WorldWideScience

Sample records for euroharp catchment network

  1. Basin characteristics and nutrient losses:the EUROHARP catchment network perspective

    Czech Academy of Sciences Publication Activity Database

    Bouraoui, F.; Grizzetti, B.; Adelskold, G.; Behrendt, H.; Miguel, I.; Silgram, M.; Gómez, S.; Granlund, K.; Hoffmann, L.; Kronvang, B.; Lázár, A.; Mimikou, M.; Passarella, G.; Panagos, P.; Reisser, H.; Schwarzl, B.; Siderius, C.; Sileika, A.S.; Smit, P. M.; Sugrue, R.; Liedekerke, M.; Žaloudík, Jiří

    2009-01-01

    Roč. 11, č. 3 (2009), s. 515-525 ISSN 1464-0325 Institutional research plan: CEZ:AV0Z6087904 Keywords : EUROHARP * geological * hydro-geological perspectives Subject RIV: DJ - Water Pollution ; Quality Impact factor: 2.225, year: 2009

  2. Collaborative Catchment-Scale Water Quality Management using Integrated Wireless Sensor Networks

    Science.gov (United States)

    Zia, Huma; Harris, Nick; Merrett, Geoff

    2013-04-01

    Electronics and Computer Science, University of Southampton, United Kingdom Summary The challenge of improving water quality (WQ) is a growing global concern [1]. Poor WQ is mainly attributed to poor water management and outdated agricultural activities. We propose that collaborative sensor networks spread across an entire catchment can allow cooperation among individual activities for integrated WQ monitoring and management. We show that sharing information on critical parameters among networks of water bodies and farms can enable identification and quantification of the contaminant sources, enabling better decision making for agricultural practices and thereby reducing contaminants fluxes. Motivation and results Nutrient losses from land to water have accelerated due to agricultural and urban pursuits [2]. In many cases, the application of fertiliser can be reduced by 30-50% without any loss of yield [3]. Thus information about nutrient levels and trends around the farm can improve agricultural practices and thereby reduce water contamination. The use of sensor networks for monitoring WQ in a catchment is in its infancy, but more applications are being tested [4]. However, these are focussed on local requirements and are mostly limited to water bodies. They have yet to explore the use of this technology for catchment-scale monitoring and management decisions, in an autonomous and dynamic manner. For effective and integrated WQ management, we propose a system that utilises local monitoring networks across a catchment, with provision for collaborative information sharing. This system of networks shares information about critical events, such as rain or flooding. Higher-level applications make use of this information to inform decisions about nutrient management, improving the quality of monitoring through the provision of richer datasets of catchment information to local networks. In the full paper, we present example scenarios and analyse how the benefits of

  3. Establishment of a hydrological monitoring network in a tropical African catchment: An integrated participatory approach

    Science.gov (United States)

    Gomani, M. C.; Dietrich, O.; Lischeid, G.; Mahoo, H.; Mahay, F.; Mbilinyi, B.; Sarmett, J.

    Sound decision making for water resources management has to be based on good knowledge of the dominant hydrological processes of a catchment. This information can only be obtained through establishing suitable hydrological monitoring networks. Research catchments are typically established without involving the key stakeholders, which results in instruments being installed at inappropriate places as well as at high risk of theft and vandalism. This paper presents an integrated participatory approach for establishing a hydrological monitoring network. We propose a framework with six steps beginning with (i) inception of idea; (ii) stakeholder identification; (iii) defining the scope of the network; (iv) installation; (v) monitoring; and (vi) feedback mechanism integrated within the participatory framework. The approach is illustrated using an example of the Ngerengere catchment in Tanzania. In applying the approach, the concept of establishing the Ngerengere catchment monitoring network was initiated in 2008 within the Resilient Agro-landscapes to Climate Change in Tanzania (ReACCT) research program. The main stakeholders included: local communities; Sokoine University of Agriculture; Wami Ruvu Basin Water Office and the ReACCT Research team. The scope of the network was based on expert experience in similar projects and lessons learnt from literature review of similar projects from elsewhere integrated with local expert knowledge. The installations involved reconnaissance surveys, detailed surveys, and expert consultations to identify best sites. First, a Digital Elevation Model, land use, and soil maps were used to identify potential monitoring sites. Local and expert knowledge was collected on flow regimes, indicators of shallow groundwater plant species, precipitation pattern, vegetation, and soil types. This information was integrated and used to select sites for installation of an automatic weather station, automatic rain gauges, river flow gauging stations

  4. US Forest Service Experimental Forests and Ranges Network: a continental research platform for catchment-scale research

    Science.gov (United States)

    Daniel Neary; Deborah Hayes; Lindsey Rustad; James Vose; Gerald Gottfried; Stephen Sebesteyn; Sherri Johnson; Fred Swanson; Mary Adams

    2012-01-01

    The US Forest Service initiated its catchment research program in 1909 with the first paired catchment study at Wagon Wheel Gap, Colorado, USA. It has since developed the Experimental Forests and Ranges Network, with over 80 long-term research study sites located across the contiguous USA, Alaska, Hawaii, and the Caribbean. This network provides a unique, powerful...

  5. Real-time isotope monitoring network at the Biosphere 2 Landscape Evolution Observatory resolves meter-to-catchment scale flow dynamics

    Science.gov (United States)

    Volkmann, T. H. M.; Van Haren, J. L. M.; Kim, M.; Harman, C. J.; Pangle, L.; Meredith, L. K.; Troch, P. A.

    2017-12-01

    Stable isotope analysis is a powerful tool for tracking flow pathways, residence times, and the partitioning of water resources through catchments. However, the capacity of stable isotopes to characterize catchment hydrological dynamics has not been fully exploited as commonly used methodologies constrain the frequency and extent at which isotopic data is available across hydrologically-relevant compartments (e.g. soil, plants, atmosphere, streams). Here, building upon significant recent developments in laser spectroscopy and sampling techniques, we present a fully automated monitoring network for tracing water isotopes through the three model catchments of the Landscape Evolution Observatory (LEO) at the Biosphere 2, University of Arizona. The network implements state-of-the-art techniques for monitoring in great spatiotemporal detail the stable isotope composition of water in the subsurface soil, the discharge outflow, and the atmosphere above the bare soil surface of each of the 330-m2 catchments. The extensive valving and probing systems facilitate repeated isotope measurements from a total of more than five-hundred locations across the LEO domain, complementing an already dense array of hydrometric and other sensors installed on, within, and above each catchment. The isotope monitoring network is operational and was leveraged during several months of experimentation with deuterium-labelled rain pulse applications. Data obtained during the experiments demonstrate the capacity of the monitoring network to resolve sub-meter to whole-catchment scale flow and transport dynamics in continuous time. Over the years to come, the isotope monitoring network is expected to serve as an essential tool for collaborative interdisciplinary Earth science at LEO, allowing us to disentangle changes in hydrological behavior as the model catchments evolve in time through weathering and colonization by plant communities.

  6. A distributed water level network in ephemeral river reaches to identify hydrological processes within anthropogenic catchments

    Science.gov (United States)

    Sarrazin, B.; Braud, I.; Lagouy, M.; Bailly, J. S.; Puech, C.; Ayroles, H.

    2009-04-01

    In order to study the impact of land use change on the water cycle, distributed hydrological models are more and more used, because they have the ability to take into account the land surface heterogeneity and its evolution due to anthropogenic pressure. These models provide continuous distributed simulations of streamflow, runoff, soil moisture, etc, which, ideally, should be evaluated against continuous distributed measurements, taken at various scales and located in nested sub-catchments. Distributed network of streamflow gauging stations are in general scarce and very expensive to maintain. Furthermore, they can hardly be installed in the upstream parts of the catchments where river beds are not well defined. In this paper, we present an alternative to these standard streamflow gauging stations network, based on self powered high resolution water level sensors using a capacitive water height data logger. One of their advantages is that they can be installed even in ephemeral reaches and from channel head locations to high order streams. Furthermore, these innovative and easily adaptable low cost sensors offer the possibility to develop in the near future, a wireless network application. Such a network, including 15 sensors has been set up on nested watersheds in small and intermittent streams of a 7 km² catchment, located in the mountainous "Mont du Lyonnais" area, close to the city of Lyon, France. The land use of this catchment is mostly pasture, crop and forest, but the catchment is significantly affected by human activities, through the existence of a dense roads and paths network and urbanized areas. The equipment provides water levels survey during precipitation events in the hydrological network with a very accurate time step (2 min). Water levels can be related to runoff production and catchment response as a function of scale. This response will depend, amongst other, on variable soil water storage capacity, physiographic data and characteristics of

  7. Catchment & sewer network simulation model to benchmark control strategies within urban wastewater systems

    DEFF Research Database (Denmark)

    Saagi, Ramesh; Flores Alsina, Xavier; Fu, Guangtao

    2016-01-01

    This paper aims at developing a benchmark simulation model to evaluate control strategies for the urban catchment and sewer network. Various modules describing wastewater generation in the catchment, its subsequent transport and storage in the sewer system are presented. Global/local overflow based...... evaluation criteria describing the cumulative and acute effects are presented. Simulation results show that the proposed set of models is capable of generating daily, weekly and seasonal variations as well as describing the effect of rain events on wastewater characteristics. Two sets of case studies...

  8. Catchment organisation, free energy dynamics and network control on critical zone water flows

    Science.gov (United States)

    Zehe, E.; Ehret, U.; Kleidon, A.; Jackisch, C.; Scherer, U.; Blume, T.

    2012-04-01

    From a functional point of view the catchment system is compiled by patterns of permeable and less permeable textural elements - soils and mother rock. Theses textural elements provide a mechanical stabile matrix for growth of terrestrial biota and soil formation. They furthermore organize subsurface storage of water against gravity, dissolved nutrients and heat. Storage against gravity is only possible because water acts as wetting fluid and is thus attracted by capillary forces in the pores space. Capillarity increases non-linearly with decreasing pore size and is zero at local saturation. The pore size distribution of a soil is thus characteristic of its capability to store water against losses such as drainage, evaporation and root extraction and at the same time a fingerprint of the work that has been performed by physical, chemical and biological processes to weather solid mother rock and form a soil. A strong spatial covariance of soil hydraulic properties within the same soil type is due to a fingerprint of strong spatial organization at small scales. Spatial organization at the hillslope scale implies the existence of a typical soil catena i.e. that hillslopes exhibit the same/ downslope sequence of different soils types. Textural storage elements are separated by strikingly self-similar network like structures, we name them flow structures. These flow structures are created in a self-reinforcing manner by work performed either by biota like earth worms and plant roots or by dissipative processes such as soil cracking and water/fluvial erosion. Regardless of their different origin connected flow structures exhibit a highly similar functioning and similar characteristics: they allow for high mass flows at small driving potential gradients because specific flow resistance along the network is continuously very small. This implies temporal stability even during small extremes, due to the small amount of local momentum dissipation per unit mass flow, as well

  9. A spatially distributed isotope sampling network in a snow-dominated catchment for the quantification of snow meltwater

    Science.gov (United States)

    Rücker, Andrea; Boss, Stefan; Von Freyberg, Jana; Zappa, Massimiliano; Kirchner, James

    2017-04-01

    In mountainous catchments with seasonal snowpacks, river discharge in downstream valleys is largely sustained by snowmelt in spring and summer. Future climate warming will likely reduce snow volumes and lead to earlier and faster snowmelt in such catchments. This, in turn, may increase the risk of summer low flows and hydrological droughts. Improved runoff predictions are thus required in order to adapt water management to future climatic conditions and to assure the availability of fresh water throughout the year. However, a detailed understanding of the hydrological processes is crucial to obtain robust predictions of river streamflow. This in turn requires fingerprinting source areas of streamflow, tracing water flow pathways, and measuring timescales of catchment storage, using tracers such as stable water isotopes (18O, 2H). For this reason, we have established an isotope sampling network in the Alptal, a snowmelt-dominated catchment (46.4 km2) in Central-Switzerland, as part of the SREP-Drought project (Snow Resources and the Early Prediction of hydrological DROUGHT in mountainous streams). Precipitation and snow cores are analyzed for their isotopic signature at daily or weekly intervals. Three-week bulk samples of precipitation are also collected on a transect along the Alptal valley bottom, and along an elevational transect perpendicular to the Alptal valley axis. Streamwater samples are taken at the catchment outlet as well as in two small nested sub-catchments (automatic snow lysimeter system was developed, which also facilitates real-time monitoring of snowmelt events, system status and environmental conditions (air and soil temperature). Three lysimeter systems were installed within the catchment, in one forested site and two open field sites at different elevations, and have been operational since November 2016. We will present the isotope time series from our regular sampling network, as well as initial results from our snowmelt lysimeter sites. Our

  10. Dominant mechanisms for the delivery of fine sediment and phosphorus to fluvial networks draining grassland dominated headwater catchments.

    Science.gov (United States)

    Perks, M T; Owen, G J; Benskin, C McW H; Jonczyk, J; Deasy, C; Burke, S; Reaney, S M; Haygarth, P M

    2015-08-01

    Recent advances in monitoring technology have enabled high frequency, in-situ measurements of total phosphorus and total reactive phosphorus to be undertaken with high precision, whilst turbidity can provide an excellent surrogate for suspended sediment. Despite these measurements being fundamental to understanding the mechanisms and flow paths that deliver these constituents to river networks, there is a paucity of such data for headwater agricultural catchments. The aim of this paper is to deduce the dominant mechanisms for the delivery of fine sediment and phosphorus to an upland river network in the UK through characterisation of the temporal variability of hydrological fluxes, and associated soluble and particulate concentrations for the period spanning March 2012-February 2013. An assessment of the factors producing constituent hysteresis is undertaken following factor analysis (FA) on a suite of measured environmental variables representing the fluvial and wider catchment conditions prior to, and during catchment-wide hydrological events. Analysis indicates that suspended sediment is delivered to the fluvial system predominantly via rapidly responding pathways driven by event hydrology. However, evidence of complex, figure-of-eight hysteresis is observed following periods of hydrological quiescence, highlighting the importance of preparatory processes. Sediment delivery via a slow moving, probably sub-surface pathway does occur, albeit infrequently and during low magnitude events at the catchment outlet. Phosphorus is revealed to have a distinct hysteretic response to that of suspended sediment, with sub-surface pathways dominating. However, high magnitude events were observed to exhibit threshold-like behaviour, whereby activation and connection of usually disconnected depositional zones to the fluvial networks results in the movement of vast phosphorus fluxes. Multiple pathways are observed for particulate and soluble constituents, highlighting the

  11. GIS-based Approaches to Catchment Area Analyses of Mass Transit

    DEFF Research Database (Denmark)

    Andersen, Jonas Lohmann Elkjær; Landex, Alex

    2009-01-01

    Catchment area analyses of stops or stations are used to investigate potential number of travelers to public transportation. These analyses are considered a strong decision tool in the planning process of mass transit especially railroads. Catchment area analyses are GIS-based buffer and overlay...... analyses with different approaches depending on the desired level of detail. A simple but straightforward approach to implement is the Circular Buffer Approach where catchment areas are circular. A more detailed approach is the Service Area Approach where catchment areas are determined by a street network...... search to simulate the actual walking distances. A refinement of the Service Area Approach is to implement additional time resistance in the network search to simulate obstacles in the walking environment. This paper reviews and compares the different GIS-based catchment area approaches, their level...

  12. Catchment scale multi-objective flood management

    Science.gov (United States)

    Rose, Steve; Worrall, Peter; Rosolova, Zdenka; Hammond, Gene

    2010-05-01

    Rural land management is known to affect both the generation and propagation of flooding at the local scale, but there is still a general lack of good evidence that this impact is still significant at the larger catchment scale given the complexity of physical interactions and climatic variability taking place at this level. The National Trust, in partnership with the Environment Agency, are managing an innovative project on the Holnicote Estate in south west England to demonstrate the benefits of using good rural land management practices to reduce flood risk at the both the catchment and sub-catchment scales. The Holnicote Estate is owned by the National Trust and comprises about 5,000 hectares of land, from the uplands of Exmoor to the sea, incorporating most of the catchments of the river Horner and Aller Water. There are nearly 100 houses across three villages that are at risk from flooding which could potentially benefit from changes in land management practices in the surrounding catchment providing a more sustainable flood attenuation function. In addition to the contribution being made to flood risk management there are a range of other ecosystems services that will be enhanced through these targeted land management changes. Alterations in land management will create new opportunities for wildlife and habitats and help to improve the local surface water quality. Such improvements will not only create additional wildlife resources locally but also serve the landscape response to climate change effects by creating and enhancing wildlife networks within the region. Land management changes will also restore and sustain landscape heritage resources and provide opportunities for amenity, recreation and tourism. The project delivery team is working with the National Trust from source to sea across the entire Holnicote Estate, to identify and subsequently implement suitable land management techniques to manage local flood risk within the catchments. These

  13. Catchment Dispersion Mechanisms in an Urban Context

    Science.gov (United States)

    Gironas, J. A.; Mejia, A.; Rossel, F.; Rinaldo, A.; Rodriguez, F.

    2014-12-01

    Dispersion mechanisms have been examined in-depth in natural catchments in previous studies. However, these dispersion mechanisms have been studied little in urban catchments, where artificial transport elements and morphological arrangements are expected to modify travel times and mobilize excess rainfall from spatially distributed impervious sites. Thus, these features can modify the variance of the catchment's travel times and hence the total dispersion. This work quantifies the dispersion mechanisms in an urban catchment using the theory of transport by travel times as represented by the Urban Morpho-climatic Instantaneous Unit Hydrograph (U-McIUH) model. This model computes travel times based on kinematic wave theory and accounts explicitly for the path heterogeneities and altered connectivity patterns characteristic of an urban drainage network. The analysis is illustrated using the Aubinière urban catchment (France) as a case study. We found that kinematic dispersion is dominant for small rainfall intensities, whereas geomorphologic dispersion becomes more dominant for larger intensities. The total dispersion scales with the drainage area in a power law fashion. The kinematic dispersion is dominant across spatial scales up to a threshold of approximately 2-3 km2, after which the geomorphologic dispersion becomes more dominant. Overall, overland flow is responsible for most of the dispersion, while conduits tend to counteract the increase of the geomorphologic dispersion with a negative kinematic dispersion. Further studies with other catchments are needed to assess whether the latter is a general feature of urban drainage networks.

  14. Use of spatially distributed time-integrated sediment sampling networks and distributed fine sediment modelling to inform catchment management.

    Science.gov (United States)

    Perks, M T; Warburton, J; Bracken, L J; Reaney, S M; Emery, S B; Hirst, S

    2017-11-01

    Under the EU Water Framework Directive, suspended sediment is omitted from environmental quality standards and compliance targets. This omission is partly explained by difficulties in assessing the complex dose-response of ecological communities. But equally, it is hindered by a lack of spatially distributed estimates of suspended sediment variability across catchments. In this paper, we demonstrate the inability of traditional, discrete sampling campaigns for assessing exposure to fine sediment. Sampling frequencies based on Environmental Quality Standard protocols, whilst reflecting typical manual sampling constraints, are unable to determine the magnitude of sediment exposure with an acceptable level of precision. Deviations from actual concentrations range between -35 and +20% based on the interquartile range of simulations. As an alternative, we assess the value of low-cost, suspended sediment sampling networks for quantifying suspended sediment transfer (SST). In this study of the 362 km 2 upland Esk catchment we observe that spatial patterns of sediment flux are consistent over the two year monitoring period across a network of 17 monitoring sites. This enables the key contributing sub-catchments of Butter Beck (SST: 1141 t km 2 yr -1 ) and Glaisdale Beck (SST: 841 t km 2 yr -1 ) to be identified. The time-integrated samplers offer a feasible alternative to traditional infrequent and discrete sampling approaches for assessing spatio-temporal changes in contamination. In conjunction with a spatially distributed diffuse pollution model (SCIMAP), time-integrated sediment sampling is an effective means of identifying critical sediment source areas in the catchment, which can better inform sediment management strategies for pollution prevention and control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The Value of Long-Term Research at the Five USGS WEBB Catchments

    Science.gov (United States)

    Shanley, J. B.; Murphy, S. F.; Scholl, M. A.; Wickland, K.; Aulenbach, B. T.; Hunt, R.; Clow, D. W.

    2017-12-01

    Long-term catchment studies are sentinel sites for detecting, documenting, and understanding ecosystem processes and environmental change. The small catchment approach fosters in-depth site-based hydrological, biogeochemical, and ecological process understanding, while a collective network of catchment observatories offers a broader context to synthesize understanding across a range of climates and geologies. The USGS Water, Energy, and Biogeochemical Budgets (WEBB) program is a network of five sites established in 1991 to assess the impact of climate and environmental change on hydrology and biogeochemistry. Like other networks, such as the USDA - Forest Service Experimental Forests and the Czech Geomon network, WEBB exploits gradients of climate, geology, and topography to understand controls on biogeochemical processes. We present examples from each site and some cross-site syntheses to demonstrate how WEBB has advanced catchment science and informed resource management and policy. WEBB has relied on strong academic partnerships, providing long-term continuity for shorter-term academic grants, which have offered rich graduate educational opportunities. Like other sites and networks, the long-term datasets and process understanding of WEBB provide context to detect and interpret change. Without this backdrop, we have no baseline to quantify effects of droughts, floods, and extreme events, and no test sites to validate process-based models. In an era of lean budgets for science funding, the long-term continuity of WEBB and other catchment networks is in jeopardy, as is the critical scientific value and societal benefits they embody.

  16. A new perspective on catchment storage gained from a nested catchment experiment in Luxembourg (Europe)

    Science.gov (United States)

    Pfister, Laurent; Klaus, Julian; Hissler, Christophe; François Iffly, Jean; Gourdol, Laurent; Martinez-Carreras, Nuria; McDonnell, Jeffrey J.

    2014-05-01

    Recent hydrological process research focussed on how much water a catchment can store and how these catchments store and release water. Storage can be a valuable metric for catchment description, inter-comparison, and classification. Further storage controls catchment mixing, non-linearities in rainfall-runoff transformation and eco-hydrological processes. Various methods exist to determine catchment storage (e.g. natural tracer, soil moisture and groundwater data, hydrological models). Today it remains unclear what parts of the catchment storage are measured with the different models. Here we present a new hydrometric approach to answer the question how much water a catchment can store. We tested our approach in a dense hydro-climatological monitoring network that encompasses 16 recording streamgauges and 21 pluviographs in the Alzette River basin in Luxembourg (Europe). Catchment scales are ranging from 0.47 to 285 km2 and they have clean- and mixed combinations of distinct geologies ranging from schists to marls, sandstone, dolomite and limestone. Previous investigations in the area of interest have shown that geology largely controls winter runoff coefficients. Here, we focus at how catchment geology is ultimately affecting catchment storage. We used the approach of Sayama et al. (2011) to compute catchment dynamic storage changes for each winter season over the period 2002-2012 (based on precipitation as input; discharge and evapotranspiration as output). We determined dynamic storage changes for each winter semester (October to March) in all 16 catchments over the period 2002-2012. At the beginning of each hydrological winter season, all catchments showed similar trends in storage change. A few weeks into the winter season, catchments with lowest permeability (e.g. marls) started to plateau. The highest storage values were reached several months later in the season in catchments dominated by permeable substrate (e.g. sandstone). For most catchments, we found

  17. Representing macropore flow at the catchment scale: a comparative modeling study

    Science.gov (United States)

    Liu, D.; Li, H. Y.; Tian, F.; Leung, L. R.

    2017-12-01

    Macropore flow is an important hydrological process that generally enhances the soil infiltration capacity and velocity of subsurface water. Up till now, macropore flow is mostly simulated with high-resolution models. One possible drawback of this modeling approach is the difficulty to effectively represent the overall typology and connectivity of the macropore networks. We hypothesize that modeling macropore flow directly at the catchment scale may be complementary to the existing modeling strategy and offer some new insights. Tsinghua Representative Elementary Watershed model (THREW model) is a semi-distributed hydrology model, where the fundamental building blocks are representative elementary watersheds (REW) linked by the river channel network. In THREW, all the hydrological processes are described with constitutive relationships established directly at the REW level, i.e., catchment scale. In this study, the constitutive relationship of macropore flow drainage is established as part of THREW. The enhanced THREW model is then applied at two catchments with deep soils but distinct climates, the humid Asu catchment in the Amazon River basin, and the arid Wei catchment in the Yellow River basin. The Asu catchment has an area of 12.43km2 with mean annual precipitation of 2442mm. The larger Wei catchment has an area of 24800km2 but with mean annual precipitation of only 512mm. The rainfall-runoff processes are simulated at a hourly time step from 2002 to 2005 in the Asu catchment and from 2001 to 2012 in the Wei catchment. The role of macropore flow on the catchment hydrology will be analyzed comparatively over the Asu and Wei catchments against the observed streamflow, evapotranspiration and other auxiliary data.

  18. Examination of catchment areas for public transport

    DEFF Research Database (Denmark)

    Landex, Alex; Hansen, Stephen; Andersen, Jonas Lohmann Elkjær

    2006-01-01

    The paper presents a method to examine the catchment areas for stops in high quality public transport systems based on the street network in the examined area. This is achieved by implementing the Service Area functions from the ArcGIS extension Network Analyst. The method is compared to a more...

  19. Spatial characterization of catchment dispersion mechanisms in an urban context

    Science.gov (United States)

    Rossel, Florian; Gironás, Jorge; Mejía, Alfonso; Rinaldo, Andrea; Rodriguez, Fabrice

    2014-12-01

    Previous studies have examined in-depth the dispersion mechanisms in natural catchments. In contrast, these dispersion mechanisms have been studied little in urban catchments, where artificial transport elements and morphological arrangements are expected to modify travel times and mobilize excess rainfall from spatially distributed impervious sites. This has the ability to modify the variance of the catchment's travel times and hence the total dispersion. This work quantifies the dispersion mechanisms in an urban catchment using the theory of transport by travel times as represented by the Urban Morpho-climatic Instantaneous Unit Hydrograph (U-McIUH) model. The U-McIUH computes travel times based on kinematic wave theory and accounts explicitly for the path heterogeneities and altered connectivity patterns characteristic of an urban drainage network. The analysis is illustrated using the Aubinière urban catchment in France as a case study. We found that kinematic dispersion is dominant for small rainfall intensities, whereas geomorphologic dispersion becomes more dominant for larger intensities. The total dispersion scales with the drainage area in a power law fashion. The kinematic dispersion is dominant across spatial scales up to a threshold of approximately 2-3 km2, after which the geomorphologic dispersion becomes more dominant. Overall, overland flow is responsible for most of the dispersion in the catchment, while conduits tend to counteract the increase of the geomorphologic dispersion with a negative kinematic dispersion. Further study with other catchments is needed to asses if the latter is a general feature of urban drainage networks.

  20. Analysis of spatiotemporal soil moisture patterns at the catchment scale using a wireless sensor network

    Science.gov (United States)

    Bogena, Heye R.; Huisman, Johan A.; Rosenbaum, Ulrike; Weuthen, Ansgar; Vereecken, Harry

    2010-05-01

    Soil water content plays a key role in partitioning water and energy fluxes and controlling the pattern of groundwater recharge. Despite the importance of soil water content, it is not yet measured in an operational way at larger scales. The aim of this paper is to present the potential of real-time monitoring for the analysis of soil moisture patterns at the catchment scale using the recently developed wireless sensor network SoilNet [1], [2]. SoilNet is designed to measure soil moisture, salinity and temperature in several depths (e.g. 5, 20 and 50 cm). Recently, a small forest catchment Wüstebach (~27 ha) has been instrumented with 150 sensor nodes and more than 1200 soil sensors in the framework of the Transregio32 and the Helmholtz initiative TERENO (Terrestrial Environmental Observatories). From August to November 2009, more than 6 million soil moisture measurements have been performed. We will present first results from a statistical and geostatistical analysis of the data. The observed spatial variability of soil moisture corresponds well with the 800-m scale variability described in [3]. The very low scattering of the standard deviation versus mean soil moisture plots indicates that sensor network data shows less artificial soil moisture variations than soil moisture data originated from measurement campaigns. The variograms showed more or less the same nugget effect, which indicates that the sum of the sub-scale variability and the measurement error is rather time-invariant. Wet situations showed smaller spatial variability, which is attributed to saturated soil water content, which poses an upper limit and is typically not strongly variable in headwater catchments with relatively homogeneous soil. The spatiotemporal variability in soil moisture at 50 cm depth was significantly lower than at 5 and 20 cm. This finding indicates that the considerable variability of the top soil is buffered deeper in the soil due to lateral and vertical water fluxes

  1. CAOS: the nested catchment soil-vegetation-atmosphere observation platform

    Science.gov (United States)

    Weiler, Markus; Blume, Theresa

    2016-04-01

    Most catchment based observations linking hydrometeorology, ecohydrology, soil hydrology and hydrogeology are typically not integrated with each other and lack a consistent and appropriate spatial-temporal resolution. Within the research network CAOS (Catchments As Organized Systems), we have initiated and developed a novel and integrated observation platform in several catchments in Luxembourg. In 20 nested catchments covering three distinct geologies the subscale processes at the bedrock-soil-vegetation-atmosphere interface are being monitored at 46 sensor cluster locations. Each sensor cluster is designed to observe a variety of different fluxes and state variables above and below ground, in the saturated and unsaturated zone. The numbers of sensors are chosen to capture the spatial variability as well the average dynamics. At each of these sensor clusters three soil moisture profiles with sensors at different depths, four soil temperature profiles as well as matric potential, air temperature, relative humidity, global radiation, rainfall/throughfall, sapflow and shallow groundwater and stream water levels are measured continuously. In addition, most sensors also measure temperature (water, soil, atmosphere) and electrical conductivity. This setup allows us to determine the local water and energy balance at each of these sites. The discharge gauging sites in the nested catchments are also equipped with automatic water samplers to monitor water quality and water stable isotopes continuously. Furthermore, water temperature and electrical conductivity observations are extended to over 120 locations distributed across the entire stream network to capture the energy exchange between the groundwater, stream water and atmosphere. The measurements at the sensor clusters are complemented by hydrometeorological observations (rain radar, network of distrometers and dense network of precipitation gauges) and linked with high resolution meteorological models. In this

  2. Modelling the Impact of Land Use Change on Water Quality in Agricultural Catchments

    Science.gov (United States)

    Johnes, P. J.; Heathwaite, A. L.

    1997-03-01

    Export coefficient modelling was used to model the impact of agriculture on nitrogen and phosphorus loading on the surface waters of two contrasting agricultural catchments. The model was originally developed for the Windrush catchment where the highly reactive Jurassic limestone aquifer underlying the catchment is well connected to the surface drainage network, allowing the system to be modelled using uniform export coefficients for each nutrient source in the catchment, regardless of proximity to the surface drainage network. In the Slapton catchment, the hydrological pathways are dominated by surface and lateral shallow subsurface flow, requiring modification of the export coefficient model to incorporate a distance-decay component in the export coefficients. The modified model was calibrated against observed total nitrogen and total phosphorus loads delivered to Slapton Ley from inflowing streams in its catchment. Sensitivity analysis was conducted to isolate the key controls on nutrient export in the modified model. The model was validated against long-term records of water quality, and was found to be accurate in its predictions and sensitive to both temporal and spatial changes in agricultural practice in the catchment. The model was then used to forecast the potential reduction in nutrient loading on Slapton Ley associated with a range of catchment management strategies. The best practicable environmental option (BPEO) was found to be spatial redistribution of high nutrient export risk sources to areas of the catchment with the greatest intrinsic nutrient retention capacity.

  3. ASSESSMENT OF THE ARTIFICIAL NEURAL NETWORKS TO GEOMORPHIC MODELLING OF SEDIMENT YIELD FOR UNGAUGED CATCHMENTS, ALGERIA

    Directory of Open Access Journals (Sweden)

    Khanchoul Kamel

    2014-01-01

    Full Text Available Knowledge of sediment yield and the factors controlling it provides useful information for estimating erosion intensities within river basins. The objective of this study was to build a model from which suspended sediment yield could be estimated from ungauged rivers using computed sediment yield and physical factors. Researchers working on suspended sediment transported by wadis in the Maghreb are usually facing the lack of available data for such river types. Further study of the prediction of sediment transport in these regions and its variability is clearly required. In this work, ANNs were built between sediment yield established from longterm measurement series at gauging stations in Algerian catchments and corresponding basic physiographic parameters such as rainfall, runoff, lithology index, coefficient of torrentiality, and basin area. The proposed Levenberg-Marquardt and Multilayer Perceptron algorithms to train the neural networks of the current research study was based on the feed-forward backpropagation method with combinations of number of neurons in each hidden layer, transfer function, error goal. Additionally, three statistical measurements, namely the root mean square error (RMSE, the coefficient of determination (R², and the efficiency factor (EF have been reported for examining the forecasting accuracy of the developed model. Single plot displays of network outputs with respect to targets for training have provided good performance results and good fitting . Thus, ANNs were a promising method for predicting suspended sediment yield in ungauged Algerian catchments.

  4. Regional-scale lateral carbon transport and CO2 evasion in temperate stream catchments

    Science.gov (United States)

    Magin, Katrin; Somlai-Haase, Celia; Schäfer, Ralf B.; Lorke, Andreas

    2017-11-01

    Inland waters play an important role in regional to global-scale carbon cycling by transporting, processing and emitting substantial amounts of carbon, which originate mainly from their catchments. In this study, we analyzed the relationship between terrestrial net primary production (NPP) and the rate at which carbon is exported from the catchments in a temperate stream network. The analysis included more than 200 catchment areas in southwest Germany, ranging in size from 0.8 to 889 km2 for which CO2 evasion from stream surfaces and downstream transport with stream discharge were estimated from water quality monitoring data, while NPP in the catchments was obtained from a global data set based on remote sensing. We found that on average 13.9 g C m-2 yr-1 (corresponding to 2.7 % of terrestrial NPP) are exported from the catchments by streams and rivers, in which both CO2 evasion and downstream transport contributed about equally to this flux. The average carbon fluxes in the catchments of the study area resembled global and large-scale zonal mean values in many respects, including NPP, stream evasion and the carbon export per catchment area in the fluvial network. A review of existing studies on aquatic-terrestrial coupling in the carbon cycle suggests that the carbon export per catchment area varies in a relatively narrow range, despite a broad range of different spatial scales and hydrological characteristics of the study regions.

  5. Can spatial statistical river temperature models be transferred between catchments?

    Science.gov (United States)

    Jackson, Faye L.; Fryer, Robert J.; Hannah, David M.; Malcolm, Iain A.

    2017-09-01

    There has been increasing use of spatial statistical models to understand and predict river temperature (Tw) from landscape covariates. However, it is not financially or logistically feasible to monitor all rivers and the transferability of such models has not been explored. This paper uses Tw data from four river catchments collected in August 2015 to assess how well spatial regression models predict the maximum 7-day rolling mean of daily maximum Tw (Twmax) within and between catchments. Models were fitted for each catchment separately using (1) landscape covariates only (LS models) and (2) landscape covariates and an air temperature (Ta) metric (LS_Ta models). All the LS models included upstream catchment area and three included a river network smoother (RNS) that accounted for unexplained spatial structure. The LS models transferred reasonably to other catchments, at least when predicting relative levels of Twmax. However, the predictions were biased when mean Twmax differed between catchments. The RNS was needed to characterise and predict finer-scale spatially correlated variation. Because the RNS was unique to each catchment and thus non-transferable, predictions were better within catchments than between catchments. A single model fitted to all catchments found no interactions between the landscape covariates and catchment, suggesting that the landscape relationships were transferable. The LS_Ta models transferred less well, with particularly poor performance when the relationship with the Ta metric was physically implausible or required extrapolation outside the range of the data. A single model fitted to all catchments found catchment-specific relationships between Twmax and the Ta metric, indicating that the Ta metric was not transferable. These findings improve our understanding of the transferability of spatial statistical river temperature models and provide a foundation for developing new approaches for predicting Tw at unmonitored locations across

  6. Influence of landscape mosaic on streamflow of a peri-urban catchment under Mediterranean climate

    Science.gov (United States)

    Ferreira, Carla; Walsh, Rory; Ferreira, António

    2017-04-01

    Peri-urban areas tend to be characterized by patchy landscape mosaics of different land-uses. Although the impact of land-use changes on catchment hydrology have been widely investigated, the impact of mixed land-use patterns on the streamflow of peri-urban areas is still poorly understood. This study aims to (i) explore and quantify streamflow delivery from sub-catchments characterized by distinct landscape mosaics; (ii) assess the impact of different urbanization styles on hydrograph properties; and (iii) explore the influence of urbanization type on flow connectivity and stream discharge. The study was carried out in Ribeira dos Covões, a small (6.2km2) peri-urban catchment in central Portugal. The climate is Mediterranean, with a mean annual rainfall of 892mm. Catchment geology comprises sandstone (56%), limestone (41%) and alluvial deposits (3%). Soils developed on sandstone are generally deep (>3m) Fluvisols and Podsols, whereas on limestone the Leptic Cambisols are typically shallow (blocks and of high population density (9900 inhabitants km-2). The study uses hydrological data recorded over three hydrological years, starting in November 2010, in a monitoring network comprising eight streamflow gauging stations (instrumented with water level recorders) and five rainfall gauges. The gauging stations provide information on the discharge response to rainstorms of the catchment outlet and upstream sub-catchments of different size, urban pattern (in terms of percentage urban land-use and impervious area, distance to the stream network, and storm water management), and lithology (either sandstone or limestone). Annual storm runoff coefficients were lowest (13.7%) in catchments dominated by forest (>80%) and greatest (17.3-17.6%) in the most urbanized sub-catchments (49-53% urban). Impervious area seems to control streamflow particularly during dry periods. Winter runoff (streamflow per unit area) was 2-4 times higher than summer runoff in highly urbanized areas

  7. Examining the Potential Travellers in Catchment Areas for Public Transport

    DEFF Research Database (Denmark)

    Landex, Alex; Hansen, Stephen

    2006-01-01

    The paper presents a method to examine the catchment areas for stops in high quality public transport systems based on the actual street network in the examined area. This is achieved by implementing the service area functions from the ArcGIS extension Network Analyst. The method is compared...

  8. Understanding the relationship between sediment connectivity and spatio-temporal landscape changes in two small catchments

    Science.gov (United States)

    Giuseppina Persichillo, Maria; Meisina, Claudia; Cavalli, Marco; Crema, Stefano; Bordoni, Massimiliano

    2016-04-01

    The degree of linkage between the sediments sources and downstream areas (i.e., sediment connectivity) is one of the most important properties controlling landscape evolution. Many factors have been found to affect sediment connectivity, especially at the catchment scale. In particular, the degree of linkage between different areas within a catchment depends largely on the morphological complexity of the catchment (relief, terrain roughness, stream network density and catchment shape) and the combined effects of vegetation, such as land use changes and land abandonment. Moreover, the analysis of the spatial distribution of sediment connectivity and its temporal evolution can be also useful for the characterization of sediment source areas. Specifically, these areas represent sites of instability and their connectivity influences the probability that a local on-site effect could propagate within a multiple-events feedback system. Within this framework, the aim of this study is to apply a geomorphometric approach to analyze the linkage between landscape complexity and the sediment connectivity at the catchment scale. Moreover, to assess sediment delivery, the index of connectivity (IC) proposed by Cavalli et al. (2013) was used to evaluate the potential connection of sediment source areas with the main channel network. To better understand the relationship between morphological complexity of the catchment's landscape and the sediment spatial distribution and mobilization, two catchments with different size and geomorphological and land use characteristics were analysed: the Rio Frate and Versa catchments (Oltrepo Pavese, Southern Lombardy, Italy). Several shallow landslides, which represents the main sediment source area type in the catchments, were triggered especially in the period from 2009 to 2013. Moreover, relevant modification of land use and drainage system during last decades, especially related to land abandonment, have conditioned the sediment connectivity

  9. Trends in stream nitrogen concentrations for forested reference catchments across the USA

    International Nuclear Information System (INIS)

    Argerich, A; Greathouse, E; Johnson, S L; Sebestyen, S D; Rhoades, C C; Knoepp, J D; Adams, M B; Likens, G E; Campbell, J L; McDowell, W H; Scatena, F N; Ice, G G

    2013-01-01

    To examine whether stream nitrogen concentrations in forested reference catchments have changed over time and if patterns were consistent across the USA, we synthesized up to 44 yr of data collected from 22 catchments at seven USDA Forest Service Experimental Forests. Trends in stream nitrogen presented high spatial variability both among catchments at a site and among sites across the USA. We found both increasing and decreasing trends in monthly flow-weighted stream nitrate and ammonium concentrations. At a subset of the catchments, we found that the length and period of analysis influenced whether trends were positive, negative or non-significant. Trends also differed among neighboring catchments within several Experimental Forests, suggesting the importance of catchment-specific factors in determining nutrient exports. Over the longest time periods, trends were more consistent among catchments within sites, although there are fewer long-term records for analysis. These findings highlight the critical value of long-term, uninterrupted stream chemistry monitoring at a network of sites across the USA to elucidate patterns of change in nutrient concentrations at minimally disturbed forested sites. (letter)

  10. Catchment Morphing (CM): A Novel Approach for Runoff Modeling in Ungauged Catchments

    Science.gov (United States)

    Zhang, Jun; Han, Dawei

    2017-12-01

    Runoff prediction in ungauged catchments has been one of the major challenges in the past decades. However, due to the tremendous heterogeneity of the catchments, obstacles exist in deducing model parameters for ungauged catchments from gauged ones. We propose a novel approach to predict ungauged runoff with Catchment Morphing (CM) using a fully distributed model. CM is defined as by changing the catchment characteristics (area and slope here) from the baseline model built with a gauged catchment to model the ungauged ones. As a proof of concept, a case study on seven catchments in the UK has been used to demonstrate the proposed scheme. Comparing the predicted with measured runoff, the Nash-Sutcliffe efficiency (NSE) varies from 0.03 to 0.69 in six catchments. Moreover, NSEs are significantly improved (up to 0.81) when considering the discrepancy of percentage runoff between the target and baseline catchments. A distinct advantage has been experienced by comparing the CM with a traditional method for ungauged catchments. The advantages are: (a) less demand of the similarity between the baseline catchment and the ungauged catchment, (b) less demand of available data, and (c) potentially widely applicable in varied catchments. This study demonstrates the feasibility of the proposed scheme as a potentially powerful alternative to the conventional methods in runoff predictions of ungauged catchments. Clearly, more work beyond this pilot study is needed to explore and develop this new approach further to maturity by the hydrological community.

  11. The catchment based approach using catchment system engineering

    Science.gov (United States)

    Jonczyk, Jennine; Quinn, Paul; Barber, Nicholas; Wilkinson, Mark

    2015-04-01

    The catchment based approach (CaBa) has been championed as a potential mechanism for delivery of environmental directives such as the Water Framework Directive in the UK. However, since its launch in 2013, there has been only limited progress towards achieving sustainable, holistic management, with only a few of examples of good practice ( e.g. from the Tyne Rivers trust). Common issues with developing catchment plans over a national scale include limited data and resources to identify issues and source of those issues, how to systematically identify suitable locations for measures or suites of measures that will have the biggest downstream impact and how to overcome barriers for implementing solutions. Catchment System Engineering (CSE) is an interventionist approach to altering the catchment scale runoff regime through the manipulation of hydrological flow pathways throughout the catchment. A significant component of the runoff generation can be managed by targeting hydrological flow pathways at source, such as overland flow, field drain and ditch function, greatly reducing erosive soil losses. Coupled with management of farm nutrients at source, many runoff attenuation features or measures can be co-located to achieve benefits for water quality and biodiversity. A catchment, community-led mitigation measures plan using the CSE approach will be presented from a catchment in Northumberland, Northern England that demonstrate a generic framework for identification of multi-purpose features that slow, store and filter runoff at strategic locations in the landscape. Measures include within-field barriers, edge of field traps and within-ditch measures. Progress on the implementation of measures will be reported alongside potential impacts on the runoff regime at both local and catchment scale and costs.

  12. Quantifying in-stream retention of nitrate at catchment scales using a practical mass balance approach.

    Science.gov (United States)

    Schwientek, Marc; Selle, Benny

    2016-02-01

    As field data on in-stream nitrate retention is scarce at catchment scales, this study aimed at quantifying net retention of nitrate within the entire river network of a fourth-order stream. For this purpose, a practical mass balance approach combined with a Lagrangian sampling scheme was applied and seasonally repeated to estimate daily in-stream net retention of nitrate for a 17.4 km long, agriculturally influenced, segment of the Steinlach River in southwestern Germany. This river segment represents approximately 70% of the length of the main stem and about 32% of the streambed area of the entire river network. Sampling days in spring and summer were biogeochemically more active than in autumn and winter. Results obtained for the main stem of Steinlach River were subsequently extrapolated to the stream network in the catchment. It was demonstrated that, for baseflow conditions in spring and summer, in-stream nitrate retention could sum up to a relevant term of the catchment's nitrogen balance if the entire stream network was considered.

  13. A novel approach for runoff modelling in ungauged catchments by Catchment Morphing

    Science.gov (United States)

    Zhang, J.; Han, D.

    2017-12-01

    Runoff prediction in ungauged catchments has been one of the major challenges in the past decades. However, due to the tremendous heterogeneity of hydrological catchments, obstacles exist in deducing model parameters for ungauged catchments from gauged ones. We propose a novel approach to predict ungauged runoff with Catchment Morphing (CM) using a fully distributed model. CM is defined as by changing the catchment characteristics (area and slope here) from the baseline model built with a gauged catchment to model the ungauged ones. The advantages of CM are: (a) less demand of the similarity between the baseline catchment and the ungauged catchment, (b) less demand of available data, and (c) potentially applicable in varied catchments. A case study on seven catchments in the UK has been used to demonstrate the proposed scheme. To comprehensively examine the CM approach, distributed rainfall inputs are utilised in the model, and fractal landscapes are used to morph the land surface from the baseline model to the target model. The preliminary results demonstrate the feasibility of the approach, which is promising in runoff simulation for ungauged catchments. Clearly, more work beyond this pilot study is needed to explore and develop this new approach further to maturity by the hydrological community.

  14. Stream Width Dynamics in a Small Headwater Catchment

    Science.gov (United States)

    Barefoot, E. A.; Pavelsky, T.; Allen, G. H.; Zimmer, M. A.; McGlynn, B. L.

    2016-12-01

    Changing streamflow conditions cause small, ephemeral and intermittent stream networks to expand and contract, while simultaneously driving widening and narrowing of streams. The resulting dynamic surface area of ephemeral streams impacts critical hydrological and biogeochemical processes, including air-water gas exchange, solute transport, and sediment transport. Despite the importance of these dynamics, to our knowledge there exists no complete study of how stream widths vary throughout an entire catchment in response to changing streamflow conditions. Here we present the first characterization of how variable hydrologic conditions impact the distribution of stream widths in a 48 ha headwater catchment in the Stony Creek Research Watershed, NC, USA. We surveyed stream widths longitudinally every 5 m on 12 occasions over a range of stream discharge from 7 L/s to 128 L/s at the catchment outlet. We hypothesize that the shape and location of the stream width distribution are driven by the action of two interrelated mechanisms, network extension and at-a-station widening, both of which increase with discharge. We observe that during very low flow conditions, network extension more significantly influences distribution location, and during high flow conditions stream widening is the dominant driver. During moderate flows, we observe an approximately 1 cm rightward shift in the distribution peak with every additional 10 L/s of increased discharge, which we attribute to a greater impact of at-a-station widening on distribution location. Aside from this small shift, the qualitative location and shape of the stream width distribution are largely invariant with changing streamflow. We suggest that the basic characteristics of stream width distributions constitute an equilibrium between the two described mechanisms across variable hydrologic conditions.

  15. Network-based Modeling of Mesoscale Catchments - The Hydrology Perspective of Glowa-danube

    Science.gov (United States)

    Ludwig, R.; Escher-Vetter, H.; Hennicker, R.; Mauser, W.; Niemeyer, S.; Reichstein, M.; Tenhunen, J.

