WorldWideScience

Sample records for european beech fagus

  1. Genetic diversity and differentiation in European beech (Fagus sylvatica L.) stands varying in management history

    NARCIS (Netherlands)

    Buiteveld, J.; Vendramin, G.G.; Leonardi, S.; Kramer, K.; Geburek, T.

    2007-01-01

    The impact of forest management on genetic diversity and mating was examined in European beech (Fagus sylvatica L.). Ten beech stands located in Europe were studied in pair-wise plots, differing in management intensity. The stands were genotyped with four highly polymorphic microsatellite loci.

  2. Anthropogenic nitrogen deposition alters growth responses of European beech (Fagus sylvativa L.) to climate change.

    Science.gov (United States)

    Hess, Carsten; Niemeyer, Thomas; Fichtner, Andreas; Jansen, Kirstin; Kunz, Matthias; Maneke, Moritz; von Wehrden, Henrik; Quante, Markus; Walmsley, David; von Oheimb, Goddert; Härdtle, Werner

    2018-02-01

    Global change affects the functioning of forest ecosystems and the services they provide, but little is known about the interactive effects of co-occurring global change drivers on important functions such as tree growth and vitality. In the present study we quantified the interactive (i.e. synergistic or antagonistic) effects of atmospheric nitrogen (N) deposition and climatic variables (temperature, precipitation) on tree growth (in terms of tree-ring width, TRW), taking forest ecosystems with European beech (Fagus sylvatica L.) as an example. We hypothesised that (i) N deposition and climatic variables can evoke non-additive responses of the radial increment of beech trees, and (ii) N loads have the potential to strengthen the trees' sensitivity to climate change. In young stands, we found a synergistic positive effect of N deposition and annual mean temperature on TRW, possibly linked to the alleviation of an N shortage in young stands. In mature stands, however, high N deposition significantly increased the trees' sensitivity to increasing annual mean temperatures (antagonistic effect on TRW), possibly due to increased fine root dieback, decreasing mycorrhizal colonization or shifts in biomass allocation patterns (aboveground vs. belowground). Accordingly, N deposition and climatic variables caused both synergistic and antagonistic effects on the radial increment of beech trees, depending on tree age and stand characteristics. Hence, the nature of interactions could mediate the long-term effects of global change drivers (including N deposition) on forest carbon sequestration. In conclusion, our findings illustrate that interaction processes between climatic variables and N deposition are complex and have the potential to impair growth and performance of European beech. This in turn emphasises the importance of multiple-factor studies to foster an integrated understanding and models aiming at improved projections of tree growth responses to co-occurring drivers

  3. Use of microsatellite markers in an American beech (Fagus grandifolia) population and paternity testing

    Science.gov (United States)

    Jennifer Koch; Dave Carey; M.E. Mason

    2010-01-01

    Cross-species amplification of six microsatellite markers from European beech (Fagus sylvatica Linn) and nine markers from Japanese beech (Fagus crenata Blume) was tested in American beech (Fagus grandifolia Ehrh.). Three microsatellites from each species were successfully adapted for use in American beech...

  4. Fine root dynamics of mature European beech (Fagus sylvatica L.) as influenced by elevated ozone concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Mainiero, Raphael, E-mail: raphael.mainiero@iap.c [Department for Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm (Germany); Kazda, Marian, E-mail: marian.kazda@uni-ulm.d [Department for Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm (Germany); Haeberle, Karl-Heinz, E-mail: haeberle@wzw.tum.d [Technische Universitaet Muenchen, Ecophysiology of Plants, Department of Ecology, Am Hochanger 13, 85354 Freising (Germany); Nikolova, Petia Simeonova, E-mail: nikolova@wzw.tum.d [Technische Universitaet Muenchen, Ecophysiology of Plants, Department of Ecology, Am Hochanger 13, 85354 Freising (Germany); Matyssek, Rainer, E-mail: matyssek@wzw.tum.d [Technische Universitaet Muenchen, Ecophysiology of Plants, Department of Ecology, Am Hochanger 13, 85354 Freising (Germany)

    2009-10-15

    Fine root dynamics (diameter < 1 mm) in mature Fagus sylvatica, with the canopies exposed to ambient or twice-ambient ozone concentrations, were investigated throughout 2004. The focus was on the seasonal timing and extent of fine root dynamics (growth, mortality) in relation to the soil environment (water content, temperature). Under ambient ozone concentrations, a significant relationship was found between fine root turnover and soil environmental changes indicating accelerated fine root turnover under favourable soil conditions. In contrast, under elevated ozone, this relationship vanished as the result of an altered temporal pattern of fine root growth. Fine root survival and turnover rate did not differ significantly between the different ozone regimes, although a delay in current-year fine root shedding was found under the elevated ozone concentrations. The data indicate that increasing tropospheric ozone levels can alter the timing of fine root turnover in mature F. sylvatica but do not affect the turnover rate. - Doubling of ozone concentrations in mature European beech affected the seasonal timing of fine root turnover rather than the turnover rate.

  5. Desiccation and Mortality Dynamics in Seedlings of Different European Beech (Fagus sylvatica L.) Populations under Extreme Drought Conditions.

    Science.gov (United States)

    Bolte, Andreas; Czajkowski, Tomasz; Cocozza, Claudia; Tognetti, Roberto; de Miguel, Marina; Pšidová, Eva; Ditmarová, Ĺubica; Dinca, Lucian; Delzon, Sylvain; Cochard, Hervè; Ræbild, Anders; de Luis, Martin; Cvjetkovic, Branislav; Heiri, Caroline; Müller, Jürgen

    2016-01-01

    European beech (Fagus sylvatica L., hereafter beech), one of the major native tree species in Europe, is known to be drought sensitive. Thus, the identification of critical thresholds of drought impact intensity and duration are of high interest for assessing the adaptive potential of European beech to climate change in its native range. In a common garden experiment with one-year-old seedlings originating from central and marginal origins in six European countries (Denmark, Germany, France, Romania, Bosnia-Herzegovina, and Spain), we applied extreme drought stress and observed desiccation and mortality processes among the different populations and related them to plant water status (predawn water potential, ΨPD) and soil hydraulic traits. For the lethal drought assessment, we used a critical threshold of soil water availability that is reached when 50% mortality in seedling populations occurs (LD50SWA). We found significant population differences in LD50SWA (10.5-17.8%), and mortality dynamics that suggest a genetic difference in drought resistance between populations. The LD50SWA values correlate significantly with the mean growing season precipitation at population origins, but not with the geographic margins of beech range. Thus, beech range marginality may be more due to climatic conditions than to geographic range. The outcome of this study suggests the genetic variation has a major influence on the varying adaptive potential of the investigated populations.

  6. Raman spectroscopic investigation of 13CO 2 labeling and leaf dark respiration of Fagus sylvatica L. (European beech).

    Science.gov (United States)

    Keiner, Robert; Gruselle, Marie-Cécile; Michalzik, Beate; Popp, Jürgen; Frosch, Torsten

    2015-03-01

    An important issue, in times of climate change and more extreme weather events, is the investigation of forest ecosystem reactions to these events. Longer drought periods stress the vitality of trees and promote mass insect outbreaks, which strongly affect ecosystem processes and services. Cavity-enhanced Raman gas spectrometry was applied for online multi-gas analysis of the gas exchange rates of O2 and CO2 and the labeling of Fagus sylvatica L. (European beech) seedlings with (13)CO2. The rapid monitoring of all these gases simultaneously allowed for the separation of photosynthetic uptake of CO2 by the beech seedlings and a constant (12)CO2 efflux via respiration and thus for a correction of the measured (12)CO2 concentrations in course of the labeling experiment. The effects of aphid infestation with the woolly beech aphid (Phyllaphis fagi L.) as well as the effect of a drought period on the respirational gas exchange were investigated. A slightly decreased respirational activity of drought-stressed seedlings in comparison to normally watered seedlings was found already for a low drought intensity. Cavity-enhanced Raman gas monitoring of O2, (12)CO2, and (13)CO2 was proven to be a powerful new tool for studying the effect of drought stress and aphid infestation on the respirational activity of European beech seedlings as an example of important forest species in Central Europe.

  7. Monitoring of Vegetative Phenological Stages in European Beech (Fagus sylvatica L. Growing in a Mixed Stand

    Directory of Open Access Journals (Sweden)

    Kristýna Slovíková

    2014-01-01

    Full Text Available The paper presents results of monitoring of beech (Fagus sylvatica L. vegetative phenophases within the period of years 2005–2010 as related to results of evaluation involving data collected since 1991. This phenological study was performed in a young mixed forest stand situated in the Drahanská vrchovina uplands in the altitude of 625 m.a.s.l. Beginnings and duration of individual phenophases differed in dependence on the course of weather conditions in individual years of study. The highest variability was observed in the stage of budbreak. The obtained results indicate that the onset of spring phenophases was dependent on temperatures existing already in early spring and to the end of winter period. The statistical analysis proved a high correlation existing between the onset of spring phenophases on the one hand and soil and air temperatures on the other. Temperature requirements as defined for the beginnings of individual phenophases were evaluated on the base of cumulative sums of temperatures higher than 0 °C. The obtained results indicate that, as compared with results of long-term monitoring, the period of the duration of spring phenophases had been gradually shortened. On the other side, however, the duration of autumn phenophases was extended and they ended in the late autumn. Repeated extensions of the growing season to the detriment of winter dormancy might show a negative effect on the health condition of forest stands.

  8. Phenotypic Plasticity Explains Response Patterns of European Beech (Fagus sylvatica L. Saplings to Nitrogen Fertilization and Drought Events

    Directory of Open Access Journals (Sweden)

    Christoph Dziedek

    2017-03-01

    Full Text Available Abstract: Climate and atmospheric changes affect forest ecosystems worldwide, but little is known about the interactive effects of global change drivers on tree growth. In the present study, we analyzed single and combined effects of nitrogen (N fertilization and drought events (D on the growth of European beech (Fagus sylvatica L. saplings in a greenhouse experiment. We quantified morphological and physiological responses to treatments for one‐ and two‐year‐old plants. N fertilization increased the saplings’ aboveground biomass investments, making them more susceptible to D treatments. This was reflected by the highest tissue dieback in combined N and D treatments and a significant N × D interaction for leaf δ13C signatures. Thus, atmospheric N deposition can strengthen the drought sensitivity of beech saplings. One‐year‐old plants reacted more sensitively to D treatments than two‐year‐old plants (indicated by D‐induced shifts in leaf δ13C signatures of one‐year‐old and two‐year‐old plants by +0.5‰ and −0.2‰, respectively, attributable to their higher shoot:root‐ratios (1.8 and 1.2, respectively. In summary, the saplings’ treatment responses were determined by their phenotypic plasticity (shifts in shoot:root‐ratios, which in turn was a function of both the saplings’ age (effects of allometric growth trajectories = apparent plasticity and environmental impacts (effects of N fertilization = plastic allometry.

  9. Projected effects of climate change on the carbon stocks of European beech (Fagus sylvatica L. forests in Zala County, Hungary

    Directory of Open Access Journals (Sweden)

    Somogyi Zoltán

    2016-03-01

    Full Text Available Recent studies suggest that climate change will lead to the local extinction of many tree species from large areas during this century, affecting the functioning and ecosystem services of many forests. This study reports on projected carbon losses due to the assumed local climate change-driven extinction of European beech (Fagus sylvatica L. from Zala County, South-Western Hungary, where the species grows at the xeric limit of its distribution. The losses were calculated as a difference between carbon stocks in climate change scenarios assuming an exponentially increasing forest decline over time, and those in a baseline scenario assuming no climate change. In the climate change scenarios, three different sets of forest management adaptation measures were studied: (1 only harvesting damaged stands, (2 additionally salvaging dead trees that died due to climate change, and (3 replacing, at an increasing rate over time, beech with sessile oak (Quercus petraea Matt. Lieb. after final harvest. Projections were made using the open access carbon accounting model CASMOFOR based on modeling or assuming effects of climate change on mortality, tree growth, root-to-shoot ratio and decomposition rates. Results demonstrate that, if beech disappears from the region as projected by the end of the century, over 80% of above-ground biomass carbon, and over 60% of the carbon stocks of all pools (excluding soils of the forests will be lost by 2100. Such emission rates on large areas may have a discernible positive feedback on climate change, and can only partially be offset by the forest management adaptation measures.

  10. Modelling individual tree height to crown base of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.).

    Science.gov (United States)

    Sharma, Ram P; Vacek, Zdeněk; Vacek, Stanislav; Podrázský, Vilém; Jansa, Václav

    2017-01-01

    Height to crown base (HCB) of a tree is an important variable often included as a predictor in various forest models that serve as the fundamental tools for decision-making in forestry. We developed spatially explicit and spatially inexplicit mixed-effects HCB models using measurements from a total 19,404 trees of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.) on the permanent sample plots that are located across the Czech Republic. Variables describing site quality, stand density or competition, and species mixing effects were included into the HCB model with use of dominant height (HDOM), basal area of trees larger in diameters than a subject tree (BAL- spatially inexplicit measure) or Hegyi's competition index (HCI-spatially explicit measure), and basal area proportion of a species of interest (BAPOR), respectively. The parameters describing sample plot-level random effects were included into the HCB model by applying the mixed-effects modelling approach. Among several functional forms evaluated, the logistic function was found most suited to our data. The HCB model for Norway spruce was tested against the data originated from different inventory designs, but model for European beech was tested using partitioned dataset (a part of the main dataset). The variance heteroscedasticity in the residuals was substantially reduced through inclusion of a power variance function into the HCB model. The results showed that spatially explicit model described significantly a larger part of the HCB variations [R2adj = 0.86 (spruce), 0.85 (beech)] than its spatially inexplicit counterpart [R2adj = 0.84 (spruce), 0.83 (beech)]. The HCB increased with increasing competitive interactions described by tree-centered competition measure: BAL or HCI, and species mixing effects described by BAPOR. A test of the mixed-effects HCB model with the random effects estimated using at least four trees per sample plot in the validation data confirmed that the

  11. Modelling individual tree height to crown base of Norway spruce (Picea abies (L. Karst. and European beech (Fagus sylvatica L..

    Directory of Open Access Journals (Sweden)

    Ram P Sharma

    Full Text Available Height to crown base (HCB of a tree is an important variable often included as a predictor in various forest models that serve as the fundamental tools for decision-making in forestry. We developed spatially explicit and spatially inexplicit mixed-effects HCB models using measurements from a total 19,404 trees of Norway spruce (Picea abies (L. Karst. and European beech (Fagus sylvatica L. on the permanent sample plots that are located across the Czech Republic. Variables describing site quality, stand density or competition, and species mixing effects were included into the HCB model with use of dominant height (HDOM, basal area of trees larger in diameters than a subject tree (BAL- spatially inexplicit measure or Hegyi's competition index (HCI-spatially explicit measure, and basal area proportion of a species of interest (BAPOR, respectively. The parameters describing sample plot-level random effects were included into the HCB model by applying the mixed-effects modelling approach. Among several functional forms evaluated, the logistic function was found most suited to our data. The HCB model for Norway spruce was tested against the data originated from different inventory designs, but model for European beech was tested using partitioned dataset (a part of the main dataset. The variance heteroscedasticity in the residuals was substantially reduced through inclusion of a power variance function into the HCB model. The results showed that spatially explicit model described significantly a larger part of the HCB variations [R2adj = 0.86 (spruce, 0.85 (beech] than its spatially inexplicit counterpart [R2adj = 0.84 (spruce, 0.83 (beech]. The HCB increased with increasing competitive interactions described by tree-centered competition measure: BAL or HCI, and species mixing effects described by BAPOR. A test of the mixed-effects HCB model with the random effects estimated using at least four trees per sample plot in the validation data confirmed

  12. Transfer Analysis of Provenance Trials Reveals Macroclimatic Adaptedness of European Beech (Fagus sylvatica L.

    Directory of Open Access Journals (Sweden)

    RASZTOVITS, Ervin

    2009-01-01

    Full Text Available The aim of the study was to analyse provenance tests of beech situated close to theSoutheastern-continental limits of the species, in order to develop a response model of adaptation andplasticity of populations on evolutionary-ecological basis, following sudden climatic changes as aresult of transplanting. Modelling of juvenile height was performed with the help of ecodistancevariables. The concept of transfer analysis and ecodistance is based on the hypothesis that phenotypicresponse to macroclimatic changes depends on the inherited adaptive potential of the population andon the magnitude and direction of experienced environmental change. In common garden experiments,the transfer to the planting site is interpreted as simulation of environmental change. The applicationof ecodistance of transfer for evaluating common garden experiments provides much neededquantitative information about response of tree populations to predicted climatic changes.The analysis of three field experiments of European beech in SE Europe invalidate earlier doubtsabout the existence of macroclimatic adaptation patterns in juvenile growth and justify restrictions ofuse of reproductive material on the basis of evolutionary ecology. The presented model illustrates thatresponse to climatic change is regionally divergent, depending on testing conditions and on hereditarytraits. In particular, climatic warming in the central-northern part of the range may lead to productionincrease. However, under the stressful and uncertain conditions at the lower (xeric limit of thespecies, growth depression and vitality loss are predicted. The deviating behaviour of higher elevationprovenances support their separate treatment.The results may be utilised in climate change adaptation and mitigation policy in forestry andnature conservation, to revise rules for use of reproductive material and also for validatingevolutionary and ecological hypotheses related to climate change effects.

  13. A unigene set for European beech (Fagus sylvatica L.) and its use to decipher the molecular mechanisms involved in dormancy regulation.

    Science.gov (United States)

    Lesur, Isabelle; Bechade, Alison; Lalanne, Céline; Klopp, Christophe; Noirot, Céline; Leplé, Jean-Charles; Kremer, Antoine; Plomion, Christophe; Le Provost, Grégoire

    2015-09-01

    Systematic sequencing is the method of choice for generating genomic resources for molecular marker development and candidate gene identification in nonmodel species. We generated 47,357 Sanger ESTs and 2.2M Roche-454 reads from five cDNA libraries for European beech (Fagus sylvatica L.). This tree species of high ecological and economic value in Europe is among the most representative trees of deciduous broadleaf forests. The sequences generated were assembled into 21,057 contigs with MIRA software. Functional annotations were obtained for 85% of these contigs, from the proteomes of four plant species, Swissprot accessions and the Gene Ontology database. We were able to identify 28,079 in silico SNPs for future marker development. Moreover, RNAseq and qPCR approaches identified genes and gene networks regulated differentially between two critical phenological stages preceding vegetative bud burst (the quiescent and swelling buds stages). According to climatic model-based projection, some European beech populations may be endangered, particularly at the southern and eastern edges of the European distribution range, which are strongly affected by current climate change. This first genomic resource for the genus Fagus should facilitate the identification of key genes for beech adaptation and management strategies for preserving beech adaptability. © 2015 John Wiley & Sons Ltd.

  14. The presence of amino acids affects inorganic N uptake in non-mycorrhizal seedlings of European beech (Fagus sylvatica).

    Science.gov (United States)

    Stoelken, Gunda; Simon, Judy; Ehlting, Barbara; Rennenberg, Heinz

    2010-09-01

    To investigate the impact of organic N compounds for inorganic nitrogen uptake in the rhizosphere, we fed ammonium nitrate with or without amino acids (i.e., glutamine or arginine) to the roots of non-mycorrhizal beech (Fagus sylvatica L.) seedlings under controlled conditions at different levels of N availability. Uptake of individual N sources was determined from ¹⁵N (inorganic N) and ¹⁵N ¹³C (organic N) accumulation in the roots. In addition, gene fragments encoding proteins involved in N uptake and metabolism were cloned from beech for gene expression analyses by quantitative real-time PCR in the roots. Generally, ammonium was preferred over nitrate as N source. Organic N sources were taken up by beech roots as intact molecules. Uptake of organic N was significantly higher than inorganic N uptake, thus contributing significantly to N nutrition of beech. Depending on the level of N availability, inorganic N uptake was negatively affected by the presence of organic N sources. This result indicates an overestimation of the contribution of inorganic N uptake to N nutrition of beech in previous studies. Apparently, association with mycorrhizal fungi is not essential for organic N uptake by beech roots. Gene expression analyses showed that transcriptional regulation of the amino acid transporters FsCAT3, FsCAT5, FsAAT and FsAAP and the ammonium transporter FsAMT1.2 in the roots is involved in N nutrition of beech.

  15. Comparison of pollen gene flow among four European beech (Fagus sylvatica L.) populations characterized by different management regimes.

    Science.gov (United States)

    Piotti, A; Leonardi, S; Buiteveld, J; Geburek, T; Gerber, S; Kramer, K; Vettori, C; Vendramin, G G

    2012-03-01

    The study of the dispersal capability of a species can provide essential information for the management and conservation of its genetic variability. Comparison of gene flow rates among populations characterized by different management and evolutionary histories allows one to decipher the role of factors such as isolation and tree density on gene movements. We used two paternity analysis approaches and different strategies to handle the possible presence of genotyping errors to obtain robust estimates of pollen flow in four European beech (Fagus sylvatica L.) populations from Austria and France. In each country one of the two plots is located in an unmanaged forest; the other plots are managed with a shelterwood system and inside a colonization area (in Austria and France, respectively). The two paternity analysis approaches provided almost identical estimates of gene flow. In general, we found high pollen immigration (~75% of pollen from outside), with the exception of the plot from a highly isolated forest remnant (~50%). In the two unmanaged plots, the average within-population pollen dispersal distances (from 80 to 184 m) were higher than previously estimated for beech. From the comparison between the Austrian managed and unmanaged plots, that are only 500 m apart, we found no evidence that either gene flow or reproductive success distributions were significantly altered by forest management. The investigated phenotypic traits (crown area, height, diameter and flowering phenology) were not significantly related with male reproductive success. Shelterwood seems to have an effect on the distribution of within-population pollen dispersal distances. In the managed plot, pollen dispersal distances were shorter, possibly because adult tree density is three-fold (163 versus 57 trees per hectare) with respect to the unmanaged one.

  16. The composition of phyllosphere fungal assemblages of European beech (Fagus sylvatica) varies significantly along an elevation gradient.

    Science.gov (United States)

    Cordier, Tristan; Robin, Cécile; Capdevielle, Xavier; Fabreguettes, Olivier; Desprez-Loustau, Marie-Laure; Vacher, Corinne

    2012-10-01

    Little is known about the potential effect of climate warming on phyllosphere fungi, despite their important impact on the dynamics and diversity of plant communities. The structure of phyllosphere fungal assemblages along elevation gradients may provide information about this potential effect, because elevation gradients correspond to temperature gradients over short geographic distances. We thus investigated variations in the composition of fungal assemblages inhabiting the phyllosphere of European beech (Fagus sylvatica) at four sites over a gradient of 1000 m of elevation in the French Pyrénées Mountains, by using tag-encoded 454 pyrosequencing. Our results show that the composition of fungal assemblages varied significantly between elevation sites, in terms of both the relative abundance and the presence-absence of species, and that the variations in assemblage composition were well correlated with variations in the average temperatures. Our results therefore suggest that climate warming might alter both the incidence and the abundance of phyllosphere fungal species, including potential pathogens. For example, Mycosphaerella punctiformis, a causal agent of leaf spots, showed decreasing abundance with elevation and might therefore shift to higher elevations in response to warming. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  17. Multivariate analysis of physiological parameters reveals a consistent O3 response pattern in leaves of adult European beech (Fagus sylvatica).

    Science.gov (United States)

    Löw, Markus; Deckmyn, Gaby; Op de Beeck, Maarten; Blumenröther, Manuela C; Oßwald, Wolfgang; Alexou, Maria; Jehnes, Sascha; Haberer, Kristine; Rennenberg, Heinz; Herbinger, Karin; Häberle, Karl-Heinz; Bahnweg, Günther; Hanke, David; Wieser, Gerhard; Ceulemans, Reinhart; Matyssek, Rainer; Tausz, Michael

    2012-10-01

    • Increasing atmospheric concentrations of phytotoxic ozone (O(3) ) can constrain growth and carbon sink strength of forest trees, potentially exacerbating global radiative forcing. Despite progress in the conceptual understanding of the impact of O(3) on plants, it is still difficult to detect response patterns at the leaf level. • Here, we employed principal component analysis (PCA) to analyse a database containing physiological leaf-level parameters of 60-yr-old Fagus sylvatica (European beech) trees. Data were collected over two climatically contrasting years under ambient and twice-ambient O(3) regimes in a free-air forest environment. • The first principal component (PC1) of the PCA was consistently responsive to O(3) and crown position within the trees over both years. Only a few of the original parameters showed an O(3) effect. PC1 was related to parameters indicative of oxidative stress signalling and changes in carbohydrate metabolism. PC1 correlated with cumulative O(3) uptake over preceding days. • PC1 represents an O(3) -responsive multivariate pattern detectable in the absence of consistently measurable O(3) effects on individual leaf-level parameters. An underlying effect of O(3) on physiological processes is indicated, providing experimental confirmation of theoretical O(3) response patterns suggested previously. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  18. Fine root dynamics of mature European beech (Fagus sylvatica L.) as influenced by elevated ozone concentrations.

    Science.gov (United States)

    Mainiero, Raphael; Kazda, Marian; Häberle, Karl-Heinz; Nikolova, Petia Simeonova; Matyssek, Rainer

    2009-10-01

    Fine root dynamics (diameter Fagus sylvatica, with the canopies exposed to ambient or twice-ambient ozone concentrations, were investigated throughout 2004. The focus was on the seasonal timing and extent of fine root dynamics (growth, mortality) in relation to the soil environment (water content, temperature). Under ambient ozone concentrations, a significant relationship was found between fine root turnover and soil environmental changes indicating accelerated fine root turnover under favourable soil conditions. In contrast, under elevated ozone, this relationship vanished as the result of an altered temporal pattern of fine root growth. Fine root survival and turnover rate did not differ significantly between the different ozone regimes, although a delay in current-year fine root shedding was found under the elevated ozone concentrations. The data indicate that increasing tropospheric ozone levels can alter the timing of fine root turnover in mature F. sylvatica but do not affect the turnover rate.

  19. Fate of recently fixed carbon in European beech (Fagus sylvatica) saplings during drought and subsequent recovery.

    Science.gov (United States)

    Zang, Ulrich; Goisser, Michael; Grams, Thorsten E E; Häberle, Karl-Heinz; Matyssek, Rainer; Matzner, Egbert; Borken, Werner

    2014-01-01

    Drought reduces the carbon (C) assimilation of trees and decouples aboveground from belowground carbon fluxes, but little is known about the response of drought-stressed trees to rewetting. This study aims to assess dynamics and patterns of C allocation in beech saplings under dry and rewetted soil conditions. In October 2010, 5-year-old beech saplings from a forest site were transplanted into 20 l pots. In 2011, the saplings were subjected to different levels of soil drought ranging from non-limiting water supply (control) to severe water limitation with soil water potentials of less than -1.5 MPa. As a physiologically relevant measure of drought, the cumulated soil water potential (i.e., drought stress dose (DSD)) was calculated for the growing season. In late August, the saplings were transferred into a climate chamber and pulse-labeled with (13)C-depleted CO2 (δ(13)C of -47‰). Isotopic signatures in leaf and soil respiration were repeatedly measured. Five days after soil rewetting, a second label was applied using 99 atom% (13)CO2. After another 12 days, the fate of assimilated C in each sapling was assessed by calculating the (13)C mass balance. Photosynthesis decreased by 60% in saplings under severe drought. The mean residence time (MRT) of recent assimilates in leaf respiration was more than three times longer than under non-limited conditions and was positively correlated to DSD. Also, the appearance of the label in soil respiration was delayed. Within 5 days after rewetting, photosynthesis, MRT of recent assimilates in leaf respiration and appearance of the label in soil respiration recovered fully. Despite the fast recovery, less label was recovered in the biomass of the previously drought-stressed plants, which also allocated less C to the root compartment (45 vs 64% in the control). We conclude that beech saplings quickly recover from extreme soil drought, although transitional after-effects prevail in C allocation, possibly due to repair

  20. Data from: EuMIXFOR empirical forest mensuration and ring width data from pure and mixed stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) through Europe

    NARCIS (Netherlands)

    Heym, Michael; Ruíz-Peinado, Ricardo; Río, del Miren; Bielak, Kamil; Forrester, David Ian; Dirnberger, Gerald; Barbeito, I.; Brazaitis, Gediminas; Ruškytkė, Indré; Coll, L.; Ouden, den J.

    2017-01-01

    This data set provides unique empirical data from triplets of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) across Europe. Dendrometric variables are provided for 32 triplets, 96 plots, 7555 trees and 4695 core samples. These data contribute to our understanding of mixed

  1. Chilling and forcing requirements for foliage bud burst of European beech (Fagus sylvatica L.) differ between provenances and are phenotypically plastic

    DEFF Research Database (Denmark)

    Kramer, Koen; Ducousso, Alexis; Gömöry, Dušan

    2017-01-01

    Abstract The timing of foliar budburst is an important component of the fitness of trees. Adaptation of budburst to local temperatures and phenotypic plasticity in the date of budburst to changes in temperature can therefore be expected. In this study, we analysed provenance trials of European...... beech (Fagus sylvatica L.) established over a wide geographic and climatic range in Europe. The analysis was based on a phenological model that represents the key processes at budburst phenology of temperate- and boreal zone deciduous trees. We conclude that adaptive differences exist between...... provenances in the critical chilling- and forcing requirements triggering budburst. Moreover, it is likely that these provenances show a plastic response to local environmental conditions for these two factors. Chilling- and forcing temperature requirements are key traits determining a tree’s response...

  2. Assessment of spatial discordance of primary and effective seed dispersal of European beech (Fagus sylvatica L.) by ecological and genetic methods.

    Science.gov (United States)

    Millerón, M; López de Heredia, U; Lorenzo, Z; Alonso, J; Dounavi, A; Gil, L; Nanos, N

    2013-03-01

    Spatial discordance between primary and effective dispersal in plant populations indicates that postdispersal processes erase the seed rain signal in recruitment patterns. Five different models were used to test the spatial concordance of the primary and effective dispersal patterns in a European beech (Fagus sylvatica) population from central Spain. An ecological method was based on classical inverse modelling (SSS), using the number of seed/seedlings as input data. Genetic models were based on direct kernel fitting of mother-to-offspring distances estimated by a parentage analysis or were spatially explicit models based on the genotype frequencies of offspring (competing sources model and Moran-Clark's Model). A fully integrated mixed model was based on inverse modelling, but used the number of genotypes as input data (gene shadow model). The potential sources of error and limitations of each seed dispersal estimation method are discussed. The mean dispersal distances for seeds and saplings estimated with these five methods were higher than those obtained by previous estimations for European beech forests. All the methods show strong discordance between primary and effective dispersal kernel parameters, and for dispersal directionality. While seed rain was released mostly under the canopy, saplings were established far from mother trees. This discordant pattern may be the result of the action of secondary dispersal by animals or density-dependent effects; that is, the Janzen-Connell effect. © 2013 Blackwell Publishing Ltd.

  3. Ground-level ozone differentially affects nitrogen acquisition and allocation in mature European beech (Fagus sylvatica) and Norway spruce (Picea abies) trees.

    Science.gov (United States)

    Weigt, R B; Häberle, K H; Millard, P; Metzger, U; Ritter, W; Blaschke, H; Göttlein, A; Matyssek, R

    2012-10-01

    Impacts of elevated ground-level ozone (O(3)) on nitrogen (N) uptake and allocation were studied on mature European beech (Fagus sylvatica L.) and Norway spruce (Picea abies [L.] Karst.) in a forest stand, hypothesizing that: (i) chronically elevated O(3) limits nutrient uptake, and (ii) beech responds more sensitively to elevated O(3) than spruce, as previously found for juvenile trees. Tree canopies were exposed to twice-ambient O(3) concentrations (2 × O(3)) by a free-air fumigation system, with trees under ambient O(3) serving as control. After 5 years of O(3) fumigation, (15)NH(4)(15)NO(3) was applied to soil, and concentrations of newly acquired N (N(labelled)) and total N (N(total)) in plant compartments and soil measured. Under 2 × O(3), N(labelled) and N(total) were increased in the bulk soil and tended to be lower in fine and coarse roots of both species across the soil horizons, supporting hypothesis (i). N(labelled) was reduced in beech foliage by up to 60%, and by up to 50% in buds under 2 × O(3). Similarly, N(labelled) in stem bark and phloem was reduced. No such reduction was observed in spruce, reflecting a stronger effect on N acquisition in beech in accordance with hypothesis (ii). In spruce, 2 × O(3) tended to favour allocation of new N to foliage. N(labelled) in beech foliage correlated with cumulative seasonal transpiration, indicating impaired N acquisition was probably caused by reduced stomatal conductance and, hence, water transport under elevated O(3). Stimulated fine root growth under 2 × O(3) with a possible increase of below-ground N sink strength may also have accounted for lowered N allocation to above-ground organs. Reduced N uptake and altered allocation may enhance the use of stored N for growth, possibly affecting long-term stand nutrition.

  4. Long-term effects of gap creation and liming on understory vegetation with a focus on tree regeneration in a European beech (Fagus sylvatica L. forest

    Directory of Open Access Journals (Sweden)

    N. Lin

    2014-12-01

    Full Text Available The long-term effects of gap creation and liming on tree regeneration and understory competition were examined in a mature European beech (Fagus sylvatica stand on a nutrient-poor site. In 1989, trees were felled to create four 30 m wide circular gaps, and 3 t ha-1 fine dolomite was applied to two of these gaps and the surrounding area, whereas the remaining two gaps and most parts of the stand remained untreated. In 2010, the stand density was 153 trees x ha-1 and the basal area was 29.51 m2 x ha-1. Testing a factorial combination of two levels of canopy cover (gap and stand and two levels of lime application (limed and unlimed, the results of the case study partly support our initial hypothesis that the combined or single effects of liming and canopy removal on understory plant communities last for more than 20 years. Some effects disappeared slowly over time, while others did not. Understory vegetation of the unlimed gaps and thelimed and unlimed stands was rapidly dominated by beech regeneration, whereas limed gaps were dominated by fireweed (Epilobium angustifolium, bramble (Rubus fruticosus agg. and raspberry (Rubus ideaus for around 14 years. There, the density of the beech regeneration was reduced by competitive ground vegetation species. Plant species richness (n/100 m² was still significantly different after 23 years, with an average 10 species per 100 m² in the limed stand area, 5 species in the unlimed stand area, 25 species in the limed gaps, and only 5 species in the unlimed gaps. Only the combination of liming and canopy removal enhanced the species richness in the long run. On our study site, this combination of liming and canopy opening had a long lasting influence on the ground vegetation in terms of retarding the beech regeneration and enhancing species’ richness.

  5. Variation in photosynthetic performance and hydraulic architecture across European beech (Fagus sylvatica L.) populations supports the case for local adaptation to water stress.

    Science.gov (United States)

    Aranda, Ismael; Cano, Francisco Javier; Gascó, Antonio; Cochard, Hervé; Nardini, Andrea; Mancha, Jose Antonio; López, Rosana; Sánchez-Gómez, David

    2015-01-01

    The aim of this study was to provide new insights into how intraspecific variability in the response of key functional traits to drought dictates the interplay between gas-exchange parameters and the hydraulic architecture of European beech (Fagus sylvatica L.). Considering the relationships between hydraulic and leaf functional traits, we tested whether local adaptation to water stress occurs in this species. To address these objectives, we conducted a glasshouse experiment in which 2-year-old saplings from six beech populations were subjected to different watering treatments. These populations encompassed central and marginal areas of the range, with variation in macro- and microclimatic water availability. The results highlight subtle but significant differences among populations in their functional response to drought. Interpopulation differences in hydraulic traits suggest that vulnerability to cavitation is higher in populations with higher sensitivity to drought. However, there was no clear relationship between variables related to hydraulic efficiency, such as xylem-specific hydraulic conductivity or stomatal conductance, and those that reflect resistance to xylem cavitation (i.e., Ψ(12), the water potential corresponding to a 12% loss of stem hydraulic conductivity). The results suggest that while a trade-off between photosynthetic capacity at the leaf level and hydraulic function of xylem could be established across populations, it functions independently of the compromise between safety and efficiency of the hydraulic system with regard to water use at the interpopulation level. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Detecting short spatial scale local adaptation and epistatic selection in climate-related candidate genes in European beech (Fagus sylvatica) populations.

    Science.gov (United States)

    Csilléry, Katalin; Lalagüe, Hadrien; Vendramin, Giovanni G; González-Martínez, Santiago C; Fady, Bruno; Oddou-Muratorio, Sylvie

    2014-10-01

    Detecting signatures of selection in tree populations threatened by climate change is currently a major research priority. Here, we investigated the signature of local adaptation over a short spatial scale using 96 European beech (Fagus sylvatica L.) individuals originating from two pairs of populations on the northern and southern slopes of Mont Ventoux (south-eastern France). We performed both single and multilocus analysis of selection based on 53 climate-related candidate genes containing 546 SNPs. FST outlier methods at the SNP level revealed a weak signal of selection, with three marginally significant outliers in the northern populations. At the gene level, considering haplotypes as alleles, two additional marginally significant outliers were detected, one on each slope. To account for the uncertainty of haplotype inference, we averaged the Bayes factors over many possible phase reconstructions. Epistatic selection offers a realistic multilocus model of selection in natural populations. Here, we used a test suggested by Ohta based on the decomposition of the variance of linkage disequilibrium. Overall populations, 0.23% of the SNP pairs (haplotypes) showed evidence of epistatic selection, with nearly 80% of them being within genes. One of the between gene epistatic selection signals arose between an FST outlier and a nonsynonymous mutation in a drought response gene. Additionally, we identified haplotypes containing selectively advantageous allele combinations which were unique to high or low elevations and northern or southern populations. Several haplotypes contained nonsynonymous mutations situated in genes with known functional importance for adaptation to climatic factors. © 2014 John Wiley & Sons Ltd.

  7. The comparison of properties of European beech Fagus sylvatica (L. in different stage of degradation caused by wood-decay fungi

    Directory of Open Access Journals (Sweden)

    Jiří Holan

    2009-01-01

    Full Text Available This work focus on comparison of biological degradation of wood caused by wood-decay fungi (white and brown rot. Test samples were made of European Beech Fagus sylvatica (L.. As wood-decay fungi were used Trametes versicolor (L. Lloyd (white rot and Serpula lacrymans (Wulf. Ex Fr. Schroet (brown rot. Aim of this work was comparison of rate of propagation of wood-decay fungus and degradation of wood in time. After termination of the test was made comparison of intensity of degradation between both fungi species. Weights of test samples were diminishing for both groups of wood-decay fungi during three months. Moisture content increased in direct proportion with time. Compression strength in direction of wood fibers of tested samples was diminishing. Samples tested by Serpula lacrymans had the fastest decrease of compression strength after first and second week of degradation. Samples tested by Trametes versicolor had different course. Compression strength significantly decreased after first month and third month of degradation. On the other hand module of elasticity of both tested groups was diminishing already during first and second week of degradation. Generally, it is possible to say that Trametes versicolor has more significant impact on changes of mechanical characteristic of wood, because it causes degradation of all chemical constituents of wood.

  8. Contrasting carbon allocation responses of juvenile European beech (Fagus sylvatica) and Norway spruce (Picea abies) to competition and ozone.

    Science.gov (United States)

    Ritter, Wilma; Lehmeier, Christoph Andreas; Winkler, Jana Barbro; Matyssek, Rainer; Edgar Grams, Thorsten Erhard

    2015-01-01

    Allocation of recent photoassimilates of juvenile beech and spruce in response to twice-ambient ozone (2 × O(3)) and plant competition (i.e. intra vs. inter-specific) was examined in a phytotron study. To this end, we employed continuous (13)CO(2)/(12)CO(2) labeling during late summer and pursued tracer kinetics in CO(2) released from stems. In beech, allocation of recent photoassimilates to stems was significantly lowered under 2 × O(3) and increased in spruce when grown in mixed culture. As total tree biomass was not yet affected by the treatments, C allocation reflected incipient tree responses providing the mechanistic basis for biomass partitioning as observed in longer experiments. Compartmental modeling characterized functional properties of substrate pools supplying respiratory C demand. Respiration of spruce appeared to be exclusively supplied by recent photoassimilates. In beech, older C, putatively located in stem parenchyma cells, was a major source of respiratory substrate, reflecting the fundamental anatomical disparity between angiosperm beech and gymnosperm spruce. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Transcriptional signatures in leaves of adult European beech trees (Fagus sylvatica L.) in an experimentally enhanced free air ozone setting

    Energy Technology Data Exchange (ETDEWEB)

    Olbrich, Maren, E-mail: maren.olbrich@helmholtz-muenchen.d [Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, 85764 Neuherberg (Germany); Gerstner, Elke; Bahnweg, Guenther [Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, 85764 Neuherberg (Germany); Haeberle, Karl-Heinz; Matyssek, Rainer [Technische Universitaet Muenchen, Ecophysiology of Plants, Am Hochanger 13, 85354 Freising (Germany); Welzl, Gerhard [Institute of Developmental Genetics, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, 85764 Neuherberg (Germany); Heller, Werner; Ernst, Dieter [Institute of Biochemical Plant Pathology, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, 85764 Neuherberg (Germany)

    2010-04-15

    Tropospheric ozone causes severe oxidative stress in plants. To investigate the transcriptional responsiveness of adult trees to ozone, fully-expanded sun and shade leaves of mature beech trees were harvested at four time points over the entire vegetation period in 2005 and 2006. Microarray analyses were conducted on leaves from trees grown in the field under ambient and twice-ambient ozone concentrations at Kranzberger Forst (Bavaria). Beech trees changed their transcript levels in response to ozone. In the years 2005 and 2006 different transcription patterns were observed; this may have been a result of different weather conditions and ozone uptake. Furthermore, we obtained differences in mRNA expression patterns between shade and sun leaves. In the ozone-treated sun leaves of 2005, slightly up- and down-regulated transcript levels were detected, particularly in the spring and autumn, whereas shade leaves clearly exhibited reduced mRNA levels, particularly at the end of the vegetation period. In 2006, this pattern could not be confirmed, and in the autumn, four other transcripts were slightly up-regulated in ozone-treated shade leaves. In addition, two other transcripts were found to be influenced in sun leaves in the spring/summer. While we detected changes in the levels of only a few transcripts, the observed effects were not identical in both years. In conclusion, elevated ozone exhibited very small influence on the transcription levels of genes of mature beech trees. - At the transcriptional level, leaves of mature beech trees barely react to double ambient ozone concentrations; differences are detected primarily between sun/shade leaves and between different growing seasons.

  10. Does reduced precipitation trigger physiological and morphological drought adaptations in European beech (Fagus sylvatica L.)? Comparing provenances across a precipitation gradient.

    Science.gov (United States)

    Knutzen, Florian; Meier, Ina Christin; Leuschner, Christoph

    2015-09-01

    Global warming and associated decreases in summer rainfall may threaten tree vitality and forest productivity in many regions of the temperate zone in the future. One option for forestry to reduce the risk of failure is to plant genotypes which combine high productivity with drought tolerance. Growth experiments with provenances from different climates indicate that drought exposure can trigger adaptive drought responses in temperate trees, but it is not well known whether and to what extent regional precipitation reduction can increase the drought resistance of a species. We conducted a common garden growth experiment with five European beech (Fagus sylvatica L.) populations from a limited region with pronounced precipitation heterogeneity (816-544 mm year(-1)), where phylogenetically related provenances grew under small to large water deficits. We grew saplings of the five provenances at four soil moisture levels (dry to moist) and measured ∼30 morphological (leaf and root properties, root : shoot ratio), physiological (leaf water status parameters, leaf conductance) and growth-related traits (above- and belowground productivity) with the aim to examine provenance differences in the drought response of morphological and physiological traits and to relate the responsiveness to precipitation at origin. Physiological traits were more strongly influenced by provenance (one-third of the studied traits), while structural traits were primarily affected by water availability in the experiment (two-thirds of the traits). The modulus of leaf tissue elasticity ϵ reached much higher values late in summer in plants from moist origins resulting in more rapid turgor loss and a higher risk of hydraulic failure upon drought. While experimental water shortage affected the majority of morphological and productivity-related traits in the five provenances, most parameters related to leaf water status were insensitive to water shortage. Thus, plant morphology, and root

  11. Investigating the European beech (Fagus sylvatica L.) leaf characteristics along the vertical canopy profile: leaf structure, photosynthetic capacity, light energy dissipation and photoprotection mechanisms.

    Science.gov (United States)

    Scartazza, Andrea; Di Baccio, Daniela; Bertolotto, Pierangelo; Gavrichkova, Olga; Matteucci, Giorgio

    2016-09-01

    Forest functionality and productivity are directly related to canopy light interception and can be affected by potential damage from high irradiance. However, the mechanisms by which leaves adapt to the variable light environments along the multilayer canopy profile are still poorly known. We explored the leaf morphophysiological and metabolic responses to the natural light gradient in a pure European beech (Fagus sylvatica L.) forest at three different canopy heights (top, middle and bottom). Structural adjustment through light-dependent modifications in leaf mass per area was the reason for most of the variations in photosynthetic capacity. The different leaf morphology along the canopy influenced nitrogen (N) partitioning, water- and photosynthetic N-use efficiency, chlorophyll (Chl) fluorescence and quali-quantitative contents of photosynthetic pigments. The Chl a to Chl b ratio and the pool of xanthophyll-cycle pigments (VAZ) increased at the highest irradiance, as well as lutein and β-carotene. The total pool of ascorbate and phenols was higher in leaves of the top and middle canopy layers when compared with the bottom layer, where the ascorbate peroxidase was relatively more activated. The non-photochemical quenching was strongly and positively related to the VAZ/(Chl a + b) ratio, while Chl a/Chl b was related to the photochemical efficiency of photosystem II. Along the multilayer canopy profile, the high energy dissipation capacity of leaves was correlated to an elevated redox potential of antioxidants. The middle layer gave the most relevant contribution to leaf area index and carboxylation capacity of the canopy. In conclusion, a complex interplay among structural, physiological and biochemical traits drives the dynamic leaf acclimation to the natural gradients of variable light environments along the tree canopy profile. The relevant differences observed in leaf traits within the canopy positions of the beech forest should be considered for

  12. Patterns of late spring frost leaf damage and recovery in a European beech (Fagus sylvatica L. stand in south-eastern Germany based on repeated digital photographs

    Directory of Open Access Journals (Sweden)

    Annette eMenzel

    2015-02-01

    Full Text Available Damage by late spring frost is a risk deciduous trees have to cope with in order to optimize the length of their growing season. The timing of spring phenological development plays a crucial role, not only at the species level, but also at the population and individual level, since fresh new leaves are especially vulnerable. For the pronounced late spring frost in May 2011 in Germany, we studied the individual leaf development of 35 deciduous trees (mainly European beech Fagus sylvatica L. at a mountainous forest site in the Bayerischer Wald National Park using repeated digital photographs. Analyses of the time series of greenness by a novel Bayesian multiple change point approach mostly revealed five change points which almost perfectly matched the expected break points in leaf development: i start of the first greening between DOY (day of the year 108 to 119 (mean 113, ii end of greening and iii visible frost damage after the frost on the night of May 3rd/4th (DOY 123, 124, iv re-sprouting 19 to 38 days after the frost, and v full maturity around DOY 178 (166 to 184 when all beech crowns had fully recovered. Since frost damage was nearly 100%, individual susceptibility did not depend on the timing of first spring leaf unfolding. However, we could identify significant patterns in fitness linked to an earlier start of leaf unfolding. Those individuals that had an earlier start of greening during the first flushing period had a shorter period of recovery and started the second greening earlier. Thus, phenological timing triggered the speed of recovery from such an extreme event. The maximum greenness achieved, however, did not vary with leaf unfolding dates. Two mountain ashes (Sorbus aucuparia L. were not affected by the low temperatures of −5°C. Time series analysis of webcam pictures can thus improve process-based knowledge and provide valuable insights into the link between phenological variation, late spring frost damage and recovery

  13. Tree- and Stand-Level Thinning Effects on Growth of European Beech (Fagus sylvatica L. on a Northeast- and a Southwest-Facing Slope in Southwest Germany

    Directory of Open Access Journals (Sweden)

    Daniela Diaconu

    2015-09-01

    Full Text Available Anticipated changes in climate and research findings on the drought sensitivity of beech have triggered controversial discussions about the future of European beech. We investigated the growth response of beech on the tree- and stand-level in mature stands to three different thinning intensities (no thinning, strong thinning, very strong thinning on a northeast- and southwest-facing slope in Southwest Germany. Linear mixed-effects models were formulated to describe effects on growth parameters on the tree- and stand-level (diameter, height, basal area, volume. At the stand-level, the stand basal area increment and stand volume increment were lower on the thinned plots. At the tree-level, the basal area increment significantly increased with increasing thinning intensity. The growth of individual trees was also influenced by initial tree size, the size-related rank of the tree within a stand, and by the aspect of the site. Our data indicate that growth of European beech is impaired on the southwest-facing slope with a warmer and drier climate and that a very strong thinning regime applied at advanced age can accelerate growth of European beech trees even on the warmer and drier site. Our findings, therefore, imply that in a warmer climate intensive thinning may also represent an important adaptive forest management measure in European beech stands.

  14. Use of thermal imaging to determine leaf conductance along a canopy gradient in European beech (Fagus sylvatica).

    Science.gov (United States)

    Reinert, Stefan; Bögelein, Rebekka; Thomas, Frank M

    2012-03-01

    Using an infrared camera, we measured the leaf temperature across different canopy positions of a 23-m-tall deciduous forest tree (Fagus sylvatica L.) including typical sun and shade leaves as well as intermediate leaf forms, which differed significantly in specific leaf area (SLA). We calculated a temperature index (I(G)) and a crop water stress index (CWSI) using the surface temperatures of wet and dry reference leaves. Additional indices were computed using air temperature plus 5 °C (I(G) + 5, CWSI + 5) as dry references. The minimum temperature of the wet leaf and the maximum temperature of the dry leaf proved to be most suitable as reference values. We correlated the temperature indices with leaf area-related conductance to water vapor (g(L)) using porometry at the leaf level and using xylem sap flow at the branch level. At the leaf and at the branch level, I(G) and CWSI were equally well suited as proxies of g(L), whereas the relationships of I(G) + 5 and CWSI + 5 with g(L) were only weak or even insignificant. At the leaf level, the correlations of I(G) and CWSI with g(L) were significant in all parts of the crown. The slopes of g(L) vs. I(G) and CWSI did not differ significantly among the crown parts; this indicates that they were not influenced by SLA or irradiance. At the branch level, close correlations (r > 0.8) were found between temperature indices and g(L) across the crown. These results demonstrate that satisfactory relationships between temperature indices and g(L) can be established in tall trees even in those canopy parts that are exposed to relatively low levels of irradiance and exhibit relatively low values of g(L).

  15. Seasonal dynamics of δ(13) C of C-rich fractions from Picea abies (Norway spruce) and Fagus sylvatica (European beech) fine roots.

    Science.gov (United States)

    Paya, Alex M; Grams, Thorsten E E; Bauerle, Taryn L

    2016-09-01

    The (13/12) C ratio in plant roots is likely dynamic depending on root function (storage versus uptake), but to date, little is known about the effect of season and root order (an indicator of root function) on the isotopic composition of C-rich fractions in roots. To address this, we monitored the stable isotopic composition of one evergreen (Picea abies) and one deciduous (Fagus sylvatica), tree species' roots by measuring δ(13) C of bulk, respired and labile C, and starch from first/second and third/fourth order roots during spring and fall root production periods. In both species, root order differences in δ(13) C were observed in bulk organic matter, labile, and respired C fractions. Beech exhibited distinct seasonal trends in δ(13) C of respired C, while spruce did not. In fall, first/second order beech roots were significantly depleted in (13) C, whereas spruce roots were enriched compared to higher order roots. Species variation in δ (13) C of respired C may be partially explained by seasonal shifts from enriched to depleted C substrates in deciduous beech roots. Regardless of species identity, differences in stable C isotopic composition of at least two root order groupings (first/second, third/fourth) were apparent, and should hereafter be separated in belowground C-supply-chain inquiry. © 2016 John Wiley & Sons Ltd.

  16. Desiccation and Mortality Dynamics in Seedlings of Different European Beech (Fagus sylvatica L.) Populations under Extreme Drought Conditions

    DEFF Research Database (Denmark)

    Bolte, Andreas; Czajkowski, Tomasz; Cocozza, Claudia

    2016-01-01

    beech to climate change in its native range. In a common garden experiment with one-year-old seedlings originating from central and marginal origins in six European countries (Denmark, Germany, France, Romania, Bosnia-Herzegovina, and Spain), we applied extreme drought stress and observed desiccation...... and mortality processes among the different populations and related them to plant water status (predawn water potential, 9PD) and soil hydraulic traits. For the lethal drought assessment, we used a critical threshold of soil water availability that is reached when 50% mortality in seedling populations occurs......, but not with the geographic margins of beech range. Thus, beech range marginality may be more due to climatic conditions than to geographic range. The outcome of this study suggests the genetic variation has a major influence on the varying adaptive potential of the investigated populations....

  17. Effect of the density of transplants in reforestation on the morphological quality of the above-ground part of European beech (Fagus sylvatica L. six years after planting

    Directory of Open Access Journals (Sweden)

    Kateřina Houšková

    2013-01-01

    Full Text Available Quality of the above-ground part of European beech planted at different densities and spacing patterns for the purpose of artificial forest regeneration was monitored 3, 4 and 6 years after planting. The initial numbers of beech transplants were 5,000 pcs.ha−1, 10,000 pcs.ha−1, 15,000 pcs.ha−1 and 20,000 pcs.ha−1. The spacing pattern of transplants was either square or rectangular nearly in all variants: 1.4 × 1.4 m, 2 × 1 m, 1 × 1 m, 0.8 × 0.8 m, 1 ×0.65 m, 0.7 × 0.7 m and 1 × 0.5 m. Conclusions following out from the research are as follows: 1. neither the chosen density of transplants nor their spacing pattern had an essential influence on the after-planting loss or damage of trees; 2. through the planting of larger-diameter transplants it is possible to achieve canopy closure more rapidly as well as faster growth of the plantation; these beech plants keep the edge in growth and quality even 6 years after planting; 3. the higher is the beech plantation density, the less individuals occur in such a plantation with inappropriate stem form; 4. beech plants of the worst quality were found on plots with the lowest initial density of transplants (5,000 and 10,000 pcs.ha−1, yet the number of promising trees was sufficient even there. Thus, none of the experimental numbers of transplants per hectare or spacing arrangements of the European beech transplants can be claimed as inappropriate; however, further monitoring of the plots is necessary.

  18. Leaf litter decomposition in temperate deciduous forest stands with a decreasing fraction of beech (Fagus sylvatica).

    Science.gov (United States)

    Jacob, Mascha; Viedenz, Karin; Polle, Andrea; Thomas, Frank M

    2010-12-01

    We hypothesised that the decomposition rates of leaf litter will increase along a gradient of decreasing fraction of the European beech (Fagus sylvatica) and increasing tree species diversity in the generally beech-dominated Central European temperate deciduous forests due to an increase in litter quality. We studied the decomposition of leaf litter including its lignin fraction in monospecific (pure beech) stands and in stands with up to five tree genera (Acer spp., Carpinus betulus, Fagus sylvatica, Fraxinus excelsior, Tilia spp.) using a litterbag approach. Litter and lignin decomposition was more rapid in stand-representative litter from multispecific stands than in litter from pure beech stands. Except for beech litter, the decomposition rates of species-specific tree litter did not differ significantly among the stand types, but were most rapid in Fraxinus excelsior and slowest in beech in an interspecific comparison. Pairwise comparisons of the decomposition of beech litter with litter of the other tree species (except for Acer platanoides) revealed a "home field advantage" of up to 20% (more rapid litter decomposition in stands with a high fraction of its own species than in stands with a different tree species composition). Decomposition of stand-representative litter mixtures displayed additive characteristics, not significantly more rapid than predicted by the decomposition of litter from the individual tree species. Leaf litter decomposition rates were positively correlated with the initial N and Ca concentrations of the litter, and negatively with the initial C:N, C:P and lignin:N ratios. The results support our hypothesis that the overall decomposition rates are mainly influenced by the chemical composition of the individual litter species. Thus, the fraction of individual tree species in the species composition seems to be more important for the litter decomposition rates than tree species diversity itself.

  19. Variation in Ecophysiological Traits and Drought Tolerance of Beech (Fagus sylvatica L.) Seedlings from Different Populations

    Science.gov (United States)

    Cocozza, Claudia; de Miguel, Marina; Pšidová, Eva; Ditmarová, L'ubica; Marino, Stefano; Maiuro, Lucia; Alvino, Arturo; Czajkowski, Tomasz; Bolte, Andreas; Tognetti, Roberto

    2016-01-01

    Frequency and intensity of heat waves and drought events are expected to increase in Europe due to climate change. European beech (Fagus sylvatica L.) is one of the most important native tree species in Europe. Beech populations originating throughout its native range were selected for common-garden experiments with the aim to determine whether there are functional variations in drought stress responses among different populations. One-year old seedlings from four to seven beech populations were grown and drought-treated in a greenhouse, replicating the experiment at two contrasting sites, in Italy (Mediterranean mountains) and Germany (Central Europe). Experimental findings indicated that: (1) drought (water stress) mainly affected gas exchange describing a critical threshold of drought response between 30 and 26% SWA for photosynthetic rate and Ci/Ca, respectively; (2) the Ci to Ca ratio increased substantially with severe water stress suggesting a stable instantaneous water use efficiency and an efficient regulation capacity of water balance achieved by a tight stomatal control; (3) there was a different response to water stress among the considered beech populations, differently combining traits, although there was not a well-defined variability in drought tolerance. A combined analysis of functional and structural traits for detecting stress signals in beech seedlings is suggested to assess plant performance under limiting moisture conditions and, consequently, to estimate evolutionary potential of beech under a changing environmental scenario. PMID:27446118

  20. Influence of soil temperature on growth traits of European beech seedlings

    OpenAIRE

    Štraus, Ines; Frederick, Peter C.; Hylton, Becky; Mrak, Tanja; Ferlan, Mitja; Heath, Julie; Železnik, Peter; Spalding, Marilyn; Kraigher, Hojka

    2014-01-01

    European beech (Fagus sylvatica L.) is an economically and ecologically important forest tree species in Europe. Expected future temperature increases due to global climate change may significantly affect growth of beech trees and consequently influence carbon cycling in beech forests. We tested the hypothesis that soil temperature influences the growth of both belowground and aboveground parts of beech seedlings. One-year-old seedlings were transferred into rhizotrons and subjected ...

  1. Transformation of even-aged European beech (Fagus sylvatica L.) to uneven-aged management under changing growth conditions caused by climate change

    DEFF Research Database (Denmark)

    Schou, Erik; Meilby, Henrik

    2013-01-01

    Transformation from even-aged to uneven-aged forest management is currently taking place throughout Europe. Climate change is, however, expected to change growth conditions—possibly quite radically. Using a deterministic approach, it was the objective of this study to investigate the influence...... of such changes on optimal transformation strategies for an even-aged stand of European Beech in Denmark. For a range of growth change scenarios, represented by changes in site index, optimal harvest policies were determined using a matrix modelling approach and a differential evolution algorithm. Transition...... probabilities were updated continuously based on stand level variables and the transition matrix was thus dynamic. With optimal transformation policies, stand development followed similar pathways during the transformation phase irrespective of climate change scenario. Optimal transformation policies were thus...

  2. Decomposition of beech (Fagus sylvatica) and pine (Pinus nigra) litter along an Alpine elevation gradient: Decay and nutrient release.

    Science.gov (United States)

    Berger, Torsten W; Duboc, Olivier; Djukic, Ika; Tatzber, Michael; Gerzabek, Martin H; Zehetner, Franz

    2015-08-01

    Litter decomposition is an important process for cycling of nutrients in terrestrial ecosystems. The objective of this study was to evaluate direct and indirect effects of climate on litter decomposition along an altitudinal gradient in a temperate Alpine region. Foliar litter of European beech (Fagus sylvatica) and Black pine (Pinus nigra) was incubated in litterbags during two years in the Hochschwab massif of the Northern Limestone Alps of Austria. Eight incubation sites were selected following an altitudinal/climatic transect from 1900 to 900 m asl. The average remaining mass after two years of decomposition amounted to 54% (beech) and 50% (pine). Net release of N, P, Na, Al, Fe and Mn was higher in pine than in beech litter due to high immobilization (retention) rates of beech litter. However, pine litter retained more Ca than beech litter. Altitude retarded decay (mass loss and associated C release) in beech litter during the first year only but had a longer lasting effect on decaying pine litter. Altitude comprises a suite of highly auto-correlated characteristics (climate, vegetation, litter, soil chemistry, soil microbiology, snow cover) that influence litter decomposition. Hence, decay and nutrient release of incubated litter is difficult to predict by altitude, except during the early stage of decomposition, which seemed to be controlled by climate. Reciprocal litter transplant along the elevation gradient yielded even relatively higher decay of pine litter on beech forest sites after a two-year adaptation period of the microbial community.

  3. Impacts of environmental stress on genetic structures of forest tree stands as exemplified by European beech (Fagus sylvatica L.); Auswirkungen von Umweltbelastungen auf genetische Strukturen von Waldbestaenden am Beispiel der Buche (Fagus sylvatica L.)

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Starck, G. [Goettingen Univ. (Germany). Inst. fuer Forstgenetik und Forstpflanzenzuechtung, Forstliche Biometrie und Informatik

    1993-12-31

    Inheritance of isoenzymes in European beech was verified by means of analysis of segregations among full-sib families. 42 alleles were shown to be controlled genetically by a total of 17 polymorphic gene loci. In six adult stands, genetic structures between tolerant and sensitive subsets were compared (574 individuals). Furthermore, in order to study the dynamics of genetic variation, genetic structures were compared between germinating seeds (initial populations) and survivors at the age of two years under various field stress conditions (2986 individuals). The following tendencies are evident: (1) Genetic structures deviate significantly between tolerant and sensitive subsets in adult stands and between initial populations and juvenile survivors. (2) In adult stands, tolerant subsets reveal greater observed heterozygosities than sensitive subsets (surplus of 23.1%). (3) Among juvenile survivors, severe losses of genetic multiplicity can be expected (at least 17% of alleles). (4) Much greater gene pool diversity is indicated in tolerant subsets as compared to sensitive ones (trends to greater evenness of frequency distributions). (5) In the expression of viability characters, additive allelic effects are suggested in adult stands, but the genetic background is complex in heterogeneous environments. (6) In juvenile survivors, genetic selection is clearly indicated. Environmental stress affects genetic structures of beech populations in many different ways. It is concluded that long term exposure to complex field stress results in a viability advantage for genetically diverse populations and individuals. In juvenile stages, certain alleles may account for superior viabilities, but this phenomenon does not seem to hold for succeeding life stages. In such environments, genetically heterogeneous populations are strongly suggested. (orig./UWa) [Deutsch] Ziel der Untersuchungen war die Ueberpruefung genetischer Auswirkungen von Umweltstress auf Altbestaende und

  4. HOW ARE PLANT SPECIES IN CENTRAL EUROPEAN BEECH (FAGUS SYLVATICA L. FORESTS AFFECTED BY TEMPERATURE CHANGES? SHIFT OF POTENTIAL SUITABLE HABITATS UNDER GLOBAL WARMING

    Directory of Open Access Journals (Sweden)

    M. C. Jantsch

    2013-10-01

    Full Text Available This study reveals which temperature range is favoured or avoided by 156 forest plant species and how the distribution of potential suitable habitats of species in beech forests may change in the future. We performed 140 phytosociological relevés along a temperature gradient (4.1 to 9.8 °C in Bavaria, southern Germany, on south exposed slopes. One half of the plots were located on acidic substrate, the other half on base-rich substrate. Generalized linear models (GLM were used to analyse species occurrence along the temperature gradient and to model habitats for species in beech forests under a present (1971-2000 and a future climate (2071-2100 scenario assuming a temperature increase of 1.8 °C. Herb species of beech forests are more adapted to lower temperatures and tree species more to higher temperatures. Current habitats will clearly change under increasing temperatures. We found large habitat losses for Luzula sylvatica (Huds. Gaudin, Maianthemum bifolium (L. F. W. Schmidt, Picea abies (L. H. Karst., Prenanthes purpurea L. and large habitat gains for Carpinus betulus L., Impatiens parviflora DC., Prunus avium (L. L. and Quercus petraea (Matt. Liebl. on both substrates. Forestry will be affected positively as well as negatively with a change in tree cultivation. Losses in biodiversity might be strong for mountainous forests and must also be considered in future conservation plans.

  5. Response of Selected Woody Species to Inoculation with Phytophthora citricola and P. cactorum from European Beech Using Multiple Inoculation Methods

    Science.gov (United States)

    Phytophthora citricola and P. cactorum are important cosmopolitan plant pathogens with wide host ranges. Both species have recently been identified as the cause of bleeding canker of European beech (Fagus sylvatica) in the northeastern United States, but whether isolates from European beech had the...

  6. Signals from beech (Fagus sylvatica L.) in response to precipitation extremes - flowering induction and reduced foliation

    DEFF Research Database (Denmark)

    Callesen, Ingeborg

    Reduced foliation in older (but also young) beech (Fagus sylvatica L.) stands was observed in Denmark in the mid 1990ies and culminated with the 1996 summer drought and heat wave. Large differences in the degree of reduced foliation between regions and within stands were observed e.g. reflecting ......) caused by poor internal drainage and minor depressions in micro relief ....

  7. Faunal diversity of Fagus sylvatica forests: A regional and European perspective based on three indicator groups

    Directory of Open Access Journals (Sweden)

    H. Walentowski

    2014-12-01

    Full Text Available While the postglacial history of European beech (Fagus sylvatica and the plant species composition of beech forests in  Central Europe are fairly well understood, the faunal biodiversity has been less well investigated. We studied three groups of  mostly sedentary organisms in beech forest at regional and European scales by combining field studies with a compilation of existing literature and expert knowledge. Specifically, we examined the relationship between host tree genera and saproxylic  beetles, and the diversity and composition of forest ground-dwelling molluscs and ground beetles in relation to the abundance  of beech. At a west central European scale (Germany, where beech has a “young” ecological and biogeographical history,  we found 48 primeval forest relict species of saproxylic beetles associated with beech, 124 ground beetles and 91 molluscs  inhabiting beech forest, yet none exclusive of west central European beech forests. High levels of faunal similarity between beech and other woodland trees suggested that many of the beech forest dwelling species are euryoecious and likely to  originate from mid-Holocene mixed broadleaf forests. Beech forests of the mountain ranges in southern and east central  Europe, which are ecologically and biogeographically “old”, were found to harbour distinct species assemblages, including  beech forest specialists (such as 10 carabid species in the Carpathians and narrow-range endemics of broadleaf forest. The  observed biodiversity patterns suggest differentiated conservation priorities in “young” and “old” European beech forest  regions.

  8. Wide variation in spatial genetic structure between natural populations of the European beech (Fagus sylvatica) and its implications for SGS comparability.

    Science.gov (United States)

    Jump, A S; Rico, L; Coll, M; Peñuelas, J

    2012-06-01

    Identification and quantification of spatial genetic structure (SGS) within populations remains a central element of understanding population structure at the local scale. Understanding such structure can inform on aspects of the species' biology, such as establishment patterns and gene dispersal distance, in addition to sampling design for genetic resource management and conservation. However, recent work has identified that variation in factors such as sampling methodology, population characteristics and marker system can all lead to significant variation in SGS estimates. Consequently, the extent to which estimates of SGS can be relied on to inform on the biology of a species or differentiate between experimental treatments is open to doubt. Following on from a recent report of unusually extensive SGS when assessed using amplified fragment length polymorphisms in the tree Fagus sylvatica, we explored whether this marker system led to similarly high estimates of SGS extent in other apparently similar populations of this species. In the three populations assessed, SGS extent was even stronger than this previously reported maximum, extending up to 360 m, an increase in up to 800% in comparison with the generally accepted maximum of 30-40 m based on the literature. Within this species, wide variation in SGS estimates exists, whether quantified as SGS intensity, extent or the Sp parameter. Consequently, we argue that greater standardization should be applied in sample design and SGS estimation and highlight five steps that can be taken to maximize the comparability between SGS estimates.

  9. Is there a Future for the Isolated Oriental Beech (Fagus orientalis Lipsky Forests in Southern Turkey?

    Directory of Open Access Journals (Sweden)

    YILMAZ, Mustafa

    2010-01-01

    Full Text Available Oriental beech (Fagus orientalis Lipsky is mainly found in the northern region of Turkey.There is also an approximate 40,000 ha of isolated relict oriental beech forest in southern Turkey. Thisrelict population differs somewhat from the northern distribution in terms of average altitudinaldistribution, health conditions, and reactions to climate change. Beech forest distribution in southernTurkey starts at about 1000 m, contrary to the northern distribution, which begins at about 150-200 m. Insouthern Turkey, the average temperature is higher, and summer drought occurs due to irregular rainfall.Beech trees in the south decay at earlier ages due to their sprout origins and higher temperatures than in thenorth. In recent decades, some part of the beech forests have shed leaves during the summer in response tosevere drought. Therefore, these relict populations are on the verge of extinction under unfavorableconditions.

  10. Comparisons of protein profiles of beech bark disease resistant and susceptible American beech (Fagus grandifolia)

    Science.gov (United States)

    Mary E. Mason; Jennifer L. Koch; Marek Krasowski; Judy. Loo

    2013-01-01

    Beech bark disease is an insect-fungus complex that damages and often kills American beech trees and has major ecological and economic impacts on forests of the northeastern United States and southeastern Canadian forests. The disease begins when exotic beech scale insects feed on the bark of trees, and is followed by infection of damaged bark tissues by one of the...

  11. Within-population genetic structure in beech (Fagus sylvatica L.) stands characterized by different disturbance histories: does forest management simplify population substructure?

    OpenAIRE

    Andrea Piotti; Stefano Leonardi; Myriam Heuertz; Joukje Buiteveld; Thomas Geburek; Sophie Gerber; Koen Kramer; Cristina Vettori; Giovanni Giuseppe Vendramin

    2013-01-01

    The fine-scale assessment of both spatially and non-spatially distributed genetic variation is crucial to preserve forest genetic resources through appropriate forest management. Cryptic within-population genetic structure may be more common than previously thought in forest tree populations, which has strong implications for the potential of forests to adapt to environmental change. The present study was aimed at comparing within-population genetic structure in European beech (Fagus sylvatic...

  12. Prevalence, distribution and identification of Phytophthora species from bleeding canker on European beech

    Science.gov (United States)

    While bleeding canker of European beech (Fagus sylvatica) has long been recognized as a problem, the cause in the northeastern United States has not been clear. To resolve this, we surveyed for disease prevalence, identified the pathogens involved, proved their pathogenicity, compared protocols for ...

  13. VEGETATION DYNAMICS IN EUROPEAN BEECH FORESTS

    Directory of Open Access Journals (Sweden)

    A. FISCHER

    1997-01-01

    Full Text Available Dynamic processes can be classified in terms of their time scale, their spatial scale, the elements observed, and the degree of human impact. Using these categories the regeneration of the tree layer, the regeneration of the herb layer as well as successional changes of supraregional importance (immissions, global change are discussed. A virgin (mixed European beech forest consists of a mosaic of sub-stands that can be typified by their structure and developmental stage (phase of the tree layer; in some phases the tree individuals of each sub-stand are rather even-aged. Natural cyclic regeneration of virgin (mixed European beech forests mainly includes the tree species of the terminal phases, expecially the beech itself. Changes of tree species composition within the cycle are the exception; in European beech forests light-demanding pioneers seem to be restricted to rather small patches under natural conditions. In contrast, the sequence (1 felled-area flora, (2 pioneer shrub/pioneer forest and (3 terminal forest is a characteristic feature of managed deciduous forests as a consequence of soil disturbances. During the cyclic regeneration of the tree layer of European beech forests the floristic content of the ground layer vegetation does not change fundamentally. Regeneration of many of the ground layer species of beech forests via generative diaspores is more or less restricted to micro-disturbances. In contrast disturbance of the topsoil and creation of open habitats for the establishment of saplings in the absence of competition is taking place all over a clear-cutting area. European beech forests are subject to changes of floristic structure caused by immissions. Especially nitrogen, emitted over decades in large quantities, causes a successive change in floristics: species requiring high amounts of nitrogen are increasing in beech forests all over Europe. Most of them are rapidly and tall growing species, outcompeting the slower and smaller

  14. Diversity and Composition of the Leaf Mycobiome of Beech (Fagus sylvatica) Are Affected by Local Habitat Conditions and Leaf Biochemistry.

    Science.gov (United States)

    Unterseher, Martin; Siddique, Abu Bakar; Brachmann, Andreas; Peršoh, Derek

    2016-01-01

    Comparative investigations of plant-associated fungal communities (mycobiomes) in distinct habitats and under distinct climate regimes have been rarely conducted in the past. Nowadays, high-throughput sequencing allows routine examination of mycobiome responses to environmental changes and results at an unprecedented level of detail. In the present study, we analysed Illumina-generated fungal ITS1 sequences from European beech (Fagus sylvatica) originating from natural habitats at two different altitudes in the German Alps and from a managed tree nursery in northern Germany. In general, leaf-inhabiting mycobiome diversity and composition correlated significantly with the origin of the trees. Under natural condition the mycobiome was more diverse at lower than at higher elevation, whereas fungal diversity was lowest in the artificial habitat of the tree nursery. We further identified significant correlation of leaf chlorophylls and flavonoids with both habitat parameters and mycobiome biodiversity. The present results clearly point towards a pronounced importance of local stand conditions for the structure of beech leaf mycobiomes and for a close interrelation of phyllosphere fungi and leaf physiology.

  15. How closely does stem growth of adult beech (Fagus sylvatica) relate to net carbon gain under experimentally enhanced ozone stress?

    Science.gov (United States)

    Kitao, Mitsutoshi; Winkler, J Barbro; Löw, Markus; Nunn, Angela J; Kuptz, Daniel; Häberle, Karl-Heinz; Reiter, Ilja M; Matyssek, Rainer

    2012-07-01

    The hypothesis was tested that O(3)-induced changes in leaf-level photosynthetic parameters have the capacity of limiting the seasonal photosynthetic carbon gain of adult beech trees. To this end, canopy-level photosynthetic carbon gain and respiratory carbon loss were assessed in European beech (Fagus sylvatica) by using a physiologically based model, integrating environmental and photosynthetic parameters. The latter were derived from leaves at various canopy positions under the ambient O(3) regime, as prevailing at the forest site (control), or under an experimental twice-ambient O(3) regime (elevated O(3)), as released through a free-air canopy O(3) fumigation system. Gross carbon gain at the canopy-level declined by 1.7%, while respiratory carbon loss increased by 4.6% under elevated O(3). As this outcome only partly accounts for the decline in stem growth, O(3)-induced changes in allocation are referred to and discussed as crucial in quantitatively linking carbon gain with stem growth. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. The formation of a ligno-suberised layer and necrophylactic periderm in beech bark (Fagus sylvatica L.)

    Science.gov (United States)

    Primoz Oven; Niko Torelli; Walter C. Shortle; Martin Zupancic

    1999-01-01

    Beech (Fagus sylvatica L.) bark was wounded in early April of 1993 and tissue changes followed on days 7, 14, 21, 28, 35, 42, 49, 56, 84, 112, and 140. In 7 days, tissue at the wound surface became necrotic and discoloured. In 14 days the walls of the parenchyma cells immediately underneath the necrotic tissue became thickened and after 21 days...

