WorldWideScience

Sample records for european particle physics

  1. Towards the European strategy for particle physics: The briefing book

    Energy Technology Data Exchange (ETDEWEB)

    Aakesson, T. [Lund University, Lund (Sweden); Aleksan, R. [CPPM/IN2P3-CNRS and DAPNIA/CEA, Marseille (France); Allanach, B.; Webber, B. [Cambridge University and DAMTP, Cambridge (United Kingdom); Bertolucci, S. [INFN and Laboratori Nazionali di Frascati, Frascati (Italy); Blondel, A. [University of Geneva, Geneva (Switzerland); Butterworth, J. [University College London, London (United Kingdom); Cavalli-Sforza, M. [IFAE, Universitat Autonoma de Barcelona, Barcelona (Spain); Cervera, A. [University of Valencia, Valencia (Spain); Naurois, M. de [LPNHE-IN2P3-CNRS and University of Paris VI and VII, Paris (France); Desch, K. [Freiburg University, Freiburg (Germany); Egede, U. [Imperial College London, London (United Kingdom); Heuer, R. [University of Hamburg and DESY, Hamburg (Germany); Hoecker, A.; Lombardi, A.; Mangano, M. [CERN, Geneva 23 (Switzerland); Huber, P. [University of Wisconsin, Madison (United States); Jungmann, K.; Onderwater, G. [KVI, Groningen (Netherlands); Linde, F. [NIKHEF, Amsterdam (Netherlands); Mezzetto, M. [INFN and University of Padova, Padova (Italy); Palanque-Delabrouille, N. [DAPNIA, Saclay (France); Peach, K. [University of Oxford and Royal Holloway University of London, John Adams Institute, London (United Kingdom); Polosa, A. [University of Rome, La Sapienza (Italy); Rondio, E. [Soltan Institute for Nuclear Studies, Warsaw (Poland); Weiglein, G. [Durham University, IPPP, Durham (United Kingdom)

    2007-07-15

    This document was prepared as part of the briefing material for the Workshop of the CERN Council Strategy Group, held in DESY Zeuthen from 2nd to 6th May 2006. It gives an overview of the physics issues and of the technological challenges that will shape the future of the field, and incorporates material presented and discussed during the Symposium on the European Strategy for Particle Physics, held in Orsay from 30th January to 2nd February 2006, reflecting the various opinions of the European community as recorded in written submissions to the Strategy Group and in the discussions at the Symposium. (orig.)

  2. European Particle Physics Masterclasses Make Students into Scientists for a Day

    Science.gov (United States)

    Johansson, K. E.; Kobel, M.; Hillebrandt, D.; Engeln, K.; Euler, M.

    2007-01-01

    In 2005 the European particle physics masterclasses attracted 3000 students from 18 European countries to visit one of 58 universities and education centres. The participants worked with data from real high energy particle collisions, learned about particle physics, and experienced research and education environments at European universities. In…

  3. Accelerating science and innovation societal benefits of European research in Particle Physics

    CERN Multimedia

    Radford, Tim; Jakobsson, Camilla; Marsollier, Arnaud; Mexner, Vanessa; O'Connor, Terry

    2013-01-01

    The story so far. Collaborative research in particle physics. The lesson for Europe: co-operation pays. Medicine and life sciences. The body of knowledge: particles harnessed for health. Energy and the environment. Think big: save energy and clean up the planet. Communication and new technologies. The powerhouse of invention. Society and skills. Power to the people. The European Strategy for Particle Physics. Update 2013.

  4. 2016 European School of Instrumentation in Particle and Astroparticle Physics (ESIPAP) - Registrations

    CERN Multimedia

    2015-01-01

    The registrations for the 2016 session of the European School of Instrumentation in Particle and Astroparticle Physics (ESIPAP) are now open.   Applications are welcome from second-year Master and PhD and for physicists wishing to further their knowledge in this particular field. The deadline for submission of the full application form is 30 October 2015.

  5. 2017 European School of Instrumentation in Particle and Astroparticle Physics (ESIPAP) - Registrations

    CERN Multimedia

    2016-01-01

    The registrations for the 2017 session of the European School of Instrumentation in Particle and Astroparticle Physics (ESIPAP) are now open.   Applications are welcome from staff, fellows and post-graduate students wishing to further their knowledge in the field. The deadline for submission of the full application form is 16 October 2016.

  6. Towards the european strategy for particle physics : The briefing book

    NARCIS (Netherlands)

    Akesson, T.; Aleksan, R.; Allanach, B.; Bertolucci, S.; Blondel, A.; Butterworth, J.; Cavalli-Sforza, M.; Cervera, A.; de Naurois, M.; Desch, K.; Egede, U.; Heuer, R.; Hoecker, A.; Huber, P.; Jungmann, K.; Linde, F.; Lombardi, A.; Mangano, M.; Mezzetto, M.; Onderwater, G.; Palanque-Delabrouille, N.; Peach, K.; Polosa, A.; Rondio, E.; Webber, B.; Weiglein, G.; Womersley, J.

    This document was prepared as part of the briefing material for the Workshop of the CERN Council Strategy Group, held in DESY Zeuthen from 2nd to 6th May 2006. It gives an overview of the physics issues and of the technological challenges that will shape the future of the field, and incorporates

  7. A Word from the DG: Preparing the strategy for European particle physics

    CERN Multimedia

    2006-01-01

    Particle physics is an increasingly globalized field, with the LHC marking the turning point from regional to world-wide organization. Although still a European-led project, the LHC is the first accelerator that CERN has built with help from non-Member States, and its experiments are the most international collaboration that particle physics has ever known. For Europe to engage in this process of globalization for future projects, and to maintain a leading position in the field, we need a European strategy. The European Commission is considering introducing basic research in possible actions during its R&D framework programme (2007-2013). It is with this in mind that the CERN Council established a strategy group in 2005. The group was asked to define and prioritize technical options in preparing a long-term vision for European particle physics for presentation to Council at a special meeting in Lisbon on 14 July this year. CERN Council's decision to establish the strategy group recognizes the distinctio...

  8. A word from the DG: The European strategy for particle physics

    CERN Multimedia

    2006-01-01

    The CERN Council took the bold and important decision of unanimously approving a European strategy for particle physics at a dedicated meeting held in Lisbon on 14 July. The consequences for particle physics and for this Laboratory are profound. The full strategy statement is available through the CERN Council web pages at the address http://www.cern.ch/council-strategygroup, but I would like to underline some of the key points here. In endorsing the strategy, the Council has agreed to act as a council for European particle physics, and not only as a council for CERN. The Council has accepted the considerable responsibility of defining and updating Europe's strategy for particle physics, and of representing Europe on the world stage. The general issues of the strategy recognize Europe's strength and depth in the field, at strong national institutes, at universities and laboratories, and at CERN. The scientific issues place the LHC firmly on top of the list, both in terms of its initial exploitation and possi...

  9. Particle Physics

    CERN Document Server

    Martin, B R

    2008-01-01

    An essential introduction to particle physics, with coverage ranging from the basics through to the very latest developments, in an accessible and carefully structured text. Particle Physics: Third Edition is a revision of a highly regarded introduction to particle physics. In its two previous editions this book has proved to be an accessible and balanced introduction to modern particle physics, suitable for those students needed a more comprehensive introduction to the subject than provided by the 'compendium' style physics books. In the Third Edition the standard mod

  10. Particle physics

    CERN Document Server

    Carlsmith, Duncan

    2012-01-01

    Particle Physics is the first book to connect theory and experiment in particle physics. Duncan Carlsmith provides the first accessible exposition of the standard model with sufficient mathematical depth to demystify the language of gauge theory and Feynman diagrams used by researchers in the field. Carlsmith also connects theories to past, present, and future experiments.

  11. Particle physics

    CERN Document Server

    Martin, Brian R

    2017-01-01

    An accessible and carefully structured introduction to Particle Physics, including important coverage of the Higgs Boson and recent progress in neutrino physics. Fourth edition of this successful title in the Manchester Physics series. Includes information on recent key discoveries including : An account of the discovery of exotic hadrons, beyond the simple quark model; Expanded treatments of neutrino physics and CP violation in B-decays; An updated account of ‘physics beyond the standard model’, including the interaction of particle physics with cosmology; Additional problems in all chapters, with solutions to selected problems available on the book’s website; Advanced material appears in optional starred sections.

  12. European Physical Society awards

    CERN Multimedia

    2004-01-01

    The winners of the 2004 Accelerator Prizes, awarded by the European Physical Society's Interdivisional Group on Accelerators (EPS-IGA), have been announced. Vladmir Shiltsev (Fermilab) and Igor Meshkov (JINR, Joint Institute of Nuclear Research, Dubna) will be presented with their awards during the 9th European Particle Accelerator Conference, EPAC'04, on 8 July 2004 in Lucerne. Both physicists will also give a talk about their work. More details on: http://epac.web.cern.ch/

  13. Particle physics

    CERN Document Server

    Kennedy, Eugene

    2012-01-01

    Stimulated by the Large Hadron Collider and the search for the elusive Higgs Boson, interest in particle physics continues at a high level among scientists and the general public. This book includes theoretical aspects, with chapters outlining the generation model and a charged Higgs boson model as alternative scenarios to the Standard Model. An introduction is provided to postulated axion photon interactions and associated photon dispersion in magnetized media. The complexity of particle physics research requiring the synergistic combination of theory, hardware and computation is described in terms of the e-science paradigm. The book concludes with a chapter tackling potential radiation hazards associated with extremely weakly interacting neutrinos if produced in copious amounts with future high-energy muon-collider facilities.

  14. Particle Physics

    CERN Multimedia

    2005-01-01

    While biomedicine and geoscience use grids to bring together many different sub-disciplines, particle physicists use grid computing to increase computing power and storage resources, and to access and analyze vast amounts of data collected from detectors at the world's most powerful accelerators (1 page)

  15. The role of nuclear particle physics in European science and education

    CERN Multimedia

    1970-01-01

    In conjunction with the formal papers presented at the session of the CERN Council reported earlier in this issue, a booklet entitled 'The European 300 GeV Accelerator Programme' (more colloquially known as 'the white book') has been prepared. It aims to present the 300 GeV project and its background in a more general way. We reproduce here the opening chapter which puts the research at CERN and related Laboratories in Europe in the context of European science and education.

  16. European school of instrumentation for particle and astroparticle physics (ESIPAP) - Places available

    CERN Multimedia

    2015-01-01

    If you are a PhD student, fellow or staff member and are interested in following one or more specific modules à la carte at ESIPAP, a limited number of places are still available on the Technologies & Applications course.   The course will be held at the European Scientific Institute in Archamps, France (Haute-Savoie) in February and March 2016.

  17. The european Laboratory for particle physics uses a new documental system created by a UGR researcher

    CERN Multimedia

    Ruiz, Antonio

    2006-01-01

    "The growing digitalization of traditional libraries and the increase of scientific production, like in the fields of high energies physics, have leaded to consider the manual indexing systems to be obsolete, as they are unviable in practice." (1 page)

  18. Experimental Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Rosenfeld, Carl [Univ of South Carolina; Mishra, Sanjib R. [Univ of South Carolina; Petti, Roberto [Univ of South Carolina; Purohit, Milind V. [Univ of South Carolina

    2014-08-31

    The high energy physics group at the University of South Carolina, under the leadership of Profs. S.R. Mishra, R. Petti, M.V. Purohit, J.R. Wilson (co-PI's), and C. Rosenfeld (PI), engaged in studies in "Experimental Particle Physics." The group collaborated with similar groups at other universities and at national laboratories to conduct experimental studies of elementary particle properties. We utilized the particle accelerators at the Fermi National Accelerator Laboratory (Fermilab) in Illinois, the Stanford Linear Accelerator Center (SLAC) in California, and the European Center for Nuclear Research (CERN) in Switzerland. Mishra, Rosenfeld, and Petti worked predominantly on neutrino experiments. Experiments conducted in the last fifteen years that used cosmic rays and the core of the sun as a source of neutrinos showed conclusively that, contrary to the former conventional wisdom, the "flavor" of a neutrino is not immutable. A neutrino of flavor "e," "mu," or "tau," as determined from its provenance, may swap its identity with one of the other flavors -- in our jargon, they "oscillate." The oscillation phenomenon is extraordinarily difficult to study because neutrino interactions with our instruments are exceedingly rare -- they travel through the earth mostly unimpeded -- and because they must travel great distances before a substantial proportion have made the identity swap. Three of the experiments that we worked on, MINOS, NOvA, and LBNE utilize a beam of neutrinos from an accelerator at Fermilab to determine the parameters governing the oscillation. Two other experiments that we worked on, NOMAD and MIPP, provide measurements supportive of the oscillation experiments. Good measurements of the neutrino oscillation parameters may constitute a "low energy window" on related phenomena that are otherwise unobservable because they would occur only at energies way above the reach of conceivable accelerators. Purohit and Wilson participated in the Ba

  19. Particle Physics & Astrophysics (PPA)

    Data.gov (United States)

    Federal Laboratory Consortium — Scientists at SLAC's Particle Physics and Astrophysics develop and utilize unique instruments from underground to outer space to explore the ultimate laws of nature...

  20. Teaching particle physics

    CERN Document Server

    Hanley, P

    2000-01-01

    Particle physics attracts many students who hear of news from CERN or elsewhere in the media. This article examines which current A-level syllabuses include which bits of particle physics and surveys the many different types of resource available to teachers and students. (0 refs).

  1. Elementary particle physics

    Science.gov (United States)

    Perkins, D. H.

    1986-01-01

    Elementary particle physics is discussed. Status of the Standard Model of electroweak and strong interactions; phenomena beyond the Standard Model; new accelerator projects; and possible contributions from non-accelerator experiments are examined.

  2. Particle and nuclear physics

    CERN Document Server

    Faessler, Amand

    1971-01-01

    Progress in Particle and Nuclear Physics, Volume 26 covers the significant advances in understanding the fundamentals of particle and nuclear physics. This volume is divided into four chapters, and begins with a brief overview of the various possible ideas beyond the standard model, the problem they address and their experimental tests. The next chapter deals with the basic physics of neutrino mass based on from a gauge theoretic point of view. This chapter considers the various extensions of the standard electroweak theory, along with their implications for neutrino physics. The discussio

  3. RESEARCH IN PARTICLE PHYSICS

    Energy Technology Data Exchange (ETDEWEB)

    Kearns, Edward [Boston Universiy

    2013-07-12

    This is the final report for the Department of Energy Grant to Principal Investigators in Experimental and Theoretical Particle Physics at Boston University. The research performed was in the Energy Frontier at the LHC, the Intensity Frontier at Super-Kamiokande and T2K, the Cosmic Frontier and detector R&D in dark matter detector development, and in particle theory.

  4. Particle physics builds potential

    CERN Document Server

    Camporesi, Tiziano

    2004-01-01

    Surveys of the career prospects of particle physicists in Europe, such as that one carried out in 2000 at DELPHI, reveal that particle phycisists are much in demand. The findings are fairly independent of a student's nationality, despite the big differences in the education systems of different countries across the continent. According to the DELPHI survey, half of all physics students remain in an academic environment after graduation. For those particle physicists who leave academia, the DELPHI survey showed that about half find jobs in hi- tech industry. The bottom line is that a degree in physics offers very good job prospects and career opportunities. (Edited abstract).

  5. Particle accelerator physics

    CERN Document Server

    Wiedemann, Helmut

    2007-01-01

    Particle Accelerator Physics is an in-depth and comprehensive introduction to the field of high-energy particle acceleration and beam dynamics. Part I gathers the basic tools, recalling the essentials of electrostatics and electrodynamics as well as of particle dynamics in electromagnetic fields. Part II is an extensive primer in beam dynamics, followed in Part III by the introduction and description of the main beam parameters. Part IV is devoted to the treatment of perturbations in beam dynamics. Part V discusses the details of charged particle accleration. Part VI and Part VII introduce the more advanced topics of coupled beam dynamics and the description of very intense beams. Part VIII is an exhaustive treatment of radiation from accelerated charges and introduces important sources of coherent radiation such as synchrotrons and free-electron lasers. Part IX collects the appendices gathering useful mathematical and physical formulae, parameters and units. Solutions to many end-of-chapter problems are give...

  6. European School of High-Energy Physics

    CERN Document Server

    2007-01-01

    The European School of High-Energy Physics is intended to give young experimental and phenomenological physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lecture notes on the Standard Model of electroweak interactions, Monte Carlo generators, relativistic heavy-ion physics, the flavour dynamics and CP violation in the Standard Model, cosmology, and high-energy neutrino astronomy with IceCube.

  7. European Physical Society Conference on High Energy Physics 2015

    CERN Document Server

    2015-01-01

    The European Physical Society Conference on High Energy Physics, organized by the High Energy and Particle Physics Division of the European Physical Society, is a major international conference that reviews biennially since 1971 the state of our knowledge of the fundamental constituents of matter and their interactions. The latest conferences in this series were held in Stockholm, Grenoble, Krakow, Manchester, Lisbon, and Aachen. Jointly organized by the Institute of High Energy Physics of the Austrian Academy of Sciences, the University of Vienna, the Vienna University of Technology, and the Stefan Meyer Institute for Subatomic Physics of the Austrian Academy of Sciences, the 23rd edition of this conference took place in Vienna, Austria. Among the topics covered were Accelerators, Astroparticle Physics, Cosmology and Gravitation, Detector R&D; and Data Handling, Education and Outreach, Flavour Physics and Fundamental Symmetries, Heavy Ion Physics, Higgs and New Physics, Neutrino Physics, Non-Perturbative...

  8. Research in particle physics

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    This proposal presents the research accomplishments and ongoing activities of Boston University researchers in high energy physics. Some changes have been made in the structure of the program from the previous arrangement of tasks. Task B, Accelerator Design Physics, is being submitted as a separate proposal for an independent grant; this will be consistent with the nature of the research and the source of funding. We are active in seven principal areas which will be discussed in this report: Colliding Beams - physics of e{sup +}e{sup {minus}} and {bar p}p collisions; MACRO Experiment - search for magnetic monopoles and study of cosmic rays; Proton Decay - search for nucleon instability and study of neutrino interactions; Particle Theory - theoretical high energy particle physics, including two Outstanding Junior Investigator awards; Muon G-2 - measurement of the anomalous magnetic moment of the muon; SSCintcal - calorimetry for the GEM Experiment; and Muon detectors for the GEM Experiment.

  9. A Request for Planning Funds for a Research and Study Abroad Facility in Geneva, Switzerland in Affiliation with the European Laboratory for Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    campbell, myron

    2013-03-31

    To create a research and study abroad program that would allow U.S. undergraduate students access to the world-leading research facilities at the European Organization for Nuclear Research (CERN), the World Health Organization, various operations of the United Nations and other international organizations based in Geneva.The proposal is based on the unique opportunities currently existing in Geneva. The Large Hadron Collider (LHC) is now operational at CERN, data are being collected, and research results are already beginning to emerge. At the same time, a related reduction of activity at U.S. facilities devoted to particle physics is expected. In addition, the U.S. higher-education community has an ever-increasing focus on international organizations dealing with world health pandemics, arms control and human rights, a nexus also centered in Geneva.

  10. Lectures in particle physics

    CERN Document Server

    Green, Dan

    1994-01-01

    The aim of this book on particle physics is to present the theory in a simple way. The style and organization of the material is unique in that intuition is employed, not formal theory or the Monte Carlo method. This volume attempts to be more physical and less abstract than other texts without degenerating into a presentation of data without interpretation.This book is based on four courses of lectures conducted at Fermilab. It should prove very useful to advanced undergraduates and graduate students.

  11. Particle physics -- Future directions

    Energy Technology Data Exchange (ETDEWEB)

    Chris Quigg

    2001-11-29

    Wonderful opportunities await particle physics over the next decade, with the coming of the Large Hadron Collider at CERN to explore the 1-TeV scale (extending efforts at LEP and the Tevatron to unravel the nature of electroweak symmetry breaking) and many initiatives to develop our understanding of the problem of identity: what makes a neutrino a neutrino and a top quark a top quark. Here I have in mind the work of the B factories and the Tevatron collider on CP violation and the weak interactions of the b quark; the wonderfully sensitive experiments at Brookhaven, CERN, Fermilab, and Frascati on CP violation and rare decays of kaons; the prospect of definitive accelerator experiments on neutrino oscillations and the nature of the neutrinos; and a host of new experiments on the sensitivity frontier. We might even learn to read experiment for clues about the dimensionality of spacetime. If we are inventive enough, we may be able to follow this rich menu with the physics opportunities offered by a linear collider and a (muon storage ring) neutrino factory. I expect a remarkable flowering of experimental particle physics, and of theoretical physics that engages with experiment. I describe some of the great questions before us and the challenges of providing the instruments that will be needed to define them more fully and eventually to answer them.

  12. Cosmology and particle physics

    Science.gov (United States)

    Turner, Michael S.

    1988-01-01

    The interplay between cosmology and elementary particle physics is discussed. The standard cosmology is reviewed, concentrating on primordial nucleosynthesis and discussing how the standard cosmology has been used to place constraints on the properties of various particles. Baryogenesis is discussed, showing how a scenario in which the B-, C-, and CP-violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and for the present baryon-to-photon ratio. It is shown how the very early dynamical evolution of a very weakly coupled scalar field which is initially displaced from the minimum of its potential may explain a handful of very fundamental cosmological facts which are not explained by the standard cosmology.

  13. Particle physics in your pocket!

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    CERN physicists, take out your smartphones! Two new particle physics applications for Android phones have been developed by a physicist from the University of Bern: “Particle Properties” and “Particle Physics Booklet 2010”.   “When I'm on shift, I enjoy looking at the online event displays,” says Igor Kreslo from the Laboratory for High Energy Physics at the University of Bern, the physicist who has developed the two particle physics applications for Android. “Sometimes very beautiful events appear, with many different particles. I like to discuss these displays with my students, just to develop their ability to identify particles. We try to find out which particle is which and how it might decay… I think that's the best way to teach students the phenomenology of particle physics.” When scientists study particle physics, they require some vital information, such as the decay branching ...

  14. Physics of windblown particles

    Science.gov (United States)

    Greeley, Ronald; Leach, Rodman; Marshall, John R.; White, Bruce; Iversen, James D.; Nickling, William G.; Gillette, Dale; Sorensen, Michael

    1987-01-01

    A laboratory facility proposed for the Space Station to investigate fundamental aspects of windblown particles is described. The experiments would take advantage of the environment afforded in earth orbit and would be an extension of research currently being conducted on the geology and physics of windblown sediments on earth, Mars, and Venus. Aeolian (wind) processes are reviewed in the planetary context, the scientific rational is given for specific experiments to be conducted, the experiment apparatus (the Carousel Wind Tunnel, or CWT) is described, and a plan presented for implementing the proposed research program.

  15. Online Particle Physics Information

    Energy Technology Data Exchange (ETDEWEB)

    Kreitz, Patricia A

    2003-04-24

    This list describes a broad set of online resources that are of value to the particle physics community. It is prescreened and highly selective. It describes the scope, size, and organization of the resources so that efficient choices can be made amongst many sites which may appear similar. A resource is excluded if it provides information primarily of interest to only one institution. Because this list must be fixed in print, it is important to consult the updated version of this compilation which includes newly added resources and hypertext links to more complete information at: http://www.slac.stanford.edu/library/pdg/.

  16. AIDA – pushing the boundaries of European particle detector research

    CERN Multimedia

    Naomi Gilraen Wyles

    2011-01-01

    AIDA (Advanced European Infrastructures for Detectors at Accelerators), a new project co-funded by the European Union and worth a total of 26 million euros, will be officially launched at CERN next week. The kick-off meeting will take place on 16-18 February, during which Europe-wide detector physicists will come together to begin work on detector infrastructure developments for future particle physics experiments.   Coordinated by CERN, AIDA involves more than 80 institutes and laboratories from 23 countries as beneficiaries or associate partners (the full list can be found here). This four-year project will receive 8 million euros from the European Commission's FP7 Research Infrastructures programme. AIDA will develop facilities covering the four main goals identified by the European Strategy for Particle Physics. These are the LHC upgrade, Linear Colliders, Neutrino facilities and Super-B factories. These facilities will also be available for other researchers in the fields of nuclear and par...

  17. Research in Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    White, Andrew Paul [Univ. of Texas, Arlington, TX (United States); De, Kaushik [Univ. of Texas, Arlington, TX (United States); Brandt, Andrew [Univ. of Texas, Arlington, TX (United States); Yu, Jaehoon [Univ. of Texas, Arlington, TX (United States); Farbin, Amir [Univ. of Texas, Arlington, TX (United States)

    2015-02-02

    This report details the accomplishments and research results for the High Energy Physics Group at the University of Texas at Arlington at the Energy and Intensity Frontiers. For the Energy Frontier we have made fundamental contributions in the search for supersymmetric particles, proposed to explain the stabilization of the mass of the Higgs Boson – the agent giving mass to all known particles. We have also made major contributions to the search for additional Higgs Bosons and to the planning for future searches. This work has been carried out in the context of the ATLAS Experiment at CERN (European Nuclear Research Laboratory) and for which we have made major contributions to computing and data distribution and processing, and have worked to calibrate the detector and prepare upgraded electronics for the future. Our other contribution to the Energy Frontier has been to the International Linear Collider (ILC) project, potentially hosted by Japan, and to the Silicon Detector Concept (SiD) in particular. We have lead the development of the SiD Concept and have worked on a new form of precise energy measurement for particles from the high energy collisions of electrons and positrons at the ILC. For the Intensity Frontier, we have worked to develop the concept of Long Baseline Neutrino Experiment(s) (LBNE) at the Fermi National Accelerator Laboratory. Our contributions to detector development, neutrino beam studies, particle identification, software development will facilitate future studies of the oscillation of one type of neutrino into other type(s), establish the order of the neutrino masses, and, through an innovative new idea, allow us to create a beam of dark matter particles.

  18. Particle Physics and the Universe

    CERN Document Server

    Wess, Julius; 9th Adriatic Meeting

    2005-01-01

    The focus of the contributions contained in this proceedings is the interplay between cosmology, astroparticle physics and particle physics, both from the theoretical and experimental point of view. The Adriatic Meetings have traditionally been one of the very few physics conferences devoted to the most advanced status of science while aiming at a very broad participation of both young and experienced researchers with diverse backgrounds in particle physics.

  19. European Strategy for Astroparticle Physics

    Science.gov (United States)

    Katsanevas, Stavros

    2010-02-01

    Astroparticle Physics emerged worldwide, in the last 20 years, from a field of charismatic pioneers transgressing disciplinary frontiers using risky and innovative detection techniques to a full blown global science activity involving many hundreds of researchers and hundred million or billion dollar scale projects. I will report on the recent effort to develop a strategic vision, roadmap and action plan for this field in Europe, performed under the auspices of ApPEC (Astroparticle Physics European Coordination) and in the context of the European Union program ASPERA. I will describe the many links that tie the proposed large observatories to the corresponding US and more generally worldwide infrastructures, as well as the efforts for a global coordination in progress. )

  20. Elementary particle physics in early physics education

    CERN Document Server

    Wiener, Gerfried

    2017-01-01

    Current physics education research is faced with the important question of how best to introduce elementary particle physics in the classroom early on. Therefore, a learning unit on the subatomic structure of matter was developed, which aims to introduce 12-year-olds to elementary particles and fundamental interactions. This unit was iteratively evaluated and developed by means of a design-based research project with grade-6 students. In addition, dedicated professional development programmes were set up to instruct high school teachers about the learning unit and enable them to investigate its didactical feasibility. Overall, the doctoral research project led to successful results and showed the topic of elementary particle physics to be a viable candidate for introducing modern physics in the classroom. Furthermore, thanks to the design-based research methodology, the respective findings have implications for both physics education and physics education research, which will be presented during the PhD defen...

  1. Notes on elementary particle physics

    CERN Document Server

    Muirhead, William Hugh

    1972-01-01

    Notes of Elementary Particle Physics is a seven-chapter text that conveys the ideas on the state of elementary particle physics. This book emerged from an introductory course of 30 lectures on the subject given to first-year graduate students at the University of Liverpool. The opening chapter deals with pertinent terminologies in elementary particle physics. The succeeding three chapters cover the concepts of transition amplitudes, probabilities, relativistic wave equations and fields, and the interaction amplitude. The discussion then shifts to tests of electromagnetic interactions, particul

  2. Review of Particle Physics, 2008-2009

    CERN Document Server

    Amsler, Claude; Antonelli, M; Asner, D M; Babu, K S; Baer, H; Band, H R; Barnett, R M; Bergren, E; Beringer, J; Bernardi, G; Bertl, W; Bichsel, H; Biebel, O; Bloch, P; Blucher, E; Blusk, S; Cahn, R N; Carena, M S; Caso, C; Ceccucci, A; Chakraborty, D; Chen, M C; Chivukula, R S; Cowan, G; Dahl, O; D'Ambrosio, G; Damour, T; De Gouvêa, A; DeGrand, T A; Dobrescu, B; Drees, M; Edwards, D A; Eidelman, S; Elvira, V D; Erler, J; Ezhela, V V; Feng, J L; Fetscher, W; Fields, B D; Foster, B; Gaisser, T K; Garren, L; Gerber, H J; Gerbier, G; Gherghetta, T; Giudice, G F; Goodman, M; Grab, C; Gritsan, A V; Grivaz, J F; Groom, D E; Grünewald, M; Gurtu, A; Gutsche, T; Haber, H E; Hagiwara, K; Hagmann, C; Hayes, K G; Hernández-Rey, J J; Hikasa, K; Hinchliffe, I; Höcker, A; Huston, J; Igo-Kemenes, Peter; Jackson, J D; Johnson, K F; Junk, T; Karlen, D; Kayser, B; Kirkby, D; Klein, S R; Knowles, I G; Kolda, C; Kowalewski, R V; Kreitz, P; Krusche, B; Kuyanov, Yu V; Kwon, Y; Lahav, O; Langacker, P; Liddle, A; Ligeti, Z; Lin, C J; Liss, T M; Littenberg, L; Liu, J C; Lugovsky, K S; Lugovsky, S B; Mahlke, H; Mangano, Michelangelo L; Mannel, T; Manohar, A V; Marciano, W J; Martin, A D; Masoni, A; Milstead, D; Miquel, R; Mönig, K; Murayama, H; Nakamura, K; Narain, M; Nason, P; Navas, S; Nevski, P; Nir, Y; Olive, K A; Pape, L; Patrignani, C; Peacock, J A; Piepke, A; Punzi, G; Quadt, A; Raby, S; Raffelt, G; Ratcliff, B N; Renk, B; Richardson, P; Roesler, S; Rolli, S; Romaniouk, A; Rosenberg, L J; Rosner, J L; Sachrajda, C T; Sakai, Y; Sarkar, S; Sauli, Fabio; Schneider, O; Scott, D; Seligman, W G; Shaevitz, M H; Sjöstrand, T; Smith, J G; Smoot, G F; Spanier, S; Spieler, H; Stahl, A; Stanev, T; Stone, S L; Sumiyoshi, T; Tanabashi, M; Terning, J; Titov, M; Tkachenko, N P; Törnqvist, N A; Tovey, D; Trilling, G H; Trippe, T G; Valencia, G; Van Bibber, K; Vincter, M G; Vogel, P; Ward, D R; Watari, T; Webber, B R; Weiglein, G; Wells, J D; Whalley, M; Wheeler, A; Wohl, C G; Wolfenstein, L; Womersley, J; Woody, C L; Workman, R L; Yamamoto, A; Yao, W M; Zenin, O V; Zhang, J; Zhu, R Y; Zyla, P A; Harper, G; Lugovsky, V S; Schaffner, P; Particle Data Group. Berkeley

    2008-01-01

    This biennial Review summarizes much of particle physics. The Review of Particle Physics and the abbreviated version, the Particle Physics Booklet, are reviews of the field of Particle Physics. This complete Review includes a compilation/evaluation of data on particle properties, called the "Particle Listings".

  3. Particle accelerator physics

    CERN Document Server

    Wiedemann, Helmut

    2015-01-01

    This book by Helmut Wiedemann is a well-established, classic text, providing an in-depth and comprehensive introduction to the field of high-energy particle acceleration and beam dynamics. The present 4th edition has been significantly revised, updated and expanded. The newly conceived Part I is an elementary introduction to the subject matter for undergraduate students. Part II gathers the basic tools in preparation of a more advanced treatment, summarizing the essentials of electrostatics and electrodynamics as well as of particle dynamics in electromagnetic fields. Part III is an extensive primer in beam dynamics, followed, in Part IV, by an introduction and description of the main beam parameters and including a new chapter on beam emittance and lattice design. Part V is devoted to the treatment of perturbations in beam dynamics. Part VI then discusses the details of charged particle acceleration. Parts VII and VIII introduce the more advanced topics of coupled beam dynamics and describe very intense bea...

  4. Advances in the physics basis for the European DEMO design

    Science.gov (United States)

    Wenninger, R.; Arbeiter, F.; Aubert, J.; Aho-Mantila, L.; Albanese, R.; Ambrosino, R.; Angioni, C.; Artaud, J.-F.; Bernert, M.; Fable, E.; Fasoli, A.; Federici, G.; Garcia, J.; Giruzzi, G.; Jenko, F.; Maget, P.; Mattei, M.; Maviglia, F.; Poli, E.; Ramogida, G.; Reux, C.; Schneider, M.; Sieglin, B.; Villone, F.; Wischmeier, M.; Zohm, H.

    2015-06-01

    In the European fusion roadmap, ITER is followed by a demonstration fusion power reactor (DEMO), for which a conceptual design is under development. This paper reports the first results of a coherent effort to develop the relevant physics knowledge for that (DEMO Physics Basis), carried out by European experts. The program currently includes investigations in the areas of scenario modeling, transport, MHD, heating & current drive, fast particles, plasma wall interaction and disruptions.

  5. The ABCs of particle physics

    CERN Document Server

    Biron, Lauren

    2016-01-01

    For lovers of rhymes and anthropomorphic Higgs bosons, Symmetry presents its first published board book, The ABCs of Particle Physics. Use it as an illustrated guide to basic particle- and astrophysics terms, or read it to your infant at bedtime, if you don’t mind their first word being “quark.”

  6. Introduction to Particle Physics course

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    These lectures are an introduction to the ideas of particle physics, aimed at students and teachers with little or on knowledge of the subject. They form a broad basis that will be developed in more detail by the subsequent lecturers in the school. These four lectures are meant to present an overview of particle physics based on its historical evolution over the past century. It will be shown how concepts have evolved following progress in instrumentation and in theoretical ideas, from atoms to the elementary particles and their interactions, as they are known today.

  7. Particle physics a beginner's guide

    CERN Document Server

    Martin, Brian R

    2011-01-01

    Gaining a following since the launch of the infamous Large Hadron Collider, particle physics explores our most fundamental and mind-blowing questions: How did the Universe start? What are we made of? How small is the smallest thing? Without presuming any prior scientific knowledge, Brian R. Martin takes readers on a wide-ranging tour of the field, from its beginnings in nuclear physics to the discovery of quarks and cutting-edge research into string theory, the mystery of antimatter, and the current search for the elusive “God particle." Brian R. Martin is emeritus professor of physics at Un

  8. Nuclear physics and particle therapy

    Science.gov (United States)

    Battistoni, G.

    2016-05-01

    The use of charged particles and nuclei in cancer therapy is one of the most successful cases of application of nuclear physics to medicine. The physical advantages in terms of precision and selectivity, combined with the biological properties of densely ionizing radiation, make charged particle approach an elective choice in a number of cases. Hadron therapy is in continuous development and nuclear physicists can give important contributions to this discipline. In this work some of the relevant aspects in nuclear physics will be reviewed, summarizing the most important directions of research and development.

  9. ESMN / European Solar Physics Research Area

    NARCIS (Netherlands)

    Rutten, R.J.

    1999-01-01

    I briefly present the European Solar Magnetometry Network as a contemporary example of solar physics collaboration across European borders,and I place it in larger-scale context by discussing the past and future of Europe-wide solar physics organization.Solar physics from space is inherently

  10. Ultraviolet extensions of particle physics

    DEFF Research Database (Denmark)

    Berthier, Laure Gaëlle

    The discovery of the Higgs boson in 2012 at the Large Hadron Collider completed the Standard Model field content. Many questions though remain unanswered by the Standard Model triggering a search for new physics. New physics could manifest itself at the Large Hadron Collider by the discovery of new...... particles. However, the lack of new resonances might suggest that these new particles are still out of reach which leaves us with few options. Two possibilities are explored in this thesis. The first is to study precision measurements which might indicate new physics as small deviations from the Standard...... are expressed as power series with missing higher order terms. We also show how to connect ultraviolet models of new physics to the Standard Model effective field theory and calculate bounds on them using the Standard Model effective field theory fit results. Finally, we study a nonrelativistic ultraviolet...

  11. The Future of Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bjorken, James

    2000-06-15

    After a very brief review of twentieth century elementary particle physics, prospects for the next century are discussed. First and most important are technological limits of opportunities; next, the future experimental program, and finally the status of the theory, in particular its limitations as well as its opportunities.

  12. A research Program in Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Sobel, Henry; Molzon, William; Lankford, Andrew; Taffard, Anyes; Whiteson, Daniel; Kirkby, David

    2013-07-25

    Work is reported in: Neutrino Physics, Cosmic Rays and Elementary Particles; Particle Physics and Charged Lepton Flavor Violation; Research in Collider Physics; Dark Energy Studies with BOSS and LSST.

  13. Nuclear physics with polarized particles

    Energy Technology Data Exchange (ETDEWEB)

    Paetz gen. Schieck, Hans [Koeln Univ. (Germany). Inst. fuer Kernphysik

    2012-07-01

    The measurement of spin-polarization observables in reactions of nuclei and particles is of great utility and advantage when the effects of single-spin sub-states are to be investigated. Indeed, the unpolarized differential cross-section encompasses the averaging over the spin states of the particles, and thus loses details of the interaction process. This introductory text combines, in a single volume, course-based lecture notes on spin physics and on polarized-ion sources with the aim of providing a concise yet self-contained starting point for newcomers to the field, as well as for lecturers in search of suitable material for their courses and seminars. A significant part of the book is devoted to introducing the formal theory - a description of polarization and of nuclear reactions with polarized particles. The remainder of the text describes the physical basis of methods and devices necessary to perform experiments with polarized particles and to measure polarization and polarization effects in nuclear reactions. The book concludes with a brief review of modern applications in medicine and fusion energy research. For reasons of conciseness and of the pedagogical aims of this volume, examples are mainly taken from low-energy installations such as tandem Van de Graaff laboratories, although the emphasis of present research is shifting to medium- and high-energy nuclear physics. Consequently, this volume is restricted to describing non-relativistic processes and focuses on the energy range from astrophysical energies (a few keV) to tens of MeV. It is further restricted to polarimetry of hadronic particles. (orig.)

  14. Nuclear physics with polarized particles

    CERN Document Server

    Paetz gen Schieck, Hans

    2012-01-01

    The measurement of spin-polarization observables in reactions of nuclei and particles is of great utility and advantage when the effects of single-spin sub-states are to be investigated. Indeed, the unpolarized differential cross-section encompasses the averaging over the spin states of the particles, and thus loses details of the interaction process. This introductory text combines, in a single volume, course-based lecture notes on spin physics and on polarized-ion sources with the aim of providing a concise yet self-contained starting point for newcomers to the field, as well as for lecturers in search of suitable material for their courses and seminars. A significant part of the book is devoted to introducing the formal theory-a description of polarization and of nuclear reactions with polarized particles. The remainder of the text describes the physical basis of methods and devices necessary to perform experiments with polarized particles and to measure polarization and polarization effects in nuclear rea...

  15. Supersymmetry in Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, Michael E.; /SLAC

    2008-02-05

    These lectures give a general introduction to supersymmetry, emphasizing its application to models of elementary particle physics at the 100 GeV energy scale. I discuss the following topics: the construction of supersymmetric Lagrangians with scalars, fermions, and gauge bosons, the structure and mass spectrum of the Minimal Supersymmetric Standard Model (MSSM), the measurement of the parameters of the MSSM at high-energy colliders, and the solutions that the MSSM gives to the problems of electroweak symmetry breaking and dark matter.

  16. Experiences in automatic keywording of particle physics literature

    CERN Document Server

    Montejo Ráez, Arturo

    2001-01-01

    Attributing keywords can assist in the classification and retrieval of documents in the particle physics literature. As information services face a future with less available manpower and more and more documents being written, the possibility of keyword attribution being assisted by automatic classification software is explored. A project being carried out at CERN (the European Laboratory for Particle Physics) for the development and integration of automatic keywording is described.

  17. Geneva University - Particle Physics Seminars

    CERN Multimedia

    Université de Genève

    2010-01-01

    GENEVA UNIVERSITY École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 GENÈVE 4 Tél. (022) 379 62 73 Fax: (022) 379 69 92 Wednesday 13 October 2010 PARTICLE PHYSICS SEMINAR at 17.00 hrs – Stückelberg Auditorium Exotic hadrons, Light Higgs and Dark Forces at BABAR Dr. Bertrand Echenard / California Institute of Technology From spectroscopy to search new physics, B-factories have explored many exciting topics besides establishing CP-violation in B decays. We will review recent results on spectroscopy, exotic hadrons and search for light Higgs. Current searches for dark forces and GeV-scale dark matter particles will also be discussed. Information : http://dpnc.unige.ch/seminaire/annonce.html Organizer : G. Pasztor Wednesday 20 October 2010 PARTICLE PHYSICS SEMINAR at 17.00 hrs – Stückelberg Auditorium The MINOS Experiment, Results and Future Plans Pro...

  18. Modelling the dispersion of particle numbers in five European cities

    NARCIS (Netherlands)

    Kukkonen, J.; Karl, M.; Keuken, M.P.; Denier van der Gon, H.A.C.; Denby, B.R.; Singh, V.; Douros, J.; Manders, A.M.M.; Samaras, Z.; Moussiopoulos, N.; Jonkers, S.; Aarnio, M.; Karppinen, A.; Kangas, L.; Lutzenkirchen, S.; Petaja, T.; Vouitsis, I.; Sokhi, R.S.

    2016-01-01

    We present an overview of the modelling of particle number concentrations (PNCs) in five major European cities, namely Helsinki, Oslo, London, Rotterdam and Athens in 2008. Novel emission inventories of particle numbers have been compiled both on urban and European scales. We used atmospheric

  19. Experimental techniques in nuclear and particle physics

    CERN Document Server

    Tavernier, Stefaan

    2009-01-01

    The book is based on a course in nuclear and particle physics that the author has taught over many years to physics students, students in nuclear engineering and students in biomedical engineering. It provides the basic understanding that any student or researcher using such instruments and techniques should have about the subject. After an introduction to the structure of matter at the subatomic scale, it covers the experimental aspects of nuclear and particle physics. Ideally complementing a theoretically-oriented textbook on nuclear physics and/or particle physics, it introduces the reader to the different techniques used in nuclear and particle physics to accelerate particles and to measurement techniques (detectors) in nuclear and particle physics. The main subjects treated are: interactions of subatomic particles in matter; particle accelerators; basics of different types of detectors; and nuclear electronics. The book will be of interest to undergraduates, graduates and researchers in both particle and...

  20. Final Report: Particle Physics Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Karchin, Paul E. [Wayne State Univ., Detroit, MI (United States). Department of Physics and Astronomy; Harr, Robert F. [Wayne State Univ., Detroit, MI (United States). Department of Physics and Astronomy; Mattson, Mark. E. [Wayne State Univ., Detroit, MI (United States). Department of Physics and Astronomy

    2011-09-01

    We describe recent progress in accelerator-based experiments in high-energy particle physics and progress in theoretical investigations in particle physics. We also describe future plans in these areas.

  1. Fundamentals of Cosmological Particle Physics

    CERN Document Server

    Khlopov, Maxim Yu

    2012-01-01

    This current updated and expanded (this is an up-dated English translation of Prof. Khlopov's book "Osnovy kosmomikrofiziki", URSS, 2004) text reflects the large number of scientific advances, both theoretical and experimental, within the discipline of cosmic particle physics in the last 10 years. Some of the topics that have been added or updated include but are not limited to: HND or CMD+HND scenarios being implemented into sterile neutrino scenarios, the ramifications of extending the forms of dark matter with respect to our view of neutrinos, the origin of baryon matter and the need for nonbaryonic matter in current theories, problems the existence of dark matter raises with respect to cosmic particle physics and the relationship with (meta) stable (super) weakly interacting particles predicted by the extension of the standard model, restrictions on baryon and lepton photons, as well as problems associated with expansion, just to name a few. These and many other topics are readdressed in light of recent b...

  2. Fundamental physics in particle traps

    Energy Technology Data Exchange (ETDEWEB)

    Quint, Wolfgang; Vogel, Manuel (eds.) [GSI Helmholtz-Zentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2014-03-01

    The individual topics are covered by leading experts in the respective fields of research. Provides readers with present theory and experiments in this field. A useful reference for researchers. This volume provides detailed insight into the field of precision spectroscopy and fundamental physics with particles confined in traps. It comprises experiments with electrons and positrons, protons and antiprotons, antimatter and highly charged ions, together with corresponding theoretical background. Such investigations represent stringent tests of quantum electrodynamics and the Standard model, antiparticle and antimatter research, test of fundamental symmetries, constants, and their possible variations with time and space. They are key to various aspects within metrology such as mass measurements and time standards, as well as promising to further developments in quantum information processing. The reader obtains a valuable source of information suited for beginners and experts with an interest in fundamental studies using particle traps.

  3. Fundamental physics in particle traps

    CERN Document Server

    Vogel, Manuel

    2014-01-01

    This volume provides detailed insight into the field of precision spectroscopy and fundamental physics with particles confined in traps. It comprises experiments with electrons and positrons, protons and antiprotons, antimatter and highly charged ions, together with corresponding theoretical background. Such investigations represent stringent tests of quantum electrodynamics and the Standard model, antiparticle and antimatter research, test of fundamental symmetries, constants, and their possible variations with time and space. They are key to various aspects within metrology such as mass measurements and time standards, as well as promising to further developments in quantum information processing. The reader obtains a valuable source of information suited for beginners and experts with an interest in fundamental studies using particle traps.

  4. Geneva University - Particle Physics seminar

    CERN Multimedia

    Université de Genève

    2011-01-01

    UNIVERSITE DE GENEVE Ecole de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Geneva 4 Tel. (022) 379 62 73 Fax (022) 379 69 92 Wednesday 8 June 2011 PARTICLE PHYSICS SEMINAR at 17.00 hrs – Stückelberg Auditorium A Novel Experiment for the Search muon -> eee Prof. Andre Schoening, University of Heidelberg The absence of lepton-flavor changing processes, like the non-observation of the radiative decay mu -> e gamma, has been a miracle since the dawn of the Standard Model of Particle Physics and lead to the introduction of the concept of lepton family numbers. Several experiments in the last decade have shown clear evidence for neutrino oscillations. The neutrino mixing angles measured are known to be large. However, the discovery of lepton flavor violating (LFV) effects in the charged lepton sector is yet owing. After motivating the search for LFV in general I will discuss the physics potential of a search m...

  5. e-EPS News: Highlights from the European Physical Society

    CERN Multimedia

    e-EPS News

    2011-01-01

    e-EPS News is a monthly addition to the CERN Bulletin line-up, showcasing articles from e-EPS – the European Physical Society newsletter – as part of a collaboration between the two publications.   DESY and INFN physicists win 2011 Enrico Fermi prize The 2011 Enrico Fermi prize of the Italian Physical Society (Società Italiana di Fisica, SIF) has been awarded, for work in the field of experimental particle physics, to Dieter Haidt of the DESY Laboratory at Hamburg and to Antonino Pullia of the University of Milano Bicocca and Istituto Nazionale di Fisica Nucleare, “for their fundamental contribution to the discovery of weak neutral currents with the Gargamelle bubble chamber at CERN”. The Enrico Fermi Prize is awarded yearly to members of the society who especially honour physics by their discoveries. For more information on the prize, please visit the Italian Physical Society website.   Consultation on the future of European Uni...

  6. Worlds largest particle physics laboratory selects Proxim Wireless Mesh

    CERN Multimedia

    2007-01-01

    "Proxim Wireless has announced that the European Organization for Nuclear Research (CERN), the world's largest particle physics laboratory and the birthplace of the World Wide Web, is using it's ORiNOCO AP-4000 mesh access points to extend the range of the laboratory's Wi-Fi network and to provide continuous monitoring of the lab's calorimeters" (1/2 page)

  7. The dialogue between particle physics and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Sadoulet, B.

    1988-04-01

    In the last decade, a very close relationship has developed between particle physics and cosmology. The purpose of these lectures is to introduce particle physicists to the many scientific connections between the two fields. Before entering into the discussion of specific topics, it will first be shown that particle physics and cosmology are completely interdependent. 173 refs., 35 figs., 5 tabs.

  8. Current experiments in elementary particle physics, 1989

    CERN Document Server

    Lawrence Berkeley Nat. Laboratory. Berkeley; Armstrong, F E; Trippe, T G; Yost, G P; Oyanagi, Y; Dodder, D C; Ryabov, Yu G; Slabospitsky, S R; Frosch, R; Olin, A; Lehar, F; Klumov, I A; Ivanov, I I

    1989-01-01

    Contains more than 1,800 experiments in elementary particle physics from the Experience database. Search and browse by author; title; experiment number or prefix; institution; date approved, started or completed; accelerator or detector; polarization, reaction, final state or particle; or by papers produced. Maintained at SLAC for the Particle Data Group. Supplies the information for Current Experiments in Particle Physics (LBL-91). Print version updated every second year.

  9. 2014 European School of High-Energy Physics

    CERN Multimedia

    Nick Ellis, on behalf of the Organising Committee

    2014-01-01

    Dear Colleagues, I would like to draw your attention to the 2014 European School of High-Energy Physics. Details can be found here. The School will be held in the Netherlands from 18 June to 1 July 2014. PLEASE NOTE THAT THE DEADLINE FOR APPLICATIONS IS 14 FEBRUARY 2014. The lectures will cover a broad range of HEP topics at a level suitable for students working towards a PhD in experimental particle physics. Note that, as indicated on the website, one or two students from developing countries could be considered for financial support.

  10. 2014 European School of High-Energy Physics

    CERN Multimedia

    Nick Ellis, on behalf of the Organising Committee

    2014-01-01

    Dear Colleagues, I would like to draw your attention to the 2014 European School of High-Energy Physics. Details can be found here. The School will be held in the Netherlands from 18 June to 1 July 2014. PLEASE NOTE THAT THE DEADLINE FOR APPLICATIONS HAS BEEN EXTENDED TO 21 FEBRUARY 2014. The lectures will cover a broad range of HEP topics at a level suitable for students working towards a PhD in experimental particle physics. Note that, as indicated on the website, one or two students from developing countries could be considered for financial support.

  11. Pop-up particle physics

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    You may remember noticing a pop-up Big Bang on your way to Restaurant No. 1 last November, as part of the Library’s book fair. This was just one page from a rather original project to make a pop-up book about particle physics. The book – Voyage to the Heart of Matter, the ATLAS experiment at CERN - will be launched in the USA and Canada, in a new silver edition.   The book proved a popular Christmas gift in the UK when it was released last November - copies on sale there sold out in under two months. The new print run will go on sale in Australia and the UK, in addition to Canada and the US. It will be launched to the press during the week of the New York book fair and will befollowed by a public event at the New York Academy of Sciences on 25 May. You can purchase a copy at the ATLAS secretariat, the Library or the Building 33 shop for 30CHF. For more information about the launch event, see http://www.nyas.org/ATLAS.