    Within the GLOWA initiative of the German Ministry for Research and Educa- tion (BMBF), the project GLOWA-Danube is funded to establish a transdisciplinary network-based decision support tool for water related issues in the Upper Danube wa- tershed. It aims to develop and validate integration techniques, integrated models and integrated monitoring procedures and to implement them in the network-based De- cision Support System DANUBIA. An accurate description of processes involved in energy, water and matter fluxes and turnovers requires an intense collaboration and exchange of water related expertise of different scientific disciplines. DANUBIA is conceived as a distributed expert network and is developed on the basis of re-useable, refineable, and documented sub-models. In order to synthesize a common understand- ing between the project partners, a standardized notation of parameters and functions and a platform-independent structure of computational methods and interfaces has been established using the Unified Modeling Language UML. DANUBIA is object- oriented, spatially distributed and raster-based at its core. It applies the concept of "proxels" (Process Pixel) as its basic object, which has different dimensions depend- ing on the viewing scale and connects to its environment through fluxes. The presented study excerpts the hydrological view point of GLOWA-Danube, its approach of model coupling and network based communication (using the Remote Method Invocation RMI), the object-oriented technology to simulate physical processes and interactions at the land surface and the methodology to treat the issue of spatial and temporal scal- ing in large, heterogeneous catchments. The mechanisms applied to communicate data and model parameters across the typical discipline borders will be demonstrated from the perspective of a land-surface object, which comprises the capabilities of interde- pendent expert models for snowmelt, soil water movement, runoff formation, plant

  16. Assessing catchment connectivity using hysteretic loops

    Science.gov (United States)

    Davis, Jason; Masselink, Rens; Goni, Mikel; Gimenez, Rafael; Casali, Javier; Seeger, Manuel; Keesstra, Saskia

    2017-04-01

    texture topsoil), climate (humid sub Mediterranean) and land use (80-90% cultivated with winter grain crops). Ozkotz principal (ca.1,700 ha) is covered with forest and pasture (cattle-breeding); while Oskotz woodland (ca. 500 ha), a sub-watershed of the Oskotz principal, is almost completely covered with forest. The predominant climate in the Oskotz catchments sub-Atlantic. Furthermore, antecedent conditions and event characteristics were analysed. The loops were compared quantitatively and qualitatively between catchments for similar events and within the catchments for events with different characteristics. In this study, several measures to objectively classify hysteresis loops in an automated way were developed. These were consecutively used to classify several hundreds of loops from several agricultural catchments in Northern Spain. These loop characteristics were compared to event specific characteristics such as antecedent precipitation, time of year, and precipitation intensity, duration and total. The combination of hysteresis loops and variables influencing connectivity can then tell something about the sources of sediments for different events and catchments. References Baartman, J.E.M., Masselink, R.H., Keesstra, S.D., Temme, A.J.A.M., 2013. Linking landscape morphological complexity and sediment connectivity. Earth Surface Processes and Landforms 38: 1457-1471. Masselink RJH, Heckmann T, Temme AJAM, Anders NS, Gooren HPA, Keesstra SD. 2016. A network theory approach for a better understanding of overland flow connectivity. Hydrological Processes. DOI: 10.1002/hyp.10993 Masselink, R.J.H., Keesstra, S.D., Temme, A.J.A.M., Seeger, M., Giménez, R., Casalí, J., 2016. Modelling Discharge and Sediment Yield at Catchment Scale Using Connectivity Components. Land Degradation and Development 27: 933-945, DOI: 10.1002/ldr.2512 Mekonnen, M., Keesstra, S.D., Baartman, J.E.M., Stroosnijder, L., Maroulis, J., Reducing sediment connectivity through man-made and natural

  17. Vulnerability of European freshwater catchments to climate change.

    Science.gov (United States)

    Markovic, Danijela; Carrizo, Savrina F; Kärcher, Oskar; Walz, Ariane; David, Jonathan N W

    2017-09-01

    Climate change is expected to exacerbate the current threats to freshwater ecosystems, yet multifaceted studies on the potential impacts of climate change on freshwater biodiversity at scales that inform management planning are lacking. The aim of this study was to fill this void through the development of a novel framework for assessing climate change vulnerability tailored to freshwater ecosystems. The three dimensions of climate change vulnerability are as follows: (i) exposure to climate change, (ii) sensitivity to altered environmental conditions and (iii) resilience potential. Our vulnerability framework includes 1685 freshwater species of plants, fishes, molluscs, odonates, amphibians, crayfish and turtles alongside key features within and between catchments, such as topography and connectivity. Several methodologies were used to combine these dimensions across a variety of future climate change models and scenarios. The resulting indices were overlaid to assess the vulnerability of European freshwater ecosystems at the catchment scale (18 783 catchments). The Balkan Lakes Ohrid and Prespa and Mediterranean islands emerge as most vulnerable to climate change. For the 2030s, we showed a consensus among the applied methods whereby up to 573 lake and river catchments are highly vulnerable to climate change. The anthropogenic disruption of hydrological habitat connectivity by dams is the major factor reducing climate change resilience. A gap analysis demonstrated that the current European protected area network covers climate change. Priority should be placed on enhancing stakeholder cooperation at the major basin scale towards preventing further degradation of freshwater ecosystems and maintaining connectivity among catchments. The catchments identified as most vulnerable to climate change provide preliminary targets for development of climate change conservation management and mitigation strategies. © 2017 John Wiley & Sons Ltd.

  18. Environmental care in agricultural catchments: Toward the communicative catchment

    Science.gov (United States)

    Martin, Peter

    1991-11-01

    Substantial land degradation of agricultural catchments in Australia has resulted from the importation of European farming methods and the large-scale clearing of land. Rural communities are now being encouraged by government to take responsibility for environmental care. The importance of community involvement is supported by the view that environmental problems are a function of interactions between people and their environment. It is suggested that the commonly held view that community groups cannot care for their resources is due to inappropriate social institutions rather that any inherent disability in people. The communicative catchment is developed as a vision for environmental care into the future. This concept emerges from a critique of resource management through the catchment metaphors of the reduced, mechanical, and the complex, evolving catchment, which reflect the development of systemic and people-centered approaches to environmental care. The communicative catchment is one where both community and resource managers participate collaboratively in environmental care. A methodology based on action research and systemic thinking (systemic action research) is proposed as a way of moving towards the communicative catchment of the future. Action research is a way of taking action in organizations and communities that is participative and informed by theory, while systemic thinking takes into account the interconnections and relationships between social and natural worlds. The proposed vision, methodology, and practical operating principles stem from involvement in an action research project looking at extension strategies for the implementation of total catchment management in the Hunter Valley, New South Wales.

  19. Modeling Stochastic Boundary Conditions in a Coastal Catchment using a Bayesian Network: An Application to the Houston Ship Channel, Texas

    Science.gov (United States)

    Couasnon, Anaïs; Sebastian, Antonia; Morales-Nápoles, Oswaldo

    2017-04-01

    Recent research has highlighted the increased risk of compound flooding in the U.S. In coastal catchments, an elevated downstream water level, resulting from high tide and/or storm surge, impedes drainage creating a backwater effect that may exacerbate flooding in the riverine environment. Catchments exposed to tropical cyclone activity along the Gulf of Mexico and Atlantic coasts are particularly vulnerable. However, conventional flood hazard models focus mainly on precipitation-induced flooding and few studies accurately represent the hazard associated with the interaction between discharge and elevated downstream water levels. This study presents a method to derive stochastic boundary conditions for a coastal watershed. Mean daily discharge and maximum daily residual water levels are used to build a non-parametric Bayesian network (BN) based on copulas. Stochastic boundary conditions for the watershed are extracted from the BN and input into a 1-D process-based hydraulic model to obtain water surface elevations in the main channel of the catchment. The method is applied to a section of the Houston Ship Channel (Buffalo Bayou) in Southeast Texas. Data at six stream gages and two tidal stations are used to build the BN and 100-year joint return period events are modeled. We find that the dependence relationship between the daily residual water level and the mean daily discharge in the catchment can be represented by a Gumbel copula (Spearman's rank correlation coefficient of 0.31) and that they result in higher water levels in the mid- to upstream reaches of the watershed than when modeled independently. This indicates that conventional (deterministic) methods may underestimate the flood hazard associated with compound flooding in the riverine environment and that such interactions should not be neglected in future coastal flood hazard studies.

  20. Hydrologic connectivity between landscapes and streams: Transferring reach‐ and plot‐scale understanding to the catchment scale

    Science.gov (United States)

    Jencso, Kelsey G.; McGlynn, Brian L.; Gooseff, Michael N.; Wondzell, Steven M.; Bencala, Kenneth E.; Marshall, Lucy A.

    2009-01-01

    The relationship between catchment structure and runoff characteristics is poorly understood. In steep headwater catchments with shallow soils the accumulation of hillslope area (upslope accumulated area (UAA)) is a hypothesized first‐order control on the distribution of soil water and groundwater. Hillslope‐riparian water table connectivity represents the linkage between the dominant catchment landscape elements (hillslopes and riparian zones) and the channel network. Hydrologic connectivity between hillslope‐riparian‐stream (HRS) landscape elements is heterogeneous in space and often temporally transient. We sought to test the relationship between UAA and the existence and longevity of HRS shallow groundwater connectivity. We quantified water table connectivity based on 84 recording wells distributed across 24 HRS transects within the Tenderfoot Creek Experimental Forest (U.S. Forest Service), northern Rocky Mountains, Montana. Correlations were observed between the longevity of HRS water table connectivity and the size of each transect's UAA (r2 = 0.91). We applied this relationship to the entire stream network to quantify landscape‐scale connectivity through time and ascertain its relationship to catchment‐scale runoff dynamics. We found that the shape of the estimated annual landscape connectivity duration curve was highly related to the catchment flow duration curve (r2 = 0.95). This research suggests internal catchment landscape structure (topography and topology) as a first‐order control on runoff source area and whole catchment response characteristics.

  1. Morphometric Analysis of Didessa River Catchment in Blue Nile ...

    African Journals Online (AJOL)

    Morphometric Analysis of Didessa River Catchment in Blue Nile Basin, Western Ethiopia. ... In the present paper an attempt has been made to study the morphometric characteristics of Didessa ... Stream networks and watersheds were delineated in ArcGIS 10.1 software environment by utilizing ... HOW TO USE AJOL.

  2. Guidelines for integrated catchments monitoring: ICM mind map development and demonstration

    CSIR Research Space (South Africa)

    Jovanovic, Nebojsa

    2011-09-01

    Full Text Available Advances have been made in recent years in developing networks and databases for monitoring water systems in South Africa. However, these monitoring systems need to be consolidated and integrated amongst various components of catchment systems...

  3. Health at the Sub-catchment Scale: Typhoid and Its Environmental Determinants in Central Division, Fiji.

    Science.gov (United States)

    Jenkins, Aaron Peter; Jupiter, Stacy; Mueller, Ute; Jenney, Adam; Vosaki, Gandercillar; Rosa, Varanisese; Naucukidi, Alanieta; Mulholland, Kim; Strugnell, Richard; Kama, Mike; Horwitz, Pierre

    2016-12-01

    The impact of environmental change on transmission patterns of waterborne enteric diseases is a major public health concern. This study concerns the burden and spatial nature of enteric fever, attributable to Salmonella Typhi infection in the Central Division, Republic of Fiji at a sub-catchment scale over 30-months (2013-2015). Quantitative spatial analysis suggested relationships between environmental conditions of sub-catchments and incidence and recurrence of typhoid fever. Average incidence per inhabited sub-catchment for the Central Division was high at 205.9/100,000, with cases recurring in each calendar year in 26% of sub-catchments. Although the numbers of cases were highest within dense, urban coastal sub-catchments, the incidence was highest in low-density mountainous rural areas. Significant environmental determinants at this scale suggest increased risk of exposure where sediment yields increase following runoff. The study suggests that populations living on large systems that broaden into meandering mid-reaches and floodplains with alluvial deposition are at a greater risk compared to small populations living near small, erosional, high-energy headwaters and small streams unconnected to large hydrological networks. This study suggests that anthropogenic alteration of land cover and hydrology (particularly via fragmentation of riparian forest and connectivity between road and river networks) facilitates increased transmission of typhoid fever and that environmental transmission of typhoid fever is important in Fiji.

  4. The nitrate response of a lowland catchment and groundwater travel times

    Science.gov (United States)

    van der Velde, Ype; Rozemeijer, Joachim; de Rooij, Gerrit; van Geer, Frans

    2010-05-01

    Intensive agriculture in lowland catchments causes eutrophication of downstream waters. To determine effective measures to reduce the nutrient loads from upstream lowland catchments, we need to understand the origin of long-term and daily variations in surface water nutrient concentrations. Surface water concentrations are often linked to travel time distributions of water passing through the saturated and unsaturated soil of the contributing catchment. This distribution represents the contact time over which sorption, desorption and degradation takes place. However, travel time distributions are strongly influenced by processes like tube drain flow, overland flow and the dynamics of draining ditches and streams and therefore exhibit strong daily and seasonal variations. The study we will present is situated in the 6.6 km2 Hupsel brook catchment in The Netherlands. In this catchment nitrate and chloride concentrations have been intensively monitored for the past 26 years under steadily decreasing agricultural inputs. We described the complicated dynamics of subsurface water fluxes as streams, ditches and tube drains locally switch between active or passive depending on the ambient groundwater level by a groundwater model with high spatial and temporal resolutions. A transient particle tracking approach is used to derive a unique catchment-scale travel time distribution for each day during the 26 year model period. These transient travel time distributions are not smooth distributions, but distributions that are strongly spiked reflecting the contribution of past rainfall events to the current discharge. We will show that a catchment-scale mass response function approach that only describes catchment-scale mixing and degradation suffices to accurately reproduce observed chloride and nitrate surface water concentrations as long as the mass response functions include the dynamics of travel time distributions caused by the highly variable connectivity of the surface

  5. Methodology for Developing Hydrological Models Based on an Artificial Neural Network to Establish an Early Warning System in Small Catchments

    Directory of Open Access Journals (Sweden)

    Ivana Sušanj

    2016-01-01

    Full Text Available In some situations, there is no possibility of hazard mitigation, especially if the hazard is induced by water. Thus, it is important to prevent consequences via an early warning system (EWS to announce the possible occurrence of a hazard. The aim and objective of this paper are to investigate the possibility of implementing an EWS in a small-scale catchment and to develop a methodology for developing a hydrological prediction model based on an artificial neural network (ANN as an essential part of the EWS. The methodology is implemented in the case study of the Slani Potok catchment, which is historically recognized as a hazard-prone area, by establishing continuous monitoring of meteorological and hydrological parameters to collect data for the training, validation, and evaluation of the prediction capabilities of the ANN model. The model is validated and evaluated by visual and common calculation approaches and a new evaluation for the assessment. This new evaluation is proposed based on the separation of the observed data into classes based on the mean data value and the percentages of classes above or below the mean data value as well as on the performance of the mean absolute error.

  6. Diatoms as a fingerprint of sub-catchment contributions to meso-scale catchment runoff

    Science.gov (United States)

    Klaus, Julian; Wetzel, Carlos E.; Martinez-Carreras, Nuria; Ector, Luc; Pfister, Laurent

    2014-05-01

    In recent years, calls were made for new eco-hydrological approaches to improve understanding of hydrological processes. Recently diatoms, one of the most common and diverse algal groups that can be easily transported by flowing water due to their small size (~10-200 µm), were used to detect the onset and cessation of surface runoff to small headwater streams and constrain isotopic and hydro-chemical hydrograph separation methods. While the method showed its potential in the hillslope-riparian zone-stream continuum of headwater catchments, the behavior of diatoms and their use for hydrological process research in meso-scale catchments remains uncertain. Diatoms can be a valuable support for isotope and hydro-chemical tracer methods when these become ambiguous with increasing scale. Distribution and abundance of diatom species is controlled by various environmental factors (pH, soil type, moisture conditions, exposition to sunlight, etc.). We therefore hypothesize that species abundance and composition can be used as a proxy for source areas. This presentation evaluates the potential for diatoms to trace source-areas in the nested meso-scale Attert River basin (250 km2, Luxembourg, Europe). We sampled diatom populations in streamwater during one flood event in Fall 2011 in 6 sub-catchments and the basin outlet - 17 to 28 samples/catchment for the different sampling locations. Diatoms were classified and counted in every individual sample. In total more than 400 diatom species were detected. Ordination analysis revealed a clear distinction between communities sampled in different sub-catchments. The species composition at the catchment outlet reflects a mixing of the diatom composition originating from different sub-catchments. This data suggests that diatoms indeed can reflect the geographic origin of stream water at the catchment outlet. The centroids of the ordination analysis might be linked to the physiographic characteristics (geology and land use) of the

  7. GIS-Based KW-GIUH hydrological model of semiarid catchments: The case of Faria Catchment, Palestine

    International Nuclear Information System (INIS)

    Shadeed, S.; Shaheen, H.; Jayyousi, A.

    2007-01-01

    Among the most basic challenges of hydrology are the quantitative understanding of the processes of runoff generation and prediction of flow hydrographs. Traditional techniques have been widely applied for the estimation of runoff hydrographs of gauged catchments using historical rainfall-runoff data and unit hydrographs. Such procedures are questioned as to their reliability and their application to ungauged, arid and semiarid catchments. To overcome such difficulties, the use of physically based rainfall-runoff process of Faria Catchment using the lately developed KW-GIUH. Faria catchment, located in the northeastern part of the West Bank, Palestine, is characterized as a semiarid region with annual rainfall depths ranging on average from 150 to 640 mm at both ends of the catchment. The Geographical Information System (GIS) techniques were used to shape the geomorphological features of the catchment. A GIS based KW-GIUH hydrological model was used to stimulate the rainfall-runoff process in the three sub-catchments of Faria, namely: Al-Badan, Al-Faria and Al-Malaqi. The simulated runoff hydrographs proved that the GIS-based KW-GIUH model is applicable to semiarid regions and can be used to estimate the unit hydrographs in the West Bank catchments. (author)

  8. Repeat synoptic sampling reveals drivers of change in carbon and nutrient chemistry of Arctic catchments

    Science.gov (United States)

    Zarnetske, J. P.; Abbott, B. W.; Bowden, W. B.; Iannucci, F.; Griffin, N.; Parker, S.; Pinay, G.; Aanderud, Z.

    2017-12-01

    Dissolved organic carbon (DOC), nutrients, and other solute concentrations are increasing in rivers across the Arctic. Two hypotheses have been proposed to explain these trends: 1. distributed, top-down permafrost degradation, and 2. discrete, point-source delivery of DOC and nutrients from permafrost collapse features (thermokarst). While long-term monitoring at a single station cannot discriminate between these mechanisms, synoptic sampling of multiple points in the stream network could reveal the spatial structure of solute sources. In this context, we sampled carbon and nutrient chemistry three times over two years in 119 subcatchments of three distinct Arctic catchments (North Slope, Alaska). Subcatchments ranged from 0.1 to 80 km2, and included three distinct types of Arctic landscapes - mountainous, tundra, and glacial-lake catchments. We quantified the stability of spatial patterns in synoptic water chemistry and analyzed high-frequency time series from the catchment outlets across the thaw season to identify source areas for DOC, nutrients, and major ions. We found that variance in solute concentrations between subcatchments collapsed at spatial scales between 1 to 20 km2, indicating a continuum of diffuse- and point-source dynamics, depending on solute and catchment characteristics (e.g. reactivity, topography, vegetation, surficial geology). Spatially-distributed mass balance revealed conservative transport of DOC and nitrogen, and indicates there may be strong in-stream retention of phosphorus, providing a network-scale confirmation of previous reach-scale studies in these Arctic catchments. Overall, we present new approaches to analyzing synoptic data for change detection and quantification of ecohydrological mechanisms in ecosystems in the Arctic and beyond.

  9. Green infrastructure and its catchment-scale effects: an emerging science.

    Science.gov (United States)

    Golden, Heather E; Hoghooghi, Nahal

    2018-01-01

    Urbanizing environments alter the hydrological cycle by redirecting stream networks for stormwater and wastewater transmission and increasing impermeable surfaces. These changes thereby accelerate the runoff of water and its constituents following precipitation events, alter evapotranspiration processes, and indirectly modify surface precipitation patterns. Green infrastructure, or low-impact development (LID), can be used as a standalone practice or in concert with gray infrastructure (traditional stormwater management approaches) for cost-efficient, decentralized stormwater management. The growth in LID over the past several decades has resulted in a concomitant increase in research evaluating LID efficiency and effectiveness, but mostly at localized scales. There is a clear research need to quantify how LID practices affect water quantity (i.e., runoff and discharge) and quality at the scale of catchments. In this overview, we present the state of the science of LID research at the local scale, considerations for scaling this research to catchments, recent advances and findings in scaling the effects of LID practices on water quality and quantity at catchment scales, and the use of models as novel tools for these scaling efforts.

  10. Creating a catchment scale perspective for river restoration

    Directory of Open Access Journals (Sweden)

    L. Benda

    2011-09-01

    Full Text Available One of the major challenges in river restoration is to identify the natural fluvial landscape in catchments with a long history of river control. Intensive land use on valley floors often predates the earliest remote sensing: levees, dikes, dams, and other structures alter valley-floor morphology, river channels and flow regimes. Consequently, morphological patterns indicative of the fluvial landscape including multiple channels, extensive floodplains, wetlands, and fluvial-riparian and tributary-confluence dynamics can be obscured, and information to develop appropriate and cost effective river restoration strategies can be unavailable. This is the case in the Pas River catchment in northern Spain (650 km2, in which land use and development have obscured the natural fluvial landscape in many parts of the basin. To address this issue we used computer tools to examine the spatial patterns of fluvial landscapes that are associated with five domains of hydro-geomorphic processes and landforms. Using a 5-m digital elevation model, valley-floor surfaces were mapped according to elevation above the channel and proximity to key geomorphic processes. The predicted fluvial landscape is patchily distributed according to hillslope and valley topography, river network structure, and channel elevation profiles. The vast majority of the fluvial landscape in the main segments of the Pas River catchment is presently masked by human infrastructure, with only 15% not impacted by river control structures and development. The reconstructed fluvial landscape provides a catchment scale context to support restoration planning, in which areas of potential ecological productivity and diversity could be targeted for in-channel, floodplain and riparian restoration projects.

  11. Analyzing catchment behavior through catchment modeling in the Gilgel Abay, Upper Blue Nile River Basin, Ethiopia

    Directory of Open Access Journals (Sweden)

    S. Uhlenbrook

    2010-10-01

    Full Text Available Understanding catchment hydrological processes is essential for water resources management, in particular in data scarce regions. The Gilgel Abay catchment (a major tributary into Lake Tana, source of the Blue Nile is undergoing intensive plans for water management, which is part of larger development plans in the Blue Nile basin in Ethiopia. To obtain a better understanding of the water balance dynamics and runoff generation mechanisms and to evaluate model transferability, catchment modeling has been conducted using the conceptual hydrological model HBV. Accordingly, the catchment of the Gilgel Abay has been divided into two gauged sub-catchments (Upper Gilgel Abay and Koga and the un-gauged part of the catchment. All available data sets were tested for stationarity, consistency and homogeneity and the data limitations (quality and quantity are discussed. Manual calibration of the daily models for three different catchment representations, i.e. (i lumped, (ii lumped with multiple vegetation zones, and (iii semi-distributed with multiple vegetation and elevation zones, showed good to satisfactory model performances with Nash-Sutcliffe efficiencies Reff > 0.75 and > 0.6 for the Upper Gilgel Abay and Koga sub-catchments, respectively. Better model results could not be obtained with manual calibration, very likely due to the limited data quality and model insufficiencies. Increasing the computation time step to 15 and 30 days improved the model performance in both sub-catchments to Reff > 0.8. Model parameter transferability tests have been conducted by interchanging parameters sets between the two gauged sub-catchments. Results showed poor performances for the daily models (0.30 < Reff < 0.67, but better performances for the 15 and 30 days models, Reff > 0.80. The transferability tests together with a sensitivity analysis using Monte Carlo simulations (more than 1 million

  12. A method to employ the spatial organization of catchments into semi-distributed rainfall–runoff models

    Directory of Open Access Journals (Sweden)

    H. Oppel

    2017-08-01

    Full Text Available A distributed or semi-distributed deterministic hydrological model should consider the hydrologically most relevant catchment characteristics. These are heterogeneously distributed within a watershed but often interrelated and subject to a certain spatial organization which results in archetypes of combined characteristics. In order to reproduce the natural rainfall–runoff response the reduction of variance of catchment properties as well as the incorporation of the spatial organization of the catchment are desirable. In this study the width-function approach is utilized as a basic characteristic to analyse the succession of catchment characteristics. By applying this technique we were able to assess the context of catchment properties like soil or topology along the streamflow length and the network geomorphology, giving indications of the spatial organization of a catchment. Moreover, this information and this technique have been implemented in an algorithm for automated sub-basin ascertainment, which included the definition of zones within the newly defined sub-basins. The objective was to provide sub-basins that were less heterogeneous than common separation schemes. The algorithm was applied to two parameters characterizing the topology and soil of four mid-European watersheds. Resulting partitions indicated a wide range of applicability for the method and the algorithm. Additionally, the intersection of derived zones for different catchment characteristics could give insights into sub-basin similarities. Finally, a HBV96 case study demonstrated the potential benefits of modelling with the new subdivision technique.

  13. Comparison of Multi-Scale Digital Elevation Models for Defining Waterways and Catchments Over Large Areas

    Science.gov (United States)

    Harris, B.; McDougall, K.; Barry, M.

    2012-07-01

    Digital Elevation Models (DEMs) allow for the efficient and consistent creation of waterways and catchment boundaries over large areas. Studies of waterway delineation from DEMs are usually undertaken over small or single catchment areas due to the nature of the problems being investigated. Improvements in Geographic Information Systems (GIS) techniques, software, hardware and data allow for analysis of larger data sets and also facilitate a consistent tool for the creation and analysis of waterways over extensive areas. However, rarely are they developed over large regional areas because of the lack of available raw data sets and the amount of work required to create the underlying DEMs. This paper examines definition of waterways and catchments over an area of approximately 25,000 km2 to establish the optimal DEM scale required for waterway delineation over large regional projects. The comparative study analysed multi-scale DEMs over two test areas (Wivenhoe catchment, 543 km2 and a detailed 13 km2 within the Wivenhoe catchment) including various data types, scales, quality, and variable catchment input parameters. Historic and available DEM data was compared to high resolution Lidar based DEMs to assess variations in the formation of stream networks. The results identified that, particularly in areas of high elevation change, DEMs at 20 m cell size created from broad scale 1:25,000 data (combined with more detailed data or manual delineation in flat areas) are adequate for the creation of waterways and catchments at a regional scale.

  14. Dynamic network expansion, contraction, and connectivity in the river corridor of mountain stream network

    Science.gov (United States)

    Ward, A. S.; Schmadel, N.; Wondzell, S. M.

    2017-12-01

    River networks are broadly recognized to expand and contract in response to hydrologic forcing. Additionally, the individual controls on river corridor dynamics of hydrologic forcing and geologic setting are well recognized. However, we currently lack tools to integrate our understanding of process dynamics in the river corridor and make predictions at the scale of river networks. In this study, we develop a perceptual model of the river corridor in mountain river networks, translate this into a reduced-complexity mechanistic model, and implement the model in a well-studied headwater catchment. We found that the river network was most sensitive to hydrologic dynamics under the lowest discharges (Qgauge managers of water resources who need to estimate connectivity and flow initiation location along the river corridor over broad, unstudied catchments.

  15. Catchment-scale evaluation of pollution potential of urban snow at two residential catchments in southern Finland.

    Science.gov (United States)

    Sillanpää, Nora; Koivusalo, Harri

    2013-01-01

    Despite the crucial role of snow in the hydrological cycle in cold climate conditions, monitoring studies of urban snow quality often lack discussions about the relevance of snow in the catchment-scale runoff management. In this study, measurements of snow quality were conducted at two residential catchments in Espoo, Finland, simultaneously with continuous runoff measurements. The results of the snow quality were used to produce catchment-scale estimates of areal snow mass loads (SML). Based on the results, urbanization reduced areal snow water equivalent but increased pollutant accumulation in snow: SMLs in a medium-density residential catchment were two- to four-fold higher in comparison with a low-density residential catchment. The main sources of pollutants were related to vehicular traffic and road maintenance, but also pet excrement increased concentrations to a high level. Ploughed snow can contain 50% of the areal pollutant mass stored in snow despite its small surface area within a catchment.

  16. River-groundwater connectivity and nutrient dynamics in a mesoscale catchment

    Science.gov (United States)

    Fleckenstein, Jan H.; Musolff, Andreas; Gilfedder, Benjamin; Frei, Sven; Wankmüller, Fabian; Trauth, Nico

    2017-04-01

    Diffuse solute exports from catchments are governed by many interrelated factors such as land use, climate, geological-/ hydrogeological setup and morphology. Those factors create spatial variations in solute concentrations and turnover rates in the subsurface as well as in the stream network. River-groundwater connectivity is a crucial control in this context: On the one hand groundwater is a main pathway for nitrate inputs to the stream. On the other hand, groundwater connectivity with the stream affects the magnitude of hyporheic exchange of stream water with the stream bed. We present results of a longitudinal sampling campaign along the Selke river, a 67 km long third-order stream in the Harz mountains in central Germany. Water quality at the catchment outlet is strongly impacted by agriculture with high concentrations of nitrate and a chemostatic nitrate export regime. However, the specific nitrate pathways to the stream are not fully understood as there is arable land distributed throughout the catchment. While the sparsely distributed arable land in the mountainous upper catchment receives much higher amounts of precipitation, the downstream alluvial plains are drier, but more intensively used. The three-day campaign was conducted in June 2016 under constant low flow conditions. Stream water samples were taken every 2 km along the main stem of the river and at its major tributaries. Samples were analyzed for field parameters, major cations and anions, N-O isotopes, nutrients and Radon-222 (Rn) concentrations. Additionally, at each sampling location, river discharge was manually measured using current meters. Groundwater influxes to each sampled river section were quantified from the Rn measurements using the code FINIFLUX, (Frei and Gilfedder 2015). Rn and ion concentrations showed an increase from the spring to the mouth, indicating a growing impact of groundwater flux to the river. However, increases in groundwater gains were not gradual. The strongest

  17. Catchment areas for public transport

    DEFF Research Database (Denmark)

    Andersen, Jonas Lohmann Elkjær; Landex, Alex

    2008-01-01

    In the planning of public transport catchment areas of stops are often included to estimate potential number of travellers. There are different approaches to GIS-based catchment area analyses depending on the desired level of detail. The Circular Buffer approach is the fundamental, but also....../from stations. The article also shows how the refinement of the Service Area approach with additional time resistance results in smaller catchment areas when the feeder routes cross stairs. It is concluded that GIS-based catchment area analyses are a multiple decision support tool for planning of public...... transport where the level of detail can be suited to the purpose....

  18. Transport of cyazofamid and kresoxim methyl in runoff at the plot and catchment scales

    Science.gov (United States)

    Lefrancq, Marie; Joaquín García Verdú, Antonio; Maillard, Elodie; Imfeld, Gwenaël; Payraudeau, Sylvain

    2013-04-01

    Surface runoff and erosion during the course of rainfall events represent major processes of pesticides transport from agricultural land to aquatic ecosystem. In general, field and catchment studies on pesticide transfer are carried out separately. A study at both scales may enable to improve the understanding of scale effects on processes involved in pesticides transport and to give clues on the source areas within an agricultural catchment. In this study, the transport in runoff of two widely used fungicides, i.e. kresoxim methyl (KM) and cyazofamid (CY) was assessed in a 43 ha vineyard catchment and the relative contribution of the total fungicides export from one representative plot was evaluated. During an entire period of fungicide application, from May to August 2011, the discharge and loads of dissolved and particle-laden KM and CY were monitored at the plot and catchment scales. The results showed larger export coefficient of KM and CY from catchment (0.064 and 0.041‰ for KM and CY respectively) than from the studied plot (0.009 and 0.023 ‰ for KM and CY respectively). It suggests that the plot margins especially the road network contributed as well to the fungicide loads. This result underlines the impact of fungicide drift on non-target areas. Furthermore, a larger rainfall threshold is necessary at the plot scale to trigger runoff and mobilise pesticides than on the road network. At the plot scale, a rapid dissipation of the both fungicides in the top soil was observed. It highlights that the risky period encompasses the first rainfall events triggering runoff after the applications. At both scales, KM and CY were not detected in suspended solids (i.e. > 0.7 µm). However their partitioning in runoff water differed. 64.1 and 91.8% of the KM load was detected in the dissolved phase (i.e. particulate phase (i.e. between 0.22 and 0.7 µm) at the plot and catchment scales respectively. Although KM and CY have similar lab-defined properties, our results

  19. COMPARISON OF MULTI-SCALE DIGITAL ELEVATION MODELS FOR DEFINING WATERWAYS AND CATCHMENTS OVER LARGE AREAS

    Directory of Open Access Journals (Sweden)

    B. Harris

    2012-07-01

    Full Text Available Digital Elevation Models (DEMs allow for the efficient and consistent creation of waterways and catchment boundaries over large areas. Studies of waterway delineation from DEMs are usually undertaken over small or single catchment areas due to the nature of the problems being investigated. Improvements in Geographic Information Systems (GIS techniques, software, hardware and data allow for analysis of larger data sets and also facilitate a consistent tool for the creation and analysis of waterways over extensive areas. However, rarely are they developed over large regional areas because of the lack of available raw data sets and the amount of work required to create the underlying DEMs. This paper examines definition of waterways and catchments over an area of approximately 25,000 km2 to establish the optimal DEM scale required for waterway delineation over large regional projects. The comparative study analysed multi-scale DEMs over two test areas (Wivenhoe catchment, 543 km2 and a detailed 13 km2 within the Wivenhoe catchment including various data types, scales, quality, and variable catchment input parameters. Historic and available DEM data was compared to high resolution Lidar based DEMs to assess variations in the formation of stream networks. The results identified that, particularly in areas of high elevation change, DEMs at 20 m cell size created from broad scale 1:25,000 data (combined with more detailed data or manual delineation in flat areas are adequate for the creation of waterways and catchments at a regional scale.

  20. The sensitivity of catchment runoff models to rainfall data at different spatial scales

    Directory of Open Access Journals (Sweden)

    V. A. Bell

    2000-01-01

    Full Text Available The sensitivity of catchment runoff models to rainfall is investigated at a variety of spatial scales using data from a dense raingauge network and weather radar. These data form part of the HYREX (HYdrological Radar EXperiment dataset. They encompass records from 49 raingauges over the 135 km2 Brue catchment in south-west England together with 2 and 5 km grid-square radar data. Separate rainfall time-series for the radar and raingauge data are constructed on 2, 5 and 10 km grids, and as catchment average values, at a 15 minute time-step. The sensitivity of the catchment runoff models to these grid scales of input data is evaluated on selected convective and stratiform rainfall events. Each rainfall time-series is used to produce an ensemble of modelled hydrographs in order to investigate this sensitivity. The distributed model is shown to be sensitive to the locations of the raingauges within the catchment and hence to the spatial variability of rainfall over the catchment. Runoff sensitivity is strongest during convective rainfall when a broader spread of modelled hydrographs results, with twice the variability of that arising from stratiform rain. Sensitivity to rainfall data and model resolution is explored and, surprisingly, best performance is obtained using a lower resolution of rainfall data and model. Results from the distributed catchment model, the Simple Grid Model, are compared with those obtained from a lumped model, the PDM. Performance from the distributed model is found to be only marginally better during stratiform rain (R2 of 0.922 compared to 0.911 but significantly better during convective rain (R2 of 0.953 compared to 0.909. The improved performance from the distributed model can, in part, be accredited to the excellence of the dense raingauge network which would not be the norm for operational flood warning systems. In the final part of the paper, the effect of rainfall resolution on the performance of the 2 km distributed

  1. Multi-catchment rainfall-runoff simulation for extreme flood estimation

    Science.gov (United States)

    Paquet, Emmanuel

    2017-04-01

    rainfall of each event is distributed through the different sub-catchments using the spatial patterns calculated in the SPAZM precipitation reanalysis (Gottardi et al., 2012) for comparable situations of the 1948-2005 period. Corresponding runoffs are calculated with the hydrological models and aggregated to compute the discharge at the outlet of the main catchment. A complete distribution of flood discharges is finally computed. This method is illustrated with the example of the Durance at Serre-Ponçon catchment (south of French Alps, 3600 km2) which has been divided in four sub-catchements. The proposed approach is compared with the "classical" SCHADEX approach applied on the whole catchment. References: Garçon, R. (1996). Prévision opérationnelle des apports de la Durance à Serre-Ponçon à l'aide du modèle MORDOR. Bilan de l'année 1994-1995. La Houille Blanche, (5), 71-76. Gottardi, F., Obled, C., Gailhard, J., & Paquet, E. (2012). Statistical reanalysis of precipitation fields based on ground network data and weather patterns: Application over French mountains. Journal of Hydrology, 432, 154-167. Paquet, E., Garavaglia, F., Garçon, R., & Gailhard, J. (2013). The SCHADEX method: A semi-continuous rainfall-runoff simulation for extreme flood estimation. Journal of Hydrology, 495, 23-37.

  2. A numerical solution to define channel heads and hillslope parameters from digital topography of glacially conditioned catchments

    Science.gov (United States)

    Salcher, Bernhard; Baumann, Sebastian; Kober, Florian; Robl, Jörg; Heiniger, Lukas

    2016-04-01

    The analysis of the slope-area relationship in bedrock streams is a common way for discriminating the channel from the hillslope domain and associated landscape processes. Spatial variations of these domains are important indicators of landscape change. In fluvial catchments, this relationship is a function of contributing drainage area, channel slope and the threshold drainage area for fluvial erosion. The resulting pattern is related to climate, tectonic and underlying bedrock. These factors may become secondary in catchments affected by glacial erosion, as it is the case in many mid- to high-latitude mountain belts. The perturbation (i.e. the destruction) of an initial steady state fluvial bedrock morphology (where uplift is balanced by surface lowering rates) will tend to become successively larger if the repeated action of glacial processes exceeds the potential of fluvial readjustment during deglaciated periods. Topographic change is associated with a decrease and fragmentation of the channel network and an extension of the hillslope domain. In case of glacially conditioned catchments discrimination of the two domains remains problematic and a discrimination inconsistent. A definition is therefore highly needed considering that (i) a spatial shift in the domains affect the process and rate of erosion and (ii) topographic classifications of alpine catchments often base on channel and hillslope parameters (i.e.channel or hillslope relief). Here we propose a novel numerical approach to topographically define channel heads from digital topography in glacially conditioned mountain range catchments in order to discriminate the channel from the hillslope domain. We analyzed the topography of the southern European Central Alps, a region which (i) has been glaciated multiple times during the Quaternary, shows (ii) little lithological variations, is (iii) home of very low erodible rocks and is (iv) known as a region were tectonic processes have largely ceased. The

  3. PAI-OFF: A new proposal for online flood forecasting in flash flood prone catchments

    Science.gov (United States)

    Schmitz, G. H.; Cullmann, J.

    2008-10-01

    SummaryThe Process Modelling and Artificial Intelligence for Online Flood Forecasting (PAI-OFF) methodology combines the reliability of physically based, hydrologic/hydraulic modelling with the operational advantages of artificial intelligence. These operational advantages are extremely low computation times and straightforward operation. The basic principle of the methodology is to portray process models by means of ANN. We propose to train ANN flood forecasting models with synthetic data that reflects the possible range of storm events. To this end, establishing PAI-OFF requires first setting up a physically based hydrologic model of the considered catchment and - optionally, if backwater effects have a significant impact on the flow regime - a hydrodynamic flood routing model of the river reach in question. Both models are subsequently used for simulating all meaningful and flood relevant storm scenarios which are obtained from a catchment specific meteorological data analysis. This provides a database of corresponding input/output vectors which is then completed by generally available hydrological and meteorological data for characterizing the catchment state prior to each storm event. This database subsequently serves for training both a polynomial neural network (PoNN) - portraying the rainfall-runoff process - and a multilayer neural network (MLFN), which mirrors the hydrodynamic flood wave propagation in the river. These two ANN models replace the hydrological and hydrodynamic model in the operational mode. After presenting the theory, we apply PAI-OFF - essentially consisting of the coupled "hydrologic" PoNN and "hydrodynamic" MLFN - to the Freiberger Mulde catchment in the Erzgebirge (Ore-mountains) in East Germany (3000 km 2). Both the demonstrated computational efficiency and the prediction reliability underline the potential of the new PAI-OFF methodology for online flood forecasting.

  4. Chalk Catchment Transit Time: Unresolved Issues

    Energy Technology Data Exchange (ETDEWEB)

    Darling, W. G.; Gooddy, D. C. [British Geological Survey, Crowmarsh Gifford, Wallingford, Oxfordshire (United Kingdom); Barker, J. A. [School of Civil Engineering and the Environment, University of Southampton, Southampton (United Kingdom); Robinson, M. [Centre for Ecology and Hydrology, Crowmarsh Gifford, Wallingford, Oxfordshire (United Kingdom)

    2013-07-15

    The mean transit time (MTT) of a catchment is the average residence time of water from rainfall to river outflow at the foot of the catchment. As such, MTT has important water quality as well as resource implications. Many catchments worldwide have been measured for MTT using environmental isotopes, yet the Chalk, an important aquifer in NW Europe, has received little attention in this regard. The catchment of the River Lambourn in southern England has been intermittently studied since the 1960s using isotopic methods. A tritium peak measured in the river during the 1970s indicates an apparent MTT of {approx}15 years, but the thick unsaturated zone (average {approx}50 m) of the catchment suggests that the MTT should be much greater because of the average downward movement through the Chalk of {approx}1 m/a consistently indicated by tritium and other tracers. Recent work in the catchment using SF{sub 6} as a residence time indicator has given groundwater ages in the narrow range 11-18 yrs, apparently supporting the river tritium data but in conflict with the unsaturated zone data even allowing for a moderate proportion of rapid bypass flow. The MTT of the catchment remains unresolved for the time being. (author)

  5. Recession-based hydrological models for estimating low flows in ungauged catchments in the Himalayas

    Directory of Open Access Journals (Sweden)

    H. G. Rees

    2004-01-01

    Full Text Available The Himalayan region of Nepal and northern India experiences hydrological extremes from monsoonal floods during July to September, when most of the annual precipitation falls, to periods of very low flows during the dry season (December to February. While the monsoon floods cause acute disasters such as loss of human life and property, mudslides and infrastructure damage, the lack of water during the dry season has a chronic impact on the lives of local people. The management of water resources in the region is hampered by relatively sparse hydrometerological networks and consequently, many resource assessments are required in catchments where no measurements exist. A hydrological model for estimating dry season flows in ungauged catchments, based on recession curve behaviour, has been developed to address this problem. Observed flows were fitted to a second order storage model to enable average annual recession behaviour to be examined. Regionalised models were developed, using a calibration set of 26 catchments, to predict three recession curve parameters: the storage constant; the initial recession flow and the start date of the recession. Relationships were identified between: the storage constant and catchment area; the initial recession flow and elevation (acting as a surrogate for rainfall; and the start date of the recession and geographic location. An independent set of 13 catchments was used to evaluate the robustness of the models. The regional models predicted the average volume of water in an annual recession period (1st of October to the 1st of February with an average error of 8%, while mid-January flows were predicted to within ±50% for 79% of the catchments in the data set. Keywords: Himalaya, recession curve, water resources, ungauged catchment, regionalisation, low flows

  6. Tropical Montane Cloud Forests: Hydrometeorological variability in three neighbouring catchments with different forest cover

    Science.gov (United States)

    Ramírez, Beatriz H.; Teuling, Adriaan J.; Ganzeveld, Laurens; Hegger, Zita; Leemans, Rik

    2017-09-01

    Mountain areas are characterized by a large heterogeneity in hydrological and meteorological conditions. This heterogeneity is currently poorly represented by gauging networks and by the coarse scale of global and regional climate and hydrological models. Tropical Montane Cloud Forests (TMCFs) are found in a narrow elevation range and are characterized by persistent fog. Their water balance depends on local and upwind temperatures and moisture, therefore, changes in these parameters will alter TMCF hydrology. Until recently the hydrological functioning of TMCFs was mainly studied in coastal regions, while continental TMCFs were largely ignored. This study contributes to fill this gap by focusing on a TMCF which is located on the northern eastern Andes at an elevation of 1550-2300 m asl, in the Orinoco river basin highlands. In this study, we describe the spatial and seasonal meteorological variability, analyse the corresponding catchment hydrological response to different land cover, and perform a sensitivity analysis on uncertainties related to rainfall interpolation, catchment area estimation and streamflow measurements. Hydro-meteorological measurements, including hourly solar radiation, temperature, relative humidity, wind speed, precipitation, soil moisture and streamflow, were collected from June 2013 to May 2014 at three gauged neighbouring catchments with contrasting TMCF/grassland cover and less than 250 m elevation difference. We found wetter and less seasonally contrasting conditions at higher elevations, indicating a positive relation between elevation and fog or rainfall persistence. This pattern is similar to that of other eastern Andean TMCFs, however, the study site had higher wet season rainfall and lower dry season rainfall suggesting that upwind contrasts in land cover and moisture can influence the meteorological conditions at eastern Andean TMCFs. Contrasting streamflow dynamics between the studied catchments reflect the overall system response

  7. The Contribution of GIS to Display and Analyze the Water Quality Data Collected by a Wireless Sensor Network: Case of Bouregreg Catchment, Morocco

    Science.gov (United States)

    Boubakri, S.; Rhinane, H.

    2017-11-01

    The monitoring of water quality is, in most cases, managed in the laboratory and not on real time bases. Besides this process being lengthy, it doesn't provide the required specifications to describe the evolution of the quality parameters that are of interest. This study presents the integration of Geographic Information Systems (GIS) with wireless sensor networks (WSN) aiming to create a system able to detect the parameters like temperature, salinity and conductivity in a Moroccan catchment scale and transmit information to the support station. This Information is displayed and evaluated in a GIS using maps and spatial dashboard to monitor the water quality in real time.

  8. THE CONTRIBUTION OF GIS TO DISPLAY AND ANALYZE THE WATER QUALITY DATA COLLECTED BY A WIRELESS SENSOR NETWORK: CASE OF BOUREGREG CATCHMENT, MOROCCO

    Directory of Open Access Journals (Sweden)

    S. Boubakri

    2017-11-01

    Full Text Available The monitoring of water quality is, in most cases, managed in the laboratory and not on real time bases. Besides this process being lengthy, it doesn’t provide the required specifications to describe the evolution of the quality parameters that are of interest. This study presents the integration of Geographic Information Systems (GIS with wireless sensor networks (WSN aiming to create a system able to detect the parameters like temperature, salinity and conductivity in a Moroccan catchment scale and transmit information to the support station. This Information is displayed and evaluated in a GIS using maps and spatial dashboard to monitor the water quality in real time.

  9. Runoff generation in a Mediterranean semi-arid landscape: Thresholds, scale, rainfall and catchment characteristics

    Science.gov (United States)

    Ries, Fabian; Schmidt, Sebastian; Sauter, Martin; Lange, Jens

    2016-04-01

    Surface runoff acts as an integrated response of catchment characteristics and hydrological processes. In the Eastern Mediterranean region, a lack of runoff data has hindered a better understanding of runoff generation processes on the catchment scale, despite the importance of surface runoff as a water resource or flood hazard. Our main aim was to identify and explain differences in catchment runoff reactions across a variety of scales. Over a period of five years, we observed runoff in ephemeral streams of seven watersheds with sizes between 3 and 129 km2. Landuse and surface cover types (share of vegetation, bare soil and rock outcrops) were derived from aerial images by objective classification techniques. Using data from a dense rainfall network we analysed the effects of scale, catchment properties and aridity on runoff generation. Thereby we extracted rainfall and corresponding runoff events from our time-series to calculate event based rainfall characteristics and catchment runoff coefficients. Soil moisture observations provided additional information on antecedent moisture conditions, infiltration characteristics and the evolution of saturated areas. In contrast to the prevailing opinion that the proportion of Hortonian overland flow increases with aridity, we found that in our area the largest share (> 95 %) of runoff is generated by saturation excess overland flow in response to long lasting, rainfall events of high amount. This was supported by a strong correlation between event runoff and precipitation totals. Similar rainfall thresholds (50 mm) for runoff generation were observed in all investigated catchments. No scale effects on runoff coefficients were found; instead we identified up to three-fold runoff coefficients in catchments with larger extension of arid areas, higher percentage of rock outcrops and urbanization. Comparing two headwater catchments with noticeable differences in extent of olive orchards, no difference in runoff generation was

  10. Causal Relationships Among Time Series of the Lange Bramke Catchment (Harz Mountains, Germany)

    Science.gov (United States)

    Aufgebauer, Britta; Hauhs, Michael; Bogner, Christina; Meesenburg, Henning; Lange, Holger

    2016-04-01

    Convergent Cross Mapping (CCM) has recently been introduced by Sugihara et al. for the identification and quantification of causal relationships among ecosystem variables. In particular, the method allows to decide on the direction of causality; in some cases, the causality might be bidirectional, indicating a network structure. We extend this approach by introducing a method of surrogate data to obtain confidence intervals for CCM results. We then apply this method to time series from stream water chemistry. Specifically, we analyze a set of eight dissolved major ions from three different catchments belonging to the hydrological monitoring system at the Bramke valley in the Harz Mountains, Germany. Our results demonstrate the potentials and limits of CCM as a monitoring instrument in forestry and hydrology or as a tool to identify processes in ecosystem research. While some networks of causally linked ions can be associated with simple physical and chemical processes, other results illustrate peculiarities of the three studied catchments, which are explained in the context of their special history.

  11. Geological controls on isotopic signatures of streamflow: results from a nested catchment experiment in Luxembourg (Europe)

    Science.gov (United States)

    Pfister, Laurent; McDonnell, Jeffrey J.; Hissler, Christophe; Martinez-Carreras, Nuria; Gourdol, Laurent; Klaus, Julian; François Iffly, Jean; Barnich, François; Stewart, Mike K.