  17. Effect of Altitude and Aspect on Wood-Water Relations of Beech (Fagus orientalis Lipsky. Wood

    Directory of Open Access Journals (Sweden)

    Elif Topaloğlu

    2013-11-01

    Full Text Available Effects of altitude and aspect on wood-water relations in Oriental beech (Fagus orientalis Lipsky. were studied. Study area divided into five altitude steps and two aspect groups, total of 20 trees were cut off. In order to determine the wood-water relations; volume density value, fiber saturation point, maximum moisture content, and shrinkage and swelling percentages were determined. According to results, with 95% significance level (p<0,05, altitude affects volume density value, shrinkage and swelling percentages, fiber saturation point and maximum moisture content; aspect affects volume density value, tangential and radial shrinkage percentages, volumetric shrinkage percentage, tangential and longitudinal swelling percentages, fiber saturation point and maximum moisture content while it has no effect on longitudinal shrinkage percentage, radial and volumetric swelling percentages. Results demonstrated that northern aspect and first altitude step has the lowest values, thus, this aspect and altitude step making a suitable place for this tree species to be used as solid wood.

  18. Effect of CO2 enhancement on beech (Fagus sylvatica L. seedling root rot due to Phytophthora plurivora and Phytophthora cactorum

    Directory of Open Access Journals (Sweden)

    Tkaczyk Miłosz

    2014-09-01

    Full Text Available Global climate change is associated with higher concentrations of atmospheric carbon dioxide (CO2. The ongoing changes are likely to have significant, direct or indirect effects on plant diseases caused by many biotic agents such as phytopathogenic fungi. This study results showed that increased CO2 concentration did not stimulate the growth of 1-year-old beech Fagus sylvatica L seedlings but it activated pathogenic Phytophthora species (P. plurivora and P. cactorum which caused significant reduction in the total number of fine roots as well as their length and area. The results of the greenhouse experiment indicated that pathogens once introduced into soil survived in pot soil, became periodically active (in sufficient water conditions and were able to damage beech fine roots. However, the trees mortality was not observed during the first year of experiment. DNA analyses performed on soil and beech tissue proved persistence of introduced Phytophthora isolates.

  19. Throughfall deposition and canopy exchange processes along a vertical gradient within the canopy of beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst).

    Science.gov (United States)

    Adriaenssens, Sandy; Hansen, Karin; Staelens, Jeroen; Wuyts, Karen; De Schrijver, An; Baeten, Lander; Boeckx, Pascal; Samson, Roeland; Verheyen, Kris

    2012-03-15

    To assess the impact of air pollution on forest ecosystems, the canopy is usually considered as a constant single layer in interaction with the atmosphere and incident rain, which could influence the measurement accuracy. In this study the variation of througfall deposition and derived dry deposition and canopy exchange were studied along a vertical gradient in the canopy of one European beech (Fagus sylvatica L.) tree and two Norway spruce (Picea abies (L.) Karst) trees. Throughfall and net throughfall deposition of all ions other than H(+) increased significantly with canopy depth in the middle and lower canopy of the beech tree and in the whole canopy of the spruce trees. Moreover, throughfall and net throughfall of all ions in the spruce canopy decreased with increasing distance to the trunk. Dry deposition occurred mainly in the upper canopy and was highest during the growing season for H(+), NH(4)(+), NO(3)(-) and highest during the dormant season for Na(+), Cl(-), SO(4)(2-) (beech and spruce) and K(+), Ca(2+) and Mg(2+) (spruce only). Canopy leaching of K(+), Ca(2+) and Mg(2+) was observed at all canopy levels and was higher for the beech tree compared to the spruce trees. Canopy uptake of inorganic nitrogen and H(+) occurred mainly in the upper canopy, although significant canopy uptake was found in the middle canopy as well. Canopy exchange was always higher during the growing season compared to the dormant season. This spatial and temporal variation indicates that biogeochemical deposition models would benefit from a multilayer approach for shade-tolerant tree species such as beech and spruce. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Tree Species Composition and Harvest Intensity Affect Herbivore Density and Leaf Damage on Beech, Fagus sylvatica, in Different Landscape Contexts.

    Science.gov (United States)

    Mangels, Jule; Blüthgen, Nico; Frank, Kevin; Grassein, Fabrice; Hilpert, Andrea; Mody, Karsten

    2015-01-01

    Most forests are exposed to anthropogenic management activities that affect tree species composition and natural ecosystem processes. Changes in ecosystem processes such as herbivory depend on management intensity, and on regional environmental conditions and species pools. Whereas influences of specific forest management measures have already been addressed for different herbivore taxa on a local scale, studies considering effects of different aspects of forest management across different regions are rare. We assessed the influence of tree species composition and intensity of harvesting activities on arthropod herbivores and herbivore-related damage to beech trees, Fagus sylvatica, in 48 forest plots in three regions of Germany. We found that herbivore abundance and damage to beech trees differed between regions and that - despite the regional differences - density of tree-associated arthropod taxa and herbivore damage were consistently affected by tree species composition and harvest intensity. Specifically, overall herbivore damage to beech trees increased with increasing dominance of beech trees - suggesting the action of associational resistance processes - and decreased with harvest intensity. The density of leaf chewers and mines was positively related to leaf damage, and several arthropod groups responded to beech dominance and harvest intensity. The distribution of damage patterns was consistent with a vertical shift of herbivores to higher crown layers during the season and with higher beech dominance. By linking quantitative data on arthropod herbivore abundance and herbivory with tree species composition and harvesting activity in a wide variety of beech forests, our study helps to better understand the influence of forest management on interactions between a naturally dominant deciduous forest tree and arthropod herbivores.

  1. Aphid infestation affecting the biogeochemistry of European beech saplings

    Science.gov (United States)

    Michalzik, B.; Levia, D. F., Jr.; Bischoff, S.; Näthe, K.

    2014-12-01

    Mass outbreaks of herbivore insects are known to perturb the functional properties of forests. However, it is less clear how endemic to moderate aboveground herbivory affects the vertical flow of nutrients from tree canopies to the soil. Here, we report on the effects of low to moderate infestation levels of the woolly beech aphid (Phyllaphis fagi L.) on the nutrient dynamics and hydrology of European beech (Fagus sylvatica L.). In a potted sapling experiment, we followed the vertical dynamics of nutrients via throughfall (TF), stemflow (SF) and litter leachates (LL) collected over ten weeks underneath infested and uninfested control trees. Aphid infestation amplifies the fluxes of K+, Mn2+ and particulate nitrogen (0.45μm aphid abundance by 26 and 16%, respectively. Differences in canopy-derived dissolved nitrogen and carbon compounds, sulfur (S), Ca2+, Mg2+, Na+ were aphid abundance on nutrient dynamics was most notable in TF and SF and diminished in LL.Aphid infestation greatly altered the SF fluxes of DOC, K+, Mn2+, DON and sulfur-species, which were significantly concentrated at the tree base by "funneling" the rainfall through the canopy biomass to the trunk. Normalized to one square meter, water and nutrient fluxes were amplified by a factor of up to 200 compared to TF.Imaging of leaf surfaces by scanning electron microscopy exhibited notable differences of the surface morphology and microbiology of control, lightly infested, and heavily infested leaves. This observation might point to an aphid-mediated alteration of the phyllosphere ecology triggering the microbial uptake of NH4-N and SO4-S and its transformation to particulate N by magnified biomass growth of the phyllosphere microflora, consequently changing the chemical partitioning and temporal availability of nitrogen.

  2. Use of sap flow measurements to validate stomatal functions for mature beech (Fagus sylvatica) in view of ozone uptake calculations.

    Science.gov (United States)

    Braun, Sabine; Schindler, Christian; Leuzinger, Sebastian

    2010-09-01

    For a quantitative estimate of the ozone effect on vegetation reliable models for ozone uptake through the stomata are needed. Because of the analogy of ozone uptake and transpiration it is possible to utilize measurements of water loss such as sap flow for quantification of ozone uptake. This technique was applied in three beech (Fagus sylvatica) stands in Switzerland. A canopy conductance was calculated from sap flow velocity and normalized to values between 0 and 1. It represents mainly stomatal conductance as the boundary layer resistance in forests is usually small. Based on this relative conductance, stomatal functions to describe the dependence on light, temperature, vapour pressure deficit and soil moisture were derived using multivariate nonlinear regression. These functions were validated by comparison with conductance values directly estimated from sap flow. The results corroborate the current flux parameterization for beech used in the DO3SE model. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  3. Native lignin for bonding fiber boards - evaluation of bonding mechanisms in boards made from laccase-treated fibers of beech (Fagus sylvatica)

    DEFF Research Database (Denmark)

    Felby, Claus; Thygesen, Lisbeth Garbrecht; Sanadi, Anand

    2004-01-01

    The auto-adhesion of beech wood (Fagus sylvatica) fibers can be enhanced by a pretreatment of the fibers with a phenol oxidase enzyme. The mechanism of enzymatic catalyzed bonding is linked to the generation of stable radicals in lignin by oxidation. Fiberboards made from laccase-treated fibers...

  4. Spatial variability and temporal stability of throughfall deposition under beech (Fagus sylvatica L.) in relationship to canopy structure

    Energy Technology Data Exchange (ETDEWEB)

    Staelens, Jeroen [Ghent University, Laboratory of Forestry, Geraardsbergsesteenweg 267, 9090 Gontrode (Belgium)]. E-mail: jeroen_staelens@yahoo.com; De Schrijver, An [Ghent University, Laboratory of Forestry, Geraardsbergsesteenweg 267, 9090 Gontrode (Belgium); Verheyen, Kris [Ghent University, Laboratory of Forestry, Geraardsbergsesteenweg 267, 9090 Gontrode (Belgium); Verhoest, Niko E.C. [Ghent University, Laboratory of Hydrology and Water Management, Coupure links 653, 9000 Gent (Belgium)

    2006-07-15

    Although the spatial variability of throughfall (TF) in forest ecosystems can have important ecological implications, little is known about the driving factors of within-stand TF variability, particularly in deciduous forests. While the spatial variability of TF water amount and H{sup +} deposition under a dominant beech (Fagus sylvatica L.) tree was significantly higher in the leafed period than in the leafless period, the spatial TF deposition patterns of most major ions were similar in both periods. The semiannual TF depositions of all ions other than H{sup +} were significantly positively correlated (r = 0.68-0.90, p < 0.05) with canopy structure above sample locations throughout the entire year. The amounts of TF water and H{sup +} deposition during the leafed period were negatively correlated with branch cover. We conclude that the spatial heterogeneity of ion deposition under beech was significantly affected by leaves in the growing period and by branches in non-foliated conditions. - Ion deposition under a deciduous beech tree was strongly affected by the canopy structure throughout the entire year.

  5. Stomatal and non-stomatal limitations on leaf carbon assimilation in beech (Fagus sylvatica L.) seedlings under natural conditions

    Energy Technology Data Exchange (ETDEWEB)

    Aranda, I.; Rodriguez-Calcerrada, J.; Robson, T. M.; Cano, F. J.; Alte, L.; Sanchez-Gomez, D.

    2012-07-01

    Limitations to diffusion and biochemical factors affecting leaf carbon uptake were analyzed in young beech seedlings (Fagus sylvtica L.) growing in natural gaps of a beech-wood at the southern limit of the species. Half of the seedlings received periodic watering in addition to natural rainfall to reduce the severity of the summer drought. Plant water status was evaluated by measuring predawn water potential. Basic biochemical parameters were inferred from chlorophyll fluorescence and photosynthesis-CO{sub 2} curves (A-C{sub c}) under saturating light. The curves were established on three dates during the summer months. The main variables studied included: stomatal and mesophyll conductance to CO{sub 2} (g{sub s} and g{sub m} respectively), maximum velocity of carboxylation (V{sub c}max) and maximum electron transport capacity (J{sub m}ax). The gm was estimated by two methodologies: the curve-fitting and J constant methods. Seedlings withstood moderate water stress, as the leaf predawn water potential ({Psi}{sub p}d) measured during the study was within the range -0.2 to -0.5 MPa. Mild drought caused gs and gm to decrease only slightly in response to {Psi}{sub p}d. However both diffusional parameters explained most of the limitations to CO{sub 2} uptake. In addition, it should be highlighted that biochemical limitations, prompted by V{sub c}max and J{sub m}ax, were related mainly to ontogenic factors, without any clear relationship with drought under the moderate water stress experienced by beech seedlings through the study. The results may help to further understanding of the functional mechanisms influencing the carbon fixation capacity of beech seedlings under natural conditions. (Author) 68 refs.

  6. Climate Change Impairs Nitrogen Cycling in European Beech Forests.

    Science.gov (United States)

    Dannenmann, Michael; Bimüller, Carolin; Gschwendtner, Silvia; Leberecht, Martin; Tejedor, Javier; Bilela, Silvija; Gasche, Rainer; Hanewinkel, Marc; Baltensweiler, Andri; Kögel-Knabner, Ingrid; Polle, Andrea; Schloter, Michael; Simon, Judy; Rennenberg, Heinz

    2016-01-01

    European beech forests growing on marginal calcareous soils have been proposed to be vulnerable to decreased soil water availability. This could result in a large-scale loss of ecological services and economical value in a changing climate. In order to evaluate the potential consequences of this drought-sensitivity, we investigated potential species range shifts for European beech forests on calcareous soil in the 21st century by statistical species range distribution modelling for present day and projected future climate conditions. We found a dramatic decline by 78% until 2080. Still the physiological or biogeochemical mechanisms underlying the drought sensitivity of European beech are largely unknown. Drought sensitivity of beech is commonly attributed to plant physiological constraints. Furthermore, it has also been proposed that reduced soil water availability could promote nitrogen (N) limitation of European beech due to impaired microbial N cycling in soil, but this hypothesis has not yet been tested. Hence we investigated the influence of simulated climate change (increased temperatures, reduced soil water availability) on soil gross microbial N turnover and plant N uptake in the beech-soil interface of a typical mountainous beech forest stocking on calcareous soil in SW Germany. For this purpose, triple 15N isotope labelling of intact beech seedling-soil-microbe systems was combined with a space-for-time climate change experiment. We found that nitrate was the dominant N source for beech natural regeneration. Reduced soil water content caused a persistent decline of ammonia oxidizing bacteria and therefore, a massive attenuation of gross nitrification rates and nitrate availability in the soil. Consequently, nitrate and total N uptake of beech seedlings were strongly reduced so that impaired growth of beech seedlings was observed already after one year of exposure to simulated climatic change. We conclude that the N cycle in this ecosystem and here

  7. Competition improves quality-related external stem characteristics of Fagus sylvatica

    National Research Council Canada - National Science Library

    Seidel, Dominik; Ammer, Christian; Höwler, Kirsten; Annighöfer, Peter

    2017-01-01

    .... We investigated how competition intensity affected the metrics of 118 European beech (Fagus sylvatica L.) trees. We found that two newly developed TLS-based measures of external stem characteristics...

  8. Drying Time and Quality of EDS-Treated Compared to Untreated Beech Wood (Fagus japonica

    Directory of Open Access Journals (Sweden)

    Mihaela CAMPEAN

    2017-09-01

    Full Text Available The paper presents the results of an experimental study performed with Japanese beech timber heattreated by the EDS method (Japanese patent and then dried in order to evaluate the effects of this treatment upon the drying rate and the drying uniformity. The obtained results demonstrate benefitting effects of the EDS treatment both upon the drying time and the drying quality. The drying rate of EDS-treated beech wood is by 29% higher in the case of wood without red heart and by 11% higher in the case of wood with red heart. As far as the drying uniformity is concerned, the minimum moisture content gradient across the 50mm thickness of the timber boards was recorded for the EDS-treated beech wood with red heart (∆MC=1.66, by 21.7% lower than in the case of untreated beech wood with red heart.

  9. Macromycetes of beech forests within the eastern part of the Fagus area in Europe

    Directory of Open Access Journals (Sweden)

    Maria Lisiewska

    2014-11-01

    Full Text Available This work presents the author's view on the habitat if individual forest communities based on the fungi she has collected and gives a comparison of the mycoflora of beech forest in Poland and in south and central Europe. The beech forest were studied by the phytosociological method. Fruit bodies occurring on the soil, in the litter and on rotten wood were studied.

  10. Ecological, Typological Properties and Photosynthetic Activity (FAPAR of Common Beech (Fagus sylvatica L. Ecosystems in Croatia

    Directory of Open Access Journals (Sweden)

    Ivan Pilaš

    2016-12-01

    Full Text Available Background and purpose: The purpose of this study was to assess the structural and functional properties of common beech forest ecosystems in Croatia across a wide macro-climatic gradient (Mediterranean, Alpine and Continental and to gain insight into the ways they adapt to progressing short-term climatic extremes and anomalies. Material and Methods: Research was undertaken by integration of the expert based, country scale typological delineation of 13 beech ecosystem types, climatic and topographic grids and indices of ecosystem performances such as the JRC FAPAR (Fraction of Absorbed Photosynthetically Active Radiation. Results: This study reveals preferential environmental conditions for beech ecosystem types together with limiting conditions in three margins of the beech distribution area: highest altitudinal zone, south-eastern continental Pannonian zone and the Mediterranean. The results show that the common beech can adapt to a very wide range of environmental conditions: annual mean temperatures from 2.1oC to 13.5oC, annual precipitation from 739 mm to 3444 mm, and altitudinal range from 20.3 m up to 1576 m above sea level. FAPAR reveals some new insight into the adaptive potential and response mechanisms of the common beech to emerging climate change. Conclusion: The common beech has great potential to adapt to increasing spring warming by a preterm shift of phenology onset and retain relatively stable productivity during the phenology peak in July and August, unrelated to external climatic forcing. These findings indicate that the flexibility of phenological timing, especially during springtime, present one of the important mechanisms of adaptation and resilience of the common beech.

  11. Ecological, Typological Properties and Photosynthetic Activity (FAPAR of Common Beech (Fagus sylvatica L. Ecosystems in Croatia

    Directory of Open Access Journals (Sweden)

    Ivan Pilaš

    2017-01-01

    Full Text Available Background and purpose: The purpose of this study was to assess the structural and functional properties of common beech forest ecosystems in Croatia across a wide macro-climatic gradient (Mediterranean, Alpine and Continental and to gain insight into the ways they adapt to progressing short-term climatic extremes and anomalies. Material and Methods: Research was undertaken by integration of the expert based, country scale typological delineation of 13 beech ecosystem types, climatic and topographic grids and indices of ecosystem performances such as the JRC FAPAR (Fraction of Absorbed Photosynthetically Active Radiation. Results: This study reveals preferential environmental conditions for beech ecosystem types together with limiting conditions in three margins of the beech distribution area: highest altitudinal zone, south-eastern continental Pannonian zone and the Mediterranean. The results show that the common beech can adapt to a very wide range of environmental conditions: annual mean temperatures from 2.1oC to 13.5oC, annual precipitation from 739 mm to 3444 mm, and altitudinal range from 20.3 m up to 1576 m above sea level. FAPAR reveals some new insight into the adaptive potential and response mechanisms of the common beech to emerging climate change. Conclusion: The common beech has great potential to adapt to increasing spring warming by a preterm shift of phenology onset and retain relatively stable productivity during the phenology peak in July and August, unrelated to external climatic forcing. These findings indicate that the flexibility of phenological timing, especially during springtime, present one of the important mechanisms of adaptation and resilience of the common beech.

  12. Non-reducing sugar levels in beech (Fagus sylvatica) seeds as related to withstanding desiccation and storage.

    Science.gov (United States)

    Pukacka, Stanisława; Ratajczak, Ewelina; Kalemba, Ewa

    2009-09-01

    Levels of sucrose and raffinose family oligosaccharides (RFOs) (raffinose and stachyose) were determined in beech (Fagus sylvatica L.) seeds during development, maturation, desiccation and storage. An increase in RFOs and a marked decrease in the S:(R+St) ratio (i.e. mass ratio of sucrose to the sum of RFOs) were observed at the time of desiccation tolerance (DT) acquisition by seeds. In seeds stored at -10 degrees C through 1, 4, 7, and 12 years, changes in sucrose, raffinose and stachyose levels and in alpha-galactosidase activity were noted. The S/R+St ratio and alpha-galactosidase activity significantly increased in seeds after 7 and 12 years of storage, when a marked decrease in viability, measured as germination capacity, was recorded. Germination capacity was found to be strongly correlated with sucrose content, the S:(R+St) ratio, and alpha-galactosidase activity. A strong positive correlation was found between germination capacity and stachyose content. The results clearly indicated that the composition of RFOs in beech seeds is closely related to DT acquisition and seed viability during storage.

  13. Use of sap flow measurements to validate stomatal functions for mature beech (Fagus sylvatica) in view of ozone uptake calculations

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Sabine, E-mail: sabine.braun@iap.c [Institute for Applied Plant Biology, Sangrubenstrasse 25, CH-4124 Schoenenbuch (Switzerland); Schindler, Christian [Swiss Tropical and Public Health Institute, University of Basel, Socinstrasse 57, CH-4051 Basel (Switzerland); Leuzinger, Sebastian [Forest Ecology, Institute of Terrestrial Ecosystems, ETH Zurich, Universitaetsstr. 16, 8092 Zuerich (Switzerland)

    2010-09-15

    For a quantitative estimate of the ozone effect on vegetation reliable models for ozone uptake through the stomata are needed. Because of the analogy of ozone uptake and transpiration it is possible to utilize measurements of water loss such as sap flow for quantification of ozone uptake. This technique was applied in three beech (Fagus sylvatica) stands in Switzerland. A canopy conductance was calculated from sap flow velocity and normalized to values between 0 and 1. It represents mainly stomatal conductance as the boundary layer resistance in forests is usually small. Based on this relative conductance, stomatal functions to describe the dependence on light, temperature, vapour pressure deficit and soil moisture were derived using multivariate nonlinear regression. These functions were validated by comparison with conductance values directly estimated from sap flow. The results corroborate the current flux parameterization for beech used in the DO{sub 3}SE model. - A method was developed to derive stomatal functions and ozone uptake calculation from sap flow.

  14. Quantifying ozone uptake and its effects on the stand level of common beech (Fagus sylvatica L.) in Southern Germany

    Energy Technology Data Exchange (ETDEWEB)

    Dittmar, Christoph [Department of Forest Science and Forestry, Weihenstephan University of Applied Sciences, Am Hochanger 5, D-85354 Freising (Germany)]. E-mail: christoph.dittmar@freenet.de; Pfaffelmoser, Klaus [Firm AKOSIM GmbH, Hummelgasse 14, D-85354 Freising (Germany); Roetzer, Thomas [Department of Ecosystem and Landscape Management, Chair of Forest Yield Science, Technical University of Munich, Am Hochanger 13, D-85350 Freising (Germany); Elling, Wolfram [Department of Forest Science and Forestry, Weihenstephan University of Applied Sciences, Am Hochanger 5, D-85354 Freising (Germany)

    2005-03-01

    Stand level O{sub 3} fluxes were calculated using water balance calculations for 21 Common beech (Fagus sylvatica L.) stands and O{sub 3} data from 20 monitoring stations in Southern Germany. For this intention, the daily loss of water by evapotranspiration per stand area was set against the daily O{sub 3} uptake. During the last 30 years, O{sub 3} uptake ranges between 0 and 187 mmol ha{sup -1} d{sup -1} per stand area. Cumulative O{sub 3} uptake (CUO{sub 3}), ranging between 0.1 and 0.7 mmol m{sup -2} yr{sup -1} per stand area, shows increasing trends since 1971 with considerably greater values at high altitudes. Effects in radial growth were used to derive an initial approximate critical threshold value for O{sub 3} impacts on the vitality and growth of mature beech stands in Southern Germany. It is concluded that this concept of O{sub 3} flux estimation in combination with dendroecological analyses offers both a site specific and regional applicable approach to derive new critical levels for O{sub 3}. - Water balance calculations can be used to estimate long-term O{sub 3} uptake at the stand level and in combination with tree-ring data to derive new critical threshold values.

  15. De novo transcriptome assembly and analysis of differential gene expression in response to drought in European beech.

    Directory of Open Access Journals (Sweden)

    Markus Müller

    Full Text Available Despite the ecological and economic importance of European beech (Fagus sylvatica L. genomic resources of this species are still limited. This hampers an understanding of the molecular basis of adaptation to stress. Since beech will most likely be threatened by the consequences of climate change, an understanding of adaptive processes to climate change-related drought stress is of major importance. Here, we used RNA-seq to provide the first drought stress-related transcriptome of beech. In a drought stress trial with beech saplings, 50 samples were taken for RNA extraction at five points in time during a soil desiccation experiment. De novo transcriptome assembly and analysis of differential gene expression revealed 44,335 contigs, and 662 differentially expressed genes between the stress and normally watered control group. Gene expression was specific to the different time points, and only five genes were significantly differentially expressed between the stress and control group on all five sampling days. GO term enrichment showed that mostly genes involved in lipid- and homeostasis-related processes were upregulated, whereas genes involved in oxidative stress response were downregulated in the stressed seedlings. This study gives first insights into the genomic drought stress response of European beech, and provides new genetic resources for adaptation research in this species.

  16. Tree and stand growth of mature Norway spruce and European beech under long-term ozone fumigation

    Energy Technology Data Exchange (ETDEWEB)

    Pretzsch, Hans, E-mail: h.pretzsch@lrz.tum.d [Chair for Forest Growth and Yield Science, Technische Universitaet Muenchen, Am Hochanger 13, D-85354 Freising (Germany); Dieler, Jochen [Chair for Forest Growth and Yield Science, Technische Universitaet Muenchen, Am Hochanger 13, D-85354 Freising (Germany); Matyssek, Rainer [Chair for Ecophysiology of Plants, Technische Universitaet Muenchen, Am Hochanger 13, D-85354 Freising (Germany); Wipfler, Philip [Chair for Forest Growth and Yield Science, Technische Universitaet Muenchen, Am Hochanger 13, D-85354 Freising (Germany)

    2010-04-15

    In a 50- to 70-year-old mixed stand of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.) in Germany, tree cohorts have been exposed to double ambient ozone (2xO{sub 3}) from 2000 through 2007 and can be compared with trees in the same stand under the ambient ozone regime (1xO{sub 3}). Annual diameter growth, allocation pattern, stem form, and stem volume were quantified at the individual tree and stand level. Ozone fumigation induced a shift in the resource allocation into height growth at the expense of diameter growth. This change in allometry leads to rather cone-shaped stem forms and reduced stem stability in the case of spruce, and even neiloidal stem shapes in the case of beech. Neglect of such ozone-induced changes in stem shape may lead to a flawed estimation of volume growth. On the stand level, 2xO{sub 3} caused, on average, a decrease of 10.2 m{sup 3} ha{sup -1} yr{sup -1} in European beech. - Ozone effects on tree growth and stem shape were investigated for Norway spruce and European beech; the study reveals species-specific reaction patterns in growth rate and allometry under ozone exposure.

  17. Mapping beech (Fagus sylvatica L.) forest structure with airborne hyperspectral imagery

    CSIR Research Space (South Africa)

    Cho, Moses A

    2009-06-01

    Full Text Available The objective of this study was to assess the utility of hyperspectral data in estimating and mapping forest structural parameters including mean diameter-at-breast-height (DBH), mean tree height and tree density of a closed canopy beech forest...

  18. Changes in susceptibility of beech (Fagus sylvatica) seedlings towards Phytophthora citricola under the influence of elevated atmospheric CO2 and nitrogen fertilization.

    Science.gov (United States)

    Fleischmann, F; Raidl, S; Osswald, W F

    2010-04-01

    The growth-differentiation balance hypothesis (GDBH) predicts changes in susceptibility of plants against herbivores with changing resource availability. In the presented study we tested the validity of the GDBH for trees infected with a root pathogen. For this purpose Fagus sylvatica seedlings grown under different atmospheric CO(2)- and soil nitrogen regimes were infected with the root pathogen Phytophthora citricola. High nitrogen supply increased total biomass of beech regardless of the CO(2)-treatment, whereas elevated CO(2) enhanced biomass only in the high nitrogen treatment. The responses of beech under the different growing regimes to the Phytophthora root infection were not in line with the predictions of the GDBH. Enhanced susceptibility of beech against P. citricola was found in seedlings grown under elevated CO(2) and low nitrogen supply. Fifteen months after inoculation these plants were characterized by enhanced water use efficiency, by altered root-shoot ratios, and by enhanced specific root tip densities. 2009 Elsevier Ltd. All rights reserved.

  19. Role of intracellular contents to facilitate supercooling capability in beech (Fagus crenata) xylem parenchyma cells

    OpenAIRE

    Kasuga, Jun; Mizuno, Kaoru; Miyaji, Natsuko; Arakawa, Keita; Fujikawa, Seizo

    2006-01-01

    In order to find the possible role of intracellular contents in facilitating the supercooling capability of xylem parenchyma cells, changes in the temperature of supercooling levels were compared before and after the release of intracellular substances from beech xylem parenchyma cells by DTA. Various methods were employed to release intracellular substances from xylem parenchyma cells and all resulted in a reduction of supercooling ability. It was concluded that the reduction of supercooling...

  20. Evaluating management regimes for European beech forests using dynamic programming

    Directory of Open Access Journals (Sweden)

    Juan Torres Rojo

    2014-12-01

    Full Text Available Aim of study: This contribution describes a systematic search method for identifying optimum thinning regimes for beech forests (Fagus sylvatica L. by using a combination of optimization heuristics and a simple whole stand growth prediction model. Area of study: Data to build the model come from standard and management forest inventories as well as yield tables from the Northern and Western part of Germany and from southern and central Denmark.Material and Methods: Growth projections are made from equations to project basal area and top height.  The remaining stand variables are recovered from additional equations fitted from forest inventory data or acquired from other authors.  Mortality is estimated through an algorithm based on the maximum density line. The optimization routine uses a two-state dynamic programming model. Thinning type is defined by the NG index, which describes the ratio of the proportion of removed trees and basal area with respect to the same proportion  before thinning. Main results: Growth equations fitted from inventory data show high goodness of fit with R2 values larger than 0.85 and high significance levels for the parameter estimates. The mortality algorithm converges quickly providing mortality estimates within the expected range.Research Highlights: The combination of a simple growth and yield model within a Dynamic Programming framework in conjunction with NG values as indicators of thinning type yield good estimates of practical thinning schedules compared to thinning recommendations provided by diverse authors.Keywords: beech (Fagus sylvatica L.; NG ratio; thinning optimization; growth and yield simulation; mortality.

  1. Characterisation of microsatellite markers in Fagus sylvatica L. and Fagus orientalis Lipsky

    NARCIS (Netherlands)

    Pastorelli, R.; Smulders, M.J.M.; Westende, van 't W.P.C.; Vosman, B.; Giannini, R.; Vettori, C.; Vendramin, G.G.

    2003-01-01

    Using an enrichment procedure, we cloned microsatellite repeats from European beech (Fagus sylvatica L.) and developed primers for the amplification of microsatellite markers. Six polymorphic loci were characterized which produced 3-21 alleles in 70 individuals from one Italian population, with an

  2. Major Changes in Growth Rate and Growth Variability of Beech (Fagus sylvatica L. Related to Soil Alteration and Climate Change in Belgium

    Directory of Open Access Journals (Sweden)

    Nicolas Latte

    2016-08-01

    Full Text Available Global change—particularly climate change, forest management, and atmospheric deposition—has significantly altered forest growing conditions in Europe. The influences of these changes on beech growth (Fagus sylvatica L. were investigated for the past 80 years in Belgium, using non-linear mixed effects models on ring-width chronologies of 149 mature and dominant beech trees (87–186 years old. The effects of the developmental stage (i.e., increasing tree size were filtered out in order to focus on time-dependent growth changes. Beech radial growth was divided into a low-frequency signal (=growth rate, mainly influenced by forest management and atmospheric deposition, and into a high-frequency variability (≈mean sensitivity, mainly influenced by climate change. Between 1930 and 2008, major long-term and time-dependent changes were highlighted. The beech growth rate has decreased by about 38% since the 1950–1960s, and growth variability has increased by about 45% since the 1970–1980s. Our results indicate that (1 before the 1980s, beech growth rate was not predominantly impacted by climate change but rather by soil alteration (i.e., soil compaction and/or nitrogen deposition; and (2 since the 1980s, climate change induced more frequent and intense yearly growth reductions that amplified the growth rate decrease. The highlighted changes were similar in the two ecoregions of Belgium, although more pronounced in the lowlands than in the uplands.

  3. Changes in susceptibility of beech (Fagus sylvatica) seedlings towards Phytophthora citricola under the influence of elevated atmospheric CO{sub 2} and nitrogen fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Fleischmann, F., E-mail: fleischmann@wzw.tum.d [Phytopathology of Woody Plants, Technische Universitaet Muenchen, Am Hochanger 13, 85354 Freising (Germany); Raidl, S. [Department Biology I and GeoBioCenterLMU, Systematic Mycology, Ludwig Maximilians Universitaet Muenchen, Menzinger Strasse 67, 80638 Muenchen (Germany); Osswald, W.F. [Phytopathology of Woody Plants, Technische Universitaet Muenchen, Am Hochanger 13, 85354 Freising (Germany)

    2010-04-15

    The growth-differentiation balance hypothesis (GDBH) predicts changes in susceptibility of plants against herbivores with changing resource availability. In the presented study we tested the validity of the GDBH for trees infected with a root pathogen. For this purpose Fagus sylvatica seedlings grown under different atmospheric CO{sub 2}- and soil nitrogen regimes were infected with the root pathogen Phytophthora citricola. High nitrogen supply increased total biomass of beech regardless of the CO{sub 2}-treatment, whereas elevated CO{sub 2} enhanced biomass only in the high nitrogen treatment. The responses of beech under the different growing regimes to the Phytophthora root infection were not in line with the predictions of the GDBH. Enhanced susceptibility of beech against P. citricola was found in seedlings grown under elevated CO{sub 2} and low nitrogen supply. Fifteen months after inoculation these plants were characterized by enhanced water use efficiency, by altered root-shoot ratios, and by enhanced specific root tip densities. - Susceptibility of Fagus sylvatica to the root pathogen Phytophthora citricola increased under elevated CO{sub 2}

  4. Climate threats on growth of rear-edge European beech peripheral populations in Spain

    Science.gov (United States)

    Dorado-Liñán, I.; Akhmetzyanov, L.; Menzel, A.

    2017-12-01

    European beech ( Fagus sylvatica L.) forests in the Iberian Peninsula are a clear example of a temperate forest tree species at the rear edge of its large distribution area in Europe. The expected drier and warmer climate may alter tree growth and species distribution. Consequently, the peripheral populations will most likely be the most threatened ones. Four peripheral beech forests in the Iberian Peninsula were studied in order to assess the climate factors influencing tree growth for the last six decades. The analyses included an individual tree approach in order to detect not only the changes in the sensitivity to climate but also the potential size-mediated sensitivity to climate. Our results revealed a dominant influence of previous and current year summer on tree growth during the last six decades, although the analysis in two equally long periods unveiled changes and shifts in tree sensitivity to climate. The individual tree approach showed that those changes in tree response to climate are not size dependent in most of the cases. We observed a reduced negative effect of warmer winter temperatures at some sites and a generalized increased influence of previous year climatic conditions on current year tree growth. These results highlight the crucial role played by carryover effects and stored carbohydrates for future tree growth and species persistence.

  5. [Ultrastructural study of the biodegradation processes. I. Beech (Fagus sylvaticus L.) leaf white rot].

    Science.gov (United States)

    Reisinger, O; Toutain, F; Mangenot, F; Arnould, M F

    1978-06-01

    An electron microscopic study of beech leaf white rot shows a certain number of characteristic developmental stages which are identical whether the material is from in vitro experimentation or from natural incubation. Endowed with a cellulolytic properly seemingly localized in the apical region only, hyphae of the white rot agent only traverse the plant cell walls. Subsequently, hyphae penetrate condensed protoplasmic residues and make them progressively transparent to electrons. During this discoloring process, a lethal factor of as yet unknown nature appears, affecting other microorganisms already present in the leaves. Phloem and xylem vascular bundles do not present notable ultrastructural modifications. Therefore, leaf discoloration is not due to an alteration of the xylem constituents but to changes having occurred in the condensed cytoplasmic residues of the dead tissues.

  6. Ascomycetes with cellulolytic, amylolytic, pectinolytic, and mannanolytic activities inhabiting dead beech (Fagus crenata) trees.

    Science.gov (United States)

    Fujii, K; Sugimura, T; Nakatake, K

    2010-01-01

    It is generally accepted that dead tree decomposition is performed mainly by delignifying basidiomycetes. While ascomycetes have been reported to inhabit dead tree bark, their contribution to dead tree decomposition is still unclear. Here, we isolated five bark-inhabiting ascomycetes possessing cellulolytic activity from dead beech tree and assessed their polysaccharolytic activities. When cultivated in a medium containing filter paper as a sole carbon source, three strains degraded >40 % of the filter paper in a 4-week cultivation and the others degraded 15-30 % of the paper. The degraders possessed amylolytic, pectinolytic, and mannanolytic activities as well as cellulolytic activity, implying that they play an important role in dead tree decomposition after delignification by basidiomycetes. Phylogenetic analysis based on large subunit ribosomal DNA (lsu-DNA) sequences implied that the isolates belonged to Penicillium or Amorphotheca.

  7. Impacts of drought on mineral macro- and microelements in provenances of beech (Fagus sylvatica L.) seedlings.

    Science.gov (United States)

    Peuke, Andreas D; Rennenberg, Heinz

    2011-02-01

    Beech seedlings originating from 11 German provenances with different climatic conditions were grown in pots and cultivated in a greenhouse. The composition of macro- and microelements in roots, axes and leaves was measured after half of the seedlings were subjected to a simulated summer drought. The recently described sensitivity of these provenances to drought was compared with drought-mediated changes in the elemental and ionic composition in organs of the seedlings; in addition, partitioning between roots and shoots was evaluated. A number of element concentrations were decreased in roots due to drought (K 94% of control, Mg 94%, Mn 75% and Zn 85%). However, chloride concentration increased in all organs (115-125%) and was the only element affected in leaves. Some changes in ionome can be related to sensitivity of provenances, but it is difficult to decide whether these changes are a result of, or a reason for, drought tolerance or sensitivity. Observed increases in chloride concentration in all plant parts of drought-treated beech seedlings can be explained by its function in charge balance, in particular since the level of phosphate was reduced. As a result of chloride accumulation, the sum of added charges of anions (and cations) in water extracts of leaf and root material was similar between drought and control plants. Since only the partitioning of Ca and Al (both only in axis) as well as Mn was affected and other elements (together with previously observed effects on C, N, S and P) remained unaffected by drought in all provenances, it can be concluded that direct effects by means of mass flow inhibition in xylem and phloem are unlikely. Secondary effects, for example on the pH of transport sap and the apoplastic space, cannot be excluded from the present study. These effects may affect partitioning between the apoplast and symplast and therefore may be significant for drought sensitivity.

  8. A unique Middle Pleistocene beech (Fagus)-rich deciduous broad-leaved forest in the Yangtze Delta Plain, East China: Its climatic and stratigraphic implication

    Science.gov (United States)

    Shu, Jun-wu; Wang, Wei-ming

    2012-08-01

    Pollen analysis of Middle Pleistocene sediments from the Yangtze Delta Plain provides a paleoecological reconstruction and has implications for stratigraphic correlation in East China. The pollen assemblage is characterized by high values of Fagus (16.8% on average), which is unusual because Fagus is generally present only sporadically in other lowland Quaternary pollen records from the region. In addition to Fagus, the assemblage has a rich diversity of broad-leaved deciduous trees, including Quercus, Ulmus, Carpinus/Ostrya, Juglans, Betula, and Liquidambar, as well as conifers, including Pinus, Picea, Abies, Larix, and Tsuga. Thus, the pollen flora suggests a broad-leaved deciduous forest mixed with abundant conifers, which developed under cooler and more humid conditions than present. The stable pollen sequence throughout the studied section suggests a stable environment. Beech forests also characterize the Middle Pleistocene of Taiwan and Japan, and thus may be a stratigraphic indicator of the Middle Pleistocene in East Asia. The Yangtze Delta Plain may have been an important refugium for the last survival of Fagus in the lowlands.

  9. Above and below ground carbohydrate allocation differs between ash (Fraxinus excelsior L.) and beech (Fagus sylvatica L.).

    Science.gov (United States)

    Thoms, Ronny; Köhler, Michael; Gessler, Arthur; Gleixner, Gerd

    2017-01-01

    We investigated soluble carbohydrate transport in trees that differed in their phloem loading strategies in order to better understand the transport of photosynthetic products into the roots and the rhizosphere as this knowledge is needed to better understand the respiratory processes in the rhizosphere. We compared beech, which is suggested to use mainly passive loading of transport sugars along a concentration gradient into the phloem, with ash that uses active loading and polymer trapping of raffinose family oligosaccharides (RFOs). We pulse-labeled 20 four-year old European beech and 20 four-year old ash trees with 13CO2 and tracked the fate of the label within different plant compartments. We extracted soluble carbohydrates from leaves, bark of stems and branches, and fine roots, measured their amount and isotopic content and calculated their turnover times. In beech one part of the sucrose was rapidly transported into sink tissues without major exchange with storage pools whereas another part of sucrose was strongly exchanged with unlabeled possibly stored sucrose. In contrast the storage and allocation patterns in ash depended on the identity of the transported sugars. RFO were the most important transport sugars that had highest turnover in all shoot compartments. However, the turnover of RFOs in the roots was uncoupled from the shoot. The only significant relation between sugars in the stem base and in the roots of ash was found for the amount (r2 = 0.50; p = 0.001) and isotopic content (r2 = 0.47; p = 0.01) of sucrose. The negative relation of the amounts suggested an active transport of sucrose into the roots of ash. Sucrose concentration in the root also best explained the concentration of RFOs in the roots suggesting that RFO in the roots of ash may be resynthesized from sucrose. Our results interestingly suggest that in both tree species only sucrose directly entered the fine root system and that in ash RFOs are transported indirectly into the fine

  10. Above and below ground carbohydrate allocation differs between ash (Fraxinus excelsior L. and beech (Fagus sylvatica L..

    Directory of Open Access Journals (Sweden)

    Ronny Thoms

    Full Text Available We investigated soluble carbohydrate transport in trees that differed in their phloem loading strategies in order to better understand the transport of photosynthetic products into the roots and the rhizosphere as this knowledge is needed to better understand the respiratory processes in the rhizosphere. We compared beech, which is suggested to use mainly passive loading of transport sugars along a concentration gradient into the phloem, with ash that uses active loading and polymer trapping of raffinose family oligosaccharides (RFOs. We pulse-labeled 20 four-year old European beech and 20 four-year old ash trees with 13CO2 and tracked the fate of the label within different plant compartments. We extracted soluble carbohydrates from leaves, bark of stems and branches, and fine roots, measured their amount and isotopic content and calculated their turnover times. In beech one part of the sucrose was rapidly transported into sink tissues without major exchange with storage pools whereas another part of sucrose was strongly exchanged with unlabeled possibly stored sucrose. In contrast the storage and allocation patterns in ash depended on the identity of the transported sugars. RFO were the most important transport sugars that had highest turnover in all shoot compartments. However, the turnover of RFOs in the roots was uncoupled from the shoot. The only significant relation between sugars in the stem base and in the roots of ash was found for the amount (r2 = 0.50; p = 0.001 and isotopic content (r2 = 0.47; p = 0.01 of sucrose. The negative relation of the amounts suggested an active transport of sucrose into the roots of ash. Sucrose concentration in the root also best explained the concentration of RFOs in the roots suggesting that RFO in the roots of ash may be resynthesized from sucrose. Our results interestingly suggest that in both tree species only sucrose directly entered the fine root system and that in ash RFOs are transported indirectly

  11. Within-population genetic structure in beech (Fagus sylvatica L.) stands characterized by different disturbance histories: does forest management simplify population substructure?

    Science.gov (United States)

    Piotti, Andrea; Leonardi, Stefano; Heuertz, Myriam; Buiteveld, Joukje; Geburek, Thomas; Gerber, Sophie; Kramer, Koen; Vettori, Cristina; Vendramin, Giovanni Giuseppe

    2013-01-01

    The fine-scale assessment of both spatially and non-spatially distributed genetic variation is crucial to preserve forest genetic resources through appropriate forest management. Cryptic within-population genetic structure may be more common than previously thought in forest tree populations, which has strong implications for the potential of forests to adapt to environmental change. The present study was aimed at comparing within-population genetic structure in European beech (Fagus sylvatica L.) plots experiencing different disturbance levels. Five plot pairs made up by disturbed and undisturbed plots having the same biogeographic history were sampled throughout Europe. Overall, 1298 individuals were analyzed using four highly polymorphic nuclear microsatellite markers (SSRs). Bayesian clustering within plots identified 3 to 11 genetic clusters (within-plot θ ST ranged from 0.025 to 0.124). The proportion of within-population genetic variation due to genetic substructuring (F CluPlot = 0.067) was higher than the differentiation among the 10 plots (F PlotTot = 0.045). Focusing on the comparison between managed and unmanaged plots, disturbance mostly explains differences in the complexity of within-population genetic structure, determining a reduction of the number of genetic clusters present in a standardized area. Our results show that: i) genetic substructuring needs to be investigated when studying the within-population genetic structure in forest tree populations, and ii) indices describing subtle characteristics of the within-population genetic structure are good candidates for providing early signals of the consequences of forest management, and of disturbance events in general.

  12. Within-population genetic structure in beech (Fagus sylvatica L. stands characterized by different disturbance histories: does forest management simplify population substructure?

    Directory of Open Access Journals (Sweden)

    Andrea Piotti

    Full Text Available The fine-scale assessment of both spatially and non-spatially distributed genetic variation is crucial to preserve forest genetic resources through appropriate forest management. Cryptic within-population genetic structure may be more common than previously thought in forest tree populations, which has strong implications for the potential of forests to adapt to environmental change. The present study was aimed at comparing within-population genetic structure in European beech (Fagus sylvatica L. plots experiencing different disturbance levels. Five plot pairs made up by disturbed and undisturbed plots having the same biogeographic history were sampled throughout Europe. Overall, 1298 individuals were analyzed using four highly polymorphic nuclear microsatellite markers (SSRs. Bayesian clustering within plots identified 3 to 11 genetic clusters (within-plot θ ST ranged from 0.025 to 0.124. The proportion of within-population genetic variation due to genetic substructuring (F CluPlot = 0.067 was higher than the differentiation among the 10 plots (F PlotTot = 0.045. Focusing on the comparison between managed and unmanaged plots, disturbance mostly explains differences in the complexity of within-population genetic structure, determining a reduction of the number of genetic clusters present in a standardized area. Our results show that: i genetic substructuring needs to be investigated when studying the within-population genetic structure in forest tree populations, and ii indices describing subtle characteristics of the within-population genetic structure are good candidates for providing early signals of the consequences of forest management, and of disturbance events in general.

  13. Effects of chronic elevated ozone exposure on gas exchange responses of adult beech trees (Fagus sylvatica) as related to the within-canopy light gradient.

    Science.gov (United States)

    Kitao, Mitsutoshi; Löw, Markus; Heerdt, Christian; Grams, Thorsten E E; Häberle, Karl-Heinz; Matyssek, Rainer

    2009-02-01

    The effects of elevated O3 on photosynthetic properties in adult beech trees (Fagus sylvatica) were investigated in relation to leaf mass per area as a measure of the gradually changing, within-canopy light availability. Leaves under elevated O3 showed decreased stomatal conductance at unchanged carboxylation capacity of Rubisco, which was consistent with enhanced delta 13C of leaf organic matter, regardless of the light environment during growth. In parallel, increased energy demand for O3 detoxification and repair was suggested under elevated O3 owing to enhanced dark respiration. Only in shade-grown leaves,light-limited photosynthesis was reduced under elevated O3, this effect being accompanied by lowered F(v)/F(m). These results suggest that chronic O3 exposure primarily caused stomatal closure to adult beech trees in the field regardless of the within-canopy light gradient. However, light limitation apparently raised the O3 sensitivity of photosynthesis and accelerated senescence in shade leaves.

  14. Gap formation in Danish beech (Fagus sylvatica) forests of low management intensity

    DEFF Research Database (Denmark)

    Ritter, Eva; Vesterdal, Lars

    2006-01-01

    Soil moisture content (0-90 cm depth) and nitrate-nitrogen (NO3-N) concentrations in soil solution (90 cm depth) were monitored after gap formation (diameter 15-18 m) in three Danish beech-dominated forests on nutrient-rich till soils. NO3-N drainage losses were estimated by the water balance model......-based managed forest, soil solution was collected for 5 years and soil moisture measured in the fourth year after gap formation. Average NO3-N concentrations were significantly higher in the gaps (9.9 and 8.1 mg NO3-N l(-1), respectively) than under closed canopy (0.2 mg l(-1)). In the semi-natural forest...... WATBAL for one of the sites. Two forests were non-intervention forests (semi-natural and unmanaged), the third was subject to nature-based management. The study was intended to assess the range of effects of gap formation in forests of low management intensity. In the unmanaged and the nature...

  15. The production, localization and spreading of reactive oxygen species contributes to the low vitality of long-term stored common beech (Fagus sylvatica L.) seeds.

    Science.gov (United States)

    Ratajczak, Ewelina; Małecka, Arleta; Bagniewska-Zadworna, Agnieszka; Kalemba, Ewa Marzena

    2015-02-01

    The common beech (Fagus sylvatica L.) is propagated by seeds, but the seed set is irregular with five to ten years in between crops. It is therefore necessary to store the seeds. However, beech seeds lose germinability during long-term storage. In this study, beech seeds were stored at -10°C under controlled conditions for 2, 5, 8, 11 and 13 years. Our results show that beech seeds lose germinability during storage in proportion to the duration of storage. The decrease in germinability correlated with increased electrolyte leakage and accumulation of superoxide anion radicals, hydrogen peroxide and hydroxyl radicals. Furthermore, a strong positive correlation was observed among the releases of superoxide anion radicals, hydrogen peroxide and hydroxyl radicals. In situ localization showed that superoxide anion radicals and hydrogen peroxide were first detectable in root cap cells. When the seed storage time was extended, the reactive oxygen species fluorescence expanded to more areas of the radicle, reaching the root apical meristem. A storage time-dependent decrease in catalase activity, observed in both embryonic axes and cotyledons, was also positively correlated with germinability. DNA fragmentation was observed in beech seeds during storage and occurred predominantly in embryonic axes stored for 5 years and more. Altogether, these results suggest that the loss of germinability in beech seeds during long-term storage depends on several factors, including strong of reactive oxygen species accumulation accompanied by reduced catalase activity as well as membrane injury and DNA alternations, which may be aging-related and ROS-derived. We suggest that the accumulating reactive oxygen species that spread to the root apical meristem are key factors that affect seed germinability after long-term storage. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. Advantages of masting in European beech: timing of granivore satiation and benefits of seed caching support the predator dispersal hypothesis.

    Science.gov (United States)

    Zwolak, Rafał; Bogdziewicz, Michał; Wróbel, Aleksandra; Crone, Elizabeth E

    2016-03-01

    The predator satiation and predator dispersal hypotheses provide alternative explanations for masting. Both assume satiation of seed-eating vertebrates. They differ in whether satiation occurs before or after seed removal and caching by granivores (predator satiation and predator dispersal, respectively). This difference is largely unrecognized, but it is demographically important because cached seeds are dispersed and often have a microsite advantage over nondispersed seeds. We conducted rodent exclosure experiments in two mast and two nonmast years to test predictions of the predator dispersal hypothesis in our study system of yellow-necked mice (Apodemus flavicollis) and European beech (Fagus sylvatica). Specifically, we tested whether the fraction of seeds removed from the forest floor is similar during mast and nonmast years (i.e., lack of satiation before seed caching), whether masting decreases the removal of cached seeds (i.e., satiation after seed storage), and whether seed caching increases the probability of seedling emergence. We found that masting did not result in satiation at the seed removal stage. However, masting decreased the removal of cached seeds, and seed caching dramatically increased the probability of seedling emergence relative to noncached seeds. European beech thus benefits from masting through the satiation of scatterhoarders that occurs only after seeds are removed and cached. Although these findings do not exclude other evolutionary advantages of beech masting, they indicate that fitness benefits of masting extend beyond the most commonly considered advantages of predator satiation and increased pollination efficiency.

  17. SYNTAXOMOMICAL SURVEY O F EUROPEAN BEECH FORESTS: SOME GENERAL CONCLUSIONS

    Directory of Open Access Journals (Sweden)

    H. DIERSCHKE

    1997-01-01

    Full Text Available A short overwiev is given about the historical development of syntaxonomy of European beech forests. Different solutions of classification have been proposed, following more or less two main approaches: Division of alliances and suballiances by ecologically or geographically orientated species groups. A new classification of European beech forests is proposed with 8 (or more geographically orientated alliances, which can be further divided into suballiances by ecological species groups. For each alliance character and differential species, nomenclatural type and the area is mentioned, based on a (non puplished synthetic table, including 10.006 relevés from all parts of Europe. From this table also some overlapping species groups (a-n are given.

  18. Isoprenoid emission response to changing light conditions of English oak, European beech and Norway spruce

    Science.gov (United States)

    van Meeningen, Ylva; Schurgers, Guy; Rinnan, Riikka; Holst, Thomas

    2017-09-01

    Light is an important environmental factor controlling biogenic volatile organic compound (BVOC) emissions, but in natural conditions its impact is hard to separate from other influential factors such as temperature. We studied the light response of foliar BVOC emissions, photosynthesis and stomatal conductance on three common European tree species, namely English oak (Quercus robur), European beech (Fagus sylvatica) and two provenances of Norway spruce (Picea abies) in Taastrup, Denmark. Leaf scale measurements were performed on the lowest positioned branches of the tree in July 2015. Light intensity was increased in four steps (0, 500, 1000 and 1500 µmol m-2 s-1), whilst other chamber conditions such as temperature, humidity and CO2 levels were fixed. Whereas the emission rate differed between individuals of the same species, the relative contributions of compounds to the total isoprenoid emission remained similar. Whilst some compounds were species specific, the compounds α-pinene, camphene, 3-carene, limonene and eucalyptol were emitted by all of the measured tree species. Some compounds, like isoprene and sabinene, showed an increasing emission response with increasing light intensity, whereas other compounds, like camphene, had no significant emission response to light for most of the measured trees. English oak and European beech showed high light-dependent emission fractions from isoprene and sabinene, but other emitted compounds were light independent. For the two provenances of Norway spruce, the compounds α-pinene, 3-carene and eucalyptol showed high light-dependent fractions for many of the measured trees. This study highlights differences between compound emissions in their response to a change in light and a possible light independence for certain compounds, which might be valid for a wider range of tree species. This information could be of importance when improving emission models and to further emphasize the discussion regarding light or

  19. Isoprenoid emission response to changing light conditions of English oak, European beech and Norway spruce

    Directory of Open Access Journals (Sweden)

    Y. van Meeningen

    2017-09-01

    Full Text Available Light is an important environmental factor controlling biogenic volatile organic compound (BVOC emissions, but in natural conditions its impact is hard to separate from other influential factors such as temperature. We studied the light response of foliar BVOC emissions, photosynthesis and stomatal conductance on three common European tree species, namely English oak (Quercus robur, European beech (Fagus sylvatica and two provenances of Norway spruce (Picea abies in Taastrup, Denmark. Leaf scale measurements were performed on the lowest positioned branches of the tree in July 2015. Light intensity was increased in four steps (0, 500, 1000 and 1500 µmol m−2 s−1, whilst other chamber conditions such as temperature, humidity and CO2 levels were fixed. Whereas the emission rate differed between individuals of the same species, the relative contributions of compounds to the total isoprenoid emission remained similar. Whilst some compounds were species specific, the compounds α-pinene, camphene, 3-carene, limonene and eucalyptol were emitted by all of the measured tree species. Some compounds, like isoprene and sabinene, showed an increasing emission response with increasing light intensity, whereas other compounds, like camphene, had no significant emission response to light for most of the measured trees. English oak and European beech showed high light-dependent emission fractions from isoprene and sabinene, but other emitted compounds were light independent. For the two provenances of Norway spruce, the compounds α-pinene, 3-carene and eucalyptol showed high light-dependent fractions for many of the measured trees. This study highlights differences between compound emissions in their response to a change in light and a possible light independence for certain compounds, which might be valid for a wider range of tree species. This information could be of importance when improving emission models and to further emphasize the

  20. Belowground effects of enhanced tropospheric ozone and drought in a beech/spruce forest (Fagus sylvatica L./Picea abies [L.] Karst)

    Energy Technology Data Exchange (ETDEWEB)

    Nikolova, Petia S., E-mail: nikolova@wzw.tum.d [Ecophysiology of Plants, Technische Universitaet Muenchen, Weihenstephan Center of Life and Food Sciences, Am Hochanger 13, 85354 Freising (Germany); Andersen, Christian P. [Western Ecology Division, National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, 200 SW 35th St., Corvallis, OR 97333 (United States); Blaschke, Helmut; Matyssek, Rainer; Haeberle, Karl-Heinz [Ecophysiology of Plants, Technische Universitaet Muenchen, Weihenstephan Center of Life and Food Sciences, Am Hochanger 13, 85354 Freising (Germany)

    2010-04-15

    The effects of experimentally elevated O{sub 3} on soil respiration rates, standing fine-root biomass, fine-root production and delta{sup 13}C signature of newly produced fine roots were investigated in an adult European beech/Norway spruce forest in Germany during two subsequent years with contrasting rainfall patterns. During humid 2002, soil respiration rate was enhanced under elevated O{sub 3} under beech and spruce, and was related to O{sub 3}-stimulated fine-root production only in beech. During dry 2003, the stimulating effect of O{sub 3} on soil respiration rate vanished under spruce, which was correlated with decreased fine-root production in spruce under drought, irrespective of the O{sub 3} regime. delta{sup 13}C signature of newly formed fine-roots was consistent with the differing g{sub s} of beech and spruce, and indicated stomatal limitation by O{sub 3} in beech and by drought in spruce. Our study showed that drought can override the stimulating O{sub 3} effects on fine-root dynamics and soil respiration in mature beech and spruce forests. - Drought has the capacity to override the stimulating ozone effect on soil respiration in adult European beech/Norway spruce forest.

  1. The influence of gap size on plant species diversity and composition in beech (Fagus orientalis forests, Ramsar, Mazandaran Province, North of Iran

    Directory of Open Access Journals (Sweden)

    MARZIEH BEGYOM-FAGHIR

    2013-10-01

    Full Text Available Pourbabaei H, Haddadi-Moghaddam H, Begyom-Faghir M, Abedi T. 2013. The influence of gap size on plant species diversity and composition in beech (Fagus orientalis forests, Ramsar, Mazandaran Province, North of Iran. Biodiversitas 14: 89-94.This study was conducted to investigate the influence of gap size on plant species diversity and composition in beech (Fagus orientalis Lipsky. forests, Ramsar, Mazandaran province. Fifteen gaps in small, medium, and large sizes were randomly selected. Abundance of tree saplings, shrubs and herbaceous species were counted on 4 m2 micro-plots within the gaps. Diversity indices including Shannon-Wiener, Simpson, Mc Arthur's N1, Hill's N2, species richness and Smith-Wilson’s evenness index were computed. The results revealed that there was significant difference among three gap categories in terms of diversity. The highest diversity values of tree and herbaceous species were obtained in the large gaps, while the highest diversity value of shrub species was in the medium gaps. Species composition of small gaps (28 species: 7 trees and 21 herbaceous, medium gaps (37 species: 7 trees, 5 shrubs and 25 herbaceous and large gaps (40 species: 7 trees, 4 shrubs and 29 herbaceous were recognized. Therefore, based on the results of this study, it is recommended that in order to maintain plant diversity and composition up to 400 m2 gap size cloud be used in this forests.

  2. Variability of European beech wood density as influenced by interactions between tree-ring growth and aspect

    Directory of Open Access Journals (Sweden)

    Daniela Diaconu

    2016-02-01

    Full Text Available Background: Wood density is considered to be the most important predictor of wood quality but despite its importance, diffuse-porous tree species have been the subject of only a limited number of studies. The importance of European beech forests for Central Europe calls for profound research to examine the potential impact of a warmer climate on the quality of beech timber. Methods: In this study we analysed the influence of tree-ring width and tree-ring age on the wood density of beech, and whether the wood density response to these two parameters is modified by aspect. A linear mixed-effects model for wood density was constructed for mean density data measured with high frequency densitometry on stem discs from 72 beech trees sampled from two different aspects (northeast -NE and southwest -SW of a valley in southwestern Germany. Results: Part of the variability of mean annual wood density was explained by cambial age: an increase in cambial age resulted in an increase in mean wood density. Tree-ring width and aspect had only a small influence on wood density. Wood density on the SW aspect was lower than on the NE with a difference of approximately 0.006 g/cm3. The between-tree variability was very high. Conclusions: The significant interaction between cambial age and aspect reflects the importance of site conditions at older tree ages: with increasing cambial age the difference between aspects becomes stronger. Our results give a better understanding of the importance of site conditions on the wood quality of beech. Keywords: Fagus sylvatica, HF densitometry, Wood quality, Wood density, Aspect

  3. Landscape and climate controls on spatiotemporal patterns of European beech phenology tracked from Landsat data

    Science.gov (United States)

    Senf, Cornelius; Pflugmacher, Dirk; Heurich, Marco; Krueger, Tobias

    2017-04-01

    Phenology is a key indicator of vegetation response to global climate change, though our understanding of the underlying functional relationships is yet limited. Consequently, we aim at shedding light on the controls on the spatial and temporal patterns of European beech (Fagus sylvatica) phenology by utilizing a novel Landsat based hierarchical modeling approach. We test a variety of landscape and climate controls hypothesised to influence European beech green-up and senescence: 1) The effects of topography (i.e., elevation, slope, aspect, solar radiation) on spatial pattern of green-up and senescence. 2) The effects of spring temperature and winter chilling on temporal patterns of green-up. And 3) The effects of autumn temperature and precipitation on temporal patterns of senescence. Using a Landsat based approach allows us to tackle questions at the landscape-scale, while still covering a long enough time period of 30 years (1985-2015) for testing effects from regional-scale climate variability. Preliminary results indicate strong spatial and temporal variation in phenology. Spatial variation in green-up and senescence is driven by local scale topographic variation, in particular elevation (-2.0 d-100m). Temporal variation indicates a substantial trend towards earlier green-up (-1.0 d-1yr.) and later senescence (+1.6 d-1yr.), resulting in an overall longer vegetation period (+2.6 d-1yr.). Temporal variation in green-up was mostly influenced by regional-scale variations in pre-season minimum temperature (-3.7 d-1°C ), though we found only limited evidence for winter chilling effects. Temporal variation in senescence correlated with minimum autumn temperature (+5.0 d-1°C ) and precipitation (+2.0 d-10mm). Overall season length was controlled by annual mean season temperature with an average increase of +18.0 d-1°C . We also found that those controls were moderated by topography, with higher elevation areas being more sensitive to changes in temperature. Our

  4. Effects of chronic elevated ozone exposure on gas exchange responses of adult beech trees (Fagus sylvatica) as related to the within-canopy light gradient

    Energy Technology Data Exchange (ETDEWEB)

    Kitao, Mitsutoshi [Hokkaido Research Center, Forestry and Forest Products Research Institute, Sapporo 062-8516 (Japan)], E-mail: kitao@ffpri.affrc.go.jp; Loew, Markus [Ecophysiology of Plants, Technische Universitaet Muenchen, Am Hochanger 13, 85354 Freising (Germany); Heerdt, Christian [Bioclimatology and Air Pollution Research, Technische Universitaet Muenchen, Am Hochanger 13, 85354 Freising (Germany); Grams, Thorsten E.E.; Haeberle, Karl-Heinz; Matyssek, Rainer [Ecophysiology of Plants, Technische Universitaet Muenchen, Am Hochanger 13, 85354 Freising (Germany)

    2009-02-15

    The effects of elevated O{sub 3} on photosynthetic properties in adult beech trees (Fagus sylvatica) were investigated in relation to leaf mass per area as a measure of the gradually changing, within-canopy light availability. Leaves under elevated O{sub 3} showed decreased stomatal conductance at unchanged carboxylation capacity of Rubisco, which was consistent with enhanced {delta}{sup 13}C of leaf organic matter, regardless of the light environment during growth. In parallel, increased energy demand for O{sub 3} detoxification and repair was suggested under elevated O{sub 3} owing to enhanced dark respiration. Only in shade-grown leaves, light-limited photosynthesis was reduced under elevated O{sub 3}, this effect being accompanied by lowered F{sub v}/F{sub m}. These results suggest that chronic O{sub 3} exposure primarily caused stomatal closure to adult beech trees in the field regardless of the within-canopy light gradient. However, light limitation apparently raised the O{sub 3} sensitivity of photosynthesis and accelerated senescence in shade leaves. - Across leaf differentiation in adult beech crowns, elevated ozone acted through stomatal closure on gas exchange although enhancing photosynthetic sensitivity of shaded leaves.

  5. Biomass and nutrient content of sessile oak (Quercus petraea (Matt.) Liebl.) and beech (Fagus sylvatica L.) stem and branches in a mixed stand in southern Belgium.

    Science.gov (United States)

    André, Frédéric; Jonard, Mathieu; Ponette, Quentin

    2010-05-01

    Accurate estimates of the amounts of nutrients immobilised in the organs and tissues of different tree species are of prime importance to make appropriate tree species selection and determine the harvesting regime that will ensure forest sustainability. Sixteen sessile oaks (Quercus petraea (Matt.) Liebl.) (64-129years; stem diameters: 17-57cm) and twelve beeches (Fagus sylvatica L.) (43-86years; stem diameters: 9-50cm) were destructively sampled from a mixed stand located on an acid brown soil in southern Belgium. Statistical models were developed to investigate the differences in nutrient concentrations between tree species, between aboveground tree compartments of the same species, and between tissues of the same compartment. For stem tissues, vertical concentration profiles were described using a versatile equation. Allometric equations were used to predict biomass and nutrient content of tree compartments based on tree dimensions. Broadly speaking, nutrient concentrations tended to be somewhat higher for oak compared with beech, but the amplitude and the direction of inter-species differences varied greatly, depending on the nutrient and the tree compartment. For both species, living branch nutrient concentrations tended to decrease with increasing branch diameter, except for Ca (oak) and Mg (beech). Nutrient concentrations were consistently higher in bark than in wood; this difference between tissues was quite pronounced for Ca, particularly in the case of oak. The biomass and nutrient content equations were used to investigate the effects of tree species and harvesting regime on nutrient exports at harvesting. For equivalent harvesting scenarios, beech was found to induce higher Mg exports than oak, and inversely for Ca. Assuming stand clear cutting, complete tree harvesting would increase average nutrient exports from 65% (Ca) to 162% (P) compared with a stem-only harvesting scenario. These results provide valuable information in the current context of the

  6. Aggressiveness of Phytophthora cactorum and Phytophthora citricola isolates on European Beech and Lilac

    Science.gov (United States)

    Inoculation experiments were conducted to compare the aggressiveness of Phytophthora cactorum and P. citricola isolates on European beech and lilac seedlings grown in a greenhouse. The isolates were obtained from bleeding cankers on European beech from five cities (Albany, Ithaca, Oyster Bay, P...

  7. Aggressiveness of Phytophthora cactorum, P. citricola I, and P. plurivora from European Beech

    Science.gov (United States)

    Phytophthora cactorum and P. citricola cause bleeding cankers on European beech trees in the northeastern United States. Inoculation experiments were conducted to compare the aggressiveness of P. cactorum and P. citricola isolates on stems, leaf disks, and roots of European beech and common lilac s...

  8. Age-related variation in carbon allocation at tree and stand scales in beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Liebl.) using a chronosequence approach.

    Science.gov (United States)

    Genet, H; Bréda, N; Dufrêne, E

    2010-02-01

    Two types of physiological mechanisms can contribute to growth decline with age: (i) the mechanisms leading to the reduction of carbon assimilation (input) and (ii) those leading to modification of the resource economy. Surprisingly, the processes relating to carbon allocation have been little investigated as compared to research on the processes governing carbon assimilation. The objective of this paper was thus to test the hypothesis that growth decrease related to age is accompanied by changes in carbon allocation to the benefit of storage and reproductive functions in two contrasting broad-leaved species: beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Liebl.). Age-related changes in carbon allocation were studied using a chronosequence approach. Chronosequences, each consisting of several even-aged stands ranging from 14 to 175 years old for beech and from 30 to 134 years old for sessile oak, were divided into five or six age classes. In this study, carbon allocations to growth, storage and reproduction were defined as the relative amount of carbon invested in biomass increment, carbohydrate increment and seed production, respectively. Tree-ring width and allometric relationships were used to assess biomass increment at the tree and stand scales. Below-ground biomass was assessed using a specific allometric relationship between root:shoot ratio and age, established from the literature review. Seasonal variations of carbohydrate concentrations were used to assess carbon allocation to storage. Reproduction effort was quantified for beech stands by collecting seed and cupule production. Age-related flagging of biomass productivity was assessed at the tree and stand scales, and carbohydrate quantities in trees increased with age for both species. Seed and cupule production increased with stand age in beech from 56 gC m(-)(2) year(-1) at 30 years old to 129 gC m(-2) year(-1) at 138 years old. In beech, carbon allocation to storage and

  9. Below-ground effects of enhanced tropospheric ozone and drought in a beech/spruce forest (Fagus sylvatica L. / Picea abies [L.] Karst)

    Science.gov (United States)

    The effects of experimentally elevated O3 on soil respiration rates, standing fine-root biomass, fine-root production and δ13C signature of newly produced fine roots were investigated in an adult European beech/Norway spruce forest in Germany during two subsequent years with cont...

  10. Microscopic identification of changes in beech (Fagus sylvatica L. and pine (Pinus sylvestris L. cell structure after drying using high-frequency energy of the microwave band

    Directory of Open Access Journals (Sweden)

    Andrea Nasswettrová

    2011-01-01

    Full Text Available High-frequency energy transfer represents a progressive technology with an increasing range of industrial application. One of the main advantages of microwave technology is the volumetric principle of energy transfer. Based on this fact, the gradients of moisture content and temperature are identical and when the wood is dried it helps transport moisture from porous material and it also helps and transport free water whit lumen of cells. From a practical viewpoint, microwave heating increases the quality of the dried material and reduces the necessary processing. The quality of a dry material is an essential input parameter for other technological procedures and it depends on the deformations created in its cell structure. Therefore, the monitoring of changes brought about during the drying process is necessary. The aim of this study was to identify the changes in the microscopic structure of the wood of beech (Fagus Sylvatica L. and pine (Pinus Sylvestris L. dried using the high-frequency energy of the microwave band. The microscopic structure of a material modified by microwaves was photographed by means of a low-vacuum microscope and then visually compared with the native structure. The results show that the structure of beech and pine wood during the time of the proposed drying regime does not differ considerably from the native structure. This outcome is documented in a digital form and it confirms the harmless character of microwave heating towards wood structure in the conditions of optimum drying parameters.

  11. Enhanced ozone strongly reduces carbon sink strength of adult beech (Fagus sylvatica) - Resume from the free-air fumigation study at Kranzberg Forest

    Energy Technology Data Exchange (ETDEWEB)

    Matyssek, R., E-mail: matyssek@wzw.tum.d [Ecophysiology of Plants, Technische Universitaet Muenchen, Hans-Carl-von-Carlowitz-Platz 2, D-85354 Freising (Germany); Wieser, G. [Dept. Alpine Timberline Ecophysiology, Federal Office and Research Centre for Forests, Rennweg 1, A-6020 Innsbruck (Austria); Ceulemans, R. [Dept. of Biology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Rennenberg, H. [Tree Physiology, Institute of Forest Botany and Tree Physiology, University of Freiburg, Georges-Koehler-Allee 53, D-79110 Freiburg (Germany); Pretzsch, H. [Forest Growth and Yield Sciences, Technische Universitaet Muenchen, Hans-Carl-von-Carlowitz-Platz 2, D-85354 Freising (Germany); Haberer, K. [Tree Physiology, Institute of Forest Botany and Tree Physiology, University of Freiburg, Georges-Koehler-Allee 53, D-79110 Freiburg (Germany); Loew, M.; Nunn, A.J. [Ecophysiology of Plants, Technische Universitaet Muenchen, Hans-Carl-von-Carlowitz-Platz 2, D-85354 Freising (Germany); Werner, H. [Ecoclimatology (formerly: Bioclimatology and Air Pollution Research), Hans-Carl-von-Carlowitz-Platz 2, D-85354 Freising (Germany); Wipfler, P. [Forest Growth and Yield Sciences, Technische Universitaet Muenchen, Hans-Carl-von-Carlowitz-Platz 2, D-85354 Freising (Germany); Osswald, W. [Phytopathology of Woody Plants, Technische Universitaet Muenchen, Hans-Carl-von-Carlowitz-Platz 2, D-85354 Freising (Germany); Nikolova, P. [Ecophysiology of Plants, Technische Universitaet Muenchen, Hans-Carl-von-Carlowitz-Platz 2, D-85354 Freising (Germany); Hanke, D.E. [Dept. Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA (United Kingdom); Kraigher, H. [Slovenian Forestry Institute, Forest Biology, Ecology and Technology, Vecna pot 2, 1000 Ljubljana (Slovenia); Tausz, M. [Dept. of Forest and Ecosystem Science, Melbourne School of Land and Environment, Water Street, Creswick Vic 3363 (Australia)

    2010-08-15

    Ground-level ozone (O{sub 3}) has gained awareness as an agent of climate change. In this respect, key results are comprehended from a unique 8-year free-air O{sub 3}-fumigation experiment, conducted on adult beech (Fagus sylvatica) at Kranzberg Forest (Germany). A novel canopy O{sub 3} exposure methodology was employed that allowed whole-tree assessment in situ under twice-ambient O{sub 3} levels. Elevated O{sub 3} significantly weakened the C sink strength of the tree-soil system as evidenced by lowered photosynthesis and 44% reduction in whole-stem growth, but increased soil respiration. Associated effects in leaves and roots at the gene, cell and organ level varied from year to year, with drought being a crucial determinant of O{sub 3} responsiveness. Regarding adult individuals of a late-successional tree species, empirical proof is provided first time in relation to recent modelling predictions that enhanced ground-level O{sub 3} can substantially mitigate the C sequestration of forests in view of climate change. - Empirical proof corroborates substantial mitigation of carbon sequestration in the tree-soil system of a forest site under enhanced O{sub 3} impact for adult beech.

  12. Comparison of ozone uptake and sensitivity between a phytotron study with young beech and a field experiment with adult beech (Fagus sylvatica)

    Energy Technology Data Exchange (ETDEWEB)

    Nunn, Angela J. [Ecophysiology of Plants, Department of Ecology, TU Muenchen, Am Hochanger 13, D-85354 Freising (Germany)]. E-mail: nunn@wzw.tum.de; Kozovits, A.R. [Ecophysiology of Plants, Department of Ecology, TU Muenchen, Am Hochanger 13, D-85354 Freising (Germany); Reiter, I.M. [Ecophysiology of Plants, Department of Ecology, TU Muenchen, Am Hochanger 13, D-85354 Freising (Germany); Heerdt, C. [Bioclimatology, TU Muenchen, Am Hochanger 13, D-85354 Freising (Germany); Leuchner, M. [Bioclimatology, TU Muenchen, Am Hochanger 13, D-85354 Freising (Germany); Luetz, C. [Department of Physiology and Cell Physiology of Alpine Plants, University of Innsbruck, Sternwartestrasse 15, A-6020 Innsbruck (Austria); Liu, X. [Institute of Forest Botany and Tree Physiology, University of Freiburg, Georges-Koehler-Allee 53/54, D-79110 Freiburg (Germany); Low, M. [Ecophysiology of Plants, Department of Ecology, TU Muenchen, Am Hochanger 13, D-85354 Freising (Germany); Winkler, J.B. [GSF National Research Center for Environment and Health, Institute for Soil Ecology, Department of Environmental Engineering, Ingolstaedter Landstrasse 1, D-85764 Neuherberg (Germany); Grams, T.E.E. [Ecophysiology of Plants, Department of Ecology, TU Muenchen, Am Hochanger 13, D-85354 Freising (Germany); Haeberle, K.-H. [Ecophysiology of Plants, Department of Ecology, TU Muenchen, Am Hochanger 13, D-85354 Freising (Germany); Werner, H. [Bioclimatology, TU Muenchen, Am Hochanger 13, D-85354 Freising (Germany); Fabian, P. [Bioclimatology, TU Muenchen, Am Hochanger 13, D-85354 Freising (Germany); Rennenberg, H. [Departamento de Ecologia, Universidade de Brasilia, caixa postal 04457, Brasilia-DF 70919-970 (Brazil); Matyssek, R. [Ecophysiology of Plants, Department of Ecology, TU Muenchen, Am Hochanger 13, D-85354 Freising (Germany)

    2005-10-15

    Chamber experiments on juvenile trees have resulted in severe injury and accelerated loss of leaves along with reduced biomass production under chronically enhanced O{sub 3} levels. In contrast, the few studies conducted on adult forest trees in the field have reported low O{sub 3} sensitivity. In the present study, young beech in phytotrons was more sensitive to O{sub 3} than adult beech in the field, although employed O{sub 3} regimes were similar. The hypotheses tested were that: (1) differences in O{sub 3} uptake were caused by the ontogenetically higher stomatal conductance of young compared to adult trees (2) the experimental settings in the phytotrons enhanced O{sub 3} uptake compared to field conditions, and (3) a low detoxification capacity contributes to the higher O{sub 3} sensitivity of the young trees. The higher O{sub 3} sensitivity of juvenile beech in the phytotrons is demonstrated to relate to both the experimental conditions and the physiological responsiveness inherent to tree age. - Juvenile beech trees in phytotrons are more sensitive to ozone than adult forest trees due to lower defence capacity and growth conditions.

