WorldWideScience

Sample records for european lead-bismuth cooled

  1. Lead- or Lead-bismuth-cooled fast reactors

    International Nuclear Information System (INIS)

    Bouchter, J.C.; Courouau, J.L.; Dufour, P.; Guidez, J.; Latge, C.; Martinelli, L.; Renault, C.; Rimpault, G.

    2014-01-01

    Lead-cooled fast reactors are one of the 6 concepts retained for the 4. generation of nuclear reactors. So far no lead-cooled reactors have existed in the world except lead-bismuth-cooled reactors in soviet submarines. Some problems linked to the use of the lead-bismuth eutectic appeared but were satisfactorily solved by a more rigorous monitoring of the chemistry of the lead-bismuth coolant. Lead presents various advantages as a coolant: no reactivity with water and the air,a high boiling temperature and low contamination when irradiated. The main asset of the lead-bismuth alloy is the drop of the fusion temperature from 327 C degrees to 125 C degrees. The main drawback of using lead (or lead-bismuth) is its high corrosiveness with metals like iron, chromium and nickel. The high corrosiveness of the coolant implies low flow velocities which means a bigger core and consequently a bigger reactor containment. Different research programs in the world (in Europe, Russia and the USA) are reviewed in the article but it appears that the development of this type of reactor requires technological breakthroughs concerning materials and the resistance to corrosion. Furthermore the concept of lead-cooled reactors seems to be associated to a range of low output power because of the compromise between the size of the reactor and its resistance to earthquakes. (A.C.)

  2. System design study of small lead-bismuth cooled reactor

    International Nuclear Information System (INIS)

    Chikazawa, Yoshitaka; Hori, Toru; Konomura, Mamoru

    2003-07-01

    In phase II of the feasibility study of JNC, we will make a concept of a dispersion power source reactor with various requirements, such as economical competitiveness and safety. In the study of a small lead-bismuth cooled reactor, a concept whose features are long life core, inherent safety, natural convection of cooling system and steam generators in the reactor vessel has been designed since 2000. The investigations which have been done in 2002 are shown as follows; Safety analysis of UTOP considering uncertainty of reactivity. Possibility of reduction of number of control rods. Estimation of construction cost. Transient analyses of UTOP have been done in considering uncertainty of reactivity in order to show the inherent safety in the probabilistic method. And the inherent safety in UTOP is realized under the condition of considering uncertainty. Transient analyses of UTOP with various numbers of control rods have been done and it is suggested that there is possibility of reduction of the number of control rods considering accident managements. The method of cost estimation is a little modified. The cost of reactor vessel is estimated from that of medium sized lead-bismuth cooled reactor and the estimation of a purity control system is by coolant volume flow rate. The construction cost is estimated 850,000yen/kWe. (author)

  3. Performance comparison of metallic, actinide burning fuel in lead-bismuth and sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Weaver, K.D.; Herring, J.S.; Macdonald, P.E.

    2001-01-01

    Various methods have been proposed to ''incinerate'' or ''transmute'' the current inventory of transuranic waste (TRU) that exits in spent light-water-reactor (LWR) fuel, and weapons plutonium. These methods include both critical (e.g., fast reactors) and non-critical (e.g., accelerator transmutation) systems. The work discussed here is part of a larger effort at the Idaho National Engineering and Environmental Laboratory (INEEL) and at the Massachusetts Institute of Technology (MIT) to investigate the suitability of lead and lead-alloy cooled fast reactors for producing low-cost electricity as well as for actinide burning. The neutronics of non fertile fuel loaded with 20 or 30-wt% light water reactor (LWR) plutonium plus minor actinides for use in a lead-bismuth cooled fast reactor are discussed in this paper, with an emphasis on the fuel cycle life and isotopic content. Calculations show that the average actinide burn rate is similar for both the sodium and lead-bismuth cooled cases ranging from -1.02 to -1.16 g/MWd, compared to a typical LWR actinide generation rate of 0.303 g/MWd. However, when using the same parameters, the sodium-cooled case went subcritical after 0.2 to 0.8 effective full power years, and the lead-bismuth cooled case ranged from 1.5 to 4.5 effective full power years. (author)

  4. Decay heat removal analyses in heavy-liquid-metal-cooled fast breeding reactors. Development of the thermal-hydraulic analysis method for lead-bismuth-cooled, natural-circulation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Takaaki; Enuma, Yasuhiro [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center; Iwasaki, Takashi [Nuclear Energy System Inc., Tokyo (Japan); Ohyama, Kazuhiro [Advanced Reactor Technology Co., Ltd., Tokyo (Japan)

    2001-05-01

    The feasibility study on future commercial fast breeder reactors in Japan has been conducted at JNC, in which various plant design options with all the possible coolant and fuel types are investigated to determine the conditions for the future detailed study. Lead-bismuth eutectic coolant has been selected as one of the possible coolant options. During the phase-I activity of the feasibility study in FY1999 and FY2000, several plant concepts, which were cooled by the heavy liquid metal coolant, were examined to evaluate the feasibility mainly with respect to economical competitiveness with other coolant reactors. A medium-scale (300 - 550 MWe) plant, cooled by a lead-bismuth natural circulation flow in a pool type vessel, was selected as the most possible plant concept for the heavy liquid metal coolant. Thus, a conceptual design study for a lead-bismuth-cooled, natural-circulation reactor of 400 MWe has been performed at JNC to identify remaining difficulties in technological aspect and its construction cost evaluation. In this report, a thermal-hydraulic analysis method for lead-bismuth-cooled, natural-circulation reactors is described. A Multi-dimensional Steam Generator analysis code (MSG) was applied to evaluate the natural circulation plant by combination with a flow-network-type, plant dynamics code (Super-COPD). By using this combined multi-dimensional plant dynamics code, decay heat removals, ULOHS and UTOP accidents were evaluated for the 100 MWe STAR-LM concept designed by ANL. In addition, decay heat removal by the Primary Reactor Auxiliary Cooling System (PRACS) in the 400 MWe lead-bismuth-cooled, natural-circulation reactor, being studied at JNC, was analyzed. In conclusion, it becomes clear that the combined multi-dimensional plant dynamics code is suitably applicable to analyses of lead-bismuth-cooled, natural-circulation reactors to evaluate thermal-hydraulic phenomena during steady-state and transient conditions. (author)

  5. Conceptual design of module fast reactor of ultimate safety cooled by lead-bismuth alloy

    International Nuclear Information System (INIS)

    Myasnikov, V.O.; Stekolnikov, V.V.; Stepanov, V.S.; Gorshkov, V.T.; Kulikov, M.L.; Shulyndin, V.A.; Gromov, B.F.; Kalashnikov, A.G.; Pashkin, Yu.G.

    1993-01-01

    During past time all basic problems arisen during working-out of NPP with lead-bismuth coolant were solved: physics and thermal physics of the cores, heat transfer and hydrodynamics, corrosion resistance of the structural materials and coolant technology, radiation and nuclear safety, investigations of emergency situations, development of fuel elements and absorbing elements of the reactor, equipment of the primary circuit and other circuits. A powerful experimental base equpped by unique rigs is made. A series of ship and test NPP has been constructed whereat repair of the plants and reactor refuelling are developed. Highly-skilled groups of investigators, designers and operation personnel capable of performing the development of the reactor plant with MFR within short terms have been formed. In this case MFR with lead-bismuth coolant may become the initial step in development of large-scale nuclear power engineering with fast reactors cooled by liquid lead

  6. Features of an emergency heat-conducting path in reactors about lead-bismuth and lead heat-carriers

    International Nuclear Information System (INIS)

    Beznosov, A.V.; Bokova, T.A.; Molodtsov, A.A.

    2006-01-01

    The reactor emergency heat removal systems should transfer heat from the surface of reactor core fuel element claddings to the primary circuit followed by heat transfer to the environment. One suggests three design approaches for emergency heat removal systems in lead-bismuth and lead cooled reactor circuits that take account of the peculiar nature of their features. Application of the discussed systems for emergency heat removal improves safety of lead-bismuth and lead cooled reactor plants [ru

  7. Oxygen concentration diffusion analysis of lead-bismuth-cooled, natural-circulation reactor

    International Nuclear Information System (INIS)

    Ito, Kei; Sakai, Takaaki

    2001-11-01

    The feasibility study on fast breeder reactors in Japan has been conducted at JNC and related organizations. The Phase-I study has finished in March, 2001. During the Phase-I activity, lead-bismuth eutectic coolant has been selected as one of the possible coolant options and a medium-scale plant, cooled by a lead-bismuth natural circulation flow was studied. On the other side, it is known that lead-bismuth eutectic has a problem of structural material corrosiveness. It was found that oxygen concentration control in the eutectic plays an important role on the corrosion protection. In this report, we have developed a concentration diffusion analysis code (COCOA: COncentration COntrol Analysis code) in order to carry out the oxygen concentration control analysis. This code solves a two-dimensional concentration diffusion equation by the finite differential method. It is possible to simulate reaction of oxygen and hydrogen by the code. We verified the basic performance of the code and carried out oxygen concentration diffusion analysis for the case of an oxygen increase by a refueling process in the natural circulation reactor. In addition, characteristics of the oxygen control system was discussed for a different type of the control system as well. It is concluded that the COCOA code can simulate diffusion of oxygen concentration in the reactor. By the analysis of a natural circulation medium-scale reactor, we make clear that the ON-OFF control and PID control can well control oxygen concentration by choosing an appropriate concentration measurement point. In addition, even when a trouble occurs in the oxygen emission or hydrogen emission system, it observes that control characteristic drops away. It is still possible, however, to control oxygen concentration in such case. (author)

  8. Overview of the use of ATHENA for thermal-hydraulic analysis of systems with lead-bismuth coolant

    International Nuclear Information System (INIS)

    Davis, C.B.; Shieh, A. S.

    2000-01-01

    The INEEL and MIT are investigating the suitability of lead-bismuth cooled fast reactor for producing low-cost electricity as well as for actinide burning. This paper is concerned with the general area of thermal-hydraulics of lead-bismuth cooled reactors. The ATHENA code is being used in the thermal-hydraulic design and analysis of lead-bismuth cooled reactors. The ATHENA code was reviewed to determine its applicability for simulating lead-bismuth cooled reactors. Two modifications were made to the code as a result of this review. Specifically, a correlation to represent heat transfer from rod bundles to a liquid metal and a void correlation based on data taken in a mixture of lead-bismuth and steam were added the code. The paper also summarizes the analytical work that is being performed with the code and plans for future analytical work

  9. Overview of the Use of ATHENA for Thermal-Hydraulic Analysis of Systems with Lead-Bismuth Coolant

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Cliff Bybee; Shieh, Arthur Shan Luk

    2000-04-01

    The INEEL and MIT are investigating the suitability of lead-bismuth cooled fast reactor for producing low-cost electricity as well as for actinide burning. This paper is concerned with the general area of thermal-hydraulics of lead-bismuth cooled reactors. The ATHENA code is being used in the thermal-hydraulic design and analysis of lead-bismuth cooled reactors. The ATHENA code was reviewed to determine its applicability for simulating lead-bismuth cooled reactors. Two modifications were made to the code as a result of this review. Specifically, a correlation to represent heat transfer from rod bundles to a liquid metal and a void correlation based on data taken in a mixture of lead-bismuth and steam were added the code. The paper also summarizes the analytical work that is being performed with the code and plans for future analytical work.

  10. Decay heat removal analyses on the heavy liquid metal cooled fast breeding reactor. Comparisons of the decay heat removal characteristics on lead, lead-bismuth and sodium cooled reactors

    International Nuclear Information System (INIS)

    Sakai, Takaaki; Ohshima, Hiroyuki; Yamaguchi, Akira

    2000-04-01

    The feasibility study on several concepts for the commercial fast breeder reactor(FBR) in future has been conducted in JNC for the kinds of possible coolants and fuel types to confirm the direction of the FBR developments in Japan. In this report, Lead and Lead-Bismuth eutectic coolants were estimated for the decay heat removal characteristics by the comparison with sodium coolant that has excellent features for the heat transfer and heat transport performance. Heavy liquid metal coolants, such as Lead and Lead-Bismuth, have desirable chemical inertness for water and atmosphere. Therefore, there are many economical plant proposals without an intermediate heat transport system that prevents the direct effect on a reactor core by the chemical reaction between water and the liquid metal coolant at the hypocritical tube failure accidents in a steam generator. In this study, transient analyses on the thermal-hydraulics have been performed for the decay heat removal events in Equivalent plant' with the Lead, Lead-Bismuth and Sodium coolant by using Super-COPD code. And a resulted optimized lead cooled plant in feasibility study was also analyzed for the comparison. In conclusion, it is become clear that the natural circulation performance, that has an important roll in passive safety characteristic of the reactor, is more excellent in heavy liquid metals than sodium coolant during the decay heat removal transients. However, we need to confirm the heat transfer reduction by the oxidized film or the corrosion products expected to appear on the heat transfer surface in the Lead and Lead-Bismuth circumstance. (author)

  11. Comparative assessment of thermophysical and thermohydraulic characteristics of lead, lead-bismuth and sodium coolants for fast reactors

    International Nuclear Information System (INIS)

    2002-06-01

    All prototype, demonstration and commercial liquid metal cooled fast reactors (LMFRs) have used liquid sodium as a coolant. Sodium cooled systems, operating at low pressure, are characterised by very large thermal margins relative to the coolant boiling temperature and a very low structural material corrosion rate. In spite of the negligible thermal energy stored in the liquid sodium available for release in case of leakage, there is some safety concern because of its chemical reactivity with respect to air and water. Lead, lead-bismuth or other alloys of lead, appear to eliminate these concerns because the chemical reactivity of these coolants with respect to air and water is very low. Some experts believe that conceptually, these systems could be attractive if high corrosion activity inherent in lead, long term materials compatibility and other problems will be resolved. Extensive research and development work is required to meet this goal. Preliminary studies on lead-bismuth and lead cooled reactors and ADS (accelerator driven systems) have been initiated in France, Japan, the United States of America, Italy, and other countries. Considerable experience has been gained in the Russian Federation in the course of development and operation of reactors cooled with lead-bismuth eutectic, in particular, propulsion reactors. Studies on lead cooled fast reactors are also under way in this country. The need to exchange information on alternative fast reactor coolants was a major consideration in the recommendation by the Technical Working Group on Fast Reactors (TWGFRs) to collect, review and document the information on lead and lead-bismuth alloy coolants: technology, thermohydraulics, physical and chemical properties, as well as to make an assessment and comparison with respective sodium characteristics

  12. Use of Russian technology of ship reactors with lead-bismuth coolant in nuclear power

    International Nuclear Information System (INIS)

    Zrodnikov, A.V.; Chitaykin, V.I.; Gromov, B.F.; Grigoryv, O.G.; Dedoul, A.V.; Toshinsky, G.I.; Dragunov, Yu.G.; Stepanov, V.S.

    2000-01-01

    The experience of using lead-bismuth coolant in Russian nuclear submarine reactors has been presented. The fundamental statements of the concept of using the reactors cooled by lead-bismuth alloy in nuclear power have been substantiated. The results of developments for using lead bismuth coolant in nuclear power have been presented. (author)

  13. Neutronics design for lead-bismuth cooled accelerator-driven system for transmutation of minor actinide

    International Nuclear Information System (INIS)

    Tsujimoto, Kazufumi; Sasa, Toshinobu; Nishihara, Kenji; Oigawa, Hiroyuki; Takano, Hideki

    2004-01-01

    Neutronics design study was performed for lead-bismuth cooled accelerator-driven system (ADS) to transmute minor actinides. Early study for ADS indicated two problems: a large burnup reactivity swing and a significant peaking factor. To solve these problems, effect of design parameters on neutronics characteristics were searched. The design parameters were initial plutonium loading, buffer region between spallation target and core, and zone fuel loading. Parametric survey calculations were performed considering fuel cycle consisting of burnup and recycle. The results showed that burnup reactivity swing depends on the plutonium fraction in the initial fuel loading, and the lead-bismuth buffer region and the two-zone loading were effective for solving the problems. Moreover, an optimum value for the effective multiplication factor was also evaluated using reactivity coefficients. From the result, the maximum allowable value of the effective multiplication factor for a practical ADS can be set at 0.97. Consequently, a new core concept combining the buffer region and the two-zone loading was proposed base on the results of the parametric survey. (author)

  14. Proposed sub-criticality level for an 80 MWTHd-bismuth-cooled Ads

    International Nuclear Information System (INIS)

    Mansani, L.; Monti, R.; Neuhold, P.

    2003-01-01

    The degree of operational sub-criticality of an Accelerator-driven System (ADS) on the one hand directly affects key accelerator system parameters, such as the proton beam current required to sustain the selected rated power level and, on the other, the likelihood of approaching or attaining criticality under abnormal or accident conditions. Then, if in all such conditions the safety goal is pursued to design the sub-critical core so that it stays away from criticality with adequate margin, the required operational sub-criticality level must be determined by a properly balanced approach between excessively demanding accelerator system performances and risk of accidental criticality. The approach must necessarily include evaluation and appropriate combination of the relevant reactivity effects (e.g. from system cool-down, postulated accident scenarios, geometrical variations) and proper consideration of specific design features (such as, for instance, the absence of safety rods, intended as neutron absorbing devices having a role equivalent to the shutdown rods in critical reactors). The paper presents a possible approach to the determination of the operational sub-criticality level of an 80 MWth Lead-Bismuth-cooled pool type ADS, initially conceived and developed by a team of Italian Organisations led by Ansaldo, with funding from the Ministry of University and Scientific and Technological Research, and currently in the process of being assessed, versus a gas-cooled concept, in the frame of a contract with the Commission of the European Communities. After a brief description of the Lead-Bismuth-cooled ADS concept relevant features and of the key safety goals in terms of required sub-criticality margin, the evaluated reactivity effects are presented, a method to combine them is discussed and a proposed operational sub-criticality level is derived. (author)

  15. Study on corrosion test techniques in lead bismuth eutectic flow. Joint research report in JFY2002

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Sekimoto, Hiroshi

    2003-03-01

    The evaluation of corrosion behaviors of core and structural materials in lead bismuth eutectic is one of the key issues for the utilization of lead bismuth eutectic as a coolant of the primary loops of lead bismuth cooled fast breeder reactors (FBRs) and the intermediate heat transport media of new-type steam generators of the sodium cooled FBRs. The purpose of the present study is to establish corrosion test techniques in lead bismuth eutectic flow. The techniques of steel corrosion test and oxygen control in flowing lead bismuth eutectic, and the technologies of a lead bismuth flow test at high temperature and high velocity were developed through corrosion test using a lead bismuth flow test loop of the Tokyo Institute of Technology in JFY2002. The major results are summarized as follows: (1) Techniques of fabrication, mount and rinse of corrosion specimens, measurement method of weight loss, and SEM/EDX analysis method have been established through lead bismuth corrosion test. (2) Weight losses were measured, corrosion and lead bismuth-adhered layers and eroded parts were observed in two 1000 hr-corrosion tests, and the results were compared with each other for twelve existing steels including ODS, F82H and SUH-3. (3) An oxygen sensor made of zirconia electrolyte structurally resistant to thermal stress and thermal shock was developed and tested in the lead bismuth flow loop. Good performance has been obtained. (4) An oxygen control method by injecting argon and hydrogen mixture gas containing steam into lead bismuth was applied to the lead bismuth flow loop, and technical issues for the development of the oxygen control method were extracted. (5) Technical measures for freezing and leakage of lead bismuth in the flow loop were accumulated. (6) Technical measures for flow rate decrease/blockage due to precipitation of oxide and corrosion products in a low temperature section of the lead bismuth flow loop were accumulated. (7) Electromagnetic flow meters with MI

  16. Void worths in subcritical cores cooled by lead-bismuth

    International Nuclear Information System (INIS)

    Wallenius, Janne; Tucek, Kamil; Gudowski, Waclaw

    2001-01-01

    The introduction lead-bismuth coolant in accelerator driven transmutation systems (ADS) was: good neutron economy (higher source efficiency); natural circulation possible (decay heat removal); synergy with spallation target (simplified coolant management); high temperature of boiling (larger overpower margin); smaller void worths (operation at higher k-values). This paper deals with different aspects of the void worths in JAERI ADS

  17. Design of an Actinide-Burning, Lead or Lead-Bismuth Cooled Reactor that Produces Low-Cost Electricity

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth; Weaver, Kevan Dean; Davis, Cliff Bybee; MIT folks

    2000-07-01

    The purpose of this Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) University Research Consortium (URC) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, material compatibility, plant engineering, and coolant activation. In the area of core neutronic design, the reactivity vs. burnup and discharge isotopics of both non-fertile and fertile fuels were evaluated. An innovative core for pure actinide burning that uses streaming, fertile-free fuel assemblies was studied in depth. This particular core exhibits excellent reactivity performance upon coolant voiding, even for voids that occur in the core center, and has a transuranic (TRU) destruction rate that is comparable to the proposed accelerator transmutation of waste (ATW) facility. These studies suggest that a core can be designed to achieve a long life while maintaining safety and minimizing waste. In the area of material compatibility studies, an experimental apparatus for the investigation of the flow-assisted dissolution and precipitation (corrosion) of potential fuel cladding and structural materials has been designed and built at the INEEL. The INEEL forced-convection corrosion cell consists of a small heated vessel with a shroud and gas flow system. The corrosion cell is being used to test steel that is commercially available in the United States to temperatures above 650°C. Progress in plant engineering was made for two reactor concepts, one utilizing an indirect cycle with heat exchangers and the other utilizing a direct-contact steam cycle. The evaluation of the

  18. Minor actinide burning in dedicated lead-bismuth cooled fast reactors

    International Nuclear Information System (INIS)

    Hejzlar, P.; Driscoll, M.J.; Kazimi, M.S.; Todreas, N.E.

    2001-01-01

    The destruction of minor actinides (MA) in dedicated burners is of contemporary interest in Europe and Japan because it requires the deployment of smaller number of special transmutation facilities. A major fraction of Pu from spent LWR fuel can be then burned in PWRs (or fast reactors) using dedicated fertile-free fuel assemblies. However, the design of MA burning fast spectrum cores poses significant challenges because of deterioration of key safety parameters, in particular of the coolant void coefficient. This study proposes the concept of an lead-bismuth eutectic (LBE)-cooled dedicated MA burner having metallic fuel (MA-Pu-Zr) and streaming assemblies to attain acceptable coolant void worth performance. It is shown that a large 1800 MWth fertile-free core containing 37 wt% TRU with very high fraction of MA(59 wt%) from LWR spent fuel can be burned in a first cycle for 700 EFPDs with a very small reactivity swing: less than β eff . Moreover, the reactivity void worth is negative for a fully voided core when all surrounding coolant is kept at reference density. However, the core reactivity increases as coolant density falls from the reference value of 10.25 to 6 g/cm 3 . Because its coolant density coefficient value is less than that of a sodium cooled IFR, the concept provides good potential for the achievement of self-regulation characteristics in unprotected events, provided that small negative fuel temperature feedback can be maintained. (authors)

  19. An acclerator-based installation of small power with the lead-bismuth coolant

    Energy Technology Data Exchange (ETDEWEB)

    Gorshkov, V.T.; Yefimov, E.I.; Novikova, N.N. [Research and Development Bereau, Podolsk (Russian Federation)] [and others

    1995-10-01

    The structure of the accelerator-based installation is described that includes the subcritical reactor-blanket with power 15 MW(h) cooled with lead-bismuth, the lead-bismuth flow target where a beam of {alpha}-particle is injected, the equipment of a primary and secondary curcuits. Some results of calculations and estimations are discussed that have been carried out to justify the target and blanket constructions. Some main characteristics of the installation are presented.

  20. Transient analysis for lead-bismuth-cooled accelerator-driven system proposed by JAEA

    International Nuclear Information System (INIS)

    Sugawara, T.; Nishihara, K.; Tsujimoto, K.

    2015-01-01

    It is supposed that an Accelerator-driven System (ADS) is safer than conventional critical reactors since an ADS is driven by the external neutron source in the subcritical state. In this study, the transient analyses for the lead-bismuth cooled ADS proposed by JAEA were performed using the SIMMER-III and RELAP5/mod3.2 codes to investigate the possibility of core damage. In this research, 3 accidents: the protected loss of heat sink, the protected overcooling and the unprotected blockage accident were considered as typical ADS accidents. Through these calculations, it was confirmed that all calculation results, except for the protected loss of heat sink, fulfilled the no-damage criteria. In the protected loss of heat sink, the cladding tube temperature reached its melting temperature after 18-21 hours, although the calculation condition was very conservative. These results have led to requirements to design a safety system of the ADS to decrease the frequencies of accidents. (authors)

  1. Vibration Monitoring Using Fiber Optic Sensors in a Lead-Bismuth Eutectic Cooled Nuclear Fuel Assembly

    Directory of Open Access Journals (Sweden)

    Ben De Pauw

    2016-04-01

    Full Text Available Excessive fuel assembly vibrations in nuclear reactor cores should be avoided in order not to compromise the lifetime of the assembly and in order to prevent the occurrence of safety hazards. This issue is particularly relevant to new reactor designs that use liquid metal coolants, such as, for example, a molten lead-bismuth eutectic. The flow of molten heavy metal around and through the fuel assembly may cause the latter to vibrate and hence suffer degradation as a result of, for example, fretting wear or mechanical fatigue. In this paper, we demonstrate the use of optical fiber sensors to measure the fuel assembly vibration in a lead-bismuth eutectic cooled installation which can be used as input to assess vibration-related safety hazards. We show that the vibration characteristics of the fuel pins in the fuel assembly can be experimentally determined with minimal intrusiveness and with high precision owing to the small dimensions and properties of the sensors. In particular, we were able to record local strain level differences of about 0.2 μϵ allowing us to reliably estimate the vibration amplitudes and modal parameters of the fuel assembly based on optical fiber sensor readings during different stages of the operation of the facility, including the onset of the coolant circulation and steady-state operation.

  2. Status and future application of pilot lead-bismuth target circuit TC-1 for ADS

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, S.; Leonchuk, M.; Orlov, Y.; Pankratov, D.; Reshetnikova, O.; Suvorov, G.; Zabudko, A. [Institute for Physics and Power Engineering, Obninsk (Russian Federation); Stepanov, V.; Klimov, N. [Experimental and Design Organization, Gidropress, Podolsk (Russian Federation); Hechanova, A.; Ma, J. [Nevada Univ., Las Vegas, NV (United States); Li, N. [Los Alamos National Lab., NM (United States); Gudowski, W. [International Science and Technology Center, Moscow (Russian Federation)

    2007-07-01

    A complicated evolution, status and future application of the pilot molten lead-bismuth target circuit of 1 MW proton beam power (TC-1) as an important part of a target-blanket accelerator driven system (ADS), that has been developed, created and twice tested under the auspice of the International Science and Technology Center (ISTC), is analyzed. The target complex TC-1 is a circulation lead-bismuth loop whose beam window is made of ferritic steel EP-823 (this steel was used in the past as material of fuel rods cladding in reactors cooled with lead-bismuth). At present TC-1 is operating at coolant temperature up to 300 C degrees and will be used to study different issues linked to the use of lead-bismuth: -) interaction with air, water and hydrogen, -) different regimes of flow, -) corrosion, -) filtering, or -) slag formation.

  3. Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor that Produces Low Cost Electricity FY-01 Annual Report, October 2001

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Herring, James Stephen; Loewen, Eric Paul; Smolik, Galen Richard; Weaver, Kevan Dean; Todreas, N.

    2001-10-01

    The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A.

  4. Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor That Produces Low Cost Electricty - FY-02 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo

    2002-10-01

    The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A. This is the third in a series of Annual Reports for this project, the others are also listed in Appendix A as FY-00 and FY-01 Annual Reports.

  5. Thermal-Hydraulic Analyses of Transients in an Actinide-Burner Reactor Cooled by Forced Convection of Lead Bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Cliff Bybee

    2003-09-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) and the Massachusetts Institute of Technology (MIT) are investigating the suitability of lead or lead–bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The current analysis evaluated a pool type design that relies on forced circulation of the primary coolant, a conventional steam power conversion system, and a passive decay heat removal system. The ATHENA computer code was used to simulate various transients without reactor scram, including a primary coolant pump trip, a station blackout, and a step reactivity insertion. The reactor design successfully met identified temperature limits for each of the transients analyzed.

  6. RBEC lead-bismuth cooled fast reactor: review of conceptual decisions

    International Nuclear Information System (INIS)

    Alekseev, P.; Fomichenko, P.; Mikityuk, K.; Nevinitsa, V.; Shchepetina, T.; Subbotin, S.; Vasiliev, A.

    2001-01-01

    A concept of the RBEC lead-bismuth fast reactor-breeder is a synthesis, on one hand, of more than 40-year experience in development and operation of fast sodium power reactors and reactors with Pb-Bi coolant for nuclear submarines, and, on the other hand, of large R and D activities on development of the core concept for modified fast sodium reactor. The report briefly presents main parameters of the RBEC reactor, as a candidate for commercial exploitation in structure of the future nuclear power. (author)

  7. Development of lead-bismuth coolant technology for nuclear device

    International Nuclear Information System (INIS)

    Kamata, Kin-ya; Kitano, Teruaki; Ono, Mikinori

    2004-01-01

    Liquid lead-bismuth is a promising material as a future fast reactor coolant or an intensive neutron source material for accelerator driven transmutation system (ADS). To develop nuclear plants and their installations using lead-bismuth coolant for practical use, both coolant technologies, inhabitation process of steels and quality control of coolant, and total operation system for liquid lead-bismuth plants are required. Based on the experience of liquid metal coolant, Mitsui Engineering and Shipbuilding Co., Ltd. (MES) has completed the liquid lead-bismuth forced circulation loop and has acquired various engineering data on main components including economizer. As a result of tis operation, MES has developed key technologies of lead-bismuth coolant such as controlling of oxygen content in lead-bismuth and a purification of lead-bismuth coolant. MES participated in the national project, ''The Development of Accelerator Driven Transmutation System'', together with JAERI (Japan Atomic Energy Research Institute) and started corrosion test for beam window of ADS. (author)

  8. Corrosion by liquid lead and lead-bismuth: experimental results review and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinsuo [Los Alamos National Laboratory

    2008-01-01

    Liquid metal technologies for liquid lead and lead-bismuth alloy are under wide investigation and development for advanced nuclear energy systems and waste transmutation systems. Material corrosion is one of the main issues studied a lot recently in the development of the liquid metal technology. This study reviews corrosion by liquid lead and lead bismuth, including the corrosion mechanisms, corrosion inhibitor and the formation of the protective oxide layer. The available experimental data are analyzed by using a corrosion model in which the oxidation and scale removal are coupled. Based on the model, long-term behaviors of steels in liquid lead and lead-bismuth are predictable. This report provides information for the selection of structural materials for typical nuclear reactor coolant systems when selecting liquid lead or lead bismuth as heat transfer media.

  9. A circulating loop tester for liquid alloyed metal of lead-bismuth

    International Nuclear Information System (INIS)

    Kitano, Teruaki; Ono, Mikinori; Kamata, Kinya

    2002-01-01

    Mitsui Engineering and Shipbuilding Co., Ltd. (MES) had focused to merits of this lead-bismuth alloy, to actively carry out many works on this field such as an experience of development of heat exchanger at industrial level of intercourse with IPPE (Institute of Physics and Power Engineering) in Russia with an experience of using results for 80 years on coolant for nuclear reactor. Before about 20 years, MES developed a heat exchanger for installation at a lead-zinc separation process in a refinery in Japan under cooperation of the Mitsui Metal and Mine Co., Ltd., to deliver it for a power generation system at the Hachinohe refinery. As the heat exchanger aims at control of cooling in the separation process, it also contributes to power generation of about 4,300 kW, and now it continues to separate and contribute to self-power generation in the refinery. The heat exchanger is filled with the liquid alloyed metal of lead-bismuth for an intermediate thermal medium in its casing. The metal has some merits such as inactivity to air and water, high boiling point (1,700 centigrade), almost no volume change at its coagulation, and its minus reactivity coefficient. However, the metal has some problems to be solved, such as its steel corrosion, its purification, and control technology. To grow up lead-bismuth technology to a nuclear energy technology in Japan, the lead-bismuth circulating loop tester was produced on May, 2001, to establish application technology on this system to nuclear energy technology in Japan. (G.K.)

  10. The core design of ALFRED, a demonstrator for the European lead-cooled reactors

    International Nuclear Information System (INIS)

    Grasso, G.; Petrovich, C.; Mattioli, D.; Artioli, C.; Sciora, P.; Gugiu, D.; Bandini, G.; Bubelis, E.; Mikityuk, K.

    2014-01-01

    Highlights: • The design for the lead fast reactor is conceived in a comprehensive approach. • Neutronic, thermal-hydraulic, and transient analyses show promising results. • The system is designed to withstand even design extension conditions accidents. • Activation products in lead, including polonium, are evaluated. - Abstract: The European Union has recently co-funded the LEADER (Lead-cooled European Advanced DEmonstration Reactor) project, in the frame of which the preliminary designs of an industrial size lead-cooled reactor (1500 MW th ) and of its demonstrator reactor (300 MW th ) were developed. The latter is called ALFRED (Advanced Lead-cooled Fast Reactor European Demonstrator) and its core, as designed and characterized in the project, is presented here. The core parameters have been fixed in a comprehensive approach taking into account the main technological constraints and goals of the system from the very beginning: the limiting temperature of the clad and of the fuel, the Pu enrichment, the achievement of a burn-up of 100 GWd/t, the respect of the integrity of the system even in design extension conditions (DEC). After the general core design has been fixed, it has been characterized from the neutronic point of view by two independent codes (MCNPX and ERANOS), whose results are compared. The power deposition and the reactivity coefficient calculations have been used respectively as input for the thermal-hydraulic analysis (TRACE, CFD and ANTEO codes) and for some preliminary transient calculations (RELAP, CATHARE and SIM-LFR codes). The results of the lead activation analysis are also presented (FISPACT code). Some issues of the core design are to be reviewed and improved, uncertainties are still to be evaluated, but the verifications performed so far confirm the promising safety features of the lead-cooled fast reactors

  11. The core design of ALFRED, a demonstrator for the European lead-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, G., E-mail: giacomo.grasso@enea.it [ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), via Martiri di Monte Sole, 4, 40129 Bologna (Italy); Petrovich, C., E-mail: carlo.petrovich@enea.it [ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), via Martiri di Monte Sole, 4, 40129 Bologna (Italy); Mattioli, D., E-mail: davide.mattioli@enea.it [ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), via Martiri di Monte Sole, 4, 40129 Bologna (Italy); Artioli, C., E-mail: carlo.artioli@enea.it [ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), via Martiri di Monte Sole, 4, 40129 Bologna (Italy); Sciora, P., E-mail: pierre.sciora@cea.fr [CEA (Alternative Energies and Atomic Energy Commission), DEN, DER, 13108 St Paul lez Durance (France); Gugiu, D., E-mail: daniela.gugiu@nuclear.ro [RATEN-ICN (Institute for Nuclear Research), Cod 115400 Mioveni, Str. Campului, 1, Jud. Arges (Romania); Bandini, G., E-mail: giacomino.bandini@enea.it [ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), via Martiri di Monte Sole, 4, 40129 Bologna (Italy); Bubelis, E., E-mail: evaldas.bubelis@kit.edu [KIT (Karlsruhe Institute of Technology), Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Mikityuk, K., E-mail: konstantin.mikityuk@psi.ch [PSI (Paul Scherrer Institute), OHSA/D11, 5232 Villigen PSI (Switzerland)

    2014-10-15

    Highlights: • The design for the lead fast reactor is conceived in a comprehensive approach. • Neutronic, thermal-hydraulic, and transient analyses show promising results. • The system is designed to withstand even design extension conditions accidents. • Activation products in lead, including polonium, are evaluated. - Abstract: The European Union has recently co-funded the LEADER (Lead-cooled European Advanced DEmonstration Reactor) project, in the frame of which the preliminary designs of an industrial size lead-cooled reactor (1500 MW{sub th}) and of its demonstrator reactor (300 MW{sub th}) were developed. The latter is called ALFRED (Advanced Lead-cooled Fast Reactor European Demonstrator) and its core, as designed and characterized in the project, is presented here. The core parameters have been fixed in a comprehensive approach taking into account the main technological constraints and goals of the system from the very beginning: the limiting temperature of the clad and of the fuel, the Pu enrichment, the achievement of a burn-up of 100 GWd/t, the respect of the integrity of the system even in design extension conditions (DEC). After the general core design has been fixed, it has been characterized from the neutronic point of view by two independent codes (MCNPX and ERANOS), whose results are compared. The power deposition and the reactivity coefficient calculations have been used respectively as input for the thermal-hydraulic analysis (TRACE, CFD and ANTEO codes) and for some preliminary transient calculations (RELAP, CATHARE and SIM-LFR codes). The results of the lead activation analysis are also presented (FISPACT code). Some issues of the core design are to be reviewed and improved, uncertainties are still to be evaluated, but the verifications performed so far confirm the promising safety features of the lead-cooled fast reactors.

  12. Specificities of reactor coolant pumps units with lead and lead-bismuth coolant

    International Nuclear Information System (INIS)

    Beznosov, A.V.; Anotonenkov, M.A.; Bokov, P.A.; Baranova, V.S.; Kustov, M.S.

    2009-01-01

    The analysis results of impact of lead and lead-bismuth coolants specific properties on the coolants flow features in flow channels of the main and auxiliary circulating pumps are presented. Impossibility of cavitation initiation in flow channels of vane pumps pumping lead and lead-bismuth coolants was demonstrated. The experimental research results of discontinuity of heavy liquid metal coolant column were presented and conditions of gas cavitation initiation in coolant flow were discussed. Invalidity of traditional calculation methods of water and sodium coolants circulation pumps calculations for lead and lead-bismuth coolants circulation pumps was substantiated [ru

  13. Lead-Bismuth Eutectic cooled experimental Accelerator Driven System. Windowless target unit thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Bianchi, F.; Ferri, R.; Moreau, V.

    2004-01-01

    A main concern related to the peaceful use of nuclear energy is the safe management of nuclear wastes, with particular attention to long-lived fission products. An increasing attention has recently been addressed to transmutation systems (Accelerator Driven System: ADS) able to 'burn' the actinides and some of the long-lived fission products (High-Level Waste: HLW), transforming them in short or medium-lived wastes that may be easier managed and stored in the geological disposal, with the consequent easier acceptability by population. An ADS consists of a subcritical-core coupled with an accelerator by means of a target. This paper deals with the thermal-hydraulic analysis, performed with STAR-CD and RELAP5 codes for the windowless target unit of Lead-Bismuth Eutectic (LBE) cooled experimental ADS (XADS), both to assess its behaviour during operational and accident sequences and to provide input data for the thermal-mechanical analyses. It also reports a description of modifications properly implemented in the codes used for the assessment of this kind of plants. (author)

  14. Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies - 2015 Edition

    International Nuclear Information System (INIS)

    Fazio, Concetta; Sobolev, V.P.; Aerts, A.; Gavrilov, S.; Lambrinou, K.; Schuurmans, P.; Gessi, A.; Agostini, P.; Ciampichetti, A.; Martinelli, L.; Gosse, S.; Balbaud-Celerier, F.; Courouau, J.L.; Terlain, A.; Li, N.; Glasbrenner, H.; Neuhausen, J.; Heinitz, S.; Zanini, L.; Dai, Y.; Jolkkonen, M.; Kurata, Y.; Obara, T.; Thiolliere, N.; Martin-Munoz, F.J.; Heinzel, A.; Weisenburger, A.; Mueller, G.; Schumacher, G.; Jianu, A.; Pacio, J.; Marocco, L.; Stieglitz, R.; Wetzel, T.; Daubner, M.; Litfin, K.; Vogt, J.B.; Proriol-Serre, I.; Gorse, D.; Eckert, S.; Stefani, F.; Buchenau, D.; Wondrak, T.; Hwang, I.S.

    2015-01-01

    Heavy liquid metals such as lead or lead-bismuth have been proposed and investigated as coolants for fast reactors since the 1950's. More recently, there has been renewed interest worldwide in the use of these materials to support the development of systems for the transmutation of radioactive waste. Heavy liquid metals are also under evaluation as a reactor core coolant and accelerator-driven system neutron spallation source. Several national and international R and D programmes are ongoing for the development of liquid lead-alloy technology and the design of liquid lead-alloy-cooled reactor systems. In 2007, a first edition of the handbook was published to provide deeper insight into the properties and experimental results in relation to lead and lead-bismuth eutectic technology and to establish a common database. This handbook remains a reference in the field and is a valuable tool for designers and researchers with an interest in heavy liquid metals. The 2015 edition includes updated data resulting from various national and international R and D programmes and contains new experimental data to help understand some important phenomena such as liquid metal embrittlement and turbulent heat transfer in a fuel bundle. The handbook provides an overview of liquid lead and lead-bismuth eutectic properties, materials compatibility and testing issues, key aspects of thermal-hydraulics and existing facilities, as well as perspectives for future R and D. (authors)

  15. Advanced Small-Safe Long-Life Lead Cooled Reactor Cores for Future Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hyeong; Hong, Ser Gi [Kyung Hee University, Seoul (Korea, Republic of)

    2014-10-15

    One of the reasons for use of the lead or lead-bismuth alloy coolants is the high boiling temperature that avoids the possibility of coolant voiding. Also, these coolants are compatible with air, steam, and water. Therefore, intermediate coolant loop is not required as in the sodium cooled reactors 3. Lead is considered to be more attractive coolant than lead-bismuth alloy because of its higher availability, lower price, and much lower amount of polonium activity by factor of 104 relatively to lead. On the other hand, lead has higher melting temperature of 601K than that of lead-bismuth (398K), which narrows the operating temperature range and also leads to the possibility of freezing and blockage in fresh cores. Neutronically, the lead and lead-bismuth have very similar characteristics to each other. The lead-alloy coolants have lower moderating power and higher scattering without increasing moderation for neutrons below 0.5MeV, which reduces the leakage of the neutrons through the core and provides an excellent reflecting capability for neutrons. Due to the above features of lead or lead-alloy coolants, there have been lots of studies on the small lead cooled core designs. In this paper, small-safe long-life lead cooled reactor cores having high discharge burnup are designed and neutronically analyzed.. The cores considered in this work rates 110MWt (36.7MWe). In this work, the long-life with high discharge burnup was achieved by using thorium or depleted uranium blanket loaded in the central region of the core. Also, we considered a reference core having no blanket for the comparison. This paper provides the detailed neutronic analyses for these small long-life cores and the detailed analyses of the reactivity coefficients and the composition changes in blankets. The results of the core design and analyses show that our small long-life cores can be operated without refueling over their long-lives longer than 45EFPYs (Effective Full Power Year). In this work

  16. Design and safety aspect of lead and lead-bismuth cooled long-life small safe fast reactors for various core configurations

    International Nuclear Information System (INIS)

    Zaki, S.; Sekimoto, Hiroshi

    1995-01-01

    Design and safety aspects of long-life small safe fast reactors using liquid lead or lead-bismuth coolant with metallic or nitride fuel are discussed. Neutronic analyses are performed to investigate the effect of core height to diameter ratio (H/D) on design performance of the proposed reactors. All reactors are subjected to the constraint of 12 years operation without refueling and shuffling with constant 150 MWt reactor power and also to the requirement of maximum excess reactivity during burnup to be less than 0.1%Δk. The results show that the pancake design with H/D of ∼2/3 gives the most negative coolant void coefficient under the requirements for excess reactivity. Modified designs with the central region axially fulfilled with fertile material are proposed to improve the coolant void coefficient. Thermal-hydraulic analysis results show the possibility to operate the reactors up to the end of life without changing their orifice pattern, necessary pumping power for the proposed design smaller than the conventional large sodium cooled FBR, and the natural circulation contribution of 25-40% at the normal operating condition. The reactivity feedback coefficients are also estimated and appeared to be negative for all the components including the coolant density coefficient. (author)

  17. Studies of corrosion resistance of Japanese steels in liquid lead-bismuth

    International Nuclear Information System (INIS)

    Kamata, Kin-ya; Ono, Hiroshi; Kitano, Teruaki; Ono, Mikinori

    2003-01-01

    Liquid lead-bismuth has attractive characteristics as a coolant in future fast reactors and Accelerator Driven Sub-critical Systems (ADS) applications. The corrosion behavior of structural materials in lead-bismuth eutectic is one of key problems in developing nuclear power plants and installations using lead-bismuth coolant. Our experiences with heat exchangers using liquid lead-bismuth and the results of corrosion tests of Japanese steels are reported in this paper. A series of corrosion tests was carried out in collaboration with the Institute of Physics and Power Engineering (IPPE). Test specimens of various Japanese steels were exposed in a non-isothermal forced circulation loop. The influence of maximum temperature and oxygen content in lead bismuth were chosen for study as the primary causes of corrosion in Japanese steels. After the corrosion tests, corrosion behavior was analyzed by visual inspection, measurement of weight loss and metallurgical examination of the microstructure of the corroded zone. The corrosion mechanism in liquid lead bismuth is discussed on the basis of the metallurgical examination of the corroded zone. (author)

  18. Basic principles of lead and lead-bismuth eutectic application in blanket of fusion reactors

    International Nuclear Information System (INIS)

    Beznosov, A.V.; Pinaev, S.S.; Muraviev, E.V.; Romanov, P.V.

    2005-01-01

    High magnetohydrodynamic pressure drop is an important issue for liquid metal blanket concepts. To decrease magnetohydrodynamic resistance authors propose to form insulating coatings on internal surface of blanket ducts at any moment of fusion reactor exploitation. It may be achieved easily if lead or lead-bismuth eutectic is used and technology of oxidative potential handling is applied. A number of experiments carried out in NNSTU show the availability of the proposed technology. It bases on formation of the insulating coatings that consist of the oxides of components of the structural materials and of the coolant components. In-situ value of the insulating coatings characteristics ρδ is ∼ 10 -5 Ohm·m 2 for steels and 5,0x10 -6 - 5,0x10 -5 Ohm·m 2 for vanadium alloys. Thermal cycling is possible during exploitation of a blanket. The experimental research of the insulating coatings properties during thermal cycling have shown that the coatings formed into the lead and lead-bismuth coolants save there insulating properties. Experience of many years is an undoubted advantage of the lead-bismuth coolant and less of the lead coolant in comparison with lithium. Russian Federation possesses of experience of exploitation of the research and industrial facilities, of experience of creation of the pumps, steamgenerators and equipment with heavy liquid metal coolants. The unique experience of designing, assembling and exploitation of the fission reactors with lead-bismuth coolant is also available. The problem of technology of lead and lead-bismuth coolants for power high temperature radioactive facilities has been solved. Accidents, emergency situations such as leakage of steamgenerators or depressurization of gas system in facilities with lead and lead-bismuth coolants have been explored and suppressed. (author)

  19. Power reactors and sub-critical blanket systems with lead and lead-bismuth as coolant and/or target material. Utilization and transmutation of actinides and long lived fission products

    International Nuclear Information System (INIS)

    2003-05-01

    High level radioactive waste disposal is an issue of great importance in the discussion of the sustainability of nuclear power generation. The main contributors to the high radioactivity are the fission products and the minor actinides. The long lived fission products and minor actinides set severe demands on the arrangements for safe waste disposal. Fast reactors and accelerator driven systems (ADS) are under development in Member States to reduce the long term hazard of spent fuel and radioactive waste, taking advantage of their incineration and transmutation capability. Important R and D programmes are being undertaken in many Member States to substantiate this option and advance the basic knowledge in this innovative area of nuclear energy development. The conceptual design of the lead cooled fast reactor concept BREST-OD-300, as well as various other conceptual designs of lead/lead-bismuth cooled fast reactors have been developed to meet enhanced safety and non-proliferation requirements, aiming at both energy production and transmutation of nuclear waste. Some R and D studies indicate that the use of lead and lead-bismuth coolant has some advantages in comparison with existing sodium cooled fast reactor systems, e.g.: simplified design of fast reactor core and BOP, enhanced inherent safety, and easier radwaste management in related fuel cycles. Moreover, various ADS conceptual designs with lead and lead-bismuth as target material and coolant also have been pursued. The results to date are encouraging, indicating that the ADS has the potential to offer an option for meeting the challenges of the back end fuel cycle. During the last decade, there have been substantial advances in several countries with their own R and D programme in the fields of lead/lead-bismuth cooled critical and sub-critical concepts. coolant technology, and experimental validation. In this context, international exchange of information and experience, as well as international

  20. Short-term static corrosion tests in lead-bismuth

    Science.gov (United States)

    Soler Crespo, L.; Martín Muñoz, F. J.; Gómez Briceño, D.

    2001-07-01

    Martensitic steels have been proposed to be used as structural materials and as spallation target window in hybrid systems devoted to the transmutation of radioactive waste of long life and high activity. However, their compatibility with lead-bismuth in the operating conditions of these systems depends on the existence of a protective layer such as an oxide film. The feasibility of forming and maintaining an oxide layer or maintaining a pre-oxidised one has been studied. Martensitic steel F82Hmod. (8% Cr) has been tested in lead-bismuth under static and isothermal conditions at 400°C and 600°C. In order to study the first stages of the interaction between the steel and the eutectic, short-term tests (100 and 665 h) have been carried out. Pre-oxidised and as-received samples have been tested in atmospheres with different oxidant potential. For low oxygen concentration in lead-bismuth due to unexpected oxygen consumption in the experimental device, dissolution of as-received F82Hmod. occurs and pre-oxidation does not prevent the material dissolution. For high oxygen concentration, the pre-oxidation layer seems to improve the feasibility of protecting stainless steels controlling the oxygen potential of lead-bismuth with a gas phase.

  1. Short-term static corrosion tests in lead-bismuth

    International Nuclear Information System (INIS)

    Soler Crespo, L.; Martin Munoz, F.J.; Gomez Briceno, D.

    2001-01-01

    Martensitic steels have been proposed to be used as structural materials and as spallation target window in hybrid systems devoted to the transmutation of radioactive waste of long life and high activity. However, their compatibility with lead-bismuth in the operating conditions of these systems depends on the existence of a protective layer such as an oxide film. The feasibility of forming and maintaining an oxide layer or maintaining a pre-oxidised one has been studied. Martensitic steel F82Hmod. (8% Cr) has been tested in lead-bismuth under static and isothermal conditions at 400 o C and 600 o C. In order to study the first stages of the interaction between the steel and the eutectic, short-term tests (100 and 665 h) have been carried out. Pre-oxidised and as-received samples have been tested in atmospheres with different oxidant potential. For low oxygen concentration in lead-bismuth due to unexpected oxygen consumption in the experimental device, dissolution of as-received F82Hmod. occurs and pre-oxidation does not prevent the material dissolution. For high oxygen concentration, the pre-oxidation layer seems to improve the feasibility of protecting stainless steels controlling the oxygen potential of lead-bismuth with a gas phase

  2. Lead-Cooled Fast Reactor Systems and the Fuels and Materials Challenges

    Directory of Open Access Journals (Sweden)

    T. R. Allen

    2007-01-01

    Full Text Available Anticipated developments in the consumer energy market have led developers of nuclear energy concepts to consider how innovations in energy technology can be adapted to meet consumer needs. Properties of molten lead or lead-bismuth alloy coolants in lead-cooled fast reactor (LFR systems offer potential advantages for reactors with passive safety characteristics, modular deployment, and fuel cycle flexibility. In addition to realizing those engineering objectives, the feasibility of such systems will rest on development or selection of fuels and materials suitable for use with corrosive lead or lead-bismuth. Three proposed LFR systems, with varying levels of concept maturity, are described to illustrate their associated fuels and materials challenges. Nitride fuels are generally favored for LFR use over metal or oxide fuels due to their compatibility with molten lead and lead-bismuth, in addition to their high atomic density and thermal conductivity. Ferritic/martensitic stainless steels, perhaps with silicon and/or oxide-dispersion additions for enhanced coolant compatibility and improved high-temperature strength, might prove sufficient for low-to-moderate-temperature LFRs, but it appears that ceramics or refractory metal alloys will be necessary for higher-temperature LFR systems intended for production of hydrogen energy carriers.

  3. Seismic isolation of lead-cooled reactors: The European project SILER

    International Nuclear Information System (INIS)

    Forni, Massimo; Poggianti, Alessandro; Scipinotti, Riccardo; Dusi, Alberto; Manzoni, Elena

    2014-01-01

    SILER (Seismic-Initiated event risk mitigation in LEad-cooled Reactors) is a Collaborative Project, partially funded by the European Commission in the 7th Framework Programme, aimed at studying the risk associated to seismic-initiated events in Generation IV Heavy Liquid Metal reactors, and developing adequate protection measures. The project started in October 2011, and will run for a duration of three years. The attention of SILER is focused on the evaluation of the effects of earthquakes, with particular regards to beyond-design seismic events, and to the identification of mitigation strategies, acting both on structures and components design. Special efforts are devoted to the development of seismic isolation devices and related interface components. Two reference designs, at the state of development available at the beginning of the project and coming from the 6th Programme, have been considered: ELSY (European Lead Fast Reactor) for the Lead Fast Reactors (LFR), and MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) for the Accelerator-Driven Systems (ADS). This paper describes the main activities and results obtained so far, paying particular attention to the development of seismic isolators, and the interface components which must be installed between the isolated reactor building and the non-isolated parts of the plant, such as the pipe expansion joints and the joint-cover of the seismic gap.

  4. MEGAPIE analytical support task : characterization of lead-bismuth eutectic and sodium-cooled tungsten target materials for accelerator driven systems

    International Nuclear Information System (INIS)

    Gohar, Y.

    2002-01-01

    Lead-Bismuth Eutectic and Tungsten are under consideration as target materials with high-energy protons for generating neutrons to drive actinide and fission product transmuters. A detailed characterization has been performed to study the performance of these target materials as a function of the main variables and the design selections. The characterization includes the neutron yield, the spatial energy deposition, the neutron spectrum, the beam window performance, and the target buffer impact on the target performance. The characterization has also considered high-energy deuteron particles to study the impact on the target neutronic performance. The obtained results quantify the performance of the Lead-Bismuth Eutectic and Tungsten target materials as a function of the target variables and design selections

  5. Performance of a chevron steam dryer for removal of lead-bismuth droplets

    International Nuclear Information System (INIS)

    Dostal, Vaclav; Yusibani, Elin; Takahashi, Minoru

    2005-01-01

    An analysis was performed of a chevron type steam dryer with a trap for the removal of lead-bismuth droplets from steam leaving the Water Boiling Direct Contact Lead or Lead-Bismuth Cooled Reactor. The Lagrangian method was used and is described here. The steam flow field was developed using a CFD code FrontFlow/Red. The simulated dryer performance results were compared to a simple theoretical model from literature. The simulation shown that droplets down to 6 microns in diameter can be completely removed by the steam dryer, which is better than reported earlier in literature. A discrepancy with the theoretical model was found for larger droplets (5 to 10 microns in diameter), where the theoretical model predicted lower removal efficiency. The discrepancy is attributed to be installation of the trap, which is not included in this theoretical model. Some droplets of 1 and 0.5 microns were removed in the dryer as well, which indicates the potential for the fine droplet removal if the trap design is carefully optimized. The investigation of the effect of initial droplet velocity shown that the removal efficiency increases with the increase of the positive velocity components. For larger droplets the effect of initial velocity was found to be minuscule. (author)

  6. Present status and future perspective of R and D on lead heavy metal-cooled fast reactors

    International Nuclear Information System (INIS)

    Takahashi, Minoru

    2007-01-01

    Since a lead heavy metal (lead-bismuth eutectic) is chemically inert and has higher boiling point compared to a sodium, a lead heavy metal-cooled fast reactor can be inherently safe and has good nuclear characteristics and is so suitable to a medium-small size of the reactor. R and D on corrosion of a lead heavy metal has been carried out in the world and this issue might be solved to choose specific corrosion resistant alloys for structural materials and fuel cans of a lead heavy metal-cooled reactor. This article reviews present status and future perspective on lead heavy metal-cooled fast reactors. (T. Tanaka)

  7. Lead migration from toys by anodic stripping voltammetry using a bismuth film electrode.

    Science.gov (United States)

    Leal, M Fernanda C; Catarino, Rita I L; Pimenta, Adriana M; Souto, M Renata S; Afonso, Christelle S; Fernandes, Ana F Q

    2016-09-02

    Metals may be released from toys via saliva during mouthing, via sweat during dermal contact, or via gastric and intestinal fluids after partial or whole ingestion. In this study, we determined the lead migration from toys bought on the Portuguese market for children below 3 years of age. The lead migration was performed according to the European Committee for Standardization EN 71-3, which proposes a 2-hour migration test that simulates human gastric conditions. The voltammetric determination of migrated lead was performed by anodic stripping voltammetry (ASV) at a bismuth film electrode (BiFE). For all the analyzed toys, the values of migrated lead did not exceed the limits imposed by the European Committee for Standardization EN 71-3 (90 mg kg -1 ) and by the EU Directive 2009/48/EC (13.5 mg kg -1 ) on the safety of toys.

  8. The cross section sensitivity of the minor actinides on a lead-bismuth cooled accelerator-driven burner system

    International Nuclear Information System (INIS)

    Gil, Choong-Sup; Kim, Jung-Do; Chang, Jonghwa

    2002-01-01

    In order to validate the detailed sensitivity of each minor actinide datum in ENDF/B-VI Release 6, JEF-2.2 and JENDL-3.2 on an accelerator-driven minor actinide burner benchmark system, a lead-bismuth cooled sub-critical system was analyzed. The impacts on the system by the ten minor actinides were compared. The k eff values and reaction rates were calculated by exchanging the data sets of each minor actinide from ENDF/B-VI.6 to JEF-2.2 or JENDL-3.2. At the equilibrium core, the k eff differences from ENDF/B-VI.6 by the ten minor actinides can cause more than 5,500 pcm for JEF-2.2 and 3,500 pcm for JENDL-3.2. The fission reaction rates of 242m Am and 243 Cm with ENDF/B-VI.6 show differences of more than 15% from those with JEF-2.2 and JENDL-3.2. 241 Am, 243 Am and 245 Cm in JEF-2.2 and americium isotope data and 245 Cm in JENDL-3.2 are sensitive to the fission spectrum. (author)

  9. Characterization and re-activation of oxygen sensors for use in liquid lead-bismuth

    International Nuclear Information System (INIS)

    Kurata, Yuji; Abe, Yuji; Futakawa, Masatoshi; Oigawa, Hiroyuki

    2010-01-01

    Control of oxygen concentration in liquid lead-bismuth is one of the most important tasks to develop accelerator driven systems. In order to improve the reliability of oxygen sensors, re-activation treatments were investigated as well as characterization of oxygen sensors for use in liquid lead-bismuth. The oxygen sensor with a solid electrolyte of yttria-stabilized zirconia and a Pt/gas reference electrode showed almost the same electromotive force values in gas and liquid lead-bismuth, respectively, as the theoretical ones at temperatures above 400 deg. C or 450 deg. C. After long-term use of 6500 h, the outputs of the sensor became incorrect in liquid lead-bismuth. The state of the sensor that indicated incorrect outputs could not be recovered by cleaning with a nitric acid. However, it was found that the oxygen sensor became a correct sensor indicating theoretical values in liquid lead-bismuth after re-activation by the Pt-treatment of the outer surface of the sensor.

  10. Oxide layer stability in lead-bismuth at high temperature

    Science.gov (United States)

    Martín, F. J.; Soler, L.; Hernández, F.; Gómez-Briceño, D.

    2004-11-01

    Materials protection by 'in situ' oxidation has been studied in stagnant lead-bismuth, with different oxygen levels (H 2/H 2O ratios of 0.3 and 0.03), at temperatures from 535 °C to 600 °C and times from 100 to 3000 h. The materials tested were the martensitic steels F82Hmod, EM10 and T91 and the austenitic stainless steels, AISI 316L and AISI 304L. The results obtained point to the existence of an apparent threshold temperature above which corrosion occurs and the formation of a protective and stable oxide layer is not possible. This threshold temperature depends on material composition, oxygen concentration in the liquid lead-bismuth and time. The threshold temperature is higher for the austenitic steels, especially for the AISI 304L, and it increases with the oxygen concentration in the lead-bismuth. The oxide layer formed disappear with time and, after 3000 h all the materials, except AISI 304L, suffer corrosion, more severe for the martensitic steels and at the highest temperature tested.

  11. MES lead bismuth forced circulation loop and test results

    International Nuclear Information System (INIS)

    Ono, Mikinori; Mine, Tatsuya; Kitano, Teruaki; Kamata, Kin-ya

    2003-01-01

    Liquid lead-bismuth is a promising material as future reactor coolant or intensive neutron source material for accelerator driven system (ADS). Mitsui Engineering and Shipbuilding Co., Ltd. (MES) completed lead-bismuth coolant (LBC) forced circulation loop in May 2001 and acquired engineering data on economizer, electro magnetic pump, electro magnetic flow meter and so on. For quality control of LBC, oxygen sensor and filtering element are developing using some hydrogen and moisture mixed gases. Structural materials corrosion test for accelerator driver system (ADS) will start soon. And thermal hydraulic test for ADS will start in tree years. (author)

  12. Heavy liquid metal cooled FBR. Results 2001

    International Nuclear Information System (INIS)

    Enuma, Yasuhiro; Soman, Yoshindo; Konomura, Mamoru; Mizuno, Tomoyasu

    2003-08-01

    In the feasibility studies of commercialization of an FBR fuel cycle system, the targets are economical competitiveness to future LWRs, efficient utilization of resources, reduction of environmental burden and enhancement of nuclear non-proliferation, besides ensuring safety. Both medium size pool-type lead-bismuth cooled reactor with primary pumps system and without primary pumps system are studied to pursue their improvement in heavy metal coolant considering design requirements form plant structures. The design of plant systems are reformed, and the conceptual design is made and the commodities are analyzed. (1) Conceptual design of lead-bismuth cooled reactor with pumping system: Electrical output 750 MWe and 4-module system. The heat-mass balance is optimized and drawings are made about plant layout, cooling system, reactor structure and cooling component structures. (2) Structural analysis of main components. (3) Conceptual design of natural circulation type lead-bismuth cooled reactor: Electrical output 550 MWe and 6-module system. The heat-mass balance is optimized and drawings are made about plant layout, cooling system, reactor structure and cooling component structures. (4) Study of R and D program. (author)

  13. Characteristics of polonium contamination from neutral irradiated lead-bismuth eutectic

    International Nuclear Information System (INIS)

    Miura, T.; Obara, T.; Sekimoto, H.

    2004-01-01

    After neutron capture, bismuth-209 changes to polonium-210 that emits α-particles. Lead-Bismuth eutectic (LBE) in reactor system contaminates the system by polonium. We analyzed adsorbed materials from melted LBE on quartz glass plate. Lead, bismuth and their oxides were confirmed in adsorbed materials. And, we evaluated the baking method in vacuum for removal of polonium and adsorbed materials on quartz glass plate. It was evaluated that it is possible to remove almost all the polonium from the quartz glass plate by baking at temperature more than 300 C. degrees. Unfolding method was applied to calculate polonium distribution in LBE ingot. From measured α-particle pulse height distribution, the polonium distribution in depth of LBE ingot was calculated using quadratic programming code, where response functions are calculated by Monte Carlo method. (authors)

  14. Nucleation and growth of lead oxide particles in liquid lead-bismuth eutectic.

    Science.gov (United States)

    Gladinez, Kristof; Rosseel, Kris; Lim, Jun; Marino, Alessandro; Heynderickx, Geraldine; Aerts, Alexander

    2017-10-18

    Liquid lead-bismuth eutectic (LBE) is an important candidate to become the primary coolant of future, generation IV, nuclear fast reactors and Accelerator Driven System (ADS) concepts. One of the main challenges with the use of LBE as a coolant is to avoid its oxidation which results in solid lead oxide (PbO) precipitation. The chemical equilibria governing PbO formation are well understood. However, insufficient kinetic information is currently available for the development of LBE-based nuclear technology. Here, we report the results of experiments in which the nucleation, growth and dissolution of PbO in LBE during temperature cycling are measured by monitoring dissolved oxygen using potentiometric oxygen sensors. The metastable region, above which PbO nucleation can occur, has been determined under conditions relevant for the operation of LBE cooled nuclear systems and was found to be independent of setup geometry and thus thought to be widely applicable. A kinetic model to describe formation and dissolution of PbO particles in LBE is proposed, based on Classical Nucleation Theory (CNT) combined with mass transfer limited growth and dissolution. This model can accurately predict the experimentally observed changes in oxygen concentration due to nucleation, growth and dissolution of PbO, using the effective interfacial energy of a PbO nucleus in LBE as a fitting parameter. The results are invaluable to evaluate the consequences of oxygen ingress in LBE cooled nuclear systems under normal operating and accidental conditions and form the basis for the development of cold trap technology to avoid PbO formation in the primary reactor circuit.

  15. Scaled Facility Design Approach for Pool-Type Lead-Bismuth Eutectic Cooled Small Modular Reactor Utilizing Natural Circulation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sangrok; Shin, Yong-Hoon; Lee, Jueun; Hwang, Il Soon [Seoul National University, Seoul (Korea, Republic of)

    2015-10-15

    In low carbon era, nuclear energy is the most prominent energy source of electricity. For steady ecofriendly nuclear energy supply, Generation IV reactors which are future nuclear reactor require safety, sustainability, economics and non-proliferation as four criteria. Lead cooled fast reactor (LFR) is one of these reactor type and Generation IV international forum (GIF) adapted three reference LFR systems which are a small and movable systems with long life without refueling, intermediate size and huge electricity generation system for power grid. NUTRECK (Nuclear Transmutation Energy Center of Korea) has been designed reactor called URANUS (Ubiquitous, Rugged, Accident-forgiving, Non-proliferating, and Ultra-lasting Sustainer) which is small modular reactor and using lead-bismuth eutectic coolant. To prove natural circulation capability of URANUS and analyze design based accidents, scaling mock-up experiment facility will be constructed. In this paper, simple specifications of URANUS will be presented. Then based on this feature, scaling law and scaled facility design results are presented. To validate safety feature and thermodynamics characteristic of URANUS, scaled mockup facility of URANUS is designed based on the scaling law. This mockup adapts two area scale factors, core and lower parts of mock-up are scaled for 3D flow experiment. Upper parts are scaled different size to reduce electricity power and LBE tonnage. This hybrid scaling method could distort some thermal-hydraulic parameters, however, key parameters for experiment will be matched for up-scaling. Detailed design of mock-up will be determined through iteration for design optimization.

  16. Assessment of the transmutation capability an accelerator driven system cooled by lead bismuth eutectic alloy

    International Nuclear Information System (INIS)

    Bianchi, F.; Peluso, V.; Calabrese; Chen, X.; Maschek, W.

    2007-01-01

    1. PURPOSE The reduction of long-lived fission products (LLFP) and minor actinides (MA) is a key point for the public acceptability and economy of nuclear energy. In principle, any nuclear fast reactor is able to burn and transmute MA, but the amount of MA content has to be limited a few percent, having unfavourable consequences on the coolant void reactivity, Doppler effect, and delayed neutron fraction, and therefore on the dynamic behaviour and control. Accelerator Driven Systems (ADS) are instead able to safely burn and/or transmute a large quantity of actinides and LLFP, as they do not rely on delayed neutrons for control or power change and the reactivity feedbacks have very little importance during accidents. Such systems are very innovative being based on the coupling of an accelerator with a subcritical system by means of a target system, where the neutronic source needed to maintain the neutron reaction chain is produced by spallation reactions. To this end the PDS-XADS (Preliminary Design Studies on an experimental Accelerator Driven System) project was funded by the European Community in the 5th Framework Program in order both to demonstrate the feasibility of the coupling between an accelerator and a sub-critical core loaded with standard MOX fuel and to investigate the transmutation capability in order to achieve values suitable for an Industrial Scale Transmuter. This paper summarizes and compares the results of neutronic calculations aimed at evaluating the transmutation capability of cores cooled by Lead-Bismuth Eutectic alloy and loaded with assemblies based on (Pu, Am, Cm) oxide dispersed in a molybdenum metal (CERMET) or magnesia (CERCER) matrices. It also describes the constraints considered in the design of such cores and describes the thermo-mechanical behaviour of these innovative fuels along the cycle. 2. DESCRIPTION OF THE WORK: The U-free composite fuels (CERMET and CERCER) were selected for this study, being considered at European level

  17. Study of neutron and gamma shielding by lead borate and bismuth lead borate glasses: transparent radiation shielding

    International Nuclear Information System (INIS)

    Singh, Vishwanath P.; Badiger, N.M.

    2013-01-01

    Radiation shielding for gamma and neutron is the prominent area in nuclear reactor technology, medical application, dosimetry and other industries. Shielding of these types of radiation requires an appropriate concrete with mixture of low-to-high Z elements which is an opaque medium. The transparent radiation shielding in visible light for gamma and neutron is also extremely essential in the nuclear facilities as lead window. Presently various types of lead equivalent glass oxides have been invented which are transparent as well as provide protection from radiation. In our study we have assessment of effectiveness of neutron and gamma radiation shielding of xPbO.(1-x) B 2 O 3 (x=0.15 to 0.60) and xBi 2 O 3 .(0.80-x) PbO.0.20 B 2 O 3 (x=0.10 to 0.70) transparent borate and bismuth glasses by NXCOM program. The neutron effective mass removal cross section, Σ R /ρ (cm 2 /g) of the lead, bismuth and boron oxides are given. We found invariable Σ R /ρ of various combinations of the lead borate glass for x=0.15 to 0.60 and bismuth lead borate glass for x=0.10 to 0.70. It is observed that the effective removal cross-section for fast neutron (cm -1 ) of lead borate reduces significantly whereas roughly constant for bismuth borate. The gamma mass attenuation coefficients (μ/ρ) of the glasses were also compared with possible experimental values and found comparable. High (μ/ρ) for gamma radiation of the bismuth glasses shows that it is better gamma shielding compared with lead containing glass. However lead borate glasses are better neutron shielding as the neutron removal coefficient are higher. Our investigation is very useful for nuclear reactor technology where prompt neutron of energy 17 MeV and gamma photon up to 10 MeV produced. (author)

  18. Liquid Lead-Bismuth Materials Test Loop

    International Nuclear Information System (INIS)

    Tcharnotskaia, Valentina; Ammerman, Curtt; Darling, Timothy; King, Joe; Li, Ning; Shaw, Don; Snodgrass, Leon; Woloshun, Keith

    2002-01-01

    We designed and built the Liquid Lead-Bismuth Materials Test Loop (MTL) to study the materials behavior in a flow of molten lead-bismuth eutectic (LBE). In this paper we present a description of the loop with main components and their functions. Stress distribution in the piping due to sustained, occasional and expansion loads is shown. The loop is designed so that a difference of 100 deg. C can be attained between the coldest and the hottest parts at a nominal flow rate of 8.84 GPM. Liquid LBE flow can be activated by a mechanical sump pump or by natural convection. In order to maintain a self-healing protective film on the surface of the stainless steel pipe, a certain concentration of oxygen has to be maintained in the liquid metal. We developed oxygen sensors and an oxygen control system to be implemented in the loop. The loop is outfitted with a variety of instruments that are controlled from a computer based data acquisition system. Initial experiments include preconditioning the loop, filling it up with LBE, running at uniform temperature and tuning the oxygen control system. We will present some preliminary results and discuss plans for the future tests. (authors)

  19. Direct numerical simulation and statistical analysis of turbulent convection in lead-bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Otic, I.; Grotzbach, G. [Forschungszentrum Karlsruhe GmbH, Institut fuer Kern-und Energietechnik (Germany)

    2003-07-01

    Improved turbulent heat flux models are required to develop and analyze the reactor concept of an lead-bismuth cooled Accelerator-Driven-System. Because of specific properties of many liquid metals we have still no sensors for accurate measurements of the high frequency velocity fluctuations. So, the development of the turbulent heat transfer models which are required in our CFD (computational fluid dynamics) tools needs also data from direct numerical simulations of turbulent flows. We use new simulation results for the model problem of Rayleigh-Benard convection to show some peculiarities of the turbulent natural convection in lead-bismuth (Pr = 0.025). Simulations for this flow at sufficiently large turbulence levels became only recently feasible because this flow requires the resolution of very small velocity scales with the need for recording long-wave structures for the slow changes in the convective temperature field. The results are analyzed regarding the principle convection and heat transfer features. They are also used to perform statistical analysis to show that the currently available modeling is indeed not adequate for these fluids. Basing on the knowledge of the details of the statistical features of turbulence in this convection type and using the two-point correlation technique, a proposal for an improved statistical turbulence model is developed which is expected to account better for the peculiarities of the heat transfer in the turbulent convection in low Prandtl number fluids. (authors)

  20. Soluble Lead and Bismuth Chalcogenidometallates: Versatile Solders for Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao [Department; Son, Jae Sung [Department; School; Dolzhnikov, Dmitriy S. [Department; Filatov, Alexander S. [Department; Hazarika, Abhijit [Department; Wang, Yuanyuan [Department; Hudson, Margaret H. [Department; Sun, Cheng-Jun [Advanced; Chattopadhyay, Soma [Physical; Talapin, Dmitri V. [Department; Center

    2017-07-27

    Here we report the syntheses of largely unexplored lead and bismuth chalcogenidometallates in the solution phase. Using N2H4 as the solvent, new compounds such as K6Pb3Te6·7N2H4 were obtained. These soluble molecular compounds underwent cation exchange processes using resin chemistry, replacing Na+ or K+ by decomposable N2H5+ or tetraethylammonium cations. They also transformed into stoichiometric lead and bismuth chalcogenide nanomaterials with the addition of metal salts. Such a versatile chemistry led to a variety of composition-matched solders to join lead and bismuth chalcogenides and tune their charge transport properties at the grain boundaries. Solution-processed thin films composed of Bi0.5Sb1.5Te3 microparticles soldered by (N2H5)6Bi0.5Sb1.5Te6 exhibited thermoelectric power factors (~28 μW/cm K2) comparable to those in vacuum-deposited Bi0.5Sb1.5Te3 films. The soldering effect can also be integrated with attractive fabrication techniques for thermoelectric modules, such as screen printing, suggesting the potential of these solders in the rational design of printable and moldable thermoelectrics.

  1. Measurements of gas and volatile element production rates from an irradiated molten lead and lead-bismuth spallation target with proton beams of 1 and 1.4 GeV

    International Nuclear Information System (INIS)

    Tall, Y.

    2008-03-01

    The integrated project EUROTRANS (European Research Programme for the Transmutation of High Level Nuclear Waste in an Accelerator Driven System) of the 6. EURATOM Framework Programme aims to demonstrate the transmutation of radioactive waste in ADS (Accelerator Driven Sub-critical system). It will carry out a first advanced design of an experimental facility to demonstrate the technical feasibility of transmutation, and will produce a conceptual design of an industrial facility dedicated to transmutation. An ADS consists of three fundamental elements: the accelerator of protons, the sub-critical core and the spallation target. SUBATECH (physique Sub-Atomique et des Technologies associees) laboratory is involved to the study of the chosen liquid lead-bismuth as a spallation ADS target. The irradiation of liquid lead-bismuth target with energetic proton beam generates in addition to neutrons, volatile and radioactive residues. In order to determine experimentally the production rates of gas and volatile elements following a spallation reaction in a lead-bismuth target, the experiment IS419 was performed at the ISOLDE facility at CERN (Centre Europeen de la Recherche Nucleaire). This experiment constitutes the frame of the thesis whose main objective is to assess and study the production and release rates of many gas and volatile element from the irradiated lead-bismuth target with an energetic proton beam. The obtained data are compared to Monte Carlo simulation code (MCNPX) results in order to test the intranuclear cascade model of Bertini and of Cugnon, and the evaporation options of Dresner and Schmidt. (author)

  2. Coolant Chemistry Control: Oxygen Mass Transport in Lead Bismuth Eutectic

    International Nuclear Information System (INIS)

    Weisenburger, A.; Mueller, G.; Bruzzese, C.; Glass, A.

    2015-01-01

    In lead-bismuth cooled transmutation systems, oxygen, dissolved in the coolant at defined quantities, is required for stable long-term operation by assuring the formation of protective oxide scales on structural steel surfaces. Extracted oxygen must be permanently delivered to the system and distributed in the entire core. Therefore, coolant chemistry control involves detailed knowledge on oxygen mass transport. Beside the different flow regimes a core might have stagnant areas at which oxygen delivery can only be realised by diffusion. The difference between oxygen transport in flow paths and in stagnant zones is one of the targets of such experiments. To investigate oxygen mass transport in flowing and stagnant conditions, a dedicated facility was designed based on computational fluid dynamics (CFD). CFD also was applied to define the position of oxygen sensors and ultrasonic Doppler velocimetry transducers for flow measurements. This contribution will present the test facility, design relevant CFD calculations and results of first tests performed. (authors)

  3. Thermodynamic properties and equation of state of liquid lead and lead bismuth eutectic

    Science.gov (United States)

    Sobolev, V. P.; Schuurmans, P.; Benamati, G.

    2008-06-01

    Since the 1950s, liquid lead (Pb) and lead-bismuth eutectic (Pb-Bi) have been studied in the USA, Canada and in the former-USSR as potential coolants for nuclear installations due to their very attractive thermophysical and neutronic properties. However, experimental data on the thermal properties of these coolants in the temperature range of interest are still incomplete and often contradictory. This makes it very difficult to perform design calculations and to analyse the normal and abnormal behaviour of nuclear installations where these coolants are expected to be used. Recently, a compilation of heavy liquid metal (HLM) properties along with recommendations for its use was prepared by the OECD/NEA Working Party on Fuel Cycle (WPFC) Expert Group on Lead-Bismuth Eutectic Technology. A brief review of this compilation and some new data are presented in this article. A set of correlations for the temperature dependence of the main thermodynamic properties of Pb and Pb-Bi(e) at normal pressure, and a set of simplified thermal and caloric equations of state for the liquid phase are proposed.