    2014-05-01

    Controls of geology and topography on hydrological metrics, like summer low flow (Grant and Tague, 2004) or dynamic storage (Sayama et al., 2011), have been identified in nested catchment experiments. However, most tracer-based studies on streamflow generation have been carried out in small (10 km2) homogenous catchments (Klaus and McDonnell, 2013). The controlling effects of catchment physiography on how catchments store and release water, and how this eventually controls stream isotope behaviour over a large range of scale are poorly understood. Here, we present results from a nested catchment analysis in the Alzette River basin (Luxembourg, Europe). Our hydro-climatological network consists of 16 recording streamgauges and 21 pluviographs. Catchment areas range from 0.47 to 285 km2, with clean and mixed combinations of distinct geologies ranging from schists to marls, sandstone, dolomite and limestone. Our objective was to identify geological controls on (i) winter runoff ratios, (ii) maximum storage and (iii) isotopic signatures in streamflow. For each catchment we determined average runoff ratios from winter season precipitation-discharge double-mass curves. Maximum catchment storage was based on the dynamic storage change approach of Sayama et al. (2011). Changes in isotopic signatures of streamflow were documented along individual catchment flow duration curves. We found strong correlations between average winter runoff ratios, maximum storage and the prevailing geological settings. Catchments with impermeable bedrock (e.g. marls or schists) were characterised by small storage potential and high average filling ratios. As a consequence, these catchments also exhibited the highest average runoff ratios. In catchments underlain by permeable bedrock (e.g. sandstone), storage potential was significantly higher and runoff ratios were considerably smaller. The isotopic signatures of streamflow showed large differences between catchments. In catchments dominated by

  12. Development of catchment research, with particular attention to Plynlimon and its forerunner, the East African catchments

    Science.gov (United States)

    Blackie, J. R.; Robinson, M.

    2007-01-01

    Dr J.S.G. McCulloch was deeply involved in the establishment of research catchments in East Africa and subsequently in the UK to investigate the hydrological consequences of changes in land use. Comparison of these studies provides an insight into how influential his inputs and direction have been in the progressive development of the philosophy, the instrumentation and the analytical techniques now employed in catchment research. There were great contrasts in the environments: tropical highland (high radiation, intense rainfall) vs. temperate maritime (low radiation and frontal storms), contrasting soils and vegetation types, as well as the differing social and economic pressures in developing and developed nations. Nevertheless, the underlying scientific philosophy was common to both, although techniques had to be modified according to local conditions. As specialised instrumentation and analytical techniques were developed for the UK catchments many were also integrated into the East African studies. Many lessons were learned in the course of these studies and from the experiences of other studies around the world. Overall, a rigorous scientific approach was developed with widespread applicability. Beyond the basics of catchment selection and the quantification of the main components of the catchment water balance, this involved initiating parallel process studies to provide information on specific aspects of catchment behaviour. This information could then form the basis for models capable of extrapolation from the observed time series to other periods/hydrological events and, ultimately, the capability of predicting the consequences of changes in catchment land management to other areas in a range of climates.

  13. Spatiotemporal patterns of non-point source nitrogen loss in an agricultural catchment

    Directory of Open Access Journals (Sweden)

    Jian-feng Xu

    2016-04-01

    Full Text Available Non-point source nitrogen loss poses a risk to sustainable aquatic ecosystems. However, non-point sources, as well as impaired river segments with high nitrogen concentrations, are difficult to monitor and regulate because of their diffusive nature, budget constraints, and resource deficiencies. For the purpose of catchment management, the Bayesian maximum entropy approach and spatial regression models have been used to explore the spatiotemporal patterns of non-point source nitrogen loss. In this study, a total of 18 sampling sites were selected along the river network in the Hujiashan Catchment. Over the time period of 2008–2012, water samples were collected 116 times at each site and analyzed for non-point source nitrogen loss. The morphometric variables and soil drainage of different land cover types were studied and considered potential factors affecting nitrogen loss. The results revealed that, compared with the approach using the Euclidean distance, the Bayesian maximum entropy approach using the river distance led to an appreciable 10.1% reduction in the estimation error, and more than 53.3% and 44.7% of the river network in the dry and wet seasons, respectively, had a probability of non-point source nitrogen impairment. The proportion of the impaired river segments exhibited an overall decreasing trend in the study catchment from 2008 to 2012, and the reduction in the wet seasons was greater than that in the dry seasons. High nitrogen concentrations were primarily found in the downstream reaches and river segments close to the residential lands. Croplands and residential lands were the dominant factors affecting non-point source nitrogen loss, and explained up to 70.7% of total nitrogen in the dry seasons and 54.7% in the wet seasons. A thorough understanding of the location of impaired river segments and the dominant factors affecting total nitrogen concentration would have considerable importance for catchment management.

  14. Recession-based hydrological models for estimating low flows in ungauged catchments in the Himalayas

    Science.gov (United States)

    Rees, H. G.; Holmes, M. G. R.; Young, A. R.; Kansakar, S. R.

    The Himalayan region of Nepal and northern India experiences hydrological extremes from monsoonal floods during July to September, when most of the annual precipitation falls, to periods of very low flows during the dry season (December to February). While the monsoon floods cause acute disasters such as loss of human life and property, mudslides and infrastructure damage, the lack of water during the dry season has a chronic impact on the lives of local people. The management of water resources in the region is hampered by relatively sparse hydrometerological networks and consequently, many resource assessments are required in catchments where no measurements exist. A hydrological model for estimating dry season flows in ungauged catchments, based on recession curve behaviour, has been developed to address this problem. Observed flows were fitted to a second order storage model to enable average annual recession behaviour to be examined. Regionalised models were developed, using a calibration set of 26 catchments, to predict three recession curve parameters: the storage constant; the initial recession flow and the start date of the recession. Relationships were identified between: the storage constant and catchment area; the initial recession flow and elevation (acting as a surrogate for rainfall); and the start date of the recession and geographic location. An independent set of 13 catchments was used to evaluate the robustness of the models. The regional models predicted the average volume of water in an annual recession period (1st of October to the 1st of February) with an average error of 8%, while mid-January flows were predicted to within ±50% for 79% of the catchments in the data set.

  15. How old is upland catchment water?

    Science.gov (United States)

    Hofmann, Harald; Cartwright, Ian; Morgenstern, Uwe; Gilfedder, Benjamin

    2014-05-01

    Understanding the dynamics of water supply catchments is an essential part of water management. Upland catchments provide a continuous, reliable source of high quality water not only for some of the world's biggest cities, but also for agriculture and industry. Headwater streams control river flow in lowland agricultural basins as the majority of river discharge emerges from upland catchments. Many rivers are perennial and flow throughout the year, even during droughts. However, it is still unclear how reliable and continuous upland catchment water resources really are. Despite many efforts in upland catchment research, there is still little known about where the water is stored and how long it takes to travel through upper catchments. Resolving these questions is crucial to ensure that this resource is protected from changing land use and to estimate potential impacts from a changing climate. Previous research in this important area has been limited by existing measurement techniques. Knowledge to date has relied heavily on the use of variation in stable isotope signals to estimate the age and origin of water from upland catchments. The problem with relying on these measures is that as the water residence time increases, the variation in the stable isotope signal decreases. After a maximum period of four years, no variation can be detected This means that to date, the residence time in upland catchments is likely to have been vastly underestimated. Consequently, the proportion of water flow out of upland river catchments to the total river flow is also underestimated. Tritium (3H) combines directly with water molecules and enters the flow paths with the infiltrating water. Its half-life (12.32 years) makes it ideal to describe residence times in upper catchment reservoirs as it can theoretically measure water up to about 150 years old. The bomb pulse peak in the southern hemisphere was several orders of magnitude lower than in the northern hemisphere. Hence the

  16. Characterisation of dispersion mechanisms in an urban catchment using a deterministic spatially distributed direct hydrograph travel time model

    Science.gov (United States)

    Rossel, F.; Gironas, J. A.

    2012-12-01

    The link between stream network structure and hydrologic response for natural basins has been extensively studied. It is well known that stream network organization and flow dynamics in the reaches combine to shape the hydrologic response of natural basins. Geomorphologic dispersion and hydrodynamic dispersion along with hillslope processes control to a large extent the overall variance of the hydrograph, particularly under the assumption of constant celerity throughout the basin. In addition, a third mechanism referred as to kinematic dispersion becomes relevant when considering spatial variations of celerity. On contrary, the link between the drainage network structure and overall urban terrain, and the hydrologic response in urban catchments has been much less studied. In particular, the characterization of the different dispersion mechanisms within urban areas remains to be better understood. In such areas artificial elements are expected to contribute to the total dispersion due to the variety of geometries and the spatial distribution of imperviousness. This work quantifies the different dispersion mechanisms in an urban catchment, focusing on their relevance and the spatial scales involved. For this purpose we use the Urban Morpho-climatic Instantaneous Unit Hydrograph model, a deterministic spatially distributed direct hydrograph travel time model, which computes travel times in hillslope, pipe, street and channel cells using formulations derived from kinematic wave theory. The model was applied to the Aubeniere catchment, located in Nantes, France. Unlike stochastic models, this deterministic model allows the quantification of dispersion mechanism at the local scale (i.e. the grid-cell). We found that kinematic dispersion is more relevant for small storm events, whereas geomorphologic dispersion becomes more significant for larger storms, as the mean celerity within the catchment increases. In addition, the total dispersion relates to the drainage area in

  17. A mountain environmental virtual observatory (Mountain-EVO) to support participatory monitoring in a network of Andean catchments

    Science.gov (United States)

    Buytaert, Wouter; Ochoa Tocachi, Boris; De Bievre, Bert; Zulkafli, Zed

    2015-04-01

    The tropical Andes are a hotspot of environmental change. The combination of dramatic land-use change with global climate change, demographic growth, and increasing water demand is causing extreme pressures on water resources. This is of particular concern to rural upland communities. They are facing a double challenge of maintaining their own livelihoods with dwindling natural resources, and at the same time supporting downstream ecosystem services such as a well buffered stream flow and good water quality. This challenge is complicated further by the acute lack of data on the hydrological functioning of Andean catchments. The factors controlling their hydrological response are extremely variable in space and time, including meteorological forcing, land cover types, soil properties and geology. This makes it very difficult to predict accurately the impact of human activities such as land use, ecosystem management, and watershed investments. Such predictions are essential for policy-making and sustainable ecosystem management. To tackle the issue of hydrological data scarcity in the tropical Andes, an initiative was set up to implement a network of hydrological monitoring of upland catchments in a pairwise fashion. Using a trading-space-for-time approach, the initiative intends to use these data to improve predictions about the impact of land-use changes and other ecosystem management practices on the hydrological response. Currently, over 25 catchments are being monitored for precipitation and streamflow in 9 sites located in Bolivia, Peru, Ecuador, and Venezuela. The sites are supported by local stakeholders and communities in a participatory monitoring scheme that otherwise would be impractical or prohibitively expensive. To overcome the technical challenges of monitoring hydrological variables in remote mountain areas, the initiative has set up a web-based infrastructure to support local technicians and stakeholders. Additionally, using open data standards such

  18. Restoring Landform Geodiversity in Modified Rivers and Catchments

    Science.gov (United States)

    Smith, Ben; Clifford, Nicholas

    2014-05-01

    also undertaken to show landform position within catchments and the wider river network. We conclude that river restoration could play an important role in the assessment and improvement of geodiversity within heavily-modified European catchments

  19. Prediction of Hydrologic Characteristics for Ungauged Catchments to Support Hydroecological Modeling

    Science.gov (United States)

    Bond, Nick R.; Kennard, Mark J.

    2017-11-01

    Hydrologic variability is a fundamental driver of ecological processes and species distribution patterns within river systems, yet the paucity of gauges in many catchments means that streamflow data are often unavailable for ecological survey sites. Filling this data gap is an important challenge in hydroecological research. To address this gap, we first test the ability to spatially extrapolate hydrologic metrics calculated from gauged streamflow data to ungauged sites as a function of stream distance and catchment area. Second, we examine the ability of statistical models to predict flow regime metrics based on climate and catchment physiographic variables. Our assessment focused on Australia's largest catchment, the Murray-Darling Basin (MDB). We found that hydrologic metrics were predictable only between sites within ˜25 km of one another. Beyond this, correlations between sites declined quickly. We found less than 40% of fish survey sites from a recent basin-wide monitoring program (n = 777 sites) to fall within this 25 km range, thereby greatly limiting the ability to utilize gauge data for direct spatial transposition of hydrologic metrics to biological survey sites. In contrast, statistical model-based transposition proved effective in predicting ecologically relevant aspects of the flow regime (including metrics describing central tendency, high- and low-flows intermittency, seasonality, and variability) across the entire gauge network (median R2 ˜ 0.54, range 0.39-0.94). Modeled hydrologic metrics thus offer a useful alternative to empirical data when examining biological survey data from ungauged sites. More widespread use of these statistical tools and modeled metrics could expand our understanding of flow-ecology relationships.

  20. Water and salt balance modelling to predict the effects of land-use changes in forested catchments. 3. The large catchment model

    Science.gov (United States)

    Sivapalan, Murugesu; Viney, Neil R.; Jeevaraj, Charles G.

    1996-03-01

    This paper presents an application of a long-term, large catchment-scale, water balance model developed to predict the effects of forest clearing in the south-west of Western Australia. The conceptual model simulates the basic daily water balance fluxes in forested catchments before and after clearing. The large catchment is divided into a number of sub-catchments (1-5 km2 in area), which are taken as the fundamental building blocks of the large catchment model. The responses of the individual subcatchments to rainfall and pan evaporation are conceptualized in terms of three inter-dependent subsurface stores A, B and F, which are considered to represent the moisture states of the subcatchments. Details of the subcatchment-scale water balance model have been presented earlier in Part 1 of this series of papers. The response of any subcatchment is a function of its local moisture state, as measured by the local values of the stores. The variations of the initial values of the stores among the subcatchments are described in the large catchment model through simple, linear equations involving a number of similarity indices representing topography, mean annual rainfall and level of forest clearing.The model is applied to the Conjurunup catchment, a medium-sized (39·6 km2) catchment in the south-west of Western Australia. The catchment has been heterogeneously (in space and time) cleared for bauxite mining and subsequently rehabilitated. For this application, the catchment is divided into 11 subcatchments. The model parameters are estimated by calibration, by comparing observed and predicted runoff values, over a 18 year period, for the large catchment and two of the subcatchments. Excellent fits are obtained.

  1. Flash flood modelling for ungauged catchments

    Science.gov (United States)

    Garambois, P.-A.; Roux, H.; Larnier, K.; Dartus, D.

    2012-04-01

    Flash flood is a very intense and quick hydrologic response of a catchment to rainfall. This phenomenon has a high spatial-temporal variability as its generating storm, often hitting small catchments (few km2). Data collected by (Gaume et al. 2009) about 500 flash floods over the last 50 years showed that they could occur everywhere in Europe and more often in the Mediterranean regions, Alpine regions and continental Europe. Given the small spatial-temporal scales and high variability of flash floods, their prediction remains a hard exercise as the necessary data are often scarce. Flash flood prediction on ungauged catchments is one of the challenges of hydrological modelling as defined by (Sivapalan et al. 2003). Several studies have been headed up with the MARINE model (Modélisation de l'Anticipation du Ruissellement et des Inondations pour des évèNements Extrêmes) for the Gard region (France), (Roux et al. 2011), (Castaings et al. 2009). This physically based spatially distributed rainfall runoff model is dedicated to flash flood prediction. The study aims at finding a methodology for flash flood prediction at ungauged locations in the Cévennes-Vivarais region in particular. The regionalization method is based on multiple calibrations on gauged catchments in order to extract model structures (model + parameter values) for each catchment. Several mathematical methods (multiple regressions, transfer functions, krigging…) will then be tested to calculate a regional parameter set. The study also investigates the usability of additional hydrologic indices at different time scales to constrain model predictions from parameters obtained using these indices, and this independently of the model considered. These hydrologic indices gather information on hydrograph shape or catchment dynamic for instance. Results explaining global catchments behaviour are expected that way. The spatial-temporal variability of storms is also described through indices and linked with

  2. Sediment transport dynamics in steep, tropical volcanic catchments

    Science.gov (United States)

    Birkel, Christian; Solano Rivera, Vanessa; Granados Bolaños, Sebastian; Brenes Cambronero, Liz; Sánchez Murillo, Ricardo; Geris, Josie

    2017-04-01

    How volcanic landforms in tropical mountainous regions are eroded, and how eroded materials move through these mostly steep landscapes from the headwaters to affect sediment fluxes are critical to water resources management in their downstream rivers. Volcanic landscapes are of particular importance because of the short timescales (transform. Owing to volcanism and seismic activity, landslides and other mass movements frequently occur. These processes are amplified by high intensity precipitation inputs resulting in significant, but natural runoff, erosion and sediment fluxes. Sediment transport is also directly linked to carbon and solute export. However, knowledge on the sediment sources and transport dynamics in the humid tropics remains limited and their fluxes largely unquantified. In order to increase our understanding of the dominant erosion and sediment transport dynamics in humid tropical volcanic landscapes, we conducted an extensive monitoring effort in a pristine and protected (biological reserve Alberto Manuel Brenes, ReBAMB) tropical forest catchment (3.2 km2), located in the Central Volcanic Cordillera of Costa Rica (Figure 1A). Typical for tropical volcanic and montane regions, deeply incised V-form headwaters (Figure 1B) deliver the majority of water (>70%) and sediments to downstream rivers. At the catchment outlet (Figure 1C) of the San Lorencito stream, we established high temporal resolution (5min) water quantity and sediment monitoring (turbidity). We also surveyed the river network on various occasions to characterize fluvial geomorphology including material properties. We could show that the rainfall-runoff-sediment relationships and their characteristic hysteresis patterns are directly linked to variations in the climatic input (storm intensity and duration) and the size, form and mineralogy of the transported material. Such a relationship allowed us to gain the following insights: (i) periodic landslides contribute significant volumes of

  3. Catchment Restoration in the Tweed UNESCO-IHP HELP Basin - Eddleston Water

    Science.gov (United States)

    Spray, Christopher

    2013-04-01

    initial characterisation of the catchment; the identification of potential key locations and types of intervention to improve ecological status and flood risk reduction; the setting up of the monitoring networks, the engagement with local communities and land managers; initial habitat modifications and the early results of the study. We situate this within the wider context of priorities for restoration and the UNESCO IHP-HELP programme.

  4. Integrating observations and models to help understanding how flooding impacts upon catchments as a basis for decision making.

    Science.gov (United States)

    Owen, Gareth; Quinn, Paul; O'Donnell, Greg

    2014-05-01

    This paper explains how flood management projects might be better informed in the future by using more observations and a novel impact modelling tool in a simple transparent framework. The understanding of how local scale impacts propagate downstream to impact on the downstream hydrograph is difficult to determine using traditional rainfall runoff and hydraulic routing methods. The traditional approach to modelling essentially comprises selecting a fixed model structure and then calibrating to an observational hydrograph, which make those model predictions highly uncertain. Here, a novel approach is used in which the structure of the runoff generation is not specified a priori and incorporates expert knowledge. Rather than using externally for calibration, the observed outlet hydrographs are used directly within the model. Essentially the approach involves the disaggregation of the outlet hydrograph by making assumptions about the spatial distribution of runoff generated. The channel network is parameterised through a comparison of the timing of observed hydrographs at a number of nested locations within the catchment. The user is then encouraged to use their expert knowledge to define how runoff is generated locally and what the likely impact of any local mitigation is. Therefore the user can specify any hydrological model or flow estimation method that captures their expertise. Equally, the user is encouraged to install as many instruments as they can afford to cover the catchment network. A Decision Support Matrix (DSM) is used to encapsulate knowledge of the runoff dynamics gained from simulation in a simple visual way and hence to convey the likely impacts that arise from a given flood management scenario. This tool has been designed primarily to inform and educate landowners, catchment managers and decision makers. The DSM outlines scenarios that are likely to increase or decrease runoff rates and allows the user to contemplate the implications and

  5. Framework for measuring sustainable development in catchment systems.

    Science.gov (United States)

    Walmsley, Jay J

    2002-02-01

    Integrated catchment management represents an approach to managing the resources of a catchment by integrating environmental, economic, and social issues. It is aimed at deriving sustainable benefits for future generations, while protecting natural resources, particularly water, and minimizing possible adverse social, economic, and environmental consequences. Indicators of sustainable development, which summarize information for use in decision-making, are invaluable when trying to assess the diverse, interacting components of catchment processes and resource management actions. The Driving-Forces--Pressure--State--Impact--Response (DPSIR) indicator framework is useful for identifying and developing indicators of sustainable development for catchment management. Driving forces have been identified as the natural conditions occurring in a catchment and the level of development and economic activity. Pressures include the natural and anthropogenic supply of water, water demand, and water pollution. State indicators can be split into those of quantity and those of quality. Impacts include those that affect the ecosystems directly and those that impact the use value of the resource. It core indicators are identified within each of the categories given in the framework, most major catchment-based management issues can be evaluated. This framework is applied to identify key issues in catchment management in South Africa, and develop a set of indicators for evaluating catchments throughout the country.

  6. Typecasting catchments: Classification, directionality, and the pursuit of universality

    Science.gov (United States)

    Smith, Tyler; Marshall, Lucy; McGlynn, Brian

    2018-02-01

    Catchment classification poses a significant challenge to hydrology and hydrologic modeling, restricting widespread transfer of knowledge from well-studied sites. The identification of important physical, climatological, or hydrologic attributes (to varying degrees depending on application/data availability) has traditionally been the focus for catchment classification. Classification approaches are regularly assessed with regard to their ability to provide suitable hydrologic predictions - commonly by transferring fitted hydrologic parameters at a data-rich catchment to a data-poor catchment deemed similar by the classification. While such approaches to hydrology's grand challenges are intuitive, they often ignore the most uncertain aspect of the process - the model itself. We explore catchment classification and parameter transferability and the concept of universal donor/acceptor catchments. We identify the implications of the assumption that the transfer of parameters between "similar" catchments is reciprocal (i.e., non-directional). These concepts are considered through three case studies situated across multiple gradients that include model complexity, process description, and site characteristics. Case study results highlight that some catchments are more successfully used as donor catchments and others are better suited as acceptor catchments. These results were observed for both black-box and process consistent hydrologic models, as well as for differing levels of catchment similarity. Therefore, we suggest that similarity does not adequately satisfy the underlying assumptions being made in parameter regionalization approaches regardless of model appropriateness. Furthermore, we suggest that the directionality of parameter transfer is an important factor in determining the success of parameter regionalization approaches.

  7. Hydrologic comparison between a lowland catchment (Kielstau, Germany and a mountainous catchment (XitaoXi, China using KIDS model in PCRaster

    Directory of Open Access Journals (Sweden)

    N. Fohrer

    2009-08-01

    Full Text Available The KIDS model (Kielstau Discharge Simulation model is a simple rainfall-runoff model developed originally for the Kielstau catchment. To extend its range of application we applied it to a completely different catchment, the XitaoXi catchment in China. Kielstau is a small (51 km2 lowland basin in Northern Germany, with large proportion of wetland area. And XitaoXi is a mesoscale (2271 km2 mountainous basin in the south of China. Both catchments differ greatly in size, topography, landuse, soil properties, and weather conditions. We compared two catchments in these features and stress on the analysis how the specific catchment characteristics could guide the adaptation of KIDS model and the parameter estimation for streamflow simulation. The Nash and Sutcliffe coefficient was 0.73 for Kielstau and 0.65 for XitaoXi. The results suggest that the application of KIDS model may require adjustments according to the specific physical background of the study basin.

  8. Characterising groundwater-dominated lowland catchments: the UK Lowland Catchment Research Programme (LOCAR

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available This paper reports on a major UK initiative to address deficiencies in understanding the hydro-ecological response of groundwater-dominated lowland catchments. The scope and objectives of this national programme are introduced and focus on one of three sets of research basins – the Pang/Lambourn Chalk catchments, tributaries of the river Thames in southern England. The motivation for the research is the need to support integrated management of river systems that have high ecological value and are subject to pressures that include groundwater abstraction for water supply, diffuse pollution, and land use and climate change. An overview of the research programme is provided together with highlights of some current research findings concerning the hydrological functioning of these catchments. Despite the importance of the Chalk as a major UK aquifer, knowledge of the subsurface movement of water and solutes is poor. Solute transport in the dual porosity unsaturated zone depends on fracture/matrix interactions that are difficult to observe; current experimental and modelling research supports the predominance of matrix flow and suggests that slow migration of a time-history of decades of nutrient loading is occurring. Groundwater flows are complex; catchments vary seasonally and are ill-defined and karst features are locally important. Groundwater flow pathways are being investigated using natural and artificial geochemical tracers based on experimental borehole arrays; stream-aquifer interaction research is using a combination of geophysics, borehole array geochemistry and longitudinal profiles of stream flow and solutes. A complex picture of localised subsurface inflows, linked to geological controls and karst features, and significant longitudinal groundwater flow below the river channel is emerging. Management implications are discussed. Strategies to control surface application of nutrients are expected to have little effect on groundwater

  9. Nested Tracer Studies In Catchment Hydrology: Towards A Multiscale Understanding of Runoff Generation and Catchment Funtioning

    Science.gov (United States)

    Soulsby, C.; Rodgers, P.; Malcolm, I. A.; Dunn, S.

    Geochemical and isotopic tracers have been shown to have widespread utility in catch- ment hydrology in terms of identifying hydrological source areas and characterising residence time distributions. In many cases application of tracer techniques has pro- vided insights into catchment functioning that could not be obtained from hydromet- ric and/or modelling studies alone. This paper will show how the use of tracers has contributed to an evolving perceptual model of hydrological pathways and runoff gen- eration processes in catchments in the Scottish highlands. In particular the paper will focus on the different insights that are gained at three different scales of analysis; (a) nested sub-catchments within a mesoscale (ca. 200 square kilometers) experimen- tal catchment; (b) hillslope-riparian interactions and (c) stream bed fluxes. Nested hydrometric and hydrochemical monitoring within the mesoscale Feugh catchment identified three main hydrological response units: (i) plateau peatlands which gener- ated saturation overland flow in the catchment headwaters, (ii) steep valley hillslopes which drain from the plateaux into (iii) alluvial and drift aquifers in the valley bottoms. End Member Mixing Analysis (EMMA) in 8 nested sub-catchments indicated that that stream water tracer concentrations can be modelled in terms of 2 dominant runoff pro- cesses; overland flow from the peat and groundwater from the drift aquifers. Ground- water contributions generally increased with catchment size, though this was moder- ated by the characteristics of individual sub-basins, with drift cover being particularly important. Hillslope riparian interactions were also examined using tracers, hydromet- ric data and a semi-distributed hydrological model. This revealed that in the glaciated, drift covered terrain of the Scottish highlands, extensive valley bottom aquifers effec- tively de-couple hillslope waters from the river channel. Thus, riparian groundwater appears to significantly

  10. Water and salt balance modelling to predict the effects of land-use changes in forested catchments. 1. Small catchment water balance model

    Science.gov (United States)

    Sivapalan, Murugesu; Ruprecht, John K.; Viney, Neil R.

    1996-03-01

    A long-term water balance model has been developed to predict the hydrological effects of land-use change (especially forest clearing) in small experimental catchments in the south-west of Western Australia. This small catchment model has been used as the building block for the development of a large catchment-scale model, and has also formed the basis for a coupled water and salt balance model, developed to predict the changes in stream salinity resulting from land-use and climate change. The application of the coupled salt and water balance model to predict stream salinities in two small experimental catchments, and the application of the large catchment-scale model to predict changes in water yield in a medium-sized catchment that is being mined for bauxite, are presented in Parts 2 and 3, respectively, of this series of papers.The small catchment model has been designed as a simple, robust, conceptually based model of the basic daily water balance fluxes in forested catchments. The responses of the catchment to rainfall and pan evaporation are conceptualized in terms of three interdependent subsurface stores A, B and F. Store A depicts a near-stream perched aquifer system; B represents a deeper, permanent groundwater system; and F is an intermediate, unsaturated infiltration store. The responses of these stores are characterized by a set of constitutive relations which involves a number of conceptual parameters. These parameters are estimated by calibration by comparing observed and predicted runoff. The model has performed very well in simulations carried out on Salmon and Wights, two small experimental catchments in the Collie River basin in south-west Western Australia. The results from the application of the model to these small catchments are presented in this paper.

  11. Assessment of surface water resources availability using catchment modelling and the results of tracer studies in the mesoscale Migina Catchment, Rwanda

    Science.gov (United States)

    Munyaneza, O.; Mukubwa, A.; Maskey, S.; Uhlenbrook, S.; Wenninger, J.

    2014-12-01

    In the present study, we developed a catchment hydrological model which can be used to inform water resources planning and decision making for better management of the Migina Catchment (257.4 km2). The semi-distributed hydrological model HEC-HMS (Hydrologic Engineering Center - the Hydrologic Modelling System) (version 3.5) was used with its soil moisture accounting, unit hydrograph, liner reservoir (for baseflow) and Muskingum-Cunge (river routing) methods. We used rainfall data from 12 stations and streamflow data from 5 stations, which were collected as part of this study over a period of 2 years (May 2009 and June 2011). The catchment was divided into five sub-catchments. The model parameters were calibrated separately for each sub-catchment using the observed streamflow data. Calibration results obtained were found acceptable at four stations with a Nash-Sutcliffe model efficiency index (NS) of 0.65 on daily runoff at the catchment outlet. Due to the lack of sufficient and reliable data for longer periods, a model validation was not undertaken. However, we used results from tracer-based hydrograph separation from a previous study to compare our model results in terms of the runoff components. The model performed reasonably well in simulating the total flow volume, peak flow and timing as well as the portion of direct runoff and baseflow. We observed considerable disparities in the parameters (e.g. groundwater storage) and runoff components across the five sub-catchments, which provided insights into the different hydrological processes on a sub-catchment scale. We conclude that such disparities justify the need to consider catchment subdivisions if such parameters and components of the water cycle are to form the base for decision making in water resources planning in the catchment.

  12. Groundwater Contributions to Intermittent Streamflow in a Headwater Catchment: How do Geoclimatic Controls Influence Downstream Water Quality?

    Science.gov (United States)

    Smull, E. M.; Gooseff, M. N.; Singha, K.

    2014-12-01

    Hydrologic connectivity of headwater catchments affects surface water yield and quality of downstream drinking water supplies. Lower Gordon Gulch, a 2.75 km2 catchment, is part of the Boulder Creek watershed - the primary drinking water supply for the city of Boulder, Colorado. We hypothesize that the geologic and climatic environment within the catchment controls the magnitude, timing, and duration of hydrologic connection between the landscape and the stream, and thus the distribution of major ions to the surface water. Specifically, bedrock patterns, vegetation type and density, and snowpack dynamics influence how precipitation inputs move from the hillslopes to the catchment outlet. Preliminary results suggest that north-facing hillslopes with steeper slopes, deeper weathering of bedrock, denser vegetation stands, and a seasonal snowpack, provide consistently greater groundwater inputs to the stream compared to the south-facing hillslopes. We believe that this is in part due to subsurface bedrock patterns forcing a dominate cross-valley gradient. Through an extensive observation network of hillslope wells, periodic stream water balance measurements, and synoptic chemistry samples, we plan to continue our assessment of the spatio-temporal connectivity dynamics throughout the seasonal dry down (late summer through winter), during which streamflow can be intermittent. Results will help to guide landuse practices of upland catchments with respect to their role in Boulder's drinking water supply.

  13. Large catchment area recharges Titan's Ontario Lacus

    Science.gov (United States)

    Dhingra, Rajani D.; Barnes, Jason W.; Yanites, Brian J.; Kirk, Randolph L.

    2018-01-01

    We seek to address the question of what processes are at work to fill Ontario Lacus while other, deeper south polar basins remain empty. Our hydrological analysis indicates that Ontario Lacus has a catchment area spanning 5.5% of Titan's surface and a large catchment area to lake surface area ratio. This large catchment area translates into large volumes of liquid making their way to Ontario Lacus after rainfall. The areal extent of the catchment extends to at least southern mid-latitudes (40°S). Mass conservation calculations indicate that runoff alone might completely fill Ontario Lacus within less than half a Titan year (1 Titan year = 29.5 Earth years) assuming no infiltration. Cassini Visual and Infrared Mapping Spectrometer (VIMS) observations of clouds over the southern mid and high-latitudes are consistent with precipitation feeding Ontario's large catchment area. This far-flung rain may be keeping Ontario Lacus filled, making it a liquid hydrocarbon oasis in the relatively dry south polar region.

  14. The Use of Remote Sensing and Gis For Catchment Delineation in Northwestern Coast of Egypt: An Assessment of Water Resources and Soil Potential

    International Nuclear Information System (INIS)

    El BastaWesy, M.A.; NASR, A.H.; Ali, R.R.

    2008-01-01

    The manual delineation of drainage networks and catchment from topographic maps has widely been replaced by the automatic extraction from Digital Elevation Model (DEM) using different processing algorithms. The automatic extraction requires first removing all the sinks (depressions) in the DEM by filling their elevation to the nearest neighbouring cells. The sinkholes are true inherited landscape in the karstified Marmarica Limestone Plateau covering the northwestern coast of Egypt. Following the traditional methods of automatic extraction all the catchment outlets are located on the Mediterranean coast, but the centripetal catchment on the plateau surface cannot be delineated. A new technique is presented on how to delineate these centripetal catchment along with the coastal catchment, by masking the true sinks layer derived from topographic maps and satellite images from the DEM throughout the delineation process. The analysis of Tropical Rainfall Monitoring Mission (TRMM) data reveals that these centripetal catchment of the study area receive more precipitation than the coastal ones in contrary of the previous extrapolated isohyets maps. The runoff and soil potential for one of these centripetal catchment were initially assessed. The estimated average annual surface runoff is 1.8 million m 3 and the soils are moderate to marginally suitable for citrus, peach, olives, wheat, sunflower and alfalfa

  15. IMAGERY: A CASE STUDY IN KAYANGAN CATCHMENT AREA, YOGYAKARTA, INDONESIA

    Directory of Open Access Journals (Sweden)

    Ratih Fitria Putri

    2013-01-01

    Full Text Available The differential synthetic aperture radar in terferometry (DInSAR technique is applied to the ALOS PALSAR data to observe su rface displacement in Kayangan catchment area, Yogyakarta, Indonesia. Change detecti on is implemented to extract information on several landslides that occurred in the region in a time span between 2007 and 2009. The advanced DInSAR processing of im ages (2007–2009 has shown slight surface movements before the landslide events. These results are compared and validated with available GPS measurements. Our analysis reveals that Kayangan catchment area exhibits clear indication of surface displacements varying from 5.2 to 57.9 cm/year. The occurence of landslides has been analy zed in relation to the following terrain parameters; elevation, slope, distance to stream network, geology, landuse, and distance from road. Among these factors, it is found that 18% of landslides occur in elevation >100 m, 56% in slope 30–40°, 34% in <25 m distance to stream networks, 100% in kebobutak formation, 67% in mix garden of land use types, and 100% in <25 m distance from road. The landuse is the most in fluential factor, since there are only four types of landuse that can lead to lands lide occurrence, i.e., mixed garden, dryland agriculture, bush, and settlement. The analys is of land deformation is promising for assessing acceleration caused by a destabilizing anthropogenic change, and relationship between seasonal precipitation a nd deformation variability.

  16. Hydrological regime shift in a constructed catchment: Effect of vegetation encroachment on surface runoff

    Science.gov (United States)

    Hinz, C.; Caviedes-Voullieme, D.; Andezhath Mohanan, A.; Brueck, Y.; Zaplata, M.

    2017-12-01

    The Hühnerwasser catchment (Chicken Creek) was constructed to provide discharge for a small stream in the post-mining landscape of Lusatia, Germany. It has an area of 6 ha and quaternary sands with a thickness of 2-4 m were dumped on to a clay liner to prevent deep drainage. After completion of the construction the catchment was left to develop on its own without intervention and has been monitored since 2005. The upper part of the catchment discharges water and sediment into the lower part forming an alluvial fan. Below the alluvial fan is a pond receiving all surface and subsurface water from the upper catchment. After the formation of the drainage network vegetation started growing and surface runoff decreased until the water balance was dominated by evapotranspiration. This regime shift and the rate at which it happened depends on the vegetation encroachment into the rills and the interrill areas. Based on the hypothesis that vegetation will increase surface roughness and infiltration behavior, aerial photos were used to map rills and vegetation within and outside the rills for the last 10 years to obtain a time series of change. Observational evidence clearly shows that vegetation encroaches from the bottom, from the interrill areas as well as from the top. The rills themselves did not change their topology, however, the width of the erosion rills and gully increased at the bottom. For a subcatchment area a high resolution a physical based numerical model of overland flow was developed to explicitly assess the importance of increasing roughness and infiltration capacity for surface runoff. For the purpose of analyzing the effect of rainfall variability a rainfall generator was developed to carry out large sets of simulations. The simulations provide a means to assess how the roughness/infiltration feedback affects the rate of regime shift for a set of parameters that are consistent with the observed hydrological behavior of the drainage network.

  17. Assessment of hydropower potential in small karst catchments: the case of the Rocche Plateau, Central Italy

    Directory of Open Access Journals (Sweden)

    Leopardi Maurizio

    2017-01-01

    Full Text Available Estimation of flow duration characteristics is key in assessing hydropower potential in natural catchments. However, such analysis is not usually straightforward, especially in ungauged sites and/or in complex catchment areas. In this study we evaluate the feasibility of revamping of a small hydroelectric power plant, located in a karst plateau in central Italy, by assessing the hydropower potential of its feeding surface and subsurface stream network. A thorough analysis of runoff processes occurring in the examined area is carried out in order to corroborate regionalization studies based on measured specific flows in neighboring homogeneous basins. The results show an appreciable availability of water resources to be exploited for hydropower purposes.

  18. Aquifers Characterization and Productivity in Ellala Catchment ...

    African Journals Online (AJOL)

    user

    Aquifers Characterization and Productivity in Ellala Catchment, Tigray, ... using geological and hydrogeological methods in Ellala catchment (296.5km. 2. ) ... Current estimates put the available groundwater ... Aquifer characterization takes into.

  19. Assessment of surface water resources availability using catchment modeling and the results of tracer studies in the meso-scale Migina Catchment, Rwanda

    Science.gov (United States)

    Munyaneza, O.; Mukubwa, A.; Maskey, S.; Wenninger, J.; Uhlenbrook, S.

    2013-12-01

    In the last couple of years, different hydrological research projects were undertaken in the Migina catchment (243.2 km2), a tributary of the Kagera river in Southern Rwanda. These projects were aimed to understand hydrological processes of the catchment using analytical and experimental approaches and to build a pilot case whose experience can be extended to other catchments in Rwanda. In the present study, we developed a hydrological model of the catchment, which can be used to inform water resources planning and decision making. The semi-distributed hydrological model HEC-HMS (version 3.5) was used with its soil moisture accounting, unit hydrograph, liner reservoir (for base flow) and Muskingum-Cunge (river routing) methods. We used rainfall data from 12 stations and streamflow data from 5 stations, which were collected as part of this study over a period of two years (May 2009 and June 2011). The catchment was divided into five sub-catchments each represented by one of the five observed streamflow gauges. The model parameters were calibrated separately for each sub-catchment using the observed streamflow data. Calibration results obtained were found acceptable at four stations with a Nash-Sutcliffe Model Efficiency of 0.65 on daily runoff at the catchment outlet. Due to the lack of sufficient and reliable data for longer periods, a model validation (split sample test) was not undertaken. However, we used results from tracer based hydrograph separation from a previous study to compare our model results in terms of the runoff components. It was shown that the model performed well in simulating the total flow volume, peak flow and timing as well as the portion of direct runoff and base flow. We observed considerable disparities in the parameters (e.g. groundwater storage) and runoff components across the five sub-catchments, that provided insights into the different hydrological processes at sub-catchment scale. We conclude that such disparities justify the need

  20. Managing erosion, sediment transport and water quality in drained peatland catchments

    Energy Technology Data Exchange (ETDEWEB)

    Marttila, H.

    2010-07-01

    Peatland drainage changes catchment conditions and increases the transport of suspended solids (SS) and nutrients. New knowledge and management methods are needed to reduce SS loading from these areas. This thesis examines sediment delivery and erosion processes in a number of peatland drainage areas and catchments in order to determine the effects of drainage on sediment and erosion dynamics and mechanics. Results from studies performed in peat mining, peatland forestry and disturbed headwater catchments in Finland are presented and potential sediment load management methods are discussed for drainage areas and headwater brooks. Particular attention is devoted to erosion of organic peat, sediment transport and methods to reduce the impacts of peatland drainage in boreal headwaters. This thesis consists of six articles. The first and second papers focus on the erosion and sediment transport processes at peat harvesting and peatland forestry drainage networks. The results indicate that in-channel processes are important in drained peatland, since the drainage network often constitutes temporary inter-storm storage for eroding and transporting material. Sediment properties determine the bed sediment erosion sensitivity, as fluffy organic peat sediment consolidates over time. As flashiness and peak runoff control sediment entrainment and transport from drained peatland areas, water quality management should include peak runoff management. The third, fourth and fifth papers studies use and application of peak runoff control (PRC) method to the peat harvesting and peatland forestry conditions for water protection. Results indicate that effective water quality management in drained peatland areas can be achieved using this method. Installation of the PRC structures is a useful and cost-effective way of storing storm runoff waters temporarily in the ditch system and providing a retention time for eroded sediment to settle to the ditch bed and drainage network. The main

  1. Soil Erosion Analysis in a Small Forested Catchment Supported by ArcGIS Model Builder

    Directory of Open Access Journals (Sweden)

    CSÁFORDI, Péter

    2012-01-01

    Full Text Available To implement the analysis of soil erosion with the USLE in a GIS environment, a new workflow has been developed with the ArcGIS Model Builder. The aim of this four-part framework is to accelerate data processing and to ensure comparability of soil erosion risk maps. The first submodel generates the stream network with connected catchments, computes slope conditions and the LS factor in USLE based on the DEM. The second submodel integrates stream lines, roads, catchment boundaries, land cover, land use, and soil maps. This combined dataset is the basis for the preparation of other USLE-factors. The third submodel estimates soil loss, and creates zonal statistics of soil erosion. The fourth submodel classifies soil loss into categories enabling the comparison of modelled and observed soil erosion. The framework was applied in a small forested catchment in Hungary. Although there is significant deviation between the erosion of different land covers, the predicted specific soil loss does not increase above the tolerance limit in any area unit. The predicted surface soil erosion in forest subcompartments mostly depends on the slope conditions.

  2. Suspended sediment flux modeling with artificial neural network: An example of the Longchuanjiang River in the Upper Yangtze Catchment, China

    Science.gov (United States)

    Zhu, Yun-Mei; Lu, X. X.; Zhou, Yue

    2007-02-01

    Artificial neural network (ANN) was used to model the monthly suspended sediment flux in the Longchuanjiang River, the Upper Yangtze Catchment, China. The suspended sediment flux was related to the average rainfall, temperature, rainfall intensity and water discharge. It is demonstrated that ANN is capable of modeling the monthly suspended sediment flux with fairly good accuracy when proper variables and their lag effect on the suspended sediment flux are used as inputs. Compared with multiple linear regression and power relation models, ANN can generate a better fit under the same data requirement. In addition, ANN can provide more reasonable predictions for extremely high or low values, because of the distributed information processing system and the nonlinear transformation involved. Compared with the ANNs that use the values of the dependent variable at previous time steps as inputs, the ANNs established in this research with only climate variables have an advantage because it can be used to assess hydrological responses to climate change.

  3. An integrated suspended sediment budgeting of the agricultural Can Revull catchment (Mallorca, Spain)

    Science.gov (United States)

    Estrany, J.; Garcia, C.

    2012-04-01

    The Mediterranean region of Europe has a long history of human settlement and human impacts. The very high spatial and temporal variability of fluvial processes in the region also creates problems for measurement and monitoring and for assessment of effects. Extensive rainfed herbaceous crops are one of the most representative agricultural elements of this region, which should be one of the major factor affecting erosion processes. Although land use is commonly seen as resulting in increased sediment yields, the implementation of soil and water conservation practices can have the reverse effect. Sediment budgets offer a means to assess the sources, storage, rates of transport, yields, and efficiency of delivery of sediment for a range of catchment scales. Field measurements were conducted in Can Revull, a small agricultural catchment (1.03 km2) on the island of Mallorca. This study uses 137Cs measurements, sediment source fingerprinting and continuous turbidity records of four hydrological years (2004-2005 to 2007-2008) to quantify the individual components of the budget. A large proportion of the material mobilized from cultivated fields without conservation practices (gross erosion was 775 t yr-1; 1,270 t km-2 yr-1) was, however, subsequently deposited either within the field of origin (112 t yr-1; 180 t km-2 yr-1) or at intermediate locations between the source field and the channel network (field-to-channel conveyance loss was 591 t yr-1; 1,090 t km-2 yr-1). The estimates of sediment accumulation rates on the floodplain in the lower reaches of the catchment indicate that the mean sedimentation rate was 0.47 g cm-2 yr-1. This value was extrapolated to the total area of the floodplain to estimate a total annual conveyance loss or storage of 150 t yr-1. Monitoring at the catchment outlet over the study period indicated a mean annual suspended sediment yield of 7 t km-2 yr-1. The sum of the estimates of sediment yield and floodplain storage (157 t yr-1) was taken

  4. Nutrient fluxes from coastal California catchments with suburban development

    Science.gov (United States)

    Melack, J. M.; Leydecker, A.; Beighley, E.; Robinson, T.; Coombs, S.

    2005-12-01

    Numerous streams originate in the mountains fringing California's coast and transport nutrients into coastal waters. In central California, these streams traverse catchments with land covers including chaparral, grazed grasslands, orchards, industrial agriculture and suburban and urban development. Fluvial nutrient concentrations and fluxes vary as a function of these land covers and as a function of considerable fluctuations in rainfall. As part of a long-term investigation of mobilization and fluvial transport of nutrients in catchments bordering the Santa Barbara Channel we have intensively sampled nutrient concentrations and measured discharge during storm and base flows in multiple catchments and subcatchments. Volume-weighted mean concentrations of nitrate generally ranged from 5 to 25 micromolar in undeveloped areas, increased to about 100 micromolar for suburban and most agricultural catchments, and were in excess of 1000 micromolar in catchments with greenhouse-based agriculture. Phosphate concentrations ranged from 2 to 20 micromolar among the catchments. These data are used to examine the premise that the suburbanized portion of the catchments is the primary source of nutrients to the streams.

  5. Catchment Classification: Connecting Climate, Structure and Function

    Science.gov (United States)

    Sawicz, K. A.; Wagener, T.; Sivapalan, M.; Troch, P. A.; Carrillo, G. A.

    2010-12-01

    Hydrology does not yet possess a generally accepted catchment classification framework. Such a classification framework needs to: [1] give names to things, i.e. the main classification step, [2] permit transfer of information, i.e. regionalization of information, [3] permit development of generalizations, i.e. to develop new theory, and [4] provide a first order environmental change impact assessment, i.e., the hydrologic implications of climate, land use and land cover change. One strategy is to create a catchment classification framework based on the notion of catchment functions (partitioning, storage, and release). Results of an empirical study presented here connects climate and structure to catchment function (in the form of select hydrologic signatures), based on analyzing over 300 US catchments. Initial results indicate a wide assortment of signature relationships with properties of climate, geology, and vegetation. The uncertainty in the different regionalized signatures varies widely, and therefore there is variability in the robustness of classifying ungauged basins. This research provides insight into the controls of hydrologic behavior of a catchment, and enables a classification framework applicable to gauged and ungauged across the study domain. This study sheds light on what we can expect to achieve in mapping climate, structure and function in a top-down manner. Results of this study complement work done using a bottom-up physically-based modeling framework to generalize this approach (Carrillo et al., this session).

  6. Predicting Surface Runoff from Catchment to Large Region

    Directory of Open Access Journals (Sweden)

    Hongxia Li

    2015-01-01

    Full Text Available Predicting surface runoff from catchment to large region is a fundamental and challenging task in hydrology. This paper presents a comprehensive review for various studies conducted for improving runoff predictions from catchment to large region in the last several decades. This review summarizes the well-established methods and discusses some promising approaches from the following four research fields: (1 modeling catchment, regional and global runoff using lumped conceptual rainfall-runoff models, distributed hydrological models, and land surface models, (2 parameterizing hydrological models in ungauged catchments, (3 improving hydrological model structure, and (4 using new remote sensing precipitation data.

  7. Climate, runoff and landuse trends in the Owo River Catchment in Nigeria

    Science.gov (United States)

    Adegun, O.; Odunuga, S.; Ajayi, O. S.

    2015-06-01

    The Owo River is an important surface water source in Lagos particularly to the western section. It is the source of direct water intake for water supply by Lagos State Water Corporation to Amuwo-Odofin, Ojo and parts of Badagry Local Government Areas. This paper examines the complex interactions and feedbacks between many variables and processes within that catchment and analyses the future ability of this semi-urban watershed in sustaining water supply in the face of cumulative environmental change. Stationarity analysis on rainfall, change detection analysis and morphometry analysis were combined to analyse the non-stationarity of Owo River catchment. On rainfall trend analysis, since the correlation coefficient (0.38) with test statistic of 2.17 did not satisfy the test condition we concluded that there is trend and that rainfall in the watershed is not stationary. The dominant land use impacting on the bio-geochemical fluxes is built up area (including structures and paved surfaces) which grew from about 142.92 km2 (12.20%) in 1984 to 367.22 km2 (31.36%) in 2013 recording gain of 224.3 km2 at average growth rate of 7.73 km2 per annum. Total length of streams within the catchment reduced from 622.24 km in 1964 to 556 km in 2010, while stream density reduced from 0.53 in 1964 to 0.47 in 2010 an indication of shrinking hydrological network. The observed trends in both natural and anthropogenic processes indicated non-stationarity of the hydrological fluxes within the Catchment and if this continues, the urban ecosystem services of water supply will be compromised.

