices of clandestine nuclear activities, and some measures to improve the efficacy of the IAEA nuclear safeguards. Hopefully, this paper is expected to lead us to approach the issue of the North Korean nuclear transparency from the technical perspective as well as the political one

  16. Computer-based safeguards information and accounting system

    International Nuclear Information System (INIS)

    1977-01-01

    Acquiring, processing and analysing information about inventories and flow of nuclear materials are essential parts of IAEA safeguards. Safeguards information originates from several sources. The information to be provided is specified in the various safeguards agreements between the States and the IAEA, including both NPT agreements and safeguards trilateral agreements. Most of the safeguards information currently received by the IAEA is contained in accounting reports from the States party to the NPT. Within the frame of the material balance concept of NPT, three types of reports are provided to the IAEA by the States: Physical Inventory Listings (PIL); Inventory Change Reports (ICR); Material Balance Reports (MBR). In addition, facility design information is reported when NPT safeguards are applied and whenever there is a change in the facility or its operation. Based on this data, an accounting system is used to make available such information as the book inventories of nuclear material as a function of time, material balance evaluations, and analysis of shipments versus receipts of nuclear material. A second source of NPT safeguards information is the inspection activities carried out in the field as a necessary counterpart for verification of the data presented by the States in their accounting reports. The processing of inspection reports and other inspection data is carried out by the present system in a provisional manner until a new system, which is under development is available. The major effort currently is directed not to computer processing but toward developing and applying uniform inspection procedures and information requirements. A third source of NPT safeguards information is advanced notifications and notifications of transfer of source materials before the starting point of safeguards. Since, however, the States are not completely aware of the need and requirement to provide these data, this is a point to be emphasized in future workshops and

  17. Reactor safeguards against insider sabotage

    International Nuclear Information System (INIS)

    Bennett, H.A.

    1982-03-01

    A conceptual safeguards system is structured to show how both reactor operations and physical protection resources could be integrated to prevent release of radioactive material caused by insider sabotage. Operational recovery capabilities are addressed from the viewpoint of both detection of and response to disabled components. Physical protection capabilities for preventing insider sabotage through the application of work rules are analyzed. Recommendations for further development of safeguards system structures, operational recovery, and sabotage prevention are suggested

  18. Partitioning and transmutation - Technical feasibility, proliferation resistance and safeguardability

    International Nuclear Information System (INIS)

    Schenkel, R.; Glatz, J.-P.; Magill, J.; Mayer, K.

    2001-01-01

    Full text: The advantages of partitioning and transmutation (P and T) of minor actinides and selected fission products are largely discussed and described in literature. The advantages of separation of the long-lived alpha-emitters for the long-term storage of highly radioactive waste have been highlighted. After separation, these nuclides shall be transmuted by means of a dedicated reactor or accelerator driven system into shorter-lived fission products that are less hazardous. This, however, requires the development and implementation of a P and T fuel cycle, involving chemical separation of the minor actinides and the fabrication of MA containing fuels or targets. Concepts for P and T fuel cycles have been developed and technical issues are being addressed in various research programs. With the recognition of the proliferation potential associated with the minor actinides by the IAEA, also the proliferation and safeguards aspects need to be addressed. It is important to raise these points at an early stage of process development, in order to identify potential problems and to develop appropriate solutions. The oxide fuels used worldwide in thermal reactor systems for energy production are reprocessed by aqueous techniques. Therefore these systems, primarily the PUREX process, are fully developed and implemented commercially. Furthermore, the safeguards approach is fully implemented in existing facilities, covering uranium and plutonium. Pyroprocess systems have largely been associated with fast reactors and metallic fuels and their development has therefore only reached the pilot-scale stage and the feasibility of minor actinide (MA) separation still needs to be demonstrated. Hydrometallurgical and pyrochemical reprocessing should however not be considered as competing but rather as complementary technologies. For instance in a so-called double strata concept (foreseen for instance in the Japanese OMEGA project), the PUREX process (first stratum) would be

  19. Development of an engineered safeguards system concept for a mixed-oxide fuel fabrication facility

    International Nuclear Information System (INIS)

    Chapman, L.D.; de Montmollin, J.M.; Deveney, J.E.; Fienning, W.C.; Hickman, J.W.; Watkins, L.D.; Winblad, A.E.

    1976-08-01

    An initial concept of an Engineered Safeguards System for a representative commercial mixed-oxide fuel fabrication facility is presented. Computer simulation techniques for evaluation and further development of the concept are described. An outline of future activity is included

  20. IAEA's Safeguards Implementation Practices Guides

    International Nuclear Information System (INIS)

    Mathews, C.; Sahar, S.; Cisar, V.

    2015-01-01

    Implementation of IAEA safeguards benefits greatly from effective cooperation among the IAEA, State or regional authorities (SRAs), and operators of facilities and other locations. To improve such cooperation, the IAEA has produced numerous safeguards guidance documents in its Services Series publications. The IAEA also provides assistance, training and advisory services that are based on the published guidance. The foundation of the IAEA's safeguards guidance is the Guidance for States Implementing Comprehensive Safeguards Agreements and Additional Protocols (IAEA Services Series 21) published in March of 2012. The large majority of States have concluded CSAs and therefore will benefit from this guidance. Many States with CSAs also have concluded small quantities protocols (SQPs) to their CSAs. In April of 2013, the IAEA published the Safeguards Implementation Guide for States with SQPs (IAEA Services Series 22). Other guidance focuses on specific topics such as preparing additional protocol declarations and nuclear material accounting. This paper will describe a recent effort to produce a ''Safeguards Implementation Practices'' (SIP) series of guides that will provide additional explanatory information about safeguards implementation, and share the practical experiences and lessons learned of States and the IAEA over the many decades of implementing safeguards. The topics to be addressed in four SIP guides include: 1) Facilitating IAEA Verification Activities; 2) Establishing and Maintaining State Safeguards Infrastructure; 3) Provision of Information to the IAEA; and 4) Collaborative Approaches to Safeguards Implementation. The SIP Guides build upon the content of IAEA Services Series 21. Because the SIP Guides are intended to share implementation practices and lessons learned of States, a number of experienced State experts have participated in the development of the documents, through a joint Member State Support Programme task