  12. Particle physics and inflationary cosmology

    CERN Document Server

    Linde, Andrei D

    1990-01-01

    This is the LaTeX version of my book "Particle Physics and Inflationary Cosmology'' (Harwood, Chur, Switzerland, 1990). I decided to put it to hep-th, to make it easily available. Many things happened during the 15 years since the time when it was written. In particular, we have learned a lot about the high temperature behavior in the electroweak theory and about baryogenesis. A discovery of the acceleration of the universe has changed the way we are thinking about the problem of the vacuum energy: Instead of trying to explain why it is zero, we are trying to understand why it is anomalously small. Recent cosmological observations have shown that the universe is flat, or almost exactly flat, and confirmed many other predictions of inflationary theory. Many new versions of this theory have been developed, including hybrid inflation and inflationary models based on string theory. There was a substantial progress in the theory of reheating of the universe after inflation, and in the theory of eternal inflation. ...

  13. The Birth of Elementary-Particle Physics.

    Science.gov (United States)

    Brown, Laurie M.; Hoddeson, Lillian

    1982-01-01

    Traces the origin and development of particle physics, concentrating on the roles of cosmic rays and theory. Includes charts highlighting significant events in the development of cosmic-ray physics and quantum field theory. (SK)

  14. CO2 cooling for particle physics detectors

    NARCIS (Netherlands)

    Colijn, A.P.; Verlaat, B.

    2010-01-01

    A good cooling system is of crucial importance for particle and radiation detector systems that are used in elementary particle physics. In addition to the "normal" design considerations for a cooling system, the systems used in particle detectors are subject to additional unusual constraints. At

  15. Teaching Elementary Particle Physics: Part I

    Science.gov (United States)

    Hobson, Art

    2011-01-01

    I'll outline suggestions for teaching elementary particle physics, often called "high energy physics," in high school or introductory college courses for non-scientists or scientists. Some presentations of this topic simply list the various particles along with their properties, with little overarching structure. Such a laundry list approach is a…

  16. Particle Physics: From School to University.

    Science.gov (United States)

    Barlow, Roger

    1992-01-01

    Discusses the teaching of particle physics as part of the A-level physics course in British secondary schools. Utilizes the quark model of hadrons and the conceptual kinematics of particle collisions, as examples, to demonstrate practical instructional possibilities in relation to student expectations. (JJK)

  17. Quarked!--Adventures in Particle Physics Education

    Science.gov (United States)

    MacDonald, Teresa; Bean, Alice

    2009-01-01

    Particle physics is a subject that can send shivers down the spines of students and educators alike--with visions of long mathematical equations and inscrutable ideas. This perception, along with a full curriculum, often leaves this topic the road less traveled until the latter years of school. Particle physics, including quarks, is typically not…

  18. From particle physics to medical applications

    CERN Document Server

    Dosanjh, Manjit

    2017-01-01

    CERN is the world's largest particle physics research laboratory. Since it was established in 1954, it has made an outstanding contribution to our understanding of the fundamental particles and their interactions, and also to the technologies needed to analyse their properties and behaviour. The experimental challenges have pushed the performance of particle accelerators and detectors to the limits of our technical capabilities, and these groundbreaking technologies can also have a significant impact in applications beyond particle physics. In particular, the detectors developed for particle physics have led to improved techniques for medical imaging, while accelerator technologies lie at the heart of the irradiation methods that are widely used for treating cancer. Indeed, many important diagnostic and therapeutic techniques used by healthcare professionals are based either on basic physics principles or the technologies developed to carry out physics research. Ever since the discovery of x-rays by Roentgen...

  19. European Strategy for Future Neutrino Physics Workshop

    CERN Document Server

    Dufour, F

    2010-01-01

    The workshop “European Strategy for Future Neutrino Physics” was organized at the initiative of CERN management and of the neutrino panel of the CERN Scientific Policy Committee, and attracted 254 registered participants and 48 posters. The workshop reviewed the physics of massive neutrinos with emphasis on the long baseline neutrino oscillation experimental programme and the R&D towards future detectors and accelerator possibilities with the aim of initiating the process by which a strategy for accelerator neutrino physics could be established in the horizon of 2012.

  20. European Strategy For Future Neutrino Physics

    CERN Document Server

    Blondel, A

    2010-01-01

    The workshop “European Strategy for Future Neutrino Physics” was organized at the initiative of CERN management and of the neutrino panel of the CERN Scientific Policy Committee, and attracted 254 registered participants and 48 posters. The workshop reviewed the physics of massive neutrinos with emphasis on the long baseline neutrino oscillation experimental programme and the R&D towards future detectors and accelerator possibilities with the aim of initiating the process by which a strategy for accelerator neutrino physics could be established in the horizon of 2012.

  1. Charged particle therapy: the physics of interaction.

    Science.gov (United States)

    Lomax, Antony J

    2009-01-01

    Particle therapy has a long and distinguished history with more than 50,000 patients having been treated, mainly with high-energy proton therapy. Particularly, for proton therapy, there is an increasing interest in exploiting the physical characteristics of charged particles for further improving the potential of radiation therapy. In this article, we review the most important interactions of charged particles with matter and describe the basic physical principles that underlie why particle beams behave the way they do and why such a behavior could bring many benefits in radiation therapy.

  2. USA lays out strategic vision for particle physics

    CERN Multimedia

    2014-01-01

    Yesterday saw the publication of the latest P5 report in the United States. Shorthand for Particle Physics Project Prioritisation Panel, the P5 report is the US equivalent of the European Strategy update that was published last year, and it’s good to see that the two reports present a common vision of the direction our field should take over the coming years.   P5 was charged with developing a 10-year plan for US particle physics, identifying compelling scientific opportunities. Its approach was similar to the European one, based on a broad consultation among the particle physics community. For the energy frontier, the report is clear. The LHC will be the focus for the US particle physics community for the immediate and short-term future. The report goes on to lay out a bold vision for development of a unique world-class neutrino programme in the US, with the long-term focus being a reformulated Long Baseline Neutrino Facility (LBNF) hosted at Fermilab. This is a very positive deve...

  3. Particle transport and deposition: basic physics of particle kinetics.

    Science.gov (United States)

    Tsuda, Akira; Henry, Frank S; Butler, James P

    2013-10-01

    The human body interacts with the environment in many different ways. The lungs interact with the external environment through breathing. The enormously large surface area of the lung with its extremely thin air-blood barrier is exposed to particles suspended in the inhaled air. The particle-lung interaction may cause deleterious effects on health if the inhaled pollutant aerosols are toxic. Conversely, this interaction can be beneficial for disease treatment if the inhaled particles are therapeutic aerosolized drugs. In either case, an accurate estimation of dose and sites of deposition in the respiratory tract is fundamental to understanding subsequent biological response, and the basic physics of particle motion and engineering knowledge needed to understand these subjects is the topic of this article. A large portion of this article deals with three fundamental areas necessary to the understanding of particle transport and deposition in the respiratory tract. These are: (i) the physical characteristics of particles, (ii) particle behavior in gas flow, and (iii) gas-flow patterns in the respiratory tract. Other areas, such as particle transport in the developing lung and in the diseased lung are also considered. The article concludes with a summary and a brief discussion of areas of future research. © 2013 American Physiological Society. Compr Physiol 3:1437-1471, 2013.

  4. Review of Particle Physics, 2014-2015

    CERN Document Server

    Olive, K A; Amsler, C; Antonelli, M; Arguin, J-F; Asner, D M; Baer, H; Band, H R; Barnett, R M; Basaglia, T; Bauer, C W; Beatty, J J; Belousov, V I; Beringer, J; Bernardi, G; Bethke, S; Bichsel, H; Biebel, O; Blucher, E; Blusk, S; Brooijmans, G; Buchmueller, O; Burkert, V; Bychkov, M A; Cahn, R N; Carena, M; Ceccucci, A; Cerri, A; Chakraborty, D; Chen, M-C; Chivukula, R S; Copic, K; Cowan, G; Dahl, O; D'Ambrosio, G; Damour, T; de Florian, D; de Gouvea, A; DeGrand, T; de Jong, P; Dissertori, G; Dobrescu, B A; Doser, M; Drees, M; Dreiner, H K; Edwards, D A; Eidelman, S; Erler, J; Ezhela, V V; Fetscher, W; Fields, B D; Foster, B; Freitas, A; Gaisser, T K; Gallagher, H; Garren, L; Gerber, H-J; Gerbier, G; Gershon, T; Gherghetta, T; Golwala, S; Goodman, M; Grab, C; Gritsan, A V; Grojen, C; Groom, D E; Grunewald, M; Gurtu, A; Gutsche, T; Haber, H E; Hagiwara, K; Hanhart, C; Hashimoto, S; Hayato, Y; Hayes, K G; Heffner, M; Heltsley, B; Hernandez-Rey, J J; Hikasa, K; Hocker, A; Holder, J; Holtkamp, A; Huston, J; Jackson, J D; Johnson, K F; Junk, T; Kado, M; Karlen, D; Katz, U F; Klein, S R; Klempt, E; Kowalewski, R V; Krauss, F; Kreps, M; Krusche, B; Kuyanov, Yu V; Kwon, Y; Lahav, O; Laiho, J; Langacker, P; Liddle, A; Ligeti, Z; Lin, C-J; Liss, T M; Littenberg, L; Lugovsky, K S; Lugovsky, S B; Maltoni, F; Mannel, T; Manohar, A V; Marciano, W J; Martin, A D; Masoni, A; Matthews, J; Milstead, D; Molaro, P; Munig, K; Moortgat, F; Mortonson, M J; Murayama, H; Nakamura, K; Narain, M; Nason, P; Navas, S; Neubert, M; Nevski, P; Nir, Y; Pape, L; Parsons, J; Patrignani, C; Peacock, J A; Pennington, M; Petcov, S T; Piepke, A; Pomarol, A; Quadt, A; Raby, S; Rademacker, J; Raffelt, G; Ratcliff, B N; Richardson, P; Ringwald, A; Roesler, S; Rolli, S; Romaniouk, A; Rosenberg, L J; Rosner, J L; Rybka, G; Sachrajda, C T; Sakai, Y; Salam, G P; Sarkar, S; Sauli, F; Schneider, O; Scholberg, K; Scott, D; Sharma, V; Sharpe, S R; Silari, M; Sjostrand, T; Skands, P; Smith, J G; Smoot, G F; Spanier, S; Spieler, H; Spiering, C; Stahl, A; Stanev, T; Stone, S L; Sumiyoshi, T; Syphers, M J; Takahashi, F; Tanabashi, M; Terning, J; Tiator, L; Titov, M; Tkachenko, N P; Tornqvist, N A; Tovey, D; Valencia, G; Venanzoni, G; Vincter, M G; Vogel, P; Vogt, A; Wakely, S P; Walkowiak, W; Walter, C W; Ward, D R; Weiglein, G; Weinberg, D H; Weinberg, E J; White, M; Wiencke, L R; Wohl, C G; Wolfenstein, L; Womersley, J; Woody, C L; Workman, R L; Yamamoto, A; Yao, W-M; Zeller, G P; Zenin, O V; Zhang, J; Zhu, R-Y; Zimmermann, F; Zyla, P A; Harper, G; Lugovsky, V.S; Schaffner, P

    2014-01-01

    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,283 new measurements from 899 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as heavy neutrinos, supersymmetric and technicolor particles, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Supersymmetry, Extra Dimensions, Particle Detectors, Probability, and Statistics. Among the 112 reviews are many that are new or heavily revised including those on: Dark Energy, Higgs Boson Physics, Electroweak Model, Neutrino Cross Section Measurements, Monte Carlo Neutrino Generators, Top Quark, Dark Matter, Dynamical Electroweak Symmetry Breaking, Accelerator Physics of Colliders, High-Energy Collider Parameters, Big Bang Nucleosyn...

  5. Reminiscences a journey through particle physics

    CERN Document Server

    Melissinos, Adrian

    2013-01-01

    A personal recount in areas of particle physics and related fields as a research physicist for over 50 years, Adrian Melissinos' insights into the ways that general research was carried out, as well as the evolution of particle physics from 1958 to 2008 will prove valuable to science history enthusiasts, as well as particle physicists. Be it conventional accelerator experiments, the use of microwave techniques in search of cosmic axions, or taking advantage of high power lasers to observe light-by-light scattering, the excitement of searching for something new in the face of failures and then successes is enriching, and the collaboration with gifted and outstanding colleagues and students proves insightful. A hybrid of personal reminiscences and a professional journey, readers get to relive the joy and excitement of researching and teaching in small groups during those early years while gaining a partial historical perspective of particle physics since 1958 - all in "Reminiscences: A Journey through Particle ...

  6. An introductory course of particle physics

    CERN Document Server

    Pal, Palash B

    2014-01-01

    For graduate students unfamiliar with particle physics, this text teaches the basic techniques and fundamental theories related to the subject. It gives them the competence to work out various properties of fundamental particles, such as scattering cross-section and lifetime. The book also gives a lucid summary of the main ideas involved. Figure slides are available upon qualifying course adoption.

  7. 2015 European School of High-Energy Physics

    CERN Multimedia

    2015-01-01

    Dear colleagues, I would like to draw your attention to the 2015 European School of High-Energy Physics. Details can be found at: http://physicschool.web.cern.ch/PhysicSchool/ESHEP/ESHEP2015/default.html The School will be held in Bulgaria from 2-15 September 2015. PLEASE NOTE THAT THE DEADLINE FOR APPLICATIONS IS 8 May 2015. The lectures will cover a broad range of HEP topics at a level suitable for students working towards a PhD in experimental particle physics. Note that, as indicated on the website, one or two students from developing countries may be considered for the award of financial support. Nick Ellis (On behalf of the Organising Committee)

  8. 2015 European School of High-Energy Physics

    CERN Multimedia

    2015-01-01

    Dear colleagues, I would like to draw your attention to the 2015 European School of High-Energy Physics. Details can be found at:    http://physicschool.web.cern.ch/PhysicSchool/ESHEP/ESHEP2015/default.html   The School will be held in Bulgaria from 2-15 September 2015. PLEASE NOTE THAT THE DEADLINE FOR APPLICATIONS IS 8 May 2015 The lectures will cover a broad range of HEP topics at a level suitable for students working towards a PhD in experimental particle physics.  Note that, as indicated on the website, one or two students from developing countries may be considered for the award of financial support.   Nick Ellis (On behalf of the Organising Committee)

  9. Standard Model of Particle Physics--a health physics perspective.

    Science.gov (United States)

    Bevelacqua, J J

    2010-11-01

    The Standard Model of Particle Physics is reviewed with an emphasis on its relationship to the physics supporting the health physics profession. Concepts important to health physics are emphasized and specific applications are presented. The capability of the Standard Model to provide health physics relevant information is illustrated with application of conservation laws to neutron and muon decay and in the calculation of the neutron mean lifetime.

  10. Research in elementary particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Kirsch, L.E.; Schnitzer, H.J.; Bensinger, J.R.; Blocker, C.A.

    1992-01-01

    This report discusses research in the following areas of high energy physics: B meson mixing; CDF response to low energy jets; jet scaling behavior; search for pair produced leptoquarks at CDF; SSC program; quantum field theory; and neural networks. (LSP).

  11. "Strong interaction" for particle physics laboratories

    CERN Multimedia

    2003-01-01

    A new Web site pooling the communications resources of particle physics centres all over the world has just been launched. The official launching of the new particle physics website Interactions.org during the Lepton-Proton 2003 Conference at the American laboratory Fermilab was accompanied by music and a flurry of balloons. On the initiative of Fermilab, the site was created by a collaboration of communication teams from over fifteen of the world's particle physics laboratories, including KEK, SLAC, INFN, JINR and, of course, CERN, who pooled their efforts to develop the new tool. The spectacular launching of the new particle physics website Interactions.org at Fermilab on 12 August 2003. A real gateway to particle physics, the site not only contains all the latest news from the laboratories but also offers images, graphics and a video/animation link. In addition, it provides information about scientific policies, links to the universities, a very useful detailed glossary of particle physics and astrophysic...

  12. Introducing particle physics a graphic guide

    CERN Document Server

    AUTHOR|(CDS)2071677

    2013-01-01

    What really happens at the most fundamental levels of nature? Introducing Particle Physics explores the very frontiers of our knowledge, even showing how particle physicists are now using theory and experiment to probe our very concept of what is real. From the earliest history of the atomic theory through to supersymmetry, micro-black holes, dark matter, the Higgs boson, and the possibly mythical graviton, practising physicist and CERN contributor Tom Whyntie gives us a mind-expanding tour of cutting-edge science. Featuring brilliant illustrations from Oliver Pugh, Introducing Particle Physics is a unique tour through the most astonishing and challenging science being undertaken today.

  13. Summer Workshop on Particle Physics

    CERN Document Server

    Chamseddine, A H; Nath, Pran

    1984-01-01

    These lectures give an elementary introduction to the important recent developments of the applications of N=1 supergravity to the construction of unified models of elementary particle interactions. Topics covered include couplings of supergravity with matter, spontaneous symmetry breaking and the super-higgs effect, construction of supergravity unified models, and the phenomenon of SU(2) x U(1) electroweak-symmetry breaking by supergravity. Experimental consequences of N-1 supergravity unified theory, in particular, the possible supersymmetric decays of the W ± and Z 0 bosons, are also discus

  14. EDITORIAL 37th European Physical Society Conference on Plasma Physics 37th European Physical Society Conference on Plasma Physics

    Science.gov (United States)

    Mendonça, Tito; Hidalgo, Carlos

    2010-12-01

    participants, and finally basic and astrophysical plasmas (BAP). New strategies are required to achieve a more balanced participation of these four areas of knowledge in future meetings, but the large number of participants and the overall high quality of the invited talks were particularly relevant this year. In the preparation of the Conference Programme we tried to present an updated view of plasma physics and to integrate suggestions coming from the scientific community, in particular through the use of the EPS PPD Open Forum. As mentioned, two evening sessions took place during the Conference. This year, the traditional evening on ITER was replaced by a session dedicated to inertial fusion, organized by D Batani, where the main installations and experiments on laser fusion around the world were presented and critically discussed. The other session, dedicated to plasma physics education, was organized by N Lopes-Cardoso, and discussed the specific educational issues of plasma physics and fusion, and presented the training programmes existing in Europe. As a concluding remark, we would like to thank our colleagues of the Programme Committee and, in particular, the coordinators of the subcommittees, Clarisse Bourdelle and Arthur Peters for MCF, Javier Honrubia for BPIF, Christoph Hollenstein for LTP, and Uli Stroth for BAP, for their generous help, suggestions and support. Due to the large number of participants, the smooth and efficient local organization, and the high overall quality of the plenary and invited presentations, the 37th EPS Conference on Plasma Physics can be considered an undeniable success. I hope you will find, in this special issue of Plasma Physics and Controlled Fusion, an interesting and useful account of this event. Outstanding scientists honoured at the 37th European Physical Society Conference on Plasma Physics During the Conference the EPS Plasma Physics Division rewarded researchers who have achieved outstanding scientific or technological results

  15. European Marine Observation Data Network - EMODnet Physics

    Science.gov (United States)

    Manzella, Giuseppe M. R.; Novellino, Antonio; D'Angelo, Paolo; Gorringe, Patrick; Schaap, Dick; Pouliquen, Sylvie; Loubrieu, Thomas; Rickards, Lesley

    2015-04-01

    The EMODnet-Physics portal (www.emodnet-physics.eu) makes layers of physical data and their metadata available for use and contributes towards the definition of an operational European Marine Observation and Data Network (EMODnet). It is based on a strong collaboration between EuroGOOS associates and its regional operational systems (ROOSs), and it is bringing together two very different marine communities: the "real time" ocean observing institute/centers and the National Oceanographic Data Centres (NODCs) that are in charge of ocean data validation, quality check and update for marine environmental monitoring. The EMODnet-Physics is a Marine Observation and Data Information System that provides a single point of access to near real time and historical achieved data (www.emodnet-physics.eu/map) it is built on existing infrastructure by adding value and avoiding any unless complexity, it provides data access to users, it is aimed at attracting new data holders, better and more data. With a long-term vision for a pan European Ocean Observation System sustainability, the EMODnet-Physics is supporting the coordination of the EuroGOOS Regional components and the empowerment and improvement of their data management infrastructure. In turn, EMODnet-Physics already implemented high-level interoperability features (WMS, Web catalogue, web services, etc…) to facilitate connection and data exchange with the ROOS and the Institutes within the ROOSs (www.emodnet-physics.eu/services). The on-going EMODnet-Physics structure delivers environmental marine physical data from the whole Europe (wave height and period, temperature of the water column, wind speed and direction, salinity of the water column, horizontal velocity of the water column, light attenuation, and sea level) as monitored by fixed stations, ARGO floats, drifting buoys, gliders, and ferry-boxes. It does provide discovering of data sets (both NRT - near real time - and Historical data sets), visualization and free

  16. Elementary particle physics at the University of Florida

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    This report discusses research in the following areas: theoretical elementary particle physics; experimental elementary particle physics; axion project; SSC detector development; and computer acquisition. (LSP).

  17. International Conference on Particle Physics and Astrophysics

    CERN Document Server

    2015-01-01

    The International Conference on Particle Physics and Astrophysics (ICPPA-2015) will be held in Moscow, Russia, from October 5 to 10, 2015. The conference is organized by Center of Basic Research and Particle Physics of National Research Nuclear University “MEPhI”. The aim of the Conference is to promote contacts between scientists and development of new ideas in fundamental research. Therefore we will bring together experts and young scientists working on experimental and theoretical aspects of nuclear, particle, astroparticle physics and cosmology. ICPPA-2015, aims to present the most recent results in astrophysics and collider physics and reports from the main experiments currently taking data. The working languages of the conference are English and Russian.

  18. Research on elementary particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, L.E.; O' Halloran, T.A.

    1992-05-01

    This report describes the activities of the University of Illinois Experimental High Energy Physics Group. The physicists in the University of Illinois High Energy Physics Group are engaged in a wide variety of experiments at current and future accelerator laboratories. These include: (1) The CDF experiment at the Fermilab Tevetron p{bar p} collider. (2) Design and developmental work for the SDC group at SSCL. (3) Experiments at the wide band photon beam at Fermilab. (4) The SLD experiment at SLAC and design studies for a {tau}-charm factor. (5) CP violation experiments at Fermilab. (6) The HiRes cosmic ray experiment at Dugway Proving Grounds, Utah. (7) Computational facilities. (8) Electronics systems development.

  19. Current status of elementary particle physics

    CERN Document Server

    Okun, Lev Borisovich

    1998-01-01

    A brief review is given of the state-of-the-art in elementary particle physics based on the talk of the same title given on January 22, 1998, at the seminar marking the 90th anniversary of the birth of L.D. Landau. (The seminar was hosted by the P.L. Kapitza institute for physical problems in cooperation with the L.D. Landau institute of theoretical physics). (0 refs).

  20. Plato's TIMAIOσ (TIMAEUS) and Modern Particle Physics

    Science.gov (United States)

    Machleidt, Ruprecht

    2005-04-01

    It is generally known that the question, ``What are the smallest particles (elementary particles) that all matter is made from?'', was posed already in the antiquity. The Greek natural philosophers Leucippus and Democritus were the first to suggest that all matter was made from atoms. Therefore, most people perceive them as the ancient fathers of elementary particle physics. It will be the purpose of my contribution to point out that this perception is wrong. Modern particle physics is not just a primitive atomism. More important than the materialistic particles are the underlying symmetries (e. g., SU(3) and SU(6)). A similar idea was first advanced by Plato in his dialog TIMAIOσ (Latin translation: TIMAEUS): Geometric symmetries generate the materialistic particles from a few even more elementary items. Plato's vision is amazingly close to the ideas of modern particle physics. This fact, which is unfortunately little known, has been pointed out repeatedly by Heisenberg (see, e. g., Werner Heisenberg, Across the Frontiers, Harper & Row, New York, 1974).

  1. Basics of particle therapy I: physics

    Energy Technology Data Exchange (ETDEWEB)

    ParK, Seo Hyun; Kang, Jin Oh [Kyung Hee University School of Medicine, Seoul (Korea, Republic of)

    2011-09-15

    With the advance of modern radiation therapy technique, radiation dose conformation and dose distribution have improved dramatically. However, the progress does not completely fulfil the goal of cancer treatment such as improved local control or survival. The discordances with the clinical results are from the biophysical nature of photon, which is the main source of radiation therapy in current field, with the lower linear energy transfer to the target. As part of a natural progression, there recently has been a resurgence of interest in particle therapy, specifically using heavy charged particles, because these kinds of radiations serve theoretical advantages in both biological and physical aspects. The Korean government is to set up a heavy charged particle facility in Korea Institute of Radiological and Medical Sciences. This review introduces some of the elementary physics of the various particles for the sake of Korean radiation oncologists' interest.

  2. Basics of particle therapy I: physics.

    Science.gov (United States)

    Park, Seo Hyun; Kang, Jin Oh

    2011-09-01

    With the advance of modern radiation therapy technique, radiation dose conformation and dose distribution have improved dramatically. However, the progress does not completely fulfill the goal of cancer treatment such as improved local control or survival. The discordances with the clinical results are from the biophysical nature of photon, which is the main source of radiation therapy in current field, with the lower linear energy transfer to the target. As part of a natural progression, there recently has been a resurgence of interest in particle therapy, specifically using heavy charged particles, because these kinds of radiations serve theoretical advantages in both biological and physical aspects. The Korean government is to set up a heavy charged particle facility in Korea Institute of Radiological & Medical Sciences. This review introduces some of the elementary physics of the various particles for the sake of Korean radiation oncologists' interest.

  3. The Britannica guide to particle physics

    CERN Document Server

    Gregersen, Erik

    2011-01-01

    While the atom is universally acknowledged as the basis for most branches of physics, the study of its constituent particles has illuminated significant new areas of research. The behavior of subatomic particles provides crucial information on the structure and nature of atomic nuclei, which in turn reveal much about energy, matter, and often the origins of the universe. Complete with color diagrams and photographs, this volume elucidates the intricacies of this rapidly developing and always compelling field.

  4. Modelling the dispersion of particle numbers in five European cities

    Science.gov (United States)

    Kukkonen, J.; Karl, M.; Keuken, M. P.; Denier van der Gon, H. A. C.; Denby, B. R.; Singh, V.; Douros, J.; Manders, A.; Samaras, Z.; Moussiopoulos, N.; Jonkers, S.; Aarnio, M.; Karppinen, A.; Kangas, L.; Lützenkirchen, S.; Petäjä, T.; Vouitsis, I.; Sokhi, R. S.

    2016-02-01

    We present an overview of the modelling of particle number concentrations (PNCs) in five major European cities, namely Helsinki, Oslo, London, Rotterdam, and Athens, in 2008. Novel emission inventories of particle numbers have been compiled both on urban and European scales. We used atmospheric dispersion modelling for PNCs in the five target cities and on a European scale, and evaluated the predicted results against available measured concentrations. In all the target cities, the concentrations of particle numbers (PNs) were mostly influenced by the emissions originating from local vehicular traffic. The influence of shipping and harbours was also significant for Helsinki, Oslo, Rotterdam, and Athens, but not for London. The influence of the aviation emissions in Athens was also notable. The regional background concentrations were clearly lower than the contributions originating from urban sources in Helsinki, Oslo, and Athens. The regional background was also lower than urban contributions in traffic environments in London, but higher or approximately equal to urban contributions in Rotterdam. It was numerically evaluated that the influence of coagulation and dry deposition on the predicted PNCs was substantial for the urban background in Oslo. The predicted and measured annual average PNCs in four cities agreed within approximately ≤ 26 % (measured as fractional biases), except for one traffic station in London. This study indicates that it is feasible to model PNCs in major cities within a reasonable accuracy, although major challenges remain in the evaluation of both the emissions and atmospheric transformation of PNCs.

  5. Quarked! - Adventures in Particle Physics Education

    Science.gov (United States)

    MacDonald, Teresa; Bean, Alice

    2009-01-01

    Particle physics is a subject that can send shivers down the spines of students and educators alike-with visions of long mathematical equations and inscrutable ideas. This perception, along with a full curriculum, often leaves this topic the road less traveled until the latter years of school. Particle physics, including quarks, is typically not introduced until high school or university.1,2 Many of these concepts can be made accessible to younger students when presented in a fun and engaging way. Informal science institutions are in an ideal position to communicate new and challenging science topics in engaging and innovative ways and offer a variety of educational enrichment experiences for students that support and enhance science learning.3 Quarked!™ Adventures in the Subatomic Universe, a National Science Foundation EPSCoR-funded particle physics education program, provides classroom programs and online educational resources.

  6. Foundations of nuclear and particle physics

    CERN Document Server

    Donnelly, T William; Holstein, Barry R; Milner, Richard G; Surrow, Bernd

    2017-01-01

    This textbook brings together nuclear and particle physics, presenting a balanced overview of both fields as well as the interplay between the two. The theoretical as well as the experimental foundations are covered, providing students with a deep understanding of the subject. In-chapter exercises ranging from basic experimental to sophisticated theoretical questions provide an important tool for students to solidify their knowledge. Suitable for upper undergraduate courses in nuclear and particle physics as well as more advanced courses, the book includes road maps guiding instructors on tailoring the content to their course. Online resources including color figures, tables, and a solutions manual complete the teaching package. This textbook will be essential for students preparing for further study or a career in the field who require a solid grasp of both nuclear and particle physics.

  7. Review of Particle Physics, 2012-2013

    CERN Document Server

    Beringer, J; Barnett, R M; Copic, K; Dahl, O; Groom, D E; Lin, C J; Lys, J; Murayama, H; Wohl, C G; Yao, W M; Zyla, P A; Amsler, C; Antonelli, M; Asner, D M; Baer, H; Band, H R; Basaglia, T; Bauer, C W; Beatty, J J; Belousov, V I; Bergren, E; Bernardi, G; Bertl, W; Bethke, S; Bichsel, H; Biebel, O; Blucher, E; Blusk, S; Brooijmans, G; Buchmueller, O; Cahn, R N; Carena, M; Ceccucci, A; Chakraborty, D; Chen, M C; Chivukula, R S; Cowan, G; D'Ambrosio, G; Damour, T; de Florian, D; de Gouvea, A; DeGrand, T; de Jong, P; Dissertori, G; Dobrescu, B; Doser, M; Drees, M; Edwards, D A; Eidelman, S; Erler, J; Ezhela, V V; Fetscher, W; Fields, B D; Foster, B; Gaisser, T K; Garren, L; Gerber, H J; Gerbier, G; Gherghetta, T; Golwala, S; Goodman, M; Grab, C; Gritsan, A V; Grivaz, J F; Grunewald, M; Gurtu, A; Gutsche, T; Haber, H E; Hagiwara, K; Hagmann, C; Hanhart, C; Hashimoto, S; Hayes, K G; Heffner, M; Heltsley, B; Hernandez-Rey, J J; Hikasa, K; Hocker, A; Holder, J; Holtkamp, A; Huston, J; Jackson, J D; Johnson, K F; Junk, T; Karlen, D; Kirkby, D; Klein, S R; Klempt, E; Kowalewski, R V; Krauss, F; Kreps, M; Krusche, B; Kuyanov, Yu.V; Kwon, Y; Lahav, O; Laiho, J; Langacker, P; Liddle, A; Ligeti, Z; Liss, T M; Littenberg, L; Lugovsky, K S; Lugovsky, S B; Mannel, T; Manohar, A V; Marciano, W J; Martin, A D; Masoni, A; Matthews, J; Milstead, D; Miquel, R; Monig, K; Moortgat, F; Nakamura, K; Narain, M; Nason, P; Navas, S; Neubert, M; Nevski, P; Nir, Y; Olive, K A; Pape, L; Parsons, J; Patrignani, C; Peacock, J A; Petcov, S T; Piepke, A; Pomarol, A; Punzi, G; Quadt, A; Raby, S; Raffelt, G; Ratcliff, B N; Richardson, P; Roesler, S; Rolli, S; Romaniouk, A; Rosenberg, L J; Rosner, J L; Sachrajda, C T; Sakai, Y; Salam, G P; Sarkar, S; Sauli, F; Schneider, O; Scholberg, K; Scott, D; Seligman, W G; Shaevitz, M H; Sharpe, S R; Silari, M; Sjostrand, T; Skands, P; Smith, J G; Smoot, G F; Spanier, S; Spieler, H; Stahl, A; Stanev, T; Stone, S L; Sumiyoshi, T; Syphers, M J; Takahashi, F; Tanabashi, M; Terning, J; Titov, M; Tkachenko, N P; Tornqvist, N A; Tovey, D; Valencia, G; van Bibber, K; Venanzoni, G; Vincter, M G; Vogel, P; Vogt, A; Walkowiak, W; Walter, C W; Ward, D R; Watari, T; Weiglein, G; Weinberg, E J; Wiencke, L R; Wolfenstein, L; Womersley, J; Woody, C L; Workman, R L; Yamamoto, A; Zeller, G P; Zenin, O V; Zhang, J; Zhu, R Y; Harper, G; Lugovsky, V S; Schaffner, P

    2012-01-01

    This biennial Review summarizes much of particle physics. Using data from previous editions, plus 2658 new measurements from 644 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. Among the 112 reviews are many that are new or heavily revised including those on Heavy-Quark and Soft-Collinear Effective Theory, Neutrino Cross Section Measurements, Monte Carlo Event Generators, Lattice QCD, Heavy Quarkonium Spectroscopy, Top Quark, Dark Matter, Vcb & Vub, Quantum Chromodynamics, High-Energy Collider Parameters, Astrophysical Constants, Cosmological Parameters, and Dark Matter.

  8. The CMS Masterclass and Particle Physics Outreach

    Energy Technology Data Exchange (ETDEWEB)

    Cecire, Kenneth [Notre Dame U.; Bardeen, Marjorie [Fermilab; McCauley, Thomas [Notre Dame U.

    2014-01-01

    The CMS Masterclass enables high school students to analyse authentic CMS data. Students can draw conclusions on key ratios and particle masses by combining their analyses. In particular, they can use the ratio of W^+ to W^- candidates to probe the structure of the proton, they can find the mass of the Z boson, and they can identify additional particles including, tentatively, the Higgs boson. In the United States, masterclasses are part of QuarkNet, a long-term program that enables students and teachers to use cosmic ray and particle physics data for learning with an emphasis on data from CMS.

  9. Particle physics in the LHC era

    CERN Document Server

    Barr, Giles; Walczak, Roman; Weidberg, Tony

    2016-01-01

    This text gives an introduction to particle physics at a level accessible to advanced undergraduate students. It is based on lectures given to 4th year physics students over a number of years, and reflects the feedback from the students. The aim is to explain the theoretical and experimental basis of the Standard Model (SM) of Particle Physics with the simplest mathematical treatment possible. All the experimental discoveries that led to the understanding of the SM relied on particle detectors and most of them required advanced particle accelerators. A unique feature of this book is that it gives a serious introduction to the fundamental accelerator and detector physics, which is currently only available in advanced graduate textbooks. The mathematical tools that are required such as group theory are covered in one chapter. A modern treatment of the Dirac equation is given in which the free particle Dirac equation is seen as being equivalent to the Lorentz transformation. The idea of generating the SM interac...

  10. Nuclear physics in particle therapy: a review

    Science.gov (United States)

    Durante, Marco; Paganetti, Harald

    2016-09-01

    Charged particle therapy has been largely driven and influenced by nuclear physics. The increase in energy deposition density along the ion path in the body allows reducing the dose to normal tissues during radiotherapy compared to photons. Clinical results of particle therapy support the physical rationale for this treatment, but the method remains controversial because of the high cost and of the lack of comparative clinical trials proving the benefit compared to x-rays. Research in applied nuclear physics, including nuclear interactions, dosimetry, image guidance, range verification, novel accelerators and beam delivery technologies, can significantly improve the clinical outcome in particle therapy. Measurements of fragmentation cross-sections, including those for the production of positron-emitting fragments, and attenuation curves are needed for tuning Monte Carlo codes, whose use in clinical environments is rapidly increasing thanks to fast calculation methods. Existing cross sections and codes are indeed not very accurate in the energy and target regions of interest for particle therapy. These measurements are especially urgent for new ions to be used in therapy, such as helium. Furthermore, nuclear physics hardware developments are frequently finding applications in ion therapy due to similar requirements concerning sensors and real-time data processing. In this review we will briefly describe the physics bases, and concentrate on the open issues.

  11. Nuclear physics in particle therapy: a review.

    Science.gov (United States)

    Durante, Marco; Paganetti, Harald

    2016-09-01

    Charged particle therapy has been largely driven and influenced by nuclear physics. The increase in energy deposition density along the ion path in the body allows reducing the dose to normal tissues during radiotherapy compared to photons. Clinical results of particle therapy support the physical rationale for this treatment, but the method remains controversial because of the high cost and of the lack of comparative clinical trials proving the benefit compared to x-rays. Research in applied nuclear physics, including nuclear interactions, dosimetry, image guidance, range verification, novel accelerators and beam delivery technologies, can significantly improve the clinical outcome in particle therapy. Measurements of fragmentation cross-sections, including those for the production of positron-emitting fragments, and attenuation curves are needed for tuning Monte Carlo codes, whose use in clinical environments is rapidly increasing thanks to fast calculation methods. Existing cross sections and codes are indeed not very accurate in the energy and target regions of interest for particle therapy. These measurements are especially urgent for new ions to be used in therapy, such as helium. Furthermore, nuclear physics hardware developments are frequently finding applications in ion therapy due to similar requirements concerning sensors and real-time data processing. In this review we will briefly describe the physics bases, and concentrate on the open issues.

  12. Particle Physics Outreach to Secondary Education

    Energy Technology Data Exchange (ETDEWEB)

    Bardeen, Marjorie G.; /Fermilab; Johansson, K.Erik; /Stockholm U.; Young, M.Jean

    2011-11-21

    This review summarizes exemplary secondary education and outreach programs of the particle physics community. We examine programs from the following areas: research experiences, high-energy physics data for students, informal learning for students, instructional resources, and professional development. We report findings about these programs' impact on students and teachers and provide suggestions for practices that create effective programs from those findings. We also include some methods for assessing programs.

  13. Neutrinos in particle physics, astronomy, and cosmology

    CERN Document Server

    Xing, Zhi-Zhong

    2011-01-01

    ""Neutrinos in Particle Physics, Astronomy and Cosmology"" provides a comprehensive and up-to-date introduction to neutrino physics, neutrino astronomy and neutrino cosmology. The intrinsic properties and fundamental interactions of neutrinos are described, as is the phenomenology of lepton flavor mixing, seesaw mechanisms and neutrino oscillations. The cosmic neutrino background, stellar neutrinos, supernova neutrinos and ultrahigh-energy cosmic neutrinos, together with the cosmological matter-antimatter asymmetry and other roles of massive neutrinos in cosmology, are discussed in detail. Thi

  14. Astroparticle Physics European Consortium Town Meeting Conference

    CERN Document Server

    2016-01-01

    The Astroparticle Physics European Consortium (APPEC) invites you to a town meeting at the Grand Amphithéatre de Sorbonne in Paris on the 6th and 7th April 2016 to discuss an update of the 2011 APPEC Astroparticle Physics roadmap, to be published in September 2016. In 2014 APPEC decided to launch an update of the 2011 Roadmap, transforming it to a “resource aware” roadmap. The intention was to gauge the financial impact of the beginnings of operation of the large global scale observatories put forward in the previous roadmap and to examine the possibilities of international coordination of future global initiatives. The APPEC Scientific Advisory Committee examined the field and prepared a set of recommendations. Based on these recommendations, the APPEC General Assembly drafted a set of “considerations” to be published by end of February 2016 and be debated in an open dialogue with the community, through the web page but primarily at the town meeting of 6-7 April. Based on this debate the final re...

  15. e-EPS News: Highlights from the European Physical Society

    CERN Multimedia

    2011-01-01

    e-EPS News is a monthly addition to the CERN Bulletin line-up, showcasing articles from e-EPS – the European Physical Society newsletter – as part of a collaboration between the two publications.   European Physical Society Physics Education Division Since 2000, the European Physical Society’s Physics Education Division has been contributing to awareness of the relevance of physics in everyday culture, to interaction amongst schools and universities and to a better quality of physics teaching at all levels. The Physics Education Division achieves this by addressing and promoting physics, the continued education of teachers, large scale educational changes – such as the Bologna process – and successful new teaching methods, taking into account differences and similarities in the European education systems. Since 2008, their More Understanding with Simple Experiments (MUSE) project has offered teachers and researchers a set of nine research-bas...

  16. Facts and mysteries in elementary particle physics

    CERN Document Server

    Veltman, Martinus J G

    2018-01-01

    This book provides a comprehensive overview of modern particle physics accessible to anyone with a true passion for wanting to know how the universe works. We are introduced to the known particles of the world we live in. An elegant explanation of quantum mechanics and relativity paves the way for an understanding of the laws that govern particle physics. These laws are put into action in the world of accelerators, colliders and detectors found at institutions such as CERN and Fermilab that are in the forefront of technical innovation. Real world and theory meet using Feynman diagrams to solve the problems of infinities and deduce the need for the Higgs boson. Facts and Mysteries in Elementary Particle Physics offers an incredible insight from an eyewitness and participant in some of the greatest discoveries in 20th century science. From Einstein's theory of relativity to the spectacular discovery of the Higgs particle, this book will fascinate and educate anyone interested in the world of quarks, leptons an...

  17. Particle Physics in the LHC Era

    CERN Document Server

    Bunk, Don

    During the past 100 years experimental particle physicists have collected an impressive amount of data. Theorists have also come to understand this data extremely well. It was in the first half of the 20th century the efforts of the early pioneers of quantum mechanics laid the ground work for this understanding: quantum field theory. Through the tireless efforts of researchers during the later half of the 20th century many ideas came together to form what we now call the Standard Model (SM) of particle physics. Finally, it was through the ideas of the renormalization group and effective field theory that the understanding of how the SM fits into a larger framework of particle physics was crystallized. In the past four years the Large Hadron Collider (LHC) has made more precise measurements than ever before. Currently the SM of particle physics is known to have excellent agreement with these measurements. As a result of this agreement with data, the SM continues to play such a central role in modern particle p...

  18. Current Experiments in Particle Physics (September 1996)

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H.; Lehar, F.; Klyukhin, V.I.; Ryabov, Yu.G.; Bilak, S.V.; Illarionova, N.S.; Khachaturov, B.A.; Strokovsky, E.A.; Hoffman, C.M.; Kettle, P.-R.; Olin, A.; Armstrong, F.E.

    1996-09-01

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries. This report contains full summaries of 180 approved current and recent experiments in elementary particle physics. The focus of the report is on selected experiments which directly contribute to our better understanding of elementary particles and their properties such as masses, widths or lifetimes, and branching fractions.

  19. Selected exercises in particle and nuclear physics

    CERN Document Server

    Bianchini, Lorenzo

    2018-01-01

    This book presents more than 300 exercises, with guided solutions, on topics that span both the experimental and the theoretical aspects of particle physics. The exercises are organized by subject, covering kinematics, interactions of particles with matter, particle detectors, hadrons and resonances, electroweak interactions and flavor physics, statistics and data analysis, and accelerators and beam dynamics. Some 200 of the exercises, including 50 in multiple-choice format, derive from exams set by the Italian National Institute for Nuclear Research (INFN) over the past decade to select its scientific staff of experimental researchers. The remainder comprise problems taken from the undergraduate classes at ETH Zurich or inspired by classic textbooks. Whenever appropriate, in-depth information is provided on the source of the problem, and readers will also benefit from the inclusion of bibliographic details and short dissertations on particular topics. This book is an ideal complement to textbooks on experime...

  20. Medical physics aspects of particle therapy.

    Science.gov (United States)

    Jäkel, Oliver

    2009-11-01

    Charged particle beams offer an improved dose conformation to the target volume when compared with photon radiotherapy, with better sparing of normal tissue structures close to the target. In addition, beams of heavier ions exhibit a strong increase of the linear energy transfer in the Bragg peak when compared with the entrance region. These physical and biological properties make ion beams more favourable for radiation therapy of cancer than photon beams. As a consequence, particle therapy with protons and heavy ions has gained increasing interest worldwide. This contribution summarises the physical and biological principles of charged particle therapy with ion beams and highlights some of the developments in the field of beam delivery, the principles of treatment planning and the determination of absorbed dose in ion beams. The clinical experience gathered so far with carbon ion therapy is briefly reviewed.

  1. Beyond the standard model of particle physics.

    Science.gov (United States)

    Virdee, T S

    2016-08-28

    The Large Hadron Collider (LHC) at CERN and its experiments were conceived to tackle open questions in particle physics. The mechanism of the generation of mass of fundamental particles has been elucidated with the discovery of the Higgs boson. It is clear that the standard model is not the final theory. The open questions still awaiting clues or answers, from the LHC and other experiments, include: What is the composition of dark matter and of dark energy? Why is there more matter than anti-matter? Are there more space dimensions than the familiar three? What is the path to the unification of all the fundamental forces? This talk will discuss the status of, and prospects for, the search for new particles, symmetries and forces in order to address the open questions.This article is part of the themed issue 'Unifying physics and technology in light of Maxwell's equations'. © 2016 The Author(s).

  2. Particle physics implications of Wilkinson microwave anisotropy ...

    Indian Academy of Sciences (India)

    Abstract. We present an overview of the implications of the WMAP data for particle physics. The standard parameter set ϵ, η and ξ characterising the inflaton potential can be related to the power-law indices characterising deviation of the CMB spectrum from the scale invariant form. Different classes of inflation potentials are ...

  3. Particle physics implications of Wilkinson microwave anisotropy ...

    Indian Academy of Sciences (India)

    Abstract. We present an overview of the implications of the WMAP data for particle physics. The standard parameter set and characterising the inflaton potential can be related to the power-law indices characterising deviation of the CMB spectrum from the scale invariant form. Different classes of inflation potentials are ...

  4. Inflation, large scale structure and particle physics

    Indian Academy of Sciences (India)

    We review experimental and theoretical developments in inflation and its application to structure formation, including the curvation idea. We then discuss a particle physics model of supersymmetric hybrid inflation at the intermediate scale in which the Higgs scalar field is responsible for large scale structure, show how such ...

  5. Theoretical Studies in Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Collins, John C.; Roiban, Radu S

    2013-04-01

    This final report summarizes work at Penn State University from June 1, 1990 to April 30, 2012. The work was in theoretical elementary particle physics. Many new results in perturbative QCD, in string theory, and in related areas were obtained, with a substantial impact on the experimental program.

  6. A Vision of Nuclear and Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, Hugh E. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-08-01

    This paper will consist of a selected, personal view of some of the issues associated with the intersections of nuclear and particle physics. As well as touching on the recent developments we will attempt to look at how those aspects of the subject might evolve over the next few years.

  7. A Vision of Nuclear and Particle Physics

    CERN Document Server

    Montgomery, Hugh E

    2015-01-01

    This paper will consist of a selected, personal view of some of the issues associated with the intersections of nuclear and particle physics. As well as touching on the recent developments we will attempt to look at how those aspects of the subject might evolve over the next few years.

  8. Phenomenal result for Durham in particle physics

    CERN Multimedia

    2000-01-01

    The University of Durham has beaten ten rivals to house a new 12 million pound institute for particle physics phenomenology. The institute will be supported for a minimum of ten years by PPARC and the university. Its first director will be Professor James Stirling (2 paragraphs).

  9. Elementary Particle Physics-Then and Now

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 7. Elementary Particle Physics-Then and Now. Avinash Khare. Reflections Volume 3 Issue 7 July 1998 pp 80-80. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/003/07/0080-0080. Author Affiliations.

  10. LHCb in the International Particle Physics Masterclasses

    CERN Document Server

    Couturier, Ben

    2016-01-01

    The Large Hadron Collider Beauty (LHCb) Experiment joined the International Particle Physics Masterclass programme in 2013. The experiment proposed the measurement of the D0 meson lifetime, using real data gathered at the Large Hadron Collider in 2012. We describe the exercise as well as the lessons learned during this first participation in the International Masterclass programme.

  11. Visions: The coming revolutions in particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Chris Quigg

    2002-04-11

    Wonderful opportunities await particle physics over the next decade, with the coming of the Large Hadron Collider to explore the 1-TeV scale (extending efforts at LEP and the Tevatron to unravel the nature of electroweak symmetry breaking) and many initiatives to develop the understanding of the problem of identity and the dimensionality of spacetime.

  12. Particle physics 2009: licence to smile

    CERN Multimedia

    2009-01-01

    Julie Peasley is the keeper of a very unusual zoo, a colourful set of hand-made plushies that represent the particles of the Standard Model and beyond. Her passion for physics and her art degree combine to give particles their personalities. She visited CERN on 25 May and met the CERNois in the library. Scientists consider that they have ‘seen’ a particle when their detectors send an electronic signal and a spot appears on their computer screen. The American artist Julie Peasley has gone much further than that and has started sewing toys so that we can not just ‘see’ what particles look like but even play with them! "When I started," says Julie, "my plushies weren’t smiling, they were just a face. Later on, I realised that I wanted them to all be happy and to appear like they are having fun. Except for the neutron, which insists on remaining ne...

  13. Updating Europe’s strategy for particle physics

    CERN Multimedia

    2012-01-01

    These have been an important two weeks for particle physics in Europe and at CERN. From 10-12 September, some 500 physicists went to Krakow to discuss their wishes for the future of the field as input to the CERN Council’s strategy group.   The strategy group is tasked with updating the European Strategy for Particle Physics adopted by Council in 2006, taking into account developments in the field over the last six years. Discussions were wide ranging, and included input from the Americas and Asia. These were particularly important, since it’s vital for the field that Europe’s strategy is in synch with what’s happening elsewhere in the world. I hardly need to tell you that the years since 2006 have seen monumental changes in particle physics, notably the discovery by ATLAS and CMS of a particle consistent with the Higgs boson. But it’s not only the high-energy frontier of the LHC that has provided new results. There have been important advanc...

  14. Current experiments in elementary particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Armstrong, F.E., Oyanagi, Y.; Dodder, D.C.; Ryabov, Yu.G.; Frosch, R.; Olin, A.; Lehar, F.; Moskalev, A.N.; Barkov, B.P.

    1987-03-01

    This report contains summaries of 720 recent and current experiments in elementary particle physics (experiments that finished taking data before 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.

  15. Semiconductor detectors in nuclear and particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Rehak, P. [Brookhaven National Laboratory, Upton, New York 11973 (United States); Gatti, E. [Politecnico di Milano, Dipartimento di Elletronica e Informazione, Piazza Leondardo da Vinci 32, 20133 Milano (Italy)

    1995-07-10

    Semiconductor detectors for elementary particle physics and nuclear physics in the energy range above 1 GeV are briefly reviewed. In these two fields semiconductor detectors are used mainly for the precise position sensing. In a typical experiment, the position of a fast charged particle crossing a relatively thin semiconductor detector is measured. The position resolution achievable by semiconductor detectors is compared with the resolution achievable by gas filled position sensing detectors. Semiconductor detectors are divided into two groups; (i) classical semiconductor diode detectors and (ii) semiconductor memory detectors. Principles of the signal formation and the signal read-out for both groups of detectors are described. New developments of silicon detectors of both groups are reported. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  16. Particle identification methods in High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Va' Vra, J.

    2000-01-27

    This paper deals with two major particle identification methods: dE/dx and Cherenkov detection. In the first method, the authors systematically compare existing dE/dx data with various predictions available in the literature, such as the Particle Data group recommendation, and judge the overall consistency. To my knowledge, such comparison was not done yet in a published form for the gaseous detectors used in High-Energy physics. As far as the second method, there are two major Cherenkov light detection techniques: the threshold and the Ring imaging methods. The authors discuss the recent trend in these techniques.