  4. Research on enhancement of natural circulation capability in lead–bismuth alloy cooled reactor by using gas-lift pump

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Juanli, E-mail: Jenyzuo@163.com; Tian, Wenxi, E-mail: wxtian@mail.xjtu.edu.cn; Chen, Ronghua, E-mail: ronghua.chen@stu.xjtu.edu.cn; Qiu, Suizheng; Su, Guanghui, E-mail: ghsu@mail.xjtu.edu.cn

    2013-10-15

    Highlights: • The gas-lift pump has been adopted to enhance the natural circulation capability. • LENAC code is developed in my study. • The calculation results by LENAC code show good agreement with experiment results. • Gas mass flow rate, bubble diameter, rising pipe length are important parameters. -- Abstract: The gas-lift pump has been adopted to enhance the natural circulation capability in the type of lead–bismuth alloy cooled reactors such as Accelerator Driven System (ADS) and Liquid–metal Fast Reactor (LMFR). The natural circulation ability and the system safety are obviously influenced by the two phase flow characteristics of liquid metal–inert gas. In this study, LENAC (LEad bismuth alloy NAtural Circulation capability) code has been developed to evaluate the natural circulation capability of lead–bismuth cooled ADS with gas-lift pump. The drift flow theory, void fraction prediction model and friction pressure drop prediction model have been incorporated into LENAC code. The calculation results by LENAC code show good agreement with experiment results of CIRCulation Experiment (CIRCE) facility. The effects of the gas mass flow rate, void fraction, gas quality, bubble diameter and the rising pipe height or the potential difference between heat exchanger and reactor core on natural circulation capability of gas-lift pump have been analyzed. The results showed that in bubbly flow pattern, for a fixed value of gas mass flow rate, the natural circulation capability increased with the decrease of the bubble diameter. In the bubbly flow, slug flow, churn flow and annular flow pattern, with the gas mass flow rate increasing, the natural circulation capability initially increased and then declined. And the flow parameters influenced the thermal hydraulic characteristics of the reactor core significantly. The present work is helpful for revealing the law of enhancing the natural circulation capability by gas-lift pump, and providing theoretical

  5. Investigation of corrosion, water reaction, polonium evaporation and bismuth resource in liquid metal lead-bismuth technology

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Hideki; Takizuka, Takakazu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kitano, Teruaki [Mitsui Shipbuilding and Engineering Co. Ltd., Tokyo (Japan)

    2000-10-01

    Lead-bismuth is the first candidate material for liquid metal target find coolant of fueled blanket system in accelerator-driven system (ADS) studied at JAERI. Advantages of the lead-bismuth utilization are non-active material, very low capture cross section, low melting point of 125degC and high boiling point of 1670degC, and beside coolant void reactivity become negative. But problems are due to the high corrosivity to most of the structural materials and the corrosive data are scarcity. In this report, corrosivity, reaction with water, thermal-hydraulics, chemical toxicity etc. are studied by investigating some facilities utilized and researched really for lead or lead-bismuth. And, furthermore, polonium evaporation rate and bismuth resource are investigated. Main results obtained are as follows: (1) In a refinery, there are enough employment experience for liquid Pb-Bi in period of about 17 years and not corrosion for the thermal conductive materials (1Cr-0.5Mo steel) used under the condition of natural convection with temperature around 400degC. (2) In Russia, extensive experience in the use as Russian submarines and in R and D during about 50 years are available. And as a result, it will be able to lead approximately zero corrosion for Cr-Si materials by adjusting oxygen film with oxygen concentration control between 10{sup -7} to 10{sup -5}% mass. However, the corrosion data are not enough systematically collected involving them in radiation dose field. (3) In liquid-dropping experiment, it is shown that interaction between water and high temperature liquid Pb-Bi is reduced steeply with rising of atmosphere pressure. But, in order to design the second circuit removal model of ADS, the interaction should be evaluated by water continuous injection experiment. (4) Polonium forms PbPo in Pb-Bi, and the evaporation rate become less three factor than that of Po, and furthermore, the rate decreases in the atmosphere. The effects of Po on employee and environment

  6. Potential containment materials for liquid-lead and lead-bismuth eutectic spallation neutron source

    International Nuclear Information System (INIS)

    Park, J.J.; Butt, D.P.; Beard, C.A.

    1997-11-01

    Lead (Pb) and lead-bismuth eutectic (44Pb-56Bi) have been the two primary candidate liquid-metal target materials for the production of spallation neutrons. Selection of a container material for the liquid-metal target will greatly affect the lifetime and safety of the target subsystem. For the lead target, niobium-1 (wt%) zirconium (Nb-1Zr) is a candidate containment material for liquid lead, but its poor oxidation resistance has been a major concern. The oxidation rate of Nb-1Zr was studied based on the calculations of thickness loss due to oxidation. According to these calculations, it appeared that uncoated Nb-1Zr may be used for a one-year operation at 900 C at P O 2 = 1 x 10 -6 torr, but the same material may not be used in argon with 5-ppm oxygen. Coating technologies to reduce the oxidation of Nb-1Zr are reviewed, as are other candidate refractory metals such as molybdenum, tantalum, and tungsten. For the Pb-Bi target, three candidate containment materials are suggested based on a literature survey of the materials compatibility and proton irradiation tests: Croloy 2-1/4, modified 9Cr-1Mo, and 12Cr-1Mo (HT-9) steel. These materials seem to be used only if the lead-bismuth is thoroughly deoxidized and treated with zirconium and magnesium

  7. MEXICO loop provides essential technology for MYRRHA. SCK•CEN investigates the chemistry of lead-bismuth

    International Nuclear Information System (INIS)

    2014-01-01

    In the MYRRHA facility, Lead-Bismuth Eutectic (LBE) alloy will act as the primary coolant. There are different experimental lead-bismuth loops in the world. Most have been designed to study steel corrosion in LBE or the thermohydraulics of LBE. The article discusses the MEXICO test loop, which has been developed by SCK-CEN to investigate the chemistry of leadbismuth.

  8. Element Distribution in the Oxygen-Rich Side-Blow Bath Smelting of a Low-Grade Bismuth-Lead Concentrate

    Science.gov (United States)

    Yang, Tianzu; Xiao, Hui; Chen, Lin; Chen, Wei; Liu, Weifeng; Zhang, Duchao

    2018-03-01

    Oxygen-rich side-blow bath smelting (OSBS) technology offers an efficient method for processing complex bismuth-lead concentrates; however, the element distributions in the process remain unclear. This work determined the distributions of elements, i.e., bismuth, lead, silver, copper, arsenic and antimony, in an industrial-scale OSBS process. The feed, oxidized slag and final products were collected from the respective sampling points and analyzed. For the oxidative smelting process, 65% of bismuth and 76% of silver in the concentrate report to the metal alloy, whereas less lead reports to the metal ( 31%) than the oxidized slag ( 44%). Approximately 50% of copper enters the matte, while more than 63% of arsenic and antimony report to the slag. For the reductive smelting process, less than 4.5% of bismuth, lead, silver and copper in the oxidized slag enter the reduced slag, indicating high recoveries of these metal values.

  9. Determination of Lung-to-Blood Absorption Rates for Lead and Bismuth which are Appropriate for Radon Progeny

    International Nuclear Information System (INIS)

    Marsh, J.W.; Birchall, A.

    1999-01-01

    The ICRP Publication 66 Human Respiratory Tract Model (HRTM) treats clearance as a competitive process between absorption into blood and particle transport to the gastrointestinal tract and lymphatics. The ICRP recommends default absorption rates for lead and bismuth in ICRP Publication 71 but states that the values are not appropriate for short-lived radon progeny. This paper describes an evaluation of published data from volunteer experiments to estimate the absorption half-times of lead and bismuth that are appropriate for short-lived radon progeny. The absorption half-time for lead was determined to be 10±2 h, based on 212 Pb lung and blood retention data from several studies. The absorption half-time for bismuth was estimated to be about 13 h, based on 212 Bi urinary excretion data from one experiment and the ICRP biokinetic model for bismuth as a decay product of lead. (author)

  10. Performance of solid electrolyte type oxygen sensor in flowing lead bismuth

    International Nuclear Information System (INIS)

    Kondo, Masatoshi; Takahashi, Minoru

    2005-01-01

    A solid electrolyte type oxygen sensor for liquid 45%lead-55%bismuth (Pb-Bi) was developed. The performance of the oxygen sensor in the flowing lead-bismuth (Pb-Bi) was investigated. The initial performance of the sensor was not reliable, since the reference fluid of the oxygen saturated bismuth in the sensor cell was not compact initially. The electromotive force (EMF) obtained from the yttria stabilized zirconia (YSZ) cell was the same as that from the magnesia stabilized zirconia (MSZ) cell in the flowing Pb-Bi. The EMF of the sensor in the flowing Pb-Bi was lower than that in the stagnant Pb-Bi. However, the difference was small. The sensor showed repeatability after the long term interruption and the Pb-Bi drain/charge operation. After the performance tests, the corrosion of the sensor cells were investigated metallurgically. The YSZ cell was eroded around the free surface of the flowing Pb-Bi after 3500 hour-exposure in the flowing Pb-Bi. The MSZ cell showed smooth surface without the erosion. Although the YSZ cell worked more stably than the MSZ cell, the mechanical strength of the YSZ cell is weaker than that of the MSZ cell. (author)

  11. Core Power Limits For A Lead-Bismuth Natural Circulation Actinide Burner Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Cliff Bybee; Kim, D.; Todreas, N. E.; Mujid S. Kazimi

    2002-04-01

    The Idaho National Engineering and Environmental Laboratory and Massachusetts Institute of Technology are investigating the suitability of lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The design being considered here is a pool type reactor that burns actinides and utilizes natural circulation of the primary coolant, a conventional steam power conversion cycle, and a passive decay heat removal system. Thermal-hydraulic evaluations of the actinide burner reactor were performed to determine allowable core power ratings that maintain cladding temperatures below corrosion-established temperature limits during normal operation and following a loss-of-feedwater transient. An economic evaluation was performed to optimize various design parameters by minimizing capital cost. The transient power limit was initially much more restrictive than the steady-state limit. However, enhancements to the reactor vessel auxiliary cooling system for transient decay heat removal resulted in an increased power limit of 1040 MWt, which was close to the steady-state limit. An economic evaluation was performed to estimate the capital cost of the reactor and its sensitivity to the transient power limit. For the 1040 MWt power level, the capital cost estimate was 49 mills per kWhe based on 1999 dollars.

  12. Experiments on natural circulation of lead-bismuth in the TALL test facility

    International Nuclear Information System (INIS)

    Ma, W.M.; Karbojian, A.; Sehgal, B.R.

    2005-01-01

    Full text of publication follows: Lead-bismuth eutectic (LBE) is a potential candidate coolant for next generation liquid metal reactors due to its favorable properties such as being chemical inert and low melting point, in comparison with sodium and lead considered as coolants in FBRs. Having a high atomic number of LBE allows it be well suited as a spallation target for accelerator-driven systems (ADS) which have been proposed for the transmutation of nuclear waste. Due to its strong buoyancy, the LBE-cooled system should also have significant natural circulation, which is desirable for so-called Generation IV nuclear reactors, which like to employ passive safety and reliability. But so far, very little experimental data have been published on the natural circulation thermal-hydraulics of LBE-cooled systems. Motivated by the increasing interest in LBE-cooled fast reactors and ADS, a test facility called Thermal-hydraulic ADS Lead-bismuth Loop (TALL) was designed and constructed at KTH to investigate the thermalhydraulic characteristics of liquid LBE. The facility consists of a primary loop (LBE loop) and a secondary loop (oil loop). The LBE loop consists of sump tank, core tank, expansion tank, heat exchanger, EM pump, EM flowmeter, electric heaters and instrumentation. The heating of LBE in the core tank and its cooling in the heat exchanger allows natural convection flows as should occur in the prototypic vessel. Recently, our experimental study on natural circulation was performed on the TALL test facility. This paper will present the experimental results and analysis. The facility is of 6.8 m height which is comparable to the full height of the LBE heat exchange circuit in the ANSALDO ADS reactor vessel design, and has been scaled for prototypic (power/volume) ratio to represent the main components. Their LBE volume, flow velocity and heating rates correspond to one tube of the heat exchanger design chosen. During the experiments, the main adjustable

  13. Transient analyses for lead–bismuth cooled accelerator-driven system

    International Nuclear Information System (INIS)

    Sugawara, Takanori; Nishihara, Kenji; Tsujimoto, Kazufumi

    2013-01-01

    Highlights: ► The transient analyses for the LBE cooled accelerator-driven system were performed. ► The purpose was to investigate the possibility of the core damage. ► All results except the protected loss of heat sink satisfied the no-damage criteria. - Abstract: The transient analyses for the lead–bismuth cooled Accelerator-Driven System (ADS) were performed with the use of the SIMMER-III and RELAP5/mod3.2 codes to investigate the possibility of the core damage. Five accidents; the beam window breakage, the protected loss of heat sink, the beam overpower, the unprotected loss of flow and the unprotected blockage accident were analyzed as the typical accidents in the ADS. Through these calculations, it was confirmed that all calculation results except the protected loss of heat sink satisfied the no-damage criteria. In the protected loss of heat sink, the cladding tube temperature reached at the melting temperature after 20 h although the calculation condition was very conservative. It is required to design a safety system of the ADS to decrease the frequencies of the accidents and to ease the accidents

  14. Ultrasonic and Thermal Properties of Borate and Phosphate Glasses Containing Bismuth and Lead

    International Nuclear Information System (INIS)

    Aziz, Sidek Hj. Abd.; Ahmad, Hamezan; Wahab, Zaidan A.; Sulaiman, Zainal Abidin; Talib, Zainal Abidin; Shaari, A. Halim; Senin, H. B.

    2007-01-01

    Systematic series of (B2O3,P2O5)-Bi2O3-PbO glasses have been successfully prepared by using the rapid quenching technique in which each oxide content changes for every series on the basis of its weight percentage. Their amorphous natures were confirmed earlier by the x-ray diffraction technique. The experimental results show that the density of both glasses, determined by using the Archimedes principle, increases with the glass modifier content. This is due to the replacement of Bi2O3 and PbO in the borate and phosphate glassy networks. The molar volume for borate glass increases with the addition of bismuth and lead oxides, but a reverse trend occurs for the phosphate glass. The longitudinal and shear ultrasound velocities, determined by the MBS 8000 system, of both lead bismuth borate and phosphate glasses show a decreasing trend as more PbO and Bi2O3 are added to the glass system. The increase in PbO/Bi2O3 content was probably related to the progressive increase in the concentration of non-bridging oxygen (NBOs). Thermal studies of the glass, using the Labsys DTA-Setaram machine, show that the value of the glass transition temperature (Tg) is closely related to the chemical bond in the system. In lead bismuth borate glasses, the addition of more Pb2+ and Bi3+ results in a more dominant ionic bond character in the system and hence decreases Tg of the sample. However, in lead bismuth phosphate glasses, the addition of Pb2+ and Bi3+ not only failed to weaken the covalent character in P-O-P bonds, but strengthened it further, leading to an increment in the values of Tg

  15. Kinetic of the Oxygen Control System (OCS) for stagnant lead-bismuth systems

    International Nuclear Information System (INIS)

    Lefhalm, C.H.; Knebel, J.U.; Mack, K.J.

    2001-09-01

    Within the framework of the HGF strategy fund project 99/16 ''Thermalhydraulic and Material Specific Investigations into the Realization of an accelerator driven system (ADS) to Transmute Minor Actinides'' at the institute for nuclear and energy technology (IKET) investigations on the cooling of thermally high-loaded surfaces with liquid lead bismuth (Pb-Bi) are carried out. To operate a Pb-Bi loop safety, for example in order to cool a spallation target or a blanket of an accelerator driven system (ADS), the control of the oxygen concentration within the liquid metal is an inalienable prerequisite to prevent or minimize corrosion at the structure material. In this report the kinetic behaviour of the oxygen control system (OCS), which was developed at Forschungszentrum Karlsruhe, is examined. The OCS controls the chemical potential of oxygen in the liquid metal by regulating the oxygen content in the gas phase which flows over the free surface of the liquid metal. In this work the experimental facility KOCOS (kinetics of oxygen control system) in the karlsruhe lead laboratory (KALLA) was built. A physical diffusion model was utilised and extended to describe the exchange of oxygen between the gas and the liquid metal. The theoretical calculations are in very good agreement to the experimental findings. The OCS allows to control reversibly the oxygen concentration in the liquid metal. According to the observed kinetics of the process one can extrapolate that the control of large volumes, as they are necessary to operate an ADS demonstrator, is possible. Therefore, further experiments in liquid metal loop systems are suggested. (orig.)

  16. Gas cooled leads

    International Nuclear Information System (INIS)

    Shutt, R.P.; Rehak, M.L.; Hornik, K.E.

    1993-01-01

    The intent of this paper is to cover as completely as possible and in sufficient detail the topics relevant to lead design. The first part identifies the problems associated with lead design, states the mathematical formulation, and shows the results of numerical and analytical solutions. The second part presents the results of a parametric study whose object is to determine the best choice for cooling method, material, and geometry. These findings axe applied in a third part to the design of high-current leads whose end temperatures are determined from the surrounding equipment. It is found that cooling method or improved heat transfer are not critical once good heat exchange is established. The range 5 5 but extends over a large of values. Mass flow needed to prevent thermal runaway varies linearly with current above a given threshold. Below that value, the mass flow is constant with current. Transient analysis shows no evidence of hysteresis. If cooling is interrupted, the mass flow needed to restore the lead to its initially cooled state grows exponentially with the time that the lead was left without cooling

  17. Equilibrium evaporation behavior of polonium and its homologue tellurium in liquid lead-bismuth eutectic

    International Nuclear Information System (INIS)

    Ohno, Shuji; Miyahara, Shinya; Kurata, Yuji; Katsura, Ryoei; Yoshida, Shigeru

    2006-01-01

    Experimental study using the transpiration method investigates equilibrium evaporation behavior of radionuclide polonium ( 210 Po) generated and accumulated in liquid lead-bismuth eutectic (LBE) cooled nuclear systems. The experiment consists of two series of tests: preliminary evaporation tests for homologue element tellurium (Te) in LBE, and evaporation tests for 210 Po-accumulated LBE in which test specimens are prepared by neutron irradiation. The evaporation tests of Te in LBE provide the suggestion that Te exists in a chemical form of PbTe as well as the information for confirming the validity of technique and conditions of Po test. From the evaporation tests of 210 Po in LBE, we obtain fundamental data and empirical equations such as 210 Po vapor concentration in the gas phase, 210 Po partial vapor pressure, thermodynamic activity coefficients, and gas-liquid equilibrium partition coefficient of 210 Po in LBE in the temperature range from 450 to 750degC. Additionally, radioactivity concentration of 210 Po and 210m Bi vapor in a cover gas region of a typical LBE-cooled nuclear system is specifically estimated based on the obtained experimental results, and the importance of 210 Po evaporation behavior is quantitatively demonstrated. (author)

  18. Removal of polonium contamination by lead-bismuth eutectic in nuclear systems

    International Nuclear Information System (INIS)

    Miura, Terumitsu; Obara, Toru; Sekimoto, Hiroshi

    2003-01-01

    Lead-Bismuth eutectic (LBE) is considered as a promising candidate of the coolant of liquid metal cooled fast reactor, and the coolant and/or target of accelerator driven system. LBE has various good characters for coolant, but it has also some problems such as polonium production. It is necessary to take polonium contamination into consideration, when LBE is used as the coolant. In the present paper, the removal of contaminating polonium from material surface is studied. Baking method is investigated for polonium removal from contaminated quartz glass plate in vacuum. Before and after baking, the mass of the contaminants on the surface and alpha particle counts from contaminated surface is measured. When the contaminated quartz glass plates are baked at more than 400degC for a few minutes, alpha particle counts from the surface decreases by more than 99.7%, and the mass of contaminants decreases by more than 50%. When the baking was performed at 300degC for 15 minutes and more, alpha particle count decreases by more than 80%, and the mass decreases in little. When, the baking temperature is lower than 200degC, alpha particle counts and mass do not decrease. (author)

  19. Estimation of European Union residential sector space cooling potential

    International Nuclear Information System (INIS)

    Jakubcionis, Mindaugas; Carlsson, Johan

    2017-01-01

    Data on European residential space cooling demands are scarce and often of poor quality. This can be concluded from a review of the Comprehensive Assessments on the energy efficiency potential in the heating and cooling sector performed by European Union Member States under Art. 14 of the Energy Efficiency Directive. This article estimates the potential space cooling demands in the residential sector of the EU and the resulting impact on electricity generation and supply systems using the United States as a proxy. A georeferenced approach was used to establish the potential residential space cooling demand in NUTS-3 regions of EU. The total potential space cooling demand of the EU was estimated to be 292 TW h for the residential sector in an average year. The additional electrical capacity needed was estimated to 79 GW. With proper energy system development strategies, e.g. matching capacity of solar PV with cooling demand, or introduction of district cooling, the stresses on electricity system from increasing cooling demand can be mitigated. The estimated potential of space cooling demand, identified in this paper for all EU Members States, could be used while preparing the next iteration of EU MS Comprehensive Assessments or other energy related studies. - Highlights: • An estimation of EU space cooling demand potential in residential sector is presented. • An estimate of space cooling demand potential is based on using USA data as a proxy. • Significant cooling demand increase can be expected. • Cooling demand increase would lead to increased stress in energy supply systems. • Proper policies and strategies might measurably decrease the impact on energy systems.

  20. Steam water cycle chemistry of liquid metal cooled innovative nuclear power reactors

    International Nuclear Information System (INIS)

    Yurmanov, Victor; Lemekhov, Vadim; Smykov, Vladimir

    2012-09-01

    The Federal Target Program (FTP) of Russian Federation 'Nuclear Energy Technologies of the New Generation for 2010-2015 and for Perspective up to 2020' is aimed at development of advanced nuclear energy technologies on the basis of closed fuel cycle with fast reactors. There are advanced fast reactor technologies of the 4. generation with liquid metal cooled reactors. Development stages of maturity of fast sodium cooled reactor technology in Russia includes experimental reactors BR-5/10 (1958-2002) and BOR-60 (since 1969), nuclear power plants (NPPs) with BN-350 (1972-1999), BN-600 (since 1980), BN-800 (under construction), BN-1200 (under development). Further stage of development of fast sodium cooled reactor technology in Russia is commercialization. Lead-bismuth eutectic fast reactor technology has been proven at industrial scale for nuclear submarines in former Soviet Union. Lead based technology is currently under development and need for experimental justification. Current status and prospects of State Corporation 'Rosatom' participation in GIF activities was clarified at the 31. Meeting of Policy Group of the International Forum 'Generation-IV', Moscow, May 12-13, 2011. In June, 2010, 'Rosatom' joined the Sodium Fast Reactor Arrangement as an authorized representative of the Russian Government. It was also announced the intention of 'Rosatom' to sign the Memorandum on Lead Fast Reactor based on Russia's experience with lead-bismuth and lead cooled fast reactors. In accordance with the above FTP some innovative liquid metal cooled reactors of different design are under development in Russia. Gidropress, well known as WER designer, develops innovative lead-bismuth eutectic cooled reactor SVBR-100. NIKIET develops innovative lead cooled reactor BRESTOD-300. Some other nuclear scientific centres are also involved in this activity, e.g. Research and Development Institute for Power Engineering (RDIPE). Optimum

  1. Measurements of gas and volatile element production rates from an irradiated molten lead and lead-bismuth spallation target with proton beams of 1 and 1.4 GeV; Mesures de taux de production d'elements gazeux et volatiles lors de reactions induites par des protons de 1 et 1,4 GeV sur des cibles epaisses de plomb et plomb-bismuth liquides

    Energy Technology Data Exchange (ETDEWEB)

    Tall, Y

    2008-03-15

    The integrated project EUROTRANS (European Research Programme for the Transmutation of High Level Nuclear Waste in an Accelerator Driven System) of the 6. EURATOM Framework Programme aims to demonstrate the transmutation of radioactive waste in ADS (Accelerator Driven Sub-critical system). It will carry out a first advanced design of an experimental facility to demonstrate the technical feasibility of transmutation, and will produce a conceptual design of an industrial facility dedicated to transmutation. An ADS consists of three fundamental elements: the accelerator of protons, the sub-critical core and the spallation target. SUBATECH (physique Sub-Atomique et des Technologies associees) laboratory is involved to the study of the chosen liquid lead-bismuth as a spallation ADS target. The irradiation of liquid lead-bismuth target with energetic proton beam generates in addition to neutrons, volatile and radioactive residues. In order to determine experimentally the production rates of gas and volatile elements following a spallation reaction in a lead-bismuth target, the experiment IS419 was performed at the ISOLDE facility at CERN (Centre Europeen de la Recherche Nucleaire). This experiment constitutes the frame of the thesis whose main objective is to assess and study the production and release rates of many gas and volatile element from the irradiated lead-bismuth target with an energetic proton beam. The obtained data are compared to Monte Carlo simulation code (MCNPX) results in order to test the intranuclear cascade model of Bertini and of Cugnon, and the evaporation options of Dresner and Schmidt. (author)

  2. Numerical Modeling of Lead Oxidation in Controlled Lead Bismuth Eutectic Systems: Chemical Kinetics and Hydrodynamic Effects

    International Nuclear Information System (INIS)

    Wu, Chao; Kanthi Kiran Dasika; Chen, Yitung; Moujaes, Samir

    2002-01-01

    Using liquid Lead-Bismuth Eutectic (LBE) as coolant in nuclear systems has been studied for more than 50 years. And LBE has many unique nuclear, thermo physical and chemical attributes which are attractive for practical application. But, corrosion is one of the greatest concerns in using liquid Lead-Bismuth Eutectic (LBE) as spallation target in the Accelerator-driven Transmutation of Waste (ATW) program. Los Alamos National Laboratory has designed and built the Liquid Lead-Bismuth Materials Test Loop (MTL) to study the materials behavior in a flow of molten LBE. A difference of 100 deg. C was designed between the coldest and the hottest parts at a nominal flow rate of 8.84 GPM. Liquid LBE flow was activated by a mechanical sump pump or by natural convection. In order to maintain a self-healing protective film on the surface of the stainless steel pipe, a certain concentration of oxygen has to be maintained in the liquid metal. Therefore, it is of importance to understand what the oxygen concentrations are in the LBE loop related to the corrosion effects on the metal surface, the temperature profiles, the flow rates, and diffusion rates through the metal surface. The chemical kinetics also needs to be fully understood in the corrosion processes coupled with the hydrodynamics. The numerical simulation will be developed and used to analyze the system corrosion effects with different kind of oxygen concentrations, flow rates, chemical kinetics, and geometries. The hydrodynamics modeling of using computational fluid dynamics will provide the necessary the levels of oxygen and corrosion products close to the boundary or surface. This paper presents an approach towards the above explained tasks by analyzing the reactions between the Lead and oxygen at a couple of sections in the MTL. Attempt is also made to understand the surface chemistry by choosing an example model and estimating the near wall surface concentration values for propane and oxygen. (authors)

  3. Research on the behavior of polonium produced in lead-bismuth eutectic irradiated with neutrons. JAERI's nuclear research promotion program, H10-026. Contract research

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi; Igashira, Masayuki; Yano, Toyohiko; Obara, Toru; Ohsaki, Toshiro

    2002-03-01

    Lead-Bismuth Eutectic (LBE) is proposed by several research institutes as a coolant of liquid metal cooled fast reactors, instead of sodium, and a target of accelerator driven subcritical nuclear reactor systems (ADS). LBE has some advantages that it is chemically inert compared to sodium and that its melting point is low like sodium. A problem might be that bismuth produces polonium, which is an alpha emitter, by irradiation of neutrons. The purpose of the study is to get information for quantitative estimations of the release of polonium on LBE cooled fast reactors and on ADSs by making it clear about production rate of polonium (information about cross section) by neutron irradiation of LBE, release rate of the produced polonium from LBE, and adsorption rate of the polonium on various materials. To get the information about production rate of polonium, neutron cross sections of bismuth were measured in keV energy region, which was important in fast reactors, by using the Pelletron accelerator in Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology. The obtained neutron capture cross sections were from 1/2 to 1/3 of the evaluated values in JENDL and the obtained polonium production cross sections were almost 1/3 of it. At the same time, an experimental device was designed for heating and adsorption experiments and the performance was tested. The performance of alpha spectrometer was tested also. By those the method was established for the measurement of polonium released from melted LBE after neutron irradiation. (author)

  4. Natural convection in enclosures containing lead-bismuth and lead

    International Nuclear Information System (INIS)

    Dzodzo, M.; Cuckovic-Dzodzo, D.

    2001-01-01

    The design of liquid metal reactors such as Encapsulated Nuclear Heat Source (ENHS) which are based predominantly on the flow generated by natural convection effects demands knowledge of velocity and temperature fields, distribution of the local Nusselt numbers and values of the average Nusselt numbers for small coolant velocity regimes. Laminar natural convection in rectangular enclosures with different aspect ratios, containing lead-bismuth and lead is studied numerically in this paper. The numerical model takes into account variable properties of the liquid metals. The developed correlation for average Nusselt numbers is presented. It is concluded that average Nusselt numbers are lower than in 'normal' fluids (air, water and glycerol) for the same values of Rayleigh numbers. However, the heat flux, which can be achieved, is greater due to the high thermal conductivity of liquid metals. Some specific features of the flow fields generated by natural convection in liquid metals are presented. Their consequences on the design of heat exchangers for liquid metals are discussed. An application of the obtained results to the design of a new type of steam generator, which integrates the intermediate heat exchanger and secondary pool functions of the ENHS reactor, is presented. (authors)

  5. Behaviour of F82H mod. stainless steel in lead-bismuth under temperature gradient

    Science.gov (United States)

    Gómez Briceño, D.; Martín Muñoz, F. J.; Soler Crespo, L.; Esteban, F.; Torres, C.

    2001-07-01

    Austenitic steels can be used in a hybrid system in contact with liquid lead-bismuth eutectic if the region of operating temperatures is not beyond 400°C. For higher temperatures, martensitic steels are recommended. However, at long times, the interaction between the structural material and the eutectic leads to the dissolution of some elements of the steel (Ni, Cr and Fe, mainly) in the liquid metal. In a non-isothermal lead-bismuth loop, the material dissolution takes place at the hot leg of the circuit and, due to the mass transfer, deposition occurs at the cold leg. One of the possible ways to improve the performance of structural materials in lead-bismuth is the creation of an oxide layer. Tests have been performed in a small natural convection loop built of austenitic steel (316L) that has been operating for 3000 h. This loop contains a test area in which several samples of F82Hmod. martensitic steel have been tested at different times. A gas with an oxygen content of 10 ppm was bubbled in the hot area of the circuit during the operation time. The obtained results show that an oxide layer is formed on the samples introduced in the loop at the beginning of the operation and this layer increases with time. However, the samples introduced at different times during the loop operation, are not protected by oxide layers and present material dissolution in some cases.

  6. Behaviour of F82H mod. stainless steel in lead-bismuth under temperature gradient

    International Nuclear Information System (INIS)

    Gomez Briceno, D.; Martin Munoz, F.J.; Soler Crespo, L.; Esteban, F.; Torres, C.

    2001-01-01

    Austenitic steels can be used in a hybrid system in contact with liquid lead-bismuth eutectic if the region of operating temperatures is not beyond 400 deg. C. For higher temperatures, martensitic steels are recommended. However, at long times, the interaction between the structural material and the eutectic leads to the dissolution of some elements of the steel (Ni, Cr and Fe, mainly) in the liquid metal. In a non-isothermal lead-bismuth loop, the material dissolution takes place at the hot leg of the circuit and, due to the mass transfer, deposition occurs at the cold leg. One of the possible ways to improve the performance of structural materials in lead-bismuth is the creation of an oxide layer. Tests have been performed in a small natural convection loop built of austenitic steel (316L) that has been operating for 3000 h. This loop contains a test area in which several samples of F82Hmod. martensitic steel have been tested at different times. A gas with an oxygen content of 10 ppm was bubbled in the hot area of the circuit during the operation time. The obtained results show that an oxide layer is formed on the samples introduced in the loop at the beginning of the operation and this layer increases with time. However, the samples introduced at different times during the loop operation, are not protected by oxide layers and present material dissolution in some cases

  7. Control and monitoring of oxygen content in molten metals. Application to lead and lead-bismuth melts

    International Nuclear Information System (INIS)

    Ghetta, V.; Fouletier, J.; Henault, M.; Le Moulec, A.

    2002-01-01

    The sources of error in potentiometric measurements of the oxygen activity in molten metals and the methods proposed to reduce these measurements errors are described. Specific constraints related to low temperature measurements are emphasized. Two set-ups for control of the oxygen activity in molten lead and lead-bismuth were developed. They involve zirconia-based cells, i.e., an oxygen pump and an oxygen probe. The performance of the set-ups was characterized attempts to reduce the working temperature (T<450 deg C) are discussed. (authors)

  8. Lead-Bismuth technology ; corrosion resistance of structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ji Young; Park, Won Seok [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-02-01

    Lead-Bismuth (Pb-Bi) eutectic alloy was determined as a coolant material for the HYPER system being studied by KAERI. The Pb-Bi alloy as a coolant, has a number of the favorable thermo-physical and technological properties, while it is comparatively corrosive to the structural materials. It is necessary to solve this problem for providing a long failure-proof operation of the facilities with Pb-Bi coolant. It seems to be possible to maintain corrosion resistance on structural material up to 600 deg C by using of various technologies, but it needs more studies for application to large-scale NPPs. 22 refs., 11 figs., 7 tabs. (Author)

  9. Methylammonium Bismuth Iodide as a Lead-Free, Stable Hybrid Organic-Inorganic Solar Absorber.

    Science.gov (United States)

    Hoye, Robert L Z; Brandt, Riley E; Osherov, Anna; Stevanović, Vladan; Stranks, Samuel D; Wilson, Mark W B; Kim, Hyunho; Akey, Austin J; Perkins, John D; Kurchin, Rachel C; Poindexter, Jeremy R; Wang, Evelyn N; Bawendi, Moungi G; Bulović, Vladimir; Buonassisi, Tonio

    2016-02-18

    Methylammonium lead halide (MAPbX3 ) perovskites exhibit exceptional carrier transport properties. But their commercial deployment as solar absorbers is currently limited by their intrinsic instability in the presence of humidity and their lead content. Guided by our theoretical predictions, we explored the potential of methylammonium bismuth iodide (MBI) as a solar absorber through detailed materials characterization. We synthesized phase-pure MBI by solution and vapor processing. In contrast to MAPbX3, MBI is air stable, forming a surface layer that does not increase the recombination rate. We found that MBI luminesces at room temperature, with the vapor-processed films exhibiting superior photoluminescence (PL) decay times that are promising for photovoltaic applications. The thermodynamic, electronic, and structural features of MBI that are amenable to these properties are also present in other hybrid ternary bismuth halide compounds. Through MBI, we demonstrate a lead-free and stable alternative to MAPbX3 that has a similar electronic structure and nanosecond lifetimes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Preparation and elastic moduli of germanate glass containing lead and bismuth.

    Science.gov (United States)

    Sidek, Hj A A; Bahari, Hamid R; Halimah, Mohamed K; Yunus, Wan M M

    2012-01-01

    This paper reports the rapid melt quenching technique preparation for the new family of bismuth-lead germanate glass (BPG) systems in the form of (GeO(2))(60)-(PbO)(40-) (x)-(½Bi(2)O(3))(x) where x = 0 to 40 mol%. Their densities with respect of Bi(2)O(3) concentration were determined using Archimedes' method with acetone as a floatation medium. The current experimental data are compared with those of bismuth lead borate (B(2)O(3))(20)-(PbO)(80-) (x)-(Bi(2)O(3))(x). The elastic properties of BPG were studied using the ultrasonic pulse-echo technique where both longitudinal and transverse sound wave velocities have been measured in each glass samples at a frequency of 15 MHz and at room temperature. Experimental data shows that all the physical parameters of BPG including density and molar volume, both longitudinal and transverse velocities increase linearly with increasing of Bi(2)O(3) content in the germanate glass network. Their elastic moduli such as longitudinal, shear and Young's also increase linearly with addition of Bi(2)O(3) but the bulk modulus did not. The Poisson's ratio and fractal dimensionality are also found to vary linearly with the Bi(2)O(3) concentration.

  11. Preparation and Elastic Moduli of Germanate Glass Containing Lead and Bismuth

    Directory of Open Access Journals (Sweden)

    Wan M. M. Yunus

    2012-04-01

    Full Text Available This paper reports the rapid melt quenching technique preparation for the new family of bismuth-lead germanate glass (BPG systems in the form of (GeO260–(PbO40−x–(½Bi2O3x where x = 0 to 40 mol%. Their densities with respect of Bi2O3 concentration were determined using Archimedes’ method with acetone as a floatation medium. The current experimental data are compared with those of bismuth lead borate (B2O320–(PbO80−x–(Bi2O3x. The elastic properties of BPG were studied using the ultrasonic pulse-echo technique where both longitudinal and transverse sound wave velocities have been measured in each glass samples at a frequency of 15 MHz and at room temperature. Experimental data shows that all the physical parameters of BPG including density and molar volume, both longitudinal and transverse velocities increase linearly with increasing of Bi2O3 content in the germanate glass network. Their elastic moduli such as longitudinal, shear and Young’s also increase linearly with addition of Bi2O3 but the bulk modulus did not. The Poisson’s ratio and fractal dimensionality are also found to vary linearly with the Bi2O3 concentration.

  12. Mechanical properties of a 316L/T91 weld joint tested in lead-bismuth liquid

    International Nuclear Information System (INIS)

    Serre, Ingrid; Vogt, Jean-Bernard

    2009-01-01

    The mechanical strength of T91/316L weld joint assembled by electron beam process is investigated in air and in a liquid lead bismuth bath at 300 and 380 o C using the small punch test. It is shown that the mechanical response in air of the weld joint is similar to that of the T91 base material. The plastic deformation is mainly concentrated in the T91 part of the weld joint which promotes cracking in this material. Testing in liquid lead bismuth bath results in a reduction in ductility and the formation of brittle cracks. The T91/weld interface is found to be rather resistant as it cracks late in the test and after a large crack propagated in the T91 steel.

  13. Polonium release from an ATW burner system with liquid lead-bismuth coolant

    International Nuclear Information System (INIS)

    Li, N.; Yefimov, E.; Pankratov, D.

    1998-04-01

    The authors analyzed polonium release hazards in a conceptual pool-type ATW burner with liquid lead-bismuth eutectic (LBE) coolant. Simplified quantitative models are used based on experiments and real NPP experience. They found little Po contamination outside the burner under normal operating conditions with nominal leakage from the gas system. In sudden gas leak and/or coolant spill accidents, the P contamination level can reach above the regulation limit but short exposure would not lead to severe health consequences. They are evaluating and developing mitigation methods

  14. Idaho National Laboratory Lead or Lead-Bismuth Eutectic (LBE) Test Facility - R&D Requirements, Design Criteria, Design Concept, and Concept Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Loewen; Paul Demkowicz

    2005-05-01

    The Idaho National Laboratory Lead-Bismuth Eutectic Test Facility will advance the state of nuclear technology relative to heavy-metal coolants (primarily Pb and Pb-Bi), thereby allowing the U.S. to maintain the pre-eminent position in overseas markets and a future domestic market. The end results will be a better qualitative understanding and quantitative measure of the thermal physics and chemistry conditions in the molten metal systems for varied flow conditions (single and multiphase), flow regime transitions, heat input methods, pumping requirements for varied conditions and geometries, and corrosion performance. Furthering INL knowledge in these areas is crucial to sustaining a competitive global position. This fundamental heavy-metal research supports the National Energy Policy Development Group’s stated need for energy systems to support electrical generation.1 The project will also assist the Department of Energy in achieving goals outlined in the Nuclear Energy Research Advisory Committee Long Term Nuclear Technology Research and Development Plan,2 the Generation IV Roadmap for Lead Fast Reactor development, and Advanced Fuel Cycle Initiative research and development. This multi-unit Lead-Bismuth Eutectic Test Facility with its flexible and reconfigurable apparatus will maintain and extend the U.S. nuclear knowledge base, while educating young scientists and engineers. The uniqueness of the Lead-Bismuth Eutectic Test Facility is its integrated Pool Unit and Storage Unit. This combination will support large-scale investigation of structural and fuel cladding material compatibility issues with heavy-metal coolants, oxygen chemistry control, and thermal hydraulic physics properties. Its ability to reconfigure flow conditions and piping configurations to more accurately approximate prototypical reactor designs will provide a key resource for Lead Fast Reactor research and development. The other principal elements of the Lead-Bismuth Eutectic Test Facility

  15. Equilibrium evaporation test of lead-bismuth eutectic and of tellurium in lead-bismuth

    International Nuclear Information System (INIS)

    Ohno, Shuji; Nishimura, Masahiro; Hamada, Hirotsugu; Miyahara, Shinya; Sasa, Toshinobu; Kurata, Yuji

    2005-01-01

    A series of equilibrium evaporation experiment was performed to acquire the essential and the fundamental knowledge about the transfer behavior of lead-bismuth eutectic (LBE) and impurity tellurium in LBE from liquid to gas phase. The experiments were conducted using the transpiration method in which saturated vapor in an isothermal evaporation pot was transported by inert carrier gas and collected outside of the pot. The size of the used evaporation pot is 8 cm inner diameter and 15 cm length. The weight of the LBE pool in the pot is about 500 g. The investigated temperature range was 450degC to 750degC. From this experiment and discussion using the data in literature, we have obtained several instructive and useful data on the LBE evaporation behavior such as saturated vapor pressure of LBE, vapor concentration of Pb, Bi and Bi 2 in LBE saturated gas phase, and activity coefficient of Pb in the LBE. The LBE vapor pressure equation is represented as the sum of Pb, Bi and Bi 2 vapor in the temperature range between 550degC and 750degC as logP[Pa]=10.2-10100/T[k]. The gas-liquid equilibrium partition coefficient of tellurium in LBE is in the range of 10 to 100, with no remarkable temperature dependency between 450degC and 750degC. This research was founded by the Ministry of Education, Culture, Sports, Science and Technology (MEXT). (author)

  16. Liquid-vapor phase transition upon pressure decrease in the lead-bismuth system

    Science.gov (United States)

    Volodin, V. N.

    2009-11-01

    The liquid-vapor phase transitions boundaries were calculated on the basis of the values of vapor pressure of the components in the lead-bismuth system during the stepwise pressure decrease by one order of magnitude from 105 down to 1 Pa. The emergence of azeotropic liquid under pressure lower than 19.3 kPa was ascertained. The emergence of azeotropic mixture near the lead edge of the phase diagram was concluded to be the reason for technological difficulties in the distillation separation of the system into the components in a vacuum.

  17. Flow characteristics of natural circulation in a lead-bismuth eutectic loop

    Institute of Scientific and Technical Information of China (English)

    Chen-Chong Yue; Liu-Li Chen; Ke-Feng Lyu; Yang Li; Sheng Gao; Yue-Jing Liu; Qun-Ying Huang

    2017-01-01

    Lead and lead-alloys are proposed in future advanced nuclear system as coolant and spallation target.To test the natural circulation and gas-lift and obtain thermal-hydraulics data for computational fluid dynamics (CFD) and system code validation,a lead-bismuth eutectic rectangular loop,the KYLIN-Ⅱ Thermal Hydraulic natural circulation test loop,has been designed and constructed by the FDS team.In this paper,theoretical analysis on natural circulation thermal-hydraulic performance is described and the steady-state natural circulation experiment is performed.The results indicated that the natural circulation capability depends on the loop resistance and the temperature and center height differences between the hot and cold legs.The theoretical analysis results agree well with,while the CFD deviate from,the experimental results.

  18. Radioprotection to the Gonads in Pediatric Pelvic Radiography: Effectiveness of Developed Bismuth Shield

    Directory of Open Access Journals (Sweden)

    Vahid Karami

    2017-06-01

    Full Text Available Background: The use and effectiveness of traditional lead gonad shields in pediatric pelvic radiography has been challenged by several literatures over the past two decades. The aim of this study was to develop a new radioprotective gonad shields to be use in pediatric pelvic radiography. Materials and Methods: The commercially available 0.06 mm lead equivalent bismuth garment has cropped squarely and used as ovarian shield to cover the entire region of pelvis. In order to prevent deterioration of image quality due to beam hardening artifacts, a 1-cm foam as spacer was located between the shield and patients pelvis. Moreover, we added a lead piece at the cranial position of the bismuth garment to absorb the scatter radiations to the radiosensitive organs. In girls, 49 radiographs with shield and 46 radiographs without shield was taken. The radiation dose was measured using thermoluminescent dosimeters (TLDs. Image quality assessments were performed using the European guidelines. For boys, the lead testicular shields was developed using 2 cm bismuth garment, added to the sides. The prevalence and efficacy of testicular shields was assessed in clinical practice fromFebruary 2016 to June 2016. Results: Without increasing the dose to the breast, thyroid and the lens of the eyes, the use of bismuth shield has reduced the entrance skin dose(ESD of the pelvis and radiation dose to the ovaries by 62.2% and 61.7%, respectively (P

  19. Conceptual design study of small lead-bismuth cooled reactor

    International Nuclear Information System (INIS)

    Chikazawa, Yoshitaka; Hori, Toru; Kida, Masanori; Konomura, Mamoru

    2004-11-01

    In phase 2 of the feasibility study of commercialized fast reactor cycle systems of JNC, we make a concept of a small sodium cooled reactor for a power source of a city with various requirements, such as, safety and economical competitiveness. various reactor concepts are surveyed and a tank type reactor whose intermediate heat exchanger and primary main pumps are arranged in series is selected. In this study, a compact long life core and a simple reactor structure designs are pursued. The core type is three regional Zr concentration with one Pu enrichment core, the reactor outlet temperature achieves 550degC and the reactor electric output increases from 150 MWe to 165 MWe. The construction cost is much higher than the economical goal in the case of FOAK. But the construction cost in the case of NOAK is estimated to be 85.6% achieving the economical goal. (author)

  20. Monte Carlo modeling of Lead-Cooled Fast Reactor in adiabatic equilibrium state

    Energy Technology Data Exchange (ETDEWEB)

    Stanisz, Przemysław, E-mail: pstanisz@agh.edu.pl; Oettingen, Mikołaj, E-mail: moettin@agh.edu.pl; Cetnar, Jerzy, E-mail: cetnar@mail.ftj.agh.edu.pl

    2016-05-15

    Graphical abstract: - Highlights: • We present the Monte Carlo modeling of the LFR in the adiabatic equilibrium state. • We assess the adiabatic equilibrium fuel composition using the MCB code. • We define the self-adjusting process of breeding gain by the control rod operation. • The designed LFR can work in the adiabatic cycle with zero fuel breeding. - Abstract: Nuclear power would appear to be the only energy source able to satisfy the global energy demand while also achieving a significant reduction of greenhouse gas emissions. Moreover, it can provide a stable and secure source of electricity, and plays an important role in many European countries. However, nuclear power generation from its birth has been doomed by the legacy of radioactive nuclear waste. In addition, the looming decrease in the available resources of fissile U235 may influence the future sustainability of nuclear energy. The integrated solution to both problems is not trivial, and postulates the introduction of a closed-fuel cycle strategy based on breeder reactors. The perfect choice of a novel reactor system fulfilling both requirements is the Lead-Cooled Fast Reactor operating in the adiabatic equilibrium state. In such a state, the reactor converts depleted or natural uranium into plutonium while consuming any self-generated minor actinides and transferring only fission products as waste. We present the preliminary design of a Lead-Cooled Fast Reactor operating in the adiabatic equilibrium state with the Monte Carlo Continuous Energy Burnup Code – MCB. As a reference reactor model we apply the core design developed initially under the framework of the European Lead-cooled SYstem (ELSY) project and refined in the follow-up Lead-cooled European Advanced DEmonstration Reactor (LEADER) project. The major objective of the study is to show to what extent the constraints of the adiabatic cycle are maintained and to indicate the phase space for further improvements. The analysis

  1. Power deposition distribution in liquid lead cooled fission reactors and effects on the reactor thermal behaviour

    International Nuclear Information System (INIS)

    Cevolani, S.; Nava, E.; Burn, K. W.

    2001-01-01

    In the framework of an ADS study (Accelerator Driven System, a reactor cooled by a lead bismuth alloy) the distribution of the deposited energy between the fuel, coolant and structural materials was evaluated by means of Monte Carlo calculations. The energy deposition in the coolant turned out to be about four percent of the total deposited energy. In order to study this effect, further calculations were performed on water and sodium cooled reactors. Such an analysis showed, for both coolant materials, a much lower heat deposition, about one percent. Based on such results, a thermohydraulic analysis was performed in order to verify the effect of this phenomenon on the fuel assembly temperature distribution. The main effect of a significant fraction of energy deposition in the coolant is concerned with the decrease of the fuel pellet temperature. As a consequence, taking into account this effect allows to increase the possibilities of optimization at the disposal of the designer [it

  2. Corrosion behavior of steels in liquid lead bismuth with low oxygen concentrations

    Science.gov (United States)

    Kurata, Yuji; Futakawa, Masatoshi; Saito, Shigeru

    2008-02-01

    Corrosion tests in pots were conducted to elucidate corrosion behavior of various steels in liquid lead-bismuth for 3000 h under the condition of an oxygen concentration of 5 × 10 -8 wt% at 450 °C and an oxygen concentration of 3 × 10 -9 wt% at 550 °C, respectively. Significant corrosion was not observed at 450 °C for ferritic/martensitic steels, F82H, Mod.9Cr-1Mo steel, 410SS, 430SS except 2.25Cr-1Mo steel. Pb-Bi penetration into steels and dissolution of elements into Pb-Bi were severe at 550 °C even for ferritic/martensitic steels. Typical dissolution attack occurred for pure iron both at 550 °C without surface Fe 3O 4 and at 450 °C with a thin Fe 3O 4 film. Ferritization due to dissolution of Ni and Cr, and Pb-Bi penetration were recognized for austenitic stainless steels, 316SS and 14Cr-16Ni-2Mo steel at both temperatures of 450 °C and 550 °C. The phenomena were mitigated for 18Cr-20Ni-5Si steel. In some cases oxide films could not be a corrosion barrier in liquid lead-bismuth.

  3. Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials

    International Nuclear Information System (INIS)

    Singh, Narveer; Singh, Kanwar Jit; Singh, Kulwant; Singh, Harvinder

    2004-01-01

    Gamma-ray mass attenuation coefficients have been measured experimentally and calculated theoretically for PbO-B 2 O 3 and Bi 2 O 3 -PbO-B 2 O 3 glass systems using narrow beam transmission method. These values have been used to calculate half value layer (HVL) parameter. These parameters have also been calculated theoretically for some standard radiation shielding concretes at same energies. Effect of replacing lead by bismuth has been analyzed in terms of density, molar volume and mass attenuation coefficient

  4. First heats of cerium solution in liquid aluminium, gallium, indium, tin, lead and bismuth

    International Nuclear Information System (INIS)

    Yamshchikov, L.F.; Lebedev, V.A.; Nichkov, I.F.; Raspopin, S.P.; Shein, V.G.

    1983-01-01

    Cerium solution heats in liquid alluminium, gallium, indium, tin, lead and bismuth are determined in high temperature mixing calorimeter with an isothermal shell. The statistical analysis carried out proves that values of cerium solution heat in fusible metals obtained by the methods of electric motive forces and calorimety give a satisfactory agreement

  5. Donor impurity self-compensation by neutral complexes in bismuth doped lead telluride

    International Nuclear Information System (INIS)

    Ravich, Yu.I.; Nemov, S.A.; Proshin, V.I.

    1994-01-01

    Self-compensation is calculated of impurity doping action in semiconductors of the A 4 B 6 type by neutral complexes, consisting of a vacancy and two impurity atoms. Complexes entropy is estimated and the thermodynamic potential is minimized in the concentration of single two-charge vacancies and complexes. Calculation results are compared with experimental data, obtained when lead telluride doping by bismuth. Account for complex formation improves agreement theory with experiment. 4 refs., 1 fig

  6. Superconducting Properties of Lead-Bismuth Films Controlled by Ferromagnetic Nanowire Arrays

    Science.gov (United States)

    Ye, Zuxin; Lyuksyutov, Igor F.; Wu, Wenhao; Naugle, Donald G.

    2011-03-01

    Superconducting properties of lead-bismuth (82% Pb and 18% Bi) alloy films deposited on ferromagnetic nanowire arrays have been investigated. Ferromagnetic Co or Ni nanowires are first electroplated into the columnar pores of anodic aluminum oxide (AAO) membranes. Superconducting Pb 82 Bi 18 films are then quench-condensed onto the polished surface of the AAO membranes filled with magnetic nanowires. A strong dependence of the Pb 82 Bi 18 superconducting properties on the ratio of the superconducting film thickness to the magnetic nanowire diameter and the material variety was observed.

  7. Upper Limits of the Fission Cross-Sections of Lead and Bismuth for Li-D Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Broda, E.

    1945-07-01

    This report was written by E. Broda and P.K. Wright at the Cavendish Laboratory (Cambridge) in April 1945 and is about the upper limits of the fission cross sections of lead and bismuth for Li-D neutrons. This report includes the experiment description and the discussion of the results. (nowak)

  8. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies

    International Nuclear Information System (INIS)

    2007-01-01

    As part of the development of advanced nuclear systems, including accelerator-driven systems (ADS) proposed for high-level radioactive waste transmutation and generation IV reactors, heavy liquid metals such as lead (Pb) or lead-bismuth eutectic (LBE) are under evaluation as reactor core coolant and ADS neutron target material. Heavy liquid metals are also being envisaged as target materials for high-power neutron spallation sources. The objective of this handbook is to collate and publish properties and experimental results on Pb and LBE in a consistent format in order to provide designers with a single source of qualified properties and data and to guide subsequent development efforts. The handbook covers liquid Pb and LBE properties, materials compatibility and testing issues, key aspects of the thermal-hydraulics and system technologies, existing test facilities, open issues and perspectives. (author)

  9. Advanced bismuth-doped lead-germanate glass for broadband optical gain devices

    International Nuclear Information System (INIS)

    Hughes, M.; Suzuki, T.; Ohishi, Y.

    2008-01-01

    We fabricated a series of glasses with the composition 94.7-χGeO 2 -5Al 2 O 3 -0.3Bi 2 O 3 -χPbO (χ=0-24 mol. %). Characteristic absorption bands of bismuth centered at 500, 700, 800, and 1000 nm were observed. Adding PbO was found to decrease the strength of bismuth absorption. The addition of 3%-4% PbO resulted in a 50% increase in lifetime, a 20-fold increase in quantum efficiency, and a 28-fold increase in the product of emission cross section and lifetime on the 0% PbO composition. We propose that the 800 nm absorption band relates a different bismuth center than the other absorption bands

  10. An Overview of Corrosion Issues for the Design and Operation of High-Temperature Lead- and Lead-Bismuth-Cooled Reactor Systems

    International Nuclear Information System (INIS)

    Ballinger, Ronald G.; Lim, Jeongyoun

    2004-01-01

    The viability of advanced Pb- or Pb-Bi-cooled fast reactor systems will depend on the development of classes of materials that can operate over the temperature range 650-1200 deg. C. We briefly review the current state of the technology concerning the interaction of Pb and Pb-Bi alloys with structural materials. We then identify the key challenges to successful use of materials in these systems and suggest a path forward to the development of new materials and operating methods to allow higher-temperature operation. Our focus is on the necessary trade-offs that must be considered and how these trade-offs influence R and D choices. Our analysis suggests that three classes of materials will be needed for successful deployment of a lead-alloy-cooled reactor system. A lower-temperature qualified material will be necessary for the pressure boundary. The structural and cladding materials will require 1000 deg. C- and 1200 deg. C-class materials. The 1000 deg. C-class material will be exposed to the 1000 deg. C coolant. The 1200 deg. C-class material will be required for the cladding and structural materials in the core region. The higher-temperature material will be required to accommodate anticipated temperature transients from potential accident scenarios, such as a loss of flow

  11. Radio-sensitization of animals by bismuth; Radio sensibilisation de l'animal par le bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Pierotti, T; Verain, A [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    Digestive absorption of bismuth by animals leads to radio-sensitization. This effect is very marked when the X-rays used are centered on the absorption line of bismuth. This work has involved the use of more than 2000 C3H/JAX mice, and has shown that a maximum lethal effect, with respect to the standard, occurs for bismuth sub-nitrate doses of the order of 3 g/kg and for exposures of 700 R. For stronger or weaker doses, the sensitization effect is less marked. (authors) [French] L'absorption digestive de bismuth provoque une radiosensibilisation de l'animal. Celle-ci est nette quand le rayonnement X utilise est centre sur la raie d'absorption du bismuth. L'etude portant sur plus de 2000 souris C3H/JAX a montre une lethalite maximale par rapport aux temoins pour des doses de sous-nitrate de bismuth de l'ordre de 3 g/kg et pour des expositions de 700 R. Pour des doses plus fortes ou plus faibles, l'effet de sensibilisation est moins net. (auteurs)

  12. Laser-assisted lead extraction: the European experience.

    Science.gov (United States)

    Kennergren, C; Bucknall, C A; Butter, C; Charles, R; Fuhrer, J; Grosfeld, M; Tavernier, R; Morgado, T B; Mortensen, P; Paul, V; Richter, P; Schwartz, T; Wellens, F

    2007-08-01

    The aim of this study is to investigate the safety and effectiveness of Excimer laser-assisted lead extraction in Europe. The final European multi-centre study experience is presented. The Excimer is a cool cutting laser (50 degrees C) with a wavelength of 308 nm. The energy is emitted from the tip of a flexible sheath and is absorbed by proteins and lipids, 64% of the energy is absorbed at a tissue depth of 0.06 mm. The sheath is positioned over the lead, and the fibrosis surrounding the lead is vaporized while advancing the sheath without damaging other leads. From August 1996 to March 2001, 383 leads (170 atrial, 213 ventricular) in 292 patients (mean age 61.6 years, range 13-96) were extracted at 14 European centres. Mean implantation time was 74 months (3-358). Most frequent indications were pocket infection (26%), non-functional leads (21%), patient morbidity (21%), septicaemia or endocarditis (14%), erosion (5%), and lead interference (8%). Median extraction time was 15 min (1-300). Complete extraction was achieved in 90.9% of the leads and partial extraction in 3.4%. Extraction failed in 5.7% of the leads. Major complications = perforations caused 10/22 (3.4/5.7%) of the failures. Most partially extracted patients were considered clinically successful, as only minor lead parts without clinical significance were left. Femoral non-laser technique was used to remove 8/12 of the non-complication failures. The total complication rate, including five minor complications (1.7%), was 5.1%. No in-hospital mortality occurred. Pacing and implantable cardioverter-defibrillator leads can safely, effectively, and predictably be extracted. Open-heart extractions can be limited to special cases. The results indicate that the traditional policy of abandoning redundant leads, instead of removing them, may be obsolete in many patients.

  13. Application of SIMS to the study of selective deposition of trace amounts of lead and bismuth from solution onto the metals nickel and silver

    International Nuclear Information System (INIS)

    Smith, D.; Peck, G.

    1996-01-01

    Full text: The natural 233 U decay series includes the trio 210 Pb, 210 Bi and 210 Po. These are useful in estimating rates of environmental processes and 210 Po is a major contributor to the radiation dose of marine organisms. To develop an understanding of the distribution of these closely related radionuclides in the environment it is necessary to be able to measure all three. Accurate measurements depend on preliminary separation of the nuclides. Isolation and measurement of 210 Bi has been a continuing problem and this has restricted the study of the role of this nuclide in environmental processes. We have developed a sample preparation that includes plating polonium from solution onto a silver disc then plating bismuth onto a nickel disc and leaving the lead in solution. The 210 Bi is measured by Cerenkov counting. Any 210 Pb plating onto nickel with the bismuth would interfere in subsequent counting as it decays rapidly to 210 Bi. We have used SIMS (Secondary Ion Mass Spectrometry) to measure bismuth and lead deposited on the nickel and silver discs. This is possible because the stable isotopes of the four elements do not overlap. SIMS is especially appropriate for this study as the Bi and Pb deposited as thin films on the metal surface. Careful selection of experimental conditions allowed quantitative measurements of lead and bismuth without mutual interference. The results have been used in developing plating conditions that optimise separation of lead and bismuth

  14. Parameters promoting liquid metal embrittlement of the T91 steel in lead-bismuth eutectic alloy

    International Nuclear Information System (INIS)

    Proriol Serre, I.; Ye, C.; Vogt, J.B.

    2015-01-01

    The use of liquid lead-bismuth eutectic (LBE) as a spallation target and a coolant in accelerator-driven systems raises the question of the reliability of structural materials, such as T91 martensitic steel in terms of liquid metal assisted damage and corrosion. In this study, the mechanical behaviour of the T91 martensitic steel was examined in liquid lead-bismuth eutectic (LBE) and in inert atmosphere. Several conditions showed the most sensitive embrittlement factor. The Small Punch Test technique was employed using smooth specimens. In this standard heat treatment, T91 appeared in general as a ductile material, and became brittle in the considered conditions if the test was performed in LBE. It turns out that the loading rate appeared as a critical parameter for the occurrence of liquid metal embrittlement (LME) of the T91 steel in LBE. Loading the T91 very slowly instead of rapidly in oxygen saturated LBE resulted in brittle fracture. Furthermore, low-oxygen content in LBE and an increase in temperature promote LME. (authors)

  15. Study of interaction of bismuth, strontium, calcium copper, lead nitrates solutions with sodium oxalate solution with the aim of HTSC synthesis

    International Nuclear Information System (INIS)

    Danilov, V.P.; Krasnobaeva, O.N.; Nosova, T.A.

    1993-01-01

    With the aim of developing a new technique for HTSC oxides synthesis on the base of combined sedimentation of hydroxy salts and their heat treatment is studied interaction of bismuth, strontium, calcium, copper and lead nitrates with alkali solution of sodium oxalate. Conditions for total sedimentation of all five metals from the solution are found. The phase composition of interaction products is determined. It is established that they are high-dispersed homogeneous mixture of three phases of variable composition: twin hydroxalate of copper-bismuth, lead hydroxalate and twin oxalate of strontium-calcium. After heat treatment of the phases are obtained the HTSC oxides

  16. Neutronic analysis of the European reference design of the water cooled lithium lead blanket for a DEMOnstration reactor

    International Nuclear Information System (INIS)

    Petrizzi, L.

    1994-01-01

    Water cooled lithium lead blankets, using liquid Pb-17Li eutectic both as breeder and neutron multiplier material, and martensitic steel as structural material, represent one of the four families under development in the European DEMO blanket programme. Two concepts were proposed, both reaching tritium breeding self-sufficiency: the 'box-shaped' and the 'cylindrical modules'. Also to this scope a new concept has been defined: 'the single box'. A neutronic analysis of the 'single box' is presented. A full 3-D model including the whole assembly and many of the reactor details (divertors, holes, gaps) has been defined, together with a 3-D neutron source. A tritium breeding ration (TBR) value of 1.19 confirms the tritium breeding self-sufficiency of the design. Selected power densities, calculated for the different materials and zones, are here presented. Some shielding capability considerations with respect to the toroidal field coil system are presented too. (author) 10 refs.; 3 figs.; 3 tabs

  17. Ni-rich precipitates in a lead bismuth eutectic loop

    International Nuclear Information System (INIS)

    Kikuchi, K.; Saito, S.; Hamaguchi, D.; Tezuka, M.

    2010-01-01

    Solidified LBE was sampled from the specimens, electro-magnetic pump, filter, drain valve and oxygen sensor at the JAEA Lead Bismuth Loop-1 (JLBL-1) where the structural material was made of SS316. The concentration of Ni, Fe and Cr in LBE were analyzed by the Inductive Coupled Plasma atomic emission spectrometer. It was concluded that the solution of Ni into LBE was not saturated although the concentration of Fe and Cr almost achieved to the values in the literature. A needle-type structure appeared on the surface of solidified LBE inside the tube specimens. It was found to be Ni-rich precipitates by X-ray analyses (Field Emission Scanning Electron Microscope, FE-SEM). LBE samples collected from a circulating loop after discharging did not show the amount of impurities equivalent to the LBE bulk property.

  18. Ni-rich precipitates in a lead bismuth eutectic loop

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, K., E-mail: kikuchik@mx.ibaraki.ac.j [Ibaraki University, IQBRC, Tokai, Ibaraki 319-1106 (Japan); Saito, S.; Hamaguchi, D.; Tezuka, M. [J-PARC Center, JAEA, Tokai, Ibaraki 319-1195 (Japan)

    2010-03-15

    Solidified LBE was sampled from the specimens, electro-magnetic pump, filter, drain valve and oxygen sensor at the JAEA Lead Bismuth Loop-1 (JLBL-1) where the structural material was made of SS316. The concentration of Ni, Fe and Cr in LBE were analyzed by the Inductive Coupled Plasma atomic emission spectrometer. It was concluded that the solution of Ni into LBE was not saturated although the concentration of Fe and Cr almost achieved to the values in the literature. A needle-type structure appeared on the surface of solidified LBE inside the tube specimens. It was found to be Ni-rich precipitates by X-ray analyses (Field Emission Scanning Electron Microscope, FE-SEM). LBE samples collected from a circulating loop after discharging did not show the amount of impurities equivalent to the LBE bulk property.

  19. Ni-rich precipitates in a lead bismuth eutectic loop

    Science.gov (United States)

    Kikuchi, K.; Saito, S.; Hamaguchi, D.; Tezuka, M.

    2010-03-01

    Solidified LBE was sampled from the specimens, electro-magnetic pump, filter, drain valve and oxygen sensor at the JAEA Lead Bismuth Loop-1 (JLBL-1) where the structural material was made of SS316. The concentration of Ni, Fe and Cr in LBE were analyzed by the Inductive Coupled Plasma atomic emission spectrometer. It was concluded that the solution of Ni into LBE was not saturated although the concentration of Fe and Cr almost achieved to the values in the literature. A needle-type structure appeared on the surface of solidified LBE inside the tube specimens. It was found to be Ni-rich precipitates by X-ray analyses (Field Emission Scanning Electron Microscope, FE-SEM). LBE samples collected from a circulating loop after discharging did not show the amount of impurities equivalent to the LBE bulk property.

  20. Experimental investigation of the thermal hydraulics in lead bismuth eutectic-helium experimental loop of an accelerator-driven system

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Wenxuan; Wang, Yong Wei; Li, Xun Feng; Huai, Xiulan; Cal, Jun [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing (China)

    2016-10-15

    The heat transfer characteristics between liquid lead bismuth eutectic (LBE) and helium are of great significance for the two-loop cooling system based on an accelerator-driven system (ADS). This paper presents an experimental study on the resistance characteristics and heat transfer performance in a LBE-helium experimental loop of ADS. Pressure drops in the LBE loop, the main heat transfer, and the coupled heat transfer characteristics between LBE and helium are investigated experimentally. The temperature of LBE has a significant effect on the LBE thermo-physical properties, and is therefore considered in the prediction of pressure drops. The results show that the overall heat transfer coefficient increases with the increasing helium flow rate and the decreasing inlet temperature of helium. Increasing the LBE Reynolds number and LBE inlet temperature promotes the heat transfer performance of main heat transfer and thus the overall heat transfer coefficient. The experimental results give an insight into the flow and heat transfer properties in a LBE-helium heat exchanger and are helpful for the optimization of an ADS system design.

  1. Study on core radius minimization for long life Pb-Bi cooled CANDLE burnup scheme based fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Afifah, Maryam, E-mail: maryam.afifah210692@gmail.com; Su’ud, Zaki [Nuclear Research Group, FMIPA, Bandung Institute of Technology Jl. Ganesha 10, Bandung 40132 (Indonesia); Miura, Ryosuke; Takaki, Naoyuki [Department of Nuclear Safety Engineering, Tokyo City University 1-28-1 Tamazutsumi, Setagaya, Tokyo 158-8557 (Japan); Sekimoto, H. [Emerritus Prof. of Research Laboratory for Nuclear Reactors, Tokyo Inst. of Technology (Japan)

    2015-09-30

    Fast Breeder Reactor had been interested to be developed over the world because it inexhaustible source energy, one of those is CANDLE reactor which is have strategy in burn-up scheme, need not control roads for control burn-up, have a constant core characteristics during energy production and don’t need fuel shuffling. The calculation was made by basic reactor analysis which use Sodium coolant geometry core parameter as a reference core to study on minimum core reactor radius of CANDLE for long life Pb-Bi cooled, also want to perform pure coolant effect comparison between LBE and sodium in a same geometry design. The result show that the minimum core radius of Lead Bismuth cooled CANDLE is 100 cm and 500 MWth thermal output. Lead-Bismuth coolant for CANDLE reactor enable to reduce much reactor size and have a better void coefficient than Sodium cooled as the most coolant for FBR, then we will have a good point in safety analysis.

  2. Influence of bismuth on the age-hardening and corrosion behaviour of low-antimony lead alloys in lead/acid battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Lam, L.T. [CSIRO, Div. of Mineral Products, Port Melbourne, VIC (Australia); Huynh, T.D. [CSIRO, Div. of Mineral Products, Port Melbourne, VIC (Australia); Haigh, N.P. [CSIRO, Div. of Mineral Products, Port Melbourne, VIC (Australia); Douglas, J.D. [CSIRO, Div. of Mineral Products, Port Melbourne, VIC (Australia); Rand, D.A.J. [CSIRO, Div. of Mineral Products, Port Melbourne, VIC (Australia); Lakshmi, C.S. [Pasminco Research Centre, Boolaroo, NSW (Australia); Hollingsworth, P.A. [Pasminco Research Centre, Boolaroo, NSW (Australia); See, J.B. [Pasminco Research Centre, Boolaroo, NSW (Australia); Manders, J. [Pasminco Ltd., Melbourne, VIC (Australia); Rice, D.M. [Pasminco Ltd., Melbourne, VIC (Australia)

    1995-01-01

    The effects of bismuth additions in the range 0.006-0.086 wt.% on the metallurgical and electrochemical properties of Pb-1.5 wt.% Sb alloy are investigated. The self-discharge behaviour of batteries produced with grids of the doped alloys is also evaluated. Addition of bismuth is found to exert no significant effects on the age-hardening behaviour, general microstructure or grain size of the alloy. It does, however, influence the morphology of the eutectic in the inter-dendritic regions. The latter changes from a mainly lamellar to an irregular type with increasing bismuth content. The corrosion rate of the grid decreases with increase of the bismuth content. Attack occurs preferentially in the inter-dendritic regions where there is an enrichment of both antimony and bismuth. Electron-probe microanalysis shows that the corrosion zone consists of a tri-layered structure, namely: a dense, continuous, inner layer (PbO{sub 1.1}); a central layer (PbO{sub 1.8}.PbSO{sub 4}); a porous outer layer n(PbO{sub 1.8}).PbSO{sub 4}, with n=2-8. In the latter, the value of n increases in the direction of corrosive penetration into the grid. Data from atomic absorption spectrometric analysis reveal that bismuth, after oxidative leaching from the grid substrate, is retained mainly in the corrosion layer. A key observation is that bismuth (i.e., up to {approx}0.09 wt.%) does not affect the self-discharge behaviour of batteries. (orig.)

  3. Power maximization method for land-transportable fully passive lead–bismuth cooled small modular reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jaehyun, E-mail: chojh@kaeri.re.kr [Korea Atomic Energy Research Institute, 1405 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Shin, Yong-Hoon; Hwang, Il Soon [Seoul National University, Sillim-dong, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2015-08-15

    Highlights: • The power maximization method for LBE natural circulation cooled SMRs was developed. • The two powers in view of neutronics and thermal-hydraulics were considered. • The limitations for designing of LBE natural circulation cooled SMRs were summarized. • The necessary conditions for safety shutdown in accidents were developed. • The maximized power in the case study is 206 MW thermal. - Abstract: Although current pressurized water reactors (PWRs) have significantly contributed to global energy supply, PWR technology has not been considered a trustworthy energy solution owing to its problems of spent nuclear fuels (SNFs), nuclear safety, and nuclear economy. In order to overcome these problems, a lead–bismuth eutectic (LBE) fully passive cooling small modular reactor (SMR) system is suggested. This technology can not only provide the solution for the problems of SNFs through the transmutation feature of the LBE coolant, but also strengthen safety and economy through the concept of natural circulation cooling SMRs. It is necessary to maximize the advantages, namely safety and economy, of this type of nuclear power plants for broader applications in the future. Accordingly, the objective of this study is to maximize the reactor core power while satisfying the limitations of shipping size, materials endurance, and criticality of a long-burning core as well as safety under beyond design basis events. To achieve these objectives, the design limitations of natural circulating LBE-cooling SMRs are derived. Then, the power maximization method is developed based on obtaining the design limitations. The results of this study are expected to contribute to the effectiveness of the reactor design stage by providing insights to designers, as well as by formulating methods for the power maximization of other types of SMRs.

  4. Modular Lead-Bismuth Fast Reactors in Nuclear Power

    Directory of Open Access Journals (Sweden)

    Vladimir Petrochenko

    2012-09-01

    Full Text Available On the basis of the unique experience of operating reactors with heavy liquid metal coolant–eutectic lead-bismuth alloy in nuclear submarines, the concept of modular small fast reactors SVBR-100 for civilian nuclear power has been developed and validated. The features of this innovative technology are as follows: a monoblock (integral design of the reactor with fast neutron spectrum, which can operate using different types of fuel in various fuel cycles including MOX fuel in a self-providing mode. The reactor is distinct in that it has a high level of self-protection and passive safety, it is factory manufactured and the assembled reactor can be transported by railway. Multipurpose application of the reactor is presumed, primarily, it can be used for regional power to produce electricity, heat and for water desalination. The Project is being realized within the framework of state-private partnership with joint venture OJSC “AKME-Engineering” established on a parity basis by the State Atomic Energy Corporation “Rosatom” and the Limited Liability Company “EuroSibEnergo”.

  5. Sub-channel analysis of LBE-cooled fuel assemblies of accelerator driven systems

    International Nuclear Information System (INIS)

    Cheng, X.; Hwang, D.H.

    2005-01-01

    In the frame of the European PDS-XADS project, two concepts of the sub-critical reactor core cooled by liquid lead-bismuth eutectic (LBE) were proposed. In this paper, the local thermal-hydraulic behavior of both LBE-cooled fuel assemblies was analyzed. For this purpose, the sub-channel analysis code MATRA was selected, and modification was made for its applications to XADS conditions. Compared to the small core concept, the large core concept has a much lower temperatures of coolant, cladding and fuel pins. This enables a short-term realization of the core design using available technologies. The high power density of the small core results in high local temperatures of coolant, cladding and fuel. Both coolant velocity and cladding temperature are such that special attention has to be paid to avoid corrosion and erosion damage of cladding materials. A parametric study shows that under the parameters considered, mixing coefficient has the biggest effect on the coolant temperature distribution, whereas the cladding temperature is strongly affected by the selection of heat transfer correlations. (author)

  6. Thermophoresis research of nanoparticles in liquid lead-bismuth eutectic alloy

    International Nuclear Information System (INIS)

    Yang Xu; Zhou Tao; Liu Liang; Fang Xiaolu; Lin Daping

    2015-01-01

    Thermophoresis theory of solid particles in liquid are selected to research thermophoresis phenomenon in liquid Lead-Bismuth Eutectic (LBE). Thermophoretic velocity of different particles in LBE and stainless steel particles in different fluid are calculated. The results showed that, thermophoretic velocity of particles in LBE increase with the increase of temperature gradient and the decrease of particle radius. And the thermophoretic velocity of stainless steel particles two orders of magnitude lower than the Carbon Nanotubes (CNT) particles, at the same time, it is similar to copper particles in LBE. What's more, the thermophoretic velocity of stainless steel particles in LBE would one order of magnitude lower than that in water and R134a. Of course, it is still faster than that in Engine Oil and Ethyl Glycol two orders of magnitude. (author)

  7. Effects of temperature and strain rate on the tensile behaviors of SIMP steel in static lead bismuth eutectic

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jian, E-mail: jliu12b@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 (China); University of Chinese Academy of Sciences, Beijing, 100049 (China); Yan, Wei [Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 (China); Sha, Wei [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast, Belfast, BT9 5AG (United Kingdom); Wang, Wei; Shan, Yiyin [Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 (China)

    2016-05-15

    In order to assess the susceptibility of candidate structural materials to liquid metal embrittlement, this work investigated the tensile behaviors of ferritic-martensitic steel in static lead bismuth eutectic (LBE). The tensile tests were carried out in static lead bismuth eutectic under different temperatures and strain rates. Pronounced liquid metal embrittlement phenomenon is observed between 200 °C and 450 °C. Total elongation is reduced greatly due to the liquid metal embrittlement in LBE environment. The range of ductility trough is larger under slow strain rate tensile (SSRT) test. - Highlights: • The tensile behaviors of SIMP steel in LBE are investigated for the first time. • The SIMP is susceptible to LME at different strain rates and temperatures. • The total elongation is reduced greatly. • The ductility trough is wider under SSRT. • The tensile specimens rupture in brittle manner without obvious necking.