  13. Size-dependence of tree growth response to drought for Norway spruce and European beech individuals in monospecific and mixed-species stands.

    Science.gov (United States)

    Ding, H; Pretzsch, H; Schütze, G; Rötzer, T

    2017-09-01

    Climate anomalies have resulted in changing forest productivity, increasing tree mortality in Central and Southern Europe. This has resulted in more severe and frequent ecological disturbances to forest stands. This study analysed the size-dependence of growth response to drought years based on 384 tree individuals of Norway spruce [Picea abies (L.) Karst.] and European beech [Fagus sylvatica ([L.)] in Bavaria, Germany. Samples were collected in both monospecific and mixed-species stands. To quantify the growth response to drought stress, indices for basal area increment, resistance, recovery and resilience were calculated from tree ring measurements of increment cores. Linear mixed models were developed to estimate the influence of drought periods. The results show that ageing-related growth decline is significant in drought years. Drought resilience and resistance decrease significantly with growth size among Norway spruce individuals. Evidence is also provided for robustness in the resilience capacity of European beech during drought stress. Spruce benefits from species mixing with deciduous beech, with over-yielding spruce in pure stands. The importance of the influence of size-dependence within tree growth studies during disturbances is highlighted and should be considered in future studies of disturbances, including drought. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  14. Ectomycorrhizal Communities on the Roots of Two Beech (Fagus sylvatica) Populations from Contrasting Climates Differ in Nitrogen Acquisition in a Common Environment.

    Science.gov (United States)

    Leberecht, Martin; Dannenmann, Michael; Gschwendtner, Silvia; Bilela, Silvija; Meier, Rudolf; Simon, Judy; Rennenberg, Heinz; Schloter, Michael; Polle, Andrea

    2015-09-01

    Beech (Fagus sylvatica), a dominant forest species in Central Europe, competes for nitrogen with soil microbes and suffers from N limitation under dry conditions. We hypothesized that ectomycorrhizal communities and the free-living rhizosphere microbes from beech trees from sites with two contrasting climatic conditions exhibit differences in N acquisition that contribute to differences in host N uptake and are related to differences in host belowground carbon allocation. To test these hypotheses, young trees from the natural regeneration of two genetically similar populations, one from dryer conditions (located in an area with a southwest exposure [SW trees]) and the other from a cooler, moist climate (located in an area with a northeast exposure [NE trees]), were transplanted into a homogeneous substrate in the same environment and labeled with (13)CO2 and (15)NH4 (+). Free-living rhizosphere microbes were characterized by marker genes for the N cycle, but no differences between the rhizospheres of SW or NE trees were found. Lower (15)N enrichment was found in the ectomycorrhizal communities of the NE tree communities than the SW tree communities, whereas no significant differences in (15)N enrichment were observed for nonmycorrhizal root tips of SW and NE trees. Neither the ectomycorrhizal communities nor the nonmycorrhizal root tips originating from NE and SW trees showed differences in (13)C signatures. Because the level of (15)N accumulation in fine roots and the amount transferred to leaves were lower in NE trees than SW trees, our data support the suggestion that the ectomycorrhizal community influences N transfer to its host and demonstrate that the fungal community from the dry condition was more efficient in N acquisition when environmental constraints were relieved. These findings highlight the importance of adapted ectomycorrhizal communities for forest nutrition in a changing climate. Copyright © 2015, American Society for Microbiology. All Rights

  15. Dead wood characteristics influencing macrofungi species abundance and diversity in Caspian natural beech (Fagus orientalis Lipsky) forests

    OpenAIRE

    Kiomars Sefidi; Vahid Etemad

    2015-01-01

    Aim of study: This study aimed to examine the dead wood inhabiting macrofungi communities occurring on dead beech and hornbeam trees in Caspian forests. Area of study: The Kheiroud forest in the north of Iran. Material and Methods: Data from 205 sampling dead tree were analyzed by means of Generalized Linear Models (GLM) to test the effects of decay stage, DBH, Length or Height on macrofungi diversity. Additionally, tree species, dead wood size, log position, decay stage were used a...

  16. Photosynthetic characteristics of Fagus sylvatica and Quercus robur established for stand conversion from Picea abies

    Science.gov (United States)

    E.S. Gardiner; J.J. O’Brien; M. Löf; J.A. Stanturf; P. Madsen

    2009-01-01

    Efforts in Europe to convertNorway spruce (Picea abies) plantations to broadleaf ormixed broadleaf-conifer forests could be bolstered by an increased understanding of how artificial regeneration acclimates and functions under a range of Norway spruce stand conditions. We studied foliage characteristics and leaflevel photosynthesis on 7-year-old European beech (Fagus...

  17. Fagus dominance in Chinese montane forests : natural regeneration of Fagus lucida and Fagus hayatae var. pashanica

    NARCIS (Netherlands)

    Cao, K.F.

    1995-01-01


    Fagus species are important components of certain mesic temperate forests in the Northern Hemisphere. Of eleven Fagus species distinguished, five are found in China. Chinese beeches are restricted to the mountains of southern China. In the montane

  18. Differential radial growth patterns between beech (Fagus sylvatica L.) and oak (Quercus robur L.) on periodically waterlogged soils.

    Science.gov (United States)

    Scharnweber, Tobias; Manthey, Michael; Wilmking, Martin

    2013-04-01

    Climate scenarios for northern Central Europe project rising temperatures and increasing frequency and intensity of droughts but also a shift in precipitation pattern with more humid winters. This in turn may result in soil waterlogging during the following spring, leading to increasing stress for trees growing on hydric sites. The influence of waterlogging on growth of common beech and pedunculate oak has been studied intensively on seedlings under experimental conditions. However, the question remains whether results of these studies can be transferred to mature trees growing under natural conditions. To test this, we investigated general growth patterns and climate-growth relationships in four mature stands of beech and oak growing on hydromorphic soils (Stagnosols) in northeast Germany using dendrochronological methods. Our results confirmed the expected tolerance of oak to strong water-level fluctuations. Neither extremely wet conditions during spring nor summer droughts significantly affected its radial growth. Oak growth responded positively to warmer temperatures during previous year October and March of the current year of ring formation. Contrary to our expectations, also beech showed relatively low sensitivity to periods of high soil water saturation. Instead, summer drought turned out to be the main climatic factor influencing ring width of beech even under the specific periodically wet soil conditions of our study. This became evident from general climate-growth correlations over the last century as well as from discontinuous (pointer year) analysis with summer drought being significantly correlated to the occurrence of growth depressions. As ring width of the two species is affected by differing climate parameters, species-specific chronologies show no coherence in high-frequency variations even for trees growing in close proximity. We assume differences in rooting depth as the main reason for the differing growth patterns and climate correlations of

  19. Beech wood Fagus sylvatica dilute-acid hydrolysate as a feedstock to support Chlorella sorokiniana biomass, fatty acid and pigment production.

    Science.gov (United States)

    Miazek, Krystian; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2017-04-01

    This work evaluates the possibility of using beech wood (Fagus sylvatica) dilute-acid (H2SO4) hydrolysate as a feedstock for Chlorella sorokiniana growth, fatty acid and pigment production. Neutralized wood acid hydrolysate, containing organic and mineral compounds, was tested on Chlorella growth at different concentrations and compared to growth under phototrophic conditions. Chlorella growth was improved at lower loadings and inhibited at higher loadings. Based on these results, a 12% neutralized wood acid hydrolysate (Hyd12%) loading was selected to investigate its impact on Chlorella growth, fatty acid and pigment production. Hyd12% improved microalgal biomass, fatty acid and pigment productivities both in light and in dark, when compared to photoautotrophic control. Light intensity had substantial influence on fatty acid and pigment composition in Chlorella culture during Hyd12%-based growth. Moreover, heterotrophic Chlorella cultivation with Hyd12% also showed that wood hydrolysate can constitute an attractive feedstock for microalgae cultivation in case of lack of light. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Enhanced ozone strongly reduces carbon sink strength of adult beech (Fagus sylvatica)--resume from the free-air fumigation study at Kranzberg Forest.

    Science.gov (United States)

    Matyssek, R; Wieser, G; Ceulemans, R; Rennenberg, H; Pretzsch, H; Haberer, K; Löw, M; Nunn, A J; Werner, H; Wipfler, P; Osswald, W; Nikolova, P; Hanke, D E; Kraigher, H; Tausz, M; Bahnweg, G; Kitao, M; Dieler, J; Sandermann, H; Herbinger, K; Grebenc, T; Blumenröther, M; Deckmyn, G; Grams, T E E; Heerdt, C; Leuchner, M; Fabian, P; Häberle, K-H

    2010-08-01

    Ground-level ozone (O(3)) has gained awareness as an agent of climate change. In this respect, key results are comprehended from a unique 8-year free-air O(3)-fumigation experiment, conducted on adult beech (Fagus sylvatica) at Kranzberg Forest (Germany). A novel canopy O(3) exposure methodology was employed that allowed whole-tree assessment in situ under twice-ambient O(3) levels. Elevated O(3) significantly weakened the C sink strength of the tree-soil system as evidenced by lowered photosynthesis and 44% reduction in whole-stem growth, but increased soil respiration. Associated effects in leaves and roots at the gene, cell and organ level varied from year to year, with drought being a crucial determinant of O(3) responsiveness. Regarding adult individuals of a late-successional tree species, empirical proof is provided first time in relation to recent modelling predictions that enhanced ground-level O(3) can substantially mitigate the C sequestration of forests in view of climate change. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Age-related changes in protein metabolism of beech (Fagus sylvatica L.) seeds during alleviation of dormancy and in the early stage of germination.

    Science.gov (United States)

    Ratajczak, Ewelina; Kalemba, Ewa M; Pukacka, Stanislawa

    2015-09-01

    The long-term storage of seeds generally reduces their viability and vigour. The aim of this work was to evaluate the effect of long-term storage on beech (Fagus sylvatica L.) seeds at optimal conditions, over 9 years, on the total and soluble protein levels and activity of proteolytic enzymes, including endopeptidases, carboxypeptidases and aminopeptidases, as well as free amino acid levels and protein synthesis, in dry seeds, after imbibition and during cold stratification leading to dormancy release and germination. The same analyses were conducted in parallel on seeds gathered from the same tree in the running growing season and stored under the same conditions for only 3 months. The results showed that germination capacity decreased from 100% in freshly harvested seeds to 75% in seeds stored for 9 years. The levels of total and soluble proteins were highest in freshly harvested seeds and decreased significantly during storage, these proportions were retained during cold stratification and germination of seeds. Significant differences between freshly harvested and stored seeds were observed in the activities of proteolytic enzymes, including endopeptidases, aminopeptidases and carboxypeptidases, and in the levels of free amino acids. The neosynthesis of proteins during dormancy release and in the early stage of seed germination was significantly weaker in stored seeds. These results confirm the importance of protein metabolism for seed viability and the consequences of its reduction during seed ageing. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  2. Modelling of Climate Conditions in Forest Vegetation Zones as a Support Tool for Forest Management Strategy in European Beech Dominated Forests

    Directory of Open Access Journals (Sweden)

    Ivo Machar

    2017-03-01

    Full Text Available The regional effects of climate change on forest ecosystems in the temperate climate zone of Europe can be modelled as shifts of forest vegetation zones in the landscape, northward and to higher elevations. This study applies a biogeographical model of climate conditions in the forest vegetation zones of the Central European landscape, in order to predict the impact of future climate change on the most widespread tree species in European deciduous forests—the European beech (Fagus sylvatica L.. The biogeographical model is supported by a suite of software applications in the GIS environment. The model outputs are defined as a set of conditions - climate scenario A1B by the Special Report on Emission Scenarios (SRES for a forecast period, for a specified geographical area and with ecological conditions appropriate for the European beech, which provide regional scenarios for predicted future climatic conditions in the context of the European beech’s environmental requirements. These predicted changes can be graphically visualized. The results of the model scenarios for regional climate change show that in the Czech Republic from 2070 onwards, optimal growing conditions for the European beech will only exist in some parts of those areas where it currently occurs naturally. Based on these results, it is highly recommended that the national strategy for sustainable forest management in the Czech Republic be partly re-evaluated. Thus, the presented biogeographical model of climate conditions in forest vegetation zones can be applied, not only to generate regional scenarios of climate change in the landscape, but also as a support tool for the development of a sustainable forest management strategy.

  3. Phenols in leaves and bark of Fagus sylvatica as determinants of insect occurrences.

    Science.gov (United States)

    Petrakis, Panos V; Spanos, Kostas; Feest, Alan; Daskalakou, Evangelia

    2011-01-01

    Beech forests play an important role in temperate and north Mediterranean ecosystems in Greece since they occupy infertile montane soils. In the last glacial maximum, Fagus sylvatica (beech) was confined to Southern Europe where it was dominant and in the last thousand years has expanded its range to dominate central Europe. We sampled four different beech forest types. We found 298 insect species associated with beech trees and dead beech wood. While F. sylvatica and Quercus (oak) are confamilial, there are great differences in richness of the associated entomofauna. Insect species that inhabit beech forests are less than one fifth of those species living in oak dominated forests despite the fact that beech is the most abundant central and north European tree. There is a distinct paucity of monophagous species on beech trees and most insect species are shared between co-occurring deciduous tree species and beech. This lack of species is attributed to the vegetation history and secondary plant chemistry. Bark and leaf biophenols from beech indicate that differences in plant secondary metabolites may be responsible for the differences in the richness of entomofauna in communities dominated by beech and other deciduous trees.

  4. Methanol and other VOC fluxes from a Danish beech forest during late springtime

    DEFF Research Database (Denmark)

    Schade, Gunnar W.; Solomon, Sheena J.; Dellwik, Ebba

    2011-01-01

    In-canopy mixing ratio gradients and above-canopy fluxes of several volatile organic compounds (VOCs) were measured using a commercial proton transfer reaction mass spectrometer (PTR-MS) in a European beech (Fagus sylvatica) forest in Denmark. Fluxes of methanol were bidirectional: Emission...... results from tropical and pine forest ecosystems in that they did not show this beech ecosystem to be a strong sink for oxygenated VOCs (OVOCs). Instead, their gradients were flat and only small deposition velocities (...

  5. Within-canopy and ozone fumigation effects on delta13C and Delta18O in adult beech (Fagus sylvatica) trees: relation to meteorological and gas exchange parameters.

    Science.gov (United States)

    Gessler, Arthur; Löw, Markus; Heerdt, Christian; de Beeck, Maarten Op; Schumacher, Johannes; Grams, Thorsten E E; Bahnweg, Günther; Ceulemans, Reinhart; Werner, Herbert; Matyssek, Rainer; Rennenberg, Heinz; Haberer, Kristine

    2009-11-01

    In this study, the effects of different light intensities either in direct sunlight or in the shade crown of adult beech (Fagus sylvatica L.) trees on delta13C and Delta18O were determined under ambient (1 x O3) and twice-ambient (2 x O3) atmospheric ozone concentrations during two consecutive years (2003 and 2004). We analysed the isotopic composition in leaf bulk, leaf cellulose, phloem and xylem material and related the results to (a) meteorological data (air temperature, T and relative humidity, RH), (b) leaf gas exchange measurements (stomatal conductance, g(s); transpiration rate, E; and maximum photosynthetic activity, A(max)) and (c) the outcome of a steady-state evaporative enrichment model. Delta13C was significantly lower in the shade than in the sun crown in all plant materials, whilst Delta18O was increased significantly in the shade than in the sun crown in bulk material and cellulose. Elevated ozone had no effect on delta13C, although Delta18O was influenced by ozone to varied degrees during single months. We observed significant seasonal changes for both parameters, especially in 2004, and also significant differences between the study years. Relating the findings to meteorological data and gas exchange parameters, we conclude that the differences in Delta18O between the sun and the shade crown were predominantly caused by the Péclet effect. This assumption was supported by the modelled Delta18O values for leaf cellulose. It was demonstrated that independent of RH, light-dependent reduction of stomatal conductance (and thus transpiration) and of A(max) can drive the pattern of Delta18O increase with the concomitant decrease of delta13C in the shade crown. The effect of doubling ozone levels on time-integrated stomatal conductance and transpiration as indicated by the combined analysis of Delta18O and delta13C was much lower than the influence caused by the light exposure.

  6. Estimating the relative nutrient uptake from different soil depths in Quercus robur, Fagus sylvatica and Picea abies

    DEFF Research Database (Denmark)

    Göransson, Hans; Wallander, Håkan; Ingerslev, Morten

    2006-01-01

    uptake capacity of Rb+ and NH4+ by these fine roots under standardized conditions in the laboratory. The study was performed in monocultures of oak (Quercus robur L.), European beech (Fagus sylvatica L.) and Norway spruce [Picea abies (L.) Karst.] on sandy soil in a tree species trial in Denmark...

  7. Effect of heat-treatment with raw cotton seed oil on decay resistance and dimensional stability of Beech (Fagus orientalis

    Directory of Open Access Journals (Sweden)

    مریم قربانی

    2015-05-01

    Full Text Available This research was conducted to determine the effect of heat-treatment with raw cotton seed oil on decay resistance and dimensional stability of beech according to EN113 and ASTM-D1037 standards respectively. The heat treatment with raw cotton seed oil was carried out in the cylinder at the temperatures of 130 and 170oC for 30 and 60 minutes. Oil uptake, density, volumetric swelling, water absorption and weight loss exposed to decay were measured. Oil uptake at 30 and 60 min were determined 10.5 and 13.3 Kg/cm3 respectively. Oil-heat treated samples at 30min and 130°C indicated the maximum density with 87.7% increase. According to results, oil-heat treatment improved water repellency and dimensional stability. Water absorption in 130°C and 60 minutes decreased 76% in comparison with control. Decay resistance of oil soaked samples for 60minutes was 80.2% more than control samples. Oil-heat treatment compared with oil treatment improved decay resistance, this effect was significant at 30 min. The temperature rise of oil–heat treatment at 30 minutes improved decay resistance, but the improvement under same level of temperature with increase time was not significant.

  8. Effect of tin oxide nano particles and heat treatment on decay resistance and physical properties of beech wood (Fagus orientalis

    Directory of Open Access Journals (Sweden)

    Maryam Ghorbani

    2014-11-01

    Full Text Available This research was conducted to investigate the effect of Tin oxide nanoparticles and heat treatment on decay resistance and physical properties of beech wood. Biological and physical test samples were prepared according to EN-113 and ASTM-D4446-05 standards respectively. Samples were classified into 4 groups: control, impregnation with Tin oxide nanoparticles, heat treatment and nano-heat treatment. Impregnation with Tin oxide nano at 5000ppm concentration was carried out in the cylinder according to Bethell method. Then, samples were heated at 140, 160 and 185˚C for 2 and 4 hours. According to results, decay resistance improved with increasing time and temperature of heat treatment. Least weight loss showed 46.39% reduction in nano-heat samples treated at 180˚C for 4 hours in comparison with control at highest weight loss. Nano-heat treated samples demonstrated the maximum amount of water absorption without significant difference with control and nanoparticles treated samples. Increase in heat treatment temperature reduced water absorption so that it is revealed 47.8% reduction in heat treated samples at 180°C for 4h after 24h immersion in water. In nano-heat treated samples at 180˚C for 2h was measured least volume swelling. Volume swelling in nano-treated samples decreased 8.7 and 22.76% after 2 and 24 h immersion in comparison with the control samples respectively.

  9. Effects of drought on leaf carbon source and growth of European beech are modulated by soil type

    Science.gov (United States)

    Liu, Jian-Feng; Arend, Matthias; Yang, Wen-Juan; Schaub, Marcus; Ni, Yan-Yan; Gessler, Arthur; Jiang, Ze-Ping; Rigling, Andreas; Li, Mai-He

    2017-02-01

    Drought potentially affects carbon balance and growth of trees, but little is known to what extent soil plays a role in the trade-off between carbon gain and growth investment. In the present study, we analyzed leaf non-structural carbohydrates (NSC) as an indicator of the balance of photosynthetic carbon gain and carbon use, as well as growth of European beech (Fagus sylvatica L.) saplings, which were grown on two different soil types (calcareous and acidic) in model ecosystems and subjected to a severe summer drought. Our results showed that drought led in general to increased total NSC concentrations and to decreased growth rate, and drought reduced shoot and stem growth of plants in acidic soil rather than in calcareous soil. This result indicated that soil type modulated the carbon trade-off between net leaf carbon gain and carbon investment to growth. In drought-stressed trees, leaf starch concentration and growth correlated negatively whereas soluble sugar:starch ratio and growth correlated positively, which may contribute to a better understanding of growth regulation under drought conditions. Our results emphasize the role of soil in determining the trade-off between the balance of carbon gain and carbon use on the leaf level and growth under stress (e.g. drought).

  10. ESTIMATING ROOT RESPIRATION IN SPRUCE AND BEECH: DECREASES IN SOIL RESPIRATION FOLLOWING GIRDLING

    Science.gov (United States)

    A study was undertaken to follow seasonal fluxes of CO2 from soil and to estimate the contribution of autotrophic (root + mycorrhizal) to total soil respiration (SR) in a mixed stand of European beech (Fagus sylvatica) and Norway spruce (Picea abies) near Freising, Germany. Matu...

  11. SOIL CO2 EFFLUX FROM ISOTOPICALLY LABELED BEECH AND SPRUCE IN SOUTHERN GERMANY

    Science.gov (United States)

    • Carbon acquisition and transport to roots in forest trees is difficult to quantify and is affected by a number of factors, including micrometeorology and anthropogenic stresses. The canopies of mature European beech (Fagus sylvatica) and Norway spruce (Picea abies) were expose...

  12. Non-linear height-diameter models for oriental beech (Fagus orientalis Lipsky in the Hyrcanian forests, Iran

    Directory of Open Access Journals (Sweden)

    Ahmadi, K.

    2013-01-01

    Full Text Available The relationship between tree height and diameter is an important element in growth and yield models, in carbon budget and timber volume models, and in the description of stand dynamics. Six non-linear growth functions (i.e. Chapman-Richards, Schnute, Lundqvist/Korf, Weibull, Modified Logistic and Exponential were fitted to tree height-diameter data of oriental beech in the Hyrcanian mixed hardwood forests of Iran. The predictive performance of these models was in the first place assessed by means of different model evaluation criteria such as adjusted R squared (adjR2, root mean square error (RMSE, Akaike information criterion (AIC, mean difference (MD, mean absolute difference (MAD and mean square (MS error criteria. Although each of the six models accounted for approximately 75% of total variation in height, a large difference in asymptotic estimates was observed. Apart from this, the predictive performance of the models was also evaluated by means of cross-validation and by splitting the data into 5-cm diameter classes. Plotting the MD in relation to these diameter at breast height (DBH classes showed for all growth functions, except for the Modified Logistic function, similar mean prediction errors for small- and medium-sized trees. Large-sized trees, however, showed a higher mean prediction error. The Modified Logistic function showed the worst performance due to a large model bias. The Exponential and Lundqvist/Korf models were discarded due to their showing biologically illogical behavior and unreasonable estimates for the asymptotic coefficient, respectively. Considering all the above-mentioned criteria, the Chapman-Richards, Weibull, and Schnute functions provided the most satisfactory height predictions. However, we would recommend the Chapman-Richards function for further analysis because of its higher predictive performance.

  13. Variation in performance of beech saplings of 7 European provenances under shade and full light conditions

    NARCIS (Netherlands)

    Kramer, K.; Hees, van A.F.M.; Jans, W.W.P.

    2001-01-01

    The use of beech seedlings from South-East European and North-West (NW) provenances for underplanting in coniferous forests in North-West Europe was investigated by means of experimental shading. The effects of this treatment on survival, morphology, phenology, physiology and growth were analysed by

  14. Plastic Growth response of European beech provenances to dry site conditions

    NARCIS (Netherlands)

    Stojnic, S.; Sass, U.G.W.; Orlovic, S.; Matovic, B.; Eilmann, B.

    2013-01-01

    Due to projected global warming, there is a great concern about the ability of European beech to adapt to future climate conditions. Provenance trials provide an excellent basis to assess the potential of various provenances to adjust to given climate conditions. In this study we compared the

  15. How climate, migration ability and habitat fragmentation affect the projected future distribution of European beech.

    Science.gov (United States)

    Saltré, Frédérik; Duputié, Anne; Gaucherel, Cédric; Chuine, Isabelle

    2015-02-01

    Recent efforts to incorporate migration processes into species distribution models (SDMs) are allowing assessments of whether species are likely to be able to track their future climate optimum and the possible causes of failing to do so. Here, we projected the range shift of European beech over the 21st century using a process-based SDM coupled to a phenomenological migration model accounting for population dynamics, according to two climate change scenarios and one land use change scenario. Our model predicts that the climatically suitable habitat for European beech will shift north-eastward and upward mainly because (i) higher temperature and precipitation, at the northern range margins, will increase survival and fruit maturation success, while (ii) lower precipitations and higher winter temperature, at the southern range margins, will increase drought mortality and prevent bud dormancy breaking. Beech colonization rate of newly climatically suitable habitats in 2100 is projected to be very low (1-2% of the newly suitable habitats colonised). Unexpectedly, the projected realized contraction rate was higher than the projected potential contraction rate. As a result, the realized distribution of beech is projected to strongly contract by 2100 (by 36-61%) mainly due to a substantial increase in climate variability after 2050, which generates local extinctions, even at the core of the distribution, the frequency of which prevents beech recolonization during more favourable years. Although European beech will be able to persist in some parts of the trailing edge of its distribution, the combined effects of climate and land use changes, limited migration ability, and a slow life-history are likely to increase its threat status in the near future. © 2014 John Wiley & Sons Ltd.

  16. Differential responses of herbivores and herbivory to management in temperate European beech.

    Directory of Open Access Journals (Sweden)

    Martin M Gossner

    Full Text Available Forest management not only affects biodiversity but also might alter ecosystem processes mediated by the organisms, i.e. herbivory the removal of plant biomass by plant-eating insects and other arthropod groups. Aiming at revealing general relationships between forest management and herbivory we investigated aboveground arthropod herbivory in 105 plots dominated by European beech in three different regions in Germany in the sun-exposed canopy of mature beech trees and on beech saplings in the understorey. We separately assessed damage by different guilds of herbivores, i.e. chewing, sucking and scraping herbivores, gall-forming insects and mites, and leaf-mining insects. We asked whether herbivory differs among different forest management regimes (unmanaged, uneven-aged managed, even-aged managed and among age-classes within even-aged forests. We further tested for consistency of relationships between regions, strata and herbivore guilds. On average, almost 80% of beech leaves showed herbivory damage, and about 6% of leaf area was consumed. Chewing damage was most common, whereas leaf sucking and scraping damage were very rare. Damage was generally greater in the canopy than in the understorey, in particular for chewing and scraping damage, and the occurrence of mines. There was little difference in herbivory among differently managed forests and the effects of management on damage differed among regions, strata and damage types. Covariates such as wood volume, tree density and plant diversity weakly influenced herbivory, and effects differed between herbivory types. We conclude that despite of the relatively low number of species attacking beech; arthropod herbivory on beech is generally high. We further conclude that responses of herbivory to forest management are multifaceted and environmental factors such as forest structure variables affecting in particular microclimatic conditions are more likely to explain the variability in herbivory

  17. Impacts of repeated timber skidding on the chemical properties of topsoil, herbaceous cover and forest floor in an eastern beech (Fagus orientalis Lipsky) stand.

    Science.gov (United States)

    Demir, Murat; Makineci, Ender; Comez, Aydin; Yilmaz, Ersel

    2010-07-01

    In this study, long-term timber skidding effects on herbaceous understory forest floor and soil were investigated on a skid road in a stand of the eastern beech (Fagus orientalis Lipsky). For this purpose, herbaceous understory forest floor and soil samples were collected from the skid road and from an undisturbed area used as a control plot. The mass (kg ha(-1)) of herbaceous and forest floor samples was determined, and soil characteristics were examined at two depths (0-5 cm and 5-10 cm). We quantified sand, silt and clay content, as well as bulk density compaction, pH, and organic carbon content in soil samples. The quantities of N, K, P, Na, Ca, Mg, Fe, Mn, Zn and Cu were determined in all herbaceous cover forest floor and soil samples. The quantities of Na, Fe, Zn, Cu and Mn in herbaceous understory samples from the skid road were considerably higher than those in the undisturbed area, while the quantity of Mg was considerably lower. These differences could have been caused by decreased herbaceous cover in addition to variations in the properties of the forest floor and soil after skidding. A lower amount of forest floor on the skid road was the result of skidding and harvesting activities. Mg and Zn contents in forest floor samples were found to be considerably lower for the skid road than for the undisturbed area. No significant differences were found in soil chemical properties (quantities of N, P, K, Na, Ca, Mg, Fe, Zn, Cu and Mn) at the 0-5 cm soil depth. Important differences exist between soil quantities of Mg at a 5-10 cm depth on the skid road and in undisturbed areas. Both 0-5 cm and 5-10 cm soil depths, the average penetrometer resistance values for the skid road was higher than for the undisturbed area. This result shows that the compaction caused by skidding is maintained to depth of 10 cm. Skid road soil showed higher bulk density values than undisturbed areas because of compaction.

  18. Alterations in the nitrogen dynamics of European beech trees infested by the woolly beech aphid

    Science.gov (United States)

    Levia, D. F.; Michalzik, B.

    2012-12-01

    Insects are a major stressor in wooded ecosystems, triggering profound changes in the hydrology, biogeochemistry, and net primary productivity of infested forests. The influence of woolly beech aphids (Phyllaphis fagi L.) on nitrogen cycling via throughfall, stemflow, and litter leachates is not well understood. Employing a combination of field sampling, X-ray photoelectron spectroscopy, and scanning electron microscopy, we examined and compared the alterations and partitioning of nitrogen (particulate, dissolved, organic, inorganic) between control (uninfested) and infested trees. Preliminary results suggest that the amount of nitrogen routed to the soil is much lower in throughfall and stemflow of infested trees than control trees. Preliminary X-ray photoelectron spectroscopy and scanning electron microscopy measurements on the abaxial surface of sample leaves have demonstrated that the surface microbiology and nitrogen chemistry of control, lightly infested, and heavily infested leaves are notably different. These observations suggest that the aphids alter the phyllosphere ecology to such an extent that they trigger nitrogen uptake by microbes on the leaf surface in the presence of easily available carbon from aphid excretions (i.e., honeydew). A better understanding of nitrogen cycling in stressed forests would advance theories of nitrogen cycling.

  19. DECLINE IN SOIL CO2 EFFLUX FOLLOWING TREE GIRTLING IN MATURE BEECH AND SPRUCE STANDS IN GERMANY

    Science.gov (United States)

    Studies were undertaken to estimate the contribution of autotrophic respiration to total soil CO2 efflux in stands of mature European beech (Fagus sylvatica) and Norway spruce (Picea abies) near Freising, Germany. Five mature trees of each species were girdled to eliminate carbo...

  20. Production and turnover of organic matter in three southern European Fagus sylvatica L

    Directory of Open Access Journals (Sweden)

    Santa Regina, I.

    1999-12-01

    Full Text Available Above-ground biomass, litterfall and litter accumulation and decomposition at the soil surface were studied within three Mediterranean beech forests from Italy, France and Spain in order to better understand the recycling of elements associated with the turnover organic matter Above-ground tree biomass amounted to 131.9 Mg ha-1 at Etna (Italy, 134.2 Mg ha-1 at Sierra de la Demanda (Spain and 223.9 Mg ha-1 at Mont Lozère (France. The highest amount of total litterfall was observed at Sierra de la Demanda (4.7 Mg ha-1 year-1, followed by the Mont Lozère (4.4 Mg ha-1 year-1 and Etna (3.9 Mg ha-1 year-1. Total organic matter accumulated on the soil surface in the three beech forests amounted to 25.8 Mg ha-1 at Mont Lozère, 14.4 Mg ha-1 at Sierra de la Demanda and 12.6 Mg ha-1 at Etna. The relative proportions of leaf litter versus total litter were nearly the same in the Etna and Sierra de la Demanda forests (72 - 70%, and close to these values for Mont Lozère (65%. All the studied Mediterranean Fagus sylvatica stands appeared very similar concerning the organic matter distribution and fluxes, even if local climate and soil differences can be noticed.

    [fr] Les biomasses aériennes, les retombées de litières, leur accumulation à la surface du sol et leur décomposition, ont été étudiées dans trois hêtraies méditerranéennes d'Italie, de France et d'Espagne, pour mieux connaître la restitution au sol des bioéléments par l'intermédiaire de la matière organique. Les biomasses aériennes s'élevaient respectivement à 131.9 Mg ha-1 dans la hêtraie de l'Etna (Italie, 134.2 Mg ha-1 dans celle de Sierra de la Demanda (Espagne et à 223.9 Mg ha-1 au Mont Lozère (France. Les retombées de litière les plus fortes sont observées dans la hêtraie de la Sierra de la

  1. Assessments of Impacts of Nitrogen Deposition on Beech Forests: Results from the Pan-European Intensive Monitoring Programme

    Directory of Open Access Journals (Sweden)

    Johannes Eichhorn

    2001-01-01

    Full Text Available The article reviews effects of nitrogen (N deposition on beech forest ecosystems in Europe. On the basis of beech plots of the Pan-European Monitoring Programme of ICP Forests and the EU, the deposition of N compounds as well as input-output budgets are listed and compared with studies in North America. The authors also discuss the critical threshold for N leaching. At present, N is leached in 10% of the plots evaluated. An in-depth evaluation of a beech plot in central Germany is presented. The high N leaching results in a considerable increase (four times higher N content in 2000 compared to 1965 in the export of nitrate from the beech forests from a nearby source. Finally, ecophysiological indicators (N content in beech leaves, fine root system, N content, root/shoot ratios are discussed as a result of high N input.

  2. A technique to artificially infest beech bark with beech scale, Cryptococcus fagisuga (Lindinger)

    Science.gov (United States)

    David R. Houston

    1982-01-01

    Beech bark disease is initiated when bark of beech trees (Fagus spp.) is attacked by the beech scale, Cryptococcus fagisuga Lindinger. The effects of the insect predispose tissues to bark cankering fungi of the genus Nectria. Critical studies of insect-fungus-host interactions had been stymied by the inability to...

  3. Variability of Physiological Parameters of European Beech Provenances in International Provenance Trials in Serbia

    Directory of Open Access Journals (Sweden)

    STOJNIĆ, Srdjan

    2010-01-01

    Full Text Available In this study, the variability of physiological parameters of five provenances of Europeanbeech (Fagus sylvatica, which were planted at two locations with different ecological conditions atFruška Gora and Debeli Lug, was estimated. Provenance trials were established in the framework ofCOST Action E52: "Evaluation of Beech Genetic Resources for Sustainable Forestry". 2-3 years oldseedlings originating from Croatia, Germany, Bosnia, Austria and Serbia were planted in blocks offifty plants with a spacing of 2 x 1 m. Physiological parameters such as net photosynthesis, rate oftranspiration and stomatal conductance were measured with a portable gas analysis system. Generally,provenances from Fruška Gora Mountain showed higher intensity of all physiological parameters thanprovenances located at site Debeli Lug. High correlations among rates of net photosynthesis andtranspiration, on one side, and stomatal conductance, on the other side, were found. ANOVA testindicates that variability of net photosynthesis, transpiration and stomatal conductance of investigatedprovenances, at the two locations, was influenced both by environmental conditions of sites andgenetic constitution of provenances.

  4. Inter-specific competition in mixed forests of Douglas-fir (Pseudotsuga menziesii) and common beech (Fagus sylvatica) under climate change – a model-based analysis

    NARCIS (Netherlands)

    Reyer, C.; Lasch, P.; Mohren, G.M.J.; Sterck, F.J.

    2010-01-01

    Mixed forests feature competitive interactions of the contributing species which influence their response to environmental change. • We analyzed climate change effects on the inter-specific competition in a managed Douglas-fir/beech mixed forest. • Therefore, we initialised the process-based forest

  5. Contributions to the phytocoenologic study in pure european beech stand forests in Codru-Moma Mountains (North-Western Romania

    Directory of Open Access Journals (Sweden)

    Călin-Gheorghe PĂŞCUŢ

    2010-05-01

    Full Text Available In the present work we present a phytocoenologic study on the associations found in pure European beech stand forests in Codru-Moma Mountains namely: Festuco drymejae-Fagetum Morariu et al. 1968, Luzulo albidae-Fagetum sylvaticae Zólyomi 1955.Characterization of the associations we studied and presentation of the tables have been made considering the selection of the most representative relevées of pure European beech forests belonging to Codru-Moma Mountains.The phytocoenoses of pure forest stands of European beech forests belonging to the two associations were analyzed in terms of floristic composition, life forms spectrum, spectrum chart of the floral elements and ecological indices.

  6. Assessing the risk caused by ground level ozone to European forest trees: A case study in pine, beech and oak across different climate regions

    Energy Technology Data Exchange (ETDEWEB)

    Emberson, Lisa D. [Stockholm Environment Institute, University of York, York YO10 5DD (United Kingdom)]. E-mail: l.emberson@york.ac.uk; Bueker, Patrick [Stockholm Environment Institute, University of York, York YO10 5DD (United Kingdom); Ashmore, Mike R. [Stockholm Environment Institute, University of York, York YO10 5DD (United Kingdom)

    2007-06-15

    Two different indices have been proposed for estimation of the risk caused to forest trees across Europe by ground-level ozone, (i) the concentration based AOT40 index (Accumulated Over a Threshold of 40 ppb) and (ii) the recently developed flux based AFstY index (Accumulated stomatal Flux above a flux threshold Y). This paper compares the AOT40 and AFstY indices for three forest trees species at different locations in Europe. The AFstY index is estimated using the DO{sub 3}SE (Deposition of Ozone and Stomatal Exchange) model parameterized for Scots pine (Pinus sylvestris), beech (Fagus sylvatica) and holm oak (Quercus ilex). The results show a large difference in the perceived O{sub 3} risk when using AOT40 and AFstY indices both between species and regions. The AOT40 index shows a strong north-south gradient across Europe, whereas there is little difference between regions in the modelled values of AFstY. There are significant differences in modelled AFstY between species, which are predominantly determined by differences in the timing and length of the growing season, the periods during which soil moisture deficit limits stomatal conductance, and adaptation to soil moisture stress. This emphasizes the importance of defining species-specific flux response variables to obtain a more accurate quantification of O{sub 3} risk. - A new flux-based model provides a revised assessment of risks of ozone impacts to European forests.

  7. Environment vs. Plant Ontogeny: Arthropod Herbivory Patterns on European Beech Leaves along the Vertical Gradient of Temperate Forests in Central Germany

    Directory of Open Access Journals (Sweden)

    Stephanie Stiegel

    2018-01-01

    Full Text Available Environmental and leaf trait effects on herbivory are supposed to vary among different feeding guilds. Herbivores also show variability in their preferences for plant ontogenetic stages. Along the vertical forest gradient, environmental conditions change, and trees represent juvenile and adult individuals in the understorey and canopy, respectively. This study was conducted in ten forests sites in Central Germany for the enrichment of canopy research in temperate forests. Arthropod herbivory of different feeding traces was surveyed on leaves of Fagus sylvatica Linnaeus (European beech; Fagaceae in three strata. Effects of microclimate, leaf traits, and plant ontogenetic stage were analyzed as determining parameters for herbivory. The highest herbivory was caused by exophagous feeding traces. Herbivore attack levels varied along the vertical forest gradient for most feeding traces with distinct patterns. If differences of herbivory levels were present, they only occurred between juvenile and adult F. sylvatica individuals, but not between the lower and upper canopy. In contrast, differences of microclimate and important leaf traits were present between the lower and upper canopy. In conclusion, the plant ontogenetic stage had a stronger effect on herbivory than microclimate or leaf traits along the vertical forest gradient.

  8. Assessing the use of delta C-13 natural abundance in separation of root and microbial respiration in a Danish beechFagus Sylvatica¤ L.) forest

    DEFF Research Database (Denmark)

    Formanek, P.; Ambus, P.

    2004-01-01

    Our understanding of forest biosphere-atmosphere interactions is fundamental for predicting forest ecosystem responses to climatic changes. Currently, however, our knowledge is incomplete partly due to inability to separate the major components of soil CO2 effluxes, viz. root respiration, microbial...... decomposition of soil organic matter and microbial decomposition of litter material. In this study we examined whether the delta(13)C characteristics of solid organic matter and respired CO2 from different soil-C components and root respiration in a Danish beech forest were useful to provide information...... layers (delta(13)C range -23.6 to -23.4parts per thousand). The CO2 evolved from root respiration in isolated young beech plants revealed a value intermediate between those for the soil humus and mineral horizons, delta(13)C(root) = -22.2parts per thousand, but was associated with great variability (SE...

  9. Growth trends of beech and Norway spruce in Switzerland: The role of nitrogen deposition, ozone, mineral nutrition and climate.

    Science.gov (United States)

    Braun, Sabine; Schindler, Christian; Rihm, Beat

    2017-12-01

    Understanding the effects of nitrogen deposition, ozone and climate on tree growth is important for planning sustainable forest management also in the future. The complex interplay of all these factors cannot be covered by experiments. Here we use observational data of mature forests for studying associations of various biotic and abiotic factors with tree growth. A 30year time series on basal area increment of Fagus sylvatica L. and Picea abies Karst. in Switzerland was analyzed to evaluate the development in relation to a variety of predictors. Basal area increment of Fagus sylvatica has clearly decreased during the observation period. For Picea abies no trend was observed. N deposition of more than 26 (beech) or 20-22kgNha(-1)year(-1) (Norway spruce) was negatively related with basal area increment, in beech stronger than in Norway spruce. High N deposition loads and low foliar K concentrations in Fagus were correlated with increased drought sensitivity. High air temperatures in winter were negatively related with basal area increment in Norway spruce in general and in beech at high N:Mg ratio or high N deposition while on an average the relation was positive in beech. Fructification in beech was negatively related to basal area increment. The increase of fructification observed during the last decades contributed thus to the growth decrease. Ozone flux was significantly and negatively correlated with basal area increment both in beech and Norway spruce. The results show clear non-linear effects of N deposition on stem increment of European beech and Norway spruce as well as strong interactions with climate which have contributed to the growth decrease in beech and may get more important in future. The results not only give suggestions for ecological processes but also show the potential of an integral evaluation of observational data. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Declining atmospheric deposition of heavy metals over the last three decades is reflected in soil and foliage of 97 beech (Fagus sylvatica) stands in the Vienna Woods.

    Science.gov (United States)

    Türtscher, Selina; Berger, Pétra; Lindebner, Leopold; Berger, Torsten W

    2017-11-01

    Rigorous studies on long-term changes of heavy metal distribution in forest soils since the implementation of emission controls are rare. Hence, we resampled 97 old-growth beech stands in the Vienna Woods. This study exploits an extensive data set of soil (infiltration zone of stemflow and between trees area) and foliar chemistry from three decades ago. It was hypothesized that declining deposition of heavy metals is reflected in soil and foliar total contents of Pb, Cu, Zn, Ni, Mn and Fe. Mean soil contents of Pb in the stemflow area declined at the highest rate from 223 to 50 mg kg-1 within the last three decades. Soil contents of Pb and Ni decreased significantly both in the stemflow area and the between trees area down to 80-90 cm soil depth from 1984 to 2012. Top soil (0-5 cm) accumulation and simultaneous loss in the lower soil over time for the plant micro nutrients Cu and Zn are suggested to be caused by plant uptake from deep horizons. Reduced soil leaching, due to a mean soil pH (H2O) increase from 4.3 to 4.9, and increased plant cycling are put forward to explain the significant increase of total Mn contents in the infiltration zone of beech stemflow. Top soil Pb contents in the stemflow area presently exceed the critical value at which toxicity symptoms may occur at numerous sites. Mean foliar contents of all six studied heavy metals decreased within the last three decades, but plant supply with the micro nutrients Cu, Zn, Mn and Fe is still in the optimum range for beech trees. It is concluded that heavy metal pollution is not critical for the studied beech stands any longer. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Micropropagation of juvenile and mature american beech

    Science.gov (United States)

    Melanie J. Barker; Paula M. Pijut; Michael E. Ostry; David R. Houston

    1997-01-01

    The purpose of this study was to micropropagate juvenile and mature American beech (Fagus grandifolia Ehrh.) resistant to beech bark disease. Shoot tips (from juvenile seedlings and root sprouts of mature trees) and buds from branches of mature trees, were cultured and multiplied on aspen culture medium supplemented with 0.89 ?M 6-benzyladenine, 0.27 ?M a-...

  12. Radial variations in cation exchange capacity and base saturation rate in the wood of pedunculate oak and European beech

    Energy Technology Data Exchange (ETDEWEB)

    Herbauts, J.; Penninckx, V.; Gruber, W.; Meerts, P. [Universite Libre de Bruxelles, Laboratoire de genetique et d' ecologie vegetales, Brussels (Belgium)

    2002-10-01

    Visual observation of pedunculate oak trees and European beech trees in a mixed forest stand in the Belgian Ardennes revealed decreasing cation concentration profiles in wood. In order to determine whether these profiles are attributable to endogenous factors or to decreased availability of cations in the soil, radial profiles of water-soluble, exchangeable and total cations were investigated. Cation exchange capacity of wood was also determined. Results showed wood cation exchange capacity to decrease from pith to bark in European beech and from pith to outer heartwood in pedunculate oak. Decreasing profiles of exchangeable calcium and magnesium in peduncular oak and exchangeable calcium in European beech were found to be strongly constrained by cation exchange capacity, and thus not related to environmental change. Base cation saturation rate showed no consistent radial change in either species. It was concluded that the results did not provide convincing evidence to attribute the decrease in divalent cation concentration in pedunculate oak and European beech in this location to be due to atmospheric pollution. 42 refs., 1 tab., 4 figs.

  13. Impacts of a water stress followed by an early frost event on beech (Fagus sylvatica L.) susceptibility to Scolytine ambrosia beetles - Research strategy and first results

    Science.gov (United States)

    La Spina, Sylvie; de Cannière, Charles; Molenberg, Jean-Marc; Vincke, Caroline; Deman, Déborah; Grégoire, Jean-Claude

    2010-05-01

    Climate change tends to induce more frequent abiotic and biotic extreme events, having large impacts on tree vitality. Weakened trees are then more susceptible to secondary insect outbreaks, as it happened in Belgium in the early 2000s: after an early frost event, secondary Scolytine ambrosia beetles attacks were observed on beech trees. In this study, we test if a combination of stress, i.e. a soil water deficit preceding an early frost, could render trees more attractive to beetles. An experimental study was set in autumn 2008. Two parcels of a beech forest were covered with plastic tents to induce a water stress by rain interception. The parcels were surrounded by 2-meters depth trenches to avoid water supply by streaming. Soil water content and different indicators of tree water use (sap flow, predawn leaf water potential, tree radial growth) were followed. In autumn 2010, artificial frost injuries will be inflicted to trees using dry ice. Trees attractivity for Scolytine insects, and the success of insect colonization will then be studied. The poster will focus on experiment setting and first results (impacts of soil water deficit on trees).

  14. Ozone exposure, defoliation of beech (Fagus sylvatica L.) and visible foliar symptoms on native plants in selected plots of South-Western Europe

    Energy Technology Data Exchange (ETDEWEB)

    Ferretti, Marco [Dipartimento di Biologia Vegetale, Universita di Firenze, Piazzale Cascine 28, I-50144 Florence (Italy)]. E-mail: m.ferretti@linnaea.it; Calderisi, Marco [Dipartimento di Biologia Vegetale, Universita di Firenze, Piazzale Cascine 28, I-50144 Florence (Italy)]. E-mail: calderisi@chemiometria.it; Bussotti, Filippo [Dipartimento di Biologia Vegetale, Universita di Firenze, Piazzale Cascine 28, I-50144 Florence (Italy)]. E-mail: filippo.bussotti@unifi.it

    2007-02-15

    The relationships between crown defoliation of beech, visible foliar symptoms on native vegetation and ozone exposure were investigated on permanent monitoring sites in South-Western Europe in the years 2000-2002. Relationships between defoliation of beech and O{sub 3} (seasonal mean, 2-week maximum, AOT40) were investigated by means of multiple regression models (11 plots, 1-3 years of data each) and a model based on temporal autocorrelation of defoliation data (14 plots, 1-3 years of data each). Different multiple regression techniques were used. The four models generated (R {sup 2} = 0.71-0.85, explained variance in cross-validation 61-78%) identified several significant predictors of defoliation, with AOT40 (p = 0.008) and foliar content of phosphorous (p = 0.0002-0.0004) being common to all models. The autocorrelation model (R {sup 2} = 0.55; p < 0.0001) was used to calculate expected defoliation on the basis of the previous year's defoliation, and model predictions were used as an estimate of expected defoliation under constant site and environmental condition. Residuals (predicted-measured) plotted against current AOT40 shows that a possible effect of ozone occurs only at very high AOT40 (>35,000 ppbh). O{sub 3}-like visible foliar symptoms were recorded on 65 species at 47% of the common monitoring sites in 2001 and 38% in 2002. No relationship was found between O{sub 3} exposure, frequency of symptomatic sites and frequency of species with symptoms (R {sup 2} = 0.11; p > 0.05). A number of questions related to the ecological and methodological basis of the survey were identified. Inherent sampling and non-sampling errors and multicollinearity of the data suggest great caution when examining results obtained from mensurational, correlative studies. - Ozone AOT40 was identified as a significant predictor of defoliation of beech, but a limited relationship was found between ozone exposure and visible symptoms on native vegetation.

  15. The high-performance liquid chromatography/multistage electrospray mass spectrometric investigation and extraction optimization of beech (Fagus sylvatica L.) bark polyphenols.

    Science.gov (United States)

    Hofmann, Tamás; Nebehaj, Esztella; Albert, Levente

    2015-05-08

    The aim of the present work was the high-performance liquid chromatographic separation and multistage mass spectrometric characterization of the polyphenolic compounds of beech bark, as well as the extraction optimization of the identified compounds. Beech is a common and widely used material in the wood industry, yet its bark is regarded as a by-product. Using appropriate extraction methods these compounds could be extracted and utilized in the future. Different extraction methods (stirring, sonication, microwave assisted extraction) using different solvents (water, methanol:water 80:20 v/v, ethanol:water 80:20 v/v) and time/temperature schedules have been compared basing on total phenol contents (Folin-Ciocâlteu) and MRM peak areas of the identified compounds to investigate optimum extraction efficiency. Altogether 37 compounds, including (+)-catechin, (-)-epicatechin, quercetin-O-hexoside, taxifolin-O-hexosides (3), taxifolin-O-pentosides (4), B-type (6) and C-type (6) procyanidins, syringic acid- and coumaric acid-di-O-glycosides, coniferyl alcohol- and sinapyl alcohol-glycosides, as well as other unknown compounds with defined [M-H](-) m/z values and MS/MS spectra have been tentatively identified. The choice of the method, solvent system and time/temperature parameters favors the extraction of different types of compounds. Pure water can extract compounds as efficiently as mixtures containing organic solvents under high-pressure and high temperature conditions. This supports the implementation of green extraction methods in the future. Extraction times that are too long and high temperatures can result in the decrease of the concentrations. Future investigations will focus on the evaluation of the antioxidant capacity and utilization possibilities of the prepared extracts. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Modelling Facilitates Silvicultural Decision-Making for Improving the Mitigating Effect of Beech (Fagus Sylvatica L. Dominated Alpine Forest against Rockfall

    Directory of Open Access Journals (Sweden)

    Petra Kajdiž

    2015-06-01

    Full Text Available In southeast Europe, silvicultural measures for improving forest protective effects against rockfall are often based on unsystematic observation and experience. We compared formalised expert assessment of forest protective effects and silvicultural decision-making with an approach supported by modelling (Rockyfor3D, Rockfor.NET, shadow angle method. The case study was conducted in Fagus sylvatica dominated Alpine forests above the regional road leading to the Ljubelj pass, in Slovenia. We analysed rock sources, silent witnesses, forest structure and regeneration. Expert assessment indicated acceptable protection effects of the forest and their decline in the future. Modelling revealed several road sections endangered by rockfalls. It also indicated subtle differences between silvicultural alternatives: current forest, current forest with cable crane lines, selection forest and non-forested slope. This outcome may be due to short transition zones, small rock sizes, low rock source heights and low resolution of the digital elevation model. Modelling requires more initial input than formalised expert assessment but gives spatially explicit results that enable comparison of silvicultural alternatives, coordination of silviculture and forest operations, and delineation of protection forests. Modelling also supported prioritising of silvicultural measures, where the necessity of silvicultural measures increases with increasing rockfall susceptibility and decreasing long-term stability of stands.

  17. Effects of Elevated Atmospheric CO2 on Microbial Community Structure at the Plant-Soil Interface of Young Beech Trees (Fagus sylvatica L.) Grown at Two Sites with Contrasting Climatic Conditions.

    Science.gov (United States)

    Gschwendtner, Silvia; Leberecht, Martin; Engel, Marion; Kublik, Susanne; Dannenmann, Michael; Polle, Andrea; Schloter, Michael

    2015-05-01

    Soil microbial community responses to elevated atmospheric CO2 concentrations (eCO2) occur mainly indirectly via CO2-induced plant growth stimulation leading to quantitative as well as qualitative changes in rhizodeposition and plant litter. In order to gain insight into short-term, site-specific effects of eCO2 on the microbial community structure at the plant-soil interface, young beech trees (Fagus sylvatica L.) from two opposing mountainous slopes with contrasting climatic conditions were incubated under ambient (360 ppm) CO2 concentrations in a greenhouse. One week before harvest, half of the trees were incubated for 2 days under eCO2 (1,100 ppm) conditions. Shifts in the microbial community structure in the adhering soil as well as in the root rhizosphere complex (RRC) were investigated via TRFLP and 454 pyrosequencing based on 16S ribosomal RNA (rRNA) genes. Multivariate analysis of the community profiles showed clear changes of microbial community structure between plants grown under ambient and elevated CO2 mainly in RRC. Both TRFLP and 454 pyrosequencing showed a significant decrease in the microbial diversity and evenness as a response of CO2 enrichment. While Alphaproteobacteria dominated by Rhizobiales decreased at eCO2, Betaproteobacteria, mainly Burkholderiales, remained unaffected. In contrast, Gammaproteobacteria and Deltaproteobacteria, predominated by Pseudomonadales and Myxococcales, respectively, increased at eCO2. Members of the order Actinomycetales increased, whereas within the phylum Acidobacteria subgroup Gp1 decreased, and the subgroups Gp4 and Gp6 increased under atmospheric CO2 enrichment. Moreover, Planctomycetes and Firmicutes, mainly members of Bacilli, increased under eCO2. Overall, the effect intensity of eCO2 on soil microbial communities was dependent on the distance to the roots. This effect was consistent for all trees under investigation; a site-specific effect of eCO2 in response to the origin of the trees was not observed.

  18. Fractionation of sulfur (S) in beech (Fagus sylvatica) forest soils in relation to distance from the stem base as useful tool for modeling S biogeochemistry.

    Science.gov (United States)

    Hanousek, Ondrej; Prohaska, Thomas; Kulhanek, Martin; Balik, Jiri; Tejnecky, Vaclav; Berger, Torsten W

    2017-09-01

    The investigation of the fractionation of S compounds in forest soils is a powerful tool for interpreting S dynamics and S biogeochemistry in forest ecosystems. Beech stands on high pH (nutrient-rich) sites on Flysch and on low pH (nutrient-poor) sites on Molasse were selected for testing the influence of stemflow, which represents a high input of water and dissolved elements to the soil, on spatial patterns of sulfur (S) fractions. Soil cores were taken at six distances from a beech stem per site at 55 cm uphill and at 27, 55, 100, 150 and 300 cm downhill from the stem. The cores were divided into the mineral soil horizons 0-3, 3-10, 10-20, 20-30 and 30-50 cm. Soil samples were characterized for pH, Corg, pedogenic Al and Fe oxides and S fractions. Sequential extraction by NH4Cl, NH4H2PO4 and HCl yielded readily available sulfate-S (RAS), adsorbed sulfate-S (AS) and HCl-soluble sulfate-S (HCS). Organic sulfur (OS) was estimated as the difference between total sulfur (ToS) and inorganic sulfur (RAS + AS + HCS). Organic sulfur was further divided into ester sulfate-S (ES, HI-reduction) and carbon bonded sulfur (CS). On Flysch, RAS represented 3-6%, AS 2-12%, HCS 0-8% and OS 81-95% of ToS. On Molasse, RAS amounted 1-6%, AS 1-60%, HCS 0-8% and OS 37-95% of ToS. Spatial S distribution patterns with respect to the distance from the tree stem base could be clearly observed at all investigated sites. The presented data is a contribution to current reports on negative input-output S budgets of forest watersheds, suggesting that mineralization of OS on nutrient rich soils and desorption of historic AS on nutrient-poor soils are the dominant S sources, which have to be considered in future modeling of sulfur.

  19. Hydraulic redistribution under moderate drought among English oak, European beech and Norway spruce determined by deuterium isotope labeling in a split-root experiment.

    Science.gov (United States)

    Hafner, Benjamin D; Tomasella, Martina; Häberle, Karl-Heinz; Goebel, Marc; Matyssek, Rainer; Grams, Thorsten E E

    2017-07-01

    Hydraulic redistribution (HR) of soil water through plant roots is a crucial phenomenon improving the water balance of plants and ecosystems. It is mostly described under severe drought, and not yet studied under moderate drought. We tested the potential of HR under moderate drought, hypothesizing that (H1) tree species redistribute soil water in their roots even under moderate drought and that (H2) neighboring plants are supported with water provided by redistributing plants. Trees were planted in split-root systems with one individual (i.e., split-root plant, SRP) having its roots divided between two pots with one additional tree each. Species were 2- to  4-year-old English oak (Quercus robur L.), European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst). A gradient in soil water potential (ψsoil) was established between the two pots (-0.55 ± 0.02 MPa and -0.29 ± 0.03 MPa), and HR was observed by labeling with deuterium-enriched water. Irrespective of species identity, 93% of the SRPs redistributed deuterium enriched water from the moist to the drier side, supporting H1. Eighty-eight percent of the plants in the drier pots were deuterium enriched in their roots, with 61 ± 6% of the root water originating from SRP roots. Differences in HR among species were related to their root anatomy with diffuse-porous xylem structure in both beech and-opposing the stem structure-oak roots. In spruce, we found exclusively tracheids. We conclude that water can be redistributed within roots of different tree species along a moderate ψsoil gradient, accentuating HR as an important water source for drought-stressed plants, with potential implications for ecohydrological and plant physiological sciences. It remains to be shown to what extent HR occurs under field conditions in Central Europe. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Effects of simultaneous ozone exposure and nitrogen loads on carbohydrate concentrations, biomass, growth, and nutrient concentrations of young beech trees (Fagus sylvatica)

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, V.F.D. [Institute for Applied Plant Biology, Sandgrubenstr. 25/27, 4124 Schoenenbuch (Switzerland)]. E-mail: vera.thomas@iap.ch; Braun, S. [Institute for Applied Plant Biology, Sandgrubenstr. 25/27, 4124 Schoenenbuch (Switzerland); Flueckiger, W. [Institute for Applied Plant Biology, Sandgrubenstr. 25/27, 4124 Schoenenbuch (Switzerland)

    2006-09-15

    Beech seedlings were grown under different nitrogen fertilisation regimes (0, 20, 40, and 80 kg N ha{sup -1} yr{sup -1}) for three years and were fumigated with either charcoal-filtered (F) or ambient air (O{sub 3}). Nitrogen fertilisation increased leaf necroses, aphid infestations, and nutrient ratios in the leaves (N:P and N:K), as a result of decreased phosphorus and potassium concentrations. For plant growth, biomass accumulation, and starch concentrations, a positive nitrogen effect was found, but only for fertilisations of up to 40 kg N ha{sup -1} yr{sup -1}. The highest nitrogen load, however, reduced leaf area, leaf water content, growth, biomass accumulation, and starch concentrations, whereas soluble carbohydrate concentrations were enhanced. The ozone fumigation resulted in reduced leaf area, leaf water content, shoot growth, root biomass accumulation, and decreased starch, phosphorus, and potassium concentrations, increasing the N:P and N:K ratios. A combined effect of the two pollutants was detected for the leaf area and the shoot elongation, where ozone fumigation amplified the nitrogen effects. - The effects of nitrogen and ozone on growth, carbohydrate concentrations, and nutrients are mainly additive.

  1. The role of the organic layer for phosphorus nutrition of young beech trees (Fagus sylvatica L.) at two sites differing in soil Phosphorus availability

    Science.gov (United States)

    Hauenstein, Simon

    2016-04-01

    Simon Hauenstein1, Thomas Pütz2, and Yvonne Oelmann1, 1 Geoecology, Department of Geosciences, University of Tübingen, Tübingen, Germany 2 Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich, Germany The accumulation of an organic layer in forests is linked to the ratio between litterfall rates and decomposition rates with decomposition rates being decelerated due to acidification and associated nutrient depletion with proceeding ecosystem development. Nevertheless, the nutrient pool in the organic layer might still represent an important source for Phosphorus (P) nutrition of forests on nutrient-poor soils. Our objective was to assess the importance of the organic layer to P nutrition of young beech trees at two sites differing in soil P availability. We established a mesocosm experiment including plants and soil from a Phosphorus depleted forest site on a Haplic Podzol in Lüss and a Phosphorus rich forest site on a Eutric Cambisol in Bad Brückenau either with or without the organic layer. After 1 year under outdoor conditions, we applied 33P to the pots. After 0h, 24h, 48h, 96h, 192h, 528h we destructively harvested the young beech trees (separated into leaves, branches, stems) and sampled the organic layer and mineral soil of the pots. In each soil horizon we measured concentrations of resin-extractable P, plant available P fractions and total P. We extracted the xylem sap of the whole 2-year-old trees by means of scholander pressure bomb. 33P activity was measured for every compartment in soil and plant. The applied 33P was recovered mainly in the organic layer in Lüss, whereas it was evenly distributed among organic and mineral horizons in pots of Bad Brückenau soil. Comparing pots with and without an organic layer, the specific 33P activity differed by 323% between pots with and without an organic layer present in the Lüss soil. For both sites, the presence of the organic layer increased 33P activity in xylem sap compared to the treatment without

  2. The effect of carbohydrate accumulation and nitrogen deficiency on feedback regulation of photosynthesis in beech (Fagus sylvatica) under elevated CO2 concentration

    Science.gov (United States)

    Klem, K.; Urban, O.; Holub, P.; Rajsnerova, P.

    2012-04-01

    One of the main manifestations of global change is an increase in atmospheric CO2 concentration. Elevated concentration of CO2 has stimulating effect on plant photosynthesis and consequently also on the productivity. Long-term studies, however, show that this effect is progressively reduced due to feedback regulation of photosynthesis. The main causes of this phenomenon are considered as two factors: i) increased biomass production consumes a larger amount of nitrogen from the soil and this leads to progressive nitrogen limitation of photosynthesis, particularly at the level of the enzyme Rubisco, ii) the sink capacity is genetically limited and elevated CO2 concentration leads to increased accumulation of carbohydtrates (mainly sucrose, which is the main transport form of assimilates) in leaves. Increased concentrations of carbohydrates leads to a feedback regulation of photosynthesis by both, long-term feedback regulation of synthesis of the enzyme Rubisco, and also due to reduced capacity to produce ATP in the chloroplasts. However, mechanisms for interactive effects of nitrogen and accumulation of non-structural carbohydrates are still not well understood. Using 3-year-old Fagus sylvatica seedlings we have explored the interactive effects of nitrogen nutrition and sink capacity manipulation (sucrose feeding) on the dynamics of accumulation of non-structural carbohydrates and changes in photosynthetic parameters under ambient (385 μmol (CO2) mol-1) and elevated (700 μmol(CO2) mol-1) CO2 concentration. Sink manipulation by sucrose feeding led to a continuous increase of non-structural carbohydrates in leaves, which was higher in nitrogen fertilized seedlings. The accumulation of non-structural carbohydrates was also slightly stimulated by elevated CO2 concentration. Exponential decay (p carbohydrates increased. However, this relationship was modified by the nitrogen content. Accumulation of non-structural carbohydrates had relatively smaller effect on actual

  3. Water shortage affects the water and nitrogen balance in Central European beech forests.

    Science.gov (United States)

    Gessler, A; Keitel, C; Nahm, M; Rennenberg, H

    2004-05-01

    Whilst forest policy promotes cultivation and regeneration of beech dominated forest ecosystems, beech itself is a highly drought sensitive tree species likely to suffer from the climatic conditions prognosticated for the current century. Taking advantage of model ecosystems with cool-moist and warm-dry local climate, the latter assumed to be representative for future climatic conditions, the effects of climate and silvicultural treatment (different thinning regimes) on water status, nitrogen balance and growth parameters of adult beech trees and beech regeneration in the understorey were assessed. In addition, validation experiments with beech seedlings were carried out under controlled conditions, mainly in order to assess the effect of drought on the competitive abilities of beech. As measures of water availability xylem flow, shoot water potential, stomatal conductance as well as delta (13)C and delta (18)O in different tissues (leaves, phloem, wood) were analysed. For the assessment of nitrogen balance we determined the uptake of inorganic nitrogen by the roots as well as total N content and soluble N compounds in different tissues of adult and young trees. Retrospective and current analysis of delta (13)C, growth and meteorological parameters revealed that beech growing under warm-dry climatic conditions were impaired in growth and water balance during periods with low rain-fall. Thinning affected water, N balance and growth mostly of young beech, but in a different way under different local climatic conditions. Under cool, moist conditions, representative for the current climatic and edaphic conditions in beech forests of Central Europe, thinning improves nutrient and water status consistent to published literature and long-term experience of forest practitioners. However, beech regeneration was impaired as a result of thinning at higher temperatures and under reduced water availability, as expected in future climate.

  4. Soil respiration rates and δ13C(CO2) in natural beech forest (Fagus sylvatica L.) in relation to stand structure.

    Science.gov (United States)

    Cater, Matjaz; Ogrinc, Nives

    2011-06-01

    Soil respiration rates were studied as a function of soil type, texture and light intensity at five selected natural beech forest stands with contrasting geology: stands on silicate bedrock at Kladje and Bricka in Pohorje, a stand on quartz sandstone at Vrhovo and two stands on a carbonate bedrock in the Karstic-Dinaric area in Kocevski Rog, Snezna jama and Rajhenav, Slovenia, during the growing season in 2005-2006. Soil respiration exhibited pronounced seasonal and spatial variations in the studied forest ecosystem plots. The CO(2) flux rates ranged from minimum averages of 2.3 μmol CO(2) m(-2) s(-1) (winter) to maximum averages of about 7 μmol CO(2) m(-2) s(-1) (summer) at all the investigated locations. An empirical model describing the relationship between soil respiration and soil temperature predicted seasonal variations in soil respiration reasonably well during 2006. Nevertheless, there were also some indications that soil moisture in relation to soil texture could influence the soil CO(2) efflux rates in both sampling seasons. It was shown that spatial variability of mean soil respiration at the investigated sites was high and strongly related to root biomass. Based on the [image omitted]  data, it was shown that new photoassimilates could account for a major part of the total soil respiration under canopy conditions in forest ecosystems where no carbonate rocks are present, indicating that microbial respiration could not always dominate bulk soil CO(2) fluxes. At Snezna jama and Rajhenav, the abiotic CO(2) derived from carbonate dissolution had a pronounced influence on CO(2) efflux accounting, on average, to ∼17%. Further spatial heterogeneity of soil respiration was clearly affected by management practice. Higher respiration rates as well as higher variability in respiration rates were observed in the virgin forest (Rajhenav) than in the management forest (Snezna jama) and could be related to a higher amount of detritus and consequently to less

  5. Comparison of pollen gene flow among four European beech (Fagus sylvatica L.) populations characterized by different management regimes

    NARCIS (Netherlands)

    Piotti, A.; Leonardi, S.; Buiteveld, J.; Geburek, T.; Gerber, S.; Kramer, K.; Vettori, C.; Vendramin, G.G.

    2012-01-01

    The study of the dispersal capability of a species can provide essential information for the management and conservation of its genetic variability. Comparison of gene flow rates among populations characterized by different management and evolutionary histories allows one to decipher the role of

  6. China's Beech Forests in the Pre-Quaternary

    Directory of Open Access Journals (Sweden)

    L. Yu-Sheng

    1998-01-01

    Full Text Available Fagus in China is never dominant in Late Cretaceous and Tertiary floras although it might reach its highest diversity in the Miocene. The genus Fagus was more widely distributed during the Palaeogene than in the Neogene. Furthermore, the ecological requirements of Fagus in the Palaeogene seem much broader than those in the Neogene onwards. This is because the Palaeogene floras containing Fagus lived in various conditions from an arid and hot climate to a humid and warm habitat. Additionally, Fagus then coexisted with many kinds of hygrophilous, thermophilous and xerophilous plants. However, the wide distribution, broad ecological adaptation and species composition changed greatly in the Neogene. The Neogene Fagus-containing floras are slightly more similar to the modern beech forests than the Palaeogene ones, although a big difference remains. Chinese fossil data document the post-Tertiary development of the modern beech forests. doi:10.1002/mmng.19980010111

  7. Effect of flooding on C metabolism of flood-tolerant (Quercus robur) and non-tolerant (Fagus sylvatica) tree species.

    Science.gov (United States)

    Ferner, Eleni; Rennenberg, Heinz; Kreuzwieser, Jürgen

    2012-02-01

    Flooding is assumed to cause an energy crisis in plants because-due to a lack of O(2)-mitochondrial respiration is replaced by alcoholic fermentation which yields considerably less energy equivalents. In the present study, the effect of flooding on the carbon metabolism of flooding-tolerant pedunculate oak (Quercus robur L.) and flooding-sensitive European beech (Fagus sylvatica L.) seedlings was characterized. Whereas soluble carbohydrate concentrations dropped in roots of F. sylvatica, they were constant in Q. robur during flooding. At the same time, root alcohol dehydrogenase activities were decreased in beech but not in oak, suggesting substrate limitation of alcoholic fermentation in beech roots. Surprisingly, leaf and phloem sap sugar concentrations increased in both species but to a much higher degree in beech. This finding suggests that the phloem unloading process in flooding-sensitive beech was strongly impaired. It is assumed that root-derived ethanol is transported to the leaves via the transpiration stream. This mechanism is considered an adaptation to flooding because it helps avoid the accumulation of toxic ethanol in the roots and supports the whole plant's carbon metabolism by channelling ethanol into the oxidative metabolism of the leaves. A labelling experiment demonstrated that in the leaves of flooded trees, ethanol metabolism does not differ between flooded beech and oak, indicating that processes in the roots are crucial for the trees' flooding tolerance.

  8. Temporal changes in the climate sensitivity of Norway spruce andEuropean beech along an elevation gradient in Central Europe

    Czech Academy of Sciences Publication Activity Database

    Kolář, Tomáš; Čermák, P.; Trnka, Miroslav; Žid, T.; Rybníček, Michal

    2017-01-01

    Roč. 2017, č. 239 (2017), s. 24-33 ISSN 0168-1923 R&D Projects: GA MŠk(CZ) LO1415; GA ČR GA13-04291S EU Projects: European Commission(XE) EHP-CZ02-0V-1-066-01-2014 Institutional support: RVO:67179843 Keywords : czech republic * drought * fagus sylvatica * picea abies * temperature * tree-ring width chronology Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.887, year: 2016

  9. The effects of habitat degradation on metacommunity structure of wood-inhabiting fungi in European beech forests

    DEFF Research Database (Denmark)

    Halme, Panu; Ódor, Péter; Christensen, Morten

    2013-01-01

    with different management histories. For this purpose, we used a large data set of wood-inhabiting fungi collected from dead beech trees in European beech-dominated forest reserves. The structure of fungal assemblages showed high beta diversity, while nestedness and similarity was low. During the decomposition...... extirpated specialized species from the local species pools in managed sites, and resulted in more homogeneous communities in managed sites. It is alarming that community structure is affected the most in the latest decay stages where the decay process turns the dead wood into litter, and which is thus......Intensive forest management creates habitat degradation by reducing the variation of forest stands in general, and by removing old trees and dead wood in particular. Non-intervention forest reserves are commonly believed to be the most efficient tool to counteract the negative effects...

  10. Do variations in leaf phenology affect radial growth variations in Fagus sylvatica?

    Science.gov (United States)

    Čufar, Katarina; De Luis, Martin; Prislan, Peter; Gričar, Jožica; Črepinšek, Zalika; Merela, Maks; Kajfež-Bogataj, Lučka

    2015-08-01

    We used a dendrochronological and leaf phenology network of European beech (Fagus sylvatica) in Slovenia, a transitional area between Mediterranean, Alpine and continental climatic regimes, for the period 1955-2007 to test whether year to year variations in leaf unfolding and canopy duration (i.e. time between leaf unfolding and colouring) influence radial growth (annual xylem production and tree ring widths) and if such influences are more pronounced at higher altitudes. We showed that variability in leaf phenology has no significant effect on variations in radial growth. The results are consistent in the entire region, irrespective of the climatic regime or altitude, although previous studies have shown that leaf phenology and tree ring variation depend on altitude. The lack of relationship between year to year variability in leaf phenology and radial growth may suggest that earlier leaf unfolding--as observed in a previous study--probably does not cause increased tree growth rates in beech in Slovenia.

  11. Ecology of beech forests in the northern hemisphere

    NARCIS (Netherlands)

    Peters, R.

    1992-01-01

    Beech forests are dominated or codominated by at least one Fagus species. The beeches are a homogeneous group of 11 deciduous tree species growing in the Northern Hemisphere (Figure 1.1). They often dominate forest ecosystems throughout their ranges. The optimum for

  12. Carbon and Nitrogen Pools and Fluxes in Adjacent Mature Norway Spruce and European Beech Forests

    Czech Academy of Sciences Publication Activity Database

    Oulehle, Filip; Růžek, M.; Tahovská, K.; Bárta, J.; Myška, O.