  17. The Standard Model of Particle Physics

    CERN Document Server

    Kibble, Tom W B

    2014-01-01

    This is a historical account from my personal perspective of the development over the last few decades of the standard model of particle physics. The model is based on gauge theories, of which the first was quantum electrodynamics, describing the interactions of electrons with light. This was later incorporated into the electroweak theory, describing electromagnetic and weak nuclear interactions. The standard model also includes quantum chromodynamics, the theory of the strong nuclear interactions. The final capstone of the model was the Higgs particle discovered in 2012 at CERN. But the model is very far from being the last word; there are still many gaps in our understanding.

  18. Recipients of 2013 EPS High Energy & Particle Physics Prize

    CERN Multimedia

    ATLAS, Experiment

    2014-01-01

    (From left) Joe Incandela, Peter Higgs, Francois Englert, Tejinder Virdee, Dave Charlton, and Peter Jenni. Higgs and Englert gave the prizes to the recipients of the 2013 European Physical Society's High Energy and Particle Physics Prize, for an outstanding contribution to high energy physics. "For the discovery of a Higgs boson, as predicted by the Brout-Englert-Higgs mechanism," the prize was awarded to the ATLAS and CMS collaborations. Spokesperson for CMS, Incandela, and Spokesperson for ATLAS, Charlton, accepted the awards on their collaborations' behalf. "For their pioneering and outstanding leadership roles in the making of the ATLAS and CMS experiments," the prize was awarded to Jenni, Virdee, and Michel Della Negra (not present). Image: ATLAS

  19. Current experiments in particle physics - particle data group

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H. [Stanford Univ., CA (United States). Stanford Linear Accelerator Center; Lehar, F. [Centre d`Etudes Nucleaires de Saclay, Gif-sur-Yvette (France); Kettle, P.R. [Paul Scherrer Institute, Villigen (Switzerland)] [and others

    1996-09-01

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries.

  20. Particle flux across the mid-European continental margin

    CERN Document Server

    Antia, A N; Peinert, R

    1999-01-01

    Results are presented from particle flux studies using sediment trap and current meter moorings along a transect at the European continental margin at 49 degrees N within the Ocean Margin Exchange (OMEX) project. Two moorings were placed, at the mid- and outer slope in water depths of 1500 and 3660 m, with traps at 600 and 1050 m and at 580, 1440 and 3220 m, respectively. Residual currents at the mid- slope follow the slope contour, whereas seasonal off-slope flow was registered at the outer slope. At 600 m on the slope fluxes are similar to those in the abyssal North Atlantic. The flux of all components (bulk dry weight, particulate organic and inorganic carbon, lithogenic matter and opal) increased with water depth. Highest fluxes were recorded at 1440 m at the outer slope, where off- slope residual currents mediate particle export. The injection of biogenic and lithogenic particles below the depth of winter mixing results in the export of particles from shallower waters. Calculated lateral fluxes of partic...

  1. Applications of Particle Accelerators in Medical Physics

    CERN Document Server

    Cuttone, G

    2008-01-01

    Particle accelerators are often associated to high energy or nuclear physics. As well pointed out in literature [1] if we kindly analyse the number of installation worldwide we can easily note that about 50% is mainly devoted to medical applications (radiotherapy, medical radioisotopes production, biomedical research). Particle accelerators are also playing an important indirect role considering the improvement of the technical features of medical diagnostic. In fact the use of radionuclide for advanced medical imaging is strongly increasing either in conventional radiography (CT and MRI) and also in nuclear medicine for Spect an PET imaging. In this paper role of particle accelerators for medical applications will be presented together with the main solutions applied.

  2. Calorimetry energy measurement in particle physics

    CERN Document Server

    Wigmans, Richard

    2017-01-01

    Particle physics is the science that pursues the age-old quest for the innermost structure of matter and the fundamental interactions between its constituents. Modern experiments in this field rely increasingly on calorimetry, a detection technique in which the particles of interest are absorbed in the detector. Calorimeters are very intricate instruments. Their performance characteristics depend on subtle, sometimes counter-intuitive design details. This book, written by one of the world's foremost experts, is the first comprehensive text on this topic. It provides a fundamental and systematic introduction to calorimetry. It describes the state of the art in terms of both the fundamental understanding of calorimetric particle detection, and the actual detectors that have been or are being built and operated in experiments. The last chapter discusses landmark scientific discoveries in which calorimetry has played an important role. This book summarizes and puts into perspective the work described in some 900...

  3. PREFACE: 31st European Physical Society Conference on Plasma Physics

    Science.gov (United States)

    Dendy, Richard

    2004-12-01

    This special issue of Plasma Physics and Controlled Fusion comprises refereed papers contributed by invited speakers at the 31st European Physical Society Conference on Plasma Physics. The conference was jointly hosted by the Rutherford Appleton Laboratory, by the EURATOM/UKAEA Fusion Association and by Imperial College London, where it took place from 28 June to 2 July 2004. The overall agenda for this conference was set by the Board of the Plasma Physics Division of the European Physical Society, chaired by Friedrich Wagner (MPIPP, Garching) and his successor Jo Lister (CRPP, Lausanne). It built on developments in recent years, by further increasing the scientific diversity of the conference programme, whilst maintaining its depth and quality. A correspondingly diverse Programme Committee was set up, whose members are listed below. The final task of the Programme Committee has been the preparation of this special issue. In carrying out this work, as in preparing the scientific programme of the conference, the Programme Committee formed specialist subcommittees representing the different fields of plasma science. The chairmen of these subcommittees, in particular, accepted a very heavy workload on behalf of their respective research communities. It is a great pleasure to take this opportunity to thank: Emilia R Solano (CIEMAT, Madrid), magnetic confinement fusion; Jürgen Meyer-ter-Vehn (MPQ, Garching), laser-plasma interaction and beam plasma physics; and Jean-Luc Dorier (CRPP, Lausanne), dusty plasmas. The relatively few papers in astrophysical and basic plasma physics were co-ordinated by a small subcommittee which I led. Together with Peter Norreys (RAL, Chilton), we five constitute the editorial team for this special issue. The extensive refereeing load, compressed into a short time interval, was borne by the Programme Committee members and by many other experts, to whom this special issue owes much. We are also grateful to the Local Organizing Committee

  4. Advanced analysis methods in particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Pushpalatha C.; /Fermilab

    2010-10-01

    Each generation of high energy physics experiments is grander in scale than the previous - more powerful, more complex and more demanding in terms of data handling and analysis. The spectacular performance of the Tevatron and the beginning of operations of the Large Hadron Collider, have placed us at the threshold of a new era in particle physics. The discovery of the Higgs boson or another agent of electroweak symmetry breaking and evidence of new physics may be just around the corner. The greatest challenge in these pursuits is to extract the extremely rare signals, if any, from huge backgrounds arising from known physics processes. The use of advanced analysis techniques is crucial in achieving this goal. In this review, I discuss the concepts of optimal analysis, some important advanced analysis methods and a few examples. The judicious use of these advanced methods should enable new discoveries and produce results with better precision, robustness and clarity.

  5. Particle physics today, tomorrow and beyond

    Science.gov (United States)

    Ellis, John

    2018-01-01

    The most important discovery in particle physics in recent years was that of the Higgs boson, and much effort is continuing to measure its properties, which agree obstinately with the Standard Model, so far. However, there are many reasons to expect physics beyond the Standard Model, motivated by the stability of the electroweak vacuum, the existence of dark matter and the origin of the visible matter in the Universe, neutrino physics, the hierarchy of mass scales in physics, cosmological inflation and the need for a quantum theory for gravity. Most of these issues are being addressed by the experiments during Run 2 of the LHC, and supersymmetry could help resolve many of them. In addition to the prospects for the LHC, I also review briefly those for direct searches for dark matter and possible future colliders.

  6. Semiconductor detectors in nuclear and particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Rehak, P. [Brookhaven National Lab., Upton, NY (United States); Gatti, E. [Piazza Leonardo da Vinci 32, Milano (Italy)

    1992-12-31

    Semiconductor detectors for elementary particle physics and nuclear physics in the energy range above 1 GeV are briefly reviewed. In these two fields semiconductor detectors are used mainly for the precise position sensing. In a typical experiment, the position of a fast charged particle crossing a relatively thin semiconductor detector is measured. The position resolution achievable by semiconductor detectors is compared with the resolution achievable by gas filled position sensing detectors. Semiconductor detectors are divided into two groups: Classical semiconductor diode detectors and semiconductor memory detectors. Principles of the signal formation and the signal read-out for both groups of detectors are described. New developments of silicon detectors of both groups are reported.

  7. Current experiments in elementary particle physics. Revised

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H. [Stanford Univ., CA (United States). Stanford Linear Accelerator Center; Wohl, C.G.; Armstrong, B. [Lawrence Berkeley Lab., CA (United States); Dodder, D.C. [Los Alamos National Lab., NM (United States); Klyukhin, V.I.; Ryabov, Yu.G. [Inst. for High Energy Physics, Serpukhov (Russian Federation); Illarionova, N.S. [Inst. of Theoretical and Experimental Physics, Moscow (Russian Federation); Lehar, F. [CEN Saclay, Gif-sur-Yvette (France); Oyanagi, Y. [Univ. of Tokyo (Japan). Faculty of Sciences; Olin, A. [TRIUMF, Vancouver, BC (Canada); Frosch, R. [Paul Scherrer Inst., Villigen (Switzerland)

    1992-06-01

    This report contains summaries of 584 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1986 are excluded. Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, KEK, LAMPF, Novosibirsk, Paul Scherrer Institut (PSI), Saclay, Serpukhov, SLAC, SSCL, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  8. Particle physics software aids space and medicine

    CERN Document Server

    Pia, M G

    2002-01-01

    Geant4 is a showcase example of technology transfer from particle physics to other fields such as space and medical science. Geant4 was first used for space applications by ESA in 1999, when ESA and NASA each launched an X-ray telescope. Geant4's extended set of physics models, which handle both electromagnetic and hadronic interactions, can be used to address a range of medical applications from conventional photon-beam radiotherapy to brachytherapy (using radioactive sources), hadron therapy and boron neutron capture therapy. The tools for describing geometries, materials and electromagnetic fields can precisely model diverse real-life configurations.

  9. Current experiments in elementary particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Armstrong, F.E.; Trippe, T.G.; Yost, G.P. (Lawrence Berkeley Lab., CA (USA)); Oyanagi, Y. (Tsukuba Univ., Ibaraki (Japan)); Dodder, D.C. (Los Alamos National Lab., NM (USA)); Ryabov, Yu.G.; Slabospitsky, S.R. (Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Serpukhov (USSR). Inst. Fiziki Vysokikh Ehnergij); Frosch, R. (Swiss Inst. for Nuclear Research, Villigen (Switzerla

    1989-09-01

    This report contains summaries of 736 current and recent experiments in elementary particle physics (experiments that finished taking data before 1982 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, Joint Institute for Nuclear Research (Dubna), KEK, LAMPF, Novosibirsk, PSI/SIN, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground experiments. Also given are instructions for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.

  10. Elementary particle physics in a nutshell

    CERN Document Server

    Tully, Christopher C

    2011-01-01

    The new experiments underway at the Large Hadron Collider at CERN in Switzerland may significantly change our understanding of elementary particle physics and, indeed, the universe. This textbook provides a cutting-edge introduction to the field, preparing first-year graduate students and advanced undergraduates to understand and work in LHC physics at the dawn of what promises to be an era of experimental and theoretical breakthroughs. Christopher Tully, an active participant in the work at the LHC, explains some of the most recent experiments in the field. But this book, which emerged fr

  11. When worlds collide (particle physics experiments)

    CERN Document Server

    Cunningham, J

    2005-01-01

    Preparations are underway at CERN for new particle smashing experiments. The author describes the construction challenge for the engineers involved. The engineering challenge is to construct the largest and most elaborate physics experiment ever proposed, with tolerances of microns. The design and manufacture of components has been subcontracted to more than 500 companies and institutions worldwide, including ones in India, Russia, Japan, France and the UK.

  12. Current experiments in elementary particle physics. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Armstrong, F.E. [Lawrence Berkeley Lab., CA (United States); von Przewoski, B. [Indiana Univ. Cyclotron Facility, Bloomington, IN (United States)] [and others

    1994-08-01

    This report contains summaries of 568 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1988 are excluded. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, INS (Tokyo), ITEP (Moscow), IUCF (Bloomington), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  13. Scale Hierarchies in Particle Physics and Cosmology

    Directory of Open Access Journals (Sweden)

    Antoniadis I.

    2016-01-01

    Full Text Available We discuss possible connections between several scales in particle physics andcosmology, such the the electroweak, inflation, dark energy and Planck scales. We thendescribe the phenomenology of a model of supersymmetry breaking in the presence ofa tiny (tunable positive cosmological constant. The model is coupled to the MSSM, leading to calculable soft supersymmetry breaking masses and a distinct low energy phenomenologythat allows to differentiate it from other models of supersymmetry breakingand mediation mechanisms.

  14. Refined holonomic summation algorithms in particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Round, Mark; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC)

    2017-06-15

    An improved multi-summation approach is introduced and discussed that enables one to simultaneously handle indefinite nested sums and products in the setting of difference rings and holonomic sequences. Relevant mathematics is reviewed and the underlying advanced difference ring machinery is elaborated upon. The flexibility of this new toolbox contributed substantially to evaluating complicated multi-sums coming from particle physics. Illustrative examples of the functionality of the new software package RhoSum are given.

  15. Charting the Course for Elementary Particle Physics

    Science.gov (United States)

    Richter, B.

    2007-02-16

    "It was the best of times; it was the worst of times" is the way Dickens begins the Tale of Two Cities. The line is appropriate to our time in particle physics. It is the best of times because we are in the midst of a revolution in understanding, the third to occur during my career. It is the worst of times because accelerator facilities are shutting down before new ones are opening, restricting the opportunity for experiments, and because of great uncertainty about future funding. My task today is to give you a view of the most important opportunities for our field under a scenario that is constrained by a tight budget. It is a time when we cannot afford the merely good, but must give first priority to the really important. The defining theme of particle physics is to learn what the universe is made of and how it all works. This definition spans the full range of size from the largest things to the smallest things. This particle physics revolution has its origins in experiments that look at both.

  16. Impact of detector simulation in particle physics collider experiments

    Science.gov (United States)

    Daniel Elvira, V.

    2017-06-01

    Through the last three decades, accurate simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics (HEP) experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detector simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the precision of the physics results and publication turnaround, from data-taking to submission. It also presents estimates of the cost and economic impact of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data with increasingly complex detectors, taxing heavily the performance of simulation and reconstruction software. Consequently, exploring solutions to speed up simulation and reconstruction software to satisfy the growing demand of computing resources in a time of flat budgets is a matter that deserves immediate attention. The article ends with a short discussion on the potential solutions that are being considered, based on leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering HEP code for concurrency and parallel computing.

  17. Recasting particle physics by entangling physics, history and philosophy

    Science.gov (United States)

    Bertozzi, Eugenio; Levrini, Olivia

    2016-05-01

    -1The paper presents the design process we followed to recast particle physics so as to make it conceptually relevant for secondary school students. In this design process, the concept of symmetry was assumed as core-idea because of its structural and foundational role in particle physics, its crosscutting character and its epistemological and philosophical value. The first draft of the materials was tested in a pilot-study which involved 19 students of a regular class (grade 13) of an Italian school. The data analysis showed that the students were in their "regime of competence" for grasping subtle nuances of the materials and for providing important hints for revising them. In particular, students' reactions brought into light the need of clarifying the "foundational" character that symmetry attained in twentieth-century physics. The delicate step of re-thinking the materials required the researchers to articulate the complex relationship between researches on physics teaching, history and philosophy of physics. This analytic phase resulted in a version of the materials which implies the students to be guided to grasp the meaning of symmetry as normative principle in twentieth-century physics, throughout the exploration of the different meanings assumed by symmetry over time. The whole process led also to the production of an essential, on-line version, of the materials targeted to a wider audience.

  18. Particle transport in pellet fueled JET (Jet European Torus) plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Baylor, L.R.

    1990-01-01

    Pellet fueling experiments have been carried out on the Joint European Torus (JET) tokamak with a multi-pellet injector. The pellets are injected at speeds approaching 1400 m/s and penetrate deep into the JET plasma. Highly peaked electron density profiles are achieved when penetration of the pellets approaches or goes beyond the magnetic axis, and these peaked profiles persist for more than two seconds in ohmic discharges and over one second in ICRF heated discharges. In this dissertation, analysis of electron particle transport in multi-pellet fueled JET limiter plasmas under a variety of heating conditions is described. The analysis is carried out with a one and one-half dimensional radial particle transport code to model the experimental density evolution with various particle transport coefficients. These analyses are carried out in plasmas with ohmic heating, ICRF heating, and neural beam heating, in limiter configurations. Peaked density profile cases are generally characterized by diffusion coefficients with a central (r/a < 0.5) diffusivity {approximately}0.1 m{sup 2}/s that increases rapidly to {approximately}0.3 m{sup 2}/s at r/a = 0.6 and then increases out to the plasma edge as (r/a){sup 2}. These discharges can be satisfactorily modeled without any anomalous convective (pinch) flux. 79 refs., 60 figs.

  19. World's particle physics laboratories join to create new communication resource

    CERN Multimedia

    2003-01-01

    "The worldwide particle physics community today (August 12) launched Interactions.org, a new global, Web-based resource developed to provide news, high-quality imagery, video and other tools for communicating the science of particle physics" (1 page).

  20. Summary of the particle physics and technology working group

    Energy Technology Data Exchange (ETDEWEB)

    Stephan Lammel et al.

    2002-12-10

    Progress in particle physics has been tightly related to technological advances during the past half century. Progress in technologies has been driven in many cases by the needs of particle physics. Often, these advances have benefited fields beyond particle physics: other scientific fields, medicine, industrial development, and even found commercial applications. The particle physics and technology working group of Snowmass 2001 reviewed leading-edge technologies recently developed or in the need of development for particle physics. The group has identified key areas where technological advances are vital for progress in the field, areas of opportunities where particle physics may play a principle role in fostering progress, and areas where advances in other fields may directly benefit particle physics. The group has also surveyed the technologies specifically developed or enhanced by research in particle physics that benefit other fields and/or society at large.

  1. Particle Physics And Cosmology In Supersymmetric Models

    CERN Document Server

    Morrissey, D E

    2005-01-01

    The Standard Model (SM) of particle physics provides an excellent description of the elementary particle interactions observed in particle collider experiments, but the model does less well when it is applied to cosmology. Recent measurements of the Universe over very large distances indicate the existence of non-luminous dark matter and an excess of baryons over anti-baryons. The SM is unable to account for either of these results, implying that an extension of the SM description is needed. One such extension is supersymmetry. Within the minimal supersymmetric version of the SM, the MSSM, the lightest superpartner particle can make up the dark matter, and the baryon asymmetry can be generated by the mechanism of electroweak baryogenesis (EWBG). In this work, we examine these issues together in order to find out whether the MSSM can account for both of them simultaneously. We find that the MSSM can explain both the baryon asymmetry and the dark matter, but only over a very constrained region of the model para...

  2. Open Access Publishing in Particle Physics

    CERN Document Server

    2007-01-01

    Particle Physics, often referred to as High Energy Physics (HEP), spearheaded the Open Access dissemination of scientific results with the mass mailing of preprints in the pre-Web era and with the launch of the arXiv preprint system at the dawn of the '90s. The HEP community is now ready for a further push to Open Access while retaining all the advantages of the peerreview system and, at the same time, bring the spiralling cost of journal subscriptions under control. I will present a plan for the conversion to Open Access of HEP peer-reviewed journals, through a consortium of HEP funding agencies, laboratories and libraries: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics). SCOAP3 will engage with scientific publishers towards building a sustainable model for Open Access publishing, which is as transparent as possible for HEP authors. The current system in which journals income comes from subscription fees is replaced with a scheme where SCOAP3 compensates publishers for the costs...

  3. Black Holes from Particle Physics Perspective (2/2)

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    We review physics of black holes, both large and small, from a particle physicist's perspective, using particle physics tools for describing concepts such as entropy, temperature and quantum information processing. We also discuss microscopic picture of black hole formation in high energy particle scattering, potentially relevant for high energy accelerator experiments, and some differences and similarities with the signatures of other BSM physics.

  4. Black Holes from Particle Physics Perspective (1/2)

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    We review physics of black holes, both large and small, from a particle physicist's perspective, using particle physics tools for describing concepts such as entropy, temperature and quantum information processing. We also discuss microscopic picture of black hole formation in high energy particle scattering, potentially relevant for high energy accelerator experiments, and some differences and similarities with the signatures of other BSM physics.

  5. Particle Physics: A New Course for Schools and Colleges.

    Science.gov (United States)

    Swinbank, Elizabeth

    1992-01-01

    Considers questions relating to the introduction of particle physics into post-GCSE (General Certificate of Secondary Education) courses. Describes a project that is producing teacher and student materials to support the teaching of particle physics at this level. Presents a proposed syllabus for a particle physics module. (KR)

  6. Strange Particles and Heavy Ion Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bassalleck, Bernd [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Physics and Astronomy; Fields, Douglas [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Physics and Astronomy

    2016-04-28

    This very long-running grant has supported many experiments in nuclear and particle physics by a group from the University of New Mexico. The gamut of these experiments runs from many aspects of Strangeness Nuclear Physics, to rare Kaon decays, to searches for exotic Hadrons such as Pentaquark or H-Dibaryon, and finally to Spin Physics within the PHENIX collaboration at RHIC. These experiments were performed at a number of laboratories worldwide: first and foremost at Brookhaven National Lab (BNL), but also at CERN, KEK, and most recently at J-PARC. In this Final Technical Report we summarize progress and achievements for this award since our last Progress Report, i.e. for the period of fall 2013 until the award’s termination on November 30, 2015. The report consists of two parts, representing our two most recent experimental efforts, participation in the Nucleon Spin Physics program of the PHENIX experiment at RHIC, the Relativistic Heavy Ion Collider at BNL – Task 1, led by Douglas Fields; and participation in several Strangeness Nuclear Physics experiments at J-PARC, the Japan Proton Accelerator Research Center in Tokai-mura, Japan – Task 2, led by Bernd Bassalleck.

  7. Particle Physics Probes of Extra Spacetime Dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Hewett, JoAnne L

    2002-05-13

    The possibility that spacetime is extended beyond the familiar 3+1-dimensions has intrigued physicists for a century. Indeed, the consequences of a dimensionally richer spacetime would be profound. Recently, new theories with higher dimensional spacetimes have been developed to resolve the hierarchy problem in particle physics. These scenarios make distinct predictions which allow for experiment to probe the existence of extra dimensions in new ways. We review the conceptual framework of these scenarios, their implications in collider and short-range gravity experiments, their astrophysical and cosmological effects, as well as the constraints placed on these models from present data.

  8. Current Experiments in Particle Physics. 1996 Edition.

    Energy Technology Data Exchange (ETDEWEB)

    Galic, Hrvoje

    2003-06-27

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries.

  9. A bird's eye view of particle physics

    CERN Document Server

    De Groot, E H

    1977-01-01

    Reviews recent discoveries in the field of particle physics and places them in a theoretical framework. Then shows what is to be expected from the CERN SPS, and from the Fermi laboratory in America where a machine analogous to the SPS is already in service. Better secondary beams should improve our knowledge of lepton-hadron scattering processes, thus providing information about hadron structure and also, with v-scattering, on weak interactions. More should also be learned about proton-proton scattering. (0 refs).

  10. Nuclear, particle and many body physics

    CERN Document Server

    Morse, Philip M; Feshbach, Herman

    2013-01-01

    Nuclear, Particle and Many Body Physics, Volume II, is the second of two volumes dedicated to the memory of physicist Amos de-Shalit. The contributions in this volume are a testament to the respect he earned as a physicist and of the warm and rich affection he commanded as a personal friend. The book contains 41 chapters and begins with a study on the renormalization of rational Lagrangians. Separate chapters cover the scattering of high energy protons by light nuclei; approximation of the dynamics of proton-neutron systems; the scattering amplitude for the Gaussian potential; Coulomb excitati

  11. Particle physics in the very early universe

    Science.gov (United States)

    Schramm, D. N.

    1981-01-01

    Events in the very early big bang universe in which elementary particle physics effects may have been dominant are discussed, with attention to the generation of a net baryon number by way of grand unification theory, and emphasis on the possible role of massive neutrinos in increasing current understanding of various cosmological properties and of the constraints placed on neutrino properties by cosmology. It is noted that when grand unification theories are used to describe very early universe interactions, an initially baryon-symmetrical universe can evolve a net baryon excess of 10 to the -9th to 10 to the -11th per photon, given reasonable parameters. If neutrinos have mass, the bulk of the mass of the universe may be in the form of leptons, implying that the form of matter most familiar to physical science may not be the dominant form of matter in the universe.

  12. (Medium energy particle physics): Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Nefkens, B.M.K.

    1985-10-01

    Investigations currently carried out by the UCLA Particle Physics Research Group can be arranged into four programs: Pion-Nucleon Scattering; Tests of Charge Symmetry and Isospin Invariance; Light Nuclei (Strong Form Factors of /sup 3/H, /sup 3/He, /sup 4/He; Detailed Balance in pd /r reversible/ /gamma//sup 3/H; Interaction Dynamics); and Search for the Rare Decay /Mu//sup +/ /yields/ e/sup +/ + /gamma/ (MEGA). The general considerations which led to the choice of physics problems investigated by our group are given in the next section. We also outline the scope of the research being done which includes over a dozen experiments. The main body of this report details the research carried out in the past year, the status of various experiments, and new projects.

  13. Particle physics: a valuable driver of innovation in medicine… and physics

    CERN Multimedia

    2012-01-01

    This year marks the 10th anniversary of the European Network for Light Ion Therapy (ENLIGHT), which is a good occasion a look back over the important contributions particle physics has made to medicine over the years. It’s hard to know exactly where to start, but since this year also marks the 20th anniversary of Georges Charpak’s Nobel Prize, that seems as good a place as any.   Charpak’s prize was a long time coming. It was awarded for “his invention and development of particle detectors, in particular the multiwire proportional chamber” in 1968. Over the following years, these devices transformed particle physics, allowing particle collisions to be recorded electronically instead of optically, and they led to a wide range of electronic particle detection techniques in use today. All this was duly noted by the Nobel committee, which also pointed out Charpak’s energy in applying the technology to medicine. Today, Charpak-like detec...

  14. Cosmology, physics of particles and nuclei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    A recent trend, already noted in the previous activity report, is the cross-fertilization between cosmology and high-energy physics, with some twenty research articles at this interface in the last 2 years. Results are presented along 3 main directions. 1) Cosmology and astro-particle physics. One may quote among others: the idea that dark matter may not be as weakly interacting as previously thought; a general study of the growth of small perturbations in the context of higher-dimensional theories; a possible explanation of the smallness of the cosmological constant through violation of Lorentz invariance in the gravity sector. In the field of observational cosmology, a 3-point correlation has been detected for the first time using gravitational lensing experiments. 2) Particle physics beyond the standard model. New developments in this field are triggered by progress on both experimental and theoretical sides. The first unambiguous observation of neutrino oscillations implies that neutrinos have non-zero masses. The constraints imposed by existing data on models based on the seesaw mechanism have been studied. The 'de-construction' of supersymmetric theories, inspired by recent advances in higher-dimensional theories, leads to a parameter-free prediction for the mass of the Higgs boson. 3) Strong interactions. Experiments at Hera have triggered new studies of hadronic interactions in the regime of high parton densities, which is also the high-energy limit for QCD: the phenomenon of 'parton saturation' is expected to occur. QCD calculations have been applied to various observables: jet physics, diffractive processes at Hera and in collider experiments, and multiplicity correlations in phase space. (A.C.)

  15. Cosmology and Particle Physics beyond Standard Models Ten Years of the SEENET-MTP Network

    CERN Document Server

    Álvarez-Gaumé, Luis; Stojkovic, Dejan

    2014-01-01

    This publication - "Cosmology and Particle Physics beyond Standard Models" - is dedicated to the celebration of the tenth anniversary of the Southeastern European Network in Mathematical and Theoretical Physics (SEENET-MTP). As a Theme Collection, rather than a Monograph or Proceedings, this volume presents a number of reports and overviews, a few research papers and a short note. However, some of them are excellent examples of a nowadays increasingly deep interplay between particle physics and cosmology. Contributions span a wide range of topics in cosmology, particle physics, but also gravity, including the interface of these fields. The presented work is of both theoretical and experimental/ observational nature. The contributions represent recent progress in their respective fields: inflation, dark matter, neutrino physics, supersymmetry, collider physics, string theory, quantum gravity, black hole physics and massive gravity.

  16. Geneva University - Next Particle Physics Seminars

    CERN Multimedia

    Université de Genève

    2010-01-01

    GENEVA UNIVERSITY École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 GENEVA 4 Tel. (022) 379 62 73 Fax (022) 379 69 92 Wednesday 17 November 2010 PARTICLE PHYSICS SEMINAR at 17-00 hrs – Stückelberg Auditorium Results on CP-Violation in The B_s and B_d systems at the Tevatron Dr. Iain Bertram, Lancaster Results will be presented from the investigation of CP-violation in B mesons at the Tevatron. The evidence for an anomalous likes-sign dimuon charge asymmetry will be presented, along with the latest results on CP violation in the Bs -> J/Psi Phi system. The implications of these results and the possibility of confirming them in the future will also be discussed. Information : http://dpnc.unige.ch/seminaire/annonce.html Organizer : G. Pasztor Wednesday 1st December 2010 PARTICLE PHYSICS SEMINAR at 17-00 hrs – Stückelberg Auditorium PAMELA - A COSMIC RAY OBSERVATO...

  17. Physics through the 1990s: Elementary-particle physics

    Science.gov (United States)

    1986-01-01

    The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the field is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.

  18. Physics Instruction in European Medical Schools

    Science.gov (United States)

    Letic, M.

    2007-01-01

    The aim of this study was to explore the curricula of medical schools in Europe in order to establish a formal representation of physics in the study of medicine. Information on the curricular representation of physics was gathered from the Internet presentations of medical schools. It was intended to explore at least 25% of medical schools in…

  19. Guaranteeing uptime at worl's largest particle physics lab

    CERN Multimedia

    Brodkin, Jon

    2007-01-01

    "As the European agency CERN was gearing up to build the world's largest particle accelerator, officials there knew they could not afford to have problems in their technical infrastructure cause any downtime." (1 page)

  20. Particle astronomy and particle physics from the moon - The particle observatory

    Science.gov (United States)

    Wilson, Thomas L.

    1990-01-01

    Promising experiments from the moon using particle detectors are discussed, noting the advantage of the large flux collecting power Pc offered by the remote, stable environment of a lunar base. An observatory class of particle experiments is presented, based upon proposals at NASA's recent Stanford workshop. They vary from neutrino astronomy, particle astrophysics, and cosmic ray experiments to space physics and fundamental physics experiments such as proton decay and 'table-top' arrays. This research is background-limited on earth, and it is awkward and unrealistic in earth orbit, but is particularly suited for the moon where Pc can be quite large and the instrumentation is not subject to atmospheric erosion as it is (for large t) in low earth orbit.

  1. Matter and Interactions: A Particle Physics Perspective

    Science.gov (United States)

    Organtini, Giovanni

    2011-01-01

    In classical mechanics, matter and fields are completely separated; matter interacts with fields. For particle physicists this is not the case; both matter and fields are represented by particles. Fundamental interactions are mediated by particles exchanged between matter particles. In this article we explain why particle physicists believe in…

  2. Fundamental physics possibilities at the European Spallation Source

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Soldner, Torsten

    2016-01-01

    The construction of the European Spallation Source ESS is ongoing in Lund, Sweden. This new high power spallation source with its long-pulse structure opens up new possibilities for fundamental physics experiments. This paper focusses on two proposals for fundamental physics at the ESS: The ANNI...

  3. Research in particle physics. [Dept. of Physics, Boston Univ

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, Scott J.

    1992-09-01

    Research accomplishments and current activities of Boston University researchers in high energy physics are presented. Principal areas of activity include the following: detectors for studies of electron[endash]positron annihilation in colliding beams; advanced accelerator component design, including the superconducting beam inflector, electrostatic quadrupoles, and the electrostatic muon kicker''; the detector for the MACRO (Monopole, Astrophysics, and Cosmic Ray Observatory) experiment; neutrino astrophysics and the search for proton decay; theoretical particle physics (electroweak and flavor symmetry breaking, hadron collider phenomenology, cosmology and astrophysics, new field-theoretic models, nonperturbative investigations of quantum field theories, electroweak interactions); measurement of the anomalous magnetic moment of the muon; calorimetry for the GEM experiment; and muon detectors for the GEM experiment at the Superconducting Super Collider.

  4. Probability and statistics for particle physics

    CERN Document Server

    Mana, Carlos

    2017-01-01

    This book comprehensively presents the basic concepts of probability and Bayesian inference with sufficient generality to make them applicable to current problems in scientific research. The first chapter provides the fundamentals of probability theory that are essential for the analysis of random phenomena. The second chapter includes a full and pragmatic review of the Bayesian methods that constitute a natural and coherent framework with enough freedom to analyze all the information available from experimental data in a conceptually simple manner. The third chapter presents the basic Monte Carlo techniques used in scientific research, allowing a large variety of problems to be handled difficult to tackle by other procedures. The author also introduces a basic algorithm, which enables readers to simulate samples from simple distribution, and describes useful cases for researchers in particle physics.The final chapter is devoted to the basic ideas of Information Theory, which are important in the Bayesian me...

  5. Space charge physics for particle accelerators

    CERN Document Server

    Hofmann, Ingo

    2017-01-01

    Understanding and controlling the physics of space charge effects in linear and circular proton and ion accelerators are essential to their operation, and to future high-intensity facilities. This book presents the status quo of this field from a theoretical perspective, compares analytical approaches with multi-particle computer simulations and – where available – with experiments. It discusses fundamental concepts of phase space motion, matched beams and modes of perturbation, along with mathematical models of analysis – from envelope to Vlasov-Poisson equations. The main emphasis is on providing a systematic description of incoherent and coherent resonance phenomena; parametric instabilities and sum modes; mismatch and halo; error driven resonances; and emittance exchange due to anisotropy, as well as the role of Landau damping. Their distinctive features are elaborated in the context of numerous sample simulations, and their potential impacts on beam quality degradation and beam loss are discussed....

  6. New developments on photosensors for particle physics

    Science.gov (United States)

    Renker, D.

    2009-01-01

    The needs of experiments in high-energy physics have been for many decades the stimulus for detector developments. For calorimetry, particle identification with ring image Cherenkov detectors, time-of-flight measurements, etc., sophisticated photosensors have been realized. Although photomultiplier tubes are a commercial product since 70 years, an impressive progress has been made recently. The bulky shape turned in a slim design and the quantum efficiency has been increased by almost a factor of 2. During the last 3 decades photodetectors made from semiconductor materials, photodiodes and avalanche photodiodes, have replaced in an increasing number the traditional photomultiplier tubes. The recently developed Geiger-mode avalanche photodiodes with high sensitivity to single photons will accelerate this trend.

  7. The methodological problems of particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Unzicker, Alexander [Pestalozzi-Gymnasium Muenchen (Germany)

    2013-07-01

    While the so-called standard model has been the dominating paradigm in particle physics for almost half a century, most researchers working with it would admit that it is an incomplete theory at best. Despite some ordering schemes, the overall number of its free parameters has greatly increased over the years, often accompanied by ad-hoc hypotheses such as 'confinement'. Experimentally, the interpretation of today's collider experiments requires sophisticated modeling of huge backgrounds. Specific problems are here how to remove correctly radiation damping (given that no consistent theory of electrodynamics exists), and postulating lifetimes (top quark) during which the particle cannot even leave the collision region. The standard model is about to develop new concepts, such as additional neutrino flavors and oscillations, while disregarding elementary questions such as to the nature of mass. From a historical perspective, the growing complications are likely to be symptoms of a scientific crisis, a phenomenon which has been described by the philosopher Thomas Kuhn. According to Kuhn however, there is no smooth transition from one paradigm to another. The only reasonable way to go beyond the standard model would be to abandon it completely.

  8. Integrated circuits for particle physics experiments

    CERN Document Server

    Snoeys, W; Campbell, M; Cantatore, E; Faccio, F; Heijne, Erik H M; Jarron, Pierre; Kloukinas, Kostas C; Marchioro, A; Moreira, P; Toifl, Thomas H; Wyllie, Ken H

    2000-01-01

    High energy particle physics experiments investigate the nature of matter through the identification of subatomic particles produced in collisions of protons, electrons, or heavy ions which have been accelerated to very high energies. Future experiments will have hundreds of millions of detector channels to observe the interaction region where collisions take place at a 40 MHz rate. This paper gives an overview of the electronics requirements for such experiments and explains how data reduction, timing distribution, and radiation tolerance in commercial CMOS circuits are achieved for these big systems. As a detailed example, the electronics for the innermost layers of the future tracking detector, the pixel vertex detector, is discussed with special attention to system aspects. A small-scale prototype (130 channels) implemented in standard 0.25 mu m CMOS remains fully functional after a 30 Mrad(SiO/sub 2/) irradiation. A full-scale pixel readout chip containing 8000 readout channels in a 14 by 16 mm/sup 2/ ar...

  9. Extent and modes of physics instruction in European dental schools.

    Science.gov (United States)

    Letić, Milorad; Popović, Gorjana

    2013-01-01

    Changes in dental education towards integration of sciences and convergence of curricula have affected instruction in physics. Earlier studies of undergraduate curricula make possible comparisons in physics instruction. For this study, the websites of 245 European dental schools were explored, and information about the curriculum was found on 213 sites. Physics instruction in the form of a separate course was found in 63 percent of these schools, with eighty-two hours and 5.9 European Credit Transfer and Accumulation System (ECTS) credits on average. Physics integrated with other subjects or into modules was found in 19 percent of these schools. Half of these schools had on average sixty-one hours and 6.9 ECTS credits devoted to physics. Eighteen percent of the schools had no noticeable obligatory physics instruction, but in half of them physics was found to be required or accepted on admission, included in other subjects, or appeared as an elective course. In 122 dental schools, the extent of physics instruction was found to be between forty and 120 contact hours. Physics instruction has been reduced by up to 14 percent in the last fourteen years in the group of eleven countries that were members of the European Union (EU) in 1997, but by approximately 30 percent in last five years in the group of ten Accession Countries to the EU.

  10. DIRAC in Large Particle Physics Experiments

    Science.gov (United States)

    Stagni, F.; Tsaregorodtsev, A.; Arrabito, L.; Sailer, A.; Hara, T.; Zhang, X.; consortium, DIRAC

    2017-10-01

    The DIRAC project is developing interware to build and operate distributed computing systems. It provides a development framework and a rich set of services for both Workload and Data Management tasks of large scientific communities. A number of High Energy Physics and Astrophysics collaborations have adopted DIRAC as the base for their computing models. DIRAC was initially developed for the LHCb experiment at LHC, CERN. Later, the Belle II, BES III and CTA experiments as well as the linear collider detector collaborations started using DIRAC for their computing systems. Some of the experiments built their DIRAC-based systems from scratch, others migrated from previous solutions, ad-hoc or based on different middlewares. Adaptation of DIRAC for a particular experiment was enabled through the creation of extensions to meet their specific requirements. Each experiment has a heterogeneous set of computing and storage resources at their disposal that were aggregated through DIRAC into a coherent pool. Users from different experiments can interact with the system in different ways depending on their specific tasks, expertise level and previous experience using command line tools, python APIs or Web Portals. In this contribution we will summarize the experience of using DIRAC in particle physics collaborations. The problems of migration to DIRAC from previous systems and their solutions will be presented. An overview of specific DIRAC extensions will be given. We hope that this review will be useful for experiments considering an update, or for those designing their computing models.

  11. New HEPAP report outlines revolution in particle physics

    CERN Multimedia

    2004-01-01

    "The most compelling questions facing contemporary particle physics research and a program to address them have been distilled into a new report “Quantum Universe: The Revolution in 21st-Century Particle Physics,” adopted today by the Department of Energy/National Science Foundation High Energy Physics Advisory Panel (HEPAP)" (1 page)

  12. Particle Physics in a Season of Change

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, Chris

    2012-02-01

    A digest of the authors opening remarks at the 2011 Hadron Collider Physics Symposium. I have chosen my title to reflect the transitions we are living through, in particle physics overall and in hadron collider physics in particular. Data-taking has ended at the Tevatron, with {approx} 12 fb{sup -1} of {bar p}p interactions delivered to CDF and D0 at {radical}s = 1.96 TeV. The Large Hadron Collider has registered a spectacular first full-year run, with ATLAS and CMS seeing > 5 fb{sup -1}, LHCb recording {approx} 1 fb{sup -1}, and ALICE logging nearly 5 pb{sup -1} of pp data at {radical}s = 7 TeV, plus a healthy dose of Pb-Pb collisions. The transition to a new energy regime and new realms of instantaneous luminosity exceeding 3.5 x 10{sup 33} cm{sup -2} s{sup -1} has brought the advantage of enhanced physics reach and the challenge of pile-up reaching {approx} 15 interactions per beam crossing. I am happy to record that what the experiments have (not) found so far has roused some of my theoretical colleagues from years of complacency and stimulated them to think anew about what the TeV scale might hold. We theorists have had plenty of time to explore many proposals for electroweak symmetry breaking and for new physics that might lie beyond established knowledge. With so many different theoretical inventions in circulation, it is in the nature of things that most will be wrong. Keep in mind that we learn from what experiment tells us is not there, even if it is uncommon to throw a party for ruling something out. Some non-observations may be especially telling: the persistent absence of flavor-changing neutral currents, for example, seems to me more and more an important clue that we have not yet deciphered. It is natural that the search for the avatar of electroweak symmetry breaking preoccupies participants and spectators alike. But it is essential to conceive the physics opportunities before us in their full richness. I would advocate a three-fold approach

  13. Current experiments in elementary particle physics, 1976-87

    CERN Document Server

    Lawrence Berkeley Nat. Laboratory. Berkeley

    Contains more than 1,800 experiments in elementary particle physics from the Experience database. Search and browse by author; title; experiment number or prefix; institution; date approved, started or completed; accelerator or detector; polarization, reaction, final state or particle; or by papers produced. Maintained at SLAC for the Particle Data Group. Supplies the information for Current Experiments in Particle Physics (LBL-91). Print version updated every second year.

  14. There’s more to particle physics at CERN than colliders

    CERN Document Server

    2016-01-01

    CERN’s scientific programme must be compelling, unique, diverse, and integrated into the global landscape of particle physics. One of the Laboratory’s primary goals is to provide a diverse range of excellent physics opportunities and to put its unique facilities to optimum use, maximising the scientific return.   In this spirit, we have recently established a Physics Beyond Colliders study group with a mandate to explore the unique opportunities offered by the CERN accelerator complex to address some of today’s outstanding questions in particle physics through projects complementary to high-energy colliders and other initiatives in the world. The study group will provide input to the next update of the European Strategy for Particle Physics. The process kicked off with a two-day workshop at CERN on 6 and 7 September, organised by the study group conveners: Joerg Jaeckel (Heidelberg), Mike Lamont (CERN) and Claude Vallée (CPPM Marseille and DESY). Its purpo...

  15. Physical characterization of diesel soot particles

    Energy Technology Data Exchange (ETDEWEB)

    Virtanen, A.

    2004-07-01

    This study concentrates on characterizing diesel exhaust soot particles. In addition to particle size and number distributions, the particle structure was studied. To describe the structure of agglomerated particles, the concept of fractal dimension has been utilized. The experimental work was based on distribution measurements done with Scanning Mobility Particle Sizer (SMPS) and Electrical Low Pressure Impactor (ELPI). The work also included the development of ELPI to be more suitable for diesel particle studies. Diesel particles are small soot particles, number weighed size < 500 nm. Thus the fme particle deposition affects measurement. To solve this problem, the fme particle losses in the impactor were determined The losses are an essential part of impactor kernel functions, which describe the particle collection in the impactor. To find information on particle size distribution and particle morphology, the new method to determine the particle effective density and from that the fractal dimension was developed. The method is based on distribution measurement made with SMPS and ELPI. The basic feature of the method is the connection of particle effective density and aerodynamic and mobility equivalent sizes. The fractal like nature of agglomerated particles was also utilized in the method: the basic assumption was that degrease of effective density as a function of particle size is characterized by fractal behavior. The new method was used to study diesel particles. The found fractal dimension values varied from 2.5 to 3 depending on engine and dilution parameters. The effect of engine load on soot particles were studied with three different sized engines. According to the measurements the engine parameters affected the measured structure of agglomerates. The fractal dimension decreased with increasing engine load. In addition, the width of the number distribution of soot particles increased with engine load. The effect of volatile materials on particle

  16. J. J. Sakurai Prize for Theoretical Particle Physics Lecture: Particle physics after the first LHC results

    Science.gov (United States)

    Altarelli, Guido

    2012-03-01

    The LHC results released so far have very much restricted the possible range for the Standard Model Higgs boson mass. Moreover some indications for a signal at a mass around 125 GeV have been found. At the same time, no clear evidence for new physics has emerged from the LHC data. We discuss the impact of these results on our understanding of particle physics. The presently allowed window for the Higgs mass and the negative results for exotic particles are compatible with both the Standard model and its Supersymmetric extensions but imply considerable restrictions and need a substantial amount of fine tuning in all cases. We discuss the options that remain open and the perspectives for the near future.

  17. Research accomplishments and future goals in particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, J.S.

    1990-01-05

    This document presents our proposal to continue the activities of Boston University researchers in eight projects in high energy physics research: Colliding Beams Physics; Accelerator Design Physics; MACRO Project; Proton Decay Project; Theoretical Particle Physics; Muon G-2 Project; and Hadron Collider Physics. The scope of each of these projects is presented in detail in this paper.

  18. A journey from particle physics to outer space

    CERN Multimedia

    2006-01-01

    Particle physics can take you a long way - even into space! Astronaut Christer Fuglesang recently jetted into orbit on his first space mission, 14 years after he left CERN to join the European Space Agency. Christer Fuglesang near the launch pad area at NASA's Kennedy Space Center, Florida, in preparation for the STS-116 mission. (photo: ESA, S.Corvaja)Christer Fuglesang in space (photo: NASA). In CERN's years of efforts to explore the fundamentals of the Universe, it has not yet sent anyone beyond planet Earth. On 10 December 2006, Christer Fuglesang boldly went where no CERN scientist had ever gone before. The 49-year-old ex-CERN physicist-turned-astronaut embarked on his first mission on board space shuttle Discovery. Originally from Stockholm, he also had the honour of being the first Swedish national in space. Christer Fuglesang is an astronaut with the European Space Agency (ESA), a partner of the International Space Station (ISS) - a research facility that is being assembled in orbit around the Earth...

  19. Mark Thomson presents the book "Modern Particle Physics"

    CERN Multimedia

    2013-01-01

    Tuesday 5 November 2013 at 4 p.m. in the Library, Bldg. 52 1-052 This new textbook covers all the main aspects of modern particle physics, providing a clear connection between the theory and recent experimental results, including the recent discovery of a Higgs boson and the most recent developments in neutrino physics. It provides a comprehensive and self-contained description of the Standard Model of particle physics suitable for upper-level undergraduate students and graduate students studying experimental particle physics. Physical theory is introduced in a relatively straightforward manner with step-by-step mathematical derivations. In each chapter, fully worked examples link the theory to central experimental results in contemporary particle physics. Modern Particle Physics, by Mark Thomson, Cambridge University Press, 2013, ISBN 9781107034266. *Coffee will be served from 3.30 p.m.*

  20. Teaching Elementary Particle Physics, Part II

    Science.gov (United States)

    Hobson, Art

    2011-01-01

    In order to explain certain features of radioactive beta decay, Wolfgang Pauli suggested in 1930 that the nucleus emitted, in addition to a beta particle, another particle of an entirely new type. The hypothesized particle, dubbed the neutrino, would not be discovered experimentally for another 25 years. It's not easy to detect neutrinos, because…

  1. Alpha Particle Physics Experiments in the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Budny, R.V.; Darrow, D.S.; Medley, S.S.; Nazikian, R.; Zweben, S.J.; et al.

    1998-12-14

    Alpha particle physics experiments were done on the Tokamak Fusion Test Reactor (TFTR) during its deuterium-tritium (DT) run from 1993-1997. These experiments utilized several new alpha particle diagnostics and hundreds of DT discharges to characterize the alpha particle confinement and wave-particle interactions. In general, the results from the alpha particle diagnostics agreed with the classical single-particle confinement model in magnetohydrodynamic (MHD) quiescent discharges. Also, the observed alpha particle interactions with sawteeth, toroidal Alfvén eigenmodes (TAE), and ion cyclotron resonant frequency (ICRF) waves were roughly consistent with theoretical modeling. This paper reviews what was learned and identifies what remains to be understood.

  2. Geneva University: seminar of particle physics

    CERN Multimedia

    Geneva University

    2012-01-01

    GENEVA UNIVERSITY École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92 Wednesday 9 May 2012 SEMINAR OF PARTICLE PHYSICS 11h15 - Science III, Auditoire 1S081 30 The Search for the Magnetic Monopole Dr Philippe Mermod - University of Geneva, DPNC It has long been realised that the existence of a magnetic monopole would be sufficient to explain the quantisation of electric charge, and to symmetrise Maxwell's equations. Furthermore, the monopole is an essential ingredient in Grand Unification theories. Primordial monopoles would have been produced in the Early Universe and still be present today, either in cosmic rays or trapped in matter. Monopoles of accessible masses would also be pair-produced at high-energy accelerators. Their remarkable properties can be exploited to devise various means of direct detection. After reviewin...

  3. External Meeting: Geneva University - Particle physics seminar

    CERN Document Server

    Université de Genève

    2011-01-01

    UNIVERSITE DE GENEVE Ecole de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 GENEVE 4 Tél: (022) 379 62 73 Fax: (022) 379 69 92 Wednesday 22 June 2011 PARTICLE PHYSICS SEMINAR at 17.00 hrs – Stückelberg Auditorium Indication of νμ→νe appearance in the T2K experiment Indication de la transition νμ→νe dans l’expérience T2K Par Prof. Alain Blondel - DPNC, Université de Genève The T2K neutrino experiment in Japan has searched for νμ → νe appearance in data taken since the start-up in 2010 till11 March 2011. Six events pass all selection criteria at the far detector situated at 295 km while 1.5±0.3(syst.) would be expected if θ13=0 . This is equivalent to an indication of a non zero value of θ13 at a significance of 2.5σ. This process is particu...