  8. Effects of temperature and strain rate on the tensile behaviors of SIMP steel in static lead bismuth eutectic

    International Nuclear Information System (INIS)

    Liu, Jian; Yan, Wei; Sha, Wei; Wang, Wei; Shan, Yiyin; Yang, Ke

    2016-01-01

    In order to assess the susceptibility of candidate structural materials to liquid metal embrittlement, this work investigated the tensile behaviors of ferritic-martensitic steel in static lead bismuth eutectic (LBE). The tensile tests were carried out in static lead bismuth eutectic under different temperatures and strain rates. Pronounced liquid metal embrittlement phenomenon is observed between 200 °C and 450 °C. Total elongation is reduced greatly due to the liquid metal embrittlement in LBE environment. The range of ductility trough is larger under slow strain rate tensile (SSRT) test. - Highlights: • The tensile behaviors of SIMP steel in LBE are investigated for the first time. • The SIMP is susceptible to LME at different strain rates and temperatures. • The total elongation is reduced greatly. • The ductility trough is wider under SSRT. • The tensile specimens rupture in brittle manner without obvious necking.

  9. Technical potential of evaporative cooling in Danish and European condition

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Andersen, Christian Hede; Heiselberg, Per Kvols

    2015-01-01

    Evaporative cooling is a very interesting high temperature cooling solution that has potential to save energy comparing to refrigerant cooling systems and at the same time provide more cooling reliability than mechanical or natural ventilation system without cooling. Technical cooling potential...... of 5 different evaporative systems integrated in the ventilation system is investigated in this article. Annual analysis is conducted based on hourly weather data for 15 cities located in Denmark and 123 European cities. Investigated systems are direct, indirect, combinations of direct and indirect...

  10. Bismuth( Ⅲ ) Salts: Green Catalysts for Organic Transformations

    Institute of Scientific and Technical Information of China (English)

    C. Le Roux

    2005-01-01

    @@ 1Introduction Bismuth, the heaviest stable element in the periodic table, stands out from other heavy elements (such as mercury, thallium and lead) due to its relatively non-toxic character which confers on bismuth the enviable status of being an eco-friendly element. Therefore, bismuth and its compounds hold considerable promise as useful catalysts for green chemistry. The research presented in this communication is devoted to the applications of bismuth( Ⅲ ) salts as catalysts for organic transformations.After some general comments about bismuth and a short presentation of the various applications of bismuth( Ⅲ ) salts in organic synthesis, this communication will focus on the works done in our research group during the last several years which deals mainly with electrophilic substitutions. When appropriate, some mechanistic details will be given.

  11. Photon nuclear scattering on lead and bismuth in the region of the giant resonance

    International Nuclear Information System (INIS)

    Tamas, Gabriel.

    1976-01-01

    The results of monochromatic photon nuclear scattering studies on natural lead and bismuth targets are presented. The cross sections for the inelastic scattering leading to the first excited levels of 204 Pb, 206 Pb and 207 Pb are important, in agreement with theoretical predictions. The elastic scattering amplitude is related to the total photon absorption by dispersion relations. It is then possible to determine the spin of resonances excited by the reaction studied. Precise measurements carried out between 14 and 20MeV revealed that the angular distribution cannot be explained by a single dipolar resonance. A quadrupolar resonance at E 2 =14MeV must be introduced [fr

  12. Determination of silver, bismuth, cadmium, copper, lead, and zinc in geologic materials by atomic absorption spectrometry with tricaprylylmethylammonium chloride

    Science.gov (United States)

    Viets, J.G.

    1978-01-01

    Interferences commonly encountered in the determination of silver, bismuth, cadmium, copper, lead, and zinc at crustal abundance levels are effectively eliminated using a rapid, sensitive, organic extraction technique. A potassium chlorate-hydrochloric acid digestion solubilizes the metals not tightly bound in the silicate lattice of rocks, soils, and stream sediments. The six metals are selectively extracted into a 10% Aliquat 336-MIBK organic phase in the presence of ascorbic acid and potassium iodide. Metals in the organic extract are determined by flame atomic absorption spectrometry to the 0.02-ppm level for silver, cadmium, copper, and zinc and to the 0.2-ppm level for bismuth and lead with a maximum relative standard deviation of 18.8% for known reference samples. An additional hydrofluoric acid digestion may be used to determine metals substituted in the silicate lattice.

  13. Improved Application of Local Models to Steel Corrosion in Lead-Bismuth Loops

    International Nuclear Information System (INIS)

    Zhang Jinsuo; Li Ning

    2003-01-01

    The corrosion of steels exposed to flowing liquid metals is influenced by local and global conditions of flow systems. The present study improves the previous local models when applied to closed loops by incorporating some global condition effects. In particular the bulk corrosion product concentration is calculated based on balancing the dissolution and precipitation in the entire closed loop. Mass transfer expressions developed in aqueous medium and an analytical expression are tested in the liquid-metal environments. The improved model is applied to a pure lead loop and produces results closer to the experimental data than the previous local models do. The model is also applied to a lead-bismuth eutectic (LBE) test loop. Systematic studies illustrate the effects of the flow rate, the oxygen concentration in LBE, and the temperature profile on the corrosion rate

  14. Irradiation of structural materials in contact with lead bismuth eutectic in the high flux reactor

    Energy Technology Data Exchange (ETDEWEB)

    Magielsen, A.J., E-mail: magielsen@nrg.eu [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, 1755 ZG Petten (Netherlands); Jong, M.; Bakker, T.; Luzginova, N.V.; Mutnuru, R.K.; Ketema, D.J.; Fedorov, A.V. [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, 1755 ZG Petten (Netherlands)

    2011-08-31

    In the framework of the materials domain DEMETRA in the European Transmutation research and development project EUROTRANS, irradiation experiment IBIS has been performed in the High Flux Reactor in Petten. The objective was to investigate the synergystic effects of irradiation and lead bismuth eutectic exposure on the mechanical properties of structural materials and welds. In this experiment ferritic martensitic 9 Cr steel, austenitic 316L stainless steel and their welds have been irradiated for 250 Full Power Days up to a dose level of 2 dpa. Irradiation temperatures have been kept constant at 300 deg. C and 500 deg. C. During the post-irradiation test phase, tensile tests performed on the specimens irradiated at 300 deg. C have shown that the irradiation hardening of ferritic martensitic 9 Cr steel at 1.3 dpa is 254 MPa, which is in line with the irradiation hardening obtained for ferritic martensitic Eurofer97 steel investigated in the fusion program. This result indicates that no LBE interaction at this irradiation temperature is present. A visual inspection is performed on the specimens irradiated in contact with LBE at 500 deg. C and have shown blackening on the surface of the specimens and remains of LBE that makes a special cleaning procedure necessary before post-irradiation mechanical testing.

  15. Turbine Airfoil Leading Edge Film Cooling Bibliography: 1972–1998

    Directory of Open Access Journals (Sweden)

    D. M. Kercher

    2000-01-01

    Full Text Available Film cooling for turbine airfoil leading edges has been a common practice for at least 35 years as turbine inlet gas temperatures and pressures have continually increased along with cooling air temperatures for higher engine cycle efficiency. With substantial engine cycle performance improvements from higher gas temperatures, it has become increasingly necessary to film cool nozzle and rotor blade leading edges since external heat transfer coefficients and thus heat load are the highest in this airfoil region. Optimum cooling air requirements in this harsh environment has prompted a significant number of film cooling investigations and analytical studies reported over the past 25 years from academia, industry and government agencies. Substantial progress has been made in understanding the complex nature of leading edge film cooling from airfoil cascades, simulated airfoil leading edges and environment. This bibliography is a report of the open-literature references available which provide information on the complex aero–thermo interaction of leading edge gaseous film cooling with mainstream flow. From much of this investigative information has come successful operational leading edge film cooling design systems capable of sustaining airfoil leading edge durability in very hostile turbine environments.

  16. Bismuth-, Tin-, and Lead-Containing Metal-Organic Materials: Synthesis, Structure, Photoluminescence, Second Harmonic Generation, and Ferroelectric Properties

    Science.gov (United States)

    Wibowo, Arief Cahyo

    Metal-Organic Materials (MOMs) contain metal moieties and organic ligands that combine to form discrete (e.g. metal-organic polyhedra, spheres or nanoballs, metal-organic polygons) or polymeric structures with one-, two-, or three-dimensional periodicities that can exhibit a variety of properties resulting from the presence of the metal moieties and/or ligand connectors in the structure. To date, MOMs with a range of functional attributes have been prepared, including record-breaking porosity, catalytic properties, molecular magnetism, chemical separations and sensing ability, luminescence and NLO properties, multiferroic, ferroelectric, and switchable molecular dielectric properties. We are interested in synthesizing non-centrosymmetric MOM single crystals possessing one of the ten polar space groups required for non-linear optical properties (such as second harmonic generation) and ferroelectric applications. This thesis is divided into two main parts: materials with optical properties, such as photoluminescence and materials for targeted applications such as second harmonic generation and ferroelectric properties. This thesis starts with an introduction describing material having centrosymmetric, non-polar space groups, single crystals structures and their photoluminescence properties. These crystals exhibit very interesting and rare structures as well as interesting photoluminescence properties. Chapters 2-5 of this thesis focus on photoluminescent properties of new MOMs, and detail the exploratory research involving the comparatively rare bismuth, lead, and tin coordination polymers. Specifically, the formation of single white-light emitting phosphors based on the combination of bismuth or lead with pyridine-2,5-dicarboxylate is discussed (Chapter 2). The observation of a new Bi2O2 layer and a new Bi4O 3 chain in bismuth terephthalate-based coordination polymers is presented in Chapter 3, while the formation of diverse structures of tin-based coordination

  17. Isotopically tailored lead target with reduced polonium and bismuth radio-waste

    International Nuclear Information System (INIS)

    Khorasanov, G.L.; Ivanov, A.P.; Lunev, V.P.; Blokhin, A.I.

    2002-01-01

    Residual activity of a lead target after 1 year irradiation with a high power, 0.8 GeV*30 mA, proton beam is studied. It is concluded that the main radiotoxicity of irradiated lead is connected with bismuth isotope, Bi-207, which is produced in natural lead, mix of several stable isotopes, via (p,2n) reaction with Pb-208 nuclei. It is proposed to use, as a target material, lead enriched with another stable isotope, Pb-206, in order to reduce producing Bi-207 and Po-210. Estimation of charges for obtaining large quantities of lead-206 is also given. Accumulation of hazardous radionuclides, Bi-207, Bi-208, and Po-210, in natural lead to be used as a coolant in future fast reactors and accelerator driven reactors is predicted. In accelerator driven systems a large portion of Bi-207 can be produced via Pb-208(p,2n)Bi-207 reaction in a target of natural lead (Pb-208/Pb-207/Pb-206/Pb-204=52.35/22.08/24.14/1.42 %). A new isotopically tailored coolant-converter for ADS consisting of lead isotope, Pb-206, is proposed. By using this material, it is possible to reduce essentially the production of the most radio-toxic isotopes of Bi and Po and to avoid disposing the large amounts of lead. To provide the future fast reactors and accelerator driven systems with low-activation coolant - converter, the new technology of obtaining the large amounts of natural lead enriched with lead isotope, Pb-206, should be developed. (authors)

  18. Diffusivity, activity and solubility of oxygen in liquid lead and lead-bismuth eutectic alloy by electrochemical methods

    International Nuclear Information System (INIS)

    Ganesan, Rajesh; Gnanasekaran, T.; Srinivasa, Raman S.

    2006-01-01

    The diffusivity of oxygen in liquid lead and lead-bismuth eutectic (LBE) alloy was measured by a potentiostatic method and is given by log(D O Pb /cm 2 s -1 )=-2.554-2384/T(+/-0.070), 818-1061K, and log(D O LBE /cm 2 s -1 )=-0.813-3612/T(+/-0.091), 811-980K. The activity of oxygen in lead and LBE was determined by coulometric titration experiments. Using the measured data, the standard free energy of dissolution of oxygen in liquid lead and LBE was derived and is given byG O(Pb) xs =-121349+16.906T(+/-560)J(gatomO) -1 ,815-1090K,G O(LBE) xs = -127398+27.938T(+/-717)J(gatomO) -1 ,812-1012K.Using the above data, the Gibbs energy of formation of PbO(s) and equilibrium oxygen pressures measured over the oxygen-saturated LBE alloy, the solubility of oxygen in liquid lead and LBE were derived. The solubility of oxygen in liquid lead and LBE are given by log(S/at.%O)=-5100/T+4.32 (+/-0.04), 815-1090K and log(S/at.%O)=-4287/T+3.53 (+/-0.06), 812-1012K respectively.

  19. European research and development programme for water-cooled lithium-lead blankets: present status and future work

    International Nuclear Information System (INIS)

    Giancarli, L.; Leroy, P.; Proust, E.; Raepsaet, X.

    1992-01-01

    The European R and D programme in support of the development of water-cooled Pb-17Li blankets for DEMO aims at improving the data base concerning tritium behaviour and compatibility between blanket materials. The four main areas of the experimental programme are structural material corrosion by Pb-17Li, tritium extraction and permeation control.=, Pb-17Li physico-chemistry, and water/Pb-17Li interaction. This paper describes the most significant results obtained to date in the various experiments performed in Europe and the future programme required to complete the data base by 1994. 28 refs

  20. Stabilization of high Tc phase in bismuth cuprate superconductor by lead doping

    Science.gov (United States)

    Gupta, Ram. P.; Pachauri, J. P.; Khokle, W. S.; Nagpal, K. C.; Date, S. K.

    1991-01-01

    It has been widely ascertained that doping of lead in Bi-Sr-Ca-Cu-O systems promotes the growth of high T sub c (110 K) phase, improves critical current density, and lowers processing temperature. A systematic study was undertaken to determine optimum lead content and processing conditions to achieve these properties. A large number of samples with cationic compositions of Bi(2-x)Pb(x)Sr2Ca2Cu3 (x = 0.2 to 2.0) were prepared by conventional solid state reaction technique. Samples of all compositions were annealed together at a temperature and characterized through resistance temperature (R-T) measurements and x ray diffraction to determine the zero resistance temperature, T sub c(0) and to identify presence of phases, respectively. The annealing temperature was varied between 790 and 880 C to optimize processing parameters. Results are given. In brief, an optimum process is reported along with composition of leaded bismuth cuprate superconductor which yields nearly a high T sub c single phase with highly stable superconducting properties.

  1. Use of the transpiration method to study polonium evaporation from liquid lead-bismuth eutectic at high temperature

    International Nuclear Information System (INIS)

    Prieto, Borja Gonzalez; Lim, Jun; Rosseel, Kris; Bosch, Joris van den; Aerts, Alexander; Martens, Johan; Rizzi, Matthias; Neuhausen, Joerg

    2014-01-01

    Qualitative and quantitative understanding of Po volatilization under different conditions is of key importance for safety assessments of lead-bismuth eutectic (LBE) based nuclear reactors, spallation targets and accelerator driven systems. In this work we explore the possibilities of the transpiration method in combination with simple models to study the equilibrium and kinetics of Po evaporation from highly diluted solutions in lead-bismuth eutectic between 600 and 1000 C in Ar/5% H 2 and Ar. On the basis of evaporation experiments at various carrier gas flow rates, we identified the conditions of vapor saturation allowing the determination of equilibrium constants. From the limiting behavior at high flow rates, values for the maximal evaporation rate of Po from LBE were estimated. Measurements of evaporation as a function of time were consistent with the assumption that polonium dissolved in LBE obeys Henry's law. A theoretical analysis furthermore suggested that diffusion of polonium in LBE was not a rate limiting factor for evaporation under vapor saturation conditions. Newly determined values for the Henry constant of Po in LBE between 600 and 1000 C were consistent with previously derived correlations.

  2. Beta-decay measurements of neutron-rich thallium, lead, and bismuth by means of resonant laser ionisation

    Science.gov (United States)

    Franchoo, S.; de Witte, H.; Andreyev, A. N.; Cederka¨Ll, J.; Dean, S.; de Smet, A.; Eeckhaudt, S.; Fedorov, D. V.; Fedosseev, V. N.; G´Rska, M.; Huber, G.; Huyse, M.; Janas, Z.; Ko¨Ster, U.; Kurcewicz, W.; Kurpeta, J.; Mayer, P.; Płchocki, A.; van de Vel, K.; van Duppen, P.; Weissman, L.; Isolde Collaboration

    2004-04-01

    Neutron-rich thallium, lead, and bismuth isotopes were investigated at the ISOLDE facility. After mass separation and resonant laser ionisation of the produced activity, new spectroscopic data were obtained for 215,218Bi and 215Pb. An attempt to reach heavy thallium had to be abandoned because of a strong francium component in the beam that gave rise to a neutron background through (α,n) reactions on the aluminium walls of the experimental chamber.

  3. Part I: A comparative study of bismuth-modified screen-printed electrodes for lead detection

    Energy Technology Data Exchange (ETDEWEB)

    Calvo Quintana, Josefina [Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome (Italy); Consorzio Interuniversitario Biostrutture e Biosistemi ' INBB' , Viale Medaglie d' Oro 305, 00136 Rome (Italy); Arduini, Fabiana, E-mail: fabiana.arduini@uniroma2.it [Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome (Italy); Consorzio Interuniversitario Biostrutture e Biosistemi ' INBB' , Viale Medaglie d' Oro 305, 00136 Rome (Italy); Amine, Aziz [Faculte des Sciences et Techniques, B.P.146, Mohammadia, Morocco, Rome (Italy); Punzo, Francesco; Destri, Giovanni Li [LAMSUN and CSGI at Dipartimento di Scienze Chimiche, Universita degli Studi di Catania, Viale A. Doria 6, 95125, Catania (Italy); Bianchini, Chiara [Dipartimento di Ingegneria Chimica Materiali Ambienti dell' Universita degli Studi ' La Sapienza' di Roma, via Eudossiana 18, 00184 Rome (Italy); Zane, Daniela; Curulli, Antonella [Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR,via del Castro Laurenziano 7, 00161 Rome (Italy); Palleschi, Giuseppe; Moscone, Danila [Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome (Italy); Consorzio Interuniversitario Biostrutture e Biosistemi ' INBB' , Viale Medaglie d' Oro 305, 00136 Rome (Italy)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer 'In situ' Bi-SPE has higher sensitivity than 'ex situ' Bi-SPE and 'Bi{sub 2}O{sub 3} bulk' SPE. Black-Right-Pointing-Pointer Electrochemical treatment of SPE before Bi film deposition allows one to reach low LOD. Black-Right-Pointing-Pointer The linearity of Pb{sup 2+} in HCl and HClO{sub 4} is greatly affected by the ionic strength. Black-Right-Pointing-Pointer Satisfactory values of the recovery percentage were obtained in drinking water samples. - Abstract: Lead determination was carried out in the frame of the European Union project Biocop ( (www.biocop.org)) using a bismuth-modified screen-printed electrode (Bi-SPE) and the stripping analysis technique. In order to choose a sensitive Bi-SPE for lead detection, an analytical comparative study of electrodes modified by Bi using 'in situ', 'ex situ' and 'bulk' procedures was carried out. On the basis of the results obtained, we confirmed that the 'in situ' procedure resulted in better analytical performances with respect to not only 'ex situ' but also to 'Bi{sub 2}O{sub 3} bulk' modified electrodes, allowing for a linear range of lead ion concentration from 0.5 to 100 {mu}g L{sup -1} and a detection limit of 0.15 {mu}g L{sup -1}. We demonstrated that, before the Bi film deposition, an oxidative electrochemical pre-treatment of the working electrode could be useful because it eliminates traces of lead in the graphite-ink, as shown with stripping measurements. It also improves the electrochemical performance of the electrodes as demonstrated with Electrochemical Impedance Spectroscopy (EIS) measurements. The influence of different analytical parameters, such as the electrolyte solution composition (acetate buffer, chloridric acid, nitric acid, perchloric acid) and the ionic strength was investigated in order to evaluate how to treat the sample before the analysis. The morphology of

  4. Part I: A comparative study of bismuth-modified screen-printed electrodes for lead detection

    International Nuclear Information System (INIS)

    Calvo Quintana, Josefina; Arduini, Fabiana; Amine, Aziz; Punzo, Francesco; Destri, Giovanni Li; Bianchini, Chiara; Zane, Daniela; Curulli, Antonella; Palleschi, Giuseppe; Moscone, Danila

    2011-01-01

    Highlights: ► “In situ” Bi-SPE has higher sensitivity than “ex situ” Bi-SPE and “Bi 2 O 3 bulk” SPE. ► Electrochemical treatment of SPE before Bi film deposition allows one to reach low LOD. ► The linearity of Pb 2+ in HCl and HClO 4 is greatly affected by the ionic strength. ► Satisfactory values of the recovery percentage were obtained in drinking water samples. - Abstract: Lead determination was carried out in the frame of the European Union project Biocop ( (www.biocop.org)) using a bismuth-modified screen-printed electrode (Bi-SPE) and the stripping analysis technique. In order to choose a sensitive Bi-SPE for lead detection, an analytical comparative study of electrodes modified by Bi using “in situ”, “ex situ” and “bulk” procedures was carried out. On the basis of the results obtained, we confirmed that the “in situ” procedure resulted in better analytical performances with respect to not only “ex situ” but also to “Bi 2 O 3 bulk” modified electrodes, allowing for a linear range of lead ion concentration from 0.5 to 100 μg L −1 and a detection limit of 0.15 μg L −1 . We demonstrated that, before the Bi film deposition, an oxidative electrochemical pre-treatment of the working electrode could be useful because it eliminates traces of lead in the graphite-ink, as shown with stripping measurements. It also improves the electrochemical performance of the electrodes as demonstrated with Electrochemical Impedance Spectroscopy (EIS) measurements. The influence of different analytical parameters, such as the electrolyte solution composition (acetate buffer, chloridric acid, nitric acid, perchloric acid) and the ionic strength was investigated in order to evaluate how to treat the sample before the analysis. The morphology of prepared “in situ” Bi-SPEs was also characterized by Atomic Force Microscopy (AFM). Finally, the Bi-SPEs were used to determine the concentration of lead ions in tap and commercial water

  5. Advisory group meeting on design and performance of reactor and subcritical blanket systems with lead and lead-bismuth as coolant and/or target material. Working material

    International Nuclear Information System (INIS)

    2001-01-01

    The purpose of the IAEA Advisory Group Meeting (AGM) on Design and Performance of Reactor and Sub-critical Blanket Systems with Lead and Lead-Bismuth as Coolant and/or Target Material was to provide a forum for international information exchange on all the topics relevant to Pb and Pb/Bi cooled critical and sub-critical reactors. In addition, the AGM aimed at: (1) finding ways and means to improve international co-ordination efforts in this area; (2) obtaining advice from the Member States with regard to the activities to be implemented in this area by the IAEA, in order to best meet their needs; and (3) laying out the plans for an effective co-ordination and support of the R and D activities in this area. The AGM stressed that nuclear energy is a realistic solution to satisfy the energy demand, considering the limited resources of fossil fuel, its uneven distribution in the world and the impact of its use on the planet, and taking into account the expected doubling of the world population in the 21st century and tripling of the electricity demand (especially in the developing countries). However, the AGM concluded that the development of an innovative nuclear technology meeting the following requirements must be pursued: (a) deterministic exclusion of any severe accident; (b) proliferation resistance; (c) cost competitiveness with alternative energy sources; (d) sustainable fuel supply; and (e) solution of the radioactive waste management problem

  6. Bismuth-ceramic nanocomposites through ball milling and liquid crystal synthetic methods

    Science.gov (United States)

    Dellinger, Timothy Michael

    Three methods were developed for the synthesis of bismuth-ceramic nanocomposites, which are of interest due to possible use as thermoelectric materials. In the first synthetic method, high energy ball milling of bismuth metal with either MgO or SiO2 was found to produce nanostructured bismuth dispersed on a ceramic material. The morphology of the resulting bismuth depended on its wetting behavior with respect to the ceramic: the metal wet the MgO, but did not wet on the SiO2. Differential Scanning Calorimetry measurements on these composites revealed unusual thermal stability, with nanostructure retained after multiple cycles of heating and cooling through the metal's melting point. The second synthesis methodology was based on the use of lyotropic liquid crystals. These mixtures of water and amphiphilic molecules self-assemble to form periodic structures with nanometer-scale hydrophilic and hydrophobic domains. A novel shear mixing methodology was developed for bringing together reactants which were added to the liquid crystals as dissolved salts. The liquid crystals served to mediate synthesis by acting as nanoreactors to confine chemical reactions within the nanoscale domains of the mesophase, and resulted in the production of nanoparticles. By synthesizing lead sulfide (PbS) and bismuth (Bi) particles as proof-of-concept, it was shown that nanoparticle size could be controlled by controlling the dimensionality of the nanoreactors through control of the liquid crystalline phase. Particle size was shown to decrease upon going from three-dimensionally percolating nanoreactors, to two dimensional sheet-like nanoreactors, to one dimensional rod-like nanoreactors. Additionally, particle size could be controlled by varying the precursor salt concentration. Since the nanoparticles did not agglomerate in the liquid crystal immediately after synthesis, bismuth-ceramic nanocomposites could be prepared by synthesizing Bi nanoparticles and mixing in SiO2 particles which

  7. Shielding property of bismuth glass based on MCNP 5 and WINXCOM simulated calculation

    International Nuclear Information System (INIS)

    Zhang Zhicheng; Zhang Jinzhao; Liu Ze; Lu Chunhai; Chen Min

    2013-01-01

    Background: Currently, lead glass is widely used as observation window, while lead is toxic heavy metal. Purpose: Non-toxic materials and their shielding effects are researched in order to find a new material to replace lead containing material. Methods: The mass attenuation coefficients of bismuth silicate glass were investigated with gamma-ray's energy at 0.662 MeV, 1.17 MeV and 1.33 MeV, respectively, by MCNP 5 (Monte Carlo) and WINXCOM program, and compared with those of the lead glass. Results: With attenuation factor K, shielding and mechanical properties taken into consideration bismuth glass containing 50% bismuth oxide might be selected as the right material. Dose rate distributions of water phantom were calculated with 2-cm and 10-cm thick glass, respectively, irradiated by 137 Cs and 60 Co in turn. Conclusion: Results show that the bismuth glass may replace lead glass for radiation shielding with appropriate energy. (authors)

  8. Bismuth ions are metabolized into autometallographic traceable bismuth-sulphur quantum dots

    Directory of Open Access Journals (Sweden)

    M Stoltenberg

    2009-06-01

    Full Text Available Bismuth – sulphur quantum dots can be silver enhanced by autometallography (AMG. In the present study, autometallographic silver enhanced bismuth-sulphur nanocrystals were isolated from unfixed cryo-sections of kidneys and livers of rats exposed to bismuth (Bi207 subnitrate. After being subjected to AMG all the organic material was removed by sonication and enzymatic digestion and the silver enhanced Bi- S quantum dots spun down by an ultracentrifuge and analyzed by scintillation. The analysis showed that the autometallographic technique traces approximately 94% of the total bismuth. This implies that the injected bismuth is ultimately captured in bismuthsulphur quantum dots, i.e., that Bi-S nanocrystals are the end product of bismuth metabolism

  9. Pathways for the release of polonium from a lead-bismuth spallation target (thermochemical calculation); Verfluechtigungspfade des Poloniums aus einem Pb-Bi-Spallationstarget (Thermochemische Kalkulation)

    Energy Technology Data Exchange (ETDEWEB)

    Eichler, B.; Neuhausen, J

    2004-06-01

    An analysis of literature data for the thermochemical constants of polonium reveals considerable discrepancies in the relations of these data among each other as well as in their expected trends within the chalcogen group. This fact hinders a reliable assessment of possible reaction paths for the release of polonium from a liquid lead-bismuth spallation target. In this work an attempt is made to construct a coherent data set for the thermochemical properties of polonium and some of its compounds that are of particular importance with respect to the behaviour of polonium in a liquid Pb-Bi target. This data set is based on extrapolations using general trends throughout the periodic table and, in particular, within the chalcogen group. Consequently, no high accuracy should be attributed to the derived data set. However, the data set derived in this work is consistent with definitely known experimental data. Furthermore, it complies with the general trends of physicochemical properties within the chalcogen group. Finally, well known relations between thermochemical quantities are fulfilled by the data derived in this work. Thus, given the lack of accurate experimental data it can be regarded as best available data. Thermochemical constants of polonium hydride, lead polonide and polonium dioxide are derived based on extrapolative procedures. Furthermore, the possibility of formation of the gaseous intermetallic molecule BiPo, which has been omitted from discussion up to now, is investigated. From the derived thermochemical data the equilibrium constants of formation, release and dissociation reactions are calculated for different polonium containing species. Furthermore equilibrium constants are determined for the reaction of lead polonide and polonium dioxide with hydrogen, water vapour and the target components lead and bismuth. The most probable release pathways are discussed. From thermochemical evaluations polonium is expected to be released from liquid lead-bismuth

  10. Preliminary evaluation of steam generator tube rupture (SGTR) accident in lead cooled reactor

    International Nuclear Information System (INIS)

    Frano, R. Lo; Forasassi, G.

    2009-01-01

    In this paper some contributions are provided to the development of a European Lead-cooled System, known as the ELSY project (within EU-6 Framework Project); that will constitute a possible reference system for a large lead-cooled reactor of GEN IV. Steam generator (SG) tubing of this system type might be subject to a variety of degradation processes, such as cracking, wall thinning and potential leakage or rupture, eventually leading to the failure of one or more SG tubes that constitute a steam generator tube rupture (SGTR) accident with possible consequences for the safety of the primary systems. It is therefore of interest for the designer to know how the SG itself, as well as the vessel and internals structures, behave under impulsive loading conditions (in form of a rapid and strong increase of pressure) that can arise as consequences of the interaction between the primary and secondary coolants (lead-water interaction). The analysed initiator event, as already mentioned, is a large break (up to a double ended guillotine break) of one (or more) SG cooling tubes that may become severe enough to determine dangerous effects on the interested structures. In order to better simulate and perform the mentioned postulated SGTR accident sequence analyses, an appropriate numerical model with the available computing resources (FEM codes) was set up at the DIMNP of Pisa University. That model was used to evaluate the effects of the propagation of the blast pressure waves inside the SG structures, taking into account also the sloshing phenomenon that could be induced by the lead primary coolant motions. Therefore the SGTR effects study may be considered as a transient and non linear problem the solution of which provides the 'time histories' of hydrodynamic pressures and stresses on the reactor pressure vessel and internals walls. (author)

  11. Modeling minor actinide multiple recycling in a lead-cooled fast reactor to demonstrate a fuel cycle without long-lived nuclear waste

    Directory of Open Access Journals (Sweden)

    Stanisz Przemysław

    2015-09-01

    Full Text Available The concept of closed nuclear fuel cycle seems to be the most promising options for the efficient usage of the nuclear energy resources. However, it can be implemented only in fast breeder reactors of the IVth generation, which are characterized by the fast neutron spectrum. The lead-cooled fast reactor (LFR was defined and studied on the level of technical design in order to demonstrate its performance and reliability within the European collaboration on ELSY (European Lead-cooled System and LEADER (Lead-cooled European Advanced Demonstration Reactor projects. It has been demonstrated that LFR meets the requirements of the closed nuclear fuel cycle, where plutonium and minor actinides (MA are recycled for reuse, thereby producing no MA waste. In this study, the most promising option was realized when entire Pu + MA material is fully recycled to produce a new batch of fuel without partitioning. This is the concept of a fuel cycle which asymptotically tends to the adiabatic equilibrium, where the concentrations of plutonium and MA at the beginning of the cycle are restored in the subsequent cycle in the combined process of fuel transmutation and cooling, removal of fission products (FPs, and admixture of depleted uranium. In this way, generation of nuclear waste containing radioactive plutonium and MA can be eliminated. The paper shows methodology applied to the LFR equilibrium fuel cycle assessment, which was developed for the Monte Carlo continuous energy burnup (MCB code, equipped with enhanced modules for material processing and fuel handling. The numerical analysis of the reactor core concerns multiple recycling and recovery of long-lived nuclides and their influence on safety parameters. The paper also presents a general concept of the novel IVth generation breeder reactor with equilibrium fuel and its future role in the management of MA.

  12. Elevated gamma-rays shielding property in lead-free bismuth tungstate by nanofabricating structures

    Science.gov (United States)

    Liu, Jun-Hua; Zhang, Quan-Ping; Sun, Nan; Zhao, Yang; Shi, Rui; Zhou, Yuan-Lin; Zheng, Jian

    2018-01-01

    Radiation shielding materials have attracted much attention across academia and industry because of the increasing of nuclear activities. To achieve the materials with low toxicity but good protective capability is one of the most significant goals for personal protective articles. Here, bismuth tungstate nanostructures are controllably fabricated by a versatile hydrothermal treatment under various temperatures. The crystals structure and morphology of products are detailedly characterized with X-ray diffraction, electron microscope and specific surface area. It is noteworthy that desired Bi2WO6 nanosheets treated with 190 °C show the higher specific surface area (19.5 m2g-1) than that of the other two products. Importantly, it has a close attenuating property to lead based counterpart for low energy gamma-rays. Due to the less toxicity, Bi2WO6 nanosheets are more suitable than lead based materials to fabricate personal protective articles for shielding low energy radiations and have great application prospect as well as market potential.

  13. Current leads cooling for the series-connected hybrid magnets

    Science.gov (United States)

    Bai, Hongyu; Marshall, William S.; Bird, Mark D.; Gavrilin, Andrew V.; Weijers, Hubertus W.

    2014-01-01

    Two Series-Connected Hybrid (SCH) magnets are being developed at the National High Magnetic Field Laboratory. Both SCH magnets combine a set of resistive Florida-Bitter coils with a superconducting outsert coil constructed of the cable-in-conduit conductor (CICC). The outsert coils of the two magnets employ 20 kA BSCCO HTS current leads for the power supply although they have different designs and cooling methods. The copper heat exchangers of the HTS current leads for the HZB SCH are cooled with forced flow helium at a supply temperature of 44 K, while the copper heat exchangers of HTS current leads for NHMFL SCH are cooled with liquid nitrogen at a temperature of 78 K in a self-demand boil-off mode. This paper presents the two cooling methods and their impacts on cryogenic systems. Their efficiencies and costs are compared and presented.

  14. Neutronic design for a 100MWth Small modular natural circulation lead or lead-alloy cooled fast reactors core

    International Nuclear Information System (INIS)

    Chen, C.; Chen, H.; Zhang, H.; Chen, Z.; Zeng, Q.

    2015-01-01

    Lead or lead-alloy cooled fast reactor with good fuel proliferation and nuclear waste transmutation capability, as well as high security and economy, is a great potential for the development of fourth-generation nuclear energy systems. Small natural circulation reactor is an important technical route lead cooled fast reactors industrial applications, which has been chosen as one of the three reference technical for solution lead or lead-alloy cooled fast reactors by GIF lead-cooled fast reactor steering committee. The School of Nuclear Science and Technology of USTC proposed a small 100MW th natural circulation lead cooled fast reactor concept called SNCLFR-100 based realistic technology. This article describes the SNCLFR-100 reactor of the overall technical program, core physics calculation and analysis. The results show that: SNCLFR-100 with good neutronic and safety performance and relevant design parameters meet the security requirements with feasibility. (author)

  15. European lead fast reactor (ELSY and LEADER projects)

    International Nuclear Information System (INIS)

    Alemberti, Alessandro; Carlsson, Johan; Malambu, Edouard; Orden, Alfredo; Cinotti, Luciano; Struwe, Dankward; Agostini, Pietro; Monti, Stefano

    2010-01-01

    The conceptual design of the European Lead Fast Reactor is being developed starting from September 2006, in the frame of the ELSY project. The ELSY reference design is a 600 MWe pool-type reactor cooled by pure lead. The ELSY project demonstrates the possibility of designing a competitive and safe fast critical reactor using simple engineered technical features, whilst fully complying with the Generation IV goal of sustainability and minor actinide (MA) burning capability. Sustainability was a leading criterion for option selection for core design, focusing on the demonstration of the potential to be self sustaining in plutonium and to burn its own generated MAs. To this end, different core configurations have been studied. Economics was a leading criterion for primary system design and plant layout. The use of a compact and simple primary circuit with the additional objective that all internal components be removable, are among the reactor features intended to assure competitive electric energy generation and long-term investment protection. Low capital cost and construction time are pursued through simplicity and compactness of the reactor building (reduced footprint and height). The reduced plant footprint is one of the benefits coming from the elimination of the Intermediate Cooling System, the low reactor building height is the result of the design approach which foresees the adoption of short-height components and two innovative DHR systems. Among the critical issues, the impact of the large mass of lead has been carefully analyzed; it has been demonstrated that the high density of lead can be mitigated by compact solutions and adoption of seismic isolators. Safety has been one of the major focuses all over the ELSY development. In addition to the inherent safety advantages of lead coolant (high boiling point and no exothermic reactions with air or water) a high safety grade of the overall system has been reached. In fact the overall primary system has been

  16. Method for evaluation of doses from ingestion of polonium, bismuth and lead as natural radioactive material(NORM)

    International Nuclear Information System (INIS)

    Pena, Vanessa; Puerta, Anselmo; Morales, Javier

    2013-01-01

    In this work was carried out an evaluation of dose from ingestion of radioactive daughters of radon (lead, bismuth and polonium), taking into account ages from three months up to adult men, using the new model of the human alimentary tract HATM and methodology of calculating doses proposed by the ICRP publication 103, which allows the estimation of dose based on the concentration of the radionuclide present in the diet or in the water of consumption

  17. European supercritical water cooled reactor

    International Nuclear Information System (INIS)

    Schulenberg, T.; Starflinger, J.; Marsault, P.; Bittermann, D.; Maraczy, C.; Laurien, E.; Lycklama a Nijeholt, J.A.; Anglart, H.; Andreani, M.; Ruzickova, M.; Toivonen, A.

    2011-01-01

    Highlights: → The HPLWR reactor design is an example of a supercritical water cooled reactor. → Cladding material tests have started but materials are not yet satisfactory. → Numerical heat transfer predictions are promising but need further validation. → The research project is most suited for nuclear education and training. - Abstract: The High Performance Light Water Reactor (HPLWR), how the European Supercritical Water Cooled Reactor is called, is a pressure vessel type reactor operated with supercritical water at 25 MPa feedwater pressure and 500 o C average core outlet temperature. It is designed and analyzed by a European consortium of 10 partners and 3 active supporters from 8 Euratom member states in the second phase of the HPLWR project. Most emphasis has been laid on a core with a thermal neutron spectrum, consisting of small fuel assemblies in boxes with 40 fuel pins each and a central water box to improve the neutron moderation despite the low coolant density. Peak cladding temperatures of the fuel rods have been minimized by heating up the coolant in three steps with intermediate coolant mixing. The containment design with its safety and residual heat removal systems is based on the latest boiling water reactor concept, but with different passive high pressure coolant injection systems to cause a forced convection through the core. The design concept of the steam cycle is indicating the envisaged efficiency increase to around 44%. Moreover, it provides the constraints to design the components of the balance of the plant. The project is accompanied by numerical studies of heat transfer of supercritical water in fuel assemblies and by material tests of candidate cladding alloys, performed by the consortium and supported by additional tests of the Joint Research Centre of the European Commission. Besides the scientific and technical progress, the HPLWR project turned out to be most successful in training the young generation of nuclear engineers

  18. Development of small, fast reactor core designs using lead-based coolant

    International Nuclear Information System (INIS)

    Cahalan, J. E.; Hill, R. N.; Khalil, H. S.; Wade, D. C.

    1999-01-01

    A variety of small (100 MWe) fast reactor core designs are developed, these include compact configurations, long-lived (15-year fuel lifetime) cores, and derated, natural circulation designs. Trade studies are described which identify key core design issues for lead-based coolant systems. Performance parameters and reactivity feedback coefficients are compared for lead-bismuth eutectic (LBE) and sodium-cooled cores of consistent design. The results of these studies indicate that the superior neutron reflection capability of lead alloys reduces the enrichment and burnup swing compared to conventional sodium-cooled systems; however, the discharge fluence is significantly increased. The size requirement for long-lived systems is constrained by reactivity loss considerations, not fuel burnup or fluence limits. The derated lead-alloy cooled natural circulation cores require a core volume roughly eight times greater than conventional compact systems. In general, reactivity coefficients important for passive safety performance are less favorable for the larger, derated configurations

  19. Stripping chronopotentiometric measurements of lead(II) and cadmium(II) in soils extracts and wastewaters using a bismuth film screen-printed electrode assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kadara, Rashid O.; Tothill, Ibtisam E. [Cranfield Biotechnology Centre, Cranfield University, MK45 4DT, Silsoe, Bedfordshire (United Kingdom)

    2004-02-01

    The key to remediative processes is the ability to measure toxic contaminants on-site using simple and cheap sensing devices, which are field-portable and can facilitate more rapid decision-making. A three-electrode configuration system has been fabricated using low-cost screen-printing (thick-film) technology and this coupled with a portable electrochemical instrument has provided a a relatively inexpensive on-site detector for trace levels of toxic metals. The carbon surface of the screen-printed working electrode is used as a substrate for in situ deposition of a metallic film of bismuth, which allows the electrochemical preconcentration of metal ions. Lead and cadmium were simultaneously detected using stripping chronopotentiometry at the bismuth film electrode. Detection limits of 8 and 10 ppb were obtained for cadmium(II) and lead(II), respectively, for a deposition time of 120 s. The developed method was applied to the determination of lead and cadmium in soils extracts and wastewaters obtained from polluted sites. For comparison purposes, a mercury film electrode and ICP-MS were also used for validation. (orig.)

  20. Feasibility of preparing patterned molybdenum coatings on bismuth telluride thermoelectric modules.

    Energy Technology Data Exchange (ETDEWEB)

    Sarobol, Pylin; Hall, Aaron Christopher; Miller, Stephen Samuel; Knight, Marlene E.; LePage, William S.; Sobczak, Catherine Elizabeth.; Wesolowski, Daniel Edward

    2013-09-01

    Molybdenum electrical interconnects for thermoelectric modules were produced by air plasma spraying a 30%CE%BCm size molybdenum powder through a laser-cut Kapton tape mask. Initial feasibility demonstrations showed that the molybdenum coating exhibited excellent feature and spacing retention (~170%CE%BCm), adhered to bismuth-telluride, and exhibited electrical conductivity appropriate for use as a thermoelectric module interconnect. A design of experiments approach was used to optimize air plasma spray process conditions to produce a molybdenum coating with low electrical resistivity. Finally, a molybdenum coating was successfully produced on a fullscale thermoelectric module. After the addition of a final titanium/gold layer deposited on top of the molybdenum coating, the full scale module exhibited an electrical resistivity of 128%CE%A9, approaching the theoretical resistivity value for the 6mm module leg of 112%CE%A9. Importantly, air plasma sprayed molybdenum did not show significant chemical reaction with bismuth-telluride substrate at the coating/substrate interface. The molybdenum coating microstructure consisted of lamellar splats containing columnar grains. Air plasma sprayed molybdenum embedded deeply (several microns) into the bismuth-telluride substrate, leading to good adhesion between the coating and the substrate. Clusters of round pores (and cracks radiating from the pores) were found immediately beneath the molybdenum coating. These pores are believed to result from tellurium vaporization during the spray process where the molten molybdenum droplets (2623%C2%B0C) transferred their heat of solidification to the substrate at the moment of impact. Substrate cooling during the molybdenum deposition process was recommended to mitigate tellurium vaporization in future studies.

  1. Stabilization of high T(sub c) phase in bismuth cuprate superconductor by lead doping

    Science.gov (United States)

    Gupta, Ram. P.; Pachauri, J. P.; Khokle, W. S.; Nagpal, K. C.; Date, S. K.

    1990-01-01

    It has widely been ascertained that doping of lead in Bi:Sr:Ca:Cu:O systems promotes the growth of high T(sub c) (110 K) phase, improves critical current density, and lowers processing temperature. A systematic investigation is undertaken to determine optimum lead content and processing conditions to achieve these. A large number of samples with cationic compositions of Bi(2-x)Pb(x)Sr2Ca2Cu3 (x = 0.2 to 2.0) were prepared by conventional solid state reaction technique. Samples of all compositions were annealed together at a temperature and characterized through resistance-temperature (R-T) measurements and x ray diffraction (XRD) to determine the zero resistance temperature, T(sub c)(0) and to identify presence of phases, respectively. The annealing temperature was varied between 790 C to optimize processing parameters. Results are given. In brief, an optimum process is reported along with composition of leaded bismuth cuprate superconductor which yields nearly a high T(sub c) single phase with highly stable superconducting properties.

  2. Heavy liquid metal cooled FBR. Results 2003

    International Nuclear Information System (INIS)

    Hayahune, Hiroki; Enuma, Yasuhiro; Soman, Yoshindo; Konomura, Mamoru; Mizuno, Tomoyasu

    2004-08-01

    Concepts of the reactor, SG and main coolant pump have been studied considering maintainability and aseismic capability, which is a medium size pool type lead-bismuth cooled reactor. The results are following. (1) Reconsideration of reactor design concepts concerning maintainability: In pursuit of good reactor maintainability, the structural concepts of SG, UIS and core support structures have been changed to be drawn up above the upper area of the reactor system. After a few decade of interval, lead-bismuth inventory in the reactor vessel shall be fully drained for easy ISI operation of in-vessel main components such as core support structures. From the viewpoint of the reactor aseismic capability, the axial length of reactor vessel was reduced and the reactor vessel support location was changed from the top handing to the circumference of the vessel. (2) SG concept selection in conjunction with a compact reactor vessel: The concept of SG consisting of a once through type with helical coil tube is selected. 6 units of a small scale SG are arranged on a reactor roof deck along the peripheral direction, in addition to 3 units of a centrifugal mechanical pump. (3) Aseismic structural integrity of the reactor components: Aseismic structural integrity of the reactor vessel, core support structures, UIS, FHM, SG and the main pumps has been vigorously examined respectively. These components besides FHM could keep the aseismic structural integrity for strong S2 earthquake under the design condition. FHM could also keep the integrity for S1 earthquake. (4) Safety evaluation: Thermal transients following loss of flow type accident due to plant total blackout and typical manual reactor trip incident, have been evaluated to assure the pant safety design, by analyzing thermal hydraulic behavior of transients concerning core flow rate and temperatures of the plant cooling system. Loss of flow accident due to plant total blackout: The reactor coolant pumps shall be tripped and

  3. Corrosion behavior of steels in flowing lead-bismuth under abnormal conditions

    International Nuclear Information System (INIS)

    Doubkova, A.; Di Gabriele, F.; Brabec, P.; Keilova, E.

    2008-01-01

    The project IP EUROTRANS, domain DEMETRA, is primary focused on the study of the technology of the interaction between steels and heavy liquid metals. The characterization of the metal response to sudden changes, simulating accidental conditions in liquid lead-bismuth eutectic was carried out. This paper reports the results of two hot-spot simulations with two different oxygen concentrations (10 -8 wt%, 10 -6 wt%). Each experiment was divided in two main periods: the initial, long period at the standard operating temperature 550 deg. C; the second, short period, at higher temperature, 650 deg. C. The damage that occurs on the austenitic steel AISI 316L and the ferritic-martensitic steel T91 was investigated. The amount of damage for both steels was higher at lower oxygen contents and the short, hot spot simulation, markedly affected the T91. At higher oxygen content the amount of damage decreased. A few, localized pits, were observed; however, there was no visible increment in the amount of damage after the hot spot simulation

  4. Neutronic design for a 100MW{sub th} Small modular natural circulation lead or lead-alloy cooled fast reactors core

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.; Chen, H.; Zhang, H.; Chen, Z.; Zeng, Q., E-mail: shchshch@ustc.edu.cn, E-mail: hlchen1@ustc.edu.cn, E-mail: kulah@mail.ustc.edu.cn, E-mail: zchen214@mail.ustc.edu.cn, E-mail: zengqin@ustc.edu.cn [Univ. of Science and Technology of China, School of Nuclear Science and Technology, Hefei, Anhui (China)

    2015-07-01

    Lead or lead-alloy cooled fast reactor with good fuel proliferation and nuclear waste transmutation capability, as well as high security and economy, is a great potential for the development of fourth-generation nuclear energy systems. Small natural circulation reactor is an important technical route lead cooled fast reactors industrial applications, which has been chosen as one of the three reference technical for solution lead or lead-alloy cooled fast reactors by GIF lead-cooled fast reactor steering committee. The School of Nuclear Science and Technology of USTC proposed a small 100MW{sub th} natural circulation lead cooled fast reactor concept called SNCLFR-100 based realistic technology. This article describes the SNCLFR-100 reactor of the overall technical program, core physics calculation and analysis. The results show that: SNCLFR-100 with good neutronic and safety performance and relevant design parameters meet the security requirements with feasibility. (author)

  5. Spectroscopic and thermal properties of Sm3+ doped iron lead bismuthate glasses

    Science.gov (United States)

    Narwal, P.; Yadav, A.; Dahiya, M. S.; Vishal, Rohit, Agarwal, A.; Khasa, S.

    2018-05-01

    The results of the structural, physical, thermal and electrical properties of the glass compositions xFe2O3•(100-x)(3Bi2O3•PbO)• Sm2O3(1 mol%) where x=0, 1, 5, 10, 12, 15 mol% prepared via melt quench technique were studied. The synthesized compositions were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and differential thermal analysis (DTA). The IR study reveals that present system is build up with lead in tetrahedral coordination and bismuth in trigonal as well as octahedral coordination. Density and molar volume have been calculated using Archimedes principle, and the variation in their values has been correlated with structural changes in the glass matrix based on the IR study. The variation in the characteristic temperatures (glass transition temperature Tg, crystallization temperature Tp and melting temperature Tm) with different heating rate and change in the composition of iron oxide were analyzed and reported in the present study.

  6. Design by theoretical and CFD analyses of a multi-blade screw pump evolving liquid lead for a Generation IV LFR

    Energy Technology Data Exchange (ETDEWEB)

    Ferrini, Marcello [GeNERG - DIME/TEC, University of Genova, via all’Opera Pia 15/a, 16145 Genova (Italy); Borreani, Walter [Ansaldo Nucleare S.p.A., Corso F.M. Perrone 25, 16152 Genova (Italy); INFN, Via Dodecaneso 33, 16146 Genova (Italy); Lomonaco, Guglielmo, E-mail: guglielmo.lomonaco@unige.it [GeNERG - DIME/TEC, University of Genova, via all’Opera Pia 15/a, 16145 Genova (Italy); INFN, Via Dodecaneso 33, 16146 Genova (Italy); Magugliani, Fabrizio [Ansaldo Nucleare S.p.A., Corso F.M. Perrone 25, 16152 Genova (Italy)

    2016-02-15

    Lead-cooled fast reactor (LFR) has both a long history and a penchant of innovation. With early work related to its use for submarine propulsion dating to the 1950s, Russian scientists pioneered the development of reactors cooled by heavy liquid metals (HLM). More recently, there has been substantial interest in both critical and subcritical reactors cooled by lead (Pb) or lead–bismuth eutectic (LBE), not only in Russia, but also in Europe, Asia, and the USA. The growing knowledge of the thermal-fluid-dynamic properties of these fluids and the choice of the LFR as one of the six reactor types selected by Generation IV International Forum (GIF) for further research and development has fostered the exploration of new geometries and new concepts aimed at optimizing the key components that will be adopted in the Advanced Lead Fast Reactor European Demonstrator (ALFRED), the 300 MW{sub t} pool-type reactor aimed at proving the feasibility of the design concept adopted for the European Lead-cooled Fast Reactor (ELFR). In this paper, a theoretical and computational analysis is presented of a multi-blade screw pump evolving liquid Lead as primary pump for the adopted reference conceptual design of ALFRED. The pump is at first analyzed at design operating conditions from the theoretical point of view to determine the optimal geometry according to the velocity triangles and then modeled with a 3D CFD code (ANSYS CFX). The choice of a 3D simulation is dictated by the need to perform a detailed spatial simulation taking into account the peculiar geometry of the pump as well as the boundary layers and turbulence effects of the flow, which are typically tri-dimensional. The use of liquid Lead impacts significantly the fluid dynamic design of the pump because of the key requirement to avoid any erosion affects. These effects have a major impact on the performance, reliability and lifespan of the pump. Albeit some erosion-related issues remain to be fully addressed, the results

  7. Design by theoretical and CFD analyses of a multi-blade screw pump evolving liquid lead for a Generation IV LFR

    International Nuclear Information System (INIS)

    Ferrini, Marcello; Borreani, Walter; Lomonaco, Guglielmo; Magugliani, Fabrizio

    2016-01-01

    Lead-cooled fast reactor (LFR) has both a long history and a penchant of innovation. With early work related to its use for submarine propulsion dating to the 1950s, Russian scientists pioneered the development of reactors cooled by heavy liquid metals (HLM). More recently, there has been substantial interest in both critical and subcritical reactors cooled by lead (Pb) or lead–bismuth eutectic (LBE), not only in Russia, but also in Europe, Asia, and the USA. The growing knowledge of the thermal-fluid-dynamic properties of these fluids and the choice of the LFR as one of the six reactor types selected by Generation IV International Forum (GIF) for further research and development has fostered the exploration of new geometries and new concepts aimed at optimizing the key components that will be adopted in the Advanced Lead Fast Reactor European Demonstrator (ALFRED), the 300 MW t pool-type reactor aimed at proving the feasibility of the design concept adopted for the European Lead-cooled Fast Reactor (ELFR). In this paper, a theoretical and computational analysis is presented of a multi-blade screw pump evolving liquid Lead as primary pump for the adopted reference conceptual design of ALFRED. The pump is at first analyzed at design operating conditions from the theoretical point of view to determine the optimal geometry according to the velocity triangles and then modeled with a 3D CFD code (ANSYS CFX). The choice of a 3D simulation is dictated by the need to perform a detailed spatial simulation taking into account the peculiar geometry of the pump as well as the boundary layers and turbulence effects of the flow, which are typically tri-dimensional. The use of liquid Lead impacts significantly the fluid dynamic design of the pump because of the key requirement to avoid any erosion affects. These effects have a major impact on the performance, reliability and lifespan of the pump. Albeit some erosion-related issues remain to be fully addressed, the results of

  8. Conjugate calculation of a film-cooled blade for improvement of the leading edge cooling configuration

    Directory of Open Access Journals (Sweden)

    Norbert Moritz

    2013-03-01

    Full Text Available Great efforts are still put into the design process of advanced film-cooling configurations. In particular, the vanes and blades of turbine front stages have to be cooled extensively for a safe operation. The conjugate calculation technique is used for the three-dimensional thermal load prediction of a film-cooled test blade of a modern gas turbine. Thus, it becomes possible to take into account the interaction of internal flows, external flow, and heat transfer without the prescription of heat transfer coefficients. The focus of the investigation is laid on the leading edge part of the blade. The numerical model consists of all internal flow passages and cooling hole rows at the leading edge. Furthermore, the radial gap flow is also part of the model. The comparison with thermal pyrometer measurements shows that with respect to regions with high thermal load a qualitatively and quantitatively good agreement of the conjugate results and the measurements can be found. In particular, the region in the vicinity of the mid-span section is exposed to a higher thermal load, which requires further improvement of the cooling arrangement. Altogether the achieved results demonstrate that the conjugate calculation technique is applicable for reasonable prediction of three-dimensional thermal load of complex cooling configurations for blades.

  9. Thermal optimization of the helium-cooled power leads for the SSC

    International Nuclear Information System (INIS)

    Demko, J.A.; Schiesser, W.E.; Carcagno, R.; McAshan, M.; McConeghy, R.

    1992-03-01

    The optimum thermal design of the power leads for the Superconducting Super Collider (SSC) will minimize the amount of Carnot work (which is a combination of refrigeration and liquefaction work) required. This optimization can be accomplished by the judicious selection of lead length and diameter. Even though an optimum set of dimensions is found, the final design must satisfy other physical constraints such as maximum allowable heat leak and helium vapor mass flow rate. A set of corresponding lengths and diameters has been determined that meets these requirements for the helium vapor-cooled, spiral-fin power lead design of the SSC. Early efforts by McFee and Mallon investigated optimizing power leads for cryogenic applications with no convection cooling. Later designs utilized the boiled-off helium vapor to cool the lead. One notable design for currents up to several thousand amps is presented by Efferson based on a series of recommendations discussed by Deiness. Buyanov presents many theoretical models and design formulate but does not demonstrate an approach to thermally optimizing the design of a vapor-cooled lead. A method for optimizing superconducting magnet current leads is described by Maehata et al. The approach assumes that the helium boil-off caused by heat conduction along with power lead into the low-temperature helium is used to cool the lead. The optimum solution is found when the heat flow at the cold end is minimized.. In this study, a detailed numerical thermal model of a power lead design for the SSC has been developed. It was adapted from the dynamic model developed by Schiesser. This model was used to determine the optimum dimensions that minimize the Carnot refrigeration and liquefaction work due to the leads

  10. Performance Recovery of Natural Draft Dry Cooling Systems by Combined Air Leading Strategies

    Directory of Open Access Journals (Sweden)

    Weijia Wang

    2017-12-01

    Full Text Available The cooling efficiency of natural draft dry cooling system (NDDCS are vulnerable to ambient winds, so the implementation of measures against the wind effects is of great importance. This work presents the combined air leading strategies to recover the flow and heat transfer performances of NDDCS. Following the energy balance among the exhaust steam, circulating water, and cooling air, numerical models of natural draft dry cooling systems with the combined air leading strategies are developed. The cooling air streamlines, volume effectiveness, thermal efficiency and outlet water temperature for each cooling delta of the large-scale heat exchanger are obtained. The overall volume effectiveness, average outlet water temperature of NDDCS and steam turbine back pressure are calculated. The results show that with the air leading strategies inside or outside the dry-cooling tower, the thermo-flow performances of natural draft dry cooling system are improved under all wind conditions. The combined inner and outer air leading strategies are superior to other single strategy in the performance recovery, thus can be recommended for NDDCS in power generating units.

  11. Development of tellurium oxide and lead-bismuth oxide glasses for mid-wave infra-red transmission optics

    Science.gov (United States)

    Zhou, Beiming; Rapp, Charles F.; Driver, John K.; Myers, Michael J.; Myers, John D.; Goldstein, Jonathan; Utano, Rich; Gupta, Shantanu

    2013-03-01

    Heavy metal oxide glasses exhibiting high transmission in the Mid-Wave Infra-Red (MWIR) spectrum are often difficult to manufacture in large sizes with optimized physical and optical properties. In this work, we researched and developed improved tellurium-zinc-barium and lead-bismuth-gallium heavy metal oxide glasses for use in the manufacture of fiber optics, optical components and laser gain materials. Two glass families were investigated, one based upon tellurium and another based on lead-bismuth. Glass compositions were optimized for stability and high transmission in the MWIR. Targeted glass specifications included low hydroxyl concentration, extended MWIR transmission window, and high resistance against devitrification upon heating. Work included the processing of high purity raw materials, melting under controlled dry Redox balanced atmosphere, finning, casting and annealing. Batch melts as large as 4 kilograms were sprue cast into aluminum and stainless steel molds or temperature controlled bronze tube with mechanical bait. Small (100g) test melts were typically processed in-situ in a 5%Au°/95%Pt° crucible. Our group manufactured and evaluated over 100 different experimental heavy metal glass compositions during a two year period. A wide range of glass melting, fining, casting techniques and experimental protocols were employed. MWIR glass applications include remote sensing, directional infrared counter measures, detection of explosives and chemical warfare agents, laser detection tracking and ranging, range gated imaging and spectroscopy. Enhanced long range mid-infrared sensor performance is optimized when operating in the atmospheric windows from ~ 2.0 to 2.4μm, ~ 3.5 to 4.3μm and ~ 4.5 to 5.0μm.

  12. Thermal optimization of the helium-cooled power leads for the SSC

    International Nuclear Information System (INIS)

    Demko, J.A.; Schiesser, W.E.; Carcagno, R.; McAshan, M.; McConeghy, R.

    1992-01-01

    The optimum thermal design of the power leads for the Superconducting Super Collider (SSC) will minimize the amount of Carnot work (which is a combination of refrigeration and liquefaction work) required. This optimization can be accomplished by the judicious selection of lead length and diameter. Even though an optimum set of dimensions is found, the final design must satisfy other physical constraints such as maximum allowable heat leak and helium vapor mass flow rate. A set of corresponding lengths and diameters has been determined that meets these requirements for the helium vapor-cooled, spiral-fin power lead design of the SSC. Early efforts by McFee and Mallon investigated optimizing power leads for cryogenic applications with no convection cooling. Later designs utilized the boiled-off helium vapor to cool the lead. One notable design for currents up to several thousand amps is presented by Efferson based on a series of recommendations discussed by Deiness. Buyanov presents many theoretical models and design formulae but does not demonstrate an approach to thermally optimizing the design of a vapor-cooled lead. In this study, a detailed numerical thermal model of a power lead design for the SSC has been developed. It was adapted from the dynamic model developed by Schiesser. This model was used to determine the optimum dimensions that minimize the Carnot refrigeration and liquefaction work due to the leads. Since the SSC leads will be cooled by supercritical helium, the flow of vapor is regulated by a control valve. These leads include a superconducting portion at the cold end. All of the material properties in the model are functions of temperature, and for the helium are functions of pressure and temperature. No pressure drop calculations were performed as part of this analysis. The diameter that minimizes the Carnot work was determined for four different lengths at a design current of 6600 amps

  13. Corrosion behavior of Si-enriched steels for nuclear applications in liquid lead–bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Kurata, Yuji, E-mail: kurata.yuji@jaea.go.jp [Japan Atomic Energy Agency, Tokai-mura, Ibaraki-ken 319-1195 (Japan)

    2013-06-15

    Highlights: ► The corrosion behavior of Si-enriched steels in liquid lead–bismuth was studied. ► The corrosion tests were conducted at the two controlled oxygen levels. ► The Si addition reduces the scale thickness under the high oxygen condition. ► The Si addition has no significant effect under the low oxygen condition. -- Abstract: The corrosion behavior of Si-enriched steels in liquid lead–bismuth was studied in order to develop accelerator driven systems for transmutation of long-lived radioactive wastes and lead–bismuth cooled fast reactors. The corrosion tests of 316SS, Si-enriched 316SS, Mod.9Cr–1Mo steel (T91) and Si-enriched T91 were conducted at 550 °C in liquid lead–bismuth at the two controlled oxygen levels. Both the additions of 2.5 wt.% Si to 316SS and 1.5 wt.% Si to T91 had the effect of reducing the thickness of oxide layer in liquid lead–bismuth at the high oxygen concentration (2.5 × 10{sup −5} wt.%). Although the Si addition to 316SS reduced the depth of ferritization caused by Ni dissolution in liquid lead–bismuth at the low oxygen concentration (4.4 × 10{sup −8} wt.%), it could not suppress the ferritization and the penetration of Pb and Bi completely. The Si addition to T91 did not have the effect of preventing the penetration of Pb and Bi in the liquid lead–bismuth at the low oxygen concentration. The oxide scales formed on both Si-enriched steels did not have sufficient corrosion resistance under the low oxygen condition.

  14. SSTAR: The US lead-cooled fast reactor (LFR)

    International Nuclear Information System (INIS)

    Smith, Craig F.; Halsey, William G.; Brown, Neil W.; Sienicki, James J.; Moisseytsev, Anton; Wade, David C.

    2008-01-01

    It is widely recognized that the developing world is the next area for major energy demand growth, including demand for new and advanced nuclear energy systems. With limited existing industrial and grid infrastructures, there will be an important need for future nuclear energy systems that can provide small or moderate increments of electric power (10-700 MWe) on small or immature grids in developing nations. Most recently, the global nuclear energy partnership (GNEP) has identified, as one of its key objectives, the development and demonstration of concepts for small and medium-sized reactors (SMRs) that can be globally deployed while assuring a high level of proliferation resistance. Lead-cooled systems offer several key advantages in meeting these goals. The small lead-cooled fast reactor concept known as the small secure transportable autonomous reactor (SSTAR) has been under ongoing development as part of the US advanced nuclear energy systems programs. It is a system designed to provide energy security to developing nations while incorporating features to achieve nonproliferation goals, anticipating GNEP objectives. This paper presents the motivation for development of internationally deployable nuclear energy systems as well as a summary of one such system, SSTAR, which is the US Generation IV lead-cooled fast reactor system

  15. Bismuth absorption from sup 205 Bi-labelled pharmaceutical bismuth compounds used in the treatment of peptic ulcer disease

    Energy Technology Data Exchange (ETDEWEB)

    Dresow, B.; Fischer, R.; Gabbe, E.E.; Wendel, J.; Heinrich, H.C. (Eppendorf University Hospital, Hamburg (Germany))

    1992-04-01

    The absorption of bismuth from five {sup 205}Bi-labelled pharmaceutically used bismuth compounds was studied in man. From single oral doses of all compounds under investigation only <0.1% bismuth was absorbed and excreted with the urine. A significantly higher absorption was observed from the colloidal bismuth subcitrate and the basic bismuth gallate than from the basic bismuth salicylate, nitrate and aluminate. No retention of bismuth in the whole body was found from the single dose experiment. The biologic fast-term half-lives of absorbed bismuth were calculated to be 0.12 and 1.5 days. 14 refs., 2 figs., 1 tab.

  16. Lead-cooled flexible conversion ratio fast reactor

    International Nuclear Information System (INIS)

    Nikiforova, Anna; Hejzlar, Pavel; Todreas, Neil E.

    2009-01-01

    Lead-cooled reactor systems capable of accepting either zero or unity conversion ratio cores depending on the need to burn actinides or operate in a sustained cycle are presented. This flexible conversion ratio reactor is a pool-type 2400 MWt reactor coupled to four 600 MWt supercritical CO 2 (S-CO 2 ) power conversion system (PCS) trains through intermediate heat exchangers. The cores which achieve a power density of 112 kW/l adopt transuranic metallic fuel and reactivity feedbacks to achieve inherent shutdown in anticipated transients without scram, and lead coolant in a pool vessel arrangement. Decay heat removal is accomplished using a reactor vessel auxiliary cooling system (RVACS) complemented by a passive secondary auxiliary cooling system (PSACS). The transient simulation of station blackout (SBO) using the RELAP5-3D/ATHENA code shows that inherent shutdown without scram can be accommodated within the cladding temperature limit by the enhanced RVACS and a minimum (two) number of PSACS trains. The design of the passive safety systems also prevents coolant freezing in case all four of the PSACS trains are in operation. Both cores are also shown able to accommodate unprotected loss of flow (ULOF) and unprotected transient overpower (UTOP) accidents using the S-CO 2 PCS.

  17. Slow hot carrier cooling in cesium lead iodide perovskites

    Science.gov (United States)

    Shen, Qing; Ripolles, Teresa S.; Even, Jacky; Ogomi, Yuhei; Nishinaka, Koji; Izuishi, Takuya; Nakazawa, Naoki; Zhang, Yaohong; Ding, Chao; Liu, Feng; Toyoda, Taro; Yoshino, Kenji; Minemoto, Takashi; Katayama, Kenji; Hayase, Shuzi

    2017-10-01

    Lead halide perovskites are attracting a great deal of interest for optoelectronic applications such as solar cells, LEDs, and lasers because of their unique properties. In solar cells, heat dissipation by hot carriers results in a major energy loss channel responsible for the Shockley-Queisser efficiency limit. Hot carrier solar cells offer the possibility to overcome this limit and achieve energy conversion efficiency as high as 66% by extracting hot carriers. Therefore, fundamental studies on hot carrier relaxation dynamics in lead halide perovskites are important. Here, we elucidated the hot carrier cooling dynamics in all-inorganic cesium lead iodide (CsPbI3) perovskite using transient absorption spectroscopy. We observe that the hot carrier cooling rate in CsPbI3 decreases as the fluence of the pump light increases and the cooling is as slow as a few 10 ps when the photoexcited carrier density is 7 × 1018 cm-3, which is attributed to phonon bottleneck for high photoexcited carrier densities. Our findings suggest that CsPbI3 has a potential for hot carrier solar cell applications.

  18. Conceptual design of cooling anchor for current lead on HTS field coils

    Energy Technology Data Exchange (ETDEWEB)

    Hyeon, C. J.; Kim, J. H.; Quach, H. L. [Dept. of Electrical Engineering, Jeju National University, Jeju (Korea, Republic of); and others

    2017-06-15

    The role of current lead in high-temperature superconducting synchronous machine (HTSSM) is to function as a power supply by connecting the power supply unit at room temperature with the HTS field coils at cryogenic temperature. Such physical and electrical connection causes conduction and Joule-heating losses, which are major thermal losses of HTSSM rotors. To ensure definite stability and economic feasibility of HTS field coils, quickly and smoothly cooling down the current lead is a key design technology. Therefore, in this paper, we introduce a novel concept of a cooling anchor to enhance the cooling performance of a metal current lead. The technical concept of this technology is the simultaneously chilling and supporting the current lead. First, the structure of the current lead and cooling anchor were conceptually designed for field coils for a 1.5 MW-class HTSSM. Then, the effect of this installation on the thermal characteristics of HTS coils was investigated by 3D finite element analysis.

  19. Corrosion behaviour of martensitic and austenitic steels in flowing lead-bismuth eutectic

    International Nuclear Information System (INIS)

    Martin-Munoz, F.J.; Soler-Crespo, L.; Gomez-Briceno, D.

    2011-01-01

    The LINCE loop is a forced convection loop designed for long-term corrosion tests in lead-bismuth eutectic (LBE) at CIEMAT. The LBE volume of in the loop is 250 l and the maximum flow velocity in the region of specimens is approximately 1 m s -1 . An oxygen control system has been implemented in the loop. The corrosion behaviour of AISI 316L and T91 steels was investigated in flowing LBE at temperatures of 575 and 725 K for exposure times of 2000, 5000 and 10,000 h. At 575 K, the results showed a good response, with no weight loss detected in any of the materials after exposure to the flowing LBE up to 10,000 h. A similar behaviour was observed for the specimens tested at 725 K during 2000 and 10,000 h. Specimens extracted at intermediate time (5000 h) showed an anomalous behaviour with important weight loss. These specimens were placed at the bottom of the hot test section, and this position probably made them to suffer an accused process of cavitation-erosion.

  20. Quantification of the degradation of steels exposed to liquid lead-bismuth eutectic

    International Nuclear Information System (INIS)

    Schroer, C.; Voss, Z.; Novotny, J.; Konys, J.

    2006-05-01

    Metallographic and gravimetric methods of measuring the degradation of steels are introduced and compared, with emphasis on the quantification of oxidation in molten lead-bismuth eutectic (LBE). In future applications of LBE or other molten lead alloys, additions of oxygen should prevent the dissolution of steel constituents in the liquid heavy metal. Therefore, also the amount of steel constituents transferred between the steel (including the oxide scale formed on the surface) and the LBE has to be assessed, in order to evaluate the efficiency of oxygen additions with respect to preventing dissolution of the steel. For testing the methods of quantification, specimens of martensitic steel T91 were exposed for 1500 h to stagnant, oxygen-saturated LBE at 550 C, whereby, applying both metallographic and gravimetric measurements, the recession of the cross-section of sound material deviated by ± 3 μm for a mean value of 11 μm. Although the transfer of steel constituents between the solid phases and the LBE is negligible under the considered exposure conditions, the investigation shows that a gravimetric analysis is most promising for quantifying such a mass transfer. For laboratory experiments on the behaviour of steels in oxygen-containing LBE, it is suggested to make provisions for both metallographic and gravimetric measurements, since both types of methods have specific benefits in the characterisation of the oxidation process. (Orig.)

  1. Modeling the dynamics of the lead bismuth eutectic experimental accelerator driven system by an infinite impulse response locally recurrent neural network

    International Nuclear Information System (INIS)

    Zio, Enrico; Pedroni, Nicola; Broggi, Matteo; Golea, Lucia Roxana

    2009-01-01

    In this paper, an infinite impulse response locally recurrent neural network (IIR-LRNN) is employed for modelling the dynamics of the Lead Bismuth Eutectic eXperimental Accelerator Driven System (LBE-XADS). The network is trained by recursive back-propagation (RBP) and its ability in estimating transients is tested under various conditions. The results demonstrate the robustness of the locally recurrent scheme in the reconstruction of complex nonlinear dynamic relationships

  2. Molecular dynamics simulation of metallic impurity diffusion in liquid lead-bismuth eutectic (LBE)

    Science.gov (United States)

    Gao, Yun; Takahashi, Minoru; Cavallotti, Carlo; Raos, Guido

    2018-04-01

    Corrosion of stainless steels by lead-bismuth eutectic (LBE) is an important problem which depends, amongst other things, on the diffusion of the steel components inside this liquid alloy. Here we present the results of classical molecular dynamics simulations of the diffusion of Fe and Ni within LBE. The simulations complement experimental studies of impurity diffusion by our group and provide an atomic-level understanding of the relevant diffusion phenomena. They are based on the embedded atom method (EAM) to represent many-body interactions among atoms. The EAM potentials employed in our simulations have been validated against ab initio density functional calculations. We show that the experimental and simulation results for the temperature-dependent viscosity of LBE and the impurity diffusion coefficients can be reconciled by assuming that the Ni and Fe diffuse mainly as nanoscopic clusters below 1300 K. The average Fe and Ni cluster sizes decrease with increasing the temperature and there is essentially single-atom diffusion at higher temperatures.

  3. Synthesis and evaluation of lead telluride/bismuth antimony telluride nanocomposites for thermoelectric applications

    Science.gov (United States)

    Ganguly, Shreyashi; Zhou, Chen; Morelli, Donald; Sakamoto, Jeffrey; Uher, Ctirad; Brock, Stephanie L.

    2011-12-01

    Heterogeneous nanocomposites of p-type bismuth antimony telluride (Bi 2- xSb xTe 3) with lead telluride (PbTe) nanoinclusions have been prepared by an incipient wetness impregnation approach. The Seebeck coefficient, electrical resistivity, thermal conductivity and Hall coefficient were measured from 80 to 380 K in order to investigate the influence of PbTe nanoparticles on the thermoelectric performance of nanocomposites. The Seebeck coefficients and electrical resistivities of nanocomposites decrease with increasing PbTe nanoparticle concentration due to an increased hole concentration. The lattice thermal conductivity decreases with the addition of PbTe nanoparticles but the total thermal conductivity increases due to the increased electronic thermal conductivity. We conclude that the presence of nanosized PbTe in the bulk Bi 2- xSb xTe 3 matrix results in a collateral doping effect, which dominates transport properties. This study underscores the need for immiscible systems to achieve the decreased thermal transport properties possible from nanostructuring without compromising the electronic properties.

  4. Peculiarities of the interaction of indium-tin and indium-bismuth alloys with ammonium halides

    International Nuclear Information System (INIS)

    Red'kin, A.N.; Smirnov, V.A.; Sokolova, E.A.; Makovej, Z.I.; Telegin, G.F.

    1990-01-01

    Peculiarities of fusible metal alloys interaction with ammonium halogenides in vertical reactor are considered using indium-tin and indium-bismuth binary alloys. It is shown that at the end of the process the composition of metal and salt phases is determined by the equilibrium type and constant characteristic of the given salt-metal system. As a result the interaction of indium-tin and indium-bismuth alloys with ammonium halogenides leads to preferential halogenation of indium-bismuth alloys with ammonium halogenides leads to preferential halogenation of indium which may be used in the processes of separation or purification. A model is suggested to calculate the final concentration of salt and metal phase components

  5. Thermal-hydraulic study of the LBE-cooled fuel assembly in the MYRRHA reactor: Experiments and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Pacio, J., E-mail: Julio.pacio@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Nuclear and Energy Technologies (IKET), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Wetzel, T. [Karlsruhe Institute of Technology (KIT), Institute for Nuclear and Energy Technologies (IKET), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Doolaard, H.; Roelofs, F. [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Van Tichelen, K. [Belgian Nuclear Reseach Center (SCK-CEN), Boeretang 200, Mol (Belgium)

    2017-02-15

    Heavy liquid metals (HLMs), such as lead-bismuth eutectic (LBE) and pure lead are prominent candidate coolants for many advanced systems based on fast neutrons. In particular, LBE is used in the first-of-its-kind MYRRHA fast reactor, to be built in Mol (Belgium), which can be operated either in critical mode or as a sub-critical accelerator-driven system. With a strong focus on safety, key thermal-hydraulic aspects of these systems, such as the proper cooling of fuel assemblies, must be assessed. Considering the complex geometry and low Prandtl number of LBE (Pr ∼ 0.025), this flow scenario is challenging for the models used in Computational Fluid Dynamics (CFD), e.g. for relating the turbulent transport of momentum and heat. Thus, reliable experimental data for the relevant scenario are needed for validation. In this general context, this topic is studied both experimentally and numerically in the framework of the European FP7 project SEARCH (2011–2015). An experimental campaign, including a 19-rod bundle with wire spacers, cooled by LBE is undertaken at KIT. With prototypical geometry and operating conditions, it is intended to evaluate the validity of current empirical correlations for the MYRRHA conditions and, at the same time, to provide validation data for the CFD simulations performed at NRG. The results of one benchmarking case are presented in this work. Moreover, this validated approach is then used for simulating a complete MYRRHA fuel assembly (127 rods).

  6. The reduction of background signal in bismuth germanate scintillators

    International Nuclear Information System (INIS)

    Lewis, T.A.