  8. Delineating wetland catchments and modeling hydrologic connectivity using lidar data and aerial imagery

    Directory of Open Access Journals (Sweden)

    Q. Wu

    2017-07-01

    Full Text Available In traditional watershed delineation and topographic modeling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM to enforce flow continuity of water across the topographic surface to the watershed outlets. In reality, however, many depressions in the DEM are actual wetland landscape features with seasonal to permanent inundation patterning characterized by nested hierarchical structures and dynamic filling–spilling–merging surface-water hydrological processes. Differentiating and appropriately processing such ecohydrologically meaningful features remains a major technical terrain-processing challenge, particularly as high-resolution spatial data are increasingly used to support modeling and geographic analysis needs. The objectives of this study were to delineate hierarchical wetland catchments and model their hydrologic connectivity using high-resolution lidar data and aerial imagery. The graph-theory-based contour tree method was used to delineate the hierarchical wetland catchments and characterize their geometric and topological properties. Potential hydrologic connectivity between wetlands and streams were simulated using the least-cost-path algorithm. The resulting flow network delineated potential flow paths connecting wetland depressions to each other or to the river network on scales finer than those available through the National Hydrography Dataset. The results demonstrated that our proposed framework is promising for improving overland flow simulation and hydrologic connectivity analysis.

  9. Merging perspectives in the catchment sciences: the US-Japan Joint Seminar on catchment hydrology and forest biogeochemistry

    Science.gov (United States)

    Kevin J. McGuire; Stephen D. Sebestyen; Nobuhito Ohte; Emily M. Elliott; Takashi Gomi; Mark B. Green; Brian L. McGlynn; Naoko. Tokuchi

    2014-01-01

    Japan has strong research programmes in the catchment sciences that overlap with interests in the US catchment science community, particularly in experimental and field-based research. Historically, however, there has been limited interaction between these two hydrologic science communities because of differences in language, culture, and research approaches. These...

  10. The Influence of temporal sampling regime on the WFD classification of catchments within the Eden Demonstration Test Catchment Project

    Science.gov (United States)

    Jonczyk, Jennine; Haygarth, Phil; Quinn, Paul; Reaney, Sim

    2014-05-01

    A high temporal resolution data set from the Eden Demonstration Test Catchment (DTC) project is used to investigate the processes causing pollution and the influence of temporal sampling regime on the WFD classification of three catchments. This data highlights WFD standards may not be fit for purpose. The Eden DTC project is part of a UK government-funded project designed to provide robust evidence regarding how diffuse pollution can be cost-effectively controlled to improve and maintain water quality in rural river catchments. The impact of multiple water quality parameters on ecosystems and sustainable food production are being studied at the catchment scale. Three focus catchments approximately 10 km2 each, have been selected to represent the different farming practices and geophysical characteristics across the Eden catchment, Northern England. A field experimental programme has been designed to monitor the dynamics of agricultural diffuse pollution at multiple scales using state of the art sensors providing continuous real time data. The data set, which includes Total Phosphorus and Total Reactive Phosphorus, Nitrate, Ammonium, pH, Conductivity, Turbidity and Chlorophyll a reveals the frequency and duration of nutrient concentration target exceedance which arises from the prevalence of storm events of increasing magnitude. This data set is sub-sampled at different time intervals to explore how different sampling regimes affects our understanding of nutrient dynamics and the ramification of the different regimes to WFD chemical status. This presentation seeks to identify an optimum temporal resolution of data for effective catchment management and to question the usefulness of the WFD status metric for determining health of a system. Criteria based on high frequency short duration events needs to be accounted for.

  11. Modelling the impact of forest loss on shallow landslide sediment yield, Ijuez river catchment, Spanish Pyrenees

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available The SHETRAN model for simulating the sediment yield arising from shallow landslides at the scale of a river catchment was applied to the 45-km2 Ijuez catchment in the central Spanish Pyrenees, to investigate the effect of loss of forest cover on landslide and debris flow incidence and on catchment sediment yield. The application demonstrated how such a model, with a large number of parameters to be evaluated, can be used even when directly measured data are not available: rainfall and discharge time series were generated by reference to other local records and data providing the basis for a soil map were obtained by a short field campaign. Uncertainty bounds for the outputs were determined as a function of the uncertainty in the values of key model parameters. For a four-year period and for the existing forested state of the catchment, a good ability to simulate the observed long term spatial distribution of debris flows (represented by a 45-year inventory and to determine catchment sediment yield within the range of regional observations was demonstrated. The lower uncertainty bound on simulated landslide occurrence approximated the observed annual rate of landsliding and suggests that landslides provide a relatively minor proportion of the total sediment yield, at least in drier years. A scenario simulation in which the forest cover was replaced by grassland indicated an increase in landsliding but a decrease in the number of landslides which evolve into debris flows and, at least for drier years, a reduction in sediment delivery to the channel network.

  12. Uncertainty in hydrological signatures for gauged and ungauged catchments

    Science.gov (United States)

    Westerberg, Ida K.; Wagener, Thorsten; Coxon, Gemma; McMillan, Hilary K.; Castellarin, Attilio; Montanari, Alberto; Freer, Jim

    2016-03-01

    Reliable information about hydrological behavior is needed for water-resource management and scientific investigations. Hydrological signatures quantify catchment behavior as index values, and can be predicted for ungauged catchments using a regionalization procedure. The prediction reliability is affected by data uncertainties for the gauged catchments used in prediction and by uncertainties in the regionalization procedure. We quantified signature uncertainty stemming from discharge data uncertainty for 43 UK catchments and propagated these uncertainties in signature regionalization, while accounting for regionalization uncertainty with a weighted-pooling-group approach. Discharge uncertainty was estimated using Monte Carlo sampling of multiple feasible rating curves. For each sampled rating curve, a discharge time series was calculated and used in deriving the gauged signature uncertainty distribution. We found that the gauged uncertainty varied with signature type, local measurement conditions and catchment behavior, with the highest uncertainties (median relative uncertainty ±30-40% across all catchments) for signatures measuring high- and low-flow magnitude and dynamics. Our regionalization method allowed assessing the role and relative magnitudes of the gauged and regionalized uncertainty sources in shaping the signature uncertainty distributions predicted for catchments treated as ungauged. We found that (1) if the gauged uncertainties were neglected there was a clear risk of overconditioning the regionalization inference, e.g., by attributing catchment differences resulting from gauged uncertainty to differences in catchment behavior, and (2) uncertainty in the regionalization results was lower for signatures measuring flow distribution (e.g., mean flow) than flow dynamics (e.g., autocorrelation), and for average flows (and then high flows) compared to low flows.

  13. Conditional flood frequency and catchment state: a simulation approach

    Science.gov (United States)

    Brettschneider, Marco; Bourgin, François; Merz, Bruno; Andreassian, Vazken; Blaquiere, Simon

    2017-04-01

    Catchments have memory and the conditional flood frequency distribution for a time period ahead can be seen as non-stationary: it varies with the catchment state and climatic factors. From a risk management perspective, understanding the link of conditional flood frequency to catchment state is a key to anticipate potential periods of higher flood risk. Here, we adopt a simulation approach to explore the link between flood frequency obtained by continuous rainfall-runoff simulation and the initial state of the catchment. The simulation chain is based on i) a three state rainfall generator applied at the catchment scale, whose parameters are estimated for each month, and ii) the GR4J lumped rainfall-runoff model, whose parameters are calibrated with all available data. For each month, a large number of stochastic realizations of the continuous rainfall generator for the next 12 months are used as inputs for the GR4J model in order to obtain a large number of stochastic realizations for the next 12 months. This process is then repeated for 50 different initial states of the soil moisture reservoir of the GR4J model and for all the catchments. Thus, 50 different conditional flood frequency curves are obtained for the 50 different initial catchment states. We will present an analysis of the link between the catchment states, the period of the year and the strength of the conditioning of the flood frequency compared to the unconditional flood frequency. A large sample of diverse catchments in France will be used.

  14. Catchments' hedging strategy on evapotranspiration for climatic variability

    Science.gov (United States)

    Ding, W.; Zhang, C.; Li, Y.; Tang, Y.; Wang, D.; Xu, B.

    2017-12-01

    Hydrologic responses to climate variability and change are important for human society. Here we test the hypothesis that natural catchments utilize hedging strategies for evapotranspiration and water storage carryover with uncertain future precipitation. The hedging strategy for evapotranspiration in catchments under different levels of water availability is analytically derived from the economic perspective. It is found that there exists hedging between evapotranspiration for current and future only with a portion of water availability. Observation data sets of 160 catchments in the United States covering the period from 1983 to 2003 demonstrate the existence of hedging in catchment hydrology and validate the proposed hedging strategies. We also find that more water is allocated to carryover storage for hedging against the future evapotranspiration risk in the catchments with larger aridity indexes or with larger uncertainty in future precipitation, i.e., long-term climate and precipitation variability control the degree of hedging.

  15. Response of floodplain sedimentation to catchment disturbances in different environments

    Science.gov (United States)

    Notebaert, B.; Houbrechts, G.; Verstraeten, G.; Petit, F.

    2009-04-01

    Holocene floodplain sediments are an important environmental archive, that can be accesed for reconstructing the past landscape dynamics either qualitatively (e.g. palynology) and quantitatively (e.g. sediment budgeting). In this study Holocene alluvial sediment deposition in two contrasting Belgian catchments was quantified and dated: the Lienne (148 km2) in the Ardennes massif and the Dijle (750 km2) in the loess region. These catchments experienced a comparable Holocene climatic variation, but differ in topography and geology with highest relief energy in the Lienne catchment. Land use history also differs with high land use intensities in the Dijle catchment since Roman times, but at least since the Middle Ages there were also large deforestations in the Lienne catchment. Detailed cumulative Holocene sediment deposition was assessed for each catchment using more then 1000 hand augerings. Detailed radiocarbon dating of fluvial deposits was performed in the Dijle catchment, while iron slag was used as a tracer for sediments deposited after 1350 AD in the Lienne catchment. Results show that sediment deposition is much larger in the Dijle catchment (~4.5 Mg ha-1 catchment area) then in the Lienne catchment (~0.2 Mg ha-1 catchment area). Dating results from the Dijle catchment show an increase of sediment deposition in the late Holocene, first starting in the colluvial valleys and later on prograding towards the main valleys. Variations in sedimentation rates can clearly be related to anthropogenous land use pressure, and the majority of the sediments found in colluvial and alluvial valleys were deposited in the last 4000 years, and in many cases even in the last 1000 years. Variations in sediment deposition within the catchment can partially be explained by differences in river valley physical settings (mainly valley slope), while in other cases hill slope sediment delivery (upstream erosion, connectivity between hill slopes and the river system) is the explaining

  16. An Eco-hydrologic Assessment of Small Experimental Catchments with Various Land Uses within the Panama Canal Watershed: Agua Salud Project

    Science.gov (United States)

    Crouch, T. D.; Ogden, F. L.; Stallard, R. F.; Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project

    2010-12-01

    Hydrological processes in the humid tropics are poorly understood and an important topic when it comes to water management in the seasonal tropics. The Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project, seeks to understand these processes and quantify the long-term effects of different land cover and uses across the Panama Canal Watershed. One of the project’s main objectives is to understand how reforestation effects seasonal stream flows. To meet this objective, a baseline characterization of hydrology on the small catchment scale is being assessed across different land uses typical in rural Panama. The small experimental catchments are found within Panama’s protected Soberania National Park and the adjacent headwaters of the Agua Salud and Mendoza Rivers, all of which are part of the greater Panama Canal Watershed. The land uses being monitored include a variety of control catchments as well as treated pasture sites. The catchments used for this study include a mature old regrowth forest, a 50% deforested or mosaic regrowth site, an active pasture and a monoculture invasive grass site (saccharum spontaneum) as experimental controls and two treated catchments that were recently abandoned pastures converted to teak and native species timber plantations. Installed instrumentation includes a network of rain gauges, v-notched weirs, atmometers, an eddy covariance system and an assortment of meteorological and automated geochemical sampling systems. Spatial, rainfall, runoff and ET data across these six geologically and topographically similar catchments are available from 2009 and 2010. Classic water balance and paired catchment techniques were used to compare the catchments on an annual, seasonal, and event basis. This study sets the stage for hydrologic modeling and for better understanding the effects of vegetation and land-use history on rainfall-runoff processes for the Agua Salud Project and Panama Canal

  17. Picturing and modelling catchments by representative hillslopes

    Science.gov (United States)

    Loritz, Ralf; Hassler, Sibylle; Jackisch, Conrad; Zehe, Erwin

    2016-04-01

    Hydrological modelling studies often start with a qualitative sketch of the hydrological processes of a catchment. These so-called perceptual models are often pictured as hillslopes and are generalizations displaying only the dominant and relevant processes of a catchment or hillslope. The problem with these models is that they are prone to become too much predetermined by the designer's background and experience. Moreover it is difficult to know if that picture is correct and contains enough complexity to represent the system under study. Nevertheless, because of their qualitative form, perceptual models are easy to understand and can be an excellent tool for multidisciplinary exchange between researchers with different backgrounds, helping to identify the dominant structures and processes in a catchment. In our study we explore whether a perceptual model built upon an intensive field campaign may serve as a blueprint for setting up representative hillslopes in a hydrological model to reproduce the functioning of two distinctly different catchments. We use a physically-based 2D hillslope model which has proven capable to be driven by measured soil-hydrological parameters. A key asset of our approach is that the model structure itself remains a picture of the perceptual model, which is benchmarked against a) geo-physical images of the subsurface and b) observed dynamics of discharge, distributed state variables and fluxes (soil moisture, matric potential and sap flow). Within this approach we are able to set up two behavioral model structures which allow the simulation of the most important hydrological fluxes and state variables in good accordance with available observations within the 19.4 km2 large Colpach catchment and the 4.5 km2 large Wollefsbach catchment in Luxembourg without the necessity of calibration. This corroborates, contrary to the widespread opinion, that a) lower mesoscale catchments may be modelled by representative hillslopes and b) physically

  18. Advancing Land-Sea Conservation Planning: Integrating Modelling of Catchments, Land-Use Change, and River Plumes to Prioritise Catchment Management and Protection.

    Science.gov (United States)

    Álvarez-Romero, Jorge G; Pressey, Robert L; Ban, Natalie C; Brodie, Jon

    2015-01-01

    Human-induced changes to river loads of nutrients and sediments pose a significant threat to marine ecosystems. Ongoing land-use change can further increase these loads, and amplify the impacts of land-based threats on vulnerable marine ecosystems. Consequently, there is a need to assess these threats and prioritise actions to mitigate their impacts. A key question regarding prioritisation is whether actions in catchments to maintain coastal-marine water quality can be spatially congruent with actions for other management objectives, such as conserving terrestrial biodiversity. In selected catchments draining into the Gulf of California, Mexico, we employed Land Change Modeller to assess the vulnerability of areas with native vegetation to conversion into crops, pasture, and urban areas. We then used SedNet, a catchment modelling tool, to map the sources and estimate pollutant loads delivered to the Gulf by these catchments. Following these analyses, we used modelled river plumes to identify marine areas likely influenced by land-based pollutants. Finally, we prioritised areas for catchment management based on objectives for conservation of terrestrial biodiversity and objectives for water quality that recognised links between pollutant sources and affected marine areas. Our objectives for coastal-marine water quality were to reduce sediment and nutrient discharges from anthropic areas, and minimise future increases in coastal sedimentation and eutrophication. Our objectives for protection of terrestrial biodiversity covered species of vertebrates. We used Marxan, a conservation planning tool, to prioritise interventions and explore spatial differences in priorities for both objectives. Notable differences in the distributions of land values for terrestrial biodiversity and coastal-marine water quality indicated the likely need for trade-offs between catchment management objectives. However, there were priority areas that contributed to both sets of objectives. Our

  19. Catchment-scale groundwater recharge and vegetation water use efficiency

    Science.gov (United States)

    Troch, P. A. A.; Dwivedi, R.; Liu, T.; Meira, A.; Roy, T.; Valdés-Pineda, R.; Durcik, M.; Arciniega, S.; Brena-Naranjo, J. A.

    2017-12-01

    Precipitation undergoes a two-step partitioning when it falls on the land surface. At the land surface and in the shallow subsurface, rainfall or snowmelt can either runoff as infiltration/saturation excess or quick subsurface flow. The rest will be stored temporarily in the root zone. From the root zone, water can leave the catchment as evapotranspiration or percolate further and recharge deep storage (e.g. fractured bedrock aquifer). Quantifying the average amount of water that recharges deep storage and sustains low flows is extremely challenging, as we lack reliable methods to quantify this flux at the catchment scale. It was recently shown, however, that for semi-arid catchments in Mexico, an index of vegetation water use efficiency, i.e. the Horton index (HI), could predict deep storage dynamics. Here we test this finding using 247 MOPEX catchments across the conterminous US, including energy-limited catchments. Our results show that the observed HI is indeed a reliable predictor of deep storage dynamics in space and time. We further investigate whether the HI can also predict average recharge rates across the conterminous US. We find that the HI can reliably predict the average recharge rate, estimated from the 50th percentile flow of the flow duration curve. Our results compare favorably with estimates of average recharge rates from the US Geological Survey. Previous research has shown that HI can be reliably estimated based on aridity index, mean slope and mean elevation of a catchment (Voepel et al., 2011). We recalibrated Voepel's model and used it to predict the HI for our 247 catchments. We then used these predicted values of the HI to estimate average recharge rates for our catchments, and compared them with those estimated from observed HI. We find that the accuracies of our predictions based on observed and predicted HI are similar. This provides an estimation method of catchment-scale average recharge rates based on easily derived catchment

  20. Application of Artificial Neural Networks for estimating index floods

    Science.gov (United States)

    Šimor, Viliam; Hlavčová, Kamila; Kohnová, Silvia; Szolgay, Ján

    2012-12-01

    This article presents an application of Artificial Neural Networks (ANNs) and multiple regression models for estimating mean annual maximum discharge (index flood) at ungauged sites. Both approaches were tested for 145 small basins in Slovakia in areas ranging from 20 to 300 km2. Using the objective clustering method, the catchments were divided into ten homogeneous pooling groups; for each pooling group, mutually independent predictors (catchment characteristics) were selected for both models. The neural network was applied as a simple multilayer perceptron with one hidden layer and with a back propagation learning algorithm. Hyperbolic tangents were used as an activation function in the hidden layer. Estimating index floods by the multiple regression models were based on deriving relationships between the index floods and catchment predictors. The efficiencies of both approaches were tested by the Nash-Sutcliffe and a correlation coefficients. The results showed the comparative applicability of both models with slightly better results for the index floods achieved using the ANNs methodology.

  1. Probability based hydrologic catchments of the Greenland Ice Sheet

    Science.gov (United States)

    Hudson, B. D.

    2015-12-01

    Greenland Ice Sheet melt water impacts ice sheet flow dynamics, fjord and coastal circulation, and sediment and biogeochemical fluxes. Melt water exiting the ice sheet also is a key term in its mass balance. Because of this, knowledge of the area of the ice sheet that contributes melt water to a given outlet (its hydrologic catchment) is important to many ice sheet studies and is especially critical to methods using river runoff to assess ice sheet mass balance. Yet uncertainty in delineating ice sheet hydrologic catchments is a problem that is rarely acknowledged. Ice sheet catchments are delineated as a function of both basal and surface topography. While surface topography is well known, basal topography is less certain because it is dependent on radar surveys. Here, I a present a Monte Carlo based approach to delineating ice sheet catchments that quantifies the impact of uncertain basal topography. In this scheme, over many iterations I randomly vary the ice sheet bed elevation within published error bounds (using Morlighem et al., 2014 bed and bed error datasets). For each iteration of ice sheet bed elevation, I calculate the hydraulic potentiometric surface and route water over its path of 'steepest' descent to delineate the catchment. I then use all realizations of the catchment to arrive at a probability map of all major melt water outlets in Greenland. I often find that catchment size is uncertain, with small, random perturbations in basal topography leading to large variations in catchments size. While some catchments are well defined, others can double or halve in size within published basal topography error bars. While some uncertainty will likely always remain, this work points to locations where studies of ice sheet hydrology would be the most successful, allows reinterpretation of past results, and points to where future radar surveys would be most advantageous.

  2. Assessment of water availability in Chindwinn catchment

    International Nuclear Information System (INIS)

    Phyu Oo Khin; Ohn Gyaw

    2001-01-01

    A study of water balance over Chindwinn Catchment has been carried out by using three decades of available climatological and hydrological data (i.e. from 1967). The study was based on the monthly, annual and normal values. Actual evapotranspiration (AET) computed by as well as on the using Penman (1963) as well as Hargreaves (1985) methods. Some of the reliable data of evaporation at the stations were also used to estimate actual evaporation with the pancoefficient value 0.7. The values of actual evapotranspiration estimated by Hargreaves method was lower than the values estimated by Penman, but most followed the same significant trend. The soil moisture deficiency generally occurs during November and April. A few cases of soil moisture deficiency do occur in August, September and October. However, on the overall availability of water in the catchment is quite promising. The residual resulted from the water balance estimation may be assumed as soil moisture in the catchment by neglecting some losses from the catchment. (author)

  3. Organizing groundwater regimes and response thresholds by soils: A framework for understanding runoff generation in a headwater catchment

    Science.gov (United States)

    John P. Gannon; Scott W. Bailey; Kevin J. McGuire

    2014-01-01

    A network of shallow groundwater wells in a headwater catchment at the Hubbard Brook Experimental Forest in New Hampshire, U.S. was used to investigate the hydrologic behavior of five distinct soil morphological units. The soil morphological units were hypothesized to be indicative of distinct water table regimes. Water table fluctuations in the wells were...

  4. THE HYDROLOGIC RESPONSE OF A SMALL CATCHMENT TO CLEAR-CUTTING

    Science.gov (United States)

    We simulated how a landscape disturbance (e.g., fire or clear-cutting) alters hillslope and catchment hydrologic processes. Specifically, we simulated how the pattern and magnitude of tree removal in a catchment increases downslope transport of water and alters catchment soil moi...

  5. Runoff of small rocky headwater catchments: Field observations and hydrological modeling

    Science.gov (United States)

    Gregoretti, C.; Degetto, M.; Bernard, M.; Crucil, G.; Pimazzoni, A.; De Vido, G.; Berti, M.; Simoni, A.; Lanzoni, S.

    2016-10-01

    In dolomitic headwater catchments, intense rainstorms of short duration produce runoff discharges that often trigger debris flows on the scree slopes at the base of rock cliffs. In order to measure these discharges, we placed a measuring facility at the outlet (elevation 1770 m a.s.l.) of a small, rocky headwater catchment (area ˜0.032 km2, average slope ˜320%) located in the Venetian Dolomites (North Eastern Italian Alps). The facility consists of an approximately rectangular basin, ending with a sharp-crested weir. Six runoff events were recorded in the period 2011-2014, providing a unique opportunity for characterizing the hydrological response of the catchment. The measured hydrographs display impulsive shapes, with an abrupt raise up to the peak, followed by a rapidly decreasing tail, until a nearly constant plateau is eventually reached. This behavior can be simulated by means of a distributed hydrological model if the excess rainfall is determined accurately. We show that using the Soil Conservation Service Curve-Number (SCS-CN) method and assuming a constant routing velocity invariably results in an underestimated peak flow and a delayed peak time. A satisfactory prediction of the impulsive hydrograph shape, including peak value and timing, is obtained only by combining the SCS-CN procedure with a simplified version of the Horton equation, and simulating runoff routing along the channel network through a matched diffusivity kinematic wave model. The robustness of the proposed methodology is tested through a comparison between simulated and observed timings of runoff or debris flow occurrence in two neighboring alpine basins.

  6. Advancing Land-Sea Conservation Planning: Integrating Modelling of Catchments, Land-Use Change, and River Plumes to Prioritise Catchment Management and Protection

    Science.gov (United States)

    Álvarez-Romero, Jorge G.; Pressey, Robert L.; Ban, Natalie C.; Brodie, Jon

    2015-01-01

    Human-induced changes to river loads of nutrients and sediments pose a significant threat to marine ecosystems. Ongoing land-use change can further increase these loads, and amplify the impacts of land-based threats on vulnerable marine ecosystems. Consequently, there is a need to assess these threats and prioritise actions to mitigate their impacts. A key question regarding prioritisation is whether actions in catchments to maintain coastal-marine water quality can be spatially congruent with actions for other management objectives, such as conserving terrestrial biodiversity. In selected catchments draining into the Gulf of California, Mexico, we employed Land Change Modeller to assess the vulnerability of areas with native vegetation to conversion into crops, pasture, and urban areas. We then used SedNet, a catchment modelling tool, to map the sources and estimate pollutant loads delivered to the Gulf by these catchments. Following these analyses, we used modelled river plumes to identify marine areas likely influenced by land-based pollutants. Finally, we prioritised areas for catchment management based on objectives for conservation of terrestrial biodiversity and objectives for water quality that recognised links between pollutant sources and affected marine areas. Our objectives for coastal-marine water quality were to reduce sediment and nutrient discharges from anthropic areas, and minimise future increases in coastal sedimentation and eutrophication. Our objectives for protection of terrestrial biodiversity covered species of vertebrates. We used Marxan, a conservation planning tool, to prioritise interventions and explore spatial differences in priorities for both objectives. Notable differences in the distributions of land values for terrestrial biodiversity and coastal-marine water quality indicated the likely need for trade-offs between catchment management objectives. However, there were priority areas that contributed to both sets of objectives. Our

  7. Advancing Land-Sea Conservation Planning: Integrating Modelling of Catchments, Land-Use Change, and River Plumes to Prioritise Catchment Management and Protection.

    Directory of Open Access Journals (Sweden)

    Jorge G Álvarez-Romero

    Full Text Available Human-induced changes to river loads of nutrients and sediments pose a significant threat to marine ecosystems. Ongoing land-use change can further increase these loads, and amplify the impacts of land-based threats on vulnerable marine ecosystems. Consequently, there is a need to assess these threats and prioritise actions to mitigate their impacts. A key question regarding prioritisation is whether actions in catchments to maintain coastal-marine water quality can be spatially congruent with actions for other management objectives, such as conserving terrestrial biodiversity. In selected catchments draining into the Gulf of California, Mexico, we employed Land Change Modeller to assess the vulnerability of areas with native vegetation to conversion into crops, pasture, and urban areas. We then used SedNet, a catchment modelling tool, to map the sources and estimate pollutant loads delivered to the Gulf by these catchments. Following these analyses, we used modelled river plumes to identify marine areas likely influenced by land-based pollutants. Finally, we prioritised areas for catchment management based on objectives for conservation of terrestrial biodiversity and objectives for water quality that recognised links between pollutant sources and affected marine areas. Our objectives for coastal-marine water quality were to reduce sediment and nutrient discharges from anthropic areas, and minimise future increases in coastal sedimentation and eutrophication. Our objectives for protection of terrestrial biodiversity covered species of vertebrates. We used Marxan, a conservation planning tool, to prioritise interventions and explore spatial differences in priorities for both objectives. Notable differences in the distributions of land values for terrestrial biodiversity and coastal-marine water quality indicated the likely need for trade-offs between catchment management objectives. However, there were priority areas that contributed to both

  8. Streamflow variation of forest covered catchments

    Science.gov (United States)

    Gribovszki, Z.; Kalicz, P.; Kucsara, M.

    2003-04-01

    Rainfall concentration and runoff, otherwise rainfall-runoff processes, which cause river water discharge fluctuation, is one of the basic questions of hydrology. Several social-economy demands have a strong connection with small or bigger rivers from the point of view both quantity and quality of the water. Gratification or consideration of these demands is complicated substantially that we have still poor knowledge about our stream-flow regime. Water resources mainly stem from upper watersheds. These upper watersheds are the basis of the water concentration process; therefore we have to improve our knowledge about hydrological processes coming up in these territories. In this article we present runoff regime of two small catchments on the basis of one year data. Both catchments have a similar magnitude 0.6 and 0.9 km^2. We have been analyzed in detail some hydrological elements: features of rainfall, discharge, rainfall induced flooding waves and basic discharge in rainless periods. Variances of these parameters have been analyzed in relation to catchments surface, vegetation coverage and forest management. Result data set well enforce our knowledge about small catchments hydrological processes. On the basis of these fundamentals we can plan more established the management of these lands (forest practices, civil engineering works, and usage of natural water resources).

  9. Influence of urbanization pattern on stream flow of a peri-urban catchment under Mediterranean climate

    Science.gov (United States)

    Ferreira, Carla S. S.; Walsh, Rory P. D.; Ferreira, António J. D.; Steenhuis, Tammo S.; Coelho, Celeste A. O.

    2015-04-01

    control streamflow particularly during dry periods. Winter runoff was 2-4 times higher than total river flow in the summer dry season in highly urbanized areas, but was 21-fold higher in winter in the least urbanized sub-catchment, denoting greater flow connectivity enhanced by increased soil moisture. Although impermeable surfaces are prone to generate overland flow, the proximity to the stream network is an important parameter determining their hydrological impacts. During the monitoring period, the enlargement of 2% of the urban area at downslope locations in the Covões sub-catchment, led to a 6% increase in the runoff coefficient. In contrast, the urban area increase from 9 to 25% mainly in upslope parts of the Quinta sub-catchment did not increase the peak streamflow due to downslope infiltration and surface retention opportunities. Despite impermeable surfaces enhance overland flow, some urban features (e.g. walls and road embankments) promote surface water retention. The presence of artificial drainage systems, on the other hand, enhances flow connectivity, leading to increasing peak flow and quicker response times (~10 minutes versus 40-50 minutes) as in the Covões sub-catchment. Urbanization impact on streamflow responses may be minimized through planning the land-use mosaic so as to maximize infiltration opportunities. Knowledge of the influence of distinct urban mosaics on flow connectivity and stream discharge is therefore important to landscape managers and should guide urban planning in order to minimize flood hazards.

  10. The Vaal river catchment: Problems and research needs

    CSIR Research Space (South Africa)

    Braune, E

    1987-01-01

    Full Text Available The vaal river catchments contains South African's economic heartland, the Pretoria -Witwatersrand-Vereeniging (PWV) complex. Although the catchments only produces eight per cent of the mean annual runoff of the country it has highest concentration...

  11. Hydrological impacts of land use change in three diverse South African catchments

    Science.gov (United States)

    Warburton, Michele L.; Schulze, Roland E.; Jewitt, Graham P. W.

    2012-01-01

    SummaryIn order to meet society's needs for water, food, fuel and fibre, the earth's natural land cover and land use have been significantly changed. These changes have impacted on the hydrological responses and thus available water resources, as the hydrological responses of a catchment are dependent upon, and sensitive to, changes in the land use. The degree of anthropogenic modification of the land cover, the intensity of the land use changes and location of land uses within a catchment determines the extent to which land uses influences hydrological response of a catchment. The objective of the study was to improve understanding of the complex interactions between hydrological response and land use to aid in water resources planning. To achieve this, a hydrological model, viz. the ACRU agrohydrological model, which adequately represents hydrological processes and is sensitive to land use changes, was used to generate hydrological responses from three diverse, complex and operational South African catchments under both current land use and a baseline land cover. The selected catchments vary with respect to both land use and climate. The semi-arid sub-tropical Luvuvhu catchment has a large proportion of subsistence agriculture and informal residential areas, whereas in the winter rainfall Upper Breede catchment the primary land uses are commercial orchards and vineyards. The sub-humid Mgeni catchment is dominated by commercial plantation forestry in the upper reaches, commercial sugarcane and urban areas in the middle reaches, with the lower reaches dominated by urban areas. The hydrological responses of the selected catchments to land use change were complex. Results showed that the contributions of different land uses to the streamflow generated from a catchment is not proportional to the relative area of that land use, and the relative contribution of the land use to the catchment streamflow varies with the mean annual rainfall of the catchment. Furthermore

  12. Pesticide modelling for a small catchment using SWAT-2000.

    Science.gov (United States)

    Kannan, Narayanan; White, Sue M; Worrall, Fred; Whelan, Mick J

    2006-01-01

    Pesticides in stream flow from the 142 ha Colworth catchment in Bedfordshire, UK were monitored from October 1999 to December 2000. About 47% of the catchment is tile-drained and different pesticides and cropping patterns have recently been evaluated in terms of their effect on nutrient and pesticide losses to the stream. The data from Colworth were used to test soil and water assessment tool (SWAT) 2000 predictions of pesticide concentrations at the catchment outlet. A sound model set-up to carry out pesticide modelling was created by means of hydrological modelling with proper simulation of crop growth and evapotranspiration. The pesticides terbuthylazine, terbutryn, cyanazine and bentazone were modelled. There was close agreement between SWAT-predicted pesticide concentration values and observations. Scenario trials were conducted to explore management options for reducing pesticide loads arriving at the catchment outlet. The results obtained indicate that SWAT can be used as a tool to understand pesticide behavior at the catchment scale.

  13. Hydrological effects of fire in South-African mountain catchments

    CSIR Research Space (South Africa)

    Scott, DF

    1993-10-01

    Full Text Available is entirely suppressed and a deep litter mat develops giving a continuous cover with good soil protection characteristics. The timber plantations are at risk of burning as they are surrounded by fire-maintained vegetation... in vegetation type and fire characteristics. Description of the research catchments and treatments The catchments studied are all small, mountainous and with a high rainfall, each forming part of long-term experimental catchment...

  14. The relative influence of climate and catchment properties on hydrological drought

    Science.gov (United States)

    Van Loon, Anne; Laaha, Gregor; Koffler, Daniel

    2014-05-01

    Studying hydrological drought (a below-normal water availability in groundwater, lakes and streams) is important to society and the ecosystem, but can also reveal interesting information about catchment functioning. This information can later be used for predicting drought in ungauged basins and to inform water management decisions. In this study, we used an extensive Austrian dataset of discharge measurements in clusters of catchments and combine this dataset with thematic information on climate and catchment properties. Our aim was to study the relative effects of climate and catchment characteristics on drought duration and deficit and on hydrological drought typology. Because the climate of the region is roughly uniform, our hypothesis was that the effect of differences of catchment properties would stand out. From time series of precipitation and discharge we identified droughts with the widely-used threshold level approach, defining a drought when a variable falls below a pre-defined threshold representing the regime. Drought characteristics that were analysed are drought duration and deficit. We also applied the typology of Van Loon & Van Lanen (2012). To explain differences in drought characteristics between catchments we did a correlation analysis with climate and catchment characteristics, based on Pearson correlation. We found very interesting patterns in the correlations of drought characteristics with climate and catchment properties: 1) Droughts with long duration (mean and maximum) and composite droughts are related to catchments with a high BFI (high baseflow) and a high percentage of shallow groundwater tables. 2) The deficit (mean and maximum) of both meteorological droughts and hydrological droughts is strongly related to catchment humidity, in this case quantified by average annual precipitation. 3) The hydrological drought types that are related to snow, i.e. cold snow season drought and snow melt drought, occur in catchments that are have a

  15. Participatory catchment management: an opportunity for South Africa

    CSIR Research Space (South Africa)

    Versfeld, DB

    1995-01-01

    Full Text Available offer a new opportunity for communities living within these catchments to share their knowledge and to become involved in planning and implementing the management process. This paper discusses the use of Participatory Rural Appraisal (PRA) in a catchment...

  16. Simulating Catchment Scale Afforestation for Mitigating Flooding

    Science.gov (United States)

    Barnes, M. S.; Bathurst, J. C.; Quinn, P. F.; Birkinshaw, S.

    2016-12-01

    After the 2013-14, and the more recent 2015-16, winter floods in the UK there were calls to 'forest the uplands' as a solution to reducing flood risk across the nation. However, the role of forests as a natural flood management practice remains highly controversial, due to a distinct lack of robust evidence into its effectiveness in reducing flood risk during extreme events. This project aims to improve the understanding of the impacts of upland afforestation on flood risk at the sub-catchment and full catchment scales. This will be achieved through an integrated fieldwork and modelling approach, with the use of a series of process based hydrological models to scale up and examine the effects forestry can have on flooding. Furthermore, there is a need to analyse the extent to which land management practices, catchment system engineering and the installation of runoff attenuation features (RAFs), such as engineered log jams, in headwater catchments can attenuate flood-wave movement, and potentially reduce downstream flood risk. Additionally, the proportion of a catchment or riparian reach that would need to be forested in order to achieve a significant impact on reducing downstream flooding will be defined. The consequential impacts of a corresponding reduction in agriculturally productive farmland and the potential decline of water resource availability will also be considered in order to safeguard the UK's food security and satisfy the global demand on water resources.

  17. Rice agriculture impacts catchment hydrographic patterns and nitrogen export characteristics in subtropical central China: a paired-catchment study.

    Science.gov (United States)

    Wang, Yi; Liu, Xinliang; Wang, Hua; Li, Yong; Li, Yuyuan; Liu, Feng; Xiao, Runlin; Shen, Jianlin; Wu, Jinshui

    2017-06-01

    Increased nitrogen (N) concentrations in water bodies have highlighted issues regarding nutrient pollution in agricultural catchments. In this study, the ammonium-N (NH 4 + -N), nitrate-N (NO 3 - -N), and total N (TN) concentrations were observed in the stream water and groundwater of two contrasting catchments (named Tuojia and Jianshan) in subtropical central China from 2010 to 2014, to determine the rice agriculture impacts on the hydrographic patterns, and N export characteristics of the catchments. The results suggested that greater amounts of stream flow (523.0 vs. 434.7 mm year -1 ) and base flow (237.6 vs. 142.8 mm year -1 ) were produced in Tuojia than in Jianshan, and a greater base flow contribution to stream flow and higher frequencies of high-base flow days were observed during the fallow season than during the rice-growing season, indicating that intensive rice agriculture strongly influences the catchment hydrographic pattern. Rice agriculture resulted in moderate N pollution in the stream water and groundwater, particularly in Tuojia. Primarily, rice agriculture increased the NH 4 + -N concentration in the stream water; however, it increased the NO 3 - -N concentrations in the groundwater, suggesting that the different N species in the paddy fields migrated out of the catchments through distinct hydrological pathways. The average TN loading via stream flow and base flow was greater in Tuojia than in Jianshan (1.72 and 0.58 vs. 0.72 and 0.15 kg N ha -1  month -1 , respectively). Greater TN loading via stream flow was observed during the fallow season in Tuojia and during the rice-growing season in Jianshan, and these different results were most likely a result of the higher base flow contribution to TN loading (33.5 vs. 21.3%) and greater base flow enrichment ratio (1.062 vs. 0.876) in Tuojia than in Jianshan. Therefore, the impact of rice agriculture on catchment eco-hydrological processes should be considered when performing water quality

  18. A Novel Low-Cost Approach to Estimate the Incidence of Japanese Encephalitis in the Catchment Area of Three Hospitals in Bangladesh

    Science.gov (United States)

    Paul, Repon C.; Rahman, Mahmudur; Gurley, Emily S.; Hossain, M. Jahangir; Diorditsa, Serguei; Hasan, ASM Mainul; Banu, Sultana S.; Alamgir, ASM; Rahman, Muhammad Aziz; Sandhu, Hardeep; Fischer, Marc; Luby, Stephen P.

    2011-01-01

    Acute meningoencephalitis syndrome surveillance was initiated in three medical college hospitals in Bangladesh in October 2007 to identify Japanese encephalitis (JE) cases. We estimated the population-based incidence of JE in the three hospitals' catchment areas by adjusting the hospital-based crude incidence of JE by the proportion of catchment area meningoencephalitis cases who were admitted to surveillance hospitals. Instead of a traditional house-to-house survey, which is expensive for a disease with low frequency, we attempted a novel approach to identify meningoencephalitis cases in the hospital catchment area through social networks among the community residents. The estimated JE incidence was 2.7/100,000 population in Rajshahi (95% confidence interval [CI] = 1.8–4.9), 1.4 in Khulna (95% CI = 0.9–4.1), and 0.6 in Chittagong (95% CI = 0.4–0.9). Bangladesh should consider a pilot project to introduce JE vaccine in high-incidence areas. PMID:21813862

  19. Nitrogen attenuation along delivery pathways in agricultural catchments

    Science.gov (United States)

    McAleer, Eoin; Mellander, Per-Erik; Coxon, Catherine; Richards, Karl G.

    2014-05-01

    Hillslope hydrologic systems and in particular near-stream saturated zones are active sites of nitrogen (N) biogeochemical dynamics. The efficiency of N removal and the ratio of reaction products (nitrous oxide and dinitrogen) in groundwater is highly variable and depends upon aquifer hydrology, mineralogy, dissolved oxygen, energy sources and redox chemistry. There are large uncertainties in the closing of N budgets in agricultural catchments. Spatial and temporal variability in groundwater physico-chemistry, catchment hydrology and land-use gives rise to hotspots and hot moments of N attenuation. In addition the production, consumption and movement of denitrification products remains poorly understood. The focus of this study is to develop a holistic understanding of N dynamics in groundwater as it moves from the top of the hillslope to the stream. This includes saturated groundwater flow, exchange at the groundwater-surface water interface and hyporheic zone flow. This project is being undertaken in two ca. 10km2 Irish catchments, characterised by permeable soils. One catchment is dominated by arable land overlying slate bedrock and the other by grassland overlying sandstone. Multi-level monitoring wells have been installed at the upslope, midslope and bottom of each hillslope. The piezometers are screened to intercept the subsoil, weathered bedrock and competent bedrock zones. Groundwater samples for nitrate (NO3-N) nitrite (NO2-N), ammonium (NH4-N) and total nitrogen are collected on a monthly basis while dissolved gas concentrations are collected seasonally. Groundwater NO3-N profiles from monitoring data to date in both catchments differ markedly. Although the two catchments had similar 3 year mean concentrations of 6.89 mg/L (arable) and 6.24 mg/L (grassland), the grassland catchment had higher spatial and temporal variation. The arable catchment showed relatively homogenous NO3-N concentrations in all layers and zones (range: 1.2 - 12.13 mg/L, SD = 1.60 mg

  20. An Optimal Balance between Efficiency and Safety of Urban Drainage Networks

    Science.gov (United States)

    Seo, Y.

    2014-12-01

    Urban drainage networks have been developed to promote the efficiency of a system in terms of drainage time so far. Typically, a drainage system is designed to drain water from developed areas promptly as much as possible during floods. In this regard, an artificial drainage system have been considered to be more efficient compared to river networks in nature. This study examined artificial drainage networks and the results indicate they can be less efficient in terms of network configuration compared with river networks, which is counter-intuitive. The case study of 20 catchments in Seoul, South Korea shows that they have wide range of efficiency in terms of network configuration and consequently, drainage time. This study also demonstrates that efficient drainage networks are more sensitive to spatial and temporal rainfall variation such as rainstorm movement. Peak flows increase more than two times greater in effective drainage networks compared with inefficient and highly sinuous drainage networks. Combining these results, this study implies that the layout of a drainage network is an important factor in terms of efficient drainage and also safety in urban catchments. Design of an optimal layout of the drainage network can be an alternative non-structural measures that mitigate potential risks and it is crucial for the sustainability of urban environments.

  1. Modelling catchment areas for secondary care providers: a case study.

    Science.gov (United States)

    Jones, Simon; Wardlaw, Jessica; Crouch, Susan; Carolan, Michelle

    2011-09-01

    Hospitals need to understand patient flows in an increasingly competitive health economy. New initiatives like Patient Choice and the Darzi Review further increase this demand. Essential to understanding patient flows are demographic and geographic profiles of health care service providers, known as 'catchment areas' and 'catchment populations'. This information helps Primary Care Trusts (PCTs) to review how their populations are accessing services, measure inequalities and commission services; likewise it assists Secondary Care Providers (SCPs) to measure and assess potential gains in market share, redesign services, evaluate admission thresholds and plan financial budgets. Unlike PCTs, SCPs do not operate within fixed geographic boundaries. Traditionally, SCPs have used administrative boundaries or arbitrary drive times to model catchment areas. Neither approach satisfactorily represents current patient flows. Furthermore, these techniques are time-consuming and can be challenging for healthcare managers to exploit. This paper presents three different approaches to define catchment areas, each more detailed than the previous method. The first approach 'First Past the Post' defines catchment areas by allocating a dominant SCP to each Census Output Area (OA). The SCP with the highest proportion of activity within each OA is considered the dominant SCP. The second approach 'Proportional Flow' allocates activity proportionally to each OA. This approach allows for cross-boundary flows to be captured in a catchment area. The third and final approach uses a gravity model to define a catchment area, which incorporates drive or travel time into the analysis. Comparing approaches helps healthcare providers to understand whether using more traditional and simplistic approaches to define catchment areas and populations achieves the same or similar results as complex mathematical modelling. This paper has demonstrated, using a case study of Manchester, that when estimating

  2. High-resolution monitoring of catchment nutrient response to the end of the 2011-2012 drought in England, captured by the demonstration test catchments

    Science.gov (United States)

    Outram, F. N.; Lloyd, C.; Jonczyk, J.; Benskin, C. McW. H.; Grant, F.; Dorling, S. R.; Steele, C. J.; Collins, A. L.; Freer, J.; Haygarth, P. M.; Hiscock, K. M.; Johnes, P. J.; Lovett, A. L.

    2013-12-01

    The Demonstration Test Catchments (DTC) project is a UK Government funded initiative to test the effectiveness of on-farm mitigation measures designed to reduce agricultural pollution without compromising farm productivity. Three distinct catchments in England have been chosen to test the efficacy of mitigation measures on working farms in small tributary sub-catchments equipped with continuous water quality monitoring stations. The Hampshire Avon in the south is a mixed livestock and arable farming catchment, the River Wensum in the east is a lowland catchment with predominantly arable farming and land use in the River Eden catchment in the north-west is predominantly livestock farming. One of the many strengths of the DTC as a national research platform is that it provides the ability to investigate catchment hydrology and biogeochemical response across different landscapes and geoclimatic characteristics, with a range of differing flow behaviours, geochemistries and nutrient chemistries. Although numerous authors present studies of individual catchment responses to storms, no studies exist of multiple catchment responses to the same rainfall event captured with in situ high-resolution nutrient monitoring at a national scale. This paper brings together findings from all three DTC research groups to compare the response of the catchments to a major storm event in April 2012. This was one of the first weather fronts to track across the country following a prolonged drought period affecting much of the UK through 2011-2012, marking an unusual meteorological transition when a rapid shift from drought to flood risk occurred. The effects of the weather front on discharge and water chemistry parameters, including nitrogen species (NO3-N and NH4-N) and phosphorus fractions (total P (TP) and total reactive P (TRP)), measured at a half-hourly time step are examined. When considered in the context of one hydrological year, flow and concentration duration curves reveal that

  3. Leaching of organic carbon and nitrogen from peatland-dominated catchments

    International Nuclear Information System (INIS)

    Kortelainen, P.

    1992-01-01

    The area of 13 study catchments is 2.5-56-3 km 2 and 37-87 % of the catchments is covered by peatlands. Ditching intensities varied from 0 to 100 %. Median total organic carbon (TOC) in runoff waters from the catchments was 10-30 mg/l - 1 and median nitrogen (N tot ) 380-1000 μg/1 -1 . The annual leaching of TOC and Ntot was calculated for five catchments for which daily runoff data was available. The range for mean annual leaching of TOC and N tot from the catchments was 4700-7300 kg/km 2 a and 190-250 kg/km -2 a -1 , respectively. The variation between different years was high and annual leaching was closely related to annual runoff. The regional variation in the leaching of TOC and N tot was small compared to the annual variation

  4. Mapping the temporary and perennial character of whole river networks

    Science.gov (United States)

    González-Ferreras, A. M.; Barquín, J.

    2017-08-01

    Knowledge of the spatial distribution of temporary and perennial river channels in a whole catchment is important for effective integrated basin management and river biodiversity conservation. However, this information is usually not available or is incomplete. In this study, we present a statistically based methodology to classify river segments from a whole river network (Deva-Cares catchment, Northern Spain) as temporary or perennial. This method is based on an a priori classification of a subset of river segments as temporary or perennial, using field surveys and aerial images, and then running Random Forest models to predict classification membership for the rest of the river network. The independent variables and the river network were derived following a computer-based geospatial simulation of riverine landscapes. The model results show high values of overall accuracy, sensitivity, and specificity for the evaluation of the fitted model to the training and testing data set (≥0.9). The most important independent variables were catchment area, area occupied by broadleaf forest, minimum monthly precipitation in August, and average catchment elevation. The final map shows 7525 temporary river segments (1012.5 km) and 3731 perennial river segments (662.5 km). A subsequent validation of the mapping results using River Habitat Survey data and expert knowledge supported the validity of the proposed maps. We conclude that the proposed methodology is a valid method for mapping the limits of flow permanence that could substantially increase our understanding of the spatial links between terrestrial and aquatic interfaces, improving the research, management, and conservation of river biodiversity and functioning.

  5. Continuous catchment-scale monitoring of geomorphic processes with a 2-D seismological array

    Science.gov (United States)

    Burtin, A.; Hovius, N.; Milodowski, D.; Chen, Y.-G.; Wu, Y.-M.; Lin, C.-W.; Chen, H.