  4. FOREWORD: Corfu Summer Institute on Elementary Particle Physics (CORFU2005)

    Science.gov (United States)

    Anagnostopoulos, Konstantinos; Antoniadis, Ignatios; Fanourakis, George; Kehagias, Alexandros; Savoy-Navarro, Aurore; Wess, Julius; Zoupanos, George

    2006-12-01

    These are the Proceedings of the Corfu Summer Institute on Elementary Particle Physics (CORFU2005) (http://corfu2005.physics.uoi.gr), which took place in Corfu, Greece from 4 - 26 September 2005. The Corfu Summer Institute has a very long, interesting and successful history, some elements of which can be found in http://www.corfu-summer-institute.gr. In short, the Corfu Meeting started as a Summer School on Elementary Particle Physics (EPP) mostly for Greek graduate students in 1982 and has developed into a leading international Summer Institute in the field of EPP, both experimental and theoretical, providing in addition a very rich outreach programme to teachers and school students. The CORFU2005 Summer Institute on EPP, although based on the general format that has been developed and established in the Corfu Meetings during previous years, is characterized by the fact that it was a full realization of a new idea, which started experimentally in the previous two Corfu Meetings. The successful new ingredient was that three European Marie Curie Research Training Networks decided to hold their Workshops in Corfu during September 2005 and they managed to coordinate the educational part of their meetings to a huge Summer School called `The 8th Hellenic School on Elementary Particle Physics' (4 - 11 September). The European Networks which joined forces to materialize this project and the corresponding dates of their own Workshops are: The Third Generation as a Probe for New Physics: Experimental and Technological Approach (4 - 11 September) The Quest for Unification Theory Confronts Experiment (11 - 18 September) Constituents Fundamental Forces and Symmetries of the Universe (20 - 26 September) To these Workshops has been added a Satellite one called `Noncommutative Geometry in Field and String Theory', and some extra speakers have been invited to complement the full programme of CORFU2005, some of whom have integrated into the Workshop's programme. The result was

  5. The highest energy cosmic rays and new particle physics

    National Research Council Canada - National Science Library

    Burdman, G; Halzen, F; Gandhi, R

    1998-01-01

    ... reasonable to speculate that cosmic particles, accelerated to such energy, may exhibit new particle physics. In one scenario they are assumed to be neutrinos which become strongly interacting [2, 3] at these extremely high energies. The physics behind such interactions, being at scales of several tens or even hundreds of TeV, might be in...

  6. Physical working conditions as covered in European monitoring questionnaires

    Directory of Open Access Journals (Sweden)

    Tore Tynes

    2017-06-01

    Full Text Available Abstract Background The prevalence of workers with demanding physical working conditions in the European work force remains high, and occupational physical exposures are considered important risk factors for musculoskeletal disorders (MSD, a major burden for both workers and society. Exposures to physical workloads are therefore part of the European nationwide surveys to monitor working conditions and health. An interesting question is to what extent the same domains, dimensions and items referring to the physical workloads are covered in the surveys. The purpose of this paper is to determine 1 which domains and dimensions of the physical workloads are monitored in surveys at the national level and the EU level and 2 the degree of European consensus among these surveys regarding coverage of individual domains and dimensions. Method Items on physical workloads used in one European wide/Spanish and five other European nationwide work environment surveys were classified into the domains and dimensions they cover, using a taxonomy agreed upon among all participating partners. Results The taxonomy reveals that there is a modest overlap between the domains covered in the surveys, but when considering dimensions, the results indicate a lower agreement. The phrasing of items and answering categories differs between the surveys. Among the domains, the three domains covered by all surveys are “lifting, holding & carrying of loads/pushing & pulling of loads”, “awkward body postures” and “vibrations”. The three domains covered less well, that is only by three surveys or less, are “physical work effort”, “working sitting”, and “mixed exposure”. Conclusions This is the fırst thorough overview to evaluate the coverage of domains and dimensions of self-reported physical workloads in a selection of European nationwide surveys. We hope the overview will provide input to the revisions and updates of the individual countries’ surveys in

  7. Measurement of the physical properties of secondary organic aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Kannosto, J.

    2012-07-01

    The work of this thesis concentrates on applying the Electrical Low Pressure Impactor (ELPI, Dekati Ltd.) and scanning/differential mobility particle sizer (SMPS/DMPS) to estimate the particle density and particle solidity of secondary organic aerosols (SOA) d{sub me} < 200 nm. The density estimation method has been extended to smaller particle sizes and the data treatment of the method has been modified to be suitable for large data series and multimodal size distributions. The limitations of the method have been studied using both laboratory tests and simulations. The lowest mode particle diameter for the density method was found to be 10 nm. For multimodal size distributions, the density results varied approximately by 15 %. The density measurements were performed at the SMEAR II station and the density of boreal forest particles was measured. The ELPI was used to study the physical phase of the fresh SOA particles formed by ozonolysis of pure {alpha}-pinene and volatile organic compounds (VOCs) of a living Scots pine in a chamber. The phase of SOA particles formed in the boreal forest was analyzed as well. The particles were found to bounce from smooth impaction plates of ELPI towards lower impactor stages. The behavior was interpreted as an indication of a solid physical phase of the particles. The interpretation was corroborated by SEM (Scanning electron microscope) images. In the TEM (Tunneling electron microscope) analysis, the particles were non-crystalline. Based on these results, the particles were inferred to have adopted an amorphous (glassy) physical state. The {alpha}-pinene particles had similar bouncing ability as the Scots pine derived particles indicating similar physical phase behavior. The measured bounce factor did not significantly change during the particle growth for particles larger than 40 nm, indicating no changes in particle solidity. For the smallest particles (below 40 nm), the calculated bounce factor increased as the particles grew

  8. Determinant Factors of Physical Fitness in European Children

    DEFF Research Database (Denmark)

    Zaqout, Mahmoud; Vyncke, Krishna; Moreno, Luis A.

    2016-01-01

    Objectives: This study was designed to explore the determinants of physical fitness in European children aged 6–11 years, cross-sectionally and longitudinally.Methods: There were sufficient data on 4903 children (50.6 % girls) on measured physical fitness (cardio-respiratory, muscular strength......’s fitness. Significant but small effects were found for low maternal BMI, high psychosocial well-being and fruit and vegetable intake as protective determinants. Sleep duration, breakfast intake, parental age and education and paternal BMI did not have a consistently significant effect on physical fitness....... The role of determinants depended on children’s sex and the specific PF component. Longitudinal analyses especially highlighted the importance of child’s BMI as physical fitness determinant, independent of physical activity.Conclusions: BMI together with physical activity, diet and psychosocial factors...

  9. China pursues major role in particle physics

    CERN Document Server

    Overbye, Dennis

    2006-01-01

    Chinese physicists invented a sort of onion-layer theory of particles called the straton model, in which both protons and electrons have a common constituent. Sheldon Glashow, the physicist and Nobelist now at Boston University, once suggested that such a particle, if found. should be named the Maon. (4,5 pages)

  10. Two decades of Mexican particle physics at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Roy Rubinstein

    2002-12-03

    This report is a view from Fermilab of Mexican particle physics at the Laboratory since about 1980; it is not intended to be a history of Mexican particle physics: that topic is outside the expertise of the writer. The period 1980 to the present coincides with the growth of Mexican experimental particle physics from essentially no activity to its current state where Mexican groups take part in experiments at several of the world's major laboratories. Soon after becoming Fermilab director in 1979, Leon Lederman initiated a program to encourage experimental physics, especially experimental particle physics, in Latin America. At the time, Mexico had significant theoretical particle physics activity, but none in experiment. Following a visit by Lederman to UNAM in 1981, a conference ''Panamerican Symposium on Particle Physics and Technology'' was held in January 1982 at Cocoyoc, Mexico, with about 50 attendees from Europe, North America, and Latin America; these included Lederman, M. Moshinsky, J. Flores, S. Glashow, J. Bjorken, and G. Charpak. Among the conference outcomes were four subsequent similar symposia over the next decade, and a formal Fermilab program to aid Latin American physics (particularly particle physics); it also influenced a decision by Mexican physicist Clicerio Avilez to switch from theoretical to experimental particle physics. The first physics collaboration between Fermilab and Mexico was in particle theory. Post-docs Rodrigo Huerta and Jose Luis Lucio spent 1-2 years at Fermilab starting in 1981, and other theorists (including Augusto Garcia, Arnulfo Zepeda, Matias Moreno and Miguel Angel Perez) also spent time at the Laboratory in the 1980s.

  11. Physics of new methods of charged particle acceleration collective effects in dense charged particle ensembles

    CERN Document Server

    Bonch-Osmolovsky, A G

    1994-01-01

    This volume discusses the theory of new methods of charged particle acceleration and its physical and mathematical descriptions. It examines some collective effects in dense charged particle ensembles, and traces the history of the development of the field of accelerator physics.

  12. Wanted: Moderators for International Masterclasses in Particle Physics

    CERN Multimedia

    2015-01-01

    The International Masterclasses in Particle Physics give high school students from around the world the opportunity to become particle physicists for a day. CERN physicists are invited to participate in next year’s Masterclass programme, to be held from 11 February to 23 March 2016.   The International Masterclasses in Particle Physics conclude with a video conference, where students from different countries connect with moderators at CERN to discuss their results.   During a Masterclass, high-school students work with recent data from the LHC experiments under the supervision of physicists. For example, students can rediscover the Z boson or the structure of the proton, reconstruct strange particles or measure the lifetime of the D0 particle. “Students get a taste of how modern physics research works by working directly with particle physicists and using real LHC data,” says Uta Bilow from TU Dresden, coordinator of the International Mas...

  13. e-EPS News: Highlights from the European Physical Society

    CERN Multimedia

    e-EPS

    2011-01-01

    e-EPS News is a monthly addition to the CERN Bulletin line-up, showcasing articles from e-EPS – the European Physical Society newsletter – as part of a collaboration between the two publications.   Conseil de Physique Solvay centenary One hundred years ago the celebrated first Conseil de Physique Solvay took place in Brussels, with the participation of the leading physicists of the time. It marked a profound rupture between the old classical physics and the new quantum physics that described the strange behaviour of Nature at the microscopic level. The conference was one of the most important events in the advent of the quantum revolution; no such physics conference since has acquired the same legendary status. To celebrate the centenary of this unique conference, the International Solvay Institutes are organizing a series of exceptional events that will make Brussels the world capital of physics for ten days in October. For more information, please visit the S...

  14. Particle Physics Meets Cosmology -- The Search for Decaying Neutrinos.

    Science.gov (United States)

    Henry, Richard C.

    1982-01-01

    Detection of neutrino decay may have profound consequences for both particle physics and cosmology, providing a deep connection between physics of the very large and physics of the very small. Describes this link and discusses the nature and status of the search for decaying neutrinos. (Author/JN)

  15. Association between short-term exposure to ultrafine particles and mortality in eight European urban areas

    DEFF Research Database (Denmark)

    Stafoggia, Massimo; Schneider, Alexandra; Cyrys, Josef

    2017-01-01

    and non-accidental mortality, with mortality increasing by approximately 0.35% per 10,000 particles/cm increases in particle number concentration occurring 5 to 7 days before death. A similar pattern was found for cause-specific mortality. Estimates decreased after adjustment for fine particles (PM2.5...... and particulate matter (PM) and daily mortality in eight European urban areas. METHODS: We collected daily data on non-accidental and cardio-respiratory mortality, particle number concentrations (as proxy for ultrafine particle number concentration), fine and coarse PM, gases and meteorologic parameters in eight...

  16. A good week for global collaboration in particle physics

    CERN Multimedia

    2015-01-01

    This has been a good week for global collaboration in particle physics. On Wednesday, the CERN family grew by one Associate Member when we received official confirmation that the accession agreement signed last year had been ratified by the Turkish parliament, and on Thursday, we signed a new cooperation agreement with the US.   The signature of a new cooperation agreement between CERN and the US at the White House on Thursday, 7 May marks both a renewal of a long-standing friendship and a commitment to take the partnership further. Signed between CERN, the US Department of Energy and the US National Science Foundation, it is a framework agreement that paves the way for detailed accords on continued US participation in CERN’s scientific programme, and on European collaboration in projects hosted in the US, including prospective neutrino facilities. It is an agreement that is tacitly renewed every five years, unless one of the signatories signals a need to end or amend it. I am part...

  17. News from the Library: Online particle physics information: a unique compilation of information resources in particle physics

    CERN Multimedia

    CERN Library

    2012-01-01

    Are you looking for some specific information in particle physics? For example, the main literature databases, data repositories or laboratories...   Just go to the Libary's Online Particle Physics Information page. There you'll find a wide selection of relevant information, as well as resources in particle physics and related areas. The collection covers all aspects of the discipline - in addition to traditional scientific information resources you can find, for example, a selection of relevant blogs and art websites. This webpage is an extended and regularly updated version of the chapter on Online Particle Physics Information in the Review of Particle Properties. It is maintained by the CERN Library team which welcomes suggestions for additions and updates: library.desk@cern.ch.  

  18. PHYSICS, SCIENCE POLICY CERN's seven-point strategy for future particle physics

    CERN Multimedia

    2004-01-01

    Better coordinated particle accelerator research, with more powerful technology, are major priorities on the seven-point "to do list" revealed last week by CERN, the world's largest particle physics laboratory

  19. Challenging particle physics as path to truth

    CERN Multimedia

    Johnson, G

    2001-01-01

    Particle physicist's ultimate goal is 'grand unification' - describing the four forces observed today - electromagnetism, weak and strong nuclear forces and gravity with just a single law, expressable as a few concise equations. But some solid state physicists are now contesting the validity of this approach, arguing that many forms of matter cannot be described solely in terms of fundamental particle interactions - when systems are very complex, new and independent laws emerge. They propose that there is no one theory of everything, just a lot of theories of things.

  20. The 2nd International Conference on Particle Physics and Astrophysics

    CERN Document Server

    Soldatov, Evgeny; ICPPA 2016

    2016-01-01

    The 2nd International Conference on Particle Physics and Astrophysics (ICPPA-2016) will be held in Moscow, Russia, (from the 10th to 14th of October). The conference is organized by the National Research Nuclear University “MEPhI”. The aim of the Conference is to promote contacts between scientists and to develop new ideas in fundamental research. Therefore we will bring together experts and young scientists working in experimental and theoretical aspects of nuclear physics, particle physics (including astroparticle physics), and cosmology. ICPPA-2016 aims to present the most recent results in astrophysics and collider physics from the main experiments actively taking data as well as any upgrades for the methods of experimental particle physics. Furthermore, one special workshop will be held within the framework of this conference: «SiPM development and application». The working language of the conference is English

  1. Particle Physics: The mass of a top

    CERN Document Server

    Skands, Peter

    2014-01-01

    A measurement of the mass of the heftiest-known elementary particle, the top quark, which exists for less than a trillionth of a trillionth of a second, sheds light on the ultimate fate of our Universe, although ambiguities cloud its interpretation.

  2. The role of supersymmetry phenomenology in particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Wells, James D.

    2000-12-14

    Supersymmetry phenomenology is an important component of particle physics today. I provide a definition of supersymmetry phenomenology, outline the scope of its activity, and argue its legitimacy. This essay derives from a presentation given at the 2000 SLAC Summer Institute.

  3. Obituaries: Oreste Piccioni, 86, a leader in particle physics field

    CERN Multimedia

    2002-01-01

    Oreste Piccioni, a leading scientist in the field of elementary particle physics and emeritus professor at the University of California, San Diego, USA, has died of complications from diabetes and lung cancer. He was 86 (1 page).

  4. Symmetry and the Standard Model mathematics and particle physics

    CERN Document Server

    Robinson, Matthew

    2011-01-01

    While elementary particle physics is an extraordinarily fascinating field, the huge amount of knowledge necessary to perform cutting-edge research poses a formidable challenge for students. The leap from the material contained in the standard graduate course sequence to the frontiers of M-theory, for example, is tremendous. To make substantial contributions to the field, students must first confront a long reading list of texts on quantum field theory, general relativity, gauge theory, particle interactions, conformal field theory, and string theory. Moreover, waves of new mathematics are required at each stage, spanning a broad set of topics including algebra, geometry, topology, and analysis. Symmetry and the Standard Model: Mathematics and Particle Physics, by Matthew Robinson, is the first volume of a series intended to teach math in a way that is catered to physicists. Following a brief review of classical physics at the undergraduate level and a preview of particle physics from an experimentalist's per...

  5. Quarks, Leptons, and Bosons: A Particle Physics Primer.

    Science.gov (United States)

    Wagoner, Robert; Goldsmith, Donald

    1983-01-01

    Presented is a non-technical introduction to particle physics. The material is adapted from chapter 3 of "Cosmic Horizons," (by Robert Wagoner and Don Goldsmith), a lay-person's introduction to cosmology. Among the topics considered are elementary particles, forces and motion, and higher level structures. (JN)

  6. Teaching Particle Physics in the Open University's Science Foundation Course.

    Science.gov (United States)

    Farmelo, Graham

    1992-01-01

    Discusses four topics presented in the science foundation course of the Open University that exemplify current developments in particle physics, in particular, and that describe important issues about the nature of science, in general. Topics include the omega minus particle, the diversity of quarks, the heavy lepton, and the discovery of the W…

  7. Atomic, molecular, and optical physics charged particles

    CERN Document Server

    Dunning, F B

    1995-01-01

    With this volume, Methods of Experimental Physics becomes Experimental Methods in the Physical Sciences, a name change which reflects the evolution of todays science. This volume is the first of three which will provide a comprehensive treatment of the key experimental methods of atomic, molecular, and optical physics; the three volumes as a set will form an excellent experimental handbook for the field. The wide availability of tunable lasers in the pastseveral years has revolutionized the field and lead to the introduction of many new experimental methods that are covered in these volumes. Traditional methods are also included to ensure that the volumes will be a complete reference source for the field.

  8. Femtophysics a short course on particle physics

    CERN Document Server

    Bowler, Michael George

    1990-01-01

    Provides an account of what is now known about physics at scales of 1013 to 1016 cm. The existence of spin half quarks interacting through colour fields is established fact, as is the structure unifying electromagnetic and weak interaction. In Femtophysics, the author explains the evidence and communicates the essential physics underlying these recent and remarkable developments. The approach throughout is to obtain results by applying trivial algebra to the content of simple and clear physical pictures. Thus, abstract and difficult concepts can be mastered pai

  9. Studies In Theoretical High Energy Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Keung, Wai Yee [Univ. of Illinois, Chicago, IL (United States)

    2017-07-01

    This is a final technical report for grant no. DE-SC0007948 describing research activities in theoretical high energy physics at University of Illinois at Chicago for the whole grant period from July 1, 2012 to March 31, 2017.

  10. Particle physics: Matter and antimatter scrutinized

    NARCIS (Netherlands)

    Jungmann, Klaus Peter

    2015-01-01

    A search for differences in the charge-to-mass ratio of protons and antiprotons, conducted at unprecedented levels of precision, results in stringent limits to the validity of fundamental physical symmetries.

  11. Elementary particle physics and high energy phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP).

  12. The engineering needed for particle physics.

    Science.gov (United States)

    Myers, Steve

    2012-08-28

    Today's particle accelerators and detectors are among the most complicated and expensive scientific instruments ever built, and they exploit almost every aspect of today's cutting-edge engineering technologies. In many cases, accelerator needs have been the driving force behind these new technologies, necessity being the mother of invention. This paper gives an overview of some engineering requirements for the construction and operation of present-day accelerators and detectors.

  13. Europeans quit, giving Fermilab edge in search for new particle

    CERN Multimedia

    Higgin, A G

    2000-01-01

    CERN has announced it will shut down the machine it has been using to find an elusive subatomic particle believed to be the key to understanding the universe. Fermilab has been upgrading its facilities for the last four years. It will start its Higgs bosons experiments in the spring (1/2 page).

  14. Energetic Particle Physics In Fusion Research In Preparation For Burning Plasma Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gorelenkov, Nikolai N [PPPL

    2013-06-01

    The area of energetic particle (EP) physics of fusion research has been actively and extensively researched in recent decades. The progress achieved in advancing and understanding EP physics has been substantial since the last comprehensive review on this topic by W.W. Heidbrink and G.J. Sadler [1]. That review coincided with the start of deuterium-tritium (DT) experiments on Tokamak Fusion Test reactor (TFTR) and full scale fusion alphas physics studies. Fusion research in recent years has been influenced by EP physics in many ways including the limitations imposed by the "sea" of Alfven eigenmodes (AE) in particular by the toroidicityinduced AEs (TAE) modes and reversed shear Alfven (RSAE). In present paper we attempt a broad review of EP physics progress in tokamaks and spherical tori since the first DT experiments on TFTR and JET (Joint European Torus) including helical/stellarator devices. Introductory discussions on basic ingredients of EP physics, i.e. particle orbits in STs, fundamental diagnostic techniques of EPs and instabilities, wave particle resonances and others are given to help understanding the advanced topics of EP physics. At the end we cover important and interesting physics issues toward the burning plasma experiments such as ITER (International Thermonuclear Experimental Reactor).

  15. 2013 European School of High-Energy Physics

    CERN Multimedia

    Nick Ellis (On behalf of the Organising Committee)

    2013-01-01

    The School will be held in Hungary from 5 to 18 June 2013. PLEASE NOTE THAT THE DEADLINE FOR APPLICATIONS IS 15 FEBRUARY 2013 The lectures will cover a broad range of HEP topics at a level suitable for students working for a PhD in experimental particle physics. Note that, as indicated on the web pages, one or two students from developing countries could be considered for financial support. Details can be found here.

  16. Fundamental concepts in Particle Physics course

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    The course will provide an introduction to some of the basic theoretical techniques used to describe the fundamental particles and their interactions. Of central importance to our understanding of these forces are the underlying symmetries of nature and I will review the nature of these symmetries and how they are used to build a predictive theory. I discuss how the combination of quantum mechanics and relativity leads to the quantum field theory (QFT) description of the states of matter and their interactions. The Feynman rules used to determine the QFT predictions for experimentally measurable processes are derived and applied to the calculation of decay widths and cross sections.

  17. Beacons of discovery the worldwide science of particle physics

    CERN Document Server

    International Committee for Future Accelerators (ICFA)

    2011-01-01

    To discover what our world is made of and how it works at the most fundamental level is the challenge of particle physics. The tools of particle physics—experiments at particle accelerators and underground laboratories, together with observations of space—bring opportunities for discovery never before within reach. Thousands of scientists from universities and laboratories around the world collaborate to design, build and use unique detectors and accelerators to explore the fundamental physics of matter, energy, space and time. Together, in a common world-wide program of discovery, they provide a deep understanding of the world around us and countless benefits to society. Beacons of Discovery presents a vision of the global science of particle physics at the dawn of a new light on the mystery and beauty of the universe.

  18. Elementary Particle Physics at Syracuse. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Catterall, Simon [Syracuse Univ., NY (United States). Dept. of Physics; Hubisz, Jay [Syracuse Univ., NY (United States). Dept. of Physics; Balachandran, Aiyalam [Syracuse Univ., NY (United States). Dept. of Physics; Schechter, Joe [Syracuse Univ., NY (United States). Dept. of Physics

    2013-01-05

    This final report describes the activities of the high energy theory group at Syracuse University for the period 1 January 2010 through April 30 2013. The research conducted by the group includes lattice gauge theory, non-commutative geometry, phenomenology and mathematical physics.

  19. Elementary Particle Physics at Baylor (Final Report)

    Energy Technology Data Exchange (ETDEWEB)

    Dittmann, J.R.

    2012-08-25

    This report summarizes the activities of the Baylor University Experimental High Energy Physics (HEP) group on the Collider Detector at Fermilab (CDF) experiment from August 15, 2005 to May 31, 2012. Led by the Principal Investigator (Dr. Jay R. Dittmann), the Baylor HEP group has actively pursued a variety of cutting-edge measurements from proton-antiproton collisions at the energy frontier.

  20. Quantum Optics, Diffraction Theory, and Elementary Particle Physics

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    Physical optics has expanded greatly in recent years. Though it remains part of the ancestry of elementary particle physics, there are once again lessons to be learned from it. I shall discuss several of these, including some that have emerged at CERN and Brookhaven.

  1. Symmetries of Particle Physics: Space-time and Local Gauge ...

    Indian Academy of Sciences (India)

    GENERAL I ARTICLE. Symmetries of Particle Physics: Space-time and. Local Gauge Symmetries. Sourendu Gupta works on the physics of matter under extreme conditions. He works at the Tata. Institute of Fundamental. Research, Mumbai. Figure 1. Experiment and theory feed on each other. Sourendu Gupta. Introduction.

  2. Review of lattice results concerning low energy particle physics

    DEFF Research Database (Denmark)

    Aoki, Sinya; Aoki, Yasumichi; Bernard, Claude

    2014-01-01

    We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle physics community. More specifically, we report on the determination of the light-quark masses, the form factor f+(0), arising in semileptonic K -> pi transition...

  3. Research in theoretical and elementary particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Mitselmakher, G. [Univ. of Florida, Gainesville, FL (United States)

    1996-12-01

    In 1995 the University of Florida started a major expansion of the High Energy Experimental Physics group (HEE) with the goal of adding four new faculty level positions to the group in two years. This proposal covers the second year of operation of the new group and gives a projection of the planned research program for the next five years, when the group expects their activities to be broader and well defined. The expansion of the HEE group started in the Fall of 1995 when Guenakh Mitselmakher was hired from Fermilab as a Full Professor. A search was then performed for two junior faculty positions. The first being a Research Scientist/Scholar position which is supported for 9 months by the University on a faculty line at the same level as Assistant Professor but without the teaching duties. The second position is that of an Assistant Professor. The search has been successfully completed and Jacobo Konigsberg from Harvard University has accepted the position of Research Scientist and Andrey Korytov from MIT has accepted the position of Assistant Professor. They will join the group in August 1996. The physics program for the new group is focused on hadron collider physics. G. Mitselmakher has been leading the CMS endcap muon project since 1994. A Korytov is the coordinator of the endcap muon chamber effort for CMS and a member of the CDF collaboration and J. Konigsberg is a member of CDF where he has participated in various physics analyses and has been coordinator of the gas calorimetry group. The group at the U. of Florida has recently been accepted as an official collaborating institution on CDF. They have been assigned the responsibility of determining the collider beam luminosity at CDF and they will also be an active participant in the design and operation of the muon detectors for the intermediate rapidity region. In addition they expect to continue their strong participation in the present and future physics analysis of the CDF data.

  4. Particle and nuclear physics instrumentation and its broad connections

    Science.gov (United States)

    Demarteau, M.; Lipton, R.; Nicholson, H.; Shipsey, I.

    2016-10-01

    Subatomic physics shares with other basic sciences the need to innovate, invent, and develop tools, techniques, and technologies to carry out its mission to explore the nature of matter, energy, space, and time. In some cases, entire detectors or technologies developed specifically for particle physics research have been adopted by other fields of research or in commercial applications. In most cases, however, the development of new devices and technologies by particle physics for its own research has added value to other fields of research or to applications beneficial to society by integrating them in the existing technologies. Thus, detector research and development has not only advanced the current state of technology for particle physics, but has often advanced research in other fields of science and has underpinned progress in numerous applications in medicine and national security. At the same time particle physics has profited immensely from developments in industry and applied them to great benefit for the use of particle physics detectors. This symbiotic relationship has seen strong mutual benefits with sometimes unexpected far reach.

  5. Fundamental physics possibilities at the European Spallation Source

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Batkov, Konstantin; Mezei, Ferenc

    2016-01-01

    The construction of the European Spallation has recently started in Lund, Sweden.In addition to the neutron scattering instruments the ESS is designed to serve, the constructionof a new spallation source opens up new possibilities for fundamental physics experiments. Inthis paper some...... of the possibilities for in-pile experiments are discussed, i.e. experiments thatimpacts the target-moderator-reector systems and that can best be constructed if they areconsidered already in the design phase of a new facility. The main focus of the work reportedhere is put on possible changes to the baseline target...

  6. Elementary particle physics at the University of Florida. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    This report discusses research in the following areas: theoretical elementary particle physics; experimental elementary particle physics; axion project; SSC detector development; and computer acquisition. (LSP).

  7. FINAL REPORT: GEOMETRY AND ELEMENTARY PARTICLE PHYSICS

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Isadore M.

    2008-03-04

    The effect on mathematics of collaborations between high-energy theoretical physics and modern mathematics has been remarkable. Mirror symmetry has revolutionized enumerative geometry, and Seiberg-Witten invariants have greatly simplified the study of four manifolds. And because of their application to string theory, physicists now need to know cohomology theory, characteristic classes, index theory, K-theory, algebraic geometry, differential geometry, and non-commutative geometry. Much more is coming. We are experiencing a deeper contact between the two sciences, which will stimulate new mathematics essential to the physicists’ quest for the unification of quantum mechanics and relativity. Our grant, supported by the Department of Energy for twelve years, has been instrumental in promoting an effective interaction between geometry and string theory, by supporting the Mathematical Physics seminar, postdoc research, collaborations, graduate students and several research papers.

  8. Particle physics after the Higgs discovery: Philosophical perspectives

    Science.gov (United States)

    Friederich, Simon; Lehmkuhl, Dennis

    2015-08-01

    The recent discovery at the LHC of a particle with properties matching those expected of the Higgs boson is a decisive event in the history of particle physics. The present special section combines three contributions that approach conceptual and methodological challenges related to this event and the current situation in particle physics from different angles. One contribution studies the experimental practices of contemporary particle physics by investigating the role of computer simulations in these practices; in particular, it focuses on the status of simulations as compared to experiments that in some circumstances have analogous functions. One contribution investigates the status of the controversial naturalness problem that many physicists see as the most severe shortcoming of the Standard Model of elementary particle physics. Finally, a third contribution critically assesses the impact of suggested no-go theorems concerning the interpretability of rigorous algebraic quantum field theory in terms of particles at the phenomenological level. In what follows we present a short overview of these contributions, highlighting some of their central ideas and arguments and putting them into context.

  9. Connection of European particle therapy centers and generation of a common particle database system within the European ULICE-framework

    Directory of Open Access Journals (Sweden)

    Kessel Kerstin A

    2012-07-01

    Full Text Available Abstract Background To establish a common database on particle therapy for the evaluation of clinical studies integrating a large variety of voluminous datasets, different documentation styles, and various information systems, especially in the field of radiation oncology. Methods We developed a web-based documentation system for transnational and multicenter clinical studies in particle therapy. 560 patients have been treated from November 2009 to September 2011. Protons, carbon ions or a combination of both, as well as a combination with photons were applied. To date, 12 studies have been initiated and more are in preparation. Results It is possible to immediately access all patient information and exchange, store, process, and visualize text data, any DICOM images and multimedia data. Accessing the system and submitting clinical data is possible for internal and external users. Integrated into the hospital environment, data is imported both manually and automatically. Security and privacy protection as well as data validation and verification are ensured. Studies can be designed to fit individual needs. Conclusions The described database provides a basis for documentation of large patient groups with specific and specialized questions to be answered. Having recently begun electronic documentation, it has become apparent that the benefits lie in the user-friendly and timely workflow for documentation. The ultimate goal is a simplification of research work, better study analyses quality and eventually, the improvement of treatment concepts by evaluating the effectiveness of particle therapy.

  10. Connection of European particle therapy centers and generation of a common particle database system within the European ULICE-framework.

    Science.gov (United States)

    Kessel, Kerstin A; Bougatf, Nina; Bohn, Christian; Habermehl, Daniel; Oetzel, Dieter; Bendl, Rolf; Engelmann, Uwe; Orecchia, Roberto; Fossati, Piero; Pötter, Richard; Dosanjh, Manjit; Debus, Jürgen; Combs, Stephanie E

    2012-07-24

    To establish a common database on particle therapy for the evaluation of clinical studies integrating a large variety of voluminous datasets, different documentation styles, and various information systems, especially in the field of radiation oncology. We developed a web-based documentation system for transnational and multicenter clinical studies in particle therapy. 560 patients have been treated from November 2009 to September 2011. Protons, carbon ions or a combination of both, as well as a combination with photons were applied. To date, 12 studies have been initiated and more are in preparation. It is possible to immediately access all patient information and exchange, store, process, and visualize text data, any DICOM images and multimedia data. Accessing the system and submitting clinical data is possible for internal and external users. Integrated into the hospital environment, data is imported both manually and automatically. Security and privacy protection as well as data validation and verification are ensured. Studies can be designed to fit individual needs. The described database provides a basis for documentation of large patient groups with specific and specialized questions to be answered. Having recently begun electronic documentation, it has become apparent that the benefits lie in the user-friendly and timely workflow for documentation. The ultimate goal is a simplification of research work, better study analyses quality and eventually, the improvement of treatment concepts by evaluating the effectiveness of particle therapy.

  11. Wigner particle theory and local quantum physics

    Energy Technology Data Exchange (ETDEWEB)

    Fassarella, Lucio; Schroer, Bert [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mail: fassarel@cbpf.br; schroer@cbpf.br

    2002-01-01

    Wigner's irreducible positive energy representations of the Poincare group are often used to give additional justifications for the Lagrangian quantization formalism of standard QFT. Here we study another more recent aspect. We explain in this paper modular concepts by which we are able to construct the local operator algebras for all standard positive energy representations directly without going through field coordinations. In this way the artificial emphasis on Lagrangian field coordinates is avoided from the very beginning. These new concepts allow to treat also those cases of 'exceptional' Wigner representations associated with anyons and the famous Wigner spin tower which have remained inaccessible to Lagrangian quantization. Together with the d=1+1 factorizing models (whose modular construction has been studied previously), they form an interesting family of theories with a rich vacuum-polarization structure (but no on shell real particle creation) to which the modular methods can be applied for their explicit construction. We explain and illustrate the algebraic strategy of this construction. We also comment on possibilities of formulating the Wigner theory in a setting of a noncommutativity. (author)

  12. Geneva University: seminar of particle physics

    CERN Multimedia

    Geneva University

    2012-01-01

    Université de Genève École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92 Mercredi 20 juin 2012 SÉMINAIRE DE PHYSIQUE CORPUSCULAIRE 11h15 - Auditoire Stückelberg, École de physique Searches for SUSY at the LHC : status and prospects Dr Monica D’Onofrio - University of Liverpool Supersymmetry is a theory that provides an extension of the Standard Model and naturally solves the hierarchy problem by introducing supersymmetric partners of the known bosons and fermions. The ATLAS and CMS collaborations are searching for SUSY particles in several final states, exploiting at best the excellent quality of the data delivered by the LHC and recorded by the experiments. I shall review the most recent results, with prospects for near and far future. INFORMATION : http://dpnc.unige.ch/seminaire/annon...

  13. Particle physics for primary schools—enthusing future physicists

    Science.gov (United States)

    Pavlidou, M.; Lazzeroni, C.

    2016-09-01

    In recent years, the realisation that children make decisions and choices about subjects they like in primary school, became widely understood. For this reason academic establishments focus some of their public engagement activities towards the younger ages. Taking advantage of Professor Lazzeroni’s long-standing experience in particle physics research, during the last academic year we designed and trialled a particle physics workshop for primary schools. The workshop allows young children (ages 8-11) to learn the world of fundamental particles, use creative design to make particle models. The workshop has already been trialled in many primary schools, receiving very positive evaluation. The initial resources were reviewed and improved, based on the feedback received from school teachers and communicators.

  14. Finite-particle-number approach to physics

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, H.P.

    1982-10-01

    Starting from a discrete, self-generating and self-organizing, recursive model and self-consistent interpretive rules we construct: the scale constants of physics (3,10,137,1.7x10/sup 38/); 3+1 Minkowski space with a discrete metric and the algebraic bound ..delta.. is an element of ..delta.. tau is greater than or equal to 1; the Einstein-deBroglie relation; algebraic double slit interference; a single-time momentum-space scattering theory connected to laboratory experience; an approximation to wave functions; local phase severance and hence both distant correlations and separability; baryon number, lepton number, charge and helicity; m/sub p//m/sub e/; a cosmology not in disagreement with current observations.

  15. On the golden road : Open access publishing in particle physics

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    The particle physics community has over the last 15 years achieved so-called full green open access through the wide dissemination ofpreprints via arXiv, a central subject repository managed by Cornell University. However, green open access does not alleviate the economical difficulties of libraries as these still are expected to offer access to versions of record of the peer-reviewed literature. For this reason the particle physics community is now addressing the issue of gold open access by converting a set of the existing core journals to open access. A working party works now to bring together funding agencies, laboratories and libraries into a single consortium, called SCOAP3 (Sponsoring Consortium for Open access Publishing in Particle Physics). This consortium will engage with publishers towards building a sustainable model for open access publishing. In this model, subscription fees from multiple institutions are replaced with contracts with publishers of open access journals where the SCOAP3 consort...

  16. On the golden road Open access publishing in particle physics

    CERN Document Server

    CERN. Geneva; Yeomans, Joanne

    2007-01-01

    The particle physics community has over the last 15 years achieved so-called full green open access through the wide dissemination ofpreprints via arXiv, a central subject repository managed by Cornell University. However, green open access does not alleviate the economical difficulties of libraries as these still are expected to offer access to versions of record of the peer-reviewed literature. For this reason the particle physics community is now addressing the issue of gold open access by converting a set of the existing core journals to open access. A working party works now to bring together funding agencies, laboratories and libraries into a single consortium, called SCOAP3 (Sponsoring Consortium for Open access Publishing in Particle Physics). This consortium will engage with publishers towards building a sustainable model for open access publishing. In this model, subscription fees from multiple institutions are replaced with contracts with publishers of open access journals where the SCOAP3 consorti...

  17. Interventions for promoting physical activity among European teenagers: A systematic review

    NARCIS (Netherlands)

    F. de Meester (Femke); F.J. van Lenthe (Frank); H. Spittaels (Heleen); N. Lien (Nanna); I. Bourdeaudhuij, de (Ilse)

    2009-01-01

    textabstractBackground: Although physical activity is considered to yield substantial health benefits, the level of physical activity among European teenagers is not sufficient. Adolescence is characterized by a decline in physical activity level. Many studies investigated the effectiveness of

  18. Exposure to ultrafine particles and respiratory hospitalisations in five European cities

    DEFF Research Database (Denmark)

    Samoli, Evangelia; Andersen, Zorana Jovanovic; Katsouyanni, Klea

    2016-01-01

    Epidemiological evidence on the associations between exposure to ultrafine particles (UFP), with aerodynamic electrical mobility diameters <100 nm, and health is limited. We gathered data on UFP from five European cities within 2001-2011 to investigate associations between short-term changes in c...

  19. European coordination for coastal HF radar data in EMODnet Physics

    Science.gov (United States)

    Mader, Julien; Novellino, Antonio; Gorringe, Patrick; Griffa, Annalisa; Schulz-Stellenfleth, Johannes; Montero, Pedro; Montovani, Carlo; Ayensa, Garbi; Vila, Begoña; Rubio, Anna; Sagarminaga, Yolanda

    2015-04-01

    HFR data access and tools. In this context, a coordinated action between EuroGOOS HF Radar Task Team and EMODnet Physics has been pushed to achieve a pilot integration of the data from existing HF radar systems, with the following operational objectives: definition of needed metadata; standardization for data format and QC; recommendation for the implementation of HF radar data in Regional and European Portals. This coordinated action for organizing and creating links between operators of HF radar platforms will benefit to the implementation of this key information in the European Marine Observation Data Network.

  20. Thirty Unsolved Problems in the Physics of Elementary Particles

    Directory of Open Access Journals (Sweden)

    Christianto V.

    2007-10-01

    Full Text Available Unlike what some physicists and graduate students used to think, that physics science has come to the point that the only improvement needed is merely like adding more numbers in decimal place for the masses of elementary particles or gravitational constant, there is a number of unsolved problems in this field that may require that the whole theory shall be reassessed. In the present article we discuss thirty of those unsolved problems and their likely implications. In the first section we will discuss some well-known problems in cosmology and particle physics, and then other unsolved problems will be discussed in next section.

  1. Solar, Stellar and Galactic Connections between Particle Physics and Astrophysics

    CERN Document Server

    Carraminana, Alberto

    2007-01-01

    This book collects extended and specialized reviews on topics linking astrophysics and particle physics at a level intermediate between a graduate student and a young researcher. The book includes also three reviews on observational techniques used in forefront astrophysics and short articles on research performed in Latin America. The reviews, updated and written by specialized researchers, describe the state of the art in the related research topics. This book is a valuable complement not only for research but also for lecturers in specialized course of high energy astrophysics, cosmic ray astrophysics and particle physics.

  2. Beyond Standard Model Physics: At the Frontiers of Cosmology and Particle Physics

    Science.gov (United States)

    Lopez-Suarez, Alejandro O.

    I begin to write this thesis at a time of great excitement in the field of cosmology and particle physics. The aim of this thesis is to study and search for beyond the standard model (BSM) physics in the cosmological and high energy particle fields. There are two main questions, which this thesis aims to address: 1) what can we learn about the inflationary epoch utilizing the pioneer gravitational wave detector Adv. LIGO?, and 2) what are the dark matter particle properties and interactions with the standard model particles?. This thesis will focus on advances in answering both questions.

  3. Spatial variability of fine particle concentrations in three European areas

    Science.gov (United States)

    Hoek, Gerard; Meliefste, Kees; Cyrys, Josef; Lewné, Marie; Bellander, Tom; Brauer, Mike; Fischer, Paul; Gehring, Ulrike; Heinrich, Joachim; van Vliet, Patricia; Brunekreef, Bert

    Epidemiological studies of long-term air pollution effects have been hampered by difficulties in characterizing the spatial variation in air pollution. We conducted a study to assess the risk of long-term exposure to traffic-related air pollution for the development of inhalant allergy and asthma in children in Stockholm county, Munich and the Netherlands. Exposure to traffic-related air pollution was assessed through a 1-year monitoring program and regression modeling using exposure indicators. This paper documents the performance of the exposure monitoring strategy and the spatial variation of ambient particle concentrations. We measured the ambient concentration of PM2.5 and the reflectance of PM2.5 filters ('soot') at 40-42 sites representative of different exposure conditions of the three study populations. Each site was measured during four 14-day average sampling periods spread over one year (spring 1999 to summer 2000). In each study area, a continuous measurement site was operated to remove potential bias due to temporal variation. The selected approach was an efficient method to characterize spatial differences in annual average concentration between a large number of sites in each study area. Adjustment with data from the continuous measurement site improved the precision of the calculated annual averages, especially for PM2.5. Annual average PM2.5 concentrations ranged from 11 to 20 μg/m 3 in Munich, from 8 to 16 μg/m 3 in Stockholm and from 14 to 26 μg/m 3 in the Netherlands. Larger spatial contrasts were found for the absorption coefficient of PM2.5. PM2.5 concentrations were on average 17-18% higher at traffic sites than at urban background sites, but PM2.5 absorption coefficients at traffic sites were between 31% and 55% increased above background. This suggests that spatial variation of traffic-related air pollution may be underestimated if PM2.5 only is measured.

  4. Theoretical Advanced Study Institute in Elementary Particle Physics

    CERN Document Server

    2006-01-01

    This book contains write-ups of lectures from a summer school for advanced graduate students in elementary particle physics. In the first lecture, Scott Willenbrock gives an overview of the standard model of particle physics. This is followed by reviews of specific areas of standard model physics: precision electroweak analysis by James Wells, quantum chromodynamics and jets by George Sterman, and heavy quark effective field by Matthias Neubert. Developments in neutrino physics are discussed by André de Gouvea and the theory behind the Higgs boson is addressed by Laura Reina. Collider phenomenology from both experimental and theoretical perspectives are highlighted by Heidi Schellman and Tao Han. A brief survey of dynamical electroweak symmetry breaking is provided by R Sekhar Chivukula and Elizabeth H Simmons. Martin Schmaltz covers the recent proposals for “little” Higgs theories. Markus Luty describes what is needed to make supersymmetric theories realistic by breaking supersymmetry. There is an entir...

  5. Nuclear and particle physics, astrophysics and cosmology (NPAC) capability review

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Antonio [Los Alamos National Laboratory

    2010-01-01

    The present document represents a summary self-assessment of the status of the Nuclear and Particle Physics, Astrophysics and Cosmology (NPAC) capability across Los Alamos National Laboratory (LANL). For the purpose of this review, we have divided the capability into four theme areas: Nuclear Physics, Particle Physics, Astrophysics and Cosmology, and Applied Physics. For each theme area we have given a general but brief description of the activities under the area, a list of the Laboratory divisions involved in the work, connections to the goals and mission of the Laboratory, a brief description of progress over the last three years, our opinion of the overall status of the theme area, and challenges and issues.

  6. Shifting standards experiments in particle physics in the twentieth century

    CERN Document Server

    Franklin, Allan

    2013-01-01

    In Shifting Standards, Allan Franklin provides an overview of notable experiments in particle physics. Using papers published in Physical Review, the journal of the American Physical Society, as his basis, Franklin details the experiments themselves, their data collection, the events witnessed, and the interpretation of results. From these papers, he distills the dramatic changes to particle physics experimentation from 1894 through 2009.Franklin develops a framework for his analysis, viewing each example according to exclusion and selection of data; possible experimenter bias; details of the experimental apparatus; size of the data set, apparatus, and number of authors; rates of data taking along with analysis and reduction; distinction between ideal and actual experiments; historical accounts of previous experiments; and personal comments and style.From Millikan’s tabletop oil-drop experiment to the Compact Muon Solenoid apparatus measuring approximately 4,000 cubic meters (not including accelerators) and...

  7. Scientific realism in particle physics a causal approach

    CERN Document Server

    Egg, Matthias

    2014-01-01

    Does particle physics really describe the basic constituents of the material world or is it just a useful tool for deriving empirical predictions? This book proposes a novel answer to that question, emphasizing the importance of causal reasoning for the justification of scientific claims. It thereby responds to general worries about scientific realism as well as to more specific challenges stemming from the interpretation of quantum physics.

  8. Handbook on interdisciplinary use of European nuclear physics facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This handbook is intended to collect together, in an accessible way, the most pertinent information which might be needed by anyone contemplating the use of nuclear physics accelerators for research in other disciplines, or for industrial, biomedical, solid-state or other applications. Information for the publication was supplied by each laboratory represented here, and this was edited and supplemented where it was thought necessary, by additional material, often derived from the facilities' web-sites. The reader will find for each facility a technical description concerning the accelerator itself and its experimental equipment, followed by a 'what can be made there' section. 'at a glance' page contains a summary of contact names and addresses, transport, access and accommodation offered that will be of a great use for prospective user. 26 facilities in 12 European countries (Belgium, Finland, France, Germany, Italy, Norway, Poland, Portugal, Spain, Sweden, Switzerland and The Netherlands) are presented.

  9. Research accomplishments and future goals in particle physics

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-30

    This document presents our proposal to continue the activities of Boston University researchers in high energy physics research. We have a broad program of participation in both non-accelerator and accelerator-based efforts. High energy research at Boston University has a special focus on the physics program of the Superconducting Supercollider. We are active in research and development for detector subsystems, in the design of experiments, and in study of the phenomenology of the very high energy interactions to be observed at the SSC. The particular areas discussed in this paper are: colliding beams physics; accelerator design physics; MACRO project; proton decay project; theoretical particle physics; muon G-2 project; fast liquid scintillators; SSCINTCAL project; TRD project; massively parallel processing for the SSC; and physics analysis and vertex detector upgrade at L3.

  10. Particles and nuclei an introduction to the physical concepts

    CERN Document Server

    Povh, Bogdan; Scholz, Christoph; Zetsche, Frank; Rodejohann, Werner

    2015-01-01

    This well-known introductory textbook gives a uniform presentation of nuclear and particle physics from an experimental point of view.   The first part, Analysis, is devoted to disentangling the substructure of matter. This part shows that experiments designed to uncover the substructures of nuclei and nucleons have a similar conceptual basis, and lead to the present picture of all matter being constructed from a small number of elementary building blocks and a small number of fundamental interactions.   The second part, Synthesis, shows how the elementary particles may be combined to build hadrons and nuclei. The fundamental interactions, which are responsible for the forces in all systems, become less and less evident in increasingly complex systems. Such systems are in fact dominated by many-body phenomena. A section on neutrino oscillations and one on nuclear matter at high temperatures bridge the field of "nuclear and particle physics" and "modem astrophysics and cosmology.   The seventh revised and e...

  11. New chair for the Particle Physics and Astronomy Research Council

    CERN Multimedia

    2001-01-01

    Peter Warry has been appointed as Chair of PPARC for the next 4 years. Chairman of Victrex plc, whose business is in speciality chemicals, he has been an Industrial Professor at the University of Warwick since 1993. PPARC pursues a programme of high quality basic research in particle physics, astronomy, cosmology and space science and its budget for 2002 is approximately 220 million GBP.

  12. Philosophical and methodological analyses in Japanese particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Bardos, G. (Kossuth Lajos Tudomanyegyetem, Debrecen (Hungary). Elmeleti Fizikai Tanszek)

    1984-01-01

    The history and philosophy of the Japanese school of dialectical materialism and its influence on nuclear and particle physicists are discussed. The ideas of main characters of this philosophical school are summerized. Parallel physical and philosophical works of Sakata are analyzed.

  13. Research in elementary particle physics. [Ohio State Univ. , Columbus

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Experimental and theoretical work on high energy physics is reviewed. Included are preparations to study high-energy electron-proton interactions at HERA, light-cone QCD, decays of charm and beauty particles, neutrino oscillation, electron-positron interactions at CLEO II, detector development, and astrophysics and cosmology.

  14. Large extra dimensions a new arena for particle physics

    CERN Multimedia

    Arkani-Hamed, N; Savas-Divali, G

    2002-01-01

    "This article examines the information accumulated so far and the impact of forthcoming new advances in particle physics research on the current supersymmetric standard model. The new premise is that there is no desert at all and that the electroweak unification energy is the only fundamental energy scale in nature" (2 pages).

  15. Application of nonextensive statistics to particle and nuclear physics

    OpenAIRE

    Wilk, G.; Wlodarczyk, Z

    2001-01-01

    We present an overview of possible imprints of non-extensitivity in particle and nucler physics. Special emphasis is put on the intrinsic fluctuations present in the system under consideration as the possible source of nonextensivity. The possible connection of nonextensivity and the self organized criticality apparently being observed in some cosmic rays and hadronic experiments will also be discussed.

  16. Asymmetry in Nature-Discrete Symmetries in Particle Physics and ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 3. Asymmetry in Nature - Discrete Symmetries in Particle Physics and their Violation - Background and ... Theoretical Studies, Indian Institute of Science, Bangalore 560012, India. Indian Institute of Technology, Chennai. Aligarh Muslim University.

  17. My 50 years of research in particle physics.

    Science.gov (United States)

    Sugawara, Hirotaka

    2010-01-01

    Some of my work of the last 50 years in the field of theoretical particle physics is described with particular emphasis on the motivation, the process of investigation, relationship to the work of others, and its impact. My judgment is unavoidably subjective, although I do present the comments of other researchers as much as possible.

  18. Symmetries of Particle Physics: Space-time and Local Gauge ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 2. Symmetries of Particle Physics: Space-time and Local Gauge Symmetries. Sourendu Gupta. General Article Volume 6 Issue 2 February 2001 pp 29-38. Fulltext. Click here to view fulltext PDF. Permanent link:

  19. Space- and ground-based particle physics meet at CERN

    CERN Multimedia

    CERN Bulletin

    2012-01-01

    The fourth international conference on Particle and Fundamental Physics in Space (SpacePart12) will take place at CERN from 5 to 7 November. The conference will bring together scientists working on particle and fundamental physics in space and on ground, as well as space policy makers from around the world.   One hundred years after Victor Hess discovered cosmic rays using hot air balloons, the experimental study of particle and fundamental physics is still being pursued today with extremely sophisticated techniques: on the ground, with state-of-the-art accelerators like the LHC; and in space, with powerful observatories that probe, with amazing accuracy, the various forms of cosmic radiation, charged and neutral, which are messengers of the most extreme conditions of matter and energy. SpacePart12 will be the opportunity for participants to exchange views on the progress of space-related science and technology programmes in the field of particle and fundamental physics in space. SpacePar...

  20. Particle radiosurgery: a new frontier of physics in medicine.

    Science.gov (United States)

    Bert, Christoph; Durante, Marco

    2014-07-01

    Radiosurgery was introduced over half a century ago for treatment of intracranial lesions. In more recent years, stereotactic radiotherapy has rapidly advanced and is now commonly used for treatments of both cranial and extracranial lesions with high doses delivered in a few, down to a single fraction. The results of a workshop on Particle radiosurgery: A new frontier of physics in medicine held at Obergurgl, Austria during August 25-29 2013 are summarized in this issue with an overview presented in this paper. The focus was laid on particle radiosurgery but the content also includes current practice in x-ray radiosurgery and the overarching research in radiobiology and motion management for extracranial lesions. The results and discussions showed that especially research in radiobiology of high-dose charged-particles and motion management are necessary for the success of particle radiosurgery. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. Current experiments in elementary particle physics. Revision 1-85

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Armstrong, F.E.; Rittenberg, A.; Trippe, T.G.; Yost, G.P.; Oyanagi, Y.; Dodder, D.C.; Grudtsin, S.N.; Ryabov, Yu.G.; Frosch, R.