    1986-07-01

    Bismuth germanate (BGO) is one of several new scintillator materials developed in recent years. It has similar energy resolution (6-8%) to sodium iodide (NaI) but it is non-hygroscopic, has a much better Peak-to-Compton ratio and a stopping power about 2.3 times greater than NaI. For counting activated foils it represents an improvement on NaI for high efficiency counting where the resolution of a germanium spectrometer is not required. Two scintillators bought for this purpose were found to have a higher than expected background signal between 500 keV and 2 MeV which was traced to Bi207, an active isotope of bismuth with a 38 year half-life and not listed as occurring naturally. Reference to the manufacturer showed all crystals to be similarly contaminated. It is speculated that this active isotope arises from cosmic proton activation of associated lead in the ore from which the bismuth is extracted. Although not confirmed rigorously it has been shown that bismuth extracted from ore with a low lead content does not contain Bi207. Scintillators have been manufactured from uncontaminated material and reductions in the background signal of more than an order of magnitude have been achieved. This reduction will be of immediate benefit for monitoring nickel foils (fast flux monitors) activated in zero-energy reactors and should also permit the exploitation of other low probability reactions previously not thought to be feasible. (author)

  7. Bismuth toxicity in patients treated with bismuth iodoform paraffin packs.

    Science.gov (United States)

    Atwal, A; Cousin, G C S

    2016-01-01

    Bismuth is a heavy metal used in bismuth iodoform paraffin paste (BIPP) antiseptic dressings and in a number of other medical preparations. It can be absorbed systemically and cause toxicity. We report 2 cases of such neurotoxicity after it was used in operations on the jaws. Copyright © 2015. Published by Elsevier Ltd.

  8. Mercury-free sono-electroanalytical detection of lead in human blood by use of bismuth-film-modified boron-doped diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kruusma, Jaanus [Institute of Physical Chemistry, University of Tartu, Jakobi 2, 51013, Tartu (Estonia); Banks, Craig E.; Compton, Richard G. [Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, OX1 3QZ, Oxford (United Kingdom)

    2004-06-01

    We report the electroanalytical determination of lead by anodic stripping voltammetry at in-situ-formed, bismuth-film-modified, boron-doped diamond electrodes. Detection limits in 0.1 mol L{sup -1} nitric acid solution of 9.6x10{sup -8} mol L{sup -1} (0.2 ppb) and 1.1x10{sup -8} mol L{sup -1} (2.3 ppb) were obtained after 60 and 300 s deposition times, respectively. An acoustically assisted deposition procedure was also investigated and found to result in improved limits of detection of 2.6 x 10{sup -8} mol L{sup -1} (5.4 ppb) and 8.5 x 10{sup -10} mol L{sup -1} (0.18 ppb) for 60 and 300 s accumulation times, respectively. Furthermore, the sensitivity obtained under quiescent and insonated conditions increased from 5.5 (quiescent) to 76.7 A mol{sup -1} L (insonated) for 60 s accumulation and from 25.8 (quiescent) to 317.6 A mol{sup -1} L (insonated) for 300 s accumulation. Investigation of the use of ultrasound with diluted blood revealed detection limits of the order of 10{sup -8} mol L{sup -1} were achievable with excellent inter- and intra-reproducibility and sensitivity of 411.9 A mol{sup -1} L. For the first time, electroanalytical detection of lead in diluted blood is shown to be possible by use of insonated in-situ-formed bismuth-film-modified boron-doped diamond electrodes. This method is a rapid, sensitive, and non-toxic means of clinical sensing of lead in whole human blood. (orig.)

  9. The fabrication and thermal properties of bismuth-aluminum oxide nanothermometers.

    Science.gov (United States)

    Wang, Chiu-Yen; Chen, Shih-Hsun; Tsai, Ping-Hsin; Chiou, Chung-Han; Hsieh, Sheng-Jen

    2017-01-27

    Bismuth (Bi) nanowires, well controlled in length and diameter, were prepared by using an anodic aluminum oxide (AAO) template-assisted molding injection process with a high cooling rate. A high performance atomic layer deposition (ALD)-capped bismuth-aluminum oxide (Bi-Al 2 O 3 ) nanothermometer is demonstrated that was fabricated via a facile, low-cost and low-temperature method, including AAO templated-assisted molding injection and low-temperature ALD-capped processes. The thermal behaviors of Bi nanowires and Bi-Al 2 O 3 nanocables were studied by in situ heating transmission electron microscopy. Linear thermal expansion of liquid Bi within native bismuth oxide nanotubes and ALD-capped Bi-Al 2 O 3 nanocables were evaluated from 275 °C to 700 °C and 300 °C to 1000 °C, respectively. The results showed that the ALD-capped Bi-Al 2 O 3 nanocable possesses the highest working temperature, 1000 °C, and the broadest operation window, 300 °C-1000 °C, of a thermal-expanding type nanothermometer. Our innovative approach provides another way of fabricating core-shell nanocables and to further achieve sensing local temperature under an extreme high vacuum environment.

  10. An alternative solution for heavy liquid metal cooled reactors fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Vitale Di Maio, Damiano, E-mail: damiano.vitaledimaio@uniroma1.it [“SAPIENZA” University of Rome – DIAEE, Corso Vittorio Emanuele II, 244, 00186 Rome (Italy); Cretara, Luca; Giannetti, Fabio [“SAPIENZA” University of Rome – DIAEE, Corso Vittorio Emanuele II, 244, 00186 Rome (Italy); Peluso, Vincenzo [“ENEA”, Via Martiri di Monte Sole 4, 40129 Bologna (Italy); Gandini, Augusto [“SAPIENZA” University of Rome – DIAEE, Corso Vittorio Emanuele II, 244, 00186 Rome (Italy); Manni, Fabio [“SRS Engineering Design S.r.l.”, Vicolo delle Palle 25-25/b, 00186 Rome (Italy); Caruso, Gianfranco [“SAPIENZA” University of Rome – DIAEE, Corso Vittorio Emanuele II, 244, 00186 Rome (Italy)

    2014-10-15

    Highlights: • A new fuel assembly locking system for heavy metal cooled reactor is proposed. • Neutronic, mechanical and thermal-hydraulic evaluations of the system behavior have been performed. • A comparison with other solutions has been presented. - Abstract: In the coming future, the electric energy production from nuclear power plants will be provided by both thermal reactors and fast reactors. In order to have a sustainable energy production through fission reactors, fast reactors should provide an increasing contribution to the total electricity production from nuclear power plants. Fast reactors have to achieve economic and technical targets of Generation IV. Among these reactors, Sodium cooled Fast Reactors (SFRs) and Lead cooled Fast Reactors (LFRs) have the greatest possibility to be developed as industrial power plants within few decades. Both SFRs and LFRs require a great R and D effort to overcome some open issues which affect the present designs (e.g. sodium-water reaction for the SFRs, erosion/corrosion for LFRs, etc.). The present paper is mainly focused on LFR fuel assembly (FA) design: issues linked with the high coolant density of lead or lead–bismuth eutectic cooled reactors have been investigated and an innovative solution for the core mechanical design is here proposed and analyzed. The solution, which foresees cylindrical fuel assemblies and exploits the buoyancy force due to the lead high density, allows to simplify the FAs locking system, to reduce their length and could lead to a more uniform neutron flux distribution.

  11. A Technique for Dynamic Corrosion Testing in Liquid Lead Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Loewen, Eric Paul; Davis, Cliff Bybee; Mac Donald, Philip Elsworth

    2001-04-01

    An experimental apparatus for the investigation of the flow-assisted dissolution and precipitation (corrosion) of potential fuel cladding and structural materials to be used in liquid lead alloy cooled reactors has been designed. This experimental project is part of a larger research effort between Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology to investigate the suitability of lead, lead-bismuth, and other lead alloys for cooling fast reactors designed to produce low-cost electricity as well as for actinide burning. The INEEL forced convection corrosion cell consists of a small heated vessel with a shroud and gas flow system. The gas flow rates, heat input, and shroud and vessel dimensions have been adjusted so that a controlled coolant flow rate, temperature, and oxygen potential are created within the downcomer located between the shroud and vessel wall. The ATHENA computer code was used to design the experimental apparatus and estimate the fluid conditions. The corrosion cell will test steel that is commercially available in the U. S. to temperatures above 650oC.

  12. Synthesis and evaluation of lead telluride/bismuth antimony telluride nanocomposites for thermoelectric applications

    International Nuclear Information System (INIS)

    Ganguly, Shreyashi; Zhou Chen; Morelli, Donald; Sakamoto, Jeffrey; Uher, Ctirad; Brock, Stephanie L.

    2011-01-01

    Heterogeneous nanocomposites of p-type bismuth antimony telluride (Bi 2−x Sb x Te 3 ) with lead telluride (PbTe) nanoinclusions have been prepared by an incipient wetness impregnation approach. The Seebeck coefficient, electrical resistivity, thermal conductivity and Hall coefficient were measured from 80 to 380 K in order to investigate the influence of PbTe nanoparticles on the thermoelectric performance of nanocomposites. The Seebeck coefficients and electrical resistivities of nanocomposites decrease with increasing PbTe nanoparticle concentration due to an increased hole concentration. The lattice thermal conductivity decreases with the addition of PbTe nanoparticles but the total thermal conductivity increases due to the increased electronic thermal conductivity. We conclude that the presence of nanosized PbTe in the bulk Bi 2−x Sb x Te 3 matrix results in a collateral doping effect, which dominates transport properties. This study underscores the need for immiscible systems to achieve the decreased thermal transport properties possible from nanostructuring without compromising the electronic properties. - Graphical abstract: PbTe nanoparticles introduced into p-type Bi 2 Te 3 by incipient wetness results in decreased lattice thermal conductivity, but also acts as an electronic dopant, resulting in an overall decrease in thermoelectric performance. Highlights: ► Composites of PbTe nanoparticles in Bi 2−x Sb x Te 3 were formed by incipient wetness. ► PbTe nanoparticles leads to decreased κ l , consistent with phonon scattering. ► PbTe nanoparticles lead to decreased S and ρ, due to increased carriers. ► Collateral doping from PbTe leads to decreased ZT with increasing concentration. ► Immiscible systems are preferred for improved ZT.

  13. Two Octaves Supercontinuum Generation in Lead-Bismuth Glass Based Photonic Crystal Fiber

    Directory of Open Access Journals (Sweden)

    Ryszard Buczynski

    2014-06-01

    Full Text Available In this paper we report a two octave spanning supercontinuum generation in a bandwidth of 700–3000 nm in a single-mode photonic crystal fiber made of lead-bismuth-gallate glass. To our knowledge this is the broadest supercontinuum reported in heavy metal oxide glass based fibers. The fiber was fabricated using an in-house synthesized glass with optimized nonlinear, rheological and transmission properties in the range of 500–4800 nm. The photonic cladding consists of 8 rings of air holes. The fiber has a zero dispersion wavelength (ZDW at 1460 nm. Its dispersion is determined mainly by the first ring of holes in the cladding with a relative hole size of 0.73. Relative hole size of the remaining seven rings is 0.54, which allows single mode performance of the fiber in the infrared range and reduces attenuation of the fundamental mode. The fiber is pumped into anomalous dispersion with 150 fs pulses at 1540 nm. Observed spectrum of 700–3000 nm was generated in 2 cm of fiber with pulse energy below 4 nJ. A flatness of 5 dB was observed in 950–2500 nm range.

  14. Conceptual design study on simplified and safer cooling systems for sodium cooled FBRs

    International Nuclear Information System (INIS)

    Hayafune, Hiroki; Shimakawa, Yoshio; Ishikawa, Hiroyasu; Kubota, Kenichi; Kobayashi, Jun; Kasai, Shigeo

    2000-06-01

    The objective of this study is to create the FBR plant concepts increasing economy and safety for the Phase-I 'Feasibility Studies on Commercialized Fast Reactor System'. In this study, various concepts of simplified 2ry cooling system for sodium cooled FBRs are considered and evaluated from the view points of technological feasibility, economy, and safety. The concepts in the study are considered on the basis of the following points of view. 1. To simplify 2ry cooling system by moderating and localizing the sodium-water reaction in the steam generator of the FBRs. 2. To simplify 2ry cooling system by eliminating the sodium-water reaction using integrated IHX-SG unit. 3. To simplify 2ry cooling system by eliminating the sodium-water reaction using a power generating system other than the steam generator. As the result of the study, 12 concepts and 3 innovative concepts are proposed. The evaluation study for those concepts shows the following technical prospects. 1. 2 concepts of integrated IHX-SG unit can eliminate the sodium-water reaction. Separated IHX and SG tubes unit using Lead-Bismuth as the heat transfer medium. Integrated IHX-SG unit using copper as the heat transfer medium. 2. Cost reduction effect by simplified 2ry cooling system using integrated IHX-SG unit is estimated 0 to 5%. 3. All of the integrated IHX-SG unit concepts have more weight and larger size than conventional steam generator unit. The weight of the unit during transporting and lifting would limit capacity of heat transfer system. These evaluation results will be compared with the results in JFY 2000 and used for the Phase-II study. (author)

  15. Identifying Lead Markets in the European Automotive Industry

    DEFF Research Database (Denmark)

    Cleff, Thomas; Grimpe, Christoph; Rammer, Christian

    2015-01-01

    for automobiles and national markets differ considerably in their lead market potential. The German market is found to be most promising to serve as a lead market, while other European countries with a strong automotive tradition like France, Italy, the UK, and Sweden score lower. Our findings suggest that firms......This paper presents an indicator-based methodology to identify lead markets in the European automotive industry. The lead market approach tries to explain why certain countries are better positioned than others for developing and launching new products. While much research stresses the role...... of excellence in technology and interaction among users and producers, the lead market approach focuses on the role of demand characteristics. Based on the concept of innovation design, a lead market is defined as a country where customers prefer that design which subsequently becomes the globally dominant...

  16. Experimental and Analytical Study of Lead-Bismuth-Water Direct Contact Boiling Two-Phase Flow

    Science.gov (United States)

    Novitrian; Dostal, Vaclav; Takahashi, Minoru

    The characteristics of lead-bismuth(Pb-Bi)-water boiling two-phase flow were investigated experimentally and analytically using a Pb-Bi-water direct contact boiling two-phase flow loop. Pb-Bi flow rates and void fraction were measured in a vertical circular tube at conditions of system pressure 7MPa, liquid metal temperature 460°C and injected water temperature 220°C. The drift-flux model with the assumption that bubble sizes were dependent on the fluid surface tension and the density ratio of Pb-Bi to steam-water mixture was chosen and modified by the best fit to the measured void fraction. Pb-Bi flow rates were analytically estimated using balance condition between buoyancy force and pressure losses, where the buoyancy force was calculated from void fraction estimated using the modified drift-flux model. The deviation of the analytical results of the flow rates from the experimental ones was less than 10%.

  17. Influence of liquid lead and lead-bismuth eutectic on tensile, fatigue and creep properties of ferritic/martensitic and austenitic steels for transmutation systems

    Energy Technology Data Exchange (ETDEWEB)

    Gorse, D., E-mail: dominique.gorse-pomonti@polytechnique.edu [CNRS-LSI, Ecole Polytechnique, route de Saclay, 91128, Palaiseau Cedex (France); Auger, T. [CNRS-MSSMAT, Ecole Centrale Paris, Grande Voie des Vignes, 92290, Chatenay-Malabry Cedex (France); Vogt, J.-B.; Serre, I. [CNRS-LMPGM, 59655, Villeneuve d' Ascq Cedex (France); Weisenburger, A. [ForschungszentrumKarlsruheGmbH, P.O. Box 3640, 76021 Karlsruhe (Germany); Gessi, A.; Agostini, P. [ENEA, CR Brasimone, 40032 Camugnano, Bologna (Italy); Fazio, C. [ForschungszentrumKarlsruheGmbH, P.O. Box 3640, 76021 Karlsruhe (Germany); Hojna, A.; Di Gabriele, F. [Ustav jaderneho vyzkumu Rez a.s., Husinec 130, Rez 25068 (Czech Republic); Van Den Bosch, J.; Coen, G.; Almazouzi, A. [SCK-CEN (Belgian Nuclear Research Centre), Boeretang 200, 2400 Mol (Belgium); Serrano, M. [CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain)

    2011-08-31

    In this paper, the tensile, fatigue and creep properties of the Ferritic/Martensitic (F/M) steel T91 and of the Austenitic Stainless (AS) Steel 316L in lead-bismuth eutectic (LBE) or lead, obtained in the different organizations participating to the EUROTRANS-DEMETRA project are reviewed. The results show a remarkable consistency, referring to the variety of metallurgical and surface state conditions studied. Liquid Metal Embrittlement (LME) effects are shown, remarkable on heat-treated hardened T91 and also on corroded T91 after long-term exposure to low oxygen containing Liquid Metal (LM), but hardly visible on passive or oxidized smooth T91 specimens. For T91, the ductility trough was estimated, starting just above the melting point of the embrittler (T{sub M,E} = 123.5 deg. C for LBE, 327 deg. C for lead) with the ductility recovery found at 425 deg. C. LME effects are weaker on 316L AS steel. Liquid Metal Assisted Creep (LMAC) effects are reported for the T91/LBE system at 550 deg. C, and for the T91/lead system at 525 deg. C. Today, if the study of the LME effects on T91 and 316L in LBE or lead can be considered well documented, in contrast, complementary investigations are necessary in order to quantify the LMAC effects in these systems, and determine rigorously the threshold creep conditions.

  18. Numerical investigation of mist/air impingement cooling on ribbed blade leading-edge surface.

    Science.gov (United States)

    Bian, Qingfei; Wang, Jin; Chen, Yi-Tung; Wang, Qiuwang; Zeng, Min

    2017-12-01

    The working gas turbine blades are exposed to the environment of high temperature, especially in the leading-edge region. The mist/air two-phase impingement cooling has been adopted to enhance the heat transfer on blade surfaces and investigate the leading-edge cooling effectiveness. An Euler-Lagrange particle tracking method is used to simulate the two-phase impingement cooling on the blade leading-edge. The mesh dependency test has been carried out and the numerical method is validated based on the available experimental data of mist/air cooling with jet impingement on a concave surface. The cooling effectiveness on three target surfaces is investigated, including the smooth and the ribbed surface with convex/concave columnar ribs. The results show that the cooling effectiveness of the mist/air two-phase flow is better than that of the single-phase flow. When the ribbed surfaces are used, the heat transfer enhancement is significant, the surface cooling effectiveness becomes higher and the convex ribbed surface presents a better performance. With the enhancement of the surface heat transfer, the pressure drop in the impingement zone increases, but the incremental factor of the flow friction is smaller than that of the heat transfer enhancement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Analysis of the cool down related cavity performance of the European XFEL vertical acceptance tests

    Energy Technology Data Exchange (ETDEWEB)

    Wenskat, Marc; Schaffran, J.

    2017-09-15

    For the European X-Ray Free Electron Laser (XFEL) cavity production, the cold radio-frequency (RF) test of the cavities at 2 K after delivery from the two vendors was the mandatory acceptance test. It has been previously reported, that the cool down dynamics of a cavity across T{sub c} has a significant influence on the observed intrinsic quality factor Q{sub 0}, which is a measure of the losses on the inner cavity surface. A total number of 367 cool downs is used to analyze this correlation and we show that such a correlation is not observed during the European XFEL cavity production.

  20. Evaluation on the characteristics of tin-silver-bismuth solder

    Science.gov (United States)

    Xia, Z.; Shi, Y.; Chen, Z.

    2002-02-01

    Tin-silver-bismuth solder is characterized by its lower melting point, good wetting behavior, and good mechanical property for which it is expected to be a new lead-free solder to replace tin-lead solder. In this article, Sn-3.33Ag-4.83Bi solder was investigated concerning its physical, spreading, and mechanical properties under specific conditions. Cooling curves and DSC results showed that it was close to eutectic composition (m.p. 210° 212 °C). Coefficiency of thermal expansion (CTE) of this solder, between that of PCBs and copper substrates, was beneficial to alleviate the thermal mismatch of the substrates. It was also a good electrical and thermal conductor. Using a rosin-based, mildly activated (RMA) flux, a spreading test indicated that SnAgBi solder paste had good solderability. Meanwhile, the solder had high tensile strength and fracture energy. Its fracture mechanism was a mixture of ductile and brittle fracture morphology. The metallographic and EDAX analyses indicated that it was composed of a tin-based solid solution and some intermetallic compound (IMC) that could strengthen the substrate. However, these large needle-like IMCs would cut the substrate and this resulted in the decreasing of the toughness of the solder.

  1. Study of barium bismuth titanate prepared by mechanochemical synthesis

    Directory of Open Access Journals (Sweden)

    Lazarević Z.Ž.

    2009-01-01

    Full Text Available Barium-bismuth titanate, BaBi4Ti4O15 (BBT, a member of Aurivillius bismuth-based layer-structure perovskites, was prepared from stoichiometric amounts of barium titanate and bismuth titanate obtained via mechanochemical synthesis. Mechanochemical synthesis was performed in air atmosphere in a planetary ball mill. The reaction mechanism of BaBi4Ti4O15 and the preparation and characteristics of BBT ceramic powders were studied using XRD, Raman spectroscopy, particle analysis and SEM. The Bi-layered perovskite structure of BaBi4Ti4O15 ceramic forms at 1100 °C for 4 h without a pre-calcination step. The microstructure of BaBi4Ti4O15 exhibits plate-like grains typical for the Bi-layered structured material and spherical and polygonal grains. The Ba2+ addition leads to changes in the microstructure development, particularly in the change of the average grain size.

  2. Bismuth Passivation Technique for High-Resolution X-Ray Detectors

    Science.gov (United States)

    Chervenak, James; Hess, Larry

    2013-01-01

    The Athena-plus team requires X-ray sensors with energy resolution of better than one part in 3,000 at 6 keV X-rays. While bismuth is an excellent material for high X-ray stopping power and low heat capacity (for large signal when an X-ray is stopped by the absorber), oxidation of the bismuth surface can lead to electron traps and other effects that degrade the energy resolution. Bismuth oxide reduction and nitride passivation techniques analogous to those used in indium passivation are being applied in a new technique. The technique will enable improved energy resolution and resistance to aging in bismuth-absorber-coupled X-ray sensors. Elemental bismuth is lithographically integrated into X-ray detector circuits. It encounters several steps where the Bi oxidizes. The technology discussed here will remove oxide from the surface of the Bi and replace it with nitridized surface. Removal of the native oxide and passivating to prevent the growth of the oxide will improve detector performance and insulate the detector against future degradation from oxide growth. Placing the Bi coated sensor in a vacuum system, a reduction chemistry in a plasma (nitrogen/hydrogen (N2/H2) + argon) is used to remove the oxide and promote nitridization of the cleaned Bi surface. Once passivated, the Bi will perform as a better X-ray thermalizer since energy will not be trapped in the bismuth oxides on the surface. A simple additional step, which can be added at various stages of the current fabrication process, can then be applied to encapsulate the Bi film. After plasma passivation, the Bi can be capped with a non-diffusive layer of metal or dielectric. A non-superconducting layer is required such as tungsten or tungsten nitride (WNx).

  3. Voltammetric Determination of Lead (II) and Cadmium (II) Using a Bismuth Film Electrode Modified with Mesoporous Silica Nanoparticles

    International Nuclear Information System (INIS)

    Yang, Die; Wang, Liang; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2014-01-01

    A new chemically modified glassy carbon electrode based on bismuth film coated mesoporous silica nanoparticles was developed and evaluated for reliable quantification of trace Pb 2+ and Cd 2+ by anodic stripping square wave voltammetry in natural water samples. Compared with conventional bismuth film electrodes or bismuth nanoparticles modified electrodes, this electrode exhibited significantly improved sensitivity and stability for Pb 2+ and Cd 2+ detection. The key experimental parameters related to the fabrication of the electrode and the voltammetric measurements were optimized on the basis of the stripping signals, where the peak currents increased linearly with the metal concentrations in a range of 2-150 μg L −1 with a detect limit of 0.2 μg L −1 for Pb 2+ , and 0.6 μg L −1 for Cd 2+ for 120s deposition. Good reproducibility was achieved on both single and equally prepared electrodes. In addition, scanning electron microscopy reveals that fibril-like bismuth structures were formed on silica nanoparticles, which could be responsible for the improved voltammetric performance due to the enhanced surface area. Finally, the developed electrode was applied to determine Pb 2+ and Cd 2+ in water samples, indicating that this electrode was sensitive, reliable and effective for the simultaneous determination of Pb 2+ and Cd 2+

  4. Thermostructural applications of heat pipes for cooling leading edges of high-speed aerospace vehicles

    Science.gov (United States)

    Camarda, Charles J.; Glass, David E.

    1992-01-01

    Heat pipes have been considered for use on wing leading edge for over 20 years. Early concepts envisioned metal heat pipes cooling a metallic leading edge. Several superalloy/sodium heat pipes were fabricated and successfully tested for wing leading edge cooling. Results of radiant heat and aerothermal testing indicate the feasibility of using heat pipes to cool the stagnation region of shuttle-type space transportation systems. The test model withstood a total seven radiant heating tests, eight aerothermal tests, and twenty-seven supplemental radiant heating tests. Cold-wall heating rates ranged from 21 to 57 Btu/sq ft-s and maximum operating temperatures ranged from 1090 to 1520 F. Follow-on studies investigated the application of heat pipes to cool the stagnation regions of single-stage-to-orbit and advanced shuttle vehicles. Results of those studies indicate that a 'D-shaped' structural design can reduce the mass of the heat-pipe concept by over 44 percent compared to a circular heat-pipe geometry. Simple analytical models for heat-pipe startup from the frozen state (working fluid initially frozen) were adequate to approximate transient, startup, and steady-state heat-pipe performance. Improvement in analysis methods has resulted in the development of a finite-element analysis technique to predict heat-pipe startup from the frozen state. However, current requirements of light-weight design and reliability suggest that metallic heat pipes embedded in a refractory composite material should be used. This concept is the concept presently being evaluated for NASP. A refractory-composite/heat-pipe-cooled wing leading edge is currently being considered for the National Aero-Space Plane (NASP). This concept uses high-temperature refractory-metal/lithium heat pipes embedded within a refractory-composite structure and is significantly lighter than an actively cooled wing leading edge because it eliminates the need for active cooling during ascent and descent. Since the

  5. Iodine Gas Trapping using Granular Porous Bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jae Hwan; Shin, Jin Myeong; Park, Jang Jin; Park, Geun Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yim, Mansung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    {sup 129}I is a radionuclide with a very long half-life of 1.57 Χ 10{sup 7} years and has negative health effects to the human body. Therefore, the emission of {sup 129}I into the air is closely regulated by the Environmental Protection Agency (EPA). Many methods for trapping gaseous {sup 129}I have been developed thus far, including wet scrubbing and adsorption using silver loaded zeolites. Although wet scrubbing can effectively remove iodine, it suffers from corrosion of the vessel due to high concentration of the scrubbing solution. Silver loaded zeolites also show effectiveness in capturing {sup 129}I gas, yet weak thermal stability of physisorbed iodine remains a challenge. We studied a novel and facile method to trap iodine gas using bismuth. Granular bismuth having many pores was synthesized using bismuth nitrate and polyvinyl alcohol as a bismuth precursor and pore forming agent, respectively. Reaction of iodine and our samples resulted in an iodine capturing capacity of more than 2 times that of the commercial grade silver exchanged zeolite (AgX). Granular porous bismuths synthesized using bismuth nitrate and PVA show a promising performance in capturing iodine gas. The use of bismuth in trapping {sup 129}I gas can reduce the process cost as bismuth is cheap. Further study is going on to improve the mechanical property of granular porous bismuths for their easy handling.

  6. Iodine Gas Trapping using Granular Porous Bismuth

    International Nuclear Information System (INIS)

    Yang, Jae Hwan; Shin, Jin Myeong; Park, Jang Jin; Park, Geun Il; Yim, Mansung

    2014-01-01

    129 I is a radionuclide with a very long half-life of 1.57 Χ 10 7 years and has negative health effects to the human body. Therefore, the emission of 129 I into the air is closely regulated by the Environmental Protection Agency (EPA). Many methods for trapping gaseous 129 I have been developed thus far, including wet scrubbing and adsorption using silver loaded zeolites. Although wet scrubbing can effectively remove iodine, it suffers from corrosion of the vessel due to high concentration of the scrubbing solution. Silver loaded zeolites also show effectiveness in capturing 129 I gas, yet weak thermal stability of physisorbed iodine remains a challenge. We studied a novel and facile method to trap iodine gas using bismuth. Granular bismuth having many pores was synthesized using bismuth nitrate and polyvinyl alcohol as a bismuth precursor and pore forming agent, respectively. Reaction of iodine and our samples resulted in an iodine capturing capacity of more than 2 times that of the commercial grade silver exchanged zeolite (AgX). Granular porous bismuths synthesized using bismuth nitrate and PVA show a promising performance in capturing iodine gas. The use of bismuth in trapping 129 I gas can reduce the process cost as bismuth is cheap. Further study is going on to improve the mechanical property of granular porous bismuths for their easy handling

  7. ETDR, The European Union's Experimental Gas-Cooled Fast Reactor Project

    International Nuclear Information System (INIS)

    Poette, Christian; Brun-Magaud, Valerie; Morin, Franck; Dor, Isabelle; Pignatel, Jean-Francois; Bertrand, Frederic; Stainsby, Richard; Pelloni, Sandro; Every, Denis; Da Cruz, Dirceu

    2008-01-01

    In the Gas-Cooled Fast Reactor (GFR) development plan, the Experimental Technology Demonstration Reactor (ETDR) is the first necessary step towards the electricity generating prototype GFR. It is a low power (∼50 MWth) Helium cooled fast reactor. The pre-conceptual design of the ETDR is shared between European partners through the GCFR Specifically Targeted Research Project (STREP) within the European Commission's 6. R and D Framework Program. After recalling the place of ETDR in the GFR development plan, the main reactor objectives, the role of the European partners in the different design and safety tasks, the paper will give an overview of the current design with recent progresses in various areas like: - Sub-assembly technology for the starting core (pin bundle with MOX fuel and stainless steel cladding). - The design of experimental advanced ceramic GFR fuel sub-assemblies included in several locations of the starting core. - Starting Core reactivity management studies model including experimental GFR sub-assemblies. - Neutron and radiation shielding calculations using a specific MCNP model. The model allows evaluation of the neutron doses for the vessel and internals and radiation doses for maintenance operations. - System design and safety considerations, with a reactor architecture largely influenced by the Decay Heat Removal strategy (DHR) for de-pressurized accidents. The design of the reactor raises a number of issues in terms of fuel, neutronics, thermal-hydraulics codes qualification as well as critical components (blowers, IHX, thermal barriers) qualification. An overview of the R and D development on codes and technology qualification program is presented. Finally, the status of international collaborations and their perspectives for the ETDR are mentioned. (authors)

  8. Fabrication of crystal-oriented barium-bismuth titanate ceramics in high magnetic field and subsequent reaction sintering

    International Nuclear Information System (INIS)

    Tanaka, Satoshi; Tomita, Yusuke; Furushima, Ryoichi; Uematsu, Keizo; Shimizu, Hiroyuki; Doshida, Yutaka

    2009-01-01

    High magnetic field was applied to fabricate novel lead-free piezoelectric ceramics with a textured structure. A compact of crystallographically oriented grains was prepared by dry forming in a high magnetic field from a mixed slurry of bismuth titanate and barium titanate powders. Bismuth titanate particles with a size of about 1 μ m were used as the host material. In the forming process, the slurry was poured into a mold and set in a magnetic field of 10 T until completely dried. Bismuth titanate particles were highly oriented in the slurry under the magnetic field. The dried powder compact consisted of highly oriented bismuth titanate particles and randomly oriented barium titanate particles. Barium bismuth titanate ceramics with a- and b-axis orientations were successfully produced from the dried compact by sintering at temperatures above 1100 deg. C.

  9. Thermal decomposition synthesis of nanorods bismuth sulphide from bismuth N-ethyl cyclohexyl dithiocarbamate complex

    International Nuclear Information System (INIS)

    Abdullah, Nurul Hidayah; Zainal, Zulkarnain; Silong, Sidik; Tahir, Mohamed Ibrahim Mohamed; Tan, Kar-Ban; Chang, Sook-Keng

    2016-01-01

    Highlights: • Bismuth N-ethyl cyclohexyl dithiocarbamate was used as single source precursor. • No surfactant was used in the preparation of Bi_2S_3 nanorods. • Pure phase orthorhombic Bi_2S_3 is obtained. • Bismuth sulphide with an average atomic ratio of Bi:S close to 2:3 is obtained. - Abstract: Nanorods of bismuth sulphide were prepared by thermal decomposition of bismuth N-ethyl cyclohexyl dithiocarbamate at different calcination duration. X-ray diffraction (XRD) analysis shows that at 400 °C, the precursor was fully decomposed to orthorhombic bismuth sulphide after 2 h of calcination. Besides, calcination duration does not affect the existence of Bi_2S_3 phase. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) analyses reveal that Bi_2S_3 nanorods with an average width ranging from 29–36 nm were obtained. Energy dispersive X-ray (EDX) analysis confirmed the atomic ratio of Bi and S close to 2:3, giving a possible composition of Bi_2S_3. Direct band gap energy of Bi_2S_3 decreases from 1.83 eV to 1.54 eV as calcination time increases.

  10. Real Time Corrosion Monitoring in Lead and Lead-Bismuth Systems

    Energy Technology Data Exchange (ETDEWEB)

    James F. Stubbins; Alan Bolind; Ziang Chen

    2010-02-25

    The objective of this research program is to develop a real-time, in situ corrosion monitoring technique for flowing liquid Pb and eutectic PbBi (LBE) systems in a temperature range of 400 to 650 C. These conditions are relevant to future liquid metal cooled fast reactor operating parameters. THis program was aligned with the Gen IV Reactor initiative to develp technologies to support the design and opertion of a Pb or LBE-cooled fast reactor. The ability to monitor corrosion for protection of structural components is a high priority issue for the safe and prolonged operation of advanced liquid metal fast reactor systems. In those systems, protective oxide layers are intentionally formed and maintained to limit corrosion rates during operation. This program developed a real time, in situ corrosion monitoring tecnique using impedance spectroscopy (IS) technology.

  11. Influence of the cooling rate on the ageing of lead-calcium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, F.; Lambertin, M. [LaBoMaP, Arts et Metiers ParisTech, Rue porte de Paris, 71250 Cluny (France); Delfaut-Durut, L. [CEA, centre de Valduc [SEMP, LECM], 21120 Is-sur-Tille (France); Maitre, A. [SPCTS, UFR Sciences et Techniques, 87060 Limoges (France); Vilasi, M. [LCSM, Universite Nancy I, 54506 Vandoeuvre les Nancy (France)

    2009-03-01

    Cast lead-calcium alloys were known to be sensitive to experimental parameters, which cause large variations on the ageing and overageing behaviour. From the study of these parameters, the quenching rate was the only significant parameter. A critical cooling rate was defined based on hardness, electrical resistivity and metallographical observations. The inconsistencies in the literature noticed on the evolutions of lead-calcium alloys can now be explained by whether or not this critical cooling rate was respected. (author)

  12. Development of a plant dynamics computer code for analysis of a supercritical carbon dioxide Brayton cycle energy converter coupled to a natural circulation lead-cooled fast reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A.; Sienicki, J. J.

    2007-03-08

    STAR-LM is a lead-cooled pool-type fast reactor concept operating under natural circulation of the coolant. The reactor core power is 400 MWt. The open-lattice core consists of fuel pins attached to the core support plate, (the does not consist of removable fuel assemblies). The coolant flows outside of the fuel pins. The fuel is transuranic nitride, fabricated from reprocessed LWR spent fuel. The cladding material is HT-9 stainless steel; the steady-state peak cladding temperature is 650 C. The coolant is single-phase liquid lead under atmospheric pressure; the core inlet and outlet temperatures are 438 C and 578 C, respectively. (The Pb coolant freezing and boiling temperatures are 327 C and 1749 C, respectively). The coolant is contained inside of a reactor vessel. The vessel material is Type 316 stainless steel. The reactor is autonomous meaning that the reactor power is self-regulated based on inherent reactivity feedbacks and no external power control (through control rods) is utilized. The shutdown (scram) control rods are used for startup and shutdown and to stop the fission reaction in case of an emergency. The heat from the reactor is transferred to the S-CO{sub 2} Brayton cycle in in-reactor heat exchangers (IRHX) located inside the reactor vessel. The IRHXs are shell-and-tube type heat exchangers with lead flowing downwards on the shell side and CO{sub 2} flowing upwards on the tube side. No intermediate circuit is utilized. The guard vessel surrounds the reactor vessel to contain the coolant, in the very unlikely event of reactor vessel failure. The Reactor Vessel Auxiliary Cooling System (RVACS) implementing the natural circulation of air flowing upwards over the guard vessel is used to cool the reactor, in the case of loss of normal heat removal through the IRHXs. The RVACS is always in operation. The gap between the vessels is filled with liquid lead-bismuth eutectic (LBE) to enhance the heat removal by air by significantly reducing the thermal

  13. Elemental Technologies for Lead-Bismuth Spallation Target System in J-PARC

    International Nuclear Information System (INIS)

    Obayashi, H.; Yamaguchi, K.; Saito, S.; Sugawara, T.; Takei, H.; Sasa, T.

    2015-01-01

    Japan Atomic Energy Agency (JAEA) has been researching and developing an Accelerator-Driven System (ADS) as a dedicated system for the transmutation of long-lived radioactive nuclides. The ADS proposed by JAEA uses the lead-bismuth eutectic (LBE) alloy as a spallation target material and a coolant. In the various R and D for ADS, construction of the Transmutation Experimental Facility (TEF) is planned under the framework of the J-PARC project as a preceding step before the construction of demonstrative ADS. In this R and D, TEF is considered for the experimental investigation of the feasibility of the beam window, the structural materials, and to investigate the operation properties of the target system by using 400 MeV-250 kW proton beam. This target system is consisted of various elements and must be able to operate without troubles during an operation period of TEF facility. Furthermore, in the maintenance period after the operation, because the inside of a hot cell storing a target is exposed to strong radiations, all elements must be designed as remote control devices. In this study, the present conditions of the design and the result of performance test of each important elements were confirmed in the realisation of the LBE target system, such as the monitoring system of flow rate by using the ultrasonic method, the heater system with the metallic heat insulator joined to a flow channel of LBE, and the operability of remote handing. (authors)

  14. Neutron-induced nuclear data for the MYRRHA fast spectrum facility

    OpenAIRE

    Romojaro Pablo; Žerovnik Gašper; Álvarez-Velarde Francisco; Stankovskiy Alexey; Kodeli Ivan; Fiorito Luca; Díez Carlos Javier; Cabellos Óscar; García-Herranz Nuria; Heyse Jan; Paradela Carlos; Schillebeeckx Peter; Eynde Gert Van den

    2017-01-01

    The MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) concept is a flexible experimental lead-bismuth cooled and mixed-oxide (MOX) fueled fast spectrum facility designed to operate both in sub-critical (accelerator driven) and critical modes. One of the key issues for the safe operation of the reactor is the uncertainty assessment during the design works. The main objective of the European project CHANDA (solving CHAllenges in Nuclear DAta) Work Package 10 is to improv...

  15. Research towards ultrasonic systems to assist in-vessel manipulations in liquid metal cooled reactors

    International Nuclear Information System (INIS)

    Dierckx, Marc; Van-Dyck, Dries

    2013-06-01

    We describe the state of the art of the research towards ultrasonic measurement methods for use in lead-bismuth cooled liquid metal reactors. Our current research activities are highly focused on specific tasks in the MYRRHA system, which is a fast spectrum research reactor cooled with the eutectic mixture of lead and bismuth (LBE) and is conceived as an accelerator driven system capable of operating in both sub-critical and critical mode. As liquid metal is opaque to light, normal visual feedback during fuel manipulations in the reactor vessel is not available and must therefore be replaced by a system that is not hindered by the opacity of the coolant. In this respect ultrasonic measurement techniques have been proposed and even developed in the past for operation in sodium cooled reactors. To our knowledge, no such systems have ever been deployed in lead based reactors and we are the first to have a research program in this direction as will be detailed in this paper. We give an overview of the acoustic properties of LBE and compare them with the properties of sodium and water to theoretically show the feasibility of ultrasonic systems operating in LBE. In the second part of the paper we discuss the results of the validation experiments in water and LBE. A typical scene is ultrasonically probed by a mechanical scanning system while the signals are processed to render a 3D visualization on a computer screen. It will become clear that mechanical scanning is capable of producing acceptable images but that it is a time consuming process that is not fit to solve the initial task to providing feedback during manipulations in the reactor vessel. That is why we propose to use several dedicated ultrasonic systems each adapted to a specific task and capable to provide real-time feedback of the ongoing manipulations, as is detailed in the third and final part of the paper. (authors)

  16. Mesures de taux de production d'éléments gazeux et volatiles lors de réactions induites par des protons de 1 et 1,4 GeV sur des cibles épaisses de plomb-bismuth liquides

    CERN Document Server

    Tall, Yoro

    2008-01-01

    The integrated project EUROTRANS (European Research Programme for the Transmutation of High Level Nuclear Waste in an Accelerator Driven System) of the 6th Euratom Framework Programme aims to demonstrate the transmutation of radioactive waste in ADS (Accelerator Driven Sub-critical system). It will carry out a first advanced design of an experimental facility to demonstrate the technical feasibility of transmutation, and will produce a conceptual design of an industrial facility dedicated to transmutation. An ADS consists of three fundamental elements: the accelerator of protons, the sub-critical core and the spallation target which one molten lead-bismuth concept is studied by the SUBATECH (physique SUBAtomique et des TECHnologies associées) laboratory in Nantes. The irradiation of molten lead-bismuth target with energetic proton beam generates volatile and radioactive residues. In order to determine experimentally the production rates of gas and volatile elements following a spallation reaction in a lead-b...

  17. Bismuth titanate nanorods and their visible light photocatalytic properties

    International Nuclear Information System (INIS)

    Pei, L.Z.; Liu, H.D.; Lin, N.; Yu, H.Y.

    2015-01-01

    Highlights: • Bismuth titanate nanorods have been synthesized by a simple hydrothermal process. • The size of bismuth titanate nanorods can be controlled by growth conditions. • Bismuth titanate nanorods show good photocatalytic activities of methylene blue and Rhodamine B. - Abstract: Bismuth titanate nanorods have been prepared using a facile hydrothermal process without additives. The bismuth titanate products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and UV-vis diffusion reflectance spectrum. XRD pattern shows that the bismuth titanate nanorods are composed of cubic Bi 2 Ti 2 O 7 phase. Electron microscopy images show that the length and diameter of the bismuth titanate nanorods are 50-200 nm and 2 μm, respectively. Hydrothermal temperature and reaction time play important roles on the formation and size of the bismuth titanate nanorods. UV-vis diffusion reflectance spectrum indicates that bismuth titanate nanorods have a band gap of 2.58 eV. The bismuth titanate nanorods exhibit good photocatalytic activities in the photocatalytic degradation of methylene blue (MB) and Rhodamine B (RB) under visible light irradiation. The bismuth titanate nanorods with cubic Bi 2 Ti 2 O 7 phase are a promising candidate as a visible light photocatalyst

  18. Safety design/analysis and scenario for prevention of CDA with ECCS in lead-bismuth-cooled fast reactor

    International Nuclear Information System (INIS)

    Minoru, Takahashi; Vaclav, Dostal; Abu Khalid, Rivai; Novitrian; Yumi, Yamada

    2007-01-01

    Safety design has been developed to show safety feature of Pb-Bi-cooled direct contact boiling water small fast reactor (PBWFR). The core is designed to have negative void reactivity even if the entire core and upper plenum are voided by steam intrusion from above. In-vessel type control rod driving mechanisms are used to prevent control rods from accidental ejection due to high pressure in the reactor vessel. In cases of coolant leakage from reactor vessel and feed water pipes, Pb-Bi coolant level in the reactor vessel is kept at the required level for decay heat removal by means of closed type guard vessel. Dual pipes are adopted to avoid leak of water in the feedwater system. Pump trip in feedwater systems initiates loss of coolant flow (LOF) event, although there is no concern of loss of flow accident due to primary pump trip. Injection of high pressure water slows down the flow-coast-down of feedwater at the LOF event. It has been evaluated that the fuel temperature is kept lower than safety limits at the unprotected loss of flow and heat sink (ATWS). A scenario for prevention of the core disruptive accident (CDA) with the emergency core cooling system (ECCS) is examined. The reactor becomes super-critical when the reactor vessel is filled with water. It is necessary to use water with boric acid for the ECC system, and additional backup rods for sub-critical core in water injection. (authors)

  19. ELSY. European LFR activities

    International Nuclear Information System (INIS)

    Alemberti, Alessandro; Carlsson, Johan; Malambu, Edouard; Orden, Alfredo; Cinotti, Luciano; Struwe, Dankward; Agostini, Pietro; Monti, Stefano

    2011-01-01

    The European Lead Fast Reactor has been developed in the frame of the European lead system (ELSY) project funded by the Sixth Framework Programme of EURATOM. The project, coordinated by Ansaldo Nucleare, involved a wide consortium of European organizations. The ELSY reference design is a 600 MWe pool-type reactor cooled by pure lead. The project demonstrates the possibility of designing a competitive and safe fast critical reactor using simple engineered technical features, whilst fully complying with the Generation IV goals. The paper focuses on the main aspects of the proposed design for the European lead fast reactor highlighting the innovation of this reactor concept and overall objectives. Special attention has been dedicated to safety starting from the first step of the design development taking into account other important aspects, such as the investment protection, the compactness of the primary system as well as sustainability. The main safety features of the proposed innovative decay heat removal (DHR) systems are presented. From the beginning of 2010, and for a duration of three years, the European Commission (EC) is financing the new project Lead European Advanced Demonstration Reactor (LEADER) as part of the 7th Framework Program. This paper highlights the main objectives of the LEADER project. (author)

  20. Post-irradiation analysis of an ISOLDE lead-bismuth target: Stable and long-lived noble gas nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Leya, I., E-mail: Ingo.Leya@space.unibe.ch [University of Bern, Space Science and Planetology, Bern (Switzerland); Grimberg, A. [University of Bern, Space Science and Planetology, Bern (Switzerland); Isotope Geochemistry, ETH Zürich, Zürich (Switzerland); David, J.-C. [CEA/Saclay, Irfu/SPhN, 91191 Gif-sur-Yvette, Cedex (France); Schumann, D.; Neuhausen, J. [Paul Scherrer Institut, Villigen (Switzerland); Zanini, L. [Paul Scherrer Institut, Villigen (Switzerland); European Spallation Source ESS AB, P.O. Box 117, SE-22100 Lund (Sweden); Noah, E. [University of Geneva, Département de Physique Nucléaire et Corpusculaire, Geneve (Switzerland)

    2016-07-15

    We measured the isotopic concentrations of long-lived and stable He, Ne, Ar, Kr, and Xe isotopes in a sample from a lead-bismuth eutectic target irradiated with 1.0 and 1.4 GeV protons. Our data indicate for most noble gases nearly complete release with retention fractions in the range of percent or less. Higher retention fractions result from the decay of long-lived radioactive progenitors from groups 1, 2, or 7 of the periodic table. From the data we can calculate a retention fraction for {sup 3}H of 2–3%. For alkaline metals we find retention fractions of about 10%, 30%, and 50% for Na, Rb, and Cs, respectively. For the alkaline earth metal Ba we found complete retention. Finally, the measured Kr and Xe concentrations indicate that there was some release of the halogens Br and I during and/or after the irradiation.

  1. Preparation of nickel-based amorphous alloys with finely dispersed lead and lead-bismuth particles and their superconducting properties

    International Nuclear Information System (INIS)

    Inoue, A.; Oguchi, M.; Harakawa, Y.; Masumoto, T.; Matsuzaki, K.

    1986-01-01

    The application of the melt-quenching technique to Ni-Si-B-Pb, Ni-P-B-Pb, Ni-Si-B-Pb-Bi and Ni-P-B-Pb-Bi alloys containing immiscible elements such as lead and bismuth has been tried and it has been found to result in the formation of a new type of material consisting of fine fcc Pb or hcp epsilon(Pb-Bi) + bct X(Pb-Bi) particles dispersed uniformly in the nickel-based amorphous matrix. The particle size and interparticle distance were 1 to 3 and 1 to 4 μm, respectively, for the lead phase, and less than 0.2 to 0.5 μm and 0.2 to 1.0 μm for the Pb-Bi phase. The uniform dispersion of such fine particles into the amorphous matrix was achieved in the composition range below about 6 at% Pb and 7 at% (Pb+Bi). Additionally, these amorphous alloys have been found to exhibit a superconductivity by the proximity effect of fcc Pb or epsilon(Pb-Bi) superconducting particles. The transition temperature Tsub(c) was in the range 6.8 to 7.5 K for the Ni-Si (or P)-B-Pb alloys and 8.6 to 8.8 K for the Ni-Si (or P)-B-Pb-Bi alloys. The upper critical field Hsub(c2) and the critical current density Jsub(c) for (Nisub(0.8)Psub(0.1)Bsub(0.1)) 95 Pb 3 Bi 2 at 4.2 K were, respectively, about 1.6 T and of the order of 7 x 10 7 Am -2 at zero applied field. (author)

  2. Design of a cryo-cooled artificial channel-cut crystal monochromator for the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xiaohao, E-mail: xiaohao.dong@xfel.eu; Sinn, Harald, E-mail: harald.sinn@xfel.eu [European XFEL GmbH, Hamburg, D-22761 (Germany); Shu, Deming, E-mail: shu@aps.anl.gov [Argonne National Laboratory, Argonne, IL 60439, U.S.A (United States)

    2016-07-27

    An artificial channel-cut crystal monochromator for the hard X-Ray beamlines of SASE 1&2, cryogenically cooled by the so-called pulse tube cooler (cryorefrigerator), is currently under development at the European XFEL ( http://www.xfel.eu/ ). The fabrication is on-going. We present here the crystal optical consideration and the novel cooling configuration, according to the X-Ray FEL pulses proprieties. The mechanical design improvements are pointed out as well to implement such kind of monochromator based on the previous similar design.

  3. Lead-Bismuth-Eutectic Spallation Neutron Source for Nuclear Transmuter

    International Nuclear Information System (INIS)

    Gohar, Y.; Herceg, J.; Krajtl, L.; Micklich, B.; Pointer, D.; Saiveau, J.; Sofu, T.; Finck, P.

    2002-01-01

    A lead-bismuth eutectic (LBE) spallation target design concept has been developed for the subcritical multiplier (SCM) design of the accelerator-driven test facility (ADTF). The design is based on a coaxial geometrical configuration, which has been carefully analyzed and designed to achieve an optimum performance. The target design description, the results from the parametric studies, and the design analyses including neutronics, heat transfer, and hydraulics analyses are given in this paper. A detailed MCNPX geometrical model for the target has been developed to generate heating rates and nuclear responses in the structural material for the design process. The beam has a uniform distribution of 600 MeV protons and 5-MW total power. A small LBE buffer is optimized to reduce the irradiation damage in the SCM fuel elements from the scatter protons and the high-energy neutrons, to maximize the neutron yield to the SCM operation, and to provide inlet and outlet manifolds for the LBE coolant. A special attention has been given to the target window design to enhance its lifetime. The window volumetric heating is 766 W/cm 3 relative to 750 W/cm 3 in LBE for a 40-μA/cm 2 current density. The results show that the nuclear heating from the proton beam diminishes at about 32 cm along the beam axis in the LBE target material. The neutron contribution to the atomic displacement is in the range of 94 to ∼100% for the structure material outside the proton beam path. In the beam window, the neutron contribution is ∼74% and the proton beam is responsible for more than 95% of the total gas production. The proton contribution to the gas production vanishes outside the beam path. The LBE average velocity is ∼2 m/s. The heat transfer and the hydraulics analyses have been iterated to reduce the maximum temperature and the thermal stress level in the target window to enhance its operating life. (authors)

  4. Insertion of lead lithium eutectic mixture in RELAP/SCDAPSIM Mod 4.0 for Fusion Reactor Systems

    International Nuclear Information System (INIS)

    Tiwari, Ashutosh; Allison, Brian; Hohorst, J.K.; Wagner, R.J.; Allison, Chris

    2012-01-01

    Highlights: ► Thermodynamic and transport properties of lead lithium eutectic mixture have been inserted in RELAP/SCDAPSIM MOD 4.0 code. ► Code results are verified for a simple pipe problem with lead lithium eutectic mixture flowing in it. ► Code is calculating the inserted properties of lead lithium eutectic mixture to a fairly good agreement. - Abstract: RELAP/SCDAPSIM Mod 4.0 code was developed by Innovative System Software (ISS) for the analysis of nuclear power plants (NPPs) cooled by light water and heavy water. Later on the code was expanded to analyze the NPPs cooled by liquid metal, in this sequence: lead bismuth eutectic mixture, liquid sodium and lead lithium eutectic mixture (LLE) are inserted in the code. This paper focuses on the insertion of liquid LLE as a coolant for NPPs in the RELAP/SCDAPSIM Mod 4.0 code. Evaluation of the code was made for a simple pipe problem connected with heat structures having liquid LLE as a coolant in it. The code is predicting well all the thermodynamic and transport properties of LLE.

  5. Performance of the Lead-Alloy Cooled Concept Balanced for Actinide Burning and Electricity Production

    International Nuclear Information System (INIS)

    Pavel Hejzlar; Cliff Davis

    2004-01-01

    A lead-bismuth-cooled fast reactor concept targeted for a balanced mission of actinide burning and low-cost electricity production is proposed and its performance analyzed. The design explores the potential benefits of thorium-based fuel in actinide-burning cores, in particular in terms of the reduction of the large reactivity swing and enhancement of the small Doppler coefficient typical of fertile-free actinide burners. Reduced electricity production cost is pursued through a longer cycle length than that used for fertile-free burners and thus a higher capacity factor. It is shown that the concept can achieve a high transuranics destruction rate, which is only 20% lower than that of an accelerator-driven system with fertile-free fuel. The small negative fuel temperature reactivity coefficient, small positive coolant temperature reactivity coefficient, and negative core radial expansion coefficient provide self-regulating characteristics so that the reactor is capable of inherent shutdown during major transients without scram, as in the Integral Fast Reactor. This is confirmed by thermal-hydraulic analysis of several transients without scram, including primary coolant pump trip, station blackout, and reactivity step insertion, which showed that the reactor was able to meet all identified thermal limits. However, the benefits of high actinide consumption and small reactivity swing can be attained only if the uranium from the discharged fuel is separated and not recycled. This additional uranium separation step and thorium reprocessing significantly increase the fuel cycle costs. Because the higher fuel cycle cost has a larger impact on the overall cost of electricity than the savings from the higher capacity factor afforded through use of thorium, this concept appears less promising than the fertile-free actinide burners

  6. Vapor-cooled lead and stacks thermal performance and design analysis by finite difference techniques

    International Nuclear Information System (INIS)

    Peck, S.D.; Christensen, E.H.; O'Loughlin, J.M.

    1985-01-01

    Investigation of the combined thermal performance of the stacks and vapor cooled leads for the Mirror Fusion Test Facility-''B'' demonstrates considerable interdependency. For instance, the heat transfer to the vapor-cooled lead (VCL) from warm bus heaters, environmental enclosure, and stack is a significant additional heat load to the joule heating in the leads, proportionately higher for the lower current leads that have fewer current-carrying, counter flow coolant copper tubes. Consequently, the specific coolant flow (G/sec-kA-lead pair) increases as the lead current decreases. The definition of this interdependency and the definition of necessary thermal management has required an integrated thermal model for the entire stack/VCL assemblies

  7. Mechanical and fatigue properties of martensitic Fe-13Cr steel in contact with lead and lead-bismuth melts

    Energy Technology Data Exchange (ETDEWEB)

    Yaskiv, O.I., E-mail: oleh.yaskiv@ipm.lviv.ua; Fedirko, V.M.

    2014-01-15

    Highlights: •We investigated the influence of Pb and Pb-Bi melts on mechanical properties of Fe-13Cr steel at high temperatures. •We revealed the temperature interval of liquid metal embrittlement of Fe-13Cr steel. •Pb-Bi has more negative impact as compared with Pb for both plasticity and fatigue. -- Abstract: The influence of stagnant liquid-metal environments (Pb and Pb-Bi) on mechanical (strength and plasticity) and fatigue properties (low cycle fatigue) of martensitic Fe-13Cr steel in temperature interval of 250–600 °S have been investigated. Heavy liquid metals facilitate decreasing in ultimate strength by 10–20% against that in vacuum. The increase of temperature enhances this effect. Fe-13Cr steel is susceptible to liquid-metal embrittlement in the temperature interval of 350–450 °S, which manifests itself more substantially in lead-bismuth eutectic. The decrease of plasticity in Pb is 11% at 450 °S and in Pb-Bi is 30% in temperature interval 350–400 °S. Liquid metal environments significantly reduce fatigue life of Fe-13Cr steel. Pb-Bi has a more negative impact. In particular, with increasing total strain amplitude (up to 1.0%), the decrease in the cycle number to fracture by more than two orders of magnitude occurs.

  8. Numerical simulation of heat-transfer and insoluble corrosion product deposition in lead-bismuth eutectic alloy

    International Nuclear Information System (INIS)

    Yang Xu; Zhou Tao; Fang Xiaolu; Lin Daping; Ru Xiaolong

    2015-01-01

    As the primary coolant of ADS (accelerator driven sub-critical system), the safety of reactor will be threatened and the lifetime of the reactor will be shortened by appearing of the tiny particles in LBE (lead-bismuth eutectic) alloy. To this end, numerical simulation with the code of FLUENT was used to research the deposition distribution of insoluble corrosion products in rectangular channel. The standard k-ε model was selected to predict the turbulence variation in the rectangular channel. The discrete phase model (DPM) was used to track the trajectory of the particles. It is found that the deposition efficiency is positively correlated with the temperature difference between the fluid and cold wall. The near wall region with a high concentration of particulate matter and low temperature is in favor of particulate matter deposition on the wall. At the same time, the high turbulence kinetic near wall region is not conducive to the deposition of particulate matter. A secondary flow phenomenon occurs under the influence of boundary wall, namely that there are eight symmetrical regions in the radial direction. (authors)

  9. Gravimetric Analysis of Bismuth in Bismuth Subsalicylate Tablets: A Versatile Quantitative Experiment for Undergraduate Laboratories

    Science.gov (United States)

    Davis, Eric; Cheung, Ken; Pauls, Steve; Dick, Jonathan; Roth, Elijah; Zalewski, Nicole; Veldhuizen, Christopher; Coeler, Joel

    2015-01-01

    In this laboratory experiment, lower- and upper-division students dissolved bismuth subsalicylate tablets in acid and precipitated the resultant Bi[superscript 3+] in solution with sodium phosphate for a gravimetric determination of bismuth subsalicylate in the tablets. With a labeled concentration of 262 mg/tablet, the combined data from three…

  10. Bismuth-silver mineralization in the Sergozerskoe gold occurrence

    Directory of Open Access Journals (Sweden)

    Kalinin A. A.

    2017-03-01

    Full Text Available Bismuth-silver mineralization attendant to gold mineralization in the Sergozerskoe gold occurrence has been studied in detail. Bi-Ag mineralization is connected with diorite porphyry dykes, which cut volcanic-sedimentary Lopian complexes of the Strel'ninsky greenstone belt – hornblendite and actinolite-chlorite amphibolites, biotite and bi-micaceous gneisses. Distribution of Bi-Ag mineralization similar to gold mineralization is controlled by 80 m thick zone of silicification. Bi minerals are found in brecciated diorite porphyry. Bismuth-silver mineralization includes native metals (bismuth, electrum, silver, tellurides (hedleyite, hessite, selenides (ikunolite, sulfides and sulfosalts of Bi and Ag (matildite, lillianite, eckerite, jalpaite, prustite, acanthite, a few undiagnosed minerals. All Bi and Ag minerals associate with galena. Composition of mineralization evolved from early to late stages of development, depending on intensity of rock alteration. The earliest Bi-Ag minerals were native bismuth and hedleyite formed dissemination in galena, and electrum with 30-45 mass.% Au. Later native bismuth was partly substituted by silver and bismuth sulfosalts and bismuth sulfides. The latest minerals were low-temperature silver sulfides eckerite, jalpaite, and acanthite, which were noted only in the most intensively altered rocks. As soon as the process of formation of Bi-Ag mineralization is the same as formation of gold, findings of bismuth-silver mineralization can serve as a positive exploration sign for gold in the region.

  11. High Photon-to-Current Conversion in Solar Cells Based on Light-Absorbing Silver Bismuth Iodide.

    Science.gov (United States)

    Zhu, Huimin; Pan, Mingao; Johansson, Malin B; Johansson, Erik M J

    2017-06-22

    Here, a lead-free silver bismuth iodide (AgI/BiI 3 ) with a crystal structure with space group R3‾ m is investigated for use in solar cells. Devices based on the silver bismuth iodide deposited from solution on top of TiO 2 and the conducting polymer poly(3-hexylthiophene-2,5-diyl) (P3HT) as a hole-transport layer are prepared and the photovoltaic performance is very promising with a power conversion efficiency over 2 %, which is higher than the performance of previously reported bismuth-halide materials for solar cells. Photocurrent generation is observed between 350 and 700 nm, and the maximum external quantum efficiency is around 45 %. The results are compared to solar cells based on the previously reported material AgBi 2 I 7 , and we observe a clearly higher performance for the devices with the new silver and bismuth iodides composition and different crystal structure. The X-ray diffraction spectrum of the most efficient silver bismuth iodide material shows a hexagonal crystal structure with space group R3‾ m, and from the light absorption spectrum we obtain an indirect band gap energy of 1.62 eV and a direct band gap energy of 1.85 eV. This report shows the possibility for finding new structures of metal-halides efficient in solar cells and points out new directions for further exploration of lead-free metal-halide solar cells. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  12. Long-term dietary exposure to lead in young European children: Comparing a pan-European approach with a national exposure assessment

    DEFF Research Database (Denmark)

    Boon, P.E.; Te Biesebeek, J.D.; van Klaveren, J.D.

    2012-01-01

    Long-term dietary exposures to lead in young children were calculated by combining food consumption data of 11 European countries categorised using harmonised broad food categories with occurrence data on lead from different Member States (pan-European approach). The results of the assessment...... in children living in the Netherlands were compared with a long-term lead intake assessment in the same group using Dutch lead concentration data and linking the consumption and concentration data at the highest possible level of detail. Exposures obtained with the pan-European approach were higher than...... the national exposure calculations. For both assessments cereals contributed most to the exposure. The lower dietary exposure in the national study was due to the use of lower lead concentrations and a more optimal linkage of food consumption and concentration data. When a pan-European approach, using...

  13. Flame spray synthesis under a non-oxidizing atmosphere: Preparation of metallic bismuth nanoparticles and nanocrystalline bulk bismuth metal

    Energy Technology Data Exchange (ETDEWEB)

    Grass, Robert N.; Stark, Wendelin J. [Institute for Chemical and Bioengineering, ETH Zuerich (Switzerland)], E-mail: wendelin.stark@chem.ethz.ch

    2006-10-15

    Metallic bismuth nanoparticles of over 98% purity were prepared by a modified flame spray synthesis method in an inert atmosphere by oxygen-deficient combustion of a bismuth-carboxylate based precursor. The samples were characterized by X-ray diffraction, thermal analysis and scanning electron microscopy confirming the formation of pure, crystalline metallic bismuth nanoparticles. Compression of the as-prepared powder resulted in highly dense, nanocrystalline pills with strong electrical conductivity and bright metallic gloss.

  14. European Helium Cooled Pebble Bed (HCPB) test blanket. ITER design description document. Status 1.12.1996

    International Nuclear Information System (INIS)

    Albrecht, H.; Boccaccini, L.V.; Dalle Donne, M.; Fischer, U.; Gordeev, S.; Hutter, E.; Kleefeldt, K.; Norajitra, P.; Reimann, G.; Ruatto, P.; Schleisiek, K.; Schnauder, H.

    1997-04-01

    The Helium Cooled Pebble Bed (HCPB) blanket is based on the use of separate small lithium orthosilicate and beryllium pebble beds placed between radial toroidal cooling plates. The cooling is provided by helium at 8 MPa. The tritium produced in the pebble beds is purged by the flow of helium at 0.1 MPa. The structural material is martensitic steel. It is foreseen, after an extended R and D work, to test in ITER a blanket module based on the HCPB design, which is one of the two European proposals for the ITER Test Blanket Programme. To facilitate the handling operation the Blanket Test Module (BTM) is bolted to a surrounding water cooled frame fixed to the ITER shield blanket back plate. For the design of the test module, three-dimensional Monte Carlo neutronic calculations and thermohydraulic and stress analyses for the operation during the Basic Performance Phase (BPP) and during the Extended Performance Phase (EPP) of ITER have been performed. The behaviour of the test module during LOCA and LOFA has been investigated. Conceptual designs of the required ancillary loops have been performed. The present report is the updated version of the Design Description Document (DDD) for the HCPB Test Module. It has been written in accordance with a scheme given by the ITER Joint Central Team (JCT) and accounts for the comments made by the JCT to the previous version of this report. This work has been performed in the framework of the Nuclear Fusion Project of the Forschungszentrum Karlsruhne and it is supported by the European Union within the European Fusion Technology Program. (orig.) [de

  15. Optimization of the breeder zone cooling tubes of the DEMO Water-Cooled Lithium Lead breeding blanket

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A.; Arena, P.; Bongiovì, G. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, Palermo (Italy); Chiovaro, P., E-mail: pierluigi.chiovaro@unipa.it [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, Palermo (Italy); Del Nevo, A. [ENEA Brasimone, Camugnano, BO (Italy); Forte, R. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, Palermo (Italy)

    2016-11-01

    Highlights: • Determination of an optimal configuration for the breeder zone cooling tubes. • Attention has been focused on the toroidal–radial breeder zone cooling tubes lay out. • A theoretical-computational approach based on the Finite Element Method (FEM) has been followed, adopting a qualified commercial FEM code. • Five different configurations have been investigated to optimize the breeder zone cooling tubes arrangement fulfilling all the rules prescribed by safety codes. - Abstract: The determination of an optimal configuration for the breeder zone (BZ) cooling tubes is one of the most important issues in the DEMO Water-Cooled Lithium Lead (WCLL) breeding blanket R&D activities, since BZ cooling tubes spatial distribution should ensure an efficient heat power removal from the breeder, avoiding hotspots occurrence in the thermal field. Within the framework of R&D activities supported by the HORIZON 2020 EUROfusion Consortium action on the DEMO WCLL breeding blanket design, a campaign of parametric analyses has been launched at the Department of Energy, Information Engineering and Mathematical Models of the University of Palermo (DEIM), in close cooperation with ENEA-Brasimone, in order to assess the potential influence of BZ cooling tubes number on the thermal performances of the DEMO WCLL outboard breeding blanket equatorial module under the nominal steady state operative conditions envisaged for it, optimizing their geometric configuration and taking also into account that a large number of cooling pipes can deteriorate the tritium breeding performances of the module. In particular, attention has been focused on the toroidal-radial option for the BZ tube bundles lay-out and a parametric study has been carried out taking into account different tube bundles arrangement within the module. The study has been carried out following a numerical approach, based on the finite element method (FEM), and adopting a qualified commercial FEM code. Results

  16. Effect of excess bismuth on the dielectric and piezoelectric properties of strontium bismuth niobate ceramics

    International Nuclear Information System (INIS)

    Verma, Maya; Tanwar, Amit; Sreenivas, K.

    2013-01-01

    Excess Bismuth Strontium Bismuth Niobate (Sr 2 Bi 2 Nb 2 O 9 + x wt% Bi 2 O 3 ) ceramics were prepared using conventional solid state reaction method by varying x in the range (x=0%wt - 20%wt). X-ray diffraction studies reveal no significant shift in the peak positions as the Bi content increases from 0.0 to 5%wt. However, at a higher content of Bi beyond x = 5wt% secondary phases relating to Bi 2 O 3 are identified. The c-axis orientation is found to be minimum for SBN ceramic prepared with 5% excess bismuth whereas with further increase in excess Bi 2 O 3 addition during processing, SBN ceramics show a much stronger c-axis orientation. Room temperature dielectric constant measured at 100 KHz is found to increase from 117 to 130 with increase in Bi content from x = 0 to 10wt% suggesting Bi addition has make up for the bismuth losses at higher sintering temperature (1200℃), however with further increase in Bi content (x > 10wt%), the dielectric constant decreases, and could be due to the increased probability of segregation of Bi on the grains of SBN ceramics. The improvement in ferroelectric properties were obtained when the bismuth excess is increased from 0% to 5%. It may be observed that on increasing the excess bismuth to 5%, the transition temperature increases from 424 to 450℃, while further increasing to 10%, transition becomes slightly diffused and phase transition temperature gets decreased to 398℃, which may be due to the formation of secondary phase. 5% excess Bi is found to enhance the dielectric and ferroelectricity properties, and any further increase of Bi in excess (>10%) during processing is found to degrade the electrical and functional properties of SBN. (author)

  17. In-Service Inspection Approaches for Lead-Cooled Nuclear Reactors

    Science.gov (United States)

    2017-06-01

    heavily regulated and mature. For example, the Illinois Emergency Management Agency (IEMA) conducted 805 soil samples testing for radionuclides around... radiation , and lead-cooled reactors are expected to have economic advantages compared to other nuclear coolant/moderator systems due to design...their six nuclear reactors in 22 2015 (IEMA, 2016, 3). In addition, they currently have 1649 environmental dosimeters testing for gamma radiation

  18. Bismuth Subgallate Toxicity in the Age of Online Supplement Use.

    Science.gov (United States)

    Sampognaro, Paul; Vo, Kathy T; Richie, Megan; Blanc, Paul D; Keenan, Kevin

    2017-11-01

    Bismuth salts have been used to treat gastroenterological disorders and are readily available over-the-counter and via the internet. Even though generally considered safe, bismuth compounds can cause a syndrome of subacute, progressive encephalopathy when taken in large quantities. We present the case of woman who developed progressive encephalopathy, aphasia, myoclonus, and gait instability after chronically ingesting large amounts of bismuth subgallate purchased from a major online marketing website to control symptoms of irritable bowel syndrome. After extensive neurological work-up, elevated bismuth levels in her blood, urine, and cerebrospinal fluid confirmed the diagnosis of bismuth-related neurotoxicity. She improved slowly following cessation of exposure. This case highlights bismuth subgallate as a neurotoxic bismuth formulation and reminds providers of the potential for safety misconceptions of positively reviewed online supplements.

  19. In situ electron beam irradiated rapid growth of bismuth nanoparticles in bismuth-based glass dielectrics at room temperature

    International Nuclear Information System (INIS)

    Singh, Shiv Prakash; Karmakar, Basudeb

    2011-01-01

    In this study, in situ control growth of bismuth nanoparticles (Bi 0 NPs) was demonstrated in bismuth-based glass dielectrics under an electron beam (EB) irradiation at room temperature. The effects of EB irradiation were investigated in situ using transmission electron microscopy (TEM), selected-area electron diffraction and high-resolution transmission electron microscopy. The EB irradiation for 2–8 min enhanced the construction of bismuth nanoparticles with a rhombohedral structure and diameter of 4–9 nm. The average particle size was found to increase with the irradiation time. Bismuth metal has a melting point of 271 °C and this low melting temperature makes easy the progress of energy induced structural changes during in situ TEM observations. This is a very useful technique in nano-patterning for integrated optics and other applications.

  20. Bismuth knowledge during the Renaissance strengthened by its use in Italian lustres production

    Science.gov (United States)

    Padeletti, G.; Fermo, P.

    The knowledge of bismuth during the XV and XVI centuries represents an open question since, according to some authors, this element was confused with lead, tin and silver. On the contrary, G. Agricola (1494-1555), the pioneer of mineralogical science in Europe, in his two works (De Natura Fossilium, Lib X, 1546 and Bermannus Sive De Re Metallica Dialogus, 1528) asserts that bismuth was considered as an element distinct from the other metals at that time. This question gave rise to some interest, and von Lippmann in 1930 wrote a treatise dealing with the history of bismuth between 1400 and 1800. In this work we present the results obtained on Italian and Hispano-Moresque shards studied by means of X-ray diffraction, atomic absorption spectrometry with electrothermal atomisation, inductively coupled plasma optical emission spectrometry and scanning electron microscopy. It seems that our work could provide a new and important contribution to this debate, because we found bismuth in lustre composition of Renaissance shards produced in central Italy. Furthermore, we found that it could also be considered as a discriminating element between Italian and Hispano-Moresque productions, useful to assess their origin.

  1. Performance of the Lead-Alloy-Cooled Reactor Concept Balanced for Actinide Burning and Electricity Production

    International Nuclear Information System (INIS)

    Hejzlar, Pavel; Davis, Cliff B.

    2004-01-01

    A lead-bismuth-cooled fast reactor concept targeted for a balanced mission of actinide burning and low-cost electricity production is proposed and its performance analyzed. The design explores the potential benefits of thorium-based fuel in actinide-burning cores, in particular in terms of the reduction of the large reactivity swing and enhancement of the small Doppler coefficient typical of fertile-free actinide burners. Reduced electricity production cost is pursued through a longer cycle length than that used for fertile-free burners and thus a higher capacity factor. It is shown that the concept can achieve a high transuranics destruction rate, which is only 20% lower than that of an accelerator-driven system with fertile-free fuel. The small negative fuel temperature reactivity coefficient, small positive coolant temperature reactivity coefficient, and negative core radial expansion coefficient provide self-regulating characteristics so that the reactor is capable of inherent shutdown during major transients without scram, as in the Integral Fast Reactor. This is confirmed by thermal-hydraulic analysis of several transients without scram, including primary coolant pump trip, station blackout, and reactivity step insertion, which showed that the reactor was able to meet all identified thermal limits. However, the benefits of high actinide consumption and small reactivity swing can be attained only if the uranium from the discharged fuel is separated and not recycled. This additional uranium separation step and thorium reprocessing significantly increase the fuel cycle costs. Because the higher fuel cycle cost has a larger impact on the overall cost of electricity than the savings from the higher capacity factor afforded through use of thorium, this concept appears less promising than the fertile-free actinide burners

  2. Gas Reactor International Cooperative Program. Interim report. Construction and operating experience of selected European Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    1978-09-01

    The construction and operating experience of selected European Gas-Cooled Reactors is summarized along with technical descriptions of the plants. Included in the report are the AVR Experimental Pebble Bed Reactor, the Dragon Reactor, AGR Reactors, and the Thorium High Temperature Reactor (THTR). The study demonstrates that the European experience has been favorable and forms a good foundation for the development of Advanced High Temperature Reactors

  3. Adsorption of volatile polonium and bismuth species on metals in various gas atmospheres. Pt. I. Adsorption of volatile polonium and bismuth on gold

    Energy Technology Data Exchange (ETDEWEB)

    Maugeri, Emilio Andrea; Neuhausen, Joerg; Dressler, Rugard; Piguet, David; Voegele, Alexander; Schumann, Dorothea [Paul Scherrer Institut (PSI), Villigen (Switzerland). Lab. for Radiochemistry; Eichler, Robert [Paul Scherrer Institut (PSI), Villigen (Switzerland). Lab. for Radiochemistry; Bern Univ. (Switzerland). Dept. for Chemistry and Biochemistry; Rijpstra, Kim [Ghent Univ., Zwijnaarde (Belgium). Center for Molecular Modeling (CMM); Cottenier, Stefaan [Ghent Univ., Zwijnaarde (Belgium). Center for Molecular Modeling (CMM); Ghent Univ., Zwijnaarde (Belgium). Dept. of Materials Science and Engineering

    2016-07-01

    Polonium isotopes are considered the most hazardous radionuclides produced during the operation of accelerator driven systems (ADS) when lead-bismuth eutectic (LBE) is used as the reactor coolant and as the spallation target material. In this work the use of gold surfaces for capturing polonium from the cover gas of the ADS reactor was studied by thermochromatography. The results show that gaseous monoatomic polonium, formed in dry hydrogen, is adsorbed on gold at 1058 K. Its adsorption enthalpy was calculated as -250±7 kJ mol{sup -1}, using a Monte Carlo simulation code. Highly volatile polonium species that were observed in similar experiments in fused silica columns in the presence of moisture in both inert and reducing gas were not detected in the experiments studying adsorption on gold surfaces. PoO{sub 2} is formed in both dry and moist oxygen, and its interaction with gold is characterized by transport reactions. The interaction of bismuth, present in large amounts in the atmosphere of the ADS, with gold was also evaluated. It was found that bismuth has a higher affinity for gold, compared to polonium, in an inert, reducing, and oxidizing atmosphere. This fact must be considered when using gold as a material for filtering polonium in the cover gas of ADS.

  4. Concentration dependence of surface properties and molar volume of multicomponent system indium-tin-lead-bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Dadashev, R; Kutuev, R [Complex Science Research Institute of the Science Academy of the Chechen Republic, 21 Staropromisl. shosse, Grozny 364096 (Russian Federation); Elimkhanov, D [Science Academy of the Chechen Republic (Russian Federation)], E-mail: edzhabrail@mail.ru

    2008-02-15

    The results of an experimental research of surface properties of the four-component system indium-tin-lead-bismuth are presented. The researches under discussion were carried out in a combined device in which the surface tension ({sigma}) is measured by the method of maximum pressure in a drop, and density ({rho}) is measured by advanced aerometry. Measurement errors are 0.7 % for surface tension measurement, and 0.2 % for density measurement. The study of the concentration dependence of {sigma} in this system has revealed the influence of the third and fourth components upon the characteristics of surface tension isotherms of the binary system indium-tin. It was found out that with an increase in the content of the third and fourth components the depth of the minimum on the surface tension isotherms of the indium-tin system {sigma} decreases. On the basis of the concentration dependence of the phenomenon of concentration bufferity is revealed. It is shown that despite the complex character, isotherms of {sigma} on beam sections of a multicomponent system do not contain qualitatively new features in comparison with the isotherms of these properties in lateral binary systems.