    2012-04-01

    The monitoring of geomorphic processes during extreme climatic events is of a primary interest to estimate their impact on the landscape dynamics. However, available techniques to survey the surface activity do not provide a relevant time and/or space resolution. Furthermore, these methods hardly investigate the dynamics of the events since their detection are made a posteriori. To increase our knowledge of the landscape evolution and the influence of extreme climatic events on a catchment dynamics, we need to develop new tools and procedures. In many past works, it has been shown that seismic signals are relevant to detect and locate surface processes (landslides, debris flows). During the 2010 typhoon season, we deployed a network of 12 seismometers dedicated to monitor the surface processes of the Chenyoulan catchment in Taiwan. We test the ability of a two dimensional array and small inter-stations distances (~ 11 km) to map in continuous and at a catchment-scale the geomorphic activity. The spectral analysis of continuous records shows a high-frequency (> 1 Hz) seismic energy that is coherent with the occurrence of hillslope and river processes. Using a basic detection algorithm and a location approach running on the analysis of seismic amplitudes, we manage to locate the catchment activity. We mainly observe short-time events (> 300 occurrences) associated with debris falls and bank collapses during daily convective storms, where 69% of occurrences are coherent with the time distribution of precipitations. We also identify a couple of debris flows during a large tropical storm. In contrast, the FORMOSAT imagery does not detect any activity, which somehow reflects the lack of extreme climatic conditions during the experiment. However, high resolution pictures confirm the existence of links between most of geomorphic events and existing structures (landslide scars, gullies...). We thus conclude to an activity that is dominated by reactivation processes. It

  6. An integrated modelling and multicriteria analysis approach to managing nitrate diffuse pollution: 2. A case study for a chalk catchment in England.

    Science.gov (United States)

    Koo, B K; O'Connell, P E

    2006-04-01

    The site-specific land use optimisation methodology, suggested by the authors in the first part of this two-part paper, has been applied to the River Kennet catchment at Marlborough, Wiltshire, UK, for a case study. The Marlborough catchment (143 km(2)) is an agriculture-dominated rural area over a deep chalk aquifer that is vulnerable to nitrate pollution from agricultural diffuse sources. For evaluation purposes, the catchment was discretised into a network of 1 kmx1 km grid cells. For each of the arable-land grid cells, seven land use alternatives (four arable-land alternatives and three grassland alternatives) were evaluated for their environmental and economic potential. For environmental evaluation, nitrate leaching rates of land use alternatives were estimated using SHETRAN simulations and groundwater pollution potential was evaluated using the DRASTIC index. For economic evaluation, economic gross margins were estimated using a simple agronomic model based on nitrogen response functions and agricultural land classification grades. In order to see whether the site-specific optimisation is efficient at the catchment scale, land use optimisation was carried out for four optimisation schemes (i.e. using four sets of criterion weights). Consequently, four land use scenarios were generated and the site-specifically optimised land use scenario was evaluated as the best compromise solution between long term nitrate pollution and agronomy at the catchment scale.

  7. Demonstrating the viability and value of community-based monitoring schemes in catchment science

    Science.gov (United States)

    Starkey, Eleanor; Parkin, Geoff; Quinn, Paul; Large, Andy

    2016-04-01

    Hydrological catchments are complex systems which need to be monitored over time in order to characterise their behaviour on a local level, model, implement mitigation measures and meet policy targets. Despite hydrometric monitoring techniques being well developed, data is often inadequate within rural areas. Local knowledge and experiences are also vital sources of information in this sector but they are not routinely harvested. Long-term evidence is required to provide stakeholders with confidence and innovation is required to fully engage with and inform the public. Citizen science and volunteered geographical information (VGI) projects are encouraging volunteers to participate in crowdsourcing activities and generate new knowledge, but they have not been fully investigated within catchment science. A citizen science approach has therefore been implemented within the 42km2 Haltwhistle Burn catchment (northern England) using effective engagement techniques. This catchment responds rapidly, experiences flash flood events, and like many, it does not benefit from any traditional monitoring equipment. Participation levels confirm that members of the public do want to monitor their local water environment, with flooding being a key driver. Regular 'River Watch' volunteers and passers-by are sharing their knowledge and monitoring rainfall, river levels, water quality parameters, sediment issues, flood events and performance of flood risk management features. This has enabled a variety of low-cost data collection and submission tools to be tested over a two year period. Training has encouraged good quality data to be collected and volunteers are ready to capture meaningful information during unexpected flood events. Although volunteers are capable of collecting quantitative information, photographs and videos are submitted more readily. Twitter has also been used to share real-time observations successfully. A traditional monitoring network has been running in parallel

  8. SOILS VULNERABILITY OF CATCHMENT ALMAŞ AT GEOMORPHOLOGIC CONTEMPORARY PROCESSES

    Directory of Open Access Journals (Sweden)

    MĂDĂLINA-IOANA RUS

    2015-03-01

    Full Text Available Soils vulnerability of the Catchment Almas geomorphologic processes. Almas Basin, signed lower lithologic Miocene soils deposits, shows six classes: Cernisols, Cambisols, Luvisols, Hydrosols, Pelisols, Protosols (after SRTS, 2003. The largest share is attributed to Luvisols class (60%, followed by undeveloped soil represented by Protosols and Antrisols (15%, followed by the remaining classes with lower weights: Cambisols (13%, Cernisols (7%, Pelisols (4%, Hydrosols (1%. Contemporary geomorphological processes (surface and deep erosion, mass movements change agricultural areas and forest ratio or flow out of economic network tens of hectares annually. Soil vulnerability to the manifestation of these processes is expressed by disturbing soil horizons, coastal springs appearance and growth of the adjoining excess moisture, soil sealing productive by dropping or by alienation.

  9. Estimating retention potential of headwater catchment using Tritium time series

    Science.gov (United States)

    Hofmann, Harald; Cartwright, Ian; Morgenstern, Uwe

    2018-06-01

    Headwater catchments provide substantial streamflow to rivers even during long periods of drought. Documenting the mean transit times (MTT) of stream water in headwater catchments and therefore the retention capacities of these catchments is crucial for water management. This study uses time series of 3H activities in combination with major ion concentrations, stable isotope ratios and radon activities (222Rn) in the Lyrebird Creek catchment in Victoria, Australia to provide a unique insight into the mean transit time distributions and flow systems of this small temperate headwater catchment. At all streamflows, the stream has 3H activities (water in the stream is derived from stores with long transit times. If the water in the catchment can be represented by a single store with a continuum of ages, mean transit times of the stream water range from ∼6 up to 40 years, which indicates the large retention potential for this catchment. Alternatively, variations of 3H activities, stable isotopes and major ions can be explained by mixing between of young recent recharge and older water stored in the catchment. While surface runoff is negligible, the variation in stable isotope ratios, major ion concentrations and radon activities during most of the year is minimal (±12%) and only occurs during major storm events. This suggests that different subsurface water stores are activated during the storm events and that these cease to provide water to the stream within a few days or weeks after storm events. The stores comprise micro and macropore flow in the soils and saprolite as well as the boundary between the saprolite and the fractured bed rock. Hydrograph separations from three major storm events using Tritium, electrical conductivity and selected major ions as well a δ18O suggest a minimum of 50% baseflow at most flow conditions. We demonstrate that headwater catchments can have a significant storage capacity and that the relationship between long-water stores and

  10. Downsizing a long-term precipitation network: Using a quantitative approach to inform difficult decisions.

    Science.gov (United States)

    Green, Mark B; Campbell, John L; Yanai, Ruth D; Bailey, Scott W; Bailey, Amey S; Grant, Nicholas; Halm, Ian; Kelsey, Eric P; Rustad, Lindsey E

    2018-01-01

    The design of a precipitation monitoring network must balance the demand for accurate estimates with the resources needed to build and maintain the network. If there are changes in the objectives of the monitoring or the availability of resources, network designs should be adjusted. At the Hubbard Brook Experimental Forest in New Hampshire, USA, precipitation has been monitored with a network established in 1955 that has grown to 23 gauges distributed across nine small catchments. This high sampling intensity allowed us to simulate reduced sampling schemes and thereby evaluate the effect of decommissioning gauges on the quality of precipitation estimates. We considered all possible scenarios of sampling intensity for the catchments on the south-facing slope (2047 combinations) and the north-facing slope (4095 combinations), from the current scenario with 11 or 12 gauges to only 1 gauge remaining. Gauge scenarios differed by as much as 6.0% from the best estimate (based on all the gauges), depending on the catchment, but 95% of the scenarios gave estimates within 2% of the long-term average annual precipitation. The insensitivity of precipitation estimates and the catchment fluxes that depend on them under many reduced monitoring scenarios allowed us to base our reduction decision on other factors such as technician safety, the time required for monitoring, and co-location with other hydrometeorological measurements (snow, air temperature). At Hubbard Brook, precipitation gauges could be reduced from 23 to 10 with a change of <2% in the long-term precipitation estimates. The decision-making approach illustrated in this case study is applicable to the redesign of monitoring networks when reduction of effort seems warranted.

  11. Enhanced Multi-Objective Optimization of Groundwater Monitoring Networks

    DEFF Research Database (Denmark)

    Bode, Felix; Binning, Philip John; Nowak, Wolfgang

    Drinking-water well catchments include many sources for potential contaminations like gas stations or agriculture. Finding optimal positions of monitoring wells for such purposes is challenging because there are various parameters (and their uncertainties) that influence the reliability...... and optimality of any suggested monitoring location or monitoring network. The goal of this project is to develop and establish a concept to assess, design, and optimize early-warning systems within well catchments. Such optimal monitoring networks need to optimize three competing objectives: (1) a high...... be reduced to a minimum. The method is based on numerical simulation of flow and transport in heterogeneous porous media coupled with geostatistics and Monte-Carlo, wrapped up within the framework of formal multi-objective optimization. In order to gain insight into the flow and transport physics...

  12. Measuring the size of an airport's catchment area

    NARCIS (Netherlands)

    Lieshout, R.

    2012-01-01

    Although much empirical research exists on the factors that drive passenger airport choice, not much is known about the related topic of airport catchment area size. This paper presents a novel methodology to assess the size of airport catchment areas and the airport’s market shares therein using a

  13. Catchment Storage and Transport on Timescales from Minutes to Millennia

    Science.gov (United States)

    Kirchner, J. W.

    2017-12-01

    Landscapes are characterized by preferential flow and pervasive heterogeneity on all scales. They therefore store and transmit water and solutes over a wide spectrum of time scales, with important implications for contaminant transport, weathering rates, and runoff chemistry. Theoretical analyses predict, and syntheses of age tracer data confirm, that waters in aquifers are older - often by orders of magnitude - than in the rivers that flow from them, and that this disconnect between water ages arises from aquifer heterogeneity. Recent theoretical studies also suggest that catchment transit time distributions are nonstationary, reflecting temporal variability in precipitation forcing, structural heterogeneity in catchments themselves, and the nonlinearity of the mechanisms controlling storage and transport in the subsurface. The challenge of empirically estimating these nonstationary transit time distributions in real-world catchments, however, has only begun to be explored. In recent years, long-term isotope time series have been collected in many research catchments, and new technologies have emerged that allow quasi-continuous measurements of isotopes in precipitation and streamflow. These new data streams create new opportunities to study how rainfall becomes streamflow following the onset of precipitation. Here I present novel methods for quantifying the fraction of current rainfall in streamflow across ensembles of precipitation events. Benchmark tests with nonstationary catchment models demonstrate that this approach quantitatively measures the short tail of the transit time distribution for a wide range of catchment response characteristics. In combination with reactive tracer time series, this approach can potentially be extended to measure short-term chemical reaction rates at the catchment scale. Applications using high-frequency tracer time series from several experimental catchments demonstrate the utility of the new approach outlined here.

  14. Does estuarine health relate to catchment land-cover in the East ...

    African Journals Online (AJOL)

    Possible links between catchment and buffer zone land-cover class composition and the health of the East Kleinemonde Estuary were explored. There was a relationship between catchment land-cover and estuarine health within all assessed catchment delineations. Natural land-cover was determined to be the best ...

  15. Use of a geomorphological transfer function to model design floods in small hillside catchments in semiarid Tunisia

    Science.gov (United States)

    Nasri, S.; Cudennec, C.; Albergel, J.; Berndtsson, R.

    2004-02-01

    In the beginning of the 1990s, the Tunisian Ministry of Agriculture launched an ambitious program for constructing small hillside reservoirs in the northern and central region of the country. At present, more than 720 reservoirs have been created. They consist of small compacted earth dams supplied with a horizontal overflow weir. Due to lack of hydrological data and the area's extreme floods, however, it is very difficult to design the overflow weirs. Also, catchments are very sensitive to erosion and the reservoirs are rapidly silted up. Consequently, prediction of flood volumes for important rainfall events becomes crucial. Few hydrological observations, however, exist for the catchment areas. For this purpose a geomorphological model methodology is presented to predict shape and volume of hydrographs for important floods. This model is built around a production function that defines the net storm rainfall (portion of rainfall during a storm which reaches a stream channel as direct runoff) from the total rainfall (observed rainfall in the catchment) and a transfer function based on the most complete possible definition of the surface drainage system. Observed rainfall during 5-min time steps was used in the model. The model runoff generation is based on surface drainage characteristics which can be easily extracted from maps. The model was applied to two representative experimental catchments in central Tunisia. The conceptual rainfall-runoff model based on surface topography and drainage network was seen to reproduce observed runoff satisfactory. The calibrated model was used to estimate runoff from 5, 10, 20, and 50 year rainfall return periods regarding runoff volume, maximum runoff, as well as the general shape of the runoff hydrograph. Practical conclusions to design hill reservoirs and to extrapolate results using this model methodology for ungauged small catchments in semiarid Tunisia are made.

  16. Root reinforcement and its implications in shallow landsliding susceptibility on a small alpine catchment

    Science.gov (United States)

    Morandi, M. C.; Farabegoli, E.; Onorevoli, G.

    2012-04-01

    Roots shear resistance offers a considerable contribution to hill-slope stability on vegetated terrains. Through the pseudo-cohesion of shrubs, trees and turf's roots, the geomechanical properties of soils can be drastically increased, exerting a positive influence on the hillslope stability. We analysed the shallow landsliding susceptibility of a small alpine catchment (Duron valley, Central Dolomites, Italy) that we consider representative of a wide altitude belt of the Dolomites (1800 - 2400 m a.s.l). The catchment is mostly mantled by grass (Nardetum strictae s.l.), with clustered shrubs (Rhododendron hirsutum and Juniperus nana), and trees (Pinus cembra, Larix decidua and Picea abies). The soil depth, investigated with direct and indirect methods, ranges from 0 to 180 cm, with its peak at the hollow axes. Locally, the bedrock, made of Triassic volcanic rocks, is deeply incised by the Holocene drainage network. Intensive grazing of cows and horses pervades the catchment area and cattle-trails occupy ca 20% of the grass cover. We used laboratory and field tests to characterize the geotechnical properties of these alpine soils; moreover we designed and tested an experimental device that measures, in situ, the shear strengths of the grass mantle. In the study area we mapped 18 shallow landslides, mostly related to road cuts and periodically reactivated as retrogressive landslides. The triggering mechanisms of these shallow landslides were qualitatively analysed at large scale and modelled at smaller scale. We used SHALSTAB to model the shallow landsliding susceptibility of the catchment at the basin scale and SLIDE (RocScience) to compute the Safety Factor at the versant scale. Qualitative management solutions are provided, in order to reduce the shallow landsliding susceptibility risk in this alpine context.

  17. Surface-groundwater interactions in hard rocks in Sardon Catchment of western Spain: an integrated modeling approach

    Science.gov (United States)

    Hassan, S.M. Tanvir; Lubczynski, Maciek W.; Niswonger, Richard G.; Zhongbo, Su

    2014-01-01

    The structural and hydrological complexity of hard rock systems (HRSs) affects dynamics of surface–groundwater interactions. These complexities are not well described or understood by hydrogeologists because simplified analyses typically are used to study HRSs. A transient, integrated hydrologic model (IHM) GSFLOW (Groundwater and Surface water FLOW) was calibrated and post-audited using 18 years of daily groundwater head and stream discharge data to evaluate the surface–groundwater interactions in semi-arid, ∼80 km2 granitic Sardon hilly catchment in Spain characterized by shallow water table conditions, relatively low storage, dense drainage networks and frequent, high intensity rainfall. The following hydrological observations for the Sardon Catchment, and more generally for HRSs were made: (i) significant bi-directional vertical flows occur between surface water and groundwater throughout the HRSs; (ii) relatively large groundwater recharge represents 16% of precipitation (P, 562 mm.y−1) and large groundwater exfiltration (∼11% of P) results in short groundwater flow paths due to a dense network of streams, low permeability and hilly topographic relief; deep, long groundwater flow paths constitute a smaller component of the water budget (∼1% of P); quite high groundwater evapotranspiration (∼5% of P and ∼7% of total evapotranspiration); low permeability and shallow soils are the main reasons for relatively large components of Hortonian flow and interflow (15% and 11% of P, respectively); (iii) the majority of drainage from the catchment leaves as surface water; (iv) declining 18 years trend (4.44 mm.y−1) of groundwater storage; and (v) large spatio-temporal variability of water fluxes. This IHM study of HRSs provides greater understanding of these relatively unknown hydrologic systems that are widespread throughout the world and are important for water resources in many regions.

  18. How has climate change altered network connectivity in a mountain stream network?

    Science.gov (United States)

    Ward, A. S.; Schmadel, N.; Wondzell, S. M.; Johnson, S.

    2017-12-01

    Connectivity along river networks is broadly recognized as dynamic, with seasonal and event-based expansion and contraction of the network extent. Intermittently flowing streams are particularly important as they define a crucial threshold for continuously connected waters that enable migration by aquatic species. In the Pacific northwestern U.S., changes in atmospheric circulation have been found to alter rainfall patterns and result in decreased summer low-flows in the region. However, the impact of this climate dynamic on network connectivity is heretofore unstudied. Thus, we ask: How has connectivity in the riparian corridor changed in response to observed changes in climate? In this study we take the well-studied H.J. Andrews Experimental Forest as representative of mountain river networks in the Pacific northwestern U.S. First, we analyze 63 years of stream gauge information from a network of 11 gauges to document observed changes in timing and magnitude of stream discharge. We found declining magnitudes of seasonal low-flows and shifting seasonality of water export from the catchment, both of which we attribute to changes in precipitation timing and storage as snow vs. rainfall. Next, we use these discharge data to drive a reduced-complexity model of the river network to simulate network connectivity over 63 years. Model results show that network contraction (i.e., minimum network extent) has decreased over the past 63 years. Unexpectedly, the increasing winter peak flows did not correspond with increasing network expansion, suggesting a geologic control on maximum flowing network extent. We find dynamic expansion and contraction of the network primarily occurs during period of catchment discharge less than about 1 m3/s at the outlet, whereas the network extent is generally constant for discharges from 1 to 300 m3/s. Results of our study are of interest to scientists focused on connectivity as a control on ecological processes both directly (e.g., fish

  19. Remote sensing of surface water quality in relation to catchment condition in Zimbabwe

    Science.gov (United States)

    Masocha, Mhosisi; Murwira, Amon; Magadza, Christopher H. D.; Hirji, Rafik; Dube, Timothy

    2017-08-01

    The degradation of river catchments is one of the most important contemporary environmental problems affecting water quality in tropical countries. In this study, we used remotely sensed Normalised Difference Vegetation Index (NDVI) to assess how catchment condition varies within and across river catchments in Zimbabwe. We then used non-linear regression to test whether catchment condition assessed using the NDVI is significantly (α = 0.05) related with levels of Total Suspended Solids (TSS) measured at different sampling points in thirty-two sub-catchments in Zimbabwe. The results showed a consistent negative curvilinear relationship between Landsat 8 derived NDVI and TSS measured across the catchments under study. In the drier catchments of the country, 98% of the variation in TSS is explained by NDVI, while in wetter catchments, 64% of the variation in TSS is explained by NDVI. Our results suggest that NDVI derived from free and readily available multispectral Landsat series data (Landsat 8) is a potential valuable tool for the rapid assessment of physical water quality in data poor catchments. Overall, the finding of this study underscores the usefulness of readily available satellite data for near-real time monitoring of the physical water quality at river catchment scale, especially in resource-constrained areas, such as the sub-Saharan Africa.

  20. Estimation of Catchment Transit Time in Fuji River Basin by using an improved Tank model

    Science.gov (United States)

    Wenchao, M.; Yamanaka, T.; Wakiyama, Y.; Wang, P.

    2013-12-01

    As an important parameter that reflects the characteristics of catchments, the catchment transit time (CTT) has been given much more widely attentions especially in recent years. The CTT is defined as the time water spends travelling through a catchment to the stream network [1], and it describes how catchments retain and release water and solutes and thus control geochemical and biogeochemical cycling and contamination persistence [2]. The objectives of the present study are to develop a new approach for estimating CTT without prior information on such TTD functions and to apply it to the Fuji River basin in the Central Japan Alps Region. In this study, an improved Tank model was used to compute mean CTT and TTD functions simultaneously. It involved water fluxes and isotope mass balance. Water storage capacity in the catchment, which strongly affects CTT, is reflected in isotope mass balance more sensitively than in water fluxes. A model calibrated with observed discharge and isotope data is used for virtual age tracer computation to estimate CTT. This model does not only consider the hydrological data and physical process of the research area but also reflects the actual TTD with considering the geological condition, land use and the other catchment-hydrological conditions. For the calibration of the model, we used river discharge record obtained by the Ministry of Land, Infrastructure and Transportation, and are collecting isotope data of precipitation and river waters monthly or semi-weekly. Three sub-catchments (SC1~SC3) in the Fuji River basin was selected to test the model with five layers: the surface layer, upper-soil layer, lower-soil layer, groundwater aquifer layer and bedrock layer (Layer 1- Layer 5). The evaluation of the model output was assessed using Nash-Sutcliffe efficiency (NSE), root mean square error-observations standard deviation ratio (RSR), and percent bias (PBIAS). Using long time-series of discharge records for calibration, the simulated

  1. Fluvial sediment inputs to upland gravel bed rivers draining forested catchments: potential ecological impacts

    Directory of Open Access Journals (Sweden)

    S. D. Marks

    1997-01-01

    Full Text Available As identified by the detailed long-term monitoring networks at Plynlimon, increased sediment supply to upland fluvial systems is often associated with forestry land-use and practice. Literature is reviewed, in the light of recent results from Plynlimon sediment studies, to enable identification of the potential ecological impacts of fluvial particulate inputs to upland gravel bed rivers draining forested catchments similar to the headwaters of the River Severn. Both sediment transport and deposition can have significant impacts upon aquatic vertebrates, invertebrates and plants.

  2. Drought propagation and its relation with catchment biophysical characteristics

    Science.gov (United States)

    Alvarez-Garreton, C. D.; Lara, A.; Garreaud, R. D.

    2016-12-01

    Droughts propagate in the hydrological cycle from meteorological to soil moisture to hydrological droughts. To understand the drivers of this process is of paramount importance since the economic and societal impacts in water resources are directly related with hydrological droughts (and not with meteorological droughts, which have been most studied). This research analyses drought characteristics over a large region and identify its main exogenous (climate forcing) and endogenous (biophysical characteristics such as land cover type and topography) explanatory factors. The study region is Chile, which covers seven major climatic subtypes according to Köppen system, it has unique geographic characteristics, very sharp topography and a wide range of landscapes and vegetation conditions. Meteorological and hydrological droughts (deficit in precipitation and streamflow, respectively) are characterized by their durations and standardized deficit volumes using a variable threshold method, over 300 representative catchments (located between 27°S and 50°S). To quantify the propagation from meteorological to hydrological drought, we propose a novel drought attenuation index (DAI), calculated as the ratio between the meteorological drought severity slope and the hydrological drought severity slope. DAI varies from zero (catchment that attenuates completely a meteorological drought) to one (the meteorological drought is fully propagated through the hydrological cycle). This novel index provides key (and comparable) information about drought propagation over a wide range of different catchments, which has been highlighted as a major research gap. Similar drought indicators across the wide range of catchments are then linked with catchment biophysical characteristics. A thorough compilation of land cover information (including the percentage of native forests, grass land, urban and industrial areas, glaciers, water bodies and no vegetated areas), catchment physical

  3. A plot tree structure to represent surface flow connectivity in rural catchments: definition and application for mining critical source areas and temporal conditions

    Science.gov (United States)

    Gascuel-Odoux, Chantal; Cordier, Marie-Odile; Grimaldi, Catherine; Salmon-Monviola, Jordy; Masson, Veronique; Squividant, Herve; Trepos, Ronan

    2013-04-01

    Agricultural landscapes are structured by a mosaic of farmers'fields whose boundaries and land use change over time, and by linear elements such as hedgerows, ditches and roads, which are more or less connected to each other. Such man-made features are now well known to have an effect on catchment hydrology, erosion and water quality. In such agricultural landscapes, it is crucial to have an adequate functional representation of the flow pathways and define relevant indicators of surface flow connectivity over the catchment towards the stream, as a necessary step for improving landscape design and water protection. A new conceptual object oriented approach has been proposed by building the drainage network on the identification of the inlets and outlets for surface water flow on each farmers' field and surrounding landscape elements (Aurousseau et al., 2009 ; Gascuel-Odoux et al., 2011), then on delineating a set of elementary plot outlet trees labelled by attributes which feed the stream. This drainage network is therefore represented as a global plot outlet tree which conceptualizes the connectivity of the surface flow patterns over the catchment. This approach has been applied to different catchment areas, integrated in modelling (Gascuel-Odoux et al., 2009) and decision support tools. It provides a functional display of data for decision support which can highlight the plots of potential risk regarding the surface runoff, areas which are often shortly extended over catchments (suspended sediment application). Integrated in modelling and mining tools, it allows to catch typologies of the most spatial pattern involved in water quality degradation (herbicides transport model) (Trepos et al., 2012) and test their permanency in time regarding the variations of climate conditions and agricultural practices (Salmon-Monviola et al., 2011). This set of works joins skills in hydrology, agronomy and computer sciences. Aurousseau P., Gascuel-Odoux C., Squividant H

  4. Tracing disturbance impacts on water quantity and quality through a stream network

    Science.gov (United States)

    Ross, Matthew; Nippgen, Fabian; McGlynn, Brian; Bernhardt, Emily

    2017-04-01

    By dismantling and redistributing 100s of meters of bedrock to mine coal from the surface, mountaintop mining with valley fills has dramatically changed catchment hydrology and biogeochemistry over more than 5,000 km2 in Central Appalachia. Throughout this expansive coal region, mining operators deposit tens of millions of m3 of crushed bedrock into headwater valleys, creating valley fills, which have substantial subsurface water storage potential. Streams draining mines have reduced peakflows, elevated baseflows, and lower event runoff ratios on average. The water stored in and percolating through valley fills drives the dissolution and oxidation of pyrite into sulfuric acid which reacts with carbonate-rich materials to rapidly weather out a suite of elements including Ca2+, Mg2+, K+, SO42-, HCO3-, and the pollutant Selenium. Together these ions increase the average specific conductance of mined streams from 60 to 1,500 µS/cm, 25-times higher than unmined streams, exporting 45-times more total dissolved solids. Together, the increased catchment storage, consequent elevated baseflow, and elevated weathering rates from mining have the potential to lower water quality throughout river networks in Central Appalachia, especially during the summer low flow period. To better understand the water quality impacts of mining at the river network scale, we used the paired catchment approach. Working in the Mud River, West Virginia, we instrumented a 4th order catchment 35 km2, that was 46% mined. Within the large catchment we instrumented 8 additional 1st-3rd order sub-catchments that varied in catchment size, mining cover, mine size, and mine age. At each site we measured stream discharge and specific conductance (SC). Using SC as a trace for mining we did simple hydrograph separations at our largest catchments, partitioning the hydrograph between mined and unmined water. Our results suggest that on an annual scale, mine water contributes a disproportionate percentage of

  5. Catchment controls and human disturbances on the geomorphology of small Mediterranean estuarine systems

    Science.gov (United States)

    Estrany, Joan; Grimalt, Miquel

    2014-10-01

    Geographic signatures are physical and human-induced characteristics or processes that identify comparable or unique features of estuaries along latitudinal gradients. In Mediterranean areas, the microtidal regime and the strong seasonal and inter-annual contrasts cause an alternation between relatively high runoff and arid conditions. Furthermore, the long history of human settlement also increases the complexity in the study of these estuarine systems. This study investigates these signatures of the estuaries located within the Mallorcan eastern coast, which are geomorphologically homogeneous because of a similar bedrock geology and Holocene history. A multi-method approach focused on the integration of geomorphometry, hydraulics, historical sources and statistics was used. We explore the role played by catchment morphometric parameters, severe flash flood events and human disturbances in controlling the geomorphology of 10 beach-barrier enclosed, fluvial incised lagoons. Most of the lagoons discharge into 'calas', ranging in size from 1345 to 17,537 m2 and their related catchments are representative of the Mediterranean hydrological systems. Multiple regression models illustrate that the size, slope and drainage network development of the catchments explain the variance in length (r2 = 0.67), volume (r2 = 0.49), area (r2 = 0.64), circularity (r2 = 0.72) and average width (r2 = 0.81) of the lagoons. Depending on these catchment morphometric variables, the shape of the lagoons is also determined by the occurrence of catastrophic flash floods, which cause scouring and dredging, whereas the ordinary flood events and sea storms promote refilling and sedimentation. A historical analysis since 1850 documented 18 flood events, 5 of which were catastrophic with destructive effects along the catchments and large morphological changes in coastal lagoons. High intensity rainfall (up to 200 mm in 2 h), the geomorphometry of the catchments and the massive construction of

  6. Streamflow response of a small forested catchment on different timescales

    Directory of Open Access Journals (Sweden)

    A. Zabaleta

    2013-01-01

    Full Text Available The hydrological response of a catchment to rainfall on different timescales is result of a complex system involving a range of physical processes which may operate simultaneously and have different spatial and temporal influences. This paper presents the analysis of streamflow response of a small humid-temperate catchment (Aixola, 4.8 km2 in the Basque Country on different timescales and discusses the role of the controlling factors. Firstly, daily time series analysis was used to establish a hypothesis on the general functioning of the catchment through the relationship between precipitation and discharge on an annual and multiannual scale (2003–2008. Second, rainfall-runoff relationships and relationships among several hydrological variables, including catchment antecedent conditions, were explored at the event scale (222 events to check and improve the hypothesis. Finally, the evolution of electrical conductivity (EC during some of the monitored storm events (28 events was examined to identify the time origin of waters. Quick response of the catchment to almost all the rainfall events as well as a considerable regulation capacity was deduced from the correlation and spectral analyses. These results agree with runoff event scale data analysis; however, the event analysis revealed the non-linearity of the system, as antecedent conditions play a significant role in this catchment. Further, analysis at the event scale made possible to clarify factors controlling (precipitation, precipitation intensity and initial discharge the different aspects of the runoff response (runoff coefficient and discharge increase for this catchment. Finally, the evolution of EC of the waters enabled the time origin (event or pre-event waters of the quickflow to be established; specifically, the conductivity showed that pre-event waters usually represent a high percentage of the total discharge during runoff peaks. The importance of soil waters in the

  7. Assessment of surface water resources availability using catchment modeling and the results of tracer studies in the meso-scale Migina Catchment, Rwanda

    NARCIS (Netherlands)

    Munyaneza, O.; Mukubwa, A.; Maskey, S.; Wenninger, J.W.; Uhlenbrook, S.

    2013-01-01

    In the last couple of years, different hydrological research projects were undertaken in the Migina catchment (243.2 km2), a tributary of the Kagera river in Southern Rwanda. These projects were aimed to understand hydrological processes of the catchment using analytical and experimental approaches

  8. Modelling land cover change effects on catchment-to-lake sediment transfer

    Science.gov (United States)

    Smith, Hugh; Peñuela Fernández, Andres; Sellami, Haykel; Sangster, Heather; Boyle, John; Chiverrell, Richard; Riley, Mark

    2017-04-01

    Measurements of catchment soil erosion and sediment transfer to streams and lakes are limited and typically short duration (physical and social records coupled with high-resolution, sub-annual simulations of catchment-to-lake soil erosion and sedimentation. This choice of modelling period represents a compromise between the length of record and data availability for model parameterisation. We combine historic datasets for climate and land cover from four lake catchments in Britain with a fully revised catchment-scale modelling approach based on the Morgan-Morgan-Finney model, called MMF-TWI, that incorporates new elements representing plant growth, soil water balance and variable runoff and sediment contributing areas. The catchments comprise an intensively-farmed lowland agricultural catchment and three upland catchments. Historic change simulations were compared with sedimentation rates determined from multiple dated cores taken from each lake. Our revised modelling approach produced generally comparable rates of lake sediment flux to those based on sediment archives. Moreover, these centennial scale records form the basis for examining hypothetical scenarios linked to changes in crop rotation (lowland) and riparian re-afforestation (uplands), as well as providing an extended historic baseline against which to compare future climate effects on runoff, erosion and lake sediment delivery.

  9. Hydro-economic modelling in mining catchments

    Science.gov (United States)

    Ossa Moreno, J. S.; McIntyre, N.; Rivera, D.; Smart, J. C. R.

    2017-12-01

    Hydro-economic models are gaining momentum because of their capacity to model both the physical processes related to water supply, and socio-economic factors determining water demand. This is particularly valuable in the midst of the large uncertainty upon future climate conditions and social trends. Agriculture, urban uses and environmental flows have received a lot of attention from researchers, as these tend to be the main consumers of water in most catchments. Mine water demand, although very important in several small and medium-sized catchments worldwide, has received less attention and only few models have attempted to reproduce its dynamics with other users. This paper describes an on-going project that addresses this gap, by developing a hydro-economic model in the upper Aconcagua River in Chile. This is a mountain catchment with large scale mining and hydro-power users at high altitudes, and irrigation areas in a downstream valley. Relevant obstacles to the model included the lack of input climate data, which is a common feature in several mining areas, the complex hydrological processes in the area and the difficulty of quantifying the value of water used by mines. A semi-distributed model developed within the Water Evaluation and Planning System (WEAP), was calibrated to reproduce water supply, and this was complemented with an analysis of the value of water for mining based on two methods; water markets and an analysis of its production processes. Agriculture and other users were included through methods commonly used in similar models. The outputs help understanding the value of water in the catchment, and its sensitivity to changes in climate variables, market prices, environmental regulations and changes in the production of minerals, crops and energy. The results of the project highlight the importance of merging hydrology and socio-economic calculations in mining regions, in order to better understand trade-offs and cost of opportunity of using

  10. The influence of model parameters on catchment-response

    International Nuclear Information System (INIS)

    Shah, S.M.S.; Gabriel, H.F.; Khan, A.A.

    2002-01-01

    This paper deals with the study of influence of influence of conceptual rainfall-runoff model parameters on catchment response (runoff). A conceptual modified watershed yield model is employed to study the effects of model-parameters on catchment-response, i.e. runoff. The model is calibrated, using manual parameter-fitting approach, also known as trial and error parameter-fitting. In all, there are twenty one (21) parameters that control the functioning of the model. A lumped parametric approach is used. The detailed analysis was performed on Ling River near Kahuta, having catchment area of 56 sq. miles. The model includes physical parameters like GWSM, PETS, PGWRO, etc. fitting coefficients like CINF, CGWS, etc. and initial estimates of the surface-water and groundwater storages i.e. srosp and gwsp. Sensitivity analysis offers a good way, without repetititious computations, the proper weight and consideration that must be taken when each of the influencing factor is evaluated. Sensitivity-analysis was performed to evaluate the influence of model-parameters on runoff. The sensitivity and relative contributions of model parameters influencing catchment-response are studied. (author)

  11. Pesticide fate on catchment scale: conceptual modelling of stream CSIA data

    Science.gov (United States)

    Lutz, Stefanie R.; van der Velde, Ype; Elsayed, Omniea F.; Imfeld, Gwenaël; Lefrancq, Marie; Payraudeau, Sylvain; van Breukelen, Boris M.

    2017-10-01

    Compound-specific stable isotope analysis (CSIA) has proven beneficial in the characterization of contaminant degradation in groundwater, but it has never been used to assess pesticide transformation on catchment scale. This study presents concentration and carbon CSIA data of the herbicides S-metolachlor and acetochlor from three locations (plot, drain, and catchment outlets) in a 47 ha agricultural catchment (Bas-Rhin, France). Herbicide concentrations at the catchment outlet were highest (62 µg L-1) in response to an intense rainfall event following herbicide application. Increasing δ13C values of S-metolachlor and acetochlor by more than 2 ‰ during the study period indicated herbicide degradation. To assist the interpretation of these data, discharge, concentrations, and δ13C values of S-metolachlor were modelled with a conceptual mathematical model using the transport formulation by travel-time distributions. Testing of different model setups supported the assumption that degradation half-lives (DT50) increase with increasing soil depth, which can be straightforwardly implemented in conceptual models using travel-time distributions. Moreover, model calibration yielded an estimate of a field-integrated isotopic enrichment factor as opposed to laboratory-based assessments of enrichment factors in closed systems. Thirdly, the Rayleigh equation commonly applied in groundwater studies was tested by our model for its potential to quantify degradation on catchment scale. It provided conservative estimates on the extent of degradation as occurred in stream samples. However, largely exceeding the simulated degradation within the entire catchment, these estimates were not representative of overall degradation on catchment scale. The conceptual modelling approach thus enabled us to upscale sample-based CSIA information on degradation to the catchment scale. Overall, this study demonstrates the benefit of combining monitoring and conceptual modelling of concentration

  12. Which spatial discretization for distributed hydrological models? Proposition of a methodology and illustration for medium to large-scale catchments

    Directory of Open Access Journals (Sweden)

    J. Dehotin

    2008-05-01

    Full Text Available Distributed hydrological models are valuable tools to derive distributed estimation of water balance components or to study the impact of land-use or climate change on water resources and water quality. In these models, the choice of an appropriate spatial discretization is a crucial issue. It is obviously linked to the available data, their spatial resolution and the dominant hydrological processes. For a given catchment and a given data set, the "optimal" spatial discretization should be adapted to the modelling objectives, as the latter determine the dominant hydrological processes considered in the modelling. For small catchments, landscape heterogeneity can be represented explicitly, whereas for large catchments such fine representation is not feasible and simplification is needed. The question is thus: is it possible to design a flexible methodology to represent landscape heterogeneity efficiently, according to the problem to be solved? This methodology should allow a controlled and objective trade-off between available data, the scale of the dominant water cycle components and the modelling objectives.

    In this paper, we propose a general methodology for such catchment discretization. It is based on the use of nested discretizations. The first level of discretization is composed of the sub-catchments, organised by the river network topology. The sub-catchment variability can be described using a second level of discretizations, which is called hydro-landscape units. This level of discretization is only performed if it is consistent with the modelling objectives, the active hydrological processes and data availability. The hydro-landscapes take into account different geophysical factors such as topography, land-use, pedology, but also suitable hydrological discontinuities such as ditches, hedges, dams, etc. For numerical reasons these hydro-landscapes can be further subdivided into smaller elements that will constitute the

  13. Pollution from urban development and setback outfalls as a catchment management measure for river water quality improvement

    Science.gov (United States)

    Allen, Deonie; Haynes, Heather; Arthur, Scott

    2016-04-01

    Urban development causes an increase in fine sediment and heavy metal stormwater pollution. Pollution load estimation theorises that stormwater pollutant load and type are strongly, directly influenced by contributing catchment land use. The research presented investigates the validity of these assumptions using an extensive novel field data set of 53 catchments. This research has investigated the relationships between land use and pollutant concentrations (Cu, Zn, Pb, Ni, Ca, Ba, Sn, Mn) in urban stormwater outfall sediments. Cartographic and aerial photography data have been utilised to delineate the surface and subsurface contributing catchment land use. A zoned sub-catchment approach to catchment characterisation of stormwater pollutant concentration has been defined and tested. This method effectively describes the specific land use influence on pollutant concentrations at the stormwater outfall, showing strong dependency with road length, brake points, impervious area and open space. Road networks and open space are found to influence land use, and thus stormwater pollution, closer to stormwater outfall/receiving waterbody suggesting storage, treatment, assimilation, loss or dilution of the land use influence further away from stormwater outfall. An empirical description has been proposed with which to predict outfall pollutant contributions to the receiving urban waterbody based on catchment land use information. With the definition and quantification of contributing catchment specific fine sediment and urban heavy metal pollutants, the influence of urban stormwater outfall management on the receiving watercourse has been considered. The locations of stormwater outfalls, and their proximity to the receiving waterway, are known as key water quality and river health influences. Water quality benefits from the implementation of stormwater outfalls set back from the receiving waterway banks have been investigated using the catchment case study. Setback outfalls

  14. Modeling water flow, depth and inundation extent over the rivers of the Contiguous US within a Catchment-based Land Surface Modeling Framework

    Science.gov (United States)

    Liu, Z.; David, C. H.; Famiglietti, J. S.

    2013-12-01

    With population growth and increasing demand of water supply, the need for integrated continental and global scale surface water dynamics simulation systems relying on both observations and models is ever increasing. In this study we characterize how accurately we can estimate river discharge, river depth and the corresponding inundation extent over the contiguous U.S. by combining observations and models. We present a continental-scale implementation of the Catchment-based Hydrological And Routing Modeling System (CHARMS) that includes an explicit representation of the river networks from a Geographic Information System (GIS) dataset. The river networks and contributing catchment boundaries of the Contiguous U.S are upscaled from the NHDPlus dataset. The average upscaled catchment size is 2773 km2 and the unique main river channel contained in each catchment consists of several river reaches of average length 1.6 km. We derive 18 sets of empirical relationship between channel dimension (bankfull depth and bankfull width) and drainage area based on USGS gauge observations to describe river dynamics for the 18 water resource regions of the NHDPlus representation of the United States. These relationships are used to separate the main river channel and floodplain. Modeled monthly and daily streamflow show reasonable agreement with gauge observations and initial results show that basins with fewer anthropogenic modifications are more accurately simulated. Modeled monthly and daily river depth and floodplain extent associated with each river reach are also explicitly estimated over the U.S., although such simulations are more challenging to validate. Our results have implications for capturing the seasonal-to-interannual dynamics of surface water in climate models. Such a continental-scale modeling framework development would, by design, facilitate the use of existing in situ observations and be suitable for integrating the upcoming NASA Surface Water and Ocean

  15. Seasonal rainfall predictability over the Lake Kariba catchment area

    CSIR Research Space (South Africa)

    Muchuru, S

    2014-07-01

    Full Text Available The Lake Kariba catchment area in southern Africa has one of the most variable climates of any major river basin, with an extreme range of conditions across the catchment and through time. Marked seasonal and interannual fluctuations in rainfall...

  16. Catchment heterogeneity controls emergent archetype concentration-discharge relationships

    Science.gov (United States)

    Musolff, A.; Fleckenstein, J. H.; Rao, P. S.; Jawitz, J. W.

    2017-12-01

    Relationships between in-stream dissolved solute concentrations (C) and discharge (Q) are often-used indicators of catchment-scale processes and their interference with human activities. Here we analyze observational C-Q relationships from 61 catchments and 8 different solutes across a wide range of land-uses and discharge regimes. This analysis is combined with a parsimonious stochastic modeling approach to test how C-Q relationships arise from spatial heterogeneity in catchment solute sources coupled with different timescales of biogeochemical reactions. The observational data exhibit archetypical dilution, enrichment, and constant C-Q patterns. Moreover, with land-use intensification we find decreasing C variability relative to Q variability (chemostatic export regime). Our model indicates that the dominant driver of emergent C-Q patterns was structured heterogeneity of solute sources implemented as correlation of source concentration to travel time. Regardless of the C-Q pattern, with decreasing source heterogeneity we consistently find lower variability in C than in Q and a dominance of chemostatic export regimes. Here, the variance in exported loads is determined primarily by variance of Q. We conclude that efforts to improve stream water quality and ecological integrity in intensely managed catchments should lead away from landscape homogenization by introducing structured source heterogeneity. References: Musolff, A., J. H. Fleckenstein, P. S. C. Rao, and J. W. Jawitz (2017), Emergent archetype patterns of coupled hydrologic and biogeochemical responses in catchments, Geophys. Res. Lett., 44(9), 4143-4151, doi: 10.1002/2017GL072630.

  17. Spatial dependence and correlation of rainfall in the Danube catchment and its role in flood risk assessment.

    Science.gov (United States)

    Martina, M. L. V.; Vitolo, R.; Todini, E.; Stephenson, D. B.; Cook, I. M.

    2009-04-01

    The possibility that multiple catastrophic events occur within a given timespan and affect the same portfolio of insured properties may induce enhanced risk. For this reason, in the insurance industry it is of interest to characterise not only the point probability of catastrophic events, but also their spatial structure. As far as floods are concerned it is important to determine the probability of having multiple simultaneous events in different parts of the same basin: in this case, indeed, the loss in a portfolio can be significantly different. Understanding the spatial structure of the precipitation field is a necessary step for the proper modelling of the spatial dependence and correlation of river discharge. Several stochastic models are available in the scientific literature for the multi-site generation of precipitation. Although most models achieve good performance in modelling mean values, temporal variability and inter-site dependence of extremes are still delicate issues. In this work we aim at identifying the main spatial characteristics of the precipitation structure and then at analysing them in a real case. We consider data from a large network of raingauges in the Danube catchment. This catchment is a good example of a large-scale catchment where the spatial correlation of flood events can radically change the effect in term of flood damage.

  18. Land cover controls on summer discharge and runoff solution chemistry of semi-arid urban catchments

    Science.gov (United States)

    Gallo, Erika L.; Brooks, Paul D.; Lohse, Kathleen A.; McLain, Jean E. T.

    2013-04-01

    SummaryRecharge of urban runoff to groundwater as a stormwater management practice has gained importance in semi-arid regions where water resources are scarce and urban centers are growing. Despite this trend, the importance of land cover in controlling semi-arid catchment runoff quantity and quality remains unclear. Here we address the question: How do land cover characteristics control the amount and quality of storm runoff in semi-arid urban catchments? We monitored summertime runoff quantity and quality from five catchments dominated by distinct urban land uses: low, medium, and high density residential, mixed use, and commercial. Increasing urban land cover increased runoff duration and the likelihood that a rainfall event would result in runoff, but did not increase the time to peak discharge of episodic runoff. The effect of urban land cover on hydrologic responses was tightly coupled to the magnitude of rainfall. At distinct rainfall thresholds, roads, percent impervious cover and the stormwater drainage network controlled runoff frequency, runoff depth and runoff ratios. Contrary to initial expectations, runoff quality did not vary in repose to impervious cover or land use. We identified four major mechanisms controlling runoff quality: (1) variable solute sourcing due to land use heterogeneity and above ground catchment connectivity; (2) the spatial extent of pervious and biogeochemically active areas; (3) the efficiency of overland flow and runoff mobilization; and (4) solute flushing and dilution. Our study highlights the importance of the stormwater drainage systems characteristics in controlling urban runoff quantity and quality; and suggests that enhanced wetting and in-stream processes may control solute sourcing and retention. Finally, we suggest that the characteristics of the stormwater drainage system should be integrated into stormwater management approaches.

  19. A novel modelling framework to prioritize estimation of non-point source pollution parameters for quantifying pollutant origin and discharge in urban catchments.

    Science.gov (United States)

    Fraga, I; Charters, F J; O'Sullivan, A D; Cochrane, T A

    2016-02-01

    Stormwater runoff in urban catchments contains heavy metals (zinc, copper, lead) and suspended solids (TSS) which can substantially degrade urban waterways. To identify these pollutant sources and quantify their loads the MEDUSA (Modelled Estimates of Discharges for Urban Stormwater Assessments) modelling framework was developed. The model quantifies pollutant build-up and wash-off from individual impervious roof, road and car park surfaces for individual rain events, incorporating differences in pollutant dynamics between surface types and rainfall characteristics. This requires delineating all impervious surfaces and their material types, the drainage network, rainfall characteristics and coefficients for the pollutant dynamics equations. An example application of the model to a small urban catchment demonstrates how the model can be used to identify the magnitude of pollutant loads, their spatial origin and the response of the catchment to changes in specific rainfall characteristics. A sensitivity analysis then identifies the key parameters influencing each pollutant load within the stormwater given the catchment characteristics, which allows development of a targeted calibration process that will enhance the certainty of the model outputs, while minimizing the data collection required for effective calibration. A detailed explanation of the modelling framework and pre-calibration sensitivity analysis is presented. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Uplatnění ekohydrologických principů při řízení zemědělsky využívaného povodí podle Rámcové vodní směrnice EU (2000/60/EU)

    Czech Academy of Sciences Publication Activity Database

    Hejzlar, Josef; Kopáček, Jiří; Dobiášová, B.; Žaloudík, Jiří

    2004-01-01

    Roč. 21, č. 3 (2004), s. 261-264 ISSN 1212-0731. [Agroregion 2004. České Budějovice, 06.09.2004-07.09.2004] R&D Projects: GA AV ČR(CZ) IBS6017004; GA AV ČR(CZ) IAA3017301 Grant - others:EU(XE) EUROHARP EVK1-CT-2001-00096 Keywords : restoration of aquatic ecosystems * nitrogen * phosphorus Subject RIV: DJ - Water Pollution ; Quality

  1. Extreme inflow events and synoptic forcing in Sydney catchments

    International Nuclear Information System (INIS)

    Pepler, Acacia S; Rakich, Clinton S

    2010-01-01

    The Sydney catchment region encompasses over 16,000km 2 , supplying water to over 4 million inhabitants. However, few studies have investigated the synoptic and climatic influences on inflow in this region, which are crucial for understanding the vulnerability of water supply in a changing climate. This study identifies extremely high and low inflow events between 1960 and 2008 based on catchment averages. The focus of the study is an analysis of the synoptic cause/s of each extreme inflow event. The events are evaluated to identify any trends and also to determine the concurrent significant climatic influences on rainfall over the catchments. Relationships between catchment inflow, rainfall, tropical SST indices, and other influencing factors such as observed wind and temperatures are investigated. Our results show that East Coast Lows and anomalously easterly flow are the drivers of high inflow events, with low inflow events dominated by westerly wind patterns and the El Nino-Southern Oscillation.