    1985-01-01

    This report contains summaries of 551 approved experiments in elementary particle physics (experiments that finished taking data before 1 January 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Properties of the fixed-target beams at most of the laboratories are summarized. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  2. Quantum jumps: from foundational research to particle physics

    Science.gov (United States)

    Licata, Ignazio; Chiatti, Leonardo

    2017-08-01

    Since 1986 a vast body of experimental evidence has been accumulated of direct observation of quantum jumps in many physical systems. We can therefore assume that quantum jumps are genuine physical phenomena. On the other hand, substantial identity of ”quantum jumps” and ”collapses” induced by measurements can be admitted, both being represented by self-conjugate projection operators related to specific non-Hamiltonian aspects of micro-interactions. On this basis a model of quantum jump involving a single particle is discussed, and some consequences concerning hadronic physics (Hagedorn temperature, Regge trajectories) and quantum gravity are briefly sketched.

  3. An introduction to particle physics and the standard model

    CERN Document Server

    Mann, Robert

    2010-01-01

    … thoroughly recommended for a final-year specialist or first-year postgraduate study level especially for those engaged in experimental high energy physics research. The author has performed an excellent service in making accessible the language and results of field theory applied to elementary particle physics.-John J. Quenby, Contemporary Physics, 52, 2011The first chapter shows how clearly the author can write and even though the subject matter gets more complex through the book, the clarity continues. … giv[es] readers greater insights into how the maths and the reality match (or don't ma

  4. Particle acceleration, transport and turbulence in cosmic and heliospheric physics

    Science.gov (United States)

    Matthaeus, W.

    1992-01-01

    In this progress report, the long term goals, recent scientific progress, and organizational activities are described. The scientific focus of this annual report is in three areas: first, the physics of particle acceleration and transport, including heliospheric modulation and transport, shock acceleration and galactic propagation and reacceleration of cosmic rays; second, the development of theories of the interaction of turbulence and large scale plasma and magnetic field structures, as in winds and shocks; third, the elucidation of the nature of magnetohydrodynamic turbulence processes and the role such turbulence processes might play in heliospheric, galactic, cosmic ray physics, and other space physics applications.

  5. Review of lattice results concerning low-energy particle physics

    DEFF Research Database (Denmark)

    Aoki, Sinya; Aoki, Yasumichi; Bečirević, D.

    2017-01-01

    We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle-physics community. More specifically, we report on the determination of the light-quark masses, the form factor f+(0) , arising in the semileptonic K→ π transition...... review the determination of the BK parameter of neutral kaon mixing as well as the additional four B parameters that arise in theories of physics beyond the Standard Model. The latter quantities are an addition compared to the previous review. For the heavy-quark sector, we provide results for mc and mb...

  6. Particle Physics in High School: A Diagnose Study.

    Science.gov (United States)

    Tuzón, Paula; Solbes, Jordi

    2016-01-01

    The science learning process improves when the contents are connected to students' lives. Particle physics has had a great impact in our society in the last years and has changed the theoretical picture about matter fundamental dynamics. Thus, we think that academic contents about matter components and interactions should be updated. With this study we aim to characterize the level of knowledge of high school students about this topic. We built a test with questions about classical atomic models, particle physics, recent discoveries, social implications and students opinions about it. Contrary to our first suspicion, students' answers show a high variability. They have new physics ideas and show a great interest towards modern concepts. We suggest including an updated view of this topic as part of the curriculum.

  7. Particle Physics in High School: A Diagnose Study.

    Directory of Open Access Journals (Sweden)

    Paula Tuzón

    Full Text Available The science learning process improves when the contents are connected to students' lives. Particle physics has had a great impact in our society in the last years and has changed the theoretical picture about matter fundamental dynamics. Thus, we think that academic contents about matter components and interactions should be updated. With this study we aim to characterize the level of knowledge of high school students about this topic. We built a test with questions about classical atomic models, particle physics, recent discoveries, social implications and students opinions about it. Contrary to our first suspicion, students' answers show a high variability. They have new physics ideas and show a great interest towards modern concepts. We suggest including an updated view of this topic as part of the curriculum.

  8. The low-energy frontier of particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Jaeckel, Joerg [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-02-15

    Most embeddings of the Standard Model into a more unified theory, in particular the ones based on supergravity or superstrings, predict the existence of a hidden sector of particles which have only very weak interactions with the visible sector Standard Model particles. Some of these exotic particle candidates (such as e.g. ''axions'', ''axion-like particles'' and ''hidden U(1) gauge bosons'') may be very light, with masses in the sub-eV range, and have very weak interactions with photons. Correspondingly, these very weakly interacting sub-eV particles (WISPs) may lead to observable effects in experiments (as well as in astrophysical and cosmological observations) searching for light shining through a wall, for changes in laser polarisation, for non-linear processes in large electromagnetic fields and for deviations from Coulomb's law. We present the physics case and a status report of this emerging low-energy frontier of fundamental physics. (orig.)

  9. A guide to experimental particle physics literature, 1991-1996

    Energy Technology Data Exchange (ETDEWEB)

    Ezhela, V.V.; Filimonov, B.B.; Lugovsky, S.B. [Inst. for High Energy Physics, Moscow (Russian Federation)] [and others

    1996-10-01

    We present an indexed guide to experimental particle physics literature for the years 1991 - 1996. Approximately 4200 papers are indexed by (1) Beam/Target/Momentum (2) Reaction/Momentum/Data-Descriptor (including the final state) (3) Particle/Decay (4) Accelerator/Experiment/Detector. All indices are cross-referenced to the paper`s title and references in the ID/Reference/Title index. The information presented in this guide is also publicly available on a regularly-updated DATAGUIDE database from the World Wide Web.

  10. Particle physics catalysis of thermal big bang nucleosynthesis.

    Science.gov (United States)

    Pospelov, Maxim

    2007-06-08

    We point out that the existence of metastable, tau>10(3) s, negatively charged electroweak-scale particles (X-) alters the predictions for lithium and other primordial elemental abundances for A>4 via the formation of bound states with nuclei during big bang nucleosynthesis. In particular, we show that the bound states of X- with helium, formed at temperatures of about T=10(8) K, lead to the catalytic enhancement of 6Li production, which is 8 orders of magnitude more efficient than the standard channel. In particle physics models where subsequent decay of X- does not lead to large nonthermal big bang nucleosynthesis effects, this directly translates to the level of sensitivity to the number density of long-lived X- particles (tau>10(5) s) relative to entropy of nX-/s less, approximately <3x10(-17), which is one of the most stringent probes of electroweak scale remnants known to date.

  11. Academic Training Lecture: Statistical Methods for Particle Physics

    CERN Multimedia

    PH Department

    2012-01-01

    2, 3, 4 and 5 April 2012 Academic Training Lecture  Regular Programme from 11:00 to 12:00 -  Bldg. 222-R-001 - Filtration Plant Statistical Methods for Particle Physics by Glen Cowan (Royal Holloway) The series of four lectures will introduce some of the important statistical methods used in Particle Physics, and should be particularly relevant to those involved in the analysis of LHC data. The lectures will include an introduction to statistical tests, parameter estimation, and the application of these tools to searches for new phenomena.  Both frequentist and Bayesian methods will be described, with particular emphasis on treatment of systematic uncertainties.  The lectures will also cover unfolding, that is, estimation of a distribution in binned form where the variable in question is subject to measurement errors.

  12. Physical sputtering of metallic systems by charged-particle impact

    Energy Technology Data Exchange (ETDEWEB)

    Lam, N.Q.

    1989-12-01

    The present paper provides a brief overview of our current understanding of physical sputtering by charged-particle impact, with the emphasis on sputtering of metals and alloys under bombardment with particles that produce knock-on collisions. Fundamental aspects of ion-solid interactions, and recent developments in the study of sputtering of elemental targets and preferential sputtering in multicomponent materials are reviewed. We concentrate only on a few specific topics of sputter emission, including the various properties of the sputtered flux and depth of origin, and on connections between sputtering and other radiation-induced and -enhanced phenomena that modify the near-surface composition of the target. The synergistic effects of these diverse processes in changing the composition of the integrated sputtered-atom flux is described in simple physical terms, using selected examples of recent important progress. 325 refs., 27 figs.

  13. Bridging the Particle Physics and Big Data Worlds

    Science.gov (United States)

    Pivarski, James

    2017-09-01

    For decades, particle physicists have developed custom software because the scale and complexity of our problems were unique. In recent years, however, the ``big data'' industry has begun to tackle similar problems, and has developed some novel solutions. Incorporating scientific Python libraries, Spark, TensorFlow, and machine learning tools into the physics software stack can improve abstraction, reliability, and in some cases performance. Perhaps more importantly, it can free physicists to concentrate on domain-specific problems. Building bridges isn't always easy, however. Physics software and open-source software from industry differ in many incidental ways and a few fundamental ways. I will show work from the DIANA-HEP project to streamline data flow from ROOT to Numpy and Spark, to incorporate ideas of functional programming into histogram aggregation, and to develop real-time, query-style manipulations of particle data.

  14. Aspects of string phenomenology in particle physics and cosmology

    Science.gov (United States)

    Antoniadis, I.

    2017-12-01

    I discuss possible connections between several scales in particle physics and cosmology, such the the electroweak, inflation, dark energy and Planck scales. In particular, I discuss the physics of extra dimensions and low scale gravity that are motivated from the problem of mass hierarchy, providing an alternative to low energy supersymmetry. I describe their realization in type I string theory with D-branes and I present the main experimental predictions in particle accelerators and their implications in cosmology. I also show that low-mass-scale string compactifications, with a generic D-brane configuration that realizes the Standard Model by open strings, can explain the relatively broad peak in the diphoton invariant mass spectrum at 750 GeV recently reported by the ATLAS and CMS collaborations.

  15. UCLA Particle Physics Research Group annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Nefkens, B.M.K.

    1983-11-01

    The objectives, basic research programs, recent results, and continuing activities of the UCLA Particle Physics Research Group are presented. The objectives of the research are to discover, to formulate, and to elucidate the physics laws that govern the elementary constituents of matter and to determine basic properties of particles. The research carried out by the Group last year may be divided into three separate programs: (1) baryon spectroscopy, (2) investigations of charge symmetry and isospin invariance, and (3) tests of time reversal invariance. The main body of this report is the account of the techniques used in our investigations, the results obtained, and the plans for continuing and new research. An update of the group bibliography is given at the end.

  16. Presenting particle physics and quantum mechanics to the general public

    CERN Document Server

    Strauss, J

    2015-01-01

    The job of a physicist is to describe Nature. General features, hypotheses and theories help to describe physics phenomena at a more abstract, fundamental level, and are sometimes tacitly assigned some sort of real existence; doing so appears to be of little harm in most of classical physics. However, missing any tangible connection to everyday experience, one better always bears in mind the descriptive nature of any efforts to grasp the quantum. And elementary particles interact in the quantum world, of course. When communicating the world of elementary particles to the general public, the Bayesian approach of an ever ongoing updating of the depiction of reality turns out to be virtually indispensable. The human experience of providing a series of increasingly better descriptions generates plenty of personal pleasures, for researchers as well as for amateurs. A suggestive analogy for improving our understanding of the world, even the seemingly paradoxical quantum world, may be found in recent insight into ho...

  17. Gauge theories in particle physics a practical introduction

    CERN Document Server

    Aitchison, Ian J R

    2013-01-01

    The fourth edition of this well-established, highly regarded two-volume set continues to provide a fundamental introduction to advanced particle physics while incorporating substantial new experimental results, especially in the areas of CP violation and neutrino oscillations. It offers an accessible and practical introduction to the three gauge theories included in the Standard Model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the Glashow-Salam-Weinberg (GSW) electroweak theory. In the first volume, a new chapter on Lorentz transformations and discrete symmetries presents a simple treatment of Lorentz transformations of Dirac spinors. Along with updating experimental results, this edition also introduces Majorana fermions at an early stage, making the material suitable for a first course in relativistic quantum mechanics. Covering much of the experimental progress made in the last ten years, the second volume remains focused on the two non-Abelian quantum gauge field...

  18. Aspects of string phenomenology in particle physics and cosmology

    Directory of Open Access Journals (Sweden)

    Antoniadis I.

    2017-01-01

    Full Text Available I discuss possible connections between several scales in particle physics and cosmology, such the the electroweak, inflation, dark energy and Planck scales. In particular, I discuss the physics of extra dimensions and low scale gravity that are motivated from the problem of mass hierarchy, providing an alternative to low energy supersymmetry. I describe their realization in type I string theory with D-branes and I present the main experimental predictions in particle accelerators and their implications in cosmology. I also show that low-mass-scale string compactifications, with a generic D-brane configuration that realizes the Standard Model by open strings, can explain the relatively broad peak in the diphoton invariant mass spectrum at 750 GeV recently reported by the ATLAS and CMS collaborations.

  19. The strong interactions beyond the standard model of particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Bergner, Georg [Muenster Univ. (Germany). Inst. for Theoretical Physics

    2016-11-01

    SuperMUC is one of the most convenient high performance machines for our project since it offers a high performance and flexibility regarding different applications. This is of particular importance for investigations of new theories, where on the one hand the parameters and systematic uncertainties have to be estimated in smaller simulations and on the other hand a large computational performance is needed for the estimations of the scale at zero temperature. Our project is just the first investigation of the new physics beyond the standard model of particle physics and we hope to proceed with our studies towards more involved Technicolour candidates, supersymmetric QCD, and extended supersymmetry.

  20. Particle physics with slow neutrons; a personal and biased outlook

    CERN Document Server

    Byrne, J

    2000-01-01

    This review is devoted to recent advances in the physics of cold and ultra-cold neutrons reported at this workshop, in so far as they bear on current problems in particle physics both within and beyond the Standard Model. Attention is directed primarily to developments in the experimental study of neutron decay and to searches for the breakdown of T-invariance, either through the detection of a finite neutron electric dipole moment, or through the observation of T-violating asymmetries in selected neutron scattering processes. The review concludes with a brief resume of some fundamental studies in the field of neutron interferometry.

  1. Quantum gravity: Cosmology and its relations to particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Birkholz, Claus

    2013-07-01

    In QG, elementary particles and our universe are subject to identical equations. Motion in bent space-time is uniquely determined by Casimir operators - geodesics and the variation principle are dispensable. Irreducibility is slicing our world into bent universes orthogonal to each other. Dark Energy reveals as a quantum effect on cosmic scale; it is the agent of physics to execute the ''background independence'' of mathematics. As one of its immediately related properties, the quark confinement of particle physics had been shown to result. The cosmological ''constant'' reveals to be an inverse particle propagator. ''Cosmic master equations'' (allowing to calculate the interior of black holes) show the ''big bang'' not to be the start of our universe; its radius is given by Dark Energy reproducing cosmic inflation. Tiny Dark Matter masses execute gravity, but, due to the non-compactness of space-time, they are not well localizable - in accord with experiment. Unsaturated ''valence'' quanta act as condensation germs binding saturated quantum pairs out of Dark Matter as their non-valence parts: massive elementary particles, then, are precipitating as droplets out of Dark Matter.

  2. Electrodynamic metaphors: communicating particle physics with Feynman diagrams

    Directory of Open Access Journals (Sweden)

    Pietroni Massimo

    2002-03-01

    Full Text Available The aim of this project is to communicate the basic laws of particle physics with Feynman diagrams - visual tools which represent elementary particle processes. They were originally developed as a code to be used by physicists and are still used today for calculations and elaborations of theoretical nature. The technical and mathematical rules of Feynman diagrams are obviously the exclusive concern of physicists, but on a pictorial level they can help to popularize many concepts, ranging from matter and the antimatter; the creation, destruction and transformation of particles; the role of ‘virtual’ particles in interactions; the conservation laws, symmetries, etc. Unlike the metaphors often used to describe the microcosm, these graphic representations provide an unequivocal translation of the physical content of the underlying quantum theory. As such they are perfect metaphors, not misleading constructions. A brief introduction on Feynman diagrams will be followed by the practical realization of this project, which will be carried out with the help of an experiment based on three-dimensional manipulable objects. The Feynman rules are expressed in terms of mechanical constraints on the possible conjuctions among the various elements of the experiment. The final part of the project will present the results of this experiment, which has been conducted among high-school students.

  3. Current experiments in elementary-particle physics - March 1983

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Armstrong, F.E.; Rittenberg, A.

    1983-03-01

    Microfiche are included which contain summaries of 479 experiments in elementary particle physics. Experiments are included at the following laboratories: Brookhaven (BNL); CERN; CESR; DESY; Fermilab (FNAL); Institute for Nuclear Studies (INS); KEK; LAMPF; Serpukhov (SERP); SIN; SLAC; and TRIUMF. Also, summaries of proton decay experiments are included. A list of experiments and titles is included; and a beam-target-momentum index and a spokesperson index are given. Properties of beams at the facilities are tabulated. (WHK)

  4. Particle Physics in High School: A Diagnose Study

    OpenAIRE

    Paula Tuzón; Jordi Solbes

    2016-01-01

    Abstract The science learning process improves when the contents are connected to students' lives. Particle physics has had a great impact in our society in the last years and has changed the theoretical picture about matter fundamental dynamics. Thus, we think that academic contents about matter components and interactions should be updated. With this study we aim to characterize the level of knowledge of high school students about this topic. We built a test with questions about classical a...

  5. Liquid noble gas detectors for low energy particle physics

    OpenAIRE

    Chepel, Vitaly; Araújo, Henrique

    2012-01-01

    We review the current status of liquid noble gas radiation detectors with energy threshold in the keV range, wich are of interest for direct dark matter searches, measurement of coherent neutrino scattering and other low energy particle physics experiments. Emphasis is given to the operation principles and the most important instrumentation aspects of these detectors, principally of those operated in the double-phase mode. Recent technological advances and relevant developments in photon dete...

  6. Theoretical and Experimental Studies of Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Harold G [Indiana University; Kostelecky, V Alan [Indiana University; Musser, James A [Indiana University

    2013-07-29

    The elementary particle physics research program at Indiana University spans a broad range of the most interesting topics in this fundamental field, including important contributions to each of the frontiers identified in the recent report of HEPAP's Particle Physics Prioritization Panel: the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier. Experimentally, we contribute to knowledge at the Energy Frontier through our work on the D0 and ATLAS collaborations. We work at the Intensity Frontier on the MINOS and NOvA experiments and participate in R&D for LBNE. We are also very active on the theoretical side of each of these areas with internationally recognized efforts in phenomenology both in and beyond the Standard Model and in lattice QCD. Finally, although not part of this grant, members of the Indiana University particle physics group have strong involvement in several astrophysics projects at the Cosmic Frontier. Our research efforts are divided into three task areas. The Task A group works on D0 and ATLAS; Task B is our theory group; and Task C contains our MINOS, NOvA, and LBNE (LArTPC) research. Each task includes contributions from faculty, senior scientists, postdocs, graduate and undergraduate students, engineers, technicians, and administrative personnel. This work was supported by DOE Grant DE-FG02-91ER40661. In the following, we describe progress made in the research of each task during the final period of the grant, from November 1, 2009 to April 30, 2013.

  7. Physical theory for near-bed turbulent particle suspension capacity

    Science.gov (United States)

    Eggenhuisen, Joris T.; Cartigny, Matthieu J. B.; de Leeuw, Jan

    2017-05-01

    The inability to capture the physics of solid-particle suspension in turbulent fluids in simple formulas is holding back the application of multiphase fluid dynamics techniques to many practical problems in nature and society involving particle suspension. We present a force balance approach to particle suspension in the region near no-slip frictional boundaries of turbulent flows. The force balance parameter Γ contains gravity and buoyancy acting on the sediment and vertical turbulent fluid forces; it includes universal turbulent flow scales and material properties of the fluid and particles only. Comparison to measurements shows that Γ = 1 gives the upper limit of observed suspended particle concentrations in a broad range of flume experiments and field settings. The condition of Γ > 1 coincides with the complete suppression of coherent turbulent structures near the boundary in direct numerical simulations of sediment-laden turbulent flow. Γ thus captures the maximum amount of sediment that can be contained in suspension at the base of turbulent flow, and it can be regarded as a suspension capacity parameter. It can be applied as a simple concentration boundary condition in modelling studies of the dispersion of particulates in environmental and man-made flows.

  8. EDITORIAL: Focus on Dark Matter and Particle Physics

    Science.gov (United States)

    Aprile, Elena; Profumo, Stefano

    2009-10-01

    The quest for the nature of dark matter has reached a historical point in time, with several different and complementary experiments on the verge of conclusively exploring large portions of the parameter space of the most theoretically compelling particle dark matter models. This focus issue on dark matter and particle physics brings together a broad selection of invited articles from the leading experimental and theoretical groups in the field. The leitmotif of the collection is the need for a multi-faceted search strategy that includes complementary experimental and theoretical techniques with the common goal of a sound understanding of the fundamental particle physical nature of dark matter. These include theoretical modelling, high-energy colliders and direct and indirect searches. We are confident that the works collected here present the state of the art of this rapidly changing field and will be of interest to both experts in the topic of dark matter as well as to those new to this exciting field. Focus on Dark Matter and Particle Physics Contents DARK MATTER AND ASTROPHYSICS Scintillator-based detectors for dark matter searches I S K Kim, H J Kim and Y D Kim Cosmology: small-scale issues Joel R Primack Big Bang nucleosynthesis and particle dark matter Karsten Jedamzik and Maxim Pospelov Particle models and the small-scale structure of dark matter Torsten Bringmann DARK MATTER AND COLLIDERS Dark matter in the MSSM R C Cotta, J S Gainer, J L Hewett and T G Rizzo The role of an e+e- linear collider in the study of cosmic dark matter M Battaglia Collider, direct and indirect detection of supersymmetric dark matter Howard Baer, Eun-Kyung Park and Xerxes Tata INDIRECT PARTICLE DARK MATTER SEARCHES:EXPERIMENTS PAMELA and indirect dark matter searches M Boezio et al An indirect search for dark matter using antideuterons: the GAPS experiment C J Hailey Perspectives for indirect dark matter search with AMS-2 using cosmic-ray electrons and positrons B Beischer, P von

  9. The uses of isospin in early nuclear and particle physics

    Science.gov (United States)

    Borrelli, Arianna

    2017-11-01

    This paper reconstructs the early history of isospin up to and including its employment in 1951sbnd 52 to conceptualize high-energy pion-proton scattering. Studying the history of isospin serves as an entry point for investigating the interplay of theoretical and experimental practices in early nuclear and particle physics, showing the complexity of processes of knowledge construction which have often been presented as straightforward both in physicists' recollections and in the historiography of science. The story of isospin has often been told in terms of the discovery of the first ;intrinsic property; of elementary particles, but I will argue that the isospin formalism emerged and was further developed because it proved to be a useful tool to match theory and experiment within the steadily broadening field of high-energy (nuclear) physics. Isospin was variously appropriated and adapted in the course of two decades, before eventually the physical-mathematical implications of its uses started being spelled out. The case study also highlights some interesting features of high-energy physics around 1950: the contribution to post-war research of theoretical methods developed before and during the war, the role of young theoretical post-docs in mediating between theorists and experimenters, and the importance of traditional formalisms such as those of spin and angular momentum as a template both for formalizing and conceptualizing experimental results.

  10. Physics of the Blues: Music, Fourier and Wave - Particle Duality

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J. Murray (ANL)

    2003-10-15

    Art and science are intimately connected. There is probably no art that reveals this more than music. Music can be used as a tool to teach physics and engineering to non-scientists, illustrating such diverse concepts as Fourier analysis and quantum mechanics. This colloquium is aimed in reverse, to explain some interesting aspects of music to physicists. Topics include: What determines the frequency of notes on a musical scale? What is harmony and why would Fourier care? Where did the blues come from? (We' re talking the 'physics of the blues', and not 'the blues of physics' - that's another colloquium). Is there a musical particle? The presentation will be accompanied by live keyboard demonstrations. The presenter will attempt to draw tenuous connections between the subject of his talk and his day job as Director of the Advanced Photon Source at Argonne National Laboratory.

  11. Indoor-outdoor relationships of particle number and mass in four European cities

    Energy Technology Data Exchange (ETDEWEB)

    Kos, G.P.A.; Ten Brink, H.M. [ECN Biomass, Coal and Environment, Petten (Netherlands); Hoek, G.; De Hartog, J.; Meliefste, K. [IRAS, Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80178, 3508 TD Utrecht (Netherlands); Harrison, R.; Thomas, S.; Meddings, C. [Division of Environmental Health and Risk Management, University Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Katsouyanni, K.; Karakatsani, A. [Department of Hygiene and Epidemiology, University of Athens, 75 Mikras Asias Avenue, 11527 Athens (Greece); Lianou, M.; Kotronarou, A.; Kavouras, I. [National Observatory of Athens, Institute for Environmental Research and Sustainable Development, V. Pavlou and I. Metaxa Palaia Penteli, 15236 Athens (Greece); Pekkanen, J.; Vallius, M. [Unit of Environmental Epidemiology, KTL-National Public Health Institute, P.O. Box 95, Kuopio (Finland); Kulmala, M.; Puustinen, A. [Department of Physical Sciences, University of Helsinki, P.O. Box 64, FIN-00014, UHEL (Finland); Ayres, J.G. [Department of Environmental and Occupational Medicine, University of Aberdeen, Aberdeen (United Kingdom); Van Wijnen, J.H. [Municipal Health Service Amsterdam, Amsterdam (Netherlands); Haemeri, K. [Physics Department, Finnish Institute of Occupational Health, Topeliuksenkatu 41a A, FIN-00250, Helsinki (Finland)

    2008-02-15

    The number of ultrafine particles in urban air may be more health relevant than the usually measured mass of particles smaller than 2.5 or 10 mm. Epidemiological studies typically assess exposure by measurements at a central site. Limited information is available about how well measurements at a central site reflect exposure to ultrafine particles. The goals of this paper are to assess the relationships between particle number (PN) and mass concentrations measured outdoors at a central site, right outside and inside the study homes. The study was conducted in four European cities: Amsterdam, Athens, Birmingham and Helsinki. Particle mass (PM10 and PM2.5), PN, soot and sulfate concentrations were measured at these sites. Measurements of indoors and outdoors near the home were made during 1 week in 152, mostly non-smoking, homes. In each city continuous measurements were also performed at a central site during the entire study period. The correlation between 24-h average central site outdoor and indoor concentrations was lower for PN (correlation among cities ranged from 0.18 to 0.45) than for PM2.5 (0.40-0.80), soot (0.64-0.92) and sulfate (0.91-0.99). In Athens, the indoor-central site correlation was similar for PN and PM2.5. Infiltration factors for PN and PM2.5 were lower than for sulfate and soot. Night-time hourly average PN concentrations showed higher correlations between indoor and central site, implying that indoor sources explained part of the low correlation found for 24-h average concentrations. Measurements at a central site may characterize indoor exposure to ambient particles less well for ultrafine particles than for fine particle mass, soot and sulfate.

  12. Future directions in particle and nuclear physics at multi-GeV hadron beam facilities

    Energy Technology Data Exchange (ETDEWEB)

    Geesaman, D.F. [Argonne National Lab., IL (United States)] [ed.

    1993-11-01

    This report contains papers on the following topics in particle and nuclear physics: hadron dynamics; lepton physics; spin physics; hadron and nuclear spectroscopy; hadronic weak interactions; and Eta physics. These papers have been indexed separately elsewhere.

  13. Effects of the quantum vacuum in particle physics and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, Juri

    2014-11-26

    In this work we investigate numerous effects of virtual particles on processes relevant for particle physics and cosmology. A central question is, whether radiative spontaneous electroweak symmetry breaking can be combined with neutrino mass generation, we find that the answer is affirmative. We discuss the implication of the RSSB on the neutrino mass phenomenology and low-energy observables. Furthermore, by comparing the models to experimental data we find that several anomalies in the present observations favour particular scenarios over the pure Standard Model hypothesis. We are able to show, that the presence of sterile neutrinos with active-sterile mixing of order 10{sup -3} and masses in the TeV range leads to a reduced invisible decay width of the Z-boson and can bring the NuTeV observations in agreement with theoretical expectations. The models we discuss naturally incorporate long lived particles which can serve as dark matter candidates and we investigate this phenomenologically. We find that the combination of the requirements leads to interesting constraints on the model and parameter space. We find that loop induced electromagnetic moments for the neutral dark matter candidates, lead to interactions with charged particles. We use this and derive new constraints from existing XENON100 and LUX data. In addition we study how vacuum effects can backreact on a given geometry in electromagnetism and semiclassical gravity. We find that in the case of gravity the conformal set up plays a special role and indicate several ideas for further investigation of this topic.

  14. A physics-motivated Centroidal Voronoi Particle domain decomposition method

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Lin, E-mail: lin.fu@tum.de; Hu, Xiangyu Y., E-mail: xiangyu.hu@tum.de; Adams, Nikolaus A., E-mail: nikolaus.adams@tum.de

    2017-04-15

    In this paper, we propose a novel domain decomposition method for large-scale simulations in continuum mechanics by merging the concepts of Centroidal Voronoi Tessellation (CVT) and Voronoi Particle dynamics (VP). The CVT is introduced to achieve a high-level compactness of the partitioning subdomains by the Lloyd algorithm which monotonically decreases the CVT energy. The number of computational elements between neighboring partitioning subdomains, which scales the communication effort for parallel simulations, is optimized implicitly as the generated partitioning subdomains are convex and simply connected with small aspect-ratios. Moreover, Voronoi Particle dynamics employing physical analogy with a tailored equation of state is developed, which relaxes the particle system towards the target partition with good load balance. Since the equilibrium is computed by an iterative approach, the partitioning subdomains exhibit locality and the incremental property. Numerical experiments reveal that the proposed Centroidal Voronoi Particle (CVP) based algorithm produces high-quality partitioning with high efficiency, independently of computational-element types. Thus it can be used for a wide range of applications in computational science and engineering.

  15. A physics-motivated Centroidal Voronoi Particle domain decomposition method

    Science.gov (United States)

    Fu, Lin; Hu, Xiangyu Y.; Adams, Nikolaus A.

    2017-04-01

    In this paper, we propose a novel domain decomposition method for large-scale simulations in continuum mechanics by merging the concepts of Centroidal Voronoi Tessellation (CVT) and Voronoi Particle dynamics (VP). The CVT is introduced to achieve a high-level compactness of the partitioning subdomains by the Lloyd algorithm which monotonically decreases the CVT energy. The number of computational elements between neighboring partitioning subdomains, which scales the communication effort for parallel simulations, is optimized implicitly as the generated partitioning subdomains are convex and simply connected with small aspect-ratios. Moreover, Voronoi Particle dynamics employing physical analogy with a tailored equation of state is developed, which relaxes the particle system towards the target partition with good load balance. Since the equilibrium is computed by an iterative approach, the partitioning subdomains exhibit locality and the incremental property. Numerical experiments reveal that the proposed Centroidal Voronoi Particle (CVP) based algorithm produces high-quality partitioning with high efficiency, independently of computational-element types. Thus it can be used for a wide range of applications in computational science and engineering.

  16. Bacterial composition and survival on Sahara dust particles transported to the European Alps

    Directory of Open Access Journals (Sweden)

    Marco eMeola

    2015-12-01

    Full Text Available Deposition of Sahara dust (SD particles is a frequent phenomenon in Europe, but little is known about the viability and composition of the bacterial community transported with SD. The goal of this study was to characterize SD-associated bacteria transported to the European Alps, deposited and entrapped in snow. During two distinct events in February and May 2014, SD particles were deposited and promptly covered by falling snow, thus preserving them in distinct ochre layers within the snowpack. In June 2014, we collected samples at different depths from a snow profile at the Jungfraujoch (Swiss Alps; 3621 m a.s.l.. After filtration, we performed various microbiological and physicochemical analyses of the snow and dust particles therein that originated in Algeria.Our results show that bacteria survive and are metabolically active after the transport to the European Alps. Using high throughput sequencing, we observed distinct differences in bacterial community composition and structure in SD-layers as compared to clean snow layers. Sporulating bacteria were not enriched in the SD-layers; however, phyla with low abundance such as Gemmatimonadetes and Deinococcus-Thermus appeared to be specific bio-indicators for SD. Since many members of these phyla are known to be adapted to arid oligotrophic environments and UV radiation, they are well suited to survive the harsh conditions of long-range airborne transport.

  17. XXII SLAC summer institute on particle physics: Proceedings. Particle physics, astrophysics and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Chan, J; DePorcel, L [eds.

    1996-02-01

    The seven-day school portion of the Institute revolved around the question of dark matter: where is it and what is it? Reviews were given of microlensing searches for baryonic dark matter, of dark matter candidates in the form of neutrinos and exotic particles, and of low-noise detection techniques used to search for the latter. The history of the universe, from the Big Bang to the role of dark matter in the formation of large-scale structure, was also covered. Other lecture series described the astrophysics that might be done with x-ray timing experiments and through the detection of gravitational radiation. As in past years, the lectures each morning were followed by stimulating afternoon discussion sessions, in which students could pursue with the lecturers the topics that most interested them. The Institute concluded with a three-day topical conference covering recent developments in theory and experiment. Highlights from the astrophysical and cosmological arenas included observations of anisotropy in the cosmic microwave background, and of the mysterious gamma-ray bursters. From terrestrial accelerators came tantalizing hints of the top quark and marked improvements in precision electroweak measurements, among many other results. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  18. Eleven years that changed the face of particle physics

    CERN Multimedia

    2000-01-01

    Director General Luciano Maiani opens the proceedings at the LEP Celebration. Members of government from around the world gathered at CERN on Monday 9 October to celebrate the achievements of the Large Electron Positron collider (LEP), the Laboratory’s flagship particle accelerator. Over the eleven years of its operational lifetime, LEP has not only added greatly to mankind’s pool of knowledge about the Universe, but has also changed the way that particle physics research is done, and proved to be a valuable training ground for young professionals in many walks of life. The celebration took place in building 180 and the audience of politicians and scientists listened to speeches from:   Prof. Luciano Maiani CERN’s Director-General Prof. Martinus Veltman Nobel Prize Laureat 1999 M. Adolf Ogi President of the Swiss Confederation Switzerland M. Roger-Gérard Schwartzenberg Minister of Research  France Mme Edelgard Bulmahn Minister of Education and R...

  19. SU-8 as a Material for Microfabricated Particle Physics Detectors

    CERN Document Server

    Maoddi, Pietro; Jiguet, Sebastien; Renaud, Philippe

    2014-01-01

    Several recent detector te chnologies developed for particle physics applications are based on microfabricated structures. Dete ctors built with this approach generally exhibit the overall best performance in te rms of spatial and time resolution. Many properties of the SU-8 photoepoxy make it suitable for the manufacturing of microstructured particle detectors. This arti cle aims to review some emerging detector technologies making use of SU-8 microstructu ring, namely micropatte rn gaseous detectors and microfluidic scintillation detectors. Th e general working principle and main process steps for the fabrication of each device are reported, with a focus on the advantages brought to the device functionality by the us e of SU-8. A novel process based on multiple bonding steps for the fabrication of thin multila yer microfluidic scin tillation detectors developed by the authors is presented. Finally, a brief overview of the applications for the discussed devices is given.

  20. Marietta Blau: Pioneer of Photographic Nuclear Emulsions and Particle Physics

    Science.gov (United States)

    Sime, Ruth Lewin

    2013-03-01

    During the 1920s and 1930s, Viennese physicist Marietta Blau (1894-1970) pioneered the use of photographic methods for imaging high-energy nuclear particles and events. In 1937 she and Hertha Wambacher discovered "disintegration stars" - the tracks of massive nuclear disintegrations - in emulsions exposed to cosmic radiation. This discovery launched the field of particle physics, but Blau's contributions were underrecognized and she herself was nearly forgotten. I trace Blau's career at the Institut für Radiumforschung in Vienna and the causes of this "forgetting," including her forced emigration from Austria in 1938, the behavior of her colleagues in Vienna during and after the National Socialist period, and the flawed Nobel decision process that excluded her from a Nobel Prize.

  1. The European physical and rehabilitation medicine journal network: historical notes on national journals.

    Science.gov (United States)

    Negrini, S; Ilieva, E; Moslavac, S; Zampolini, M; Giustini, A

    2010-06-01

    In the last 40 years, physical and rehabilitation medicine (PRM) has made significant steps forward in Europe with the foundation of the European Federation of Physical Medicine and Rehabilitation (EFPMR) (1963) which gave rise to the European Society of Physical and Rehabilitation Medicine (ESPRM) (2004) the European Academy of Rehabilitation Medicine (1970), the PRM Section of the European Union of Medical Specialists (1974), and the European Board of PRM (1991). Our journal, formerly Europa Medico-physica (1964), the official journal of the EFPMR, now European Journal of Physical and Rehabilitation Medicine (EJPRM) and official journal of the ESPRM since 2008, is distinct for its steadfast European vocation, long-standing Mediter-ranean interests and connections with various national scientific societies. Jointly with the ESPRM, efforts are under way to set up the European Physical and Rehabilitation Medicine Journal Network (EPRMJN). The aim of this article is to present a profile of the national journals in the EPRMJN so as to give a better overview of how the scientific part of PRM in Europe has developed within a national perspective. A profile of the following national journals is presented: Annals of Physical and Rehabilitation Medicine (France), Fizikalna i rehabilitacijska medicina (Physical and Rehabilitation Medicine) (Croatia), Neurorehabilitation (Bulgaria), Physical and Rehabilitation Medicine Portuguese Society Journal (Portugal), Physical Medicine, Rehabilitaton, Health (Bulgaria), Physikalische Medizin - Rehabilitationsmedizin - Kurort-medizin/Journal of Physical and Rehabilitation Medicine (Germany and Austria) Prevention and Rehabilitation (Bulgaria), Rehabilitacija (Rehabilitation) (Slovenia), Rehabilitación (Madr) (Spain), Turkish Journal of Physical Medicine and Rehabilitation (Turkey). Some national journals in Europe have a very long history and tradition of research and education. Having a better knowledge of these realities, usually

  2. Research in Neutrino Physics and Particle Astrophysics: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Kearns, Edward [Boston Univ., MA (United States)

    2016-06-30

    The Boston University Neutrino Physics and Particle Astrophysics Group investigates the fundamental laws of particle physics using natural and man-made neutrinos and rare processes such as proton decay. The primary instrument for this research is the massive Super-Kamiokande (SK) water Cherenkov detector, operating since 1996 at the Kamioka Neutrino Observatory, one kilometer underground in a mine in Japan. We study atmospheric neutrinos from cosmic rays, which were first used to discover that neutrinos have mass, as recognized by the 2015 Nobel Prize in Physics. Our latest measurements with atmospheric neutrinos are giving valuable information, complementary to longbaseline experiments, on the ordering of massive neutrino states and as to whether neutrinos violate CP symmetry. We have studied a variety of proton decay modes, including the most frequently predicted modes such as p → e+π0 and p → ν K+, as well as more exotic baryon number violating processes such as dinucleon decay and neutronantineutron oscillation. We search for neutrinos from dark matter annihilation or decay in the universe. Our group has made significant contributions to detector operation, particularly in the area of electronics. Most recently, we have contributed to planning for an upgrade to the SK detector by the addition of gadolinium to the water, which will enable efficient neutron capture detection.

  3. UCLA Particle and Nuclear Physics Research Group, 1993 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Nefkens, B.M.K.; Clajus, M.; Price, J.W.; Tippens, W.B.; White, D.B.

    1993-09-01

    The research programs of the UCLA Particle and Nuclear Physics Research Group, the research objectives, results of experiments, the continuing activities and new initiatives are presented. The primary goal of the research is to test the symmetries and invariances of particle/nuclear physics with special emphasis on investigating charge symmetry, isospin invariance, charge conjugation, and CP. Another important part of our work is baryon spectroscopy, which is the determination of the properties (mass, width, decay modes, etc.) of particles and resonances. We also measure some basic properties of light nuclei, for example the hadronic radii of {sup 3}H and {sup 3}He. Special attention is given to the eta meson, its production using photons, electrons, {pi}{sup {plus_minus}}, and protons, and its rare and not-so-rare decays. In Section 1, the physics motivation of our research is outlined. Section 2 provides a summary of the research projects. The status of each program is given in Section 3. We discuss the various experimental techniques used, the results obtained, and we outline the plans for the continuing and the new research. Details are presented of new research that is made possible by the use of the Crystal Ball Detector, a highly segmented NaI calorimeter and spectrometer with nearly 4{pi} acceptance (it was built and used at SLAC and is to be moved to BNL). The appendix contains an update of the bibliography, conference participation, and group memos; it also indicates our share in the organization of conferences, and gives a listing of the colloquia and seminars presented by us.

  4. Elementary particle physics at the University of Florida. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Field, R.D.; Ramond, P.M.; Sikivie, P. [and others

    1995-12-01

    This is the annual progress report of the University of Florida`s elementary particle physics group. The theoretical high energy physics group`s research covers a broad range of topics, including both theory and phenomenology. Present work of the experimental high energy physics group is directed toward the CLEO detector, with some effort going to B physics at Fermilab. The Axion Search project is participating in the operation of a large-scale axion detector at Lawrence Livermore National Laboratory, with the University of Florida taking responsibility for this experiment`s high-resolution spectrometer`s assembly, programming, and installation, and planning to take shifts during operation of the detector in FY96. The report also includes a continuation of the University`s three-year proposal to the United States Department of Energy to upgrade the University`s high-energy physics computing equipment and to continue student support, system manager/programmer support, and maintenance. Report includes lists of presentations and publications by members of the group.

  5. European Scientists prepare to test the limits of Physics

    CERN Multimedia

    2007-01-01

    "European Scientists are gearing up for a series of experiments that will probe deeper into the nature of matter than ever before. At the end of August the Scientific Information Port (PIC), a centre for technology based at the Universitat Autonoma de Barcelona (UAB) began work on the first stage of the European project Large Hadron Collider (LHC). The aim of the project is to study the origins of mater by reproducing conditions similar to those produced during the Big Bang." (1 page)

  6. Statistical Methods for Particle Physics (4/4)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The series of four lectures will introduce some of the important statistical methods used in Particle Physics, and should be particularly relevant to those involved in the analysis of LHC data. The lectures will include an introduction to statistical tests, parameter estimation, and the application of these tools to searches for new phenomena. Both frequentist and Bayesian methods will be described, with particular emphasis on treatment of systematic uncertainties. The lectures will also cover unfolding, that is, estimation of a distribution in binned form where the variable in question is subject to measurement errors.

  7. Statistical Methods for Particle Physics (3/4)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The series of four lectures will introduce some of the important statistical methods used in Particle Physics, and should be particularly relevant to those involved in the analysis of LHC data. The lectures will include an introduction to statistical tests, parameter estimation, and the application of these tools to searches for new phenomena. Both frequentist and Bayesian methods will be described, with particular emphasis on treatment of systematic uncertainties. The lectures will also cover unfolding, that is, estimation of a distribution in binned form where the variable in question is subject to measurement errors.

  8. Statistical Methods for Particle Physics (2/4)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The series of four lectures will introduce some of the important statistical methods used in Particle Physics, and should be particularly relevant to those involved in the analysis of LHC data. The lectures will include an introduction to statistical tests, parameter estimation, and the application of these tools to searches for new phenomena. Both frequentist and Bayesian methods will be described, with particular emphasis on treatment of systematic uncertainties. The lectures will also cover unfolding, that is, estimation of a distribution in binned form where the variable in question is subject to measurement errors.

  9. Statistical Methods for Particle Physics (1/4)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The series of four lectures will introduce some of the important statistical methods used in Particle Physics, and should be particularly relevant to those involved in the analysis of LHC data. The lectures will include an introduction to statistical tests, parameter estimation, and the application of these tools to searches for new phenomena. Both frequentist and Bayesian methods will be described, with particular emphasis on treatment of systematic uncertainties. The lectures will also cover unfolding, that is, estimation of a distribution in binned form where the variable in question is subject to measurement errors.

  10. A Summer Research Experience in Particle Physics Using Skype

    Science.gov (United States)

    Johnston, Curran; Alexander, Steven; Mahmood, A. K.

    2012-10-01

    This last summer I did research in particle physics as part of a ``remote REU.'' This poster will describe that experience and the results of my project which was to experimentally verify the mass ranges of the Z' boson. Data from the LHC's Atlas detector was filtered by computers to select for likely Z boson decays; my work was in noting all instances of Z or Z' boson decays in one thousand events and their masses, separating the Z from Z' bosons, and generating histograms of the masses.

  11. A Brief Note on "Un-Particle" Physics

    Directory of Open Access Journals (Sweden)

    Goldfain E.

    2008-07-01

    Full Text Available The possibility of a hidden sector of particle physics that lies beyond the energy range of the Standard Model has been recently advocated by many authors. A bizarre implication of this conjecture is the emergence of a continuous spectrum of massless fields with non-integral scaling dimensions called “un-particles”. The purpose of this Letter is to show that the idea of “un-particles” was considered in at least two previous independent publications, prior to its first claimed disclosure.

  12. European School of High-Energy Physics, Beatenberg, Switzerland, 26 August - 8 September 2001

    CERN Multimedia

    2000-01-01

    The 2001 European School of High-Energy Physics (formerly the CERN-JINR School of Physics) will be organized jointly by the European Organization for Nuclear Research (CERN), Geneva, Switzerland and the Joint Institute for Nuclear Research (JINR), Dubna, Russia, together with the University of Bern. The basic aim of the School is to teach various aspects of high-energy physics, but especially theoretical physics, to young experimental physicists, mainly from the Member States of CERN and of JINR. The Schools of Physics are designed to give a survey of up-to-date information, rather than to be a training course.

  13. Resummation and renormalization in effective theories of particle physics

    CERN Document Server

    Jakovac, Antal

    2015-01-01

    Effective models of strong and electroweak interactions are extensively applied in particle physics phenomenology, and in many instances can compete with large-scale numerical simulations of Standard Model physics. These contexts include but are not limited to providing indications for phase transitions and the nature of elementary excitations of strong and electroweak matter. A precondition for obtaining high-precision predictions is the application of some advanced functional techniques to the effective models, where the sensitivity of the results to the accurate choice of the input parameters is under control and the insensitivity to the actual choice of ultraviolet regulators is ensured. The credibility of such attempts ultimately requires a clean renormalization procedure and an error estimation due to a necessary truncation in the resummation procedure. In this concise primer we discuss systematically and in sufficient technical depth the features of a number of approximate methods, as applied to vario...

  14. Nuclear and particle physics in the early universe

    Science.gov (United States)

    Schramm, D. N.

    1981-01-01

    Basic principles and implications of Big Bang cosmology are reviewed, noting the physical evidence of a previous universe temperature of 10,000 K and theoretical arguments such as grand unification decoupling indicating a primal temperature of 10 to the 15th eV. The Planck time of 10 to the -43rd sec after the Big Bang is set as the limit before which gravity was quantized and nothing is known. Gauge theories of elementary particle physics are reviewed for successful predictions of similarity in weak and electromagnetic interactions and quantum chromodynamic predictions for strong interactions. The large number of photons in the universe relative to the baryons is considered and the grand unified theories are cited as showing the existence of baryon nonconservation as an explanation. Further attention is given to quark-hadron phase transition, the decoupling for the weak interaction and relic neutrinos, and Big Bang nucleosynthesis.

  15. Modern elementary particle physics explaining and extending the standard model

    CERN Document Server

    Kane, Gordon

    2017-01-01

    This book is written for students and scientists wanting to learn about the Standard Model of particle physics. Only an introductory course knowledge about quantum theory is needed. The text provides a pedagogical description of the theory, and incorporates the recent Higgs boson and top quark discoveries. With its clear and engaging style, this new edition retains its essential simplicity. Long and detailed calculations are replaced by simple approximate ones. It includes introductions to accelerators, colliders, and detectors, and several main experimental tests of the Standard Model are explained. Descriptions of some well-motivated extensions of the Standard Model prepare the reader for new developments. It emphasizes the concepts of gauge theories and Higgs physics, electroweak unification and symmetry breaking, and how force strengths vary with energy, providing a solid foundation for those working in the field, and for those who simply want to learn about the Standard Model.

  16. A map of the invisible journeys into particle physics

    CERN Document Server

    Butterworth, Jon

    2017-01-01

    What is the universe really made of? How do we know? Follow the map of the invisible to find out... Over the last sixty years, scientists around the world have worked together to explore the fundamental constituents of matter, and the forces that govern their behaviour. The result, so far, is the ‘Standard Model’ of elementary particles: a theoretical map of the basic building blocks of the universe. With the discovery of the Higgs boson in 2012, the map as we know it was completed, but also extended into strange new territory. A Map of the Invisible is an explorer’s guide to the Standard Model and the extraordinary realms of particle physics. After shrinking us down to the size of a sub-atomic particle, pioneering physicist Jon Butterworth takes us on board his research vessel for a journey in search of atoms and quarks, electrons and neutrinos, and the forces that shape the universe. Step by step, discovery by discovery, we journey into the world of the unseen, from the atom to black holes and dark ...

  17. High resolution micro-pattern gas detectors for particle physics

    Science.gov (United States)

    Shekhtman, L.; Aulchenko, V.; Bobrovnikov, V.; Bondar, A.; Fedotovich, G.; Kudryavtsev, V.; Maltsev, T.; Nikolenko, D.; Rachek, I.; Zhilich, V.; Zhulanov, V.

    2017-07-01

    Micro-pattern gaseous detectors (MPGDs) allow operation at very high background particle flux with high efficiency and spatial resolution. This combination of parameters determines the main application of these detectors in particle physics experiments: precise tracking in the areas close to the beam and in the end-cap regions of general-purpose detectors. MPGDs of different configurations have been developed and are under development for several experiments in the Budker INP. The system of eight two-coordinate detectors based on a cascade of Gas Electron Multipliers (GEM) is working in the KEDR experiment at the VEPP-4M collider in the tagging system that detects electrons and positrons that lost their energy in two-photon interactions and left the equilibrium orbit due to a dedicated magnetic system. Another set of cascaded GEM detectors is developed for the almost-real Photon Tagging System (PTS) of the DEUTRON facility at the VEPP-3 storage ring. The PTS contains three very light detectors with very high spatial resolution (below 50 μm). Dedicated detectors based on cascaded GEMs are developed for the extracted electron beam facility at the VEPP-4M collider. These devices will allow precise particle tracking with minimal multiple scattering due to very low material content. An upgrade of the coordinate system of the CMD-3 detector at the VEPP-2000 collider is proposed on the basis of the resistive micro-WELL (μ-rWELL). A research activity on this subject has just started.

  18. Macrophyte communities of European streams with altered physical habitat

    NARCIS (Netherlands)

    O'Hare, M.; Baattrup-Pedersen, A.; Nijboer, R.C.; Szoszkiewicz, K.; Ferreira, T.