  5. Synthesis and characterization of bismuth alkaline titanate powders

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Huerta, A.M., E-mail: atorresh@ipn.mx [CICATA-Altamira, Instituto Politecnico Nacional, Km. 14.5 Carretera Tampico Puerto Industrial Altamira, Altamira, Tamps. 89600 (Mexico); Dominguez-Crespo, M.A. [CICATA-Altamira, Instituto Politecnico Nacional, Km. 14.5 Carretera Tampico Puerto Industrial Altamira, Altamira, Tamps. 89600 (Mexico); Hernandez-Perez, M.A. [ESIQIE, Metalurgia, Instituto Politecnico Nacional, Mexico, D. F (Mexico); Garcia-Zaleta, D.S. [CICATA-Altamira, Instituto Politecnico Nacional, Km. 14.5 Carretera Tampico Puerto Industrial Altamira, Altamira, Tamps. 89600 (Mexico); Brachetti-Sibaja, S.B. [CICATA-Altamira, Instituto Politecnico Nacional, Km. 14.5 Carretera Tampico Puerto Industrial Altamira, Altamira, Tamps. 89600 (Mexico); Instituto Tecnologico de Ciudad Madero, Av. 1o. de Mayo esq. Sor Juana Ines de la Cruz s/n Col. Los Mangos C.P.89440 Cd. Madero Tamaulipas (Mexico)

    2011-06-15

    In this work, samples of bismuth alkaline titanate, (K{sub 0.5}Na{sub 0.5}){sub (2-x/2)}Bi{sub (x/6)}TiO{sub 3}, (x = 0.05-0.75) have been prepared by conventional ceramic technique and molten salts. Metal oxides or carbonates powders were used as starting raw materials. The crystalline phase of the synthesized powders was identified by the X-ray diffraction (XRD) and particle morphology was characterized by scanning electron microscopy (SEM). Solid state reaction method was unsuccessful to obtain pellets. From XRD results, a rhombohedral structure was detected and the parameter lattice were estimated to be a = 5.5478 A and {alpha} = 59.48{sup o}. These parameters were used to refine the structure by Rietveld analysis. SEM results showed several morphologies. Apparently, bismuth is promoting the grain growth whose sizes vary from 30 nm to 180 nm It is expected that these materials can be utilized in practical applications as substitutes for lead zirconatetitanate (PZT)-based ceramics.

  6. Valley polarization in bismuth

    Science.gov (United States)

    Fauque, Benoit

    2013-03-01

    The electronic structure of certain crystal lattices can contain multiple degenerate valleys for their charge carriers to occupy. The principal challenge in the development of valleytronics is to lift the valley degeneracy of charge carriers in a controlled way. In bulk semi-metallic bismuth, the Fermi surface includes three cigar-shaped electron valleys lying almost perpendicular to the high symmetry axis known as the trigonal axis. The in-plane mass anisotropy of each valley exceeds 200 as a consequence of Dirac dispersion, which drastically reduces the effective mass along two out of the three orientations. According to our recent study of angle-dependent magnetoresistance in bismuth, a flow of Dirac electrons along the trigonal axis is extremely sensitive to the orientation of in-plane magnetic field. Thus, a rotatable magnetic field can be used as a valley valve to tune the contribution of each valley to the total conductivity. As a consequence of a unique combination of high mobility and extreme mass anisotropy in bismuth, the effect is visible even at room temperature in a magnetic field of 1 T. Thus, a modest magnetic field can be used as a valley valve in bismuth. The results of our recent investigation of angle-dependent magnetoresistance in other semi-metals and doped semiconductors suggest that a rotating magnetic field can behave as a valley valve in a multi-valley system with sizeable mass anisotropy.

  7. Bismuth oxyfluoride @ CMK-3 nanocomposite as cathode for lithium ion batteries

    Science.gov (United States)

    Ni, Dan; Sun, Wang; Xie, Liqiang; Fan, Qinghua; Wang, Zhenhua; Sun, Kening

    2018-01-01

    Bismuth oxyfluoride impregnated CMK-3 nanocomposite is synthesized by a facile nanocasting approach. Mesoporous carbon CMK-3 can suppress the aggregation and growth of bismuth oxyfluoride particles and offer rapid electron and Li ion passageways. Bismuth oxyfluoride nanoparticles are embedded in the mesoporous channels with particle size less than 20 nm. The bismuth oxyfluoride@CMK-3 nanocomposite maintains 148 mA h g-1 after 40 cycles with the capacity from both the bismuth oxyfluoride and the functional groups on the mesoporous carbon. The hybrid with confined bismuth oxyfluoride nanoparticles, conductive carbon network, and oxygen functional groups on the carbon matrix exhibits higher capacity and cycling stability than bulk bismuth oxyfluoride particles when used as lithium ion batteries cathode.

  8. Detection of coolant void in lead-cooled fast reactors

    International Nuclear Information System (INIS)

    Wolniewicz, Peter; Håkansson, Ane; Jansson, Peter

    2015-01-01

    Highlights: • We model the ALFRED LFR using different Monte-Carlo codes. • We study the impact on coolant void on the fission cross section in fission chambers. • We develop a methodology to detect coolant void. • We study the impact of detector fissile coating burn-up. • We conclude that the developed methodology may be an attractive complement to LFR monitoring. - Abstract: Previous work (Wolniewicz et al., 2013) has indicated that using fission chambers coated with 242 Pu and 235 U, respectively, can provide the means of detecting changes in the neutron flux that are connected to coolant density changes in a small lead-cooled fast reactor. Such density changes may be due to leakages of gas into the coolant, which, over time, may coalesce to large bubbles implying a high risk of causing severe damage of the core. By using the ratio of the information provided by the two types of detectors a quantity is obtained that is sensitive to these density changes and, to the first order approximation, independent of the power level of the reactor. In this work we continue the investigation of this proposed methodology by applying it to the Advanced LFR European Demonstrator (ALFRED) and using realistic modelling of the neutron detectors. The results show that the methodology may be used to detect density changes indicating the initial stages of a coalescence process that may result in a large bubble. Also, it is shown that under certain circumstances, large bubbles passing through the core could be detected with this methodology

  9. Performance comparison of liquid metal and gas cooled ATW system point designs

    International Nuclear Information System (INIS)

    Yang, W.S.; Taiwo, T.A.; Hill, R.N.; Khalil, H.S.; Wade, D.C.

    2001-01-01

    As part of the Advanced Accelerator Application (AAA) program in the U.S., preliminary design studies have been performed at Argonne National Laboratory (ANL) and Los Alamos National Laboratory (LANL) to define and compare candidate Accelerator Transmutation of Waste (ATW) systems. The studies at ANL have focused primarily on the transmutation blanket component of the overall system. Lead-bismuth eutectic (LBE), sodium, and gas cooled systems are among the blanket technology options currently under consideration. This paper summarizes the results from neutronics trade studies performed at ANL. Core designs have been developed for LBE and sodium cooled 840 MWt fast spectrum accelerator driven systems employing re-cycle. Additionally, neutronics analyses have been performed for a helium-cooled 600 MWt hybrid thermal and fast spectrum system proposed by General Atomics (GA), which is operated in the critical mode for three cycles and in a subcritical accelerator driven mode for a subsequent single cycle. For these three point designs, isotopic inventories, consumption rates, and annual burnup rates are compared. The mass flows and the ultimate loss of transuranic (TRU) isotopes to the waste stream per unit of heat generated during transmutation are also compared on a consistent basis. (author)

  10. Investigation/evaluation of water cooled fast reactor in the feasibility study on commercialized fast reactor cycle systems. Intermediate evaluation of phase-II study

    International Nuclear Information System (INIS)

    Kotake, Syoji; Nishikawa, Akira

    2005-01-01

    Feasibility study on commercialized fast reactor cycle systems aims at investigation and evaluation of FBR design requirement's attainability, operation and maintenance, and technical feasibility of the candidate system. Development targets are 1) ensuring safety, 2) economic competitiveness, 3) efficient utilization of resources, 4) reduction of environmental load and 5) enhancement of nuclear non-proliferation. Based on the selection of the promising concepts in the first phase, conceptual design for the plant system has proceeded with the following plant system: a) sodium cooled reactors at large size and medium size module reactors, b) a lead-bismuth cooled medium size reactor, c) a helium gas cooled large size reactor and d) a BWR type large size FBR. Technical development and feasibility has been assessed and the study considers the need of respective key technology development for the confirmation of the feasibility study. (T. Tanaka)

  11. Bismuth iron oxide thin films using atomic layer deposition of alternating bismuth oxide and iron oxide layers

    Energy Technology Data Exchange (ETDEWEB)

    Puttaswamy, Manjunath; Vehkamäki, Marko [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Kukli, Kaupo, E-mail: kaupo.kukli@helsinki.fi [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); University of Tartu, Institute of Physics, W. Ostwald 1, EE-50411 Tartu (Estonia); Dimri, Mukesh Chandra [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE-12618 Tallinn (Estonia); Kemell, Marianna; Hatanpää, Timo; Heikkilä, Mikko J. [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Mizohata, Kenichiro [University of Helsinki, Department of Physics, P.O. Box 64, FI-00014 Helsinki (Finland); Stern, Raivo [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE-12618 Tallinn (Estonia); Ritala, Mikko; Leskelä, Markku [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland)

    2016-07-29

    Bismuth iron oxide films with varying contributions from Fe{sub 2}O{sub 3} or Bi{sub 2}O{sub 3} were prepared using atomic layer deposition. Bismuth (III) 2,3-dimethyl-2-butoxide, was used as the bismuth source, iron(III) tert-butoxide as the iron source and water vapor as the oxygen source. The films were deposited as stacks of alternate Bi{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} layers. Films grown at 140 °C to the thickness of 200–220 nm were amorphous, but crystallized upon post-deposition annealing at 500 °C in nitrogen. Annealing of films with intermittent bismuth and iron oxide layers grown to different thicknesses influenced their surface morphology, crystal structure, composition, electrical and magnetic properties. Implications of multiferroic performance were recognized in the films with the remanent charge polarization varying from 1 to 5 μC/cm{sup 2} and magnetic coercivity varying from a few up to 8000 A/m. - Highlights: • Bismuth iron oxide thin films were grown by atomic layer deposition at 140 °C. • The major phase formed in the films upon annealing at 500 °C was BiFeO{sub 3}. • BiFeO{sub 3} films and films containing excess Bi favored electrical charge polarization. • Slight excess of iron oxide enhanced saturative magnetization behavior.

  12. Criterion for burn-up conditions in gas-cooled cryogenic current leads

    International Nuclear Information System (INIS)

    Bejan, A.; Cluss, E.M. Jr.

    1976-01-01

    Superconducting magnets are energized through helium vapour-cooled cryogenic current leads operating at high ratios of current to mass flow. The high current operation where lead temperature, runaway, and eventual burn-up are likely to occur is investigated. A simple criterion for estimating the burn-up operation conditions (current, mass flow) for a given lead geometry (cross-sectional area, length, heat exchanger area) is presented. This article stresses the role played by the available heat exchanger area in avoiding burn-up at high ratios of current to mass flow. (author)

  13. Bismuth adjuvant ameliorates adverse effects of high-dose chemotherapy in patients with multiple myeloma and malignant lymphoma undergoing autologous stem cell transplantation

    DEFF Research Database (Denmark)

    Hansen, Per Boye; Penkowa, Milena

    2017-01-01

    show for the first time that bismuth significantly reduces grade 2 stomatitis, febrile neutropenia and infections caused by melphalan in multiple myeloma, where adverse effects also were significantly linked to gender. In lymphoma patients, bismuth significantly reduces diarrhoea relative to placebo......PURPOSE: High-dose chemotherapy prior to autologous stem cell transplantation (ASCT) leads to adverse effects including mucositis, neutropenia and bacteremia. To reduce the toxicity, we treated myeloma and lymphoma patients with peroral bismuth as an adjuvant to chemotherapy to convey...

  14. Ac irreversibility line of bismuth-based high temperature superconductors

    International Nuclear Information System (INIS)

    Mehdaoui, A.; Beille, J.; Berling, D.; Loegel, B.; Noudem, J.G.; Tournier, R.

    1997-01-01

    We discuss the magnetic properties of lead doped Bi-2223 bulk samples obtained through combined magnetic melt texturing and hot pressing (MMTHP). The ac complex susceptibility measurements are achieved over a broad ac field range (1 Oe ac <100 Oe) and show highly anisotropic properties. The intergranular coupling is improved in the direction perpendicular to the applied stress and magnetic field direction, and an intragranular loss peak is observed for the first time. A comparison is made with other bismuth-based compounds and it is shown that the MMTHP process shifts the ac irreversibility line (ac IL) toward higher fields. It is also shown that all the ac IL close-quote s for quasi 2D bismuth-based compounds show a nearly quadratic temperature dependence and deviate therefore strongly from the linear behavior observed in quasi 3D compounds and expected from a critical state model.copyright 1997 Materials Research Society

  15. Bismuth X-ray absorber studies for TES microcalorimeters

    International Nuclear Information System (INIS)

    Sadleir, J.E.; Bandler, S.R.; Brekosky, R.P.; Chervenak, J.; Figueroa-Feliciano, E.; Finkbeiner, F.; Iyomoto, N.; Kelley, R.L.; Kilbourne, C.A.; King, J.M.; Porter, F.S.; Robinson, I.K.; Saab, T.; Talley, D.J.

    2006-01-01

    Bismuth's large atomic number and low carrier density makes it an attractive X-ray absorber material for microcalorimeters. Bismuth's long Fermi wavelength and long mean free paths have motivated much interest in the fabrication of high quality bismuth films to study quantum size effects. Despite such incentives, fabrication of high quality bismuth films has proven difficult, and measured properties of such films are highly variable in the literature. Implementing a bismuth deposition process for TES (superconducting Transition Edge Sensor) device fabrication presents additional challenges particularly at interfaces due to the inherent granularity and surface roughness of its films, its low melting point, and its tendency to diffuse and form undesired intermetallic phases. We report observations of Bi-Cu and Bi-Au diffusion in our devices correlating with large shifts in T c (superconducting transition temperature). Using SEM and in situ R vs T annealing experiments we have been able to study these diffusion processes and identify their activation temperatures

  16. Thermodynamics Calculation and Experimental Study on Separation of Bismuth from a Bismuth Glance Concentrate Through a Low-Temperature Molten Salt Smelting Process

    Science.gov (United States)

    Yang, Jian-Guang; He, De-Wen; Tang, Chao-Bo; Chen, Yong-Ming; Sun, Ya-Hui; Tang, Mo-Tang

    2011-08-01

    The main purpose of this study is to characterize and separate bismuth from a bismuth glance concentrate through a low-temperature, sulfur-fixing smelting process. This article reports on a study conducted on the optimization of process parameters, such as Na2CO3 and zinc oxide wt pct in charging, smelting temperature, smelting duration on the bismuth yield, resultant crude bismuth grade, and sulfur-fixing rate. A maximum bismuth recovery of 97.31 pct, crude bismuth grade of 96.93 pct, and 98.23 pct sulfur-fixing rate are obtained when a charge (containing 63.50 wt pct of Na2CO3 and 22.50 wt pct of bismuth glance, as well as 5 pct in excess of the stoichiometric requirement of zinc oxide dosage) is smelted at 1000 K (727 °C) for 150 minutes. This smelting operation is free from atmospheric pollution because zinc oxide is used as the sulfur-fixing agent, which can capture sulfur from bismuth sulfide and form the more thermodynamic-stable compound, zinc sulfide. The solid residue is subjected to a mineral dressing operation to obtain suspension, which is filtered to produce a cake, representing the solid particles of zinc sulfide. Based on the results of the chemical content analysis of the as-resultant zinc sulfide, more than 93 pct zinc sulfide can be recovered, and the recovered zinc sulfide grade can reach 60.20 pct. This material can be sold as zinc sulfide concentrate or roasted to be regenerated as zinc oxide.

  17. Determination of arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc in geological materials by atomic-absorption spectrometry

    Science.gov (United States)

    Viets, J.G.; O'Leary, R. M.; Clark, Robert J.

    1984-01-01

    Arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc are very useful elements in geochemical exploration. In the proposed method, geological samples are fused with potassium pyrosulphate and the fusate is dissolved in a solution of hydrochloric acid, ascorbic acid and potassium iodide. When this solution is shaken with a 10% V/V Aliquat 336 - isobutyl methyl ketone organic phase, the nine elements of interest are selectively partitioned in the organic phase. All nine elements can then be determined in the organic phase using flame atomic-absorption spectrometry. The method is rapid and allows the determination of Ag and Cd at levels down to 0.1 p.p.m., Cu, Mo, and Zn down to 0.5 p.p.m., Pb, Bi and Sb down to 1 p.p.m. and As down to 5 p.p.m. in geological materials.

  18. Light-Induced Surface Reactions at the Bismuth Vanadate/Potassium Phosphate Interface.

    Science.gov (United States)

    Favaro, Marco; Abdi, Fatwa F; Lamers, Marlene; Crumlin, Ethan J; Liu, Zhi; van de Krol, Roel; Starr, David E

    2018-01-18

    Bismuth vanadate has recently drawn significant research attention as a light-absorbing photoanode due to its performance for photoelectrochemical water splitting. In this study, we use in situ ambient pressure X-ray photoelectron spectroscopy with "tender" X-rays (4.0 keV) to investigate a polycrystalline bismuth vanadate (BiVO 4 ) electrode in contact with an aqueous potassium phosphate (KPi) solution at open circuit potential under both dark and light conditions. This is facilitated by the creation of a 25 to 30 nm thick electrolyte layer using the "dip-and-pull" method. We observe that under illumination bismuth phosphate forms on the BiVO 4 surface leading to an increase of the surface negative charge. The bismuth phosphate layer may act to passivate surface states observed in photoelectrochemical measurements. The repulsive interaction between the negatively charged surface under illumination and the phosphate ions in solution causes a shift in the distribution of ions in the thin aqueous electrolyte film, which is observed as an increase in their photoelectron signals. Interestingly, we find that such changes at the BiVO 4 /KPi electrolyte interface are reversible upon returning to dark conditions. By measuring the oxygen 1s photoelectron peak intensities from the phosphate ions and liquid water as a function of time under dark and light conditions, we determine the time scales for the forward and reverse reactions. Our results provide direct evidence for light-induced chemical modification of the BiVO 4 /KPi electrolyte interface.

  19. A Simple, Cost-Effective Sensor for Detecting Lead Ions in Water Using Under-Potential Deposited Bismuth Sub-Layer with Differential Pulse Voltammetry (DPV)

    Science.gov (United States)

    Dai, Yifan; Liu, Chung Chiun

    2017-01-01

    This research has developed a simple to use, cost effective sensor system for the detection of lead ions in tap water. An under-potential deposited bismuth sub-layer on a thin gold film based electrochemical sensor was designed, manufactured, and evaluated. Differential pulse voltammetry (DPV) measurement technique was employed in this detection. Tap water from the Cleveland, OH, USA regional water district was the test medium. Concentrations of lead ion in the range of 8 × 10−7 M to 5 × 10−4 M were evaluated, showing a good sensitivity over this concentration range. The calibration curve for the DPV measurements of lead ions in tap water showed excellent reproducibility with R2 value of 0.970. This DPV detection system required 3–6 min to complete the detection measurement. A longer measurement time of 6 min was used for the lower lead ion concentration. The selectivity of this lead ion sensor was very good, and Fe III, Cu II, Ni II, and Mg II at a concentration level of 5 × 10−4 M did not interfere with the lead ion measurement. PMID:28441356

  20. Adaptation and implementation of the TRACE code for transient analysis in designs lead cooled fast reactors

    International Nuclear Information System (INIS)

    Lazaro, A.; Ammirabile, L.; Martorell, S.

    2015-01-01

    Lead-Cooled Fast Reactor (LFR) has been identified as one of promising future reactor concepts in the technology road map of the Generation IVC International Forum (GIF)as well as in the Deployment Strategy of the European Sustainable Nuclear Industrial Initiative (ESNII), both aiming at improved sustainability, enhanced safety, economic competitiveness, and proliferation resistance. This new nuclear reactor concept requires the development of computational tools to be applied in design and safety assessments to confirm improved inherent and passive safety features of this design. One approach to this issue is to modify the current computational codes developed for the simulation of Light Water Reactors towards their applicability for the new designs. This paper reports on the performed modifications of the TRACE system code to make it applicable to LFR safety assessments. The capabilities of the modified code are demonstrated on series of benchmark exercises performed versus other safety analysis codes. (Author)

  1. CFD Analysis of the Primary Cooling System for the Small Modular Natural Circulation Lead Cooled Fast Reactor SNRLFR-100

    Directory of Open Access Journals (Sweden)

    Pengcheng Zhao

    2016-01-01

    Full Text Available Small modular reactor (SMR has drawn wide attention in the past decades, and Lead cooled fast reactor (LFR is one of the most promising advanced reactors which are able to meet the safety economic goals of Gen-IV nuclear energy systems. A small modular natural circulation lead cooled fast reactor-100 MWth (SNRLFR-100 is being developed by University of Science and Technology of China (USTC. In the present work, a 3D CFD model, primary heat exchanger model, fuel pin model, and point kinetic model were established based on some reasonable simplifications and assumptions, the steady-state natural circulation characteristics of SNCLFR-100 primary cooling system were discussed and illustrated, and some reasonable suggestions were proposed for the reactor’s thermal-hydraulic and structural design. Moreover, in order to have a first evaluation of the system behavior in accident conditions, an unprotected loss of heat sink (ULOHS transient simulation at beginning of the reactor cycle (BOC has been analyzed and discussed based on the steady-state simulation results. The key temperatures of the reactor core are all under the safety limits at transient state; the reactor has excellent thermal-hydraulic performance.

  2. Heat transfer on HLM cooled wire-spaced fuel pin bundle simulator in the NACIE-UP facility

    Energy Technology Data Exchange (ETDEWEB)

    Di Piazza, Ivan, E-mail: ivan.dipiazza@enea.it [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. ENEA Brasimone, Camugnano (Italy); Angelucci, Morena; Marinari, Ranieri [University of Pisa, Dipartimento di Ingegneria Civile e Industriale, Pisa (Italy); Tarantino, Mariano [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. ENEA Brasimone, Camugnano (Italy); Forgione, Nicola [University of Pisa, Dipartimento di Ingegneria Civile e Industriale, Pisa (Italy)

    2016-04-15

    Highlights: • Experiments with a wire-wrapped 19-pin fuel bundle cooled by LBE. • Wall and bulk temperature measurements at three axial positions. • Heat transfer and error analysis in the range of low mass flow rates and Péclet number. • Comparison of local and section-averaged Nusselt number with correlations. - Abstract: The NACIE-UP experimental facility at the ENEA Brasimone Research Centre (Italy) allowed to evaluate the heat transfer coefficient of a wire-spaced fuel bundle cooled by lead-bismuth eutectic (LBE). Lead or lead-bismuth eutectic are very attractive as coolants for the GEN-IV fast reactors due to the good thermo-physical properties and the capability to fulfil the GEN-IV goals. Nevertheless, few experimental data on heat transfer with heavy liquid metals (HLM) are available in literature. Furthermore, just a few data can be identified on the specific topic of wire-spaced fuel bundle cooled by HLM. Additional analysis on thermo-fluid dynamic behaviour of the HLM inside the subchannels of a rod bundle is necessary to support the design and safety assessment of GEN. IV/ADS reactors. In this context, a wire-spaced 19-pin fuel bundle was installed inside the NACIE-UP facility. The pin bundle is equipped with 67 thermocouples to monitor temperatures and analyse the heat transfer behaviour in different sub-channels and axial positions. The experimental campaign was part of the SEARCH FP7 EU project to support the development of the MYRRHA irradiation facility (SCK-CEN). Natural and mixed circulation flow regimes were investigated, with subchannel Reynolds number in the range Re = 1000–10,000 and heat flux in the range q″ = 50–500 kW/m{sup 2}. Local Nusselt numbers were calculated for five sub-channels in different ranks at three axial positions. Section-averaged Nusselt number was also defined and calculated. Local Nusselt data showed good consistency with some of the correlation existing in literature for heat transfer in liquid metals

  3. Heat transfer on HLM cooled wire-spaced fuel pin bundle simulator in the NACIE-UP facility

    International Nuclear Information System (INIS)

    Di Piazza, Ivan; Angelucci, Morena; Marinari, Ranieri; Tarantino, Mariano; Forgione, Nicola

    2016-01-01

    Highlights: • Experiments with a wire-wrapped 19-pin fuel bundle cooled by LBE. • Wall and bulk temperature measurements at three axial positions. • Heat transfer and error analysis in the range of low mass flow rates and Péclet number. • Comparison of local and section-averaged Nusselt number with correlations. - Abstract: The NACIE-UP experimental facility at the ENEA Brasimone Research Centre (Italy) allowed to evaluate the heat transfer coefficient of a wire-spaced fuel bundle cooled by lead-bismuth eutectic (LBE). Lead or lead-bismuth eutectic are very attractive as coolants for the GEN-IV fast reactors due to the good thermo-physical properties and the capability to fulfil the GEN-IV goals. Nevertheless, few experimental data on heat transfer with heavy liquid metals (HLM) are available in literature. Furthermore, just a few data can be identified on the specific topic of wire-spaced fuel bundle cooled by HLM. Additional analysis on thermo-fluid dynamic behaviour of the HLM inside the subchannels of a rod bundle is necessary to support the design and safety assessment of GEN. IV/ADS reactors. In this context, a wire-spaced 19-pin fuel bundle was installed inside the NACIE-UP facility. The pin bundle is equipped with 67 thermocouples to monitor temperatures and analyse the heat transfer behaviour in different sub-channels and axial positions. The experimental campaign was part of the SEARCH FP7 EU project to support the development of the MYRRHA irradiation facility (SCK-CEN). Natural and mixed circulation flow regimes were investigated, with subchannel Reynolds number in the range Re = 1000–10,000 and heat flux in the range q″ = 50–500 kW/m"2. Local Nusselt numbers were calculated for five sub-channels in different ranks at three axial positions. Section-averaged Nusselt number was also defined and calculated. Local Nusselt data showed good consistency with some of the correlation existing in literature for heat transfer in liquid metals for

  4. European development of He-cooled divertors for fusion power plants

    International Nuclear Information System (INIS)

    Norajitra, P.; Giniyatulin, R.; Kuznetsov, V.; Mazul, I.; Ovchinnikov, I.; Ihli, T.; Janeschitz, G.; Krauss, W.; Kruessmann, R.; Karditsas, P.; Maisonnier, D.; Sardain, P.; Nardi, C.; Papastergiou, S.; Pizzuto, A.

    2005-01-01

    Helium-cooled divertor concepts are considered suitable for use in fusion power plants for safety reasons, as they enable the use of a coolant compatible with any blanket concept, since water would not be acceptable e.g. in connection with ceramic breeder blankets using large amounts of beryllium. Moreover, they allow for a high coolant exit temperature for increasing the efficiency of the power conversion system. Within the framework of the European power plant conceptual study (PPCS), different helium-cooled divertor concepts based on different heat transfer mechanisms are being investigated at ENEA Frascati, Italy, and Forschungszentrum Karlsruhe, Germany. They are based on a modular design which helps reduce thermal stresses. The design goal is to withstand a high heat flux of about 10-15 MW/m 2 , a value which is considered relevant to future fusion power plants to be built after ITER. The development and optimisation of the divertor concepts require an iterative design approach with analyses, studies of materials and fabrication technologies, and the execution of experiments. These issues and the state of the art of divertor development shall be the subject of this report. (author)

  5. Status on DEMO Helium Cooled Lithium Lead breeding blanket thermo-mechanical analyses

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, J., E-mail: julien.aubert@cea.fr [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France); Aiello, G.; Jaboulay, J.-C. [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France); Kiss, B. [Institute of Nuclear Techniques, Budapest University of Technology and Economics, Budapest (Hungary); Morin, A. [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France)

    2016-11-01

    Highlights: • CEA with the support of Wigner-RCP and IPP-CR, is in charge of the design of the HCLL blanket for DEMO. The DEMO HCLL breeding blanket design capitalizes on the experience acquired on the HCLL Test Blanket Module designed for ITER. Design improvements are being implemented to adapt the design to DEMO specifications and performance objectives. • Thermal and mechanical analyses have been carried out in order to justify the design of the HCLL breeding blanket showing promising results for tie rods modules’ attachments system and relatively good behavior of the box in case of LOCA when comparing to RCC-MRx criteria. • CFD thermal analyses on generic breeding unit have enabled the consolidation of the results obtained with previous FEM design analyses. - Abstract: The EUROfusion Consortium develops a design of a fusion power demonstrator (DEMO) in the framework of the European “Horizon 2020” innovation and research program. One of the key components in the fusion reactor is the breeding blanket surrounding the plasma, ensuring tritium self-sufficiency, heat removal for conversion into electricity, and neutron shielding. The Helium Cooled Lithium Lead (HCLL) blanket is one of the concepts which is investigated for DEMO. It is made of a Eurofer structure and uses the eutectic liquid lithium–lead as tritium breeder and neutron multiplier, and helium gas as coolant. Within the EUROfusion organization, CEA with the support of Wigner-RCP and IPP-CR, is in charge of the design of the HCLL blanket for DEMO. This paper presents the status of the thermal and mechanical analyses carried out on the HCLL breeding blanket in order to justify the design. CFD thermal analyses on generic breeding unit including stiffening plates and cooling plates have been performed with ANSYS in order to consolidate results obtained with previous FEM design analyses. Moreover in order to expand the justification of the HCLL Breeding blanket design, the most loaded area of

  6. Dissolution mechanism of austenitic stainless steels in lead-bismuth eutectic at 500 deg. C

    International Nuclear Information System (INIS)

    Roy, M.

    2012-01-01

    In the framework of the future nuclear power plants studies, lead-bismuth eutectic (LBE) is foreseen as a coolant in the primary or the secondary circuit in three nuclear systems. The use of this liquid alloy induces corrosion issues for structural steels. In liquid lead alloys, steels can undergo two corrosion phenomena: dissolution or oxidation depending on the temperature and the dissolved oxygen content in LBE. The goal of this study is to identify the dissolution mechanisms of austenitic steels in LBE at 500 deg. C. Four Fe-Cr-Ni model austenitic steels, the 316L steel and five other industrial steels were corroded in LBE up to, respectively, 3000, 6000 and 200 h. The dissolution mechanism is identical for all steels: it starts by a preferential dissolution of chromium and nickel. This dissolution leads to the formation of a ferritic corrosion layer penetrated by LBE and containing between 5 and 10 at% of chromium and almost no nickel. This study demonstrates that dissolutions of nickel and chromium are linked. Otherwise, the corrosion kinetics is linear whatever the tested austenitic steel. The controlling steps of the austenitic steels' corrosion rates have been identified. Natural convection in the LBE bath leads to the formation of a diffusion boundary layer at the steel surface. Chromium diffusion in this diffusion boundary layer seems to control the corrosion rates of the model and industrial austenitic steels except the 316L steel. Indeed, the corrosion rate of the 316L steel is controlled by an interfacial reaction which is either the simultaneous dissolution of nickel and chromium in Ni, Cr compounds or the nickel and chromium dissolution catalyzed by the dissolved oxygen in LBE. This study has permitted to highlight the major role of chromium on the corrosion mechanisms and the corrosion rates of austenitic steels: the corrosion rate increases when chromium activity increases. Finally, the impact of the dissolved oxygen and the minor alloying

  7. Bismuth-Based Quadruple Therapy with Bismuth Subcitrate, Metronidazole, Tetracycline and Omeprazole in the Eradication of Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Raymond Lahaie

    2001-01-01

    Full Text Available BACKGROUND: A previous study showed that 14 days of qid bismuth-based triple therapy with tetracycline 500 mg, metronidazole 250 mg and colloidal bismuth subcitrate 120 mg resulted in excellent Helicobacter pylori eradication rates (89.5%. The present study looked at a shorter treatment period by adding omeprazole and by reducing the dose of tetracycline.

  8. Spatial neutronics modelling to evaluate the temperature reactivity feedbacks in a lead-cooled fast reactor - 15288

    International Nuclear Information System (INIS)

    Lorenzi, S.; Cammi, A.; Luzzi, L.

    2015-01-01

    The qualitative and quantitative assessment of the thermal reactivity feedbacks occurring in a nuclear reactor is a crucial issue for the time-dependent evolution of the system and, in turn, it has a great impact on the development and validation of advanced control techniques. In the present work, in order to overcome the limitations of the classic Point Kinetics adopted in the control simulators, a spatial neutronics model, representing the neutron flux as sum of a spatial basis weighted by time-dependent coefficients, has been considered. The reference reactor is ALFRED, the European demonstrator of the Lead-cooled Fast Reactor technology. Average cross-sections for each fuel assembly, calculated by means of a Monte Carlo code, have been used to solve the partial differential equations of the neutron diffusion, exploiting the capabilities of the COMSOL software. Once obtained the spatial functions, the set of equations for studying the reactivity effects has been implemented in the MATLAB environment. Among the several temperature reactivity feedbacks, specific attention has been paid to the Doppler effect in the fuel and to the lead density effect. Several spatial bases have been calculated and their capability of representing the reactivity variation have been assessed. (authors)

  9. Bismuth Sodium Titanate Based Materials for Piezoelectric Actuators.

    Science.gov (United States)

    Reichmann, Klaus; Feteira, Antonio; Li, Ming

    2015-12-04

    The ban of lead in many electronic products and the expectation that, sooner or later, this ban will include the currently exempt piezoelectric ceramics based on Lead-Zirconate-Titanate has motivated many research groups to look for lead-free substitutes. After a short overview on different classes of lead-free piezoelectric ceramics with large strain, this review will focus on Bismuth-Sodium-Titanate and its solid solutions. These compounds exhibit extraordinarily high strain, due to a field induced phase transition, which makes them attractive for actuator applications. The structural features of these materials and the origin of the field-induced strain will be revised. Technologies for texturing, which increases the useable strain, will be introduced. Finally, the features that are relevant for the application of these materials in a multilayer design will be summarized.

  10. The Circular Economy and the Leading European Retailers: A Research Note

    Directory of Open Access Journals (Sweden)

    Peter Jones

    2018-03-01

    Full Text Available The concept of the circular economy is gaining momentum in political and business thinking about the transition to a more sustainable future. EuroCommerce and the European Retail Round Table, for example, have argued that leading retailers are keen to play a leading role in shaping the circular economy within Europe. This exploratory research note outlines the characteristic features of the concept of the circular economy, provides some illustrations of how Europe’s leading retailers are publicly addressing circular economy approaches and offers some general reflections on the application of the concept within the retail sector of the economy. The findings reveal that almost 50% of the leading European retailers signalled a commitment to the circular economy and to the principles underpinning it and a number of them looked to evidence their commitment within their retail operations. That said the authors suggest that If Europe’s leading retailers’ public commitments to a more circular economy are to become a reality then they will not only need to effect a radical change in their current business models and that this will need to be accompanied by radical changes in consumers consumption behaviour. More contentiously, there must be concerns that the leading European retailers might effectively capture the concept of the circular economy to justify continuing economic growth.

  11. Cooling Strategies for Vane Leading Edges in a Syngas Environment Including Effects of Deposition and Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Forrest [Univ. of North Dakota, Grand Forks, ND (United States); Bons, Jeffrey [Univ. of North Dakota, Grand Forks, ND (United States)

    2014-09-30

    The Department of Energy has goals to move land based gas turbine systems to alternate fuels including coal derived synthetic gas and hydrogen. Coal is the most abundant energy resource in the US and in the world and it is economically advantageous to develop power systems which can use coal. Integrated gasification combined cycles are (IGCC) expected to allow the clean use of coal derived fuels while improving the ability to capture and sequester carbon dioxide. These cycles will need to maintain or increase turbine entry temperatures to develop competitive efficiencies. The use of coal derived syngas introduces a range of potential contaminants into the hot section of the gas turbine including sulfur, iron, calcium, and various alkali metals. Depending on the effectiveness of the gas clean up processes, there exists significant likelihood that the remaining materials will become molten in the combustion process and potentially deposit on downstream turbine surfaces. Past evidence suggests that deposition will be a strong function of increasing temperature. Currently, even with the best gas cleanup processes a small level of particulate matter in the syngas is expected. Consequently, particulate deposition is expected to be an important consideration in the design of turbine components. The leading edge region of first stage vanes most often have higher deposition rates than other areas due to strong fluid acceleration and streamline curvature in the vicinity of the surface. This region remains one of the most difficult areas in a turbine nozzle to cool due to high inlet temperatures and only a small pressure ratio for cooling. The leading edge of a vane often has relatively high heat transfer coefficients and is often cooled using showerhead film cooling arrays. The throat of the first stage nozzle is another area where deposition potentially has a strongly adverse effect on turbine performance as this region meters the turbine inlet flow. Based on roughness

  12. Ac irreversibility line of bismuth-based high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Mehdaoui, A. [Laboratoire de Physique et de Spectroscopie Electronique, URA 1435 Faculte des Sciences, Universite de Haute Alsace 4, rue des Freres Lumiere, 68093 Mulhouse Cedex (France); Beille, J. [Laboratoire Louis Neel, CNRS, BP 166, 38042 Grenoble Cedex 9 (France); Berling, D.; Loegel, B. [Laboratoire de Physique et de Spectroscopie Electronique, URA 1435 Faculte des Sciences, Universite de Haute Alsace 4, rue des Freres Lumiere, 68093 Mulhouse Cedex (France); Noudem, J.G.; Tournier, R. [EPM-MATFORMAG, Laboratoire dElaboration par Procede Magnetique, CNRS, BP 166, 38042 Grenoble Cedex 9 (France)

    1997-09-01

    We discuss the magnetic properties of lead doped Bi-2223 bulk samples obtained through combined magnetic melt texturing and hot pressing (MMTHP). The ac complex susceptibility measurements are achieved over a broad ac field range (1 Oe{lt}h{sub ac}{lt}100 Oe) and show highly anisotropic properties. The intergranular coupling is improved in the direction perpendicular to the applied stress and magnetic field direction, and an intragranular loss peak is observed for the first time. A comparison is made with other bismuth-based compounds and it is shown that the MMTHP process shifts the ac irreversibility line (ac IL) toward higher fields. It is also shown that all the ac IL{close_quote}s for quasi 2D bismuth-based compounds show a nearly quadratic temperature dependence and deviate therefore strongly from the linear behavior observed in quasi 3D compounds and expected from a critical state model.{copyright} {ital 1997 Materials Research Society.}

  13. Applicability of Al-powder-alloy coating to corrosion barriers of 316SS in liquid lead-bismuth eutectic

    International Nuclear Information System (INIS)

    Kurata, Yuji; Sato, Hidetomo; Yokota, Hitoshi; Suzuki, Tetsuya

    2011-01-01

    A new Al-alloy coating method using Al, Ti and Fe powders has been applied to 316SS in order to develop corrosion resistant coating in liquid lead-bismuth eutectic (LBE). The 316SS plates with coating layers of different Al concentrations were exposed to liquid LBE with controlled oxygen concentrations of 10 -6 to 10 -4 mass% at 823 K for 3600 ks. While surface oxidation and grain boundary corrosion accompanied by liquid LBE penetration are observed in 316SS without Al-alloy coating, the Al-alloy coating is effective to protect such severe corrosion attacks in liquid LBE. Although the coating layer containing 2.8 mass% Al does not always keep sufficient corrosion resistance, good corrosion resistance is obtained through the Al-oxide film formed in liquid LBE in the coating layer where the average Al concentration is 4.2 mass%. Cracks are formed in the coating layer containing 17.8 mass% Al during the coating process. The Al-powder-alloy coating applied to 316SS is promising as a corrosion resistant coating method in liquid LBE environment. (author)

  14. Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering.

    Science.gov (United States)

    Pan, Hao; Ma, Jing; Ma, Ji; Zhang, Qinghua; Liu, Xiaozhi; Guan, Bo; Gu, Lin; Zhang, Xin; Zhang, Yu-Jun; Li, Liangliang; Shen, Yang; Lin, Yuan-Hua; Nan, Ce-Wen

    2018-05-08

    Developing high-performance film dielectrics for capacitive energy storage has been a great challenge for modern electrical devices. Despite good results obtained in lead titanate-based dielectrics, lead-free alternatives are strongly desirable due to environmental concerns. Here we demonstrate that giant energy densities of ~70 J cm -3 , together with high efficiency as well as excellent cycling and thermal stability, can be achieved in lead-free bismuth ferrite-strontium titanate solid-solution films through domain engineering. It is revealed that the incorporation of strontium titanate transforms the ferroelectric micro-domains of bismuth ferrite into highly-dynamic polar nano-regions, resulting in a ferroelectric to relaxor-ferroelectric transition with concurrently improved energy density and efficiency. Additionally, the introduction of strontium titanate greatly improves the electrical insulation and breakdown strength of the films by suppressing the formation of oxygen vacancies. This work opens up a feasible and propagable route, i.e., domain engineering, to systematically develop new lead-free dielectrics for energy storage.

  15. Design and Selection of Innovative Primary Circulation Pumps for GEN-IV Lead Fast Reactors

    Directory of Open Access Journals (Sweden)

    Walter Borreani

    2017-12-01

    Full Text Available Although Lead-cooled Fast Reactor (LFR is not a new concept, it continues to be an example of innovation in the nuclear field. Recently, there has been strong interest in liquid lead (Pb or liquid lead–bismuth eutectic (LBE both critical and subcritical systems in a relevant number of Countries, including studies performed in the frame of GENERATION-IV initiative. In this paper, the theoretical and computational findings for three different designs of Primary Circulation Pump (PCP evolving liquid lead (namely the jet pump, the Archimedean pump and the blade pump are presented with reference to the ALFRED (Advanced Lead Fast Reactor European Demonstrator design. The pumps are first analyzed from the theoretical point of view and then modeled with a 3D CFD code. Required design performance of the pumps are approximatively around an effective head of 2 bar with a mass flow rate of 5000 kg/s. Taking into account the geometrical constraints of the reactor and the fluid dynamics characteristics of the molten lead, the maximum design velocity for molten lead fluid flow of 2 m/s may be exceeded giving rise to unacceptable erosion phenomena of the blade or rotating component of the primary pumping system. For this reason a deep investigation of non-conventional axial pumps has been performed. The results presented shows that the design of the jet pump looks like beyond the current technological feasibility while, once the mechanical challenges of the Archimedean (screw pump and the fluid-dynamic issues of the blade pump will be addressed, both could represent viable solutions as PCP for ALFRED. Particularly, the blade pump shows the best performance in terms of pressure head generated in normal operation conditions as well as pressure drop in locked rotor conditions. Further optimizations (mainly for what the geometrical configuration is concerned are still necessary.

  16. Nanophotonic Modulator with Bismuth Ferrite as Low-loss Switchable Material

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Zhukovsky, Sergei; Lavrinenko, Andrei

    2015-01-01

    We propose a nanophotonic waveguide modulator with bismuth ferrite as a tunable material. Due to near-zero losses in bismuth ferrite, modulation with up to 20 dB/μm extinction ratio and 12 μm propagation length is achieved.......We propose a nanophotonic waveguide modulator with bismuth ferrite as a tunable material. Due to near-zero losses in bismuth ferrite, modulation with up to 20 dB/μm extinction ratio and 12 μm propagation length is achieved....

  17. Analysis and testing of W-DHR system for decay heat removal in the lead-cooled ELSY reactor

    International Nuclear Information System (INIS)

    Bandini, Giacomino; Meloni, Paride; Polidori, Massimiliano; Gaggini, Piero; Labanti, Valerio; Tarantino, Mariano; Cinotti, Luciano; Presciuttini, Leonardo

    2009-01-01

    An innovative LFR system that complies with GEN IV goals is under design in the frame of ELSY European project. ELSY is a lead-cooled pool-type reactor of about 1500 MW thermal power which normally relies on the secondary system for decay heat removal. Since the secondary system is not safety-grade and must be fully depressurized in case of detection of a steam generator tube rupture, an independent and much reliable decay heat removal (DHR) system is foreseen on the primary side. Owing to the limited capability of the Reactor Vessel Air Cooling System (RVACS) in this large power reactor, additional safety-grade loops equipped with coolers immersed in the primary coolant are necessary for an efficient removal of decay heat. Some of these loops (W-DHR) are of innovative design and may operate with water at atmospheric pressure. In the frame of the ICE program to be performed on the integral facility CIRCE at ENEA/Brasimone research centre within the EUROTRANS European project, integral circulation experiments with core heat transport and heat removal by steam generator will be conducted in a reactor pool-type configuration. Taking advantage from this experimental program, a mock-up of W-DHR heat exchanger will be tested in order to investigate its functional behavior for decay heat removal. Some pre-test calculations of W-DHR heat exchanger operation in CIRCE have been performed with the RELAP5 thermal-hydraulic code in order to support the heat exchanger design and test conduct. In this paper the experimental activity to be conducted in CIRCE and main results from W-DHR pre-test calculations are presented, along with a preliminary investigation of the W-DHR system efficiency in ELSY configuration. (author)

  18. Development of modular thermostatic vapour-cooled current leads for cryogenic service

    International Nuclear Information System (INIS)

    Blessing, H.; Lebrun, P.

    1983-01-01

    Cryogenic current leads cooled by helium vapour have been developed, built and tested. Their construction, based on standard electrolytic copper braids crimped at the ends, is such as to provide flexible cold terminations and make possible a modular design. The warm terminations combine electrical insulation, leak-tightness and integrated thermostatic valves controlling lead temperature and avoiding thermal run-away or ice build-up. After giving a detailed description of their construction, this report presents results of performance and reliability tests made on prototype units. (orig.)

  19. Short report: evaluation of Helicobacter pylori eradication with bismuth sucralfate

    NARCIS (Netherlands)

    Reijers, M. H.; Noach, L. A.; Tytgat, G. N.

    1994-01-01

    In a pilot study we have evaluated the clinical efficacy of bismuth sucralfate to eradicate H. pylori. Ten consecutive patients with chronic dyspepsia and H. pylori associated gastritis were treated with bismuth sucralfate (220 mg bismuth per tablet, 4 tablets per day for 4 weeks). If a 14C urea

  20. Development of disposable bulk-modified screen-printed electrode based on bismuth oxide for stripping chronopotentiometric analysis of lead (II) and cadmium (II) in soil and water samples

    International Nuclear Information System (INIS)

    Kadara, Rashid O.; Tothill, Ibtisam E.

    2008-01-01

    A bulk-modified screen-printed carbon electrode characterised for metal ion detection is presented. Bismuth oxide (Bi 2 O 3 ) was mixed with graphite-carbon ink to obtain the modified electrode. The best composition was 2% Bi 2 O 3 (wt%) in the graphite-carbon ink. The modified electrode with onboard screen-printed carbon counter and silver-silver chloride pseudo-reference electrodes exhibited good performance in the electrochemical measurement of lead (II) and cadmium (II). The electrode displayed excellent linear behaviour in the concentration range examined (20-300 μg L -1 ) with limits of detection of 8 and 16 μg L -1 for both lead (II) and cadmium (II), respectively. The analytical utility of the modified electrode was illustrated by the stripping chronopotentiometric determinations of lead (II) in soil extracts and wastewater samples

  1. How reliable are environmental data on 'orphan' elements? The case of bismuth concentrations in surface waters.

    Science.gov (United States)

    Filella, Montserrat

    2010-01-01

    Like all elements of the periodic table, bismuth is ubiquitously distributed throughout the environment as a result of natural processes and human activities. It is present as Bi(III) in environmental, biological and geochemical samples. Although bismuth and its compounds are considered to be non-toxic to humans, its increasing use as a replacement for lead has highlighted how little is known about its environmental and ecotoxicological behaviour. In this first critical review paper on the existing information on bismuth occurrence in natural waters, 125 papers on fresh and marine waters have been collated. Although the initial objective of this study was to establish the range of the typical concentrations of total dissolved bismuth in natural waters, this proved impossible to achieve due to the wide, and hitherto unexplained, dispersion of published data. Since analytical limitations might be one of the reasons underlying value dispersion, new analytical methods published since 2000--intended to be applied to natural waters--have also been reviewed. Disappointingly, the detection limits of the bulk of them are well above those required; they are thus of limited usefulness. Analysis of the existing information on bismuth in secondary references (i.e., books, review chapters) and on its chemical speciation in seawater revealed that the uncritical reproduction of old data is a widespread practice.

  2. Use of a Soluble Anode in Electrodeposition of Thick Bismuth Telluride Layers

    Science.gov (United States)

    Maas, M.; Diliberto, S.; de Vaulx, C.; Azzouz, K.; Boulanger, C.

    2014-10-01

    Integration of thermoelectric devices within an automotive heat exchanger could enable conversion of lost heat into electrical energy, contributing to improved total output from the engine. For this purpose, synthesis of thick bismuth telluride (Bi2Te3) films is required. Bismuth telluride has been produced by an electrochemical method in nitric acid with a sacrificial bismuth telluride anode as the source of cations. The binary layer grows on the working electrode while the counter-electrode, a Bi2Te3 disk obtained by high frequency melting, is oxidized to BiIII and TeIV. This process leads to auto-regeneration of the solution without modification of its composition. The thickness of films deposited by use of the Bi2Te3 anode was approximately 10 times that without. To demonstrate the utility of a soluble anode in electrochemical deposition, we report characterization of the composition and morphology of the films obtained under different experimental conditions. Perfectly dense and regular Bi2Te3 films (˜400 μm) with low internal stress and uniform composition across the cross-section were prepared. Their thermoelectric properties were assessed.

  3. European supercritical water cooled reactor (HPLWR Phase 2 project)

    International Nuclear Information System (INIS)

    Schulenberg, Thomas; Starflinger, Joerg; Marsault, Philippe; Bittermann, Dietmar; Maraczy, Czaba; Laurien, Eckart; Lycklama, Jan Aiso; Anglart, Henryk; Andreani, Michele; Ruzickova, Mariana; Heikinheimo, Liisa

    2010-01-01

    The High Performance Light Water Reactor (HPLWR), how the European Supercritical Water Cooled Reactor is called, is a pressure vessel type reactor operated with supercritical water at 25 MPa feedwater pressure and 500 deg C maximum core outlet temperature. It is designed and analyzed by a European consortium of 13 partners from 8 Euratom member states in the second phase of the HPLWR project. Most emphasis has been laid on a core with a thermal neutron spectrum, consisting of small, housed fuel assemblies with 40 fuel pins each and a central water box to improve the neutron moderation despite the low coolant density. Peak cladding temperatures of the fuel rods have been minimized by heating up the coolant in three steps with intermediate coolant mixing. The innovative core design with upward and downward flow through its assemblies has been studied with neutronic, thermal-hydraulic and stress analyses and has been reviewed carefully in a mid-term assessment. The containment design with its safety and residual heat removal systems is based on the latest boiling water reactor concept, but with different passive high pressure coolant injection systems to cause a forced convection through the core. The design concept of the steam cycle is indicating the envisaged efficiency increase to around 44%. Moreover, it provides the constraints to design the components of the balance of the plant. The project is accompanied by numerical studies of heat transfer of supercritical water in fuel assemblies and by material tests of candidate cladding alloys, performed by the consortium and supported by additional tests of the Joint Research Centre of the European Commission. An overview of results achieved up to now, given in this paper, is illustrating the latest scientific and technological advances. (author)

  4. Comparison of different target material options for the European Spallation Source based on certain aspects related to the final disposal

    Science.gov (United States)

    Kókai, Zsófia; Török, Szabina; Zagyvai, Péter; Kiselev, Daniela; Moormann, Rainer; Börcsök, Endre; Zanini, Luca; Takibayev, Alan; Muhrer, Günter; Bevilacqua, Riccardo; Janik, József

    2018-02-01

    Different target options have been examined for the European Spallation Source, which is under construction in Lund, Sweden. During the design update phase, parameters and characteristics for the target design have been optimized not only for neutronics but also with respect to the waste characteristics related to the final disposal of the target. A rotating, solid tungsten target was eventually selected as baseline concept; the other options considered included mercury and lead-bismuth (LBE) targets suitable for a pulsed source. Since the licensee is obliged to present a decommissioning plan even before the construction phase starts, the radioactive waste category of the target after full operation time is of crucial importance. The results obtained from a small survey among project partners of 7th Framework Program granted by EU 202247 contract have been used. Waste characteristics of different potential spallation target materials were compared. Based on waste index, the tungsten target is the best alternative and the second one is the mercury target. However, all alternatives have HLW category after a 10 year cooling. Based on heat generation alone all of the options would be below the HLW limit after this cooling period. The LBE is the least advantageous alternative based on waste index and heat generation comparison. These results can be useful in compiling the licensing documents of the ESS facility as the target alternatives can be compared from various aspects related to their disposal.

  5. Local velocity measurements in lead-bismuth and sodium flows using the ultrasound doppler velocimetry

    International Nuclear Information System (INIS)

    Eckert, S.; Gerbeth, G.

    2003-01-01

    We will present measurements of the velocity profiles in liquid sodium and eutectic lead-bismuth by means of the Ultrasonic Doppler Velocimetry (UDV). A sodium flow in a rectangular duct exposed to an external, transverse magnetic field has been examined. To demonstrate the capability of UDV the transformation of the well-known turbulent, piston-like profile to an M-shaped velocity profile for growing magnetic field strength was observed. The significance of artifacts such as caused by the existence of reflecting interfaces in the measuring domain will be discussed. In the sodium case, the measurements were performed through the channel wall. An integrated ultrasonic sensor with acoustic wave-guide has been developed to overcome the limitation of ultrasonic transducers to temperatures lower than 200 .deg. C. This sensor can presently be applied at maximum temperatures up to 800 .deg. C. Stable and robust measurements have been performed in various PbBi flows in our laboratory at FZR as well as at the THESYS loop of the KALLA laboratory of the ForschungsZentrum Karlsruhe (FZK). We will also present experimental results obtained in a PbBi bubbly flow at 250...300 .deg. C. Argon bubbles were injected through a single orifice in a cylindrical container filled with stagnant PbBi. Velocity profiles were measured in the bubble plume. Mean values of the liquid as well as the bubble velocity were extracted from the data and will be presented as function of the gas flow rate

  6. Investigation on the applicability of turbulent-Prandtl-number models for liquid lead-bismuth eutectic

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei, E-mail: chenfei@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); North China University of Water Resources and Electric Power, Zhengzhou, Henan 450011 (China); Huai, Xiulan, E-mail: hxl@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Cai, Jun, E-mail: caijun@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Xunfeng, E-mail: lixunfeng@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Meng, Ruixue, E-mail: mengruixue@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-04-15

    Highlights: ► We examine the applicability of various Pr{sub t} models into the simulation of LBE flow. ► Reynolds analogy suitable for conventional fluids cannot accurately simulate the heat transfer characteristics of LBE flow. ► The different Pr{sub t} model should be selected for the different thermal boundary condition of LBE flow. -- Abstract: With the proposal of Accelerator Driven Sub-critical System (ADS) together with liquid lead-bismuth eutectic (LBE) as coolant for both reactor and spallation target, the use of accurate heat transfer correlation and reliable turbulent-Prandtl-number model of LBE in turbulent flows is essential when designing ADS components of primary loop and heat exchanger of secondary loop. Unlike conventional fluids, there is not an acknowledged turbulent-Prandtl-number model for LBE flows. This paper reviews and assesses the existing turbulent-Pandtl-number models and various heat transfer correlations in circular tubes. Computational fluid dynamics (CFD) analysis is employed to evaluate the applicability of various turbulent-Prandtl-number models for LBE in the circular tube under boundary conditions of constant heat flux and constant wall temperature. Based on the assessment of turbulent-Prandtl-number models, the reliable turbulent-Prandtl-number models are recommended for CFD applications to LBE flows under boundary conditions of constant heat flux and constant wall temperature. The present study indicates that turbulent Prandtl number has a significant difference in turbulent LBE flow between constant-heat-flux and constant-wall-temperature boundary conditions.

  7. Formation of gas-phase π-allyl radicals from propylene over bismuth oxide and γ-bismuth molybdate catalysts

    International Nuclear Information System (INIS)

    Martir, W.; Lunsford, J.H.

    1981-01-01

    Gas-phase π-allyl radicals were produced when propylene reacted over Bi 2 O 3 and γ-bismuth molybdate catalysts at 723 K. The pressure in the catalyst zone was varied between 5 x 10 -3 and 1 torr. The radicals were detected by EPR spectroscopy together with a matrix isolation technique in which argon was used as the diluent. The matrix was formed on a sapphire rod at 12 K which was located 33-cm downstream from the catalyst. Bismuth oxide was more effective in the production of gas-phase allyl radicals than γ-bismuth molybdate. By contrast α-bismuth molybdate was ineffective in forming allyl radicals and MoO 3 acted as a sink for radicals which were produced elsewhere in the system. Comparison of the π-allyl radical and the stable product concentrations over Bi 2 O 3 revealed that gas-phase radical recombination reactions served as a major pathway for the formation of 1,5-hexadiene. Addition of small amounts of gas-phase oxygen increased the concentration of allyl radicals, and at greater oxygen levels allyl peroxy radicals were detected. Because of the effect of temperature on the equilibrium between allyl and allyl peroxy radicals, the latter product must be formed in the cooler part of the system

  8. Synthetic structural and biochemical studies of coordination compounds of Bismuth (III) with Schiff bases of sulpha drugs

    International Nuclear Information System (INIS)

    Khan, Shahina; Gupta, M.K.; Varshney, S; Varshney, A.K.

    2006-01-01

    The reactions of Bismuth trichloride with Schiff's bases derived from sulpha drugs in 1:1 molar ratio leads to the formation of a new series of coordination compound of Bismuth (III). Their structures have been confirmed on the basis of elemental analysis, ultraviolet, infrared and multinuclear magnetic resonance (1H 13C) spectral studies. The antimicrobial activities of the ligands and their coordination compound have been screened in vitro against the organism Escherichia coli, Stuplhylococus crureus, Prouteus mirabilis, Bacillus thuren giensis, penicilliurn cf.vsogenum, Aspergillns raiger and Fusarium Oxysporum. (author)

  9. Heat capacity, enthalpy and entropy of bismuth niobate and bismuth tantalate

    Czech Academy of Sciences Publication Activity Database

    Hampl, M.; Strejc, A.; Sedmidubský, D.; Růžička, K.; Hejtmánek, Jiří; Leitner, J.

    2006-01-01

    Roč. 179, - (2006), s. 77-80 ISSN 0022-4596 Institutional research plan: CEZ:AV0Z10100521 Keywords : heat capacity * heat of formation * heat content * bismuth perovskite Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.107, year: 2006

  10. Solar cooling for small office buildings: Comparison of solar thermal and photovoltaic options for two different European climates

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, N. [University of Stuttgart, Institute of Energy Economics and the Rational Use of Energy (IER), Hessbruehlstr. 49a, 70565 Stuttgart (Germany); Glueck, C. [Karlsruhe Institute of Technology (KIT), Institute of Fluid Machinery (FSM), Kaiserstr. 12, 76131 Karlsruhe (Germany); Schmidt, F.P. [Karlsruhe Institute of Technology (KIT), Institute of Fluid Machinery (FSM), Kaiserstr. 12, 76131 Karlsruhe (Germany); Fraunhofer ISE, Heidenhofstr. 2, 79110 Freiburg (Germany)

    2011-05-15

    We present a comparison of solar thermal and solar electric cooling for a typical small office building exposed to two different European climates (Freiburg and Madrid). The investigation is based on load series for heating and cooling obtained previously from annual building simulations in TRNSYS. A conventional compression chiller is used as the reference system against which the solar options are evaluated with respect to primary energy savings and additional cost. A parametric study on collector and storage size is carried out for the solar thermal system to reach achieve the minimal cost per unit of primary energy saved. The simulated solar electric system consists of the reference system, equipped with a grid connected photovoltaic module, which can be varied in size. For cost comparison of the two systems, the electric grid is assumed to function as a cost-free storage. A method to include macroeconomic effects in the comparison is presented and discussed. Within the system parameters and assumptions used here, the grid coupled PV system leads to lower costs of primary energy savings than the solar thermal system at both locations. The presumed macroeconomic advantages of the solar thermal system, due to the non-usage of energy during peak demand, can be confirmed for Madrid. (author)

  11. Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two phase. 11. meeting of the International Association for Hydraulic Research (IAHR) Working Group. Working material

    International Nuclear Information System (INIS)

    2005-01-01

    This Working Material includes the papers presented at the International Meeting 'Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two-phase', which was held 5-9 July 2004 at the State Scientific Center of Russian Federation - Institute for Physics and Power Engineering named after A.I. Leypunsky, in Obninsk near Moscow. The objectives of the meeting were to discuss new results obtained in the field of liquid metal coolant and to recommend the lines of further general physics and applied investigations, with the purpose of validating existing and codes under development for liquid metal cooled advanced and new generation nuclear reactors. Most of the contributions present results of experimental and numerical investigations into velocity, temperature and heat transfer in fuel subassemblies of fast reactors cooled by sodium or lead. In the frame of the meeting a benchmark problem devoted to heat transfer in the model subassembly of the fast reactor BREST-OD-300 was proposed. Experts from 5 countries (Japan, Netherlands, Spain, Republic of Korea, and Russia) took part in this benchmark exercise. The results of the benchmark calculations are summarized in the Working Material. The results of hydrodynamic studies of pressure head chambers and collector systems of liquid metal cooled reactors are presented in a number of papers. Also attention was given to the generalization of experimental data on hydraulic losses in the pipelines in case of mutual influence of local pressure drops, and to the modeling of natural convection in the fuel subassemblies and circuits with liquid metal cooling. Special emphasis at the meeting was placed on thermal hydraulics issues related to the development and design of target systems, such as heat removal in the target unit of the cascade subcritical reactor cooled by liquid salt; the target complex MK-1 for accelerator driven systems cooled by eutectic lead-bismuth alloy; and the test

  12. Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two phase. 11. meeting of the International Association for Hydraulic Research (IAHR) Working Group. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This Working Material includes the papers presented at the International Meeting 'Hydrodynamics and heat transfer in reactor components cooled by liquid metal coolants in single/two-phase', which was held 5-9 July 2004 at the State Scientific Center of Russian Federation - Institute for Physics and Power Engineering named after A.I. Leypunsky, in Obninsk near Moscow. The objectives of the meeting were to discuss new results obtained in the field of liquid metal coolant and to recommend the lines of further general physics and applied investigations, with the purpose of validating existing and codes under development for liquid metal cooled advanced and new generation nuclear reactors. Most of the contributions present results of experimental and numerical investigations into velocity, temperature and heat transfer in fuel subassemblies of fast reactors cooled by sodium or lead. In the frame of the meeting a benchmark problem devoted to heat transfer in the model subassembly of the fast reactor BREST-OD-300 was proposed. Experts from 5 countries (Japan, Netherlands, Spain, Republic of Korea, and Russia) took part in this benchmark exercise. The results of the benchmark calculations are summarized in the Working Material. The results of hydrodynamic studies of pressure head chambers and collector systems of liquid metal cooled reactors are presented in a number of papers. Also attention was given to the generalization of experimental data on hydraulic losses in the pipelines in case of mutual influence of local pressure drops, and to the modeling of natural convection in the fuel subassemblies and circuits with liquid metal cooling. Special emphasis at the meeting was placed on thermal hydraulics issues related to the development and design of target systems, such as heat removal in the target unit of the cascade subcritical reactor cooled by liquid salt; the target complex MK-1 for accelerator driven systems cooled by eutectic lead-bismuth alloy; and the test

  13. Temperature gradient compatibility tests of some refractory metals and alloys in bismuth and bismuth--lithium solutions

    International Nuclear Information System (INIS)

    DiStefano, J.R.; Cavin, O.B.

    1976-11-01

    Quartz, T-111, and Mo thermal-convection loop tests were conducted at temperatures up to 700 0 C (100 0 C ΔT) to determine the compatibility of several refractory metals/alloys with bismuth and bismuth-lithium solutions for molten salt breeder reactor applications. Methods of evaluation included weight change measurements, metallographic examination, chemical and electron microprobe analysis, and mechanical properties tests. Molybdenum, T-111, and TA--10 percent W appear to be the most promising containment materials, while niobium and iron-based alloys are unacceptable

  14. Development of disposable bulk-modified screen-printed electrode based on bismuth oxide for stripping chronopotentiometric analysis of lead (II) and cadmium (II) in soil and water samples

    Energy Technology Data Exchange (ETDEWEB)

    Kadara, Rashid O. [Cranfield Health, Cranfield University, Silsoe, Bedfordshire MK45 4DT (United Kingdom); School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottinghamshire NG11 8NS (United Kingdom)], E-mail: kayusee2001@yahoo.co.uk; Tothill, Ibtisam E. [Cranfield Health, Cranfield University, Silsoe, Bedfordshire MK45 4DT (United Kingdom)

    2008-08-08

    A bulk-modified screen-printed carbon electrode characterised for metal ion detection is presented. Bismuth oxide (Bi{sub 2}O{sub 3}) was mixed with graphite-carbon ink to obtain the modified electrode. The best composition was 2% Bi{sub 2}O{sub 3} (wt%) in the graphite-carbon ink. The modified electrode with onboard screen-printed carbon counter and silver-silver chloride pseudo-reference electrodes exhibited good performance in the electrochemical measurement of lead (II) and cadmium (II). The electrode displayed excellent linear behaviour in the concentration range examined (20-300 {mu}g L{sup -1}) with limits of detection of 8 and 16 {mu}g L{sup -1} for both lead (II) and cadmium (II), respectively. The analytical utility of the modified electrode was illustrated by the stripping chronopotentiometric determinations of lead (II) in soil extracts and wastewater samples.

  15. Nano sized bismuth oxy chloride by metal organic chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jagdale, Pravin, E-mail: pravin.jagdale@polito.it [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy); Castellino, Micaela [Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Marrec, Françoise [Laboratory of Condensed Matter Physics, University of Picardie Jules Verne (UPJV), Amiens 80039 (France); Rodil, Sandra E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexicom (UNAM), Mexico D.F. 04510 (Mexico); Tagliaferro, Alberto [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy)

    2014-06-01

    Metal organic chemical vapour deposition (MOCVD) method was used to prepare thin films of bismuth based nano particles starting from bismuth salts. Nano sized bismuth oxy chloride (BiOCl) crystals were synthesized from solution containing bismuth chloride (BiCl{sub 3}) in acetone (CH{sub 3}-CO-CH{sub 3}). Self-assembly of nano sized BiOCl crystals were observed on the surface of silicon, fused silica, copper, carbon nanotubes and aluminium substrates. Various synthesis parameters and their significant impact onto the formation of self-assembled nano-crystalline BiOCl were investigated. BiOCl nano particles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and Micro-Raman spectroscopy. These analyses confirm that bismuth nanometer-sized crystal structures showing a single tetragonal phase were indeed bismuth oxy chloride (BiOCl) square platelets 18–250 nm thick and a few micrometres wide.

  16. Overview of Generation IV (Gen IV) Reactor Designs - Safety and Radiological Protection Considerations. Published on September 24, 2012

    International Nuclear Information System (INIS)

    Couturier, Jean; Bruna, Giovanni; Baudrand, Olivier; Blanc, Daniel; Ivanov, Evgeny; Bonneville, Herve; Clement, Bernard; Kissane, Martin; Meignen, Renaud; Monhardt, Daniel; Nicaise, Gregory; Bourgois, Thierry; Hache, Georges

    2012-01-01

    The purpose of this document is to provide an updated overview of specific safety and radiological protection issues for all the reactor concepts adopted by the GIF (Generation IV International Forum), independent of their advantages or disadvantages in terms of resource optimization or long-lived-waste reduction. In particular, this new document attempts to bring out the advantages and disadvantages of each concept in terms of safety, taking into account the Western European Nuclear Regulators' Association (WENRA) statement concerning safety objectives for new nuclear power plants. Using an identical framework for each reactor concept (sodium-cooled fast reactors or SFR, high / very-high temperature helium-cooled reactors of V/HTR, gas-cooled fast reactors or GFR, lead-or lead / bismuth-cooled fast reactors or LFR, molten salt reactors or MSR, and supercritical-water-cooled reactors or SCWR), this summary report provides some general conclusions regarding their safety and radiological protection issues, inspired by WENRA's safety objectives and on the basis of available information. Initial lessons drawn from the events at the Fukushima-Daiichi nuclear power plant in March 2011 have also been taken into account in IRSN's analysis of each reactor concept

  17. Overview of Generation IV (Gen IV) Reactor Designs - Safety and Radiological Protection Considerations

    International Nuclear Information System (INIS)

    Baudrand, Olivier; Blanc, Daniel; Ivanov, Evgeny; Bonneville, Herve; Clement, Bernard; Kissane, Martin; Meignen, Renaud; Monhardt, Daniel; Nicaise, Gregory; Bourgois, Thierry; Bruna, Giovanni; Hache, Georges; Repussard, Jacques

    2012-01-01

    The purpose of this document is to provide an updated overview of specific safety and radiological protection issues for all the reactor concepts adopted by the GIF (Generation IV International Forum), independent of their advantages or disadvantages in terms of resource optimization or long-lived-waste reduction. In particular, this new document attempts to bring out the advantages and disadvantages of each concept in terms of safety, taking into account the Western European Nuclear Regulators' Association (WENRA) statement concerning safety objectives for new nuclear power plants. Using an identical framework for each reactor concept (sodium-cooled fast reactors or SFR, high / very-high temperature helium-cooled reactors of V/HTR, gas-cooled fast reactors or GFR, lead-or lead / bismuth-cooled fast reactors or LFR, molten salt reactors or MSR, and supercritical-water-cooled reactors or SCWR), this summary report provides some general conclusions regarding their safety and radiological protection issues, inspired by WENRA's safety objectives and on the basis of available information. Initial lessons drawn from the events at the Fukushima-Daiichi nuclear power plant in March 2011 have also been taken into account in IRSN's analysis of each reactor concept

  18. Designing a gas cooled ADS for enhanced waste transmutation. The PDS-XADS European Project contribution

    International Nuclear Information System (INIS)

    Rimpault, G.; Sunderland, R.; Mueller, A.C.

    2006-01-01

    objective of accelerator driven systems (ADS) is for nuclear waste transmutation in order to reduce the radio-toxicity of the spent fuel in final storage disposal. Achieving this goal requires other technologies associated with an advanced fuel cycle with uranium-free fuel heavily loaded with minor actinides and associated fabrication and reprocessing capabilities. The primary or reference option for the advanced fuels for the ADS is based on the (Pu,MA)-O 2 material: a composite with Mo92 (CERMET) or MgO (CERCER). The size of the plant for a given fuel technology is of significant importance to achieve net MA consumption. The larger the size, the smaller amount of Plutonium is needed to achieve the requested reactivity level, and the greater amount of Minor Actinide (MA) can be provided and will, in the end, be burnt. A good compromise for a Helium cooled ADT core with roughened steel pin cladding leads to a volume power of 44 W/cm 3 and an installed power of 400 MWth. The design of this core takes advantage of previous studies by keeping the pressure drop over the core height below 0.5 bar hence preserving the decay removal capabilities and decreasing the pin diameter (7.71 mm) in order to keep the linear power below 152 W/cm. The 6. EUROTRANS Integrated Project will be targeting an European Transmutation Demonstrator (ETD) primarily with lead coolant but also with helium coolant (ETD/EFIT of several hundred MWth, EFIT for European Facility on Industrial scale Transmuter) able to transmute Nuclear Waste on a industrial scale with the full set of constraints taken into account. (authors)

  19. Cool horizons lead to information loss

    Science.gov (United States)

    Chowdhury, Borun D.

    2013-10-01

    There are two evidences for information loss during black hole evaporation: (i) a pure state evolves to a mixed state and (ii) the map from the initial state to final state is non-invertible. Any proposed resolution of the information paradox must address both these issues. The firewall argument focuses only on the first and this leads to order one deviations from the Unruh vacuum for maximally entangled black holes. The nature of the argument does not extend to black holes in pure states. It was shown by Avery, Puhm and the author that requiring the initial state to final state map to be invertible mandates structure at the horizon even for pure states. The proof works if black holes can be formed in generic states and in this paper we show that this is indeed the case. We also demonstrate how models proposed by Susskind, Papadodimas et al. and Maldacena et al. end up making the initial to final state map non-invertible and thus make the horizon "cool" at the cost of unitarity.

  20. Thermal-hydraulic analysis of an innovative decay heat removal system for lead-cooled fast reactors

    International Nuclear Information System (INIS)

    Giannetti, Fabio; Vitale Di Maio, Damiano; Naviglio, Antonio; Caruso, Gianfranco

    2016-01-01

    Highlights: • LOOP thermal-hydraulic transient analysis for lead-cooled fast reactors. • Passive decay heat removal system concept to avoid lead freezing. • Solution developed for the diversification of the decay heat removal functions. • RELAP5 vs. RELAP5-3D comparison for lead applications. - Abstract: Improvement of safety requirements in GEN IV reactors needs more reliable safety systems, among which the decay heat removal system (DHR) is one of the most important. Complying with the diversification criteria and based on pure passive and very reliable components, an additional DHR for the ALFRED reactor (Advanced Lead Fast Reactor European Demonstrator) has been proposed and its thermal-hydraulic performances are analyzed. It consists in a coupling of two innovative subsystems: the radiative-based direct heat exchanger (DHX), and the pool heat exchanger (PHX). Preliminary thermal-hydraulic analyses, by using RELAP5 and RELAP5-3D© computer programs, have been carried out showing that the whole system can safely operate, in natural circulation, for a long term. Sensitivity analyses for: the emissivity of the DHX surfaces, the PHX water heat transfer coefficient (HTC) and the lead HTC have been carried out. In addition, the effects of the density variation uncertainty on the results has been analyzed and compared. It allowed to assess the feasibility of the system and to evaluate the acceptable range of the studied parameters. A comparison of the results obtained with RELAP5 and RELAP5-3D© has been carried out and the analysis of the differences of the two codes for lead is presented. The features of the innovative DHR allow to match the decay heat removal performance with the trend of the reactor decay heat power after shutdown, minimizing at the same time the risk of lead freezing. This system, proposed for the diversification of the DHR in the LFRs, could be applicable in the other pool-type liquid metal fast reactors.

  1. Thermal-hydraulic analysis of an innovative decay heat removal system for lead-cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Giannetti, Fabio; Vitale Di Maio, Damiano; Naviglio, Antonio; Caruso, Gianfranco, E-mail: gianfranco.caruso@uniroma1.it

    2016-08-15

    Highlights: • LOOP thermal-hydraulic transient analysis for lead-cooled fast reactors. • Passive decay heat removal system concept to avoid lead freezing. • Solution developed for the diversification of the decay heat removal functions. • RELAP5 vs. RELAP5-3D comparison for lead applications. - Abstract: Improvement of safety requirements in GEN IV reactors needs more reliable safety systems, among which the decay heat removal system (DHR) is one of the most important. Complying with the diversification criteria and based on pure passive and very reliable components, an additional DHR for the ALFRED reactor (Advanced Lead Fast Reactor European Demonstrator) has been proposed and its thermal-hydraulic performances are analyzed. It consists in a coupling of two innovative subsystems: the radiative-based direct heat exchanger (DHX), and the pool heat exchanger (PHX). Preliminary thermal-hydraulic analyses, by using RELAP5 and RELAP5-3D© computer programs, have been carried out showing that the whole system can safely operate, in natural circulation, for a long term. Sensitivity analyses for: the emissivity of the DHX surfaces, the PHX water heat transfer coefficient (HTC) and the lead HTC have been carried out. In addition, the effects of the density variation uncertainty on the results has been analyzed and compared. It allowed to assess the feasibility of the system and to evaluate the acceptable range of the studied parameters. A comparison of the results obtained with RELAP5 and RELAP5-3D© has been carried out and the analysis of the differences of the two codes for lead is presented. The features of the innovative DHR allow to match the decay heat removal performance with the trend of the reactor decay heat power after shutdown, minimizing at the same time the risk of lead freezing. This system, proposed for the diversification of the DHR in the LFRs, could be applicable in the other pool-type liquid metal fast reactors.

  2. Recent Advances in Bismuth-Based Nanomaterials for Photoelectrochemical Water Splitting.

    Science.gov (United States)

    Bhat, Swetha S M; Jang, Ho Won

    2017-08-10

    In recent years, bismuth-based nanomaterials have drawn considerable interest as potential candidates for photoelectrochemical (PEC) water splitting owing to their narrow band gaps, nontoxicity, and low costs. The unique electronic structure of bismuth-based materials with a well-dispersed valence band comprising Bi 6s and O 2p orbitals offers a suitable band gap to harvest visible light. This Review presents significant advancements in exploiting bismuth-based nanomaterials for solar water splitting. An overview of the different strategies employed and the new ideas adopted to improve the PEC performance of bismuth-based nanomaterials are discussed. Morphology control, the construction of heterojunctions, doping, and co-catalyst loading are several approaches that are implemented to improve the efficiency of solar water splitting. Key issues are identified and guidelines are suggested to rationalize the design of efficient bismuth-based materials for sunlight-driven water splitting. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Investigation of vessel exterior air cooling for a HLMC reactor

    International Nuclear Information System (INIS)

    Sienicki, J. J.; Spencer, B. W.