    2016-01-01

    Roč. 7, č. 11 (2016), č. článku 282. ISSN 1999-4907 Institutional support: RVO:67179843 Keywords : Fagus sylvatica * Picea abies * carbon * nitrogen * budget * respiration * productivity Subject RIV: EH - Ecology, Behaviour Impact factor: 1.951, year: 2016

  13. Joining of the historical research and future prediction as a support tool for the assessment of management strategy for European beech-dominated forests in protected areas

    Directory of Open Access Journals (Sweden)

    Ivo Machar

    2017-10-01

    Full Text Available European beech-dominated forests are crucial for maintaining biodiversity in forested mountain landscapes of the European temperate zone. This paper presents the results of research and assessment of management strategy for mountain beech-dominated forests in the Jeseníky Mountains (Czech Republic. Our approach is based on combining research on historical development of the forest ecosystem, assessment of its current state, and predictions of future dynamics using a forest growth simulation model. Using such a method makes it possible to understand the current state of the mountain beech-dominated forest ecosystem and predict its future development as a response to specific management strategies. The application of this method is therefore appropriate for assessing the suitability of selected management strategies in mountain protected areas. Our results show that a non-intervention management for mountain beech forest in the next 80 years complies with the Natura 2000 requirement to maintain the existing character of the forest habitat. Thus, the current management plan for the beech-dominated forests in the Jeseníky Mountains does not require significant corrections in the context of its conservation targets (i.e. maintaining biodiversity and current character of the forest ecosystem dominated by beech. The results of this study suggest that combining the knowledge on historical development with forest growth simulation can be used as a suitable support tool to assess management strategies for forest habitats in protected areas.

  14. Radial patterns of 13 elements in the tree rings of beech trees from Mavrovo National park, FYROM

    Directory of Open Access Journals (Sweden)

    Hristovski S.

    2010-01-01

    Full Text Available The radial patterns of 13 elements (N, P, K, Ca, Mg, Fe, Na, Mn, Zn, Cu, Pb, Cd and Co were analyzed in the tree rings of European beech (Fagus sylvatica L.. The study site was located in an 'unpolluted' beech ecosystem in Mavrovo National Park. Thus, the obtained radial patterns in the beech trees were considered to be physiologically driven without significant pollution influence. The influence of the main climatic factors (temperature and rainfall was tested. The radial patterns of individual trees were compared in order to find individual responses to environmental impacts. For most of the elements, higher concentrations were recorded in the pith and outer-most rings and lower in the middle part of the wood. The concentration of heavy metals was low, and followed the physiological patterns of other biogenic elements.

  15. Effects of Mefenoxam, Phosphonate, and Paclobutrazol on In Vitro Characteristics of Phytophthora cactorum and P. citricola and on Canker Size of European Beech

    Science.gov (United States)

    Phytophthora citricola and P. cactorum cause bleeding cankers that lead to the death of mature European beech in the northeastern United States. Because of the economic value placed on these trees, experiments were conducted to investigate the effects of two fungicides and a plant growth regulator ...

  16. Nitrate transport processes in Fagus-Laccaria-mycorrhizae

    NARCIS (Netherlands)

    Kreuzwieser, J; Stulen, [No Value; Wiersema, P; Vaalburg, W; Rennenberg, H

    2000-01-01

    The contribution of influx and efflux of NO3- on NO3- net uptake has been studied in excised mycorrhizae of 18-20 week old beech (Fagus sylvatica L.) trees. Net uptake rates of NO3- followed uniphasic Michaelis-Menten kinetics in the concentration range between 10 mu M and 1.0 mM external NO3-, with

  17. Upland beech trees significantly contribute to forest methane exchange

    Science.gov (United States)

    Machacova, Katerina; Maier, Martin; Svobodova, Katerina; Halaburt, Ellen; Haddad, Sally; Lang, Friederike; Urban, Otmar

    2016-04-01

    Methane (CH4) can be emitted not only from soil, but also from plants. Fluxes of CH4were predominantly investigated in riparian herbaceous plants, whereas studies on trees, particularly those lacking an aerenchyma, are rare. In soil produced CH4 can be taken up by roots, transported via intercellular spaces and the aerenchyma system, or transpiration stream to aboveground plant tissues and released to the atmosphere via lenticels or stomata. Although CH4 might be also produced by microorganisms living in plant tissues or photochemical processes in plants, these processes are relatively minor. It has been shown that seedlings of European beech (Fagus sylvatica) emit CH4 from its stems despite the lack of an aerenchyma. Our objectives were to determine the CH4 fluxes from mature beech trees and adjacent soil under natural field conditions, and to estimate the role of trees in the CH4exchange within the soil-tree-atmosphere continuum. Measurements were conducted in two mountain beech forests with different geographical and climatic conditions (White Carpathians, Czech Republic; Black Forest, Germany). CH4 fluxes at stems (profile) and root bases level were simultaneously measured together with soil-atmosphere fluxes using static chamber systems followed by chromatographic analysis or continuous laser detection of CH4 concentrations. Our study shows that mature beech trees have the ability to exchange CH4 with the atmosphere. The beech stems emitted CH4 into the atmosphere at the White Carpathians site in the range from 2.00 to 179 μg CH4 m-2 stem area h-1, while CH4 flux rates ranged between -1.34 to 1.73 μg CH4 m-2 h-1 at the Black Forest site. The root bases of beech trees from the White Carpathians released CH4 into the atmosphere (from 0.62 to 49.8 μg CH4 m-2 root area h-1), whereas a prevailing deposition was observed in the Black Forest (from -1.21 to 0.81 μg CH4 m-2 h-1). These fluxes seem to be affected by soil water content and its spatial heterogeneity

  18. Effect of species composition on carbon and nitrogen stocks in forest floor and mineral soil in Norway spruce and European beech mixed forests

    Science.gov (United States)

    Andivia, Enrique; Rolo, Víctor; Jonard, Mathieu; Formánek, Pavel; Ponette, Quentin

    2015-04-01

    Management of existing forests has been identified as the main strategy to enhance carbon sequestration and to mitigate the impact of climate change on forest ecosystems. In this direction, the conversion of Norway spruce monospecific stands into mixed stands by intermingling individuals of European beech is an ongoing trend in adaptive forest management strategies, especially in Central Europe. However, studies assessing the effect of changes in tree species composition on soil organic carbon (SOC) and nitrogen stocks are still scarce and there is a lack of scientific evidence supporting tree species selection as a feasible management option to mitigate the effects of predicted future climatic scenarios. We compared C and N stocks in the forest floor (litter and humus) and the top 10 cm of mineral soil in two monospecific stands of Norway spruce and European beech and in a mixed stand of both species. The effect of tree species composition on the C and N stocks and its spatial distribution was evaluated based on litterfall, root production, elevation and canopy opening, and by using a combination of modelling and geostatistical techniques. C stock was highest in the Norway spruce and the mixed stands, while N stock was highest in the mixed stand and lowest under European beech, with intermediate values in the Norway spruce stand. Each forest type showed differences in forest floor properties, suggesting that species composition is an important factor governing forest floor characteristics, including C and N stocks. The distribution of C and N stocks between forest soil layers was different for each forest type. C and N stocks were highest in the hummus layer under Norway spruce, whereas both stocks were lowest in the European beech stand. On the other hand, the mixed stand showed the highest C and N accumulation in the uppermost mineral soil layer, while the monospecific stands showed similar values. Litterfall was the main contribution to C and N stocks of the

  19. Drought-adaptation potential in Fagus sylvatica: linking moisture availability with genetic diversity and dendrochronology.

    Directory of Open Access Journals (Sweden)

    Andrea R Pluess

    Full Text Available BACKGROUND: Microevolution is essential for species persistence especially under anticipated climate change scenarios. Species distribution projection models suggested that the dominant tree species of lowland forests in Switzerland, European beech (Fagus sylvatica L., might disappear from most areas due to expected longer dry periods. However, if genotypes at the moisture boundary of the species climatic envelope are adapted to lower moisture availability, they can serve as seed source for the continuation of beech forests under changing climates. METHODOLOGY/PRINCIPAL FINDINGS: With an AFLP genome scan approach, we studied neutral and potentially adaptive genetic variation in Fagus sylvatica in three regions containing a dry and a mesic site each (n(ind. = 241, n(markers = 517. We linked this dataset with dendrochronological growth measures and local moisture availabilities based on precipitation and soil characteristics. Genetic diversity decreased slightly at dry sites. Overall genetic differentiation was low (F(st = 0.028 and Bayesian cluster analysis grouped all populations together suggesting high (historical gene flow. The Bayesian outlier analyses indicated 13 markers with three markers differing between all dry and mesic sites and the others between the contrasting sites within individual regions. A total of 41 markers, including seven outlier loci, changed their frequency with local moisture availability. Tree height and median basal growth increments were reduced at dry sites, but marker presence/absence was not related to dendrochronological characteristics. CONCLUSION AND THEIR SIGNIFICANCE: The outlier alleles and the makers with changing frequencies in relation to moisture availability indicate microevolutionary processes occurring within short geographic distances. The general genetic similarity among sites suggests that 'preadaptive' genes can easily spread across the landscape. Yet, due to the long live span of

  20. Drought-adaptation potential in Fagus sylvatica: linking moisture availability with genetic diversity and dendrochronology.

    Science.gov (United States)

    Pluess, Andrea R; Weber, Pascale

    2012-01-01

    Microevolution is essential for species persistence especially under anticipated climate change scenarios. Species distribution projection models suggested that the dominant tree species of lowland forests in Switzerland, European beech (Fagus sylvatica L.), might disappear from most areas due to expected longer dry periods. However, if genotypes at the moisture boundary of the species climatic envelope are adapted to lower moisture availability, they can serve as seed source for the continuation of beech forests under changing climates. With an AFLP genome scan approach, we studied neutral and potentially adaptive genetic variation in Fagus sylvatica in three regions containing a dry and a mesic site each (n(ind.) = 241, n(markers) = 517). We linked this dataset with dendrochronological growth measures and local moisture availabilities based on precipitation and soil characteristics. Genetic diversity decreased slightly at dry sites. Overall genetic differentiation was low (F(st) = 0.028) and Bayesian cluster analysis grouped all populations together suggesting high (historical) gene flow. The Bayesian outlier analyses indicated 13 markers with three markers differing between all dry and mesic sites and the others between the contrasting sites within individual regions. A total of 41 markers, including seven outlier loci, changed their frequency with local moisture availability. Tree height and median basal growth increments were reduced at dry sites, but marker presence/absence was not related to dendrochronological characteristics. CONCLUSION AND THEIR SIGNIFICANCE: The outlier alleles and the makers with changing frequencies in relation to moisture availability indicate microevolutionary processes occurring within short geographic distances. The general genetic similarity among sites suggests that 'preadaptive' genes can easily spread across the landscape. Yet, due to the long live span of trees, fostering saplings originating from dry sites and

  1. Attitudes of ornamental trees and shrubs producers towards nursery production of ornamental beech cultivars in Serbia

    Directory of Open Access Journals (Sweden)

    Nonić Marina

    2016-01-01

    Full Text Available European beech (Fagus sylvatica L. is, along with its significance as a forest species, renowned as an ornamental species, due to its numerous cultivars. Ornamental beech cultivars are planted in various green spaces, but a small number of such trees have ascertained in Serbia. For the time being, production of beech cultivars is represented in a very small number of nurseries, with a negligible share of those seedlings in their total assortment. The aim of this research is to study the attitudes of ornamental trees and shrubs producers towards the nursery production of ornamental beech cultivars, and possibilities of its improvements in Serbia. “Door to door” survey and in-depth interviews were used as research techniques. Surveys with the representatives of 65 nurseries in Serbia (in the selected statistical region Šumadija and Western Serbia were conducted in the first stage of data collection. In the second stage of data collection were interviewed the representatives of the 10 nurseries who, during the survey, pointed out that they produce ornamental beech cultivars. Nurserymen’s attitudes suggest that there is a possibility to improve the production of ornamental beech cultivars in Serbia, with the appropriate support measures and increased interest of customers on the market, i.e. with the provision of subsidies for the production of seedlings and greater use of cultivars by utility companies in the cities of Serbia. [Projekat Ministarstva nauke Republike Srbije, br. ТP 31041: Establishment of forest plantations to increase the afforested areas in Serbia

  2. Living on the Edge: Contrasted Wood-Formation Dynamics in Fagus sylvatica and Pinus sylvestris under Mediterranean Conditions.

    Science.gov (United States)

    Martinez Del Castillo, Edurne; Longares, Luis A; Gričar, Jožica; Prislan, Peter; Gil-Pelegrín, Eustaquio; Čufar, Katarina; de Luis, Martin

    2016-01-01

    Wood formation in European beech (Fagus sylvatica L.) and Scots pine (Pinus sylvestris L.) was intra-annually monitored to examine plastic responses of the xylem phenology according to altitude in one of the southernmost areas of their distribution range, i.e., in the Moncayo Natural Park, Spain. The monitoring was done from 2011 to 2013 at 1180 and 1580 m a.s.l., corresponding to the lower and upper limits of European beech forest in this region. Microcores containing phloem, cambium and xylem were collected biweekly from twenty-four trees from the beginning of March to the end of November to assess the different phases of wood formation. The samples were prepared for light microscopy to observe the following phenological phases: onset and end of cell production, onset and end of secondary wall formation in xylem cells and onset of cell maturation. The temporal dynamics of wood formation widely differed among years, altitudes and tree species. For Fagus sylvatica, the onset of cambial activity varied between the first week of May and the third week of June. Cambial activity then slowed down and stopped in summer, resulting in a length of growing season of 48-75 days. In contrast, the growing season for P. sylvestris started earlier and cambium remained active in autumn, leading to a period of activity varying from 139-170 days. The intra-annual wood-formation pattern is site and species-specific. Comparison with other studies shows a clear latitudinal trend in the duration of wood formation, positive for Fagus sylvatica and negative for P. sylvestris.

  3. Living on the edge: contrasted wood-formation dynamics in Fagus sylvatica and Pinus sylvestris under Mediterranean conditions

    Directory of Open Access Journals (Sweden)

    Edurne eMartinez Del Castillo

    2016-03-01

    Full Text Available Wood formation in European beech (Fagus sylvatica L. and Scots pine (Pinus sylvestris L. was intra-annually monitored to examine plastic responses of the xylem phenology according to altitude in one of the southernmost areas of their distribution range, i.e. in the Moncayo Natural Park, Spain. The monitoring was done from 2011 to 2013 at 1180 and 1580 m a.s.l., corresponding to the lower and upper limits of European beech forest in this region. Microcores containing phloem, cambium and xylem were collected biweekly from twenty-four trees from the beginning of March to the end of November to assess the different phases of wood formation. The samples were prepared for light microscopy to observe the following phenological phases: onset and end of cell production, onset and end of secondary wall formation in xylem cells and onset of cell maturation. The temporal dynamics of wood formation widely differed among years, altitudes and tree species. For Fagus sylvatica, the onset of cambial activity varied between the first week of May and the third week of June. Cambial activity then slowed down and stopped in summer, resulting in a length of growing season of 48–75 days. In contrast, the growing season for Pinus sylvestris started earlier and cambium remained active in autumn, leading to a period of activity varying from 139-170 days. The intra-annual wood-formation pattern is site and species-specific. Comparison with other studies shows a clear latitudinal trend in the duration of wood formation, positive for Fagus sylvatica and negative for Pinus sylvestris.

  4. Do interactions between plant and soil biota change with elevation? A study on Fagus sylvatica.

    Science.gov (United States)

    Defossez, Emmanuel; Courbaud, Benoît; Marcais, Benoît; Thuiller, Wilfried; Granda, Elena; Kunstler, Georges

    2011-10-23

    Theoretical models predict weakening of negative biotic interactions and strengthening of positive interactions with increasing abiotic stress. However, most empirical tests have been restricted to plant-plant interactions. No empirical study has examined theoretical predictions of interactions between plants and below-ground micro-organisms, although soil biota strongly regulates plant community composition and dynamics. We examined variability in soil biota effects on tree regeneration across an abiotic gradient. Our candidate tree species was European beech (Fagus sylvatica L.), whose regeneration is extremely responsive to soil biota activity. In a greenhouse experiment, we measured tree survival in sterilized and non-sterilized soils collected across an elevation gradient in the French Alps. Negative effects of soil biota on tree survival decreased with elevation, similar to shifts observed in plant-plant interactions. Hence, soil biota effects must be included in theoretical models of plant biotic interactions to accurately represent and predict the effects of abiotic gradient on plant communities.

  5. A slight recovery of soils from Acid Rain over the last three decades is not reflected in the macro nutrition of beech (Fagus sylvatica) at 97 forest stands of the Vienna Woods.

    Science.gov (United States)

    Berger, Torsten W; Türtscher, Selina; Berger, Pétra; Lindebner, Leopold

    2016-09-01

    Rigorous studies of recovery from soil acidification are rare. Hence, we resampled 97 old-growth beech stands in the Vienna Woods. This study exploits an extensive data set of soil (infiltration zone of stemflow and between trees area at different soil depths) and foliar chemistry from three decades ago. It was hypothesized that declining acidic deposition is reflected in soil and foliar chemistry. Top soil pH within the stemflow area increased significantly by 0.6 units in both H2O and KCl extracts from 1984 to 2012. Exchangeable Ca and Mg increased markedly in the stemflow area and to a lower extent in the top soil of the between trees area. Trends of declining base cations in the lower top soil were probably caused by mobilization of organic S and associated leaching with high amounts of sulfate. Contents of C, N and S decreased markedly in the stemflow area from 1984 to 2012, suggesting that mineralization rates of organic matter increased due to more favorable soil conditions. It is concluded that the top soil will continue to recover from acidic deposition. However, in the between trees areas and especially in deeper soil horizons recovery may be highly delayed. The beech trees of the Vienna Woods showed no sign of recovery from acidification although S deposition levels decreased. Release of historic S even increased foliar S contents. Base cation levels in the foliage declined but are still adequate for beech trees. Increasing N/nutrient ratios over time were considered not the result of marginally higher N foliar contents in 2012 but of diminishing nutrient uptake due to the decrease in ion concentration in soil solution. The mean foliar N/P ratio already increased to the alarming value of 31. Further nutritional imbalances will predispose trees to vitality loss. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Eddy-covariance methane flux measurements over a European beech forest

    Science.gov (United States)

    Gentsch, Lydia; Siebicke, Lukas; Knohl, Alexander

    2015-04-01

    The role of forests in global methane (CH4) turnover is currently not well constrained, partially because of the lack of spatially integrative forest-scale measurements of CH4 fluxes. Soil chamber measurements imply that temperate forests generally act as CH4 sinks. Upscaling of chamber observations to the forest scale is however problematic, if the upscaling is not constrained by concurrent 'top-down' measurements, such as of the eddy-covariance type, which provide sufficient integration of spatial variations and of further potential CH4 flux components within forest ecosystems. Ongoing development of laser absorption-based optical instruments, resulting in enhanced measurement stability, precision and sampling speed, has recently improved the prospects for meaningful eddy-covariance measurements at sites with presumably low CH4 fluxes, hence prone to reach the flux detection limit. At present, we are launching eddy-covariance CH4 measurements at a long-running ICOS flux tower site (Hainich National Park, Germany), located in a semi natural, unmanaged, beech dominated forest. Eddy-covariance measurements will be conducted with a laser spectrometer for parallel CH4, H2Ov and CO2 measurements (FGGA, Los Gatos Research, USA). Independent observations of the CO2 flux by the FGGA and a standard Infrared Gas Analyser (LI-7200, LI-COR, USA) will allow to evaluate data quality of measured CH4 fluxes. Here, we want to present first results with a focus on uncertainties of the calculated CH4 fluxes with regard to instrument precision, data processing and site conditions. In future, we plan to compare eddy-covariance flux estimates to side-by-side turbulent flux observations from a novel eddy accumulation system. Furthermore, soil CH4 fluxes will be measured with four automated chambers situated within the tower footprint. Based on a previous soil chamber study at the same site, we expect the Hainich forest site to act as a CH4 sink. However, we hypothesize that our

  7. Present state of beech bark disease in Germany

    Science.gov (United States)

    Klaus J. Lang

    1983-01-01

    Beech bark disease can be found at present time in young and old stands (20-150 years old) of Fagus sylvatica. The present state of the disease may be described as "normal" and apart from some cases, it is no threat to the existence of the stands.

  8. The biotransformation of soil biocenosis by micromycetes under introduction of Fagus sylvatica L. to oak-hornbeam forest

    Science.gov (United States)

    Likhanov, Artur; Bilyera, Nataliya; Sedykh, Olena; Melnychuk, Maksym

    2017-04-01

    Keywords: micromycetes, beech, soil enzymes, illuminance, Penicillium canescens. European beech (Fagus sylvatica L.) is a commercially valuable tree species. As the potential distribution area for beech forest is restricted by Europe, planting of artificial stands is adopted in this region. Beech introduction can alter ecosystem considerably, but the mechanism of this transformation is not clear. We aimed to define abiotic and biotic parameters affecting floor development in beech stands introduced to the oak-hornbeam forest ecosystem ca.50 years ago in Eastern Europe (Ukraine). The daylight illuminace level was similar (2.9-6.5 klx) for both stands. However, grass cover in beech stands did not exceed 0.1-0.5 % even on sites with illuminace level 7.5-8.3 klx. It does not comply with the commonly used suggestion that shading is the main factor causes forest floor absence in the beech stands. We indicated predominantly biotic factors influencing forest floor formation. Thus, particular edaphon represented by micromycetes was able to inhibit plants and microorganisms. We isolated Penicillium canescens strains from soil under beech stands. These fungi utilized beech root exudates and phenol compounds of leaf litter, and produced biologically active substances caused cytostatic and mutagenic effects. They also accelerated (in 2-3.2 times) soil β-glucosidase activity, but had no effect on phosphatase. The biomass of fungi varied under cultivation of Penicillium canescens strains on Czapek medium with the addition of aqueous extracts of beech leaf litter. The biomass of micromycetes increased on 10-15 % at plant phenols concentrations up to 1 mg mL-1. On the contrary, increasing the concentration of phenols up to 4 mg mL-1resulted in a biomass decrease to 40%. The relationship between the concentration of plant phenols and rate of fungal biomass formation indicates that there is probably seasonal regulation of micromycetes activity in the forest biocenosis. The highest

  9. Species relationships and divergence times in beeches: new insights from the inclusion of 53 young and old fossils in a birth–death clock model

    Science.gov (United States)

    Kapli, Paschalia; Denk, Thomas

    2016-01-01

    The fossilized birth–death (FBD) model can make use of information contained in multiple fossils representing the same clade, and we here apply this model to infer divergence times in beeches (genus Fagus), using 53 fossils and nuclear sequences for all nine species. We also apply FBD dating to the fern clade Osmundaceae, with about 12 living species and 36 fossils. Fagus nuclear sequences cannot be aligned with those of other Fagaceae, and we therefore use Bayes factors to choose among alternative root positions. The crown group of Fagus is dated to 53 (62–43) Ma; divergence of the sole American species to 44 (51–39) Ma and divergence between Central European F. sylvatica and Eastern Mediterranean F. orientalis to 8.7 (20–1.8) Ma, unexpectedly old. The FBD model can accommodate fossils as sampled ancestors or as extinct or unobserved lineages; however, this makes its raw output, which shows all fossils on short or long branches, problematic to interpret. We use hand-drawn depictions and a bipartition network to illustrate the uncertain placements of fossils. Inferred speciation and extinction rates imply approximately 5× higher evolutionary turnover in Fagus than in Osmundaceae, fitting a hypothesized low turnover in plants adapted to low-nutrient conditions. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325832

  10. Species relationships and divergence times in beeches: new insights from the inclusion of 53 young and old fossils in a birth-death clock model.

    Science.gov (United States)

    Renner, S S; Grimm, Guido W; Kapli, Paschalia; Denk, Thomas

    2016-07-19

    The fossilized birth-death (FBD) model can make use of information contained in multiple fossils representing the same clade, and we here apply this model to infer divergence times in beeches (genus Fagus), using 53 fossils and nuclear sequences for all nine species. We also apply FBD dating to the fern clade Osmundaceae, with about 12 living species and 36 fossils. Fagus nuclear sequences cannot be aligned with those of other Fagaceae, and we therefore use Bayes factors to choose among alternative root positions. The crown group of Fagus is dated to 53 (62-43) Ma; divergence of the sole American species to 44 (51-39) Ma and divergence between Central European F. sylvatica and Eastern Mediterranean F. orientalis to 8.7 (20-1.8) Ma, unexpectedly old. The FBD model can accommodate fossils as sampled ancestors or as extinct or unobserved lineages; however, this makes its raw output, which shows all fossils on short or long branches, problematic to interpret. We use hand-drawn depictions and a bipartition network to illustrate the uncertain placements of fossils. Inferred speciation and extinction rates imply approximately 5× higher evolutionary turnover in Fagus than in Osmundaceae, fitting a hypothesized low turnover in plants adapted to low-nutrient conditions.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. © 2016 The Author(s).

  11. Contributions to the phytocoenological study of pure european beech forests in Oraştie river basin (central-western Romania)

    OpenAIRE

    Petru BURESCU; Valeriu Ioan VINŢAN

    2012-01-01

    În the current paper we present a phytocoenologic study of the phytocoenoses of the association Festuco drymejaeFagetum Morariu et al. 1968 (Syn.: Fagetum sylvaticae transylvaticum facies with Festuca drymeja I. Pop et al. 1974), found in the pure European beech forests of the Orăştie river basin, lying in the central-western part of Romania. The characterisation of the association under analysis as well as the presentation of the synthetic table have been done byselecting the most representa...

  12. CH_{4} production in the deep soil as a source of stem CH_{4} emission in Fagus sylvatica}

    Science.gov (United States)

    Maier, Martin; Machacova, Katerina; Urban, Otmar; Lang, Friederike

    2017-04-01

    Predicting greenhouse gas (GHG) fluxes on a global scale requires understanding fluxes on the local scale. Understanding GHG processes in soil-plant-atmosphere systems is essential to understand and mitigate GHG fluxes on the local scale. Forests are known to act as carbon sink. Yet, trees at waterlogged sites are known to emit large amounts of CH4, what can offset the positive GHG balance due the CO2 that is sequestered as wood. Generally, upland trees like European beech (Fagus sylvatica L.) are assumed not to emit CH4, and the upland forest soils are regarded as CH4 sinks. Soil-atmosphere fluxes and stem-atmosphere fluxes of CH4 were studied together with soil gas profiles at two upland beech forest sites in Germany and Czech Republic. Soil was a net CH4 sink at both sites. While most trees showed no or low emissions, one beech tree had exorbitant CH4 emissions that were higher than the CH4 sink capacity of the soil. A soil survey showed strong redoximorphic color patterns in the soil adjacent to this tree. Although the soil around the tree was taking up CH4, the soil gas profiles around this tree showed CH4 production at a soil depth >0.3 m. We interpret the coincidence of the production of CH4 in the deep soil below the beech with the large stem emissions as strong hint that there is a transport link between the soil and stem. We think that the root system represents a preferential transport system for CH4 despite the fact that beech roots usually do not have a special gas transport tissue. The observed CH4 stem emissions represent an important CH4 flux in this ecosystem, and, thus, should be considered in future research. Acknowledgement This research was supported by the Czech Academy of Sciences and the German Academic Exchange Service within the project "Methane (CH4) and nitrous oxide (N2O) emissions from Fagus sylvatica trees" (DAAD-15-03), the Czech Science Foundation (17-18112Y), National Programme for Sustainability I (LO1415) and project DFG (MA 5826

  13. Fine-root carbon and nitrogen concentration of European beech (Fagus sylvatica L. in Italy Prealps: possible implications of coppice conversion to high forest

    Directory of Open Access Journals (Sweden)

    Mattia eTerzaghi

    2013-06-01

    Full Text Available Fine-root systems represent a very sensitive plant compartment to environmental changes. Gaining further knowledge about their dynamics would improve soil carbon input understanding. This paper investigates C and N concentrations in fine roots in relation to different stand characteristics resulting from conversion of coppiced forests to high forests. In order to evaluate possible interferences due to different vegetative stages of vegetation, fine-root sampling was repeated 6 times in each stand during the same 2008 growing season. Fine-root sampling was conducted within three different soil depths (0-10; 10-20; and 20-30 cm. Fine-root traits were measured by means of WinRHIZO software which enable us to separate them into three different diameter classes (0-0.5, 0.5-1.0 and 1.0-2.0 mm. The data collected indicate that N concentration was higher in converted stands than in the coppiced stand whereas C concentration was higher in the coppiced stand than in converted stands. Consequently the fine-root C:N ratio was significantly higher in coppiced than in converted stands and showed an inverse relationship with fine-root turnover rate, confirming a significant change of fine-root status after the conversion of a coppice to high forest.

  14. Assessment of CH4 and N2O fluxes in a Danish Beech (Fagus sylvatica) forest and an adjacent N-fertilised barley (Hordeum vulgare)

    DEFF Research Database (Denmark)

    Ambus, P.; Jensen, J.M.; Prieme, A.

    2001-01-01

    emissions immediately following soil applications of digested sewage sludge. Cumulated values for CH4 emissions over the course of 328 days after sludge applications indicated a small net source in sludge treated plots (7.6 mg C m(-2)) whereas sludge-free soil constituted a small sink (-0.9 mg C m(-2......)). The CH4 emission amounted 0.01% of the sludge-C. Extrapolated to current rates of sludge applications in Danish agriculture this amounts to 0.1% of the total agricultural derived CH4. Sludge applications did not affect cumulated fluxes of N2O showing 312 mg N2O-N m(-2) and 304 mg N m(-2) with and without...... sludge, respectively. Four months after the sludge applications a significant effect on CO2 and NO emissions was still obvious in the field, the latter perhaps due to elevated nitrification. Nitrous oxide emission in the beech forest was about six times smaller (45 mg N m(-2)) than in the field...

  15. Climate change impairs processes of soil and plant N cycling in European beech forests on marginal soil

    Science.gov (United States)

    Tejedor, Javier; Gasche, Rainer; Gschwendtner, Silvia; Leberecht, Martin; Bimüller, Carolin; Kögel-Knabner, Ingrid; Pole, Andrea; Schloter, Michael; Rennenberg, Heinz; Simon, Judy; Hanewinkel, Marc; Baltensweiler, Andri; Bilela, Silvija; Dannenmann, Michael

    2014-05-01

    Beech forests of Central Europe are covering large areas with marginal calcareous soils, but provide important ecological services and represent a significant economical value. The vulnerability of these ecosystems to projected climate conditions (higher temperatures, increase of extreme drought and precipitation events) is currently unclear. Here we present comprehensive data on the influence of climate change conditions on ecosystem performance, considering soil nitrogen biogeochemistry, soil microbiology, mycorrhiza ecology and plant physiology. We simultaneously quantified major plant and soil gross N turnover processes by homogenous triple 15N isotope labeling of intact beech natural regeneration-soil-microbe systems. This isotope approach was combined with a space for time climate change experiment, i.e. we transferred intact beech seedling-soil-microbe mesocosms from a slope with N-exposure (representing present day climate conditions) to a slope with S exposure (serving as a warmer and drier model climate for future conditions). Transfers within N slope served as controls. After an equilibration period of 1 year, three isotope labeling/harvest cycles were performed. Reduced soil water content resulted in a persistent decline of ammonia oxidizing bacteria in soil (AOB). Consequently, we found a massive five-fold reduction of gross nitrification in the climate change treatment and a subsequent strong decline in soil nitrate concentrations as well as nitrate uptake by microorganisms and beech. Because nitrate was the major nutrient for beech in this forest type with little importance of ammonium and amino acids, this resulted in a strongly reduced performance of beech natural regeneration with reduced N content, N metabolite concentrations and plant biomass. These findings provided an explanation for a large-scale decline of distribution of beech forests on calcareous soils in Europe by almost 80% until 2080 predicted by statistical modeling. Hence, we

  16. Below-ground carbon allocation in mature beech and spruce trees following long-term, experimentally enhanced O{sub 3} exposure in Southern Germany

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Christian P., E-mail: Andersen.christian@epa.go [US Environmental Protection Agency, Western Ecology Division, 200 SW 35th St., Corvallis, OR 97333 (United States); Ritter, Wilma [Ecophysiology of Plants, Department of Ecology and Ecosystem Management, Technische Universitaet Muenchen, Am Hochanger 13, 85354 Freising (Germany); Gregg, Jillian [Terrestrial Ecosystems Research Associates, 200 SW 35th St., Corvallis, OR 97333 (United States); Matyssek, Rainer; Grams, Thorsten E.E. [Ecophysiology of Plants, Department of Ecology and Ecosystem Management, Technische Universitaet Muenchen, Am Hochanger 13, 85354 Freising (Germany)

    2010-08-15

    Canopies of adult European beech (Fagus sylvatica) and Norway spruce (Picea abies) were labeled with CO{sub 2} depleted in {sup 13}C to evaluate carbon allocation belowground. One-half the trees were exposed to elevated O{sub 3} for 6 yrs prior to and during the experiment. Soil-gas sampling wells were placed at 8 and 15 cm and soil CO{sub 2} was sampled during labeling in mid-late August, 2006. In beech, {delta}{sup 13}CO{sub 2} at both depths decreased approximately 50 h after labeling, reflecting rapid translocation of fixed C to roots and release through respiration. In spruce, label was detected in fine-root tissue, but there was no evidence of label in {delta}{sup 13}CO{sub 2}. The results show that C fixed in the canopy rapidly reaches respiratory pools in beech roots, and suggest that spruce may allocate very little of recently-fixed carbon into root respiration during late summer. A change in carbon allocation belowground due to long-term O{sub 3} exposure was not observed. - Below-ground carbon allocation in mature beech and spruce exposed to ozone.

  17. Mixing Effects in Norway Spruce—European Beech Stands Are Modulated by Site Quality, Stand Age and Moisture Availability

    Directory of Open Access Journals (Sweden)

    Léa Houpert

    2018-02-01

    Full Text Available Although mixing tree species is considered an efficient risk-reduction strategy in the face of climate change, the conditions where mixtures are more productive than monocultures are under ongoing debate. Generalizations have been difficult because of the variety of methods used and due to contradictory findings regarding the effects of the species investigated, mixing proportions, and many site and stand conditions. Using data from 960 plots of the Swiss National Forest Inventory data, we assessed whether Picea abies (L. Karst–Fagus sylvatica L. mixed stands are more productive than pure stands, and whether the mixing effect depends on site- or stand-characteristics. The species proportions were estimated using species proportion by area, which depends on the maximum stand basal area of an unmanaged stand (BAmax. Four different alternatives were used to estimate BAmax and to investigate the effect of these differing alternatives on the estimated mixture effect. On average, the mixture had a negative effect on the growth of Picea abies. However, this effect decreased as moisture availability increased. Fagus sylvatica grew better in mixtures and this effect increased with site quality. A significant interaction between species proportions and quadratic mean diameter, a proxy for stand age, was found for both species: the older the stand, the better the growth of Fagus sylvatica and the lower the growth of Picea abies. Overyielding was predicted for 80% of the investigated sites. The alternative to estimate BAmax weakly modulated the estimated mixture effect, but it did not affect the way mixing effects changed with site characteristics.

  18. Safeguarding saproxylic fungal biodiversity in Apennine beech forest priority habitats

    Science.gov (United States)

    Maggi, Oriana; Lunghini, Dario; Pecoraro, Lorenzo; Sabatini, Francesco Maria; Persiani, Anna Maria

    2015-04-01

    The FAGUS LIFE Project (LIFE11/NAT/IT/135) targets two European priority habitats, i.e. Habitat 9210* Apennine beech forests with Taxus and Ilex, and Habitat 9220* Apennine beech forests with Abies alba, within two National Parks: Cilento, Vallo di Diano and Alburni; Gran Sasso and Monti della Laga. The current limited distribution of the target habitats is also due to the impact of human activities on forest systems, such as harvesting and grazing. The FAGUS project aims at developing and testing management strategies able to integrate the conservation of priority forest habitats (9210* and 9220*) and the sustainable use of forest resources. In order to assess the responses to different management treatments the BACI monitoring design (Before-After, Control-Intervention) has been applied on forest structure and diversity of focus taxa before and after experimental harvesting treatments. Conventional management of Apennine beech forests impacts a wealth of taxonomic groups, such as saproxylic beetles and fungi, which are threatened throughout Europe by the lack of deadwood and of senescing trees, and by the homogeneous structure of managed forests. Deadwood has been denoted as the most important manageable habitat for biodiversity in forests not only for supporting a wide diversity of organisms, but also for playing a prominent role in several ecological processes, creating the basis for the cycling of photosynthetic energy, carbon, and nutrients stored in woody material. Especially fungi can be regarded as key group for understanding and managing biodiversity associated with decaying wood. The before-intervention field sampling was carried out in Autumn 2013 in 33 monitoring plots across the two national Parks. The occurrence at plot level of both Ascomycota and Basidiomycota sporocarps was surveyed. All standing and downed deadwood with a minimum diameter of 10 cm was sampled for sporocarps larger than 1 mm, and information on decay class and fungal morphogroups

  19. Influence of xylem ray integrity and degree of polymerization on bending strength of beech wood decayed by Pleurotus ostreatus and Trametes versicolor

    Science.gov (United States)

    Ehsan Bari; Reza Oladi; Olaf Schmidt; Carol A. Clausen; Katie Ohno; Darrel D. Nicholas; Mehrdad Ghodskhah Daryaei; Maryam Karim

    2015-01-01

    The scope of this research was to evaluate the influence of xylem ray (XR) and degree of polymerization (DP) of holocellulose in Oriental beech wood (Fagus orientalis Lipsky.) on impact bending strength against two white-rot fungi. Beech wood specimens, exposed to Pleurotus ostreatus and Trametes versicolor, were evaluated for...

  20. Changes in the fine root proteome of Fagus sylvatica L. trees associated with P-deficiency and amelioration of P-deficiency.

    Science.gov (United States)

    Geilfus, Christoph-Martin; Carpentier, Sebastien Christian; Zavišić, Aljoša; Polle, Andrea

    2017-10-03

    Phosphorus is often the least available macronutrient in soil. Lack in phosphorus has detrimental effect on growth and biomass production of European Fagus sylvatica L., a major trees species in temperate forests. In contrast to leaf tissues, few studies have examined changes in the root system and no study has ever investigated the proteomic changes affected in beech roots by a lack in available phosphate (P). Here, we studied roots of young Fagus sylvatica L. trees in their native soils from two forests sites with contrasting availability of P: one P rich and P poor soil. To understand also the response to P fertilization, the trees were fertilized with triple superphosphate and the proteome of fine roots of all conditions was compared. Gel-free mass-spectrometry-based shotgun proteomics revealed that the proteome was differentially affected by diverging P availabilities. The proteomic changes that took place as the result of P fertilization were dependent on the supply level of P before the fertilization. When P was supplied to the P-rich soil proteins related to cell biogenesis exhibited increased abundances. Addition of P to soil that was strongly limited in P resulted in increased abundance of proteins associated with amino acid metabolism and transport. Beech (Fagus sylvatica L.) forests have a huge ecological and economic value across Europe. In recent years, however, these forest sites increasingly suffer under phosphorus (P) deficiency. As the consequence, growth and vitality of beech forests is impaired. For this reason, this study was conducted with the aim to identify and understand proteomic impairments and adjustments that evolve in the fine roots under both, a P deficiency and an amelioration thereof. For this, we analyzed (1) the fine root proteome of young beech trees grown (2) at two soil sites that contrast in their degree of availability P (low vs. high) in dependency (3) to a fertilization with P. This experiment revealed fundamental

  1. Beech forests of Azerbaijan: The modern condition, age structure and regeneration

    Directory of Open Access Journals (Sweden)

    Z.M. Hasanov

    2017-12-01

    Full Text Available Azerbaijan is a country with low forest cover, only 11.8% of the territory is covered with forests. All forests perform important water-soil-protection functions. In forests, naturally grow 107 species of trees and 328 shrubs species. Despite the fact that there are many species in dendroflora, only 10 tree species have economic value for the forest sector of the country. Beech (31.68%, oak (27.40% and hornbeam (26.01% are growing in 85.09% of forested areas. Beech forests are spread on 327 thousand hectares from 989,5 of total forest lands of he Republic. Beech forests are a source of high-quality wood and beech nuts. All beech forests grow in mountains at heights of 600–800 and 1600–1800 m above the sea level and performing important ecological functions. Until recently there were no problems with natural renewal of the beech forests, but now the regeneration of beech forests is alarming. In recent years, the productivity and density of beech forests decreased substantially, the natural regeneration proceeds unsatisfactorily and, consequently, reduction of beech forests takes place. We have researched 33,8 thousand hectares of beech forests of the Lesser Caucasus, their natural regeneration and made analysis of age structure of forests. Keywords: Fagus orientalis, Beech forests, Silviculture, Natural regeneration, Age class

  2. Assessing native small mammals' responses to an incipient invasion of beech bark disease through changes in seed production of American beech

    Science.gov (United States)

    Justin N. Rosemier; Andrew J. Storer

    2011-01-01

    Exotic tree diseases have direct impacts on their host and may have indirect effects on native fauna that rely on host tree species. For example, American beech (Fagus grandifolia [Ehrh.]) is a dominant overstory component throughout its range and, like all tree species, is vulnerable to a broad array of insects and pathogens. These pests include...

  3. Fluxes of CO2, CH4 and N2O at two European beech forests: linking soil gas production profiles with soil and stem fluxes

    Science.gov (United States)

    Maier, Martin; Machacova, Katerina; Halaburt, Ellen; Haddad, Sally; Urban, Otmar; Lang, Friederike

    2016-04-01

    consumption sites of soil gases in the adjacent soil. Soils at both sites took up CH4 and N2O and emitted CO2. Soil gas profiles at the Black Forest showed only CH4 and N2O consumption. CH4 uptake was much larger by the well aerated Black Forest soil than by the loamy-clay soil in the White Carpathians. Here, it was possible to stratify the apparently homogenous site into two plots, one having redoximorphic features in the soil profiles, the other plot without. It seemed that CH4 and N2O were mainly produced in the deeper soil at the plot with temporarily reducing conditions. Beech stems mostly took up N2O from the atmosphere at both sites, whereas CH4 was emitted. The stem CH4 flux was higher for the White Carpathians than for the Black Forest site. Thus, the tree and soil flux of CH4 seems to be affected by soil structure, soil water content and the redox potential in the rooting space. We conclude from our results that trees might provide preferential pathways for greenhouse gases produced in the subsoil thereby enhancing the release of greenhouse gases. Acknowledgement This research was financially supported by the Czech Academy of Sciences and the German Academic Exchange Service within the project "Methane (CH4) and nitrous oxide (N2O) emissions from Fagus sylvatica trees" (DAAD-15-03), National Programme for Sustainability I (LO1415) and project DFG (MA 5826/2-1). We would like to thank Marek Jakubik for technical support and Sinikka Paulus for help by field measurements.

  4. On the influence of provenance to soil quality enhanced stress reaction of young beech trees to summer drought.

    Science.gov (United States)

    Buhk, Constanze; Kämmer, Marcel; Beierkuhnlein, Carl; Jentsch, Anke; Kreyling, Jürgen; Jungkunst, Hermann F

    2016-11-01

    Climate projections propose that drought stress will become challenging for establishing trees. The magnitude of stress is dependent on tree species, provenance, and most likely also highly influenced by soil quality. European Beech (Fagus sylvatica) is of major ecological and economical importance in Central European forests. The species has an especially wide physiological and ecological amplitude enabling growth under various soil conditions within its distribution area in Central Europe. We studied the effects of extreme drought on beech saplings (second year) of four climatically distinct provenances growing on different soils (sandy loam and loamy sand) in a full factorial pot experiment. Foliar δ(13)C, δ(15)N, C, and N as well as above- and belowground growth parameters served as measures for stress level and plant growth. Low-quality soil enhanced the effect of drought compared with qualitatively better soil for the above- and belowground growth parameters, but foliar δ(13)C values revealed that plant stress was still remarkable in loamy soil. For beeches of one provenance, negative sandy soil effects were clearly smaller than for the others, whereas for another provenance drought effects in sandy soil were sometimes fatal. Foliar δ(15)N was correlated with plant size during the experiment. Plasticity of beech provenances in their reaction to drought versus control conditions varied clearly. Although a general trend of declining growth under control or drought conditions in sandy soil was found compared to loamy soil, the magnitude of the effect of soil quality was highly provenance specific. Provenances seemed to show adaptations not only to drought but also to soil quality. Accordingly, scientists should integrate information about climatic pre-adaptation and soil quality within the home range of populations for species distribution modeling and foresters should evaluate soil quality and climatic parameters when choosing donor populations for

  5. Phosphite protects Fagus sylvatica seedlings towards Phytophthora plurivora via local toxicity, priming and facilitation of pathogen recognition.

    Science.gov (United States)

    Dalio, Ronaldo J D; Fleischmann, Frank; Humez, Martina; Osswald, Wolfgang

    2014-01-01

    Phytophthora plurivora causes severe damage on Fagus sylvatica and is responsible for the extensive decline of European Beech throughout Europe. Unfortunately, no effective treatment against this disease is available. Phosphite (Phi) is known to protect plants against Phytophthora species; however, its mode of action towards P. plurivora is still unknown. To discover the effect of Phi on root infection, leaves were sprayed with Phi and roots were subsequently inoculated with P. plurivora zoospores. Seedling physiology, defense responses, colonization of root tissue by the pathogen and mortality were monitored. Additionally the Phi concentration in roots was quantified. Finally, the effect of Phi on mycelial growth and zoospore formation was recorded. Phi treatment was remarkably efficient in protecting beech against P. plurivora; all Phi treated plants survived infection. Phi treated and infected seedlings showed a strong up-regulation of several defense genes in jasmonate, salicylic acid and ethylene pathways. Moreover, all physiological parameters measured were comparable to control plants. The local Phi concentration detected in roots was high enough to inhibit pathogen growth. Phi treatment alone did not harm seedling physiology or induce defense responses. The up-regulation of defense genes could be explained either by priming or by facilitation of pathogen recognition of the host.

  6. Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics.

    Science.gov (United States)

    Michelot, Alice; Simard, Sonia; Rathgeber, Cyrille; Dufrêne, Eric; Damesin, Claire

    2012-08-01

    Monitoring cambial phenology and intra-annual growth dynamics is a useful approach for characterizing the tree growth response to climate change. However, there have been few reports concerning intra-annual wood formation in lowland temperate forests with high time resolution, especially for the comparison between deciduous and coniferous species. The main objective of this study was to determine how the timing, duration and rate of radial growth change between species as related to leaf phenology and the dynamics of non-structural carbohydrates (NSC) under the same climatic conditions. We studied two deciduous species, Fagus sylvatica L. and Quercus petraea (Matt.) Liebl., and an evergreen conifer, Pinus sylvestris L. During the 2009 growing season, we weekly monitored (i) the stem radial increment using dendrometers, (ii) the xylem growth using microcoring and (iii) the leaf phenology from direct observations of the tree crowns. The NSC content was also measured in the eight last rings of the stem cores in April, June and August 2009. The leaf phenology, NSC storage and intra-annual growth were clearly different between species, highlighting their contrasting carbon allocation. Beech growth began just after budburst, with a maximal growth rate when the leaves were mature and variations in the NSC content were low. Thus, beech radial growth seemed highly dependent on leaf photosynthesis. For oak, earlywood quickly developed before budburst, which probably led to the starch decrease quantified in the stem from April to June. For pine, growth began before the needles unfolding and the lack of NSC decrease during the growing season suggested that the substrates for radial growth were new assimilates of the needles from the previous year. Only for oak, the pattern determined from the intra-annual growth measured using microcoring differed from the pattern determined from dendrometer data. For all species, the ring width was significantly influenced by growth duration

  7. Bacterial wetwood detection in Fagus grandifolia and Prunus serotina sapwood using a conducting polymer electronic-nose device

    Science.gov (United States)

    A.D. Wilson

    2014-01-01

    New electronic gas-detection methods were developed and tested for the diagnosis of bacterial wetwood disease in Fagus grandifolia (American beech) and Prunus serotina (black cherry) using a Conducting Polymer (CP)-type electronic nose (e-nose), the Aromascan A32S, based on detection of headspace...

  8. Gap dynamics and structure of two old-growth beech forest remnants in Slovenia.

    Directory of Open Access Journals (Sweden)

    Tihomir Rugani

    Full Text Available CONTEXT: Due to a long history of intensive forest exploitation, few European beech (Fagus sylvatica L. old-growth forests have been preserved in Europe. MATERIAL AND METHODS: We studied two beech forest reserves in southern Slovenia. We examined the structural characteristics of the two forest reserves based on data from sample plots and complete inventory obtained from four previous forest management plans. To gain a better understanding of disturbance dynamics, we used aerial imagery to study the characteristics of canopy gaps over an 11-year period in the Kopa forest reserve and a 20-year period in the Gorjanci forest reserve. RESULTS: The results suggest that these forests are structurally heterogeneous over small spatial scales. Gap size analysis showed that gaps smaller than 500 m(2 are the dominant driving force of stand development. The percentage of forest area in canopy gaps ranged from 3.2 to 4.5% in the Kopa forest reserve and from 9.1 to 10.6% in the Gorjanci forest reserve. These forests exhibit relatively high annual rates of coverage by newly established (0.15 and 0.25% and closed (0.08 and 0.16% canopy gaps. New gap formation is dependant on senescent trees located throughout the reserve. CONCLUSION: We conclude that these stands are not even-sized, but rather unevenly structured. This is due to the fact that the disturbance regime is characterized by low intensity, small-scale disturbances.

  9. Shading and root-shoot relations in saplings of silver birch, pedunculate oak and beech

    NARCIS (Netherlands)

    Hees, van A.F.M.; Clerkx, A.P.P.M.

    2003-01-01

    Silver birch (Betula pendula Roth), pedunculate oak (Quercus robur L.) and beech (Fagus sylvatica L.) can regenerate successfully under a canopy of Scots pine (Pinus sylvestris L.). Shading reduces plant growth and modifies plant form, two related aspects. This study focuses on the effects of

  10. Preharvest manual herbicide treatments for controlling American beech in Central West Virginia

    Science.gov (United States)

    Jeffery D. Kochenderfer; James N. Kochenderfer; David A. Warner; Gary W. Miller

    2004-01-01

    Application costs and efficacy were determined for manual preharvest herbicide treatments applied to control American beech (Fagus grandifolia Ehrh.) that was interfering with the establishment and development of black cherry (Prunus serotina Ehrh.) in central West Virginia. The treatments consisted of four levels of basal area...

  11. Differential impacts of calcium and aluminum treatments on sugar maple and American beech growth dynamics

    Science.gov (United States)

    Joshua M. Halman; Paul G. Schaberg; Gary J. Hawley; Christopher F. Hansen; Timothy J. Fahey

    2015-01-01

    Acid deposition induced losses of calcium (Ca) from northeastern forests have had negative effects on forest health for decades, including the mobilization of potentially phytotoxic aluminum (Al) from soils. To evaluate the impact of changes in Ca and Al availability on sugar maple (Acer saccharum Marsh.) and American beech (Fagus...

  12. Environmental stress on establishment and growth in Fagus sylvatica L. and Quercus robur L. seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Loef, Magnus [Swedish Univ. of Agricultural Sciences, Alnarp (Sweden). Southern Swedish Forest Research Centre

    1999-04-01

    In this thesis, the growth response to different environmental stresses in beech (Fagus sylvatica L.) and oak (Quercus robur L.) seedlings was studied in relation to site preparation and use of shelterwood. Growth and survival were compared between beech, oak and Norway spruce (Picea abies L. Karst.) seedlings under similar conditions. In a field experiment, with herbicide, herbicide plus fertilization and mowing as treatments, interference from herbaceous vegetation was mainly below ground. Furthermore, soil water is probably the growth factor of greatest importance for establishing beech and oak on fertile sites in southern Sweden. In pot experiments carried out in a climatic chamber both previous and current-year drought influenced growth in beech in the current year, and it was concluded that previous environmental conditions must be taken into consideration to understand growth of seedlings in the current year. Episodic drought resulted in long recovery periods in beech transpiration after rewatering, but also after-effects on transpiration. Thus, short periods of drought may still influence growth afterwards when the soil is rewetted. In field experiments, soil disturbance by patch scarification, mixing of humus with mineral soil and deep cultivation of soil did not increase growth in seedlings compared to untreated soil or where chemical vegetation control was carried out. When, vegetation was efficiently controlled by using a shelterwood of Norway spruce, survival of beech, oak and Norway spruce seedlings planted under the shelterwood trees was high. There was no difference in growth between beech and oak seedlings under the shelterwood. On an open site, oak had a shorter period of transplanting shock, higher growth during interference from vegetation and deeper roots than beech. Thus, beech need more intense site preparation for successful establishment. Herbivory by pine weevil was lower on beech and oak than on Norway spruce. Less efforts are therefore

  13. Similar net ecosystem exchange of beech stands located in France and Denmark

    DEFF Research Database (Denmark)

    Granier, A.; Pilegaard, K.; Jensen, N.O.

    2002-01-01

    Net ecosystem exchange (NEE), as measured with eddy covariance was compared for two European beech stands for the years 1996-1999: a young beech forest (32 year-old) growing in east France, and a mature beech stand (80 year-old) located in Denmark. Those sites are included in the Carboeuroflux...

  14. Seasonal dynamics in the stable carbon isotope composition δ¹³C from non-leafy branch, trunk and coarse root CO₂ efflux of adult deciduous (Fagus sylvatica) and evergreen (Picea abies) trees.

    Science.gov (United States)

    Kuptz, Daniel; Matyssek, Rainer; Grams, Thorsten E E

    2011-03-01

    Respiration is a substantial driver of carbon (C) flux in forest ecosystems and stable C isotopes provide an excellent tool for its investigation. We studied seasonal dynamics in δ¹³C of CO₂ efflux (δ¹³C(E)) from non-leafy branches, upper and lower trunks and coarse roots of adult trees, comparing deciduous Fagus sylvatica (European beech) with evergreen Picea abies (Norway spruce). In both species, we observed strong and similar seasonal dynamics in the δ¹³C(E) of above-ground plant components, whereas δ¹³C(E) of coarse roots was rather stable. During summer, δ¹³C(E) of trunks was about -28.2‰ (Beech) and -26.8‰ (Spruce). During winter dormancy, δ¹³C(E) increased by 5.6-9.1‰. The observed dynamics are likely related to a switch from growth to starch accumulation during fall and remobilization of starch, low TCA cycle activity and accumulation of malate by PEPc during winter. The seasonal δ¹³C(E) pattern of branches of Beech and upper trunks of Spruce was less variable, probably because these organs were additionally supplied by winter photosynthesis. In view of our results and pervious studies, we conclude that the pronounced increases in δ¹³C(E) of trunks during the winter results from interrupted access to recent photosynthates. © 2010 Blackwell Publishing Ltd.

  15. Tree-ring growth of Scots pine, Common beech and Pedunculate oak under future climate in northeastern Germany

    Science.gov (United States)

    Jurasinski, Gerald; Scharnweber, Tobias; Schröder, Christian; Lennartz, Bernd; Bauwe, Andreas

    2017-04-01

    Tree growth depends, among other factors, largely on the prevailing climatic conditions. Therefore, tree growth patterns are to be expected under climate change. Here, we analyze the tree-ring growth response of three major European tree species to projected future climate across a climatic (mostly precipitation) gradient in northeastern Germany. We used monthly data for temperature, precipitation, and the standardized precipitation evapotranspiration index (SPEI) over multiple time scales (1, 3, 6, 12, and 24 months) to construct models of tree-ring growth for Scots pine (Pinus syl- vestris L.) at three pure stands, and for Common beech (Fagus sylvatica L.) and Pedunculate oak (Quercus robur L.) at three mature mixed stands. The regression models were derived using a two-step approach based on partial least squares regression (PLSR) to extract potentially well explaining variables followed by ordinary least squares regression (OLSR) to consolidate the models to the least number of variables while retaining high explanatory power. The stability of the models was tested with a comprehensive calibration-verification scheme. All models were successfully verified with R2s ranging from 0.21 for the western pine stand to 0.62 for the beech stand in the east. For growth prediction, climate data forecasted until 2100 by the regional climate model WETTREG2010 based on the A1B Intergovernmental Panel on Climate Change (IPCC) emission scenario was used. For beech and oak, growth rates will likely decrease until the end of the 21st century. For pine, modeled growth trends vary and range from a slight growth increase to a weak decrease in growth rates depending on the position along the climatic gradient. The climatic gradient across the study area will possibly affect the future growth of oak with larger growth reductions towards the drier east. For beech, site-specific adaptations seem to override the influence of the climatic gradient. We conclude that in Northeastern

  16. Identification and characterization of differentially expressed genes from Fagus sylvatica roots after infection with Phytophthora citricola.

    Science.gov (United States)

    Schlink, Katja

    2009-05-01

    Phytophthora species are major plant pathogens infecting herbaceous and woody plants including European beech, the dominant or co-dominant tree in temperate Europe and an economically important species. For the analysis of the interaction of Phytophthora citricola with Fagus sylvatica suppression subtractive hybridization was used to isolate transcripts induced during infection and 1,149 sequences were generated. Hybridizations with driver and tester populations demonstrated differential expression in infected roots as compared to controls and verify efficient enrichment of these cDNAs during subtraction. Up regulation of selected genes during pathogenesis demonstrated using RT-PCR is consistent with these results. Pathogenesis-related proteins formed the largest group among functionally categorized transcripts. Cell wall proteins and protein kinases were also frequently found. Several transcription factors were isolated that are reactive to pathogens or wounding in other plants. The library contained a number of jasmonic acid, salicylic acid and ethylene responsive genes as well as genes directly involved in signaling pathways. Besides a mechanistic interconnection among signaling pathways another factor explaining the activation of different pathways could be the hemibiotrophic life style of Phytophthora triggering different signals in both stages.

  17. Composición, estructura y diversidad de la comunidad de Ácaros Mesostigmata de un hayedo natural (Fagus sylvatica del sur de Europa

    Directory of Open Access Journals (Sweden)

    Moraza, M. L.

    2007-06-01

    Full Text Available Species composition, structure and diversity of the soil Mesostigmatid mite’s community was studied in European beech forest (Fagus sylvatica L. in Navarra (Spain, southern Europe. Twelve samples were taken and 653 mites were identified. They represented to 41 species from 14 families, the most abundant species being Paragamasus ponantinus Athias-Henriot, 1967; Veigaia nemorensis (C. L. Koch, 1839; Paragamasus rothamstedensis Bhattacharyya, 1963 and Rhodacarus coronatus Berlese, 1921. Haft part of the mites community inhabits the humic layer of the soil. The value of the Shannon’s diversity index (H´ log2 in the forest studied is 4,42, and the equitability (J´ is 0,82.Se estudia la composición específica de la comunidad de ácaros Mesostigmata en una hayedo (Fagus sylvatica L. de Navarra (España, Sur de Europa. Se han identificado 653 ácaros procedentes de 12 muestras. Estos representan a 41 especies de 14 familias y las especies más abundantes son Paragamasus ponantinus Athias-Henriot, 1967; Vegaia nemorensis (C. L. Koch, 1839; Paragamasus rothamstedensis Bhattacharyya, 1963 y Rhodacarus coronatus Berlese, 1921. La mitad de la comunidad habita en el horizonte húmico del suelo. En este hayedo el valor de la diversidad de Shannon (H´ log2 es 4,42 y el de la equitabilidad (J´ 0,82.

  18. INVASION OF BEECH AND E STABLISHMENT OF BEECH FORESTS IN EUROPE

    Directory of Open Access Journals (Sweden)

    R. POTT

    1997-01-01

    Full Text Available When studying the natural development in the evolution of beechwood forests in Central Europe after the last glaciation, it is necessary to look at the warm periods prior to the last Weichselian glaciation. The Eem interglacial period has already been studied in great detail in Europe; it is evidend with similar climatic conditions as the current Holocene. At that time nearly all of Europe was more or less completely covered with forests. As laminated sediments and datings indicate, the Eem interglacial period lasted from approximately 125000 to 113000 years before today. The types of trees were generally the same as those of the present, except for the beech (Fagus which was missing due to its delayed re-migration and was replaced by the hornbeam (Carpinus. It was not until the present time following the glaciation-periods that Fagus sylvatica could be found again widespread throughout the woodland vegetation covering Central Europe. The Holocene expansion and re-colonisation of Fagus sylvatica from its refuges during the glacial periods will be described in great detail, based on the most recent pollen analytic proofs.

  19. INVASION OF BEECH AND E STABLISHMENT OF BEECH FORESTS IN EUROPE

    Directory of Open Access Journals (Sweden)

    R. POTT

    1997-04-01

    Full Text Available When studying the natural development in the evolution of beechwood forests in Central Europe after the last glaciation, it is necessary to look at the warm periods prior to the last Weichselian glaciation. The Eem interglacial period has already been studied in great detail in Europe; it is evidend with similar climatic conditions as the current Holocene. At that time nearly all of Europe was more or less completely covered with forests. As laminated sediments and datings indicate, the Eem interglacial period lasted from approximately 125000 to 113000 years before today. The types of trees were generally the same as those of the present, except for the beech (Fagus which was missing due to its delayed re-migration and was replaced by the hornbeam (Carpinus. It was not until the present time following the glaciation-periods that Fagus sylvatica could be found again widespread throughout the woodland vegetation covering Central Europe. The Holocene expansion and re-colonisation of Fagus sylvatica from its refuges during the glacial periods will be described in great detail, based on the most recent pollen analytic proofs.

  20. EVIDENCE FOR CLONAL GROWTH IN FAGUS SYLVATICA L. IN ITALY

    Directory of Open Access Journals (Sweden)

    C. Wellstein

    2012-06-01

    Full Text Available Based on our recent observations in Central Italy we show evidence for root sprouting and subsequent capacity of clonal growth in Fagus sylvatica L. The typology of resprouting in this species is still unclear according to the existing literature. We review Italian, European and global sources and discuss our finding in the light of environmental factors and genetic differences.

  1. Mechanical properties and chemical composition of beech wood exposed for 30 and 120 days to white-rot fungi

    Science.gov (United States)

    Ehsan Bari; Hamid Reza Taghiyari; Behbood Mohebby; Carol A. Clausen; Olaf Schmidt; Mohammad Ali Tajick Ghanbary; Mohammad Javad Vaseghi

    2015-01-01

    The effects of exposing specimens of Oriental beech [Fagus sylvatica subsp. orientalis (Lipsky) Greuter and Burdet] to the white-rot fungi Pleurotus ostreatus (Jacq.: Fr.) Kummer and Trametes versicolor (L.: Fr.) Pilát strain 325 have been studied concerning the mechanical properties and...

  2. Effects of rhizopheric nitric oxide (NO) on N uptake in Fagus sylvatica seedlings depend on soil CO2 concentration, soil N availability and N source.

    Science.gov (United States)

    Dong, Fang; Simon, Judy; Rienks, Michael; Lindermayr, Christian; Rennenberg, Heinz

    2015-08-01

    Rhizospheric nitric oxide (NO) and carbon dioxide (CO2) are signalling compounds known to affect physiological processes in plants. Their joint influence on tree nitrogen (N) nutrition, however, is still unknown. Therefore, this study investigated, for the first time, the combined effect of rhizospheric NO and CO2 levels on N uptake and N pools in European beech (Fagus sylvatica L.) seedlings depending on N availability. For this purpose, roots of seedlings were exposed to one of the nine combinations (i.e., low, ambient, high NO plus CO2 concentration) at either low or high N availability. Our results indicate a significant effect of rhizospheric NO and/or CO2 concentration on organic and inorganic N uptake. However, this effect depends strongly on NO and CO2 concentration, N availability and N source. Similarly, allocation of N to different N pools in the fine roots of beech seedlings also shifted with varying rhizospheric gas concentrations and N availability. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Cascading effects of a highly specialized beech-aphid–fungus interaction on forest regeneration

    Directory of Open Access Journals (Sweden)

    Susan C. Cook-Patton

    2014-06-01

    Full Text Available Specialist herbivores are thought to often enhance or maintain plant diversity within ecosystems, because they prevent their host species from becoming competitively dominant. In contrast, specialist herbivores are not generally expected to have negative impacts on non-hosts. However, we describe a cascade of indirect interactions whereby a specialist sooty mold (Scorias spongiosa colonizes the honeydew from a specialist beech aphid (Grylloprociphilus imbricator, ultimately decreasing the survival of seedlings beneath American beech trees (Fagus grandifolia. A common garden experiment indicated that this mortality resulted from moldy honeydew impairing leaf function rather than from chemical or microbial changes to the soil. In addition, aphids consistently and repeatedly colonized the same large beech trees, suggesting that seedling-depauperate islands may form beneath these trees. Thus this highly specialized three-way beech-aphid–fungus interaction has the potential to negatively impact local forest regeneration via a cascade of indirect effects.

  4. Height-Diameter Models for Mixed-Species Forests Consisting of Spruce, Fir, and Beech

    Directory of Open Access Journals (Sweden)

    Petráš Rudolf

    2014-06-01

    Full Text Available Height-diameter models define the general relationship between the tree height and diameter at each growth stage of the forest stand. This paper presents generalized height-diameter models for mixed-species forest stands consisting of Norway spruce (Picea abies Karst., Silver fir (Abies alba L., and European beech (Fagus sylvatica L. from Slovakia. The models were derived using two growth functions from the exponential family: the two-parameter Michailoff and three-parameter Korf functions. Generalized height-diameter functions must normally be constrained to pass through the mean stand diameter and height, and then the final growth model has only one or two parameters to be estimated. These “free” parameters are then expressed over the quadratic mean diameter, height and stand age and the final mathematical form of the model is obtained. The study material included 50 long-term experimental plots located in the Western Carpathians. The plots were established 40-50 years ago and have been repeatedly measured at 5 to 10-year intervals. The dataset includes 7,950 height measurements of spruce, 21,661 of fir and 5,794 of beech. As many as 9 regression models were derived for each species. Although the “goodness of fit” of all models showed that they were generally well suited for the data, the best results were obtained for silver fir. The coefficient of determination ranged from 0.946 to 0.948, RMSE (m was in the interval 1.94-1.97 and the bias (m was -0.031 to 0.063. Although slightly imprecise parameter estimation was established for spruce, the estimations of the regression parameters obtained for beech were quite less precise. The coefficient of determination for beech was 0.854-0.860, RMSE (m 2.67-2.72, and the bias (m ranged from -0.144 to -0.056. The majority of models using Korf’s formula produced slightly better estimations than Michailoff’s, and it proved immaterial which estimated parameter was fixed and which parameters

  5. Risk of genetic maladaptation due to climate change in three major European tree species.

    Science.gov (United States)

    Frank, Aline; Howe, Glenn T; Sperisen, Christoph; Brang, Peter; Clair, J Bradley St; Schmatz, Dirk R; Heiri, Caroline

    2017-12-01

    Tree populations usually show adaptations to their local environments as a result of natural selection. As climates change, populations can become locally maladapted and decline in fitness. Evaluating the expected degree of genetic maladaptation due to climate change will allow forest managers to assess forest vulnerability, and develop strategies to preserve forest health and productivity. We studied potential genetic maladaptation to future climates in three major European tree species, Norway spruce (Picea abies), silver fir (Abies alba), and European beech (Fagus sylvatica). A common garden experiment was conducted to evaluate the quantitative genetic variation in growth and phenology of seedlings from 77 to 92 native populations of each species from across Switzerland. We used multivariate genecological models to associate population variation with past seed source climates, and to estimate relative risk of maladaptation to current and future climates based on key phenotypic traits and three regional climate projections within the A1B scenario. Current risks from climate change were similar to average risks from current seed transfer practices. For all three climate models, future risks increased in spruce and beech until the end of the century, but remained low in fir. Largest average risks associated with climate projections for the period 2061-2090 were found for spruce seedling height (0.64), and for beech bud break and leaf senescence (0.52 and 0.46). Future risks for spruce were high across Switzerland. However, areas of high risk were also found in drought-prone regions for beech and in the southern Alps for fir. Genetic maladaptation to future climates is likely to become a problem for spruce and beech by the end of this century, but probably not for fir. Consequently, forest management strategies should be adjusted in the study area for spruce and beech to maintain productive and healthy forests in the future. © 2017 John Wiley & Sons Ltd.

  6. Physicochemical characteristics of the cold-pressed oil obtained from seeds of Fagus sylvatica L.

    Science.gov (United States)

    Siger, Aleksander; Dwiecki, Krzysztof; Borzyszkowski, Wojciech; Turski, Mieczysław; Rudzińska, Magdalena; Nogala-Kałucka, Małgorzata

    2017-06-15

    A physicochemical characteristic of the cold-pressed oil obtained from seeds of common beech (Fagus sylvatica L.) has been presented. This plant may be considered as unconventional oilseeds crops because of relatively high content of fat (27.25%). The analyzed beech seeds oil has been classified as oleic-linoleic acids oil with more than 76% percentage share of those species. Beech seeds oil contains 4.2% of gamma-linolenic acid (GLA). Unique characteristic is the high content of γ-tocopherol (75.4mg/100g) and δ-tocopherol (34.05mg/100g). γ-Tocopherol is effective scavengers of reactive nitrogen species and prevents DNA bases nitration, what makes beech seeds oil interesting raw material in the production of cosmetics. Additionally the content of carotenoids, very effective photooxidation inhibitors, is at high level in comparison with other cold-pressed oils. It was demonstrated that PCA analysis may help to determine the authenticity of oil obtained from beech seeds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Prediction of bending properties for beech lumber using stress wave method

    OpenAIRE

    Guntekin,Ergun; Ozkan, Serhat; Yilmaz,Tugba

    2014-01-01

    In this study; bending properties of beech wood (Fagus orientalis) were predicted using stress - wave method and compared with static bending tests. First, lumbers which were different in length and cross section were weighed and dimensions were measured. Then, moisture contents were obtained via moisture meter. By using the density, moisture, and dimensions of the samples in MTG Timber Grader device, dynamic modulus of elasticity values were determined. And then, samples were subjected to 3 ...

  8. Effects of altitude on transpiration, leaf vapor pressure deficit and leaf water potential in oriental beech

    Directory of Open Access Journals (Sweden)

    Fatih Bayraktar

    2015-04-01

    Full Text Available This study was designed to determine the effect of altitude on transpiration, leaf vapor pressure deficit and leaf water potential in oriental beech (Fagus orientalis Lipsky. The study area was located in Ortaköy, Artvin, and the experimental area had the same soil structure and aspect. The study showed that transpiration and leaf vapor pressure deficit increased but leaf water potential decreased by altitudinal gradient

  9. Correlation between degradation of Beech wood and penetration of Pilodyn 6J needle

    OpenAIRE

    Humar, Miha; Thaler, Nejc

    2013-01-01

    Assessment of white rot decay is one of the most important issues for appropriate treatment of infested wooden commodities, particularly damaged constructions. Pilodyn is a well-established tool for assessing density of several commercially important plantation species, therefore we were interested in its suitability to evaluate the rate of decay as well. The Pilodyn measurements performed on common beech wood (Fagus sylvatica), exposed to three white rot fungi (Trametes versicolor, ...

  10. Carbon flux to woody tissues in a beech/spruce forest during summer and in response to chronic O3 exposure

    Science.gov (United States)

    The present study compares the dynamics in carbon (C) allocation of adult deciduous beech (Fagus sylvatica) and evergreen spruce (Picea abies) during summer and in response to seven-year-long exposure with twice-ambient ozone (O3) concentrations (2 × O3). Focus was on the respira...

  11. Effects of litter quality and parent material on organic matter characteristics and N-dynamics in Luxembourg beech and hornbeam forests

    NARCIS (Netherlands)

    Kooijman, A.M.; Martinez-Hernandez, G.B.

    2009-01-01

    To test effects of litter quality and soil conditions on N-dynamics, we selected seven forests in Luxembourg dominated by beech (Fagus sylvatica, L.) and hornbeam (Carpinus betulus L.), and located on acid loam, decalcified marl or limestone, and measured organic matter characteristics, microbial C

  12. Fine roots in stands of Fagus sylvatica and Picea abies along a gradient of soil acidification

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Sabine [Institute for Applied Plant Biology, Sandgrubenstrasse 25/27, 4124 Schoenenbuch (Switzerland)]. E-mail: sabine.braun@iap.ch; Cantaluppi, Leonardo [Institute for Applied Plant Biology, Sandgrubenstrasse 25/27, 4124 Schoenenbuch (Switzerland); Flueckiger, Walter [Institute for Applied Plant Biology, Sandgrubenstrasse 25/27, 4124 Schoenenbuch (Switzerland)

    2005-10-15

    Root length of naturally grown young beech trees (Fagus sylvatica L.) was investigated in 26 forest plots of differing base saturation and nitrogen deposition. The relative length of finest roots (<0.25 mm) was found to decrease in soils with low base saturation. A similar reduction of finest roots in plots with high nitrogen deposition was masked by the effect of base saturation. The formation of adventitious roots was enhanced in acidic soils. The analysis of 128 soil profiles for fine roots of all species present in stands of either Fagus sylvatica L., Picea abies [Karst.] L. or both showed a decreased rooting depth in soils with {<=}20% base saturation and in hydromorphic soils. For base rich, well drained soils an average rooting depth of 108 cm was found. This decreased by 28 cm on acidic, well drained soils. The results suggest an effect of the current soil acidification in Switzerland and possibly also of nitrogen deposition on the fine root systems of forest trees. - Fine root length of Fagus sylvatica and fine root depth in stands of Fagus sylvatica and/or Picea abies were impaired in soils with low base saturation.

  13. Radiation components of beech stands in southwest Germany

    Energy Technology Data Exchange (ETDEWEB)

    Holst, T.; Mayer, H. [Meteorological Inst., Univ. of Freiburg (Germany)

    2005-04-01

    Within the framework of an interdisciplinary project on the impact of climate and forest management on beech dominated deciduous forests, forest meteorological measurements are carried out within and above different beech stands (Fagus sylvatica L.) on opposite slopes of a narrow valley located in the Swabian Jura mountain range (south-west Germany). Referring to test plots on both slopes, the following cycles of radiation components are discussed: (1) Monthly mean values of transmission and extinction of global solar irradiance, photosynthetically active radiation as well as UV-A and UV-B radiation through the canopy, (2) diurnal courses of surface albedo {alpha}, net short-wave radiation K{sup *}, net long-wave radiation L{sup *} and net all-wave radiation Q{sup *} for a cloudless day in March (leafless period) and a cloudless day in July (fully-leaved period) above and below the canopy of different beech stands, and (3) monthly mean values of {alpha}, K{sup *}, L{sup *} and Q{sup *} for the same stand conditions as for (2). The results point out the combined impact on the investigated radiation components emanating from seasonally variable canopy density (quantified by the plant area index), exposure and sun elevation. (orig.)

  14. Effects of tree diversity and environmental factors on the soil microbial community in three soil depth in a Central European beech forest

    Science.gov (United States)

    Fornacon, C.; Jacob, M.; Guckland, A.; Meinen, C.; Gleixner, G.

    2009-04-01

    We investigated the link between aboveground and belowground diversity in forest ecosystems. Therefore, we determined the effect of tree composition on amount and composition of the soil microbial community using phospholipid fatty acid profiles in the Hainich National Park in Thuringia, a deciduous mixed forest on loess over limestone in Central Germany. On the one hand we investigated the composition of the microbial community in dependence of leave litter composition, hypothesizing that distinct leave litter compositions activated signature PLFA's. On the other hand we determined if environmental factor like clay content or nutrient status influence the microbial community in deeper soil horizons. Consequently soil was sampled from depth intervals of 0-5 cm, 5-10 cm and 10-20 cm. Plots with highest diversity of leave litter had highest total amounts of fatty acids in the upper 5 cm. Mainly PLFA 16:1?5 was activated in autumn, being a common marker for mycorrhizal fungi. In soil depth below 5 cm the environmental factors like clay and soil nutrients like phosphorus and carbon, explained most of the soil microbial variability. On pure beech sites the total phosphorus content of soil influenced soil microbial diversity, but on sites with higher tree diversity no single factor varying the microbial community could be identified. Tree diversity and environmental factors together effect soil microbial community and are closely related to the link between aboveground and belowground diversity.