    2006-01-01

    The impact of altering hydro-morphology on three macrophyte community types was investigated at 107 European stream sites. Sites were surveyed using standard macrophyte and habitat survey techniques (Mean Trophic Rank Methodology and River Habitat Survey respectively). Principal Components Analysis

  19. Strengthening CERN and particle physics in a changing global environment

    CERN Multimedia

    2016-01-01

    As we welcome Romania as our 22nd Member State in late July, now is a good time to reflect on the geographical enlargement process that was initiated in 2010.   Let me begin by setting the context. CERN operates in an increasingly complex and globalised world. Political and economic developments in the European neighbourhood and well beyond can have an impact on our work – directly or indirectly, in the short term or in a much longer perspective. We need to anticipate that change as far as we can, while also being agile enough to meet the challenges that we do not expect. The UK’s EU referendum on 23 June is a case in point. Because CERN is an organisation founded to facilitate cooperation across borders, Brexit is an uncomfortable truth to many of us. It is, nevertheless, the outcome of the political processes of one of our founding Member States, and is something we must respect. Whatever direction the UK now takes, we will be working with the country’s particle ph...

  20. Particle physics and cosmology, Task C. Progress report, January 1992--April 1993

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.S.

    1993-05-01

    The research has spanned many topics at the boundary of particle physics and cosmology. The major focus has been in the general areas of inflationary cosmology, cosmological phase transitions, astrophysical constraints to particle physics theories, and dark matter/structure formation as it relates to particle physics. Some attention is given to axion physics. Narrative summaries of the research of the individual group members are given, followed by a list of publications.

  1. Scintillating plastic optical fiber radiation detectors in high energy particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Bross, A.D.

    1991-10-26

    We describe the application of scintillating optical fiber in instrumentation for high energy particle physics. The basic physics of the scintillation process in polymers is discussed first and then we outline the fundamentals of scintillating fiber technology. Fiber performance, optimization, and characterization measurements are given. Detector applications in the areas of particle tracking and particle energy determination are then described. 13 refs., 12 figs.

  2. Particle physics brick by brick atomic and subatomic physics explained... in LEGO

    CERN Document Server

    Still, Ben

    2017-01-01

    Using LEGO (R) blocks to create a uniquely visual and clear depiction of the way our universe is put together. This is the perfect introduction to the enigmatic and fascinating world of Quantum Physics.Our story starts with the Big Bang, and along the way, the constructs and interactions within and among atoms and sub-atomic particles, and the forces that play upon them, are clearly explained, with each LEGO (R) block representing a different atomic or sub-atomic particle. The different colours and size denote what that particle is and its relationship with the other 'building blocks'.Each chapter is presented in digestible chunks, using toy building blocks to illustrate the ideas and experiments that have led to some of the biggest discoveries of the past 150 years.Soon you'll be able to construct every element in the Universe using a box of LEGO (R) and this book!

  3. Evolution of silicon sensor technology in particle physics

    CERN Document Server

    AUTHOR|(CDS)2069083

    2009-01-01

    This informative monograph describes the technological evolution of silicon detectors and their impact on high- energy particle physics. The author here marshals his own first-hand experience in the development and also the realization of the DELPHI, CDF II and the CMS tracking detector. The basic principles of small strip- and pixel-detectors are presented and also the final large-scale applications. The Evolution of Silicon Detector Technology acquaints readers with the manifold challenges involving the design of sensors and pushing this technology to the limits. The expert will find critical information that is so far only available in various slide presentation scattered over the world wide web. This practical introduction of silicon sensor technology and its day to day life in the lab also offers many examples to illustrate problems and their solutions over several detector generations.

  4. Evolution of silicon sensor technology in particle physics

    CERN Document Server

    Hartmann, Frank

    2017-01-01

    This informative monograph describes the technological evolution of silicon detectors and their impact on high energy particle physics. The author here marshals his own first-hand experience in the development and also the realization of the DELPHI, CDF II and the CMS tracking detector. The basic principles of small strip- and pixel-detectors are presented and also the final large-scale applications. The Evolution of Silicon Detector Technology acquaints readers with the manifold challenges involving the design of sensors and pushing this technology to the limits. The expert will find critical information that is so far only available in various slide presentation scattered over the world wide web. This practical introduction of silicon sensor technology and its day to day life in the lab also offers many examples to illustrate problems and their solutions over several detector generations. The new edition gives a detailed overview of the silicon sensor technology used at the LHC, from basic principles to act...

  5. Superconducting Kinetic Inductance Detectors for astronomy and particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, M., E-mail: martino.calvo@neel.cnrs.fr [Institute Néel, CNRS, Grenoble (France); Goupy, J.; D' Addabbo, A.; Benoit, A. [Institute Néel, CNRS, Grenoble (France); Bourrion, O. [Laboratoire de Physique Subatomique et Cosmologie, CNRS, Grenoble (France); Catalano, A. [Institute Néel, CNRS, Grenoble (France); Laboratoire de Physique Subatomique et Cosmologie, CNRS, Grenoble (France); Monfardini, A. [Institute Néel, CNRS, Grenoble (France)

    2016-07-11

    Kinetic Inductance Detectors (KID) represent a novel detector technology based on superconducting resonators. Since their first demonstration in 2003, they have been rapidly developed and are today a strong candidate for present and future experiments in the different bands of the electromagnetic spectrum. This has been possible thanks to the unique features of such devices: in particular, they couple a very high sensitivity to their intrinsic suitability for frequency domain multiplexed readout, making the fabrication of large arrays of ultrasensitive detectors possible. There are many fields of application that can profit of such detectors. Here, we will briefly review the principle of operation of a KID, and give two sample applications, to mm-wave astronomy and to particle physics.

  6. Towards Reproducible Research Data Analyses in LHC Particle Physics

    CERN Document Server

    Simko, Tibor

    2017-01-01

    The reproducibility of the research data analysis requires having access not only to the original datasets, but also to the computing environment, the analysis software and the workflow used to produce the original results. We present the nascent CERN Analysis Preservation platform with a set of tools developed to support particle physics researchers in preserving the knowledge around analyses so that capturing, sharing, reusing and reinterpreting data becomes easier. The presentation will focus on three pillars: (i) capturing structured knowledge information about data analysis processes; (ii) capturing the computing environment, the software code, the datasets, the configuration and other information assets used in data analyses; (iii) re-instantiating of preserved analyses on a containerised computing cloud for the purposes of re-validation and re-interpretation.

  7. "Statistical Techniques for Particle Physics" (3/4)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    This series will consist of four 1-hour lectures on statistics for particle physics. The goal will be to build up to techniques meant for dealing with problems of realistic complexity while maintaining a formal approach. I will also try to incorporate usage of common tools like ROOT, RooFit, and the newly developed RooStats framework into the lectures. The first lecture will begin with a review the basic principles of probability, some terminology, and the three main approaches towards statistical inference (Frequentist, Bayesian, and Likelihood-based). I will then outline the statistical basis for multivariate analysis techniques (the Neyman-Pearson lemma) and the motivation for machine learning algorithms. Later, I will extend simple hypothesis testing to the case in which the statistical model has one or many parameters (the Neyman Construction and the Feldman-Cousins technique). From there I will outline techniques to incorporate background uncertainties. If time allows, I will touch on the statist...

  8. "Statistical Techniques for Particle Physics" (2/4)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    This series will consist of four 1-hour lectures on statistics for particle physics. The goal will be to build up to techniques meant for dealing with problems of realistic complexity while maintaining a formal approach. I will also try to incorporate usage of common tools like ROOT, RooFit, and the newly developed RooStats framework into the lectures. The first lecture will begin with a review the basic principles of probability, some terminology, and the three main approaches towards statistical inference (Frequentist, Bayesian, and Likelihood-based). I will then outline the statistical basis for multivariate analysis techniques (the Neyman-Pearson lemma) and the motivation for machine learning algorithms. Later, I will extend simple hypothesis testing to the case in which the statistical model has one or many parameters (the Neyman Construction and the Feldman-Cousins technique). From there I will outline techniques to incorporate background uncertainties. If time allows, I will touch on the statist...

  9. "Statistical Techniques for Particle Physics" (4/4)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    This series will consist of four 1-hour lectures on statistics for particle physics. The goal will be to build up to techniques meant for dealing with problems of realistic complexity while maintaining a formal approach. I will also try to incorporate usage of common tools like ROOT, RooFit, and the newly developed RooStats framework into the lectures. The first lecture will begin with a review the basic principles of probability, some terminology, and the three main approaches towards statistical inference (Frequentist, Bayesian, and Likelihood-based). I will then outline the statistical basis for multivariate analysis techniques (the Neyman-Pearson lemma) and the motivation for machine learning algorithms. Later, I will extend simple hypothesis testing to the case in which the statistical model has one or many parameters (the Neyman Construction and the Feldman-Cousins technique). From there I will outline techniques to incorporate background uncertainties. If time allows, I will touch on the statist...

  10. "Statistical Techniques for Particle Physics" (1/4)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    This series will consist of four 1-hour lectures on statistics for particle physics. The goal will be to build up to techniques meant for dealing with problems of realistic complexity while maintaining a formal approach. I will also try to incorporate usage of common tools like ROOT, RooFit, and the newly developed RooStats framework into the lectures. The first lecture will begin with a review the basic principles of probability, some terminology, and the three main approaches towards statistical inference (Frequentist, Bayesian, and Likelihood-based). I will then outline the statistical basis for multivariate analysis techniques (the Neyman-Pearson lemma) and the motivation for machine learning algorithms. Later, I will extend simple hypothesis testing to the case in which the statistical model has one or many parameters (the Neyman Construction and the Feldman-Cousins technique). From there I will outline techniques to incorporate background uncertainties. If time allows, I will touch on the statist...

  11. Particle Physics Seminar: Towards 3+1 Neutrino Mixing

    CERN Multimedia

    Geneva University

    2011-01-01

    GENEVA UNIVERSITY Ecole de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92 Wednesday  12 October  2011 PARTICLE PHYSICS SEMINAR at 17.00 hrs – Stückelberg Auditorium “Towards 3+1 Neutrino Mixing” Par Prof. Carlo Giunti, INFN Torino I will review the recent experimental indications in favor of  short-baseline neutrino oscillations. I will discuss their interpretation in the framework of neutrino mixing schemes with one or more sterile neutrinos which have masses around the eV scale. Taking into account also cosmological constraints, I will present arguments in favor of 3+1 neutrino mixing with one sterile neutrino at the eV scale. Information : http://dpnc.unige.ch/seminaire/annonce.html Organizer : G. Pasztor

  12. Cross-platform validation and analysis environment for particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S. V.; Pogrebnyak, I.; Wilbern, D.

    2017-11-01

    A multi-platform validation and analysis framework for public Monte Carlo simulation for high-energy particle collisions is discussed. The front-end of this framework uses the Python programming language, while the back-end is written in Java, which provides a multi-platform environment that can be run from a web browser and can easily be deployed at the grid sites. The analysis package includes all major software tools used in high-energy physics, such as Lorentz vectors, jet algorithms, histogram packages, graphic canvases, and tools for providing data access. This multi-platform software suite, designed to minimize OS-specific maintenance and deployment time, is used for online validation of Monte Carlo event samples through a web interface.

  13. Recent progress in particle physics and in astrophysics

    CERN Document Server

    Haïssinski, J

    2003-01-01

    All along the last decade the standard model of particle physics has been checked with great accuracy. Nevertheless some questions involving the mass of particles are still open. Important progress concerning neutrinos have been made recently. The oscillation of solar neutrinos might be an oscillation between the electron neutrino and the muon neutrino, this oscillation might involved 2 states of mass whose masses differ slightly: DELTA m sup 2 approx 10 sup - sup 4 eV sup 2 /c sup 4. The oscillation of atmospheric neutrinos might be an oscillation between the muon neutrino and the tau neutrino. The mass difference would be in that case greater: DELTA m sup 2 approx 3.10 sup - sup 3 eV sup 2 /c sup 4. Asymmetry between matter and anti-matter is being studied in great details, CP violation has been found first in K sup 0 - K sup 0 -bar systems and then in B sup 0 - B sup 0 -bar systems. The existence of CP violation is the first step on the way to find the key of the predominance of matter over anti-matter. At...

  14. Imposition of physical parameters in dissipative particle dynamics

    Science.gov (United States)

    Mai-Duy, N.; Phan-Thien, N.; Tran-Cong, T.

    2017-12-01

    In the mesoscale simulations by the dissipative particle dynamics (DPD), the motion of a fluid is modelled by a set of particles interacting in a pairwise manner, and it has been shown to be governed by the Navier-Stokes equation, with its physical properties, such as viscosity, Schmidt number, isothermal compressibility, relaxation and inertia time scales, in fact its whole rheology resulted from the choice of the DPD model parameters. In this work, we will explore the response of a DPD fluid with respect to its parameter space, where the model input parameters can be chosen in advance so that (i) the ratio between the relaxation and inertia time scales is fixed; (ii) the isothermal compressibility of water at room temperature is enforced; and (iii) the viscosity and Schmidt number can be specified as inputs. These impositions are possible with some extra degrees of freedom in the weighting functions for the conservative and dissipative forces. Numerical experiments show an improvement in the solution quality over conventional DPD parameters/weighting functions, particularly for the number density distribution and computed stresses.

  15. Introduction to the EC's Marie Curie Initial Training Network (MC-ITN) project: Particle Training Network for European Radiotherapy (PARTNER)

    CERN Document Server

    Dosanjh, Manjit

    2013-01-01

    PARTNER (Particle Training Network for European Radiotherapy) is a project funded by the European Commission’s Marie Curie-ITN funding scheme through the ENLIGHT Platform for 5.6 million Euro. PARTNER has brought together academic institutes, research centres and leading European companies, focusing in particular on a specialized radiotherapy (RT) called hadron therapy (HT), interchangeably referred to as particle therapy (PT). The ultimate goal of HT is to deliver more effective treatment to cancer patients leading to major improvement in the health of citizens. In Europe, several hundred million Euro have been invested, since the beginning of this century, in PT. In this decade, the use of HT is rapidly growing across Europe, and there is an urgent need for qualified researchers from a range of disciplines to work on its translational research. In response to this need, the European community of HT, and in particular 10 leading academic institutes, research centres, companies and small and medium-sized en...

  16. PREFACE: High Energy Particle Physics Workshop (HEPPW2015)

    Science.gov (United States)

    Cornell, Alan S.; Mellado, B.

    2015-10-01

    The motivation for this workshop began with the discovery of the Higgs boson three years ago, and the realisation that many problems remain in particle physics, such as why there is more matter than anti-matter, better determining the still poorly measured parameters of the strong force, explaining possible sources for dark matter, naturalness etc. While the newly discovered Higgs boson seems to be compatible with the Standard Model, current experimental accuracy is far from providing a definitive statement with regards to the nature of this new particle. There is a lot of room for physics beyond the Standard Model to emerge in the exploration of the Higgs boson. Recent measurements in high-energy heavy ion collisions at the LHC have shed light on the complex dynamics that govern high-density quark-gluon interactions. An array of results from the ALICE collaboration have been highlighted in a recent issue of CERN courier. The physics program of high-energy heavy ion collisions promises to further unveil the intricacies of high-density quark-gluon plasma physics. The great topicality of high energy physics research has also seen a rapid increase in the number of researchers in South Africa pursuing such studies, both experimentally through the ATLAS and ALICE colliders at CERN, and theoretically. Young researchers and graduate students largely populate these research groups, with little experience in presenting their work, and few support structures (to their knowledge) to share experiences with. Whilst many schools and workshops have sought to educate these students on the theories and tools they will need to pursue their research, few have provided them with a platform to present their work. As such, this workshop discussed the various projects being pursued by graduate students and young researchers in South Africa, enabling them to develop networks for future collaboration and discussion. The workshop took place at the iThemba Laboratories - North facility, in

  17. Review of lattice results concerning low energy particle physics

    CERN Document Server

    Colangelo, Gilberto; Juttner, Andreas; Lellouch, Laurent; Leutwyler, Heinrich; Lubicz, Vittorio; Necco, Silvia; Sachrajda, Christopher T; Simula, Silvano; Vladikas, Anastassios; Wenger, Urs; Wittig, Hartmut

    2011-01-01

    We review lattice results relevant for pion and kaon physics with the aim of making them easily accessible to the particle physics community. Specifically, we review the determination of the light-quark masses, the form factor f_+(0), relevant for the semileptonic K -> pi transition at zero momentum transfer as well as the ratio f_K/f_pi of decay constants and discuss the consequences for the elements V_{us} and V_{ud} of the CKM matrix. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2)_LxSU(2)_R and SU(3)_LxSU(3)_R Chiral Perturbation Theory and review the determination of the B_K parameter of neutral kaon mixing. We introduce quality criteria and use these when forming averages. Although subjective and imperfect, these criteria may help the reader to judge different aspects of current lattice computations. Our main results are summarized in section 1.2, but we stress the importance of the detailed discussion that underlies these results and constitute...

  18. Review of lattice results concerning low-energy particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, S. [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Aoki, Y. [Nagoya University, Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya (Japan); Brookhaven National Laboratory, RIKEN BNL Research Center, Upton, NY (United States); Bernard, C. [Washington University, Department of Physics, Saint Louis, MO (United States); Blum, T. [Brookhaven National Laboratory, RIKEN BNL Research Center, Upton, NY (United States); University of Connecticut, Physics Department, Storrs, CT (United States); Colangelo, G.; Leutwyler, H.; Necco, S.; Wenger, U. [Institut fuer theoretische Physik, Universitaet Bern, Albert Einstein Center for Fundamental Physics, Bern (Switzerland); Della Morte, M. [University of Southern Denmark, CP3-Origins and Danish IAS, Odense M (Denmark); IFIC (CSIC), Paterna (Spain); Duerr, S. [Bergische Universitaet Wuppertal, Wuppertal (Germany); Juelich Supercomputing Center, Juelich (Germany); El-Khadra, A.X. [University of Illinois, Department of Physics, Urbana, IL (United States); Fukaya, H.; Onogi, T. [Osaka University, Department of Physics, Osaka (Japan); Horsley, R. [University of Edinburgh, School of Physics, Edinburgh (United Kingdom); Juettner, A.; Sachrajda, C.T. [University of Southampton, School of Physics and Astronomy, Southampton (United Kingdom); Kaneko, T. [High Energy Accelerator Research Organization (KEK), Ibaraki (Japan); Laiho, J. [University of Glasgow, SUPA, Department of Physics and Astronomy, Glasgow (United Kingdom); Syracuse University, Department of Physics, Syracuse, New York (United States); Lellouch, L. [Aix-Marseille Universite, CNRS, CPT, UMR 7332, Marseille (France); Universite de Toulon, CNRS, CPT, UMR 7332, La Garde (France); Lubicz, V. [Universita Roma Tre, Dipartimento di Matematica e Fisica, Rome (Italy); Sezione di Roma Tre, INFN, Rome (Italy); Lunghi, E. [Indiana University, Physics Department, Bloomington, IN (United States); Pena, C. [Universidad Autonoma de Madrid, Instituto de Fisica Teorica UAM/CSIC and Departamento de Fisica Teorica, Madrid (Spain); Sharpe, S.R. [University of Washington, Physics Department, Seattle, WA (United States); Simula, S. [Sezione di Roma Tre, INFN, Rome (Italy); Sommer, R. [NIC rate at DESY, Zeuthen (Germany); Water, R.S.V. de [Fermi National Accelerator Laboratory, Batavia, IL (United States); Vladikas, A. [Universita di Roma Tor Vergata, INFN, Sezione di Tor Vergata, c/o Dipartimento di Fisica, Rome (Italy); Wittig, H. [University of Mainz, PRISMA Cluster of Excellence, Institut fuer Kernphysik and Helmholtz Institute Mainz, Mainz (Germany); Collaboration: FLAG Working Group

    2014-09-15

    We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle-physics community. More specifically, we report on the determination of the lightquark masses, the form factor f{sub +}(0), arising in semileptonic K → π transition at zero momentum transfer, as well as the decay-constant ratio f{sub K}/f{sub π} of decay constants and its consequences for the CKM matrix elements V{sub us} and V{sub ud}. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2){sub L} x SU(2){sub R} andSU(3)L{sub L} x SU(3){sub R} Chiral Perturbation Theory and review the determination of the BK parameter of neutral kaon mixing. The inclusion of heavy-quark quantities significantly expands the FLAG scope with respect to the previous review. Therefore, we focus here on D- and B-meson decay constants, form factors, and mixing parameters, since these are most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. In addition we review the status of lattice determinations of the strong coupling constant α{sub s}. (orig.)

  19. Review of lattice results concerning low-energy particle physics.

    Science.gov (United States)

    Aoki, S; Aoki, Y; Bernard, C; Blum, T; Colangelo, G; Della Morte, M; Dürr, S; El-Khadra, A X; Fukaya, H; Horsley, R; Jüttner, A; Kaneko, T; Laiho, J; Lellouch, L; Leutwyler, H; Lubicz, V; Lunghi, E; Necco, S; Onogi, T; Pena, C; Sachrajda, C T; Sharpe, S R; Simula, S; Sommer, R; Van de Water, R S; Vladikas, A; Wenger, U; Wittig, H

    We review lattice results related to pion, kaon, [Formula: see text]- and [Formula: see text]-meson physics with the aim of making them easily accessible to the particle-physics community. More specifically, we report on the determination of the light-quark masses, the form factor [Formula: see text], arising in semileptonic [Formula: see text] transition at zero momentum transfer, as well as the decay-constant ratio [Formula: see text] of decay constants and its consequences for the CKM matrix elements [Formula: see text] and [Formula: see text]. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of [Formula: see text] and [Formula: see text] Chiral Perturbation Theory and review the determination of the [Formula: see text] parameter of neutral kaon mixing. The inclusion of heavy-quark quantities significantly expands the FLAG scope with respect to the previous review. Therefore, we focus here on [Formula: see text]- and [Formula: see text]-meson decay constants, form factors, and mixing parameters, since these are most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. In addition we review the status of lattice determinations of the strong coupling constant [Formula: see text].

  20. Elementary particle physics at the University of Florida. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    This report discusses the following topics: Task A: theoretical elementary particle physics; Task B: experimental elementary particle physics; Task C: axion project; Task G: experimental research in collider physics; and Task S: computer acquisition. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  1. Assessment of environmental correlates of physical activity: development of a European questionnaire

    Directory of Open Access Journals (Sweden)

    Oja Pekka

    2009-07-01

    Full Text Available Abstract Background Research on the influence of the physical environment on physical activity is rapidly expanding and different measures of environmental perceptions have been developed, mostly in the US and Australia. The purpose of this paper is to (i provide a literature review of measures of environmental perceptions recently used in European studies and (ii develop a questionnaire for population monitoring purposes in the European countries. Methods This study was done within the framework of the EU-funded project 'Instruments for Assessing Levels of Physical Activity and Fitness (ALPHA', which aims to propose standardised instruments for physical activity and fitness monitoring across Europe. Quantitative studies published from 1990 up to November 2007 were systematically searched in Pubmed, Web of Science, TRIS and Geobase. In addition a survey was conducted among members of the European network for the promotion of Health-Enhancing Physical Activity (HEPA Europe and European members of the International Physical Activity and Environment Network (IPEN to identify published or ongoing studies. Studies were included if they were conducted among European general adult population (18+y and used a questionnaire to assess perceptions of the physical environment. A consensus meeting with an international expert group was organised to discuss the development of a European environmental questionnaire. Results The literature search resulted in 23 European studies, 15 published and 8 unpublished. In these studies, 13 different environmental questionnaires were used. Most of these studies used adapted versions of questionnaires that were developed outside Europe and that focused only on the walkability construct: The Neighborhood Environment Walkability Scale (NEWS, the abbreviated version of the NEWS (ANEWS and the Neighborhood Quality of Life Study (NQLS questionnaire have been most commonly used. Based on the results of the literature review and

  2. Review of lattice results concerning low-energy particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, S. [Kyoto University, Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Aoki, Y. [Nagoya University, Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya (Japan); Brookhaven National Laboratory, RIKEN BNL Research Center, Upton, NY (United States); High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Becirevic, D. [Universite Paris-Sud, Universite Paris-Saclay, Laboratoire de Physique Theorique (UMR8627), CNRS, Orsay (France); Bernard, C. [Washington University, Department of Physics, Saint Louis, MO (United States); Blum, T. [Brookhaven National Laboratory, RIKEN BNL Research Center, Upton, NY (United States); University of Connecticut, Physics Department, Storrs, CT (United States); Colangelo, G.; Leutwyler, H.; Wenger, U. [Universitaet Bern, Albert Einstein Center for Fundamental Physics, Institut fuer Theoretische Physik, Bern (Switzerland); Della Morte, M. [University of Southern Denmark, CP3-Origins and Danish IAS, Odense M (Denmark); IFIC (CSIC), Paterna (Spain); Dimopoulos, P. [Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi Compendio del Viminale, Rome (Italy); Universita di Roma Tor Vergata, c/o Dipartimento di Fisica, Rome (Italy); Duerr, S. [University of Wuppertal, Wuppertal (Germany); Juelich Supercomputing Center, Forschungszentrum Juelich, Juelich (Germany); Fukaya, H.; Onogi, T. [Osaka University, Department of Physics, Toyonaka, Osaka (Japan); Golterman, M. [San Francisco State University, Department of Physics and Astronomy, San Francisco, CA (United States); Gottlieb, Steven; Lunghi, E. [Indiana University, Department of Physics, Bloomington, IN (United States); Hashimoto, S.; Kaneko, T. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); The Graduate University for Advanced Studies (Sokendai), School of High Energy Accelerator Science, Tsukuba (Japan); Heller, U.M. [American Physical Society (APS), Ridge, NY (United States); Horsley, R. [University of Edinburgh, Higgs Centre for Theoretical Physics, School of Physics and Astronomy, Edinburgh (United Kingdom); Juettner, A.; Sachrajda, C.T. [University of Southampton, School of Physics and Astronomy, Southampton (United Kingdom); Lellouch, L. [CNRS, Aix-Marseille Universite, Universite de Toulon, Centre de Physique Theorique, UMR 7332, Marseille (France); Lin, C.J.D. [CNRS, Aix-Marseille Universite, Universite de Toulon, Centre de Physique Theorique, UMR 7332, Marseille (France); National Chiao-Tung University, Institute of Physics, Hsinchu (China); Lubicz, V. [Universita Roma Tre, Dipartimento di Matematica e Fisica, Rome (Italy); INFN, Sezione di Roma Tre, Rome (Italy); Mawhinney, R. [Columbia University, Physics Department, New York, NY (United States); Pena, C. [Universidad Autonoma de Madrid, Departamento de Fisica Teorica, Instituto de Fisica Teorica UAM/CSIC, Madrid (Spain); Sharpe, S.R. [University of Washington, Physics Department, Seattle, WA (United States); Simula, S. [INFN, Sezione di Roma Tre, Rome (Italy); Sommer, R. [DESY, John von Neumann Institute for Computing (NIC), Zeuthen (Germany); Vladikas, A. [Universita di Roma ' ' Tor Vergata' ' , Dipartimento di Fisica, Rome (Italy); INFN, Rome (Italy); Wittig, H. [University of Mainz, PRISMA Cluster of Excellence, Institut fuer Kernphysik and Helmholtz Institute Mainz, Mainz (Germany); Collaboration: Flavour Lattice Averaging Group (FLAG)

    2017-02-15

    We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle-physics community. More specifically, we report on the determination of the light-quark masses, the form factor f{sub +}(0), arising in the semileptonic K → π transition at zero momentum transfer, as well as the decay constant ratio f{sub K}/f{sub π} and its consequences for the CKM matrix elements V{sub us} and V{sub ud}. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2){sub L} x SU(2){sub R} and SU(3){sub L} x SU(3){sub R} Chiral Perturbation Theory. We review the determination of the B{sub K} parameter of neutral kaon mixing as well as the additional four B parameters that arise in theories of physics beyond the Standard Model. The latter quantities are an addition compared to the previous review. For the heavy-quark sector, we provide results for m{sub c} and m{sub b} (also new compared to the previous review), as well as those for D- and B-meson-decay constants, form factors, and mixing parameters. These are the heavy-quark quantities most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. Finally, we review the status of lattice determinations of the strong coupling constant α{sub s}. (orig.)

  3. Guide to QSPIRES and the particle physics databases on SLACVM

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H.

    1992-06-01

    SLAC, in collarboration with DESY, LBL, and several other institutions, maintains many databases of interest to the high energy physics community. You do not to have a computer account at SLAC to search through some of these databases, they can be reached via the remote server QSPIRES, set at the BITNET node SLACVM. This text describes, in great detail, how to search in the popular HEP database via QSPIRES, HEP contains bibliographic summaries of more than 200,000 particle physics papers. Other databases available remotely are also reviewed, and the registration procedure for those who would like to use QSPIRES is explained. To utilize QSPIRES, you must have access to a large computer network. It is not necessary that the network be BITNET; it may be a different one. However, a gateway must exist between your network and BITNET. It should be mentioned at BITNET users have some advantages in searching, e.g., the possibility of interactive communication with QSPIRES. Therefore, if you have a choice, let a BITNET machine be your base for QSPIRES searches. You will also need an authorization to use HEP and other databases; and should know the set of relevant commands and rules. The authorization is free, the commands are simple, and BITNET can be reached from all over the world. Join, therefore, the group of thousands of satisfied users, log on to your local computer, and from the comfort of your office or home fine, e.g., the number of citations of your most famous high energy physics paper.

  4. Learning Particle Physics with DIY Play Dough Model

    Science.gov (United States)

    Thunyaniti, T.; Toedtanya, K.; Wuttiprom, S.

    2017-09-01

    The scientists once believed an atom was the smallest particle, nothing was smaller than this tiny particle. Later, they discovered an atom which consists of protons, neutrons and electrons, and they believed that these particles cannot be broken into the smaller particles. According to advanced technology, the scientists have discovered these particles are consisted of a smaller particles. The new particles are called quarks leptons and bosons which we called fundamental particle. Atomic structure cannot be observed directly, so it is complicated for studying these particles. To help the students get more understanding of its properties, so the researcher develops the learning pattern of fundamental particles from Play Dough Model for high school to graduate students. Four step of learning are 1) to introduces the concept of the fundamental particles discovery 2) to play the Happy Families game by using fundamental particles cards 3) to design and make their particle in a way that reflects its properties 4) to represents their particles from Play Dough Model. After doing activities, the students had more conceptual understanding and better memorability on fundamental particles. In addition, the students gained collaborative working experience among their friends also.

  5. Physical activity habits in a European sports event: A case study

    Directory of Open Access Journals (Sweden)

    Leonor Gallardo

    2014-12-01

    Full Text Available The aim of this study is to learn more about the physical activity habits of participants in a popular sporting event such as European Sports Day, which is held simultaneously in five European countries (Spain, Italy, Cyprus, Ireland, and Hungary, and to measure the influence of socio-demographic variables on these habits. This is a cross-sectional study conducted with a sample of 856 participants, stratified by gender, age, and nationality. We statistically analyzed five variables related to physical activity habits: frequency of physical activity practice, places of practice, motives of practice, perceived fitness level, and popular event attendance. Of the participants, 76.8% said they perform physical activity weekly. Fitness/health improvement (34.63% and entertainment/leisure (26.52% are the main reasons for the practice of physical activity. Age and nationality are differentiating factors on physical activity habits.

  6. Experimental particle physics at the University of Pittsburgh

    Energy Technology Data Exchange (ETDEWEB)

    Engels, E. Jr.; Perera, U.; Shepard, P.F.; Thompson, J.A.

    1992-04-01

    During the past year Task A completed the HELIOS single and pair electron analyses and found no anomalous production or multiplicity dependence. The HELIOS electron-muon pair analysis continued in its search for lepton physics beyond the expected charm yields. Data taking began at the CMD2 detector at Novosibirsk. Measurements of the U. V. reflectivity and photomultiplier tests for the first Cerenkov counter to be used in the E865 experiment at BNL were carried out, along with the development of a general ray-tracing code. The design of the Cerenkov counter for E865 along with development of light mirror fabrication techniques were a major part of the Task A program. The principal efforts of Task B, the Fermilab program, have been the completion of the analysis of the 1987--1988 data with resulting publications, completion of the 1990--1991 data run, and the beginning of the analysis of the 1990--1991 data. In addition, the Task B group is taking a leadership role in developing a proposal to Fermilab for the upgrade of the CDF silicon vertex detector in preparation for the 1995 data run. This proposal is to be presented to the laboratory management in time for the fall Fermilab Program Advisory Committee meeting. Task C has recently submitted results of its fractionally charged particle searches, placing new upper limits on the abundance of naturally-occurring fractionally-charged particles in various materials. This group has recently been approved by the Brookhaven management for an exposure of their p-i-n diodes in a high intensity proton beam. This measurement, along with its subsequent analysis, will complete the program.

  7. Academic Training Lectures | Black Holes from a Particle Physics Perspective | 18-19 November

    CERN Multimedia

    2014-01-01

    Black Holes from a Particle Physics Perspective by Georgi Dvali   Tuesday 18 and Wednesday 19 November 2014 from 11 am to 12 noon at CERN ( 40-S2-A01 - Salle Anderson ) Description: We will review the physics of black holes, both large and small, from a particle physicist's perspective, using particle physics tools for describing concepts such as entropy, temperature and quantum information processing. We will also discuss microscopic pictures of black hole formation in high energy particle scattering, potentially relevant for high-energy accelerator experiments, and some differences and similarities with the signatures of other BSM physics. See the Indico page here.

  8. Essay: the tau lepton and thirty years of changes in elementary particle physics research.

    Science.gov (United States)

    Perl, M L

    2008-02-22

    Starting with the 1975 discovery of the tau lepton, I look back on the last three decades of change in the substance and style of experimental and theoretical research in elementary particle physics. I recount the major accomplishments of those decades and predict a bright future for particle physics in the next two decades. Turning to three problems, I lament the change in theoretical style and taste, I discuss the growth in the complexity, size, and cost of particle physics experiments, and I conclude with a pessimistic comment on the size of particle physics collaborations.

  9. New Physics requirements and technological challenges to be confronted by calorimeters in particle physics

    Science.gov (United States)

    Cavallari, Francesca

    2015-09-01

    The seminar presents an introduction to calorimetry in particle physics. Initially the purpose of electromagnetic and hadronic calorimeters in particle physics is shown. Then the paper focusses on electromagnetic calorimeters and it describes the microscopic phenomena that drive the formation of electromagnetic showers. Homogeneous and sampling calorimeters are presented and the energy resolution of both is analyzed. A few examples of past and present electromagnetic calorimeters at particle colliders are presented, with particular attention to the ones employed in the Atlas and CMS experiments at the LHC, their design constraints, challenges and adopted choices. Both these calorimeters were designed to operate for a minimum of ten years at the LHC, with an instantaneous luminosity of 1· 1034/cm2/s and for an integrated luminosity of 500/fb. From 2023 a new program will start: the high luminosity LHC (HL-LHC), which is expected to provide an instantaneous luminosity of around 5· 1034/cm2/s and integrate a total luminosity of around 3000/fb in ten years of data taking. The evolution of the CMS and Atlas calorimeters is assessed and needed upgrades are presented.

  10. Learning about A level physics students’ understandings of particle physics using concept mapping

    Science.gov (United States)

    Gourlay, H.

    2017-01-01

    This paper describes a small-scale piece of research using concept mapping to elicit A level students’ understandings of particle physics. Fifty-nine year 12 (16- and 17 year-old) students from two London schools participated. The exercise took place during school physics lessons. Students were instructed how to make a concept map and were provided with 24 topic-specific key words. Students’ concept maps were analysed by identifying the knowledge propositions they represented, enumerating how many students had made each one, and by identifying errors and potential misconceptions, with reference to the specification they were studying. The only correct statement made by a majority of students in both schools was that annihilation takes place when matter and antimatter collide, although there was evidence that some students were unable to distinguish between annihilation and pair production. A high proportion of students knew of up, down and strange quarks, and that the electron is a lepton. However, some students appeared to have a misconception that everything is made of quarks. Students found it harder to classify tau particles than they did electrons and muons. Where students made incorrect links about muons and tau particles their concept maps suggested that they thought they were mesons or quarks.

  11. Alginate gel particles-A review of production techniques and physical properties.

    Science.gov (United States)

    Ching, Su Hung; Bansal, Nidhi; Bhandari, Bhesh

    2017-04-13

    The application of hydrocolloid gel particles is potentially useful in food, chemical, and pharmaceutical industries. Alginate gel particles are one of the more commonly used hydrocolloid gel particles due to them being biocompatible, nontoxic, biodegradable, cheap, and simple to produce. They are particularly valued for their application in encapsulation. Encapsulation in alginate gel particles confers protective benefits to cells, DNA, nutrients, and microbes. Slow release of flavors, minerals, and drugs can also be achieved by encapsulation in gel particles. The particle size and shape of the gel particles are crucial for specific applications. In this review, current methods of producing alginate gel particles will be discussed, taking into account their advantages, disadvantages, scalability, and impact on particle size. The physical properties of alginate gel particles will determine the effectiveness in different application conditions. This review will cover the current understanding of the alginate biopolymer, gelation mechanisms and factors affecting release properties, gel strength, and rheology of the alginate gel particle systems.

  12. Keeping particle physics lively, stimulating, and maybe more…

    CERN Multimedia

    2011-01-01

    A recurring theme at last week's Council meetings was the request I received to pass on Council’s heartfelt thanks to all the CERN community for the successful period we are currently enjoying, and it is my pleasure to do so. Council's request also serves as a timely reminder that CERN is more than the LHC, and the LHC is more than the machine and its four big experiments.   Earlier this week, one of the smaller LHC experiments, TOTEM, published its first results. TOTEM's paper contains measurements that are vital for a full understanding of hadron collider physics, as well as for topics in particle astrophysics. They continue a CERN tradition that goes back to the world's first hadron collider, CERN’s Intersecting Storage Rings (ISR). One of the most significant results from the ISR was the unexpected observation that the cross-section for proton-proton collisions rises with energy. Put another way, it appears that the proton gets larger t...

  13. Waves and particles two essays on fundamental physics

    CERN Document Server

    Newton, Roger G

    2014-01-01

    The book consists of two separate parts, the first part is on waves and the second part on particles. In part 1, after describing the awesome power of tsunami and the history of their occurrences, the book turns to the history of explaining phenomena by means of mathematical equations. Then it describes other wave phenomena and the laws governing them: the vibration of strings and drums in musical instruments, the sound waves making them audible, ultrasound and its uses, sonar, and shock waves; electromagnetic waves: light waves, refraction, diffraction, why the sky is blue, the rainbow, and the glory; microwaves and radio waves: radar, radio astronomy, the discovery of the cosmic microwave background radiation, microwave ovens and how a radio works, lasers and masers; waves in modern physics: the Schrödinger wave function and gravitational waves in general relativity; water waves in the ocean, tides and tidal waves, and the quite different solitary waves, solitons discovered in canals. Finally we return to ...

  14. Particle accelerators from Big Bang physics to hadron therapy

    CERN Document Server

    Amaldi, Ugo

    2015-01-01

    The theoretical physicist Victor “Viki” Weisskopf, Director-General of CERN from 1961 to 1965, once “There are three kinds of physicists, namely the machine builders, the experimental physicists, and the theoretical physicists. […] The machine builders are the most important ones, because if they were not there, we would not get into this small-scale region of space. If we compare this with the discovery of America, the machine builders correspond to captains and ship builders who really developed the techniques at that time. The experimentalists were those fellows on the ships who sailed to the other side of the world and then landed on the new islands and wrote down what they saw. The theoretical physicists are those who stayed behind in Madrid and told Columbus that he was going to land in India.” Rather than focusing on the theoretical physicists, as most popular science books on particle physics do, this beautifully written and also entertaining book is different in that, firstly, the main foc...

  15. Word from the DG: A Nobel Prize for particle physics

    CERN Multimedia

    2013-01-01

    I don't know about you, but for me that hour between 11:45 and 12:45 on Tuesday seemed to take a very long time to pass. What was going on in that room in Stockholm we'll never know, but whatever it was, it produced a fantastic result for particle physics. There could be no more deserving laureates than François Englert and Peter Higgs, embodying as they do all the hallmarks of great scientists: brilliance, of course, but also humility and a sense of teamwork.   Nobel Prize celebrations in Building 40.   I remember when they met each other at CERN for the first time on 4 July last year: the pleasure in that meeting was evident, and when Peter Higgs was asked for comment by the dozens of journalists who came to CERN that day, he politely declined, saying that this was a day for the experiments. Well, Peter, Tuesday was your day, and everyone at CERN shares the pride and joy that you and François must have felt, wherever you were! And like I&rs...

  16. Particle physics meets cosmology - The search for decaying neutrinos

    Science.gov (United States)

    Henry, R. C.

    1982-01-01

    The fundamental physical implications of the possible detection of massive neutrinos are discussed, with an emphasis on the Grand Unified Theories (GUTs) of matter. The Newtonian and general-relativistic pictures of the fundamental forces are compared, and the reduction of electromagnetic and weak forces to one force in the GUTs is explained. The cosmological consequences of the curved-spacetime gravitation concept are considered. Quarks, leptons, and neutrinos are characterized in a general treatment of elementary quantum mechanics. The universe is described in terms of quantized fields, the noninteractive 'particle' fields and the force fields, and cosmology becomes the study of the interaction of gravitation with the other fields, of the 'freezing out' of successive fields with the expansion and cooling of the universe. While the visible universe is the result of the clustering of the quark and electron fields, the distribution of the large number of quanta in neutrino field, like the mass of the neutrino, are unknown. Cosmological models which attribute anomalies in the observed motions of galaxies and stars to clusters or shells of massive neutrinos are shown to be consistent with a small but nonzero neutrino mass and a universe near the open/closed transition point, but direct detection of the presence of massive neutrinos by the UV emission of their decay is required to verify these hypotheses.

  17. European School of High-Energy Physics, Caramulo. Portugal, 20 August- 2 September 2000

    CERN Multimedia

    2000-01-01

    The 2000 European School of High-Energy Physics (formerly the CERN-JINR School of Physics) will be organized jointly by the European Organization for Nuclear Research (CERN), Geneva, Switzerland and the Joint Institute for Nuclear Research (JINR), Dubna, Russia, together with LIP (Laboratório de Instrumentação e Física Experimental de Partículas) and the Faculty of Science and Technology of the University of Coimbra. The basic aim of the School is to teach various aspects of high-energy physics, but especially theoretical physics, to young experimental physicists, mainly from the Member States of CERN and of JINR. The Schools of Physics are designed to give a survey of up-to-date information, rather than to be a training course.

  18. 14th ICATPP Conference on Astroparticle, Particle, Space Physics and Detectors for Physics Applications

    CERN Document Server

    Leroy, Claude; Price, Lawrence; Rancoita, Pier-Giorgio; Ruchti, Randy; ICATPP 2013; International Conference on Advanced Technology and Particle Physics

    2014-01-01

    The exploration of the subnuclear world is done through increasingly complex experiments covering a wide range of energy and performed in a large variety of environments ranging from particle accelerators, underground detectors to satellites and the space laboratory. The achievement of these research programs calls for novel techniques, new materials and instrumentation to be used in detectors, often of large scale. Therefore, fundamental physics is at the forefront of technological advance and also leads to many applications. Among these, are the progresses from space experiments whose results allow the understanding of the cosmic environment, of the origin and evolution of the universe after the Big Bang.

  19. Development of the European Health Interview Survey - Physical Activity Questionnaire (EHIS-PAQ) to monitor physical activity in the European Union.

    Science.gov (United States)

    Finger, Jonas D; Tafforeau, Jean; Gisle, Lydia; Oja, Leila; Ziese, Thomas; Thelen, Juergen; Mensink, Gert B M; Lange, Cornelia

    2015-01-01

    A domain-specific physical activity questionnaire (EHIS-PAQ) was developed in the framework of the second wave of the European Health Interview Survey (EHIS). This article presents the EHIS-PAQ and describes its development and evaluation processes. Research institutes from Belgium, Estonia and Germany participated in the Improvement of the EHIS (ImpEHIS) Grant project issued by Eurostat. The instrument development process comprised a non-systematic literature review and a systematic HIS/HES database search for physical activity survey questions. The developed EHIS-PAQ proposal was reviewed by survey experts. Cognitive testing of the EHIS-PAQ was conducted in Estonia and Germany. The EHIS-PAQ was further tested in a pilot survey in Belgium, Estonia and Germany in different modes of data collection, face-to-face paper and pencil interview (PAPI) and computer assisted telephone interview (CATI). The EHIS-PAQ is a rather pragmatic tool aiming to evaluate how far the population is physically active in specific public health relevant settings. It assesses work-related, transport-related and leisure-time physical activity in a typical week. Cognitive testing revealed that the EHIS-PAQ worked as intended. The pilot testing showed the feasibility of using the EHIS-PAQ in an international health interview survey setting in Europe. It will be implemented in all 28 European Union Member States via European Union implementing regulation in the period between 2013 and 2015. This will be a first opportunity to get comparable data on domain-specific physical activity in all 28 EU MS and to publish indicators at the EU level. The EHIS-PAQ is a short, domain-specific PA questionnaire based on PA questions which have been used in large-scale health interview surveys before. It was designed by considering the respondents' perspective in answering PA questions.

  20. Radiation-resistant fibre for particle accelerator

    CERN Multimedia

    2007-01-01

    "Radiation-resistant optical fibre is being used by CERN, the European Laboratory for Particle Physics, in the world's largest particle accelerator, the Large Hadron Collider (LHC) near Geneva." (1 page)

  1. Meeting on establishing a sponsoring consortium for Open Access publishing in particle physics, 3rd November 2006, CERN. Minutes

    CERN Document Server

    Yeomans, Joanne

    2006-01-01

    In December 2005 a Task Force on Open Access Publishing in Particle Physics was set up, and it produced its report in June 2006. Its main conclusion was that a sponsorship model was the most appropriate for the transition period to full Open Access. The present meeting was called to discuss the formation of a consortium (SCOAP3) that could coordinate this sponsorship. Representatives from major European particle physics funding agencies, library consortia and the research community attended. In the past year, many more physics publishers have introduced Open Access options of one kind or another. It is fairly clear that these moves have been a direct consequence of the discussion on Open Access in the particle physics research community. The maintenance of a peer-review system for quality assurance, currently carried out by the publishers, was felt to be an essential element to preserve in the transition to Open Access. A move to full Open Access, rather than the hybrid variety currently proposed by several p...

  2. A novel straightness measurement system applied to the position monitoring of large Particle Physics Detectors

    CERN Document Server

    Goudard, R; Ribeiro, R; Klumb, F

    1999-01-01

    The Compact Muon Solenoid experiment, CMS, is one of the two general purpose experiments foreseen to operate at the Large Hadron Collider, LHC, at CERN, the European Laboratory for Particle Physics. The experiment aims to study very high energy collisions of proton beams. Investigation of the most fundamental properties of matter, in particular the study of the nature of the electroweak symmetry breaking and the origin of mass, is the experiment scope. The central Tracking System, a six meter long cylinder with 2.4 m diameter, will play a major role in all physics searches of the CMS experiment. Its performance depends upon the intrinsic detector performance, on the stability of the supporting structure and on the overall survey, alignment and position monitoring system. The proposed position monitoring system is based on a novel lens-less laser straightness measurement method able to detect deviations from a nominal position of all structural elements of the Central Tracking system. It is based on the recipr...

  3. "What's (the) Matter?", A Show on Elementary Particle Physics with 28 Demonstration Experiments

    CERN Document Server

    Dreiner, Herbi K; Borzyszkowski, Mikolaj; Braun, Maxim; Faßbender, Alexander; Hampel, Julia; Hansen, Maike; Hebecker, Dustin; Heepenstrick, Timo; Heinz, Sascha; Hortmanns, Katharina; Jost, Christian; Kortmann, Michael; Kruckow, Matthias U; Leuteritz, Till; Lütz, Claudia; Mahlberg, Philip; Müllers, Johannes; Opferkuch, Toby; Paul, Ewald; Pauli, Peter; Rossbach, Merlin; Schaepe, Steffen; Schiffer, Tobias; Schmidt, Jan F; Schüller-Ruhl, Jana; Schürmann, Christoph; Ubaldi, Lorenzo; Wagner-Carena, Sebastian

    2016-01-01

    We present the screenplay of a physics show on particle physics, by the Physikshow of Bonn University. The show is addressed at non-physicists aged 14+ and communicates basic concepts of elementary particle physics including the discovery of the Higgs boson in an entertaining fashion. It is also demonstrates a successful outreach activity heavily relying on the university physics students. This paper is addressed at anybody interested in particle physics and/or show physics. This paper is also addressed at fellow physicists working in outreach, maybe the experiments and our choice of simple explanations will be helpful. Furthermore, we are very interested in related activities elsewhere, in particular also demonstration experiments relevant to particle physics, as often little of this work is published. Our show involves 28 live demonstration experiments. These are presented in an extensive appendix, including photos and technical details. The show is set up as a quest, where 2 students from Bonn with the aid...

  4. 5th International Heidelberg Conference on Dark Matter in Astro- and Particle Physics

    CERN Document Server

    Arnowitt, Richard; DARK 2004; Dark Matter in Astro- and Particle Physics

    2006-01-01

    The search for dark matter in the universe has established itself as one of the most exciting and central fields of astrophysics, particle physics and cosmology. The lectures and talks in this book emphasize the experimental and theoretical status and future perspectives, stressing in particular the interplay between astro- and particle physics.

  5. Working Group Report on the "TeV Particle Astrophysics and Physics Beyond the Standard Model"

    OpenAIRE

    Albuquerque, Ivone F. M.; Palomares-Ruiz, Sergio; Weiler, Tom

    2006-01-01

    This working group focused mainly on the complementarity among particle physics and astrophysics. The analysis of data from both fields will better constrain theoretical models. Much of the discussion focused on detecting dark matter and susy particles, and on the potential of neutrino and gamma-ray astrophysics for seeking or constraining new physics.

  6. Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 7: Underground Laboratory Capabilities

    CERN Document Server

    Gilchriese, M G; Heeger, K; Klein, J; Scholberg, K; Sobel, H; Witherell, M

    2014-01-01

    These reports present the results of the 2013 Community Summer Study of the APS Division of Particles and Fields ("Snowmass 2013") on the future program of particle physics in the U.S. Chapter 7, on Underground Laboratory Capabilities, discusses the prospects and requirements for large underground experiments such as those for neutrino physics, proton decay, and dark matter.

  7. Let's Have a Coffee with the Standard Model of Particle Physics!

    Science.gov (United States)

    Woithe, Julia; Wiener, Gerfried J.; Van der Veken, Frederik F.

    2017-01-01

    The Standard Model of particle physics is one of the most successful theories in physics and describes the fundamental interactions between elementary particles. It is encoded in a compact description, the so-called "Lagrangian," which even fits on t-shirts and coffee mugs. This mathematical formulation, however, is complex and only…

  8. Physicists purchase materials testing machine in support of pioneering particle physics experiments

    CERN Multimedia

    Sharpe, Suzanne

    2007-01-01

    "The particle physics group at Liverpool University has purchased an LRXPlus singlecolumn materials testing machine from Lloyd Instruments, which will be used to help characterise the carbon-fibre support frames for detectors used for state-of-the-art particle physics experiments." (1 page)

  9. Variation in population levels of physical activity in European adults according to cross-European studies: a systematic literature review within DEDIPAC

    NARCIS (Netherlands)

    Loyen, A.; Hecke, L. van; Verloigne, M.; Hendriksen, I.; Lakerveld, J.; Steene-Johannessen, J.; Vuillemin, A.; Koster, A.; Donnelly, A.; Ekelund, U.; Deforche, B.; Bourdeaudhuij, I. de; Brug, J.; Ploeg, H.P. van der

    2016-01-01

    Background: Physical inactivity is a well-known public health risk that should be monitored at the population level. Physical activity levels are often surveyed across Europe. This systematic literature review aims to provide an overview of all existing cross-European studies that assess physical

  10. Variation in population levels of physical activity in European adults according to cross-European studies: a systematic literature review within DEDIPAC

    NARCIS (Netherlands)

    Loyen, A.; Van Hecke, L.; Verloigne, M.; Hendriksen, I.; Lakerveld, J.; Steene-Johannessen, J.; Vuillemin, A.; Koster, A.; Donnelly, A.; Ekelund, U.; Deforche, B.; De Bourdeaudhuij, I.; Brug, J.; van der Ploeg, H.P.