    2000-01-01

    The Secure Transportable Autonomous Reactor (STAR) concept under development at Argonne National Laboratory provides a small (300 MWt) reactor module for steam supply that incorporates design features to attain proliferation resistance, heightened passive safety, and improved cost competitiveness through extreme simplification. Examples are the achievement of 100%+ natural circulation heat removal from the low power density/low pressure drop ultra-long lifetime core and utilization of lead-bismuth eutectic (LBE) coolant enabling elimination of main coolant pumps as well as the need for an intermediate heat transport circuit. It is required to provide a passive means of removing decay heat and effecting reactor cooldown in the event that the normal steam generator heat sink, including its normal shutdown heat removal mode, is postulated to be unavailable. In the present approach, denoted as the Reactor Exterior Cooling System (RECS), passive decay heat removal is provided by cooling the outside of the containment/guard vessel with air. RECS is similar to the Reactor Vessel Auxiliary Cooling System (RVACS) incorporated into the PRISM design. However, to enhance the heat removal, RECS incorporates fins on the containment vessel exterior to enhance heat transfer to air as well as removable steel venetian conductors that provide a conduction heat transfer path across the reactor vessel-containment vessel gap to enhance heat transfer between the vessels. The objective of the present work is to investigate the effectiveness of air cooling in removing heat from the vessel and limiting the coolant temperature increase following a sudden complete loss of the steam generator heat sink

  4. Oxygen depletion of bismuth molybdates

    Energy Technology Data Exchange (ETDEWEB)

    Yong, L.K.; Howe, R.F.; Keulks, G.W.; Hall, W.K.

    1978-05-01

    Pure ..cap alpha..-phase bismuth molybdate (Bi/sub 2/Mo/sub 3/O/sub 12/), which is known to be weakly active for selective oxidation, and pure ..gamma..-phase bismuth molybdate (Bi/sub 2/MoO/sub 6/), which has good activity, were subjected to oxidation-reduction cycles with known amounts of hydrogen and oxygen, at 300/sup 0/-570/sup 0/C and with evacuation steps between treatments. The volume of oxygen consumed during reoxidation was equal to half the hydrogen consumed during the reduction on the ..cap alpha..-phase, which indicated that no hydrogen was retained during reduction. For the ..gamma..-phase, the oxygen consumption was greater than half of the hydrogen consumption and it increased with extent of reduction. The excess oxygen was apparently consumed by filling anion vacancies formed during outgassing subsequent to the reduction step. ESR spectroscopy and temperature-programed oxidation-reduction indicated that lattice oxide ions which bridge between bismuth and molybdenum layers of the koechlinite structure become more labile when the catalyst is in a partially reduced state, and that this effect is greater in the ..gamma..- than the ..cap alpha..-phase. Table and 15 references.

  5. Lead cooled heterogeneous accelerator driven molten-fluoride blanket for incineration of long-lived radioactive wastes

    International Nuclear Information System (INIS)

    Lopatkin, A.V.; Matyushechkin, V.M.; Tretyakov, I.T.; Blagovolin, P.P.; Kazaritsky, V.D.

    1997-01-01

    This paper presents a tentative design description and evaluation of the basic parameters of a lead cooled heterogeneous accelerator driven molten fluoride blanket. The proton beam of a 1 GeV accelerator strikes the blanket from below and generates spallation neutrons in the flow of lead, which serves as a target. These neutrons leave the target zone and get into a heterogeneous blanket with separated volumes of molten salts and lead. Fissile materials are dissolved in the salt. On getting into the molten salt volume the neutrons cause fission (transmutation) of the actinides, the produced heat being removed by circulation of molten lead. Two versions of the blanket design are examined. The first version: molten salt circulates in the fuel channels, while lead cools the channels flowing through the interchannel space (the salt channel design). The second version: it is lead that circulates in the channels, while molten salt takes up the interchannel space (the lead channel design). A preliminary blanket design study showed that both blanket designs possess a potential for improving performance. At present time the blanket design, mentioned above as the salt channel design, seems to be more promising. 1 ref., 2 figs., 2 tabs

  6. Development and performance test results of 50 kA vapor-cooled current lead for ITER

    International Nuclear Information System (INIS)

    Sugimoto, Makoto; Isono, Takaaki; Hamada, Kazuya

    1998-01-01

    JAERI has developed 50 kA current leads for the International Thermonuclear Experimental Reactor (ITER). The Center Solenoid (CS) Model Coil program is under way by means of international collaboration in ITER-EDA. The CS model coil is being developed for ITER CS coil and is for demonstration for ITER construction. The performance test of the CS model coil will be carried out at the JAERI ITER common test facility (CTF). The current lead consists of the vertical lead and the connection lead. The vertical lead is a vapor-cooled type and has a cable-in-conduit geometry. The vertical lead was designed with a heat leak of 1.2 W/kA at a helium flow rate of 0.06 g/(s·kA). The measured heat leak satisfied the designed value. The connection lead was made from copper pipe soldered with NbTi superconducting wires. The pipe was stabilized by the superconducting wires and a cooling channel. The current lead was operated up to 60 kA. The design and the performance test results of 50 kA current leads are reported. The results meet the specifications for the CS model coil test and for the ITER real machine. (author)

  7. Opto-electronic properties of bismuth oxide films presenting different crystallographic phases

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Celia L. [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Posgrado en Ciencia e Ingeniería de Materiales, UNAM, Unidad de Posgrado, Edificio C, Piso 1, Zona Cultural de CU, México, D.F. 04510 (Mexico); Depablos-Rivera, Osmary, E-mail: osmarydep@yahoo.com [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Posgrado en Ciencia e Ingeniería de Materiales, UNAM, Unidad de Posgrado, Edificio C, Piso 1, Zona Cultural de CU, México, D.F. 04510 (Mexico); Silva-Bermudez, Phaedra [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Instituto Nacional de Rehabilitación, Calz. México Xochimilco No. 289 Col. Arenal de Guadalupe, C.P.14389, Ciudad de México, D.F. (Mexico); Muhl, Stephen [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico); Zeinert, Andreas; Lejeune, Michael; Charvet, Stephane; Barroy, Pierre [Laboratoire de Physique de la Matière Condensée, Université de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens Cedex 1 (France); Camps, Enrique [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, kilómetro 36.5. La Marquesa, Municipio de Ocoyoacac, CP 52750, Estado de México (Mexico); Rodil, Sandra E. [Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n CU, México D.F. 04510 (Mexico)

    2015-03-02

    The optical, electrical and structural properties of bismuth oxide thin films deposited by radio frequency reactive magnetron sputtering were studied. The Bi{sub 2}O{sub 3} thin films were grown on Si and glass substrates under different power and substrate temperatures in an oxygen-enriched plasma leading to films with different crystalline phase as evidenced by X-ray diffraction and Raman spectroscopy. The optical properties of the films were measured using ellipsometric spectroscopy and optical transmission spectra. In order to parameterize the optical dispersion functions (n, k) of the films, the Tauc–Lorentz dispersion model was used. The optical bandgap was then assessed by different methods and the results are compared to the thermal variations of the electrical resistivity of the films. It was found that the refractive index, extinction coefficient and optical gap strongly depend on the deposition conditions and the crystalline phase; the fluorite defect cubic δ-Bi{sub 2}O{sub 3} phase showed the lowest optical gap and lower resistivity. - Highlights: • Different bismuth oxide phases were obtained by sputtering. • The power and substrate temperature were the two key parameters. • Room temperature delta-Bi{sub 2}O{sub 3} thin films were obtained. • The optical bandgap was around 1.5 and 2.2 eV, depending on the phase. • The bismuth oxide films presented activation energies around 1 eV.

  8. Opto-electronic properties of bismuth oxide films presenting different crystallographic phases

    International Nuclear Information System (INIS)

    Gomez, Celia L.; Depablos-Rivera, Osmary; Silva-Bermudez, Phaedra; Muhl, Stephen; Zeinert, Andreas; Lejeune, Michael; Charvet, Stephane; Barroy, Pierre; Camps, Enrique; Rodil, Sandra E.

    2015-01-01

    The optical, electrical and structural properties of bismuth oxide thin films deposited by radio frequency reactive magnetron sputtering were studied. The Bi 2 O 3 thin films were grown on Si and glass substrates under different power and substrate temperatures in an oxygen-enriched plasma leading to films with different crystalline phase as evidenced by X-ray diffraction and Raman spectroscopy. The optical properties of the films were measured using ellipsometric spectroscopy and optical transmission spectra. In order to parameterize the optical dispersion functions (n, k) of the films, the Tauc–Lorentz dispersion model was used. The optical bandgap was then assessed by different methods and the results are compared to the thermal variations of the electrical resistivity of the films. It was found that the refractive index, extinction coefficient and optical gap strongly depend on the deposition conditions and the crystalline phase; the fluorite defect cubic δ-Bi 2 O 3 phase showed the lowest optical gap and lower resistivity. - Highlights: • Different bismuth oxide phases were obtained by sputtering. • The power and substrate temperature were the two key parameters. • Room temperature delta-Bi 2 O 3 thin films were obtained. • The optical bandgap was around 1.5 and 2.2 eV, depending on the phase. • The bismuth oxide films presented activation energies around 1 eV

  9. Radioprotection to the Gonads in Pediatric Pelvic Radiography: Effectiveness of Developed Bismuth Shield

    OpenAIRE

    Vahid Karami; Mansour Zabihzadeh; Nasim Shams; Mehrdad Golami

    2017-01-01

    Background: The use and effectiveness of traditional lead gonad shields in pediatric pelvic radiography has been challenged by several literatures over the past two decades. The aim of this study was to develop a new radioprotective gonad shields to be use in pediatric pelvic radiography. Materials and Methods: The commercially available 0.06 mm lead equivalent bismuth garment has cropped squarely and used as ovarian shield to cover the entire region of pelvis. In order to prevent deteriorati...

  10. Helicobacter pylori second-line rescue therapy with levofloxacin- and bismuth-containing quadruple therapy, after failure of standard triple or non-bismuth quadruple treatments.

    Science.gov (United States)

    Gisbert, J P; Romano, M; Gravina, A G; Solís-Muñoz, P; Bermejo, F; Molina-Infante, J; Castro-Fernández, M; Ortuño, J; Lucendo, A J; Herranz, M; Modolell, I; Del Castillo, F; Gómez, J; Barrio, J; Velayos, B; Gómez, B; Domínguez, J L; Miranda, A; Martorano, M; Algaba, A; Pabón, M; Angueira, T; Fernández-Salazar, L; Federico, A; Marín, A C; McNicholl, A G

    2015-04-01

    The most commonly used second-line Helicobacter pylori eradication regimens are bismuth-containing quadruple therapy and levofloxacin-containing triple therapy, both offering suboptimal results. Combining bismuth and levofloxacin may enhance the efficacy of rescue eradication regimens. To evaluate the efficacy and tolerability of a second-line quadruple regimen containing levofloxacin and bismuth in patients whose previous H. pylori eradication treatment failed. This was a prospective multicenter study including patients in whom a standard triple therapy (PPI-clarithromycin-amoxicillin) or a non-bismuth quadruple therapy (PPI-clarithromycin-amoxicillin-metronidazole, either sequential or concomitant) had failed. Esomeprazole (40 mg b.d.), amoxicillin (1 g b.d.), levofloxacin (500 mg o.d.) and bismuth (240 mg b.d.) was prescribed for 14 days. Eradication was confirmed by (13) C-urea breath test. Compliance was determined through questioning and recovery of empty medication envelopes. Incidence of adverse effects was evaluated by questionnaires. 200 patients were included consecutively (mean age 47 years, 67% women, 13% ulcer). Previous failed therapy included: standard clarithromycin triple therapy (131 patients), sequential (32) and concomitant (37). A total of 96% took all medications correctly. Per-protocol and intention-to-treat eradication rates were 91.1% (95%CI = 87-95%) and 90% (95%CI = 86-94%). Cure rates were similar regardless of previous (failed) treatment or country of origin. Adverse effects were reported in 46% of patients, most commonly nausea (17%) and diarrhoea (16%); 3% were intense but none was serious. Fourteen-day bismuth- and levofloxacin-containing quadruple therapy is an effective (≥90% cure rate), simple and safe second-line strategy in patients whose previous standard triple or non-bismuth quadruple (sequential or concomitant) therapies have failed. © 2015 John Wiley & Sons Ltd.

  11. Pairing from dynamically screened Coulomb repulsion in bismuth

    Science.gov (United States)

    Ruhman, Jonathan; Lee, Patrick A.

    2017-12-01

    Recently, Prakash et al. have discovered bulk superconductivity in single crystals of bismuth, which is a semimetal with extremely low carrier density. At such low density, we argue that conventional electron-phonon coupling is too weak to be responsible for the binding of electrons into Cooper pairs. We study a dynamically screened Coulomb interaction with effective attraction generated on the scale of the collective plasma modes. We model the electronic states in bismuth to include three Dirac pockets with high velocity and one hole pocket with a significantly smaller velocity. We find a weak-coupling instability, which is greatly enhanced by the presence of the hole pocket. Therefore we argue that bismuth is the first material to exhibit superconductivity driven by retardation effects of Coulomb repulsion alone. By using realistic parameters for bismuth we find that the acoustic plasma mode does not play the central role in pairing. We also discuss a matrix element effect, resulting from the Dirac nature of the conduction band, which may affect Tc in the s -wave channel without breaking time-reversal symmetry.

  12. Conceptual design of a 20-kA current lead using forced-flow cooling and Ag-alloy-sheathed Bi-2223 high-temperature superconductors

    International Nuclear Information System (INIS)

    Heller, R.; Hull, J.R.

    1994-01-01

    High-temperature superconductors (HTSs), consisting of Bi-2223 HTS tapes sheathed with Ag alloys are proposed for a 20-kA current lead for the planned stellarator WENDELSTEIN 7-X. Forced-flow He cooling is used, and 4-K He cooling of the whole lead as well as 60-K He cooling of the copper part of the lead, is discussed. Power consumption and behavior in case of loss of He flow are given

  13. Radiochemical determination of lead-210 in uranium ores and air dusts

    International Nuclear Information System (INIS)

    Sill, C.W.; Willis, C.P.

    1977-01-01

    An improved procedure is described by which cellulose, glass fiber, and polystyrene filters can be wet-ashed and siliceous samples dissolved completely without loss of lead by either volatilization or spontaneous reduction to metal that occurs with dry ashing and/or treatment in platinum containers. The solution of bismuth-210 used to calibrate the β counter is prepared by chemical separation from a solution of lead-210 which is much more convenient and results in a product of higher specific activity than one prepared by neutron activation of stable bismuth. After separation from the samples by conventional chemical procedures, the bismuth-210 is precipitated on barium sulfate for β counting which is more convenient and gives a more uniform and reproducible deposit than is obtained by most other means

  14. Conceptual design studies for the liquid metal target META:LIC

    International Nuclear Information System (INIS)

    Class, A.G.; Fazio, C.; Fetzer, J.R.; Gordeev, S.

    2014-01-01

    When the construction of ESS (European Spallation Source) in Sweden was initiated, the target station concept selection group decided to reevaluate a variety of target designs to respect new developments in their selection process. The META:LIC (MEgawatt TArget:Lead bIsmuth Cooled) target concept was developed following an extensive analysis of existing and new proposed designs and reached the level of proof of principle within only 2 years. ESS selected META:LIC as comparative target option for licensing purposes during the design update phase of ESS. The present work describes the design motivation of META:LIC referring to properties and design features of other targets. Therefore, META:LIC design is an evolutionary target which incorporates the extensive experience of liquid metal targets. The modular LBE (Lead Bismuth Eutectic) target concept with focus on the target module is introduced. Both, a window target option for the start of operation and a windowless option with extended lifetime are foreseen. Thermohydraulic simulations show that adequate window cooling can be realized. The stability of the free surface in the windowless option has been shown. Robust target module instrumentation based on free surface levels and the MEGAPIE experience is proposed for target control. Since the META:LIC concept foresees a horizontal extraction for both moderators and target from the monolith a safety concept based on the SNS and JSNS experience is proposed

  15. Analysis of the thorium inclusion in the fuel of a fast reactor cooled by lead

    International Nuclear Information System (INIS)

    Juarez M, L. C.; Francois L, J. L.

    2017-09-01

    In the present work, we first verified a model of the European reactor cooled with lead (ELFR). The calculations were made with the code Monte Carlo serpent 2.27 and the library of cross sections Jeff-3.1. For this verification, three neutron parameters were compared: the evolution of the neutron multiplication factor, the Doppler constant and the effect of the vacuum fraction of the refrigerant, obtaining a good approximation with the reference values. Subsequently, the inclusion of thorium as a fertile material within the fuel was analyzed and the same neutron parameters were compared with the original fuel. The evolution of criticality for the case of thorium fuel differs significantly with respect to that of the original fuel (without thorium); this is due mainly to the breeding of the fissile isotope 233 U. Therefore, is possible to have a longer fuel cycle, favoring the availability factor of the plant, without compromising the performance of the reactor since both the Doppler constant and the effect of the vacuum fraction of the refrigerant show a similar tendency to those of the original fuel, being negative in both cases. (Author)

  16. Extreme Pressure Synergistic Mechanism of Bismuth Naphthenate and Sulfurized Isobutene Additives

    Science.gov (United States)

    Xu, Xin; Hu, Jianqiang; Yang, Shizhao; Xie, Feng; Guo, Li

    A four-ball tester was used to evaluate the tribological performances of bismuth naphthenate (BiNap), sulfurized isobutene (VSB), and their combinations. The results show that the antiwear properties of BiNap and VSB are not very visible, but they possess good extreme pressure (EP) properties, particularly sulfur containing bismuth additives. Synergistic EP properties of BiNap with various sulfur-containing additives were investigated. The results indicate that BiNap exhibits good EP synergism with sulfur-containing additives. The surface analytical tools, such as X-ray photoelectron spectrometer (XPS) scanning electron microscope (SEM) and energy dispersive X-ray (EDX), were used to investigate the topography, composition contents, and depth profile of some typical elements on the rubbing surface. Smooth topography of wear scar further confirms that the additive showed good EP capacities, and XPS and EDX analyzes indicate that tribochemical mixed protective films composed of bismuth, bismuth oxides, sulfides, and sulfates are formed on the rubbing surface, which improves the tribological properties of lubricants. In particular, a large number of bismuth atoms and bismuth sulfides play an important role in improving the EP properties of oils.

  17. Localization and Related Phenomena in Multiply Connected Nanostructured Inverse Opal Bismuth

    Science.gov (United States)

    Bleiweiss, Michael; Saygi, Salih; Amirzadeh, Jafar; Datta, Timir; Lungu, Anca; Yin, Ming; Palm, Eric; Brandt, Bruce; Iqbal, Zafar

    2001-03-01

    The nanostructures were fabricated by pressure infiltration of bismuth into porous artificial opal and were characterized using SEM, EDX and XRD. These structures form a regular three-dimensional network in which the bismuth regions percolate in all directions between the close packed spheres of SiO_2. The sizes of the conducting regions are of the order of tens of nanometers. The static magnetic properties of both bismuth inverse opal and bulk bismuth were studied using a SQUID magnetometer. Transport measurements, including Hall, were done using standard ac four and six probe techniques in fields up to 17 T* and temperatures between 4.2 and 150 K. The results of these measurements, including the observation of localization phenomena, will be discussed. Comparisons will be made with published results on bismuth nanowires. *Performed at the National High Magnetic Field Lab (NHMFL) FSU, Tallahassee, FL. Partially supported by a grant from NASA.

  18. Conceptual design of the blanket mechanical attachment for the helium-cooled lithium-lead reactor

    International Nuclear Information System (INIS)

    Barrera, G.; Branas, B.; Lucas, J.; Doncel, J.; Medrano, M.; Garcia, A.; Giancarli, L.; Ibarra, A.; Li Puma, A.; Maisonnier, D.; Sardain, P.

    2008-01-01

    The conceptual design of a new type of fusion reactor based on the helium-cooled lithium-lead (HCLL) blanket has been performed within the European Power Plant Conceptual Studies. As part of this activity, a new attachment system suitable for the HCLL blanket modules had to be developed. This attachment is composed of two parts. The first one is the connection between module and the first part of a shield, called high temperature shield, which operates at a temperature around 500 deg. C, close to that of the blanket module. This connection must be made at the lateral walls, in order to avoid openings through the first wall and breeding zone thus avoiding complex design and fabrication issues of the module. The second connection is the one between the high temperature shield and a second shield called low temperature shield, which has a temperature during reactor operation around 150 deg. C. The design of this connection is complex because it must allow the large differential thermal expansion (up to 30 mm) between the two components. Design proposals for both connections are presented, together with the results of finite element mechanical analyses which demonstrate the feasibility to support the blanket and shield modules during normal and accidental operation conditions

  19. Preliminary Design of the Liquid Lead Corrosion Test Loop

    International Nuclear Information System (INIS)

    Cho, Chung Ho; Cha, Jae Eun; Cho, Choon Ho; Song, Tae Yung; Kim, Hee Reyoung

    2005-01-01

    Recently, Lead-Bismuth Eutectic (LBE) or Lead has newly attracted considerable attraction as a coolant to get the more inherent safety. Above all, LBE is preferred as the coolant and target material for an Accelerator-Driven System (ADS) due to its high production rate of neutrons, effective heat removal, and good radiation damage properties. But, the LBE or Lead as a coolant has a challenging problem that the LBE or Lead is more corrosive to the construction materials and fuel cladding material than the sodium because the solubility of Ni, Cr and Fe is high. After all, the LBE or Lead corrosion has been considered as an important design limit factor of ADS and Liquid Metal cooled Fast Reactors (LMFR). The Korea Atomic Energy Research Institute (KAERI) has been developing an ADS called HYPER. HYPER is designed to transmute Transuranics (TRU), Tc-99 and I-129 coming from Pressurized Water Reactors (PWRs) and uses an LBE as a coolant and target material. Also, an experimental apparatuses for the compatibility of fuel cladding and structural material with the LBE or Lead are being under the construction or design. The main objective of the present paper is introduction of Lead corrosion test loop which will be built the upside of the LBE corrosion test loop by the end of October of 2005

  20. Analysis on small long life reactor using thorium fuel for water cooled and metal cooled reactor types

    International Nuclear Information System (INIS)

    Permana, Sidik

    2009-01-01

    Long-life reactor operation can be adopted for some special purposes which have been proposed by IAEA as the small and medium reactor (SMR) program. Thermal reactor and fast reactor types can be used for SMR and in addition to that program the utilization of thorium fuel as one of the candidate as a 'partner' fuel with uranium fuel which can be considered for optimizing the nuclear fuel utilization as well as recycling spent fuel. Fissile U-233 as the main fissile material for thorium fuel shows higher eta-value for wider energy range compared with other fissile materials of U-235 and Pu-239. However, it less than Pu-239 for fast energy region, but it still shows high eta-value. This eta-value gives the reactor has higher capability for obtaining breeding condition or high conversion capability. In the present study, the comparative analysis on small long life reactor fueled by thorium for different reactor types (water cooled and metal cooled reactor types). Light water and heavy water have been used as representative of water-cooled reactor types, and for liquid metal-cooled reactor types, sodium-cooled and lead-bismuth-cooled have been adopted. Core blanket arrangement as general design configuration, has been adopted which consist of inner blanket region fueled by thorium oxide, and two core regions (inner and out regions) fueled by fissile U-233 and thorium oxide with different percentages of fissile content. SRAC-CITATION and JENDL-33 have been used as core optimization analysis and nuclear data library for this analysis. Reactor operation time can reaches more than 10 years operation without refueling and shuffling for different reactor types and several power outputs. As can be expected, liquid metal cooled reactor types can be used more effective for obtaining long life reactor with higher burnup, higher power density, higher breeding capability and lower excess reactivity compared with water-cooled reactors. Water cooled obtains long life core operation

  1. Measured and evaluated neutron cross sections of elemental bismuth

    International Nuclear Information System (INIS)

    Smith, A.; Guenther, P.; Smith, D.; Whalen, J.; Howerton, R.

    1980-04-01

    Neutron total cross sections of elemental bismuth are measured with broad resolution from 1.2 to 4.5 MeV to accuracies of approx. = 1%. Neutron-differential-elastic-scattering cross sections of bismuth are measured from 1.5 to 4.0 MeV at incident neutron energy intervals of approx.< 0.2 MeV over the scattered-neutron angular range approx. = 20 to 160 deg. Differential neutron cross sections for the excitation of observed states in bismuth at 895 +- 12, 1606 +- 14, 2590 +- 15, 2762 +- 29, 3022 +- 21, and 3144 +- 15 keV are determined at incident neutron energies up to 4.0 MeV. An optical-statistical model is deduced from the measured values. This model, the present experimental results, and information available elsewhere in the literature are used to construct a comprehensive evaluated nuclear data file for elemental bismuth in the ENDF format. The evaluated file is particularly suited to the neutronic needs of the fusion-fission hybrid designer. 87 references, 10 figures, 6 tables

  2. The application of three-phase liquid-liquid extraction to the analysis of bismuth and tellurium in sulphide concentrates

    International Nuclear Information System (INIS)

    Nicholas, D.J.

    1976-01-01

    An extraction system consisting of one aqueous and two organic phases is described. Diantipyrylmethane (DAM) is used as the extractant for bismuth and tellurium, which are extracted into the smaller of the two organic phases from nitric acid and perchloric acid respectively. The extraction efficiency is in the range of 90 to 95 per cent, compensation for incomplete extraction being made by the technique of standard addition. Copper, lead, and zinc are not extracted in either procedure. When the solutions contain high concentrations of iron, thioglycolic acid is used as a masking agent for iron in the extraction of bismuth. Atomic-absorption spectrophotometry is used for the analysis of the third phase after it has been diluted with methanol. The precision for bismuth and tellurium is in the range of 3 to 4 per cent. The accuracy, as ascertained from comparative analyses of sulphide concentrates, is good

  3. Gas Cooled Fast Reactor Research and Development in the European Union

    Directory of Open Access Journals (Sweden)

    Richard Stainsby

    2009-01-01

    Full Text Available Gas-cooled fast reactor (GFR research is directed towards fulfilling the ambitious goals of Generation IV (Gen IV, that is, to develop a safe, sustainable, reliable, proliferation-resistant and economic nuclear energy system. The research is directed towards developing the GFR as an economic electricity generator, with good safety and sustainability characteristics. Fast reactors maximise the usefulness of uranium resources by breeding plutonium and can contribute to minimising both the quantity and radiotoxicity nuclear waste by actinide transmutation in a closed fuel cycle. Transmutation is particularly effective in the GFR core owing to its inherently hard neutron spectrum. Further, GFR is suitable for hydrogen production and process heat applications through its high core outlet temperature. As such GFR can inherit the non-electricity applications that will be developed for thermal high temperature reactors in a sustainable manner. The Euratom organisation provides a route by which researchers in all European states, and other non-European affiliates, can contribute to the Gen IV GFR system. This paper summarises the achievements of Euratom's research into the GFR system, starting with the 5th Framework programme (FP5 GCFR project in 2000, through FP6 (2005 to 2009 and looking ahead to the proposed activities within the 7th Framework Programme (FP7.

  4. Mixed convection in a two-phase flow cooling loop

    International Nuclear Information System (INIS)

    Janssens-Maenhout, G.; Daubner, M.; Knebel, J.U.

    2002-03-01

    This report summarizes the numerical simulations using the CFD code CFX4.1 which has additional models for subcooled flow boiling phenomena and the interfacial forces. The improved CFX4.1 code can be applied to the design of boiling induced mixed convection cooling loops in a defined parameter range. The experimental part describes the geysering experiments and the instability effects on the two-phase natural circulation flow. An experimentally validated flow pattern map in the Phase Change Number - Subcooling Number (N PCh - N Sub ) diagram defines the operational range in which flow instabilities such as geysering can be expected. One important perspective of this combined experimental/numerical work, which is in the field of two-phase flow, is its application to the development of accelerator driven systems (ADS). The main objective on an ADS is its potential to transmute minor actinides and long-lived fission products, thus participating in closing the fuel cycle. The development of an ADS is an important issue within the Euratom Fifth FP on Partitioning and Transmutation. One concept of an ADS, which is investigated in more detail within the ''preliminary design study of an experimental ADS'' Project (PDS-XADS) of the Euratom Fifth FP, is the XADS lead-bismuth cooled Experimental ADS of ANSALDO. An essential feature of this concept is the natural circulation of the primary coolant within the reactor pool. The natural circulation, which is driven by the density differences between the blanket and the heat exchanger, is enhanced by the injection of the nitrogen cover gas through spargers located in a riser part just above the blanket. This so-called gas-lift pump system has not been investigated in more detail nor has this gas-lift pump system been numerically/experimentally confirmed. The knowledge gained within the SUCO Programe, i.e. the modelling of the interfacial forces, the experimental work on flow instabilities and the modelling of the interfacial area

  5. Mixed convection in a two-phase flow cooling loop

    Energy Technology Data Exchange (ETDEWEB)

    Janssens-Maenhout, G.; Daubner, M.; Knebel, J.U.

    2002-03-01

    This report summarizes the numerical simulations using the CFD code CFX4.1 which has additional models for subcooled flow boiling phenomena and the interfacial forces. The improved CFX4.1 code can be applied to the design of boiling induced mixed convection cooling loops in a defined parameter range. The experimental part describes the geysering experiments and the instability effects on the two-phase natural circulation flow. An experimentally validated flow pattern map in the Phase Change Number - Subcooling Number (N{sub PCh} - N{sub Sub}) diagram defines the operational range in which flow instabilities such as geysering can be expected. One important perspective of this combined experimental/numerical work, which is in the field of two-phase flow, is its application to the development of accelerator driven systems (ADS). The main objective on an ADS is its potential to transmute minor actinides and long-lived fission products, thus participating in closing the fuel cycle. The development of an ADS is an important issue within the Euratom Fifth FP on Partitioning and Transmutation. One concept of an ADS, which is investigated in more detail within the ''preliminary design study of an experimental ADS'' Project (PDS-XADS) of the Euratom Fifth FP, is the XADS lead-bismuth cooled Experimental ADS of ANSALDO. An essential feature of this concept is the natural circulation of the primary coolant within the reactor pool. The natural circulation, which is driven by the density differences between the blanket and the heat exchanger, is enhanced by the injection of the nitrogen cover gas through spargers located in a riser part just above the blanket. This so-called gas-lift pump system has not been investigated in more detail nor has this gas-lift pump system been numerically/experimentally confirmed. The knowledge gained within the SUCO Programe, i.e. the modelling of the interfacial forces, the experimental work on flow instabilities and the

  6. Effectiveness of ranitidine bismuth citrate and proton pump inhibitor ...

    African Journals Online (AJOL)

    Effectiveness of ranitidine bismuth citrate and proton pump inhibitor based triple therapies of Helicobacter pylori in Turkey. ... Results: When we look at the eradication rates of the treatment groups, only two groups (ranitidine bismuth citrate and rabeprazole groups) had eradication rates greater than 80%, both at intention to ...

  7. Prognostic Value of Bismuth Typing and Modified T-stage in Hilar Cholangiocarcinoma

    Directory of Open Access Journals (Sweden)

    Shengen Yi

    2015-01-01

    Conclusion: The majority of our patients with HCC were characterized as Subtype IV in Bismuth typing and Stage T3 in modified T-stage. Both Bismuth typing and modified T-stage showed prognostic value in HCC. Compared with Bismuth typing, modified T-stage is a better indicator of the resectability of HCC.

  8. Emulsion liquid membrane for selective extraction of bismuth from nitrate medium

    International Nuclear Information System (INIS)

    Mokhtari, Bahram; Pourabdollah, Kobra

    2013-01-01

    The novelty of this work is the selective extraction of bismuth ions from nitrate medium by emulsion liquid membrane. Di(2-ethylhexyl)phosphoric acid was used as extractant of bismuth ions from nitrate medium by emulsion liquid membrane, and Triton X-100 was used as the biodegradable surfactant in n-pentanol n-pentanol bulk membrane. The extraction of bismuth ions was evaluated by the yield of extraction. The experimental parameters were evaluated and were optimized. They included the ratio of di(2-ethylhexyl)phosphoric acid concentration to the concentration of /Triton X-100 concentration (1.0 : 0.5% w/w), nature of diluents (n-pentanol), nature and concentration of the stripping solution (sulfuric acid, 0.5M), stirring speed (1,800 rpm) and equilibrium time of extraction (20min), initial feed solution of bismuth (350 ppm) and the volume ratio of the internal stripping phase to the membrane phase (14 times). The experimental parameters of kinetic extraction revealed that the bismuth ions were extracted at 100% 97%

  9. Emulsion liquid membrane for selective extraction of bismuth from nitrate medium

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, Bahram; Pourabdollah, Kobra [Islamic Azad University, Shahreza (Iran, Islamic Republic of)

    2013-07-15

    The novelty of this work is the selective extraction of bismuth ions from nitrate medium by emulsion liquid membrane. Di(2-ethylhexyl)phosphoric acid was used as extractant of bismuth ions from nitrate medium by emulsion liquid membrane, and Triton X-100 was used as the biodegradable surfactant in n-pentanol n-pentanol bulk membrane. The extraction of bismuth ions was evaluated by the yield of extraction. The experimental parameters were evaluated and were optimized. They included the ratio of di(2-ethylhexyl)phosphoric acid concentration to the concentration of /Triton X-100 concentration (1.0 : 0.5% w/w), nature of diluents (n-pentanol), nature and concentration of the stripping solution (sulfuric acid, 0.5M), stirring speed (1,800 rpm) and equilibrium time of extraction (20min), initial feed solution of bismuth (350 ppm) and the volume ratio of the internal stripping phase to the membrane phase (14 times). The experimental parameters of kinetic extraction revealed that the bismuth ions were extracted at 100% 97%.

  10. Influence of bismuth on structural, elastic and spectroscopic properties of Nd{sup 3+} doped Zinc–Boro-Bismuthate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Gaurav; Sontakke, Atul D.; Karmakar, P.; Biswas, K.; Balaji, S.; Saha, R.; Sen, R.; Annapurna, K., E-mail: annapurnak@cgcri.res.in

    2014-05-01

    The present investigation reports, influence of bismuth addition on structural, elastic and spectral properties of [(99.5−x) {4ZnO−3B_2O_3}−0.5Nd{sub 2}O{sub 3}−x Bi{sub 2}O{sub 3} where x=0, 5, 10, 20, 30, 40, 50 and 60] glasses. The measured FTIR reflectance spectra facilitated a thorough insight of methodical modifications that are arising in the glass structure from borate (build by BO{sub 3} and BO{sub 4} units) to bismuthate (BiO{sub 3} and BiO{sub 6} units) network due to the increase of bismuth content ensuing with a steady decrease in host phonon energy (ν{sub ph}). The elastic properties estimated from measured longitudinal and shear ultrasonic velocities (U{sub L} and U{sub s}) demonstrated the reduction in network rigidity of glasses on Bi{sub 2}O{sub 3} inclusion. The three phenomenological Judd–Ofelt intensity parameters (Ω{sub 2,4,6}) were obtained from recorded absorption spectra of Nd{sup 3+} ions in these glasses and have been used to predict radiative properties as a function of variation in bismuth content. The reduced host phonon energy and high optical basicity effect due to Bi{sub 2}O{sub 3} incorporation remarkably improved the Nd{sup 3+} luminescence properties such as emission intensity, quantum yield and emission cross-section. The quantum yield showed a strong increase from mere 16% in Zinc–Borate glass to almost 73% in 60 mol% Bi{sub 2}O{sub 3} containing glass. Similarly, the emission cross-section for Nd{sup 3+4}F{sub 3/2}→{sup 4}I{sub 11/2} laser transition raised from 2.43×10{sup −20} cm{sup 2} to 3.95×10{sup −20} cm{sup 2} in studied concentration suggesting a strong improvement in Nd{sup 3+} laser spectroscopic properties in Zinc–Boro-Bismuthate glass. These materials may be promising for compact solid state infrared lasers. - Highlights: • Continuous structural changes associated with reduction in host phonon energy by Bi{sub 2}O{sub 3} inclusion. • Ultrasonic velocity study revealed reduced Debye

  11. Properties of Nanostructure Bismuth Telluride Thin Films Using Thermal Evaporation

    Directory of Open Access Journals (Sweden)

    Swati Arora

    2017-01-01

    Full Text Available Bismuth telluride has high thermoelectric performance at room temperature; in present work, various nanostructure thin films of bismuth telluride were fabricated on silicon substrates at room temperature using thermal evaporation method. Tellurium (Te and bismuth (Bi were deposited on silicon substrate in different ratio of thickness. These films were annealed at 50°C and 100°C. After heat treatment, the thin films attained the semiconductor nature. Samples were studied by X-ray diffraction (XRD and scanning electron microscopy (SEM to show granular growth.

  12. Materials for innovative lead alloy cooled nuclear systems: Overview

    International Nuclear Information System (INIS)

    Mueller, Georg; Weisenburger, Alfons; Fetzer, Renate; Heinzel, Annette; Jianu, Adrian

    2015-01-01

    One of the most challenging issues for all future innovative nuclear systems including Gen IV reactors are materials. The selection of the structural materials determines the design which has to consider the properties and the availability of the materials. Beside general requirements for material properties that are common for all fast reactor types specific issues arise from coolant compatibility. The high solubility of steel alloying elements in liquid Pb-alloys at reactor relevant temperatures is clearly detrimental. Therefore, all steels that are considered as structural materials have to be protected by dissolution barriers. The most common barriers for steels under consideration are oxide scales that form in situ during operation. However, increasing the temperature above 500 deg. C will result either in dissolution attack or in enhanced oxidation. For higher temperatures additional barriers like alumina forming surface alloys are discussed and investigated. Mechanical loads like creep stress and fretting will act on the steels. These mechanical loads will interact with the coolant and can increase the negative effects. For a LFR (Lead Fast Reactor) Demonstrator and MYHRRA (ADS) austenitic steels (316L) are selected for most in core components. The 15-15Ti is the choice for the fuel cladding of MYHRRA and a Pb cooled demonstrator. For an industrial LFR (Lead Fast Reactor) the ferritic martensitic steel T91 was selected as fuel clad material due to its improved irradiation resistance. T91 is in both designs the material to be used for the heat exchanger. Surface alloying with alumina forming alloys is considered to assure material functionality at higher temperatures and is therefore selected for fuel cladding of the ELFR and the heat exchanger tubes. This presentation will give an overview on the selected materials for innovative Pb alloy cooled nuclear systems considering, beside pure compatibility, the influence of mechanical interaction like creep and

  13. Bismuth as a general internal standard for lead in atomic absorption spectrometry.

    Science.gov (United States)

    Bechlin, Marcos A; Fortunato, Felipe M; Ferreira, Edilene C; Gomes Neto, José A; Nóbrega, Joaquim A; Donati, George L; Jones, Bradley T

    2014-06-11

    Bismuth was evaluated as internal standard for Pb determination by line source flame atomic absorption spectrometry (LS FAAS), high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS) and line source graphite furnace atomic absorption spectrometry (LS GFAAS). Analysis of samples containing different matrices indicated close relationship between Pb and Bi absorbances. Correlation coefficients of calibration curves built up by plotting A(Pb)/A(Bi)versus Pb concentration were higher than 0.9953 (FAAS) and higher than 0.9993 (GFAAS). Recoveries of Pb improved from 52-118% (without IS) to 97-109% (IS, LS FAAS); 74-231% (without IS) to 96-109% (IS, HR-CS FAAS); and 36-125% (without IS) to 96-110% (IS, LS GFAAS). The relative standard deviations (n=12) were reduced from 0.6-9.2% (without IS) to 0.3-4.3% (IS, LS FAAS); 0.7-7.7% (without IS) to 0.1-4.0% (IS, HR-CS FAAS); and 2.1-13% (without IS) to 0.4-5.9% (IS, LS GFAAS). Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm

    Directory of Open Access Journals (Sweden)

    Hernandez-Delgadillo R

    2012-04-01

    Full Text Available Rene Hernandez-Delgadillo1, Donaji Velasco-Arias2, David Diaz2, Katiushka Arevalo-Niño1, Marianela Garza-Enriquez1, Myriam A De la Garza-Ramos1, Claudio Cabral-Romero11Instituto de Biotecnologia, Centro de Investigacion y Desarrollo en Ciencias de la Salud, CIDICS, Facultad de Odontologia, Universidad Autonoma de Nuevo Leon, UANL, Monterrey, Nuevo Leon, 2Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Distrito Federal, MexicoBackground and methods: Despite continuous efforts, the increasing prevalence of resistance among pathogenic bacteria to common antibiotics has become one of the most significant concerns in modern medicine. Nanostructured materials are used in many fields, including biological sciences and medicine. While some bismuth derivatives has been used in medicine to treat vomiting, nausea, diarrhea, and stomach pain, the biocidal activity of zerovalent bismuth nanoparticles has not yet been studied. The objective of this investigation was to analyze the antimicrobial activity of bismuth nanoparticles against oral bacteria and their antibiofilm capabilities.Results: Our results showed that stable colloidal bismuth nanoparticles had 69% antimicrobial activity against Streptococcus mutans growth and achieved complete inhibition of biofilm formation. These results are similar to those obtained with chlorhexidine, the most commonly used oral antiseptic agent. The minimal inhibitory concentration of bismuth nanoparticles that interfered with S. mutans growth was 0.5 mM.Conclusion: These results suggest that zerovalent bismuth nanoparticles could be an interesting antimicrobial agent to be incorporated into an oral antiseptic preparation.Keywords: zerovalent bismuth nanoparticles, antimicrobial agent, biofilm, Streptococcus mutans

  15. Experimental study of gas-cooled current leads for superconducting magnets

    International Nuclear Information System (INIS)

    Warren, R.P.

    1978-04-01

    Design details and experimental test results from several design variations of the gas-cooled, copper current leads used in conjunction with the superconducting dipole magnets for ESCAR (Experimental Superconducting Accelerator Ring) are reported. Thermal acoustic oscillations, which were experienced with an initial design, were eliminated in subsequent designs by a reduction of the hydraulic diameter. The occurrence of these oscillations is in general agreement with the stability analysis of Rott but the observed gas flow dependence is not in agreement with some other recently reported results for leads operated supercritical phase coolant. An empirically determined correlation was obtained by plotting lead resistance vs. enthalpy gain of the coolant gas. The resulting family of curves can be reduced to a single line on a plot of effective resistivity vs. the product of current and cross-sectional area divided by the product of the square of the mass flow of the coolant and the lead length. This correlation, which should be applicable to other designs of copper current leads in which ideal heat transfer to the coolant gas is approached, predicts that the enthalpy gain of the coolant, and therefore the peak lead temperature, is proportional to the cube of the ratio of current to coolant mass flow. The effective value of the strongly temperature-dependent kinematic viscosity of the coolant gas was found to vary linearly with the effective resistivity of the lead

  16. On the origin of near-IR luminescence in SiO{sub 2} glass with bismuth as the single dopant. Formation of the photoluminescent univalent bismuth silanolate by SiO{sub 2} surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, A.N., E-mail: alexey.romanov@list.ru; Haula, E.V.; Shashkin, D.P.; Vtyurina, D.N.; Korchak, V.N.

    2017-03-15

    Near infrared photoluminescent bismuth(I) silanolate centers ((≡Si-O){sub 3}Si–O-Bi) were prepared on the surface of SiO{sub 2} xerogel, by the treatment in the vapors of bismuth(I) chloride. The optical properties of these groups are almost identical to that of photoluminescent centers in the bulk SiO{sub 2} glasses with bismuth as the single dopant. - Highlights: • univalent bismuth silanolate can be prepared on SiO{sub 2} surface by treatment in BiCl vapors. • univalent bismuth silanolate is responsible for NIR photoluminescence in Bi-doped SiO{sub 2} glass. • univalent bismuth silanolate is the active center in laser, operating on Bi-doped SiO{sub 2} fiber.

  17. Changing corporate culture within the European lead/acid battery industry

    International Nuclear Information System (INIS)

    Mayer, M.G.

    1994-01-01

    Recent economic and political factors have had a strong influence on the lead/acid battery industry in both West and East Europe. Since the publication in 1989 by Batteries International and the Lead Development Association of a map of European battery factories, the number of battery companies has declined. By 1992, a significant shift had taken place in the share of the lead/acid battery market in Europe with the result that a few companies came to influence a major proportion of battery production and sales. The reasons for this relatively fast structural change are examined. Under the pressure from continuing internal and external forces, likely outcomes for battery business in Europe are proposed as the lead/acid industry changes to meet new challenges. (orig.)

  18. Synthesis and structural characterization of Ce-doped bismuth titanate

    International Nuclear Information System (INIS)

    Pavlovic, Nikolina; Srdic, Vladimir V.

    2009-01-01

    Ce-modified bismuth titanate nanopowders Bi 4-x Ce x Ti 3 O 12 (x ≤ 1) have been synthesized using a coprecipitation method. DTA/TG, FTIR, XRD, SEM/EDS and BET methods were used in order to investigate the effect of Ce-substitution on the structure, morphology and sinterability of the obtained powders. The phase structure investigation revealed that after calcinations at 600 deg. C powder without Ce addition exhibited pure bismuth titanate phase; however, powders with Ce (x = 0.25, 0.5 and 0.75) had bismuth titanate pyrochlore phase as the second phase. The strongest effect of Ce addition on the structure was noted for the powder with the highest amount of Ce (x = 1) having a cubic pyrochlore structure. The presence of pure pyrochlore phase was explained by its stabilization due to the incorporation of cerium ions in titanate structure. Ce-modified bismuth titanate ceramic had a density over 95% of theoretical density and the fracture in transgranular manner most probably due to preferable distribution of Ce in boundary region

  19. Induced radioactivity evaluation for reference materials by European scientific cooperation

    International Nuclear Information System (INIS)

    Ventura, A.; Reffo, G.; Avrigeanu, V.; Antonov, A.N.; Grypeos, M.; Trkov, A.

    1997-01-01

    The global objective of this research is to apply the latest theoretical achievements for calculation of nuclear quantities on the request lists of the current EC projects related to activation (European Activation File) and fusion (European Fusion File, Joint Evaluation File and Fusion Evaluated Nuclear Data Library). The main goal has concerned the (n,p) and (n,α) reaction cross sections, of first importance for prediction of radiation damage in fusion reactor stainless steel. The required development of adequate activation computer codes and data libraries are expected to provide improvement of the following types of nuclear data: - threshold and capture reactions leading to long-lived radionuclides; - other neutron-induced reactions producing the most critical activities in elements ranging from boron to bismuth; - charged-particle emission spectra of neutron-induced reactions and charged-particle induced reactions needed to treat the important sequential (x,n) reactions; - detailed error estimates of critical nuclear data, in order to specify the uncertainty levels of current predictions for radiological properties of potential low-activation materials

  20. The lead cooled fast reactor benchmark Brest-300: analysis with sensitivity method

    International Nuclear Information System (INIS)

    Smirnov, V.; Orlov, V.; Mourogov, A.; Lecarpentier, D.; Ivanova, T.

    2005-01-01

    Lead cooled fast neutrons reactor is one of the most interesting candidates for the development of atomic energy. BREST-300 is a 300 MWe lead cooled fast reactor developed by the NIKIET (Russia) with a deterministic safety approach which aims to exclude reactivity margins greater than the delayed neutron fraction. The development of innovative reactors (lead coolant, nitride fuel...) and fuel cycles with new constraints such as cycle closure or actinide burning, requires new technologies and new nuclear data. In this connection, the tool and neutron data used for the calculational analysis of reactor characteristics requires thorough validation. NIKIET developed a reactor benchmark fitting of design type calculational tools (including neutron data). In the frame of technical exchanges between NIKIET and EDF (France), results of this benchmark calculation concerning the principal parameters of fuel evolution and safety parameters has been inter-compared, in order to estimate the uncertainties and validate the codes for calculations of this new kind of reactors. Different codes and cross-sections data have been used, and sensitivity studies have been performed to understand and quantify the uncertainties sources.The comparison of results shows that the difference on k eff value between ERANOS code with ERALIB1 library and the reference is of the same order of magnitude than the delayed neutron fraction. On the other hand, the discrepancy is more than twice bigger if JEF2.2 library is used with ERANOS. Analysis of discrepancies in calculation results reveals that the main effect is provided by the difference of nuclear data, namely U 238 , Pu 239 fission and capture cross sections and lead inelastic cross sections

  1. Test results of the 18 kA EDIPO HTS current leads

    International Nuclear Information System (INIS)

    Wesche, Rainer; Bagnasco, Maurizio; Bruzzone, Pierluigi; Felder, Roland; Guetg, Marc; Holenstein, Manuel; Jenni, Markus; March, Stephen; Roth, Felix; Vogel, Martin

    2011-01-01

    For the new test facility EDIPO (European DIPOle), to be hosted by CRPP, two 18 kA HTS current leads were manufactured and successfully tested. The HTS module, made of AgMgAu/Bi-2223 tapes, is cooled only by heat conduction to the cold end, while the copper part is cooled by forced flow helium gas. The current leads were tested at low voltage up to the maximum current of 18 kA. The helium mass flow rates required for stable operation at various currents were determined. In addition to the steady state operation, the transient behavior in the case of a loss of flow was studied experimentally. The test results provide an estimate of the operational limits of the EDIPO HTS current leads.

  2. Test results of the 18 kA EDIPO HTS current leads

    Energy Technology Data Exchange (ETDEWEB)

    Wesche, Rainer, E-mail: rainer.wesche@psi.ch [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), Association Euratom - Confederation Suisse, 5232 Villigen PSI (Switzerland); Bagnasco, Maurizio; Bruzzone, Pierluigi; Felder, Roland; Guetg, Marc; Holenstein, Manuel; Jenni, Markus; March, Stephen; Roth, Felix; Vogel, Martin [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), Association Euratom - Confederation Suisse, 5232 Villigen PSI (Switzerland)

    2011-10-15

    For the new test facility EDIPO (European DIPOle), to be hosted by CRPP, two 18 kA HTS current leads were manufactured and successfully tested. The HTS module, made of AgMgAu/Bi-2223 tapes, is cooled only by heat conduction to the cold end, while the copper part is cooled by forced flow helium gas. The current leads were tested at low voltage up to the maximum current of 18 kA. The helium mass flow rates required for stable operation at various currents were determined. In addition to the steady state operation, the transient behavior in the case of a loss of flow was studied experimentally. The test results provide an estimate of the operational limits of the EDIPO HTS current leads.

  3. Conceptual design of a forced-flow-cooled 20-kA current lead using Ag-alloy-sheathed Bi-2223 high-temperature superconductors

    International Nuclear Information System (INIS)

    Heller, R.

    1994-11-01

    The use of high-temperature superconductors in current leads to reduce refrigeration power has been investigated by many groups in the past. Most used YBCO and Bi-2212 bulk superconductors, although their critical current density is not very high. In this paper, BI-2223 HTSC tapes sheathed with Ag alloys are used in the design of a 20-kA current lead because of their higher critical current in medium magnetic fields. The lead current of 20 kA is related to the coil current of the planned stellarator WENDELSTEIN 7-X. Forced-now helium cooling has been used in the design, allowing position-independent and well-controlled operation. The design characteristics of the lead are presented and 4-K helium cooling of the whole lead, as well as 60-K helium cooling of the copper part of the lead, is discussed. The power consumption at zero current, and the lead's behaviour in case of loss of coolant flow, are given, The results of the design allow extrapolation to current leads of the 50-kA range

  4. Method for evaluation of doses from ingestion of polonium, bismuth and lead as natural radioactive material(NORM); Metodo de evaluacion de dosis por ingestion de polonio, bismuto y plomo como materiales radiactivos naturales

    Energy Technology Data Exchange (ETDEWEB)

    Pena, Vanessa; Puerta, Anselmo; Morales, Javier, E-mail: vpenam@ullal.edu.co, E-mail: japuerta@unal.edu.co, E-mail: jmorales@unal.cdu.co [Universidad Nacional de Colombia, Medellin (Colombia). Grupo de Fisica Radiologica

    2013-07-01

    In this work was carried out an evaluation of dose from ingestion of radioactive daughters of radon (lead, bismuth and polonium), taking into account ages from three months up to adult men, using the new model of the human alimentary tract HATM and methodology of calculating doses proposed by the ICRP publication 103, which allows the estimation of dose based on the concentration of the radionuclide present in the diet or in the water of consumption.

  5. Yttrium bismuth titanate pyrochlore mixed oxides for photocatalytic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Merka, Oliver

    2012-10-18

    In this work, the sol-gel synthesis of new non-stoichiometric pyrochlore titanates and their application in photocatalytic hydrogen production is reported. Visible light response is achieved by introducing bismuth on the A site or by doping the B site by transition metal cations featuring partially filled d orbitals. This work clearly focusses on atomic scale structural changes induced by the systematical introduction of non-stoichiometry in pyrochlore mixed oxides and the resulting influence on the activity in photocatalytic hydrogen production. The materials were characterized in detail regarding their optical properties and their atomic structure. The pyrochlore structure tolerates tremendous stoichiometry variations. The non-stoichiometry in A{sub 2}O{sub 3} rich compositions is compensated by distortions in the cationic sub-lattice for the smaller Y{sup 3+} cation and by evolution of a secondary phase for the larger Bi{sup 3+} cation on the A site. For TiO{sub 2} rich compositions, the non-stoichiometry leads to a special vacancy formation in the A and optionally O' sites. It is shown that pyrochlore mixed oxides in the yttrium bismuth titanate system represent very active and promising materials for photocatalytic hydrogen production, if precisely and carefully tuned. Whereas Y{sub 2}Ti{sub 2}O{sub 7} yields stable hydrogen production rates over time, the bismuth richer compounds of YBiTi{sub 2}O{sub 7} and Bi{sub 2}Ti{sub 2}O{sub 7} are found to be not stable under irradiation. This drawback is overcome by applying a special co-catalyst system consisting of a precious metal core and a Cr{sub 2}O{sub 3} shell on the photocatalysts.

  6. Fuel research for subcritical and critical GEN-IV systems cooled by heavy liquid metal

    International Nuclear Information System (INIS)

    Sobolev, V.; Verwerft, M.

    2009-01-01

    The participation of the Belgian Nuclear Research Centre SCK-CEN in the worldwide GEN-IV research can be considered as an opportunity. Today's GEN-IV research at SCK-CEN is mainly driven by the interests of the project MYRRHA (Multipurpose hYbrid Research Reactor for High-tech Applications). The main goal of this project is to build at SCK-CEN in Mol a new generation fast spectrum, subcritical, research and materials testing reactor MYRRHA driven by a high-energy proton accelerator. This GEN-IV MTR is cooled by heavy liquid metal (Pb-Bi) and will be used for the ADS concept demonstration, testing and qualification of new fuels, transmutation targets and innovative materials. On the European scale, MYRRHA is integrated in the Euratom FP6 Integrated Project (IP) EUROTRANS (EUROpean research programme for TRANSmutation of high level nuclear waste in an accelerator driven system), as the small-scale experimental machine for transmutation demonstration called XT-ADS. Last but not least, this experimental facility will also demonstrate the technological feasibility of the LFR (Lead-cooled Fast Reactor) GEN-IV concept; in EU the LFR design studies are performed in the framework of the Euratom FP6 ELSY (European Lead-cooled SYstem) project, where SCK-CEN is a partner. Among the research needed to ensure a safe and reliable operation of the MYRRHA/XT ADS reactor, the development and qualification of fuel and cladding materials have been recognized as one of the main key issues to be addressed

  7. Electronic Properties of Tin and Bismuth from Angular Correlation of Annihilation Photons

    DEFF Research Database (Denmark)

    Mogensen, O.E.; Trumpy, Georg

    1969-01-01

    ) deformed bismuth. For both metals, the single-crystal angular-correlation curves lie near to the free-electron parabola. The tin curves show more anisotropy than the bismuth curves. An important result is the clear anisotropy found in the high-momentum part of the curves—the tails—for both metals. Little......A linear slit setup has been used to obtain results of angular-correlation measurements in (a) tin single crystals in three orientations: [001], [100], and [110], (b) bismuth single crystals in four orientations: [111], [100], [1¯10], and [2¯1¯1], (c) solid and liquid tin and bismuth, and (d...... of the liquid-metal curves are smaller and of another form than the tails of polycrystalline curves; no Gaussian with only one adjustable constant factor can give a fit to both tails. No useful method for interpreting liquid-metal angular-correlation curves seems to exist. Two deformed bismuth samples gave...

  8. Lead-cooled fast-neutron reactor (BREST) (Approaches to the closed NFC) - 5435

    International Nuclear Information System (INIS)

    Dragunov, Y.G.; Lemekhov, V.V.; Moiseyev, A.V.; Smirnov, V.S.; Tocheny, L.V.; Umanskiy, A.A.

    2015-01-01

    The BREST-OD-300 reactor is under development in Russia. It is an intrinsically safe pilot demonstration lead-cooled fast reactor with uranium-plutonium nitride fuel. This reactor is based on a new concept of inherent safety whose basic principles are: -) the exclusion of severe accidents at the plant (reactivity type, loss of cooling, fires, explosions) that require the resettlement of the population; -) the closing of the nuclear fuel cycle through the burning of minor actinides; -) the environmental acceptability through the maximal reduction of the amount of high-level long-lived radioactive waste nuclides - nuclear fuel cycle products, sent for the final disposal; -) the technological strengthening of non-proliferation. Closed fuel cycle with reactors of BREST type burning minor actinides gives the opportunity to achieve the radiation equivalence between radioactive wastes and natural uranium during a time period about 300 years

  9. TESTS WITH HIGH-BISMUTH HLW GLASSES FINAL REPORT VSL-10R1780-1, Rev. 0; 12/13/10

    International Nuclear Information System (INIS)

    Matlack, K.S.; Kruger, A.A.; Joseph, I.; Gan, H.; Kot, W.K.; Chaudhuri, M.; Mohr, R.K.; Mckeown, D.A.; Bardakei, T.; Gong, W.; Buecchele, A.C.; Pegg, I.L.

    2011-01-01

    This Final Report describes the testing of glass formulations developed for Hanford High Level Waste (HLW) containing high concentrations of bismuth. In previous work on high-bismuth HLW streams specified by the Office of River Protection (ORP), fully compliant, high waste loading compositions were developed and subjected to melter testing on the DM100 vitrification system. However, during heat treatment according to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) HLW canister centerline cooling (CCC) curves, crucible melts of the high-bismuth glasses were observed to foam. Clearly, such an occurrence during cooling of actual HLW canisters would be highly undesirable. Accordingly, the present work involves larger-scale testing to determine whether this effect occurs under more prototypical conditions, as well as crucible-scale tests to determine the causes and potentially remediate the observed foaming behavior. The work included preparation and characterization of crucible melts designed to determine the underlying causes of the foaming behavior as well as to assess potential mitigation strategies. Testing was also conducted on the DM1200 HLW Pilot melter with a composition previously tested on the DM100 and shown to foam during crucible-scale CCC heat treatment. The DM1200 tests evaluated foaming of glasses over a range of bismuth concentrations poured into temperature-controlled, 55-gallon drums which have a diameter that is close to that of the full-scale WTP HLW canisters. In addition, the DM1200 tests provided the first large-scale melter test data on high-bismuth WTP HLW compositions, including information on processing rates, cold cap behavior and off-gas characteristics, and data from this waste composition on the prototypical DM1200 off-gas treatment system. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for ORP on the same waste composition. The scope of this study was outlined in a Test Plan that was

  10. TESTS WITH HIGH-BISMUTH HLW GLASSES FINAL REPORT VSL-10R1780-1 REV 0 12/13/10

    Energy Technology Data Exchange (ETDEWEB)

    MATLACK KS; KRUGER AA; JOSEPH I; GAN H; KOT WK; CHAUDHURI M; MOHR RK; MCKEOWN DA; BARDAKEI T; GONG W; BUECCHELE AC; PEGG IL

    2011-01-05

    This Final Report describes the testing of glass formulations developed for Hanford High Level Waste (HLW) containing high concentrations of bismuth. In previous work on high-bismuth HLW streams specified by the Office of River Protection (ORP), fully compliant, high waste loading compositions were developed and subjected to melter testing on the DM100 vitrification system. However, during heat treatment according to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) HLW canister centerline cooling (CCC) curves, crucible melts of the high-bismuth glasses were observed to foam. Clearly, such an occurrence during cooling of actual HLW canisters would be highly undesirable. Accordingly, the present work involves larger-scale testing to determine whether this effect occurs under more prototypical conditions, as well as crucible-scale tests to determine the causes and potentially remediate the observed foaming behavior. The work included preparation and characterization of crucible melts designed to determine the underlying causes of the foaming behavior as well as to assess potential mitigation strategies. Testing was also conducted on the DM1200 HLW Pilot melter with a composition previously tested on the DM100 and shown to foam during crucible-scale CCC heat treatment. The DM1200 tests evaluated foaming of glasses over a range of bismuth concentrations poured into temperature-controlled, 55-gallon drums which have a diameter that is close to that of the full-scale WTP HLW canisters. In addition, the DM1200 tests provided the first large-scale melter test data on high-bismuth WTP HLW compositions, including information on processing rates, cold cap behavior and off-gas characteristics, and data from this waste composition on the prototypical DM1200 off-gas treatment system. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for ORP on the same waste composition. The scope of this study was outlined in a Test Plan that was

  11. Heavy liquid metal technologies at KArlsruhe Lead LAboratory KALLA

    International Nuclear Information System (INIS)

    Knebel, J.U.; Mueller, G.; Konys, J.

    2002-01-01

    The objectives of the research cover: lead-bismuth technologies; corrosion mechanism and corrosion protection; thermal hydraulics; kinetics of oxygen control systems. Detailed experimental results are presented

  12. Platinum-Bismuth Bimetallic Catalysts: Synthesis, Characterization and Applications

    OpenAIRE

    Saucedo, Jose A, Jr; Xiao, Yang; Varma, Arvind

    2015-01-01

    Bimetallic catalysts have been explored and shown to exhibit unique characteristics which are not present in monometallic catalysts. Platinum is well known as an effective catalyst for oxidation and reduction reactions, and it can be made more effective when bismuth is introduced as a promotor. Thus, the effectiveness of the Pt-Bi catalyst was demonstrated in prior work. What is not clear, however, is the mechanism behind the catalyst function; why addition of bismuth to platinum decreases de...

  13. Optical properties of thermally reduced bismuth-doped sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Nielsen, K.H.; Smedskjær, Morten Mattrup; Yue, Yuanzheng

    Heat-treatment of multivalent ion containing glasses in a hydrogen atmosphere may cause both reduction of the multivalent ions and ionic inward diffusion, resulting in improved glass properties. Bismuth-doped glasses are also interesting objects not only concerning the reduction induced diffusion...... pressure of hydrogen. Here, we present results on the effect of the heat-treatment on the optical properties of bismuth-doped sodium aluminosilicate glasses.......Heat-treatment of multivalent ion containing glasses in a hydrogen atmosphere may cause both reduction of the multivalent ions and ionic inward diffusion, resulting in improved glass properties. Bismuth-doped glasses are also interesting objects not only concerning the reduction induced diffusion...

  14. Bismuth ferrite as low-loss switchable material for plasmonic waveguide modulator

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Zhukovsky, Sergei; Lavrinenko, Andrei

    2014-01-01

    We propose new designs of plasmonic modulators, which can beused for dynamic signal switching in photonic integrated circuits. We studyperformance of a plasmonic waveguide modulator with bismuth ferrite as atunable material. The bismuth ferrite core is sandwiched between metalplates (metal...

  15. Rapid semi-quantitative determination of bismuth in minerals using ascending paper chromatography (1961)

    International Nuclear Information System (INIS)

    Agrinier, H.

    1961-01-01

    The bismuth is separated by a solvent made up of acetone, water, and hydrofluoric and hydrochloric acids. The bismuth is developed with dimercapto-2.5 thio-diazole-1.3.4 and ammonium sulphide. The use of this method for the detection of bismuth in minerals makes it possible to determine the metal at a concentration of 5 x 10 -6 . (author) [fr

  16. Characterization of bismuth nanospheres deposited by plasma focus device

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M., E-mail: cscientific2@aec.org.sy [IBA Laboratory, Chemistry Department, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus (Syrian Arab Republic); Al-Hawat, Sh.; Akel, M. [Physics Department, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus (Syrian Arab Republic); Mrad, O. [Chemistry Department, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus (Syrian Arab Republic)

    2015-02-14

    A new method for producing thin layer of bismuth nanospheres based on the use of low energy plasma focus device is demonstrated. Various techniques such as scanning electron microscopy, Rutherford backscattering spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy have been used to characterize the morphology and the composition of the nanospheres. Experimental parameters may be adjusted to favour the formation of bismuth nanospheres instead of microspheres. Therefore, the formation of large surface of homogeneous layer of bismuth nanospheres with sizes of below 100 nm can be obtained. The natural snowball phenomenon is observed to be reproduced in nanoscale where spheres roll over the small nanospheres and grow up to bigger sizes that can reach micro dimensions. The comet-like structure, a reverse phenomenon to snowball is also observed.

  17. Characterization of bismuth nanospheres deposited by plasma focus device

    International Nuclear Information System (INIS)

    Ahmad, M.; Al-Hawat, Sh.; Akel, M.; Mrad, O.

    2015-01-01

    A new method for producing thin layer of bismuth nanospheres based on the use of low energy plasma focus device is demonstrated. Various techniques such as scanning electron microscopy, Rutherford backscattering spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy have been used to characterize the morphology and the composition of the nanospheres. Experimental parameters may be adjusted to favour the formation of bismuth nanospheres instead of microspheres. Therefore, the formation of large surface of homogeneous layer of bismuth nanospheres with sizes of below 100 nm can be obtained. The natural snowball phenomenon is observed to be reproduced in nanoscale where spheres roll over the small nanospheres and grow up to bigger sizes that can reach micro dimensions. The comet-like structure, a reverse phenomenon to snowball is also observed

  18. Synthesis and characterization of superconducting bismuthates

    International Nuclear Information System (INIS)

    Tang, Horngyi.

    1991-01-01

    A new electrosynthetic technique for low-temperature crystal growth of superconducting bismuthates was developed, and its utility demonstrated by growing various high-quality BiO 3 crystals. The crystals of Ba 1-x K x BiO 3 and Ba 1-x Rb x BiO 3 display their T c onset at 31.8k and 28k, respectively, using SQUID magnetometry. The structure of a KBiO 3 x H 2 O single crystal determined by single crystal x-ray diffraction confirms previous results from powder samples that it is isostructural with KSbO 3 . The crystals of Ba 1-x Cs x BiO 3 do not show superconductivity to 4k. Chemical vapor-transport experiments leading to the fabrication of MoS 2 /WSe 2 junctions were also performed and are described in detail

  19. Dissolution corrosion of 316L austenitic stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500 °C

    Energy Technology Data Exchange (ETDEWEB)

    Lambrinou, Konstantina, E-mail: klambrin@sckcen.be [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Charalampopoulou, Evangelia [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); University of Antwerp, Electron Microscopy for Materials Science (EMAT), Groenenborgerlaan 171, 2020 Antwerpen (Belgium); Van der Donck, Tom [KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, 3001 Leuven (Belgium); Delville, Rémi [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Schryvers, Dominique [University of Antwerp, Electron Microscopy for Materials Science (EMAT), Groenenborgerlaan 171, 2020 Antwerpen (Belgium)

    2017-07-15

    This work addresses the dissolution corrosion behaviour of 316L austenitic stainless steels. For this purpose, solution-annealed and cold-deformed 316L steels were simultaneously exposed to oxygen-poor (<10{sup −8} mass%) static liquid lead-bismuth eutectic (LBE) for 253–3282 h at 500 °C. Corrosion was consistently more severe for the cold-drawn steels than the solution-annealed steel, indicating the importance of the steel thermomechanical state. The thickness of the dissolution-affected zone was non-uniform, and sites of locally-enhanced dissolution were occasionally observed. The progress of LBE dissolution attack was promoted by the interplay of certain steel microstructural features (grain boundaries, deformation twin laths, precipitates) with the dissolution corrosion process. The identified dissolution mechanisms were selective leaching leading to steel ferritization, and non-selective leaching; the latter was mainly observed in the solution-annealed steel. The maximum corrosion rate decreased with exposure time and was found to be inversely proportional to the depth of dissolution attack. - Highlights: •Dissolution corrosion was more severe in cold-deformed than solution-annealed 316L steels. •LBE penetration occurred along preferential paths in the steel microstructure. •The maximum dissolution rate was inversely proportionate to the depth of dissolution.

  20. Development of highly sensitive electrochemical genosensor based on multiwalled carbon nanotubes-chitosan-bismuth and lead sulfide nanoparticles for the detection of pathogenic Aeromonas.

    Science.gov (United States)

    Fernandes, António Maximiano; Abdalhai, Mandour H; Ji, Jian; Xi, Bing-Wen; Xie, Jun; Sun, Jiadi; Noeline, Rasoamandrary; Lee, Byong H; Sun, Xiulan

    2015-01-15

    In this paper, we reported the construction of new high sensitive electrochemical genosensor based on multiwalled carbon nanotubes-chitosan-bismuth complex (MWCNT-Chi-Bi) and lead sulfide nanoparticles for the detection of pathogenic Aeromonas. Lead sulfide nanoparticles capped with 5'-(NH2) oligonucleotides thought amide bond was used as signalizing probe DNA (sz-DNA) and thiol-modified oligonucleotides sequence was used as fixing probe DNA (fDNA). The two probes hybridize with target Aeromonas DNA (tDNA) sequence (fDNA-tDNA-szDNA). The signal of hybridization is detected by differential pulse voltammetry (DPV) after electrodeposition of released lead nanoparticles (PbS) from sz-DNA on the surface of glass carbon electrode decorated with MWCNT-Chi-Bi, which improves the deposition and traducing electrical signal. The optimization of incubation time, hybridization temperature, deposition potential, deposition time and the specificity of the probes were investigated. Our results showed the highest sensibility to detect the target gene when compared with related biosensors and polymerase chain reaction (PCR). The detection limit for this biosensor was 1.0×10(-14) M. We could detect lower than 10(2) CFU mL(-1) of Aeromonas in spiked tap water. This method is rapid and sensitive for the detection of pathogenic bacteria and would become a potential application in biomedical diagnosis, food safety and environmental monitoring. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Physical and technical aspects of lead cooled fast reactors safety

    International Nuclear Information System (INIS)

    Orlov, V.V.; Smirnov, V.S.; Filin, A.I.

    2001-01-01

    The safety analysis of lead-cooled fast reactors has been performed for the well-developed concept of BREST-OD-300 reactor. The most severe accidents have been considered. An ultimate design-basis accident has been defined as an event resulting from an external impact and involving a loss of leak-tightness of the lead circuit, loss of forced circulation of lead and loss of heat sink to the secondary circuit, failure of controls and of reactor scram with resultant insertion of total reactivity margin, etc. It was assumed in accident analysis that the protective feature available for accident mitigation was only reactivity feedback on the changes in the temperatures of the reactor core elements and coolant flow rate, and in some cases also actuation of passive protections of threshold action in response to low flow rate and high coolant temperature at the core outlet. It should be noted that the majority of the analyzed accidents could be overcame even without initiation of the above protections. It has been demonstrated that a combination of inherent properties of lead coolant, nitride fuel, physical and design features of fast reactors will ensure natural safety of BREST and are instrumental for avoiding by a deterministic approach the accidents associated with a significant release of radioactivity and requiring evacuation of people in any credible initiating event and a combination of events. (author)

  2. Chemical structure of bismuth compounds determines their gastric ulcer healing efficacy and anti-Helicobacter pylori activity.

    Science.gov (United States)

    Sandha, G S; LeBlanc, R; Van Zanten, S J; Sitland, T D; Agocs, L; Burford, N; Best, L; Mahoney, D; Hoffman, P; Leddin, D J

    1998-12-01

    The recognition of the role of Helicobacter pylori in the pathogenesis of peptic ulcer disease has led to renewed interest in bismuth pharmacology since bismuth compounds have both anti-Helicobacter pylori and ulcer healing properties. The precise chemical structure of current bismuth compounds is not known. This has hindered the development of new and potentially more efficacious formulations. We have created two new compounds, 2-chloro-1,3-dithia-2-bismolane (CDTB) and 1,2-[bis(1,3-dithia-2-bismolane)thio]ethane (BTBT), with known structure. In a rat model of gastric ulceration, BTBT was comparable to, and CDTB was significantly less effective than colloidal bismuth subcitrate in healing cryoprobe-induced ulcers. However, both BTBT and CDTB inhibited H. pylori growth in vitro at concentrations <1/10 that of colloidal bismuth subcitrate. The effects on ulcer healing are not mediated by suppression of acid secretion, pepsin inhibition, or prostaglandin production. Since all treated animals received the same amount of elemental bismuth, it appears that the efficacy of bismuth compounds varies with compound structure and is not simply dependent on the delivery of bismuth ion. Because the structure of the novel compounds is known, our understanding of the relationship of bismuth compound structure and to biologic activity will increase. In the future it may be possible to design other novel bismuth compounds with more potent anti-H. pylori and ulcer healing effects.

  3. Crystallinity and electrical properties of neodymium-substituted bismuth titanate thin films

    International Nuclear Information System (INIS)

    Chen, Y.-C.; Hsiung, C.-P.; Chen, C.-Y.; Gan, J.-Y.; Sun, Y.-M.; Lin, C.-P.

    2006-01-01

    We report on the properties of Nd-substituted bismuth titanate Bi 4-x Nd x Ti 3 O 12 (BNdT) thin films for ferroelectric non-volatile memory applications. The Nd-substituted bismuth titanate thin films fabricated by modified chemical solution deposition technique showed much improved properties compared to pure bismuth titanate. A pyrochlore free crystalline phase was obtained at a low annealing temperature of 640 deg. C and grain size was found to be considerably increased as the annealing temperature increased. The film properties were found to be strongly dependent on the Nd content and annealing temperatures. The measured dielectric constant of BNdT thin films was in the range 172-130 for Bi 4-x Nd x Ti 3 O 12 with x 0.0-0.75. Ferroelectric properties of Nd-substituted bismuth titanate thin films were significantly improved compared to pure bismuth titanate. For example, the observed 2P r and E c for Bi 3.25 Nd 0.75 Ti 3 O 12 , annealed at 680 deg. C, were 38 μC/cm 2 and 98 kV/cm, respectively. The improved microstructural and ferroelectric properties of BNdT thin films suggest their suitability for high density ferroelectric random access memory applications

  4. Assessing energy and thermal comfort of different low-energy cooling concepts for non-residential buildings

    International Nuclear Information System (INIS)

    Salvalai, Graziano; Pfafferott, Jens; Sesana, Marta Maria

    2013-01-01

    Highlights: • Impact of five cooling technologies are simulated in six European climate zones with Trnsys 17. • The ventilation strategies reduce the cooling energy need even in South Europe climate. • Constant ventilation controller can lead to a poor cooling performance. • Comparing radiant strategies with air conditioning scenario, the energy saving is predicted to within 5–35%. - Abstract: Energy consumption for cooling is growing dramatically. In the last years, electricity peak consumption grew significantly, switching from winter to summer in many EU countries. This is endangering the stability of electricity grids. This article outlines a comprehensive analysis of an office building performances in terms of energy consumption and thermal comfort (in accordance with static – ISO 7730:2005 – and adaptive thermal comfort criteria – EN 15251:2007 –) related to different cooling concepts in six different European climate zones. The work is based on a series of dynamic simulations carried out in the Trnsys 17 environment for a typical office building. The simulation study was accomplished for five cooling technologies: natural ventilation (NV), mechanical night ventilation (MV), fan-coils (FC), suspended ceiling panels (SCP), and concrete core conditioning (CCC) applied in Stockholm, Hamburg, Stuttgart, Milan, Rome, and Palermo. Under this premise, the authors propose a methodology for the evaluation of the cooling concepts taking into account both, thermal comfort and energy consumption

  5. Theoretical study of bismuth-doped cadmium telluride

    Science.gov (United States)

    Menendez-Proupin, E.; Rios-Gonzalez, J. A.; Pena, J. L.

    Cadmium telluride heavily doped with bismuth has been proposed as an absorber with an intermediate band for solar cells. Increase in the photocurrent has been shown recently, although the overall cell efficiency has not improved. In this work, we study the electronic structure and the formation energies of the defects associated to bismuth impurities. We have performed electronic structure calculations within generalized density functional theory, using the exchange-correlation functional HSE(w) , where the range-separation parameter w has been tuned to reproduce the CdTe bandgap. Improving upon previous reports, we have included the spin-orbit interaction, which modifies the structure of the valence band and the energy levels of bismuth. We have found that interstitial Bi (Bii) tends to occupy Cd vacancies, cadmium substitution (BiCd) creates single donor level, while tellurium substitution (BiTe) is a shallow single acceptor. We investigate the interaction between these point defects and how can they be combined to create a partially filled intermediate band. Supported by FONDECYT Grant 1130437, CONACYT-SENER SUSTENTABILIDAD ENERGETICA/project CeMIE-Sol PY-207450/25 and PY-207450/26. JARG acknowledges CONACYT fellowship for research visit. Powered@NLHPC (ECM-02).

  6. Controlled synthesis of bismuth oxyiodide toward optimization of photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Chenxing; Ma, Zhijun [State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641 (China); Chen, Xiaofeng, E-mail: chenxf@scut.edu.c [Biomaterials Research Institute, School of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641 (China); He, Xin [School of Applied Physics and Materials, Wuyi University, Jiangmen 529020 (China); Qiu, Jianrong, E-mail: qjr@scut.edu.cn [State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641 (China)

    2016-11-30

    Highlights: • Different bismuth oxyiodide was synthesized. • The hollow Bi{sub 4}O{sub 5}I{sub 2} microspheres was obtained. • Formation mechanism of the hollow structure was discussed in detail. - Abstract: A new investigation on the variation rule of the structure, morphology, chemical composition and photocatalytic performance of bismuth oxyiodide synthesized by solvothermal method as a function of reaction conditions was performed here. The composition and morphology of the product could be determined by X-ray diffraction, thermogravimetric analysis and scanning electron microscopy. The results revealed that the particle size together with content of iodide in bismuth oxyiodide decrease with the increase of the concentration of reaction precursors. Hollow Bi{sub 4}O{sub 5}I{sub 2} microsphere with specific surface area as high as 120.88 m{sup 2} g{sup −1} can be easily synthesized when the concentration of the reaction precursors finally increased to 62.5 mM. Photocatalytic water purification performance of the as-prepared samples was evaluated by using Rhodamine B (RhB) as a model contaminant. The results revealed that the hollow Bi{sub 4}O{sub 5}I{sub 2} exhibited the best performance among all the bismuth oxyodide synthesized here for the degradation of RhB under visible light irradiation. Meanwhile, the formation mechanism of the hierarchical hollow structure of bismuth oxyiodide was investigated by the dissolution-recrystallization mechanism.