  15. Wood quality and value production in mixed fir-spruce-beech stands: long-term research in the Western Carpathians

    Directory of Open Access Journals (Sweden)

    Petráš Rudolf

    2016-06-01

    Full Text Available Stem quality and damage was evaluated in mixed spruce-fir-beech stands. Moreover, an assortments structure was determined with their financial value. Results were compared with pure spruce (Picea abies [L.] Karst., fir (Abies alba Mill. and beech (Fagus sylvatica L. stands. Repeated measurements on 31 long-term research plots, stand assortment models, assortment yield models and value yield models were used. Stem quality of fir and spruce was only slightly lower in mixed stands compared to pure stands but beech stem quality was considerably worse in mixed stands. Fir and spruce had slightly lower proportions of better IIIA quality logs and higher proportions of IIIB quality in mixed stands. Beech had worse assortment structure than spruce and fir, in general. Pure beech stands had higher proportions of better I–IIIA quality assortments than mixed stands by 1–7%. Fir and spruce average value production (€ m−3 culminated at about 56 and 62 cm mean diameters. Almost the same value production was found in pure stands. In these stands it culminated at the mean diameter of 58 and 60 cm. Beech produced substantially less value on the same sites. In mixed stands, its value production culminated at the mean diameter of 40 cm. In pure stands, it culminated at the mean diameter of 36 cm. Although the production was found to be similar in both mixed and pure forests, higher damage intensity and less stem quality in mixed forests suggest that the pure forests can be more profitable.

  16. Short-term dynamics and partitioning of newly assimilated carbon in the foliage of adult beech and pine are driven by seasonal variations

    Science.gov (United States)

    Desalme, Dorine; Priault, Pierrick; Gérant, Dominique; Dannoura, Masako; Maillard, Pascale; Plain, Caroline; Epron, Daniel

    2017-04-01

    Carbon (C) allocation is a key process determining C cycling in forest ecosystems. However, the mechanisms underlying the annual patterns of C partitioning in trees, influenced by tree phenology and environmental conditions, are not well identified yet. This study aimed to characterize the short-term dynamics and partitioning of newly assimilated carbon in the foliage of adult European beeches (Fagus sylvatica) and maritime pines (Pinus pinaster) across the seasons. We hypothesized that residence times of recently assimilated C in C compounds should change according to the seasons and that seasonal pattern should differ between deciduous and evergreen tree species, since they have different phenology. 13CO2 pulse-labelling experiments were performed in situ at different dates corresponding to different phenological stages. In beech leaves and pine needles, C contents, isotopic compositions, and 13C dynamics parameters were determined in total organic matter (bulk foliage), in polar fraction (PF, including soluble sugars, amino acids, organic acids) and in starch. For both species and at each phenological stage, 13C amount in bulk foliage decreased following a two-pool exponential model, highlighting the partitioning of newly assimilated C between 'mobile' and 'stable' pools. The relative proportion of the stable pool was maximal in beech leaves in May, when leaves were still growing and could incorporate newly assimilated C in structural C compounds. Young pine needles were still receiving C from previous-year needles in June (two months after budburst) although they are already photosynthesizing, acting as a strong C sink. In summer, short mean residence times of 13C (MRT) in foliage of both tree species reflected the fast respiration and exportation of recent photosynthates to support the whole tree C demand (e.g., supplying perennial organ growth). At the end of the growing season, pre-senescing beech leaves were supplying 13C to perennial organs, whereas

  17. Beech bark necrosis: partition- ing the environmental and spatial variation of the damage severity in Central and South-Eastern Europe

    Directory of Open Access Journals (Sweden)

    Benjamín Jarčuška

    2013-12-01

    Full Text Available The beech bark necrosis (BBN infestation severity of European beech (Fagus sylvatica L. was assessed in regions of Central (CE and South-Eastern Europe (SE. Altogether more than 10,000 trees were sampled at 114 sites. Using variation partitioning method, we examined the pure and shared effects of stand, site, climate and spatial sets of variables on mean BBN severity. Our rating included (i the whole stand, (ii tree social status classes, (iii canopy (C and (iv understory (U trees separately. We found that C trees were less affected by BBN than sub-canopy and U trees in both regions. There were found inter-regional differences in amount of explained variability (25.4–73.9% for whole stand BBN and in the sensitivity of C and U trees to the environmental gradients. The analysis revealed that the climate and spatial variables followed by stand variables had the largest marginal effects on mean BBN severity in all models, while the site set of variables had the weakest one. More than half of the explained variation was shared among four sets of variables in SE, contrary to CE. Except to U trees in SE, the effect of climate – pure or spatially structured – remained the highest also after partitioning of variance; more in SE than in CE. Taking into account positive association between mean annual temperature and mean BBN severity in C trees in SE, reinforced negative effect of climate change on the necrosis might be expected to be more serious mainly in low situated beech forests there. Promoting the tree species diversity in forested areas with higher incidence of beech bark necrosis, i.e. in low altitudes in SE, could reduce the susceptibility of forests to the necrosis at regional level in the future. For better understanding of the relative importance of environmental and spatial variables on BBN severity, further research performed on finer spatial scale (extent and grain is necessary, along with accounting for pathogens involved in the

  18. EXPERIMENTAL RESEARCH CONCERNING THE OPTIMAL DIMENSIONS OF AN ELASTIC STRUCTURE OF BEECH WOOD PARQUET

    Directory of Open Access Journals (Sweden)

    Olimpia-Minerva ȚURCAȘ (DIACONU

    2015-12-01

    Full Text Available This paper presents the results of the experimental research concerning the modulus of elasticity and the average value of the bending strength in case of beech (Fagus sylvatica L. wood. The investigations were performed according to SR EN 408-2004. The results of the research have been analysed in order to establish the variable parameters to be considered for the final experimental research focused on beech wood floor structures that meet the necessary requirements for the sports halls applications. The research presented in the paper is a part of the study theme of the Ph. D. thesis, which investigates the flooring structures able to support the requirements of sports halls activities, different from one sport to another.

  19. Effects of ozone-induced stomatal closure on ozone uptake and its changes due to leaf age in sun and shade leaves of Siebold's beech

    OpenAIRE

    Hoshika, Yasutomo; Watanabe, Makoto; Inada, Naoki; Koike, Takayoshi

    2015-01-01

    An estimation of stomatal ozone uptake for the assessment of ozone risks in forest trees can be modified by ozone-induced stomatal closure. We thus examined a seasonal course of stomatal conductance in sun and shade leaves of Siebold's beech native to northern Japan (Fagus crenata) grown under free-air ozone exposure. A performance of multiplicative stomatal conductance model was also tested, when considering ozone-induced stomatal closure into the model. Ozone caused stomatal closure in both...

  20. Current near-to-nature forest management effects on functional trait composition of saproxylic beetles in beech forests.

    Science.gov (United States)

    Gossner, Martin M; Lachat, Thibault; Brunet, Jörg; Isacsson, Gunnar; Bouget, Christophe; Brustel, Hervé; Brandl, Roland; Weisser, Wolfgang W; Müller, Jörg

    2013-06-01

    With the aim of wood production with negligible negative effects on biodiversity and ecosystem processes, a silvicultural practice of selective logging with natural regeneration has been implemented in European beech forests (Fagus sylvatica) during the last decades. Despite this near-to-nature strategy, species richness of various taxa is lower in these forests than in unmanaged forests. To develop guidelines to minimize the fundamental weaknesses in the current practice, we linked functional traits of saproxylic beetle species to ecosystem characteristics. We used continental-scale data from 8 European countries and regional-scale data from a large forest in southern Germany and forest-stand variables that represented a gradient of intensity of forest use to evaluate the effect of current near-to-nature management strategies on the functional diversity of saproxylic beetles. Forest-stand variables did not have a statistically significant effect on overall functional diversity, but they did significantly affect community mean and diversity of single functional traits. As the amount of dead wood increased the composition of assemblages shifted toward dominance of larger species and species preferring dead wood of large diameter and in advanced stages of decay. The mean amount of dead wood across plots in which most species occurred was from 20 to 60 m(3) /ha. Species occurring in plots with mean dead wood >60 m(3) /ha were consistently those inhabiting dead wood of large diameter and in advanced stages of decay. On the basis of our results, to make current wood-production practices in beech forests throughout Europe more conservation oriented (i.e., promoting biodiversity and ecosystem functioning), we recommend increasing the amount of dead wood to >20 m(3) /ha; not removing dead wood of large diameter (50 cm) and allowing more dead wood in advanced stages of decomposition to develop; and designating strict forest reserves, with their exceptionally high amounts of

  1. Genotypic variability and phenotypic plasticity of cavitation resistance in Fagus sylvatica L. across Europe.

    Science.gov (United States)

    Wortemann, Rémi; Herbette, Stéphane; Barigah, Têtè Sévérien; Fumanal, Boris; Alia, Ricardo; Ducousso, Alexis; Gomory, Dusan; Roeckel-Drevet, Patricia; Cochard, Hervé

    2011-11-01

    Xylem cavitation resistance is a key physiological trait correlated with species tolerance to extreme drought stresses. Little is known about the genetic variability and phenotypic plasticity of this trait in natural tree populations. Here we measured the cavitation resistance of 17 Fagus sylvatica populations representative of the full range of the species in Europe. The trees were grown in three field trials under contrasting climatic conditions. Our findings suggest that the genotypic variability of cavitation resistance is high between genotypes of a given population. By contrast, no significant differences were found for this trait across populations, the mean population cavitation resistance being remarkably constant in each trial. We found a significant site effect and a significant site × population interaction, suggesting that cavitation resistance has a high phenotypic plasticity and that this plasticity is under genetic control. The implications of our findings for beech forest management in a context of climate change are discussed.

  2. Thirty-two years of change in an old-growth Ohio beech-maple forest.

    Science.gov (United States)

    Runkle, James R

    2013-05-01

    Old-growth forests dominated by understory-tolerant tree species are among forest types most likely to be in equilibrium. However, documentation of the degree to which they are in equilibrium over decades-long time periods is lacking. Changes in climate, pathogens, and land use all are likely to impact stand characteristics and species composition, even in these forests. Here, 32 years of vegetation changes in an old-growth beech (Fagus grandifolia)-sugar maple (Acer saccharum) forest in Hueston Woods, southwest Ohio, USA, are summarized. These changes involve canopy composition and structure, turnover in snags, and development of vegetation in treefall gaps. Stand basal area and canopy density have changed little in 32 years. However, beech has decreased in canopy importance (49% to 32%) while sugar maple has increased (32% to 47%). Annual mortality was about 1.3% throughout the study period. Mortality rates increased with stem size, but the fraction of larger stems increased due to ingrowth from smaller size classes. Beech was represented by more very large stems than small canopy stems: over time, death of those larger stems with inadequate replacement has caused the decrease in beech importance. Sugar maple was represented by more small canopy stems whose growth has increased its importance. The changes in beech and sugar maple relative importance are hypothesized to be due to forest fragmentation mostly from the early 1800s with some possible additional effects associated with the formation of the state park. Snag densities (12-16 snags/ha) and formation rates (1-3 snags.ha(-1).yr(-1)) remained consistent. The treefall gaps previously studied are closing, with a few, large stems remaining. Death of gap border trees occurs consistently enough to favor species able to combine growth in gaps and survival in the understory.

  3. Shoot growth of mature Fagus sylvatica and Picea abies in relation to ozone

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Sabine [Institute for Applied Plant Biology, Sandgrubenstrasse 25, CH-4124 Schoenenbuch (Switzerland)]. E-mail: sabine.braun@iap.ch; Schindler, Christian [Institute for Social and Preventive Medicine, University of Basel, Steinengraben 49, CH-4051 Basel (Switzerland)]. E-mail: christian.schindler@unibas.ch; Rihm, Beat [Meteotest, Fabrikstrasse 14, CH-3012 Berne (Switzerland)]. E-mail: rihm@meteotest.ch; Flueckiger, Walter [Institute for Applied Plant Biology, Sandgrubenstrasse 25, CH-4124 Schoenenbuch (Switzerland)

    2007-04-15

    Epidemiological analysis of sequential growth data may be a tool in assessing ozone sensitivity of mature trees. Annual shoot growth of mature Fagus sylvatica in 83 Swiss permanent forest observation plots and of Picea abies in 61 plots was evaluated for 11 and 8 consecutive years, respectively, using branches harvested every 4 years. The data were assessed as annual deviation from average growth and related to fructification, ozone, meteorological parameters, and modelled soil water content using a mixed linear model. In beech, a significant association between ozone and shoot growth was observed which corresponded to a 7.4% growth reduction between 0 and 10 ppm h AOT40 (accumulated ozone over threshold 40). This is in the same order of magnitude as the response observed in experiments with seedlings. No interaction was found between ozone and drought parameters. In Norway spruce, shoot growth was neither associated with ozone nor with drought. - Epidemiological assessment of shoot growth suggests an ozone sensitivity of mature beech which is similar to seedlings.

  4. Insights into xylem vulnerability to cavitation in Fagus sylvatica L.: phenotypic and environmental sources of variability.

    Science.gov (United States)

    Herbette, Stephane; Wortemann, Remi; Awad, Hosam; Huc, Roland; Cochard, Herve; Barigah, Tete Severien

    2010-11-01

    Xylem vulnerability to cavitation is a key parameter in understanding drought resistance of trees. We determined the xylem water pressure causing 50% loss of hydraulic conductivity (P(50)), a proxy of vulnerability to cavitation, and we evaluated the variability of this trait at tree and population levels for Fagus sylvatica. We checked for the effects of light on vulnerability to cavitation of stem segments together with a time series variation of P(50). Full sunlight-exposed stem segments were less vulnerable to cavitation than shade-exposed ones. We found no clear seasonal change of P(50), suggesting that this trait was designed for a restricted period. P(50) varied for populations settled along a latitudinal gradient, but not for those sampled along an altitudinal gradient. Moreover, mountainside exposure seemed to play a major role in the vulnerability to cavitation of beech populations, as we observed the differences along north-facing sides but not on south-facing sides. Unexpectedly, both north-facing mountainside and northern populations appeared less vulnerable than those grown on the southern mountainside or in the South of France. These results on beech populations were discussed with respect to the results at within-tree level.

  5. Early events in Populus hybrid and Fagus sylvatica leaves exposed to ozone.

    Science.gov (United States)

    Desotgiu, R; Bussotti, F; Faoro, F; Iriti, M; Agati, G; Marzuoli, R; Gerosa, G; Tani, C

    2010-04-01

    This paper aims to investigate early responses to ozone in leaves of Fagus sylvatica (beech) and Populus maximowiczii x Populus berolinensis (poplar). The experimental setup consisted of four open-air (OA) plots, four charcoal-filtered (CF) open-top chambers (OTCs), and four nonfiltered (NF) OTCs. Qualitative and quantitative analyses were carried out on nonsymptomatic (CF) and symptomatic (NF and OA) leaves of both species. Qualitative analyses were performed applying microscopic techniques: Evans blue staining for detection of cell viability, CeCl3 staining of transmission electron microscope (TEM) samples to detect the accumulation of H2O2, and multispectral fluorescence microimaging and microspectrofluorometry to investigate the accumulation of fluorescent phenolic compounds in the walls of the damaged cells. Quantitative analyses consisted of the analysis of the chlorophyll a fluorescence transients (fast kinetics). The early responses to ozone were demonstrated by the Evans blue and CeCl3 staining techniques that provided evidence of plant responses in both species 1 month before foliar symptoms became visible. The fluorescence transients analysis, too, demonstrated the breakdown of the oxygen evolving system and the inactivation of the end receptors of electrons at a very early stage, both in poplar and in beech. The accumulation of phenolic compounds in the cell walls, on the other hand, was a species-specific response detected in poplar, but not in beech. Evans blue and CeCl3 staining, as well as the multispectral fluorescence microimaging and microspectrofluorometry, can be used to support the field diagnosis of ozone injury, whereas the fast kinetics of chlorophyll fluorescence provides evidence of early physiological responses.

  6. Early Events in Populus Hybrid and Fagus sylvatica Leaves Exposed to Ozone

    Directory of Open Access Journals (Sweden)

    R. Desotgiu

    2010-01-01

    Full Text Available This paper aims to investigate early responses to ozone in leaves of Fagus sylvatica (beech and Populus maximowiczii x Populus berolinensis (poplar. The experimental setup consisted of four open-air (OA plots, four charcoal-filtered (CF open-top chambers (OTCs, and four nonfiltered (NF OTCs. Qualitative and quantitative analyses were carried out on nonsymptomatic (CF and symptomatic (NF and OA leaves of both species. Qualitative analyses were performed applying microscopic techniques: Evans blue staining for detection of cell viability, CeCl3 staining of transmission electron microscope (TEM samples to detect the accumulation of H2O2, and multispectral fluorescence microimaging and microspectrofluorometry to investigate the accumulation of fluorescent phenolic compounds in the walls of the damaged cells. Quantitative analyses consisted of the analysis of the chlorophyll a fluorescence transients (fast kinetics. The early responses to ozone were demonstrated by the Evans blue and CeCl3 staining techniques that provided evidence of plant responses in both species 1 month before foliar symptoms became visible. The fluorescence transients analysis, too, demonstrated the breakdown of the oxygen evolving system and the inactivation of the end receptors of electrons at a very early stage, both in poplar and in beech. The accumulation of phenolic compounds in the cell walls, on the other hand, was a species-specific response detected in poplar, but not in beech. Evans blue and CeCl3 staining, as well as the multispectral fluorescence microimaging and microspectrofluorometry, can be used to support the field diagnosis of ozone injury, whereas the fast kinetics of chlorophyll fluorescence provides evidence of early physiological responses.

  7. Highest drought sensitivity and lowest resistance to growth suppression are found in the range core of the tree Fagus sylvatica L. not the equatorial range edge.

    Science.gov (United States)

    Cavin, Liam; Jump, Alistair S

    2017-01-01

    Biogeographical and ecological theory suggests that species distributions should be driven to higher altitudes and latitudes as global temperatures rise. Such changes occur as growth improves at the poleward edge of a species distribution and declines at the range edge in the opposite or equatorial direction, mirrored by changes in the establishment of new individuals. A substantial body of evidence demonstrates that such processes are underway for a wide variety of species. Case studies from populations at the equatorial range edge of a variety of woody species have led us to understand that widespread growth decline and distributional shifts are underway. However, in apparent contrast, other studies report high productivity and reproduction in some range edge populations. We sought to assess temporal trends in the growth of the widespread European beech tree (Fagus sylvatica) across its latitudinal range. We explored the stability of populations to major drought events and the implications for predicted widespread growth decline at its equatorial range edge. In contrast to expectations, we found greatest sensitivity and low resistance to drought in the core of the species range, whilst dry range edge populations showed particularly high resistance to drought and little evidence of drought-linked growth decline. We hypothesize that this high range edge resistance to drought is driven primarily by local environmental factors that allow relict populations to persist despite regionally unfavourable climate. The persistence of such populations demonstrates that range-edge decline is not ubiquitous and is likely to be driven by declining population density at the landscape scale rather than sudden and widespread range retraction. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  8. Spatial vs. temporal effects on demographic and genetic structures: the roles of dispersal, masting and differential mortality on patterns of recruitment in Fagus sylvatica.

    Science.gov (United States)

    Oddou-Muratorio, Sylvie; Klein, Etienne K; Vendramin, Giovanni G; Fady, Bruno

    2011-05-01

    Trees' long lifespan, long-distance dispersal abilities and high year-to-year variability in fecundity are thought to have pervasive consequences for the demographic and genetic structure of recruited seedlings. However, we still lack experimental studies quantifying the respective roles of spatial processes such as restricted seed and pollen dispersal and temporal processes such as mast seeding on patterns of regeneration. Dynamics of European beech (Fagus sylvatica) seedling recruitment was monitored in three plots from 2004 to 2006. Six polymorphic microsatellite genetic markers were used to characterize seedlings and their potential parents in a 7.2-ha stand. These seedlings were shown to result from 12 years of recruitment, with one predominant year of seedling recruitment in 2002 and several years without significant recruitment. Using a spatially explicit mating model based on parentage assignment, short average dispersal distances for seed (δ(s) = 10.9 m) and pollen (43.7 m < δ(p) <57.3 m) were found, but there was also a non-negligible immigration rate from outside the plot (m(s) = 20.5%; 71.6% < m(p) < 77.9%). Hierarchical analyses of seedling genetic structure showed that (i) most of the genetic variation was within plots; (ii) the genetic differentiation among seedling plots was significant (F(ST) = 2.6%) while (iii) there was no effect of year-to-year seed rain variation on genetic structure. In addition, no significant effect of genetic structure on mortality was detected. The consequences of these results for the prediction of population dynamics at ecological timescales are discussed. © 2011 Blackwell Publishing Ltd.

  9. Segregation of nitrogen use between ammonium and nitrate of ectomycorrhizas and beech trees.

    Science.gov (United States)

    Leberecht, Martin; Dannenmann, Michael; Tejedor, Javier; Simon, Judy; Rennenberg, Heinz; Polle, Andrea

    2016-12-01

    Here, we characterized nitrogen (N) uptake of beech (Fagus sylvatica) and their associated ectomycorrhizal (EM) communities from NH4+ and NO3- . We hypothesized that a proportional fraction of ectomycorrhizal N uptake is transferred to the host, thereby resulting in the same uptake patterns of plants and their associated mycorrhizal communities. 15 N uptake was studied under various field conditions after short-term and long-term exposure to a pulse of equimolar NH4+ and NO3- concentrations, where one compound was replaced by 15 N. In native EM assemblages, long-term and short-term 15 N uptake from NH4+ was higher than that from NO3- , regardless of season, water availability and site exposure, whereas in beech long-term 15 N uptake from NO3- was higher than that from NH4+ . The transfer rates from the EM to beech were lower for 15 N from NH4+ than from NO3- . 15 N content in EM was correlated with 15 N uptake of the host for 15 NH4+ , but not for 15 NO3- -derived N. These findings suggest stronger control of the EM assemblage on N provision to the host from NH4+ than from NO3- . Different host and EM accumulation patterns for inorganic N will result in complementary resource use, which might be advantageous in forest ecosystems with limited N availability. © 2016 John Wiley & Sons Ltd.

  10. Effect of Enzymatic Beech Fagus Sylvatica Wood Hydrolysate on Chlorella Biomass, Fatty Acid and Pigment Production

    National Research Council Canada - National Science Library

    Krystian Miazek; Claire Remacle; Aurore Richel; Dorothee Goffin

    2017-01-01

    .... Neutralized wood enzymatic hydrolysate containing glucose (TGP-Enz10), was tested on Chlorella growth during heterotrophic cultivation and compared with microalgae growth in a medium containing synthetic glucose (TGP...

  11. The impact of small terrestrial mammals on beech (Fagus sylvatica plantations in spruce monoculture

    Directory of Open Access Journals (Sweden)

    Luboš Purchart

    2007-01-01

    Full Text Available Little is known about the impact of small terrestrial mammals on forest regeneration as yet. In order to determine the level of small rodent impact on artificial forest regeneration, 508 saplings have been researched in a spruce monoculture in the Drahany Uplands. With the objective to hone the interpretation of the data, small terrestrial rodents were trapped to help determine species spectrum. The occurrence of Apodemus flavicollis, Clethrionomys glareolus and Sorex araneus was verified. In 52 cases damage to the trunk caused by small rodents was monitored (10.1% of all saplings. 8 specimens (1.6% had their branches nibbled and 9 saplings (1.8% had tips of branches or trunk tops browsed. Browsing by Lepus europaeus – 423 (83.3% of all damaged specimens was significant.

  12. Volatile organic compounds emitted from fungal-rotting beech (Fagus sylvatica)

    OpenAIRE

    Thakeow, Prodepran; Weißbecker, Bernhard; Schütz, Stefan

    2008-01-01

    Chemo-communication is an important mode of interaction within ecosystem. The living organism in the ecosystem can deliver signals to conspecifics, to co-organisms, and unintentionally to their enemies, by emitting the volatile organic compounds (VOCs) to the atmosphere. There are some insect-fungi-associations displaying interesting relationships. For example, some bark beetle species (PAINE et al. 1997) introduce fungi into the conifers during the attack process. Fungi take advantage by ass...

  13. Mapping beech (Fagus sylvatica L.) forest structure with airborne hyperspectral imagery

    NARCIS (Netherlands)

    Cho, M.A.; Skidmore, A.K.; Sobhan, I.

    2009-01-01

    Estimating forest structural attributes using multispectral remote sensing is challenging because of the saturation of multispectral indices at high canopy cover. The objective of this study was to assess the utility of hyperspectral data in estimating and mapping forest structural parameters

  14. Floristic diversity analysis along a fragmentation gradients: a case study of beech forests in the Molisean Appenines (southern Italy

    Directory of Open Access Journals (Sweden)

    Frate L

    2011-11-01

    Full Text Available The process of fragmentation of natural habitats is increasing exponentially worldwide and represents one of the foremost threats to biological diversity. Forest fragmentation is considered to heavily affect the demographic and genetic structure of forest plant populations. Habitat fragmentation is a landscape process occurring when areas of continuous habitat are broken into smaller and discontinuous patches. In this paper we analyzed the effects of fragmentation on vascular plant diversity of Fagus sylvatica forest in central Italy (habitat of Community interest -92/43/ECC- “Appenine beech forests with Taxus and Ilex” - cod. 9210*. First, by integrating five parameters that describe beech forest patches structure (patch area, perimeter, shape index, corea area, euclidean nearest neighbor we identified three levels of fragmentation: high, medium and absent. Then the vascular plants of each level of fragmentation were sampled following a random stratified design. The diversity of vascular plant species was analyzed considering two species groups: all sampled species and “diagnostic” species of the habitat 9210* (sensu Directive 92/43/ECC. We compared the biodiversity patterns of the different fragmentation levels by using rarefaction curves and Rényi’s profiles. We also tested the significance of the founded differences by a bootstrapping procedure. The diversity pattern of the two species groups (diagnostics and all species showed two opposite trends. As the diversity of the entire pool of species increased on fragmented beech forests the diversity of the diagnostic group decreased. The differences between diversity values of high and low fragmentation levels resulted significant. Our results emphasize the existence of two diagnostic species: Cardamine kitaibelii and Paris quadrifolia that are indicators of not fragmented beech forests. Additionally the diversity pattern of the diagnostics species allow us to propose them as

  15. Impregnation of Scots pine and beech with tannin solutions: effect of viscosity and wood anatomy in wood infiltration.

    Science.gov (United States)

    Tondi, G; Thevenon, M F; Mies, B; Standfest, G; Petutschnigg, A; Wieland, S

    The impregnation process of Scots pine and beech samples with tannin solutions was investigated. The two materials involved in the process (impregnation solution and wood samples) are studied in depth. Viscosity of mimosa tannin solutions and the anatomical aspect of beech and Scots pine were analysed and correlated. The viscosity of tannin solutions presents a non-newtonian behaviour when its pH level increases, and in the case of addition of hexamine as a hardener, the crosslinking of the flavonoids turns out to be of great importance. During the impregnation of Scots pine (Pinus sylvestris L.) and beech (Fagus sylvatica L.), the liquid and solid uptakes were monitored while taking into consideration the different conditions of the impregnation process. This method allowed to identify the best conditions needed in order to get a successful preservative uptake for each wooden substrate. The penetration mechanism within the wood of both species was revealed with the aid of a microscopic analysis. Scots pine is impregnated through the tracheids in the longitudinal direction and through parenchyma rays in the radial direction, whereas in beech, the penetration occurs almost completely through longitudinal vessels.

  16. Interactions between leaf nitrogen status and longevity in relation to N cycling in three contrasting European forest canopies

    Directory of Open Access Journals (Sweden)

    L. Wang

    2013-02-01

    Full Text Available Seasonal and spatial variations in foliar nitrogen (N parameters were investigated in three European forests with different tree species, viz. beech (Fagus sylvatica L., Douglas fir (Pseudotsuga menziesii (Mirb. Franco and Scots pine (Pinus sylvestris L. growing in Denmark, the Netherlands and Finland, respectively. The objectives were to investigate the distribution of N pools within the canopies of the different forests and to relate this distribution to factors and plant strategies controlling leaf development throughout the seasonal course of a vegetation period. Leaf N pools generally showed much higher seasonal and vertical variability in beech than in the coniferous canopies. However, also the two coniferous tree species behaved very differently with respect to peak summer canopy N content and N re-translocation efficiency, showing that generalisations on tree internal vs. ecosystem internal N cycling cannot be made on the basis of the leaf duration alone. During phases of intensive N turnover in spring and autumn, the NH4+ concentration in beech leaves rose considerably, while fully developed green beech leaves had relatively low tissue NH4+, similar to the steadily low levels in Douglas fir and, particularly, in Scots pine. The ratio between bulk foliar concentrations of NH4+ and H+, which is an indicator of the NH3 emission potential, reflected differences in foliage N concentration, with beech having the highest values followed by Douglas fir and Scots pine. Irrespectively of the leaf habit, i.e. deciduous versus evergreen, the majority of the canopy foliage N was retained within the trees. This was accomplished through an effective N re-translocation (beech, higher foliage longevity (fir or both (boreal pine forest. In combination with data from a literature review, a general relationship of decreasing N re

  17. Interactions between leaf nitrogen status and longevity in relation to N cycling in three contrasting European forest canopies

    Science.gov (United States)

    Wang, L.; Ibrom, A.; Korhonen, J. F. J.; Arnoud Frumau, K. F.; Wu, J.; Pihlatie, M.; Schjoerring, J. K.

    2013-02-01

    Seasonal and spatial variations in foliar nitrogen (N) parameters were investigated in three European forests with different tree species, viz. beech (Fagus sylvatica L.), Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) and Scots pine (Pinus sylvestris L.) growing in Denmark, the Netherlands and Finland, respectively. The objectives were to investigate the distribution of N pools within the canopies of the different forests and to relate this distribution to factors and plant strategies controlling leaf development throughout the seasonal course of a vegetation period. Leaf N pools generally showed much higher seasonal and vertical variability in beech than in the coniferous canopies. However, also the two coniferous tree species behaved very differently with respect to peak summer canopy N content and N re-translocation efficiency, showing that generalisations on tree internal vs. ecosystem internal N cycling cannot be made on the basis of the leaf duration alone. During phases of intensive N turnover in spring and autumn, the NH4+ concentration in beech leaves rose considerably, while fully developed green beech leaves had relatively low tissue NH4+, similar to the steadily low levels in Douglas fir and, particularly, in Scots pine. The ratio between bulk foliar concentrations of NH4+ and H+, which is an indicator of the NH3 emission potential, reflected differences in foliage N concentration, with beech having the highest values followed by Douglas fir and Scots pine. Irrespectively of the leaf habit, i.e. deciduous versus evergreen, the majority of the canopy foliage N was retained within the trees. This was accomplished through an effective N re-translocation (beech), higher foliage longevity (fir) or both (boreal pine forest). In combination with data from a literature review, a general relationship of decreasing N re-translocation efficiency with the time needed for canopy renewal was deduced, showing that leaves which live longer re

  18. Carbon assimilation, translocation and respiration in Fagus sylvatica and Abies alba stands measured by gas exchange and isotopic techniques during two contrasting climatic years

    Science.gov (United States)

    Gavrichkova, Olga; Scartazza, Andrea; Zampedri, Roberto; Cavagna, Mauro; Sottocornola, Matteo; Matteucci, Giorgio; Brugnoli, Enrico

    2014-05-01

    Global warming is tremendously influencing the climate of mountain areas through constantly rising temperatures and changes in local hydrological cycle. Increase of precipitation extremes, seasonal shifts of rainfall regime, heat waves are becoming more and more frequent events here. Vulnerability and plasticity of the local individual tree species under changing climate has still to be evaluated under field conditions. Two consecutive years, 2012 and 2013 were quite distinct in the climatic conditions during the plant growing season. Summer 2012 was characterized by a prolonged summer drought with almost no precipitation in central Italy from the end of May up to the end of August. The situation was aggravated by a very dry winter during this year. Mean annual temperatures in 2012 were 2oC higher in respect to the temperatures measured in the last 10 years. Conversely, year 2013 was milder with occasional rain events also during the summer months and temperatures close to the average values. In the Alpine zone the difference between two years were less pronounced with 2012 being slightly warmer than average and 2013 was characterized by unusually abundant spring precipitations. Taking advantage of these two contrasting years, we have monitored a functional response of one deciduous and one coniferous mountain forest stands growing in different mountain climate zones to variations in the local climate. The first, a deciduous European beech (Fagus sylvatica) forest, is located in the Appennine region of Italy at 1700 m height (Collelongo site, AQ) and characterized by a Mountain-Mediterranean climate. The second is a mixed forest dominated by Silver fir (Abies alba) which was chosen as a target species for our study. The site is located at 1350m height in the south-eastern Alps (Lavarone, TN) and is characterized by a mountain temperate climate. Sampling of plant material and point flux measurements were performed in the beginning, middle and the end of the growing

  19. Beech carbon productivity as driver of ectomycorrhizal abundance and diversity.

    Science.gov (United States)

    Druebert, Christine; Lang, Christa; Valtanen, Kerttu; Polle, Andrea

    2009-08-01

    We tested the hypothesis that carbon productivity of beech (Fagus sylvatica) controls ectomycorrhizal colonization, diversity and community structures. Carbon productivity was limited by long-term shading or by girdling. The trees were grown in compost soil to avoid nutrient deficiencies. Despite severe limitation in photosynthesis and biomass production by shading, the concentrations of carbohydrates in roots were unaffected by the light level. Shade-acclimated plants were only 10% and sun-acclimated plants were 74% colonized by ectomycorrhiza. EM diversity was higher on roots with high than at roots with low mycorrhizal colonization. Evenness was unaffected by any treatment. Low mycorrhizal colonization had no negative effects on plant mineral nutrition. In girdled plants mycorrhizal colonization and diversity were retained although (14)C-leaf feeding showed almost complete disruption of carbon transport from leaves to roots. Carbohydrate storage pools in roots decreased upon girdling. Our results show that plant carbon productivity was the reason for and not the result of high ectomycorrhizal diversity. We suggest that ectomycorrhiza can be supplied by two carbon routes: recent photosynthate and stored carbohydrates. Storage pools may be important for ectomycorrhizal survival when photoassimilates were unavailable, probably feeding preferentially less carbon demanding EM species as shifts in community composition were found.

  20. Comparison of protein profiles of beech bark disease-resistant or beech bark disease-susceptible American beech

    Science.gov (United States)

    Mary E. Mason; Marek Krasowski; Judy Loo; Jennifer. Koch

    2011-01-01

    Proteomic analysis of beech bark proteins from trees resistant and susceptible to beech bark disease (BBD) was conducted. Sixteen trees from eight geographically isolated stands, 10 resistant (healthy) and 6 susceptible (diseased/infested) trees, were studied. The genetic complexity of the sample unit, the sampling across a wide geographic area, and the complexity of...

  1. Nitrous oxide emissions from a beech forest floor measured by eddy covariance and soil enclosure techniques

    DEFF Research Database (Denmark)

    Pihlatie, M.; Rinne, J.; Ambus, P.

    2005-01-01

    Spring time nitrous oxide (N2O) emissions from an old beech (Fagus sylvatica L.) forest were measured with eddy covariance (EC) and chamber techniques. The aim was to obtain information on the spatial and temporal variability in N2O emissions and link the emissions to soil environmental parameters...... the first week of May when the trees were leafing and the soil moisture content was at its highest. If chamber techniques are used to estimate ecosystem level N2O emissions from forest soils, placement of the chambers should be considered carefully to cover the spatial variability in the soil N2O emissions....... Mean N2O fluxes over the five week measurement period were 5.6 +/- 1.1, 10 +/- 1 and 16 +/- 11 mu g N m(-2) h(-1) from EC, automatic chamber and manual chambers, respectively. High temporal variability characterized the EC fluxes in the trunk-space. To reduce this variability, resulting mostly from...

  2. Root biomass of Fagus sylvatica L. stands depending on the climatic conditions

    Directory of Open Access Journals (Sweden)

    Grygoruk Dorota

    2016-12-01

    Full Text Available Fine root biomass of forest trees is a recognised indicator of environmental changes in the conditions of global climate change. The present study was carried out in six old-growth beech forests (112-140 years located in different climatic conditions on the range border of Fagus sylvatica L. in Poland. The root biomass was investigated by soil coring method in the upper soil layers (0-5 cm, 5-15 cm and total layer 0-15 cm. The significantly greater total root biomass was found in the beech stands, which characterised by higher average precipitation and lower average annual temperatures in the period 2000-2005. The share of roots of diameter > 5 mm increased with increasing depth of top soils. Biomass of fine roots (diameter ≤ 2 mm decreased with increasing depth of upper soil layers. The average biomass of fine roots ranged from 175.36 to 418.16 g m-2 in the soil layer 0-15 cm. The significant differences of fine root biomass were found between studied stands in the soil layers 0-5 cm and 0-15 cm. Also, it was found significant positive correlation between fine root biomass in the soil layer 0-15 cm and precipitation during the growing season in 2006. Precipitation in the study period was connected with very high rainfall in August 2006, repeatedly exceeding the long-term monthly levels. Regional climatic conditions, in that extreme weather events in growing seasons can significantly to affect changes of fine root biomass of forest trees, consequently, changes of relationships between the growth of above- and below-ground of the old-growth forest stands.

  3. Patterns of lignin degradation and oxidative enzyme secretion by different wood- and litter-colonizing basidiomycetes and ascomycetes grown on beech-wood.

    Science.gov (United States)

    Liers, Christiane; Arnstadt, Tobias; Ullrich, René; Hofrichter, Martin

    2011-10-01

    The degradation of lignocellulose and the secretion of extracellular oxidoreductases were investigated in beech-wood (Fagus sylvatica) microcosms using 11 representative fungi of four different ecophysiological and taxonomic groups causing: (1) classic white rot of wood (e.g. Phlebia radiata), (2) 'nonspecific' wood rot (e.g. Agrocybe aegerita), (3) white rot of leaf litter (Stropharia rugosoannulata) or (4) soft rot of wood (e.g. Xylaria polymorpha). All strong white rotters produced manganese-oxidizing peroxidases as the key enzymes of ligninolysis (75-2200 mU g(-1)), whereas lignin peroxidase activity was not detectable in the wood extracts. Interestingly, activities of two recently discovered peroxidases - aromatic peroxygenase and a manganese-independent peroxidase of the DyP-type - were detected in the culture extracts of A. aegerita (up to 125 mU g(-1)) and Auricularia auricula-judae (up to 400 mU g(-1)), respectively. The activity of classic peroxidases correlated to some extent with the removal of wood components (e.g. Klason lignin) and the release of small water-soluble fragments (0.5-1.0 kDa) characterized by aromatic constituents. In contrast, laccase activity correlated with the formation of high-molecular mass fragments (30-200 kDa). The differences observed in the degradation patterns allow to distinguish the rot types caused by basidiomycetes and ascomycetes and may be suitable for following the effects of oxidative key enzymes (ligninolytic peroxidases vs. laccases, role of novel peroxidases) during wood decay. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  4. Diversity and primary productivity of hill beech forests from Doftana Valley (Romanian Subcarpathians

    Directory of Open Access Journals (Sweden)

    Mihaela Paucã-Comãnescu

    2009-11-01

    Full Text Available The hill beech forests cover most of the woody area in the Doftana Valley. The present study refers, for the first time, to two beech forests typical to this belt, which belong to the phytocoenological associations Epipactieto-Fagetum (Resmeritã,1972, in the Lunca Mare area, and Hieracio rotundati-Fagetum (Vida 1983, Täuber 1987 in the Sotrile area, from floristic, structural, biomass and necromassaccumulation point of view, within the framework of the vertical structure of biocoenosis.The limestone substratum, occasionally with small outcrops in the first beech forest, differs chiefly through the pH levels (6.34-5.67 from the siliceous substratum (pH 5.11-4.36 in the second beech forest. The layer of trees is dominated by Fagus sylvatica in both forests; this species is associated with Cerasus avium (4.5%,Acer pseudoplatanus (2% and Sorbus torminalis (2% in the first beech forest, and is monodominant in the second. Although the forest underwent selective cuts, more intense in the Lunca Mare area, the aboveground ligneous biomass reaches nowadays 222 t/ha in the Lunca Mare area compared to only 163 t/ha in the Sotrile area; theaverage height is 28.8±2.49 m and 23.7±1.12 m, respectively, and the diameter is 33.30±7.9 cm and 31.60±6.28 cm, respectively. The species of macrofungi, not very numerous during the study because of scarce precipitations (6 and 7 species, respectively,are predominant on the rhytidoma trees in the beech forest rooted on the limestone ground; in the Sotrile beech forest they are joined by mycorrhizal and parasite species. The layer of shrub is underdeveloped. The herbaceous layer is discontinuous, and includes, along herbs, small plants and saplings belonging to the ligneous species and to liana Hedera helix. The maximal value of the aboveground biomass of thelayer is 317 kg/ha DM in the Lunca Mare area and 235 kg /ha DM in the Sotrile area.Bryophyta is present in large quantities, especially in the ªotrile area

  5. Girdling affects ectomycorrhizal fungal (EMF) diversity and reveals functional differences in EMF community composition in a beech forest.

    Science.gov (United States)

    Pena, Rodica; Offermann, Christine; Simon, Judy; Naumann, Pascale Sarah; Gessler, Arthur; Holst, Jutta; Dannenmann, Michael; Mayer, Helmut; Kögel-Knabner, Ingrid; Rennenberg, Heinz; Polle, Andrea

    2010-03-01

    The relationships between plant carbon resources, soil carbon and nitrogen content, and ectomycorrhizal fungal (EMF) diversity in a monospecific, old-growth beech (Fagus sylvatica) forest were investigated by manipulating carbon flux by girdling. We hypothesized that disruption of the carbon supply would not affect diversity and EMF species numbers if EM fungi can be supplied by plant internal carbohydrate resources or would result in selective disappearance of EMF taxa because of differences in carbon demand of different fungi. Tree carbohydrate status, root demography, EMF colonization, and EMF taxon abundance were measured repeatedly during 1 year after girdling. Girdling did not affect root colonization but decreased EMF species richness of an estimated 79 to 90 taxa to about 40 taxa. Cenococcum geophilum, Lactarius blennius, and Tomentella lapida were dominant, colonizing about 70% of the root tips, and remained unaffected by girdling. Mainly cryptic EMF species disappeared. Therefore, the Shannon-Wiener index (H') decreased but evenness was unaffected. H' was positively correlated with glucose, fructose, and starch concentrations of fine roots and also with the ratio of dissolved organic carbon to dissolved organic nitrogen (DOC/DON), suggesting that both H' and DOC/DON were governed by changes in belowground carbon allocation. Our results suggest that beech maintains numerous rare EMF species by recent photosynthate. These EM fungi may constitute biological insurance for adaptation to changing environmental conditions. The preservation of taxa previously not known to colonize beech may, thus, form an important reservoir for future forest development.

  6. Co-occurrence patterns of trees along macro-climatic gradients and their potential influence on the present and future distribution of Fagus sylvatica L.

    Science.gov (United States)

    Meier, E.S.; Edwards, T.C.; Kienast, Felix; Dobbertin, M.; Zimmermann, N.E.

    2011-01-01

    Aim During recent and future climate change, shifts in large-scale species ranges are expected due to the hypothesized major role of climatic factors in regulating species distributions. The stress-gradient hypothesis suggests that biotic interactions may act as major constraints on species distributions under more favourable growing conditions, while climatic constraints may dominate under unfavourable conditions. We tested this hypothesis for one focal tree species having three major competitors using broad-scale environmental data. We evaluated the variation of species co-occurrence patterns in climate space and estimated the influence of these patterns on the distribution of the focal species for current and projected future climates.Location Europe.Methods We used ICP Forest Level 1 data as well as climatic, topographic and edaphic variables. First, correlations between the relative abundance of European beech (Fagus sylvatica) and three major competitor species (Picea abies, Pinus sylvestris and Quercus robur) were analysed in environmental space, and then projected to geographic space. Second, a sensitivity analysis was performed using generalized additive models (GAM) to evaluate where and how much the predicted F. sylvatica distribution varied under current and future climates if potential competitor species were included or excluded. We evaluated if these areas coincide with current species co-occurrence patterns.Results Correlation analyses supported the stress-gradient hypothesis: towards favourable growing conditions of F. sylvatica, its abundance was strongly linked to the abundance of its competitors, while this link weakened towards unfavourable growing conditions, with stronger correlations in the south and at low elevations than in the north and at high elevations. The sensitivity analysis showed a potential spatial segregation of species with changing climate and a pronounced shift of zones where co-occurrence patterns may play a major role

  7. Thinning in artificially regenerated young beech stands

    Directory of Open Access Journals (Sweden)

    Novák Jiří

    2015-12-01

    Full Text Available Although beech stands are usually regenerated naturally, an area of up to 5,000 ha year−1 is artificially regenerated by beech in the Czech Republic annually. Unfortunately, these stands often showed insufficient stand density and, consequently, lower quality of stems. Therefore, thinning methods developed for naturally regenerated beech stands are applicable with difficulties. The paper evaluates the data from two thinning experiments established in young artificially regenerated beech stands located in different growing conditions. In both experiments, thinning resulted in the lower amount of salvage cut in following years. Positive effect of thinning on periodic stand basal area increment and on periodic diameter increment of dominant trees was found in the beech stand located at middle elevations. On the other hand, thinning effects in mountain conditions were negligible. Thinning focusing on future stand quality cannot be commonly applied in artificially regenerated beech stands because of their worse initial quality and lower density. However, these stands show good growth and response to thinning, hence their management can be focused on maximising beech wood production.

  8. Plant biodiversity of beech forests in central-northern Italy: a methodological approach for conservation purposes

    Directory of Open Access Journals (Sweden)

    Marcantonio M

    2012-07-01

    Full Text Available Forests are reckoned essentials as biodiversity reservoirs and carbon sinks. Current threats to forest ecosystems (e.g., climate changes, habitat loss and fragmentation, management changes call for monitoring their biodiversity and preserving their ecological functions. In this study, we characterized plants diversity of five beech forests located in central and north Apennines mountain chain, using results by a probabilistic sampling. In order to achieve our goals, we have considered species richness and abundance, taxonomic distinctness and species composition, using both old and new analytical approaches. Results have shown how: (1 the forest type dominated by Fagus sylvatica is characterized by high complexity, with marked compositional, structural and biodiversity differences; (2 beech forests of Pigelleto di Piancastagnaio and Valle della Corte show the highest plants diversity values. The ecological characteristics of these areas, which sustain high diversity values, are unique and of great conservation interest; (3 the use of species richness as the only diversity measure have not allowed an efficient differentiation between studied areas. Indeed, the use of different indexes and analytical methods is required to detect multiple characteristics of biological diversity, as well as to carry out efficient biodiversity surveys aimed to develop optimal conservation strategies. In the future, we plan to apply the sampling methodology and the analytical approach used in this paper to characterize plants diversity of similar forest types.

  9. Testing the applicability of BIOME-BGC to simulate beech gross primary production in Europe using a new continental weather dataset

    DEFF Research Database (Denmark)

    Chiesi, Marta; Chirici, Gherardo; Marchetti, Marco

    2016-01-01

    A daily 1-km Pan-European weather dataset can drive the BIOME-BGC model for the estimation of current and future beech gross primary production (GPP). Annual beech GPP is affected primarily by spring temperature and more irregularly by summer water stress.The spread of beech forests in Europe...... forest ecosystems having different climatic conditions where the eddy covariance technique is used to measure water and carbon fluxes. The experiment is in three main steps. First, the accuracy of BIOME-BGC GPP simulations is assessed through comparison with flux observations. Second, the influence...... enhances the importance of modelling and monitoring their growth in view of ongoing climate changes.The current paper assesses the capability of a biogeochemical model to simulate beech gross primary production (GPP) using a Pan-European 1-km weather dataset.The model BIOME-BGC is applied in four European...

  10. SOILS UNDER BEECH IN THE KODRY HILLS

    Directory of Open Access Journals (Sweden)

    A. Ursu

    2008-10-01

    Full Text Available In the Kodry Hills, small areas of virgin beech forests stands are preserved. These beech groves are developed on specific intrazonal lithomorphic soils. The mineralogical composition of substrate impedes the development of eluvial−illuvial processes and leaching of carbonates typical of the zonal soils that form under broad-leaved forests. The soils under study belong to the group of rendzic soils and can be referred to as marly rendzinas (or pseudorendzinas.

  11. Influence of litter diversity on dissolved organic matter release and soil carbon formation in a mixed beech forest.

    Science.gov (United States)

    Scheibe, Andrea; Gleixner, Gerd

    2014-01-01

    We investigated the effect of leaf litter on below ground carbon export and soil carbon formation in order to understand how litter diversity affects carbon cycling in forest ecosystems. 13C labeled and unlabeled leaf litter of beech (Fagus sylvatica) and ash (Fraxinus excelsior), characterized by low and high decomposability, were used in a litter exchange experiment in the Hainich National Park (Thuringia, Germany). Litter was added in pure and mixed treatments with either beech or ash labeled with 13C. We collected soil water in 5 cm mineral soil depth below each treatment biweekly and determined dissolved organic carbon (DOC), δ13C values and anion contents. In addition, we measured carbon concentrations and δ13C values in the organic and mineral soil (collected in 1 cm increments) up to 5 cm soil depth at the end of the experiment. Litter-derived C contributes less than 1% to dissolved organic matter (DOM) collected in 5 cm mineral soil depth. Better decomposable ash litter released significantly more (0.50±0.17%) litter carbon than beech litter (0.17±0.07%). All soil layers held in total around 30% of litter-derived carbon, indicating the large retention potential of litter-derived C in the top soil. Interestingly, in mixed (ash and beech litter) treatments we did not find a higher contribution of better decomposable ash-derived carbon in DOM, O horizon or mineral soil. This suggest that the known selective decomposition of better decomposable litter by soil fauna has no or only minor effects on the release and formation of litter-derived DOM and soil organic matter. Overall our experiment showed that 1) litter-derived carbon is of low importance for dissolved organic carbon release and 2) litter of higher decomposability is faster decomposed, but litter diversity does not influence the carbon flow.

  12. Influence of litter diversity on dissolved organic matter release and soil carbon formation in a mixed beech forest.

    Directory of Open Access Journals (Sweden)

    Andrea Scheibe

    Full Text Available We investigated the effect of leaf litter on below ground carbon export and soil carbon formation in order to understand how litter diversity affects carbon cycling in forest ecosystems. 13C labeled and unlabeled leaf litter of beech (Fagus sylvatica and ash (Fraxinus excelsior, characterized by low and high decomposability, were used in a litter exchange experiment in the Hainich National Park (Thuringia, Germany. Litter was added in pure and mixed treatments with either beech or ash labeled with 13C. We collected soil water in 5 cm mineral soil depth below each treatment biweekly and determined dissolved organic carbon (DOC, δ13C values and anion contents. In addition, we measured carbon concentrations and δ13C values in the organic and mineral soil (collected in 1 cm increments up to 5 cm soil depth at the end of the experiment. Litter-derived C contributes less than 1% to dissolved organic matter (DOM collected in 5 cm mineral soil depth. Better decomposable ash litter released significantly more (0.50±0.17% litter carbon than beech litter (0.17±0.07%. All soil layers held in total around 30% of litter-derived carbon, indicating the large retention potential of litter-derived C in the top soil. Interestingly, in mixed (ash and beech litter treatments we did not find a higher contribution of better decomposable ash-derived carbon in DOM, O horizon or mineral soil. This suggest that the known selective decomposition of better decomposable litter by soil fauna has no or only minor effects on the release and formation of litter-derived DOM and soil organic matter. Overall our experiment showed that 1 litter-derived carbon is of low importance for dissolved organic carbon release and 2 litter of higher decomposability is faster decomposed, but litter diversity does not influence the carbon flow.

  13. Effects of Drought and Rewetting on Growth and Gas Exchange of Minor European Broadleaved Tree Species

    Directory of Open Access Journals (Sweden)

    Jörg Kunz

    2016-10-01

    Full Text Available Widespread and economically important European tree species such as Norway spruce, Scots pine, and European beech are projected to be negatively affected by the increasing intensity and frequency of dry and hot conditions in a future climate. Hence, there is an increasing need to investigate the suitability of presumably more drought tolerant species to ensure future ecological stability, biodiversity, and productivity of forests. Based on their distribution patterns and climatic envelopes, the rare, minor broadleaved tree species Sorbus torminalis ((L. CRANTZ, S. domestica (L., Acer campestre (L., and A. platanoides (L. are assumed to be drought tolerant, however, there is only limited experimental basis to support that notion. This study aimed at quantifying growth and gas exchange of seedlings of these species during drought conditions, and their capacity to recover following drought. For that purpose, they were compared to the common companion species Quercus petraea ((MATTUSCHKA LIEBL. and Fagus sylvatica (L.. Here, potted seedlings of these species were exposed to water limitation followed by rewetting cycles in a greenhouse experiment. Photosynthesis and transpiration rates, stomatal conductance as well as root and shoot growth rates indicated a high drought resistance of A. campestre and A. platanoides. Sorbus domestica showed a marked ability to recover after drought stress. Therefore, we conclude that these minor tree species have the potential to enrich forests on drought-prone sites. Results from this pot experiment need to be complemented by field studies, in which the drought response of the species is not influenced by restrictions to root development.

  14. Insect attraction to herbivore-induced beech volatiles under different forest management regimes.

    Science.gov (United States)

    Gossner, Martin M; Weisser, Wolfgang W; Gershenzon, Jonathan; Unsicker, Sybille B

    2014-10-01

    Insect herbivore enemies such as parasitoids and predators are important in controlling herbivore pests. From agricultural systems we know that land-use intensification can negatively impact biological control as an important ecosystem service. The aim of our study was to investigate the importance of management regime for natural enemy pressure and biological control possibilities in forests dominated by European beech. We hypothesize that the volatile blend released from herbivore-infested beech trees functions as a signal, attracting parasitoids and herbivore enemies. Furthermore, we hypothesize that forest management regime influences the composition of species attracted by these herbivore-induced beech volatiles. We installed flight-interception traps next to Lymantria dispar caterpillar-infested young beech trees releasing herbivore-induced volatiles and next to non-infested control trees. Significantly more parasitoids were captured next to caterpillar-infested trees compared to non-infested controls, irrespective of forest type. However, the composition of the trophic guilds in the traps did vary in response to forest management regime. While the proportion of chewing insects was highest in non-managed forests, the proportion of sucking insects peaked in forests with low management and of parasitoids in young, highly managed, forest stands. Neither the number of naturally occurring beech saplings nor herbivory levels in the proximity of our experiment affected the abundance and diversity of parasitoids caught. Our data show that herbivore-induced beech volatiles attract herbivore enemies under field conditions. They further suggest that differences in the structural complexity of forests as a consequence of management regime only play a minor role in parasitoid activity and thus in indirect tree defense.

  15. Scleroderma areolatum ectomycorrhiza on Fagus sylvatica L.

    Science.gov (United States)

    Mrak, Tanja; Kühdorf, Katja; Grebenc, Tine; Štraus, Ines; Münzenberger, Babette; Kraigher, Hojka

    2017-04-01

    Despite its broad host range and distribution and its potential applications in commercial plantation forests, comprehensive descriptions of Scleroderma ectomycorrhizae are available only for Scleroderma citrinum, Scleroderma bovista and Scleroderma sinnamariense. This study provides a morphological and anatomical description of tree nursery derived ectomycorrhizae of Scleroderma areolatum on Fagus sylvatica, grown for several years in a climatized room. Ectomycorrhizae of S. areolatum were silvery white with abundant rhizomorphs; all mantle layers were plectenchymatous, rhizomorphs of type E, with prominent emanating hyphae with thick cell wall. The distal ends of emanating hyphae of rhizomorphs were inflated and often merged with other emanating hyphae. All parts of the mycorrhiza were clampless. In hyphae of the outer mantle layer, rhizomorphs and emanating hyphae, oily droplets were observed that did not stain in sulfo-vanillin and disappeared in lactic acid after a few hours. Although the phylogenetic analysis positioned the newly described ectomycorrhiza together with Scleroderma verrucosum and Scleroderma cepa in a single clade with a taxon name SH005470.07FU, the ectomycorrhizae of these three species can be morphologically well separated based on rhizomorph type.

  16. Climate change induces shifts in abundance and activity pattern of bacteria and archaea catalyzing major transformation steps in nitrogen turnover in a soil from a mid-European beech forest.

    Science.gov (United States)

    Gschwendtner, Silvia; Tejedor, Javier; Bimüller, Carolin; Bimueller, Carolin; Dannenmann, Michael; Kögel-Knabner, Ingrid; Knabner, Ingrid Kögel; Schloter, Michael

    2014-01-01

    Ongoing climate change will lead to more extreme weather events, including severe drought periods and intense drying rewetting cycles. This will directly influence microbial nitrogen (N) turnover rates in soil by changing the water content and the oxygen partial pressure. Therefore, a space for time climate change experiment was conducted by transferring intact beech seedling-soil mesocosms from a northwest (NW) exposed site, representing today's climatic conditions, to a southwest (SW) exposed site, providing a model climate for future conditions with naturally occurring increased soil temperature (+0.8°C in average). In addition, severe drought and intense rainfall was simulated by a rainout shelter at SW and manual rewetting after 39 days drought, respectively. Soil samples were taken in June, at the end of the drought period (August), 24 and 72 hours after rewetting (August) and after a regeneration period of four weeks (September). To follow dynamics of bacterial and archaeal communities involved in N turnover, abundance and activity of nitrifiers, denitrifiers, N2-fixing microbes and N-mineralizers was analyzed based on marker genes and the related transcripts by qPCR from DNA and RNA directly extracted from soil. Abundance of the transcripts was reduced under climate change with most pronounced effects for denitrification. Our results revealed that already a transfer from NW to SW without further treatment resulted in decreased cnor and nosZ transcripts, encoding for nitric oxide reductase and nitrous oxide reductase, respectively, while nirK transcripts, encoding for nitrite reductase, remained unaffected. Severe drought additionally led to reduced nirK and cnor transcripts at SW. After rewetting, nirK transcripts increased rapidly at both sites, while cnor and nosZ transcripts increased only at NW. Our data indicate that the climate change influences activity pattern of microbial communities involved in denitrification processes to a different extend

  17. Climate change induces shifts in abundance and activity pattern of bacteria and archaea catalyzing major transformation steps in nitrogen turnover in a soil from a mid-European beech forest.

    Directory of Open Access Journals (Sweden)

    Silvia Gschwendtner

    Full Text Available Ongoing climate change will lead to more extreme weather events, including severe drought periods and intense drying rewetting cycles. This will directly influence microbial nitrogen (N turnover rates in soil by changing the water content and the oxygen partial pressure. Therefore, a space for time climate change experiment was conducted by transferring intact beech seedling-soil mesocosms from a northwest (NW exposed site, representing today's climatic conditions, to a southwest (SW exposed site, providing a model climate for future conditions with naturally occurring increased soil temperature (+0.8°C in average. In addition, severe drought and intense rainfall was simulated by a rainout shelter at SW and manual rewetting after 39 days drought, respectively. Soil samples were taken in June, at the end of the drought period (August, 24 and 72 hours after rewetting (August and after a regeneration period of four weeks (September. To follow dynamics of bacterial and archaeal communities involved in N turnover, abundance and activity of nitrifiers, denitrifiers, N2-fixing microbes and N-mineralizers was analyzed based on marker genes and the related transcripts by qPCR from DNA and RNA directly extracted from soil. Abundance of the transcripts was reduced under climate change with most pronounced effects for denitrification. Our results revealed that already a transfer from NW to SW without further treatment resulted in decreased cnor and nosZ transcripts, encoding for nitric oxide reductase and nitrous oxide reductase, respectively, while nirK transcripts, encoding for nitrite reductase, remained unaffected. Severe drought additionally led to reduced nirK and cnor transcripts at SW. After rewetting, nirK transcripts increased rapidly at both sites, while cnor and nosZ transcripts increased only at NW. Our data indicate that the climate change influences activity pattern of microbial communities involved in denitrification processes to a

  18. Hypoxylon species on beech and other broadleaves

    Directory of Open Access Journals (Sweden)

    Milijašević Tanja

    2004-01-01

    Full Text Available Fungi in the genus Hypoxylon cause wood decay and most of them are saprophytes on dead wood or parasites of weakness. The following species in this genus were identified in this study performed at several localities in Serbia and Montenegro: H. deustum, H. fragiforme, H. nummularium, H. multiforme, H. rubiginosum and H. fuscum. Among them the most significant species is H. deustum, the fungus causing root and butt rot of standing beech trees. It was recorded from all coppice and high forests of beech. This paper presents the morphological characteristics of the recorded fungi their range, plant hosts and significance.

  19. Comparison of the carbon stock in forest soil of sessile oak and beech forests

    Science.gov (United States)

    Horváth, Adrienn; Bene, Zsolt; Bidló, András

    2016-04-01

    Forest ecosystems are the most important carbon sinks. The forest soils play an important role in the global carbon cycle, because the global climate change or the increase of atmospheric CO2 level. We do not have enough data about the carbon stock of soils and its change due to human activities, which have similar value to carbon content of biomass. In our investigation we measured the carbon stock of soil in 10 stands of Quercus petraea and Fagus sylvatica. We took a 1.1 m soil column with soil borer and divided to 11 samples each column. The course organic and root residues were moved. After evaluation, we compared our results with other studies and the carbon stock of forests to each other. Naturally, the amount of SOC was the highest in the topsoil layers. However, we found significant difference between forest stands which stayed on the same homogenous bedrock, but very close to each other (e.g. distance was 1 or 2 km). We detected that different forest utilizations and tree species have an effect on the forest carbon as the litter as well (amount, composition). In summary, we found larger amount (99.1 C t/ha on average) of SOC in soil of stands, where sessile oak were the main stand-forming tree species. The amount of carbon was the least in turkey oak-sessile oak stands (85.4 C t/ha on average). We found the highest SOC (118.3 C t/ha) in the most mixed stand (silver lime-beech-red oak). In the future, it will be very important: How does climate change affect the spread of tree species or on carbon storage? Beech is more sensitive, but even sessile oak. These species are expected to replace with turkey oak, which is less sensitive to drought. Thus, it is possible in the future that we can expect to decrease of forest soil carbon stock capacity, which was confirmed by our experiment. Keywords: carbon sequestration, mitigation, Fagus sylvatica, Quercus petraea, litter Acknowledgements: Research is supported by the "Agroclimate.2" (VKSZ_12-1-2013-0034) EU

  20. Photosynthetic activity of Fagus sylvatica L. and Quercus petraea (Matt Liebl. in a mixed stand at Maljen mountain

    Directory of Open Access Journals (Sweden)

    Popović Zorica

    2005-01-01

    Full Text Available Estimation of the photosynthetic performance of co-existing tree species with pronounced differences in ecophysiological context (Aranda et al. 1996 Leuschner et al. 2001 could provide insight into their vitality and competitive abilities at a particular site. Gas exchange, composition of photosynthetic pigments, and the water status of beech (Fagus sylvatica L and sessile oak (Quercus petraea (Matt Liebl were studied in the present work. The investigation was performed on Mt. Maljen (Western Serbia, near the town of Mionica at an altitude of 950 m, in an ecotope within the confines of the mountain's beech forest belt. Codominant samplings [three of each species, 30-years old (n=6, 10-12 m high] were selected for the measurements, which were conducted on fully developed leaves from the out­ermost branches and from the innermost canopy. Photosynthetic measurements were performed using an LI-6200 closed photo­synthesis system (LI-Cor. Inc, Lincoln, NE, USA, while irradiance was detected with a selenium cell mounted on the leaf chamber. Parameters of gas exchange are expressed on the basis of leaf area, using the AREAMETER software (Karadžić et al. 1999. Chlorophyll content was spectrophotometrically determined based on light absorption of the solution obtained after extraction with dMSO (Hiscox and Israelstam, 1979. The midday water saturation deficit was determined according to Turner (1981. For data analysis, we used the Statistic for Windows program package. The ANOVA one-way break­down was applied to compare differences within (leaves inside vs. leaves outside the surface of the tree canopy and between species for all investigated parameters at the 0.05 level of significance.

  1. Increased phytotoxic O3 dose accelerates autumn senescence in an O3-sensitive beech forest even under the present-level O3

    Science.gov (United States)

    Kitao, Mitsutoshi; Yasuda, Yukio; Kominami, Yuji; Yamanoi, Katsumi; Komatsu, Masabumi; Miyama, Takafumi; Mizoguchi, Yasuko; Kitaoka, Satoshi; Yazaki, Kenichi; Tobita, Hiroyuki; Yoshimura, Kenichi; Koike, Takayoshi; Izuta, Takeshi

    2016-09-01

    Ground-level ozone (O3) concentrations are expected to increase over the 21st century, especially in East Asia. However, the impact of O3 has not been directly assessed at the forest level in this region. We performed O3 flux-based risk assessments of carbon sequestration capacity in an old cool temperate deciduous forest, consisting of O3-sensitive Japanese beech (Fagus crenata), and in a warm temperate deciduous and evergreen forest dominated by O3-tolerant Konara oak (Quercus serrata) based on long-term CO2 flux observations. On the basis of a practical approach for a continuous estimation of canopy-level stomatal conductance (Gs), higher phytotoxic ozone dose above a threshold of 0 uptake (POD0) with higher Gs was observed in the beech forest than that in the oak forest. Light-saturated gross primary production, as a measure of carbon sequestration capacity of forest ecosystem, declined earlier in the late growth season with increasing POD0, suggesting an earlier autumn senescence, especially in the O3-sensitive beech forest, but not in the O3-tolerant oak forest.

  2. Functional characterization of a dehydrin protein from Fagus sylvatica seeds using experimental and in silico approaches.

    Science.gov (United States)

    Kalemba, Ewa Marzena; Litkowiec, Monika

    2015-12-01

    A strong increase in the level of dehydrin/response ABA transcripts expression reported from the 14th week after flowering coincident with the accumulation of 26 and 44 kDa dehydrins in the embryonic axes of developing beech (Fagus sylvatica L.) seeds. Both transcript and protein levels were strongly correlated with maturation drying. These results suggest that the 44-kDa dehydrin protein is a putative dimer of dehydrin/response ABA protein migrating as a 26-kDa protein. Dehydrins and dehydrin-like proteins form large oligomeric complexes under native conditions and are shown as several spots differing in pI through isoelectrofocusing analyses. Detailed prediction of specific sites accessible for various post-translational modifications (PTMs) in the dehydrin/response ABA protein sequence revealed sites specific to acetylation, amidation, glycosylation, methylation, myristoylation, nitrosylation, O-linked β-N-acetylglucosamination and Yin-O-Yang modification, palmitoylation, phosphorylation, sumoylation, sulfation, and ubiquitination. Thus, these results suggest that specific PTMs might play a role in switching dehydrin function or activity, water binding ability, protein-membrane interactions, transport and subcellular localization, interactions with targeted molecules, and protein stability. Despite the ability of two Cys residues to form a disulfide bond, -SH groups are likely not involved in dimer arrangement. His-rich regions and/or polyQ-tracts are potential candidates as spatial organization modulators. Dehydrin/response ABA protein is an intrinsically disordered protein containing low complexity regions. The lack of a fixed structure and exposition of amino acids on the surface of the protein structure enhances the accessibility to 40 predicted PTM sites, thereby facilitating dehydrin multifunctionality, which is discussed in the present study. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. Temporal variability of stemflow volume in a beech-yellow poplar forest in relation to tree species and size

    Science.gov (United States)

    Levia, D. F.; Van Stan, J. T., II; Mage, S. M.; Kelley-Hauske, P. W.

    2010-01-01

    SummaryStemflow has distinguishable effects on the hydrology and biogeochemistry of wooded ecosystems. Nonetheless, it is a relatively poorly understood hydrologic process. No known studies have investigated the temporal variability of stemflow volume at 5-min intervals in a beech-yellow poplar forest of eastern North America. The aim of this research is to compare the temporal variability of stemflow generation by Fagus grandifolia Ehrh. (American beech) and Liriodendron tulipifera L. (yellow poplar) in relation to tree species and size. Employing a dense network of tipping-bucket stemflow gages interfaced with a datalogger, a 5 min stemflow yield database was assembled and analyzed to better discern how stemflow production varies (temporally) with tree species and size. Results indicate that both tree species and size have detectable effects on the temporal variability of stemflow yield. Observational data, scientific analysis, and correspondence analysis reveals that stemflow yield: (1) is more similar within than between the two tree species with differences likely being attributable to differences in bark texture and water storage capacity; (2) tree size affects stemflow yield within species; (3) rain event characteristics affect stemflow yield; and (4) stemflow yield for particular trees and rain events is the result of a complex set of interactions among tree species, tree size, and meteorological conditions. These results suggest that the temporal variation in stemflow yield from co-occurring forest trees may play a significant role in subsurface drainage of wooded ecosystems during rain events.

  4. Effects of stoichiometry and temperature perturbations on beech litter decomposition, enzyme activities and protein expression

    Science.gov (United States)

    Keiblinger, K. M.; Schneider, T.; Roschitzki, B.; Schmid, E.; Eberl, L.; Hämmerle, I.; Leitner, S.; Richter, A.; Wanek, W.; Riedel, K.; Zechmeister-Boltenstern, S.

    2011-12-01

    Microbes are major players in leaf litter decomposition and therefore advances in the understanding of their control on element cycling are of paramount importance. Our aim was to investigate the influence of leaf litter stoichiometry in terms of carbon (C) : nitrogen (N) : phosphorus (P) on the decomposition process, and to follow changes in microbial community structure and function in response to temperature-stress treatments. To elucidate how the stoichiometry of beech litter (Fagus sylvatica L.) and stress treatments interactively affect the decomposition processes, a terrestrial microcosm experiment was conducted. Beech litter from different Austrian sites covering C:N ratios from 39 to 61 and C:P ratios from 666 to 1729 were incubated at 15 °C and 60% moisture for six months. Part of the microcosms were then subjected to severe changes in temperature (+30 °C and -15 °C) to monitor the influence of temperature stress. Extracellular enzyme activities were assayed and respiratory activities measured. A semi-quantitative metaproteomics approach (1D-SDS PAGE combined with liquid chromatography and tandem mass-spectrometry; unique spectral counting) was employed to investigate the impact of the applied stress treatments in dependency of litter stoichiometry on structure and function of the decomposing community. In litter with narrow C:nutrient ratios microbial decomposers were most abundant. Cellulase, chitinase, phosphatase and protease activity decreased after heat and frost treatments. Decomposer communities and specific functions varied with site i.e. stoichiometry. The applied stress evoked strong changes of enzyme activities, dissolved organic nitrogen and litter pH. Freeze treatments resulted in a decline in residual plant litter material, and increased fungal abundance indicating slightly accelerated decomposition. Overall, we could detect a strong effect of litter stoichiometry on microbial community structure as well as function. Temperature

  5. Biomass in Serbia - potential of beech forests

    Science.gov (United States)

    Brasanac-Bosanac, Lj.; Cirkovic-Mitrovic, T.; Popovic, V.; Jokanovic, D.

    2012-04-01

    As for the renewable sources for energy production, biomass from forests and wood processing industry comes to the second place. The woody biomass accounts for 1.0 Mtoe, that is equivalent with 1.0 Mtoe of oil. Due to current evaluations, the greatest part of woody biomass would be used for briquettes and pallets production. As the biomass from forests is increasingly becoming the interest of national and international market, a detailed research on overall potential of woody supply from Serbian forests is required. Beech forests account for 29.4 % of forest cover of Serbia. They also have the greatest standing volume (42.4 % of the overall standing volume) and the greatest mean annual increment (32.3 %)(Bankovic,et.al.2009). Herewith, the aim of this poster is to determine the long-term biomass production of these forests.For this purpose a management unit called Lomnicka reka has been chosen. As these beech forests have similar structural development, this location is considered representative for whole Serbia. DBH of all trees were measured with clipper and the accuracy of 0.01 mm, and the heights with a Vertex 3 device (with accuracy of 0.1 m). All measurements were performed on the fields each 500 m2 (square meters). The overall quantity of root biomass was calculated using the allometric equations. The poster shows estimated biomass stocks of beech forests located in Rasina area. Dates are evaluated using non-linear regression (Wutzler,T.et.al.2008). Biomass potential of Serbian beech forests will enable the evaluation of long-term potential of energy generation from woody biomass in agreement with principles of sustainable forest management. The biomass from such beech forests can represent an important substitution for energy production from fossil fuels (e.g. oil) and herewith decrease the CO2 emissions.

  6. Făgetele primare din România, o contribuţie la Patrimoniul Mondial UNESCO [Romania’s primary beech forests, a contribution to UNESCO World Heritage

    Directory of Open Access Journals (Sweden)

    Iovu Adrian Biriș

    2014-08-01

    Full Text Available The World Heritage List (WHL of UNESCO currently comprises 1007 properties in 161 States Parties. Most of these sites are cultural (779 and only 197 are natural sites whereas 31 are mixed sites with outstanding universal cultural and natural values. Romania has only 8 sites registered on WHL of UNESCO, 7 cultural sites and one natural site – The Danube Delta Biosphere Reserve - being underrepresented in relation with the real value of its natural patrimony. Beech is a deciduous species exclusively European and the beech forests constitute the potential natural vegetation for the temperate zone of Europe. Beech forests represent an outstanding and globally unparalleled example of the ongoing ecological processes of post-glacial expansion. This is a key factor for supporting the nomination of beech forests under WHL of UNESCO. Romania, the country with the larges area of beech forests and well preserved primary beech forests, has an important responsibility for the conservation of an adequate and representative network of beech forests. Considering these aspects, the Ministry of the Environment and Climate Change - Department for Waters, Forests and Fisheries, National Forest Administration – Romsilva, Forest Research and Management Institute, WWF Danube-Carpathian Programme Office and Greenpeace CEE Romania Foundation have signed a protocol for collaboration having as target the selection of certain beech forests to be included on the WHL of UNESCO. Keywords

  7. Molecular organization of the 25S-18S rDNA IGS of Fagus sylvatica and Quercus suber: a comparative analysis.

    Science.gov (United States)

    Inácio, Vera; Rocheta, Margarida; Morais-Cecílio, Leonor

    2014-01-01

    The 35S ribosomal DNA (rDNA) units, repeated in tandem at one or more chromosomal loci, are separated by an intergenic spacer (IGS) containing functional elements involved in the regulation of transcription of downstream rRNA genes. In the present work, we have compared the IGS molecular organizations in two divergent species of Fagaceae, Fagus sylvatica and Quercus suber, aiming to comprehend the evolution of the IGS sequences within the family. Self- and cross-hybridization FISH was done on representative species of the Fagaceae. The IGS length variability and the methylation level of 18 and 25S rRNA genes were assessed in representatives of three genera of this family: Fagus, Quercus and Castanea. The intergenic spacers in Beech and Cork Oak showed similar overall organizations comprising putative functional elements needed for rRNA gene activity and containing a non-transcribed spacer (NTS), a promoter region, and a 5'-external transcribed spacer. In the NTS: the sub-repeats structure in Beech is more organized than in Cork Oak, sharing some short motifs which results in the lowest sequence similarity of the entire IGS; the AT-rich region differed in both spacers by a GC-rich block inserted in Cork Oak. The 5'-ETS is the region with the higher similarity, having nonetheless different lengths. FISH with the NTS-5'-ETS revealed fainter signals in cross-hybridization in agreement with the divergence between genera. The diversity of IGS lengths revealed variants from ∼ 2 kb in Fagus, and Quercus up to 5.3 kb in Castanea, and a lack of correlation between the number of variants and the number of rDNA loci in several species. Methylation of 25S Bam HI site was confirmed in all species and detected for the first time in the 18S of Q. suber and Q. faginea. These results provide important clues for the evolutionary trends of the rDNA 25S-18S IGS in the Fagaceae family.