  2. Assessment of Runoff Contributing Catchment Areas in Rainfall Runoff Modelling

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Johansen, C.; Schaarup-Jensen, Kjeld

    2005-01-01

    to determine with significant precision the hydrological reduction factor is implemented to account all hydrological losses except the initial loss. This paper presents an inconsistency between calculations of the hydrological reduction factor, based on measurements of rainfall and runoff, and till now...... recommended literary values for residential areas. It is proven by comparing rainfall-runoff measurements from four different residential catchments that the literary values of the hydrological reduction factor are over-estimated for this type of catchments. In addition, different catchment descriptions...

  3. Prediction of Baseflow Index of Catchments using Machine Learning Algorithms

    Science.gov (United States)

    Yadav, B.; Hatfield, K.

    2017-12-01

    We present the results of eight machine learning techniques for predicting the baseflow index (BFI) of ungauged basins using a surrogate of catchment scale climate and physiographic data. The tested algorithms include ordinary least squares, ridge regression, least absolute shrinkage and selection operator (lasso), elasticnet, support vector machine, gradient boosted regression trees, random forests, and extremely randomized trees. Our work seeks to identify the dominant controls of BFI that can be readily obtained from ancillary geospatial databases and remote sensing measurements, such that the developed techniques can be extended to ungauged catchments. More than 800 gauged catchments spanning the continental United States were selected to develop the general methodology. The BFI calculation was based on the baseflow separated from daily streamflow hydrograph using HYSEP filter. The surrogate catchment attributes were compiled from multiple sources including digital elevation model, soil, landuse, climate data, other publicly available ancillary and geospatial data. 80% catchments were used to train the ML algorithms, and the remaining 20% of the catchments were used as an independent test set to measure the generalization performance of fitted models. A k-fold cross-validation using exhaustive grid search was used to fit the hyperparameters of each model. Initial model development was based on 19 independent variables, but after variable selection and feature ranking, we generated revised sparse models of BFI prediction that are based on only six catchment attributes. These key predictive variables selected after the careful evaluation of bias-variance tradeoff include average catchment elevation, slope, fraction of sand, permeability, temperature, and precipitation. The most promising algorithms exceeding an accuracy score (r-square) of 0.7 on test data include support vector machine, gradient boosted regression trees, random forests, and extremely randomized

  4. Rainfall, runoff and sediment transport in a Mediterranean mountainous catchment.

    Science.gov (United States)

    Tuset, J; Vericat, D; Batalla, R J

    2016-01-01

    The relation between rainfall, runoff, erosion and sediment transport is highly variable in Mediterranean catchments. Their relation can be modified by land use changes and climate oscillations that, ultimately, will control water and sediment yields. This paper analyses rainfall, runoff and sediment transport relations in a meso-scale Mediterranean mountain catchment, the Ribera Salada (NE Iberian Peninsula). A total of 73 floods recorded between November 2005 and November 2008 at the Inglabaga Sediment Transport Station (114.5 km(2)) have been analysed. Suspended sediment transport and flow discharge were measured continuously. Rainfall data was obtained by means of direct rain gauges and daily rainfall reconstructions from radar information. Results indicate that the annual sediment yield (2.3 t km(-1) y(-1) on average) and the flood-based runoff coefficients (4.1% on average) are low. The Ribera Salada presents a low geomorphological and hydrological activity compared with other Mediterranean mountain catchments. Pearson correlations between rainfall, runoff and sediment transport variables were obtained. The hydrological response of the catchment is controlled by the base flows. The magnitude of suspended sediment concentrations is largely correlated with flood magnitude, while sediment load is correlated with the amount of direct runoff. Multivariate analysis shows that total suspended load can be predicted by integrating rainfall and runoff variables. The total direct runoff is the variable with more weight in the equation. Finally, three main hydro-sedimentary phases within the hydrological year are defined in this catchment: (a) Winter, where the catchment produces only water and very little sediment; (b) Spring, where the majority of water and sediment is produced; and (c) Summer-Autumn, when little runoff is produced but significant amount of sediments is exported out of the catchment. Results show as land use and climate change may have an important

  5. Process-based interpretation of conceptual hydrological model performance using a multinational catchment set

    Science.gov (United States)

    Poncelet, Carine; Merz, Ralf; Merz, Bruno; Parajka, Juraj; Oudin, Ludovic; Andréassian, Vazken; Perrin, Charles

    2017-08-01

    Most of previous assessments of hydrologic model performance are fragmented, based on small number of catchments, different methods or time periods and do not link the results to landscape or climate characteristics. This study uses large-sample hydrology to identify major catchment controls on daily runoff simulations. It is based on a conceptual lumped hydrological model (GR6J), a collection of 29 catchment characteristics, a multinational set of 1103 catchments located in Austria, France, and Germany and four runoff model efficiency criteria. Two analyses are conducted to assess how features and criteria are linked: (i) a one-dimensional analysis based on the Kruskal-Wallis test and (ii) a multidimensional analysis based on regression trees and investigating the interplay between features. The catchment features most affecting model performance are the flashiness of precipitation and streamflow (computed as the ratio of absolute day-to-day fluctuations by the total amount in a year), the seasonality of evaporation, the catchment area, and the catchment aridity. Nonflashy, nonseasonal, large, and nonarid catchments show the best performance for all the tested criteria. We argue that this higher performance is due to fewer nonlinear responses (higher correlation between precipitation and streamflow) and lower input and output variability for such catchments. Finally, we show that, compared to national sets, multinational sets increase results transferability because they explore a wider range of hydroclimatic conditions.

  6. Understanding catchment dynamics through a Space-Society-Water trialectic

    Science.gov (United States)

    Sutherland, Catherine; Jewitt, Graham; Risko, Susan; Hay, Ducan; Stuart-Hill, Sabine; Browne, Michelle

    2017-04-01

    Can healthy catchments be utilized to secure water for the benefit of society? This is a complex question as it requires an understanding of the connections and relations between biophysical, social, political, economic and governance dimensions over space and time in the catchment and must interrogate whether there is 'value' in investing in the catchment natural or ecological infrastructure (EI), how this should be done, where the most valuable EI is located, and whether an investment in EI will generate co-benefits socially, environmentally and economically. Here, we adopt a social ecological relations rather than systems approach to explore these interactions through development of a space-society-water trialectic. Trialectic thinking is challenging as it requires new epistemologies and it challenges conventional modes of thought. It is not ordered or fixed, but rather is constantly evolving, revealing the dynamic relations between the elements under exploration. The construction of knowledge, through detailed scientific research and social learning, which contributes to the understanding and achievement of sustainable water supply, water related resilient economic growth, greater social equity and justice in relation to water and the reduction of environmental risk is illustrated through research in the uMngeni Catchment, South Africa. Using four case studies as a basis, we construct the catchment level society-water-space trialectic as a way of connecting, assembling and comparing the understanding and knowledge that has been produced. The relations in the three elements of the trialectic are constructed through identifying, understanding and analysing the actors, discourses, knowledge, biophysical materialities, issues and spatial connections in the case studies. Together these relations, or multiple trajectories, are assembled to form the society-water-space trialectic, which illuminates the dominant relations in the catchment and hence reveal the leverage

  7. The hydrological response of a small catchment after the abandonment of terrace cultivation. A study case in northwestern Spain

    Science.gov (United States)

    Llorente-Adán, Jose A.; Lana-Renault, Noemí; Galilea, Ianire; Ruiz-Flaño, Purificacion

    2015-04-01

    Terrace construction for cultivation results in a complete transformation of the hillslopes to a series of flat sectors and almost vertical steps. This strategy, which involves a redistribution of soils and a re-organization of the drainage network, provides fertile soil over steep slopes, improves infiltration and controls overland flow under conditions of intense rainstorms. In Camero Viejo (north-western Iberian ranges) most of the hillslopes are occupied by terraced fields. During the XXth century, rural population declined and agricultural practices were abandoned. In this area, a small catchment (1.9 km2) was monitored in 2012 for studying how the abandonment of agricultural terraces affect water and sediment transfer from the hillslopes to the channels. Terraces occupy 40% of the catchment and are covered by sparse grass and shrubs. The equipment installed in the catchment registers continuously meteorological data, discharge and water table fluctuations. Data on suspended sediment transport is obtained by means of a rising-stage sampler. Here we present the hydrological results corresponding to the years 2012-13 and 2013-14. The hydrological response of the catchment was moderate (annual runoff coefficient < 0.20), which could be in part explained by the high evapotranspiration rates reported in the area. Lows flows were recorded in summer and autumn, when the water reserves of the catchment were dry, and high flows occurred from January, when the catchment became wetter. The shape of the hydrographs, with slow response times, moderate peakflows and long recession limbs suggested a large contribution of subsurface flow, probably favored by deep and well structured soils in the bench terraces. Soil saturation areas were not observed during the study period, suggesting that soil infiltration processes and subsurface flow are important, and that the drainage system of the terraces is probably well maintained. No suspended sediment has been collected so far

  8. Vaal River catchment: problems and research needs

    CSIR Research Space (South Africa)

    Braune, E

    1987-01-01

    Full Text Available , the Pretoria-Witwatersrand-Vereeniging (PWV) complex. Although the catchment only produces eight per cent of the mean annual runoff of the country it has the highest concentration of urban, industrial, mining and power generation development in South Africa... of the Vaal River. The purpose of the workshop and preceding symposium was to examine the ever increasing complexity of the Vaal River system, the much enlarged spectrum of user water quality needs and problems, and those activities in the catchment which...

  9. Using geomorphological variables to predict the spatial distribution of plant species in agricultural drainage networks.

    Science.gov (United States)

    Rudi, Gabrielle; Bailly, Jean-Stéphane; Vinatier, Fabrice

    2018-01-01

    To optimize ecosystem services provided by agricultural drainage networks (ditches) in headwater catchments, we need to manage the spatial distribution of plant species living in these networks. Geomorphological variables have been shown to be important predictors of plant distribution in other ecosystems because they control the water regime, the sediment deposition rates and the sun exposure in the ditches. Whether such variables may be used to predict plant distribution in agricultural drainage networks is unknown. We collected presence and absence data for 10 herbaceous plant species in a subset of a network of drainage ditches (35 km long) within a Mediterranean agricultural catchment. We simulated their spatial distribution with GLM and Maxent model using geomorphological variables and distance to natural lands and roads. Models were validated using k-fold cross-validation. We then compared the mean Area Under the Curve (AUC) values obtained for each model and other metrics issued from the confusion matrices between observed and predicted variables. Based on the results of all metrics, the models were efficient at predicting the distribution of seven species out of ten, confirming the relevance of geomorphological variables and distance to natural lands and roads to explain the occurrence of plant species in this Mediterranean catchment. In particular, the importance of the landscape geomorphological variables, ie the importance of the geomorphological features encompassing a broad environment around the ditch, has been highlighted. This suggests that agro-ecological measures for managing ecosystem services provided by ditch plants should focus on the control of the hydrological and sedimentological connectivity at the catchment scale. For example, the density of the ditch network could be modified or the spatial distribution of vegetative filter strips used for sediment trapping could be optimized. In addition, the vegetative filter strips could constitute

  10. Simulation of dynamic expansion, contraction, and connectivity in a mountain stream network

    Science.gov (United States)

    Ward, Adam S.; Schmadel, Noah M.; Wondzell, Steven M.

    2018-04-01

    Headwater stream networks expand and contract in response to changes in stream discharge. The changes in the extent of the stream network are also controlled by geologic or geomorphic setting - some reaches go dry even under relatively wet conditions, other reaches remain flowing under relatively dry conditions. While such patterns are well recognized, we currently lack tools to predict the extent of the stream network and the times and locations where the network is dry within large river networks. Here, we develop a perceptual model of the river corridor in a headwater mountainous catchment, translate this into a reduced-complexity mechanistic model, and implement the model to examine connectivity and network extent over an entire water year. Our model agreed reasonably well with our observations, showing that the extent and connectivity of the river network was most sensitive to hydrologic forcing under the lowest discharges (Qgauge 10 L s-1) the extent of the network was relatively insensitive to hydrologic forcing and was instead determined by the network topology. We do not expect that the specific thresholds observed in this study would be transferable to other catchments with different geology, topology, or hydrologic forcing. However, we expect that the general pattern should be robust: the dominant controls will shift from hydrologic forcing to geologic setting as discharge increases. Furthermore, our method is readily transferable as the model can be applied with minimal data requirements (a single stream gauge, a digital terrain model, and estimates of hydrogeologic properties) to estimate flow duration or connectivity along the river corridor in unstudied catchments. As the available information increases, the model could be better calibrated to match site-specific observations of network extent, locations of dry reaches, or solute break through curves as demonstrated in this study. Based on the low initial data requirements and ability to later tune

  11. High Resolution Flash Flood Forecasting Using a Wireless Sensor Network in the Dallas-Fort Worth Metroplex

    Science.gov (United States)

    Bartos, M. D.; Kerkez, B.; Noh, S.; Seo, D. J.

    2017-12-01

    In this study, we develop and evaluate a high resolution urban flash flood monitoring system using a wireless sensor network (WSN), a real-time rainfall-runoff model, and spatially-explicit radar rainfall predictions. Flooding is the leading cause of natural disaster fatalities in the US, with flash flooding in particular responsible for a majority of flooding deaths. While many riverine flood models have been operationalized into early warning systems, there is currently no model that is capable of reliably predicting flash floods in urban areas. Urban flash floods are particularly difficult to model due to a lack of rainfall and runoff data at appropriate scales. To address this problem, we develop a wide-area flood-monitoring wireless sensor network for the Dallas-Fort Worth metroplex, and use this network to characterize rainfall-runoff response over multiple heterogeneous catchments. First, we deploy a network of 22 wireless sensor nodes to collect real-time stream stage measurements over catchments ranging from 2-80 km2 in size. Next, we characterize the rainfall-runoff response of each catchment by combining stream stage data with gage and radar-based precipitation measurements. Finally, we demonstrate the potential for real-time flash flood prediction by joining the derived rainfall-runoff models with real-time radar rainfall predictions. We find that runoff response is highly heterogeneous among catchments, with large variabilities in runoff response detected even among nearby gages. However, when spatially-explicit rainfall fields are included, spatial variability in runoff response is largely captured. This result highlights the importance of increased spatial coverage for flash flood prediction.

  12. Design of the HYREX raingauge network

    Directory of Open Access Journals (Sweden)

    R. J. Moore

    2000-01-01

    Full Text Available Dense raingauge experiments in the past have experienced difficulties in the automated recording of rainfall amount and timing which with the benefit of modern instrument technology are now less problematic. The HYdrological Radar EXperiment, HYREX, provided a timely opportunity to design and implement a dense raingauge network in support of rainfall measurement and modelling research studies concerned with the use of weather radar in hydrology. The principles and random function theory underlying the design of this raingauge network over the Brue catchment in south-west England are detailed in this paper. Keywords: raingauge, design, network, rainfall, flood, spatial correlation

  13. A simple distributed sediment delivery approach for rural catchments

    Science.gov (United States)

    Reid, Lucas; Scherer, Ulrike

    2014-05-01

    The transfer of sediments from source areas to surface waters is a complex process. In process based erosion models sediment input is thus quantified by representing all relevant sub processes such as detachment, transport and deposition of sediment particles along the flow path to the river. A successful application of these models requires, however, a large amount of spatially highly resolved data on physical catchment characteristics, which is only available for a few, well examined small catchments. For the lack of appropriate models, the empirical Universal Soil Loss Equation (USLE) is widely applied to quantify the sediment production in meso to large scale basins. As the USLE provides long-term mean soil loss rates, it is often combined with spatially lumped models to estimate the sediment delivery ratio (SDR). In these models, the SDR is related to data on morphological characteristics of the catchment such as average local relief, drainage density, proportion of depressions or soil texture. Some approaches include the relative distance between sediment source areas and the river channels. However, several studies showed that spatially lumped parameters describing the morphological characteristics are only of limited value to represent the factors of influence on sediment transport at the catchment scale. Sediment delivery is controlled by the location of the sediment source areas in the catchment and the morphology along the flow path to the surface water bodies. This complex interaction of spatially varied physiographic characteristics cannot be adequately represented by lumped morphological parameters. The objective of this study is to develop a simple but spatially distributed approach to quantify the sediment delivery ratio by considering the characteristics of the flow paths in a catchment. We selected a small catchment located in in an intensively cultivated loess region in Southwest Germany as study area for the development of the SDR approach. The

  14. Ecological studies in the Ratanica catchment (Carpathian foothills, southern Poland) - an overview

    International Nuclear Information System (INIS)

    Grodzinska, K.; Szarek, G.

    1995-01-01

    This paper includes an overview of ecological studies conducted since 1986 in the Ratanica pine-beech forested catchment located in the polluted, high populated southern part of Poland. General characteristics of the catchment (including soil and vegetation, air pollution, input/output of nutrients and pollutants, element budget data and forest health assessment) are presented. Based on biogeochemical and bioindication results, the Ratanica catchment has been classified as a moderately to heavily deteriorated area. Predictions for this forested catchment for various deposition of anthropogenic pollutants, are also discussed. 22 refs., 1 fig

  15. SEASONAL CHANGES IN PHOSPHORUS LOAD FLOWING OUT OF SMALL AGRICULTURAL CATCHMENTS

    Directory of Open Access Journals (Sweden)

    Krzysztof Pulikowski

    2014-12-01

    Full Text Available In this article distribution of monthly phosphorus loads flowing out of two agricultural catchments which are located in different physiographic conditions of Lower Silesia was analysed. Loads of phosphorus runoff from the catchment located in the piedmont part of Lower Silesia in each month rarely exceed 0.10 kg P ∙ ha-1. The size of annual load is determined by loads obtained in two months of early spring. Much lower loads obtained for lowland catchment, located near Wroclaw. Values ​​calculated for each month rarely exceed the value of 0.01 kg P ∙ ha-1. Culmination of loads bringing away is a bit more extended in a time compared to the catchment located on Sudety Mts. Foreland. Much higher loads are observed during the period from January to April – this period has a major impact on the size of phosphorus load that flows out from this catchment during whole hydrological year. The obtained results clearly indicate that the threat of watercourses and water reservoirs supply in phosphorus compounds from agricultural land is periodic and it is particularly high during early spring. Phosphorus load flowing out from the analyzed catchments is very diverse. From facility located on Sudety Foothill in hydrological year, during research period, flowed away average 0.81 kg P ∙ ha-1. Significantly lower values were obtained for second facility and it was average 0.15 kg P ∙ ha-1 during a year. The size of load discharged during a year is largely determined by amount of phosphorus load flowing out during winter half of the year (from XI to IV. In case of foothill catchment in this period flowed out average 0.56 kg P ∙ ha-1, which presents 69% of annual load and in lowland catchment this percentage was even slightly higher and was 73%.

  16. Catchment coevolution: A useful framework for improving predictions of hydrological change?

    Science.gov (United States)

    Troch, Peter A.

    2017-04-01

    The notion that landscape features have co-evolved over time is well known in the Earth sciences. Hydrologists have recently called for a more rigorous connection between emerging spatial patterns of landscape features and the hydrological response of catchments, and have termed this concept catchment coevolution. In this presentation we present a general framework of catchment coevolution that could improve predictions of hydrologic change. We first present empirical evidence of the interaction and feedback of landscape evolution and changes in hydrological response. From this review it is clear that the independent drivers of catchment coevolution are climate, geology, and tectonics. We identify common currency that allows comparing the levels of activity of these independent drivers, such that, at least conceptually, we can quantify the rate of evolution or aging. Knowing the hydrologic age of a catchment by itself is not very meaningful without linking age to hydrologic response. Two avenues of investigation have been used to understand the relationship between (differences in) age and hydrological response: (i) one that is based on relating present landscape features to runoff processes that are hypothesized to be responsible for the current fingerprints in the landscape; and (ii) one that takes advantage of an experimental design known as space-for-time substitution. Both methods have yielded significant insights in the hydrologic response of landscapes with different histories. If we want to make accurate predictions of hydrologic change, we will also need to be able to predict how the catchment will further coevolve in association with changes in the activity levels of the drivers (e.g., climate). There is ample evidence in the literature that suggests that whole-system prediction of catchment coevolution is, at least in principle, plausible. With this imperative we outline a research agenda that implements the concepts of catchment coevolution for building

  17. A Catchment Systems Engineering (CSE) approach to managing intensively farmed land

    Science.gov (United States)

    Jonczyk, Jennine; Quinn, Paul; Barber, Nicholas; Wilkinson, Mark; ODonnell, Greg

    2014-05-01

    Rural land management practices can have a significant impact on the hydrological and nutrient dynamics within a catchment which can dramatically alter the way it processes water, exacerbating nutrient losses from the system. A collaborative and holistic approach for managing potential conflicts between land management activity for food production alongside the aspiration to achieve good water quality and the need to make space for water can ensure the long-term sustainability of our agricultural catchments. Catchment System Engineering (CSE) is an interventionist approach to altering the catchment scale runoff regime through the manipulation of hydrological flow pathways throughout the catchment. By targeting hydrological flow pathways at source, such as overland flow, field drain and ditch function, a significant component of the runoff generation can be managed, greatly reducing erosive soil losses. Coupled with management of farm nutrients at source many runoff attenuation features or measures can be co-located to achieve benefits for water quality. Examples of community-led mitigation measures using the CSE approach will be presented from two catchments in Northumberland, Northern England, that demonstrate the generic framework for identification of multipurpose features that slow, store and filter runoff at strategic locations in the landscape. Measures include within-field barriers, edge of field traps and within-field sediment filters and sediment traps which demonstrate how sediment can be trapped locally (including silt and clay fractions) and be recovered for use back on the land. Deliverables from this CSE approach includes the reduction of downstream flood risk and capturing of sediment and associated nutrients. The CSE approach allows for a more natural flood and nutrient management approach which helps to restore vital catchment functions to re-establish a healthy catchment system.

  18. The ethics of socio-ecohydrological catchment management: towards hydrosolidarity

    Directory of Open Access Journals (Sweden)

    M. Falkenmark

    2002-01-01

    Full Text Available This paper attempts to clarify key biophysical issues and the problems involved in the ethics of socio-ecohydrological catchment management. The issue in managing complex systems is to live with unavoidable change while securing the capacity of the ecohydrological system of the catchment to sustain vital ecological goods and services, aquatic as well as terrestrial, on which humanity depends ultimately. Catchment management oriented to sustainability has to be based on ethical principles: human rights, international conventions, sustaining crucial ecological goods and services, and protecting ecosystem resilience, all of which have water linkages. Many weaknesses have to be identified, assessed and mitigated to improve the tools by which the ethical issues can be addressed and solved: a heritage of constraining tunnel vision in both science and management; inadequate shortcuts made in modern scientific system analyses (e.g. science addressing sustainability issues; simplistic technical-fix approaches to water and ecosystems in land/water/ecosystem management; conventional tools for evaluation of scientific quality with its focus on “doing the thing right” rather than “doing the right thing”. The new ethics have to incorporate principles that, on a catchment basis, allow for proper attention to the hungry and poor, upstream and downstream, to descendants, and to sites and habitats that need to be protected. Keywords: catchment, hydrosolidarity, ecosystem, water determinants, resilience, green water, blue water, sustainability science

  19. Carbon redistribution by erosion processes in an intensively disturbed catchment

    Science.gov (United States)

    Boix-Fayos, Carolina; Martínez-Mena, María; Pérez Cutillas, Pedro; de Vente, Joris; Barberá, Gonzalo G.; Mosch, Wouter; Navarro Cano, Jose Antonio; Gaspar, Leticia; Navas, Ana

    2016-04-01

    Understanding how organic carbon moves with sediments along the fluvial system is crucial to close catchment scale carbon budgets. Especially challenging is the analysis of organic carbon dynamics during fluvial transport in heterogeneous, fragile and disturbed environments with ephemeral and intense hydrological pulses, typical of Mediterranean conditions. This paper explores the catchment scale organic carbon redistribution by lateral flows in extreme Mediterranean environmental conditions from a geomorphological perspective. The study area is a catchment (Cárcavo) in SE Spain with a semiarid climate, erodible lithologies, shallow soils, and highly disturbed by agricultural terraces, land levelling, reforestations and construction of check-dams. To increase understanding of erosion induced catchment scale organic carbon redistribution, we studied the subcatchments of 8 check-dams distributed along the catchment main channel in detail. We determined 137Cs, physicochemical characteristics and organic carbon pools of soils and sediments deposited behind each check-dam, performed spatial analysis of properties of the catchment and buffer areas around check-dams, and carried out geomorphological analysis of the slope-channel connections. Soils showed very low Total Organic Carbon (TOC) values oscillating between 15.2 and 4.4 g Kg-1 for forest and agricultural soils, respectively. Sediments mobilized by erosion were poor in TOC compared to the eroded (forest) soils (6.6±0.7 g Kg-1), and the redistribution of organic carbon through the catchment, especially of the Mineral Associated Organic Carbon (MAC) pool, showed the same pattern as clay particles and 137Cs. The TOC erosion rates (0.031±0.03 Mg ha-1 y-1) were comparable to others reported for subhumid Mediterranean catchments and to those modelled worldwide for pasture land. Those lateral fluxes were equivalent to 10.4 % of the TOC stock from the topsoil at the moment of the check-dam construction and

  20. Modelling long-term hydrochemical responce at ENCORE catchments in the UK and Norway

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, A; Wright, R F; Cosby, B J

    1994-11-01

    ENCORE is an interdisciplinary project focusing on biological and chemical response to environmental change and the links between terrestrial and aquatic ecosystems. This report applies the MAGIC model, which is a catchment-scale model of soil and water acidification, to ten ENCORE catchments in the UK and Norway and uses it to examine the dynamic response to several scenarios of future land-use. MAGIC is an acronym for Model for Acidification of Groundwater In Catchments. The model is evaluated against catchment manipulation studies involving acid addition, acid exclusion, terrestrial liming and upland afforestation. Critical loads for sulphur are calculated. At all sites MAGIC successfully simulates present-day observed stream and soil chemistry. The predicted response of soils and surface waters to the two standard future deposition scenarios is similar at all catchments. All catchments continue to acidify under the worst-case scenario and all catchments recover under the best-case scenario. Exceptions are related to situations with concurrent land-use change, or in the case of nitrogen saturation. The success of MAGIC illustrates its robustness and indicates that the major processes included in the model are correctly identified as the major mechanisms controlling catchment chemical response to acid input. 39 refs., 10 figs., 4 tabs.

  1. Linking sediment fingerprinting and modeling outputs for a Spanish Pyrenean river catchment.

    Science.gov (United States)

    Palazón, Leticia; Latorre, Borja; Gaspar, Leticia; Blake, Williams H.; Smith, Hugh G.; Navas, Ana

    2015-04-01

    Indirect techniques to study fine sediment redistribution in river catchments could provide unique and diverse information, which, when combined become a powerful tool to address catchment management problems. Such combinations could solve limitations of individual techniques and provide different lines of information to address a particular problem. The Barasona reservoir has suffered from siltation since its construction, with the loss of over one third of its storage volume in around 30 study years (period 1972-1996). Information on sediment production from tributary catchments for the reservoir is required to develop management plans for maintaining reservoir sustainability. Large spatial variability in sediment delivery was found in previous studies in the Barasona catchment and the major sediment sources identified included badlands developed in the middle part of the catchment and the agricultural fields in its lower part. From the diverse range of indirect techniques, fingerprinting sediment sources and computer models could be linked to obtain a more holistic view of the processes related to sediment redistribution in the Barasona river catchment (1509 km2, Central Spanish Pyrenees), which comprises agricultural and forest land uses. In the present study, the results from a fingerprinting procedure and the SWAT model were compared and combined to improve the knowledge of land use sediment source contributions to the reservoir. Samples from the study catchment were used to define soil parameters for the model and for fingerprinting the land use sources. The fingerprinting approach provided information about relative contributions from land use sources to the superficial sediment samples taken from the reservoir infill. The calibration and validation of the model provided valuable information, for example on the timescale of sediment production from the different land uses within the catchment. Linking results from both techniques enabled us to achieve a

  2. How young water fractions can delineate travel time distributions in contrasting catchments

    Science.gov (United States)

    Lutz, Stefanie; Zink, Matthias; Merz, Ralf

    2017-04-01

    Travel time distributions (TTDs) are crucial descriptors of flow and transport processes in catchments. Tracking fluxes of environmental tracers such as stable water isotopes offers a practicable method to determine TTDs. The mean transit time (MTT) is the most commonly reported statistic of TTDs; however, MTT assessments are prone to large aggregation biases resulting from spatial heterogeneity and non-stationarity in real-world catchments. Recently, the young water fraction (Fyw) has been introduced as a more robust statistic that can be derived from seasonal tracer cycles. In this study, we aimed at improving the assessment of TTDs by using Fyw as additional information in lumped isotope models. First, we calculated Fyw from monthly δ18O-samples for 24 contrasting sub-catchments in a meso-scale catchment (3300 km2). Fyw ranged from 0.01 to 0.27 (mean= 0.11) and was not significantly correlated with catchment characteristics (e.g., mean slope, catchment area, and baseflow index) apart from the dominant soil type. Second, assuming gamma-shaped TTDs, we determined time-invariant TTDs for each sub-catchment by optimization of lumped isotope models using the convolution integral method. Whereas multiple optimization runs for the same sub-catchment showed a wide range of TTD parameters, the use of Fyw as additional information allowed constraining this range and thus improving the assessment of MTTs. Hence, the best model fit to observed isotope data might not be the desired solution, as the resulting TTD might define a young water fraction non-consistent with the tracer-cycle based Fyw. Given that the latter is a robust descriptor of fast-flow contribution, isotope models should instead aim at accurately describing both Fyw and the isotope time series in order to improve our understanding of flow and transport in catchments.

  3. Hydrological Response of Semi-arid Degraded Catchments in Tigray, Northern Ethiopia

    Science.gov (United States)

    Teka, Daniel; Van Wesemael, Bas; Vanacker, Veerle; Hallet, Vincent

    2013-04-01

    To address water scarcity in the arid and semi-arid part of developing countries, accurate estimation of surface runoff is an essential task. In semi-arid catchments runoff data are scarce and therefore runoff estimation using hydrological models becomes an alternative. This research was initiated in order to characterize runoff response of semi-arid catchments in Tigray, North Ethiopia to evaluate SCS-CN for various catchments. Ten sub-catchments were selected in different river basins and rainfall and runoff were measured with automatic hydro-monitoring equipments for 2-3 years. The Curve Number was estimated for each Hydrological Response Unit (HRU) in the sub-catchments and runoff was modeled using the SCS-CN method at λ = 0.05 and λ = 0.20. The result showed a significant difference between the two abstraction ratios (P =0.05, df = 1, n= 132) and reasonable good result was obtained for predicted runoff at λ = 0.05 (NSE = -0.69; PBIAS = 18.1%). When using the CN values from literature runoff was overestimated compared to the measured value (e= -11.53). This research showed the importance of using measured runoff data to characterize semi-arid catchments and accurately estimate the scarce water resource. Key words: Hydrological response, rainfall-runoff, degraded environments, semi-arid, Ethiopia, Tigray

  4. Intra-basin variability of snowmelt water balance calculations in a subarctic catchment

    Science.gov (United States)

    McCartney, Stephen E.; Carey, Sean K.; Pomeroy, John W.

    2006-03-01

    The intra-basin variability of snowmelt and melt-water runoff hydrology in an 8 km2 subarctic alpine tundra catchment was examined for the 2003 melt period. The catchment, Granger Creek, is within the Wolf Creek Research Basin, Yukon, which is typical of mountain subarctic landscapes in northwestern Canada. The study catchment was segmented into nine internally uniform zones termed hydrological response units (HRUs) based on their similar hydrological, physiographic, vegetation and soil properties. Snow accumulation exhibited significant variability among the HRUs, with greatest snow water equivalent in areas of tall shrub vegetation. Melt began first on southerly exposures and at lower elevations, yet average melt rates for the study period varied little among HRUs with the exception of those with steep aspects. In HRUs with capping organic soils, melt water first infiltrated this surface horizon, satisfying its storage capacity, and then percolated into the frozen mineral substrate. Infiltration and percolation into frozen mineral soils was restricted where melt occurred rapidly and organic soils were thin; in this case, melt-water delivery rates exceeded the frozen mineral soil infiltration rate, resulting in high runoff rates. In contrast, where there were slower melt rates and thick organic soils, infiltration was unlimited and runoff was suppressed. The snow water equivalent had a large impact on runoff volume, as soil storage capacity was quickly surpassed in areas of deep snow, diverting the bulk of melt water laterally to the drainage network. A spatially distributed water balance indicated that the snowmelt freshet was primarily controlled by areas with tall shrub vegetation that accumulate large quantities of snow and by alpine areas with no capping organic soils. The intra-basin water balance variability has important implications for modelling freshet in hydrological models.

  5. The politics of establishing catchment management agencies in South Africa: the case of the Breede-Overberg catchment management agency

    CSIR Research Space (South Africa)

    Meissner, Richard

    2014-09-01

    Full Text Available in South Africa. We then reflect in section 8.5 on what can be surmised about BOCMA’s democratic functioning and performance, to date before concluding the chapter (section 8.6). 8.2THE BREEDE−OVERBERG CATCHMENT MANAGEMENT AGENCY 8.2.1 Authority rules CMAs are statutory bodies established in terms of the National Water Act and are able to develop their catchment management strategy. Democratic control is also exercised through the governing...

  6. Trends in stream nitrogen concentrations for forested reference catchments across the USA

    Science.gov (United States)

    A. Argerich; S.L. Johnson; S.D. Sebestyen; C.C. Rhoades; E. Greathouse; J.D. Knoepp; M.B. Adams; G.E. Likens; J.L. Campbell; W.H. McDowell; F.N. Scatena; G.G. Ice

    2013-01-01

    To examine whether stream nitrogen concentrations in forested reference catchments have changed over time and if patterns were consistent across the USA, we synthesized up to 44 yr of data collected from 22 catchments at seven USDA Forest Service Experimental Forests. Trends in stream nitrogen presented high spatial variability both among catchments at a site and among...

  7. Proximate and ultimate controls on carbon and nutrient dynamics of small agricultural catchments

    Science.gov (United States)

    Thomas, Zahra; Abbott, Benjamin W.; Troccaz, Olivier; Baudry, Jacques; Pinay, Gilles

    2016-03-01

    Direct and indirect effects from human activity have dramatically increased nutrient loading to aquatic inland and estuarine ecosystems. Despite an abundance of studies investigating the impact of agricultural activity on water quality, our understanding of what determines the capacity of a watershed to remove or retain nutrients remains limited. The goal of this study was to identify proximate and ultimate controls on dissolved organic carbon and nutrient dynamics in small agricultural catchments by investigating the relationship between catchment characteristics, stream discharge, and water chemistry. We analyzed a 5-year, high-frequency water chemistry data set from three catchments in western France ranging from 2.3 to 10.8 km2. The relationship between hydrology and solute concentrations differed between the three catchments and was associated with hedgerow density, agricultural activity, and geology. The catchment with thicker soil and higher surface roughness had relatively invariant carbon and nutrient chemistry across hydrologic conditions, indicating high resilience to human disturbance. Conversely, the catchments with smoother, thinner soils responded to both intra- and interannual hydrologic variation with high concentrations of phosphate (PO43-) and ammonium (NH4+) in streams during low flow conditions and strong increases in dissolved organic carbon (DOC), sediment, and particulate organic matter during high flows. Despite contrasting agricultural activity between catchments, the physical context (geology, topography, and land-use configuration) appeared to be the most important determinant of catchment solute dynamics based on principle components analysis. The influence of geology and accompanying topographic and geomorphological factors on water quality was both direct and indirect because the distribution of agricultural activity in these catchments is largely a consequence of the geologic and topographic context. This link between inherent

  8. Accounting for Ecohydrologic Separation Alters Interpreted Catchment Hydrology

    Science.gov (United States)

    Cain, M. R.; Ward, A. S.; Hrachowitz, M.

    2017-12-01

    Recent studies have demonstrated that in in some catchments, compartmentalized pools of water supply either plant transpiration (poorly mobile water) or streamflow and groundwater (highly mobile water), a phenomenon referred to as ecohydrologic separation. Although the literature has acknowledged that omission of ecohydrologic separation in hydrological models may influence estimates of residence times of water and solutes, no study has investigated how and when this compartmentalization might alter interpretations of fluxes and storages within a catchment. In this study, we develop two hydrochemical lumped rainfall-runoff models, one which incorporates ecohydrologic separation and one which does not for a watershed at the H.J. Andrews Experimental Forest (Oregon, USA), the study site where ecohydrologic separation was first observed. The models are calibrated against stream discharge, as well as stream chloride concentration. The objectives of this study are (1) to compare calibrated parameters and identifiability across models, (2) to determine how and when compartmentalization of water in the vadose zone might alter interpretations of fluxes and stores within the catchment, and (3) to identify how and when these changes alter residence times. Preliminary results suggest that compartmentalization of the vadose zone alters interpretations of fluxes and storages in the catchment and improves our ability to simulate solute transport.

  9. Mean transit times in headwater catchments: insights from the Otway Ranges, Australia

    Directory of Open Access Journals (Sweden)

    W. Howcroft

    2018-01-01

    Full Text Available Understanding the timescales of water flow through catchments and the sources of stream water at different flow conditions is critical for understanding catchment behaviour and managing water resources. Here, tritium (3H activities, major ion geochemistry and streamflow data were used in conjunction with lumped parameter models (LPMs to investigate mean transit times (MTTs and the stores of water in six headwater catchments in the Otway Ranges of southeastern Australia. 3H activities of stream water ranged from 0.20 to 2.14 TU, which are significantly lower than the annual average 3H activity of modern local rainfall, which is between 2.4 and 3.2 TU. The 3H activities of the stream water are lowest during low summer flows and increase with increasing streamflow. The concentrations of most major ions vary little with streamflow, which together with the low 3H activities imply that there is no significant direct input of recent rainfall at the streamflows sampled in this study. Instead, shallow younger water stores in the soils and regolith are most likely mobilised during the wetter months. MTTs vary from approximately 7 to 230 years. Despite uncertainties of several years in the MTTs that arise from having to assume an appropriate LPM, macroscopic mixing, and uncertainties in the 3H activities of rainfall, the conclusion that they range from years to decades is robust. Additionally, the relative differences in MTTs at different streamflows in the same catchment are estimated with more certainty. The MTTs in these and similar headwater catchments in southeastern Australia are longer than in many catchments globally. These differences may reflect the relatively low rainfall and high evapotranspiration rates in southeastern Australia compared with headwater catchments elsewhere. The long MTTs imply that there is a long-lived store of water in these catchments that can sustain the streams over drought periods lasting several years. However, the

  10. Mean transit times in headwater catchments: insights from the Otway Ranges, Australia

    Science.gov (United States)

    Howcroft, William; Cartwright, Ian; Morgenstern, Uwe

    2018-01-01

    Understanding the timescales of water flow through catchments and the sources of stream water at different flow conditions is critical for understanding catchment behaviour and managing water resources. Here, tritium (3H) activities, major ion geochemistry and streamflow data were used in conjunction with lumped parameter models (LPMs) to investigate mean transit times (MTTs) and the stores of water in six headwater catchments in the Otway Ranges of southeastern Australia. 3H activities of stream water ranged from 0.20 to 2.14 TU, which are significantly lower than the annual average 3H activity of modern local rainfall, which is between 2.4 and 3.2 TU. The 3H activities of the stream water are lowest during low summer flows and increase with increasing streamflow. The concentrations of most major ions vary little with streamflow, which together with the low 3H activities imply that there is no significant direct input of recent rainfall at the streamflows sampled in this study. Instead, shallow younger water stores in the soils and regolith are most likely mobilised during the wetter months. MTTs vary from approximately 7 to 230 years. Despite uncertainties of several years in the MTTs that arise from having to assume an appropriate LPM, macroscopic mixing, and uncertainties in the 3H activities of rainfall, the conclusion that they range from years to decades is robust. Additionally, the relative differences in MTTs at different streamflows in the same catchment are estimated with more certainty. The MTTs in these and similar headwater catchments in southeastern Australia are longer than in many catchments globally. These differences may reflect the relatively low rainfall and high evapotranspiration rates in southeastern Australia compared with headwater catchments elsewhere. The long MTTs imply that there is a long-lived store of water in these catchments that can sustain the streams over drought periods lasting several years. However, the catchments are likely

  11. Managing Multiple Catchment Demands for Sustainable Water Use and Ecosystem Service Provision

    Directory of Open Access Journals (Sweden)

    Kathleen C. Stosch

    2017-09-01

    Full Text Available Ensuring water, food and energy security for a growing world population represents a 21st century catchment management challenge. Failure to recognise the complexity of interactions across ecosystem service provision can risk the loss of other key environmental and socioeconomic benefits from the natural capital of catchment systems. In particular, the ability of soil and water to meet human needs is undermined by uncertainties around climate change effects, ecosystem service interactions and conflicting stakeholder interests across catchments. This critical review draws from an extensive literature to discuss the benefits and challenges of utilising an ecosystem service approach for integrated catchment management (ICM. State-of-the-art research on ecosystem service assessment, mapping and participatory approaches is evaluated and a roadmap of the key short- and longer-term research needs for maximising landscape-scale ecosystem service provision from catchments is proposed.

  12. Preferential flow and mixing process in the chemical recharge in subsurface catchments: observations and modeling

    Science.gov (United States)

    Gascuel-Odoux, C.; Rouxel, M.; Molenat, J.; Ruiz, L.; Aquilina, L.; Faucheux, M.; Labasque, T.; Sebilo, M.

    2012-04-01

    Shallow groundwater that develops on hillslopes is the main compartment in headwater catchments for flow and solute transport to rivers. Although spatial and temporal variations in its chemical composition are reported in the literature, there is no coherent description of the way these variations are organized, nor is there an accepted conceptual model for the recharge mechanisms and flows in the groundwater involved. We instrumented an intensive farming and subsurface dominant catchment located in Oceanic Western Europe (Kerbernez, Brittany, France), a headwater catchment included in the Observatory for Research on Environment AgrHyS (Agro-Hydro-System) and a part of the French Network of catchments for environmental research (SOERE RBV focused on the Critical Zone). These systems are strongly constrained by anthropogenic pressures (agriculture) and are characterized by a clear non-equilibrium status. A network of 42 nested piezometers was installed along a 200 m hillslope allowing water sampling along two transects in the permanent water table as well as in what we call the "fluctuating zone", characterized by seasonal alternance of saturated and unsaturated conditions. Water composition was monitored at high frequency (weekly) over a 3-year period for major anion composition and over a one year period for detailed 15N, CFC, SF6 and other dissolved gases. The results demonstrated that (i) the anionic composition in water table fluctuation zone varied significantly compared to deeper portions of the aquifer on the hillslope, confirming that this layer constitutes a main compartment for the mixing of new recharge water and old groundwater, (ii) seasonally, the variations of 15N and CFC are much higher during the recharge period than during the recession period, confirming the preferential flow during early recharge events, iii) variations of nitrate 15N and O18 composition was suggesting any significant denitrification process in the fluctuating zone, confirming

  13. The politics of establishing catchment management agencies in South Africa: the case of the Breede-Overberg Catchment Management Agency

    Directory of Open Access Journals (Sweden)

    Richard Meissner

    2016-09-01

    Full Text Available We reflect on the politics of establishing catchment management agencies in South Africa with a specific focus on the Breede-Overberg Catchment Management Agency (BOCMA, which was recently replaced by the Breede-Gouritz Catchment Management Agency (BGCMA. We do so by applying the framework of adaptive comanagement and its institutional prescriptions: collaboration, experimentation, and a bioregional approach. We start by introducing the history of this catchment management agency (CMA and then describe the establishment of CMAs in South Africa in general and that of BOCMA in particular. We follow the framework for rule types and types of river basin organizations set out by the editors of this special feature with reference to adaptive comanagement where applicable. We then discuss the politics and strategies involved in the introduction of the CMA concept to the National Water Act and the latest developments around these institutions in South Africa. This is followed by reflections on what can be surmised about BOCMA's democratic functioning and performance to date. We conclude by reflecting on the future of operations of the new BGCMA and CMAs in South Africa in general. While our research shows that BOCMA's establishment process has featured several elements of adaptive comanagement and its institutional prescriptions, it remains to be seen to what extent it is possible to continue implementing this concept when further developing and operationalizing the BGCMA and the country's other CMAs.

  14. COMBINED AND STORM SEWER NETWORK MONITORING

    OpenAIRE

    Justyna Synowiecka; Ewa Burszta-Adamiak; Tomasz Konieczny; Paweł Malinowski

    2014-01-01

    Monitoring of the drainage networks is an extremely important tool used to understand the phenomena occurring in them. In an era of urbanization and increased run-off, at the expense of natural retention in the catchment, it helps to minimize the risk of local flooding and pollution. In its scope includes measurement of the amount of rainfall, with the use of rain gauges, and their measure in the sewer network, in matter of flows and channel filling, with the help of flow meters. An indispens...

  15. Dissolved nutrient exports from natural and human-impacted Neotropical catchments

    DEFF Research Database (Denmark)

    Gücker, Björn; Silva, Ricky C. S.; Graeber, Daniel

    2016-01-01

    Aim Neotropical biomes are highly threatened by land-use changes, but the catchment-wide biogeochemical effects are poorly understood. Here, we aim to compare exports of dissolved nitrogen (N) and phosphorus (P) from natural and human-impacted catchments in the Neotropics. Location Neotropics. Me...

  16. Climate and terrain factors explaining streamflow response and recession in Australian catchments

    Directory of Open Access Journals (Sweden)

    A. I. J. M. van Dijk

    2010-01-01

    Full Text Available Daily streamflow data were analysed to assess which climate and terrain factors best explain streamflow response in 183 Australian catchments. Assessed descriptors of catchment response included the parameters of fitted baseflow models, and baseflow index (BFI, average quick flow and average baseflow derived by baseflow separation. The variation in response between catchments was compared with indicators of catchment climate, morphology, geology, soils and land use. Spatial coherence in the residual unexplained variation was investigated using semi-variogram techniques. A linear reservoir model (one parameter; recession coefficient produced baseflow estimates as good as those obtained using a non-linear reservoir (two parameters and for practical purposes was therefore considered an appropriate balance between simplicity and explanatory performance. About a third (27–34% of the spatial variation in recession coefficients and BFI was explained by catchment climate indicators, with another 53% of variation being spatially correlated over distances of 100–150 km, probably indicative of substrate characteristics not captured by the available soil and geology data. The shortest recession half-times occurred in the driest catchments and were attributed to intermittent occurrence of fast-draining (possibly perched groundwater. Most (70–84% of the variation in average baseflow and quick flow was explained by rainfall and climate characteristics; another 20% of variation was spatially correlated over distances of 300–700 km, possibly reflecting a combination of terrain and climate factors. It is concluded that catchment streamflow response can be predicted quite well on the basis of catchment climate alone. The prediction of baseflow recession response should be improved further if relevant substrate properties were identified and measured.

  17. Assessing the role of urban developments on storm runoff response through multi-scale catchment experiments

    Science.gov (United States)

    Wilkinson, Mark; Owen, Gareth; Geris, Josie; Soulsby, Chris; Quinn, Paul

    2015-04-01

    patterns in the timing and magnitude of the contributions of the different land use zones and their nested integrated runoff response at increasing scales. These can be clearly linked to variations in antecedent conditions and precipitation patterns. For low antecedent flow conditions, the main flood peak is dominated by urban origins (faster responding and larger in relative magnitude); for high antecedent flow conditions, rural (and peri-urban) sources are most dominant. A third type of response involves mixed events, where both rural and urban contributions interact and reinforce the peak flow response. Our analyses showed that the effectiveness of the GIs varied substantially between the different events, suggesting that their design could be improved by introducing variable drainage rates and strategic placements to allow for interactions with the stream network. However, more information is needed on the spatio-temporal variability in water sources, flow pathways and residence times. This is of particular importance to also assess other multiple benefits of GIs, including the impacts on water quality. These challenges are currently addressed in two new case study catchment in the North East of Scotland (10km2) which are undergoing major land use change from rural to urban. Here, integrated tracer and hydrometric data are being collected to characterise the integrated impacts of urbanisation and GIs on flow pathways (nature and length) and associated water quality.