  7. Hunting with lead ammunition is not sustainable: European perspectives.

    Science.gov (United States)

    Kanstrup, Niels; Swift, John; Stroud, David A; Lewis, Melissa

    2018-03-12

    Much evidence demonstrates the adverse effects of lead ammunition on wildlife, their habitats and human health, and confirms that the use of such ammunition has no place within sustainable hunting. We identify the provisions that define sustainable hunting according to European law and international treaties, together with their guidance documents. We accept the substantial evidence for lead's actual and potential effects on wildlife, habitats and health as persuasive and assess how these effects relate to stated provisions for sustainability and hunting. We evaluate how continued use of lead ammunition negatively affects international efforts to halt loss of biodiversity, sustain wildlife populations and conserve their habitats. We highlight the indiscriminate and avoidable health and welfare impacts for large numbers of exposed wild animals as ethically unsustainable. In societal terms, continued use of lead ammunition undermines public perceptions of hunting. Given the existence of acceptable, non-toxic alternatives for lead ammunition, we conclude that hunting with lead ammunition cannot be justified under established principles of public/international policy and is not sustainable. Changing from lead ammunition to non-toxic alternatives will bring significant nature conservation and human health gains, and from the hunter's perspective will enhance societal acceptance of hunting. Change will create opportunities for improved constructive dialogue between hunting stakeholders and others engaged with enhancing biodiversity and nature conservation objectives.

  8. Two-dimensional ferroelectric topological insulators in functionalized atomically thin bismuth layers

    Science.gov (United States)

    Kou, Liangzhi; Fu, Huixia; Ma, Yandong; Yan, Binghai; Liao, Ting; Du, Aijun; Chen, Changfeng

    2018-02-01

    We introduce a class of two-dimensional (2D) materials that possess coexisting ferroelectric and topologically insulating orders. Such ferroelectric topological insulators (FETIs) occur in noncentrosymmetric atomic layer structures with strong spin-orbit coupling (SOC). We showcase a prototype 2D FETI in an atomically thin bismuth layer functionalized by C H2OH , which exhibits a large ferroelectric polarization that is switchable by a ligand molecule rotation mechanism and a strong SOC that drives a band inversion leading to the topologically insulating state. An external electric field that switches the ferroelectric polarization also tunes the spin texture in the underlying atomic lattice. Moreover, the functionalized bismuth layer exhibits an additional quantum order driven by the valley splitting at the K and K' points in the Brillouin zone stemming from the symmetry breaking and strong SOC in the system, resulting in a remarkable state of matter with the simultaneous presence of the quantum spin Hall and quantum valley Hall effect. These phenomena are predicted to exist in other similarly constructed 2D FETIs, thereby offering a unique quantum material platform for discovering novel physics and exploring innovative applications.

  9. Effect of Target Configuration on the Neutronic Performance of the Gas-Cooled ADS

    CERN Document Server

    Biss, K; Shetty, N; Nabbi, R

    2013-01-01

    With the utilization of nuclear energy transuranic elements like Pu, Am and Cm are produced causing high, long term radioactivity and radio toxicity, respectively. To reduce the radiological impact on the environment and to the repository Partitioning and Transmutation is considered as an efficient way. In this respect comprehensive research works are performed at different research institutes worldwide. The results show that the transmutation of TRU is achieved with fast neutrons due to the higher fission probability. Based on Accelerator Driven Systems (ADS) those neutrons are used in a particular system, in which mainly liquid metal eutectic (lead bismuth) is used as coolant. The neutronic performance of an ADS system based on gas cooling was studied in this work by using the simulation tool MCNPX. The usage of the Monte-Carlo method in MCNPX allows the simulation of the physical processes in a 3D-model of the core. In dependence of the spallation target material and design several parameters like the mult...

  10. Low flow velocity, fine-screen heat exchangers and vapor-cooled cryogenic current leads

    International Nuclear Information System (INIS)

    Steyert, W.A.; Stone, N.J.

    1978-09-01

    The design, construction, and testing of three compact, low temperature heat exchangers are reported. A method is given for the construction of a small (approximately = 20-cm 3 volume) exchanger that can handle 6 g/s helium flow with low pressure drops (ΔP/P = 10 percent) and adequate heat transfer (N/sub tu/ = 3). The use of screen for simple, vapor-cooled current leads into cryogenic systems is also discussed

  11. Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation

    Directory of Open Access Journals (Sweden)

    Hernandez-Delgadillo R

    2013-04-01

    Full Text Available Rene Hernandez-Delgadillo,1 Donaji Velasco-Arias,3 Juan Jose Martinez-Sanmiguel,2 David Diaz,3 Inti Zumeta-Dube,3 Katiushka Arevalo-Niño,1 Claudio Cabral-Romero2 1Facultad de Ciencias Biológicas, Instituto de Biotecnologia, Universidad Autonoma de Nuevo Leon, UANL, Monterrey, Mexico; 2Facultad de Odontología, Universidad Autonoma de Nuevo Leon, UANL, Monterrey, México; 3Facultad de Quimica, Universidad Nacional Autonoma de Mexico, UNAM, Distrito Federal, México Abstract: Multiresistance among microorganisms to common antimicrobials has become one of the most significant concerns in modern medicine. Nanomaterials are a new alternative to successfully treat the multiresistant microorganisms. Nanostructured materials are used in many fields, including biological sciences and medicine. Recently, it was demonstrated that the bactericidal activity of zero-valent bismuth colloidal nanoparticles inhibited the growth of Streptococcus mutans; however the antimycotic potential of bismuth nanostructured derivatives has not yet been studied. The main objective of this investigation was to analyze the fungicidal activity of bismuth oxide nanoparticles against Candida albicans, and their antibiofilm capabilities. Our results showed that aqueous colloidal bismuth oxide nanoparticles displayed antimicrobial activity against C. albicans growth (reducing colony size by 85% and a complete inhibition of biofilm formation. These results are better than those obtained with chlorhexidine, nystatin, and terbinafine, the most effective oral antiseptic and commercial antifungal agents. In this work, we also compared the antimycotic activities of bulk bismuth oxide and bismuth nitrate, the precursor metallic salt. These results suggest that bismuth oxide colloidal nanoparticles could be a very interesting candidate as a fungicidal agent to be incorporated into an oral antiseptic. Additionally, we determined the minimum inhibitory concentration for the synthesized

  12. Laser Spectroscopy of Neutron Rich Bismuth Isotopes

    CERN Multimedia

    2002-01-01

    %IS344 :\\\\ \\\\ The aim of the experiment is to measure the optical isotope shifts and hyperfine structures of bismuth isotopes across the N=126 shell closure in order to extract the change in mean square charge radii ($\\delta\\langle r^{2}\\rangle$) and static moments. These include the first isotones of lead to be measured directly above the shell closure and will provide new information on the systematics of the kink ($\\delta\\langle r^{2}\\rangle)$ seen in the lead isotopic chain. After two very successful runs the programme has been extended to include the neutron deficient isotopes below $^{201}$Bi to study the systematics across the $i_{13/2}$ neutron sub-shell closure at N=118.\\\\ \\\\ During the initial 2 runs (9 shifts) the isotope shifts and hyperfine structures of three new isotopes, $ ^{210,212,213}$Bi and the 9$^{-}$ isomer of $^{210}$Bi have been measured. The accuracy of the previous measurements of $^{205,206,208}$Bi have been greatly improved. The samples of $ ^{208,210,210^{m}}$Bi were prepared by c...

  13. Bismuth Modified Carbon-Based Electrodes for the Determination of Selected Neonicotinoid Insecticides

    Directory of Open Access Journals (Sweden)

    Marko Rodić

    2011-05-01

    Full Text Available Two types of bismuth modified electrodes, a bismuth-film modified glassy carbon (BiF-GCE and a bismuth bulk modified carbon paste, were applied for the determination of selected nitroguanidine neonicotinoid insecticides. The method based on an ex situ prepared BiF-GCE operated in the differential pulse voltammetric (DPV mode was applied to determine clothianidin in the concentration range from 2.5 to 23 μg cm−3 with a relative standard deviation (RSD not exceeding 1.5%. The tricresyl phosphate-based carbon paste electrodes (TCP-CPEs, bulk modified with 5 and 20 w/w% of bismuth, showed a different analytical performance in the determination of imidacloprid, regarding the peak shape, potential window, and noise level. The TCP-CPE with 5% Bi was advantageous, and the developed DPV method based on it allowed the determination in the concentration range from 1.7 to 60 μg cm−3 with an RSD of 2.4%. To get a deeper insight into the morphology of the bismuth-based sensor surfaces, scanning electron microscopic measurements were performed of both the surface film and the bulk modified electrodes.

  14. Inexpensive laser-induced surface modification in bismuth thin films

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, A. Reyes [Facultad de Ciencias, Universidad Autónoma del Estado de México, Carretera Toluca, Ixtlahuaca Kilómetro 15.5, C.P. 50200 Edo. de México (Mexico); Hautefeuille, M., E-mail: mathieu_h@ciencias.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Circuito Exterior S/N, Coyoacán, Ciudad Universitaria, C.P. 04510 D.F. Mexico (Mexico); García, A. Esparza [Fotofísica y Películas Delgadas, Departamento de Tecnociencias, CCADET-UNAM, Circuito exterior s/n C.P. 04510 Cd. Universitaria, D.F. Mexico (Mexico); Mejia, O. Olea [Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco, Km 14.5, Unidad El Rosedal, 50200 San Cayetano, Estado de México (Mexico); López, M.A. Camacho [Facultad de Química, Universidad Autónoma del Estado de México, Tollocan s/n, esq. Paseo Colón, Toluca, Estado de México 50110 (Mexico)

    2015-05-01

    Highlights: • Laser-induced microbumps were formed on bismuth films using a simple, low-cost, laser setup. • The patterns, similar to those typically obtained with high-power lasers, were characterized. • Control of laser ablation conditions is critical in the fabrication of surface microbumps. - Abstract: In this work, we present results on texturing a 500 nm thick bismuth film, deposited by sputtering onto a glass slide using a low-cost homemade, near-infrared pulsed laser platform. A 785 nm laser diode of a CD–DVD pickup head was precisely focused on the sample mounted on a motorized two-axis translation stage to generate localized surface microbumps on the bismuth films. This simple method successfully transferred desired micropatterns on the films in a computer-numerical control fashion. Irradiated zones were characterized by atomic force microscopy and scanning electron microscopy. It was observed that final results are strongly dependent on irradiation parameters.

  15. Bioavailability and chronic toxicity of bismuth citrate to earthworm Eisenia andrei exposed to natural sandy soil.

    Science.gov (United States)

    Omouri, Zohra; Hawari, Jalal; Fournier, Michel; Robidoux, Pierre Yves

    2018-01-01

    The present study describes bioavailability and chronic effects of bismuth to earthworms Eisenia andrei using OECD reproduction test. Adult earthworms were exposed to natural sandy soil contaminated artificially by bismuth citrate. Average total concentrations of bismuth in soil recovered by HNO 3 digestion ranged from 75 to 289mg/kg. Results indicate that bismuth decreased significantly all reproduction parameters of Eisenia andrei at concentrations ≥ 116mg/kg. However, number of hatched cocoons and number of juveniles seem to be more sensitive than total number of cocoons, as determined by IC 50 ; i.e., 182, 123 and > 289mg/kg, respectively. Bismuth did not affect Eisenia andrei growth and survival, and had little effect on phagocytic efficiency of coelomocytes. The low immunotoxicity effect might be explained by the involvement of other mechanisms i.e. bismuth sequestered by metal-binding compounds. After 28 days of exposure bismuth concentrations in earthworms tissue increased with increasing bismuth concentrations in soil reaching a stationary state of 21.37mg/kg dry tissue for 243mg Bi/kg dry soil total content. Data indicate also that after 56 days of incubation the average fractions of bismuth available extracted by KNO 3 aqueous solution in soil without earthworms varied from 0.0051 to 0.0229mg/kg, while in soil with earthworms bismuth concentration ranged between 0.310-1.347mg/kg dry soil. We presume that mucus and chelating agents produced by earthworms and by soil or/and earthworm gut microorganisms could explain this enhancement, as well as the role of dermal and ingestion routes of earthworms uptake to soil contaminant. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Shape-controlled solvothermal synthesis of bismuth subcarbonate nanomaterials

    International Nuclear Information System (INIS)

    Cheng Gang; Yang Hanmin; Rong Kaifeng; Lu Zhong; Yu Xianglin; Chen Rong

    2010-01-01

    Much effort has been devoted to the synthesis of novel nanostructured materials because of their unique properties and potential applications. Bismuth subcarbonate ((BiO) 2 CO 3 ) is one of commonly used antibacterial agents against Helicobacter pylori (H. pylori). Different (BiO) 2 CO 3 nanostructures such as cube-like nanoparticles, nanobars and nanoplates, were fabricated from bismuth nitrate via a simple solvothermal method. The nanostructures were characterized by powder X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). It was found that the solvents and precursors have an influence on the morphologies of (BiO) 2 CO 3 nanostructures. The possible formation mechanism of different (BiO) 2 CO 3 nanostructures fabricated under different conditions was also discussed. - Graphical abstract: Different bismuth subcarbonate ((BiO) 2 CO 3 ) nanostructures were successfully synthesized by a simple solvothermal method. It was found that the solvents and precursors have an influence on the morphologies of (BiO) 2 CO 3 nanostructures.

  17. AB initio energetics of lanthanum substitution in ferroelectric bismuth titanate

    International Nuclear Information System (INIS)

    Shah, S.H.

    2012-01-01

    Density functional theory based electronic structure calculations play a vital role in understanding, controlling and optimizing physical properties of materials at microscopic level. In present study system of interest is bismuth titanate (Bi/sub 4/Ti/sub 3/O/sub 12/)/(BIT) which has wide range of applications such as a high temperature piezoelectric and one of the best material for memory devices. However, it also suffers from serious issues such as oxygen vacancies which degrade its performance as a memory element and piezoelectric material. In this context, the bulk and defect properties of orthorhombic bismuth titanate (Bi/sub 4/Ti/sub 3/O/sub 12/) and bismuth lanthanum titanate (Bi/sub 3.25/La/sub 0.75/Ti/sub 3/O/sub 12/)/(BLT, x=0.75) were investigated by using first principles calculations and atomistic thermodynamics. Heats of formation, valid chemical conditions for synthesis, lanthanum substitution energies and oxygen and bismuth vacancy formation energies were computed. The study improves understanding of how native point defects and substitutional impurities influence the ferroelectric properties of these layered perovskite materials. It was found that lanthanum incorporation could occur on either of the two distinct bismuth sites in the structure and that the effect of substitution is to increase the formation energy of nearby native oxygen vacancies. The results provide direct atomistic evidence over a range of chemical conditions for the suggestion that lanthanum incorporation reduces the oxygen vacancy concentration. Oxygen vacancies contribute to ferroelectric fatigue by interacting strongly with domain walls and therefore a decrease in their concentration is beneficial. (orig./A.B.)

  18. Intrinsic stress of bismuth oxide thin films: effect of vapour chopping and air ageing

    International Nuclear Information System (INIS)

    Patil, R B; Puri, R K; Puri, V

    2008-01-01

    Bismuth oxide thin films of thickness 1000 A 0 have been prepared by thermal oxidation (in air) of vacuum evaporated bismuth thin films (on glass substrate) at different oxidation temperatures and duration. Both the vapour chopped and nonchopped bismuth oxide thin films showed polycrystalline and polymorphic structure. The monoclinic bismuth oxide was found to be predominant in both the cases. The effect of vapour chopping and air exposure for 40 days on the intrinsic stress of bismuth oxide thin films has been studied. The vapour chopped films showed low (3.92 - 4.80 x 10 9 N/m 2 ) intrinsic stress than those of nonchopped bismuth oxide thin films (5.77 - 6.74 x 10 9 N/m 2 ). Intrinsic stress was found to increase due to air ageing. The effect of air ageing on the vapour chopped films was found low. The vapour chopped films showed higher packing density. Higher the packing density, lower the film will age. The process of chopping vapour flow creates films with less inhomogenety i.e. a low concentration of flaws and non-planar defects which results in lower intrinsic stress

  19. Analysis of the WCLL European demo blanket concept in terms of activation and decay heat after exposure to neutron irradiation

    Directory of Open Access Journals (Sweden)

    Stankunas Gediminas

    2017-01-01

    Full Text Available This comparative paper describes the activation and decay heat calculations for water-cooled lithium-lead performed part of the EURO fusion WPSAE programme and specifications in comparison to other European DEMO blanket concepts on the basis of using a three-dimensional neutronics calculation model. Results are provided for a range of decay times of interest for maintenance activities, safety and waste management assessments. The study revealed that water-cooled lithium-lead has the highest total decay heat at longer decay times in comparison to the helium-cooled design which has the lowest total decay heat. In addition, major nuclides were identified for water-cooled lithium-lead in W armour, Eurofer, and LiPb. In addition, great attention has been dedicated to the analysis of the decay heat and activity both from the different water-cooled lithium-lead blanket modules for the entire reactor and from each water-cooled lithium-lead blanket module separately. The neutron induced activation and decay heat at shutdown were calculated by the FISPACT code, using the neutron flux densities and spectra that were provided by the preceding MCNP neutron transport calculations.

  20. Lay-out of the He-cooled solid breeder model B in the European power plant conceptual study

    International Nuclear Information System (INIS)

    Hermsmeyer, S.; Malang, S.; Fischer, U.; Gordeev, S.

    2003-01-01

    The European helium cooled pebble bed (HCPB) blanket concept is the basis for one of two limited-extrapolation plant models that are being elaborated within the European power plant conceptual study (PPCS). In addition to addressing the case for fusion safety and environmental compatibility, following earlier studies like SEAFP or SEAL, this reactor study puts emphasis on plant availability and economic viability, which are closely related to specific plant models and require a detailed lay-out of the fusion power core and a consideration of the overall plant (balance of plant). Within the development of in-vessel components for the plant model, the major tasks to be carried out were: (i) adaptation of the HCPB concept--featuring separate pebble beds of ceramic breeder and Beryllium neutron multiplier and reduced-activation ferritic-martensitic steel EUROFER as structural material--to the large module segmentation chosen for reasons of plant availability in part II of the PPCS; (ii) proposal of a concept for a Helium cooled divertor compatible with a maximum of 10 MW/m 2 heat flux to satisfy the requirements of reasonably extrapolated plasma physics; (iii) lay-out of the major plant model components and integration into the in-vessel dimensions found from system code calculations for a power plant of 1500 MW electrical output and iterated data on the plant model performance. The paper defines all major in-vessel components of plant model B, as it is called in the PPCS, namely (i) the unit of FW, blanket and high temperature shield that is to be replaced regularly; (ii) the low temperature shield that is laid out as a lifetime component of the reactor; (iii) the divertor; and (iv) the in-vessel manifolding. Results are presented for the thermal-hydraulic performance of the components and for the thermal-mechanical behaviour of the blanket and the divertor target plate. These results suggest, together with results from the wider exploration of the plant model within

  1. Doping of germanium telluride with bismuth tellurides

    International Nuclear Information System (INIS)

    Abrikosov, N.Kh.; Karpinskij, O.G.; Makalatiya, T.Sh.; Shelimova, L.E.

    1981-01-01

    Effect of germanium telluride doping with bismuth fellurides (Bi 2 Te 3 ; BiTe; Bi 2 Te) on phase transition temperature, lattice parameters and electrophysical properties of alloys is studied. It is shown that in alloys of GeTe-Bi 2 Te 3 (BiTe)(Bi 2 Te) cross sections solid solution of GeTe with Bi 2 Te 3 , characterized by deviation from stoichiometry, and germanium in the second phase the quantity of which increases during the transition from GeTe-Bi 2 Te 3 cross section to GeTe-Bi 2 Te are in equilibrium. Lower values of holes concentration and of electric conductivity and higher values of thermo e.m.f. coefficient in comparison with alloys of GeTe-Bi 2 Te 3 cross section with the same bismuth content are characterized for GeTe-Bi 2 Te cross section alloys. It is shown that in the range of GeTe-base solid solution the α→γ phase transformation which runs trough the two-phase region (α→γ) is observed with tellurium content increase. Extension of α-phase existence region widens with the bismuth content increase. Peculiarities of interatomic interaction in GeTe-base solid solutions with isovalent and heterovalent cation substitution are considered [ru

  2. Microstructure and electrical properties of bismuth and bismuth oxide deposited by magnetron sputtering UBM

    International Nuclear Information System (INIS)

    Otalora B, D. M.; Dussan, A.; Olaya F, J. J.

    2015-01-01

    In this work, bismuth (Bi) and bismuth oxide (Bi 2 O 3 ) thin films were prepared, at room temperature, by Sputtering Unbalanced Magnetron (UBM - Unbalance Magnetron) technique under glass substrates. Microstructural and electrical properties of the samples were studied by X-ray diffraction (XRD) and System for Measuring Physical Properties - PPMS (Physical Property Measurement System). Dark resistivity of the material was measured for a temperature range between 100 and 400 K. From the XRD measurements it was observed a polycrystalline character of the Bi associated to the presence of phases above the main peak, 2θ = 26.42 grades and a growth governed by a rhombohedral structure. Crystal parameters were obtained for both compounds, Bi and Bi 2 O 3 . From the analysis of the spectra of the conductivity as a function of temperature, it was established that the transport mechanism that governs the region of high temperature (T>300 K) is thermally activated carriers. From conductivity measurements the activation energies were obtained of 0.0094 eV and 0.015 eV for Bi 2 O 3 and Bi, respectively. (Author)

  3. Sulfate-reducing bacteria slow intestinal transit in a bismuth-reversible fashion in mice.

    Science.gov (United States)

    Ritz, N L; Lin, D M; Wilson, M R; Barton, L L; Lin, H C

    2017-01-01

    Hydrogen sulfide (H 2 S) serves as a mammalian cell-derived gaseous neurotransmitter. The intestines are exposed to a second source of this gas by sulfate-reducing bacteria (SRB). Bismuth subsalicylate binds H 2 S rendering it insoluble. The aim of this study was to test the hypothesis that SRB may slow intestinal transit in a bismuth-reversible fashion. Eighty mice were randomized to five groups consisting of Live SRB, Killed SRB, SRB+Bismuth, Bismuth, and Saline. Desulfovibrio vulgaris, a common strain of SRB, was administered by gavage at the dose of 1.0 × 10 9 cells along with rhodamine, a fluorescent dye. Intestinal transit was measured 50 minutes after gavage by euthanizing the animals, removing the small intestine between the pyloric sphincter and the ileocecal valve and visualizing the distribution of rhodamine across the intestine using an imaging system (IVIS, Perkin-Elmer). Intestinal transit (n=50) was compared using geometric center (1=minimal movement, 100=maximal movement). H 2 S concentration (n=30) was also measured when small intestinal luminal content was allowed to generate this gas. The Live SRB group had slower intestinal transit as represented by a geometric center score of 40.2 ± 5.7 when compared to Saline: 73.6 ± 5.7, Killed SRB: 77.9 ± 6.9, SRB+Bismuth: 81.0 ± 2.0, and Bismuth: 73.3 ± 4.2 (Pfashion in mice. Our results demonstrate that intestinal transit is slowed by SRB and this effect could be abolished by H 2 S-binding bismuth. © 2016 John Wiley & Sons Ltd.

  4. Complexometric consequent titration of bismuth-titanium mixtures in the μg-region

    International Nuclear Information System (INIS)

    Schaefer, H.

    1975-01-01

    A quantitative method is described for the determination of microquantities of bismuth and titanium. Both metals are determined complexometrically with EDTA and potentiometric equivalence point indication using a Cu-ion sensitive electrode in a consequent titration. The analysis is conducted as back-titration with standard Cu-solution. The relative error of the determination is 0.8% for bismuth (50-100 μg) and for titanium (10-30 μg) at 1.0%. Under the chosen conditions, it is possible to determine as little as 15 μg bismuth and 5 μg titanium by means of this procedure. (author)

  5. About thermo-electric properties of bismuth telluride doped by gadolinium

    International Nuclear Information System (INIS)

    Akperov, M.M.; Ismailov, Sh.S.; Shukyurova, A.A.

    2004-01-01

    Results of study of the Gd impurities effect on the bismuth telluride thermo-electric properties are presented. The experiment was carried out within the temperature range T=300-700 K. It is determined, that at temperature increase the energy level is appreciably closing up to bismuth telluride forbidden zone which makes up 0.16-0.24 eV. Such anomalous energy properties of gadolinium in telluride affect on material thermoelectric properties

  6. Bismuth nanoparticles synthesized by laser ablation in lubricant oils for tribological tests

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Castañeda, M., E-mail: mar.floc@hotmail.com [Universidad Autónoma del Estado de México, Av. Instituto Literario No. 100, Oriente Col. Centro, Toluca, Estado de México C.P. 50000, México (Mexico); Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Edo. de México C.P. 52750, México (Mexico); Camps, E. [Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Edo. de México C.P. 52750, México (Mexico); Camacho-López, M. [Universidad Autónoma del Estado de México, Av. Instituto Literario No. 100, Oriente Col. Centro, Toluca, Estado de México C.P. 50000, México (Mexico); Muhl, S. [Instituto de Investigación en Materiales (UNAM), Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510 México, D.F., México (Mexico); and others

    2015-09-15

    Highlights: • Bismuth nanoparticles have been obtained by laser ablation of solids in liquids. • The technique allows controlling the size and concentration of the samples. • Bi np’s in base oils can improve the tribological characteristics of the lubricant. - Abstract: The improvement of the tribological properties of mineral base oils through the addition of bismuth nanoparticles as an additive, together with the idea of obtaining lubricants free of heavy metals, was evaluated. Bismuth nanoparticles were produced directly in the heavy and light viscosity mineral base oils (BS900 and BS6500) using the technique of laser ablation of solids immersed in liquids. Transmission electron microscopy measurements showed the presence of pure bismuth nanoparticles. Small Angle X-ray Scattering (SAXS) measurements showed that the average size of the nanoparticles was between 7 and 65 nm depending on the experimental conditions used. The tribological properties of the base oil with the bismuth nanoparticles additives were evaluated using a four-ball tester. Tests were performed using the base oil with and without Bi nanoparticles. It was observed that the coefficient of friction of the oil decrease with an increasing concentration of the nanoparticles. The results also showed that the wear rate was reduced when the Bi nanoparticle additives were used.

  7. Bismuth nanoparticles synthesized by laser ablation in lubricant oils for tribological tests

    International Nuclear Information System (INIS)

    Flores-Castañeda, M.; Camps, E.; Camacho-López, M.; Muhl, S.

    2015-01-01

    Highlights: • Bismuth nanoparticles have been obtained by laser ablation of solids in liquids. • The technique allows controlling the size and concentration of the samples. • Bi np’s in base oils can improve the tribological characteristics of the lubricant. - Abstract: The improvement of the tribological properties of mineral base oils through the addition of bismuth nanoparticles as an additive, together with the idea of obtaining lubricants free of heavy metals, was evaluated. Bismuth nanoparticles were produced directly in the heavy and light viscosity mineral base oils (BS900 and BS6500) using the technique of laser ablation of solids immersed in liquids. Transmission electron microscopy measurements showed the presence of pure bismuth nanoparticles. Small Angle X-ray Scattering (SAXS) measurements showed that the average size of the nanoparticles was between 7 and 65 nm depending on the experimental conditions used. The tribological properties of the base oil with the bismuth nanoparticles additives were evaluated using a four-ball tester. Tests were performed using the base oil with and without Bi nanoparticles. It was observed that the coefficient of friction of the oil decrease with an increasing concentration of the nanoparticles. The results also showed that the wear rate was reduced when the Bi nanoparticle additives were used

  8. Heat-Pipe Bismuth Laser; Examination of Laser Action at 4722A in Bismuth Vapor

    Science.gov (United States)

    1976-11-01

    11, 15(1975). of Type 6p 3 -6p 2 7s in the Bismuth Atomic Spectrum in Intermediate Coupling," Acta Physica Polonica A47, 231(1975). 19. A.N. Nesmeyanov...Calculated Transit n Probabilities and Lifetimes for the First Excited Configuration np (n+l)s in the Neutral As, Sb and Bi Atoms, " Physica Scripta

  9. Thermoelectric self-cooling for power electronics: Increasing the cooling power

    International Nuclear Information System (INIS)

    Martinez, Alvaro; Astrain, David; Aranguren, Patricia

    2016-01-01

    Thermoelectric self-cooling was firstly conceived to increase, without electricity consumption, the cooling power of passive cooling systems. This paper studies the combination of heat pipe exchangers and thermoelectric self-cooling, and demonstrates its applicability to the cooling of power electronics. Experimental tests indicate that source-to-ambient thermal resistance reduces by around 30% when thermoelectric self-cooling system is installed, compared to that of the heat pipe exchanger under natural convection. Neither additional electric power nor cooling fluids are required. This thermal resistance reaches 0.346 K/W for a heat flux of 24.1 kW/m"2, being one order of magnitude lower than that obtained in previous designs. In addition, the system adapts to the cooling demand, reducing this thermal resistance for increasing heat. Simulation tests have indicated that simple system modifications allow relevant improvements in the cooling power. Replacement of a thermoelectric module with a thermal bridge leads to 33.54 kW/m"2 of top cooling power. Likewise, thermoelectric modules with shorter legs and higher number of pairs lead to a top cooling power of 44.17 kW/m"2. These results demonstrate the applicability of thermoelectric self-cooling to power electronics. - Highlights: • Cooling power of passive systems increased. • No electric power consumption. • Applicable for the cooling of power electronics. • Up to 44.17 kW/m"2 of cooling power, one order of magnitude higher. • Source-to-ambient thermal resistance reduces by 30%.

  10. Preparation of Ferroelectric Thin Films of Bismuth Layer Structured Compounds

    Science.gov (United States)

    Watanabe, Hitoshi; Mihara, Takashi; Yoshimori, Hiroyuki; Araujo, Carlos

    1995-09-01

    Ferroelectric thin films of bismuth layer structured compounds, SrBi2Ta2O9, SrBi2Nb2O9, SrBi4Ti4O15 and their solid solutions, were formed onto a sputtered platinum layer on a silicon substrate using spin-on technique and metal-organic decomposition (MOD) method. X-ray diffraction (XRD) analysis and some electrical measurements were performed on the prepared thin films. XRD results of SrBi2(Ta1- x, Nb x)2O9 films (0≤x≤1) showed that niobium ions substitute for tantalum ions in an arbitrary ratio without any change of the layer structure and lattice constants. Furthermore, XRD results of SrBi2 xTa2O9 films (0≤x≤1.5) indicated that the formation of the bismuth layer structure does not always require an accurate bismuth content. The layer structure was formed above 50% of the stoichiometric bismuth content in the general formula. SrBi2(Ta1- x, Nb x)2O9 films with various Ta/Nb ratios have large enough remanent polarization for nonvolatile memory application and have shown high fatigue resistance against 1011 cycles of full switching of the remanent polarization. Mixture films of the three compounds were also investigated.

  11. Bismuth as a general internal standard for lead in atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Bechlin, Marcos A.; Fortunato, Felipe M.; Ferreira, Edilene C.; Neto, José A. Gomes; Nóbrega, Joaquim A.; Donati, George L.; Jones, Bradley T.

    2014-01-01

    Highlights: • Single internal standard is commonly proposed for definite application in AAS. • Internal standard for general use in AAS techniques is original. • Bi showed efficiency as internal standard for Pb determinations by FAAS and GFAAS. • Assorted samples were analyzed and accurate results were found. - Abstract: Bismuth was evaluated as internal standard for Pb determination by line source flame atomic absorption spectrometry (LS FAAS), high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS) and line source graphite furnace atomic absorption spectrometry (LS GFAAS). Analysis of samples containing different matrices indicated close relationship between Pb and Bi absorbances. Correlation coefficients of calibration curves built up by plotting A Pb /A Bi versus Pb concentration were higher than 0.9953 (FAAS) and higher than 0.9993 (GFAAS). Recoveries of Pb improved from 52–118% (without IS) to 97–109% (IS, LS FAAS); 74–231% (without IS) to 96–109% (IS, HR-CS FAAS); and 36–125% (without IS) to 96–110% (IS, LS GFAAS). The relative standard deviations (n = 12) were reduced from 0.6–9.2% (without IS) to 0.3–4.3% (IS, LS FAAS); 0.7–7.7% (without IS) to 0.1–4.0% (IS, HR-CS FAAS); and 2.1–13% (without IS) to 0.4–5.9% (IS, LS GFAAS)

  12. Selective oxidation of propylene to acrolein by silica-supported bismuth molybdate catalysts

    DEFF Research Database (Denmark)

    Duc, Duc Truong; Ha, Hanh Nguyen; Fehrmann, Rasmus

    2011-01-01

    Silica-supported bismuth molybdate catalysts have been prepared by impregnation, structurally characterized and examined as improved catalysts for the selective oxidation of propylene to acrolein. Catalysts with a wide range of loadings (from 10 to 90 wt%) of beta bismuth molybdate (β-Bi2Mo2O9) w...

  13. Synthesis and characterization of titanium oxide/bismuth sulfide nanorods for solar cells applications

    International Nuclear Information System (INIS)

    Solis, M.; Rincon, M. E.

    2008-01-01

    In the present work is showed the synthesis and characterization of titanium oxide/bismuth sulfide nanowires hetero-junctions for solar cells applications. Conductive glass substrates (Corning 25 x 75 mm) were coated with a thin layer of sol-gel TiO2 and used as substrates for the subsequent deposition of bismuth sulfide nanorods (BN). TiO2 films (∼400 nm) were deposited with a semiautomatic immersion system with controlled immersion/withdraw velocity, using titanium isopropoxide as the titania precursor [1]. For BN synthesis and deposition, the solvo-thermal method was used, introducing air annealed TiO2-substrates in the autoclave. The typical bilayer TiO2/BN hetero-junction was 600 nm thick. The synthesized materials (powders and films) were characterized by X-Ray Diffraction, Scanning Electron Microscopy, and UV-Visible Spectroscopy. Anatase was the crystalline phase of TiO2, while bismuth sulfide nanotubes show a diffraction pattern characteristic of bismuthinite distorted by the preferential growth of some planes [2-4]. The optoelectronic characterization of TiO2/NB hetero-junctions was compared with hetero-junctions obtained by sensitizing TiO2 with chemically deposited bismuth sulfide films. Bismuth sulfide nanowires are 2µm long and 70nm wide (aspect ratio L/D = 43), while chemically deposited bismuth sulfide have L/D = 1, therefore the effect of particle size evaluation and geometry in the photosensitization phenomena will be discussed in the context of new materials for solar-cells applications. (Full text)

  14. Medium-Power Lead-Alloy Reactors: Missions for This Reactor Technology

    International Nuclear Information System (INIS)

    Todreas, Neil E.; MacDonald, Philip E.; Hejzlar, Pavel; Buongiorno, Jacopo; Loewen, Eric P.

    2004-01-01

    A multiyear project at the Idaho National Engineering and Environmental Laboratory and the Massachusetts Institute of Technology investigated the potential of medium-power lead-alloy-cooled technology to perform two missions: (1) the production of low-cost electricity and (2) the burning of actinides from light water reactor (LWR) spent fuel. The goal of achieving a high power level to enhance economic performance simultaneously with adoption of passive decay heat removal and modularity capabilities resulted in designs in the range of 600-800 MW(thermal), which we classify as a medium power level compared to the lower [∼100 MW(thermal)] and higher [2800 MW(thermal)] power ratings of other lead-alloy-cooled designs. The plant design that was developed shows promise of achieving all the Generation-IV goals for future nuclear energy systems: sustainable energy generation, low overnight capital cost, a very low likelihood and degree of core damage during any conceivable accident, and a proliferation-resistant fuel cycle. The reactor and fuel cycle designs that evolved to achieve these missions and goals resulted from study of the following key trade-offs: waste reduction versus reactor safety, waste reduction versus cost, and cost versus proliferation resistance. Secondary trade-offs that were also considered were monolithic versus modular design, active versus passive safety systems, forced versus natural circulation, alternative power conversion cycles, and lead versus lead-bismuth coolant.These studies led to a selection of a common modular design with forced convection cooling, passive decay heat removal, and a supercritical CO 2 power cycle for all our reactor concepts. However, the concepts adopt different core designs to optimize the achievement of the two missions. For the low-cost electricity production mission, a design approach based on fueling with low enriched uranium operating without costly reprocessing in a once-through cycle was pursued to achieve a

  15. Multiple lead seal assembly for a liquid-metal-cooled fast-breeder nuclear reactor

    International Nuclear Information System (INIS)

    Hutter, E.; Pardini, J.A.

    1977-01-01

    A reusable multiple lead seal assembly provides leak-free passage of stainless-steel-clad instrument leads through the cover on the primary tank of a liquid-metal-cooled fast-breeder nuclear reactor. The seal isolates radioactive argon cover gas and sodium vapor within the primary tank from the exterior atmosphere and permits reuse of the assembly and the stainless-steel-clad instrument leads. Leads are placed in flutes in a seal body, and a seal shell is then placed around the seal body. Circumferential channels in the body and inner surface of the shell are contiguous and together form a conduit which intersects each of the flutes, placing them in communication with a port through the wall of the seal shell. Liquid silicone rubber sealant is injected into the flutes through the port and conduit; the sealant fills the space in the flutes not occupied by the leads themselves and dries to a rubbery hardness. A nut, threaded onto a portion of the seal body not covered by the seal shell, jacks the body out of the shell and shears the sealant without damage to the body, shell, or leads. The leads may then be removed from the body. The sheared sealant is cleaned from the body, leads, and shell and the assembly may then be reused with the same or different leads. 3 claims, 6 figures

  16. Topological Insulator State in Thin Bismuth Films Subjected to Plane Tensile Strain

    Science.gov (United States)

    Demidov, E. V.; Grabov, V. M.; Komarov, V. A.; Kablukova, N. S.; Krushel'nitskii, A. N.

    2018-03-01

    The results of experimental examination of galvanomagnetic properties of thin bismuth films subjected to plane tensile strain resulting from the difference in thermal expansion coefficients of the substrate material and bismuth are presented. The resistivity, the magnetoresistance, and the Hall coefficient were studied at temperatures ranging from 5 to 300 K in magnetic fields as strong as 0.65 T. Carrier densities were calculated. A considerable increase in carrier density in films thinner than 30 nm was observed. This suggests that surface states are more prominent in thin bismuth films on mica substrates, while the films themselves may exhibit the properties of a topological insulator.

  17. Evaluation of the strength and radiopacity of Portland cement with varying additions of bismuth oxide.

    Science.gov (United States)

    Saliba, E; Abbassi-Ghadi, S; Vowles, R; Camilleri, J; Hooper, S; Camilleri, J

    2009-04-01

    To study the effect of addition of various proportions of bismuth oxide on compressive strength and radiopacity of Portland cement. The compressive strength of white Portland cement and cement replaced with 10, 15, 20, 25 and 30% bismuth oxide was evaluated by testing cylinders 6 mm in diameter and 12 mm high. Twelve cylinders were tested for each material under study. The radiopacity of the cements tested was evaluated using an aluminium step-wedge and densitometer. The optical density was compared with the relevant thickness of aluminium (Al). Statistical analysis was performed using Analysis of Variance (ANOVA) with P = 0.05 and Tukey test to perform multiple comparison tests. Various additions of bismuth oxide had no significant effect on the strength of the material when compared with the unmodified Portland cement (P > 0.05). The radiopacity of the cements tested ranged from 2.02 mm Al for Portland cement to 9.79 mm Al for the highest bismuth replacement. Addition of bismuth oxide did not affect the compressive strength of Portland cement. All the bismuth oxide cement mixtures had radio-opacities higher than 3 mm thickness of aluminium.

  18. Method of Creating Micro-scale Silver Telluride Grains Covered with Bismuth Nanoparticles

    Science.gov (United States)

    Kim, Hyun-Jung (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Park, Yeonjoon (Inventor); Lee, Kunik (Inventor)

    2014-01-01

    Provided is a method of enhancing thermoelectric performance by surrounding crystalline semiconductors with nanoparticles by contacting a bismuth telluride material with a silver salt under a substantially inert atmosphere and a temperature approximately near the silver salt decomposition temperature; and recovering a metallic bismuth decorated material comprising silver telluride crystal grains.

  19. Are Lead Exposures a Risk in European Fresh Waters? A Regulatory Assessment Accounting for Bioavailability.

    Science.gov (United States)

    Peters, Adam; Wilson, Iain; Merrington, Graham; Chowdhury, M Jasim

    2018-01-01

    An indicative compliance assessment of the Europe-wide bioavailable lead Environmental Quality Standard of 1.2 µg L -1 (EQS) was undertaken against regulatory freshwater monitoring data from six European member states and FOREGS database. Bio-met, a user-friendly tool based upon Biotic Ligand Models (BLMs) was used to account for bioavailability, along with the current European Water Framework Directive lead dissolved organic carbon correction approach. The outputs from both approaches were compared to the BLM. Of the 9054 freshwater samples assessed only 0.6% exceeded the EQS of 1.2 µg L -1 after accounting for bioavailability. The data showed that ambient background concentrations of lead across Europe are unlikely to influence general compliance with the EQS, although there may be isolated local issues. The waters showing the greatest sensitivity to potential lead exposures are characterized by relatively low DOC (< 0.5 mg L -1 ), regardless of the pH and calcium concentrations.

  20. Flotation atomic absorption determination of bismuth in nonferrous metal alloys

    International Nuclear Information System (INIS)

    Ososkov, V.K.; Plintus, A.M.; Kornelli, M.Eh.; Zakhariya, A.N.; Lozanova, E.V.

    1986-01-01

    Technique of flotation concentration and atomic absorption determination of bismuth microquantities in alloys on the basis of copper and zinc has been developed. Fine-dispersed EhDEh-10P anionite was used as a carrier in flotation concentration. State standard samples (SSS) of brasses and German silver were used as analysed objects. Effect of macrocomponents on the results of bismuth content determination has been studied. Satisfactory coincidence of the results obtained and SSS certificates is shown

  1. Personal Cooling Fabric Based on Polymeric Thermoelectrics

    Science.gov (United States)

    2016-07-28

    There are also concerns about environmental impact given their toxic heavy metal content. Despite these limitations and the lack of improvement in...polymeric TE materials were studied, they offered the additional advantages (over metallic materials) of low density, no toxic heavy metals (bismuth, lead...First, fluorene was reacted with two equivalents of bromoethane under basic conditions to afford 9,9’-diethyl fluorine , which was bromomethylated

  2. Identification and Decay Studies of New, Neutron-Rich Isotopes of Bismuth, Lead and Thallium by means of a Pulsed Release Element Selective Method

    CERN Multimedia

    Mills, A; Kugler, E; Van duppen, P L E; Lettry, J

    2002-01-01

    % IS354 \\\\ \\\\ It is proposed to produce, identify and investigate at ISOLDE new, neutron-rich isotopes of bismuth, lead and thallium at the mass numbers A=215 to A=218. A recently tested operation mode of the PS Booster-ISOLDE complex, taking an advantage of the unique pulsed proton beam structure, will be used together with a ThC target in order to increase the selectivity. The decay properties of new nuclides will be studied by means of $\\beta$-, $\\gamma$- and X- ray spectroscopy methods. The expected information on the $\\beta$-half-lives and excited states will be used for testing and developing the nuclear structure models ``south-east'' of $^{208}$Pb, and will provide input data for the description of the r-process path at very heavy nuclei. The proposed study of the yields and the decay properties of those heavy nuclei produced in the spallation of $^{232}$Th by a 1~GeV proton beam contributes also the data necessary for the simulations of a hybrid accelerator-reactor system.

  3. Bismuth- and lithium-loaded plastic scintillators for gamma and neutron detection

    International Nuclear Information System (INIS)

    Cherepy, Nerine J.; Sanner, Robert D.; Beck, Patrick R.; Swanberg, Erik L.; Tillotson, Thomas M.; Payne, Stephen A.; Hurlbut, Charles R.

    2015-01-01

    Transparent plastic scintillators based on polyvinyltoluene (PVT) have been fabricated with high loading of bismuth carboxylates for gamma spectroscopy, and with lithium carboxylates for neutron detection. When activated with a combination of standard fluors, 2,5-diphenyloxazole (PPO) and tetraphenylbutadiene (TPB), gamma light yields with 15 wt% bismuth tripivalate of 5000 Ph/MeV are measured. A PVT plastic formulation including 30 wt% lithium pivalate and 30 wt% PPO offers both pulse shape discrimination, and a neutron capture peak at ~400 keVee. In another configuration, a bismuth-loaded PVT plastic is coated with ZnS( 6 Li) paint, permitting simultaneous gamma and neutron detection via pulse shape discrimination with a figure-of-merit of 3.8, while offering gamma spectroscopy with energy resolution of R(662 keV)=15%

  4. Coating compositions comprising bismuth-alloyed zinc

    DEFF Research Database (Denmark)

    2008-01-01

    The present application discloses (i) a coating composition comprising a particulate zinc-based alloyed material, said material comprising 0.05-0.7% by weight of bismuth (Bi), the D50 of the particulate material being in the range of 2.5-30 µm; (ii) a coated structure comprising a metal structure...... having a first coating of the zinc-containing coating composition applied onto at least a part of the metal structure in a dry film thickness of 5-100 µm; and an outer coating applied onto said zinc-containing coating in a dry film thickness of 30-200 µm; (iii) a particulate zinc-based alloyed material......, wherein the material comprises 0.05-0.7%(w/w) of bismuth (Bi), and wherein the D50 of the particulate material is in the range of 2.5-30 µm; (iv) a composite powder consisting of at least 25%(w/w) of the particulate zinc-based alloyed material, the rest being a particulate material consisting of zinc...

  5. Spectroscopic Characterization of Extracellular Polymeric Substances from Escherichia coli and Serratia marcescens: Suppression using Sub-Inhibitory Concentrations of Bismuth Thiols

    Energy Technology Data Exchange (ETDEWEB)

    Badireddy, Appala R.; Korpol, Bhoom Reddy; Chellam, Shankararaman; Gassman, Paul L.; Engelhard, Mark H.; Lea, Alan S.; Rosso, Kevin M.

    2008-10-21

    Free and capsular EPS produced by Escherichia coli and Serratia marcescens were characterized in detail using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES). Total EPS production decreased upon treatment with sub-inhibitory concentrations of lipophilic bismuth thiols (bismuth dimercaptopropanol, BisBAL; bismuth ethanedithiol, BisEDT; and bismuth pyrithione, BisPYR), BisBAL being most effective. Bismuth thiols also influenced acetylation and carboxylation of polysaccharides in EPS from S. marcescens. Extensive homology between EPS samples in the presence and absence of bismuth was observed with proteins, polysaccharides, and nucleic acids varying predominantly only in the total amount expressed. Second derivative analysis of the amide I region of FTIR spectra revealed decreases in protein secondary structures in the presence of bismuth thiols. Hence, anti-fouling properties of bismuth thiols appear to originate in their ability to suppress O-acetylation and protein secondary structures in addition to total EPS secretion.

  6. Contribution of Renewable Cooling to the Renewable Energy Target of the EU. Policy report

    Energy Technology Data Exchange (ETDEWEB)

    Kenkmann, T.; Buerger, V. [The Oeko-Institut, Freiburg (Germany)

    2012-06-15

    Renewable cooling technologies do not play a major role in the climate protection discussion in the European Union today. At the same time the cooling demand is expected to increase significantly in the coming decades. Renewable cooling technologies could contribute to the EU renewable energy target if an appropriate political framework for a further spread of the technologies is created. This renewable cooling policy report intends to support the dissemination of renewable cooling technologies. It provides an overview of the situation, technologies and potential for cool-ing from renewable sources and identifies key areas in which further investigation is required. The report shows that there is a great need for the creation of a political framework supporting the market diffusion of renewable cooling technologies. Firstly the question of a commonly accepted definition on renewable cooling is being addressed. Secondly renewable cooling technologies are described and the today's role of cooling in European statistics and policies is analysed. In the next step existing studies are evaluated to compare the expected development of the cooling demand in Europe to the market potential of renewable cooling. At the end of the paper a long-term vision for renewable cooling is described and first steps towards a European roadmap for renewable cooling are given.

  7. Efficient enhancement of bismuth NIR luminescence by aluminum and its mechanism in bismuth doped germanate laser glass

    DEFF Research Database (Denmark)

    Wang, L.P.; Tan, L.L.; Yue, Yuanzheng

    2016-01-01

    As a new member of laser glass family, bismuth-doped glasses have received rising interests due to the application of fiber amplifiers and laser sources in the new spectral range for the next-generation optical communication system. For practical application of the glasses, it must be considered ...

  8. First-principles calculation of the polarization-dependent force driving the Eg mode in bismuth under optical excitation.

    Science.gov (United States)

    Murray, Eamonn; Fahy, Stephen

    2014-03-01

    Using first principles electronic structure methods, we calculate the induced force on the Eg (zone centre transverse optical) phonon mode in bismuth immediately after absorption of polarized light. When radiation with polarization perpendicular to the c-axis is absorbed in bismuth, the distribution of excited electrons and holes breaks the three-fold rotational symmetry and leads to a net force on the atoms in the direction perpendicular to the axis. We calculate the initial excited electronic distribution as a function of photon energy and polarization and find the resulting transverse and longitudinal forces experienced by the atoms. Using the measured, temperature-dependent rate of decay of the transverse force[2], we predict the approximate amplitude of induced atomic motion in the Eg mode as a function of temperature and optical fluence. This work is supported by Science Foundation Ireland and a Marie Curie International Incoming Fellowship.

  9. Assessment of the influence of surface finishing and weld joints on the corrosion/oxidation behaviour of stainless steels in lead bismuth eutectic

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Munoz, F.J., E-mail: fco.javier@ciemat.es [Structural Materials Division, CIEMAT, Building 30, Avda. Complutense 22, Madrid 28040 (Spain); Soler-Crespo, L.; Gomez-Briceno, D. [Structural Materials Division, CIEMAT, Building 30, Avda. Complutense 22, Madrid 28040 (Spain)

    2011-09-01

    The objective of this paper is to gain some insight into the influence of the surface finishing in the oxidation/corrosion behaviour of 316L and T91 steels in lead bismuth eutectic (LBE). Specimens of both materials with different surface states were prepared (as-received, grinded, grinded and polished, and electrolitically polished) and oxidation tests were carried out at 775 and 825 K from 100 to 2000 h for two different oxygen concentrations and for H{sub 2}/H{sub 2}O molar ratios of 3 and 0.03. The general conclusion for these tests is that the effect of surface finishing on the corrosion/protection processes is not significant under the tested conditions. In addition the behaviour of weld joints, T91-T91 Tungsten Inert Gas (TIG) and T91-316L have been also studied under similar conditions. The conclusions are that, whereas T91-T91 welded joint shows the same corrosion properties as the parent materials for the conditions tested, AISI 316L-T91 welded joint, present an important dissolution over seam area that it associated to the electrode 309S used for the fabrication process.

  10. Assessment of the influence of surface finishing and weld joints on the corrosion/oxidation behaviour of stainless steels in lead bismuth eutectic

    Science.gov (United States)

    Martín-Muñoz, F. J.; Soler-Crespo, L.; Gómez-Briceño, D.

    2011-09-01

    The objective of this paper is to gain some insight into the influence of the surface finishing in the oxidation/corrosion behaviour of 316L and T91 steels in lead bismuth eutectic (LBE). Specimens of both materials with different surface states were prepared (as-received, grinded, grinded and polished, and electrolitically polished) and oxidation tests were carried out at 775 and 825 K from 100 to 2000 h for two different oxygen concentrations and for H 2/H 2O molar ratios of 3 and 0.03. The general conclusion for these tests is that the effect of surface finishing on the corrosion/protection processes is not significant under the tested conditions. In addition the behaviour of weld joints, T91-T91 Tungsten Inert Gas (TIG) and T91-316L have been also studied under similar conditions. The conclusions are that, whereas T91-T91 welded joint shows the same corrosion properties as the parent materials for the conditions tested, AISI 316L-T91 welded joint, present an important dissolution over seam area that it associated to the electrode 309S used for the fabrication process.

  11. Assessment of the influence of surface finishing and weld joints on the corrosion/oxidation behaviour of stainless steels in lead bismuth eutectic

    International Nuclear Information System (INIS)

    Martin-Munoz, F.J.; Soler-Crespo, L.; Gomez-Briceno, D.

    2011-01-01

    The objective of this paper is to gain some insight into the influence of the surface finishing in the oxidation/corrosion behaviour of 316L and T91 steels in lead bismuth eutectic (LBE). Specimens of both materials with different surface states were prepared (as-received, grinded, grinded and polished, and electrolitically polished) and oxidation tests were carried out at 775 and 825 K from 100 to 2000 h for two different oxygen concentrations and for H 2 /H 2 O molar ratios of 3 and 0.03. The general conclusion for these tests is that the effect of surface finishing on the corrosion/protection processes is not significant under the tested conditions. In addition the behaviour of weld joints, T91-T91 Tungsten Inert Gas (TIG) and T91-316L have been also studied under similar conditions. The conclusions are that, whereas T91-T91 welded joint shows the same corrosion properties as the parent materials for the conditions tested, AISI 316L-T91 welded joint, present an important dissolution over seam area that it associated to the electrode 309S used for the fabrication process.

  12. Photoinduced switchable wettability of bismuth coating with hierarchical dendritic structure between superhydrophobicity and superhydrophilicity

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chunping; Lu, Zhong; Zhao, Huiping; Yang, Hao, E-mail: hyangwit@hotmail.com; Chen, Rong, E-mail: rchenhku@hotmail.com

    2015-10-30

    Graphical abstract: - Highlights: • Hierarchical bismuth nanostructures were synthesized by galvanic replacement reaction. • The bismuth coating shows superhydrophobicity after being modified by stearic acid. • Wetting transition could be realized by alternation of irradiation and modification. - Abstract: Special wettability such as superhydrophobicity and superhydrophilicity has aroused considerable attention in recent years, especially for the surface that can be switched between superhydrophobicity and superhydrophilicity. In this work, hierarchical bismuth nanostructures with hyperbranched dendritic architectures were synthesized via the galvanic replacement reaction between zinc plate and BiCl{sub 3} in ethylene glycol solution, which was composed of a trunk, branches (secondary branch), and leaves (tertiary branch). After being modified by stearic acid, the as-prepared bismuth coating shows superhydrophobicity with a high water contact angle of 164.8° and a low sliding angle of 3°. More importantly, a remarkable surface wettability transition between superhydrophobicity and superhydrophilicity could be easily realized by the alternation of UV–vis irradiation and modification with stearic acid. The tunable wetting behavior of bismuth coating could be used as smart materials to make a great application in practice.

  13. Electrochemical study on determination of diffusivity, activity and solubility of oxygen in liquid bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Rajesh [Liquid Metals and Structural Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Gnanasekaran, T. [Liquid Metals and Structural Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)]. E-mail: gnani@igcar.ernet.in; Srinivasa, Raman S. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400 076 (India)

    2006-06-15

    Diffusivity of oxygen in liquid bismuth was measured by potentiostatic method and is given bylg(D{sub O}{sup Bi}/cm{sup 2}.s{sup -1})(+/-0.042)=-3.706-1377/(TK{sup -1})(804bismuth was determined by coulometric titrations and using the measured data standard free energy of dissolution of oxygen in liquid bismuth was derived for the reaction:1/2O{sub 2}(g)=[O]{sub Bi}(at.%)and is given by{delta}G{sub O(Bi)}{sup o}/(J.g-atomO{sup -1})(+/-720)=-108784+20.356TK{sup -1}(753bismuth was derived as a function of temperature and is given by the following expressions:lg(S/at%O)(+/-0.05)=-4476/TK{sup -1}+4.05(753bismuth is compared with the literature data.

  14. A sensitive fluorescence quenching method for determination of bismuth with tiron

    Energy Technology Data Exchange (ETDEWEB)

    Taher, Mohammad Ali; Rahimi, Mina [Department of Chemistry, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Fazelirad, Hamid, E-mail: hamidfazelirad@gmail.com [Department of Chemistry, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Department of Chemistry, Science and Research Branch, Islamic Azad University, Yazd (Iran, Islamic Republic of); Young Researchers Society, Shahid Bahonar University of Kerman, P.O. Box 76175-133, Kerman (Iran, Islamic Republic of)

    2014-01-15

    We describe a fluorescence quenching method for determination of bismuth with tiron. The method is based on the reaction of tiron by bismuth(III) in acidic media. The influence of variables such as the pH, type of buffer, tiron concentration, reaction time and temperature were investigated. Under optimized conditions, the fluorescence quenching extent is proportional to the concentration of bismuth for Bi–tiron system at the range 0.13–2.09 μg mL{sup −1} and the detection limit is 0.05 μg mL{sup −1}. The proposed sensor presented good repeatability, evaluated in terms of relative standard deviation (R.S.D.=±0.498%) for 11 replicates. This sensitive, rapid and accurate method has been successfully applied to the determination of trace bismuth(III) in water and hair samples and certified reference materials. -- Highlights: • No previous paper report on use of fluorescence quenching for determination of Bi. • Fluorescence quenching of trion is a sensitive method for determination of Bi(III). • Under the optimum conditions the detection limit is very low (0.05 μg mL{sup −1}). • The procedure is simple and safe and has high tolerance limit to interferences.

  15. Growth of superconductor material in a fluxed melt, and article of manufacture

    International Nuclear Information System (INIS)

    Jackson, K.A.; Schneemeyer, L.F.

    1991-01-01

    This patent describes a method for making a body of bismuth-strontium calcium cuprate, lead-substituted bismuth strontium calcium cuprate, or thallium-barium calcium cuprate superconductor material. It comprises cooling a melt at least locally, the melt comprising constituents of the material, characterized in that the melts further comprises a flux component comprising at least one fluxing agent selected from the group consisting of sodium chloride and potassium chloride, such that the cuprate body has superconductor properties at a temperature of 77 K

  16. Reactive magnetron sputtering deposition of bismuth tungstate onto titania nanoparticles for enhancing visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Ratova, Marina, E-mail: marina_ratova@hotmail.com [Surface Engineering Group, School of Engineering, Manchester Metropolitan University, Manchester, M1 5GD (United Kingdom); Kelly, Peter J.; West, Glen T. [Surface Engineering Group, School of Engineering, Manchester Metropolitan University, Manchester, M1 5GD (United Kingdom); Tosheva, Lubomira; Edge, Michele [School of Science and the Environment, Manchester Metropolitan University, Manchester M1 5GD (United Kingdom)

    2017-01-15

    Highlights: • Bismuth tungstate coatings were deposited by reactive magnetron sputtering. • Oscillating bowl was introduced to the system to enable coating of nanopartulates. • Deposition of Bi{sub 2}WO{sub 6} enhanced visible light activity of titania nanoparticles. • The best results were obtained for coating with Bi:W ratio of approximately 2:1. • Deposition of Bi{sub 2}WO{sub 6} onto TiO{sub 2} resulted in more efficient electron-hole separation. - Abstract: Titanium dioxide − bismuth tungstate composite materials were prepared by pulsed DC reactive magnetron sputtering of bismuth and tungsten metallic targets in argon/oxygen atmosphere onto anatase and rutile titania nanoparticles. The use of an oscillating bowl placed beneath the two magnetrons arranged in a co-planar closed field configuration enabled the deposition of bismuth tungstate onto loose powders, rather than a solid substrate. The atomic ratio of the bismuth/tungsten coatings was controlled by varying the power applied to each target. The effect of the bismuth tungstate coatings on the phase, optical and photocatalytic properties of titania was investigated by X-ray diffraction, energy-dispersive X-ray spectroscopy (EDX), Brunauer–Emmett–Teller (BET) surface area measurements, transmission electron microscopy (TEM), UV–vis diffuse reflectance spectroscopy and an acetone degradation test. The latter involved measurements of the rate of CO{sub 2} evolution under visible light irradiation of the photocatalysts, which indicated that the deposition of bismuth tungstate resulted in a significant enhancement of visible light activity, for both anatase and rutile titania particles. The best results were achieved for coatings with a bismuth to tungsten atomic ratio of 2:1. In addition, the mechanism by which the photocatalytic activity of the TiO{sub 2} nanoparticles was enhanced by compounding it with bismuth tungstate was studied by microwave cavity perturbation. The results of these

  17. Thermal-hydraulic analysis for the LBE-cooled natural circulation reactor. Development of the MSG-COPD code and application to the system analysis. Research Document

    International Nuclear Information System (INIS)

    Iwasaki, Takashi; Sakai, Takaaki; Enuma, Yasuhiro; Mizuno, Tomoyasu

    2002-03-01

    Thermal-hydraulic analysis for the Lead-Bismuth eutectic (LBE)-cooled natural circulation reactor has been conducted by using a combined plant dynamics code (MSG-COPD). MSG-COPD has been developed to consider the multi-dimensional thermal-hydraulics effect on the plant dynamics during transients. Plant dynamics analyses for the LBE-cooled STAR-LM reactor, which has been designed by Argonne National Laboratory in U.S.A., have been performed to understand the basic thermal-hydraulic characteristics of the natural circulation reactor. As a result, it has been made clear that cold coolant remains in the lower plenum by the thermal stratification in case of the ULOHS condition with a severe temperature gradient at the stratified surface in the lower plenum. In addition, the flow-redistribution effect in a core channels by the buoyancy force has been evaluated for a candidate LBE-cooled FBR plant concept (LBE-FR), which has been designed by JNC. A linear evaluation method for the flow-redistribution coefficient is proposed for the LBE-FR, and compared with the multi-dimensional results by MSG-COPD. In conclusion, the method shows sufficient performance for the prediction of the flow-redistribution coefficient for typical lateral power distributions in the core. (author)

  18. Improvements to a Flow Sensor for Liquid Bismuth-Fed Hall Thrusters

    Science.gov (United States)

    Bonds, Kevin; Polzin, Kurt A.

    2010-01-01

    Recently, there has been significant interest in using bismuth metal as a propellant in Hall Thrusters [1, 2]. Bismuth offers some considerable cost, weight, and space savings over the traditional propellant--xenon. Quantifying the performance of liquid metal-fed Hall thrusters requires a very precise measure of the low propellant flow rates [1, 2]. The low flow rates (10 mg/sec) and the temperature at which free flowing liquid bismuth exists (above 300 C) preclude the use of off-the-shelf flow sensing equipment [3]. Therefore a new type of sensor is required. The hotspot bismuth flow sensor, described in Refs. [1-5] is designed to perform a flow rate measurement by measuring the velocity at which a thermal feature moves through a flow chamber. The mass flow rate can be determined from the time of flight of the thermal peak, [4, 5]. Previous research and testing has been concerned mainly with the generation of the thermal peak and it's subsequent detection. In this paper, we present design improvements to the sensor concept; and the results of testing conducted to verify the functionality of these improvements. A ceramic material is required for the sensor body (see Fig. 1), which must allow for active heating of the bismuth flow channel to keep the propellant in a liquid state. The material must be compatible with bismuth and must be bonded to conductive elements to allow for conduction of current into the liquid metal and measurement of the temperature in the flow. The new sensor requires fabrication techniques that will allow for a very small diameter flow chamber, which is required to produce useful measurements. Testing of various materials has revealed several that are potentially compatible with liquid bismuth. Of primary concern in the fabrication and testing of a robust, working prototype, is the compatibility of the selected materials with one another. Specifically, the thermal expansion rates of the materials relative to the ceramic body cannot expand so

  19. Phase transition of solid bismuth under high pressure

    International Nuclear Information System (INIS)

    Chen Hai-Yan; Xiang Shi-Kai; Yan Xiao-Zhen; Zhang Yi; Liu Sheng-Gang; Bi Yan; Zheng Li-Rong

    2016-01-01

    As a widely used pressure calibrator, the structural phase transitions of bismuth from phase I, to phase II, to phase III, and then to phase V with increasing pressure at 300 K have been widely confirmed. However, there are different structural versions for phase III, most of which are determined by x-ray diffraction (XRD) technology. Using x-ray absorption fine structure (XAFS) measurements combined with ab initio calculations, we show that the proposed incommensurate composite structure of bismuth of the three configurations is the best option. An abnormal continuous increase of the nearest-neighbor distance of phase III with elevated pressure is also observed. The electronic structure transformation from semimetal to metal is responsible for the complex behavior of structure transformation. (paper)

  20. Bismuth Oxysulfide and Its Polymer Nanocomposites for Efficient Purification

    Directory of Open Access Journals (Sweden)

    Yidong Luo

    2018-03-01

    Full Text Available The danger of toxic organic pollutants in both aquatic and air environments calls for high-efficiency purification material. Herein, layered bismuth copper oxychalcogenides, BiCuSO, nanosheets of high photocatalytic activity were introduced to the PVDF (Polyvinylidene Fluoride. The fibrous membranes provide an easy, efficient, and recyclable way to purify organic pollutant. The physical and photophysical properties of the BiCuSO and its polymer composite were characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD, ultraviolet-visible diffuse reflection spectroscopy (DRS, X-ray photoelectron spectroscopy (XPS, electron spin resonance (EPR. Photocatalysis of Congo Red reveals that the BiCuSO/PVDF shows a superior photocatalytic activity of a 55% degradation rate in 70 min at visible light. The high photocatalytic activity is attributed to the exposed active {101} facets and the triple vacant associates V B i ‴ V O • • V B i ‴ . By engineering the intrinsic defects on the surface of bismuth oxysulfide, high solar-driven photocatalytic activity can be approached. The successful fabrication of the bismuth oxysulfide and its polymer nanocomposites provides an easy and general approach for high-performance purification materials for various applications.

  1. The lock-in effect and the greening of automotive cooling systems in the European Union.

    Science.gov (United States)

    Bjørnåvold, Amalie; Van Passel, Steven

    2017-12-01

    As of 2017, the sale and use of the refrigerants most commonly used in automotive cooling systems - hydrofluorocarbons - are entirely banned in all new vehicles placed on the market in the European Union. These refrigerants have been recognised as potent greenhouse gases and, therefore, direct contributors to climate change. It is within this regulation-driven market that the technologies for a sustainable solution have been developed. However, this paper argues that the market for automotive cooling systems has been 'locked-in', which means that competing technologies, operating under dynamic increasing returns, will allow for one - potentially inferior technology - to dominate the market. Whilst such a situation is not uncommon, this paper discusses the way that regulation has reinforced a patented monopoly in 'picking winners': to the advantage of a synthetic chemical, R-1234yf, as opposed to the natural solution, which is CO 2 . By developing a generic conceptual framework of path dependence and lock-in, the presented evidence seeks to show how a snowballing effect has led to the intensification of differences in market share. We also argue that the automotive industry is potentially promoting short-term fixes, rather than long-term, sustainable and economically viable solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Design development and manufacturing sequence of the European water-cooled Pb-17Li test blanket module

    Energy Technology Data Exchange (ETDEWEB)

    Futterer, M.A.; Bielak, B.; Deffain, J.P.; Giancarli, L.; Li Puma, A.; Salavy, J.F.; Szczepanski, J. [CEA Saclay, Gif-sur-Yvette (France). FDRN/DMT/SERMA; Dellis, C. [CEA Grenoble, DTA-CEREM/SGM, Grenoble (France); Nardi, C. [ENEA Frascati, ERG-FUS-TECN-MEC, Frascati (Italy); Schleisiek, K. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Reaktorsicherheit

    1998-09-01

    In 1996, the European Community started the development of a water-cooled Pb17Li blanket test module for ITER. First tests are currently scheduled to start with the beginning of the basic performance phase prior to D-T operation. The test module is designed to be a representative for a DEMO breeding blanket and relies on the liquid alloy Pb-17Li as both tritium breeder and neutron multiplier material, and water at PWR pressure and temperature as coolant. The structural material is martensitic steel. The straight, box-like structure of this blanket confines a pool of liquid Pb-17Li which is slowly circulated for ex-situ tritium extraction and lithium adjustment. The box and the Pb-17Li pool are separately cooled, the former with toroido-radial tubes, the latter with a bundle of double-walled U-tubes, equally made of martensitic steel and equipped with a permeation barrier. This paper presents the latest design and three manufacturing schemes with different degrees of technology. Advanced techniques such as solid or powder HIP are proposed to provide design flexibility. With a 3D neutronics analysis, the power and tritium generation were determined. (orig.) 11 refs.

  3. Hydrolysis studies on bismuth nitrate: synthesis and crystallization of four novel polynuclear basic bismuth nitrates.

    Science.gov (United States)

    Miersch, L; Rüffer, T; Schlesinger, M; Lang, H; Mehring, M

    2012-09-03

    Hydrolysis of Bi(NO(3))(3) in aqueous solution gave crystals of the novel compounds [Bi(6)O(4)(OH)(4)(NO(3))(5)(H(2)O)](NO(3)) (1) and [Bi(6)O(4)(OH)(4)(NO(3))(6)(H(2)O)(2)]·H(2)O (2) among the series of hexanuclear bismuth oxido nitrates. Compounds 1 and 2 both crystallize in the monoclinic space group P2(1)/n but show significant differences in their lattice parameters: 1, a = 9.2516(6) Å, b = 13.4298(9) Å, c = 17.8471(14) Å, β = 94.531(6)°, V = 2210.5(3) Å(3); 2, a = 9.0149(3) Å, b = 16.9298(4) Å, c = 15.6864(4) Å, β = 90.129(3)°, V = 2394.06(12) Å(3). Variation of the conditions for partial hydrolysis of Bi(NO(3))(3) gave bismuth oxido nitrates of even higher nuclearity, [{Bi(38)O(45)(NO(3))(24)(DMSO)(26)}·4DMSO][{Bi(38)O(45)(NO(3))(24)(DMSO)(24)}·4DMSO] (3) and [{Bi(38)O(45)(NO(3))(24)(DMSO)(26)}·2DMSO][{Bi(38)O(45)(NO(3))(24)(DMSO)(24)}·0.5DMSO] (5), upon crystallization from DMSO. Bismuth oxido clusters 3 and 5 crystallize in the triclinic space group P1 both with two crystallographically independent molecules in the asymmetric unit. The following lattice parameters are observed: 3, a = 20.3804(10) Å, b = 20.3871(9) Å, c = 34.9715(15) Å, α = 76.657(4)°, β = 73.479(4)°, γ = 60.228(5)°, V = 12021.7(9) Å(3); 5, a = 20.0329(4) Å, b = 20.0601(4) Å, c = 34.3532(6) Å, α = 90.196(1)°, β = 91.344(2)°, γ = 119.370(2)°, V = 12025.8(4) Å(3). Differences in the number of DMSO molecules (coordinated and noncoordinated) and ligand (nitrate, DMSO) coordination modes are observed.

  4. Facile solvothermal synthesis of a graphene nanosheet-bismuth oxide composite and its electrochemical characteristics

    International Nuclear Information System (INIS)

    Wang Huanwen; Hu Zhongai; Chang Yanqin; Chen Yanli; Lei Ziqiang; Zhang Ziyu; Yang Yuying

    2010-01-01

    This work demonstrates a novel and facile route for preparing graphene-based composites comprising of metal oxide nanoparticles and graphene. A graphene nanosheet-bismuth oxide composite as electrode materials of supercapacitors was firstly synthesized by thermally treating the graphene-bismuth composite, which was obtained through simultaneous solvothermal reduction of the colloidal dispersions of negatively charged graphene oxide sheets in N,N-dimethyl formamide (DMF) solution of bismuth cations at 180 o C. The morphology, composition, and microstructure of the composites together with pure graphite oxide, and graphene were characterized using powder X-ray diffraction (XRD), FT-IR, field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), thermogravimetry and differential thermogravimetry (TG-DTG). The electrochemical behaviors were measured by cyclic voltammogram (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS). The specific capacitance of 255 F g -1 (based on composite) is obtained at a specific current of 1 A g -1 as compared with 71 F g -1 for pure graphene. The loaded-bismuth oxide achieves a specific capacitance as high as 757 F g -1 even at 10 A g -1 . In addition, the graphene nanosheet-bismuth oxide composite electrode exhibits the excellent rate capability and well reversibility.

  5. Facile solvothermal synthesis of a graphene nanosheet-bismuth oxide composite and its electrochemical characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Wang Huanwen [Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Hu Zhongai, E-mail: zhongai@nwnu.edu.c [Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Chang Yanqin; Chen Yanli; Lei Ziqiang; Zhang Ziyu; Yang Yuying [Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China)

    2010-12-01

    This work demonstrates a novel and facile route for preparing graphene-based composites comprising of metal oxide nanoparticles and graphene. A graphene nanosheet-bismuth oxide composite as electrode materials of supercapacitors was firstly synthesized by thermally treating the graphene-bismuth composite, which was obtained through simultaneous solvothermal reduction of the colloidal dispersions of negatively charged graphene oxide sheets in N,N-dimethyl formamide (DMF) solution of bismuth cations at 180 {sup o}C. The morphology, composition, and microstructure of the composites together with pure graphite oxide, and graphene were characterized using powder X-ray diffraction (XRD), FT-IR, field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), thermogravimetry and differential thermogravimetry (TG-DTG). The electrochemical behaviors were measured by cyclic voltammogram (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS). The specific capacitance of 255 F g{sup -1} (based on composite) is obtained at a specific current of 1 A g{sup -1} as compared with 71 F g{sup -1} for pure graphene. The loaded-bismuth oxide achieves a specific capacitance as high as 757 F g{sup -1} even at 10 A g{sup -1}. In addition, the graphene nanosheet-bismuth oxide composite electrode exhibits the excellent rate capability and well reversibility.

  6. A two-dimensional bismuth coordination polymer with tartaric acid: synthesis, characterization and thermal decomposition to Bi.sub.2./sub.O.sub.3./sub. nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Ahadiat, G.; Tabatabaee, M.; Gholivand, K.; Zare, K.; Dušek, Michal; Kučeráková, Monika

    2017-01-01

    Roč. 16, č. 1 (2017), s. 7-16 ISSN 1024-1221 R&D Projects: GA ČR(CZ) GA15-12653S; GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : bismuth coordination polymer * tartrate ligand * thermal decomposition * alpha-Bi 2 O 3 nanoparticles Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.565, year: 2016

  7. 21 CFR 73.2110 - Bismuth citrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Bismuth citrate. 73.2110 Section 73.2110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR... paragraph (c)(1), effective April 27, 2010. For the convenience of the user, the revised text is set forth...