  8. Molecular Organization of the 25S–18S rDNA IGS of Fagus sylvatica and Quercus suber: A Comparative Analysis

    Science.gov (United States)

    Inácio, Vera; Rocheta, Margarida; Morais-Cecílio, Leonor

    2014-01-01

    The 35S ribosomal DNA (rDNA) units, repeated in tandem at one or more chromosomal loci, are separated by an intergenic spacer (IGS) containing functional elements involved in the regulation of transcription of downstream rRNA genes. In the present work, we have compared the IGS molecular organizations in two divergent species of Fagaceae, Fagus sylvatica and Quercus suber, aiming to comprehend the evolution of the IGS sequences within the family. Self- and cross-hybridization FISH was done on representative species of the Fagaceae. The IGS length variability and the methylation level of 18 and 25S rRNA genes were assessed in representatives of three genera of this family: Fagus, Quercus and Castanea. The intergenic spacers in Beech and Cork Oak showed similar overall organizations comprising putative functional elements needed for rRNA gene activity and containing a non-transcribed spacer (NTS), a promoter region, and a 5′-external transcribed spacer. In the NTS: the sub-repeats structure in Beech is more organized than in Cork Oak, sharing some short motifs which results in the lowest sequence similarity of the entire IGS; the AT-rich region differed in both spacers by a GC-rich block inserted in Cork Oak. The 5′-ETS is the region with the higher similarity, having nonetheless different lengths. FISH with the NTS-5′-ETS revealed fainter signals in cross-hybridization in agreement with the divergence between genera. The diversity of IGS lengths revealed variants from ∼2 kb in Fagus, and Quercus up to 5.3 kb in Castanea, and a lack of correlation between the number of variants and the number of rDNA loci in several species. Methylation of 25S Bam HI site was confirmed in all species and detected for the first time in the 18S of Q. suber and Q. faginea. These results provide important clues for the evolutionary trends of the rDNA 25S-18S IGS in the Fagaceae family. PMID:24893289

  9. Root-derived carbon and nitrogen from beech and ash trees differentially fuel soil animal food webs of deciduous forests

    Science.gov (United States)

    Ammerschubert, Silke; Polle, Andrea; Scheu, Stefan

    2017-01-01

    Evidence is increasing that soil animal food webs are fueled by root-derived carbon (C) and also by root-derived nitrogen (N). Functioning as link between the above- and belowground system, trees and their species identity are important drivers structuring soil animal communities. A pulse labeling experiment using 15N and 13C was conducted by exposing beech (Fagus sylvatica) and ash (Fraxinus excelsior) seedlings to 13CO2 enriched atmosphere and tree leaves to 15N ammonium chloride solution in a plant growth chamber under controlled conditions for 72 h. C and N fluxes into the soil animal food web of beech, associated with ectomycorrhizal fungi (EMF), and ash, associated with arbuscular mycorrhizal fungi (AMF), were investigated at two sampling dates (5 and 20 days after labeling). All of the soil animal taxa studied incorporated root-derived C, while root-derived N was only incorporated into certain taxa. Tree species identity strongly affected C and N incorporation with the incorporation in the beech rhizosphere generally exceeding that in the ash rhizosphere. Incorporation differed little between 5 and 20 days after labeling indicating that both C and N are incorporated quickly into soil animals and are used for tissue formation. Our results suggest that energy and nutrient fluxes in soil food webs depend on the identity of tree species with the differences being associated with different types of mycorrhiza. Further research is needed to prove the generality of these findings and to quantify the flux of plant C and N into soil food webs of forests and other terrestrial ecosystems. PMID:29236746

  10. Fine-root trait plasticity of beech (Fagus sylvatica) and spruce (Picea abies) forests on two contrasting soils

    NARCIS (Netherlands)

    Weemstra, M.; Sterck, F.J.; Visser, Eric J.W.; Kuyper, Thomas W.; Goudzwaard, L.; Mommer, L.

    2017-01-01

    Aim
    The fine roots of trees may show plastic responses to their resource environment. Several, contrasting hypotheses exist on this plasticity, but empirical evidence for these hypotheses is scattered. This study aims to enhance our understanding of tree root plasticity by examining

  11. Sap flow for beech (Fagus sylvatica L.) in a natural and a managed forest-effect of spatial heterogeneity

    DEFF Research Database (Denmark)

    Dalsgaard, Lise; Mikkelsen, Teis Nørgaard; Bastrup-Birk, Annemarie

    2011-01-01

    -aged 80-year old stand (MAN), with a height of 25 m, and a total of 283 stems ha(-1) with diameters averaging 38 cm. Stem sap flow, J(s) (g m(-2) s(-1)), was continuously measured in 12 (MAN) and 13 (NAT) trees using 20-mm long heat dissipation sensors. Individual tree measures of sap flow were correlated...

  12. Fagus sylvatica trunk epicormics in relation to primary and secondary growth.

    Science.gov (United States)

    Colin, F; Sanjines, A; Fortin, M; Bontemps, J-D; Nicolini, E

    2012-10-01

    European beech epicormics have received far less attention than epicormics of other species, especially sessile oak. However, previous work on beech has demonstrated that there is a negative effect of radial growth on trunk sprouting, while more recent investigations on sessile oak proved a strong positive influence of the presence of epicormics. The aims of this study were, first, to make a general quantification of the epicormics present along beech stems and, secondly, to test the effects of both radial growth and epicormic frequency on sprouting. In order to test the effect of radial growth, ten forked individuals were sampled, with a dominant and a dominated fork of almost equal length for every individual. To test the effects of primary growth and epicormic frequency, on the last 17 annual shoots of each fork arm, the number of axillary buds, shoot length, ring width profiles, epicormic shoots and other epicormics were carefully recorded. The distribution of annual shoot length, radial growth profiles and parallel frequencies of all epicormics are presented. The latter frequencies were parallel to the annual shoot lengths, nearly equivalent for both arms of each tree, and radial growth profiles included very narrow rings in the lowest annual shoots and even missing rings in the dominated arms alone. The location of the latent buds and the epicormics was mainly at branch base, while epicormic shoots, bud clusters and spheroblasts were present mainly in the lowest annual shoots investigated. Using a zero-inflated mixed model, sprouting was shown to depend positively on epicormic frequency and negatively on radial growth. Support for a trade-off between cambial activity and sprouting is put forward. Sprouting mainly depends on the frequency of epicormics. Between- and within-tree variability of the epicormic composition in a given species may thus have fundamental and applied implications.

  13. Effects of wood ash on soil solution and chemistry of leaves in a beech stand

    Energy Technology Data Exchange (ETDEWEB)

    Tothova, Slavka [Forest Research Inst., Kolice (Slovakia)

    2005-07-01

    The short-term effects of wood ash fertilization on chemistry of soil solution and leaves were investigated in 4-year-old beech stand (Fagus sylvatica L.) on dystric cambisol in Central Spis. Four plots - the control plot and three plots with different ash treatments (different dose, date and method of application) were established. Plate lysimeters were installed under the upper layer of soil in depth 2 cm and 20 cm on the control plot and plot P1 with addition of wood ash 5 t/ha on the whole surface. Soil solution was collected in May - October 2002 every two weeks. Composite samples, which represent a one - month period, were analysed for pH, K, Ca, Mg, and NO{sub 3} {sup -}. The leaves were collected 4 or 10 months after the treatment and analysed on Ca, K, Mg, P, S, N and heavy metals Cd, Pb, Cr and Hg. In the ash treatment the content of macronutrient increased (mainly K, Ca). Addition of ash did not increase of the content heavy metal in leaves.

  14. THE CHIPS SHAPES AT THE BEECH WOODTURNING

    Directory of Open Access Journals (Sweden)

    Iulian POPESCU

    2015-05-01

    Full Text Available we did research on the process of beech woodturning with low cutting speed. We studied the different chip shapes resulted for different feeds. Based on chip shapes, the phenomena that occur in the cutting area were interpreted by the theory of woodturning. It was found that broken chips occur and the variable hardness of some areas on the workingpiece determined forming of smaller flowing chips. We give the resulting images of the chips which are then analysed and commented.

  15. Edaphic potentials of beech forests on Brezovica

    Directory of Open Access Journals (Sweden)

    Knežević Milan

    2002-01-01

    Full Text Available The study deals with the soils in the montane beech forest (Fagetum moesiacae montanum Jov. 53 in the management units "Južni Kuèaj II" and "Bogovina I", on the mountain massif Brezovica. Soil genesis in the beech forests of Brezovica, along with vegetation and relief, was affected by the character of parent rock. The study soils occur over two types of bedrock: limestone and argilloschist The soil types and sub-types are defined based on the profile morphology, parent rock and pedogenetic processes Two types of soil were analysed on limestone: black earth (calcomelanosol and brown soil (calcocambisol. Two sub-types of black earth were defined: organomineral and brownised. There are two varieties of organomineral black earth: colluvial and lithic. Also two sub-types of brown soils were defined and: typical and illimerised. The soils on limestone are characterised by great spatial variability. Different combinations of soil formations occur on a small area. Soil combinations consist of two or three development phases, the most represented of which are the following: organomineral black earth - brownised black earth; organomineral black earth - brownised black earth - typical brown soil; typical brown soil - illimerised soil Typical brown soil is formed on argilloschists and it occurs in two forms: medium deep, medium skeletal acid brown soil and deep, poorly skeletal acid brown soil The most productive sites of the montane beech forest on Brezovica are deep acid brown soils and the soil combination: typical brown soil - illimerised soil on limestone.

  16. Diversity and primary productivity of hill beech forests from Doftana Valley (Romanian Subcarpathians

    Directory of Open Access Journals (Sweden)

    Mihaela Paucã-Comãnescu

    2009-12-01

    Full Text Available The hill beech forests cover most of the woody area in the Doftana Valley. The present study refers, for the first time, to two beech forests typical to this belt, which belong to the phytocoenological associations Epipactieto-Fagetum (Resmeriţă, 1972, in the Lunca Mare area, and Hieracio rotundati-Fagetum (Vida 1983, Täuber 1987 in the Sotrile area, from floristic, structural, biomass and necromass accumulation point of view, within the framework of the vertical structure of biocoenosis. The limestone substratum, occasionally with small outcrops in the first beech forest, differs chiefly through the pH levels (6.34-5.67 from the siliceous substratum (pH 5.11-4.36 in the second beech forest. The layer of trees is dominated by Fagus sylvatica in both forests; this species is associated with Cerasus avium (4.5%, Acer pseudoplatanus (2% and Sorbus torminalis (2% in the first beech forest, and is monodominant in the second. Although the forest underwent selective cuts, more intense in the Lunca Mare area, the aboveground ligneous biomass reaches nowadays 222 t/ha in the Lunca Mare area compared to only 163 t/ha in the Sotrile area; the average height is 28.8ą2.49 m and 23.7ą1.12 m, respectively, and the diameter is 33.30ą7.9 cm and 31.60ą6.28 cm, respectively. The species of macrofungi, not very numerous during the study because of scarce precipitations (6 and 7 species, respectively, are predominant on the rhytidoma trees in the beech forest rooted on the limestone ground; in the Sotrile beech forest they are joined by mycorrhizal and parasite species. The layer of shrub is underdeveloped. The herbaceous layer is discontinuous, and includes, along herbs, small plants and saplings belonging to the ligneous species and to liana Hedera helix. The maximal value of the aboveground biomass of the layer is 317 kg/ha DM in the Lunca Mare area and 235 kg /ha DM in the Sotrile area. Bryophyta is present in large quantities, especially in the Sotrile

  17. Leaf morphometric characteristics variability of different beech provenances in juvenile development stage

    Directory of Open Access Journals (Sweden)

    Šijačić-Nikolić Mirjana

    2013-01-01

    Full Text Available The taxonomic status of beech from the Balkan Peninsula is not yet clearly defined. There is no agreement among different authors about the morphological characteristics discriminating between the Balkan and European and/or Eastern beech. For most characteristics, the mean values are different but the ranges of variation overlap considerably. Provenance trial of beech established in Serbia, at the locality Debeli Lug, has provided an opportunity for research of interprovenance variability at the level of leaf morphometric characteristics in juvenile development stage. Research included 10 provenances originating from the Western Balkans (Serbian provenance 36 and 38; Croatian provenance 24 and 25; Bosnian provenance 30 and 32 and from Central Europe (German provenance 47 and 49; Austrian provenance 56 and Hungarian provenance 42, where following morphometric characteristics were analyzed: leaf length (Ll, leaf width (Lw, petiole lenght (Pl, leaf base width on 1 cm (Blw, number of veins - left (Vl, number of veins - right (Vr, distance between 3rd and 4th vein - left (Dv 3-4. The results of this research show existence of clear differentiation among provenances from the Western Balkan and from Central Europe, from the point of leaf dimensions, number of veins and leaf base width. [Projekat Ministarstva nauke Republike Srbije, br. TR31041: Establishment of Wood Plantations Intended for Afforestation of Serbia i br. 43007: Studying climate change and its influence on the environment: impacts, adaptation and mitigation

  18. Different conditions for drying of beech lumbers in Kosovo

    African Journals Online (AJOL)

    PRECIOUS

    2010-01-11

    Jan 11, 2010 ... The aim of the study is to present the coefficients of swelling and shrinkage for the beech wood. Mostly, the values of swelling and shrinkage, obtained from of heart of red wood, are higher than white beech wood. The swelling is smaller in naturally drying lumbers than in kiln drying. Because of calculated ...

  19. Effect of a long-term afforestation of pine in a beech domain in NE-Spain revealed by analytical pyrolysis (Py-GC/MS)

    Science.gov (United States)

    Girona García, Antonio; Badía-Villas, David; Tomás Jiménez-Morillo, Nicasio; Martí-Dalmau, Clara; González-Pérez, José Antonio

    2015-04-01

    The replacement of native beech forests (Fagus sylvatica) by Scots pine (Pinus sylvestris) afforestation may exert changes in soil properties, particularly in soil organic matter (SOM) [1]. It is known that the products generated by Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) pyrolysis of organic matter are related to their origin [2 and references therein]. Therefore this technique can be used to investigate said changes. In this work, Py-GC/MS is used to study changes in SOM quality surrogated to the effect of the centennial replacement of beech by Scots pine. The soils studied were two acid soil profiles developed on quartzites under a humid climate at an altitude of 1400-1500 masl from Moncayo (Iberian range, NE-Spain). For each soil profile three organic layers (litter: OL, fragmented litter OF and humified litter OH) and the mineral soil horizons (Ah, E, Bhs and C) were sampled. After 100 years since the pine afforestation, differences in the relative abundance of lipids released by pyrolysis were observed in the O-layers ranging from 3.82-7.20% in pine soils and 0.98-1.25% in beech soils. No differences were observed in mineral horizons with depth except for the C horizons where beech lipid content was much higher (21.25%) than in that under pine (1.07%). Both pine and beech soils show similar nitrogen compounds relative contents along the soil profile, increasing from OL to Ah (3.49-9.11% and 2.75-11.73% in beech and pine respectively) with a conspicuous reduction in the E horizon. It is remarkable the absence of nitrogen compounds in beech Bhs and C horizons. The relative content of aromatic compounds in O-layers show opposite trends for beech and pine; an enrichment in aromatic compounds is observed in beech OL layer (12.39%) decreasing to 4.11% in OH layer in contrast, whereas for pine O-layers the aromatic compounds relative abundance was higher in the OH (5.83%) than in the OL layer (2.8%). Mineral Ah and E horizons show similar values in

  20. Bark vegetation contributes to nitrous oxide (N2O) deposition by mature beech trees

    Science.gov (United States)

    Machacova, Katerina; Maier, Martin; Svobodova, Katerina; Lang, Friederike; Urban, Otmar

    2017-04-01

    Nitrous oxide (N2O) contributes to the acceleration of the greenhouse effect. Accordingly, there is an urgent need to investigate the natural capability of forest ecosystems to exchange N2O with the atmosphere. While the soils of temperate forests were shown to be a significant natural source of N2O, trees have been so far overlooked in the forest N2O inventories. Trees are known, however, to emit this gas, especially at very high N2O concentration in soil. We determined the N2O fluxes in mature beech trees (Fagus sylvatica) in two upland mountain forests (White Carpathians, CZ; Black Forest, DE) with predominant soil N2O uptake. To understand these fluxes, N2O exchange in photoautotrophic organisms associated with beech stems (lichens, mosses, and algae) was further investigated under laboratory conditions. Fluxes were measured in situ in June and July 2015 using static chamber systems followed by chromatographic and photo-acoustic analyses of N2O concentration changes. In both forests studied, all beech stems deposited N2O from the atmosphere. Such consistent uptake of N2O by stems represents a novel and unique finding which is in the contrast to current limited studies presenting trees as N2O emitters. The mean stem deposition rates were significantly higher in the White Carpathians (-3.8 μg N2O m-2 stem area h-1) than in the Black Forest (-2.3 μg N2O m-2 h-1). The forest floor was a strong sink for N2O (White Carpathians: -111, Black Forest: -81 μg N2O m-2 soil area h-1). The N2O concentration profiles within the soil did not identify any apparent production or consumption processes. Photoautotrophic organisms (lichens, mosses, and algae), largely associated with the bark of studied trees, were collected for further analyses. The detailed incubation experiments revealed that all sampled organisms deposited N2O under the conditions of full rehydration and air temperature of 25˚ C. Their deposition rates per unit area were in the same order of magnitude as

  1. Effects of stoichiometry and temperature perturbations on beech leaf litter decomposition, enzyme activities and protein expression

    Directory of Open Access Journals (Sweden)

    K. M. Keiblinger

    2012-11-01

    Full Text Available Microbes are major players in leaf litter decomposition and therefore advances in the understanding of their control on element cycling are of paramount importance. Our aim was to investigate the influence of leaf litter stoichiometry in terms of carbon (C : nitrogen (N : phosphorus (P ratios on the decomposition processes and to track changes in microbial community structures and functions in response to temperature stress treatments. To elucidate how the stoichiometry of beech leaf litter (Fagus sylvatica L. and stress treatments interactively affect the microbial decomposition processes, a terrestrial microcosm experiment was conducted. Beech litter from different Austrian sites covering C:N ratios from 39 to 61 and C:P ratios from 666 to 1729 were incubated at 15 °C and 60% moisture for six months. Part of the microcosms were then subjected to severe changes in temperature (+30 °C and −15 °C to monitor the influence of temperature stress. Extracellular enzyme activities were assayed and respiratory activities measured. A semi-quantitative metaproteomics approach (1D-SDS PAGE combined with liquid chromatography and tandem mass spectrometry; unique spectral counting was employed to investigate the impact of the applied stress treatments in dependency of litter stoichiometry on structure and function of the decomposing community. In litter with narrow C:nutrient (C:N, C:P ratios, microbial decomposers were most abundant. Cellulase, chitinase, phosphatase and protease activity decreased after heat and freezing treatments. Decomposer communities and specific functions varied with site, i.e. stoichiometry. The applied stress combined with the respective time of sampling evoked changes of enzyme activities and litter pH. Freezing treatments resulted in a decline in residual plant litter material and increased fungal abundance, indicating slightly accelerated decomposition. Overall, a strong effect of litter stoichiometry on microbial

  2. Effects of stoichiometry and temperature perturbations on beech leaf litter decomposition, enzyme activities and protein expression

    Science.gov (United States)

    Keiblinger, K. M.; Schneider, T.; Roschitzki, B.; Schmid, E.; Eberl, L.; Hämmerle, I.; Leitner, S.; Richter, A.; Wanek, W.; Riedel, K.; Zechmeister-Boltenstern, S.

    2012-11-01

    Microbes are major players in leaf litter decomposition and therefore advances in the understanding of their control on element cycling are of paramount importance. Our aim was to investigate the influence of leaf litter stoichiometry in terms of carbon (C) : nitrogen (N) : phosphorus (P) ratios on the decomposition processes and to track changes in microbial community structures and functions in response to temperature stress treatments. To elucidate how the stoichiometry of beech leaf litter (Fagus sylvatica L.) and stress treatments interactively affect the microbial decomposition processes, a terrestrial microcosm experiment was conducted. Beech litter from different Austrian sites covering C:N ratios from 39 to 61 and C:P ratios from 666 to 1729 were incubated at 15 °C and 60% moisture for six months. Part of the microcosms were then subjected to severe changes in temperature (+30 °C and -15 °C) to monitor the influence of temperature stress. Extracellular enzyme activities were assayed and respiratory activities measured. A semi-quantitative metaproteomics approach (1D-SDS PAGE combined with liquid chromatography and tandem mass spectrometry; unique spectral counting) was employed to investigate the impact of the applied stress treatments in dependency of litter stoichiometry on structure and function of the decomposing community. In litter with narrow C:nutrient (C:N, C:P) ratios, microbial decomposers were most abundant. Cellulase, chitinase, phosphatase and protease activity decreased after heat and freezing treatments. Decomposer communities and specific functions varied with site, i.e. stoichiometry. The applied stress combined with the respective time of sampling evoked changes of enzyme activities and litter pH. Freezing treatments resulted in a decline in residual plant litter material and increased fungal abundance, indicating slightly accelerated decomposition. Overall, a strong effect of litter stoichiometry on microbial community structures and

  3. Distribution of dead wood volume and mass in mediterranean Fagus sylvatica L. forests in Northern Iberian Peninsula. Implications for field sampling inventory

    Directory of Open Access Journals (Sweden)

    Celia Herrero

    2016-12-01

    Full Text Available Aim of study: The aim of this study was to 1 estimate the amount of dead wood in managed beech (Fagus sylvatica L. stands in northern Iberian Peninsula and 2 evaluate the most appropriate volume equation and the optimal transect length for sampling downed wood. Area of study: The study area is the Aralar Forest in Navarra (Northern Iberian Peninsula. Material and methods: The amount of dead wood by component (downed logs, snags, stumps and fine woody debris was inventoried in 51 plots across a chronosequence of stand ages (0-120 years old. Main results: The average volume and biomass of dead wood was 24.43 m3 ha-1 and 7.65 Mg ha-1, respectively. This amount changed with stand development stage [17.14 m3 ha-1 in seedling stage; 34.09 m3 ha-1 inpole stage; 22.54 m3 ha-1 in mature stage and 24.27 m3 ha-1 in regular stand in regeneration stage], although the differences were not statistically significant for coarse woody debris. However, forest management influenced the amount of dead wood, because the proportion of mass in the different components and the decay stage depended on time since last thinning. The formula based on intersection diameter resulted on the smallest coefficient of variation out of seven log-volume formulae. Thus, the intersection diameter is the preferred method because it gives unbiased estimates, has the greatest precision and is the easiest to implement in the field. Research highlights: The amount of dead wood, and in particular snags, was significantly lower than that in reserved forests. Results of this study showed that sampling effort should be directed towards increasing the number of transects, instead of increasing transect length or collecting additional piece diameters that do not increase the accuracy or precision of DWM volume estimation. Keywords: snags; downed logs; stumps; fine woody debris; beech; line intersect sampling.

  4. Leaf traits, shoot growth and seed production in mature Fagus sylvatica trees after 8 years of CO2 enrichment.

    Science.gov (United States)

    Han, Qingmin; Kabeya, Daisuke; Hoch, Günter

    2011-06-01

    Masting, i.e. synchronous but highly variable interannual seed production, is a strong sink for carbon and nutrients. It may, therefore, compete with vegetative growth. It is currently unknown whether increased atmospheric CO(2) concentrations will affect the carbon balance (or that of other nutrients) between reproduction and vegetative growth of forest species. In this study, reproduction and vegetative growth of shoots of mature beech (Fagus sylvatica) trees grown at ambient and elevated atmospheric CO(2) concentrations were quantified. It was hypothesized that within a shoot, fruiting has a negative effect on vegetative growth, and that this effect is ameliorated at increased CO(2) concentrations. Reproduction and its competition with leaf and shoot production were examined during two masting events (in 2007 and 2009) in F. sylvatica trees that had been exposed to either ambient or elevated CO(2) concentrations (530 µmol mol(-1)) for eight consecutive years, between 2000 and 2008. The number of leaves per shoot and the length of terminal shoots was smaller or shorter in the two masting years compared with the one non-masting year (2008) investigated, but they were unaffected by elevated CO(2) concentrations. The dry mass of terminal shoots was approx. 2-fold lower in the masting year (2007) than in the non-masting year in trees growing at ambient CO(2) concentrations, but this decline was not observed in trees exposed to elevated CO(2) concentrations. In both the CO(2) treatments, fruiting significantly decreased nitrogen concentration by 25 % in leaves and xylem tissue of 1- to 3-year-old branches in 2009. Our findings indicate that there is competition for resources between reproduction and shoot growth. Elevated CO(2) concentrations reduced this competition, indicating effects on the balance of resource allocation between reproduction and vegetative growth in shoots with rising atmospheric CO(2) concentrations.

  5. Disintegration of beech wood char during thermal conversion

    DEFF Research Database (Denmark)

    Hindsgaul, Claus

    In the present work the processes occurring in the structures of slowly pyrolysed beech wood char during thermal gasification have been investigated. Emphasis was put on physical changes and gas transport properties during conversion. The highly anisotropic structure of wood was preserved in its...... differences of 3—4 orders of magnitude between the longitudinal and other directions in freshly pyrolysed beech wood char. Diffusion in the longitudinal direction of the beech wood char before gasification corresponded to direct, unobstructed diffusion through its vessel cells. Radial and tangential diffusion...... were limited by Knudsen diffusion through the pits in the wood cell walls for degrees of conversion by gasification up to at least 0.5. A computer model of slab gasification based on the diffusion measurements successfully predicted the mass loss rate during diffusion-limited gasification of beech wood...

  6. Visible leaf injury in young trees of Fagus sylvatica L. and Quercus robur L. in relation to ozone uptake and ozone exposure. An Open-Top Chambers experiment in South Alpine environmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gerosa, G. [Catholic University of Brescia, Department of Mathematics and Physics, Via dei Musei 41, 25125 Brescia (Italy); Marzuoli, R. [Catholic University of Brescia, Department of Mathematics and Physics, Via dei Musei 41, 25125 Brescia (Italy)], E-mail: riccardo.marzuoli@unicatt.it; Desotgiu, R.; Bussotti, F. [University of Florence, Department of Plant Biology, Piazzale delle Cascine 28, 50144 Florence (Italy); Ballarin-Denti, A. [Catholic University of Brescia, Department of Mathematics and Physics, Via dei Musei 41, 25125 Brescia (Italy)

    2008-03-15

    An Open-Top Chambers experiment on Fagus sylvatica and Quercus robur seedlings was conducted in order to compare the performance of an exposure-based (AOT40) and a flux-based approaches in predicting the appearance of ozone visible injuries on leaves. Three different ozone treatments (charcoal-filtered; non-filtered; and open plots) and two soil moisture treatments (watered and non-watered plots) were performed. A Jarvisian stomatal conductance model was drawn up and parameterised for both species and typical South Alpine environmental conditions, thus allowing the calculation of ozone stomatal fluxes for every treatment. A critical ozone flux level for the onset of leaf visible injury in beech was clearly identified between 32.6 and 33.6 mmol O{sub 3}m{sup -2}. In contrast, it was not possible to identify an exposure critical level using the AOT40 index. Water stress delayed the onset of the leaf visible injuries, but the flux-based approach was able to take it into account accurately. - Ozone fluxes are more accurate than AOT40 exposure index in predicting ozone visible foliar injury onset on beech seedlings in South Alpine environmental conditions.

  7. Beech bark necrosis: partitioning the environmental and spatial variation of the damage severity in Central and South-Eastern Europe

    Directory of Open Access Journals (Sweden)

    Benjamín Jarčuška

    2013-11-01

    Full Text Available The beech bark necrosis (BBN infestation severity of Europeanbeech (Fagus sylvatica L. was assessed in regions of Central (CE andSouth-Eastern Europe (SE. Altogether more than 10,000 trees were sampled at 114 sites. Using variation partitioning method, we examined the pure and shared effects of stand, site, climate and spatial sets of variables on mean BBN severity. Our rating included (i the whole stand, (ii tree social status classes, (iii canopy (C and (iv understory (U trees separately. We found that C trees were less affected by BBN than sub-canopy and U trees in both regions. There were found inter-regional differences in amount of explained variability (25.4–73.9% for whole stand BBN and in the sensitivity of C and U trees to the environmental gradients. The analysisrevealed that the climate and spatial variables followed by stand variables had the largest marginal effects on mean BBN severity in all models, while the site set of variables had the weakest one. More than half of the explained variation was shared among four sets of variables in SE, contrary to CE. Except to U trees in SE, the effect of climate – pure or spatially structured – remained the highest also after partitioning of variance; more in SE than in CE. Taking into account positive association between mean annual temperature and mean BBN severity in C trees in SE, reinforced negative effect of climate change on the necrosis might be expected to be more seriousmainly in low situated beech forests there. Promoting the tree speciesdiversity in forested areas with higher incidence of beech bark necrosis, i.e. in low altitudes in SE, could reduce the susceptibility of forests to the necrosis at regional level in the future. For better understanding of the relative importance of environmental and spatial variables on BBN severity, further research performed on finer spatial scale (extent and grain is necessary, along with accounting for pathogens involved in the

  8. Penetration of urea-formaldehyde adhesives in wood tissue, part I: Radial penetration of UF adhesives into beech

    Directory of Open Access Journals (Sweden)

    Gavrilović-Grmuša Ivana

    2008-01-01

    Full Text Available Adhesive penetration plays an important role in wood adhesion, since wood is a porous material. The degree of penetration mostly depends on the wood factors, resin type and formulation and processing parameters. Tangentially cut 5 mm thick beech wood (Fagus moesiaca plies, 100 mm long (parallel to grain and 30 mm wide, were prepared for this study. The urea-formaldehyde (UF adhesive was applied to the surface of one ply. Two plies were assembled into sample so that the grains of two plies were parallel. Samples were pressed in a hydraulic press at 120°C and 0,7 MPa for 15 min. Microtome test-specimens were cut of each sample. 20 μm thick microtomes were cut by sliding microtome apparatus, exposing a bondline with a cross-sectional surface. The lack of more exhausting research on the penetration of urea-formaldehyde adhesives in wood is evident. Since ureaformaldehyde (UF glue resins were the most important type of adhesives in the wood industry in the last 60 years (Dunky, 2000, the objective of this research was microscopic detection of UF adhesive penetration in wood tissue. Four types of UF resins with different levels of polycondensation were used in this research. Safranin was added in resins, since epi-fluorescence microscope was used in this research for measuring the adhesive penetration.

  9. Seasonal patterns of carbon allocation to respiratory pools in 60-yr-old deciduous (Fagus sylvatica) and evergreen (Picea abies) trees assessed via whole-tree stable carbon isotope labeling.

    Science.gov (United States)

    Kuptz, Daniel; Fleischmann, Frank; Matyssek, Rainer; Grams, Thorsten E E

    2011-07-01

    • The CO(2) efflux of adult trees is supplied by recent photosynthates and carbon (C) stores. The extent to which these C pools contribute to growth and maintenance respiration (R(G) and R(M), respectively) remains obscure. • Recent photosynthates of adult beech (Fagus sylvatica) and spruce (Picea abies) trees were labeled by exposing whole-tree canopies to (13) C-depleted CO(2). Label was applied three times during the year (in spring, early summer and late summer) and changes in the stable C isotope composition (δ(13) C) of trunk and coarse-root CO(2) efflux were quantified. • Seasonal patterns in C translocation rate (CTR) and fractional contribution of label to CO(2) efflux (F(Label-Max)) were found. CTR was fastest during early summer. In beech, F(Label-Max) was lowest in spring and peaked in trunks during late summer (0.6 ± 0.1, mean ± SE), whereas no trend was observed in coarse roots. No seasonal dynamics in F(Label-Max) were found in spruce. • During spring, the R(G) of beech trunks was largely supplied by C stores. Recent photosynthates supplied growth in early summer and refilled C stores in late summer. In spruce, CO(2) efflux was constantly supplied by a mixture of stored (c. 75%) and recent (c. 25%) C. The hypothesis that R(G) is exclusively supplied by recent photosynthates was rejected for both species. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  10. Growth losses in Swiss forests caused by ozone: epidemiological data analysis of stem increment of Fagus sylvatica L. and Picea abies Karst.

    Science.gov (United States)

    Braun, Sabine; Schindler, Christian; Rihm, Beat

    2014-09-01

    The estimate of growth losses by ozone exposure of forest trees is a significant part in current C sequestration calculations and will also be important in future modeling. It is therefore important to know if the relationship between ozone flux and growth reduction of young trees, used to derive a Critical Level for ozone, is also valid for mature trees. Epidemiological analysis of stem increment data from Fagus sylvatica L. and Picea abies Karst. observed in Swiss forest plots was used to test this hypothesis. The results confirm the validity of the flux-response relationship at least for beech and therefore enable estimating forest growth losses by ozone on a country-wide scale. For Switzerland, these estimates amount to 19.5% growth reduction for deciduous forests, 6.6% for coniferous forests and 11.0% for all forested areas based on annual ozone stomatal uptake during the time period 1991-2011. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Tree age dependence and within-canopy variation of leaf gas exchange and antioxidative defence in Fagus sylvatica under experimental free-air ozone exposure

    Energy Technology Data Exchange (ETDEWEB)

    Herbinger, K. [Institut fuer Pflanzenwissenschaften, Universitaet Graz, Schubertstrasse 51, A-8010 Graz (Austria)]. E-mail: karin.herbinger@uni-graz.at; Then, Ch. [Bundesamt und Forschungszentrum fuer Wald, Abteilung Forstpflanzenphysiologie, Rennweg 1, A-6020 Innsbruck (Austria)]|[Lehrstuhl fuer Oekophysiologie der Pflanzen, Technische Universitaet Muenchen, Life Sciences Center Weihenstephan, Am Hochanger 13, D-85354 Freising (Germany); Loew, M.; Koch, N. [Lehrstuhl fuer Oekophysiologie der Pflanzen, Technische Universitaet Muenchen, Life Sciences Center Weihenstephan, Am Hochanger 13, D-85354 Freising (Germany); Haberer, K.; Alexous, M. [Institut fuer Forstbotanik und Baumphysiologie, Universitaet Freiburg, Georges-Koehler-Allee 053/054, D-79085 Freiburg (Germany); Remele, K. [Institut fuer Pflanzenwissenschaften, Universitaet Graz, Schubertstrasse 51, A-8010 Graz (Austria); Heerdt, C. [Lehrstuhl fuer Bioklimatologie und Immissionsforschung, Technische Universitaet Muenchen, Am Hochanger 13, D-85354 Freising (Germany); Grill, D. [Institut fuer Pflanzenwissenschaften, Universitaet Graz, Schubertstrasse 51, A-8010 Graz (Austria); Rennenberg, H. [Institut fuer Forstbotanik und Baumphysiologie, Universitaet Freiburg, Georges-Koehler-Allee 053/054, D-79085 Freiburg (Germany); Haeberle, K.-H.; Matyssek, R. [Lehrstuhl fuer Oekophysiologie der Pflanzen, Technische Universitaet Muenchen, Life Sciences Center Weihenstephan, Am Hochanger 13, D-85354 Freising (Germany); Tausz, M. [Institut fuer Pflanzenwissenschaften, Universitaet Graz, Schubertstrasse 51, A-8010 Graz (Austria)]|[[School of Forest and Ecosystem Science, University of Melbourne, Water Street, Creswick, Vic. 3363 (Australia); Wieser, G. [Bundesamt und Forschungszentrum fuer Wald, Abteilung Forstpflanzenphysiologie, Rennweg 1, A-6020 Innsbruck (Austria)

    2005-10-15

    We characterized leaf gas exchange and antioxidative defence of two-year-old seedlings and 60-year-old trees of Fagus sylvatica exposed to ambient (1xO{sub 3}) or two-fold ambient (2xO{sub 3}) O{sub 3} concentrations (maximum of 150 ppb) in a free-air canopy exposure system throughout the growing season. Decline in photosynthesis from sun-exposed to shaded conditions was more pronounced in adult than juvenile trees. Seedling leaves and leaves in the sun-exposed canopy had higher stomatal conductance and higher internal CO{sub 2} concentrations relative to leaves of adult trees and leaves in shaded conditions. There was a weak overall depression of photosynthesis in the 2xO{sub 3} variants across age classes and canopy positions. Pigment and tocopherol concentrations of leaves were significantly affected by canopy position and tree age, whereas differences between 1xO{sub 3} and 2xO{sub 3} regimes were not observed. Glutathione concentrations were significantly increased under 2xO{sub 3} across both age classes and canopy levels. Seedlings differed from adult trees in relevant physiological and biochemical traits in ozone response. The water-soluble antioxidative systems responded most sensitively to 2xO{sub 3} without regard of tree age or canopy position. - Ozone effects on leaf gas exchange and antioxidative systems of beech across tree age and canopy level were investigated in a free air exposure system.

  12. Non-targeted metabolomic profile of Fagus sylvatica L. leaves using liquid chromatography with mass spectrometry and gas chromatography with mass spectrometry.

    Science.gov (United States)

    Cadahía, Estrella; Fernández de Simón, Brígida; Aranda, Ismael; Sanz, Miriam; Sánchez-Gómez, David; Pinto, Ernani

    2015-01-01

    Fagus sylvatica L. is one of the most widely distributed broad-leaved tree species in central and western Europe, important to the forest sector and an accurate biomarker of climate change. To profile the beech leaf metabolome for future studies in order to investigate deeper into the characterisation of its metabolic response. Leaf extracts were analysed using LC-MS by electrospray ionisation in negative mode from m/z 100-1700 and GC-MS by electron ionisation in scan mode from m/z 35-800. The LC-MS profile resulted in 56 compounds, of which 43 were identified and/or structurally characterised, including hydroxycinnamic acid derivatives, flavan-3-ols and proanthocyanidins, and flavonols. From a second analysis based on GC-MS, a total of 111 compounds were identified, including carbohydrates, polyalcohols, amino acids, organic acids, fatty acids, phenolic compounds, terpenoids, sterols and other related compounds. Many of the compounds identified were primary metabolites involved in major plant metabolic pathways, however, some secondary metabolites were also detected. Some of them play roles as tolerance-response osmoregulators and osmoprotectors in abiotic stress, or as anti-oxidants that reduce the effect of reactive oxygen species and promote many protective functions in plants. This study provides a broad and relevant insight into the metabolic status of F. sylvatica leaves, and serves as a base for future studies on physiological and molecular mechanisms involved in biotic or abiotic stress. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Reciprocal trade of Carbon and Nitrogen at the root-fungus interface in ectomycorrhizal beech plants

    Science.gov (United States)

    Kaiser, Christina; Mayerhofer, Werner; Dietrich, Marlies; Gorka, Stefan; Schintlmeister, Arno; Reipert, Siegfried; Schweiger, Peter; Weidinger, Marieluise; Wiesenbauer, Julia; Martin, Victoria; Richter, Andreas; Woebken, Dagmar

    2017-04-01

    Plants deliver recently assimilated carbon (C) to mycorrhizal fungi, and receive nutrients, such as N and P, in exchange. A reciprocal exchange of C and nutrients between plants and mycorrhizal fungi (i.e., fungi which deliver more nutrients receive more plant C in return and vice versa) has been suggested for arbuscular mycorrhizal symbioses by some studies, but challenged by others. For ectomycorrhizal associations even less is known on how the exchange of C for nutrients is regulated, and whether it is based on reciprocity, or other controls. The aim of this study was to test the concept of reciprocal rewards between beech (Fagus sylvatica) and their associated ectomycorrhizal fungi on different scales, namely (a) across associations between individual root tips of beech and different fungal partners, and (b) at the subcellular scale at the plant-fungus interface. We exposed young beech trees associated with natural mycorrhizal fungal communities to a 13CO2 atmosphere and added 15N-labelled amino acids to a 'litter compartment', that mycorrhizal hyphae, but not plant roots could access. Plants were harvested within 2 days after application of 15N and less than one day after applying 13CO2. If the trading of C for N was reciprocal, we expect that 13C would be correlated to 15N across individual plant-fungal connections and at the subcellular scale within one mycorrhizal root tip, respectively. We collected individual mycorrhizal root-tips from 8 plants right after harvest, analyzed their 13C and 15N content by isotope-ratio mass spectrometry (EA-IRMS) and performed ITS sequencing to identify fungal communities associated with individual root tips. Selected mycorrhizal root tips were also prepared for nano-scale secondary ion mass spectrometry (NanoSIMS) to visualize the spatial distribution of 13C and 15N in cross-sections of mycorrhizal root-tips at the subcellular scale. Our results showed a significant, albeit weak correlation between 13C and 15N across

  14. PROSPECTS FOR BEECH GENETIC RESOURCES ADMINISTRATION IN FĂGETUL SECULAR STUHOASA NATURAL AREA

    National Research Council Canada - National Science Library

    Liviu Fartais

    2014-01-01

    ...% proportion of beech plus trees. An efficient in situ conservation of the beech genetic resources require the elimination of all risk factors which might disturb the genetic integrity in the natural area and then to make ample...

  15. The potential of beech seedlings to adapt to low P availability in soil - plant versus microbial effects on P mobilising potential in the rhizosphere

    Science.gov (United States)

    Meller, Sonia; Frey, Beat; Frossard, Emmanuel; Spohn, Marie; Schack-Kirchner, Helmer; Luster, Jörg

    2016-04-01

    The objective of our work was to investigate to what extent tree seedlings (Fagus sylvatica) are able to adapt the process of P mobilisation in the rhizosphere according to P speciation in the soil. Such mobilisation activity can include root exudation of P mobilising compounds or stimulation of specific P mobilising soil microbes. We hypothesized that Fagus sylvatica seedlings can adapt their own activity based on their P nutritional status and genetic memory of how to react under a given nutritional situation. To test the hypothesis, we set up a cross-growth experiment with beech of different provenances growing in soil from their own provenance site and in soil differing in P availability. Experiments were performed as a greenhouse experiment, with temperature control and natural light, during one vegetation period in rhizoboxes . We used two acidic forest soils, contrasting in P availability, collected at field sites of the German research priority program "Ecosystem Nutrition". Juvenile trees were collected along with the soils at the sites and planted respectively. The occurrence of P mobilising compounds and available P in the rhizosphere and in bulk soil were measured during the active growth season of the plants. In particular, we assessed phosphatase activity, (measured with zymography and plate enzymatic assay at pH 4,6.5, and 11) carboxylates and phosphate (measured by application of ion exchange membranes to specific soil micro zones, and by microdialysis), and pH (mapping with optodes). Plant P nutrition status was assessed by total P, N/P, phosphatase activity, and metabolic (TCA extractable) P in the leaves. The P-nutritional status of the beech provenances differed markedly independent from the P status of the soil where they were actually grown during experiment. In particular, the juvenile trees from the site rich in mineral P were sufficient in P, while those from the P-poor site with mostly organic P, were deficient. Enzymatic activity at the

  16. Experimental Study on Dry Torrefaction of Beech Wood

    NARCIS (Netherlands)

    Gucho, Eyerusalem Merin; Shahzad, K.; Bramer, Eduard A.; Akhtar, N.A.; Brem, Gerrit

    2015-01-01

    Torrefaction is a thermochemical pre-treatment process for upgrading the properties of biomass to resemble those of fossil fuels such as coal. Biomass properties of particular interest are chemical composition, physical property and combustion characteristics. In this work, torrefaction of beech

  17. Status of beech bark disease establishment and research in Michigan

    Science.gov (United States)

    Therese M. Poland; Deborah G. McCullough; Toby R. Petrice; Nathan W. Siegert

    2003-01-01

    Beech bark disease was first discovered in Michigan in spring 2000 in Ludington State Park on the shore of Lake Michigan in the lower peninsula. Soon thereafter it was found in the upper peninsula of Michigan in the Bass Lake campground.

  18. Hot callusing for propagation of American beech by grafting

    Science.gov (United States)

    David W. Carey; Mary E. Mason; Paul Bloese; Jennifer L. Koch

    2013-01-01

    To increase grafting success rate, a hot callus grafting system was designed and implemented as part of a multiagency collaborative project to manage beech bark disease (BBD) through the establishment of regional BBD-resistant grafted seed orchards. Five years of data from over 2000 hot callus graft attempts were analyzed using a logistic regression model to determine...

  19. Flux-profile relationships over a fetch limited beech forest

    DEFF Research Database (Denmark)

    Dellwik, E.; Jensen, N.O.

    2005-01-01

    The influence of an internal boundary layer and a roughness sublayer on flux-profile relationships for momentum and sensible heat have been investigated for a closed beech forest canopy with limited fetch conditions. The influence was quantified by derivation of local scaling functions for sensib...

  20. Overexpression of a Protein Phosphatase 2C from Beech Seeds in Arabidopsis Shows Phenotypes Related to Abscisic Acid Responses and Gibberellin Biosynthesis1

    Science.gov (United States)

    Reyes, David; Rodríguez, Dolores; González-García, Mary Paz; Lorenzo, Oscar; Nicolás, Gregorio; García-Martínez, José Luis; Nicolás, Carlos

    2006-01-01

    A functional abscisic acid (ABA)-induced protein phosphatase type 2C (PP2C) was previously isolated from beech (Fagus sylvatica) seeds (FsPP2C2). Because transgenic work is not possible in beech, in this study we overexpressed this gene in Arabidopsis (Arabidopsis thaliana) to provide genetic evidence on FsPP2C2 function in seed dormancy and other plant responses. In contrast with other PP2Cs described so far, constitutive expression of FsPP2C2 in Arabidopsis, under the cauliflower mosaic virus 35S promoter, produced enhanced sensitivity to ABA and abiotic stress in seeds and vegetative tissues, dwarf phenotype, and delayed flowering, and all these effects were reversed by gibberellic acid application. The levels of active gibberellins (GAs) were reduced in 35S:FsPP2C2 plants, although transcript levels of AtGA20ox1 and AtGA3ox1 increased, probably as a result of negative feedback regulation, whereas the expression of GASA1 was induced by GAs. Additionally, FsPP2C2-overexpressing plants showed a strong induction of the Responsive to ABA 18 (RAB18) gene. Interestingly, FsPP2C2 contains two nuclear targeting sequences, and transient expression assays revealed that ABA directed this protein to the nucleus. Whereas other plant PP2Cs have been shown to act as negative regulators, our results support the hypothesis that FsPP2C2 is a positive regulator of ABA. Moreover, our results indicate the existence of potential cross-talk between ABA signaling and GA biosynthesis. PMID:16815952

  1. Subcellular Nutrient Element Localization and Enrichment in Ecto- and Arbuscular Mycorrhizas of Field-Grown Beech and Ash Trees Indicate Functional Differences

    Science.gov (United States)

    Seven, Jasmin; Polle, Andrea

    2014-01-01

    Mycorrhizas are the chief organ for plant mineral nutrient acquisition. In temperate, mixed forests, ash roots (Fraxinus excelsior) are colonized by arbuscular mycorrhizal fungi (AM) and beech roots (Fagus sylvatica) by ectomycorrhizal fungi (EcM). Knowledge on the functions of different mycorrhizal species that coexist in the same environment is scarce. The concentrations of nutrient elements in plant and fungal cells can inform on nutrient accessibility and interspecific differences of mycorrhizal life forms. Here, we hypothesized that mycorrhizal fungal species exhibit interspecific differences in mineral nutrient concentrations and that the differences correlate with the mineral nutrient concentrations of their associated root cells. Abundant mycorrhizal fungal species of mature beech and ash trees in a long-term undisturbed forest ecosystem were the EcM Lactarius subdulcis, Clavulina cristata and Cenococcum geophilum and the AM Glomus sp. Mineral nutrient subcellular localization and quantities of the mycorrhizas were analysed after non-aqueous sample preparation by electron dispersive X-ray transmission electron microscopy. Cenococcum geophilum contained the highest sulphur, Clavulina cristata the highest calcium levels, and Glomus, in which cations and P were generally high, exhibited the highest potassium levels. Lactarius subdulcis-associated root cells contained the highest phosphorus levels. The root cell concentrations of K, Mg and P were unrelated to those of the associated fungal structures, whereas S and Ca showed significant correlations between fungal and plant concentrations of those elements. Our results support profound interspecific differences for mineral nutrient acquisition among mycorrhizas formed by different fungal taxa. The lack of correlation between some plant and fungal nutrient element concentrations may reflect different retention of mineral nutrients in the fungal part of the symbiosis. High mineral concentrations, especially of

  2. Subcellular nutrient element localization and enrichment in ecto- and arbuscular mycorrhizas of field-grown beech and ash trees indicate functional differences.

    Directory of Open Access Journals (Sweden)

    Jasmin Seven

    Full Text Available Mycorrhizas are the chief organ for plant mineral nutrient acquisition. In temperate, mixed forests, ash roots (Fraxinus excelsior are colonized by arbuscular mycorrhizal fungi (AM and beech roots (Fagus sylvatica by ectomycorrhizal fungi (EcM. Knowledge on the functions of different mycorrhizal species that coexist in the same environment is scarce. The concentrations of nutrient elements in plant and fungal cells can inform on nutrient accessibility and interspecific differences of mycorrhizal life forms. Here, we hypothesized that mycorrhizal fungal species exhibit interspecific differences in mineral nutrient concentrations and that the differences correlate with the mineral nutrient concentrations of their associated root cells. Abundant mycorrhizal fungal species of mature beech and ash trees in a long-term undisturbed forest ecosystem were the EcM Lactarius subdulcis, Clavulina cristata and Cenococcum geophilum and the AM Glomus sp. Mineral nutrient subcellular localization and quantities of the mycorrhizas were analysed after non-aqueous sample preparation by electron dispersive X-ray transmission electron microscopy. Cenococcum geophilum contained the highest sulphur, Clavulina cristata the highest calcium levels, and Glomus, in which cations and P were generally high, exhibited the highest potassium levels. Lactarius subdulcis-associated root cells contained the highest phosphorus levels. The root cell concentrations of K, Mg and P were unrelated to those of the associated fungal structures, whereas S and Ca showed significant correlations between fungal and plant concentrations of those elements. Our results support profound interspecific differences for mineral nutrient acquisition among mycorrhizas formed by different fungal taxa. The lack of correlation between some plant and fungal nutrient element concentrations may reflect different retention of mineral nutrients in the fungal part of the symbiosis. High mineral concentrations

  3. Occurrence, spatial pattern, and influence of atmospheric deposition on top- and subsoil water repellency in a beech forest

    Science.gov (United States)

    Bachmann, Joerg; Böttcher, Jürgen; Krüger, Jiem; Woche, Susanne K.

    2017-04-01

    It is well known that enhanced solute input due to stemflow infiltration causes enhanced soil acidification near the tree base. Infiltration-driven alteration of chemical soil properties like pH, and carbon to nitrogen ratio (C/N) may also affect soil wettability (quantified as contact angle, CA) with a trend to increased soil water repellency (SWR) with decreased pH. Objective of this study was to analyze the impact of tree location on top- and subsoil wettability and selected soil chemical parameters on two large-scale transects (length  50 m, sampling depths 0.1-0.2 m). The transects were about 50 m apart from each other, time of sampling was in July 2013 and July 2015. To analyze subsoil wettability in the vicinity of selected trees, three transects (lengths =3 m, sampling depths = 0.1 - 2.0 m) were additionally sampled in June 2013. Sampling site is a 100 years old beech forest (Fagus sylvatica L.). Soil type is a well-drained sandy Dystric Cambisol in northern Germany with moderate to locally extended acidification. According to standard statistics, the total variance of chemical soil properties and SWR was independent of stemflow infiltration pattern. Results of spectral variance analyses, however, showed that the spatial variability of acidification (pH, Al content) as well as SWR in the soil horizon close to the surface was strongly affected by the pattern of patches with and without stemflow infiltration on both large-distance transects, no matter if sampling took place in 2013 (mean CA = 40°, SD = 12°) or 2015 (mean CA = 110°, SD = 14°). Regarding subsoil wettability on the smaller transects, CA were always in the range 0° non-polar C species and CA (r2=0.77), and the amount of Al and CA (r2=0.87). For C/N ratio, sulfate, and oxalate-soluble Fe content no significant relations to SWR or soil acidity were found. We conclude that our study provides a link between chemical soil quality and physical behavior with respect to SWR and, accordingly

  4. Ecology of beech regeneration in the allochthonous spruce stands – a case study

    Directory of Open Access Journals (Sweden)

    Lumír Dobrovolný

    2013-01-01

    Full Text Available We study the successional process of beech in a allochthonous spruce monocultures. In the natural regeneration of the predominatly spruce stand (area: 14.28 ha, age: 110 years with single mother beech trees admixture the spruce regeneration occupies the most part of the study area. However, about one quarter of area is occupied relatively regular by beech regeneration. The spruce density was at all times higher than that of beech while the spruce height grow was by contrast at all times lower than that of beech. Mean distance of beech seedlings dispersion is 12.7; at a distance greater than 40 m, the density already neared zero. Density of spruce increases with increasing light intensity, the density of beech decreases – the competition point was found about 19% of diffuse radiation or about 14% of canopy openness. The both species respond to increase of light intensity with increase of height grow (by beech only weekly – the spruce starts to dominate the beech at about 32% of diffuse radiation or about 22% of canopy openness. The silvicultural goal in the next stand generation – converting of spruce forest into mixed forest, i.e. achievement of the legal proportion of beech as a soil-improving and reinforcing tree species (proportion about 30% and more in the spruce stand can be reliably realized by natural way only using a combination of more intensive shelterwood or border felling with group selection system.

  5. Climate variation and the stable carbon isotope composition of tree ring cellulose: an intercomparison of Quercus robur, Fagus sylvatica and Pinus sylvestris

    Energy Technology Data Exchange (ETDEWEB)

    Hemming, D.L. [Cambridge Univ. (United Kingdom). Dept. of Plant Sciences; Switsur, V.R.; Charter, A.H.C. [Cambridge Univ. (United Kingdom). Dept. of Plant Sciences]|[Anglia Polytechnic Univ., Cambridge (United Kingdom). Environmental Science Research Centre; Waterhouse, J.S. [Anglia Polytechnic Univ., Cambridge (United Kingdom). Environmental Science Research Centre; Heaton, T.H.E. [NERC Isotope Geosciences Lab., Nottingham (United Kingdom)

    1998-02-01

    The relationship between climate parameters and the carbon stable isotope composition, {delta}{sup 13}C, of annual tree ring cellulose is examined for three native British tree species; Common beech (Fagus sylvatica L.), Pedunculate oak (Quercus robur L.) and Scots pine (Pinus sylvestris L.). The last 100 annual tree rings of six trees, two of each species, were cut into slivers and the {alpha}-cellulose extracted. Annual {delta}{sup 13}C values of each species were averaged to produce three species {delta}{sup 13}C chronologies. These were compared with climate parameters from a nearby meteorological station. The carbon stable isotope discrimination, {Delta}{sup 13}C, of pine is consistently lower, by approximately 2.5 per mille, than that of beech and oak. Although the exact cause of this offset cannot be identified, similar differences in carbon isotope ratios have been noted between other gymnosperm and angiosperm species and attributed to inherent physiological differences. As this offset is consistent, once centered around the same mean {delta}{sup 13}C and {Delta}{sup 13}C, chronologies from these 3 species can be combined. {Delta}{sup 13}C chronologies of the three species demonstrate strong cross-correlations in both high and low frequency fluctuations. Low frequency fluctuations, although consistent between species, show no direct climate relationship, and may be linked with physiological responses to increasing CO{sub 2} concentrations. Significant correlations do exist between the high frequency {delta}{sup 13}C fluctuations and climate parameters. The high frequency {delta}{sup 13}C series of all three species are most significantly correlated with the same two climate parameters and have the same seasonal timing; July-October average maximum temperature and June-September average relative humidity. Pine {delta}{sup 13}C is the most responsive species to climate changes and displays the most significant correlations with all the climate parameters

  6. Negative Regulation of Abscisic Acid Signaling by the Fagus sylvatica FsPP2C1 Plays A Role in Seed Dormancy Regulation and Promotion of Seed Germination1

    Science.gov (United States)

    González-García, Mary Paz; Rodríguez, Dolores; Nicolás, Carlos; Rodríguez, Pedro Luis; Nicolás, Gregorio; Lorenzo, Oscar

    2003-01-01

    FsPP2C1 was previously isolated from beech (Fagus sylvatica) seeds as a functional protein phosphatase type-2C (PP2C) with all the conserved features of these enzymes and high homology to ABI1, ABI2, and PP2CA, PP2Cs identified as negative regulators of ABA signaling. The expression of FsPP2C1 was induced upon abscisic acid (ABA) treatment and was also up-regulated during early weeks of stratification. Furthermore, this gene was specifically expressed in ABA-treated seeds and was hardly detectable in vegetative tissues. In this report, to provide genetic evidence on FsPP2C1 function in seed dormancy and germination, we used an overexpression approach in Arabidopsis because transgenic work is not feasible in beech. Constitutive expression of FsPP2C1 under the cauliflower mosaic virus 35S promoter confers ABA insensitivity in Arabidopsis seeds and, consequently, a reduced degree of seed dormancy. Additionally, transgenic 35S:FsPP2C1 plants are able to germinate under unfavorable conditions, as inhibitory concentrations of mannitol, NaCl, or paclobutrazol. In vegetative tissues, Arabidopsis FsPP2C1 transgenic plants show ABA-resistant early root growth and diminished induction of the ABA-response genes RAB18 and KIN2, but no effect on stomatal closure regulation. Seed and vegetative phenotypes of Arabidopsis 35S:FsPP2C1 plants suggest that FsPP2C1 negatively regulates ABA signaling. The ABA inducibility of FsPP2C1 expression, together with the transcript accumulation mainly in seeds, suggest that it could play an important role modulating ABA signaling in beechnuts through a negative feedback loop. Finally, we suggest that negative regulation of ABA signaling by FsPP2C1 is a factor contributing to promote the transition from seed dormancy to germination during early weeks of stratification. PMID:12970481

  7. Distribution of dead wood volume and mass in mediterranean Fagus sylvatica L. forests in Northern Iberian Peninsula. Implications for field sampling inventory

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, C.; Monleon, V.J.; Gómez, N.; Bravo, F.

    2016-07-01

    Aim of the study: The aim of this study was to 1) estimate the amount of dead wood in managed beech (Fagus sylvatica L.) stands in northern Iberian Peninsula and 2) evaluate the most appropriate volume equation and the optimal transect length for sampling downed wood. Area of study: The study area is the Aralar Forest in Navarra (Northern Iberian Peninsula). Material and methods: The amount of dead wood by component (downed logs, snags, stumps and fine woody debris) was inventoried in 51 plots across a chronosequence of stand ages (0-120 years old). Main results: The average volume and biomass of dead wood was 24.43 m3 ha-1 and 7.65 Mg ha-1, respectively. This amount changed with stand development stage [17.14 m3 ha-1 in seedling stage; 34.09 m3 ha-1 inpole stage; 22.54 m3 ha-1 in mature stage and 24.27 m3 ha-1 in regular stand in regeneration stage], although the differences were not statistically significant for coarse woody debris. However, forest management influenced the amount of dead wood, because the proportion of mass in the different components and the decay stage depended on time since last thinning. The formula based on intersection diameter resulted on the smallest coefficient of variation out of seven log-volume formulae. Thus, the intersection diameter is the preferred method because it gives unbiased estimates, has the greatest precision and is the easiest to implement in the field. Research highlights: The amount of dead wood, and in particular snags, was significantly lower than that in reserved forests. Results of this study showed that sampling effort should be directed towards increasing the number of transects, instead of increasing transect length or collecting additional piece diameters that do not increase the accuracy or precision of DWM volume estimation. (Author)

  8. Study on the Effect of Heat Treatment on Physical Properties of Poplar and Beech Woods Impregnated with Nano-Copper and Nano-Silver

    Directory of Open Access Journals (Sweden)

    Hassan Siahposht

    2012-06-01

    Full Text Available Present study conducted to review effects of heat treatment on weight loss, water adsorption, and thickness swelling of poplar (Populus nigra and beech (Fagus oreintalis woods impregnated with nano-copper and nano-silver. Specimens werepressur (2.5 bar impregnated with 400 PPM water-based solution of nano-copper and nano-silver particles in a pressure vessel. For heat treatment, nano-cupper,  nano-silver impregnated and control specimens, were heat treated at 145°C temperature for 24 hours. Water absorption and thickness swelling decreased in heat treated and nano-heat treated specimens and this decrease in specimens impregnated with nano-copper and nano-silver was more obvious than in heat treated control specimens. The reasons were the degradation in crystal sections of celluloses chains and the ink variation of wood polymers. On the other hand, a comparison between heat treated and nano- heat treated specimens has shown weight loss further in nano-heat treated specimens. This shows that retent nano-copper and nano-silver by impregnation facilitates heat transfer in wood; and it may increase the process of degradation and pyrolysis of wood structures in inner parts of specimens.

  9. Microscopic identification of changes in beech (Fagus sylvatica L.) and pine (Pinus sylvestris L.) cell structure after drying using high-frequency energy of the microwave band

    National Research Council Canada - National Science Library

    Nasswettrová, Andrea; Nikl, Květoslav

    .... Based on this fact, the gradients of moisture content and temperature are identical and when the wood is dried it helps transport moisture from porous material and it also helps and transport free...

  10. The effect of combined colloidal nano silver-hydrothermal treatment on weight changes and chemical structure of beech wood (Fagus orientalis)

    OpenAIRE

    مریم قربانی; rahim aghayi; poriya biparva

    2015-01-01

    Synthesis of colloidal silver nano-particles, as well as the effect of combined colloidal nano-silver and hydrothermal modification, on weight and chemical changes of wood particles through spectroscopic FTIR were investigated. Treatment levels were divided in 4 groups namely, control, nano- impregnated, hydrothermal and nano-hydrothermal. Hydrothermal and nano-hydrothermal treatments were separated in two temperatures (150 and 170 °C) and two times (30 and 45 min) with total of 10 treatment ...

  11. The effect of combined colloidal nano silver-hydrothermal treatment on weight changes and chemical structure of beech wood (Fagus orientalis

    Directory of Open Access Journals (Sweden)

    مریم قربانی

    2015-05-01

    Full Text Available Synthesis of colloidal silver nano-particles, as well as the effect of combined colloidal nano-silver and hydrothermal modification, on weight and chemical changes of wood particles through spectroscopic FTIR were investigated. Treatment levels were divided in 4 groups namely, control, nano- impregnated, hydrothermal and nano-hydrothermal. Hydrothermal and nano-hydrothermal treatments were separated in two temperatures (150 and 170 °C and two times (30 and 45 min with total of 10 treatment levels. Colloidal Nano silver with 100 ppm concentration was prepared. The scanning electron microscope images proved the presence, size and appropriate distribution of colloidal nanoparticles silver in wood particles clearly. With regard to the results, increasing time and temperature hydrothermal treatment had significant effect on weight changes. Also, colloidal nano silver intensified weight loss, that maximum weight loss was measured at 170°C. The FTIR spectra indicated that increase in the temperature and time of hydrothermal treatment, declined absorbance intensities in wave numbers of 3422.25, 2922.38, 1740.55, 1330.50, 1243.39 and 1053.05cm-1 due to breakdown of acetyl groups in hemicelluloses and decrease in hydrophilic sites. These reduction in nano hydrothermal treatment were more obvious than those for hydrothermal.

  12. Hydroxyproline-Rich Protein Material in Wood and Lignin of Fagus sylvatica

    Science.gov (United States)

    Dill, Ingrid; Salnikow, Johann; Kraepelin, Gunda

    1984-01-01

    The nitrogen content, distribution, and amino acid composition of protein material were determined in wood and lignin of Fagus sylvatica. The data indicated that the nitrogen originated from hydroxyproline-rich cell wall glycoprotein, about half of which may be bound to the lignin polymer. The implications for lignocellulose biodegradation are discussed. PMID:16346689

  13. THE QUALITY OF THE SURFACE AT THE BEECH WOODTURNING

    Directory of Open Access Journals (Sweden)

    Mirela CHERCIU

    2015-05-01

    Full Text Available There have been experiments made with outside cylindrical beech woodturning with low cutting speed, and feed successively changed. We study, qualitative rather than quantitative, the roughnesss of the surface achieved. It interprets the appearance of each surface based on the theory of cutting considerations. Resulted surface images are given, photographed with a camera and microscope. It appears that here are no propellers generated by the cutting tool nose on the cylindrical part, excepting the situation of using high feeds.

  14. Beech cupules as keystone structures for soil fauna.

    Science.gov (United States)

    Melguizo-Ruiz, Nereida; Jiménez-Navarro, Gerardo; Moya-Laraño, Jordi

    2016-01-01

    Facilitative or positive interactions are ubiquitous in nature and play a fundamental role in the configuration of ecological communities. In particular, habitat modification and niche construction, in which one organism locally modifies abiotic conditions and favours other organisms by buffering the effects of adverse environmental factors, are among the most relevant facilitative interactions. In line with this, 'keystone structures', which provide resources, refuge, or advantageous services decisive for other species, may allow the coexistence of various species and thus considerably contribute to diversity maintenance. Beech cupules are woody husks harbouring beech fruits that remain in the forest soil for relatively long periods of time. In this study, we explored the potential role of these cupules in the distribution and maintenance of the soil fauna inhabiting the leaf litter layer. We experimentally manipulated cupule availability and soil moisture in the field to determine if such structures are limiting and can provide moist shelter to soil animals during drought periods, contributing to minimize desiccation risks. We measured invertebrate abundances inside relative to outside the cupules, total abundances in the leaf litter and animal body sizes, in both dry and wet experimental plots. We found that these structures are preferentially used by the most abundant groups of smaller soil animals-springtails, mites and enchytraeids-during droughts. Moreover, beech cupules can be limiting, as an increase in use was found with higher cupule densities, and are important resources for many small soil invertebrates, driving the spatial structure of the soil community and promoting higher densities in the leaf litter, probably through an increase in habitat heterogeneity. We propose that fruit woody structures should be considered 'keystone structures' that contribute to soil community maintenance. Therefore, beech trees may indirectly facilitate soil fauna

  15. Beech cupules as keystone structures for soil fauna

    Directory of Open Access Journals (Sweden)

    Nereida Melguizo-Ruiz

    2016-10-01

    Full Text Available Facilitative or positive interactions are ubiquitous in nature and play a fundamental role in the configuration of ecological communities. In particular, habitat modification and niche construction, in which one organism locally modifies abiotic conditions and favours other organisms by buffering the effects of adverse environmental factors, are among the most relevant facilitative interactions. In line with this, ‘keystone structures’, which provide resources, refuge, or advantageous services decisive for other species, may allow the coexistence of various species and thus considerably contribute to diversity maintenance. Beech cupules are woody husks harbouring beech fruits that remain in the forest soil for relatively long periods of time. In this study, we explored the potential role of these cupules in the distribution and maintenance of the soil fauna inhabiting the leaf litter layer. We experimentally manipulated cupule availability and soil moisture in the field to determine if such structures are limiting and can provide moist shelter to soil animals during drought periods, contributing to minimize desiccation risks. We measured invertebrate abundances inside relative to outside the cupules, total abundances in the leaf litter and animal body sizes, in both dry and wet experimental plots. We found that these structures are preferentially used by the most abundant groups of smaller soil animals—springtails, mites and enchytraeids—during droughts. Moreover, beech cupules can be limiting, as an increase in use was found with higher cupule densities, and are important resources for many small soil invertebrates, driving the spatial structure of the soil community and promoting higher densities in the leaf litter, probably through an increase in habitat heterogeneity. We propose that fruit woody structures should be considered ‘keystone structures’ that contribute to soil community maintenance. Therefore, beech trees may

  16. Effect on a long-term afforestation of pine in a beech domain in NE-Spain as reflected in soil C and N isotopic signature

    Science.gov (United States)

    Girona García, Antonio; Badía-Villas, David; González-Pérez, José Antonio; Tomás Jiménez-Morillo, Nicasio; Martí-Dalmau, Clara

    2015-04-01

    The replacement of native beech forests (Fagus sylvatica) by Scots pine (Pinus sylvestris) afforestation may exert changes in soil properties, particularly in soil organic matter (SOM) (Carceller and Vallejo, 1996). Stable isotopic signatures of light elements (d13C, d15N) in soils and plants are valuable proxies for the identification of biogeochemical processes and their rates in the pedosphere (Andreeva et al., 2013 and refs therein). In this work the C and N stable isotopic analysis is used as a proxy to detect changes in SOM surrogated to the effect of centennial replacement of beech by the Scots pinewood. Two acid soil profiles, developed on quartzites under a humid climate at an altitude of 1400-1500 masl, have been sampled in Moncayo (Iberian range, NE-Spain). For each soil profile three O-layers (litter: OL, fragmented litter OF and humified litter OH) and mineral soil horizons (Ah, E, Bhs and C) were sampled. Content and bulk isotopic signature of light elements (C and N) were analysed in a Flash 2000 elemental micro-analyser coupled via a ConFlo IV interface to a Delta V Advantage isotope ratio mass spectrometer (IRMS) (Thermo Scientific, Bremen, Germany). Isotopic ratios are reported as parts per thousand deviations from appropriate standards. The standard deviations of d13C and d15N were typically less than ± 0.05 per thousand, ± 0.2 per thousand, respectively. After 100 years since the pine afforestation, no differences on C content were observed in the O-layers, ranging from 30-47% in pine soils and 37-47 % in beech soils. Similarly, no differences on N content were observed in the O-layers, ranging from 1.24-1.86 % in pine soils and 1.70-1.71 % in beech soils. C and N contents decrease progressively in depth with the exception of E-horizons where the lowest C and N content values were found. C/N ratio is higher in pine soil (20.7-38.1) than in beech O soil horizons (21.8-27.5), showing similar behavior with soil depth. Pine biomass was slightly

  17. Effect of stand edge on the natural regeneration of spruce, beech and Douglas-fir

    Directory of Open Access Journals (Sweden)

    Lumír Dobrovolný

    2012-01-01

    Full Text Available Our work aimed at studying the strategy of woody plants regeneration during the regeneration of a spruce stand with the admixture of beech and Douglas-fir by border cutting (NW-SE aspect on acidic sites of higher elevations in the Bohemian-Moravian Upland. Spruce is better adapted to bear shade than Douglas-fir. Nevertheless, in optimal light conditions up to a distance of ca. 35 m (about 16% DIFFSF from the stand edge, the Douglas-fir can put the spruce into danger as to height growth. By contrast to beech, the density of spruce is significantly higher within the distance of 45 m (about 15% DIFFSF from the stand edge but further on the situation would change to the benefit of beech. The density of Douglas-fir significantly dominates over beech within a distance of 35 m from the stand edge; from 55 m (less than 15% DIFFSF, the situation changes in favour of beech. Beech can survive in full shade deep in the stand core waiting for its opportunity to come. As compared to spruce and Douglas-fir, the height growth of beech was at all times significantly greater at a distance of 25 m from the stand edge. Converted to practical conditions, spruce and Douglas-fir with individually admixed beech seedlings showed good prosperity approximately up to a distance of one stand height from the edge. A mixture of spruce and beech did well at a greater distance but good prosperity at a distance of 2–3 stand heights was shown only by beech. Thus, border regeneration eliminates disadvantages of the climatic extremes of clear-cutting and specifics of shelterwood felling during which one – usually shade-tolerant tree species dominates in the natural regeneration (e.g. beech.

  18. Overview on the pest status and research plans on beech bark disease: A new exotic in Michigan

    Science.gov (United States)

    Therese M. Poland; Deborah G. McCullough; Toby R. Petrice; Nathan W. Siegert

    2001-01-01

    Beech bark disease was first discovered in Michigan in spring 2000 in Ludington State Park and soon thereafter it was found in the upper peninsula in the bass Lake campground. since then, surveyshave found it in six counties in Michigan. Beech bark disease involves two exotic organisms: the beech bark scale (Cryptococcus fagisuga Lind.; Eriococcidae...

  19. Canopy recovery of pedunculate oak, Turkey oak and beech trees after severe defoliation by gypsy moth (Lymantria dispar: Case study from Western Hungary

    Directory of Open Access Journals (Sweden)

    Csóka György

    2015-09-01

    Full Text Available We investigated the canopy recovery of 3 tree species (pedunculate oak, Turkey oak, European beech at two locations in the Veszprém county (Western Hungary after severe defoliation by gypsy moth caterpillars in the spring of 2005. The Turkey oak has evidently the best recovery potential, and it almost completely replaced the lost foliage in 4 months. The pedunculate oak and beech needed 2 years to reach the same level of recovery. The pedunculate oak suffered from a heavy infection of Microsphaera alphitoides after defoliation and it probably slowed down its recovery. Neither the presence of Agrilus biguttatus in the oak plot nor the appearance of Agrilus viridis in the beech plot was observed during the study period. Population density of the buprestid Coraebus floerentinus showed a considerable increase in the oak plot, but remained under the damage level. Neither other harmful appearance of other pests nor significant tree mortality were observed within 4 years from the defoliation. These results provide information for the evaluation of longer term influences of the gypsy moth defoliation and may support the decisions concerning pest control.

  20. Arthropod diversity in pristine vs. managed beech forests in Transcarpathia (Western Ukraine

    Directory of Open Access Journals (Sweden)

    Vasyl Chumak

    2015-01-01

    We conclude that biodiversity in pristine beech forests is not generally higher than in managed beech forests. However, the much higher amount of dead wood in pristine forests provides a source habitat for saproxylic species spreading into managed forest plots in the same region, but not to distant forests, far from virgin forests, such as in Western Europe.

  1. Great Tit Parus major survival, and the beech-crop cycle

    NARCIS (Netherlands)

    Perdeck, A.C.; Visser, M.E.; Van Balen, J.H.

    2000-01-01

    The single most important environmental variable correlating with annual survival of both juvenile and adult Great Tits Parus major is the beech crop index (BCI). This index is a measure for the amount of seeds of beeches present in the winter, and correlates with crop size of several other tree

  2. Evaluation of the Antioxidant capacities and Total Phenolic Contents of beech and oak Barks

    Directory of Open Access Journals (Sweden)

    R Fazli

    2013-05-01

    Background & aim: Anti-oxidant compounds prevent prevalence of chronic diseases and food spoiling. The aim of this study was to evaluate the total phenolic and flavonoid content and antioxidant activity of beech and oak barks. Methods: In this experimental study, the skin of beech and oak trees were prepared and then acetone extraction was obtained using Soxhle method. At the beginning, total phenol and flavonoid of extracts were determined and the anti-oxidant properties of the extracts were then evaluated by three methods (methods Biphenyl Pykryl Hydrosol, regenerative power produced- and nitric oxide. Results: The amount of phenolic was higher in bark of beech trees, but flavonoids were higher in oaks. The result of test to trap free radicals of Biphenyl Pykryl Hydrazyl showed the inhibitory concentration 50% of acetone extract of the bark of beech and oak, were 92.19 and 33.7 mg/L respectively. Beech extracts had greater regenerative power than oak. In Nitric oxide trap test acetone extract inhibited 50% in bark of beech trees was 98/23 and the oak extract was 92/90 mg/L respectively. Conclusion: Acetone extract of the bark in three models showed varying degrees of anti - oxidant activity. Beech extract had better antioxidant activity compared with oak extract. Key words: Anti-oxidant Activity, Phenols, Flavonoids, Beech, Oak

  3. Timely salvage can reduce losses from beech scale-Nectria attack

    Science.gov (United States)

    David Crosby; J. C. Bjorkbom

    1958-01-01

    Beech is one of our more common hardwoods. It is an important component of the northern hardwood forest type, which occupies about 29 percent of the commercial forest land in the New England and Middle Atlantic States. In terms of total sawtimber volume, beech follows close on sugar maple, red oak, and yellow birch. It is used for a variety of products such as...

  4. Pathogenicity of Phytophthora isolates originating from several woody hosts in Bulgaria and Poland

    Directory of Open Access Journals (Sweden)

    Lyubenova Aneta B.

    2016-09-01

    Full Text Available Our aim was to examine the virulence of eight Phytophthora isolates belonging to three species (Phytophthora cryptogea, Phytophthora plurivora and Phytophthora quercina obtained from diverse European ecosystems (in Bulgaria, Poland and Germany towards three forest tree hosts – English oak (Quercus robur L., Turkey oak (Quercus cerris L. and European beech (Fagus sylvatica L..