  18. Climate-vegetation-soil interactions and long-term hydrologic partitioning: signatures of catchment co-evolution

    Directory of Open Access Journals (Sweden)

    P. A. Troch

    2013-06-01

    Full Text Available Budyko (1974 postulated that long-term catchment water balance is controlled to first order by the available water and energy. This leads to the interesting question of how do landscape characteristics (soils, geology, vegetation and climate properties (precipitation, potential evaporation, number of wet and dry days interact at the catchment scale to produce such a simple and predictable outcome of hydrological partitioning? Here we use a physically-based hydrologic model separately parameterized in 12 US catchments across a climate gradient to decouple the impact of climate and landscape properties to gain insight into the role of climate-vegetation-soil interactions in long-term hydrologic partitioning. The 12 catchment models (with different paramterizations are subjected to the 12 different climate forcings, resulting in 144 10 yr model simulations. The results are analyzed per catchment (one catchment model subjected to 12 climates and per climate (one climate filtered by 12 different model parameterization, and compared to water balance predictions based on Budyko's hypothesis (E/P = ϕ (Ep/P; E: evaporation, P: precipitation, Ep: potential evaporation. We find significant anti-correlation between average deviations of the evaporation index (E/P computed per catchment vs. per climate, compared to that predicted by Budyko. Catchments that on average produce more E/P have developed in climates that on average produce less E/P, when compared to Budyko's prediction. Water and energy seasonality could not explain these observations, confirming previous results reported by Potter et al. (2005. Next, we analyze which model (i.e., landscape filter characteristics explain the catchment's tendency to produce more or less E/P. We find that the time scale that controls subsurface storage release explains the observed trend. This time scale combines several geomorphologic and hydraulic soil properties. Catchments with relatively longer

  19. C, N, P export regimes from headwater catchments to downstream reaches

    Science.gov (United States)

    Dupas, R.; Musolff, A.; Jawitz, J. W.; Rao, P. S.; Jaeger, C. G.; Fleckenstein, J. H.; Rode, M.; Borchardt, D.

    2017-12-01

    Excessive amounts of nutrients and dissolved organic matter in freshwater bodies affect aquatic ecosystems. In this study, the spatial and temporal variability in nitrate (NO3), dissolved organic carbon (DOC) and soluble reactive phosphorus (SRP) was analyzed in the Selke river continuum from headwaters draining 1 - 3 km² catchments to downstream reaches representing spatially integrated signals from 184 - 456 km² catchments (part of TERENO - Terrestrial Environmental Observatories, in Germany). Three headwater catchments were selected as archetypes of the main landscape units (land use x lithology) present in the Selke catchment. Export regimes in headwater catchments were interpreted in terms of NO3, DOC and SRP land-to-stream transfer processes. Headwater signals were subtracted from downstream signals, with the differences interpreted in terms of in-stream processes and contribution of point-source emissions. The seasonal dynamics for NO3 were opposite those of DOC and SRP in all three headwater catchments, and spatial differences also showed NO3 contrasting with DOC and SRP. These dynamics were interpreted as the result of the interplay of hydrological and biogeochemical processes, for which riparian zones were hypothesized to play a determining role. In the two downstream reaches, NO3 was transported almost conservatively, whereas DOC was consumed and produced in the upper and lower river sections, respectively. The natural export regime of SRP in the three headwater catchments mimicked a point-source signal, which may lead to overestimation of domestic contributions in the downstream reaches. Monitoring the river continuum from headwaters to downstream reaches proved effective to investigate jointly land-to-stream and in-stream transport and transformation processes.

  20. Rapid runoff via shallow throughflow and deeper preferential flow in a boreal catchment underlain by frozen silt (Alaska, USA)

    Science.gov (United States)

    Koch, Joshua C.; Ewing, Stephanie A.; Striegl, Robert G.; McKnight, Diane M.

    2013-01-01

    In high-latitude catchments where permafrost is present, runoff dynamics are complicated by seasonal active-layer thaw, which may cause a change in the dominant flowpaths as water increasingly contacts mineral soils of low hydraulic conductivity. A 2-year study, conducted in an upland catchment in Alaska (USA) underlain by frozen, well-sorted eolian silt, examined changes in infiltration and runoff with thaw. It was hypothesized that rapid runoff would be maintained by flow through shallow soils during the early summer and deeper preferential flow later in the summer. Seasonal changes in soil moisture, infiltration, and runoff magnitude, location, and chemistry suggest that transport is rapid, even when soils are thawed to their maximum extent. Between June and September, a shift occurred in the location of runoff, consistent with subsurface preferential flow in steep and wet areas. Uranium isotopes suggest that late summer runoff erodes permafrost, indicating that substantial rapid flow may occur along the frozen boundary. Together, throughflow and deep preferential flow may limit upland boreal catchment water and solute storage, and subsequently biogeochemical cycling on seasonal to annual timescales. Deep preferential flow may be important for stream incision, network drainage development, and the release of ancient carbon to ecosystems

  1. SEASONAL CHANGES IN PHOSPHORUS LOAD FLOWING OUT OF SMALL AGRICULTURAL CATCHMENTS

    OpenAIRE

    Krzysztof Pulikowski; Katarzyna Pawęska; Aleksandra Bawiec

    2014-01-01

    In this article distribution of monthly phosphorus loads flowing out of two agricultural catchments which are located in different physiographic conditions of Lower Silesia was analysed. Loads of phosphorus runoff from the catchment located in the piedmont part of Lower Silesia in each month rarely exceed 0.10 kg P ∙ ha-1. The size of annual load is determined by loads obtained in two months of early spring. Much lower loads obtained for lowland catchment, located near Wroclaw. Values ​​calcu...

  2. Hypothesis testing in the Maimai Catchments, Westland

    International Nuclear Information System (INIS)

    Stewart, M.K.

    1993-01-01

    Seven experiments were carried out on the Maimai Catchments, Westland, to test assumptions about the nature of unsaturated zone waters flows in this humid environment. Hypotheses tested were: 1) that the deuterium (D) content of base flow water sources in small streams are constant at any given time, 2) that different soil moisture sampling methods give the same D contents, 3) that throughfall has the same D content as rainfall, 4) that saturation overland flow is mainly composed of current event rainfall, 5) that macropores are not connected into pipe networks, 6) that the underlying substrate (Old Man Gravel conglomerate) does not deliver water to the stream during rainfall events, and 7) that different near-stream water sources have the same D contents at a given time. Over 570 samples were collected of which 300 were analysed for deuterium in 1992-1993. This report gives the background, rationale, methods and brief results of the experiments. The results will be integrated with other measurements and written up in one or more papers for journal publication. (author). 18 refs.; 4 figs.; 1 tab

  3. A synoptic survey of ecosystem services from headwater catchments in the United States

    Science.gov (United States)

    Brian H. Hill; Randall K. Kolka; Frank H. McCormick; Matthew A. Starry

    2014-01-01

    Ecosystem production functions for water supply, climate regulation, and water purification were estimated for 568 headwater streams and their catchments. Results are reported for nine USA ecoregions. Headwater streams represented 74-80% of total catchment stream length. Water supply per unit catchment area was highest in the Northern Appalachian Mountains ecoregion...

  4. Hydrological behaviour and water balance analysis for Xitiaoxi catchment of Taihu Basin

    Directory of Open Access Journals (Sweden)

    Xue Lijuan

    2008-09-01

    Full Text Available With the rapid social and economic development of the Taihu region, Taihu Lake now faces an increasingly severe eutrophication problem. Pollution from surrounding catchments contributes greatly to the eutrophication of water bodies in the region. Investigation of surface flow and associated mass transport for the Xitiaoxi catchment is of a significant degree of importance as the Xitiaoxi catchment is one of the major catchments within the Taihu region. A SWAT-based distributed hydrological model was established for the Xitiaoxi catchment. The model was calibrated and verified using hydrometeorological data from 1988 to 2001. The results indicate that the modeled daily and annual stream flow match the observed data both in the calibration period and the verification period, with a linear regression coefficient R2 and a coefficient e for modeled daily stream flow greater than 0.8 at Hengtangcun and Fanjiacun gauge stations. The results show that the runoff process in the Xitiaoxi catchment is affected both by rainfall and human activities (e.g., reservoirs and polder areas. Moreover, the human activities weaken flood peaks more noticeably during rainstorms. The water balance analysis reveals the percentages of precipitation made up by surface flow, evapotranspiration, groundwater recharge and the change of soil storage, all of which are considered useful to the further understanding of the hydrological processes in the Xitiaoxi catchment. This study provides a good base for further studies in mass transport modeling and comparison of modeling results from similar hydrological models.

  5. Using spatial-stream-network models and long-term data to understand and predict dynamics of faecal contamination in a mixed land-use catchment.

    Science.gov (United States)

    Neill, Aaron James; Tetzlaff, Doerthe; Strachan, Norval James Colin; Hough, Rupert Lloyd; Avery, Lisa Marie; Watson, Helen; Soulsby, Chris

    2018-01-15

    An 11year dataset of concentrations of E. coli at 10 spatially-distributed sites in a mixed land-use catchment in NE Scotland (52km 2 ) revealed that concentrations were not clearly associated with flow or season. The lack of a clear flow-concentration relationship may have been due to greater water fluxes from less-contaminated headwaters during high flows diluting downstream concentrations, the importance of persistent point sources of E. coli both anthropogenic and agricultural, and possibly the temporal resolution of the dataset. Point sources and year-round grazing of livestock probably obscured clear seasonality in concentrations. Multiple linear regression models identified potential for contamination by anthropogenic point sources as a significant predictor of long-term spatial patterns of low, average and high concentrations of E. coli. Neither arable nor pasture land was significant, even when accounting for hydrological connectivity with a topographic-index method. However, this may have reflected coarse-scale land-cover data inadequately representing "point sources" of agricultural contamination (e.g. direct defecation of livestock into the stream) and temporal changes in availability of E. coli from diffuse sources. Spatial-stream-network models (SSNMs) were applied in a novel context, and had value in making more robust catchment-scale predictions of concentrations of E. coli with estimates of uncertainty, and in enabling identification of potential "hot spots" of faecal contamination. Successfully managing faecal contamination of surface waters is vital for safeguarding public health. Our finding that concentrations of E. coli could not clearly be associated with flow or season may suggest that management strategies should not necessarily target only high flow events or summer when faecal contamination risk is often assumed to be greatest. Furthermore, we identified SSNMs as valuable tools for identifying possible "hot spots" of contamination which

  6. Isotope hydrology of catchment basins: lithogenic and cosmogenic isotopic systems

    Energy Technology Data Exchange (ETDEWEB)

    Nimz, G. J., LLNL

    1998-06-01

    A variety of physical processes affect solute concentrations within catchment waters. The isotopic compositions of the solutes can indicate which processes have determined the observed concentrations. These processes together constitute the physical history of the water. Many solutes in natural waters are derived from the interaction between the water and the rock and/or soil within the system - these are termed `lithogenic` solutes. The isotopic compositions of these solutes provide information regarding rock-water interactions. Many other solutes have their isotopic compositions determined both within and outside of the catchment - i.e., in addition to being derived from catchment rock and soil, they are solutes that are also transported into the catchment. Important members of this group include solutes that have isotopic compositions produced by atomic particle interactions with other nuclides. The source of the atomic particles can be cosmic radiation (producing `cosmogenic` nuclides in the atmosphere and land surface), anthropogenic nuclear reactions (producing `thermonuclear` nuclides), or radioactive and fission decay of naturally-occurring elements, principally {sup 238}U (producing `in-situ` lithogenic nuclides in the deep subsurface). Current language usage often combines all of the atomic particle-produced nuclides under the heading `cosmogenic nuclides`, and for simplicity we will often follow that usage here, although always indicating which variety is being discussed. This paper addresses the processes that affect the lithogenic and cosmogenic solute concentrations in catchment waters, and how the isotopic compositions of the solutes can be used in integrative ways to identify these processes, thereby revealing the physical history of the water within a catchment system. The concept of a `system` is important in catchment hydrology. A catchment is the smallest landscape unit that can both participate in all of the aspects of the hydrologic cycle and

  7. Forest fire impact on the hydrological response in small catchment of NW Spain

    Directory of Open Access Journals (Sweden)

    J. Canceio-González

    2013-05-01

    Full Text Available Hydrological studies were carried out in two catchments (burnt and unburned, to determine the processes related to the streamflow changes and the possible effects on the runoff coefficients produced by a forest fire in the summer of 2007, which affected 50% of the area of one of the catchments. Comparative analysis of the changes in the monthly streamflow values revealed that during the wettest months, the runoff was higher in the burnt catchment during the first two years, and was very similar in both catchments during the third year. Calculation of the annual runoff coefficient confirmed these findings and showed that the differences between the coefficients in the catchments were negligible in the final year. In both cases, this can be explained by regeneration of the vegetation after fire.

  8. Frogs, fish and forestry: An integrated watershed network paradigm conserves biodiversity and ecological services

    Science.gov (United States)

    Hartwell H. Welsh Jr.

    2011-01-01

    Successfully addressing the multitude of stresses influencing forest catchments, their native biota, and the vital ecological services they provide humanity will require adapting an integrated view that incorporates the full range of natural and anthropogenic disturbances acting on these landscapes and their embedded fluvial networks. The concepts of dendritic networks...

  9. Establishing an Integrated Catchment Management (ICM) program in East Java, Indonesia.

    Science.gov (United States)

    Booth, C A; Warianti, A; Wrigley, T

    2001-01-01

    The Brantas is one of Indonesia's most important catchments. It is the "rice bowl" of Java and nationally important for its industrial activity. Surabaya, Indonesia's second largest city, is located at the mouth of the Brantas River which is pivotal to the city's water supply. The challenges associated with the institutional framework for natural resource management in East Java parallels that of many states and provinces around the globe. It is multi-layered and complex. Integrated Catchment Management (ICM) may be defined as "the co-ordinated and sustainable management of land, water, soil vegetation, fauna and other natural resources on a water catchment basis". Over a period of six months, an ICM Strategy was researched and facilitated for the Brantas River Catchment in East Java via a short term advisor attachment. The aim of the Strategy is to improve coordination, co-operation, communication and consistency of government and community efforts towards sustaining the catchment's environmental, economic and social values. The attachment was part of the Pollution Control Implementation (PCI) Project funded by AusAid and the Indonesian Government. The ICM Strategy developed was broad based and addressed the priority natural resource management issues facing the Brantas Catchment. It was co-ordinated by BAPEDALDA, the Provincial Environmental Protection Agency, and developed by all agencies involved in natural resource management in the catchment. Various Universities and Non Government Organisations (NGOs) were also involved in the ICM process which developed the Strategy. At the conclusion of the attachment, a draft ICM Strategy and a proposed institutional framework had been developed. A working group of key agencies was also established to further enhance local "ownership", finalise timescales and implementation responsibilities within the Strategy and bring the institutional arrangements into being through a Governor's Decree.

  10. FLASH-FLOOD MODELLING WITH ARTIFICIAL NEURAL NETWORKS USING RADAR RAINFALL ESTIMATES

    Directory of Open Access Journals (Sweden)

    Dinu Cristian

    2017-09-01

    Full Text Available The use of artificial neural networks (ANNs in modelling the hydrological processes has become a common approach in the last two decades, among side the traditional methods. In regard to the rainfall-runoff modelling, in both traditional and ANN models the use of ground rainfall measurements is prevalent, which can be challenging in areas with low rain gauging station density, especially in catchments where strong focused rainfall can generate flash-floods. The weather radar technology can prove to be a solution for such areas by providing rain estimates with good time and space resolution. This paper presents a comparison between different ANN setups using as input both ground and radar observations for modelling the rainfall-runoff process for Bahluet catchment, with focus on a flash-flood observed in the catchment.

  11. Morphology, Geology and Water Quality Assessment of Former Tin Mining Catchment

    Science.gov (United States)

    Ashraf, Muhammad Aqeel; Maah, Mohd. Jamil; Yusoff, Ismail

    2012-01-01

    Bestari Jaya, former tin mining catchment covers an area of 2656.31 hectares comprised of four hundred and forty-two different-size lakes and ponds. The present study area comprise of 92 hectares of the catchment that include four large size lakes. Arc GIS version 9.2 used to develop bathymetric map, Global Positioning System (GPS) for hydrographical survey and flow meter was utilized for water discharge analysis (flow routing) of the catchment. The water quality parameters (pH, temperature, electric conductivity, dissolved oxygen DO, total dissolved solids TDS, chlorides, ammonium, nitrates) were analyzed by using Hydrolab. Quality assurance (QA) and quality control (QC) procedures were strictly followed throughout the field work and data analysis. Different procedures were employed to evaluate the analytical data and to check for possible transcription or dilution errors, changes during analysis, or unusual or unlikely values. The results obtained are compared with interim national water quality standards for Malaysia indicates that water quality of area is highly degraded. It is concluded that Bestri Jaya ex-mining catchment has a high pollution potential due to mining activities and River Ayer Hitam, recipient of catchment water, is a highly polluted river. PMID:22761549

  12. Networking Ethics: A Survey of Bioethics Networks Across the U.S.

    Science.gov (United States)

    Fausett, Jennifer Kleiner; Gilmore-Szott, Eleanor; Hester, D Micah

    2016-06-01

    Ethics networks have emerged over the last few decades as a mechanism for individuals and institutions over various regions, cities and states to converge on healthcare-related ethical issues. However, little is known about the development and nature of such networks. In an effort to fill the gap in the knowledge about such networks, a survey was conducted that evaluated the organizational structure, missions and functions, as well as the outcomes/products of ethics networks across the country. Eighteen established bioethics networks were identified via consensus of three search processes and were approached for participation. The participants completed a survey developed for the purposes of this study and distributed via SurveyMonkey. Responses were obtained from 10 of the 18 identified and approached networks regarding topic areas of: Network Composition and Catchment Areas; Network Funding and Expenses; Personnel; Services; and Missions and Accomplishments. Bioethics networks are designed primarily to bring ethics education and support to professionals and hospitals. They do so over specifically defined areas-states, regions, or communities-and each is concerned about how to stay financially healthy. At the same time, the networks work off different organizational models, either as stand-alone organizations or as entities within existing organizational structures.

  13. Fit-for-purpose phosphorus management: do riparian buffers qualify in catchments with sandy soils?

    Science.gov (United States)

    Weaver, David; Summers, Robert

    2014-05-01

    Hillslope runoff and leaching studies, catchment-scale water quality measurements and P retention and release characteristics of stream bank and catchment soils were used to better understand reasons behind the reported ineffectiveness of riparian buffers for phosphorus (P) management in catchments with sandy soils from south-west Western Australia (WA). Catchment-scale water quality measurements of 60 % particulate P (PP) suggest that riparian buffers should improve water quality; however, runoff and leaching studies show 20 times more water and 2 to 3 orders of magnitude more P are transported through leaching than runoff processes. The ratio of filterable reactive P (FRP) to total P (TP) in surface runoff from the plots was 60 %, and when combined with leachate, 96 to 99 % of P lost from hillslopes was FRP, in contrast with 40 % measured as FRP at the large catchment scale. Measurements of the P retention and release characteristics of catchment soils (bank soil (bank soils suggest that catchment soils contain more P, are more P saturated and are significantly more likely to deliver FRP and TP in excess of water quality targets than stream bank soils. Stream bank soils are much more likely to retain P than contribute P to streams, and the in-stream mixing of FRP from the landscape with particulates from stream banks or stream beds is a potential mechanism to explain the change in P form from hillslopes (96 to 99 % FRP) to large catchments (40 % FRP). When considered in the context of previous work reporting that riparian buffers were ineffective for P management in this environment, these studies reinforce the notion that (1) riparian buffers are unlikely to provide fit-for-purpose P management in catchments with sandy soils, (2) most P delivered to streams in sandy soil catchments is FRP and travels via subsurface and leaching pathways and (3) large catchment-scale water quality measurements are not good indicators of hillslope P mobilisation and transport

  14. Spatio-temporal dynamics of surface water quality in a Portuguese peri-urban catchment

    Science.gov (United States)

    Ferreira, Carla; Walsh, Rory; Coelho, Celeste; Ferreira, António

    2016-04-01

    Urban development poses great pressure on water resources, but the impact of different land-uses on streamwater quality in partly urbanized catchments is not well understood. Focussing on a Portuguese peri-urban catchment, this paper explores the impact of a mosaic of different urban and non-urban land-uses on streamwater quality, and the influence of a seasonal Mediterranean climate on pollutant dynamics. The catchment has a 40% urban cover, dispersed amongst patches of woodland (56%) and agricultural fields (4%). Apart from the catchment outlet, streamwater quality was assessed at three sub-catchment sites: (i) Porto Bordalo, encompassing a 39% urban area with a new major road; (ii) Espírito Santo, draining a sub-catchment with 49% urban cover, mostly comprising detached houses surrounded by gardens; and (iii) Quinta, with a 25% urban cover. The Porto Bordalo sub-catchment is underlain by limestone, whereas the Espírito Santo and Quinta sub-catchments overlie sandstone. Water quality variables (notably nutrients, heavy metals and COD) were assessed for samples collected at different stages in the storm hydrograph responses to ten rainfall events occurring between October 2011 and March 2013. Urban areas had great impacts on COD, with highest median concentrations in Espírito Santo (18.0 mg L-1) and lowest in Quinta (9.5 mgL-1). In Espírito Santo, the management of gardens triggered greatest median concentrations of N-NO3 (1.46 mgL-1, purban patterns and storm drainage system, should help enable urban planners to minimize adverse impacts of urbanization on water quality.

  15. Catchment power and the joint distribution of elevation and travel distance to the outlet

    Directory of Open Access Journals (Sweden)

    L. S. Sklar

    2016-10-01

    Full Text Available The delivery of water, sediment, and solutes by catchments is influenced by the distribution of source elevations and their travel distances to the outlet. For example, elevation affects the magnitude and phase of precipitation, as well as the climatic factors that govern rock weathering, which influence the production rate and initial particle size of sediments. Travel distance, in turn, affects the timing of flood peaks at the outlet and the degree of sediment size reduction by wear, which affects particle size distributions at the outlet. The distributions of elevation and travel distance have been studied extensively but separately, as the hypsometric curve and width function. Yet a catchment can be considered as a collection of points, each with paired values of elevation and travel distance. For every point, the ratio of elevation to travel distance defines the mean slope for transport of mass to the outlet. Recognizing that mean slope is proportional to the average rate of loss of potential energy by water and sediment during transport to the outlet, we use the joint distribution of elevation and travel distance to define two new metrics for catchment geometry: "source-area power", and the corresponding catchment-wide integral "catchment power". We explore patterns in source-area and catchment power across three study catchments spanning a range of relief and drainage area. We then develop an empirical algorithm for generating synthetic source-area power distributions, which can be parameterized with data from natural catchments. This new way of quantifying the three-dimensional geometry of catchments can be used to explore the effects of topography on the distribution on fluxes of water, sediment, isotopes, and other landscape products passing through catchment outlets, and may provide a fresh perspective on problems of both practical and theoretical interest.

  16. Simulating the influence of snow surface processes on soil moisture dynamics and streamflow generation in an alpine catchment

    Directory of Open Access Journals (Sweden)

    N. Wever

    2017-08-01

    Full Text Available The assessment of flood risks in alpine, snow-covered catchments requires an understanding of the linkage between the snow cover, soil and discharge in the stream network. Here, we apply the comprehensive, distributed model Alpine3D to investigate the role of soil moisture in the predisposition of the Dischma catchment in Switzerland to high flows from rainfall and snowmelt. The recently updated soil module of the physics-based multilayer snow cover model SNOWPACK, which solves the surface energy and mass balance in Alpine3D, is verified against soil moisture measurements at seven sites and various depths inside and in close proximity to the Dischma catchment. Measurements and simulations in such terrain are difficult and consequently, soil moisture was simulated with varying degrees of success. Differences between simulated and measured soil moisture mainly arise from an overestimation of soil freezing and an absence of a groundwater description in the Alpine3D model. Both were found to have an influence in the soil moisture measurements. Using the Alpine3D simulation as the surface scheme for a spatially explicit hydrologic response model using a travel time distribution approach for interflow and baseflow, streamflow simulations were performed for the discharge from the catchment. The streamflow simulations provided a closer agreement with observed streamflow when driving the hydrologic response model with soil water fluxes at 30 cm depth in the Alpine3D model. Performance decreased when using the 2 cm soil water flux, thereby mostly ignoring soil processes. This illustrates that the role of soil moisture is important to take into account when understanding the relationship between both snowpack runoff and rainfall and catchment discharge in high alpine terrain. However, using the soil water flux at 60 cm depth to drive the hydrologic response model also decreased its performance, indicating that an optimal soil depth to include in

  17. Relating climate change signals and physiographic catchment properties to clustered hydrological response types

    Directory of Open Access Journals (Sweden)

    N. Köplin

    2012-07-01

    Full Text Available We propose an approach to reduce a comprehensive set of 186 mesoscale catchments in Switzerland to fewer response types to climate change and to name sensitive regions as well as catchment characteristics that govern hydrological change. We classified the hydrological responses of our study catchments through an agglomerative-hierarchical cluster analysis, and we related the dominant explanatory variables, i.e. the determining catchment properties and climate change signals, to the catchments' hydrological responses by means of redundancy analysis. All clusters except for one exhibit clearly decreasing summer runoff and increasing winter runoff. This seasonal shift was observed for the near future period (2025–2046 but is particularly obvious in the far future period (2074–2095. Within a certain elevation range (between 1000 and 2500 m a.s.l., the hydrological change is basically a function of elevation, because the latter governs the dominant hydro-climatological processes associated with temperature, e.g. the ratio of liquid to solid precipitation and snow melt processes. For catchments below the stated range, hydrological change is mainly a function of precipitation change, which is not as pronounced as the temperature signal is. Future impact studies in Switzerland can be conducted on a reduced sample of catchments representing the sensitive regions or covering a range of altitudes.

  18. From hydro-geomorphological mapping to sediment transfer evaluation in the Upper Guil Catchment (Queyras, French Alps)

    Science.gov (United States)

    Lissak, Candide; Fort, Monique; Arnaud-Fassetta, Gilles; Mathieu, Alexandre; Malet, Jean-Philippe; Carlier, Benoit; Betard, François; Cossart, Etienne; Madelin, Malika; Viel, Vincent; Charney, Bérengère; Bletterie, Xavier

    2014-05-01

    proposed methodology is based on data directly derived from GIS analysis using interpretation of aerial photographs, regional scale Digital Elevation Model (DEM), high-resolution DEM derived from airborne-based LiDAR, and field survey. The data thus obtained can be used in the final geomorphological map. Future investigations will quantify the contribution of each sub-catchment in the global sediment budget of the Guil catchment. For a better assessment of sediment fluxes and sediment delivery into the main channel network, tracers (pit-tags) and diachronic Terrestrial Laser Scanning will be performed in selected sub-catchments in order to measure erosion rates and contribution to the sediment yield in the valley bottoms during the floods, avalanches and rainfall seasonal events.

  19. Flow and sediment transport in an Indonesian tidal network

    NARCIS (Netherlands)

    Buschman, F.A.

    2011-01-01

    The Berau river, situated in east Kalimantan (Indonesia), drains a relatively small catchment area and splits into several interconnected tidal channels. This tidal network connects to the sea. The sea is host to extremely diverse coral reef communities. Also the land side of the region is

  20. Assessing the drivers of dissolved organic matter export from two contrasting lowland catchments, U.K.

    Science.gov (United States)

    Yates, Christopher A; Johnes, Penny J; Spencer, Robert G M

    2016-11-01

    Two lowland catchments in the U.K. were sampled throughout 2010-11 to investigate the dominant controls on dissolved organic matter quantity and composition. The catchments had marked differences in terms of nutrient status, land cover and contrasting lithologies resulting in differences in the dominant flow pathways (groundwater vs. surface water dominated). The Upper Wylye is a chalk stream with a baseflow index of 0.98, draining a catchment dominated by intensive agricultural production. Millersford Brook is a lowland peat catchment with a baseflow index of 0.43, draining a semi-natural catchment with heather moorland and coniferous forest. Samples were collected weekly between October 2010 and September 2011 from eleven sampling locations. Samples were analysed to determine dissolved organic carbon, nitrogen and phosphorus fractions with DOM composition evaluated via the DOC:DON ratio, DOC:DOP ratio, specific UV absorption at 254nm, absorbance ratio (a250:a365) and the spectral slope parameter between 350 and 400nm (S350-400). Significant differences were observed in all determinands between the catchments, over time, and spatially along nutrient enrichment and geoclimatic gradients. Seasonal variation in preferential flow pathways mobilising groundwater-derived DOM were identified as likely controls on the delivery of DOM in the permeable chalk dominated catchment. Steeper S350-400 values and elevated a250:a365 ratios in this catchment suggest material of a lower bulk aromatic C content and molecular weight delivered during the winter months when compared to the summer. DOC:DON ratios were markedly lower in the chalk catchment than the peatland catchment, reflecting the paucity of organic matter within the mineral soils of the chalk landscape, and higher fertiliser application rates. This manuscript highlights that DOM composition varies according to catchment landscape character and hydrological function. Copyright © 2016 The Authors. Published by Elsevier B

  1. The StreamCat Dataset: Accumulated Attributes for NHDPlusV2 Catchments (Version 2.1) for the Conterminous United States: Index of Watershed Integrity / Index of Catchment Integrity (IWI/ICI)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset represents the Index of Watershed Integrity / Index of Catchment Integrity (IWI/ICI) within individual local NHDPlusV2 catchments and upstream,...

  2. Sulphate deposition to a small upland catchment at Suikerbosrand, South Africa

    CSIR Research Space (South Africa)

    Skoroszewski, RW

    1995-12-01

    Full Text Available In 1992, a study was initiated by the Water Research Commission of South Africa, to investigate the relationship between atmospheric deposition and water quality in a small upland catchment. The selected catchment, which had a seasonal stream, was a...

  3. The ethics of socio-ecohydrological catchment management: towards hydrosolidarity

    Science.gov (United States)

    Falkenmark, M.; Folke, Carl

    This paper attempts to clarify key biophysical issues and the problems involved in the ethics of socio-ecohydrological catchment management. The issue in managing complex systems is to live with unavoidable change while securing the capacity of the ecohydrological system of the catchment to sustain vital ecological goods and services, aquatic as well as terrestrial, on which humanity depends ultimately. Catchment management oriented to sustainability has to be based on ethical principles: human rights, international conventions, sustaining crucial ecological goods and services, and protecting ecosystem resilience, all of which have water linkages. Many weaknesses have to be identified, assessed and mitigated to improve the tools by which the ethical issues can be addressed and solved: a heritage of constraining tunnel vision in both science and management; inadequate shortcuts made in modern scientific system analyses (e.g. science addressing sustainability issues); simplistic technical-fix approaches to water and ecosystems in land/water/ecosystem management; conventional tools for evaluation of scientific quality with its focus on "doing the thing right" rather than "doing the right thing". The new ethics have to incorporate principles that, on a catchment basis, allow for proper attention to the hungry and poor, upstream and downstream, to descendants, and to sites and habitats that need to be protected.

  4. Understanding sediment sources in a peri-urban Mediterranean catchment using geochemical tracers

    Science.gov (United States)

    Ferreira, Carla; Walsh, Rory; Kikuchi, Ryunosuke; Blake, Will

    2016-04-01

    One of the main physical environmental impacts of urbanization is an increase in suspended sediment concentrations and loads, particularly in the constructional phase. Impacts in peri-urban catchments characterized by a mosaic of urban and non-urban landscape elements with varying roles in acting as sources and sinks of overland flow and slope wash have received little attention, particularly in Mediterranean environments. The present study uses a sediment 'fingerprinting' approach to determine the main sediment sources in the peri-urban Ribeira dos Covões catchment (6.2km2) in Portugal and how they change during storm events following contrasting antecedent weather. The catchment, rural until 1972, underwent discontinuous urbanization in 1973-1993, followed by an urban consolidation phase. Currently, its land-use is a complex mosaic of woodland (56%), urban (40%) and agricultural (4%) land parcels. Distinct urban patterns include some well-defined urban residential centres, but also areas of discontinuous urban sprawl. Since 2010, a major road was built and an enterprise park has been under construction, covering 1% and 5% of the catchment, respectively. The catchment has a Mediterranean climate. The geology comprises sandstone (56%), limestone (41%) and alluvial deposits (3%). Soils are generally deep (>3.0m), but shallow (urbanized and partly urbanized catchments, and to supporting them in designing and implementing effective land-use mosaics and site-specific measures to mitigate erosion.

  5. How does landscape structure influence catchment transit time across different geomorphic provinces?

    Science.gov (United States)

    Tetzlaff, D.; Seibert, J.; McGuire, K.J.; Laudon, H.; Burns, Douglas A.; Dunn, S.M.; Soulsby, C.

    2009-01-01

    Despite an increasing number of empirical investigations of catchment transit times (TTs), virtually all are based on individual catchments and there are few attempts to synthesize understanding across different geographical regions. Uniquely, this paper examines data from 55 catchments in five geomorphic provinces in northern temperate regions (Scotland, United States of America and Sweden). The objective is to understand how the role of catchment topography as a control on the TTs differs in contrasting geographical settings. Catchment inverse transit time proxies (ITTPs) were inferred by a simple metric of isotopic tracer damping, using the ratio of standard deviation of ??18O in streamwater to the standard deviation of ??18O in precipitation. Quantitative landscape analysis was undertaken to characterize the catchments according to hydrologically relevant topographic indices that could be readily determined from a digital terrain model (DTM). The nature of topographic controls on transit times varied markedly in different geomorphic regions. In steeper montane regions, there are stronger gravitational influences on hydraulic gradients and TTs tend to be lower in the steepest catchments. In provinces where terrain is more subdued, direct topographic control weakened; in particular, where flatter areas with less permeable soils give rise to overland flow and lower TTs. The steeper slopes within this flatter terrain appear to have a greater coverage of freely draining soils, which increase sub-surface flow, therefore increasing TTs. Quantitative landscape analysis proved a useful tool for intercatchment comparison. However, the critical influence of sub-surface permeability and connectivity may limit the transferability of predictive tools of hydrological function based on topographic parameters alone. Copyright ?? 2009 John Wiley & Sons, Ltd.

  6. Clearing invasive alien plants as a cost-effective strategy for water catchment management: The case of the Olifants river catchment, South Africa

    Directory of Open Access Journals (Sweden)

    Tshepo Morokong

    2016-12-01

    Full Text Available Invasive alien plants have a negative impact on ecosystem goods and services derived from ecosystems. Consequently, the aggressive spread of invasive alien plants (IAPs in the river catchments of South Africa is a major threat to, inter alia, water security. The Olifants River catchment is one such a catchment that is under pressure because of the high demand for water from mainly industrial sources and unsustainable land-use, which includes IAPs. This study considered the cost-effectiveness of clearing IAPs and compared these with the cost of a recently constructed dam. The methods used for data collection were semistructured interviews, site observation, desktop data analysis, and a literature review to assess the impact of IAPs on the catchment’s water supply. The outcomes of this study indicate that clearing invasive alien plants is a cost-effective intervention with a Unit Reference Value (URV of R1.44/m3, which compares very favourably with that of the De Hoop dam, the URV for which is R2.93/m3. These results suggest that clearing invasive alien plants is a cost-effective way of catchment management, as the opportunity cost of not doing so (forfeiting water to the value of R2.93/m3 is higher than that of protecting the investment in the dam.

  7. Derivation of a fuzzy national phosphorus export model using 84 Irish catchments

    Energy Technology Data Exchange (ETDEWEB)

    Nasr, Ahmed [School of Civil and Building Services Engineering, College Of Engineering and Built Environment, Dublin Institute of Technology, Bolton Street, Dublin 1 (Ireland); Bruen, Michael, E-mail: michael.bruen@ucd.ie [Centre for Water Resources Research, University College Dublin, Newstead Building, Richview, Belfield, Dublin 4 (Ireland)

    2013-01-15

    Implementation of appropriate management strategies to mitigate diffuse phosphorus (P) pollution at the catchment scale is vitally important for the sustainable development of water resources in Ireland. An important element in the process of implementing such strategies is the prediction of their impacts on P concentrations in a catchment using a reliable mathematical model. In this study, a state-of-the-art adaptive neuro-fuzzy inference system (ANFIS) has been used to develop a new national P model capable of estimating average annual ortho-P concentrations at un-gauged catchments. Data from 84 catchments dominated by diffuse P pollution were used in developing and testing the model. Six different split-sample scenarios were used to partition the total number of the catchments into two sets, one to calibrate and the other to validate the model. The k-means clustering algorithm was used to partition the sets into clusters of catchments with similar features. Then for each scenario and for each cluster case, 11 different models, each of which consists of a linear regression sub-model for each cluster, were formulated by using different input variables selected from among six spatially distributed variables including phosphorus desorption index (PDI), runoff risk index (RRI), geology (GEO), groundwater (GW), land use (LU), and soil (SO). The success of the new approach over the conventional lumped, empirical, modelling approach was evident from the improved results obtained for most of the cases. In addition the results highlighted the importance of using information on PDI and RRI as explanatory input variables to simulate the average annual ortho-P concentrations. - Highlights: ► Develops a new national phosphorus export model for agricultural catchments in Ireland ► Improves on earlier empirical phosphorus export models by using k-means clustering method for partitioning data ► Uses ANFIS model to predict annual average ortho-phosphorus concentrations

  8. Derivation of a fuzzy national phosphorus export model using 84 Irish catchments

    International Nuclear Information System (INIS)

    Nasr, Ahmed; Bruen, Michael

    2013-01-01

    Implementation of appropriate management strategies to mitigate diffuse phosphorus (P) pollution at the catchment scale is vitally important for the sustainable development of water resources in Ireland. An important element in the process of implementing such strategies is the prediction of their impacts on P concentrations in a catchment using a reliable mathematical model. In this study, a state-of-the-art adaptive neuro-fuzzy inference system (ANFIS) has been used to develop a new national P model capable of estimating average annual ortho-P concentrations at un-gauged catchments. Data from 84 catchments dominated by diffuse P pollution were used in developing and testing the model. Six different split-sample scenarios were used to partition the total number of the catchments into two sets, one to calibrate and the other to validate the model. The k-means clustering algorithm was used to partition the sets into clusters of catchments with similar features. Then for each scenario and for each cluster case, 11 different models, each of which consists of a linear regression sub-model for each cluster, were formulated by using different input variables selected from among six spatially distributed variables including phosphorus desorption index (PDI), runoff risk index (RRI), geology (GEO), groundwater (GW), land use (LU), and soil (SO). The success of the new approach over the conventional lumped, empirical, modelling approach was evident from the improved results obtained for most of the cases. In addition the results highlighted the importance of using information on PDI and RRI as explanatory input variables to simulate the average annual ortho-P concentrations. - Highlights: ► Develops a new national phosphorus export model for agricultural catchments in Ireland ► Improves on earlier empirical phosphorus export models by using k-means clustering method for partitioning data ► Uses ANFIS model to predict annual average ortho-phosphorus concentrations

  9. Using artificial fluorescent particles as tracers of livestock wastes within an agricultural catchment

    International Nuclear Information System (INIS)

    Granger, Steve J.; Bol, Roland; Hawkins, Jane M.B.; White, Sue M.; Naden, Pamela S.; Old, Gareth H.; Marsh, Jon K.; Bilotta, Gary S.; Brazier, Richard E.; Macleod, Christopher J.A.; Haygarth, Philip M.

    2011-01-01

    Evidence for the movement of agricultural slurry and associated pollutants into surface waters is often anecdotal, particularly with relation to its 'particulate' components which receive less attention than 'bio-available' soluble phases. To assess the extent of movement of slurry particles artificial fluorescent particles were mixed with slurry and applied to a field sub-catchment within a headwater catchment. Particles were 2-60 μm in diameter and two different densities, 2.7 and 1.2 g cm -3 representing 'inorganic' and 'organic' material. Water samples from the field and catchment outlet were collected during two storm events following slurry application and analysed for particle and suspended sediment concentrations (SSC). SSC from the field and catchment outlet always formed clockwise hysteresis loops indicating sediment exhaustion and particles of the two densities were always found to be positively correlated. Particles from the field formed clockwise hysteresis loops during the first discharge event after slurry application, but anti-clockwise hysteresis loops during the second monitored event which indicated a depletion of readily mobilisable particles. Particles from the catchment outlet always formed anticlockwise hysteresis loops. Particle size became finer spatially, between field and catchment outlet, and temporally, between successive storm events. The results indicate that slurry particles may be readily transported within catchments but that different areas may contribute to pollutant loads long after the main peak in SSC has passed. The density of the particles did not appear to have any effect on particle transport however the size of the particles may play a more important role in the 2-60 μm range. - Research Highlights: → This study traces the movement of agricultural slurry particles from land to waters. → Two densities of artificial fluorescent particles were applied to a nested catchment. → Slurry particles moved from point of

  10. Inter-comparison of hydro-climatic regimes across northern catchments: Synchronicity, resistance and resilience

    Science.gov (United States)

    Carey, S.K.; Tetzlaff, D.; Seibert, J.; Soulsby, C.; Buttle, J.; Laudon, H.; McDonnell, J.; McGuire, K.; Caissie, D.; Shanley, J.; Kennedy, M.; Devito, K.; Pomeroy, J.W.

    2010-01-01

    The higher mid-latitudes of the Northern Hemisphere are particularly sensitive to climate change as small differences in temperature determine frozen ground status, precipitation phase, and the magnitude and timing of snow accumulation and melt. An international inter-catchment comparison program, North-Watch, seeks to improve our understanding of the sensitivity of northern catchments to climate change by examining their hydrological and biogeochemical responses. The catchments are located in Sweden (Krycklan), Scotland (Mharcaidh, Girnock and Strontian), the United States (Sleepers River, Hubbard Brook and HJ Andrews) and Canada (Catamaran, Dorset and Wolf Creek). This briefing presents the initial stage of the North-Watch program, which focuses on how these catchments collect, store and release water and identify 'types' of hydro-climatic catchment response. At most sites, a 10-year data of daily precipitation, discharge and temperature were compiled and evaporation and storage were calculated. Inter-annual and seasonal patterns of hydrological processes were assessed via normalized fluxes and standard flow metrics. At the annual-scale, relations between temperature, precipitation and discharge were compared, highlighting the role of seasonality, wetness and snow/frozen ground. The seasonal pattern and synchronicity of fluxes at the monthly scale provided insight into system memory and the role of storage. We identified types of catchments that rapidly translate precipitation into runoff and others that more readily store water for delayed release. Synchronicity and variance of rainfall-runoff patterns were characterized by the coefficient of variation (cv) of monthly fluxes and correlation coefficients. Principal component analysis (PCA) revealed clustering among like catchments in terms of functioning, largely controlled by two components that (i) reflect temperature and precipitation gradients and the correlation of monthly precipitation and discharge and (ii

  11. Understanding Hydrological Processes in an Ungauged Catchment in sub-Saharan Africa

    NARCIS (Netherlands)

    Mul, M.L.

    2009-01-01

    Ungauged catchments can be found in many parts of the world, but particularly in sub-Saharan Africa. Information collected in a gauged catchment and its regionalisation to ungauged areas is crucial for water resources assessment. Especially farmers in semi-arid areas are in need of such information.

  12. A detailed model for simulation of catchment scale subsurface hydrologic processes

    Science.gov (United States)

    Paniconi, Claudio; Wood, Eric F.

    1993-01-01

    A catchment scale numerical model is developed based on the three-dimensional transient Richards equation describing fluid flow in variably saturated porous media. The model is designed to take advantage of digital elevation data bases and of information extracted from these data bases by topographic analysis. The practical application of the model is demonstrated in simulations of a small subcatchment of the Konza Prairie reserve near Manhattan, Kansas. In a preliminary investigation of computational issues related to model resolution, we obtain satisfactory numerical results using large aspect ratios, suggesting that horizontal grid dimensions may not be unreasonably constrained by the typically much smaller vertical length scale of a catchment and by vertical discretization requirements. Additional tests are needed to examine the effects of numerical constraints and parameter heterogeneity in determining acceptable grid aspect ratios. In other simulations we attempt to match the observed streamflow response of the catchment, and we point out the small contribution of the streamflow component to the overall water balance of the catchment.

  13. Urbanization increased metal levels in lake surface sediment and catchment topsoil of waterscape parks

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong-Bo [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Yu, Shen, E-mail: syu@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Li, Gui-Lin [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Liu, Yi; Yu, Guang-Bin [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Deng, Hong [Department of Environmental Sciences, Tiantong National Station of Forest Ecosystem, Key Laboratory of Urbanization and Ecological Restoration, East China Normal University, Shanghai 200062 (China); Wu, Sheng-Chun [State Key Laboratory in Marine Pollution, Biology and Chemistry Department, City University of Hong Kong, Hong Kong (China); Wong, Ming-Hung [Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong (China)

    2012-08-15

    Lake surface sediment is mainly derived from topsoil in its catchment. We hypothesized that distribution of anthropogenic metals would be homogenous in lake surface sediment and the lake's catchment topsoil. Anthropogenic metal distributions (cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn)) in fourteen waterscape parks were investigated in surface sediments and catchment topsoils and possible source homogeneity was tested using stable Pb isotopic ratio analysis. The parks were located along an urbanization gradient consisting of suburban (SU), developing urban (DIU), developed urban (DDU), and central urban core (CUC) areas in Shanghai, China. Results indicated that surface lake sediments and catchment topsoils in the CUC parks were highly contaminated by the investigated anthropogenic metals. Total metal contents in surface sediment and topsoil gradually increased along the urbanization gradient from the SU to CUC areas. Generally, the surface sediments had greater total metal contents than their catchment topsoils. These results suggest that urbanization drives the anthropogenic metal enrichment in both surface sediment and its catchment topsoil in the waterscape parks. Soil fine particles (< 63 {mu}m) and surface sediments had similar enrichment ratios of metals, suggesting that surface runoff might act as a carrier for metals transporting from catchment to lake. Stable Pb isotope ratio analysis revealed that the major anthropogenic Pb source in surface sediment was coal combustion as in the catchment topsoil. Urbanization also correlated with chemical fractionation of metals in both surface sediment and catchment topsoil. From the SU to the CUC parks, amounts of labile metal fractions increased while the residual fraction of those metals remained rather constant. In short, urbanization in Shanghai drives anthropogenic metal distribution in environmental matrices and the sources were homogenous. -- Highlights: Black-Right-Pointing-Pointer Obvious

  14. Urbanization increased metal levels in lake surface sediment and catchment topsoil of waterscape parks

    International Nuclear Information System (INIS)

    Li, Hong-Bo; Yu, Shen; Li, Gui-Lin; Liu, Yi; Yu, Guang-Bin; Deng, Hong; Wu, Sheng-Chun; Wong, Ming-Hung

    2012-01-01

    Lake surface sediment is mainly derived from topsoil in its catchment. We hypothesized that distribution of anthropogenic metals would be homogenous in lake surface sediment and the lake's catchment topsoil. Anthropogenic metal distributions (cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn)) in fourteen waterscape parks were investigated in surface sediments and catchment topsoils and possible source homogeneity was tested using stable Pb isotopic ratio analysis. The parks were located along an urbanization gradient consisting of suburban (SU), developing urban (DIU), developed urban (DDU), and central urban core (CUC) areas in Shanghai, China. Results indicated that surface lake sediments and catchment topsoils in the CUC parks were highly contaminated by the investigated anthropogenic metals. Total metal contents in surface sediment and topsoil gradually increased along the urbanization gradient from the SU to CUC areas. Generally, the surface sediments had greater total metal contents than their catchment topsoils. These results suggest that urbanization drives the anthropogenic metal enrichment in both surface sediment and its catchment topsoil in the waterscape parks. Soil fine particles (< 63 μm) and surface sediments had similar enrichment ratios of metals, suggesting that surface runoff might act as a carrier for metals transporting from catchment to lake. Stable Pb isotope ratio analysis revealed that the major anthropogenic Pb source in surface sediment was coal combustion as in the catchment topsoil. Urbanization also correlated with chemical fractionation of metals in both surface sediment and catchment topsoil. From the SU to the CUC parks, amounts of labile metal fractions increased while the residual fraction of those metals remained rather constant. In short, urbanization in Shanghai drives anthropogenic metal distribution in environmental matrices and the sources were homogenous. -- Highlights: ► Obvious urbanization effect on metal

  15. Spatial Disaggregation of Areal Rainfall Using Two Different Artificial Neural Networks Models

    Directory of Open Access Journals (Sweden)

    Sungwon Kim

    2015-06-01

    Full Text Available The objective of this study is to develop artificial neural network (ANN models, including multilayer perceptron (MLP and Kohonen self-organizing feature map (KSOFM, for spatial disaggregation of areal rainfall in the Wi-stream catchment, an International Hydrological Program (IHP representative catchment, in South Korea. A three-layer MLP model, using three training algorithms, was used to estimate areal rainfall. The Levenberg–Marquardt training algorithm was found to be more sensitive to the number of hidden nodes than were the conjugate gradient and quickprop training algorithms using the MLP model. Results showed that the networks structures of 11-5-1 (conjugate gradient and quickprop and 11-3-1 (Levenberg-Marquardt were the best for estimating areal rainfall using the MLP model. The networks structures of 1-5-11 (conjugate gradient and quickprop and 1-3-11 (Levenberg–Marquardt, which are the inverse networks for estimating areal rainfall using the best MLP model, were identified for spatial disaggregation of areal rainfall using the MLP model. The KSOFM model was compared with the MLP model for spatial disaggregation of areal rainfall. The MLP and KSOFM models could disaggregate areal rainfall into individual point rainfall with spatial concepts.