  8. Lead Coolant Test Facility Technical and Functional Requirements, Conceptual Design, Cost and Construction Schedule

    International Nuclear Information System (INIS)

    Soli T. Khericha

    2006-01-01

    This report presents preliminary technical and functional requirements (T and FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic. Based on review of current world lead or lead-bismuth test facilities and research need listed in the Generation IV Roadmap, five broad areas of requirements of basis are identified: Develop and Demonstrate Prototype Lead/Lead-Bismuth Liquid Metal Flow Loop Develop and Demonstrate Feasibility of Submerged Heat Exchanger Develop and Demonstrate Open-lattice Flow in Electrically Heated Core Develop and Demonstrate Chemistry Control Demonstrate Safe Operation and Provision for Future Testing. These five broad areas are divided into twenty-one (21) specific requirements ranging from coolant temperature to design lifetime. An overview of project engineering requirements, design requirements, QA and environmental requirements are also presented. The purpose of this T and FRs is to focus the lead fast reactor community domestically on the requirements for the next unique state of the art test facility. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 420 C. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M. It is also estimated that the facility will require two years to be constructed and ready for operation

  9. Development Plan and R and D Status of China Lead-based Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yican; Bai, Yunqing; Song, Yong; Li, Yazhou; Team, FDS [Institute of Nuclear Energy Safety Technology, Beijing (Switzerland)

    2013-07-01

    Chinese Academy of Sciences (CAS) launched an engineering project to develop ADS system and lead-based reactors named China LEAd-based Reactor (CLEAR) series. The Institute of Nuclear Energy Safety Technology (INEST) will be responsible for the CLEAR design and R and D. In this project, CAS plans to develop the lead-based reactors through 3 phases which are 10MWth lead based research reactor (CLEAR-I), 100MWth lead-based experimental reactor (CLEAR-II), 1000MWth lead-based demonstration reactor (CLEAR-III). As a pre-testing facility, a lead-based zero-power reactor (CLEAR-0) is required to be built before CLEAR-I construction and operation. The new conceptual design of lead-based reactors, including hydrogen production, tritium production for fusion energy and thorium utilization, is also on-going. Lead-lithium cooled fusion reactor blanket design and lead-lithium experimental loops have been developed more than 10 years. CLEAR series reactor conceptual design has been finished and detailed engineering design for CLEAR-I is underway. The R and D activities for CLEAR reactor including design and safety software, key components, structural materials, lead-based experimental loops and neutronics experimental platform are developing. Series of liquid lead-based experimental loops named DRAGON (Lead-Lithium) and KYLIN (Lead-Bismuth) have already been built or on constructing to performed experiments investigating the structure material corrosion issues and the thermal-hydraulic properties of lead-based coolant. The Highly Intensified D-T Neutron Generator HINEG for neutron experiment and software validation will be constructed. Series advanced reactor design software and nuclear library have been developed for lead-alloy cooled reactor, including CAD based Multi-Functional 4D Neutronics Simulation System (Visual Bus), Monte Carlo Automatic Modeling Program for Radiation Transport Simulation (MCAM), Super Monte Carlo Simulation Program (SuperMC), Nuclear Radiation

  10. Development Plan and R and D Status of China Lead-based Reactor

    International Nuclear Information System (INIS)

    Wu, Yican; Bai, Yunqing; Song, Yong; Li, Yazhou; Team, FDS

    2013-01-01

    Chinese Academy of Sciences (CAS) launched an engineering project to develop ADS system and lead-based reactors named China LEAd-based Reactor (CLEAR) series. The Institute of Nuclear Energy Safety Technology (INEST) will be responsible for the CLEAR design and R and D. In this project, CAS plans to develop the lead-based reactors through 3 phases which are 10MWth lead based research reactor (CLEAR-I), 100MWth lead-based experimental reactor (CLEAR-II), 1000MWth lead-based demonstration reactor (CLEAR-III). As a pre-testing facility, a lead-based zero-power reactor (CLEAR-0) is required to be built before CLEAR-I construction and operation. The new conceptual design of lead-based reactors, including hydrogen production, tritium production for fusion energy and thorium utilization, is also on-going. Lead-lithium cooled fusion reactor blanket design and lead-lithium experimental loops have been developed more than 10 years. CLEAR series reactor conceptual design has been finished and detailed engineering design for CLEAR-I is underway. The R and D activities for CLEAR reactor including design and safety software, key components, structural materials, lead-based experimental loops and neutronics experimental platform are developing. Series of liquid lead-based experimental loops named DRAGON (Lead-Lithium) and KYLIN (Lead-Bismuth) have already been built or on constructing to performed experiments investigating the structure material corrosion issues and the thermal-hydraulic properties of lead-based coolant. The Highly Intensified D-T Neutron Generator HINEG for neutron experiment and software validation will be constructed. Series advanced reactor design software and nuclear library have been developed for lead-alloy cooled reactor, including CAD based Multi-Functional 4D Neutronics Simulation System (Visual Bus), Monte Carlo Automatic Modeling Program for Radiation Transport Simulation (MCAM), Super Monte Carlo Simulation Program (SuperMC), Nuclear Radiation

  11. Bismuth alloying properties in GaAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Lu [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, PO Box 72, Beijing 100876 (China); Lu, Pengfei, E-mail: photon.bupt@gmail.com [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, PO Box 72, Beijing 100876 (China); Cao, Huawei; Cai, Ningning; Yu, Zhongyuan [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, PO Box 72, Beijing 100876 (China); Gao, Tao [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Wang, Shumin [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Gothenburg (Sweden)

    2013-09-15

    First-principles calculations have been performed to investigate the structural, electronic and optical properties of bismuth alloying in GaAs nanowires. A typical model of Ga{sub 31}As{sub 31} nanowires is introduced for its reasonable band gap. The band gap of GaAs{sub 1−x}Bi{sub x} shrinks clearly with the increasing Bi concentration and the band edge shifts when spin–orbit coupling (SOC) is considered. The insertion of Bi atom leads to hybridization of Ga/As/Bi p states which contributes a lot around Fermi level. Scissor effect is involved. The optical properties are presented, including dielectric function, optical absorption spectra and reflectivity, which are also varied with the increasing of Bi concentrations. - Graphical abstract: Top view of Bi-doped GaAs nanowires. Ga, As, and Bi atoms are denoted with grey, purple and red balls, respectively. Display Omitted - Highlights: • A typical model of Ga{sub 31}As{sub 31} nanowires is introduced for its reasonable band gap. • The band gap of GaAs{sub 1−x}Bi{sub x} shrinks clearly with the increasing Bi concentration. • The band edge shifts when spin–orbit coupling (SOC) is considered. • The insertion of Bi atom leads to hybridization of Ga/As/Bi p states.

  12. Build-up enhancement of photoluminescence from phenylazomethine bismuth dendrimer using Bi(OTf)3

    Science.gov (United States)

    Kambe, Tetsuya; Imaoka, Shotaro; Imaoka, Takane; Yamamoto, Kimihisa

    2018-05-01

    Metal assembly to a dendrimer can provide various functionalities based on the branched structure. Here, we researched assembly phenomena of bismuth salts in the phenylazomethine dendrimer and achieved enhancement of emission intensity per metal unit by using Bi(OTf)3. This enhancement suggested increasing of Bi-N coordination bonds derived from the bismuth units in the dendrimer.

  13. Experimental investigation of electron cooling and stacking of lead ions in a low energy accumulation ring

    CERN Document Server

    Bosser, Jacques; Chanel, M; Hill, C; Lombardi, A M; MacCaferri, R; Maury, S; Möhl, D; Molinari, G; Rossi, S; Tanke, E; Tranquille, G; Vretenar, Maurizio

    1999-01-01

    This report gives the results of a programme of experimental investigations, which were carried out to test stacking of lead ions in a storage ring (the former Low Energy Antiproton Ring, LEAR) at 4.2 MeV per nucleon. The motivation was to demonstrate the feasibility of gaining the large factor in the phase-space density required for injection into the LHC. In the first part of the report, the layout of the experiments is described, the choice of the parameters of the electron cooling system used for stacking is reported and the multi-turn injection using horizontal- and longitudinal- (and in the final project also vertical-) phase space is discussed. In the second part the experimental results are presented. Factors of vital importance are the stacking efficiency, the beam life-time and the cooling time of the ions. The beam decay owing to charge exchange with the residual gas and to recombination by the capture of cooling electrons was intensively studied. Beam instabilities and space-charge effects in the ...

  14. Separation of bismuth from gram amounts of thallium and silver by cation-exchange chromatography in nitric acid.

    Science.gov (United States)

    Meintjies, E; Strelow, F W; Victor, A H

    1987-04-01

    Traces and small amounts of bismuth can be separated from gram amounts of thallium and silver by successively eluting these elements with 0.3M and 0.6M nitric acid from a column containing 13 ml (3 g) of AG50W-X4, a cation-exchanger (100-200 mesh particle size) with low cross-linking. Bismuth is retained and can be eluted with 0.2M hydrobromic acid containing 20% v/v acetone, leaving many other trace elements absorbed. Elution of thallium is quite sharp, but silver shows a small amount of tailing (less than 1 gmg/ml silver in the eluate) when gram amounts are present, between 20 and 80 mug of silver appearing in the bismuth fraction. Relevant elution curves and results for the analysis of synthetic mixtures containing between 50 mug and 10 mg of bismuth and up to more than 1 g of thallium and silver are presented, as well as results for bismuth in a sample of thallium metal and in Merck thallium(I) carbonate. As little as 0.01 ppm of bismuth can be determined when the separation is combined with electrothermal atomic-absorption spectrometry.

  15. First-principles study of electronic and optical properties of lead-free double perovskites Cs2NaBX6 (B = Sb, Bi; X = Cl, Br, I)

    Science.gov (United States)

    Zhao, Shuai; Yamamoto, Kumiko; Iikubo, Satoshi; Hayase, Shuzi; Ma, Tingli

    2018-06-01

    Organolead halide perovskite is regarded as the most promising light-harvesting material for next-generation solar cells; however, the intrinsic instability and toxicity of lead are still of great concern. Bismuth is ecofriendly and has electronic properties similar to those of lead, which has gradually attracted interest for optoelectronic applications. However, the valence state of bismuth is different from that of lead, eliminating the possibility of replacing lead by bismuth in organolead halide perovskites. To address this matter, one feasible strategy is to construct B-site double perovskites by the combination of Bi3+ and B+ in 1:1 ratio. In this work, lead-free halide double perovskites of the form Cs2NaBX6 (B = Sb, Bi; X = Cl, Br, I) were investigated by first-principles calculations. The electronic properties, optical absorption coefficients, and thermodynamic stability of these compounds were investigated to ascertain their potential application in solar energy conversion. The results provide theoretical support for the exploration of lead-free perovskite materials in potential optoelectronic applications.

  16. Neutron activation determination of impurities in high-purity bismuth with separation of matrix in form of hydroxide

    International Nuclear Information System (INIS)

    Artyukhin, P.I.; Shavinskij, B.M.; Mityakin, Yu.L.

    1979-01-01

    The technique of neutron activation determination of 15 impurity elements (Au, Ag, Ba, Cd, Co, Cs, Cu, Hg, K, Na, Ni, Se, Sr, Te, Zn) in high-purity bismuth (impurity content is approximately 10 -6 -10 -10 %) is presented. Bismuth hydroxide precipitation by ammonia from nitric acid solutions was used to separate bismuth from alkali, alkaline earth metals and elements forming stable ammines. Gold, selenium and tellurium are isolated in the form of metals at reduction by muriatic hydrazine. Results of analyzing two samples of special purity bismuth are presented. Neutron flux comprised 0.8-1x10 13 n/cm 2 xs. Radiation time was equal to 90 hours

  17. Correlation between near infrared emission and bismuth radical species of Bi2O3-containing aluminoborate glass

    International Nuclear Information System (INIS)

    Masai, Hirokazu; Takahashi, Yoshihiro; Fujiwara, Takumi; Suzuki, Takenobu; Ohishi, Yasutake

    2009-01-01

    A strong correlation between bismuth radical species and emission in the near infrared (NIR) region of SnO-doped bismuth-containing aluminoborate glass, (CaO-B 2 O 3 -Bi 2 O 3 -Al 2 O 3 -TiO 2 ) (CaBBAT), was observed. Since the activation energy of the NIR emission was similar to that of electron spin resonance signal, it is expected that bismuth radical species in the CaBBAT glass is an origin of the NIR emission. Compared to the observed emission spectra with energy diagram of previous data, we have confirmed that bismuth ion possessing low valence is the origin of broad emission in the NIR region.

  18. Large-scale synthesis of bismuth sulfide nanorods by microwave irradiation

    International Nuclear Information System (INIS)

    Wu Jiliang; Qin Fan; Cheng Gang; Li Hui; Zhang Jiuhong; Xie Yaoping; Yang Haijian; Lu Zhong; Yu Xianglin; Chen Rong

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → Large-scale Bi 2 S 3 nanorods have been prepared by microwave irradiation methods. → CTAB and β-CD are beneficial to the formation of Bi 2 S 3 nanorods. → DMF, EG and DEG were favorable solvents. → Bismuth and sulfur precursors influenced the size and morphology. → A proposed formation mechanism of Bi 2 S 3 nanorods was summarized. - Abstract: Bismuth sulfide (Bi 2 S 3 ) has attracted considerable interest due to its potential applications in thermoelectric and electronic devices, optoelectronic devices, and biomedicine. In this study, large-scale highly crystalline Bi 2 S 3 nanorods were successfully prepared from bismuth citrate and thiourea (Tu) by microwave irradiation methods. The products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM, HRTEM) and selected area electron diffraction (SAED). The influences of reaction time, surfactants, solvents, and precursors on the formation of Bi 2 S 3 nanorods were discussed. The microwave irradiation method reduced reaction time by at least 80% in the synthesis of Bi 2 S 3 nanorods compared with the refluxing method. Cetyltrimethylammonium bromide (CTAB) and β-cyclodextrin (β-CD) were found to be beneficial to the formation of Bi 2 S 3 nanorods. N,N-dimethylformamide, ethylene glycol, and diethylene glycol were the favorable solvents in the fabrication of these nanorods. It was found that different bismuth and sulfur precursors influenced the sizes and morphologies of the Bi 2 S 3 nanorods. The proposed growth mechanism of Bi 2 S 3 nanorods was also discussed.

  19. Magnetoreflection studies of ion implanted bismuth

    International Nuclear Information System (INIS)

    Nicolini, C.; Chieu, T.C.; Dresselhaus, M.S.; Massachusetts Inst. of Tech., Cambridge; Dresselhaus, G.

    1982-01-01

    The effect of the implantation of Sb ions on the electronic structure of the semimetal bismuth is studied by the magnetoreflection technique. The results show long electronic mean free paths and large implantation-induced increases in the band overlap and L-point band gap. These effects are opposite to those observed for Bi chemically doped with Sb. (author)

  20. Critical loads and excess loads of cadmium, copper and lead for European forest soils

    NARCIS (Netherlands)

    Reinds, G.J.; Bril, J.; Vries, de W.; Groenenberg, J.E.; Breeuwsma, A.

    1995-01-01

    Recently, concern has arisen about the impact of the dispersion of heavy metals in Europe. Therefore, a study (ESQUAD) was initiated to assess critical loads and steady-state concentrations of cadmium, copper and lead for European forest soils. The calculation methods used strongly resemble those

  1. Structure of thallium and lead calculated from Shaw local pseudopotential and molecular dynamics

    Directory of Open Access Journals (Sweden)

    Gasser J. G.

    2011-05-01

    Full Text Available Recently, we (Es Sbihi Phil. Mag 2010 have successfully calculated, by molecular dynamics, the static structure factor of liquid bismuth at different temperatures. Our results were in very good agreement with the Waseda experimental data. Our assumption was to consider the true density of states which presents a gap as measured by Indlekofer (J. Non-Cryst. Solids 1989 and calculated by Hafner-Jank (Phys. Rev. B 1990 for liquid bismuth. The number of electrons at the Fermi energy has been calculated with three conduction electrons for bismuth (number of p electrons. With this assumption, the structures were determined with an effective ion-ion potential constructed from the Shaw local Optimised Model Potential (OMP and the Ichimaru-Utsumi dielectric function. In the present paper, we generalize our assumptions to liquid thallium and lead which also present such a gap. Their calculated structures are also very close to the experimental ones. This confirms that the number of conduction electrons on the Fermi sphere is consistent with the number of p electrons as has been even shown for our electronic transport properties of liquid lead (A. Ben Abdellah, Phys. Rev. B 2003.

  2. SEALER: a very small lead cooled fast reactor for commercial energy production in off-grid communities

    Energy Technology Data Exchange (ETDEWEB)

    Wallenius, J., E-mail: janne@leadcold.com [LeadCold Reactors, Dalgatan 3C, Marsta (Sweden); Bortot, S., E-mail: sara.bortot@psi.ch [Paul Scherrer Inst., Villigen (Switzerland)

    2014-07-01

    SEALER (Swedish Advanced Lead Reactor) is a small lead cooled fast reactor operating on 20% enriched UO{sub 2} fuel. It is designed for commercial production of electricity and heat in the Canadian arctic. In this paper, we present an updated set of reactivity coefficients for the SEALER core, used in simulations of un-protected transients such as control-rod withdrawal, and loss of flow. The analysis is carried out using the SAS4A/SASSYS-1 (SAS) system code developed by ANL and the BELLA multi-point dynamics code developed by KTH and PSI. (author)

  3. Comparison of lead and sodium-cooled reactors - Safety, fuel cycle performance and some economical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Johan; Tucek, Kamil; Wider, Hartmut [Joint Research Centre, EC-JRC, Westerduinweg 3, P.O. Box 2, NL-0 1755 ZG Petten (Netherlands)

    2006-07-01

    This paper compares the Lead-cooled Fast Reactor (LFR) and the Sodium-cooled Fast Reactor (SFR) regarding different aspects of the coolant, safety and economics. A brief review of design and safety experience of an SFR (BN-600) and some safety philosophy of the most developed LFR (BREST) are presented as well. The pros and cons of the lead and the sodium coolants are discussed. This paper presents results concerning the coolant temperature evolution during three accident scenarios, i.e. Loss-Of- Flow (LOF), Loss-Of-Heat-Sink (LOHS), and Total-Loss-Of-Power (TLOP). It also studies possible moderators, like BeO and hydrides, for the core designs to have negative reactivity feedbacks and favorable reactivity swings. LFR seems to be able to accommodate more minor actinides than SFR at comparable coolant and Doppler feedbacks. We show that LFR can be designed both to breed and burn transuranics from LWRs. The hydrides lead to the most favorable reactivity feedbacks, but the poorest reactivity swing. It is shown that the LFR can handle the LOF transient better than the SFR. This is due to the much lower pressure drop in the LFR core. The coolant outlet temperatures stabilize at 2050 K and 940 K for SFR and LFR, respectively when no feedbacks are considered. Investigations also concern the SFR's performance when the pitch-to-diameter was increased from 1.2 to 1.4. For the LOHS and TLOP accidents their temperature evolutions are milder for the LFR since lead has a 50% larger volumetric heat capacity. For the TLOP the core outlet temperature of the LFR peaks at 1080 K after 2 days. Regarding economics it appears easier to avoid an intermediate cycle in an LFR than an SFR. (authors)

  4. Comparison of lead and sodium-cooled reactors - Safety, fuel cycle performance and some economical aspects

    International Nuclear Information System (INIS)

    Carlsson, Johan; Tucek, Kamil; Wider, Hartmut

    2006-01-01

    This paper compares the Lead-cooled Fast Reactor (LFR) and the Sodium-cooled Fast Reactor (SFR) regarding different aspects of the coolant, safety and economics. A brief review of design and safety experience of an SFR (BN-600) and some safety philosophy of the most developed LFR (BREST) are presented as well. The pros and cons of the lead and the sodium coolants are discussed. This paper presents results concerning the coolant temperature evolution during three accident scenarios, i.e. Loss-Of- Flow (LOF), Loss-Of-Heat-Sink (LOHS), and Total-Loss-Of-Power (TLOP). It also studies possible moderators, like BeO and hydrides, for the core designs to have negative reactivity feedbacks and favorable reactivity swings. LFR seems to be able to accommodate more minor actinides than SFR at comparable coolant and Doppler feedbacks. We show that LFR can be designed both to breed and burn transuranics from LWRs. The hydrides lead to the most favorable reactivity feedbacks, but the poorest reactivity swing. It is shown that the LFR can handle the LOF transient better than the SFR. This is due to the much lower pressure drop in the LFR core. The coolant outlet temperatures stabilize at 2050 K and 940 K for SFR and LFR, respectively when no feedbacks are considered. Investigations also concern the SFR's performance when the pitch-to-diameter was increased from 1.2 to 1.4. For the LOHS and TLOP accidents their temperature evolutions are milder for the LFR since lead has a 50% larger volumetric heat capacity. For the TLOP the core outlet temperature of the LFR peaks at 1080 K after 2 days. Regarding economics it appears easier to avoid an intermediate cycle in an LFR than an SFR. (authors)

  5. Ternary equilibria in bismuth--indium--lead alloys

    International Nuclear Information System (INIS)

    Liao, K.C.; Johnson, D.L.; Nelson, R.C.

    1975-01-01

    The liquidus surface is characterized by three binary equilibria. One binary extends from the Pb--Bi peritectic to the Pb--In peritectic. The other two extend from In--Bi eutectics, merge at 50 at. percent Bi and 30 at. percent Pb, and end at the Bi--Pb eutectic. Based on analysis of ternary liquidus contours and vertical sections, it is suggested that solidification for high lead and very high indium alloys occurs from two-phase equilibria. Solidification from all other alloys occurs from three-phase equilibria. Four-phase solidification does not occur in this system

  6. Synthesis of binary bismuth-cadmium oxide nanorods with sensitive electrochemical sensing performance

    International Nuclear Information System (INIS)

    Wen, Yong; Pei, Lizhai; Wei, Tian

    2017-01-01

    Binary bismuth-cadmium oxide nanorods have been synthesized by a simple hydrothermal process without templates and additives. X-ray diffraction and high-resolution transmission electron microscopy reveal that the nanorods possess single crystalline tetragonal Bi 2 CdO 4 phase. Scanning electron microscopy and transmission electron microscopy images show that the length and diameter of the nanorods are 20-300 nm and 5-10 μm, respectively. The formation of the binary bismuth-cadmium oxide nanorods is closely related to the hydrothermal parameters. The electrochemical sensing performance of the binary bismuth-cadmium oxide nanorods has been investigated using the nanorods as glassy carbon electrode modifiers. The detection limit is 0.19 μM with a linear range of 0.0005-2 mM. The nanorod-modified glassy carbon electrode exhibits good electrocatalytic activity toward L-cysteine and great application potential for electrochemical sensors.

  7. Bismuth germanate's role in the new revolution in gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Johnson, N.R.; Baktash, C.; Lee, I.Y.

    1983-01-01

    Some of the considerations on how to effectively incorporate bismuth germanate into complex detection systems are covered, and some of these new systems now in operation or under construction are discussed. Significant achievements in gamma ray spectroscopy are reviewed as well as some recent results based on data taken with coincidence arrays of germanium detectors and Compton-suppression spectrometers. Then the first impact of bismuth germanate detectors on our understanding of the properties of nuclei that have high energy and very high angular momentum states are addressed

  8. Comparison of Second-Line Quadruple Therapies with or without Bismuth for Helicobacter pylori Infection

    Directory of Open Access Journals (Sweden)

    Guang-Hong Jheng

    2015-01-01

    Full Text Available The bismuth-based quadruple regimen has been applied in Helicobacter pylori rescue therapy worldwide. The non-bismuth-based quadruple therapy or “concomitant therapy” is an alternative option in first-line eradication but has not been used in second-line therapy. Discovering a valid regimen for rescue therapy in bismuth-unavailable countries is important. We conducted a randomized controlled trial to compare the efficacies of the standard quadruple therapy and a modified concomitant regimen. One hundred and twenty-four patients were randomly assigned into two groups: RBTM (rabeprozole 20 mg bid., bismuth subcitrate 120 mg qid, tetracycline 500 mg qid, and metronidazole 250 mg qid and RATM (rabeprozole 20 mg bid., amoxicillin 1 g bid., tetracycline 500 mg qid, and metronidazole 250 mg qid for 10 days. The eradication rate of the RBTM and RATM regimen was 92.1% and 90.2%, respectively, in intention-to-treat analysis. Patients in both groups had good compliance (~96%. The overall incidence of adverse events was higher in the RATM group (42.6% versus 22.2%, P=0.02, but only seven patients (11.5% experienced grades 2-3 events. In conclusion, both regimens had good efficacy, compliance, and acceptable side effects. The 10-day RATM treatment could be an alternative rescue therapy in bismuth-unavailable countries.

  9. Solar heating cooling. Preparation of possible participation in IEA, Solar Heating Cooling Task 25

    International Nuclear Information System (INIS)

    2001-03-01

    connected to the electric power network and where the effect tax, except in certain German areas, is low. Should a European market for solar cooling be developed a conscious policy is required, which rewards effect savings. Because of the non-existing domestic market and the diffuse European market possibilities active Danish participation in IEA Task 25 it is not recommended. (EHS)

  10. Does winter cooling lead to the subsurface salinity minimum off Saurashtra, India?

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.; Gouveia, A.D.; Shenoi, S.S.C.

    Cold and dry winds of the northeast monsoon cool the northern Arabian Sea during November-January. The intensity of cooling is highest in the proximity of the peninsula of Saurashtra, India. Using hydrographic data, we propose that the cooling...

  11. Effects of crystallite structure and interface band alignment on the photocatalytic property of bismuth ferrite/ (N-doped) graphene composites

    International Nuclear Information System (INIS)

    Li, Pai; Chen, Qiang; Lin, Yinyin; Chang, Gang; He, Yunbin

    2016-01-01

    Bismuth ferrite/graphene (N-doped graphene) photocatalysts are successfully prepared by a facile and effective two-step hydrothermal method. Bismuth ferrite/graphene shows superior photocatalytic activity compared with bismuth ferrite/N-doped graphene and pure BiFeO 3 . X-ray diffraction, scanning electron microscopy and energy-dispersive spectroscopy analyses indicate that Bi 25 FeO 40 crystalline phase is obtained with the addition of graphene, while BiFeO 3 is formed under the same hydrothermal conditions in the presence of N-doped graphene. Core-level and valence-band X-ray photoelectron spectroscopy analyses reveal a downward band bending of bismuth ferrite (∼0.5 eV) at the interface of the bismuth ferrite/(N-doped) graphene composites, which facilitates the electron transfer from bismuth ferrite to (N-doped) graphene and suppresses the recombination of photo-generated electron–hole pairs. This downward bending band alignment at the interface supposes to be the main mechanism underlying the enhanced photocatalytic activity of the bismuth ferrite/graphene composites that are currently of great interest in the photocatalysis field. - Highlights: • Bismuth ferrite/(N-doped) graphene composites were prepared by a hydrothermal method. • Bi 25 FeO 40 and BiFeO 3 were obtained with presence of graphene and N-graphene, respectively. • Bi 25 FeO 40 /graphene shows superior photocatalytic activity over BiFeO 3 and BiFeO 3 /N-graphene. • A downward band bending (∼0.5 eV) of bismuth ferrite exists at the composites interface. • The downward band bending supposes to be the mechanism for the enhanced photocatalytic activity.

  12. Fabrication and testing of diamond-machined gratings in ZnSe, GaP, and bismuth germanate for the near infrared and visible

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmenko, P J; Little, S L; Ikeda, Y; Kobayashi, N

    2008-06-22

    High quality immersion gratings for infrared applications have been demonstrated in silicon and germanium. To extend this technology to shorter wavelengths other materials must be investigated. We selected three materials, zinc selenide, gallium phosphide and bismuth germanate (Bi{sub 4}Ge{sub 3}O{sub 12}), based on high refractive index, good visible transmission and commercial availability in useful sizes. Crystal samples were diamond turned on an ultra-precision lathe to identify preferred cutting directions. Using this information we diamond-flycut test gratings over a range of feed rates to determine the optimal cutting conditions. For both ZnSe and GaP good surface quality was achieved at feed rates up to 1.0 cm/minute using a special compound angle diamond tool with negative rake angles on both cutting surfaces. The surface roughness of the groove facets was about 4 nm. A Zygo interferometer measured grating wavefront errors in reflection. For the ZnSe the RMS error was < {lambda}/20 at 633nm. More extensive testing was performed with a HeNe laser source and a cooled CCD camera. These measurements demonstrated high relative diffraction efficiency (> 80%), low random groove error (2.0 nm rms), and Rowland ghost intensities at < 0.1%. Preliminary tests on bismuth germanate show high tool wear.

  13. Bismuth oxide nanotubes-graphene fiber-based flexible supercapacitors

    Science.gov (United States)

    Gopalsamy, Karthikeyan; Xu, Zhen; Zheng, Bingna; Huang, Tieqi; Kou, Liang; Zhao, Xiaoli; Gao, Chao

    2014-07-01

    Graphene-bismuth oxide nanotube fiber as electrode material for constituting flexible supercapacitors using a PVA/H3PO4 gel electrolyte is reported with a high specific capacitance (Ca) of 69.3 mF cm-2 (for a single electrode) and 17.3 mF cm-2 (for the whole device) at 0.1 mA cm-2, respectively. Our approach opens the door to metal oxide-graphene hybrid fibers and high-performance flexible electronics.Graphene-bismuth oxide nanotube fiber as electrode material for constituting flexible supercapacitors using a PVA/H3PO4 gel electrolyte is reported with a high specific capacitance (Ca) of 69.3 mF cm-2 (for a single electrode) and 17.3 mF cm-2 (for the whole device) at 0.1 mA cm-2, respectively. Our approach opens the door to metal oxide-graphene hybrid fibers and high-performance flexible electronics. Electronic supplementary information (ESI) available: Equations and characterization. SEM images of GGO, XRD and XPS of Bi2O3 NTs, HRTEM images and EDX Spectra of Bi2O3 NT5-GF, CV curves of Bi2O3NT5-GF, Bi2O3 NTs and bismuth nitrate in three-electrode system (vs. Ag/AgCl). CV and GCD curves of Bi2O3 NT1-GF and Bi2O3 NT3-GF. See DOI: 10.1039/c4nr02615b

  14. Adaptation and implementation of the TRACE code for transient analysis on designs of cooled lead fast reactors

    International Nuclear Information System (INIS)

    Lazaro, A.; Ammirabile, L.; Martorell, S.

    2014-01-01

    The article describes the changes implemented in the TRACE code to include thermodynamic tables of liquid lead drawn from experimental results. He then explains the process for developing a thermohydraulic model for the prototype ALFRED and analysis of a selection of representative transient conducted within the framework of international research projects. The study demonstrates the applicability of TRACE code to simulate designs of cooled lead fast reactors and exposes the high safety margins are there in this technology to accommodate the most severe transients identified in their security study. (Author)

  15. Studies on bismuth carboxylates—synthesis and characterization of ...

    Indian Academy of Sciences (India)

    crystalline modification (4 ) of the previously reported coordination polymer, bismuth tris(picolinate), [Bi(2– .... no significant change in the IR spectrum or the melting behaviour between 4 .... lens et al.7 There are moderate differences in the.

  16. A single drug for Helicobacter pylori infection: first results with a new bismuth triple monocapsule

    NARCIS (Netherlands)

    de Boer, W. A.; van Etten, R. J.; Schneeberger, P. M.; Tytgat, G. N.

    2000-01-01

    In this pilot study we investigated the efficacy and tolerability of a new monocapsule that contains a bismuth compound, tetracycline, and metronidazole. If proven to be effective, this monotherapy would turn the well-accepted multidrug regimen of standard bismuth-based triple therapy into an easy

  17. Bismuth silicate glass containing heavy metal oxide as a promising radiation shielding material

    Science.gov (United States)

    Elalaily, Nagia A.; Abou-Hussien, Eman M.; Saad, Ebtisam A.

    2016-12-01

    Optical and FTIR spectroscopic measurements and electron paramagnetic resonance (EPR) properties have been utilized to investigate and characterize the given compositions of binary bismuth silicate glasses. In this work, it is aimed to study the possibility of using the prepared bismuth silicate glasses as a good shielding material for γ-rays in which adding bismuth oxide to silicate glasses causes distinguish increase in its density by an order of magnitude ranging from one to two more than mono divalent oxides. The good thermal stability and high density of the bismuth-based silicate glass encourage many studies to be undertaken to understand its radiation shielding efficiency. For this purpose a glass containing 20% bismuth oxide and 80% SiO2 was prepared using the melting-annealing technique. In addition the effects of adding some alkali heavy metal oxides to this glass, such as PbO, BaO or SrO, were also studied. EPR measurements show that the prepared glasses have good stability when exposed to γ-irradiation. The changes in the FTIR spectra due to the presence of metal oxides were referred to the different housing positions and physical properties of the respective divalent Sr2+, Ba2+ and Pb2+ ions. Calculations of optical band gap energies were presented for some selected glasses from the UV data to support the probability of using these glasses as a gamma radiation shielding material. The results showed stability of both optical and magnetic spectra of the studied glasses toward gamma irradiation, which validates their irradiation shielding behavior and suitability as the radiation shielding candidate materials.

  18. Spin valley and giant quantum spin Hall gap of hydrofluorinated bismuth nanosheet.

    Science.gov (United States)

    Gao, Heng; Wu, Wei; Hu, Tao; Stroppa, Alessandro; Wang, Xinran; Wang, Baigeng; Miao, Feng; Ren, Wei

    2018-05-09

    Spin-valley and electronic band topological properties have been extensively explored in quantum material science, yet their coexistence has rarely been realized in stoichiometric two-dimensional (2D) materials. We theoretically predict the quantum spin Hall effect (QSHE) in the hydrofluorinated bismuth (Bi 2 HF) nanosheet where the hydrogen (H) and fluorine (F) atoms are functionalized on opposite sides of bismuth (Bi) atomic monolayer. Such Bi 2 HF nanosheet is found to be a 2D topological insulator with a giant band gap of 0.97 eV which might host room temperature QSHE. The atomistic structure of Bi 2 HF nanosheet is noncentrosymmetric and the spontaneous polarization arises from the hydrofluorinated morphology. The phonon spectrum and ab initio molecular dynamic (AIMD) calculations reveal that the proposed Bi 2 HF nanosheet is dynamically and thermally stable. The inversion symmetry breaking together with spin-orbit coupling (SOC) leads to the coupling between spin and valley in Bi 2 HF nanosheet. The emerging valley-dependent properties and the interplay between intrinsic dipole and SOC are investigated using first-principles calculations combined with an effective Hamiltonian model. The topological invariant of the Bi 2 HF nanosheet is confirmed by using Wilson loop method and the calculated helical metallic edge states are shown to host QSHE. The Bi 2 HF nanosheet is therefore a promising platform to realize room temperature QSHE and valley spintronics.

  19. Nafion/2,2'-bipyridyl-modified bismuth film electrode for anodic stripping voltammetry

    International Nuclear Information System (INIS)

    Torma, Ferenc; Kadar, Mihaly; Toth, Klara; Tatar, Eniko

    2008-01-01

    This paper describes the fabrication, characterisation and the application of a Nafion/2,2'-bipyridyl/bismuth composite film-coated glassy carbon electrode (NC(Bpy)BiFE) for the anodic stripping voltammetric determination of trace metal ions (Zn 2+ , Cd 2+ and Pb 2+ ). The NC(Bpy)BiFE electrode is prepared by first applying a 2.5 mm 3 drop of a coating solution containing 0.5 wt% Nafion and 0.1% (w/v) 2,2'-bipyridil (Bpy) onto the surface of a glassy carbon electrode, while the Bi film was plated in situ simultaneously with the target metal ions at -1.4 V. The main advantage of the polymer coated bismuth film electrode is that the sensitivity of the stripping responses is increased considerably due to the incorporation of the neutral chelating agent of 2,2'-bipyridyl (Bpy) in the Nafion film, while the Nafion coating improved the mechanical stability of the bismuth film and its resistance to the interference of surfactants. The key experimental parameters relevant to both the electrode fabrication and the voltammetric measurement were optimized on the basis of the stripping signals. With a 2 min deposition time in the presence of oxygen, linear calibration curves were obtained in a wide concentration range (about 2-0.001 μM) with detection limits of 8.6 nM (0.56 μg dm -3 ) for Zn 2+ , 1.1 nM (0.12 μg dm -3 ) for Cd 2+ and 0.37 nM (0.077 μg dm -3 ) for Pb 2+ . For nine successive preconcentration/determination/electrode renewal experiments the standard deviations were between 3 and 5% at 1.2 μM for zinc and 0.3-0.3 μM concentration level for lead and cadmium, respectively, and the method exhibited excellent selectivity in the presence of the excess of several potential interfering metal ions. The analytical utility of the stripping voltammetric method elaborated was tested in the assay of heavy metals in some real samples and the method was validated by ICP-MS technique

  20. Synthesis of binary bismuth-cadmium oxide nanorods with sensitive electrochemical sensing performance

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Yong [Xinjiang Univ., Xinjiang (China). School of Civil Engineering and Architecture; Pei, Lizhai; Wei, Tian [Anhui Univ. of Technology, Anhui (China). School of Materials Science and Engineering

    2017-07-15

    Binary bismuth-cadmium oxide nanorods have been synthesized by a simple hydrothermal process without templates and additives. X-ray diffraction and high-resolution transmission electron microscopy reveal that the nanorods possess single crystalline tetragonal Bi{sub 2}CdO{sub 4} phase. Scanning electron microscopy and transmission electron microscopy images show that the length and diameter of the nanorods are 20-300 nm and 5-10 μm, respectively. The formation of the binary bismuth-cadmium oxide nanorods is closely related to the hydrothermal parameters. The electrochemical sensing performance of the binary bismuth-cadmium oxide nanorods has been investigated using the nanorods as glassy carbon electrode modifiers. The detection limit is 0.19 μM with a linear range of 0.0005-2 mM. The nanorod-modified glassy carbon electrode exhibits good electrocatalytic activity toward L-cysteine and great application potential for electrochemical sensors.

  1. The HGF strategy project

    International Nuclear Information System (INIS)

    Knebel, J.U.; Fellmoser, F.; Lefhalm, C.; Mack, K.; Pettan, C.; Piecha, H.; Konys, J.; Adelhelm, C.; Glasbrenner, H.; Muscher, H.; Novotny, J.; Voss, Z.; Wedemeyer, O.; Mueller, G.; Heinzel, A.; Schumacher, G.; Huber, R.; Zimmermann, F.; Groetzbach, G.; Dorr, B.; Carteciano, L.N.

    2000-01-01

    Within the Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF) an HGF-Strategy Fund Project entitled 'Innovative Technologies to Reduce Radiotoxicity' is funded since October 1999. The objectives of this HGF-Strategy Fund Project is the development of new methods and technologies to design and manufacture thin-walled and highly thermally-loaded surfaces which are cooled by a corrosive heavy liquid metal (lead-bismuth eutectic). The result of this project will be the basic scientific-technical tool which allows the conception and the design of a European Demonstrator of an ADS system (cf. 32.23.05). The work performed at Forschungszentrum Karlsruhe is embedded in a broad European research and development programme on ADS systems. The project is divided in three sub-projects: Sub-Project 1: Thermalhydraulic Investigations, Sub-Project 2: Material Specific Investigations, Sub-Project 3: Oxygen Control System. This progress report gives a general description of the project and its envisaged objectives. As a selection of the results achieved, first, FLUTAN calculations for the COULI beam window design and, second, the oxygen control system for the KArlsruhe Lead LAboratory KALLA are described in detail. Finally, the design and status of KALLA is given. (orig.)

  2. Effect of Cooling Rate and Chemical Modification on the Tensile Properties of Mg-5wt% Si Alloy

    Science.gov (United States)

    Mirshahi, Farshid; Meratian, Mahmood; Zahrani, Mohsen Mohammadi; Zahrani, Ehsan Mohammadi

    Hypereutectic Mg-Si alloys are a new class of light materials usable for aerospace and other advanced engineering applications. In this study, the effects of both cooling rate and bismuth modification on the micro structure and tensile properties of hypereutectic Mg-5wt% Si alloy were investigated. It was found that the addition of 0.5% Bi, altered the morphology of primary Mg2Si particles from bulky to polygonal shape and reduced their mean size from more than 70 μm to about 30 (am. Also, the tensile strength and elongation of the modified alloy increased about 10% and 20%, respectively, which should be ascribed to the modification of Mg2Si morphology and more uniform distribution of the primary particles. Moreover, an increase in tensile strength value with increase in cooling rate were observed which is attributed to finer micro structure of alloy in higher cooling rates. It was observed that Bi addition is significantly more effective in refining the morphology of primary Mg2Si particles than applying faster cooling rates.

  3. Growth of Li doped bismuth oxide nanorods and its electrochemical performance for the determination of L-cysteine

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Yong, E-mail: yongwen1982@163.com [School of Civil Engineering and Architecture, Xinjiang University (China); Pei, Li-zhai; Wei, Tian [chool of Materials Science and Engineering, Anhui University of Technology (China)

    2017-05-15

    Li doped bismuth oxide nanorods have been prepared using sodium bismuthate and Li acetate. X-ray diffraction (XRD) pattern shows that the nanorods are composed of monoclinic Bi{sub 2}O{sub 4} and cubic LiBi{sub 12}O{sub 18.50} phases. Scanning electron microscopy (SEM) observation shows that the nanorods have the length and diameter of 1-5 μm and 50-350 nm, respectively. The formation of the Li doped bismuth oxide nanorods is closely relative to the hydrothermal conditions. The electrochemical performance for the determination of L-cysteine based on a Li doped bismuth oxide nanorods modified glassy carbon electrode (GCE) has been developed. The CV peak current increases obviously and linearly with increasing the scan rate. Under the optimal conditions, Li doped bismuth oxide nanorods modified GCE exhibits good analytical performance with good reproducibility and stability. The linear range of L-cysteine is 0.0001-2 mM and the detection limit is 0.36 μM and 0.17 μM for cvp1 and cvp2, respectively. (author)

  4. Growth of Li doped bismuth oxide nanorods and its electrochemical performance for the determination of L-cysteine

    International Nuclear Information System (INIS)

    Wen, Yong; Pei, Li-zhai; Wei, Tian

    2017-01-01

    Li doped bismuth oxide nanorods have been prepared using sodium bismuthate and Li acetate. X-ray diffraction (XRD) pattern shows that the nanorods are composed of monoclinic Bi_2O_4 and cubic LiBi_1_2O_1_8_._5_0 phases. Scanning electron microscopy (SEM) observation shows that the nanorods have the length and diameter of 1-5 μm and 50-350 nm, respectively. The formation of the Li doped bismuth oxide nanorods is closely relative to the hydrothermal conditions. The electrochemical performance for the determination of L-cysteine based on a Li doped bismuth oxide nanorods modified glassy carbon electrode (GCE) has been developed. The CV peak current increases obviously and linearly with increasing the scan rate. Under the optimal conditions, Li doped bismuth oxide nanorods modified GCE exhibits good analytical performance with good reproducibility and stability. The linear range of L-cysteine is 0.0001-2 mM and the detection limit is 0.36 μM and 0.17 μM for cvp1 and cvp2, respectively. (author)

  5. Growth morphology and structure of bismuth thin films on GaSb(110)

    DEFF Research Database (Denmark)

    Gemmeren, T. van; Lottermoser, L.; Falkenberg, G.

    1998-01-01

    Photoelectron spectroscopy, low-energy electron diffraction, scanning tunneling microscopy and surface X-ray diffraction were used to investigate the growth of thin layers of bismuth on GaSb(110). At submonolayer coverages, growth of two-dimensional islands occurs. A uniform (1 x I)-reconstructio...... that the (1 x 1)-phases formed by antimony and bismuth adsorbates on (110) surfaces of other III-V compound semiconductors are also described by the epitaxial continued layer model. (C) 1998 Elsevier Science B.V. All rights reserved....

  6. "Chemical contraction" in rubidium-bismuth melts

    Science.gov (United States)

    Khairulin, R. A.; Abdullaev, R. N.; Stankus, S. V.

    2017-10-01

    The density and thermal expansion of liquid rubidium and rubidium-bismuth alloy containing 25.0 at % Bi were measured by the gamma-ray attenuation technique at temperatures from liquidus to 1000 K. The results of this study were compared with the data obtained by other authors. The molar volume of the Rb75Bi25 melt strongly deviates from the additivity rule for ideal solutions.

  7. Aerosol deposition of (Cu,Ti) substituted bismuth vanadate films

    Energy Technology Data Exchange (ETDEWEB)

    Exner, Jörg, E-mail: Functional.Materials@Uni-Bayreuth.de [University of Bayreuth, Department of Functional Materials, Universitätsstraße 30, 95440 Bayreuth (Germany); Fuierer, Paul [Materials and Metallurgical Engineering Department, New Mexico Institute of Mining and Technology, Socorro, NM 87801 (United States); Moos, Ralf [University of Bayreuth, Department of Functional Materials, Universitätsstraße 30, 95440 Bayreuth (Germany)

    2014-12-31

    Bismuth vanadate, Bi{sub 4}V{sub 2}O{sub 11}, and related compounds with various metal (Me) substitutions, Bi{sub 4}(Me{sub x}V{sub 1−x}){sub 2}O{sub 11−δ}, show some of the highest ionic conductivities among the known solid oxide electrolytes. Films of Cu and Ti substituted bismuth vanadate were prepared by an aerosol deposition method, a spray coating process also described as room temperature impact consolidation. Resultant films, several microns in thickness, were dense with good adhesion to the substrate. Scanning electron microscopy and high temperature X-ray diffraction were used to monitor the effects of temperature on the structure and microstructure of the film. The particle size remained nano-scale while microstrain decreased rapidly up to 500 °C, above which coarsening and texturing increased rapidly. Impedance measurements of films deposited on inter-digital electrodes revealed an annealing effect on the ionic conductivity, with the conductivity exceeding that of a screen printed film, and approaching that of bulk ceramic. - Highlights: • Cu and Ti doped bismuth vanadate films were prepared by aerosol deposition (AD). • Dense 3–5 μm thick films were deposited on alumina, silicon and gold electrodes. • Annealing of the AD-layer increases the conductivity by 1.5 orders of magnitude. • Effect of temperature on structure and microstructure was investigated.

  8. ELFR: The European Lead Fast Reactor. Design, Safety Approach and Safety Characteristics

    International Nuclear Information System (INIS)

    Alemberti, Alessandro

    2012-01-01

    • In the framework of the LEADER project, the safety approach for a Lead cooled fast reactor has been defined and, in particular, all the possible challenges to the main safety functions and their mechanisms have been specified, in order to better define the needed provisions. • On the basis of the above and taking into account the results of the safety analyses performed during previous project (ELSY), a reference configuration of the ELFR plant has been consolidated, by improving and updating the plant design features. In particular, the emerged safety concerns have been analyzed in the LEADER project and a new set of design options and safety provisions have been proposed. • The combination of favourable Lead coolant inherent characteristics and plant design features, specifically developed to face identified challenges, resulted in a very robust and forgiving design, even in very extreme conditions, as a Fukushima-like scenario

  9. Effect of bismuth ion substitution on structural properties of zinc ferrite nanoparticles

    Directory of Open Access Journals (Sweden)

    Naraavula Suresh Kumar

    2016-06-01

    Full Text Available Bismuth doped nano zinc ferrite particles having the general formula ZnFe2-xBixO4 (x = 0.00, 0.05, 0.10, 0.15, 0.20 and 0.25 were synthesized by sol-gel combustion method. The effect of bismuth doping on structural properties were investigated. The X-ray diffraction (XRD spectra confirm the single phase cubic spinel structure. The average crystallite sizes of all the samples were determined by Debye-Scherrer equation and are in the range 16–20 nm. The lattice parameter increases with the increase of bismuth ion concentration. This is due to the larger ionic radius of Bi3+ ions substituting smaller Fe3+ ions at octahedral sites (B-sites. The surface morphology of all compounds was studied by scanning electron microscope (SEM. The microstructure analysis and the particle size were examined by transmission electron microscope (TEM. The compositional stoichiometry of these samples was verified by energy dispersive spectroscopy (EDS analysis.

  10. Quantum nernst effect in a bismuth single crystal

    International Nuclear Information System (INIS)

    Matsuo, M.; Endo, A.; Hatano, N.; Nakamura, H.; Shirasaki, R.; Sugihara, K.

    2009-07-01

    We calculate the phonon-drag contribution to the transverse (Nernst) thermoelectric power S yx in a bismuth single crystal subjected to a quantizing magnetic field. The calculated heights of the Nernst peaks originating from the hole Landau levels and their temperature dependence reproduce the right order of magnitude for those of the pronounced magneto-oscillations recently reported by Behnia et al. A striking experimental finding that S yx is much larger than the longitudinal (Seebeck) thermoelectric power S xx can be naturally explained as the effect of the phonon drag, combined with the well-known relation between the longitudinal and the Hall resistivity ρ xx >> |ρ yx | in a semi-metal bismuth. The calculation that includes the contribution of both holes and electrons suggests that some of the hitherto unexplained minor peaks located roughly at the fractional filling of the hole Landau levels are attributable to the electron Landau levels. (author)

  11. Bio-assisted synthesis and characterization of nanostructured bismuth (III) sulphide using Clostridium acetobutylicum

    International Nuclear Information System (INIS)

    Kamaraj, Sathish Kumar; Venkatachalam, Ganesh; Arumugam, Palaniappan; Berchmans, Sheela

    2014-01-01

    Nanostructured bismuth (III) sulphide is synthesized at room temperature using a hydrogen sulphide producing microorganism namely Clostridium acetobutylicum. On contrary to chemical routes involving both the high and room temperature methods, the present experimental procedure involves a bio-assisted approach. This method is free from the usage of toxic and hazardous chemicals making it an environment friendly route. The synthesized bismuth sulphide is characterized using transmission electron microscope (TEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). From our experiments we find that bismuth sulphide produced using this bio-assisted approach exhibits a hexagonal shaped plate-like structures and is stabilized by the extracellular proteins present in the culture medium. - Graphical abstract: A green chemistry approach towards the synthesis of bismuth (III) sulphide nanostructures at room temperature using a hydrogen sulphide producing microorganism namely, Clostridium acetobutylicum is demonstrated. - Highlights: • Environmentally benign (greener) route towards synthesis of Bi 2 S 3 nanostructures. • Bio-assisted synthesis of Bi 2 S 3 at room temperature using Clostridium acetobutylicum. • Extracellular proteins in H 2 S producing microorganism as stabilizer for Bi 2 S 3 NPs. • Hexagonal platelets of Bi 2 S 3 possessing an orthorhombic crystalline structure

  12. Study of magnesium bismuth alloys with a composition close to Mg3Bi2

    International Nuclear Information System (INIS)

    Tournier, Jean

    1964-01-01

    The author reports the study of magnesium-bismuth alloys with a high bismuth content. These alloys were aimed to be irradiated in a pile at a temperature of about 300 C, and thus had specific requirements regarding their bismuth content, a high density, a high fusion point with also a pressure strength constraint. The author first reports the determination of an alloy grade which could meet these requirements, and then reports issues related to their elaboration by performing optical micrography and X ray analysis in order to investigate their homogeneity. Then, the alloy hot compression strength has been assessed under significantly higher constraining conditions. Fusion point and density have also been measured. As a fast alloy degradation has been noticed, brief corrosion tests have been performed

  13. Determination of zinc and cadmium with characterized Electrodes of carbon and polyurethane modified by a bismuth film

    Directory of Open Access Journals (Sweden)

    Jossy Karla Brasil Bernardelli

    2011-09-01

    Full Text Available This study aims to use electrodes modified with bismuth films for the determination of zinc and cadmium. The film was electrodeposited ex situ on a composite carbon electrode with polyurethane and 2% metallic bismuth (2BiE and on a carbon bar electrode (CBE. The electrodes were characterized by scanning electron microscopy and energy dispersive spectroscopy. Through differential pulse anodic stripping voltammetry, the electrodes 2BiE and CBE containing bismuth films showed a limit of detection (LOD of 5.56 × 10-5 and 3.07 × 10-5 g.L-1 for cadmium and 1.24 × 10-4 and 1.53 × 10-4 g.L-1 for zinc, respectively. The presence of a bismuth film increased the sensitivity of both electrodes.

  14. A method of lines solution of the transient behavior of the helium cooled power leads for the SSC

    International Nuclear Information System (INIS)

    Demko, J.A.; Schiesser, W.E.; Carcagno, R.; McAshan, M.

    1995-01-01

    In this study, a detailed numerical thermal mode of a 6.5 kA power lead for the Superconducting Super Collider has been developed, which was adapted from the dynamic model developed by Schiesser. The transient behavior of the power leads was modeled using, a method of lines (MOL) approach. The model was developed to pmvide a tool for analyzing coolant control strategies as well as an understanding of the behavior of the leads under presumed system transients. Results for a current ramp up to 4970 amps are favorably compared with measurements. Also, a loss of cooling situation is predicted to determine the transient temperature distribution under an off-design condition

  15. The European Lead Factory: A Blueprint for Public-Private Partnerships in Early Drug Discovery.

    Science.gov (United States)

    Karawajczyk, Anna; Orrling, Kristina M; de Vlieger, Jon S B; Rijnders, Ton; Tzalis, Dimitrios

    2016-01-01

    The European Lead Factory (ELF) is a public-private partnership (PPP) that provides researchers in Europe with a unique platform for translation of innovative biology and chemistry into high-quality starting points for drug discovery. It combines an exceptional collection of small molecules, high-throughput screening (HTS) infrastructure, and hit follow-up capabilities to advance research projects from both private companies and publicly funded researchers. By active interactions with the wider European life science community, ELF connects and unites bright ideas, talent, and experience from several disciplines. As a result, ELF is a unique, collaborative lead generation engine that has so far resulted in >4,500 hit compounds with a defined biological activity from 83 successfully completed HTS and hit evaluation campaigns. The PPP has also produced more than 120,000 novel innovative library compounds that complement the 327,000 compounds contributed by the participating pharmaceutical companies. Intrinsic to its setup, ELF enables breakthroughs in areas with unmet medical and societal needs, where no individual entity would be able to create a comparable impact in such a short time.

  16. The European Lead Factory: A Blueprint for Public–Private Partnerships in Early Drug Discovery

    Science.gov (United States)

    Karawajczyk, Anna; Orrling, Kristina M.; de Vlieger, Jon S. B.; Rijnders, Ton; Tzalis, Dimitrios

    2017-01-01

    The European Lead Factory (ELF) is a public–private partnership (PPP) that provides researchers in Europe with a unique platform for translation of innovative biology and chemistry into high-quality starting points for drug discovery. It combines an exceptional collection of small molecules, high-throughput screening (HTS) infrastructure, and hit follow-up capabilities to advance research projects from both private companies and publicly funded researchers. By active interactions with the wider European life science community, ELF connects and unites bright ideas, talent, and experience from several disciplines. As a result, ELF is a unique, collaborative lead generation engine that has so far resulted in >4,500 hit compounds with a defined biological activity from 83 successfully completed HTS and hit evaluation campaigns. The PPP has also produced more than 120,000 novel innovative library compounds that complement the 327,000 compounds contributed by the participating pharmaceutical companies. Intrinsic to its setup, ELF enables breakthroughs in areas with unmet medical and societal needs, where no individual entity would be able to create a comparable impact in such a short time. PMID:28154815

  17. The nuclear design optimization of a Pb-Bi alloy cooled transmuter, PEACER-300

    International Nuclear Information System (INIS)

    Lim, Jae-Yong; Kim, Myung-Hyun

    2006-01-01

    A core design of lead-bismuth cooled fast reactor, PEACER-300 has been investigated to maximize its transmutation capability within safety criteria. Transmutation of minor actinide under a closed recycling was analyzed with assumption on decontamination factors in pyro-reprocessing plant data at reasonably high values. To acquire high transmutation performance, feed fuel composition, P/D ratio, active core height and fuel cycle strategy were changed. For preventing the fuel meting and guaranteeing long plant life-time, the number of fuel assembly array and normal operation temperature were decided. The optimized design parameter were chosen as of a flat core shape with 50 cm of active core height and 5 m core diameter, loaded with 17 x 17 arrayed fuel assemblies. A pitch to diameter ratio is 2.2, operating coolant temperature range is 300 deg. C to 400 deg. C, and core consists of 3 different enrichment zones with one year cycle length. Performance of designed core showed a high transmutation capability with support ratio of 2.085, large negative temperature feedback coefficients, and sufficient shutdown margin with 28 B 4 C control assemblies. (authors)

  18. An integral metallic-fueled and lead-cooled reactor concept for the 4th generation reactor

    International Nuclear Information System (INIS)

    Santos, Adimir dos; Nascimento, Jamil Alves do

    2002-01-01

    An Integral Lead Reactor (ILR) concept is proposed for the 4th generation reactor to be used in the future. The ILR is loaded with metallic fuel and cooled by lead. It was evaluated in the 300-1500 MWe power range with the Japanese Fast Set 2 cross sections library. This set was tested against several fast benchmarks and the criticality uncertainty was found to be 0.51 %Δk. The reactor is started with U-Zr and changes to the U-TRU-Zr-RE fuel in a stepwise way. In the equilibrium cycle, the burnup reactivity is less than β eff for a core of the order of 300 MWe, pin diameter of 10.4 mm and a pin-pinch to diameter ratio of 1.308. The lead void reactivity is negative for reactor power less than 750 MWe. There is a need to improve the nuclear data for the major actinides. (author)

  19. An integral metallic-fueled and lead-cooled reactor concept for the 4th generation reactor

    International Nuclear Information System (INIS)

    Santos, A. dos; Nascimento, J.A. do

    2002-01-01

    An Integral Lead Reactor (ILR) concept is proposed for the 4th generation reactor to be used in the future. The ILR is loaded with metallic fuel and cooled by lead. It was evaluated in the 300-1500 MWe power range with the Japanese Fast Set 2 cross sections library. This set was tested against several fast benchmarks and the criticality uncertainty was found to be 0.51 % Δk. The reactor is started with U-Zr and changes to the U-TRU-Zr-RE fuel in a stepwise way. In the equilibrium cycle, the burnup reactivity is less than β eff for a core of the order of 300 MWe, pin diameter of 10.4 mm and a pin-pitch to diameter ratio of 1.308. The lead void reactivity is negative for reactor power less than 750 MWe. There is a need to improve the nuclear data for the major actinides. (author)

  20. Evidence for a temperature-driven structural transformation in liquid bismuth

    International Nuclear Information System (INIS)

    Greenberg, Y.; Dariel, M.P.; Greenberg, Y.; Yahel, E.; Caspi, E.N.; Makov, G.; Benmore, C.; Beuneu, B.

    2009-01-01

    The thermodynamic properties of liquid bismuth have been explored from the melting point to 1100 C degrees by high-resolution measurements of the density, the heat capacity and the static structure factor. These physical properties display a number of anomalies. In particular, we have observed evidence for the presence of a temperature-driven liquid-liquid structural transformation that takes place at ambient pressure. The latter is characterized by a density discontinuity that occurs at 740 C degrees. Differential thermal analysis measurements revealed the endo-thermal nature of this transformation. A rearrangement of liquid bismuth structure was found by neutron diffraction measurements, supporting the existence of a liquid-liquid transformation far above the liquidus. (authors)

  1. Comparison of fuel assemblies in lead cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Perez, A.; Sanchez, H.; Aguilar, L.; Espinosa P, G., E-mail: alejandria.peval@gmail.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico)

    2016-09-15

    This paper presents a comparison of the thermal-fluid processes in the core, fuel heat transfer, and thermal power between two fuel assemblies: square and hexagonal, in a lead-cooled fast reactor (Lfr). A multi-physics reduced order model for the analysis of Lfr single channel is developed in this work. The work focused on a coupling between process of neutron kinetic, fuel heat transfer process and thermal-fluid, in a single channel. The thermal power is obtained from neutron point kinetics model, considering a non-uniform power distribution. The analysis of the processes of thermal-fluid considers thermal expansion effects. The transient heat transfer in fuel is carried out in an annular geometry, and one-dimensional in radial direction for each axial node. The results presented in comparing these assemblies consider the temperature field in the fuel, in the thermal fluid and under steady state, and transient conditions. Transients consider flow of coolant and inlet temperature of coolant. The mathematical model of Lfr considers three main modules: the heat transfer in the annular fuel, the power generation with feedback effects on neutronic, and the thermal-fluid in the single channel. The modeling of nuclear reactors in general, the coupling is crucial by the feedback between the neutron processes with fuel heat transfer, and thermo-fluid, where is very common the numerical instabilities, after all it has to refine the model to achieve the design data. In this work is considered as a reference the ELSY reactor for the heat transfer analysis in the fuel and pure lead properties for analyzing the thermal-fluid. The results found shows that the hexagonal array has highest temperature in the fuel, respect to square array. (Author)

  2. Comparison of fuel assemblies in lead cooled fast reactors

    International Nuclear Information System (INIS)

    Perez, A.; Sanchez, H.; Aguilar, L.; Espinosa P, G.

    2016-09-01

    This paper presents a comparison of the thermal-fluid processes in the core, fuel heat transfer, and thermal power between two fuel assemblies: square and hexagonal, in a lead-cooled fast reactor (Lfr). A multi-physics reduced order model for the analysis of Lfr single channel is developed in this work. The work focused on a coupling between process of neutron kinetic, fuel heat transfer process and thermal-fluid, in a single channel. The thermal power is obtained from neutron point kinetics model, considering a non-uniform power distribution. The analysis of the processes of thermal-fluid considers thermal expansion effects. The transient heat transfer in fuel is carried out in an annular geometry, and one-dimensional in radial direction for each axial node. The results presented in comparing these assemblies consider the temperature field in the fuel, in the thermal fluid and under steady state, and transient conditions. Transients consider flow of coolant and inlet temperature of coolant. The mathematical model of Lfr considers three main modules: the heat transfer in the annular fuel, the power generation with feedback effects on neutronic, and the thermal-fluid in the single channel. The modeling of nuclear reactors in general, the coupling is crucial by the feedback between the neutron processes with fuel heat transfer, and thermo-fluid, where is very common the numerical instabilities, after all it has to refine the model to achieve the design data. In this work is considered as a reference the ELSY reactor for the heat transfer analysis in the fuel and pure lead properties for analyzing the thermal-fluid. The results found shows that the hexagonal array has highest temperature in the fuel, respect to square array. (Author)

  3. Power deposition distribution in liquid lead cooled fission reactors and effects on the reactor thermal behaviour; Distribuzione di potenza nei reattori a fusione refrigerante ed effetti sul comportamento del reattore termale

    Energy Technology Data Exchange (ETDEWEB)

    Cevolani, S.; Nava, E.; Burn, K.W. [ENEA, Divisione Sistemi Energetici Ecosostenibili, Centro Ricerche Ezio Clementel, Bologna (Italy)

    2001-07-01

    In the framework of an ADS study (Accelerator Driven System, a reactor cooled by a lead bismuth alloy) the distribution of the deposited energy between the fuel, coolant and structural materials was evaluated by means of Monte Carlo calculations. The energy deposition in the coolant turned out to be about four percent of the total deposited energy. In order to study this effect, further calculations were performed on water and sodium cooled reactors. Such an analysis showed, for both coolant materials, a much lower heat deposition, about one percent. Based on such results, a thermohydraulic analysis was performed in order to verify the effect of this phenomenon on the fuel assembly temperature distribution. The main effect of a significant fraction of energy deposition in the coolant is concerned with the decrease of the fuel pellet temperature. As a consequence, taking into account this effect allows to increase the possibilities of optimization at the disposal of the designer. [Italian] Nell'ambito dello studio di un ADS (Accelerator Driven System, un reattore refrigerato per mezzo di una lega di piombo-bismuto) per mezzo di calcoli Monte Carlo sono stati valutati i contributi di deposizione di potenza nei materiali fissile, strutturale e refrigerante, ottenendo che il contributo della potenza depositata nel refrigerante e' pari al quattro per cento circa del totale. Allo scopo di meglio approfondire questo effetto, sono stati effettuati ulteriori calcoli in relazione a reattori refrigeranti ad acqua e sodio; i risultati mostrano come, in questi casi, la deposizione di potenza nel refrigerante sia decisamente inferiore dell'ordine di un per cento circa. Sulla base di tali risultati, e' stata avviata un'analisi di caratterre termoidraulico avente lo scopo di verificare l'effetto di questo fenomeno sulla distribuzione di temperatura negli elementi di combustibile. L'effetto principale di una sensibile frazione di energia

  4. Possible superconductivity in the Bismuth IV solid phase under pressure.

    Science.gov (United States)

    Valladares, Ariel A; Rodríguez, Isaías; Hinojosa-Romero, David; Valladares, Alexander; Valladares, Renela M

    2018-04-13

    The first successful theory of superconductivity was the one proposed by Bardeen, Cooper and Schrieffer in 1957. This breakthrough fostered a remarkable growth of the field that propitiated progress and questionings, generating alternative theories to explain specific phenomena. For example, it has been argued that Bismuth, being a semimetal with a low number of carriers, does not comply with the basic hypotheses underlying BCS and therefore a different approach should be considered. Nevertheless, in 2016 based on BCS we put forth a prediction that Bi at ambient pressure becomes a superconductor at 1.3 mK. A year later an experimental group corroborated that in fact Bi is a superconductor with a transition temperature of 0.53 mK, a result that eluded previous work. So, since Bi is superconductive in almost all the different structures and phases, the question is why Bi-IV has been elusive and has not been found yet to superconduct? Here we present a study of the electronic and vibrational properties of Bi-IV and infer its possible superconductivity using a BCS approach. We predict that if the Bi-IV phase structure were cooled down to liquid helium temperatures it would also superconduct at a T c of 4.25 K.

  5. Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate.

    Science.gov (United States)

    Han, Na; Wang, Yu; Yang, Hui; Deng, Jun; Wu, Jinghua; Li, Yafei; Li, Yanguang

    2018-04-03

    Electrocatalytic carbon dioxide reduction to formate is desirable but challenging. Current attention is mostly focused on tin-based materials, which, unfortunately, often suffer from limited Faradaic efficiency. The potential of bismuth in carbon dioxide reduction has been suggested but remained understudied. Here, we report that ultrathin bismuth nanosheets are prepared from the in situ topotactic transformation of bismuth oxyiodide nanosheets. They process single crystallinity and enlarged surface areas. Such an advantageous nanostructure affords the material with excellent electrocatalytic performance for carbon dioxide reduction to formate. High selectivity (~100%) and large current density are measured over a broad potential, as well as excellent durability for >10 h. Its selectivity for formate is also understood by density functional theory calculations. In addition, bismuth nanosheets were coupled with an iridium-based oxygen evolution electrocatalyst to achieve efficient full-cell electrolysis. When powered by two AA-size alkaline batteries, the full cell exhibits impressive Faradaic efficiency and electricity-to-formate conversion efficiency.

  6. Advanced Accelerator Applications University Participation Program

    Energy Technology Data Exchange (ETDEWEB)

    Y. Chen; A. Hechanova

    2007-07-25

    Our research tasks span the range of technology areas for transmutation, gas-cooled reactor technology, and high temperature heat exchangers, including separation of actinides from spent nuclear fuel, methods of fuel fabrication, reactor-accelerator coupled experiments, corrosion of materials exposed to lead-bismuth eutectic, and special nuclear materials protection and accountability.

  7. Isolation of radioactive thallium from lead targets

    International Nuclear Information System (INIS)

    Kozlova, M.D.; Sevast'yanova, A.S.; Malinin, A.B.; Kurenkov, N.V.

    1989-01-01

    Two methods of thallium-201 preperation from Pb-targets irradiated with protons: precipitation-extraction (1) and extraction (2) - are developed. When the target irraiated is extracted during the time necessary for bismuth-201 transformation into lead-201, lead macroquantity containing lead-201 was separated from undesirable thallium radionuclides, which are formed in direct nuclear reactions. The lead fraction was extracted to accumulate thallium-201, and it was separated from lead mocroquantity. The target was dissolved in the nitric acid. The 1st method differs from the 2nd one by the fact that before thallium-201 extraction, lead was precipitaed by the nitric acid. The 1st method permits to separate thallium-201 with chemical yield not less than 90 %, the 2nd one - ≥95 %. 2 refs

  8. Study of bismuth minerals belonging to the mineralogical collection from the National Museum

    International Nuclear Information System (INIS)

    Baptista, A.; Baptista, N.R.

    1991-09-01

    With the purpose of searching the presence of Tellurium minerals in the Ouro Preto-Mariana country, Minas Gerais State, and considering the existence of a great number of minerals in which this element come across allied with Bismuth, samples of the mineralogical collection of the Museu Nacional, proceeding that region and classified as Bismuth minerals were studied by X-ray fluorescence analysis and diffractometric analysis. In this report the results of this research are presented. (Author)

  9. Initial three-dimensional neutronics calculations for the EU water cooled lithium-lead test blanket module for ITER-FEAT

    International Nuclear Information System (INIS)

    Jordanova, J.; Poitevin, Y.; Li Puma, A.; Kirov, N.

    2003-01-01

    The paper summarizes the main results of the initial three-dimensional radiation transport analysis of the EU water-cooled lithium-lead test blanket module performed using the Monte Carlo code MCNP. Estimates of tritium production rate, nuclear energy deposition and cumulative fluence effects such as radiation damage through atomic displacement and production of He and H are presented. (author)

  10. Evaluation of the gamma radiation shielding parameters of bismuth modified quaternary glass system

    Science.gov (United States)

    Kaur, Parminder; Singh, K. J.; Thakur, Sonika

    2018-05-01

    Glasses modified with heavy metal oxides (HMO) are an interesting area of research in the field of gamma-ray shielding. Bismuth modified lithium-zinc-borate glasses have been studied whereby bismuth oxide is added from 0 to 50 mol%. The gamma ray shielding properties of the glasses were evaluated at photon energy 662 keV with the help of XMuDat computer program by using the Hubbell and Seltzer database. Various gamma ray shielding parameters such as attenuation coefficient, shield thickness in terms of half and tenth value layer, effective atomic number have been studied in this work. A useful comparison of this glass system has been made with standard radiation shielding concretes viz. ordinary, barite and iron concrete. The glass samples containing 20 to 50 mol% bismuth oxide have shown better gamma ray shielding properties and hence have the potential to become good radiation absorbers.

  11. Potentiation of the action of metronidazole on Helicobacter pylori by omeprazole and bismuth subcitrate

    DEFF Research Database (Denmark)

    Andersen, L P; Colding, H; Kristiansen, J E

    2000-01-01

    test (Etest). With 0.5 MIC of either of the two drugs, the susceptibility of all H. pylori4 mg/l) reverted to being metronidazole sensitive. These results suggested that either bismuth salts or proton pump inhibitors may be effective in the treatment of some infections with metronidazole-resistant H...... to regimens that include proton pump inhibitors. In the present study, the synergistic effect of subinhibitory concentrations (0.25-0.5 MIC) of either bismuth subcitrate or omeprazole with metronidazole on the susceptibility of 42 H. pylori strains was investigated by agar dilution method and the Epsilometer......Treatment failures using triple therapy that include metronidazole, are common in patients infected with metronidazole-resistant Helicobacter pylori in the gastric mucosa. Higher eradication rates in such patients have been described when treatment regimens include bismuth salts compared...

  12. Bismuth, lansoprazole, amoxicillin and metronidazole or clarithromycin as first-line Helicobacter pylori therapy.

    Science.gov (United States)

    Zhang, Wei; Chen, Qi; Liang, Xiao; Liu, Wenzhong; Xiao, Shudong; Graham, David Y; Lu, Hong

    2015-11-01

    To evaluate the efficacy and tolerability of replacing tetracycline with amoxicillin in bismuth quadruple therapy. Subjects who were infected with Helicobacter pylori and naïve to treatment were randomly (1:1) assigned to receive a 14-day modified bismuth quadruple therapy: lansoprazole 30 mg, amoxicillin 1 g, bismuth potassium citrate 220 mg (elemental bismuth), twice a day with metronidazole 400 mg four times a day (metronidazole group) or clarithromycin 500 mg twice a day (clarithromycin group). Six weeks after treatment, H. pylori eradication was assessed by 13C-urea breath test. Antimicrobial susceptibility was assessed by the twofold agar dilution method. This was a non-inferiority trial. Two hundred and fifteen subjects were randomised. Metronidazole and clarithromycin containing regimens achieved high cure rates: 94 of 97 (96.9%, 95% CI 93.5% to 100%) and 93 of 98 (94.9%, 95% CI 90.5% to 99.3%) by per-protocol and 88.9% (95% CI 83.0% to 94.8%) and 88.8% (95% CI 82.8% to 94.8%) by intention-to-treat, respectively. Amoxicillin, metronidazole and clarithromycin resistance rates were 1.5%, 45.5% and 26.5%, respectively. Only clarithromycin resistance reduced treatment success (e.g., susceptible 98.6%, resistant 76.9%, p=0.001). Adverse events were more common in the metronidazole group. These results suggest that amoxicillin can substitute for tetracycline in modified 14 day bismuth quadruple therapy as first-line treatment and still overcome metronidazole resistance in areas with high prevalence of metronidazole and clarithromycin resistance. Using clarithromycin instead of metronidazole was only effective in the presence of susceptible strains. NCT02175901. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  13. Monte Carlo simulations for dose enhancement in cancer treatment using bismuth oxide nanoparticles implanted in brain soft tissue.

    Science.gov (United States)

    Taha, Eslam; Djouider, Fathi; Banoqitah, Essam

    2018-03-26

    The objective of this work is to study the dosimetric performances of bismuth oxide nanoparticles implanted in tumors in cancer radiotherapy. GEANT4 based Monte Carlo numerical simulations were performed to assess dose enhancement distributions in and around a 1 × 1 × 1 cm 3 tumor implanted with different concentrations of bismuth oxide and irradiated with low energies 125 I, 131 Cs, and 103 Pd radioactive sources. Dose contributions were considered from photoelectrons, Auger electrons, and characteristic X-rays. Our results show the dose enhancement increased with increasing both bismuth oxide concentration in the target and photon energy. A dose enhancement factor up to 18.55 was obtained for a concentration of 70 mg/g of bismuth oxide in the tumor when irradiated with 131 Cs source. This study showed that bismuth oxide nanoparticles are innovative agents that could be potentially applicable to in vivo cancer radiotherapy due to the fact that they induce a highly localized energy deposition within the tumor.

  14. Pre-Test Analysis of the MEGAPIE Spallation Source Target Cooling Loop Using the TRAC/AAA Code

    International Nuclear Information System (INIS)

    Bubelis, Evaldas; Coddington, Paul; Leung, Waihung

    2006-01-01

    A pilot project is being undertaken at the Paul Scherrer Institute in Switzerland to test the feasibility of installing a Lead-Bismuth Eutectic (LBE) spallation target in the SINQ facility. Efforts are coordinated under the MEGAPIE project, the main objectives of which are to design, build, operate and decommission a 1 MW spallation neutron source. The technology and experience of building and operating a high power spallation target are of general interest in the design of an Accelerator Driven System (ADS) and in this context MEGAPIE is one of the key experiments. The target cooling is one of the important aspects of the target system design that needs to be studied in detail. Calculations were performed previously using the RELAP5/Mod 3.2.2 and ATHLET codes, but in order to verify the previous code results and to provide another capability to model LBE systems, a similar study of the MEGAPIE target cooling system has been conducted with the TRAC/AAA code. In this paper a comparison is presented for the steady-state results obtained using the above codes. Analysis of transients, such as unregulated cooling of the target, loss of heat sink, the main electro-magnetic pump trip of the LBE loop and unprotected proton beam trip, were studied with TRAC/AAA and compared to those obtained earlier using RELAP5/Mod 3.2.2. This work extends the existing validation data-base of TRAC/AAA to heavy liquid metal systems and comprises the first part of the TRAC/AAA code validation study for LBE systems based on data from the MEGAPIE test facility and corresponding inter-code comparisons. (authors)

  15. Review of the cost estimate and schedule for the 2240-MWt high-temperature gas-cooled reactor steam-cycle/cogeneration lead plant

    International Nuclear Information System (INIS)

    1983-09-01

    This report documents Bechtel's review of the cost estimate and schedule for the 2240 MWt High Temperature Gas-Cooled Reactor Steam Cycle/Cogeneration (HTGR-SC/C) Lead Plant. The overall objective of the review is to verify that the 1982 update of the cost estimate and schedule for the Lead Plant are reasonable and consistent with current power plant experience

  16. Optical and electrical properties of thin films of bismuth ferric oxide

    International Nuclear Information System (INIS)

    Cardona R, D.

    2014-01-01

    The bismuth ferric oxide (BFO) has caused great attention in recent years because of their multi ferric properties, making it very attractive for different technological applications. In this paper simultaneous ablation of two white (Bi and Fe 2 O 3 ) was used in a reactive atmosphere (containing oxygen) to deposit thin films of BFO. The composition of the films is changed by controlling the plasma parameters such as the average kinetic energy of the ions (E p) and the plasma density (Np). The effects caused by excess of Bi and Fe in atomic structure and the optical and electrical properties of the films BiFeO 3 in terms of plasma parameters were studied. The X-ray diffraction patterns of BFO samples with excess of bismuth above 2% at. They exhibited small changes in structure leading to improved levels of leakage currents compared to levels of the film with a stoichiometry close to BiFeO 3 composition. These samples showed a secondary phase (Bi 2 5FeO 4 0 selenite type) that led to the increase in the values of band gap and resistivity as well as the improvement of the piezoelectric properties. On the other hand, the films with iron excess showed as secondary phase compounds of iron oxide (α - γ-Fe 2 O 3 ) that caused increments in the conductivity and decrease in the values of band gap. The results are discussed in terms of the excesses of Bi and Fe which were correlated with the plasma parameters. (Author)

  17. Fabrication of lithium/C-103 alloy heat pipes for sharp leading edge cooling

    Science.gov (United States)

    Ai, Bangcheng; Chen, Siyuan; Yu, Jijun; Lu, Qin; Han, Hantao; Hu, Longfei

    2018-05-01

    In this study, lithium/C-103 alloys heat pipes are proposed for sharp leading edge cooling. Three models of lithium/C-103 alloy heat pipes were fabricated. And their startup properties were tested by radiant heat tests and aerothermal tests. It is found that the startup temperature of lithium heat pipe was about 860 °C. At 1000 °C radiant heat tests, the operating temperature of lithium/C-103 alloy heat pipe is lower than 860 °C. Thus, startup failure occurs. At 1100 °C radiant heat tests and aerothermal tests, the operating temperature of lithium/C-103 alloy heat pipe is higher than 860 °C, and the heat pipe starts up successfully. The startup of lithium/C-103 alloy heat pipe decreases the leading edge temperature effectively, which endows itself good ablation resistance. After radiant heat tests and aerothermal tests, all the heat pipe models are severely oxidized because of the C-103 poor oxidation resistance. Therefore, protective coatings are required for further applications of lithium/C-103 alloy heat pipes.

  18. The State-of-the-Art for Ventilative Cooling

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols

    2016-01-01

    Ventilative cooling for buildings may lead to cooling energy savings and improvements in thermal comfort, especially in seasonally temperate and warm climates. But, codes and regulations need to better quantify its benefits.......Ventilative cooling for buildings may lead to cooling energy savings and improvements in thermal comfort, especially in seasonally temperate and warm climates. But, codes and regulations need to better quantify its benefits....

  19. Solar heating cooling. Preparation of possible participation in IEA, Solar Heating Cooling Task 25; Solvarmedrevet koeling. Forberedelse af evt. deltagelse i IEA, Solar Heating Cooling Task 25

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    everybody are connected to the electric power network and where the effect tax, except in certain German areas, is low. Should a European market for solar cooling be developed a conscious policy is required, which rewards effect savings. Because of the non-existing domestic market and the diffuse European market possibilities active Danish participation in IEA Task 25 it is not recommended. (EHS)

  20. Ultrasonic investigations of some bismuth borate glasses doped with ...

    Indian Academy of Sciences (India)

    Keywords. Bismuth borate glasses; elastic moduli; Makishima–Mackenzie model. 1. Introduction ... former because of the small field strength of Bi3+ ion. Bi2O3 ..... Typically, when the material undergoes a phase change, the value of the.