  5. Species Favourability Shift in Europe due to Climate Change: A Case Study for Fagus sylvatica L. and Picea abies (L. Karst. Based on an Ensemble of Climate Models

    Directory of Open Access Journals (Sweden)

    Wolfgang Falk

    2013-01-01

    Full Text Available Climate is the main environmental driver determining the spatial distribution of most tree species at the continental scale. We investigated the distribution change of European beech and Norway spruce due to climate change. We applied a species distribution model (SDM, driven by an ensemble of 21 regional climate models in order to study the shift of the favourability distribution of these species. SDMs were parameterized for 1971–2000, as well as 2021–2050 and 2071–2100 using the SRES scenario A1B and three physiological meaningful climate variables. Growing degree sum and precipitation sum were calculated for the growing season on a basis of daily data. Results show a general north-eastern and altitudinal shift in climatological favourability for both species, although the shift is more marked for spruce. The gain of new favourable sites in the north or in the Alps is stronger for beech compared to spruce. Uncertainty is expressed as the variance of the averaged maps and with a density function. Uncertainty in species distribution increases over time. This study demonstrates the importance of data ensembles and shows how to deal with different outcomes in order to improve impact studies by showing uncertainty of the resulting maps.

  6. Characterization of soil microarthropod communities in Italian beech forest

    Science.gov (United States)

    Conti, F. D.; Menta, C.; Piovesan, G.

    2009-04-01

    The contribution of soil organisms to ecosystem functions such as decomposition, nutrient recycling and the maintenance of physico-chemical properties is well recognised, as is the fact that soil fauna plays an important role in the formation and stabilisation of soil structure. The diversity of soil fauna includes a quarter of described living species, the majority of which are insects and arachnids. Soil fauna plays an essential role in forests and agro-ecosystems by maintaining their functionality and productivity. The aim of this study is to evaluate the biodiversity of soil microarthropods communities in different Italian beech forest. Particular attention is paid to the role of fossorial microarthropods in the maintenance of soil structure and in the organic matter movements. Three beech forests are studied, two located in the North and one in the Centre of Italy. Microarthropods are extracted from litter and soil with a Berlese-Tullgren funnel, identified to order level (class level for myriapods) and counted using a microscope. Relative order abundance and biodiversity are expressed using the Shannon-Weaver diversity index (H) and evenness index (J). Soil biological quality is expressed using the QBS-ar index and Acari/Collembola ratio. The results show a richness of microarthropods: several orders, till 19 different groups, are determined and identified. Acari and collembola are the main represented taxa and, especially in litter samples, pseudoscorpions, different specimens of diplopods (or millipedes) and chilopods (centipedes) are found. Thus the presence in particular of diplopods offers the possibility of studying fossorial microarthropods functions in detail. Furthermore, both in soil and in litter samples, adapted groups are recognized, such as pauropods, symphyla, proturans and diplurans, with specific morphological characteristics that these species suited to soil habitat. Therefore they attest a good level of soil quality and high natural value

  7. Visualizing carbon and nitrogen transfer in the tripartite symbiosis of Fagus sylvatica, ectomycorrhizal fungi and soil microorganisms using NanoSIMS

    Science.gov (United States)

    Mayerhofer, Werner; Dietrich, Marlies; Schintlmeister, Arno; Gabriel, Raphael; Gorka, Stefan; Wiesenbauer, Julia; Martin, Victoria; Schweiger, Peter; Reipert, Siegfried; Weidinger, Marieluise; Richter, Andreas; Woebken, Dagmar; Kaiser, Christina

    2016-04-01

    Translocation of recently photoassimilated plant carbon (C) into soil via root exudates or mycorrhizal fungi is key to understand global carbon cycling. Plants support symbiotic fungi and soil microorganisms with recent photosynthates to get access to essential elements, such as nitrogen (N) and phosphorus. While a 'reciprocal reward strategy' (plants trade C in exchange for nutrients from the fungus) has been shown for certain types of mycorrhizal associations, only little is known about the mechanisms of C and N exchange between mycorrhizal fungal hyphae and soil bacteria. Our understanding of the underlying mechanisms is hampered by the fact that C and N transfer between plants, mycorrhizal fungi and soil bacteria takes place at the micrometer scale, which makes it difficult to explore at the macro scale. In this project we intended to analyse carbon and nitrogen flows between roots of beech trees (Fagus sylvatica), their associated ectomycorrhizal fungi and bacterial community. In order to visualize this nutrient flow at a single cell level, we used a stable isotope double labelling (13C and 15N) approach. Young mycorrhizal beech trees were transferred from a forest to split-root boxes, consisting of two compartments separated by a membrane (35 μm mesh size) which was penetrable for hyphae but not for plant roots. After trees and mycorrhizal fungi were allowed to grow for one year in these boxes, 15N-labelled nitrogen solution was added only to the root-free compartment to allow labelled nitrogen supply only through the fungal network. 13C- labelled carbon was applied by exposing the plants to a 13CO2 gas atmosphere for 8 hours. Spatial distribution of the isotopic label was visualised at the microscale in cross sections of mycorrhizal root-tips (the plant/mycorrhizal fungi interface) and within and on the surface of external mycorrhizal hyphae (the fungi/soil bacteria interface) using nanoscale secondary ion mass spectrometry (NanoSIMS). Corresponding

  8. Investigation of Welded Joints with Linear Turned Beech Elements

    Directory of Open Access Journals (Sweden)

    ŽUPČIĆ, Ivica

    2010-01-01

    Full Text Available Welding of wood is a process where chemical and physical reactions take place, heat isformed during the friction, which melts and softens the structure of wood, and a firm joint is formedby cooling of the melt.The paper discusses the present knowledge about wood welding and the results of wood weldingresearch obtained in the Faculty of Forestry, University of Zagreb. The results were obtained onsamples (solid beech wood with tapered entrance holes 9 mm in diameter, the bottom of the hole7 mm in diameter and dowel lengths of 20 mm and 30 mm, as well as samples with 8 mm holediameters and dowel lengths of 20 mm and 30 mm. The tensile strength of welded joints was analysed.The analysis results show that there is a big difference in tensile strength between the samples with 20and 30 mm long dowels and profile holes. 30 mm long dowels give better results than the 20 mmdowels.

  9. Ash recycling to spruce and beech stands effects on nutrients, growth, nitrogen dynamics and carbon balance; Askaaterfoering till gran- och bokbestaand - effekter paa naering, tillvaext, kvaevedynamik och kolbalans

    Energy Technology Data Exchange (ETDEWEB)

    Thelin, Gunnar

    2006-03-15

    Ash recycling is an important part in a modern, sustainable forestry, especially in whole-tree harvest systems. Nutrients lost at harvest are returned to the forest with the wood-ash. In the project the effects of ash treatment on needle and leaf chemistry, tree growth, soil chemistry, soil water chemistry, and carbon and nitrogen dynamics were studied on 23 Norway spruce sites in south-western Sweden and in ten European beech sites in Scania, southern Sweden. On some of the sites there were previously established ash recycling experiments, but on a majority of the sites ash recycling was performed without experimental lay-out and ash and control plots were established afterwards. The most common dose was two tons of self hardened crushed wood-ash and two tons of Mg-lime. On average seven to eight years after ash recycling the results were 1. increased exchangeable stores of base cations in the soil in the beech and the spruce stands 2. increased base saturation in the beech and the spruce stands and increased BC/Al in the spruce stands 3. increased concentrations and ratios to N of P, Ca, Zn, and S in the needles, the increased P-values are especially important since P is close to or below deficiency levels in a majority of the spruce stands 4. decreased K-concentration in the beech leaves 5. increased tree growth with on average 14 % in the ash treated spruce stands compared to the control plots 6. increased carbon and nitrogen amounts in the biomass in the spruce stands 7. tendencies towards increased amounts of carbon and nitrogen in the soil in the beech stands and no effect in the soil in the spruce stands 8. increased concentrations of Ca, Mg, and SO{sub 4} and no effect on ANC in the soil water 9. no effect on potential net mineralization but increased potential nitrification rates 10. decreased concentration of nitrate in the soil water in the beech stands and no effect in the spruce stands 11. lower system N losses in the beech stands and possibly in the

  10. Stand structure and regeneration of a mixed forest (Abies alba-Fagus sylvatica in the Central Pyrenees, Ordesa National Park, Spain

    Directory of Open Access Journals (Sweden)

    Doležal, J.

    2004-12-01

    Full Text Available The locations and biometrical characteristics of 2391 living and dead trees > 1.3 m tall of Abies alba and Fagus sylvatica, and the 378 understory shrubs o/Buxus sempervirens, were mapped in a 1.4 ha plot on the northern slope of Ordesa Valley to evaluate several hypotheses about stand structural development, tree species regeneration and coexistence. The plot is located in relatively undisturbed old-growth forest, but contains areas at low elevation which were formerly pasture. Abies is typically represented by many young trees and gradually declining numbers of trees in successively older size classes, whereas Fagus has greater numbers of trees in larger size and older age classes. This would imply a shift in dominance from beech to fir if the two species have similar mortality rates. We tested two hypotheses about the coexistence of ecologically similar species: (1 based on differentiation of regeneration niches, and (2 by means of different life history strategies (preference for survivorship or fecundity. Redundancy analysis (RDA was used to determine if the two species prefer different habitats. The analysis of spatial patterns and interspecific associations by Ripley's K-function was used to estimate the role of competition among trees in forest dynamics. The data provide empirical support for both tested hypotheses, although it has been shown that their importance varies depending on the degree of environmental heterogeneity along the slope across the plot. Different life history strategies appear critical to the success of coexistence in moderate environment at lower elevations, where co-dominant species have overlapping regeneration niches.

    [fr] Dans une parcelle de 1, 4 Ha au versant nord de la vallée d'Ordesa nous avons cartographie à petite échelle et pris des données biométriques sur 2391 hêtres (Fagus sylvatica et sapins (Abies alba vivants ou morts mais tous s'élevant à plus de 1,3 m, ainsi

  11. Growth of Fagus in transition zones of forest and soil on the western slope of Mt. Chokai, northern Japan

    Science.gov (United States)

    Kato, S.; Watanabe, M.

    2012-04-01

    A wide transition zone for forest structure is expected to distribute on the gentle slope of western side of Mt. Chokai ,Yamagata prefecture, northern Japan (N39° 05'57", E140°02'55"). The annual mean temperature and total precipitation at summit (2,059 m asl.) are 0.5° C and 3,285mm, respectively. The parent materials of the soils are weathered Andesite associated with non-tephric loess deposits transported from continental China. Representative sites were selected in forests of Quercus mongolica and Fagus crenata to examine characteristics of transition zones of vegetation and soil in the western slope of Mt. Chokai with concern on the growth of Fagus in transition zones. Surveys on vegetation profile and projection diagram of canopy for each site (10-10m plots) were carried out in 7 sites selected along altitudinal sequence on the western slope of Mt. Chokai; Ch1-7: 550-1,100m asl.. Growth rate of Fagus was estimated by the measurement of tree rings from increment core samples. Timber volume of Fagus at each point was calculated based on diameter of breast height; DBH as an indicator of tree biomass. Soil profiles were observed at the above 7 sites and soil samples were collected from each horizon. As for soil analyses, soil pH (H2O, KCl, NaF) values were measured by the glass electrode method in the suspension mixture of soil with a 2.5 times volume of H2O or 1N KCl and 50 times volume of 4% NaF. Pyrophosphate, acid oxalate and dithionite-citrate extractable Al (Alp, Alo, Ald), Fe (Feo, Fed) and Si (Sio, Sid) were measured by ICP-AES. The content of exchangeable Al (AlEX) was obtained by titration of extract with 1N KCl. Sclerotia formed by species of Cenococcum, ectomycorrhizal fungi, were collected for grains of diameter larger than 0.5mm from wet samples. Sclerotia content was obtained by weight (mg g-1 soil). Due to intensive base leaching under extremely high precipitation and the mineralogical properties, Ah and Ae horizons of all profiles had low soil

  12. Modelling and economic evaluation of forest biome shifts under climate change in Southwest Germany

    Science.gov (United States)

    Marc Hanewinkel; Susan Hummel; Dominik. Cullmann

    2010-01-01

    We evaluated the economic effects of a predicted shift from Norway spruce (Picea abies) to European beech (Fagus sylvatica) for a forest area of 1.3 million ha in southwest Germany. The shift was modelled with a generalized linear model (GLM) by using presence/absence data from the National Forest Inventory in Baden-Wurttemberg...

  13. Impacts of impregnation with boric acid and borax on the red colour ...

    African Journals Online (AJOL)

    This study was performed to determine the impacts of impregnation with boric acid and borax on the red colour tone of some hardwoods and varnishes. For this purpose, the test specimens prepared from Oriental beech ( Fagus orientalis Lipsky) and European oak (Quercus petraea Liebl.) wood which met the requirements ...

  14. Effects of impregnation with boron compounds on the surface ...

    African Journals Online (AJOL)

    user

    The aim of this study was to determine the effects of impregnation with boron compounds on the surface adhesion strength of varnishes used woods. For this purpose, the test specimens prepared from Oriental beech (Fagus orientalis Lipsky) and European oak (Quercus petreae (Matt.) Liebl.) which met the requirements of ...

  15. Frequency of inversions affects senescence phenology of Acer pseudoplatanus and Fagus sylvatica.

    Science.gov (United States)

    Schuster, Christina; Kirchner, Manfred; Jakobi, Gert; Menzel, Annette

    2014-05-01

    In mountainous regions, inversion situations with cold-air pools in the valleys occur frequently, especially in fall and winter. With the accumulation of inversion days, trees in lower elevations experience lower temperature sums than those in middle elevations. In a two-year observational study, deciduous trees, such as Acer pseudoplatanus and Fagus sylvatica, on altitudinal transects responded in their fall leaf senescence phenology. Phenological phases were advanced and senescence duration was shortened by the cold temperatures in the valley. This effect was more distinct for late phases than for early phases since they experienced more inversion days. The higher the inversion frequency, the stronger the signal was. Acer pseudoplatanus proved to be more sensitive to cold temperatures compared to Fagus sylvatica. We conclude that cold-air pools have a considerable impact on the vegetation period of deciduous trees. Considering this effect, trees in the mid hillside slopes gain advantages compared to lower elevations. Our findings will help to improve knowledge about ecological drivers and responses in mountainous forest ecosystems.

  16. Soil base saturation combines with Beech Bark Disease to influence composition and structure of Sugar Maple-Beech forests in an acid rain-impacted region

    Science.gov (United States)

    Lawrence, Gregory B.; McDonnell, Todd C.; Sullivan, Timothy J.; Dovciak, Martin; Bailey, Scott W.; Antidormi, Michael; Zarfos, Michael R.

    2017-01-01

    Sugar maple, an abundant and highly valued tree species in eastern North America, has experienced decline from soil calcium (Ca) depletion by acidic deposition, while beech, which often coexists with sugar maple, has been afflicted with beech bark disease (BBD) over the same period. To investigate how variations in soil base saturation combine with effects of BBD in influencing stand composition and structure, measurements of soils, canopy, subcanopy, and seedlings were taken in 21 watersheds in the Adirondack region of NY (USA), where sugar maple and beech were the predominant canopy species and base saturation of the upper B horizon ranged from 4.4 to 67%. The base saturation value corresponding to the threshold for Al mobilization (16.8%) helped to define the species composition of canopy trees and seedlings. Canopy vigor and diameter at breast height (DBH) were positively correlated (P soils, soil-Ca depletion and BBD may have created opportunities for gap-exploiting species such as red maple and black cherry, whereas in high-base saturation soils, sugar maple dominated the canopy. Where soils were beginning to recover from acidic deposition effects, sugar maple DBH and basal area increased progressively from 2000 to 2015, whereas for beech, average DBH did not change and basal area did not increase after 2010.

  17. Harvested wood products and carbon sink in a young beech high forest

    Directory of Open Access Journals (Sweden)

    Pilli R

    2008-03-01

    Full Text Available According to art. 3.4 of the Kyoto Protocol (KP, Italy has elected forest management as additional human-induced activity to attain the goal of reduction in greenhouse gas emissions. The whole forest area not subjected to afforestation, reforestation or deforestation processes since 1990 will be considered as managed forest. In order to analyse different management strategies, the Carbon-Pro Project, involving 9 partners of the European CADSES area, considered a young beech high forest (ex-coppice, defined as "transitory silvicultural system" as a common case study for the Pre-alps region. Using data collected with forest plans during the period 1983 - 2005, aboveground and belowground forest carbon stock and sink of a specific forest compartment were estimated by the Carbon Stock Method proposed by the IPCC Guidelines. In order to apply this approach 41 trees were cut and a species-specific allometric equation was developed. Considering the aboveground tree biomass, the carbon sink amounts to 1.99 and 1.84 Mg C ha-1 y-1 for the period 1983 - 1994 and 1994 - 2005 respectively. Adding the belowground tree biomass, the estimated sink amounts to 2.59 and 2.39 Mg C ha-1 y-1 for each period. Taking the harvested wood products (firewood, the total carbon sequestration during the second period is 0.16 Mg C ha-1 y-1. The case study highlights the possible rules for the different management strategies. In effect, the utilisation of the entire increase in aboveground biomass as firewood gives an energy substitution effect but, according to the Marrakesh Accords, it cannot be accounted for the KP. On the other hand, an accumulation strategy gives the maximum possible carbon absorption and retention.

  18. Effect of environmental variables and stand structure on ecosystem respiration components in a Mediterranean beech forest

    Czech Academy of Sciences Publication Activity Database

    Guidolotti, G.; Rey, A.; D'Andrea, E.; Matteucci, G.; De Angelis, Paolo

    2013-01-01

    Roč. 33, č. 9 (2013), s. 960-972 ISSN 0829-318X Institutional support: RVO:67179843 Keywords : ecosystem respiration * Fagus sylvatica * leaf respiration * soil CO2 efflux * stem CO2 efflux * total non-structural carbohydrates Subject RIV: EH - Ecology, Behaviour Impact factor: 3.405, year: 2013

  19. [The effect of light and temperature of the CO2 exchange of different life forms in the ground vegetation of a montane beech forest].

    Science.gov (United States)

    Schulze, E-D

    1972-09-01

    In a montane beech (Fagus sylvatica) forest the influence of the climatic factors, light and temperature, on net photosynthesis and on the CO2 balance of the ground vegetation was investigated. The total turnover of carbon was calculated. Species studied included: Athyrium filix-femina, Oxalis acetosella, Luzula luzuloides, Deschampsia flexuosa and young plants of Fagus sylvatica. 1. The light compensation point in all spp. is between 300 and 500 lux except for D. flexuosa where it is 2 klx. Light saturation is attained at 2-3 klx for A. filix-femina, at 5-6 klx for O. acetosella, and at 6-7 klx for L. luzuloides and F. sylvatica. The net photosynthesis of D. flexuosa increases linearly upto 12 klx. This plant, therefore, is more closely related to plants with high light requirements than all the other species under experiment. 2. The maximum rates of net photosynthesis in O. acetosella and A. filix-femina are higher than in all the other plants, independent of the reference system. Per unit dry weight they even attain rates of CO2 uptake (22-27 mg CO2/gdw·h) known from herbs under the much better light conditions of an open habitat. F. sylvatica and L. luzuloides exhibit per unit dry weight only 30% of this rate and D. flexuosa 25%. On a leaf surface area and chlorophyll content basis differences are smaller: F. sylvatics attains 75%, L. luzuloides reaches 50% and D. flexuosa only 30% of the maximal rates of net photosynthesis of O. acetosella and A. filix-femina. The higher CO2 uptake of O. acetosella and A. filix-femina points to a better adaptation of their photosynthetic apparatus in comparison to all the other species of the same habitat. 3. At light saturation the temperature optimum of A. filix-femina and O. acetosella covers a smaller range at lower temperatures than was found in the other species. These attain almost maximal rates of net photosynthesis over the whole range of temperatures of their natural habitat. At decreasing light intensities the

  20. Soil Heterogeneity Reflected in Biogeography of Beech Forests in the Borderland Between the Bohemian Massif and the Outer Western Carpathians

    Directory of Open Access Journals (Sweden)

    Samec Pavel

    2014-12-01

    Full Text Available Soil environment characteristics naturally affect the biogeographical classification of forests in central Europe. However, even on the same localities, different systems of vegetation classification de-scribe the forest types according to the naturally dominant tree species with different accuracy. A set of 20 representative natural beech stands in the borderland between the Bohemian Massif (Hercyni-an biogeographical subprovince and the Outer Western Carpathians (Westcarpathian subprovince was selected in order to compare textural, hydrostatic, physico-chemical and chemical properties of soils between the included geomorphological regions, bioregions and biotopes. Differences in the soils of the surveyed beech stands were mainly due to volume weight and specific weight, maximum capillary capacity (MCC, porosity, base saturation (BS, total soil nitrogen (Nt and fulvic acids. Specifics in the relations between these soil characteristics indicated that transient trans-Hercynian beech forests developed in the borderland between the two compared subprovinces. Soils of the investigated Hercynian beech forests were generally characterized by lower BS and lower Nt. Soils of the trans-Hercynian beech forests were more similar to the Carpathian beech forest soils than soils in the other Hercynian beech forests. Soils of the trans-Hercynian and Carpathian beech forests showed similarly higher BS, deeper occurrence of humic substances, lower specific weight and also higher MCC. Higher content of humic substances as well as MCC indicated an equal effect on forest ecology, which may contribute to more accurate classification of forests.

  1. Volumen y transparencia. AEG, Fagus, Bauhaus, evolución de un tema de esquina

    Directory of Open Access Journals (Sweden)

    Rafael García

    1994-06-01

    Full Text Available Los edificios objeto de este estudio forman un conjunto ya clásico en su consideración como hitos en el proceso de la arquitectura moderna. Existe a este respecto una larga tradición historiográfica, comenzada por Pevsner', en la que se los presenta como eslabones de una misma cadena. Especialmente en los dos primeros, la fábrica de turbinas de la AEG y la Fagus, la comparación básica y casi ya tópica, se ha centrado en el carácter de sus esquinas, con alguna referencia ulterior al tratamiento de este mismo tema en el pabellón de talleres de la Bauhaus en Dessau, de gran afinidad con los anteriores.

  2. The cough suppressive activity of sulfated glucuronoxylan from Fagus sylvatica L.

    Science.gov (United States)

    Nosáľova, G; Jureček, L; Turjan, J; Capek, P; Prisenžňáková, L; Fraňová, S

    2014-06-01

    Hemicellulose polysaccharides represent a large group of natural renewable polymers, however, their application potency is still low. In our study a hardwood 4-O-methylglucuronoxylan was isolated by alkali peroxide extraction of Fagus sylvatica sawdust and modified into sulfated water soluble derivative (MGXS). Highly sulfated MGXS was characterized by HPLC, FTIR and NMR spectroscopies, and tested in vivo on chemically induced cough reflex and smooth muscles reactivity. Farmacological tests revealed an interesting antitussive activity of MGXS. Comparative tests with drug commonly used in a clinical practice revealed that antitussive activity of MGXS was lower than that of opioid receptor agonist codeine, the strongest antitussive drug. Furthermore, the specific reactivity of airways smooth muscle was not significantly affected by MGXS, indicating thus that the polymer is not involved in the bronchodilation process. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Modeling stomatal conductance and ozone uptake of Fagus crenata grown under different nitrogen loads.

    Science.gov (United States)

    Azuchi, Fumika; Kinose, Yoshiyuki; Matsumura, Tomoe; Kanomata, Tomoaki; Uehara, Yui; Kobayashi, Ayumi; Yamaguchi, Masahiro; Izuta, Takeshi

    2014-01-01

    A multiplicative stomatal conductance model was constructed to estimate stomatal O3 uptake of Fagus crenata exposed to O3 under different N loads to the soil. Our stomatal conductance model included environmental functions such as the stomatal responses of F. crenata to diurnal changes, chronic O3 stress (AOT0), acute O3 stress (O3 concentration), and nitrogen load to soil. The model could explain 62% of the variability in stomatal conductance. We suggest therefore that stomatal closure induced by O3 and N load-induced soil acidification must be taken into account in developing a stomatal conductance model for estimating stomatal O3 uptake for future risk assessment of O3 impact on Japanese forest tree species such as F. crenata. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Isoprenoid emission response to changing light conditions of English oak, European beech and Norway spruce

    DEFF Research Database (Denmark)

    Van Meeningen, Ylva; Schurgers, Guy; Rinnan, Riikka

    2017-01-01

    emission remained similar. Whilst some compounds were species specific, the compounds -pinene, camphene, 3-carene, limonene and eucalyptol were emitted by all of the measured tree species. Some compounds, like isoprene and sabinene, showed an increasing emission response with increasing light intensity......, the compounds -pinene, camphene, 3-carene, limonene and eucalyptol were emitted by all of the measured tree species. Some compounds, like isoprene and sabinene, showed an increasing emission response with increasing light intensity, whereas other compounds, like camphene, had no significant emission response....... Whereas the emission rate differed between individuals of the same species, the relative contributions of compounds to the total isoprenoid emission remained similar. Whilst some compounds were species specific, the compounds -pinene, camphene, 3-carene, limonene and eucalyptol were emitted by all...

  5. Modeling of Stomatal Conductance for Estimating Ozone Uptake of Fagus crenata Under Experimentally Enhanced Free-air Ozone Exposure

    OpenAIRE

    Hoshika, Yasutomo; Watanabe, Makoto; Inada, Naoki; Koike, Takayoshi

    2012-01-01

    We examined a performance of the multiplicative stomatal conductance model to estimate the stomatal ozone uptake for Fagus crenata. Parameterization of the model was carried out by in-situ measurements in a free-air ozone exposure experiment. The model performed fairly well under ambient conditions, with low ozone concentration. However, the model overestimated stomatal conductance under enhanced ozone condition due to ozone-induced stomatal closure. A revised model that included a parameter ...

  6. A pyrosequencing insight into sprawling bacterial diversity and community dynamics in decaying deadwood logs of Fagus sylvatica and Picea abies.

    Science.gov (United States)

    Hoppe, Björn; Krger, Krüger; Kahl, Tiemo; Arnstadt, Tobias; Buscot, François; Bauhus, Jürgen; Wubet, Tesfaye

    2015-04-08

    Deadwood is an important biodiversity hotspot in forest ecosystems. While saproxylic insects and wood-inhabiting fungi have been studied extensively, little is known about deadwood-inhabiting bacteria. The study we present is among the first to compare bacterial diversity and community structure of deadwood under field conditions. We therefore compared deadwood logs of two temperate forest tree species Fagus sylvatica and Picea abies using 16S rDNA pyrosequencing to identify changes in bacterial diversity and community structure at different stages of decay in forest plots under different management regimes. Alphaproteobacteria, Acidobacteria and Actinobacteria were the dominant taxonomic groups in both tree species. There were no differences in bacterial OTU richness between deadwood of Fagus sylvatica and Picea abies. Bacteria from the order Rhizobiales became more abundant during the intermediate and advanced stages of decay, accounting for up to 25% of the entire bacterial community in such logs. The most dominant OTU was taxonomically assigned to the genus Methylovirgula, which was recently described in a woodblock experiment of Fagus sylvatica. Besides tree species we were able to demonstrate that deadwood physico-chemical properties, in particular remaining mass, relative wood moisture, pH, and C/N ratio serve as drivers of community composition of deadwood-inhabiting bacteria.

  7. Growth and posture control strategies in Fagus sylvatica and Acer pseudoplatanus saplings in response to canopy disturbance.

    Science.gov (United States)

    Collet, Catherine; Fournier, Mériem; Ningre, François; Hounzandji, Ablo Paul-Igor; Constant, Thiéry

    2011-06-01

    Forest tree saplings that grow in the understorey undergo frequent changes in their light environment to which they must adapt to ensure their survival and growth. Crown architecture, which plays a critical role in light capture and mechanical stability, is a major component of sapling adaptation to canopy disturbance. Shade-adapted saplings typically have plagiotropic stems and branches. After canopy opening, they need to develop more erect shoots in order to exploit the new light conditions. The objective of this study was to test whether changes in sapling stem inclination occur after canopy opening, and to analyse the morphological changes associated with stem reorientation. A 4-year canopy-opening field experiment with naturally regenerated Fagus sylvatica and Acer pseudoplatanus saplings was conducted. The appearance of new stem axes, stem basal diameter and inclination along the stem were recorded every year after canopy opening. Both species showed considerable stem reorientation resulting primarily from uprighting (more erect) shoot movements in Fagus, and from uprighting movements, shoot elongation and formation of relay shoots in Acer. In both species, the magnitude of shoot uprighting movements was primarily related to initial stem inclination. Both the basal part and the apical part of the stem contributed to uprighting movements. Stem movements did not appear to be limited by stem size or by stem growth. Stem uprighting movements in shade-adapted Fagus and Acer saplings following canopy disturbance were considerable and rapid, suggesting that stem reorientation processes play a significant role in the growth strategy of the species.

  8. How do soil fauna and soil microbiota respond to beech forest growth?

    Directory of Open Access Journals (Sweden)

    Matthieu CHAUVAT, Andrei S. ZAITSEV, Ernst GABRIEL, Volkmar WOLTERS

    2009-08-01

    Full Text Available The dynamics and performance of soil biota during forest rotation were studied in monoculture beech stands forming a chronosequence of four different age-classes (30, 62, 111, 153 yr. Biomass was monitored in major groups of microflora, microfauna, mesofauna, and macrofauna. Resource availability (litter layer, soil organic mater, biomass of the two dominant decomposer groups (microflora, earthworms as well as the biomass of mesofauna and microfauna were found to remain quite stable during forest succession. Nevertheless, the marked increase of the biomasses of primary decomposers (fungi, saprophagous macroinvertebrates in the 62-year-old stand, followed by an increase of the biomasses of macropredators in the 111-year-old stand, indicate substantial changes of several components of edaphic communities during forest development. However, constant values of soil respiration suggest that the overall performance of the soil food web does not change during beech forest succession. Thus, the decomposer system of lowland managed beech forests on calcareous soils seems to be very stable over time. We suggest that earthworm activity might have masked impacts of forest development on other soil biota and led to an astounding stability of decomposer assemblages during beech forest rotation [Current Zoology 55 (4: 272–278, 2009].

  9. Characterizing Stand Structure and Growth of Natural Beech Forests for the Development of Sustainable Forest Practices

    DEFF Research Database (Denmark)

    Ghalandarayeshi, Shaaban

    forests in northern Iran lack such scientific foundation. The objective of the present study is to assist in this process by characterizing growth and stand structure of oriental beech for a range of growing conditions in northern Iran and to provide useful insight for application in sustainable...

  10. Chilocorus stigma (Coleoptera: Coccinellidae) and other predators of beech scale in central New York

    Science.gov (United States)

    Mark Mayer; Douglas C. Allen

    1983-01-01

    The twice-stabbed lady beetle Chilocorus stigma (Say), was studied in two infestations of beech scale, Cryptococccus fagisuga Lind., to elucidate predator biology and to determine the predator's effect on scale populations. C. stigma is univoltine in north-central regions of New York and its seasonal...

  11. Effect of particle geometry and micro-structure on fast pyrolysis of beech wood

    NARCIS (Netherlands)

    Westerhof, Roel Johannes Maria; Nygard, H.; van Swaaij, Willibrordus Petrus Maria; Kersten, Sascha R.A.; Brilman, Derk Willem Frederik

    2012-01-01

    The influence of particle geometry and microstructure in fast pyrolysis of beech wood has been investigated. Milled wood particles (<0.08–2.4 mm) and natural wood cylinders (2–14 mm) with different lengths (10–50 mm) and artificial wood cylinders (Dp = 0.5–14 mm) made of steel walls, filled with

  12. Factors Affecting the Price of Beech Timber Sale by Auctions in Turkey

    Directory of Open Access Journals (Sweden)

    İsmet DAŞDEMİR

    2008-01-01

    Full Text Available There are many factors affecting the auction price of timber in the state forest enterprises in Turkey. This studywas handled to determine the factors affecting the price of third class normal sized beech timber sale by auctions.It was carried out in two rival state forest enterprises (Bartın and Yenice of Zonguldak Regional ForestDirectorate in the Western Blacksea Region of Turkey. The data obtained from the total 149 timber auctions inthe period 1998-2002 were used as material in this study. The effects of seasonal and other factors on the auctionprice of beech timber were investigated by variance analysis, season and month indexes, and correlation,regression and factors analyses respectively. At the end of statistical analyses, it was determined that the seasonsaffected the beech timber prices at the 90% significant level. The most positive effect in spring and the mostnegative effect in winter were determined. The month most affecting timber price was April. Also, the factorsthe most affecting the price of beech timber sale by auctions were determined as follows: (1 Timing of theauctions, (2 Quantity of supply and size of timber stack, (3 Demand level, (4 Quality and appropriateness tostandardization in timber production. Furthermore, based on these conclusions, some suggestions were made inorder to plan marketing activities optimally and to improve the marketing policies and to ensure economicallysustainability in state forest enterprises.

  13. Fagus sylvatica L. provenances maintain different leaf metabolic profiles and functional response

    Science.gov (United States)

    Aranda, Ismael; Sánchez-Gómez, David; de Miguel, Marina; Mancha, Jose Antonio; Guevara, María Angeles; Cadahía, Estrella; Fernández de Simón, María Brígida

    2017-07-01

    Most temperate forest tree species will suffer important environmental changes as result of the climate change. Adaptiveness to local conditions could change at different sites in the future. In this context, the study of intra-specific variability is important to clarify the singularity of different local populations. Phenotypic differentiation between three beech provenances covering a wide latitudinal range (Spain/ES, Germany/DE and Sweden/SE), was studied in a greenhouse experiment. Non-target leaf metabolite profiles and ecophysiological response was analyzed in well-watered and water stressed seedlings. There was a provenance-specific pattern in the relative concentrations of some leaf metabolites regardless watering treatment. The DE and SE from the center and north of the distribution area of the species showed a clear differentiation from the ES provenance in the relative concentration of some metabolites. Thus the ES provenance from the south maintained larger relative concentration of some organic and amino acids (e.g. fumaric and succinic acids or valine and isoleucine), and in some secondary metabolites (e.g. kaempferol, caffeic and ferulic acids). The ecophysiological response to mild water stress was similar among the three provenances as a consequence of the moderate water stress applied to seedlings, although leaf N isotope composition (δ15N) and leaf C:N ratio were higher and lower respectively in DE than in the other two provenances. This would suggest potential differences in the capacity to uptake and post-process nitrogen according to provenance. An important focus of the study was to address for the first time inter-provenance leaf metabolic diversity in beech from a non-targeted metabolic profiling approach that allowed differentiation of the three studied provenances.

  14. The effects of Douglas fir monoculture on stand characteristics in a zone of Montane beech forest

    Directory of Open Access Journals (Sweden)

    Kostić Olga

    2016-01-01

    Full Text Available The right choice of tree species to form forest cultures is of paramount importance to the preservation of the diversity, fertility and ecological stability of forest ecosystems. To that end, we examined the effect of a 40-year-long cultivation of Douglas fir (Pseudotsuga menziesii (Mirb Franco on the floristic composition, characteristics of the forest floor, physical and chemical properties of the soil and the intensity of organic matter decomposition in a beech forest in western Serbia (Mt. Maljen. It was found that the cultivation of Douglas fir caused a reduction in biodiversity, changes in the chemical properties of the soil, that were most pronounced in the surface layers (0-10 cm, and a slowing down in the metabolism of the beech stand. The absence of many plant species characteristic to natural beech forests was observed in the Douglas fir plantation, these were reflected in the detected changes in the chemical properties of the soil, such as lower substitutional acidity (p<0.05, depletion of the adsorption of basis in the cation complex (p<0.001 and lower amounts of C, N, P (p<0.001 and K (p<0.01 in relation to the beech stand (control. No differences were found in soil moisture and active acidity levels. The higher value of the C/N ratio of the Douglas fir litter (p<0.001 provided proof for its lower decomposition rate compared to beech litter (p<0.05. Over time, all these changes could lead to further acidification and degradation of the soil and a reduction in this ecosystem’s productivity.

  15. Different mixtures of Norway spruce, silver fir, and European beech modify competitive interactions in central European mature mixed forests

    National Research Council Canada - National Science Library

    Tobin, Brian; Larocque, Guy R; Petráš, Rudolf; Bosela, Michal; Šebeň, Vladimír

    2015-01-01

    ...–spruce forests, mostly because of a lack of long-term experimental research. In the 1960s, long-term sample plots were established in the Western Carpathians to develop region-specific yield models...

  16. Drought as a modifier of interaction between adult beech and spruce - impacts on tree water use, C budgets and biotic interactions above- and belowground

    Science.gov (United States)

    Grams, Thorsten

    2017-04-01

    Understanding biotic interactions among tree species with their microbial associates under drought will be crucial for silviculture in meeting ecological challenges of the future. This contribution gives an overview on a project integrating a throughfall-exclusion experiment (TEE) on adult trees with a natural precipitation gradient (PGR) in central European forests. Focus is on drought affecting species interaction above and belowground, including associated ectomycorrhizal (ECM) communities. Study objects are pure and mixed forests dominated by adult European beech and Norway spruce trees (c. 70-years old). At the throughfall-exclusion experiment (TEE), trees are readily accessible via scaffolding and canopy crane (Kranzberg Forest, southern Germany). Effects of experimentally induced, repeated summer drought are assessed with roughly 100 trees assigned to a total of 12 plots (Kranzberg forest ROOF experiment, kroof.wzw.tum.de). The summer drought treatment started in 2014 and was repeated in 2015 and 2106. The focus on species interaction is intensified by a parallel study along a natural precipitation gradient with plot triplets of monocultures and mixed cultures of European beech and Norway spruce at each of the five study sites. Complementary resource use, effects of competitive vs. facilitation and related changes in ECM communities are exemplified for the two tree species of contrasting foliage (i.e. deciduous vs. evergreen) and stomatal sensitivity to drought (i.e. an-isohydric vs. isohydric behavior). At the TEE site, precipitation throughfall was completely excluded from early spring to late fall (i.e. March to November), resulting in pre-dawn leaf water potentials of both beech and spruce as low as -2.5 MPa. Despite significant reductions in growth and rate of photosynthesis by up to 80% under drought, NSC budget of trees was hardly affected. Moreover, phloem functionality, tested as phloem transport velocity through 13C-labeling of recent

  17. Carbon isotope discrimination during branch photosynthesis of Fagus sylvatica: a Bayesian modelling approach.

    Science.gov (United States)

    Gentsch, Lydia; Hammerle, Albin; Sturm, Patrick; Ogée, Jérôme; Wingate, Lisa; Siegwolf, Rolf; Plüss, Peter; Baur, Thomas; Buchmann, Nina; Knohl, Alexander

    2014-07-01

    Field measurements of photosynthetic carbon isotope discrimination ((13)Δ) of Fagus sylvatica, conducted with branch bags and laser spectrometry, revealed a high variability of (13)Δ, both on diurnal and day-to-day timescales. We tested the prediction capability of three versions of a commonly used model for (13)Δ [called here comprehensive ((13)(Δcomp)), simplified ((13) Δsimple) and revised ((13)(Δrevised)) versions]. A Bayesian approach was used to calibrate major model parameters. Constrained estimates were found for the fractionation during CO(2) fixation in (13)(Δcomp), but not in (13)(Δsimple), and partially for the mesophyll conductance for CO(2)(gi). No constrained estimates were found for fractionations during mitochondrial and photorespiration, and for a diurnally variable apparent fractionation between current assimilates and mitochondrial respiration, specific to (13)(Δrevised). A quantification of parameter estimation uncertainties and interdependencies further helped explore model structure and behaviour. We found that (13)(Δcomp) usually outperformed (13)(Δsimple) because of the explicit consideration of gi and the photorespiratory fractionation in (13)(Δcomp) that enabled a better description of the large observed diurnal variation (≈9‰) of (13)Δ. Flux-weighted daily means of (13)Δ were also better predicted with (13)(Δcomp) than with (13)(Δsimple). © 2013 John Wiley & Sons Ltd.

  18. Post-fire effects in xylem hydraulics of Picea abies, Pinus sylvestris and Fagus sylvatica.

    Science.gov (United States)

    Bär, Andreas; Nardini, Andrea; Mayr, Stefan

    2017-11-28

    Recent studies on post-fire tree mortality suggest a role for heat-induced alterations of the hydraulic system. We analyzed heat effects on xylem hydraulics both in the laboratory and at a forest site hit by fire. Stem vulnerability to drought-induced embolism and hydraulic conductivity were measured in Picea abies, Pinus sylvestris and Fagus sylvatica. Control branches were compared with samples experimentally exposed to 90°C or damaged by a natural forest fire. In addition, xylem anatomical changes were examined microscopically. Experimental heating caused structural changes in the xylem and increased vulnerability in all species. The largest shifts in vulnerability thresholds (1.3 MPa) were observed in P. sylvestris. F. sylvatica also showed heat-induced reductions (49%) in hydraulic conductivity. At the field site, increased vulnerability was observed in damaged branches of P. sylvestris and F. sylvatica, and the xylem of F. sylvatica was 39% less conductive in damaged than in undamaged branches. These results provide evidence for heat-induced impairment of tree hydraulics after fire. The effects recorded at the forest fire site corresponded to those obtained in laboratory experiments, and revealed pronounced hydraulic risks in P. sylvestris and F. sylvatica. Knowledge of species-specific hydraulic impairments induced by fire and heat is a prerequisite for accurate estimation of post-fire mortality risks. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  19. Variation in biogenic volatile organic compound emission pattern of Fagus sylvatica L. due to aphid infection

    Science.gov (United States)

    Joó, É.; Van Langenhove, H.; Šimpraga, M.; Steppe, K.; Amelynck, C.; Schoon, N.; Müller, J.-F.; Dewulf, J.

    2010-01-01

    Volatile organic compounds (VOCs) have been the focus of interest to understand atmospheric processes and their consequences in formation of ozone or aerosol particles; therefore, VOCs contribute to climate change. In this study, biogenic VOCs (BVOCs) emitted from Fagus sylvatica L. trees were measured in a dynamic enclosure system. In total 18 compounds were identified: 11 monoterpenes (MT), an oxygenated MT, a homoterpene (C 14H 18), 3 sesquiterpenes (SQT), isoprene and methyl salicylate. The frequency distribution of the compounds was tested to determine a relation with the presence of the aphid Phyllaphis fagi L. It was found that linalool, (E)-β-ocimene, α-farnesene and a homoterpene identified as (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), were present in significantly more samples when infection was present on the trees. The observed emission spectrum from F. sylvatica L. shifted from MT to linalool, α-farnesene, (E)-β-ocimene and DMNT due to the aphid infection. Sabinene was quantitatively the most prevalent compound in both, non-infected and infected samples. In the presence of aphids α-farnesene and linalool became the second and third most important BVOC emitted. According to our investigation, the emission fingerprint is expected to be more complex than commonly presumed.

  20. Short-term natural δ13C variations in pools and fluxes in a beech forest: the transfer of isotopic signal from recent photosynthates to soil respired CO2

    Science.gov (United States)

    Gavrichkova, O.; Proietti, S.; Moscatello, S.; Portarena, S.; Battistelli, A.; Matteucci, G.; Brugnoli, E.

    2011-03-01

    The fate of photosynthetic products within the plant-soil continuum determines how long the reduced carbon resides within the ecosystem and when it returns back to the atmosphere in the form of respiratory CO2. We have tested the possibility of measuring natural variation in δ13C to disentangle potential times needed to transfer carbohydrates produced by photosynthesis down to roots and, in general, to belowground up to its further release in the form of soil respiration into the atmosphere in a beech (Fagus sylvatica) forest. For these purposes we have measured the variation in stable carbon and oxygen isotope compositions in plant material and in soil respired CO2 every three hours for three consequent days. Possible steps and different signs of post-photosynthetic fractionation during carbon translocation were also identified. A 12 h-periodicity was observed for variation in δ13C in soluble sugars in the top crown leaves and it can be explained by starch day/night dynamics in synthesis and breakdown and by stomatal limitations under elevated vapour pressure deficits. Photosynthetic products were transported down the trunk and mixed with older carbon pools, therefore causing the dampening of the δ13C signal variation. The strongest periodicity of 24 h was found in δ13C in soil respiration indicating changes in root contribution to the total CO2 efflux. Nevertheless, it was possible to identify the speed of carbon translocation through the plant-soil continuum. A period of 24 h was needed to transfer the C assimilated by photosynthesis from the top crown leaves to the tree trunk at breast height and additional 3 h for further respiration of that C by roots and soil microorganisms and its to subsequent diffusion back to the atmosphere.

  1. Tree Age Effects on Fine Root Biomass and Morphology over Chronosequences of Fagus sylvatica, Quercus robur and Alnus glutinosa Stands.

    Science.gov (United States)

    Jagodzinski, Andrzej M; Ziółkowski, Jędrzej; Warnkowska, Aleksandra; Prais, Hubert

    2016-01-01

    There are few data on fine root biomass and morphology change in relation to stand age. Based on chronosequences for beech (9-140 years old), oak (11-140 years) and alder (4-76 years old) we aimed to examine how stand age affects fine root biomass and morphology. Soil cores from depths of 0-15 cm and 16-30 cm were used for the study. In contrast to previously published studies that suggested that maximum fine root biomass is reached at the canopy closure stage of stand development, we found almost linear increases of fine root biomass over stand age within the chronosequences. We did not observe any fine root biomass peak in the canopy closure stage. However, we found statistically significant increases of mean fine root biomass for the average individual tree in each chronosequence. Mean fine root biomass (0-30 cm) differed significantly among tree species chronosequences studied and was 4.32 Mg ha(-1), 3.71 Mg ha(-1) and 1.53 Mg ha(-1), for beech, oak and alder stands, respectively. The highest fine root length, surface area, volume and number of fine root tips (0-30 cm soil depth), expressed on a stand area basis, occurred in beech stands, with medium values for oak stands and the lowest for alder stands. In the alder chronosequence all these values increased with stand age, in the beech chronosequence they decreased and in the oak chronosequence they increased until ca. 50 year old stands and then reached steady-state. Our study has proved statistically significant negative relationships between stand age and specific root length (SRL) in 0-30 cm soil depth for beech and oak chronosequences. Mean SRLs for each chronosequence were not significantly different among species for either soil depth studied. The results of this study indicate high fine root plasticity. Although only limited datasets are currently available, these data have provided valuable insight into fine root biomass and morphology of beech, oak and alder stands.

  2. Natural Regeneration of Beech Forests in the Strict Protected Area of the Plitvice Lakes National Park

    Directory of Open Access Journals (Sweden)

    Tomislav Dubravac

    2013-12-01

    Full Text Available Background and Purpose: The study presents the results of an investigation of regeneration processes, growth, development and survival of young growth by field measurement and three-dimensional visualization of horizontal and vertical structure. The results are based on the ten-year investigation (1998-2009 on a permanent experimental plot in a mountain beech forest with dead nettle tree (Lamio orvale - Fagetum sylvaticae Ht. 1938 in conditions of passive protection. Materials and Methods: Basic structural indicators were measured (diameter at breast height and height, structural crown elements (size and shape, ground cover crowns and the occurrence and survival of young growth as the basic conditions of natural regeneration. Particular emphasis in the investigation was paid to the development of crown structures and the process of natural regeneration during the 10 year period. Results and Conclusions: Investigation indicates the occurrence of young growth regeneration cores arising as a result of the die-back of one dominant beech tree with horizontal crown projections of 145 m2 which initiated the possibility of natural regeneration. The greatest change occurred in the beech seedling count, whose numbers increased fourfold from 3556 plants per hectare in 1998 to 12694 plants per hectare in 2009. The share of beech seedlings increased from 8.7% to 22.6% of all species of young growth and shrubs. Thus beech became dominant among the tree species regeneration. However, the majority of the young plants of beech are of poor quality and thus their further development in conditions of passive protection is questionable. The investigations also showed the possibility of a new approach to the study of the dynamics of crown structures and the process of natural regeneration by methods of three-dimensional visualization of horizontal and vertical structures. The methods presented offer a more graphic illustration of the development of stands and high

  3. Influence of Root Diameter and Soil Depth on the Xylem Anatomy of Fine- to Medium-Sized Roots of Mature Beech Trees in the Top- and Subsoil.

    Science.gov (United States)

    Kirfel, Kristina; Leuschner, Christoph; Hertel, Dietrich; Schuldt, Bernhard

    2017-01-01

    Despite their importance for water uptake and transport, the xylem anatomical and hydraulic properties of tree roots have only rarely been studied in the field. We measured mean vessel diameter (D), vessel density (VD), relative vessel lumen area (lumen area per xylem area) and derived potential hydraulic conductivity (Kp) in the xylem of 197 fine- to medium-diameter roots (1-10 mm) in the topsoil and subsoil (0-200 cm) of a mature European beech forest on sandy soil for examining the influence of root diameter and soil depth on xylem anatomical and derived hydraulic traits. All anatomical and functional traits showed strong dependence on root diameter and thus root age but no significant relation to soil depth. Averaged over topsoil and deep soil and variable flow path lengths in the roots, D increased linearly with root diameter from ∼50 μm in the smallest diameter class (1-2 mm) to ∼70 μm in 6-7 mm roots (corresponding to a mean root age of ∼12 years), but remained invariant in roots >7 mm. D never exceeded ∼82 μm in the 1-10 mm roots, probably in order to control the risk of frost- or drought-induced cavitation. This pattern was overlain by a high variability in xylem anatomy among similar-sized roots with Kp showing a higher variance component within than between root diameter classes. With 8% of the roots exceeding average Kp in their diameter class by 50-700%, we obtained evidence of the existence of 'high-conductivity roots' indicating functional differentiation among similar-sized roots. We conclude that the hydraulic properties of small to medium diameter roots of beech are mainly determined by root age, rendering root diameter a suitable predictor of hydraulic functioning, while soil depth - without referring to path length - had a negligible effect.

  4. Influence of Root Diameter and Soil Depth on the Xylem Anatomy of Fine- to Medium-Sized Roots of Mature Beech Trees in the Top- and Subsoil

    Directory of Open Access Journals (Sweden)

    Kristina Kirfel

    2017-07-01

    Full Text Available Despite their importance for water uptake and transport, the xylem anatomical and hydraulic properties of tree roots have only rarely been studied in the field. We measured mean vessel diameter (D, vessel density (VD, relative vessel lumen area (lumen area per xylem area and derived potential hydraulic conductivity (Kp in the xylem of 197 fine- to medium-diameter roots (1–10 mm in the topsoil and subsoil (0–200 cm of a mature European beech forest on sandy soil for examining the influence of root diameter and soil depth on xylem anatomical and derived hydraulic traits. All anatomical and functional traits showed strong dependence on root diameter and thus root age but no significant relation to soil depth. Averaged over topsoil and deep soil and variable flow path lengths in the roots, D increased linearly with root diameter from ∼50 μm in the smallest diameter class (1–2 mm to ∼70 μm in 6–7 mm roots (corresponding to a mean root age of ∼12 years, but remained invariant in roots >7 mm. D never exceeded ∼82 μm in the 1–10 mm roots, probably in order to control the risk of frost- or drought-induced cavitation. This pattern was overlain by a high variability in xylem anatomy among similar-sized roots with Kp showing a higher variance component within than between root diameter classes. With 8% of the roots exceeding average Kp in their diameter class by 50–700%, we obtained evidence of the existence of ‘high-conductivity roots’ indicating functional differentiation among similar-sized roots. We conclude that the hydraulic properties of small to medium diameter roots of beech are mainly determined by root age, rendering root diameter a suitable predictor of hydraulic functioning, while soil depth – without referring to path length – had a negligible effect.

  5. Nematode communities of natural and managed beech forests - a pilot study

    DEFF Research Database (Denmark)

    Strandmark, Lisa Bjørnlund; Madsen, Mette Vestergård; Johansson, Sanne

    2002-01-01

    forests is discussed. We suggest dead wood input to be the driving variable leading to the observed differences in the nematode community between managed and natural forests of Zealand, Denmark. The marked site differences found in this study emphasizes the need to carefully choose reference areas where...... soil conditions etc. are very similar to the managed forest in question when reference schemes for nature-based forestry are being developed.......The soil nematode communities of natural beech forests and managed beech forests were surveyed in order to examine which community parameters, if any, would be suited to differentiate between the two management regimes. Nematodes were collected from mineral soil at three sites, each including...

  6. Recent losses of base cations from soils of Fagus sylvatica L. stands in northeastern France

    Energy Technology Data Exchange (ETDEWEB)

    Thimonier, Anne [Swiss Federal Inst. for Forest, Snow and Landscape Research (WSL), Birmensdorf (Switzerland); Dupouey, Jean-Luc [Inst. National de la Recherche Agronomique Nancy, Champenoux (France). Forest Ecophysiology Research Unit; Le Tacon, Francois [Inst. National de la Recherche Agronomique Nancy, Champenoux (France). Forest Ecosystems Research Unit

    2000-09-01

    In 1991, in order to assess changes in soil acidity, we resampled the mineral soil from 95 plots in beech forests distributed throughout northeastern France, ca 20 years after a first sampling in 1970-1973. Changes between the two sampling dates were more conspicuous for acidic soils than for mesotrophic or calcareous soils. We observed a significant decrease in base saturation, exchangeable calcium, magnesium, and potassium in the whole profile of the acidic soils. Median cation losses calculated for these soils down to a depth of 80 cm were 18.7 kg ha{sup -1} yr{sup -1} for calcium, 2.7 kg ha{sup -1} yr{sup -1} for magnesium, and 2.4 kg ha{sup -1} yr{sup -1} for potassium. This loss was not reflected by changes in soil pH (measured in water extracts). The intensity of the cation losses and the analysis of the pollution climate over the last 20 years suggest that atmospheric deposition could have contributed to the observed changes.

  7. Carbon isotope discrimination during branch photosynthesis of Fagus sylvatica: field measurements using laser spectrometry.

    Science.gov (United States)

    Gentsch, Lydia; Sturm, Patrick; Hammerle, Albin; Siegwolf, Rolf; Wingate, Lisa; Ogée, Jérôme; Baur, Thomas; Plüss, Peter; Barthel, Matti; Buchmann, Nina; Knohl, Alexander

    2014-04-01

    On-line measurements of photosynthetic carbon isotope discrimination ((13)Δ) under field conditions are sparse. Hence, experimental verification of the natural variability of instantaneous (13)Δ is scarce, although (13)Δ is, explicitly and implicitly, used from leaf to global scales for inferring photosynthetic characteristics. This work presents the first on-line field measurements of (13)Δ of Fagus sylvatica branches, at hourly resolution, using three open branch bags and a laser spectrometer for CO₂ isotopologue measurements (QCLAS-ISO). Data from two August/September field campaigns, in 2009 and 2010, in a temperate forest in Switzerland are shown. Diurnal variability of (13)Δ was substantial, with mean diurnal amplitudes of ~9‰ and maximum diurnal amplitudes of ~20‰. The highest (13)Δ were generally observed during early morning and late afternoon, and the lowest (13)Δ during midday. An assessment of propagated standard deviations of (13)Δ demonstrated that the observed diurnal variation of (13)Δ was not a measurement artefact. Day-to-day variations of (13)Δ were summarized with flux-weighted daily means of (13)Δ, which ranged from 15‰ to 23‰ in 2009 and from 18‰ to 29‰ in 2010, thus displaying a considerable range of 8-11‰. Generally, (13)Δ showed the expected negative relationship with intrinsic water use efficiency. Diurnal and day-to-day variability of (13)Δ was, however, always better predicted by that of net CO₂ assimilation, especially in 2010 when soil moisture was high and vapour pressure deficit was low. Stomatal control of leaf gas exchange, and consequently (13)Δ, could only be identified under drier conditions in 2009.

  8. Ecological determinants of mating system within and between three Fagus sylvatica populations along an elevational gradient.

    Science.gov (United States)

    Gauzere, Julie; Klein, Etienne K; Oddou-Muratorio, Sylvie

    2013-10-01

    Studies addressing the variation of mating system between plant populations rarely account for the variability of these parameters between individuals within populations, although this variability is often non-negligible. Here, we propose a new direct method based on paternity analyses (Mixed Effect Mating Model) to estimate individual migration (mi ) and selfing rates (si ) together with the pollen dispersal kernel. Using this method and the KINDIST approach, we investigated the variation of mating system parameters within and between three populations of Fagus sylvatica along an elevational gradient. Among the mother trees, si varied from 0% to 48%, mi varied from 12% to 86% and the effective number of pollen donors (Nepi ) varied from 2 to 364. The mating patterns differed along the gradient, the top population showing higher m and lower s, and a trend to higher Nep than the bottom populations. The phenological lag shaped long-distance pollen flow both within population (by increasing mi at mother-tree level) and between populations (by increasing m at high elevation). Rather than the mate density, the canopy density was detected as a major mating system determinant within population; it acted as a barrier to pollen flow, decreasing the proportion of long-distance pollen flow and increasing si . Overall, the effects of ecological factors on mating system were not the same within vs. between populations across the gradient, and these factors also differed from those traditionally found to shape variation at range-wide scale, highlighting the interest of multiscale approaches. © 2013 John Wiley & Sons Ltd.

  9. Preparation, characterization and phenol adsorption capacity of activated carbons from African beech wood sawdust

    OpenAIRE

    N.T. Abdel-Ghani; G.A. El-Chaghaby; F. Helal

    2016-01-01

    In the present study, different activated carbons were prepared from carbonized African beech wood sawdust by potassium hydroxide activation. The activated carbons were characterized by brunauer–emmett–teller, scanning electron microscope, fourier transform infrared spectroscopy, and thermogravimetric analyzer. The phenol adsorption capacity of the prepared carbons was evaluated. The different factors affecting phenol’s removal were studied including: contact time, solution pH and initial phe...

  10. Evaluation of beech stand condition based on the basic growth elements

    OpenAIRE

    Vučković Milivoj; Stajić Branko

    2003-01-01

    The state of a beech stand is analyzed from the aspect of stability and production level. The arguments are presented for the need of the objective definition of the stand condition by the criteria based on the characteristics of stand growth elements. This contributes to integral management procedures and their verification in the aim of optimal and stabile production. The study results show that there can be significant deviations from the optimal stand condition regarding the number of tre...

  11. Beech Fructification and Bank Vole Population Dynamics--Combined Analyses of Promoters of Human Puumala Virus Infections in Germany.

    Directory of Open Access Journals (Sweden)

    Daniela Reil

    Full Text Available The transmission of wildlife zoonoses to humans depends, amongst others, on complex interactions of host population ecology and pathogen dynamics within host populations. In Europe, the Puumala virus (PUUV causes nephropathia epidemica in humans. In this study we investigated complex interrelations within the epidemic system of PUUV and its rodent host, the bank vole (Myodes glareolus. We suggest that beech fructification and bank vole abundance are both decisive factors affecting human PUUV infections. While rodent host dynamics are expected to be directly linked to human PUUV infections, beech fructification is a rather indirect predictor by serving as food source for PUUV rodent hosts. Furthermore, we examined the dependence of bank vole abundance on beech fructification. We analysed a 12-year (2001-2012 time series of the parameters: beech fructification (as food resource for the PUUV host, bank vole abundance and human incidences from 7 Federal States of Germany. For the first time, we could show the direct interrelation between these three parameters involved in human PUUV epidemics and we were able to demonstrate on a large scale that human PUUV infections are highly correlated with bank vole abundance in the present year, as well as beech fructification in the previous year. By using beech fructification and bank vole abundance as predictors in one model we significantly improved the degree of explanation of human PUUV incidence. Federal State was included as random factor because human PUUV incidence varies considerably among states. Surprisingly, the effect of rodent abundance on human PUUV infections is less strong compared to the indirect effect of beech fructification. Our findings are useful to facilitate the development of predictive models for host population dynamics and the related PUUV infection risk for humans and can be used for plant protection and human health protection purposes.

  12. Interactive effects of juvenile defoliation, light conditions, and interspecific competition on growth and ectomycorrhizal colonization of Fagus sylvatica and Pinus sylvestris seedlings.

    Science.gov (United States)

    Trocha, Lidia K; Weiser, Ewa; Robakowski, Piotr

    2016-01-01

    Seedlings of forest tree species are exposed to a number of abiotic (organ loss or damage, light shortage) and biotic (interspecific competition) stress factors, which may lead to an inhibition of growth and reproduction and, eventually, to plant death. Growth of the host and its mycorrhizal symbiont is often closely linked, and hence, host damage may negatively affect the symbiont. We designed a pot experiment to study the response of light-demanding Pinus sylvestris and shade-tolerant Fagus sylvatica seedlings to a set of abiotic and biotic stresses and subsequent effects on ectomycorrhizal (ECM) root tip colonization, seedling biomass, and leaf nitrogen content. The light regime had a more pronounced effect on ECM colonization than did juvenile damage. The interspecific competition resulted in higher ECM root tip abundance for Pinus, but this effect was insignificant in Fagus. Low light and interspecific competition resulted in lower seedling biomass compared to high light, and the effect of the latter was partially masked by high light. Leaf nitrogen responded differently in Fagus and Pinus when they grew in interspecific competition. Our results indicated that for both light-demanding (Pinus) and shade-tolerant (Fagus) species, the light environment was a major factor affecting seedling growth and ECM root tip abundance. The light conditions favorable for the growth of seedlings may to some extent compensate for the harmful effects of juvenile organ loss or damage and interspecific competition.

  13. Testing the influence of climate, human impact and fire on the Holocene population expansion of Fagus sylvatica in the southern Prealps (Italy)

    NARCIS (Netherlands)

    Valsecchi, V.; Finsinger, W.; Tinner, W.; Ammann, B.

    2008-01-01

    This study addresses the timing and causes of the Holocene population expansion of Fagus sylvatica at two sites in the southern Prealps (Italy): Lago di Fimon and Lago Piccolo di Avigliana. At both sites pollen and microcharcoal have been analysed at high temporal resolution. The impact of humans

  14. Changes in BVOC emission pattern from Fagus sylvatica L. measured by thermal desorber GC-MS

    Science.gov (United States)

    Joó, É.; van Langenhove, H.; Schietse, L.; Pokorska, O.; Šimpraga, M.; Steppe, K.; Demarcke, M.; Amelynck, C.; Schoon, N.; Müller, J.-F.; Samson, R.; Dewulf, J.

    2009-04-01

    Considerable attention has been focused on biogenic volatile organic compound (BVOC) emissions from forest ecosystems because of their contribution to tropospheric oxidation processes and secondary aerosol formation [1, 2]. It became apparent that biogenic emissions show much more variation than previously assumed. In this poster we focus on the change in BVOC emission patterns from a four year old Fagus sylvatica L. during a growth chamber experiment (PAR, temperature controlled) lasting from March to November 2008. A dynamic branch enclosure system was used in our experiments. Ozone and VOC were removed from air entering the cuvette, as ozone level was found to be a critical parameter for degradation of the compounds [3]. Samples were collected on Tenax TA-Carbotrap solid phase adsorbent tubes and analyzed by TD-GC-MS. Measurements started before budburst of the tree and finished at the end of autumn. Over the entire period 33 samples have been analyzed, while 16 compounds were detected, including 10 monoterpenes (MT), 2 oxygenated-MTs, 2 sesquiterpenes (SQT), isoprene and methyl salicylate. Sabinene showed the highest emission, in an agreement with previous studies [4, 5]. Quantifiable emission appeared 21 days after budburst, and reached the highest level at the beginning of summer. MT emissions showed a clear trend in following each other. As an illustration the trend of sabinene and limonene emission is presented. In the middle of autumn phytophaga infection was observed on the tree induced by Two-spotted mite (Tetranychus urticae). New compounds appeared as a result of infection (linalool, methyl salicylate, (E,E)-α-farnesene, unknown oxygenated-MT, unknown SQT) and became dominant over sabinene, explained by the low MT emissions at this time of the year. These observations point at the importance of further investigation of BVOC emissions (especially SQTs and oxygenated-MTs) and the need for a proper quantification system of these compounds. We would like

  15. Foliage litter turnover and earthworm populations in three beech forests of contrasting soil and vegetation types.

    Science.gov (United States)

    Staaf, H

    1987-04-01

    Leaf litter decomposition, levels of accumulated litter as well as the abundance and biomass of earthworms were measured in three mature beech forests in southern Sweden: one mor site, one poor mull site, and one rich mull site. The disappearance rate of beech litter, measured with litter bags, increased with increasing soil fertility. On the rich mull site, the disappearance rate was much higher than in the two other forests, due to the combined effects of higher earthworm activity, more favouable soil moisture conditions, and higher litter quality. Incubating the litter in finely meshed bags (1-mm mesh) to exclude macrofauna had a great effect on litter mass loss in the rich mull site, but it had only a minor effect in the other sites. Simultaneous incubations of local and transplanted leaf litter on the three study sites showed that the substrate quality of the litter increased in the order: mor site - poor mull site - rich mull site. Lignin, N, and P concentrations of the leaf litter failed to explain the observed differences in decomposition rates, and acid/base properties are suggested to be more important. Earthworm numbers per m(2) were 2.5 (1 species) in the mor, 40 (6 species) in the poor mull and 220 (9 species) in the rich mull forest. Soil chemical conditions, notably pH, were suggested as the main factors determining the inter-site differences in abundance and species composition of earthworms. The role of litter decomposition and earthworm activity in the accumulation of organic matter in the forest floor in different types of beech woodlands are discussed.

  16. Evaluation of beech stand condition based on the basic growth elements

    Directory of Open Access Journals (Sweden)

    Vučković Milivoj

    2003-01-01

    Full Text Available The state of a beech stand is analyzed from the aspect of stability and production level. The arguments are presented for the need of the objective definition of the stand condition by the criteria based on the characteristics of stand growth elements. This contributes to integral management procedures and their verification in the aim of optimal and stabile production. The study results show that there can be significant deviations from the optimal stand condition regarding the number of trees crown development, taper and diameter increment, which are not perceptible to the eye until the visible signs of tree revitalization when the damage cannot be repaired.

  17. Beech wood – correlations between the quality of trees, logs and sawn wood

    OpenAIRE

    Marenče, Jurij; Gornik Bučar , Dominika; Šega, Bogdan

    2016-01-01

    The research addresses beech wood, from a standing tree to sawn wood. It focuses on the quality evaluation of individual trees and its impact on the later products made of the respective wood. For the needs of observing the quality of standing trees, the current 5-class scale for quality evaluation of the Slovenia Forest Service (SFS) was used. To evaluate the wood assortment, the SIST EN 1316-1:2013 standard was applied, while the evaluation of sawn wood was performed as per the rules of ...

  18. Intra-annual Secondary Growth Rate-Climate Relations of Fagus orientalis Lipsky in the Center of Hyrcanian Forests

    Directory of Open Access Journals (Sweden)

    Reza OLADI

    2012-05-01

    Full Text Available Weekly rate of Beech tree ring increment were related to the changes of climatic factors in weekly intervals. In order to do so, small samples were extracted from 5 Oriental beech trees located in Nowshahr educational forest in the central part of the Hyrcanian forests of Iran during 2008 growing season. Microscopic sections were prepared and average increases in tree ring width were measured, standardized and modeled using Gompertz equation. The results showed that the minimum air temperature and water evaporation had the strongest and positive effect on the secondary growth rate while the role of precipitation was minor and negative. Air temperature and evaporation variations during growing season were assumed to remain in their optimum level; increasing xylem formation by accelerating carbohydrate production and carbon uptake of trees, respectively. Since the studied site had warm and humid climate receiving sufficient amount of rainfall before and during growing season, water availability was not a limiting factor of radial growth and its minor negative relation was interpreted according to its small hampering effect on the air temperature and sunlight absorption of trees. It was concluded that meteorological factors affecting secondary growth rate of trees should be interpreted as a package rather than analyzed disconnectedly.

  19. Archeological Test Excavations at the Proposed Dry Boat Storage Facility and Archeological Survey of the Neal Road Extension Corridor, Redstone Arsenal, Huntsville, Alabama

    Science.gov (United States)

    1991-11-19

    as beech, tuliptree, sugar maple, red oak (Q. borealis), shellbark hickory (Carya ovata), black walnut ( Juglans nigra), basswood (Tilia heterophylla...walnut ( Juglans ), sycamore (Platanus occidentalis), beech (Fagus grandifolia), black gum (Nyssa sylvatica), and hickories (Carya spp.) (Delcourt

  20. Preparation, characterization and phenol adsorption capacity of activated carbons from African beech wood sawdust

    Directory of Open Access Journals (Sweden)

    N.T. Abdel-Ghani

    2016-05-01

    Full Text Available In the present study, different activated carbons were prepared from carbonized African beech wood sawdust by potassium hydroxide activation. The activated carbons were characterized by brunauer–emmett–teller, scanning electron microscope, fourier transform infrared spectroscopy, and thermogravimetric analyzer. The phenol adsorption capacity of the prepared carbons was evaluated. The different factors affecting phenol’s removal were studied including: contact time, solution pH and initial phenol concentration. The optimum phenol removal was obtained after a contact time of 300 min. and at an initial phenol solution pH 7. The maximum removal percentages were determined at 5mg/l initial phenol concentration as 79, 93, 94 and 98% for AC0, AC1, AC2 and AC3; respectively. The adsorption of phenol on African beech sawdust activated carbons was found to follow the Lagergren first order kinetics and the intraparticle diffusion mechanism gave a good fit to the experimental data. The isothermal models applied fitted the experimental data in the order: Langmuir> Dubinin–Radushkevich> Freundlich and Temkin.

  1. Heavy metals in the organic soil layer of beech forests in Serbia

    Directory of Open Access Journals (Sweden)

    Kadović Ratko

    2005-01-01

    Full Text Available During the last decades, forest ecosystems have been strongly exposed to the effect of different harmful pollutants, especially from the atmosphere. Harmful substances from the air, in addition to the direct effect on forest trees, also deposit in the soil, and have an adverse effect on soil chemistry and pedogenetic processes. The results of previous studies in Serbia (Kadović, Knežević, 2002, 2004 show some specificities regarding the accumulation and migration of heavy metals in the soil. The highest concentrations were found in the layers of forest litter and in the surface organo-mineral horizons. This paper presents the results of the study of heavy metal contents (Zn, Mn, Cu, Fe, Cd, Pb, Ni and Cr in the organic horizon (forest litter of beech forests in Serbia. The study of the heavy metal content in the organic horizon (forest litter is very significant primarily in the aim of monitoring the trend of their migration through the soil profile and the effect on the soil properties and genesis. The soil quality in beech forests in Serbia was assessed within the Project ICP Forest, Level I, by the methodology UN/ECE-EC, 2000.

  2. Carbon cycling along a gradient of beech bark disease impact in the Catskill Mountains, New York

    Energy Technology Data Exchange (ETDEWEB)

    Hancock, J.E.; Arthur, M.A. [Kentucky Univ., Lexington, KY (United States). Dept. of Forestry; Weathers, K.C.; Lovett, G.M. [Inst. of Ecosystem Studies, Millbrook, NY (United States)

    2008-05-15

    Beech bark disease (BBD) is having a significant impact on the forest structure and composition of the Catskill Mountains, where forests formerly co-dominated by American beech and sugar maples are now shifting towards sugar maple dominance. In this study, the effects of BBD on annual aboveground net primary production and soil carbon dioxide (CO{sub 2}) efflux were investigated in 8 forest plots in order to examine differences in aboveground net primary productivity (ANPP) and soil CO{sub 2} efflux across a gradient of BBD impacts. A series of plots in a single watershed was used to represent different points along the gradient. The study hypothesized that ANPP would initially increase with BBD impact. The influence of higher nitrogen (N) mineralization rates and greater N availability was also examined. Annual ANPP was estimated as the sum of annual litterfall and annual wood increment. Allometric equations were used to estimate the wood biomass of each tree over a period of 2 years. Soil CO{sub 2} efflux measurements were measured with a temperature probe. Univariate linear and nonlinear regression analyses were used to detect relationships between response variables. Results of the study showed that growing season soil CO{sub 2} efflux declined by 40 per cent along the BBD gradient. 32 refs., 1 tab., 4 figs.

  3. Investigation of process of interception in beech-fir stand on mountain Goch

    Directory of Open Access Journals (Sweden)

    Ristić Ratko

    2002-01-01

    Full Text Available Part of the precipitation is intercepted by vegetation before reaching the ground. The portion of intercepted water, which is retained in storage of the vegetal cover and evaporates, is called the interception loss. Interception represents important component of water balance, because of reduction of total rainfall. It decreases potential for forming of surface runoff. Depends on complex of vegetative and climate factors. In humid forested regions about 25% of the annual precipitation may become interception loss. Results of investigation in beech-fir stand on mountain Goch are presented in this paper Investigation was carried out on experimental catchment area Vaona IV (A=0.098 km2, in association Abieti-fagetum, on mountain Goch, in Central Serbia. Standard rain gauges were used to determine total precipitation and throughfalls, during vegetation period (1992-1997. Total interception (Ic depends on total precipitation (Pb, kind of trees, shape and density of the crown, position in the stand and age. Average values of interception (Icsr during vegetation period (1992-1997, amount to Icsr=43.7-53.3% of total precipitation (fir, and Icsr=17.7-22.8% (beech.

  4. Comparative economic and environmental assessment of four beech wood based biorefinery concepts.

    Science.gov (United States)

    Budzinski, Maik; Nitzsche, Roy

    2016-09-01

    The aim of this study was to analyze four conceptual beech wood based biorefineries generated during process design in terms of environmental and economic criteria. Biorefinery 1 annually converts 400,000 dry metric tons of beech wood into the primary products 41,600t/yr polymer-grade ethylene and 58,520tDM/yr organosolv lignin and the fuels 90,800tDM/yr hydrolysis lignin and 38,400t/yr biomethane. Biorefinery 2 is extended by the product of 58,400t/yr liquid "food-grade" carbon dioxide. Biorefinery 3 produces 69,600t/yr anhydrous ethanol instead of ethylene. Compared to biorefinery 3, biorefinery 4 additionally provides carbon dioxide as product. Biorefinery 3 and 4 seem most promising, since under basic assumptions both criteria, (i) economic effectiveness and (ii) reduction of potential environmental impacts, can be fulfilled. All four alternatives may reduce potential environmental impacts compared to reference systems using the ReCiPe methodology. Economic feasibilities of the analyzed biorefineries are highly sensitive. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Effect of particle size on the composition of lignin derived oligomers obtained by fast pyrolysis of beech wood

    NARCIS (Netherlands)

    Zhou, Shuai; Garcia-Perez, Manuel; Pecha, Brennan; McDonald, Armando G.; Westerhof, Roel Johannes Maria

    2014-01-01

    The effect of particle size on the yield and composition of lignin derived oligomers (also known as pyrolytic lignin (PL)) was studied in a fluidized bed reactor. Milled beech wood particles of sizes between 0.3 and 0.55 and cylinders of 3–14 mm were pyrolyzed at 500 °C. The lignin oligomers were

  6. Removal of non benzidine direct red dye from aqueous solution by using natural sorbents: Beech and silver fir

    Czech Academy of Sciences Publication Activity Database

    Muntean, S.G.; Todea, A.; Bakardjieva, Snejana; Bologa, C.

    2017-01-01

    Roč. 66, MAR (2017), s. 235-250 ISSN 1944-3994 Institutional support: RVO:61388980 Keywords : Adsorption * Beech * Direct red * Kinetics * Silver fir Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 1.631, year: 2016

  7. Short-term natural δ13C and δ18O variations in pools and fluxes in a beech forest: the transfer of isotopic signal from recent photosynthates to soil respired CO2

    Science.gov (United States)

    Gavrichkova, O.; Proietti, S.; Moscatello, S.; Portarena, S.; Battistelli, A.; Matteucci, G.; Brugnoli, E.