    2016-01-01

    Background Physical inactivity is a well-known public health risk that should be monitored at the population level. Physical activity levels are often surveyed across Europe. This systematic literature review aims to provide an overview of all existing cross-European studies that assess physical

  11. PREFACE: The EPS High Energy Particle Physics Conference

    Science.gov (United States)

    Barlow, Roger

    2008-03-01

    HEPP2007, the EPS High Energy Particle Physics Conference, was held in Manchester from July 19-26 2007. It brought together 580 delegates across the whole subject: from string theorists to detector technologists, from young postgraduate students to senior professors. Geographically they came from the UK, from the rest of Europe, from North America, and from the rest of the world. It covered the whole spectrum of the subject, not only accelerator-based experiments but also its astrophysical and cosmological aspects. The parallel and plenary talks can be found in these proceedings. A key feature of the conference, as always, was the award of the prizes: this year the EPS prize was awarded to Makoto Kobayashi and Toshihide Maskawa for their explanation of CP violation with a 6 quark model—Kobayashi came to accept it in person. The Gribov medal went to Niklas Beisert, the outreach prize to Richard Jacobsson and Charles Timmermans and the Young Physicist prizer to I Furic, G Gomez-Ceballos and S Menzemer. Parallel sessions were held in Manchester University, and plenary talks were held in the Bridgewater Hall in Manchester Town centre, a magnificent modern venue whose positive and co-operative staff enabled the conference to make the most of the impressive surroundings. We were able to put the hall to its proper purpose one evening with a concert by the Fairey Band—one of the distinctive brass bands who form part of the rich musical tradition of the North of England, and came as something new and different to many of the delegates. The conference ran smoothly and successfully, thanks largely to hard work by the local organising committee who devoted a lot of time to planning, producing ideas, and anticipating potential problems. Many of them were not from Manchester itself but from other universities and laboratories in the North of England, so their dedication was especially appreciated. The EPS committee also played a major part, by the selection of plenary

  12. Annihilation physics of exotic galactic dark matter particles

    Science.gov (United States)

    Stecker, F. W.

    1990-01-01

    Various theoretical arguments make exotic heavy neutral weakly interacting fermions, particularly those predicted by supersymmetry theory, attractive candidates for making up the large amount of unseen gravitating mass in galactic halos. Such particles can annihilate with each other, producing secondary particles of cosmic-ray energies, among which are antiprotons, positrons, neutrinos, and gamma-rays. Spectra and fluxes of these annihilation products can be calculated, partly by making use of positron electron collider data and quantum chromodynamic models of particle production derived therefrom. These spectra may provide detectable signatures of exotic particle remnants of the big bang.

  13. Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 8: Instrumentation Frontier

    Energy Technology Data Exchange (ETDEWEB)

    Demarteau, M.; et al.

    2014-01-23

    These reports present the results of the 2013 Community Summer Study of the APS Division of Particles and Fields ("Snowmass 2013") on the future program of particle physics in the U.S. Chapter 8, on the Instrumentation Frontier, discusses the instrumentation needs of future experiments in the Energy, Intensity, and Cosmic Frontiers, promising new technologies for particle physics research, and issues of gathering resources for long-term research in this area.

  14. European Code against Cancer 4th Edition: Physical activity and cancer.

    Science.gov (United States)

    Leitzmann, Michael; Powers, Hilary; Anderson, Annie S; Scoccianti, Chiara; Berrino, Franco; Boutron-Ruault, Marie-Christine; Cecchini, Michele; Espina, Carolina; Key, Timothy J; Norat, Teresa; Wiseman, Martin; Romieu, Isabelle

    2015-12-01

    Physical activity is a complex, multidimensional behavior, the precise measurement of which is challenging in free-living individuals. Nonetheless, representative survey data show that 35% of the European adult population is physically inactive. Inadequate levels of physical activity are disconcerting given substantial epidemiologic evidence showing that physical activity is associated with decreased risks of colon, endometrial, and breast cancers. For example, insufficient physical activity levels are thought to cause 9% of breast cancer cases and 10% of colon cancer cases in Europe. By comparison, the evidence for a beneficial effect of physical activity is less consistent for cancers of the lung, pancreas, ovary, prostate, kidney, and stomach. The biologic pathways underlying the association between physical activity and cancer risk are incompletely defined, but potential etiologic pathways include insulin resistance, growth factors, adipocytokines, steroid hormones, and immune function. In recent years, sedentary behavior has emerged as a potential independent determinant of cancer risk. In cancer survivors, physical activity has shown positive effects on body composition, physical fitness, quality of life, anxiety, and self-esteem. Physical activity may also carry benefits regarding cancer survival, but more evidence linking increased physical activity to prolonged cancer survival is needed. Future studies using new technologies - such as accelerometers and e-tools - will contribute to improved assessments of physical activity. Such advancements in physical activity measurement will help clarify the relationship between physical activity and cancer risk and survival. Taking the overall existing evidence into account, the fourth edition of the European Code against Cancer recommends that people be physically active in everyday life and limit the time spent sitting. Copyright © 2015 International Agency for Research on Cancer. Published by Elsevier Ltd. All

  15. Let’s have a coffee with the Standard Model of particle physics!

    Science.gov (United States)

    Woithe, Julia; Wiener, Gerfried J.; Van der Veken, Frederik F.

    2017-05-01

    The Standard Model of particle physics is one of the most successful theories in physics and describes the fundamental interactions between elementary particles. It is encoded in a compact description, the so-called ‘Lagrangian’, which even fits on t-shirts and coffee mugs. This mathematical formulation, however, is complex and only rarely makes it into the physics classroom. Therefore, to support high school teachers in their challenging endeavour of introducing particle physics in the classroom, we provide a qualitative explanation of the terms of the Lagrangian and discuss their interpretation based on associated Feynman diagrams.

  16. Cross-Sectional Associations of Objectively Measured Physical Activity, Cardiorespiratory Fitness and Anthropometry in European Adults

    NARCIS (Netherlands)

    Wientzek, A.; Diaz, M.J.T.; Castano, J.M.H.; Amiano, P.; Arriola, L.; Overvad, K.; Ostergaard, J.N.; Charles, M.A.; Fagherazzi, G.; Palli, D.; Bendinelli, B.; Skeie, G.; Borch, K.B.; Wendel-Vos, W.; Hollander, de E.L.; May, A.M.; Ouden, den M.E.M.; Trichopoulou, A.; Valanou, E.; Soderberg, S.; Franks, P.W.; Brage, S.; Vigl, M.; Boeing, H.; Ekelund, U.

    2014-01-01

    Objective: To quantify the independent associations between objectively measured physical activity (PA), cardiorespiratory fitness (CRF), and anthropometry in European men and women. Methods: 2,056 volunteers from 12 centers across Europe were fitted with a heart rate and movement sensor at 2 visits

  17. Teachers' Professional Learning in a European Learning Society: The Case of Physical Education

    Science.gov (United States)

    Makopoulou, Kyriaki; Armour, Kathleen

    2011-01-01

    Background: In the contemporary "knowledge-driven" European society, the quality and relevance of Continuing Professional Development (CPD) for teachers and Physical Education teachers (PE-CPD) has come under scrutiny. National contexts within Europe vary considerably, however, so there is a need to gain analytical insights into PE-CPD…

  18. Physical properties of the arctic summer aerosol particles in relation ...

    Indian Academy of Sciences (India)

    The sea-salt particles of marine origin generated within the Arctic circle are identified as the main source of the Arctic summer aerosols. Total number concentration of aerosol particles increases with increase in wind speed, the increase being more when winds from open leads over the oceanic sector are reaching the ...

  19. Contributions to 28th European physical society conference on controlled fusion and plasma physics (Madeira Tecnopolo, Funchal, Portugal, 18-22 June 2001) from LHD experiment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The LHD experimental group has presented nineteen papers at the 28th European Physical Society Conference on Controlled Fusion and Plasma Physics (Madeira Tecnopolo, Funchal, Portugal, 18-22 June 2001). The contributed papers are collected in this report. (author)

  20. 175th International School of Physics "Enrico Fermi" : Radiation and Particle Detectors

    CERN Document Server

    Bottigli, U; Oliva, P

    2010-01-01

    High energy physics (HEP) has a crucial role in the context of fundamental physics. HEP experiments make use of a massive array of sophisticated detectors to analyze the particles produced in high-energy scattering events. This book contains the papers from the workshop 'Radiation and Particle Detectors', organized by the International School of Physics, and held in Varenna in July 2009. Its subject is the use of detectors for research in fundamental physics, astro-particle physics and applied physics. Subjects covered include the measurement of: the position and length of ionization trails, time of flight velocity, radius of curvature after bending the paths of charged particles with magnetic fields, coherent transition radiation, synchrotron radiation, electro-magnetic showers produced by calorimetric methods and nuclear cascades produced by hadrons in massive steel detectors using calorimetry. Detecting muons and the detection of Cherenkov radiation are also covered, as is the detection of neutrinos by ste...

  1. Concepts in particle physics a concise introduction to the standard model

    CERN Document Server

    Nair, V Parameswaran

    2018-01-01

    The 2013 discovery of the Higgs boson posed a challenge to both physics undergraduates and their instructors. Since particle physics is seldom taught at the undergraduate level, the question "what is the Higgs and why does its discovery matter?" is a common question among undergraduates. Equally, answering this question is a problem for physics instructors. This book is an attempt to put the key concepts of particle physics together in an appealing way, and yet give enough extra tidbits for students seriously considering graduate studies in particle physics. It starts with some recapitulation of relativity and quantum mechanics, and then builds on it to give both conceptual ideas regarding the Standard Model of particle physics as well as technical details. It is presented in an informal lecture style, and includes "remarks" sections where extra material, history, or technical details are presented for the interested student. The last lecture presents an assessment of the open questions, and where the future...

  2. Who cares about particle physics? making sense of the Higgs boson, the Large Hadron Collider and CERN

    CERN Document Server

    AUTHOR|(CDS)2051327

    2016-01-01

    CERN, the European Laboratory for particle physics, regularly makes the news. What kind of research happens at this international laboratory and how does it impact people's daily lives? Why is the discovery of the Higgs boson so important? Particle physics describes all matter found on Earth, in stars and all galaxies but it also tries to go beyond what is known to describe dark matter, a form of matter five times more prevalent than the known, regular matter. How do we know this mysterious dark matter exists and is there a chance it will be discovered soon? About sixty countries contributed to the construction of the gigantic Large Hadron Collider (LHC) at CERN and its immense detectors. Dive in to discover how international teams of researchers work together to push scientific knowledge forward. Here is a book written for every person who wishes to learn a little more about particle physics, without requiring prior scientific knowledge. It starts from the basics to build a solid understanding of current res...

  3. The Cosmological Standard Model and Its Implications for Beyond the Standard Model of Particle Physics

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    While the cosmological standard model has many notable successes, it assumes 95% of the mass-energy density of the universe is dark and of unknown nature, and there was an early stage of inflationary expansion driven by physics far beyond the range of the particle physics standard model. In the colloquium I will discuss potential particle-physics implications of the standard cosmological model.

  4. Three-particle physics and dispersion relation theory

    CERN Document Server

    Anisovich, A V; Matveev, M A; Nikonov, V A; Nyiri, J; Sarantsev, A V

    2013-01-01

    The necessity of describing three-nucleon and three-quark systems have led to a constant interest in the problem of three particles. The question of including relativistic effects appeared together with the consideration of the decay amplitude in the framework of the dispersion technique. The relativistic dispersion description of amplitudes always takes into account processes connected with the investigated reaction by the unitarity condition or by virtual transitions; in the case of three-particle processes they are, as a rule, those where other many-particle states and resonances are produced. The description of these interconnected reactions and ways of handling them is the main subject of the book.

  5. Parallelization and scheduling of data intensive particle physics analysis jobs on clusters of PCs

    CERN Document Server

    Ponce, S

    2004-01-01

    Summary form only given. Scheduling policies are proposed for parallelizing data intensive particle physics analysis applications on computer clusters. Particle physics analysis jobs require the analysis of tens of thousands of particle collision events, each event requiring typically 200ms processing time and 600KB of data. Many jobs are launched concurrently by a large number of physicists. At a first view, particle physics jobs seem to be easy to parallelize, since particle collision events can be processed independently one from another. However, since large amounts of data need to be accessed, the real challenge resides in making an efficient use of the underlying computing resources. We propose several job parallelization and scheduling policies aiming at reducing job processing times and at increasing the sustainable load of a cluster server. Since particle collision events are usually reused by several jobs, cache based job splitting strategies considerably increase cluster utilization and reduce job ...

  6. Macro-environmental factors and physical activity in 28 European Union countries.

    Science.gov (United States)

    Laverty, Anthony A; Thompson, Hayley; Cetateanu, Andreea; Filippidis, Filippos T

    2018-02-09

    Data from the representative 2013 Eurobarometer survey were combined with macro-environmental data to assess relationships with different domains of physical activity (PA) in 28 European Union countries. Higher mean annual temperatures were the only macro-environmental factor found to be associated with levels of physical activity; an increase in the mean annual temperature by 1°C was associated with-0.94 fewer minutes of vigorous-intensity activity per week (95% CI: -1.66 to -0.23). This highlights the importance of modifiable influences (e.g. opportunities for active travel) on PA and underscores the potential of public health interventions to raise levels of physical activity. © The Author(s) 2018. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.

  7. Particle Flow Physics Modeling for Extreme Environments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The liberation of particles induced by rocket plume flow from spacecraft landing on unprepared regolith of the Moon, Mars, and other destinations poses high mission...

  8. Interventions for promoting physical activity among European teenagers: a systematic review

    Directory of Open Access Journals (Sweden)

    Lien Nanna

    2009-12-01

    Full Text Available Abstract Background Although physical activity is considered to yield substantial health benefits, the level of physical activity among European teenagers is not sufficient. Adolescence is characterized by a decline in physical activity level. Many studies investigated the effectiveness of interventions promoting physical activity among young people, but none dealt with the available evidence specific for Europe. This review was conducted to summarize the effectiveness of interventions to promote physical activity among European teenagers. Methods A systematic review was conducted to identify European intervention studies published in the scientific literature since 1995. Four databases were searched, reference lists were scanned and the publication lists of the authors of the retrieved articles were checked. The ANGELO framework was used to categorise the included studies by setting and by intervention components. Results The literature search identified 20 relevant studies. Fifteen interventions were delivered through the school setting, of which three included a family component and another three a family and community component. One intervention was conducted within a community setting, three were delivered in primary care and one was delivered through the internet. Ten interventions included only an individual component, whereas the other ten used a multi-component approach. None of the interventions included only an environmental component. Main findings of the review were: (1 school-based interventions generally lead to short term improvements in physical activity levels; (2 improvements in physical activity levels by school-based interventions were limited to school related physical activity with no conclusive transfer to leisure time physical activity; (3 including parents appeared to enhance school-based interventions; (4 the support of peers and the influence of direct environmental changes increased the physical activity level of

  9. Educational inequalities in leisure-time physical activity in 15 European countries

    OpenAIRE

    Demarest, Stefaan; van Oyen, Herman; Roskam, Albert-Jan; Cox, Bianca; Regidor, Enrique; Mackenbach, Johan P; Kunst, Anton E.

    2014-01-01

    Background: The aim of this study was to assess the patterns of socio-economic inequalities in leisure-time physical activity (LTPA) in the different member states of the European Union. Methods: Comparable data on subjects aged 16–64 years derived from national health interview surveys from 15 European countries were used for the analysis. We used log-binominal regression to assess prevalence rate ratios (PRRs). The PRR measured the risk of showing a low level of LTPA for a given educational...

  10. J. J. Sakurai Prize for Theoretical Particle Physics Talk: The Boundless Horizons of Supercollider Physics

    Science.gov (United States)

    Quigg, Chris

    2011-04-01

    The Large Hadron Collider at CERN is moving the experimental frontier of particle physics to the domain of electroweak symmetry breaking, reaching energies around one trillion electron volts for collisions among the basic constituents of matter. We do not know what the new wave of exploration will find, but the discoveries we make and the new puzzles we encounter are certain to change the face of particle physics and echo through neighboring sciences. In this new world, we confidently expect to learn what sets electromagnetism apart from the weak interactions, with profound implications for deceptively simple questions: Why are there atoms? Why chemistry? What makes stable structures possible? A pivotal step will be finding the Higgs boson-or whatever takes its place -and exploring its properties. But we hope for much more. More predictive extensions of the electroweak theory, including dynamical symmetry breaking and supersymmetry, imply new kinds of matter that would be within reach of LHC experiments. We suspect that candidates for the dark matter of the Universe could also await discovery on the TeV scale. The strong interactions may hold their own surprises. As we unravel the riddle of electroweak symmetry breaking, prospects arise for other new insights: into the different forms of matter, the unity of quarks and leptons, and the nature of spacetime. The questions in play all seem linked to one another-and to the kinship of the weak and electromagnetic interactions. I will speak of the evolving dialogue between theory and experiment, highlighting the work before us. Fermilab is operated by the Fermi Research Alliance under contract no. DE-AC02-07CH11359 with the U.S. Department of Energy.

  11. An approach to the formalism of the Standard Model of Particle Physics

    CERN Document Server

    B, O E Casas; T., N Poveda

    2010-01-01

    So far, the Standard Model of particle physics (SM) describes the phenomenology observed in high energy physics. In the Large Hadron Collider (LHC) is expected to find the Higgs boson, which is an essential part of SM; also expects to see new particles or deviations from the SM, which would be evidence of other truly fundamental theory. Consequently, a clear understanding of the SM and, in general, quantum field theory is of great importance for particle physics, however, students face a formalism and a set of concepts with which they are unfamiliar. This paper shows how to make an approach to SM to introduce students to the formalism and some fundamental concepts.

  12. COMPARATIVE ANALYSIS OF PHYSICAL EDUCATION SYLLABUS FOR JUNIOR SCHOOL AGE IN SOME EUROPEAN COUNTRIES

    Directory of Open Access Journals (Sweden)

    Miloš Marković

    2012-09-01

    Full Text Available In European countries’ pedagogical-educational systems physical education is present as a class that is supposed to contribute to integral personality development. Physical education classes are still the most organized mass system for engaging kids and young people in physical activities, through which certain influence on the organism is made. For a long sequence of years there are indications of certain changes in physical education classes as part of educational reforms in countries undergoing transition. Therefore there is possibility for innovation, improvement and further perfection of existing physical education classes syllabi in accordance with the needs of students and the society. Until now syllabi have been improved, changed and then applied without taking into account elements of physical education syllabi based on the quality analysis. In this paper comparative analysis of physical education syllabus for junior school age was performed for the following countries: England, Russia, Greece, Switzerland, Montenegro and Serbia. The following was analyzed and compared: physical education’s goal and tasks, educational contents, number of physical education classes in the syllabus, method of syllabus realization as well as working forms through which physical education syllabi are realized. Through this analysis gave a conclusion was reached that the similarities and differences of existing syllabi can ease the reformation of physical education in the future, in case a societal need for that arises.

  13. Introduction to the EC's Marie Curie Initial Training Network (MC-ITN) project: Particle Training Network for European Radiotherapy (PARTNER).

    Science.gov (United States)

    Dosanjh, Manjit; Magrin, Giulio

    2013-07-01

    PARTNER (Particle Training Network for European Radiotherapy) is a project funded by the European Commission's Marie Curie-ITN funding scheme through the ENLIGHT Platform for 5.6 million Euro. PARTNER has brought together academic institutes, research centres and leading European companies, focusing in particular on a specialized radiotherapy (RT) called hadron therapy (HT), interchangeably referred to as particle therapy (PT). The ultimate goal of HT is to deliver more effective treatment to cancer patients leading to major improvement in the health of citizens. In Europe, several hundred million Euro have been invested, since the beginning of this century, in PT. In this decade, the use of HT is rapidly growing across Europe, and there is an urgent need for qualified researchers from a range of disciplines to work on its translational research. In response to this need, the European community of HT, and in particular 10 leading academic institutes, research centres, companies and small and medium-sized enterprises, joined together to form the PARTNER consortium. All partners have international reputations in the diverse but complementary fields associated with PT: clinical, radiobiological and technological. Thus the network incorporates a unique set of competencies, expertise, infrastructures and training possibilities. This paper describes the status and needs of PT research in Europe, the importance of and challenges associated with the creation of a training network, the objectives, the initial results, and the expected long-term benefits of the PARTNER initiative.

  14. The influence of human physical activity and contaminated clothing type on particle resuspension.

    Science.gov (United States)

    McDonagh, A; Byrne, M A

    2014-01-01

    A study was conducted to experimentally quantify the influence of three variables on the level of resuspension of hazardous aerosol particles from clothing. Variables investigated include physical activity level (two levels, low and high), surface type (four different clothing material types), and time i.e. the rate at which particles resuspend. A mixture of three monodisperse tracer-labelled powders, with median diameters of 3, 5, and 10 microns, was used to "contaminate" the samples, and the resuspended particles were analysed in real-time using an Aerodynamic Particle Sizer (APS), and also by Neutron Activation Analysis (NAA). The overall finding was that physical activity resulted in up to 67% of the contamination deposited on clothing being resuspended back into the air. A detailed examination of the influence of physical activity level on resuspension, from NAA, revealed that the average resuspended fraction (RF) of particles at low physical activity was 28 ± 8%, and at high physical activity was 30 ± 7%, while the APS data revealed a tenfold increase in the cumulative mass of airborne particles during high physical activity in comparison to that during low physical activity. The results also suggest that it is not the contaminated clothing's fibre type which influences particle resuspension, but the material's weave pattern (and hence the material's surface texture). Investigation of the time variation in resuspended particle concentrations indicated that the data were separable into two distinct regimes: the first (occurring within the first 1.5 min) having a high, positive rate of change of airborne particle concentration relative to the second regime. The second regime revealed a slower rate of change of particle concentration and remained relatively unchanged for the remainder of each resuspension event. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Divisible Atoms or None at All? Facing the European Contributions to Developments of Chemistry and Physics in China.

    Science.gov (United States)

    Južnič, Stanislav

    2016-12-01

    atoms is discussed as possible new paradigm which could rename the destructible divisible entities of future physics, and with more difficulties also of chemistry. The word atom meaning indivisible not compound entity is basically in contradiction with the characteristics of item it is supposed to describe. The suffix "a" provides a negation in Ancient Greek language. The suffix should be omitted to use tom (τομος) to manage the actual situation of a-toms (=Toms) as compound of elementary particles. In late 19th century after the European Spring of Nations actually two basically different concepts of atoms of chemists and physicists accomplished a kind of symbioses. The suggestion is put forward that while indivisible atoms soon became contradictions in physics, they still retain some value in chemistry which should be taken into account in the attempt to hange the name of atom. The research of human genome as the atom of genetics is similar in broader sense, while there is no basic problem with the nomenclature of genome. The genome manipulations are far less obstructed with Chinese traditions compared to Christian beliefs.

  16. Charged particle traps physics and techniques of charged particle field confinement

    CERN Document Server

    Major, Fouad G; Werth, Günther

    2005-01-01

    This book provides an introduction and guide to modern advances in charged particle (and antiparticle) confinement by electromagnetic fields. Confinement in different trap geometries, the influence of trap imperfections, classical and quantum mechanical description of the trapped particle motion, different methods of ion cooling to low temperatures, and non-neutral plasma properties (including Coulomb crystals) are the main subjects. They form the basis of such applications of charged particle traps as high-resolution optical and microwave spectroscopy, mass spectrometry, atomic clocks, and, potentially, quantum computing

  17. Laser induced x-ray `RADAR' particle physics model

    Science.gov (United States)

    Lockley, D.; Deas, R.; Moss, R.; Wilson, L. A.; Rusby, D.; Neely, D.

    2016-05-01

    The technique of high-power laser-induced plasma acceleration can be used to generate a variety of diverse effects including the emission of X-rays, electrons, neutrons, protons and radio-frequency radiation. A compact variable source of this nature could support a wide range of potential applications including single-sided through-barrier imaging, cargo and vehicle screening, infrastructure inspection, oncology and structural failure analysis. This paper presents a verified particle physics simulation which replicates recent results from experiments conducted at the Central Laser Facility at Rutherford Appleton Laboratory (RAL), Didcot, UK. The RAL experiment demonstrated the generation of backscattered X-rays from test objects via the bremsstrahlung of an incident electron beam, the electron beam itself being produced by Laser Wakefield Acceleration. A key initial objective of the computer simulation was to inform the experimental planning phase on the predicted magnitude of the backscattered X-rays likely from the test objects. This objective was achieved and the computer simulation was used to show the viability of the proposed concept (Laser-induced X-ray `RADAR'). At the more advanced stages of the experimental planning phase, the simulation was used to gain critical knowledge of where it would be technically feasible to locate key diagnostic equipment within the experiment. The experiment successfully demonstrated the concept of X-ray `RADAR' imaging, achieved by using the accurate timing information of the backscattered X-rays relative to the ultra-short laser pulse used to generate the electron beam. By using fast response X-ray detectors it was possible to derive range information for the test objects being scanned. An X-ray radar `image' (equivalent to a RADAR B-scan slice) was produced by combining individual X-ray temporal profiles collected at different points along a horizontal distance line scan. The same image formation process was used to generate

  18. Final Report for Studies in Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Piilonen, Leo; Takeuchi, Tatsu; Minic, Djordje; Link, Jonathan

    2013-11-01

    This is the final report of DOE Grant DE-FG05-92ER40709 awarded to the Virginia Tech high energy physics group. It covers the period February 1, 2010 through April 30, 2013. The high energy physics program at Virginia Tech supported by this grant is organized into three tasks: A for theory (Profs. Tatsu Takeuchi and Djordje Minic), B for heavy flavor physics with the Belle and Belle II experiments (Prof. Leo Piilonen), and N for neutrino physics (Profs. Jonathan Link and Piilonen).

  19. Paladin Enterprises: Monolithic particle physics models global climate.

    CERN Multimedia

    2002-01-01

    Paladin Enterprises presents a monolithic particle model of the universe which will be used by them to build an economical fusion energy system. The model is an extension of the work done by James Clerk Maxwell. Essentially, gravity is unified with electro-magnetic forces and shown to be a product of a closed loop current system, i.e. a particle - monolithic or sub atomic. This discovery explains rapid global climate changes which are evident in the geological record and also provides an explanation for recent changes in the global climate.

  20. Mega-ton water Cherenkov detectors for particle and astro-particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Kajita, Takaaki [Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, Univ. of Tokyo, Kashiwa-no-ha 5-1-5, Kashiwa, Chiba 277-8582 (Japan)

    2006-05-15

    Physics potential of mega-ton-class water Cherenkov detectors is discussed. Especially, emphasis is made on the non-accelerator physics topics, including atmospheric neutrinos, solar neutrinos, supernova neutrinos and proton decays.

  1. Probing the frontiers of particle physics with tabletop-scale experiments.

    Science.gov (United States)

    DeMille, David; Doyle, John M; Sushkov, Alexander O

    2017-09-08

    The field of particle physics is in a peculiar state. The standard model of particle theory successfully describes every fundamental particle and force observed in laboratories, yet fails to explain properties of the universe such as the existence of dark matter, the amount of dark energy, and the preponderance of matter over antimatter. Huge experiments, of increasing scale and cost, continue to search for new particles and forces that might explain these phenomena. However, these frontiers also are explored in certain smaller, laboratory-scale "tabletop" experiments. This approach uses precision measurement techniques and devices from atomic, quantum, and condensed-matter physics to detect tiny signals due to new particles or forces. Discoveries in fundamental physics may well come first from small-scale experiments of this type. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. Relationship between the physical environment and different domains of physical activity in European adults: a systematic review

    Directory of Open Access Journals (Sweden)

    Van Holle Veerle

    2012-09-01

    Full Text Available Abstract Background In the past decade, various reviews described the relationship between the physical environment and different physical activity (PA domains. Yet, the majority of the current review evidence relies on North American/Australian studies, while only a small proportion of findings refer to European studies. Given some clear environmental differences across continents, this raises questions about the applicability of those results in European settings. This systematic review aimed at summarizing Europe-specific evidence on the relationship between the physical environment and different PA domains in adults. Methods Seventy eligible papers were identified through systematic searches across six electronic databases. Included papers were observational studies assessing the relationship between several aspects of the physical environment and PA in European adults (18-65y. Summary scores were calculated to express the strength of the relationship between each environmental factor and different PA domains. Results Convincing evidence on positive relationships with several PA domains was found for following environmental factors: walkability, access to shops/services/work and the composite factor environmental quality. Convincing evidence considering urbanization degree showed contradictory results, dependent on the observed PA domain. Transportation PA was more frequently related to the physical environment than recreational PA. Possible evidence for a positive relationship with transportation PA emerged for walking/cycling facilities, while a negative relationship was found for hilliness. Some environmental factors, such as access to recreational facilities, aesthetics, traffic- and crime-related safety were unrelated to different PA domains in Europe. Conclusions Generally, findings from this review of European studies are in accordance with results from North American/Australian reviews and may contribute to a generalization of the

  3. Plato's Ideas and the Theories of Modern Particle Physics: Amazing Parallels

    Science.gov (United States)

    Machleidt, Ruprecht

    2006-05-01

    It is generally known that the question, ``What are the most elementary particles that all matter is made from?'', was already posed in the antiquity. The Greek natural philosophers Leucippus and Democritus were the first to suggest that all matter was made from atoms. Therefore, most people perceive them as the ancient fathers of elementary particle physics. However, this perception is wrong. Modern particle physics is not just a simple atomism. The characteristic point of modern particle theory is that it is concerned with the symmetries underlying the particles we discover in experiment. More than 2000 years ago, a similar idea was already advanced by the Greek philosopher Plato in his dialogue Timaeus: Geometric symmetries generate the atoms from just a few even more elementary items. Plato's vision is amazingly close to the ideas of modern particle theory. This fact, which is unfortunately little known, has been pointed out repeatedly by Werner Heisenberg.

  4. The Roots of the Standard Model of Particle Physics

    NARCIS (Netherlands)

    Mulders, P. J.

    2016-01-01

    We conjecture how the particle content of the standard model can emerge starting with a supersymmetric Wess-Zumino model in 1+1 dimensions (d = 2) with three real boson and fermion fields. Considering SU(3) transformations, the lagrangian and its ground state are SO(3) invariant. The SO(3) symmetry

  5. Physical Models for Particle Tracking Simulations in the RF Gap

    Energy Technology Data Exchange (ETDEWEB)

    Shishlo, Andrei P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holmes, Jeffrey A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-01

    This document describes the algorithms that are used in the PyORBIT code to track the particles accelerated in the Radio-Frequency cavities. It gives the mathematical description of the algorithms and the assumptions made in each case. The derived formulas have been implemented in the PyORBIT code. The necessary data for each algorithm are described in detail.

  6. The cosmic microwave background - A probe of particle physics

    Science.gov (United States)

    Silk, Joseph

    1990-01-01

    The current status of spectral distortions and angular anisotropies in the cosmic microwave background is reviewed, with emphasis on the role played by weakly interacting particle dark matter. Theoretical predictions and recent observational results are described, and prospects for future progress are summarized.

  7. Going beyond the Standard Model of Elementary Particle Physics

    Indian Academy of Sciences (India)

    2011-11-19

    Nov 19, 2011 ... Higgs Mechanism. ○. Spontaneous symmetry breaking needs a field to be nonzero everywhere. ○. To break SU(2) (threedimensional rotations) at least 44 fields needed. ○. Excitations of one field: Massive spin0 particle. “The Higgs boson”. (Brout, Englert, Guralnik, Hagen, Higgs, Kibble). ○.

  8. 6th International Conference on Trapped Charged Particles and Fundamental Physics

    CERN Document Server

    Schury, Peter; Ichikawa, Yuichi

    2017-01-01

    This volume presents the proceedings of the International Conference on Trapped Charged Particles and Fundamental Physics (TCP 14). It presents recent developments in the theoretical and experimental research on trapped charged particles and related fundamental physics and applications. The content has been divided topic-wise covering basic questions of Fundamental Physics, Quantum and QED Effects, Plasmas and Collective Behavior and Anti-Hydrogen. More technical issues include Storage Ring Physics, Precision Spectroscopy and Frequency Standards, Highly Charged Ions in Traps, Traps for Radioactive Isotopes and New Techniques and Facilities. An applied aspect of ion trapping is discussed in section devoted to Applications of Particle Trapping including Quantum Information and Processing. Each topic has a more general introduction, but also more detailed contributions are included. A selection of contributions exemplifies the interdisciplinary nature of the research on trapped charged particles worldwide. Repri...

  9. Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 4: Cosmic Frontier

    Energy Technology Data Exchange (ETDEWEB)

    Feng, J. L. [MIT, LNS; Ritz, S. [UC, Santa Cruz; Beatty, J. J. [Ohio State U.; Buckley, J. [Washington U., Seattle; Cowen, D. F. [Penn State U.; Cushman, P. [Minnesota U.; Dodelson, S. [Chicago U., Astron. Astrophys. Ctr.; Galbiati, C. [PNPI, CSTD; Honscheid, K. [Ohio State U.; Hooper, D. [Chicago U., Astron. Astrophys. Ctr.; Kaplinghat, M. [UC, Irvine; Kusenko, A. [Unlisted; Matchev, K. [Florida U.; McKinsey, D. [Yale U.; Nelson, A. E. [Washington U., Seattle; Olinto, A. [Chicago U., EFI; Profumo, S. [UC, Santa Cruz; Robertson, H. [Washington U., Seattle; Rosenberg, L. [Unlisted; Sinnis, G. [Los Alamos; Tait, T. M.P. [UCLA

    2014-01-23

    These reports present the results of the 2013 Community Summer Study of the APS Division of Particles and Fields ("Snowmass 2013") on the future program of particle physics in the U.S. Chapter 4, on the Cosmic Frontier, discusses the program of research relevant to cosmology and the early universe. This area includes the study of dark matter and the search for its particle nature, the study of dark energy and inflation, and cosmic probes of fundamental symmetries.

  10. Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 3: Energy Frontier

    Energy Technology Data Exchange (ETDEWEB)

    Brock, R.; et al.

    2014-01-23

    These reports present the results of the 2013 Community Summer Study of the APS Division of Particles and Fields ("Snowmass 2013") on the future program of particle physics in the U.S. Chapter 3, on the Energy Frontier, discusses the program of research with high-energy colliders. This area includes experiments on the Higgs boson, the electroweak and strong interactions, and the top quark. It also encompasses direct searches for new particles and interactions at high energy.

  11. What's A Pixel Particle Sensor Chip?

    CERN Multimedia

    2008-01-01

    ATLAS particle physics experiment aided with collaboration ON Semiconductor was recently honored by the European Council for Nuclear Research (CERN), with an Industrial Award recognizing the company's contribution in supplying complex "Pixel Particle Sensor" chips for use in CERN's ATLAS particle physics experiment.

  12. Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 1: Summary

    Energy Technology Data Exchange (ETDEWEB)

    Rosner, J.L.; et al.

    2014-01-23

    These reports present the results of the 2013 Community Summer Study of the APS Division of Particles and Fields ("Snowmass 2013") on the future program of particle physics in the U.S. Chapter 1 contains the Executive Summary and the summaries of the reports of the nine working groups.

  13. Meta-Analysis inside and outside Particle Physics: Two Traditions That Should Converge?

    Science.gov (United States)

    Baker, Rose D.; Jackson, Dan

    2013-01-01

    The use of meta-analysis in medicine and epidemiology really took off in the 1970s. However, in high-energy physics, the Particle Data Group has been carrying out meta-analyses of measurements of particle masses and other properties since 1957. Curiously, there has been virtually no interaction between those working inside and outside particle…

  14. Physical and biological changes of suspended particles in a free surface flow constructed wetland

    NARCIS (Netherlands)

    Mulling, B.T.M.; van den Boomen, R.M.; Claassen, T.H.L.; van der Geest, H.G.; Kappelhof, J.W.N.M.; Admiraal, W.

    2013-01-01

    Suspended particles are considered as contaminants in treated wastewater and can have profound effects on the biological, physical and chemical properties of receiving aquatic ecosystems, depending on the concentration, type and nature of the suspended particles. Constructed wetlands are known to

  15. U.C. Davis high energy particle physics research: Technical progress report -- 1990

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-12-31

    Summaries of progress made for this period is given for each of the following areas: (1) Task A--Experiment, H1 detector at DESY; (2) Task C--Experiment, AMY detector at KEK; (3) Task D--Experiment, fixed target detectors at Fermilab; (4) Task F--Experiment, PEP detector at SLAC and pixel detector; (5) Task B--Theory, particle physics; and (6) Task E--Theory, particle physics.

  16. Monte Carlo 2000 Conference : Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications

    CERN Document Server

    Baräo, Fernando; Nakagawa, Masayuki; Távora, Luis; Vaz, Pedro

    2001-01-01

    This book focusses on the state of the art of Monte Carlo methods in radiation physics and particle transport simulation and applications, the latter involving in particular, the use and development of electron--gamma, neutron--gamma and hadronic codes. Besides the basic theory and the methods employed, special attention is paid to algorithm development for modeling, and the analysis of experiments and measurements in a variety of fields ranging from particle to medical physics.

  17. Medical physics--particle accelerators--the beginning.

    Science.gov (United States)

    Ganz, Jeremy C

    2014-01-01

    This chapter outlines the early development of particle accelerators with the redesign from linear accelerator to cyclotron by Ernest Lawrence with a view to reducing the size of the machines as the power increased. There are minibiographies of Ernest Lawrence and his brother John. The concept of artificial radiation is outlined and the early attempts at patient treatment are mentioned. The reasons for trying and abandoning neutron therapy are discussed, and the early use of protons is described.

  18. The communication of physical science uncertainty in European National Adaptation Strategies.

    Science.gov (United States)

    Lorenz, S; Dessai, S; Paavola, J; Forster, P M

    Many European countries have developed National Adaptation Strategies (NAS) to guide adaptation to the expected impacts of climate change. There is a need for more structured communication of the uncertainties related to future climate and its impacts so that adaptation actions can be planned and implemented effectively and efficiently. We develop a novel uncertainty assessment framework for comparing approaches to the inclusion and communication of physical science uncertainty, and use it to analyse ten European NAS. The framework is based on but modifies and integrates the notion of the "cascade of uncertainties" and the NUSAP (Numeral Unit Spread Assessment Pedigree) methodology to include the overarching assessment categories of Numerical Value, Spread, Depth and Substantiation. Our assessment indicates that there are marked differences between the NAS in terms of inclusion and communication of physical science uncertainty. We find that there is a bias towards the communication of quantitative uncertainties as opposed to qualitative uncertainties. Through the examination of the English and German NAS, we find that similar stages of development in adaptation policy planning can nevertheless result in differences in handling physical science uncertainty. We propose that the degree of transparency and openness on physical science uncertainty is linked to the wider socio-political context within which the NAS are framed. Our methodology can help raise awareness among NAS users about the explicit and embedded information on physical science uncertainty within the existing NAS and would help to design more structured uncertainty communication in new or revised NAS.

  19. Source Apportionment of Aerosol Particles at a European Air Pollution Hot Spot using Particle Number Size Distributions and Chemical Composition.

    Czech Academy of Sciences Publication Activity Database

    Leoni, C.; Pokorná, Petra; Hovorka, J.; Masiol, M.; Topinka, Jan; Zhao, Y.; Křůmal, Kamil; Cliff, S.; Mikuška, Pavel; Hopke, P.K.

    2018-01-01

    Roč. 234 (2018), s. 145-154 ISSN 0269-7491 R&D Projects: GA ČR(CZ) GBP503/12/G147 Institutional support: RVO:67985858 ; RVO:68081715 ; RVO:68378041 Subject RIV: CF - Physical ; Theoretical Chemistry; CB - Analytical Chemistry, Separation (UIACH-O) OBOR OECD: Physical chemistry; Analytical chemistry (UIACH-O) Impact factor: 5.099, year: 2016

  20. Majorana Fermions in Particle Physics, Solid State and Quantum Information

    Science.gov (United States)

    Borsten, L.; Duff, M. J.

    This review is based on lectures given by M. J. Duff summarising the far reaching contributions of Ettore Majorana to fundamental physics, with special focus on Majorana fermions in all their guises. The theoretical discovery of the eponymous fcrmion in 1937 has since had profound implications for particlc physics, solid state and quantum computation. The breadth of these disciplines is testimony to Majorana's genius, which continues to permeate physics today. These lectures offer a whistle-stop tour through some limited subset of the key ideas. In addition to touching on these various applications, we will draw out some fascinating relations connecting the normed division algebras R, ℂ, H, O to spinors, trialities. K-theory and the classification of stable topological states of symmetry-protected gapped free-fermion systems.

  1. Review of Physics Results from the Tevatron: Searches for New Particles and Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Toback, David [Texas A-M; ŽIvković, Lidija [Belgrade U.

    2015-02-17

    We present a summary of results for searches for new particles and interactions at the Fermilab Tevatron collider by the CDF and the D0 experiments. These include results from Run I as well as Run II for the time period up to July 2014. We focus on searches for supersymmetry, as well as other models of new physics such as new fermions and bosons, various models of excited fermions, leptoquarks, technicolor, hidden-valley model particles, long-lived particles, extra dimensions, dark matter particles, and signature-based searches.

  2. Theoretical Studies of Alfven Waves and Energetic Particle Physics in Fusion Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liu [Univ. of California, Irvine, CA (United States)

    2017-12-20

    This report summarizes major theoretical findings in the linear as well as nonlinear physics of Alfvén waves and energetic particles in magnetically confined fusion plasmas. On the linear physics, a variational formulation, based on the separation of singular and regular spatial scales, for drift-Alfvén instabilities excited by energetic particles is established. This variational formulation is then applied to derive the general fishbone-like dispersion relations corresponding to the various Alfvén eigenmodes and energetic-particle modes. It is further employed to explore in depth the low-frequency Alfvén eigenmodes and demonstrate the non-perturbative nature of the energetic particles. On the nonlinear physics, new novel findings are obtained on both the nonlinear wave-wave interactions and nonlinear wave-energetic particle interactions. It is demonstrated that both the energetic particles and the fine radial mode structures could qualitatively affect the nonlinear evolution of Alfvén eigenmodes. Meanwhile, a theoretical approach based on the Dyson equation is developed to treat self-consistently the nonlinear interactions between Alfvén waves and energetic particles, and is then applied to explain simulation results of energetic-particle modes. Relevant list of journal publications on the above findings is also included.

  3. Elementary Particle Physics Experiment at the University of Massachusetts, Amherst

    Energy Technology Data Exchange (ETDEWEB)

    Brau, Benjamin; Dallapiccola, Carlo; Willocq, Stephane

    2013-07-30

    In this progress report we summarize the activities of the University of Massachusetts- Amherst group for the three years of this research project. We are fully engaged in research at the energy frontier with the ATLAS experiment at the CERN Large Hadron Collider. We have made leading contributions in software development and performance studies for the ATLAS Muon Spectrometer, as well as on physics analysis with an emphasis on Standard Model measurements and searches for physics beyond the Standard Model. In addition, we have increased our contributions to the Muon Spectrometer New Small Wheel upgrade project.

  4. New Mexico Center for Particle Physics: Studies of fundamental interactions

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, J.A.J.

    1992-01-01

    The New Mexico Center/UNM group research program includes the CDF experiment at Fermilab and the SDC experiment at the SSC. In both experiments the UNM group research focuses on silicon strip tracking systems. The present research goals are to develop and utilize precision silicon tracking to increase significantly the physics reach of the Tevatron, and to make possible the study of high-P[sub t] physics at the SSC. The search for the t-quark in CDF is the primary goal of the upcoming Tevatron runs. This Progress Report summarizes our research accomplishments from the last year.

  5. Physical and chemical characterization of particles in producer gas

    DEFF Research Database (Denmark)

    Hindsgaul, Claus; Henriksen, Ulrik B.; Bentzen, Jens Dall

    2000-01-01

    ) engines fueled by the gas. The implications of the findings on engine wear are discussed.The majority (85%) of the total particulate matter (TPM) mass was identified, using scanning electron microscopy (SEM), as mono-sized spherical primary soot particles with diameters of 70 nm. Soot agglomerates, up...... to 30 um were present. 77% of the TPM was determined, by thermogravimetric analysis (TGA) to be carbon structures.The dichloromethane (DCM)-soluble fraction (11% of the TPM) was extracted, separated into fractions of varying polarities using adsorption column chromatography and analyzed using gas...

  6. An Evaluation of the Particle Physics Masterclass as a Context for Student Learning about the Nature of Science

    Science.gov (United States)

    Wadness, Michael J.

    2010-01-01

    This dissertation addresses the research question: To what extent do secondary school science students attending the U.S. Particle Physics Masterclass change their view of the nature of science (NOS)? The U.S. Particle Physics Masterclass is a physics outreach program run by QuarkNet, a national organization of secondary school physics teachers…

  7. Physical culture in life of Eastern-European region students: modern state and prospects of development

    Directory of Open Access Journals (Sweden)

    Iermakov S.S.

    2015-12-01

    Full Text Available Purpose: analysis of researches on physical culture problems among students in countries of Easter-European region (2013-2015. Material: As sources of information we chose data base of Russia, Poland and Ukraine. Besides, we used sites of the most known journals of Easter-European region. When choosing journals we based on rating of Russia (RISC, Poland (Index Copernicus and Ukraine (bibliometryka of Ukrainian science data bases. Results: thematic focus of researches on different physical education, sports and students health aspects was determined. The promising directions of researches are as follows: re-organization of system of students’ physical education; interconnection of life quality and organism’s resistance to environmental impacts; dependence of students’ motor functioning on bad habits’ presence; determination of factors, facilitating motivation for sport games in system of students’ health related trainings; perceiving of life quality by disabled students; competence and professional skillfulness of specialists in physical culture and sports. Conclusions: it is recommended to use new, attractive forms of students’ motor functioning. It is necessary to regulate students’ motor functioning, considering motivation for success and for avoiding failures as well as to increase students’ psycho-physiological stresses’ resistance and to form students’ culture of health.

  8. Physical activity in European adolescents and associations with anxiety, depression and well-being.

    Science.gov (United States)

    McMahon, Elaine M; Corcoran, Paul; O'Regan, Grace; Keeley, Helen; Cannon, Mary; Carli, Vladimir; Wasserman, Camilla; Hadlaczky, Gergö; Sarchiapone, Marco; Apter, Alan; Balazs, Judit; Balint, Maria; Bobes, Julio; Brunner, Romuald; Cozman, Doina; Haring, Christian; Iosue, Miriam; Kaess, Michael; Kahn, Jean-Pierre; Nemes, Bogdan; Podlogar, Tina; Poštuvan, Vita; Sáiz, Pilar; Sisask, Merike; Tubiana, Alexandra; Värnik, Peeter; Hoven, Christina W; Wasserman, Danuta

    2017-01-01

    In this cross-sectional study, physical activity, sport participation and associations with well-being, anxiety and depressive symptoms were examined in a large representative sample of European adolescents. A school-based survey was completed by 11,110 adolescents from ten European countries who took part in the SEYLE (Saving and Empowering Young Lives in Europe) study. The questionnaire included items assessing physical activity, sport participation and validated instruments assessing well-being (WHO-5), depressive symptoms (BDI-II) and anxiety (SAS). Multi-level mixed effects linear regression was used to examine associations between physical activity/sport participation and mental health measures. A minority of the sample (17.9 % of boys and 10.7 % of girls; p depressive symptoms, up to a threshold of moderate frequency of activity. In a multi-level mixed effects model more frequent physical activity and participation in sport were both found to independently contribute to greater well-being and lower levels of anxiety and depressive symptoms in both sexes. Increasing activity levels and sports participation among the least active young people should be a target of community and school-based interventions to promote well-being. There does not appear to be an additional benefit to mental health associated with meeting the WHO-recommended levels of activity.

  9. Integrated marketing sphere of physical culture and sports in terms of European integration Regional Center Research

    Directory of Open Access Journals (Sweden)

    Oleksandr Popov

    2015-06-01

    Full Text Available Purpose: exposure of conceptual and strategic positions of the complex marketing of sphere of physical culture and sport in the conditions of European integration of regional center. Material and Methods: analysis of literary sources, analysis of documents of legislative, normatively-legal and programmatic maintenance, analysis of the systems, questioning as a questionnaire. Results: the analysis of the systems of terms of development of sphere of physical culture and sport is carried out by the study of modern tendencies, interests of young people and habitants of regional center; complex description of conceptual and strategic positions of the relatively complex marketing of sphere of physical culture and sport is presented in the conditions of European integration of regional center. Conclusions: it is set that the decision of tasks in relation to conditioning for development of sphere of physical culture and sport must come true with the observance of certain principles; got founding in relation to development of marketing plan of forming of sporting image Kharkiv.

  10. Physical activity of subjects aged 50-64 years involved in the European Prospective Investigation into Cancer and Nutrition (EPIC)

    NARCIS (Netherlands)

    Haftenberger, M; Schuit, A.J.; Tormo, M J; Boeing, H; Wareham, N; Bueno-de-Mesquita, H B; Kumle, M; Hjartåker, A; Chirlaque, M D; Ardanaz, E; Andren, C; Lindahl, B; Peeters, P H M; Allen, N E; Overvad, K; Tjønneland, A; Clavel-Chapelon, F; Linseisen, J; Bergmann, M M; Trichopoulou, A; Lagiou, P; Salvini, S; Panico, S; Riboli, E; Ferrari, P; Slimani, N

    2002-01-01

    Objective: To describe physical activity of participants in the European Prospective Investigation into Cancer and Nutrition (EPIC). Design: A cross-sectional analysis of baseline data of a European prospective cohort study. Subjects: This analysis was restricted to participants in the age group

  11. RENEB - Running the European Network of biological dosimetry and physical retrospective dosimetry.

    Science.gov (United States)

    Kulka, Ulrike; Abend, Michael; Ainsbury, Elizabeth; Badie, Christophe; Barquinero, Joan Francesc; Barrios, Lleonard; Beinke, Christina; Bortolin, Emanuela; Cucu, Alexandra; De Amicis, Andrea; Domínguez, Inmaculada; Fattibene, Paola; Frøvig, Anne Marie; Gregoire, Eric; Guogyte, Kamile; Hadjidekova, Valeria; Jaworska, Alicja; Kriehuber, Ralf; Lindholm, Carita; Lloyd, David; Lumniczky, Katalin; Lyng, Fiona; Meschini, Roberta; Mörtl, Simone; Della Monaca, Sara; Monteiro Gil, Octávia; Montoro, Alegria; Moquet, Jayne; Moreno, Mercedes; Oestreicher, Ursula; Palitti, Fabrizio; Pantelias, Gabriel; Patrono, Clarice; Piqueret-Stephan, Laure; Port, Matthias; Prieto, María Jesus; Quintens, Roel; Ricoul, Michelle; Romm, Horst; Roy, Laurence; Sáfrány, Géza; Sabatier, Laure; Sebastià, Natividad; Sommer, Sylwester; Terzoudi, Georgia; Testa, Antonella; Thierens, Hubert; Turai, Istvan; Trompier, François; Valente, Marco; Vaz, Pedro; Voisin, Philippe; Vral, Anne; Woda, Clemens; Zafiropoulos, Demetre; Wojcik, Andrzej

    2017-01-01

    A European network was initiated in 2012 by 23 partners from 16 European countries with the aim to significantly increase individualized dose reconstruction in case of large-scale radiological emergency scenarios. The network was built on three complementary pillars: (1) an operational basis with seven biological and physical dosimetric assays in ready-to-use mode, (2) a basis for education, training and quality assurance, and (3) a basis for further network development regarding new techniques and members. Techniques for individual dose estimation based on biological samples and/or inert personalized devices as mobile phones or smart phones were optimized to support rapid categorization of many potential victims according to the received dose to the blood or personal devices. Communication and cross-border collaboration were also standardized. To assure long-term sustainability of the network, cooperation with national and international emergency preparedness organizations was initiated and links to radiation protection and research platforms have been developed. A legal framework, based on a Memorandum of Understanding, was established and signed by 27 organizations by the end of 2015. RENEB is a European Network of biological and physical-retrospective dosimetry, with the capacity and capability to perform large-scale rapid individualized dose estimation. Specialized to handle large numbers of samples, RENEB is able to contribute to radiological emergency preparedness and wider large-scale research projects.