    2011-10-01

    The fate of photosynthetic products within the plant-soil continuum determines how long the reduced carbon resides within the ecosystem and when it returns back to the atmosphere in the form of respiratory CO2. We have tested the possibility of measuring natural variation in δ13C and δ18O to disentangle the potential times needed to transfer carbohydrates produced by photosynthesis down to trunk, roots and, in general, to belowground up to its further release in the form of soil respiration into the atmosphere in a beech (Fagus sylvatica) forest. We have measured the variation in stable carbon and oxygen isotope compositions in plant material and in soil respired CO2 every three hours for three consecutive days. Possible steps and different signs of post-photosynthetic fractionation during carbon translocation were also identified. A 12 h-periodicity was observed for variation in δ13C in soluble sugars in the top crown leaves and it can be explained by starch day/night dynamics in synthesis and breakdown and by stomatal limitations under elevated vapour pressure deficits. Photosynthetic products were transported down the trunk and mixed with older carbon pools, therefore causing the dampening of the δ13C signal variation. The strongest periodicity of 24 h was found in δ13C in soil respiration indicating changes in root contribution to the total CO2 efflux. Other non-biological causes like diffusion fractionation and advection induced by gas withdrawn from the measurement chamber complicate data interpretation on this step of C transfer path. Nevertheless, it was possible to identify the speed of carbohydrates' translocation from the point of assimilation to the trunk breast height because leaf-imprinted enrichment of δ18O in soluble sugars was less modified along the downward transport and was well related to environmental parameters potentially linked to stomatal conductance. The speed of carbohydrates translocation from the site of assimilation to the trunk

  8. Short-term natural δ13C and δ18O variations in pools and fluxes in a beech forest: the transfer of isotopic signal from recent photosynthates to soil respired CO2

    Directory of Open Access Journals (Sweden)

    G. Matteucci

    2011-10-01

    Full Text Available The fate of photosynthetic products within the plant-soil continuum determines how long the reduced carbon resides within the ecosystem and when it returns back to the atmosphere in the form of respiratory CO2. We have tested the possibility of measuring natural variation in δ13C and δ18O to disentangle the potential times needed to transfer carbohydrates produced by photosynthesis down to trunk, roots and, in general, to belowground up to its further release in the form of soil respiration into the atmosphere in a beech (Fagus sylvatica forest. We have measured the variation in stable carbon and oxygen isotope compositions in plant material and in soil respired CO2 every three hours for three consecutive days. Possible steps and different signs of post-photosynthetic fractionation during carbon translocation were also identified. A 12 h-periodicity was observed for variation in δ13C in soluble sugars in the top crown leaves and it can be explained by starch day/night dynamics in synthesis and breakdown and by stomatal limitations under elevated vapour pressure deficits. Photosynthetic products were transported down the trunk and mixed with older carbon pools, therefore causing the dampening of the δ13C signal variation. The strongest periodicity of 24 h was found in δ13C in soil respiration indicating changes in root contribution to the total CO2 efflux. Other non-biological causes like diffusion fractionation and advection induced by gas withdrawn from the measurement chamber complicate data interpretation on this step of C transfer path. Nevertheless, it was possible to identify the speed of carbohydrates' translocation from the point of assimilation to the trunk breast height because leaf-imprinted enrichment of δ18O in soluble sugars was less modified along the downward transport and was well related to environmental parameters potentially linked to stomatal conductance. The speed of carbohydrates translocation from the site of

  9. Temporal changes in vegetation of a virgin beech woodland remnant: stand-scale stability with intensive fine-scale dynamics governed by stand dynamic events

    Directory of Open Access Journals (Sweden)

    Tibor Standovár

    2017-03-01

    Full Text Available The aim of this resurvey study is to check if herbaceous vegetation on the forest floor exhibits overall stability at the stand-scale in spite of intensive dynamics at the scale of individual plots and stand dynamic events (driven by natural fine scale canopy gap dynamics. In 1996, we sampled a 1.5 ha patch using 0.25 m² plots placed along a 5 m × 5 m grid in the best remnant of central European montane beech woods in Hungary. All species in the herbaceous layer and their cover estimates were recorded. Five patches representing different stand developmental situations (SDS were selected for resurvey. In 2013, 306 plots were resurveyed by using blocks of four 0.25 m² plots to test the effects of imperfect relocation. We found very intensive fine-scale dynamics in the herbaceous layer with high species turnover and sharp changes in ground layer cover at the local-scale (< 1 m2. A decrease in species richness and herbaceous layer cover, as well as high species turnover, characterized the closing gaps. Colonization events and increasing species richness and herbaceous layer cover prevailed in the two newly created gaps. A pronounced decrease in the total cover, but low species turnover and survival of the majority of the closed forest specialists was detected by the resurvey at the stand-scale. The test aiming at assessing the effect of relocation showed a higher time effect than the effect of imprecise relocation. The very intensive fine-scale dynamics of the studied beech forest are profoundly determined by natural stand dynamics. Extinction and colonisation episodes even out at the stand-scale, implying an overall compositional stability of the herbaceous vegetation at the given spatial and temporal scale. We argue that fine-scale gap dynamics, driven by natural processes or applied as a management method, can warrant the survival of many closed forest specialist species in the long-run. Nomenclature: Flora Europaea (Tutin et al. 2010 for

  10. Increased carbon sequestration in a Danish beech forest during 1996-2016: Observations and hypotheses.

    Science.gov (United States)

    Pilegaard, Kim; Ibrom, Andreas

    2017-04-01

    A study of the net exchange of CO2 (NEE) between the atmosphere and a beech forest near Sorø, Denmark, during 14 years (1996-2009) showed that the beech forest acted as an increasing sink of CO2 [1]. A significant increase in gross primary production (GPP) and a smaller and not significant increase in ecosystem respiration (RE) were also found. Thus, the increased NEE was mainly attributed to an increase in GPP. The length of the carbon uptake period (CUP) significantly increased, whereas there was a no increase in the leafed period (LP). This means that the leaves stayed active longer. The increase in the carbon uptake period explained about half of the increasing NEE. The remaining increase was believed to be due to an observed increased uptake capacity of the canopy and increased annual radiation efficiency[2]. The causes for this were hypothesized to be a combination of increase in atmospheric CO2 concentration, higher summer precipitation, and increased availability of N. A higher nitrogen content in the leaves was observed towards the end of the observation period. An updated analysis of the flux data, now including the years 1996-2016, confirms the increasing trend in carbon sequestration of the forest, an increasingly longer growing season, and a significant correlation of NEE and CUP, however, similarly to the first study, the increase in CUP only explains about half of the total increase. Here we investigate three hypotheses for the remaining reasons for the increase: H1: increased canopy nitrogen content H2: carbon dioxide fertilisation H3: increased water availability due to changing precipitation patterns. We describe the multiannual development of canopy photosynthesis capacity with regression analysis and perform sensitivity studies with the canopy model MAESTRA [3] to investigate the above hypotheses. The results will be presented, critically discussed and interpreted with respect to general effects of global climate change and site specific, local

  11. Impact of elevated CO2 concentration on dynamics of leaf photosynthesis in Fagus sylvatica is modulated by sky conditions.

    Science.gov (United States)

    Urban, Otmar; Klem, Karel; Holišová, Petra; Šigut, Ladislav; Šprtová, Mirka; Teslová-Navrátilová, Petra; Zitová, Martina; Špunda, Vladimír; Marek, Michal V; Grace, John

    2014-02-01

    It has been suggested that atmospheric CO2 concentration and frequency of cloud cover will increase in future. It remains unclear, however, how elevated CO2 influences photosynthesis under complex clear versus cloudy sky conditions. Accordingly, diurnal changes in photosynthetic responses among beech trees grown at ambient (AC) and doubled (EC) CO2 concentrations were studied under contrasting sky conditions. EC stimulated the daily sum of fixed CO2 and light use efficiency under clear sky. Meanwhile, both these parameters were reduced under cloudy sky as compared with AC treatment. Reduction in photosynthesis rate under cloudy sky was particularly associated with EC-stimulated, xanthophyll-dependent thermal dissipation of absorbed light energy. Under clear sky, a pronounced afternoon depression of CO2 assimilation rate was found in sun-adapted leaves under EC compared with AC conditions. This was caused in particular by stomata closure mediated by vapour pressure deficit. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Tree biomass and deadwood density into aged holm oak (Sardinia and beech coppices (Tuscany

    Directory of Open Access Journals (Sweden)

    Bertini G

    2012-05-01

    Full Text Available Current National Forest Inventory highlight the further increase over the last two decades of coppice area under the position of mature standing crop or in the post-cultivation phase, both being developed throughout the original cultivation area. This pattern, mainly due to the unprofitable fuel wood harvesting, also involved holm oak and beech forests, some of the most diffused forest covers in Sardinia, along the Apennines and pre-Alps. The alternative management option to ageing (the pro-active way of coppice conversion into high forest has been also practiced in the public domain, but on much smaller areas as compared with those undergoing post-cultivation phase. Aged coppices located into medium-good site classes showed a positive growth pattern resulting in a high, age-related, wood matter storage. At the meantime, regular mortality occurring since former rotation into the fully-stocked shoot populations, stocked up high deadwood amounts, this becoming an outstanding attribute of these types. Carbon storage is becoming one of the major tasks attributable to these systems within the post-cultivation phase. Purposes are here to: (i estimate living woody and standing + lying deadwood mass densities; (ii determine deadwood/living mass ratio; (iii verify lying deadwood decay class; (iv analyse diversity between two sites aged likewise but different as for geographical location and tree species. A holm oak coppice aged 55 in Sardinia and a beech coppice aged 57 in Tuscany were selected at the purpose. Both stands have been developing the post-cultivation phase since two-three times the traditional rotation and represent the maximum ages in this position. Living and standing dead woody dry mass density were determined in each site by specific allometric functions. Lying deadwood amount was assessed by a sampling design covering systematically the full test area. Three decay classes were determined according to Hunter (modified. The tree species

  13. Two years of continuous CO2 eddy-flux measurements over a Danish beech forest

    DEFF Research Database (Denmark)

    Pilegaard, K.; Hummelshøj, P.; Jensen, N.O.

    2001-01-01

    As part of the EUROFLUX network a long-term monitoring station for fluxes of CO2 and water vapour has been established in an 80-year old beech forest in Denmark. The station has been in continuous operation since June 1996 and will be so at least to the end of 2002. A primary goal of EUROFLUX...... is to combine flux measurements on a continuous multi-year time basis with ecological processes interpretation and modeling. The station consists of a 57 m high mast with conventional meteorological profile instrumentation and one level of eddy-flux measurements. Ancillary measurements such as soil respiration......, soil moisture, soil temperature, leaf surface temperature and leaf area index are also made. Results from the first 2 years of measurements are described. The observed diurnal and seasonal variation in the fluxes are discussed and the monthly and annual sums of ecosystem exchange are contrasted between...

  14. Comparative study on the mechanical performance of beech and ash laminated panels

    Directory of Open Access Journals (Sweden)

    Andreea HEGYI

    2014-07-01

    Full Text Available This paper presents a comparative study on the mechanical performance of beech and ash wood laminated panels. Within the experimental study the bending strength, bending modulus of elasticity and the bonding characteristics to gluing (bonding quality were analyzed. The experimental results emphasized the influence of the type of wood, the panel thickness, the effect on the bending strength, respectively on the gluing quality of the direction of the wood lamellas in relation with the mechanical load (direction of cutting specimens. It can be said that the use of hardwood meets the needs and demands of the construction area, but it’s necessary a careful analysis of the requests that occur mainly at the site, thus an optimal direction of the wooden glued lamellas can be chosen. Laminated wood panels are a product with real physical and mechanical qualities, which can be successfully used to obtain construction elements that are bringing benefits to environmental quality of living areas.

  15. Determining the degree of fire retardancy of plywood with thermogravimetry, part I: Beech plywood

    Directory of Open Access Journals (Sweden)

    Gavrilović-Grmuša Ivana

    2007-01-01

    Full Text Available The basic motive of this work is the ever more pronounced need for fire-resistant plywood. In this work, beech veneers have been impregnated with solutions of chosen fire retardants, which are diammonium phosphate monoammonium phosphate, sodium acetate, water glass, sodium tetra borate and boric acid. To determine the preliminary level of fire retardancy achieved in veneers before manufacturing of finished plywood, thermo gravimetric (TG and derivative thermogravimetric (DTG methods are used. TG and DTG analyses of treated and untreated wood, as well as of fire retardants alone, were performed on a Perkin-Elmer TGS-2 thermo gravimetric equipment. Fire resistance of plywood was tested in accordance with standard test for resistance to the effects of fire and the most efficient fire retardants monoammonium phosphate and sodium tetra borate, had the same results as TG/DTG analyses, which points out the validity of TG methods in predicting success of fire retardants in future products.

  16. Characteristics of the soil in mountain beech communities on mountain Manjača

    Directory of Open Access Journals (Sweden)

    Eremija Saša

    2008-01-01

    Full Text Available The presented results of soil study, which will be used for defining the beech forest types of management unit 'Dubička Gora' on Mt. Manjača, are the basis for solving a series of current tasks of forestry profession. Relief and chemical nature of limestone are the main factors of the soil cover differentiation (Knežević, Košanin, 2004.. The results of physical and chemical soil properties are shown and its taxonomy is determined. Forest cover is represented by heterogeneous units-forest combinations. Four basic soil types are defined on the basis of detailed field and laboratory research: rendzina on dolomite, chernozem on limestone, brown soil on limestone, illimerised soil on limestone and dolomite.

  17. Effect of environmental variables and stand structure on ecosystem respiration components in a Mediterranean beech forest.

    Science.gov (United States)

    Guidolotti, Gabriele; Rey, Ana; D'Andrea, Ettore; Matteucci, Giorgio; De Angelis, Paolo

    2013-09-01

    The temporal variability of ecosystem respiration (RECO) has been reported to have important effects on the temporal variability of net ecosystem exchange, the net amount of carbon exchanged between an ecosystem and the atmosphere. However, our understanding of ecosystem respiration is rather limited compared with photosynthesis or gross primary productivity, particularly in Mediterranean montane ecosystems. In order to investigate how environmental variables and forest structure (tree classes) affect different respiration components and RECO in a Mediterranean beech forest, we measured soil, stem and leaf CO2 efflux rates with dynamic chambers and RECO by the eddy-covariance technique over 1 year (2007-2008). Ecosystem respiration showed marked seasonal variation, with the highest rates in spring and autumn and the lowest in summer. We found that the soil respiration (SR) was mainly controlled by soil water content below a threshold value of 0.2 m(3) m(-3), above which the soil temperature explained temporal variation in SR. Stem CO2 effluxes were influenced by air temperature and difference between tree classes with higher rates measured in dominant trees than in co-dominant ones. Leaf respiration (LR) varied significantly between the two canopy layers considered. Non-structural carbohydrates were a very good predictor of LR variability. We used these measurements to scale up respiration components to ecosystem respiration for the whole canopy and obtained cumulative amounts of carbon losses over the year. Based on the up-scaled chamber measurements, the relative contributions of soil, stem and leaves to the total annual CO2 efflux were: 56, 8 and 36%, respectively. These results confirm that SR is the main contributor of ecosystem respiration and provided an insight on the driving factors of respiration in Mediterranean montane beech forests.

  18. C Stocks in Forest Floor and Mineral Soil of Two Mediterranean Beech Forests

    Directory of Open Access Journals (Sweden)

    Anna De Marco

    2016-08-01

    Full Text Available This study focuses on two Mediterranean beech forests located in northern and southern Italy and therefore subjected to different environmental conditions. The research goal was to understand C storage in the forest floor and mineral soil and the major determinants. Relative to the northern forest (NF, the southern forest (SF was found to produce higher amounts of litterfall (4.3 vs. 2.5 Mg·ha−1 and to store less C in the forest floor (~8 vs. ~12 Mg·ha−1 but more C in the mineral soil (~148 vs. ~72 Mg·ha−1. Newly-shed litter of NF had lower P (0.4 vs. 0.6 mg·g−1 but higher N concentration (13 vs. 10 mg·g−1 than SF. Despite its lower Mn concentration (0.06 vs. 0.18 mg·g−1, SF litter produces a Mn-richer humus (0.32 vs. 0.16 mg·g−1 that is less stable. The data suggest that decomposition in the NF forest floor is limited by the shorter growing season (178 days vs. 238 days and the higher N concentrations in newly shed litter and forest floor. Differences in C stock in the mineral soil reflect differences in ecosystem productivity and long-term organic-matter accumulation. The vertical gradient of soluble and microbial fractions in the soil profile of SF was consistent with a faster turnover of organic matter in the forest floor and greater C accumulation in mineral soil relative to NF. With reference to regional-scale estimates from Italian National Forest Inventory data, the C stock in the mineral soil and the basal area of Italian beech forests were found to be significantly related, whereas C stock in the forest floor and C stock in the mineral soil were not.

  19. Forty-two years of change in an old-growth and second-growth beech-maple forest of north central Ohio

    Science.gov (United States)

    Natalie R. Pinheiro; P. Charles Goebel; David M. Hix

    2008-01-01

    Using data collected in 1964 and 2006, we examined changes in the composition and structure of a second-growth and old-growth beech-maple forest of Crall Woods, located in Ashland County of north central Ohio. Over the 42 years, the old-growth forest (estimated to be at least 250 years old) experienced a significant shift in species composition as American beech,...

  20. Patterns of mast fruiting of common beech, sessile and common oak, Norway spruce and Scots pine in Central and Northern Europe

    DEFF Research Database (Denmark)

    Nussbaumer, Anita; Waldner, Peter; Etzold, Sophia

    2016-01-01

    Occurrence of mast years, i.e. the synchronous production of vast amounts of fruits or seeds, has an important impact on forest ecosystems, their functioning and their services. We investigated the mast patterns of the forest tree species common beech, common and sessile oak, Norway spruce and Sc...... hypotheses, and beech and spruce supported the economy of scale, predator satiation and resource allocation hypotheses....

  1. Romanian legal management rules limit wood production in Norway spruce and beech forests

    Directory of Open Access Journals (Sweden)

    Olivier Bouriaud

    2016-09-01

    Full Text Available Background The quantitative impact of forest management on forests’ wood resource was evaluated for Picea and Fagus mixed forests. The effects on the productivity of tendering operations, thinnings and rotation length have seldom been directly quantified on landscape scale. Methods Two sites of similar fertility but subject to contrasted forest management were studied with detailed inventories: one in Germany, the other in Romania, and compared with the respective national forest inventories. In Romania, regulations impose very long rotations, low thinnings and a period of no-cut before harvest. In contrast, tending and thinnings are frequent and intense in Germany. Harvests start much earlier and must avoid clear cutting but maintain a permanent forest cover with natural regeneration. While Germany has an average annual wood increment representative for Central Europe, Romania represents the average for Eastern Europe. Results The lack of tending and thinning in the Romanian site resulted in twice as many trees per hectare as in the German site for the same age. The productivity in Romanian production forests was 20 % lower than in Germany despite a similar fertility. The results were supported by the data from the national forest inventory of each country, which confirmed that the same differential exists at country scale. Furthermore, provided the difference in rotation length, two crops are harvested in Germany when only one is harvested in Romania. The losses of production due to a lower level of management in Romania where estimated to reach 12.8 million m3.y-1 in regular mountain production forests, and to 15 million m3.y-1 if managed protection forest is included. Conclusions The productivity of Picea and Fagus mountain forests in Romania is severely depressed by the lack of tending and thinning, by overly long rotations and the existence of a 25-years no-cut period prior to harvest. The average standing volume in Germany was 50

  2. European communion

    DEFF Research Database (Denmark)

    Manners, Ian James

    2013-01-01

    Political theory of European union, through an engagement between political concepts and theoretical understandings, provides a means of identifying the EU as a political object. It is argued that understanding the projects, processes and products of European union, based on ‘sharing’ or ‘communion......’, provides a better means of perceiving the EU as a political object rather than terms such as ‘integration’ or ‘co-operation’. The concept of ‘European communion’ is defined as the ‘subjective sharing of relationships’, understood as the extent to which individuals or groups believe themselves to be sharing...... relations (or not), and the consequences of these beliefs for European political projects, processes and products. By exploring European communion through an engagement with contemporary political theory, using very brief illustrations from the Treaty of Lisbon, the article also suggests that European...

  3. Climate warming causes increased within-species variability in the timing of leaf unfolding in Fagus sylvatica

    Science.gov (United States)

    Zohner, Constantin; Renner, Susanne

    2017-04-01

    The spring phenology of Fagus sylvatica is known to be under strong photoperiodic control. The heritability of this trait, and its variation within and among populations, however, have not been studied. We have conducted twig-cutting experiments on 13 individuals of F. sylvatica to study their leaf-out behavior under different day length treatments and simulated climate warming. Results show that there is marked variation in day-length sensitivity among individuals. Individual differences explained 40% of the variation in leaf-out dates observed in the field. Growth chamber experiments showed that, under short winter conditions (SWC), individuals without day-length limitation were far better able to advance leaf unfolding than individuals strongly responding to day length. Under SWC, individual variation in the timing of leaf unfolding was twice as high as under long winter conditions. These results emphasize the importance of day-length sensitivity as a source of within-species phenological variation and suggest that climate warming will lead to increased local variation in the timing of leaf unfolding within F. sylvatica. Our finding that day-length-sensitive individuals are less able to track climate warming raises the question if day-length-sensitive or day-length-independent individuals will be favored under future climates, which are expected to lead to earlier, but less predictable spring conditions.

  4. Genome-environment association study suggests local adaptation to climate at the regional scale in Fagus sylvatica.

    Science.gov (United States)

    Pluess, Andrea R; Frank, Aline; Heiri, Caroline; Lalagüe, Hadrien; Vendramin, Giovanni G; Oddou-Muratorio, Sylvie

    2016-04-01

    The evolutionary potential of long-lived species, such as forest trees, is fundamental for their local persistence under climate change (CC). Genome-environment association (GEA) analyses reveal if species in heterogeneous environments at the regional scale are under differential selection resulting in populations with potential preadaptation to CC within this area. In 79 natural Fagus sylvatica populations, neutral genetic patterns were characterized using 12 simple sequence repeat (SSR) markers, and genomic variation (144 single nucleotide polymorphisms (SNPs) out of 52 candidate genes) was related to 87 environmental predictors in the latent factor mixed model, logistic regressions and isolation by distance/environmental (IBD/IBE) tests. SSR diversity revealed relatedness at up to 150 m intertree distance but an absence of large-scale spatial genetic structure and IBE. In the GEA analyses, 16 SNPs in 10 genes responded to one or several environmental predictors and IBE, corrected for IBD, was confirmed. The GEA often reflected the proposed gene functions, including indications for adaptation to water availability and temperature. Genomic divergence and the lack of large-scale neutral genetic patterns suggest that gene flow allows the spread of advantageous alleles in adaptive genes. Thereby, adaptation processes are likely to take place in species occurring in heterogeneous environments, which might reduce their regional extinction risk under CC. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  5. Preliminary results of modeled ozone uptake for Fagus sylvatica L. trees at selected EU/UN-ECE intensive monitoring plots

    Energy Technology Data Exchange (ETDEWEB)

    Schaub, Marcus [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland)]. E-mail: marcus.schaub@wsl.ch; Emberson, Lisa [Stockholm Environment Institute at York, University of York, York YO10 5DD (United Kingdom); Bueker, Patrick [Stockholm Environment Institute at York, University of York, York YO10 5DD (United Kingdom); Kraeuchi, Norbert [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland)

    2007-02-15

    The objective of this study was to establish whether EU and UN-ECE/ICP-Forests monitoring data (i) provide the variables necessary to apply the flux-based modeling methods and (ii) meet the quality criteria necessary to apply the flux-based critical level concept. Application of this model has been possible using environmental data collected from the EU and UN-ECE/ICP-Forests monitoring network in Switzerland and Italy for 2000-2002. The test for data completeness and plausibility resulted in 6 out of a possible total of 20 Fagus sylvatica L. plots being identified as suitable from Switzerland, Italy, Spain, and France. The results show that the collected data allow the identification of different spatial and temporal areas and periods as having higher risk to ozone than those identified using the AOT40 approach. However, it was also apparent that the quality and completeness of the available data may severely limit a complete risk assessment across Europe. - Data sets of the EU and UN-ECE/ICP-Forests monitoring network are examined regarding their suitability for the modeling of ozone uptake in trees in the view of risk assessment.

  6. Evolution and structure of Artikutza, an 80-year-old beech forest in navarra (northern Spain

    Directory of Open Access Journals (Sweden)

    Castro Gil, A.

    2009-01-01

    Full Text Available Se ha estudiado la estructura forestal y la historia del hayedo de Artikutza. El objetivo ha sido analizar la evolución natural y recuperación del bosque tras 80 años sin intervenciones significativas. El bosque se ha desarrollado sobre un territorio previamente cubierto de robles (Quercus robur L., hayas (Fagus sylvatica L. y castaños (Castanea sativa Mill. trasmochos, los cuales fueron talados. Los datos actuales de regeneración y distribución de frecuencias de clases diametrales no son típicos de bosques maduros. Investigaciones futuras son necesarias para confirmar si estas características son el efecto del ganado. El volumen de madera muerta acumulada es alto, aunque no de gran diámetro (menor que 40 cm. Los árboles senescentes son poco comunes y no se encntraron troncos con cavidades. Por tanto, se sugiere la protección y creación de árboles trasmochos como medida necesaria para aumentar la disponibilidad de recursos para la biodiversidad forestal.

  7. Growth response of oaks, beech and pine to Standardized Precipitation Index (SPI)

    Science.gov (United States)

    Stojanovic, Dejan; Levanič, Tom; Matović, Bratislav; Orlović, Saša

    2017-04-01

    Climate change may have various consequences on forests, from more frequent forest fires and windstorms to pest and disease outbreaks. Standardized Precipitation Index (SPI) was chosen for the evaluation of climate change impact to radial forest growth, after comprehensive testing of different climate parameters from CARPATCLIM database. SPI was calculated for periods between 3 and 36 months for different forest stands (lowland and mountainous parts of Serbia, Southeast Europe). Observed were following tree species: Quercus robur, Q. cerris, Fagus sylvatica and Pinus sylvestris. Bootstrapped Pearson's correlation between SPI monthly indices and tree-ring widths was calculated and ranked for all species. We found that 12-month SPI for summer months may be a good predictor for growth of different species at different sites. The strongest positive correlation between tree-ring width indices and SPI was particularly from the year of growth, since the strongest negative correlation for all four species was exclusively from the year prior to growth. The strongest positive correlation were between 12 and 14-month SPI from June to September, which suggests that the high growth rates are expected when autumn of previous-year, winter, spring and summer of the current year are with high precipitation rates.

  8. European Institutions?

    NARCIS (Netherlands)

    Meacham, Darian

    2016-01-01

    The aim of this article is to sketch a phenomenological theory of political institutions and to apply it to some objections and questions raised by Pierre Manent about the project of the European Union and more specifically the question of “European Construction”, i.e. what is the aim of the

  9. Selective Europeanization

    DEFF Research Database (Denmark)

    Hoch Jovanovic, Tamara; Lynggaard, Kennet

    2014-01-01

    political contexts at the European level. We further show how the “translation” of international norms to a domestic context has worked to reinforce the original institutional setup, dating back to the mid-1950s. The translation of European-level minority policy developed in the 1990s and 2000s works most...

  10. The effects of forty years of spruce cultivation in a zone of beech forest on mt. Maljen (Serbia

    Directory of Open Access Journals (Sweden)

    Pavlović P.

    2012-01-01

    Full Text Available This study investigates the effects of the forty-year cultivation of Picea abies on the floristic composition, physical and chemical soil characteristics, and the intensity of organic matter decomposition in a zone of mountainous beech forest (mt. Maljen, northwestern Serbia. The long-term cultivation of conifers in a deciduous habitat has caused a reduction in biodiversity, as well as changes in the soil which were most pronounced in the top soil layer. There were found to be lower soil moisture levels (p<0.05, lower active (p<0.01 and substitutional acidity (p<0.001, depletion of the adsorption complex in base cations (p<0.001, and lower levels of n, P and K (p<0.001 in the spruce stand in relation to the beech stand (control. The higher C/n ratio of spruce litter (p<0.001 caused its lower decomposition rate in comparison to beech litter (p<0.01. All these changes have led to degradation and a reduction in this ecosystem’s productivity. [Acknowledgments. This work was supported by the ministry of education and Science of Serbia, grant no 173018

  11. SUITABILITY OF POPLAR AND BEECH LAMINAS FOR LAMINATED VENEER LUMBER MANUFACTURİNG USING MELAMINE FORMALDEHYDE ADHESIVE

    Directory of Open Access Journals (Sweden)

    İlkay Atar

    2016-12-01

    Full Text Available Laminated Veneer Lumber (LVL has been proven their usefulness and efficiency as framing members (girders, beams, joist, headers, panels, etc.in construction. Their application and manufacture is limited in Turkey. In this study, four different types of 7-layers LVLs were successfully manufactured using sawed beech (B and poplar (P veneers, and melamine formaldehyde (MF adhesive. In this work, LVLs were formed with two veneers for each surface and three veneers for core layer. Produced four different types of LVL were coded based on the type and location of the veneers. BBBBBBB, BBPPPBB, PPPPPPP and PPBBBPP were called as Group I, Group II, Group III and Group IV, respectively. As physical properties, oven dry specific gravity (SG and moisture content (MC were determined according to TS 2472 (1976a and TS 2471 (1976b standards. Mechanical properties like glueline shear strength, modulus of rupture (MOR, modulus of elasticity (MOE and compression strength (CS(parallel to grain were also determined according to EN 314-1 (2004,EN310 (1993 and TS 2595 (Anonymous 1977standards, respectively. Based on this study, the highest strength and SG values were obtained with all beech used veneers (Group I. On the other hand lowest values were recorded with all poplar veneers (Group III. It should be noted that contribution rate of beech veneers in LVL had an increase on both strength and SG values.

  12. Structure, electrical resistivity, and thermal conductivity of beech wood biocarbon produced at carbonization temperatures below 1000°C

    Science.gov (United States)

    Parfen'eva, L. S.; Orlova, T. S.; Kartenko, N. F.; Smirnov, B. I.; Smirnov, I. A.; Misiorek, H.; Jezowski, A.; Muha, J.; Vera, M. C.

    2011-11-01

    This paper reports on measurements of the thermal conductivity κ and the electrical resistivity ρ in the temperature range 5-300 K, and, at 300 K, on X-ray diffraction studies of high-porosity (with a channel pore volume fraction of ˜47 vol %) of the beech wood biocarbon prepared by pyrolysis (carbonization) of tree wood in an argon flow at the carbonization temperature T carb = 800°C. It has been shown that the biocarbon template of the samples studied represents essentially a nanocomposite made up of amorphous carbon and nanocrystallites—"graphite fragments" and graphene layers. The sizes of the nanocrystallites forming these nanocomposites have been determined. The dependences ρ( T) and κ( T) have been measured for the samples cut along and perpendicular to the tree growth direction, thus permitting determination of the magnitude of the anisotropy of these parameters. The dependences ρ( T) and κ( T), which have been obtained for beech biocarbon samples prepared at T carb = 800°C, are compared with the data amassed by us earlier for samples fabricated at T carb = 1000 and 2400°C. The magnitude and temperature dependence of the phonon thermal conductivity of the nanocomposite making up the beech biocarbon template at T carb = 800°C have been found.

  13. Lluvia de semillas y emergencia de plántulas de Fagus grandifolia subsp. mexicana en La Mojonera, Hidalgo, México Seed rain and seedling emergence of Fagus grandifolia subsp. mexicana at La Mojonera, Hidalgo, Mexico

    Directory of Open Access Journals (Sweden)

    Oliva Godínez-Ibarra

    2007-06-01

    Full Text Available Fagus grandifolia subsp. mexicana es una especie restringida a pequeñas poblaciones y sujeta a fuerte presión antropogénica. Con el objetivo de obtener información relevante que permita proponer alternativas de conservación, se analizó la producción de semillas y la demografía de plántulas de primer año en la Mojonera, Hidalgo. Se estableció una parcela de observación de 4 800 m² dividida en cuadrantes de 10 X 10 m. Se utilizaron trampas de 0.5 m² para estimar la producción de semillas, así como subparcelas de 1 m² para registrar la emergencia y supervivencia de plántulas. La producción fue de 521 667 semillas ha-1, de las que sólo el 24.44% estaban llenas; el 46.01% vanas, y el 29.55% dañadas. La densidad de plántulas emergidas varió de 1 a 33 plántulas por m². El porcentaje de supervivencia de plántulas de primer año fue de 2.8% después de 10 meses de observación, siendo las de mayor supervivencia las que emergieron durante las primeras fechas. El 34.44% de las plántulas murieron por herbivoría, el 24.07% por damping-off y 23.65% por causa desconocida. La especie presenta el patrón general de supervivencia de especies arbóreas con alta mortalidad durante el primer año de vida.Fagus grandifolia subsp. mexicana is a species restricted to small populations under high anthropogenic pressure. With the aim to attain information to propose conservation strategies of this species, the seed rain and demography of current-year seedlings were analyzed at La Mojonera, Hidalgo, Mexico. A 4 800 m² plot divided into 10 X 10 m quadrants was established. The seed rain, seedling emergence, and survival were analyzed using seed traps of 0.5 m² and adjacent 1 m² sub-plots. The total seed rain was 521 667 seeds ha-1. A high proportion of seeds were unsound (46.01%, followed by damaged seeds (29.5% and only 24.44% were sound. Emerged seedlings fluctuated from 1 to 33 seedlings m². Alter 10 months, 2.8% of emerged seedlings were

  14. Size-structure dynamics of mixed versus pure forest stands

    Directory of Open Access Journals (Sweden)

    Hans Pretzsch

    2014-12-01

    Full Text Available Mixed species forests are presently on the advance and widely held to provide many ecosystem functions and services better than pure stands. Recent studies well explored species mixing effects at the individual tree or stand level. However, the link between individual and stand level which is represented by the size-structure dynamics of stands, is still hardly understood.Aim of this study: The objective was to analyse how species mixing modifies the size-structure dynamics of mixed compared with pure forest stands. Area of the study: the study was carried out in Southern Germany.Material and Methods: We selected 11long-term experiments comprising 129 plots of un-thinned or just lightly thinned pure and mixed stands of European beech (Fagus sylvatica [ L.] and analysed their size structure dynamics.Main Results: Based on the Gini coefficient, skewness and kurtosis we show how mixing with Norway spruce (Picea abies [L.] Karst and sessile oak (Quercus petraea (Matt. Liebl. modifies the size-structure dynamics of European beech. The size distribution of beech in mixture mostly lags behind the pure stand, is more size-asymmetric, and the mortality shifts from the smaller diameter classes further to the taller trees than in pure stands.Research highlights: The revealed changes of the size-structure dynamics of beech in mixed versus pure stands result from a modification of both growth partitioning and self-thinning. We draw conclusions of the reduced size growth and size equality of beech in mixed versus pure stands for forest management planning and perspectives for forest research.Keywords: species selection effect; true mixing effect; morphological plasticity; size-distribution; growth partitioning between trees; mode of mortality; European beech (Fagus sylvatica [L.]; Norway spruce (Picea abies [L.] Karst; sessile oak (Quercus petraea (Matt. Liebl..

  15. Chemical Elements in Mulch and Litterfall of Beech Ecosystems and Their Total Turnover

    Directory of Open Access Journals (Sweden)

    Mariyana I. Lyubenovа

    2011-07-01

    Full Text Available The beech communities on the territory of Bulgaria had been objects of regional, local as well as large scale national investigations aiming their classification, determination of their ecological characteristics, conservation status, habitats etc. They are included as objects of the intensive monitoring of forest ecosystems in Bulgaria also. The investigations of chemical content of the litter – fall in these forests were conducted until now. The novelty of the present research is investigation of these elements in the mulch and the ratio between the established quantities calculation. The main goal is the biological turnover special features characterization of the investigated elements which give us a chance to define the investigated ecosystems state and functioning. The indexes as litter – mulch and acropetal coefficients were used for this aim. The content of macroelements as N, Ca and K and microelements as Pb, Zn, Mn and Fe in soils, mulch and in different litter fall fractions have been calculated. The investigation was carried out on three sample plots. During the investigation was established that the soils are characterized with acid reaction, high content of Fe, N and Mn and low content of Ca and K. The concentration of Zn and Pb are high also. The calculated average store of investigated elements in litter – fall is 81.312 kg.ha1 and in the mulch 314 kg.ha1. According to the acropetal coefficient N is accumulated mainly in the acorns, K – in the annual phytomass fractions and Ca – in the perennial fractions. The leaves and the acorns fraction accumulate Mn, and cupolas Fe. The litter – mulch coefficient vary from 1,6 (Mn to 4,2 (Pb. The tendencies of Zn and Ca turnovers acceleration are discovered, while the turnover of more investigated elements is inhibited. The litter – mulch coefficient for Zn and Ca is 0,8 and 1,4 accordingly, i.е. corresponding to the intensive type of turnovers which is not typical for the

  16. Whole-tree seasonal nitrogen uptake and partitioning in adult Fagus sylvatica L. and Picea abies L. [Karst.] trees exposed to elevated ground-level ozone.

    Science.gov (United States)

    Weigt, R B; Häberle, K H; Rötzer, T; Matyssek, R

    2015-01-01

    The effect of long-term exposure of twice-ambient O(3) (2 × O(3)) on whole-tree nitrogen (N) uptake and partitioning of adult beech and spruce was studied in a mixed forest stand, SE-Germany. N uptake as (15)N tracer and N pools were calculated using N concentrations and biomass of tree compartments. Whole-tree N uptake tended to be lower under 2 × O(3) in both species compared to trees under ambient O(3) (1 × O(3)). Internal partitioning in beech showed significantly higher allocation of new N to roots, with mycorrhizal root tips and fine roots together receiving about 17% of new N (2 × O(3)) versus 7% (1 × O(3)). Conversely, in spruce, N allocation to roots was decreased under 2 × O(3). These contrasting effects on belowground N partitioning and pool sizes, being largely consistent with the pattern of N concentrations, suggest enhanced N demand and consumption of stored N with higher relevance for tree-internal N cycling in beech than in spruce. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. European Whiteness?

    DEFF Research Database (Denmark)

    Blaagaard, Bolette

    2008-01-01

    Born out of the United States’ (U.S.) history of slavery and segregation and intertwined with gender studies and feminism, the field of critical whiteness studies does not fit easily into a European setting and the particular historical context that entails. In order for a field of European...... critical whiteness studies to emerge, its relation to the U.S. theoretical framework, as well as the particularities of the European context need to be taken into account.. The article makes a call for a multi-layered approach to take over from the identity politics so often employed in the fields of U...

  18. Environmental change impacts on the C- and N-cycle of European forests: a model comparison study

    Directory of Open Access Journals (Sweden)

    D. R. Cameron

    2013-03-01

    Full Text Available Forests are important components of the greenhouse gas balance of Europe. There is considerable uncertainty about how predicted changes to climate and nitrogen deposition will perturb the carbon and nitrogen cycles of European forests and thereby alter forest growth, carbon sequestration and N2O emission. The present study aimed to quantify the carbon and nitrogen balance, including the exchange of greenhouse gases, of European forests over the period 2010–2030, with a particular emphasis on the spatial variability of change. The analysis was carried out for two tree species: European beech and Scots pine. For this purpose, four different dynamic models were used: BASFOR, DailyDayCent, INTEGRATOR and Landscape-DNDC. These models span a range from semi-empirical to complex mechanistic. Comparison of these models allowed assessment of the extent to which model predictions depended on differences in model inputs and structure. We found a European average carbon sink of 0.160 ± 0.020 kgC m−2 yr−1 (pine and 0.138 ± 0.062 kgC m−2 yr−1 (beech and N2O source of 0.285 ± 0.125 kgN ha−1 yr−1 (pine and 0.575 ± 0.105 kgN ha−1 yr−1 (beech. The European average greenhouse gas potential of the carbon sink was 18 (pine and 8 (beech times that of the N2O source. Carbon sequestration was larger in the trees than in the soil. Carbon sequestration and forest growth were largest in central Europe and lowest in northern Sweden and Finland, N. Poland and S. Spain. No single driver was found to dominate change across Europe. Forests were found to be most sensitive to change in environmental drivers where the drivers were limiting growth, where changes were particularly large or where changes acted in concert. The models disagreed as to which environmental changes were most significant for the geographical variation in forest growth and as to which tree species showed the largest rate of carbon sequestration. Pine and beech forests were found to

  19. European Security

    DEFF Research Database (Denmark)

    Møller, Bjørn

    Theoretical chapters on "Security", "Organisations" and "Regions," Historical Chapters on "Europe and Its Distinguishing Features" and on "The United Nations," "NATO," "The CSCE/OSCE and the Council of Europe" and "The European Union"......Theoretical chapters on "Security", "Organisations" and "Regions," Historical Chapters on "Europe and Its Distinguishing Features" and on "The United Nations," "NATO," "The CSCE/OSCE and the Council of Europe" and "The European Union"...

  20. Factors affecting industrial wood, material production yield in Turkey’s natural beech forests

    Directory of Open Access Journals (Sweden)

    Atilla Atik

    2014-07-01

    Full Text Available The objectives of the present study are to determine the most important factors affecting industrial wood material production yield in natural oriental beech forests in Turkey using a multifaceted approach and to help entrepreneurs consider these factors to develop more sensitive and realistic production plans. In Günye Forest Management in Bartın province of the West Black Sea Region of Turkey, 41 production units were chosen as the study area. The 1277 ha study area was included in the 2007 and 2010 production management plan. The general state of the stand, natural stand structure, and production methods and tools are the factors thought most strongly affect industrial wood material production yield; 26 variables representing these factors were evaluated in the study. Through multidimensional statistical analyses, including main components, factor and regression  analysis, we found that the most important factors affecting production yield were fertility, aspect of land, skidding method, stand structure, skidding distance, growing stock, transportation and harmful abiotic factors. Production units were divided into three groups based on yield rates and the 26 variables, using discriminate analysis. From the results of the study, a sample model can be developed to help forest managers predict and plan annual industrial wood production more sensitively and realistically.

  1. Molten salt pyrolysis of milled beech wood using an electrostatic precipitator for oil collection

    Directory of Open Access Journals (Sweden)

    Heidi S. Nygård

    2015-07-01

    Full Text Available A tubular electrostatic precipitator (ESP was designed and tested for collection of pyrolysis oil in molten salt pyrolysis of milled beech wood (0.5-2 mm. The voltage-current (V-I characteristics were studied, showing most stable performance of the ESP when N2 was utilized as inert gas. The pyrolysis experiments were carried out in FLiNaK and (LiNaK2CO3 over the temperature range of 450-600 ℃. The highest yields of pyrolysis oil were achieved in FLiNaK, with a maximum of 34.2 wt% at 500 ℃, followed by a decrease with increasing reactor temperature. The temperature had nearly no effect on the oil yield for pyrolysis in (LiNaK2CO3 (19.0-22.5 wt%. Possible hydration reactions and formation of HF gas during FLiNaK pyrolysis were investigated by simulations (HSC Chemistry software and measurements of the outlet gas (FTIR, but no significant amounts of HF were detected.

  2. Influences of different large mammalian fauna on dung beetle diversity in beech forests.

    Science.gov (United States)

    Enari, Hiroto; Koike, Shinsuke; Sakamaki, Haruka

    2013-01-01

    This paper focuses on biological relationships between mammalian species richness and the community structure of dung beetles in cool-temperate forests in the northernmost part of mainland Japan. The composition of beetle assemblages was evaluated at 3 sites in undisturbed beech forests with different mammalian fauna. In spring and summer 2009, beetles were collected at each site using pitfall traps baited with feces from Japanese macaques, Macaca fuscata Blyth (Primates: Cercopithecidae); Asiatic black bears, Ursus thibetanus Cuvier (Carnivora: Ursidae); Japanese serows, Capricornis crispus Temminck (Artiodactyla: Bovidae); and cattle. In the present study, 1,862 dung beetles representing 14 species were collected, and most dung beetles possessed the ecological characteristic of selecting specific mammalian feces. The present findings indicated that although species diversity in dung beetle assemblages was not necessarily positively correlated with mammalian species richness in cool-temperate forests, the absence of the macaque population directly resulted in the marked reduction of the beetle abundance, with the loss of the most frequent species, Aphodius eccoptus Bates (Coleoptera: Scarabaeidae) during spring.

  3. Wood decomposing abilities of diverse lignicolous fungi on nondecayed and decayed beech wood.

    Science.gov (United States)

    Fukasawa, Yu; Osono, Takashi; Takeda, Hiroshi

    2011-01-01

    We tested the decay abilities of 28 isolates from 28 lignicolous fungal species (Basidiomycota, Ascomycota and Zygomycota) with the pure culture test. We used beech wood powder in varying moisture conditions and decay stages (nondecayed, intermediately decayed and well decayed) as substrates. The weight loss in wood powder was -0.2-17.8%. Five isolates of Basidiomycota (Bjerkandera adusta, Mycena haematopus, Omphalotus guepiniformis, Trametes hirsuta, Trametes versicolor) caused high weight losses in nondecayed wood. We detected significant effects of decay stage on weight loss in wood in most isolates tested, whereas moisture content rarely had an effect on weight loss. Among Basidiomycota and Xylariaceae in Ascomycota weight loss was greater for nondecayed wood than for intermediately and well decayed wood. In contrast four isolates in Ascomycota (Scytalidium lignicola, Trichoderma hamatum, T. harzianum, T. koningii) caused substantial weight loss in intermediately and well decayed wood, although they rarely caused weight loss in nondecayed wood. Zygomycota caused low weight loss in wood. Wood decay stages also affected decomposition of wood chemical components. Acid-unhydrolyzable residue (AUR) decomposition was reduced, whereas holocellulose decomposition was stimulated by some strains of Basidiomycota and Ascomycota in well decayed wood. T. harzianum in particular caused significant weight loss of holocellulose in well decayed wood, although this fungus caused negligible weight loss of both AUR and holocellulose in nondecayed wood. We discuss these changes in the decay patterns of AUR and holocellulose with varying wood decay stages in relation to the role of fungal decomposition of woody debris in forests.

  4. Types of ectomycorrhiza of mature beech and spruce at ozone-fumigated and control forest plots.

    Science.gov (United States)

    Grebenc, Tine; Kraigher, Hojka

    2007-05-01

    In the Kranzberg forest near Freising (Germany) a novel "Free-Air Canopy O3 Exposure" system has been employed for analysing O3-induced responses from sub-cellular to ecosystem levels that are relevant for carbon balance and CO2 demand of 60-year-old beech trees. The below-ground ectomycorrhizal community was studied in two-fold ambient O3 concentrations (five cores per sampling) and in a control plot with an ambient O3 concentration (four cores per sampling). Five samplings were taken throughout two vegetation seasons (2003 and 2004). Types of ectomycorrhiza were determined by their morphological, anatomical and molecular characteristics and quantified by counting. The total number of mycorrhizal fine roots was higher at the fumigated plot as compared with the control site. The numbers of ectomycorrhizal types at the fumigated and control plots were 28 and 26, respectively. Cenococcum geophilum was present in all soil cores at all sampling times with a significant increase in abundance under ozone-fumigated trees. Other mycorrhizal types present at higher abundance at the fumigated than at the control plot were identified as Russula densiflora, R. fellea, R. illota, Tuber puberulum, Lactarius sp. 2 and Russula sp. 2. Some mycorrhizal types were present exclusively at the fumigated plot (Fagirhiza fusca, F. setifera, Lactarius acris, Piceirhiza nigra and Russula sp. 1). A possible ecological role for the abundant types of ectomycorrhiza and their putative application in bio-indication is discussed.

  5. The influence of fire retardants on the properties of beech and poplar veneers and plywood

    Directory of Open Access Journals (Sweden)

    Miljković Jovan

    2005-01-01

    Full Text Available Rising demands for fire resistance properties of wood construction and elements matching new standards have been an important part of building codes during the last decade. On the other side, lack of more detailed research on interaction between wood species and selected fire retardant chemicals even with basically one is evident. This is particularly truth with domestic wood species. In this research, beech and poplar veneers were immersed in 25% solutions of monoammonium phosphate (MP and sodium acetate (SA and impregnated for different periods of time. To determine the preliminary level of fire retardancy achieved in veneers before manufacturing of finished plywood, thermo gravimetric (TG and derivative thermo gravimetric (DTG methods were used. TG and DTG analyses of treated and untreated wood, as well as of fire retardants alone, were performed. The next properties of impregnated and no impregnated veneers and plywood were determined: absorption of imp regnant solution (A, weight percent gain (WPG of imp regnant, equilibrium moisture content (EMC, pH values, and in the case of plywood, strength and fire resistance. Fire resistance of plywood was tested in accordance with standard test for resistance to the effects of fire and the most efficient fire retardant, monoammonium phosphate, had the same result as TG/DTG analyses, which pointed out the validity of TG methods in predicting fire resistance of future products.

  6. Drought Stress Distribution Responses of Continental Beech Forests at their Xeric Edge in Central Europe

    Directory of Open Access Journals (Sweden)

    Éva Salamon-Albert

    2016-11-01

    Full Text Available In order to develop adequate adaptation measures for environmental vulnerability, we need detailed knowledge on the climatic performance of forest ecosystems. In this study, we aim to explore climate function variability of lowland beech forest distribution at a landscape scale. We also construct the response profiles of these forests near their xeric limit under wet continental climatic conditions. We studied distribution responses using presence-absence forest records and 18 bioclimatic variables. We performed exploratory factor analysis and frequency estimation to evaluate climate function distribution responses. We found that temperature adjusted precipitation measures during summer were the most important, followed by winter rainfall indices. The relative Drought Response Range (rDRR in the response profile presented the climate limitation function of the distribution. According to our results, higher level of climate function variability is associated with lower level of rDRR, presenting an ecological trade-off. Our results suggest that distribution functions of the rDRR, especially the Ombrothermic index, can be used as landscape indicators of drought stress. Consequently, rDRR could be a useful measure to assess regional climatic vulnerability of forest occurrence and distribution patterns.

  7. Fungal community in sclerotia of Japanese Beech forest soils in north eastern Japan

    Science.gov (United States)

    Fathia Amasya, Anzilni; Narisawa, Kazuhiko; Watanabe, Makiko

    2014-05-01

    Sclerotia are resting structures of ectomycorrhizal fungi and appear as a response to unfavorable environmental conditions such as desiccation. They are hard, black, comparatively smooth and mostly spherical. Sclerotia are formed in rhizosphere and the 14C ages of sclerotia from A horizons of volcanic ash soils may range from modern until ca. 100~1,200 yr B.P. Most sclerotia-forming fungal species are known to be host-specific plant pathogens and therefore their abundance may indicate the presence of their host plants. The purpose of this study was to investigate fungal communities in sclerotia with an interest in describing the existing or may have previously existed host plant community. To investigate fungal community inside of sclerotia by 16S rDNA gene clone library, several hundred of sclerotia (ca. 1g) were collected from Fagus crenata forest soil in north eastern Japan. The rDNA ITS regions were then amplified by the PCR using primer pair ITS-1F/ITS-4. Aliquots of the amplified DNA were digested with restriction endonucleases AluI, Hae III, and HhaI to obtain ITS-RFLPs. To obtain the fungal community profiles a quenching fluorescence primer was used for real-time quantitative PCR (qPCR) assay to monitor the PCR amplification and then used for T-RFLP. The predominant group determined by clone library analysis from the sclerotia was Ascomycota: Arthrinium arundinis, which has been reported to be one of the soil fungal species responsible for bamboo degradation and a pathogen for many species belonging to Poaceae family.

  8. Tree-ring stable isotopes reveal twentieth-century increases in water-use efficiency of Fagus sylvatica and Nothofagus spp. in Italian and Chilean mountains.

    Science.gov (United States)

    Tognetti, Roberto; Lombardi, Fabio; Lasserre, Bruno; Cherubini, Paolo; Marchetti, Marco

    2014-01-01

    Changes in intrinsic water use efficiency (iWUE) were investigated in Fagus sylvatica and Nothofagus spp. over the last century. We combined dendrochronological methods with dual-isotope analysis to investigate whether atmospheric changes enhanced iWUE of Fagus and Nothofagus and tree growth (basal area increment, BAI) along latitudinal gradients in Italy and Chile. Post-maturation phases of the trees presented different patterns in δ13C, Δ13C, δ18O, Ci (internal CO2 concentration), iWUE, and BAI. A continuous enhancement in isotope-derived iWUE was observed throughout the twentieth century, which was common to all sites and related to changes in Ca (ambient CO2 concentration) and secondarily to increases in temperature. In contrast to other studies, we observed a general increasing trend of BAI, with the exception of F. sylvatica in Aspromonte. Both iWUE and BAI were uncoupled with the estimated drought index, which is in agreement with the absence of enduring decline in tree growth. In general, δ13C and δ18O showed a weak relationship, suggesting the major influence of photosynthetic rate on Ci and δ13C, and the minor contribution of the regulation of stomatal conductance to iWUE. The substantial warming observed during the twentieth century did not result in a clear pattern of increased drought stress along these latitudinal transects, because of the variability in temporal trends of precipitation and in specific responses of populations.

  9. Stomatal ozone flux and visible leaf injury in native juvenile trees of Fagus sylvatica L.: a field study from the Jizerske hory Mts., the Czech Republic.

    Science.gov (United States)

    Vlasáková-Matoušková, Leona; Hůnová, Iva

    2015-07-01

    The study was carried out at six sites in the Jizerskehory Mts. in the north of the Czech Republic. At all these sites, ranging in altitude between 460 and 962 m a. s. l., and during the period from June to September in 2008, O3 concentrations and environmental parameters important for accumulated stomatal O3 flux (AFst) into Fagus sylvatica leaves were measured. At five sites, visible injury on Fagus sylvatica L. juvenile tree leaves was observed. A combination of actual O3 levels in the Jizerkehory Mts. and environmental conditions, though relative air humidity and air temperature significantly limited stomatal conductance, has been sufficient enough to cause O3 uptake exceeding the critical level (CL) for forest ecosystems. The AFst values ranged between 13.4 and 22.3 mmol O3 m(-2). The CL for the accumulated stomatal flux of O3 above a flux threshold 1.6 nmol m(-2) s(-1) (AFst1.6) was exceeded at all sites from ca 45 to 270% (160% on average). The CL of 5 ppm h(-1) for AOT40 (accumulated O3 exposure above threshold of 40 ppb) was exceeded at four sites. The relationship between visible injury on O3 indices was found. The conclusions based on AOT40 and AFSt are not the same. AFSt has been determined as better predictor of visible injury than AOT40.

  10. Tree-ring stable isotopes reveal twentieth-century increases in water-use efficiency of Fagus sylvatica and Nothofagus spp. in Italian and Chilean mountains.

    Directory of Open Access Journals (Sweden)

    Roberto Tognetti

    Full Text Available Changes in intrinsic water use efficiency (iWUE were investigated in Fagus sylvatica and Nothofagus spp. over the last century. We combined dendrochronological methods with dual-isotope analysis to investigate whether atmospheric changes enhanced iWUE of Fagus and Nothofagus and tree growth (basal area increment, BAI along latitudinal gradients in Italy and Chile. Post-maturation phases of the trees presented different patterns in δ13C, Δ13C, δ18O, Ci (internal CO2 concentration, iWUE, and BAI. A continuous enhancement in isotope-derived iWUE was observed throughout the twentieth century, which was common to all sites and related to changes in Ca (ambient CO2 concentration and secondarily to increases in temperature. In contrast to other studies, we observed a general increasing trend of BAI, with the exception of F. sylvatica in Aspromonte. Both iWUE and BAI were uncoupled with the estimated drought index, which is in agreement with the absence of enduring decline in tree growth. In general, δ13C and δ18O showed a weak relationship, suggesting the major influence of photosynthetic rate on Ci and δ13C, and the minor contribution of the regulation of stomatal conductance to iWUE. The substantial warming observed during the twentieth century did not result in a clear pattern of increased drought stress along these latitudinal transects, because of the variability in temporal trends of precipitation and in specific responses of populations.

  11. European visit

    CERN Multimedia

    2006-01-01

    The European Commissioner for Science and Research, Janez Potočnik, (on the right) visited the CMS assembly hall accompanied by Jim Virdee, Deputy Spokesman of CMS (on the left), and Robert Aymar, Director-General of CERN. The European Commissioner for Science and Research, Janez Potočnik, visited CERN on Tuesday 31 January. He was welcomed by the Director-General, Robert Aymar, who described the missions and current activities of CERN to him, in particular the realisation of the LHC with its three components: accelerator, detectors, storage and processing of data. The European Commissioner then visited the CMS assembly hall, then the hall for testing the LHC magnets and the ATLAS cavern. During this first visit since his appointment at the end of 2004, Janez Potočnik appeared very interested by the operation of CERN, an example of successful scientific co-operation on a European scale. The many projects (30 on average) that CERN and the European Commission carry out jointly for the benefit of res...

  12. Contributions to the phytocoenological study of the beech forests of the Luzulo-Fagetum type in the Oraştie river basin (Central-Western Romania

    Directory of Open Access Journals (Sweden)

    Petru BURESCU

    2012-11-01

    Full Text Available n the current paper we present a phytocoenologic study of the phytocoenoses of the association Luzulo albidae-Fagetum sylvaticae Zólyomi 1955 (Syn.: Hieracio rotundati-Fagetum (Vida 1963 Täuber 1987, Dechampsio flexuosae-Fagetum Soó 1962, Luzulo-Fagetum silvaticae Beldie 1951 Morariu et al. 1968 identified in the acidophylous beech forests of the Orăştie river basin, situated in the central-western part of Romania. The characterisation of the association under analysis as well as the presentation of the synthetic table have been done by selecting the most representative relevées performed in the beech forests of the Luzulo-Fagetum type belonging to the Orăştie river. The phytocoenoses of these beech forests were analysed in terms of physiognomy and floristic composition, life forms spectrum, floristic elements, and ecological indices.

  13. Realizing Mitigation Efficiency of European Commercial Forests by Climate Smart Forestry.

    Science.gov (United States)

    Yousefpour, Rasoul; Augustynczik, Andrey Lessa Derci; Reyer, Christopher P O; Lasch-Born, Petra; Suckow, Felicitas; Hanewinkel, Marc

    2018-01-10

    European temperate and boreal forests sequester up to 12% of Europe's annual carbon emissions. Forest carbon density can be manipulated through management to maximize its climate mitigation potential, and fast-growing tree species may contribute the most to Climate Smart Forestry (CSF) compared to slow-growing hardwoods. This type of CSF takes into account not only forest resource potentials in sequestering carbon, but also the economic impact of regional forest products and discounts both variables over time. We used the process-based forest model 4 C to simulate European commercial forests' growth conditions and coupled it with an optimization algorithm to simulate the implementation of CSF for 18 European countries encompassing 68.3 million ha of forest (42.4% of total EU-28 forest area). We found a European CSF policy that could sequester 7.3-11.1 billion tons of carbon, projected to be worth 103 to 141 billion euros in the 21st century. An efficient CSF policy would allocate carbon sequestration to European countries with a lower wood price, lower labor costs, high harvest costs, or a mixture thereof to increase its economic efficiency. This policy prioritized the allocation of mitigation efforts to northern, eastern and central European countries and favored fast growing conifers Picea abies and Pinus sylvestris to broadleaves Fagus sylvatica and Quercus species.

  14. Immunoglobulin E-mediated sensitization to pine and beech dust in relation to wood dust exposure levels and respiratory symptoms in the furniture industry.

    Science.gov (United States)

    Schlünssen, Vivi; Kespohl, Sabine; Jacobsen, Gitte; Raulf-Heimsoth, Monika; Schaumburg, Inger; Sigsgaard, Torben

    2011-03-01

    Wood dust exposure may cause Immunoglobulin E (IgE)-mediated allergic diseases. Our objectives were to estimate pine and beech dust sensitization rates among woodworkers and a reference group, explore the association between exposure and sensitization and between sensitization and respiratory symptoms, and finally investigate the impact of proteinogenic specific IgE (sIgE) epitopes on respiratory symptoms. In a Danish study among 52 furniture factories and 2 reference factories, we evaluated the workers' asthma and rhinitis status using questionnaires and blood samples collected from 1506 woodworkers and 195 references. Workers with asthma symptoms (N=298), a random study sample (N=399) and a random rhinitis sample (N=100) were evaluated for IgE-mediated sensitization to pine and beech dust. The prevalence of pine and beech sensitization among current woodworkers was 1.7 and 3.1%, respectively. No differences in sensitization rates were found between woodworkers and references, but the prevalence of wood dust sensitization was dose-dependently associated with the current level of wood dust exposure. No relation was observed between wood dust sensitization per se and respiratory symptoms. Only symptomatic subjects had proteinogenic IgE epitopes to pine. Increased odds ratios for sIgE based on proteinogenic epitopes to beech and respiratory symptoms were found, although they were not statistically significant. Sensitization rates to pine and beech were the same for woodworkers and references but dependent on the current wood dust exposure level. The importance of beech and pine wood sensitization is limited, but may be of clinical significance for a few workers if the IgE epitopes are proteinogenic.

  15. Major characteristics of mixed fir and beech virgin forests in the National park Biogradska Gora in Montenegro

    Directory of Open Access Journals (Sweden)

    Čurović Milić

    2011-01-01

    Full Text Available In order to manage forest ecosystems at a sufficiently high biodiversity level it is necessary to study the ecological, structural and production characteristics of virgin forests. The research was directed towards identifying the characteristics of mixed fir and beech forests (Abieti-Fagetum s. lat. in the area of the strict reserve of the National Park Biogradska Gora in Montenegro. Basic characteristics of these forests were researched in the process of definition of forest types. In this manner, it is for the first time that a realistic base for typological management of forests and forest ecosystems with similar ecological and structural characteristics was provided for the specific sites.

  16. CASIROZ: Root parameters and types of ectomycorrhiza of young beech plants exposed to different ozone and light regimes.

    Science.gov (United States)

    Zeleznik, P; Hrenko, M; Then, C; Koch, N; Grebenc, T; Levanic, T; Kraigher, H

    2007-03-01

    Tropospheric ozone (O(3)) triggers physiological changes in leaves that affect carbon source strength leading to decreased carbon allocation below-ground, thus affecting roots and root symbionts. The effects of O(3) depend on the maturity-related physiological state of the plant, therefore adult and young forest trees might react differently. To test the applicability of young beech plants for studying the effects of O(3) on forest trees and forest stands, beech seedlings were planted in containers and exposed for two years in the Kranzberg forest FACOS experiment (Free-Air Canopy O(3) Exposure System, http://www.casiroz.de ) to enhanced ozone concentration regime (ambient [control] and double ambient concentration, not exceeding 150 ppb) under different light conditions (sun and shade). After two growing seasons the biomass of the above- and below-ground parts, beech roots (using WinRhizo programme), anatomical and molecular (ITS-RFLP and sequencing) identification of ectomycorrhizal types and nutrient concentrations were assessed. The mycorrhization of beech seedlings was very low ( CA. 5 % in shade, 10 % in sun-grown plants), no trends were observed in mycorrhization (%) due to ozone treatment. The number of Cenococcum geophilum type of ectomycorrhiza, as an indicator of stress in the forest stands, was not significantly different under different ozone treatments. It was predominantly occurring in sun-exposed plants, while its majority share was replaced by Genea hispidula in shade-grown plants. Different light regimes significantly influenced all parameters except shoot/root ratio and number of ectomycorrhizal types. In the ozone fumigated plants the number of types, number of root tips per length of 1 to 2 mm root diameter, root length density per volume of soil and concentration of Mg were significantly lower than in control plants. Trends to a decrease were found in root, shoot, leaf, and total dry weights, total number of root tips, number of vital

  17. Some physical properties of laminated veneer lumbers (LVLs produced from rotary-peeled veneers of eucalyptus, beech, and poplar

    Directory of Open Access Journals (Sweden)

    Bekir Bal

    2013-04-01

    Full Text Available In this study, laminated veneer lumbers were produced with rotary peeled veneers from eucalyptus, beech and poplar using urea-formaldehyde, melamine-urea-formaldehyde and phenol-formaldehyde adhesives. Air-dried density, equilibrium moisture content, thickness swelling, and water absorption were determined. The obtained data were evaluated with variance analysis. Results showed that adhesives type influenced equilibrium moisture content, and equilibrium moisture content of LVLs bonded with phenol-formaldehyde was the highest, and that of LVLs bonded with melamine-urea-formaldehyde was the lowest. In addition, results showed that tree species, adhesive type, and soaking time were effective significantly on the thickness swelling and water absorption

  18. Response of Soil Respiration to Repeated Extreme Events in a Temperate Beech Forest in Austria

    Science.gov (United States)

    Leitner, S.; Kobler, J.; Holtermann, C.; Zechmeister-Boltenstern, S.; Saronjic, N.; Zimmermann, M.

    2015-12-01

    Climate change research predicts an increase in weather extremes like severe droughts and heavy rainfalls in central Europe. Since soil moisture is one of the most important drivers of soil respiration, a change in precipitation regime is likely to influence ecosystem C cycling. During drying of soils, soil microbial activity decreases and dead microbial cells, osmolytes, and semi-decomposed organic matter accumulate. When dry soils are rewetted, this easily-decomposable C leads to a pulse in soil respiration, a phenomenon known as "Birch-effect". In terms of annual soil CO2emissions, it is not clear whether these post-wetting respiration pulses outweigh or even overcompensate preceding drought-induced reductions in soil respiration. To investigate the impact of repeated drought and heavy rainfall events, a two-year precipitation manipulation experiment was conducted in an Austrian beech forest. Experimental plots were covered with transparent roofs to exclude rainfall, and an irrigation system was used to simulate heavy rainfall events. Control plots received natural precipitation. Soil respiration was monitored 3-hourly with an automatic static chamber system connected to an infrared CO2 analyzer. Soil temperature (Tsoil) and volumetric water content (VWC) were recorded with a datalogger. Various statistical models were tested to describe the relationship between soil respiration, Tsoiland VWC. Our results showed that repeated extreme events strongly reduced variation in soil respiration. Droughts significantly reduced soil respiration, and reductions depended on the length of the drought period. Post-wetting respiration pulses did not outweigh drought-induced reductions. Temperature sensitivity of soil respiration was best described with a Lloyd & Taylor model. Furthermore, in stressed plots VWC became limiting for soil respiration. Overall, our data corroborate the importance of the precipitation regime for soil respiration.

  19. Seasonal evolution of carbon allocation to biomass in a French beech forest.

    Science.gov (United States)

    Heid, Laura; Calvaruso, Christophe; Conil, Sébastien; Turpault, Marie-Pierre; Longdoz, Bernard

    2015-04-01

    The objective of this study is to get a better understanding of ecosystem behavior in term of assimilated carbon (C) use. In the global climate change context, this C allocation could play a critical role in predicting ecosystems long terms emissions (Trumbore 2006) and has become a major goal of several emergent studies The monthly C allocation has been determined for a 50-year old beech forest located in north-east of France through the quantification of Gross Primary Production (GPP), biomass production and some of its components (holocelluloses, lignin). In a second phase, the potential factors influencing those productions and allocations throughout a year have been assessed. The temporal evolution of GPP was obtained from the partitioning of eddy-covariance flux measurements and monitored for one year. It was connected to tree aboveground C biomass growth at a monthly step. To achieve the latter, site specific allometric equations were used with trees diameter at breast height (DBH) measured monthly during the growing season on one hand and, on the other hand, C concentrations were deduced from analyses on trunk cores (sampled monthly) and on leaves and bulk branches cores (sampled at the beginning and at the end of the growing season). The C allocated to the aboveground biomass was then estimated, along with the portion allocated to structural C. The results show the delay existing between the end of the tree growth and carbon assimilation. We analyze the possibility to explain this divergence by a compensation coming from the C concentration evolution. Keywords: Carbon allocation, Forest, Biomass production, Carbon concentration, Eddy Covariance Trumbore S. 2006. Carbon Respired by Terrestrial Ecosystems - Recent Progress and Challenges. Global Change Biology 12 (2): 141-53.

  20. Relaxed molecular clock provides evidence for long-distance dispersal of Nothofagus (southern beech.

    Directory of Open Access Journals (Sweden)

    Michael Knapp

    2005-01-01

    Full Text Available Nothofagus (southern beech, with an 80-million-year-old fossil record, has become iconic as a plant genus whose ancient Gondwanan relationships reach back into the Cretaceous era. Closely associated with Wegener's theory of "Kontinentaldrift", Nothofagus has been regarded as the "key genus in plant biogeography". This paradigm has the New Zealand species as passengers on a Moa's Ark that rafted away from other landmasses following the breakup of Gondwana. An alternative explanation for the current transoceanic distribution of species seems almost inconceivable given that Nothofagus seeds are generally thought to be poorly suited for dispersal across large distances or oceans. Here we test the Moa's Ark hypothesis using relaxed molecular clock methods in the analysis of a 7.2-kb fragment of the chloroplast genome. Our analyses provide the first unequivocal molecular clock evidence that, whilst some Nothofagus transoceanic distributions are consistent with vicariance, trans-Tasman Sea distributions can only be explained by long-distance dispersal. Thus, our analyses support the interpretation of an absence of Lophozonia and Fuscospora pollen types in the New Zealand Cretaceous fossil record as evidence for Tertiary dispersals of Nothofagus to New Zealand. Our findings contradict those from recent cladistic analyses of biogeographic data that have concluded transoceanic Nothofagus distributions can only be explained by vicariance events and subsequent extinction. They indicate that the biogeographic history of Nothofagus is more complex than envisaged under opposing polarised views expressed in the ongoing controversy over the relevance of dispersal and vicariance for explaining plant biodiversity. They provide motivation and justification for developing more complex hypotheses that seek to explain the origins of Southern Hemisphere biota.

  1. European Cinema

    NARCIS (Netherlands)

    Elsaesser, Thomas

    2005-01-01

    In the face of renewed competition from Hollywood since the early 1980s and the challenges posed to Europe's national cinemas by the fall of the Wall in 1989, independent filmmaking in Europe has begun to re-invent itself. European Cinema: Face to Face with Hollywood re-assesses the different

  2. Photosynthetic traits of Siebold's beech seedlings in changing light conditions by removal of shading trees under elevated CO₂.

    Science.gov (United States)

    Watanabe, M; Kitaoka, S; Eguchi, N; Watanabe, Y; Satomura, T; Takagi, K; Satoh, F; Koike, T

    2016-01-01

    The purpose of this study was to obtain basic information on acclimation capacity of photosynthesis in Siebold's beech seedlings to increasing light intensity under future elevated CO2 conditions. We monitored leaf photosynthetic traits of these seedlings in changing light conditions (before removal of shade trees, the year after removal of shade trees and after acclimation to open conditions) in a 10-year free air CO2 enrichment experiment in northern Japan. Elevated CO2 did not affect photosynthetic traits such as leaf mass per area, nitrogen content and biochemical photosynthetic capacity of chloroplasts (i.e. maximum rate of carboxylation and maximum rate of electron transport) before removal of the shade trees and after acclimation to open conditions; in fact, a higher net photosynthetic rate was maintained under elevated CO2 . However, in the year after removal of the shade trees, there was no increase in photosynthesis rate under elevated CO2 conditions. This was not due to photoinhibition. In ambient CO2 conditions, leaf mass per area and nitrogen content were higher in the year after removal of shade trees than before, whereas there was no increase under elevated CO2 conditions. These results indicate that elevated CO2 delays the acclimation of photosynthetic traits of Siebold's beech seedlings to increasing light intensity. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. Some properties of LVL composed of poplar and beech veneer and possibilities of their application for window frames

    Directory of Open Access Journals (Sweden)

    Zdravković Vladislav

    2017-01-01

    Full Text Available The subject of this paper was a research of physical and mechanical properties of LVL composed of peeled poplar veneers in core layers and only outer layers of beech peeled veneers, so as the examination of window frame glue joint strength produced of this material. LVL boards have been hot pressed in industrial conditions, using appropriate phenol formaldehyde (PP adhesive. Samples for corner window frame glue joint strength testing were glued with PVAc D4 class adhesive. Statistical analysis showed that there were significant differences both in moisture content and density of LVL boards regarding their thickness, while in the case of hardness this difference did not exist. Examinations of LVL glue line shear strength showed that both phenol formaldehyde (PP and PVAc D4 class adhesives fulfilled standard requirements. The results of corner window frame double tenon glue joint strength produced from combined poplar-beech veneer LVL indicated that such material could be used to produce window frame corner joint, strong enough to withstand the additional load, without an increase of the cross section.

  4. Biological control of beech and hornbeam affects species richness via changes in the organic layer, pH and soil moisture characteristics

    NARCIS (Netherlands)

    Kooijman, A.M.; Cammeraat, E.

    2010-01-01

    1.  Litter quality is an important ecosystem factor, which may affect undergrowth species richness via decomposition and organic layers directly, but also via longer-term changes in soil pH and moisture. The impact of beech trees with low-degradable and hornbeam trees with high-degradable litter on

  5. Validation of PROBA-V GEOV1 and MODIS C5 & C6 fAPAR Products in a Deciduous Beech Forest Site in Italy

    Czech Academy of Sciences Publication Activity Database

    Nestola, E.; Sanchez-Zapero, J.; Latorre, C.; Mazzenga, F.; Matteucci, G.; Calfapietra, Carlo; Camacho, F.

    2017-01-01

    Roč. 9, č. 2 (2017), č. článku 126. ISSN 2072-4292 Institutional support: RVO:86652079 Keywords : fAPAR * validation * PROBA-V GEOV1 * MODIS C5 * MODIS C6 * beech forest * up-scaling * GCOS requirements * in-situ comparison and evaluation Subject RIV: EH - Ecology, Behaviour Impact factor: 3.244, year: 2016

  6. Assessment of a relaxed eddy accumulation for measurements of fluxes of biogenic volatile organic compounds: Study over arable crops and a mature beech forest

    DEFF Research Database (Denmark)

    Gallagher, M.W.; Clayborough, R.; Beswick, K.M.

    2000-01-01

    A relaxed eddy accumulation (REA) system, based on the design by Beverland et al. (Journal of Geophysics Research 101 (D17) 22, 807-22, 815), for the measurement of biogenic VOC species was evaluated by intercomparison with an eddy correlation CO2 flux system over a mature deciduous beech canopy ...

  7. Stand dynamics in Fontainebleau; dynamics in beech forest structure and composition over 17 years in La Tillaie forest reserve, Fontainebleau, France

    NARCIS (Netherlands)

    Wijdeven, S.M.J.

    2004-01-01

    Developments in forest structure and composition were studied over a 17 year period in a near-natural beech forests reserve in Fontainebleau, France. In two 1ha plots, all individuals with a dbh > 5cm were mapped, identified and measured in 1983, 1990 and 2000. Individual growth was highly

  8. A new approach in the monitoring of the phytosanitary conditions of forests: the case of oak and beech stands in the Sicilian Regional Parks

    Directory of Open Access Journals (Sweden)

    Cinzia Rizza

    2016-10-01

    Full Text Available The objective of this study was to investigate the health conditions of oak and beech stands in the three Regional Parks of Sicily (Etna, Madonie and Nebrodi. A total of 81 sampling areas were investigated, 54 in oak stands and 27 in beech stands. The phytosanitary conditions of each tree within the respective sampling area was expressed with a synthetic index namely phytosanitary class (PC. Oak stands showed severe symptoms of decline, with 85% of the sampling areas including symptomatic trees. In general, beech stands were in better condition, with the exception of Nebrodi Park, where trees showed severe symptoms of decline. On oak trees, infections of fungal pathogens were also observed, including Biscogniauxia mediterranea, Polyporus sp., Fistulina hepatica, Mycrosphaera alphitoides and Armillaria sp. By contrast, on beech trees Biscogniauxia nummularia, Fomes fomentarius and Neonectria radicicola were recognized. Furthermore, twenty-two permanent sampling areas were delimited with the aim of monitoring regularly the health conditions of forests in these three parks.

  9. Impact of repeated dry-wet cycles on soil CO2 efflux in a beech forest

    Science.gov (United States)

    Leitner, Sonja; Saronjic, Nermina; Kobler, Johannes; Holtermann, Christian; Zechmeister-Boltenstern, Sophie; Zimmermann, Michael

    2015-04-01

    Climate change research predicts that both frequency and intensity of weather extremes such as severe droughts and heavy rainfall events will increase in mid Europe over the next decades. Because soil moisture is one of the major factors controlling microbially-driven soil processes, a changed moisture regime will impact soil organic matter (SOM) decomposition and nutrient cycling. This in turn can lead to feedback effects between altered precipitation and changed soil CO2 fluxes which can intensify climate change. Soil microorganisms can go into a state of dormancy or form inactive cysts to protect themselves from osmotic stress during soil drying. However, severe droughts increase microbial mortality which slows down SOM deco