  12. Influence of particle size and preparation methods on the physical and chemical stability of amorphous simvastatin

    DEFF Research Database (Denmark)

    Zhang, Fang; Aaltonen, Jaakko; Tian, Fang

    2009-01-01

    This study investigated the factors influencing the stability of amorphous simvastatin. Quench-cooled amorphous simvastatin in two particle size ranges, 150-180 microm (QC-big) and physical and chemical......, particle size, a factor that has often been overlooked when dealing with amorphous materials, was shown to have an influence on physical stability of amorphous simvastatin....... stability were investigated. Physical stability (crystallization) of amorphous simvastatin stored at two conditions was monitored by X-ray powder diffractometry (XRPD) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Assessment of enthalpy relaxation of amorphous forms was conducted...

  13. Dynamics of magnetically trapped particles foundations of the physics of radiation belts and space plasmas

    CERN Document Server

    Roederer, Juan G

    2014-01-01

    This book is a new edition of Roederer’s classic Dynamics of Geomagnetically Trapped Radiation, updated and considerably expanded. The main objective is to describe the dynamic properties of magnetically trapped particles in planetary radiation belts and plasmas and explain the physical processes involved from the theoretical point of view. The approach is to examine in detail the orbital and adiabatic motion of individual particles in typical configurations of magnetic and electric fields in the magnetosphere and, from there, derive basic features of the particles’ collective “macroscopic” behavior in general planetary environments. Emphasis is not on the “what” but on the “why” of particle phenomena in near-earth space, providing a solid and clear understanding of the principal basic physical mechanisms and dynamic processes involved. The book will also serve as an introduction to general space plasma physics, with abundant basic examples to illustrate and explain the physical origin of diff...

  14. Particle physics, one hundred years of dicoveries an annotated chronological bibliography

    CERN Document Server

    Ezhela, Vladimir V; Lugovsky, S B; Polishchuk, B V; Striganov, S I; Stroganov, Y G; Armstrong, Betty; Barnett, Richard Michael; Groom, D E; Gee, P S; Trippe, Thomas G; Wohl, Charles G; Jackson, John David

    1996-01-01

    Several years before the official start of the 20th century, a series of milestone physics experiments pioneered the science which eventually became to be known as particle physics. A new book by several authors from the COMPAS group at the Institute for High Energy Physics, Protvino, near Moscow, and from the Particle Data Group effort at the Lawrence Berkeley Laboratory, reinforced by J.D. Jackson, has compiled a useful summary and bibliography of more than 500 key papers marking the development of particle physics from 1895 to the discovery of the top quark in 1995. Some 70 percent of the listed papers are post World War 2. The book is comprehensively indexed, including members of large collaborations and providing a useful benchmark. However actual entries confusingly use the first listed member of the collaboborations, even if a Nobel Prize was subsequently awarded to another member of the team.

  15. arXiv Where is Particle Physics Going?

    CERN Document Server

    Ellis, John

    2017-12-08

    The answer to the question in the title is: in search of new physics beyond the Standard Model, for which there are many motivations, including the likely instability of the electroweak vacuum, dark matter, the origin of matter, the masses of neutrinos, the naturalness of the hierarchy of mass scales, cosmological inflation and the search for quantum gravity. So far, however, there are no clear indications about the theoretical solutions to these problems, nor the experimental strategies to resolve them. It makes sense now to prepare various projects for possible future accelerators, so as to be ready for decisions when the physics outlook becomes clearer. Paraphrasing George Harrison, “If you don’t yet know where you’re going, any road may take you there.”

  16. Physics of sub-micron cosmic dust particles

    Science.gov (United States)

    Roy, N. L.

    1974-01-01

    Laboratory tests with simulated micrometeoroids to measure the heat transfer coefficient are discussed. Equations for ablation path length for electrically accelerated micrometeoroids entering a gas target are developed which yield guidelines for the laboratory measurement of the heat transfer coefficient. Test results are presented for lanthanum hexaboride (LaB sub 6) microparticles in air, argon, and oxygen targets. The tests indicate the heat transfer coefficient has a value of approximately 0.9 at 30 km/sec, and that it increases to approximately unity at 50 km/sec and above. Test results extend to over 100 km/sec. Results are also given for two types of small particle detectors. A solid state capacitor type detector was tested from 0.61 km/sec to 50 km/sec. An impact ionization type detector was tested from 1.0 to 150 km/sec using LaB sub 6 microparticles.

  17. MCPLOTS. A particle physics resource based on volunteer computing

    Energy Technology Data Exchange (ETDEWEB)

    Karneyeu, A. [Joint Inst. for Nuclear Research, Moscow (Russian Federation); Mijovic, L. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Irfu/SPP, CEA-Saclay, Gif-sur-Yvette (France); Prestel, S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Lund Univ. (Sweden). Dept. of Astronomy and Theoretical Physics; Skands, P.Z. [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2013-07-15

    The mcplots.cern.ch web site (MCPLOTS) provides a simple online repository of plots made with high-energy-physics event generators, comparing them to a wide variety of experimental data. The repository is based on the HEPDATA online database of experimental results and on the RIVET Monte Carlo analysis tool. The repository is continually updated and relies on computing power donated by volunteers, via the LHC rate at HOME 2.0 platform.

  18. Panel discussion on the future of particle physics

    CERN Multimedia

    Perkins, Donald Hill; Veltman, Martinus J G; Okun, Lev Borisovich; Aymar, Robert; Weinberg, Steven; Darriulat, Pierre; Glashow, Sheldon Lee; van der Meer, S; Gianotti, F; Antoniadis, Ignatios; Schopper, Herwig Franz; Llewellyn Smith, Christopher Hubert; Telegdi, Valentine Louis; Bellettini, Giorgio; Soergel, Volker

    2004-01-01

    The projects that are to be undertaken by CERN in future are discussed in this paper. The discovery of Higgs at LHC and R&D at CLIC are reported. The introduction of Higgs bosons gave rise to new problems such as mass hierarchy and electroweak symmetry breaking. Solutions to the above problems using physics beyond standard model are also reported in this paper. The paper also discusses about the long-time scale associated to the projects.

  19. Particle Physics and Condensed Matter: The Saga Continues

    CERN Document Server

    Wilczek, Frank

    2016-01-01

    Ideas from quantum field theory and topology have proved remarkably fertile in suggesting new phenomena in the quantum physics of condensed matter. Here I'll supply some broad, unifying context, both conceptual and historical, for the abundance of results reported at the Nobel Symposium on "New Forms of Matter, Topological Insulators and Superconductors". Since they distill some most basic ideas in their simplest forms, these concluding remarks might also serve, for non-specialists, as an introduction.

  20. Physical activity, depressed mood and pregnancy worries in European obese pregnant women

    DEFF Research Database (Denmark)

    de Wit, Linda; Jelsma, Judith G M; van Poppel, Mireille N M

    2015-01-01

    -related worries with the Cambridge Worry Scale (CWS). In addition, socio-demographic characteristics, lifestyle factors, and perceptions and attitude regarding weight management and physical activity were measured. Linear regression analyses were performed to assess the association of mental health status......BACKGROUND: The purpose of this study was to examine the association between mental health status (i.e. depressed mood and pregnancy-related worries) and objectively measured physical activity levels in obese pregnant women from seven European countries. METHODS: Baseline data from the vitamin D...... and lifestyle intervention for the prevention of gestational diabetes mellitus (DALI) study were used. Time spent in moderate-to-vigorous physical activity (MVPA) and sedentary behaviour was measured with accelerometers. Depressed mood was measured with the WHO well-being index (WHO-5) and pregnancy...

  1. Experimental physics 4. Nuclear, particle and astrophysics. 5. ed.; Experimentalphysik 4. Kern-, Teilchen- und Astrophysik

    Energy Technology Data Exchange (ETDEWEB)

    Demtroeder, Wolfgang

    2017-09-01

    The following topics are dealt with: Structure of atomic nuclei, unstable nuclei and radioactivity, experimental techniques in nuclear and high-energy physics, nuclear forces and nuclear models, nuclear reactions, physics of elementary particles, applications of nuclear and high-energy physics, foundations of experimental astronomy and astrophysics, our solar system, birth, life, and death of stars, the development and present structure of the universe. (HSI)

  2. Reliability of health-related physical fitness tests in European adolescents. The HELENA Study.

    Science.gov (United States)

    Ortega, F B; Artero, E G; Ruiz, J R; Vicente-Rodriguez, G; Bergman, P; Hagströmer, M; Ottevaere, C; Nagy, E; Konsta, O; Rey-López, J P; Polito, A; Dietrich, S; Plada, M; Béghin, L; Manios, Y; Sjöström, M; Castillo, M J

    2008-11-01

    To examine the reliability of a set of health-related physical fitness tests used in the European Union-funded Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) Study on lifestyle and nutrition among adolescents. A set of physical fitness tests was performed twice in a study sample, 2 weeks apart, by the same researchers. A total of 123 adolescents (69 males and 54 females, aged 13.6+/-0.8 years) from 10 European cities participated in the study. Flexibility, muscular fitness, speed/agility and aerobic capacity were tested using the back-saver sit and reach, handgrip, standing broad jump, Bosco jumps (squat jump, counter movement jump and Abalakov jump), bent arm hang, 4 x 10 m shuttle run, and 20-m shuttle run tests. The ANOVA analysis showed that neither systematic bias nor sex differences were found for any of the studied tests, except for the back-saver sit and reach test, in which a borderline significant sex difference was observed (P=0.044). The Bland-Altman plots graphically showed the reliability patterns, in terms of systematic errors (bias) and random error (95% limits of agreement), of the physical fitness tests studied. The observed systematic error for all the fitness assessment tests was nearly 0. Neither a learning nor a fatigue effect was found for any of the physical fitness tests when repeated. The results also suggest that reliability did not differ between male and female adolescents. Collectively, it can be stated that the reliability of the set of physical fitness tests examined in this study is acceptable. The data provided contribute to a better understanding of physical fitness assessment in young people.

  3. Sources and mixing state of size-resolved elemental carbon particles in a European megacity: Paris

    Directory of Open Access Journals (Sweden)

    R. M. Healy

    2012-02-01

    Full Text Available An Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS was deployed to investigate the size-resolved chemical composition of single particles at an urban background site in Paris, France, as part of the MEGAPOLI winter campaign in January/February 2010. ATOFMS particle counts were scaled to match coincident Twin Differential Mobility Particle Sizer (TDMPS data in order to generate hourly size-resolved mass concentrations for the single particle classes observed. The total scaled ATOFMS particle mass concentration in the size range 150–1067 nm was found to agree very well with the sum of concurrent High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS and Multi-Angle Absorption Photometer (MAAP mass concentration measurements of organic carbon (OC, inorganic ions and black carbon (BC (R2 = 0.91. Clustering analysis of the ATOFMS single particle mass spectra allowed the separation of elemental carbon (EC particles into four classes: (i EC attributed to biomass burning (ECbiomass, (ii EC attributed to traffic (ECtraffic, (iii EC internally mixed with OC and ammonium sulfate (ECOCSOx, and (iv EC internally mixed with OC and ammonium nitrate (ECOCNOx. Average hourly mass concentrations for EC-containing particles detected by the ATOFMS were found to agree reasonably well with semi-continuous quantitative thermal/optical EC and optical BC measurements (r2 = 0.61 and 0.65–0.68 respectively, n = 552. The EC particle mass assigned to fossil fuel and biomass burning sources also agreed reasonably well with BC mass fractions assigned to the same sources using seven-wavelength aethalometer data (r2 = 0.60 and 0.48, respectively, n = 568. Agreement between the ATOFMS and other instrumentation improved noticeably when a period influenced by significantly aged, internally mixed EC particles was removed from the intercomparison. 88% and 12% of EC particle

  4. On some physical and dynamical properties of microplastic particles in marine environment.

    Science.gov (United States)

    Chubarenko, I; Bagaev, A; Zobkov, M; Esiukova, E

    2016-07-15

    Simplified physical models and geometrical considerations reveal general physical and dynamical properties of microplastic particles (0.5-5mm) of different density, shape and size in marine environment. Windage of extremely light foamed particles, surface area and fouling rate of slightly positively buoyant microplastic spheres, films and fibres and settling velocities of negatively buoyant particles are analysed. For the Baltic Sea dimensions and under the considered idealised external conditions, (i) only one day is required for a foamed polystyrene particle to cross the sea (ca. 250km); (ii) polyethylene fibres should spend about 6-8months in the euphotic zone before sinking due to bio-fouling, whilst spherical particles can be retained on the surface up to 10-15years; (iii) for heavy microplastic particles, the time of settling through the water column in the central Gotland basin (ca. 250m) is less than 18h. Proper physical setting of the problem of microplastics transport and developing of physically-based parameterisations are seen as applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Physically based nonrigid registration using smoothed particle hydrodynamics: application to hepatic metastasis volume-preserving registration.

    Science.gov (United States)

    Pyo, Soon Hyoung; Lee, Jeongjin; Park, Seongjin; Kim, Kyoung Won; Shin, Yeong-Gil; Kim, Bohyung

    2013-09-01

    Recent advances in computing hardware have enabled the application of physically based simulation techniques to various research fields for improved accuracy. In this paper, we present a novel physically based nonrigid registration method using smoothed particle hydrodynamics for hepatic metastasis volume-preserving registration between follow-up liver CT images. Our method models the liver and hepatic metastasis as a set of particles carrying their own physical properties. Based on the fact that the hepatic metastasis is stiffer than other normal cells in the liver parenchyma, the candidate regions of hepatic metastasis are modeled with particles of higher stiffness compared to the liver parenchyma. Particles placed in the liver and candidate regions of hepatic metastasis in the source image are transformed along a gradient vector flow-based force field calculated in the target image. In this transformation, the particles are physically interacted and deformed by a novel deformable particle method which is proposed to preserve the hepatic metastasis to the best. In experimental results using ten clinical datasets, our method matches the liver effectively between follow-up CT images as well as preserves the volume of hepatic metastasis almost completely, enabling the accurate assessment of the volume change of the hepatic metastasis. These results demonstrated a potential of the proposed method that it can deliver a substantial aid in measuring the size change of index lesion (i.e., hepatic metastasis) after the chemotheraphy of metastasis patients in radiation oncology.

  6. Experimental Investigation of Nascent Soot Physical Properties and The Influence on Particle Morphology and Growth

    Science.gov (United States)

    Lieb, Sydnie Marie

    Soot released to the atmosphere is a dangerous pollutant for human health and the environment. Understanding the physical properties and surface properties of these particles is important to properly explaining the growth of soot particles in flames as well as their interactions with other particles and gases in the environment. Particles below 15 nm in diameter, nascent soot particles, dominate the early growth stages of soot formation; previously these particles were characterized as hard graphitic spheres. New evidence derived from the current dissertation work, to a large extent, challenges this prior characterization. This dissertation study begins by revisiting the use of atomic force microscope (AFM) as a tool to investigate the structural properties of nascent soot. The impact of tip artifacts, which are known to complicate measurements of features below 10 nm in diameter, are carefully considered so as to provide a concise interpretation of the morphology of nascent soot as seen by AFM. The results of the AFM morphology collaborate with earlier photo- and thermal-fragmentation particle mass spectrometry and Fourier transform infrared spectroscopy that nascent soot is not a graphitized carbon material and that they are not spherical. Furthermore, phase mode imaging is introduced as a method to investigate the physical properties of nascent soot particles in a greater detail and finer resolution. The helium ion microscope (HIM) has been identified as a useful technique for the imaging of nascent soot. Using this imaging method nascent soot particles were imaged with a high resolution that had not been obtained by prior techniques. The increased contrast provides a closer look at the nascent soot particles and further suggested that these particles are not as structurally homogeneous as previously thought. Geometric shape analysis was performed to characterize the particles in terms of sphericity, circularity, and fractal dimension. The geometric analysis

  7. Elementary particle physics. Progress report, July 1992--October 1994

    Energy Technology Data Exchange (ETDEWEB)

    Izen, J.M.

    1994-10-01

    The University of Texas at Dallas (UTD) is participating in two e{sup +}e{sup -}, experiments, Beijing Spectrometer (BES) and BABAR, the PEP-11 B Factory detector. The UTD group consists of Profs. Joseph M. Izen and Xinchou Lou, seven Ph.D. students. A post-doc is requested to join them in this work. BES explores the physics of the {tau}-charm threshold region. Associated production of {tau} and charmed mesons allow for absolute branching fraction measurements with good control of backgrounds. BES is uniquely positioned to study the leptonic and hadronic decays of quarkonia. The Beijing Electron Positron Collider (BEPC) delivers luminosities an order of magnitude higher than earlier facilities. BES and BEPC will be upgraded following the 1994-5 run, and will resume data taking in Fall, 1996 with an improved detector and a Three-fold increase in luminosity. The raison d`etre of BABAR is the exploration of CP violation in the B meson system. An asymmetric storage ring is required to observe the time-dependence of the CP asymmetry. Other BABAR physics includes measurements of CKM matrix elements, rare B decays, penguin diagrams, B{sub s} decays, and precision measurements of {tau} and D meson decays. The scheduled BABAR turn-on in 1999 provides the UTD group with a natural evolution with continuous physics during this period. Professors Joseph M. Izen and Xinchou Lou are leading the BES and BABAR program at UTD. Both have specialized in e{sup +}e{sup -} collider experiments and share 22 years of experience at the SPEAR, BEPC, CESR, PETRA, SLC and LEP rings.

  8. Theoretical Studies of Drift-Alfven and Energetic Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    CHEN, L.

    2014-05-14

    The research program supported by this DOE grant has been rather successful and productive in terms of both scientific investigations as well as human resources development; as demonstrated by the large number (60) of journal articles, 6 doctoral degrees, and 3 postdocs. This PI is particularly grateful to the generous support and flexible management of the DOE–SC-OFES Program. He has received three award/prize (APS Excellence in Plasma Physics Research Award, 2004; EPS Alfven Prize, 2008; APS Maxwell Prize, 2012) as the results of research accomplishments supported by this grant.

  9. W.K.H. Panofsky Prize in Experimental Particle Physics Lecture: The making of GLAST: Being creative with experimental particle physics

    Science.gov (United States)

    Atwood, William

    2012-03-01

    The extension of astrophysical observations to gamma-ray energies requires the utilization of detectors invented and developed for the pursuit of High Energy Particle Physics. GLAST is the result of a close collaboration between the astrophysics and the HEP communities. The exceedingly small signal-to-noise (cosmic rays) ratio coupled with the need for the best angular resolution possible presented a host of problems. How these were successfully met and the resulting instrument and its science are reviewed.

  10. Special Colloquium for the CERN-Fermilab Hadron Collider Physics Summer School: Main Dilemmas in Particle Physics for the LHC

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    A review of the status of the most crucial issues in particle physics at the start of the LHC is presented. The main questions are related to electroweak symmetry breaking and the mystery of new physics at the TeV scale, that is reasonably expected to be nearby and yet must be very peculiar because it was not seen at LEP and in flavour physics experiments. The main current ideas on models will be discussed and their implications for LHC searches, dark matter etc.

  11. Center for Theoretical Underground Physics and Related Fields. CETUP2015/ Particle Physics and Cosmology Conference. PPC2015)

    Energy Technology Data Exchange (ETDEWEB)

    Szczerbinska, Barbara [Dakota State Univ., Madison, SD (United States)

    2016-02-22

    For last five years Center for Theoretical Underground Physics and Related Areas (CETUP*) serves as a collaboration point for scientists from around the world interested in theoretical and experimental aspects of underground science. The mission of CETUP* is to promote an organized research in physics, astrophysics, geoscience, geomicrobiology and other fields related to the underground science and provide a stimulating environment for creative thinking and open communication between researches of varying ages and nationalities in dynamic atmosphere of intense scientific interactions. Scientists invited to participate in the program will not only provide theoretical support to the underground science, but they will also examine core questions of the 21st century including: What is dark matter? How well do we know the neutrino parameters?, How have neutrinos shaped the evolution of the universe?, How were the heavy elements made?, What are the fundamental underlying symmetries of the Universe? Is there a Grand Unified Theory of the Universe? How do supernovae explode? Studies of Neutrino Physics and Dark Matter are of high interest to particle and nuclear physicists, astrophysicists and cosmologists. Ongoing and proposed Neutrino and Dark Matter experiments are expected to unveil the answers to fundamental questions about the Universe. This year summer program was focused exactly on these subjects bringing together experts in dark matter, neutrino physics, particle physics, nuclear physics and astrophysics and cosmology. CETUP*2015 consisted of 5 week long program (June 14 – July 18, 2015) covering various theoretical and experimental aspects in these research areas. The two week long session on Dark Matter physics (June 14 – June 26) was followed by two week long program on Neutrino physics (July 6 – July 18). The international conference entitled IXth International Conference on Interconnection Between Particle Physics and Cosmology (PPC) was hosted at CETUP

  12. 1st European Congress of Medical Physics September 1-4, 2016; Medical Physics innovation and vision within Europe and beyond.

    Science.gov (United States)

    Tsapaki, Virginia; Kagadis, George C; Brambilla, Marco; Ciocca, Mario; Clark, Catharine H; Delis, Harry; Mettivier, Giovanni

    2017-09-01

    Medical Physics is the scientific healthcare profession concerned with the application of the concepts and methods of physics in medicine. The European Federation of Organisations for Medical Physics (EFOMP) acts as the umbrella organization for European Medical Physics societies. Due to the rapid advancements in related scientific fields, medical physicists must have continuous education through workshops, training courses, conferences, and congresses during their professional life. The latest developments related to this increasingly significant medical speciality were presented during the 1st European Congress of Medical Physics 2016, held in Athens, September 1-4, 2016, organized by EFOMP, hosted by the Hellenic Association of Medical Physicists (HAMP), and summarized in the current volume. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. Incorporation of mesoporous silica particles in gelatine gels: effect of particle type and surface modification on physical properties.

    Science.gov (United States)

    Pérez-Esteve, Édgar; Oliver, Laura; García, Laura; Nieuwland, Maaike; de Jongh, Harmen H J; Martínez-Máñez, Ramón; Barat, José Manuel

    2014-06-17

    The aim of this work was to investigate the impact of mesoporous silica particles (MSPs) on the physicochemical properties of filled protein gels. We have studied the effect of the addition of different mesoporous silica particles, either bare or functionalized with amines or carboxylates, on the physical properties of gelatine gels (5% w/v). Textural properties of the filled gels were investigated by uniaxial compression, while optical properties were investigated by turbidity. The MSPs were characterized with the objective of correlating particle features with their impact on the corresponding filled-gel properties. The addition of MSPs (both with and without functionalization) increased the stiffness of the gelatine gels. Furthermore, functionalized MSPs showed a remarkable increase in the strength of the gels and a slight reduction in the brittleness of the gels, in contrast with nonfunctionalized MSPs which showed no effect on these two properties. The turbidity of the gels was also affected by the addition of all tested MSPs, showing that the particles that formed smaller aggregates resulted in a higher contribution to turbidity. MSPs are promising candidates for the development of functional food containing smart delivery systems, also being able to modulate the functionality of protein gels.

  14. 2016 CERN-JINR European School of High-Energy Physics

    CERN Multimedia

    2016-01-01

    The 2016 CERN-JINR European School of High-Energy Physics will take place in Skeikampen (near to Lillehammer), Norway, on 15-28 June 2016.   The School is targeted particularly at students in experimental HEP, who are in the final years of work towards their PhDs, although candidates at an earlier or later stage in their studies may be considered. ** The deadline for applications has been extended to 19 February 2016 ** Sponsorship may be available for a small number of students from developing countries. Further details are available here.

  15. Prevalence of emotional, physical and sexual abuse among pregnant women in six European countries

    DEFF Research Database (Denmark)

    Lukasse, Mirjam; Schroll, Anne-Mette; Ryding, Elsa Lena

    2014-01-01

    in Belgium, Iceland, Denmark, Estonia, Norway, and Sweden between March 2008 and August 2010. POPULATION: A total of 7174 pregnant women. METHODS: A questionnaire including a validated instrument measuring emotional, physical and sexual abuse. MAIN OUTCOME MEASURE: Proportion of women reporting emotional......OBJECTIVES: The primary objective was to investigate the prevalence of a history of abuse among women attending routine antenatal care in six northern European countries. Second, we explored current suffering from reported abuse. DESIGN: A prospective cohort study. SETTING: Routine antenatal care...

  16. 4th International Conference on Trapped Charged Particles and Fundamental Physics

    CERN Document Server

    Comyn, M; Thomson, J; Gwinner, G; TCP'06; TCP 2006

    2007-01-01

    The TCP06 conference in Parksville on Vancouver Island showcased the impressive progress in the study of fundamental physics using trapped charged particles. Atom and ion trapping has revolutionized atomic physics and related fields. It has proven to be particularly useful for fundamental physics experiments, as the tight control over the particles' degrees of freedom leads to increased precision and efficient use of exotic species such as radioactive atoms or anti-matter. The topics of the meeting included fundamental interactions and symmetries, quantum electrodynamics, quantum state manipulation and quantum information, precision spectroscopy and frequency standards, storage ring physics, highly charged ions in traps, traps for radioactive isotopes, plasmas and collective behaviour, and anti-hydrogen. Highlights from related fields such as fundamental physics studies with neutral, trapped atoms were also presented. The combination of overview articles by leaders in the field and detailed reports on recent ...

  17. Mathematical gauge theory with applications to the standard model of particle physics

    CERN Document Server

    Hamilton, Mark J D

    2017-01-01

    The Standard Model is the foundation of modern particle and high energy physics. This book explains the mathematical background behind the Standard Model, translating ideas from physics into a mathematical language and vice versa. The first part of the book covers the mathematical theory of Lie groups and Lie algebras, fibre bundles, connections, curvature and spinors. The second part then gives a detailed exposition of how these concepts are applied in physics, concerning topics such as the Lagrangians of gauge and matter fields, spontaneous symmetry breaking, the Higgs boson and mass generation of gauge bosons and fermions. The book also contains a chapter on advanced and modern topics in particle physics, such as neutrino masses, CP violation and Grand Unification. This carefully written textbook is aimed at graduate students of mathematics and physics. It contains numerous examples and more than 150 exercises, making it suitable for self-study and use alongside lecture courses. Only a basic knowledge of d...

  18. J.J. Sakurai Prize for Theoretical Particle Physics: 40 Years of Lattice QCD

    Science.gov (United States)

    Lepage, Peter

    2016-03-01

    Lattice QCD was invented in 1973-74 by Ken Wilson, who passed away in 2013. This talk will describe the evolution of lattice QCD through the past 40 years with particular emphasis on its first years, and on the past decade, when lattice QCD simulations finally came of age. Thanks to theoretical breakthroughs in the late 1990s and early 2000s, lattice QCD simulations now produce the most accurate theoretical calculations in the history of strong-interaction physics. They play an essential role in high-precision experimental studies of physics within and beyond the Standard Model of Particle Physics. The talk will include a non-technical review of the conceptual ideas behind this revolutionary development in (highly) nonlinear quantum physics, together with a survey of its current impact on theoretical and experimental particle physics, and prospects for the future. Work supported by the National Science Foundation.

  19. The Learning Reconstruction of Particle System and Linear Momentum Conservation in Introductory Physics Course

    Science.gov (United States)

    Karim, S.; Saepuzaman, D.; Sriyansyah, S. P.

    2016-08-01

    This study is initiated by low achievement of prospective teachers in understanding concepts in introductory physics course. In this case, a problem has been identified that students cannot develop their thinking skills required for building physics concepts. Therefore, this study will reconstruct a learning process, emphasizing a physics concept building. The outcome will design physics lesson plans for the concepts of particle system as well as linear momentum conservation. A descriptive analysis method will be used in order to investigate the process of learning reconstruction carried out by students. In this process, the students’ conceptual understanding will be evaluated using essay tests for concepts of particle system and linear momentum conservation. The result shows that the learning reconstruction has successfully supported the students’ understanding of physics concept.

  20. Particle physics of brane worlds and extra dimensions

    CERN Document Server

    Raychaudhuri, Sreerup

    2016-01-01

    The possibility that we live in a higher-dimensional world with spatial dimensions greater than three started with the early work of Kaluza and Klein. However, in addressing experimental constraints, early model-builders were forced to compactify these extra dimensions to very tiny scales. With the development of brane-world scenarios it became possible to consider novel compactifications which allow the extra dimensions to be large or to provide observable effects of these dimensions at experimentally accessible energy scales. This book provides a comprehensive account of these recent developments, keeping the high-energy physics implications in focus. After an historical survey of the idea of extra dimensions, the book deals in detail with models of large extra dimensions, warped extra dimensions and other models such as universal extra dimensions. The theoretical and phenomenological implications are discussed in a pedagogical manner for both researchers and graduate students.

  1. Statistical methods for data analysis in particle physics

    CERN Document Server

    Lista, Luca

    2017-01-01

    This concise set of course-based notes provides the reader with the main concepts and tools needed to perform statistical analyses of experimental data, in particular in the field of high-energy physics (HEP). First, the book provides an introduction to probability theory and basic statistics, mainly intended as a refresher from readers’ advanced undergraduate studies, but also to help them clearly distinguish between the Frequentist and Bayesian approaches and interpretations in subsequent applications. More advanced concepts and applications are gradually introduced, culminating in the chapter on both discoveries and upper limits, as many applications in HEP concern hypothesis testing, where the main goal is often to provide better and better limits so as to eventually be able to distinguish between competing hypotheses, or to rule out some of them altogether. Many worked-out examples will help newcomers to the field and graduate students alike understand the pitfalls involved in applying theoretical conc...

  2. Statistical methods for data analysis in particle physics

    CERN Document Server

    Lista, Luca

    2017-01-01

    This concise set of course-based notes provides the reader with the main concepts and tools needed to perform statistical analyses of experimental data, in particular in the field of high-energy physics (HEP). First, the book provides an introduction to probability theory and basic statistics, mainly intended as a refresher from readers’ advanced undergraduate studies, but also to help them clearly distinguish between the Frequentist and Bayesian approaches and interpretations in subsequent applications. More advanced concepts and applications are gradually introduced, culminating in the chapter on both discoveries and upper limits, as many applications in HEP concern hypothesis testing, where the main goal is often to provide better and better limits so as to eventually be able to distinguish between competing hypotheses, or to rule out some of them altogether. Many worked-out examples will help newcomers to the field and graduate students alike understand the pitfalls involved in applying theoretical co...

  3. Modeling theoretical uncertainties in phenomenological analyses for particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Charles, Jerome [CNRS, Aix-Marseille Univ, Universite de Toulon, CPT UMR 7332, Marseille Cedex 9 (France); Descotes-Genon, Sebastien [CNRS, Univ. Paris-Sud, Universite Paris-Saclay, Laboratoire de Physique Theorique (UMR 8627), Orsay Cedex (France); Niess, Valentin [CNRS/IN2P3, UMR 6533, Laboratoire de Physique Corpusculaire, Aubiere Cedex (France); Silva, Luiz Vale [CNRS, Univ. Paris-Sud, Universite Paris-Saclay, Laboratoire de Physique Theorique (UMR 8627), Orsay Cedex (France); Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Groupe de Physique Theorique, Institut de Physique Nucleaire, Orsay Cedex (France); J. Stefan Institute, Jamova 39, P. O. Box 3000, Ljubljana (Slovenia)

    2017-04-15

    The determination of the fundamental parameters of the Standard Model (and its extensions) is often limited by the presence of statistical and theoretical uncertainties. We present several models for the latter uncertainties (random, nuisance, external) in the frequentist framework, and we derive the corresponding p values. In the case of the nuisance approach where theoretical uncertainties are modeled as biases, we highlight the important, but arbitrary, issue of the range of variation chosen for the bias parameters. We introduce the concept of adaptive p value, which is obtained by adjusting the range of variation for the bias according to the significance considered, and which allows us to tackle metrology and exclusion tests with a single and well-defined unified tool, which exhibits interesting frequentist properties. We discuss how the determination of fundamental parameters is impacted by the model chosen for theoretical uncertainties, illustrating several issues with examples from quark flavor physics. (orig.)

  4. PHYSICS OF OUR DAYS: Old and new exotic phenomena in the world of elementary particles

    Science.gov (United States)

    Mukhin, Konstantin N.; Tikhonov, Viktor N.

    2001-11-01

    This paper traces the history of elementary particle discoveries, beginning with the muon and ending with the t-quark and the τ-neutrino. Experimental work and basic theoretical concepts are reviewed. Recent neutrino oscillation research and attempts at finding exotic particles and creating artificial quark-gluon plasma are described. The physical beauty of experiments is emphasized and the elegance of both theoretical predictions and of the interpretation of discoveries is revealed. Possible research directions for the near future are discussed.

  5. Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 6: Accelerator Capabilities

    CERN Document Server

    Barletta, W.A.; Battaglia, M.; Bruning, O.; Byrd, J.; Ent, R.; Flanagan, J.; Gai, W.; Galambos, J.; Hoffstaetter, G.; Hogan, M.; Klute, M.; Nagaitsev, S.; Palmer, M.; Prestemon, S.; Roser, T.; Rossi, L.; Shiltsev, V.; Varner, G.; Yokoya, K.

    2014-01-01

    These reports present the results of the 2013 Community Summer Study of the APS Division of Particles and Fields ("Snowmass 2013") on the future program of particle physics in the U.S. Chapter 6, on Accelerator Capabilities, discusses the future progress of accelerator technology, including issues for high-energy hadron and lepton colliders, high-intensity beams, electron-ion colliders, and necessary R&D for future accelerator technologies.

  6. A guide to experimental elementary particle physics literature, 1988--1992. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, S.I.; Ezhela, V.V.; Filimonov, B.B. [Institute for High Energy Physics, Protvino, Moscow Region (Russian Federation)] [and others

    1993-09-01

    We present an indexed guide to the literature experimental particle physics for the years 1988--1992. About 4,000 papers are indexed by Beam/Target/Momentum, Reaction Momentum (including the final state), Final State Particle, and Accelerator/Detector/Experiment. All indices are cross-referenced to the paper`s title and reference in the ID/Reference/Title Index. The information in this guide is also publicly available from a regularly updated computer database.

  7. Influence of particle size on physical and sensory attributes of mango pulp powder

    Science.gov (United States)

    Sharma, M.; Kadam, D. M.; Chadha, S.; Wilson, R. A.; Gupta, R. K.

    2013-09-01

    The present investigation was aimed to observe the effect of particle size on physical, sensory and thermal properties of foam-mat dried mango pulp powder. Mango pulp of Dussehri variety was foam-mat dried using 3% egg white at 65ºC. Dried foam-mats were pulverized and passed through a sieve shaker for obtaining three grades of powder with 50, 60, and 85 mesh size sieves. The particle size of these samples measured using laser diffraction particle size analyzer ranged from 191.26 to 296.19 μm. The data was analysed statistically using ANOVA of SAS. There was a linear increase in lightness (`L' value) with a decrease in particle size, however, `a' value decreased with a decrease in particle size, indicating the decrease in redness. An increase in bulk density and decrease in water solubility index and water absorption index % were observed with a decrease in particle size. Particle size had a significant effect on sensory parameters. Particle size in the range of 258.01 to 264.60μmwas found most acceptable with respect to sensory characteristics. This finding can be exploited for various commercial applicationswhere powder quality is dependent on the particle size and has foremost priority for end users.

  8. Physical and environmental factors affecting the persistence of explosives particles (Conference Presentation)

    Science.gov (United States)

    Papantonakis, Michael R.; Nguyen, Viet K.; Furstenberg, Robert; White, Caitlyn; Shuey, Melissa; Kendziora, Christopher A.; McGill, R. Andrew

    2017-05-01

    Knowledge of the persistence of trace explosives materials is critical to aid the security community in designing detection methods and equipment. The physical and environmental factors affecting the lifetimes of particles include temperature, airflow, interparticle distance, adlayers, humidity, particle field size and vapor pressure. We are working towards a complete particle persistence model that captures the relative importance of these effects to allow the user, with known environmental conditions, to predict particle lifetimes for explosives or other chemicals. In this work, particles of explosives are sieved onto smooth glass substrates using particle sizes and loadings relevant to those deposited by fingerprint deposition. The coupon is introduced into a custom flow cell and monitored under controlled airflow, humidity and temperature. Photomicroscopy images of the sample taken at fixed time intervals are analyzed to monitor particle sublimation and characterized as a size-independent radial sublimation velocity for each particle in the ensemble. In this paper we build on previous work by comparing the relationship between sublimation of different materials and their vapor pressures. We also describe the influence of a sebum adlayer on particle sublimation, allowing us to better model `real world' samples.

  9. Simulation of fast ignitor physics using GaPH (a fluid element particle in cell) method

    Energy Technology Data Exchange (ETDEWEB)

    Shon, J.W.; Bateson, W.B.; Hewett, D.W.; Tabak, M. [Lawrence Livermore National Lab., CA (United States)

    1998-12-31

    A new plasma/fluid transport algorithm, called GaPH, is developed, which retains the strengths of the particle and hydrodynamic methods. By including internal velocity characteristics of real particles within each finite size macroparticle, a redundancy is introduced in the representation of the real particle distribution. The internal velocity distribution within each particles evolves hydrodynamically. The result of this evolution is then fit to three new particles. The hydrodynamic evolution establishes the partitioning of moments into central and expansion particles. Such aggressive increases in the number of individual particles probe for emerging features in the distribution. If features fail to materialize, the redundancy that results from the internal velocity distribution is exploited to allow aggressive merging to reduce the number of particles needed to represent the distribution. Therefore, GaPH gives particle simulation results without the computational expense. Using GaPH, the authors are planning to simulate the propagation of suprathermal electrons from critical density to the high density core and their interactions with background plasma in order to provide a basis for theoretical description of fast ignitor physics. In order to model this process with GaPH, work is now underway to add essential new capabilities, including a radiation model, equation of state, and atomic collisions.

  10. Development of Wireless Techniques in Data and Power Transmission - Application for Particle Physics Detectors

    CERN Document Server

    Locci, E.; Dehos, C.; De Lurgio, P.; Djurcic, Z.; Drake, G.; Gimenez, J. L. Gonzalez; Gustafsson, L.; Kim, D.W.; Roehrich, D.; Schoening, A.; Siligaris, A.; Soltveit, H.K.; Ullaland, K.; Vincent, P.; Wiednert, D.; Yang, S.; Brenner, R.

    2015-01-01

    Wireless techniques have developed extremely fast over the last decade and using them for data and power transmission in particle physics detectors is not science- fiction any more. During the last years several research groups have independently thought of making it a reality. Wireless techniques became a mature field for research and new developments might have impact on future particle physics experiments. The Instrumentation Frontier was set up as a part of the SnowMass 2013 Community Summer Study [1] to examine the instrumentation R&D for the particle physics research over the coming decades: {\\guillemotleft} To succeed we need to make technical and scientific innovation a priority in the field {\\guillemotright}. Wireless data transmission was identified as one of the innovations that could revolutionize the transmission of data out of the detector. Power delivery was another challenge mentioned in the same report. We propose a collaboration to identify the specific needs of different projects that m...

  11. "EUROPART". Airborne particles in the indoor environment. A European interdisciplinary review of scientific evidence on associations between exposure to particles in buildings and health effects

    DEFF Research Database (Denmark)

    Schneider, T.; Sundell, Jan; Bischof, W.

    2003-01-01

    The relevance of particle mass, surface area or number concentration as risk indicators for health effects in non-industrial buildings has been assessed by a European interdisciplinary group of researchers (called EUROPART) by reviewing papers identified in Medline, Toxline, and OSH. Studies...... dealing with dermal effects or cancer or specifically addressing environmental tobacco smoke, house dust-mite, cockroach or animal allergens, microorganisms and pesticides were excluded. A total of 70 papers were reviewed, and eight were identified for the final review: Five experimental studies involving...... mainly healthy subjects, two cross-sectional office studies and one longitudinal study among elderly on cardiovascular effects. From most studies, no definite conclusions could be drawn. Overall, the group concluded that there is inadequate scientific evidence that airborne, indoor particulate mass...

  12. [Physical activity in adult working population: results from the European National Health Survey for Spain (2009)].

    Science.gov (United States)

    Casado-Pérez, Carmen; Hernández-Barrera, Valentín; Jiménez-García, Rodrigo; Fernández-de-Las-Peñas, Cesar; Carrasco-Garrido, Pilar; Palacios-Ceña, Domingo

    2015-11-01

    1) To describe physical activity in the Spanish adult working population aged 16-70 years in 2009, and 2) to describe the prevalence of physical activity according to socio-demographic features, self-perceived health status, co-morbidity, and lifestyle habits. An epidemiological population based descriptive study was conducted using individual data taken from the European Health Survey for Spain. Community. The number of subjects aged 16-70 years included in the study was 10,928 (5,628 women and 5,300 men). None. Physical activity and intensity were assessed from questions included in the interview-survey. An analysis was performed on the socio-demographic characteristics and self-rated physical and mental health, using multivariate logistic regression models. Not having a partner (OR 1.44; P<.001), have university studies (OR 1.62; P<.001), non-smoker (OR 1.50; P<.001), and taking medications (OR 1.22; P<.5) were a predictor of intense physical activity in men. The first 3 factors are equal for intense activity in women. In contrast, obesity (OR 0.58; P<.001), and 36-50 years (OR 0.68; P<.001) were factors related to low activity in men. Aged between 36-50 years (OR 1.26; P<.01), suffering≥2 co-morbid conditions (OR 1.30; P<.001), and non-smoker (OR 1.17; P<.5) were also associated with higher probability of reporting moderate physical activity in women. The positive mental health was significant for physical activity in both sexes (OR 1.01; P<.5). This study identified several factors that appear to influence physical activity in the Spanish adult working population, with potential implications for healthcare providers. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  13. Physical Methods for the Preparation of Hybrid Nanocomposite Polymer Latex Particles

    Science.gov (United States)

    Teixeira, Roberto F. A.; Bon, Stefan A. F.

    In this chapter, we will highlight conceptual physical approaches towards the fabrication of nanocomposite polymer latexes in which each individual latex particle contains one or more "hard" nanoparticles, such as clays, silicates, titanates, or other metal(oxides). By "physical approaches" we mean that the "hard" nanoparticles are added as pre-existing entities, and are not synthesized in situ as part of the nanocomposite polymer latex fabrication process. We will narrow our discussion to focus on physical methods that rely on the assembly of nanoparticles onto the latex particles after the latex particles have been formed, or its reciprocal analogue, the adhesion of polymer onto an inorganic nanoparticle. First, will discuss the phenomenon of heterocoagulation and its various driving forces, such as electrostatic interactions, the hydrophobic effect, and secondary molecular interactions. We will then address methods that involve assembly of nanoparticles onto or around the more liquid precursors (i.e., swollen/growing latex particles or monomer droplets). We will focus on the phenomenon of Pickering stabilization. We will then discuss features of particle interaction with soft interfaces, and see how the adhesion of particles onto emulsion droplets can be applied in suspension, miniemulsion, and emulsion polymerization. Finally, we will very briefly mention some interesting methods that make use of interface-driven templating for making well-defined assembled clusters and supracolloidal structures.

  14. Experimental particle physics research at Texas Tech University

    Energy Technology Data Exchange (ETDEWEB)

    Akchurin, Nural [Texas Tech Univ., Lubbock, TX (United States); Lee, Sung-Won [Texas Tech Univ., Lubbock, TX (United States); Volobouev, Igor [Texas Tech Univ., Lubbock, TX (United States); Wigmans, Richard [Texas Tech Univ., Lubbock, TX (United States)

    2016-06-22

    The high energy physics group at Texas Tech University (TTU) concentrates its research efforts on the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) and on generic detector R&D for future applications. Our research programs have been continuously supported by the US Department of Energy for over two decades, and this final report summarizes our achievements during the last grant period from May 1, 2012 to March 31, 2016. After having completed the Run 1 data analyses from the CMS detector, including the discovery of the Higgs boson in July 2012, we concentrated on commissioning the CMS hadron calorimeter (HCAL) for Run 2, performing analyses of Run 2 data, and making initial studies and plans for the second phase of upgrades in CMS. Our research has primarily focused on searches for Beyond Standard Model (BSM) physics via dijets, monophotons, and monojets. We also made significant contributions to the analyses of the semileptonic Higgs decays and Standard Model (SM) measurements in Run 1. Our work on the operations of the CMS detector, especially the performance monitoring of the HCAL in Run 1, was indispensable to the experiment. Our team members, holding leadership positions in HCAL, have played key roles in the R&D, construction, and commissioning of these detectors in the last decade. We also maintained an active program in jet studies that builds on our expertise in calorimetry and algorithm development. In Run 2, we extended some of our analyses at 8 TeV to 13 TeV, and we also started to investigate new territory, e.g., dark matter searches with unexplored signatures. The objective of dual-readout calorimetry R&D was intended to explore (and, if possible, eliminate) the obstacles that prevent calorimetric detection of hadrons and jets with a comparable level of precision as we have grown accustomed to for electrons and photons. The initial prototype detector was successfully tested at the SPS/CERN in 2003-2004 and evolved over the

  15. Particle physics and the anthropology of right and left

    CERN Multimedia

    Arpita Roy

    We have all looked at ants at some point and wondered where they go about with so much dash and drive. Likewise I ask what drives so many competent and specialized people in this gigantic collaborative enterprise on the LHC at CERN. And I come at an interesting cross-section that is in a process to change soon with the LHC assuming operation from April 2008. But I am also here to learn something about physics. The metaphor of the ant is useful in describing my particular focus of interest: there is no reason why an ant should take one direction, rather than the other; the ant can select any direction. In an otherwise homogeneous space, what does right and left mean ? The distinction between right and left is not embedded in space itself, it is relative to each other and cannot be made unless the perspective from which it could be viewed is specified. Making this distinction of right and left is then a matter of social convention or custom. Physicists, philosophers, anthropologists alike have wondered why nat...

  16. Particle number emissions of motor traffic derived from street canyon measurements in a Central European city

    Science.gov (United States)

    Klose, S.; Birmili, W.; Voigtländer, J.; Tuch, T.; Wehner, B.; Wiedensohler, A.; Ketzel, M.

    2009-02-01

    A biennial dataset of ambient particle number size distributions (diameter range 4-800 nm) collected in urban air in Leipzig, Germany, was analysed with respect to the influence of traffic emissions. Size distributions were sampled continuously in 2005 and 2006 inside a street canyon trafficked by ca. 10 000 motor vehicles per day, and at a background reference site distant at 1.5 km. Auto-correlation analysis showed that the impact of fresh traffic emissions could be seen most intensely below particle sizes of 60 nm. The traffic-induced concentration increment at roadside was estimated by subtracting the urban background values from the street canyon measurement. To describe the variable dispersion conditions inside the street canyon, micro-meteorological dilution factors were calculated using the Operational Street Pollution Model (OSPM), driven by above-roof wind speed and wind direction observations. The roadside increment concentrations, dilution factor, and real-time traffic counts were used to calculate vehicle emission factors (aerosol source rates) that are representative of the prevailing driving conditions, i.e. stop-and-go traffic including episodes of fluent traffic flow at speeds up to 40 km h-1. The size spectrum of traffic-derived particles was essentially bimodal - with mode diameters around 12 and 100 nm, while statistical analysis suggested that the emitted number concentration varied with time of day, wind direction, particle size and fleet properties. Significantly, the particle number emissions depended on ambient temperature, ranging between 4.8 (±1.8) and 7.8 (±2.9).1014 p. veh-1 km-1 in summer and winter, respectively. A separation of vehicle types according to vehicle length suggested that lorry-like vehicles emit about 80 times more particle number than passenger car-like vehicles. Using nitrogen oxide (NOx) measurements, specific total particle number emissions of 338 p. (pg NOx)-1 were inferred. The calculated traffic emission factors

  17. The standard theory of particle physics essays to celebrate CERN's 60th anniversary

    CERN Document Server

    Rolandi, Luigi

    2016-01-01

    The book gives a quite complete and up-to-date picture of the Standard Theory with an historical perspective, with a collection of articles written by some of the protagonists of present particle physics. The theoretical developments are described together with the most up-to-date experimental tests, including the discovery of the Higgs Boson and the measurement of its mass as well as the most precise measurements of the top mass, giving the reader a complete description of our present understanding of particle physics.

  18. The standard theory of particle physics Essays to celebrate CERN’s 60th anniversary

    CERN Document Server

    Maiani, Luciano

    2016-01-01

    The book gives a quite complete and up-to-date picture of the Standard Theory with an historical perspective, with a collection of articles written by some of the protagonists of present particle physics. The theoretical developments are described together with the most up-to-date experimental tests, including the discovery of the Higgs Boson and the measurement of its mass as well as the most precise measurements of the top mass, giving the reader a complete description of our present understanding of particle physics.

  19. Experiment and theory in particle physics: Reflections on the discovery of the tau lepton

    Energy Technology Data Exchange (ETDEWEB)

    Perl, M.L.

    1996-08-01

    This article is thoughts from the author on particle physics work from his perspective. It is not a summary of his work on the tau lepton, but rather a look at what makes good science, experimental and theoretical, from his experiences in the field. The section titles give a good summary on the topics the author chooses to touch upon. They are: the state of elementary particle physics; getting good ideas in experimental science; a difficult field; experiments and experimenting; 10% of the money and 30% of the time; the dictatorship of theory; technological dreams; last words.

  20. On the coupling of fields and particles in accelerator and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2016-10-15

    In accelerator and plasma physics it is generally accepted that there is no need to solve the dynamical equations for particles motion in manifestly covariant form, that is by using the coordinate-independent proper time to parameterize particle world-lines in space-time. In other words, in order to describe the dynamical processes in the laboratory frame there is no need to use the laws of relativistic kinematics. It is sufficient to take into account the relativistic dependence of the particles momentum on the velocity in the second Newton's law. Therefore, the coupling of fields and particles is based, on the one hand, on the use of result from particle dynamics treated according to Newton's laws in terms of the relativistic three-momentum and, on the other hand, on the use of Maxwell's equations in standard form. In previous papers we argued that this is a misconception. The purpose of this paper is to describe in detail how to calculate the coupling between fields and particles in a correct way and how to develop a new algorithm for a particle tracking code in agreement with the use of Maxwell's equations in their standard form. Advanced textbooks on classical electrodynamics correctly tell us that Maxwell's equations in standard form in the laboratory frame and charged particles are coupled by introducing particles trajectories as projections of particles world-lines onto coordinates of the laboratory frame and by subsequently using the laboratory time to parameterize the trajectory curves. For the first time we showed a difference between conventional and covariant particle tracking results in the laboratory frame. This essential point has never received attention in the physical community. Only the solution of the dynamical equations in covariant form gives the correct coupling between field equations in standard form and particles trajectories in the laboratory frame. We conclude that previous theoretical and simulation results in