  16. Assessment of runoff contributing catchment areas in rainfall runoff modelling

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Johansen, C.; Schaarup-Jensen, Kjeld

    2006-01-01

    In numerical modelling of rainfall caused runoff in urban sewer systems an essential parameter is the hydrological reduction factor which defines the percentage of the impervious area contributing to the surface flow towards the sewer. As the hydrological processes during a rainfall are difficult...... to determine with significant precision the hydrological reduction factor is implemented to account all hydrological losses except the initial loss. This paper presents an inconsistency between calculations of the hydrological reduction factor, based on measurements of rainfall and runoff, and till now...... recommended literature values for residential areas. It is proven by comparing rainfall-runoff measurements from four different residential catchments that the literature values of the hydrological reduction factor are over-estimated for this type of catchment. In addition, different catchment descriptions...

  17. Safeguarding the provision of ecosystem services in catchment systems.

    Science.gov (United States)

    Everard, Mark

    2013-04-01

    A narrow technocentric focus on a few favored ecosystem services (generally provisioning services) has led to ecosystem degradation globally, including catchment systems and their capacities to support human well-being. Increasing recognition of the multiple benefits provided by ecosystems is slowly being translated into policy and some areas of practice, although there remains a significant shortfall in the incorporation of a systemic perspective into operation management and decision-making tools. Nevertheless, a range of ecosystem-based solutions to issues as diverse as flooding and green space provision in the urban environment offers hope for improving habitat and optimization of beneficial services. The value of catchment ecosystem processes and their associated services is also being increasingly recognized and internalized by the water industry, improving water quality and quantity through catchment land management rather than at greater expense in the treatment costs of contaminated water abstracted lower in catchments. Parallel recognition of the value of working with natural processes, rather than "defending" built assets when catchment hydrology is adversely affected by unsympathetic upstream development, is being progressively incorporated into flood risk management policy. This focus on wider catchment processes also yields a range of cobenefits for fishery, wildlife, amenity, flood risk, and other interests, which may be optimized if multiple stakeholders and their diverse value systems are included in decision-making processes. Ecosystem services, particularly implemented as a central element of the ecosystem approach, provide an integrated framework for building in these different perspectives and values, many of them formerly excluded, into commercial and resource management decision-making processes, thereby making tractable the integrative aspirations of sustainable development. This can help redress deeply entrenched inherited assumptions

  18. Peak Flow Responses and Recession Flow Characteristics After Thinning of Japanese Cypress Forest in a Headwater Catchment

    Science.gov (United States)

    We evaluated the effects of forest thinning on peak flow and recession characteristics of storm runoff in headwater catchments at Mie Prefecture, Japan. In catchment M5, 58.3% of stems were removed, whereas catchment M4 remained untreated as a control catchment. Storm precipitati...

  19. Design for participation in ecologically sound management of South Africa's Mlazi River catchment

    OpenAIRE

    Auerbach, R.

    1999-01-01

    Without local participation, integrated catchment management and Landcare will not become a general reality in South Africa. With support from the South African Water Research Commission, the University of Natal's Farmer Support Group set up the Ntshongweni Catchment Management Programme (NCMP) as a practical participatory action research investigation of ecological farming systems, integrated catchment management and Landcare. Local experience played a crucial role in helping to bui...

  20. Catchment chemostasis revisited: water quality responds differently to variations in weather and climate

    Science.gov (United States)

    Godsey, Sarah; Kirchner, James

    2017-04-01

    Solute concentrations in streamflow typically vary systematically with stream discharge, and the resulting concentration-discharge relationships are important signatures of catchment (bio)geochemical processes. Solutes derived from mineral weathering often exhibit decreasing concentrations with increasing flows, suggesting dilution of a kinetically limited weathering flux by a variable flux of water. However, Godsey et al. (2009) showed that concentration-discharge relationships of weathering-derived solutes in 59 headwater catchments were much flatter than this simple dilution model would predict. Instead, their analysis showed that these catchments behaved almost like chemostats, with rates of solute production and/or mobilization that were nearly proportional to water fluxes, on both event and inter-annual time scales. Here we re-examine these findings using data from roughly 1000 catchments, ranging from ˜10 to >1,000,000 km2 in drainage area, and spanning a wide range of lithologic and climatic settings. Concentration-discharge relationships among this much larger set of much larger catchments are broadly consistent with the chemostatic behavior described by Godsey et al. (2009). Among these same catchments, however, site-to-site variations in mean concentrations are strongly (negatively) correlated with long-term average precipitation and discharge, suggesting strong dilution of stream concentrations under long-term leaching of the critical zone. The picture that emerges is one in which, on event and inter-annual time scales, stream solute concentrations are chemostatically buffered by groundwater storage and fast chemical reactions (such as ion exchange), but on much longer time scales, the catchment's chemostatic "set point" is determined by climatically driven critical zone evolution. Examples illustrating the different influences of (short-term) weather and (long-term) climate on water quality will be presented, and their implications will be discussed

  1. The nitrate export in subtropical mountainous catchment: implication for land use change impact

    Science.gov (United States)

    Huang, J.-C.; Lee, T.-Y.; Kao, S.-J.; Hsu, S.-C.; Lin, H.-J.; Peng, T.-R.

    2010-12-01

    Agricultural activity is the dominant factor affecting water quality and nitrate export, which causes eutrophication and episodic acidification in downstream water bodies (e.g., reservoirs, lakes, and coastal zones). However, in subtropical mountainous areas such environmental impact due to the land use change was rarely documented. In this study, we investigated 16 sub-catchments during 2007 and 2008 in the Chi-Chia-Wan catchment where is the sole habitat for the endemic species, Formosan landlocked salmon (Oncorhynchus masou formosanus). The results revealed that the NO3-N concentration in pristine catchments varied from 0.144 to 0.151 mg/L without significant seasonal variation. This concentration was comparable with other forestry catchments around the world. However, the annual nitrate export was around 375.3-677.1 kg/km2/yr, much higher than other catchments due to the greater amount of rainfall. This is an important baseline for comparisons with other climate areas. As for the impact of agricultural activities, the catchments with some human disturbance, ~5.2% of the catchment area, might yield 5947.2 kg N/km2/yr - over 10-times higher than that of pristine catchment. Such high export caused by such a low level of disturbance might indicate that subtropical mountainous area is highly sensitive to agricultural activities. As for the land-use effect on nitrate yield, the forestry land might yield 488.5 ± 325.1 kg/km2/yr and the vegetable farm could yield 298 465.4 ± 3347.2 kg/km2/yr - 1000-times greater than the forestry. The estimated nitrate yields for land use classes were a crucial basis and useful for the land manager to assess the possible impacts (e.g., non-point source pollution evaluation and the recovery of land expropriation).

  2. Scale and legacy controls on catchment nutrient export regimes

    Science.gov (United States)

    Howden, N. J. K.; Burt, T.; Worrall, F.

    2017-12-01

    Nutrient dynamics in river catchments are complex: water and chemical fluxes are highly variable in low-order streams, but this variability declines as fluxes move through higher-order reaches. This poses a major challenge for process understanding as much effort is focussed on long-term monitoring of the main river channel (a high-order reach), and therefore the data available to support process understanding are predominantly derived from sites where much of the transient response of nutrient export is masked by the effect of averaging over both space and time. This may be further exacerbated at all scales by the accumulation of legacy nutrient sources in soils, aquifers and pore waters, where historical activities have led to nutrient accumulation where the catchment system is transport limited. Therefore it is of particular interest to investigate how the variability of nutrient export changes both with catchment scale (from low to high-order catchment streams) and with the presence of legacy sources, such that the context of infrequent monitoring on high-order streams can be better understood. This is not only a question of characterising nutrient export regimes per se, but also developing a more thorough understanding of how the concepts of scale and legacy may modify the statistical characteristics of observed responses across scales in both space and time. In this paper, we use synthetic data series and develop a model approach to consider how space and timescales combine with impacts of legacy sources to influence observed variability in catchment export. We find that: increasing space and timescales tend to reduce the observed variance in nutrient exports, due to an increase in travel times and greater mixing, and therefore averaging, of sources; increasing the influence of legacy sources inflates the variance, with the level of inflation dictated by the residence time of the respective sources.

  3. Interpreting stream sediment fingerprints against primary and secondary source signatures in agricultural catchments

    Science.gov (United States)

    Blake, Will H.; Haley, Steve; Smith, Hugh G.; Taylor, Alex; Goddard, Rupert; Lewin, Sean; Fraser, David

    2013-04-01

    Many sediment fingerprinting studies adopt a black box approach to source apportionment whereby the properties of downstream sediment are compared quantitatively to the geochemical fingerprints of potential catchment sources without consideration of potential signature development or modification during transit. Working within a source-pathway-receptor framework, this study aimed to undertake sediment source apportionment within 6 subcatchments of an agricultural river basin with specific attention to the potential role of contaminants (vehicle emissions and mine waste) in development of stream sediment signatures. Fallout radionuclide (FRN) and geochemical fingerprinting methods were adopted independently to establish source signatures for primary sediment sources of surface and subsurface soil materials under various land uses plus reworked mine and 'secondary' soil material deposited, in transit, along road networks. FRN data demonstrated expected variability between surface soil (137Cs = 14 ± 3 Bq kg-1; 210Pbxs = 40 ± 7 Bq kg-1) and channel bank materials (137Cs = 3 ± 1 Bq kg-1; 210Pbxs = 24 ± 5 Bq kg-1) but road transported soil material was considerably elevated in 210Pbxs (up to 673 ± 51 Bq kg-1) due to sediment interaction with pluvial surface water within the road network. Geochemical discrimination between surface and subsurface soil materials was dominated by alkaline earth and alkali metals e.g. Ba, Rb, Ca, K, Mg which are sensitive to weathering processes in soil. Magnetic susceptibility and heavy metals were important discriminators of road transported material which demonstrated transformation of the signatures of material transported via the road network. Numerical unmixing of stream sediment indicated that alongside channel bank erosion, road transported material was an important component in some systems in accord with FRN evidence. While mining spoil also ranked as a significant source in an affected catchment, perhaps related to legacy

  4. Mountaintop Removal Mining and Catchment Hydrology

    Directory of Open Access Journals (Sweden)

    Andrew J. Miller

    2014-03-01

    Full Text Available Mountaintop mining and valley fill (MTM/VF coal extraction, practiced in the Central Appalachian region, represents a dramatic landscape-scale disturbance. MTM operations remove as much as 300 m of rock, soil, and vegetation from ridge tops to access deep coal seams and much of this material is placed in adjacent headwater streams altering landcover, drainage network, and topography. In spite of its scale, extent, and potential for continued use, the effects MTM/VF on catchment hydrology is poorly understood. Previous reviews focus on water quality and ecosystem health impacts, but little is known about how MTM/VF affects hydrology, particularly the movement and storage of water, hence the hydrologic processes that ultimately control flood generation, water chemistry, and biology. This paper aggregates the existing knowledge about the hydrologic impacts of MTM/VF to identify areas where further scientific investigation is needed. While contemporary surface mining generally increases peak and total runoff, the limited MTM/VF studies reveal significant variability in hydrologic response. Significant knowledge gaps relate to limited understanding of hydrologic processes in these systems. Until the hydrologic impact of this practice is better understood, efforts to reduce water quantity and quality problems and ecosystem degradation will be difficult to achieve.

  5. Hydrological and seasonal export mechanisms for nitrate transport from a forested catchment

    International Nuclear Information System (INIS)

    Rusjan, S; Mikos, M; Brilly, M

    2008-01-01

    Understanding of interactions between hydrological and biogeochemical responses of catchments on rainfall events is usually unclear from periodic measurements and requires tracing of the temporal dynamics of the processes. Smaller streams reflect strong connections between hydrological processes of the rainfall runoff formation and biogeochemical processes in the catchment; consequently, the responsiveness of the streamwater chemistry to changed hydrological states is very high. The study was carried out in 2007, within the 42 km 2 forested Padez catchment in the southwestern part of Slovenia, which is characterized by distinctive flushing, an almost torrential hydrological regime influenced by impermeable flysch geological settings. Recorded hydrographs which, in the hydrological and biogeochemical sense, differed substantially, disclosed a highly variable, but at the same time a strong linkage between hydrological, biogeochemical and particular topographic controls of nitrate exports from the spatial perspective of a studied catchment. The role of specific hydrological events on the nitrate mobilization proved to be important as the size of the accumulated nitrate pool available for mobilization was large throughout the observed hydrographs. The biogeochemical environment of the forest soils presumably significantly affects the size of the available nitrate pool in the studied catchment.

  6. The estimation of the catchment runoff using a small number of ...

    African Journals Online (AJOL)

    The estimation of the catchment runoff using a small number of rainfall stations in Burkina Faso. Youssouf Dembele, Jean Duchesne. Abstract. The objective of this study was to determine a suitable method to compute the runoff over a catchment with a few number of rainfall stations. Input hydrological variables were ...

  7. Greenhouse gas fluxes of grazed and hayed wetland catchments in the U.S. Prairie Pothole Ecoregion

    Science.gov (United States)

    Finocchiaro, Raymond G.; Tangen, Brian A.; Gleason, Robert A.

    2014-01-01

    Wetland catchments are major ecosystems in the Prairie Pothole Region (PPR) and play an important role in greenhouse gases (GHG) flux. However, there is limited information regarding effects of land-use on GHG fluxes from these wetland systems. We examined the effects of grazing and haying, two common land-use practices in the region, on GHG fluxes from wetland catchments during 2007 and 2008. Fluxes of methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2), along with soil water content and temperature, were measured along a topographic gradient every other week during the growing season near Ipswich, SD, USA. Closed, opaque chambers were used to measure fluxes of soil and plant respiration from native sod catchments that were grazed or left idle, and from recently restored catchments which were seeded with native plant species; half of these catchments were hayed once during the growing season. Catchments were adjacent to each other and had similar soils, soil nitrogen and organic carbon content, precipitation, and vegetation. When compared with idle catchments, grazing as a land-use had little effect on GHG fluxes. Likewise, haying had little effect on fluxes of CH4 and N2O compared with non-hayed catchments. Haying, however, did have a significant effect on combined soil and vegetative CO2 flux in restored wetland catchments owing to the immediate and comprehensive effect haying has on plant productivity. This study also examined soil conditions that affect GHG fluxes and provides cumulative annual estimates of GHG fluxes from wetland catchment in the PPR.

  8. Susceptibility of Shallow Landslide in Fraser Hill Catchment, Pahang Malaysia

    Directory of Open Access Journals (Sweden)

    Wan Nor Azmin Sulaiman

    2010-01-01

    Full Text Available In tropical areas especially during monsoon seasons intense precipitation is the main caused that trigger the natural shallow landslide phenomena. This phenomenon can be disastrous and widespread in occurrence even in undisturbed forested catchment. In this paper, an attempt has been made to evaluate the susceptibility of natural hill slopes to failure for a popular hill resort area, the Fraser Hill Catchment under different rainfall regimes and soil thickness. A Digital Elevation Model (DEM was prepared for the 8.2 km2 catchment. A GIS based deterministic model was then applied to predict the spatial landslide occurrence within catchment. Model input parameters include bulk density, friction angle, cohesion and hydraulic conductivity were gathered through in situ and lab analysis as well as from previous soil analysis records. Landslides locations were recorded using GPS as well as previous air photos and satellite imagery to establish landslide source areas inventory. The landslide susceptibility map was produced under different precipitation event’s simulation to see the effects of precipitation to stability of the hill slopes of the catchment. The results were categorized into naturally unstable (Defended, Upper Threshold, Lower Threshold, marginal instability (Quasi Stable and stable area (Moderately Stable and Stable. Results of the simulation indicated notable change in precipitation effect on Defended area is between 10mm to 40mm range in a single storm event. However, when storm event is exceeded 120mm, the result on Defended area produced by the model tends to be constant further on. For area categorized as naturally unstable (Factor of Safety, SF<1, with 110 mm of precipitation in a single storm event and soil depth at 2 meters and 4 meters could affect 69.51% and 69.88% respectively of the catchment area fall under that class. In addition, the model was able to detect 4% more of the landslide inventory under shallower soil depth of

  9. Organic carbon efflux from a deciduous forest catchment in Korea

    Directory of Open Access Journals (Sweden)

    S. J. Kim

    2010-04-01

    Full Text Available Soil infiltration and surface discharge of precipitation are critical processes that affect the efflux of Dissolved Organic Carbon (DOC and Particulate Organic Carbon (POC in forested catchments. Concentrations of DOC and POC can be very high in the soil surface in most forest ecosystems and their efflux may not be negligible particularly under the monsoon climate. In East Asia, however, there are little data available to evaluate the role of such processes in forest carbon budget. In this paper, we address two basic questions: (1 how does stream discharge respond to storm events in a forest catchment? and (2 how much DOC and POC are exported from the catchment particularly during the summer monsoon period? To answer these questions, we collected hydrological data (e.g., precipitation, soil moisture, runoff discharge, groundwater level and conducted hydrochemical analyses (including DOC, POC, and six tracers in a deciduous forest catchment in Gwangneung National Arboretum in west-central Korea. Based on the end-member mixing analysis of the six storm events during the summer monsoon in 2005, the surface discharge was estimated as 30 to 80% of the total runoff discharge. The stream discharge responded to precipitation within 12 h during these storm events. The annual efflux of DOC and POC from the catchment was estimated as 0.04 and 0.05 t C ha−1 yr−1, respectively. Approximately 70% of the annual organic carbon efflux occurred during the summer monsoon period. Overall, the annual efflux of organic carbon was estimated to be about 10% of the Net Ecosystem carbon Exchange (NEE obtained by eddy covariance measurement at the same site. Considering the current trends of increasing intensity and amount of summer rainfall and the large interannual variability in NEE, ignoring the organic carbon efflux from forest catchments would result in an inaccurate estimation of the carbon sink strength of forest ecosystems in the monsoon

  10. Watershed scale spatial variability in dissolved and total organic and inorganic carbon in contrasting UK catchments

    Science.gov (United States)

    Cumberland, S.; Baker, A.; Hudson, N. J.

    2006-12-01

    Approximately 800 organic and inorganic carbon analyses have been undertaken from watershed scale and regional scale spatial surveys in various British catchments. These include (1) a small (urban catchment (Ouseburn, N England); (2) a headwater, lowland agricultural catchment (River Tern, C England) (3) a large UK catchment (River Tyne, ~3000 sq-km) and (4) a spatial survey of ~300 analyses from rivers from SW England (~1700 sq-km). Results demonstrate that: (1) the majority of organic and inorganic carbon is in the dissolved (DOC and DIC) fractions; (2) that with the exception of peat rich headwaters, DIC concentration is always greater than DOC; (3) In the rural River Tern, riverine DOC and DIC are shown to follow a simple end- member mixing between DIC (DOC) rich (poor) ground waters and DOC (DIC) rich (poor) riparian wetlands for all sample sites. (4) In the urbanized Ouseburn catchment, although many sample sites also show this same mixing trend, some tributaries follow a pollutant trend of simultaneous increases in both DOC and DIC. The Ouseburn is part of the larger Tyne catchment: this larger catchment follows the simple groundwater DIC- soil water DOC end member mixing model, with the exception of the urban catchments which exhibit an elevated DIC compared to rural sites. (5) Urbanization is demonstrated to increase DIC compared to equivalent rural catchments; this DIC has potential sources including diffuse source inputs from the dissolution of concrete, point sources such as trade effluents and landfill leachates, and bedrock derived carbonates relocated to the soil dissolution zone by urban development. (6) DIC in rural SW England demonstrates that spatial variability in DIC can be attributed to variations in geology; but that DIC concentrations in the SW England rivers dataset are typically lower than the urbanized Tyne catchments despite the presence of carbonate bedrock in many of the sample catchments in the SW England dataset. (7) Recent

  11. Urbanization and agriculture increase exports and differentially alter elemental stoichiometry of dissolved organic matter (DOM) from tropical catchments

    DEFF Research Database (Denmark)

    Gücker, Björn; Silva, Ricky C. S.; Graeber, Daniel

    2016-01-01

    , pasture, intensive agriculture, and urban land cover. Streams draining pasture could be distinguished from those draining natural catchments by their lower DOC concentrations, with lower DOM C:N and C:P ratios. Catchments with intensive agriculture had higher DOC exports and lower DOM C:P ratios than...... natural catchments. Finally, with the highest DOC concentrations and exports, as well as the highest DOM C:P and N:P ratios, but the lowest C:N ratios among all land-use types, urbanized catchments had the strongest effects on catchment DOM. Thus, urbanization may have alleviated N limitation...... of heterotrophic DOM decomposition, but increased P limitation. Land use—especially urbanization—also affected the seasonality of catchment biogeochemistry. While natural catchments exhibited high DOC exports and concentrations, with high DOM C:P ratios in the rainy season only, urbanized catchments had high...

  12. Role of glaciers in watershed hydrology: a preliminary study of a "Himalayan catchment"

    Directory of Open Access Journals (Sweden)

    R. J. Thayyen

    2010-02-01

    Full Text Available A large number of Himalayan glacier catchments are under the influence of humid climate with snowfall in winter (November–April and south-west monsoon in summer (June–September dominating the regional hydrology. Such catchments are defined as "Himalayan catchment", where the glacier meltwater contributes to the river flow during the period of annual high flows produced by the monsoon. The winter snow dominated Alpine catchments of the Kashmir and Karakoram region and cold-arid regions of the Ladakh mountain range are the other major glacio-hydrological regimes identified in the region. Factors influencing the river flow variations in a "Himalayan catchment" were studied in a micro-scale glacier catchment in the Garhwal Himalaya, covering an area of 77.8 km2. Three hydrometric stations were established at different altitudes along the Din Gad stream and discharge was monitored during the summer ablation period from 1998 to 2004, with an exception in 2002. These data have been analysed along with winter/summer precipitation, temperature and mass balance data of the Dokriani glacier to study the role of glacier and precipitation in determining runoff variations along the stream continuum from the glacier snout to 2360 m a.s.l. The study shows that the inter-annual runoff variation in a "Himalayan catchment" is linked with precipitation rather than mass balance changes of the glacier. This study also indicates that the warming induced an initial increase of glacier runoff and subsequent decline as suggested by the IPCC (2007 is restricted to the glacier degradation-derived component in a precipitation dominant Himalayan catchment and cannot be translated as river flow response. The preliminary assessment suggests that the "Himalayan catchment" could experience higher river flows and positive glacier mass balance regime together in association with strong monsoon. The important role of glaciers in this precipitation dominant system is

  13. A physically-based parsimonious hydrological model for flash floods in Mediterranean catchments

    Directory of Open Access Journals (Sweden)

    H. Roux

    2011-09-01

    Full Text Available A spatially distributed hydrological model, dedicated to flood simulation, is developed on the basis of physical process representation (infiltration, overland flow, channel routing. Estimation of model parameters requires data concerning topography, soil properties, vegetation and land use. Four parameters are calibrated for the entire catchment using one flood event. Model sensitivity to individual parameters is assessed using Monte-Carlo simulations. Results of this sensitivity analysis with a criterion based on the Nash efficiency coefficient and the error of peak time and runoff are used to calibrate the model. This procedure is tested on the Gardon d'Anduze catchment, located in the Mediterranean zone of southern France. A first validation is conducted using three flood events with different hydrometeorological characteristics. This sensitivity analysis along with validation tests illustrates the predictive capability of the model and points out the possible improvements on the model's structure and parameterization for flash flood forecasting, especially in ungauged basins. Concerning the model structure, results show that water transfer through the subsurface zone also contributes to the hydrograph response to an extreme event, especially during the recession period. Maps of soil saturation emphasize the impact of rainfall and soil properties variability on these dynamics. Adding a subsurface flow component in the simulation also greatly impacts the spatial distribution of soil saturation and shows the importance of the drainage network. Measures of such distributed variables would help discriminating between different possible model structures.

  14. Constraining Distributed Catchment Models by Incorporating Perceptual Understanding of Spatial Hydrologic Behaviour

    Science.gov (United States)

    Hutton, Christopher; Wagener, Thorsten; Freer, Jim; Han, Dawei

    2016-04-01

    Distributed models offer the potential to resolve catchment systems in more detail, and therefore simulate the hydrological impacts of spatial changes in catchment forcing (e.g. landscape change). Such models tend to contain a large number of poorly defined and spatially varying model parameters which are therefore computationally expensive to calibrate. Insufficient data can result in model parameter and structural equifinality, particularly when calibration is reliant on catchment outlet discharge behaviour alone. Evaluating spatial patterns of internal hydrological behaviour has the potential to reveal simulations that, whilst consistent with measured outlet discharge, are qualitatively dissimilar to our perceptual understanding of how the system should behave. We argue that such understanding, which may be derived from stakeholder knowledge across different catchments for certain process dynamics, is a valuable source of information to help reject non-behavioural models, and therefore identify feasible model structures and parameters. The challenge, however, is to convert different sources of often qualitative and/or semi-qualitative information into robust quantitative constraints of model states and fluxes, and combine these sources of information together to reject models within an efficient calibration framework. Here we present the development of a framework to incorporate different sources of data to efficiently calibrate distributed catchment models. For each source of information, an interval or inequality is used to define the behaviour of the catchment system. These intervals are then combined to produce a hyper-volume in state space, which is used to identify behavioural models. We apply the methodology to calibrate the Penn State Integrated Hydrological Model (PIHM) at the Wye catchment, Plynlimon, UK. Outlet discharge behaviour is successfully simulated when perceptual understanding of relative groundwater levels between lowland peat, upland peat

  15. Hydrological Modeling in Data-Scarce Catchments: The Kilombero Floodplain in Tanzania

    Directory of Open Access Journals (Sweden)

    Kristian Näschen

    2018-05-01

    Full Text Available Deterioration of upland soils, demographic growth, and climate change all lead to an increased utilization of wetlands in East Africa. This considerable pressure on wetland resources results in trade-offs between those resources and their related ecosystem services. Furthermore, relationships between catchment attributes and available wetland water resources are one of the key drivers that might lead to wetland degradation. To investigate the impacts of these developments on catchment-wetland water resources, the Soil and Water Assessment Tool (SWAT was applied to the Kilombero Catchment in Tanzania, which is like many other East African catchments, as it is characterized by overall data scarcity. Due to the lack of recent discharge data, the model was calibrated for the period from 1958–1965 (R2 = 0.86, NSE = 0.85, KGE = 0.93 and validated from 1966–1970 (R2 = 0.80, NSE = 0.80, KGE = 0.89 with the sequential uncertainty fitting algorithm (SUFI-2 on a daily resolution. Results show the dependency of the wetland on baseflow contribution from the enclosing catchment, especially in dry season. Main contributions with regard to overall water yield arise from the northern mountains and the southeastern highlands, which are characterized by steep slopes and a high share of forest and savanna vegetation, respectively. Simulations of land use change effects, generated with Landsat images from the 1970s up to 2014, show severe shifts in the water balance components on the subcatchment scale due to anthropogenic activities. Sustainable management of the investigated catchment should therefore account for the catchment–wetland interaction concerning water resources, with a special emphasis on groundwater fluxes to ensure future food production as well as the preservation of the wetland ecosystem.

  16. The role of climatic and terrain attributes in estimating baseflow recession in tropical catchments

    Directory of Open Access Journals (Sweden)

    J. L. Peña-Arancibia

    2010-11-01

    Full Text Available The understanding of low flows in rivers is paramount more than ever as demand for water increases on a global scale. At the same time, limited streamflow data to investigate this phenomenon, particularly in the tropics, makes the provision of accurate estimations in ungauged areas an ongoing research need. This paper analysed the potential of climatic and terrain attributes of 167 tropical and sub-tropical unregulated catchments to predict baseflow recession rates. Daily streamflow data (m3 s–1 from the Global River Discharge Center (GRDC and a linear reservoir model were used to obtain baseflow recession coefficients (kbf for these catchments. Climatic attributes included annual and seasonal indicators of rainfall and potential evapotranspiration. Terrain attributes included indicators of catchment shape, morphology, land cover, soils and geology. Stepwise regression was used to identify the best predictors for baseflow recession coefficients. Mean annual rainfall (MAR and aridity index (AI were found to explain 49% of the spatial variation of kbf. The rest of climatic indices and the terrain indices average catchment slope (SLO and tree cover were also good predictors, but co-correlated with MAR. Catchment elongation (CE, a measure of catchment shape, was also found to be statistically significant, although weakly correlated. An analysis of clusters of catchments of smaller size, showed that in these areas, presumably with some similarity of soils and geology due to proximity, residuals of the regression could be explained by SLO and CE. The approach used provides a potential alternative for kbf parameterisation in ungauged catchments.

  17. Hydrology and sediment yield calibration for the Barasona reservoir catchment (Spain) using SWAT

    Science.gov (United States)

    Palazón, Leticia; Navas, Ana

    2013-04-01

    Hydrological and soil erosion models, as Soil and Water Assessment Tool (SWAT), have become very useful tools and increasingly serve as vital components of integrated environmental assessments that provide information outside of direct field experiments and causal observation. The purpose of this study was to improve the calibration of SWAT model to use it in an alpine catchment as a simulator of processes related to water quality and soil erosion. SWAT is spatially semi-distributed, agro-hydrological model that operates on a daily time step (as a minimum) at basin scale. It is designed to predict the impact of management on water, sediment and agricultural chemical yields in ungaged catchments. SWAT provides physically based algorithms as an option to define many of the important components of the hydrologic cycle. The input requirements of the model are used to describe the climate, soil properties, topography, vegetation, and land management practices. SWAT analyzes small or large catchments by discretising into sub-basins, which are then further subdivided into hydrological response units (HRUs) with homogeneous land use, soil type and slope. SWAT model (SWAT2009) coupled with a GIS interface (ArcSWAT), was applied to the Barasona reservoir catchment located in the central Spanish Pyrenees. The 1509 km2 agro-forestry catchment presents a mountain type climate, an altitudinal range close to 3000 meters and a precipitation variation close to 1000 mm/km. The mountainous characteristics of the catchment, in addition to the scarcity of climate data in the region, require specific calibration for some processes. Snowfall and snowmelt are significant processes in the hydrologic regime of the area and were calibrated in a previous work. In this work some of the challenges of the catchment to model with SWAT which affected the hydrology and the sediment yield simulation were performed as improvement of the previous calibration. Two reservoirs, a karst system which

  18. Observed precipitation trends in the Yangtze river catchment from 1951 to 2002

    Institute of Scientific and Technical Information of China (English)

    SUBuda; JIANGTong; SHIYafeng; StefanBECKER; MracoGEMMER

    2004-01-01

    The monthly, seasonal, and annual precipitation trends in the Yangtze river catchment have been detected through analysis of 51 meteorological stations' data between 1950-2002 provided by National Meteorological Administration. Results reveal that: 1) Summer precipitation in the Yangtze river catchment shows significant increasing tendency. The Poyanghu lake basin, Dongtinghu lake basin and Taihu lake basin in the middle and lower reaches are the places showing significant positive trends. Summer precipitation in the middle and lower reaches experienced an abrupt change in the year 1992; 2) The monthly precipitation in months just adjoining to summer shows decreasing tendency in the Yangtze river catchment. The upper and middle reaches in Jialingjiang river basin and Hanshui river basin are the places showing significant negative trends; 3) Extreme precipitation events show an increasing tendency in most places, especially in the middle and lower reaches of the Yangtze river catchment.

  19. N fluxes in two nitrogen saturated forested catchments in Germany: dynamics and modelling with INCA

    Directory of Open Access Journals (Sweden)

    J.-J. Langusch

    2002-01-01

    Full Text Available The N cycle in forests of the temperate zone in Europe has been changed substantially by the impact of atmospheric N deposition. Here, the fluxes and concentrations of mineral N in throughfall, soil solution and runoff in two German catchments, receiving high N inputs are investigated to test the applicability of an Integrated Nitrogen Model for European Catchments (INCA to small forested catchments. The Lehstenbach catchment (419 ha is located in the German Fichtelgebirge (NO Bavaria, 690-871 m asl. and is stocked with Norway spruce (Picea abies (L. Karst. of different ages. The Steinkreuz catchment (55 ha with European beech (Fagus sylvatica L. as the dominant tree species is located in the Steigerwald (NW Bavaria, 400-460 m asl.. The mean annual N fluxes with throughfall were slightly higher at the Lehstenbach (24.6 kg N ha-1 than at the Steinkreuz (20.4 kg N ha-1. In both catchments the N fluxes in the soil are dominated by NO3. At Lehstenbach, the N output with seepage at 90 cm soil depth was similar to the N flux with throughfall. At Steinkreuz more than 50 % of the N deposited was retained in the upper soil horizons. In both catchments, the NO3 fluxes with runoff were lower than those with seepage. The average annual NO3 concentrations in runoff in both catchments were between 0.7 to 1.4 mg NO3-N L-1 and no temporal trend was observed. The N budgets at the catchment scale indicated similar amounts of N retention (Lehstenbach: 19 kg N ha-1yr-1 ; Steinkreuz: 17 kg N ha-1yr-1. The parameter settings of the INCA model were simplified to reduce the model complexity. In both catchments, the NO3 concentrations and fluxes in runoff were matched well by the model. The seasonal patterns with lower NO3 runoff concentrations in summer at the Lehstenbach catchment were replicated. INCA underestimated the increased N3 concentrations during short periods of rewetting in late autumn at the Steinkreuz catchment. The model will be a helpful tool for the

  20. Investigating the temporal dynamics of suspended sediment during flood events with 7Be and 210Pbxs measurements in a drained lowland catchment

    Science.gov (United States)

    Le Gall, Marion; Evrard, Olivier; Foucher, Anthony; Laceby, J. Patrick; Salvador-Blanes, Sébastien; Manière, Louis; Lefèvre, Irène; Cerdan, Olivier; Ayrault, Sophie

    2017-02-01

    Soil erosion is recognized as one of the main processes of land degradation in agricultural areas. High suspended sediment loads, often generated from eroding agricultural landscapes, are known to degrade downstream environments. Accordingly, there is a need to understand soil erosion dynamics during flood events. Suspended sediment was therefore sampled in the river network and at tile drain outlets during five flood events in a lowland drained catchment in France. Source and sediment fallout radionuclide concentrations (7Be, 210Pbxs) were measured to quantify both the fraction of recently eroded particles transported during flood events and their residence time. Results indicate that the mean fraction of recently eroded sediment, estimated for the entire Louroux catchment, increased from 45 ± 20% to 80 ± 20% between December 2013 and February 2014, and from 65 ± 20% to 80 ± 20% in January 2016. These results demonstrate an initial flush of sediment previously accumulated in the river channel before the increasing supply of sediment recently eroded from the hillslopes during subsequent events. This research highlights the utility of coupling continuous river monitoring and fallout radionuclide measurements to increase our understanding of sediment dynamics and improve the management of soil and water resources in agricultural catchments.

  1. Topographical controls on soil moisture distribution and runoff response in a first order alpine catchment

    Science.gov (United States)

    Penna, Daniele; Gobbi, Alberto; Mantese, Nicola; Borga, Marco

    2010-05-01

    Hydrological processes driving runoff generation in mountain basins depend on a wide number of factors which are often strictly interconnected. Among them, topography is widely recognized as one of the dominant controls influencing soil moisture distribution in the root zone, depth to water table and location and extent of saturated areas possibly prone to runoff production. Morphological properties of catchments are responsible for the alternation between steep slopes and relatively flat areas which have the potentials to control the storage/release of water and hence the hydrological response of the whole watershed. This work aims to: i) identify the role of topography as the main factor controlling the spatial distribution of near-surface soil moisture; ii) evaluate the possible switch in soil moisture spatial organization between wet and relatively dry periods and the stability of patterns during triggering of surface/subsurface runoff; iii) assess the possible connection between the develop of an ephemeral river network and the groundwater variations, examining the influence of the catchment topographical properties on the hydrological response. Hydro-meteorological data were collected in a small subcatchment (Larch Creek Catchment, 0.033 km²) of Rio Vauz basin (1.9 km²), in the eastern Italian Alps. Precipitation, discharge, water table level over a net of 14 piezometric wells and volumetric soil moisture at 0-30 cm depth were monitored continuously during the late spring-early autumn months in 2007 and 2008. Soil water content at 0-6 and 0-20 cm depth was measured manually during 22 field surveys in summer 2007 over a 44-sampling point experimental plot (approximately 3000 m²). In summer 2008 the sampling grid was extended to 64 points (approximately 4500 m²) and 28 field surveys were carried out. The length of the ephemeral stream network developed during rainfall events was assessed by a net of 24 Overland Flow Detectors (OFDs), which are able to

  2. Curve numbers for olive orchard catchments in Spain

    Science.gov (United States)

    Taguas, Encarnación; Yuan, Yongping; Licciardello, Feliciana; Gómez, Jose

    2014-05-01

    The Curve Number (CN) method (Soil Conservation Service, 1972) is widely applied around the world to estimate direct runoff and the corresponding hydrograph of a rainfall event. Its efficient and simple computation, its complete parameterization for different soils, uses and managements and its good performance justify its application. Nevertheless, apart from Romero et al. (2007) who calculated CN-values at the plot scale, there is little information on the model performance in olive orchards at the catchment scale. In this work, the CN-model has been applied in three small catchments in Spain ranging between 6 and 8 ha with different soil types (regosol, luvisol and vertisol), topography (mean slopes between 9-15%) and management practices (non-tillage with a spontaneous grass cover, minimum tillage, conventional tillage). A rainfall-runoff dataset of 6 years have been used to test the usefulness of model as well as the accuracy of its reference parameterization (CNs and of initial substraction, Ia). CN-values were adjusted, optimized and compared with reference values for orchard crops while the sensitivity of the goodness of fit to Ia was described for each catchment. Classical equations based on the use of CN-percentiles 50, 10 and 90 for determining the antecedent moisture content (AMC) provided very good results with Nash-Sutcliffe coefficients of efficiency equal to 0.73 and 0.81 in two of the catchments with an annual rainfall higher than 600 mm. The third one -with an annual rainfall lower than 400 mm and spontaneous grass cover- showed a different pattern where a multiple linear regression dependant on precipitation and temperature features, represented notably better the rainfall-runoff relationships. Although fractions of Ia on the storage (S) equal to 0.15 and 0.25 allowed to optimize the adjustments of CN, the usual reference of 0.20 is quite appropriate. Finally, significant deviations were observed on reference-CNs for sandy soils that should be

  3. Benefits of incorporating spatial organisation of catchments for a semi-distributed hydrological model

    Science.gov (United States)

    Schumann, Andreas; Oppel, Henning

    2017-04-01

    To represent the hydrological behaviour of catchments a model should reproduce/reflect the hydrologically most relevant catchment characteristics. These are heterogeneously distributed within a watershed but often interrelated and subject of a certain spatial organisation. Since common models are mostly based on fundamental assumptions about hydrological processes, the reduction of variance of catchment properties as well as the incorporation of the spatial organisation of the catchment is desirable. We have developed a method that combines the idea of the width-function used for determination of the geomorphologic unit hydrograph with information about soil or topography. With this method we are able to assess the spatial organisation of selected catchment characteristics. An algorithm was developed that structures a watershed into sub-basins and other spatial units to minimise its heterogeneity. The outcomes of this algorithm are used for the spatial setup of a semi-distributed model. Since the spatial organisation of a catchment is not bound to a single characteristic, we have to embed information of multiple catchment properties. For this purpose we applied a fuzzy-based method to combine the spatial setup for multiple single characteristics into a union, optimal spatial differentiation. Utilizing this method, we are able to propose a spatial structure for a semi-distributed hydrological model, comprising the definition of sub-basins and a zonal classification within each sub-basin. Besides the improved spatial structuring, the performed analysis ameliorates modelling in another way. The spatial variability of catchment characteristics, which is considered by a minimum of heterogeneity in the zones, can be considered in a parameter constrained calibration scheme in a case study both options were used to explore the benefits of incorporating the spatial organisation and derived parameter constraints for the parametrisation of a HBV-96 model. We use two benchmark

  4. Technogenic waterflows generated by oil shale mining: impact on Purtse catchment rivers

    International Nuclear Information System (INIS)

    Raetsep, A.; Liblik, V.

    2000-01-01

    The correlation between natural (meteorological, hydrological) and technogenic (mining-technological, hydrogeological, hydrochemical) factors caused by oil shale mining in the Purtse catchment region in northeastern Estonia during 1990-1998 has been studied. As a result of a complex effect of these factors (correlation coefficients r = 0. 60-0.86), a so-called hydrogeological circulation of water has been formed in the catchment area. It totals 25-40 % from the whole amount of mine water pumped out at the present, but in the near future it will reach even up to 50-55 %. On the ground of average data, a conceptual balance scheme of water circulation (cycles) for the Purtse catchment landscape has been worked out. It shows that under the influence of technogenic waterflows a new, anthropogenic biogeochemical matter cycling from geological environment into hydrological one has been formed in this catchment area. Transition of the macro- and microelements existing in the composition of oil shale into the aqueous solution and their distribution in mine water are in a good harmony with the so-called arrangement of the elements by the electrode potentials. The technogenic hydrochemical conditions arising in the catchment rivers will not disappear even after finishing oil shale mining. (author)

  5. Catchment-scale determinants of nonindigenous minnow richness in the eastern United States

    Science.gov (United States)

    Peoples, Brandon K.; Midway, Stephen R.; DeWeber, Jefferson T.; Wagner, Tyler

    2018-01-01

    Understanding the drivers of biological invasions is critical for preserving aquatic biodiversity. Stream fishes make excellent model taxa for examining mechanisms driving species introduction success because their distributions are naturally limited by catchment boundaries. In this study, we compared the relative importance of catchment-scale abiotic and biotic predictors of native and nonindigenous minnow (Cyprinidae) richness in 170 catchments throughout the eastern United States. We compared historic and contemporary cyprinid distributional data to determine catchment-wise native/nonindigenous status for 152 species. Catchment-scale model predictor variables described natural (elevation, precipitation, flow accumulation) and anthropogenic (developed land cover, number of dams) abiotic features, as well as native congener richness. Native congener richness may represent either biotic resistance via interspecific competition, or trait preadaptation according to Darwin's naturalisation hypothesis. We used generalised linear mixed models to examine evidence supporting the relative roles of abiotic and biotic predictors of cyprinid introduction success. Native congener richness was positively correlated with nonindigenous cyprinid richness and was the most important variable predicting nonindigenous cyprinid richness. Mean elevation had a weak positive effect, and effects of other abiotic factors were insignificant and less important. Our results suggest that at this spatial scale, trait preadaptation may be more important than intrageneric competition for determining richness of nonindigenous fishes.

  6. Spatial Analysis for Potential Water Catchment Areas using GIS: Weighted Overlay Technique

    Science.gov (United States)

    Awanda, Disyacitta; Anugrah Nurul, H.; Musfiroh, Zahrotul; Dinda Dwi, N. P.

    2017-12-01

    The development of applied GIS is growing rapidly and has been widely applied in various fields. Preparation of a model to obtain information is one of the benefits of GIS. Obtaining information for water resources such as water catchment areas is one part of GIS modelling. Water catchment model can be utilized to see the distribution of potential and ability of a region in water absorbing. The use of overlay techniques with the weighting obtained from the literature from previous research is used to build the model. Model builder parameters are obtained through remote sensing interpretation techniques such as land use, landforms, and soil texture. Secondary data such as rock type maps are also used as water catchment model parameters. The location of this research is in the upstream part of the Opak river basin. The purpose of this research is to get information about potential distribution of water catchment area with overlay technique. The results of this study indicate the potential of water catchment areas with excellent category, good, medium, poor and very poor. These results may indicate that the Upper river basin is either good or in bad condition, so it can be used for better water resources management policy determination.

  7. Estimation of catchment averaged sensible heat fluxes using a large aperture scintillometer

    Directory of Open Access Journals (Sweden)

    Samain Bruno

    2012-05-01

    Full Text Available Evapotranspiration rates at the catchment scale are very difficult to quantify. One possible manner to continuously observe this variable could be the estimation of sensible heat fluxes (H across large distances (in the order of kilometers using a large aperture scintillometer (LAS, and inverting these observations into evapotranspiration rates, under the assumption that the LAS observations are representative for the entire catchment. The objective of this paper is to assess whether measured sensible heat fluxes from a LAS over a long distance (9.5 km can be assumed to be valid for a 102.3 km2 heterogeneous catchment. Therefore, a fully process-based water and energy balance model with a spatial resolution of 50 m has been thoroughly calibrated and validated for the Bellebeek catchmentin Belgium. A footprint analysis has been performed. In general, the sensible heat fluxes from the LAS compared well with the modeled sensible heat fluxes within the footprint. Moreover, as the modeled Hwithin the footprint has been found to be almost equal to the modeled catchment averaged H, it can be concluded that the scintillometer measurements over a distance of 9.5 km and an effective heightof 68 m are representative for the entire catchment.

  8. Land cover and water yield: inference problems when comparing catchments with mixed land cover

    Directory of Open Access Journals (Sweden)

    A. I. J. M. van Dijk

    2012-09-01

    Full Text Available Controlled experiments provide strong evidence that changing land cover (e.g. deforestation or afforestation can affect mean catchment streamflow (Q. By contrast, a similarly strong influence has not been found in studies that interpret Q from multiple catchments with mixed land cover. One possible reason is that there are methodological issues with the way in which the Budyko framework was used in the latter type studies. We examined this using Q data observed in 278 Australian catchments and by making inferences from synthetic Q data simulated by a hydrological process model (the Australian Water Resources Assessment system Landscape model. The previous contrasting findings could be reproduced. In the synthetic experiment, the land cover influence was still present but not accurately detected with the Budyko- framework. Likely sources of interpretation bias demonstrated include: (i noise in land cover, precipitation and Q data; (ii additional catchment climate characteristics more important than land cover; and (iii covariance between Q and catchment attributes. These methodological issues caution against the use of a Budyko framework to quantify a land cover influence in Q data from mixed land-cover catchments. Importantly, however, our findings do not rule out that there may also be physical processes that modify the influence of land cover in mixed land-cover catchments. Process model simulations suggested that lateral water redistribution between vegetation types and recirculation of intercepted rainfall may be important.

  9. Hydrological impacts of urbanization at the catchment scale

    Science.gov (United States)

    Oudin, Ludovic; Salavati, Bahar; Furusho-Percot, Carina; Ribstein, Pierre; Saadi, Mohamed

    2018-04-01

    The impacts of urbanization on floods, droughts and the overall river regime have been largely investigated in the past few decades, but the quantification and the prediction of such impacts still remain a challenge in hydrology. We gathered a sample of 142 catchments that have a documented increase in urban areas over the hydrometeorological record period in the United States. The changes in river flow regimes due to urban spread were differentiated from climate variability using the GR4J conceptual hydrological model. High, low and mean flows were impacted at a threshold of a 10% total impervious area. Moreover, the historical evolution of urban landscape spatial patterns was used to further detail the urbanization process in terms of extent and fragmentation of urban areas throughout the catchment and to help interpret the divergent impacts observed in streamflow behaviors. Regression analysis pointed out the importance of major wastewater treatment facilities that might overpass the effects of imperviousness, and therefore further research should either take them explicitly into account or select a wastewater facility-free catchment sample to clearly evaluate the impacts of urban landscape on low flows.

  10. Sediment yield and alternatives soil conservation practices of teak catchments

    Directory of Open Access Journals (Sweden)

    Tyas Mutiara Basuki

    2017-10-01

    Full Text Available Quantifying sediment is essential to determine its sources and reduce its negative impacts. A study was conducted to quantify suspended sediments of catchments covering by teak plantation and to provide alternatives soil conservation practices. Five catchments with old teak coverages of 82; 82; 74; 70; and 53 % were chosen. At the outlet of each catchment was installed tide gauge to monitor stream water level (SWL. Water samples for sediment analyses were taken for every increament of SWL. Sediment yield was calculated based on rating curves of sediment discharge. The results showed that the sources of sediment in the streams were dryland agricultural and streambank erosion. The mean annual sediment yield during the study were 9.3; 10; 15; 53.3; and 22.5 t/ha for catchments covered by old teak plantation of 82, 82, 74, 70, and 53 %, respectively. To reduce sediment yield some soil conservation practices must be applied. Conservation of soil organic matter is important in order to stabilize soil aggregate and prevent clay dispersion which causes erosion and sedimentation. Green firebreaks or making channels are needed to prevent fire during dry season and organic matter loss. Stabilization of streambank is neccesary, either using vegetative method or civil technics.

  11. Using stable isotopes to estimate and compare mean residence times in contrasting geologic catchments (Attert River, NW Luxembourg)

    Science.gov (United States)

    Martínez-Carreras, N.; Fenicia, F.; Frentress, J.; Wrede, S.; Pfister, L.

    2012-04-01

    In recent years, stable isotopes have been increasingly used to characterize important aspects of catchment hydrological functioning, such as water storage dynamics, flow pathways and water sources. These characteristics are often synthesized by the Mean Residence Time (MRT), which is a simple catchment descriptor that employ the relation of distinct stable isotopic signatures in the rainfall input and streamflow output of a catchment that are significantly dampened through sub-surface propagation. In this preliminary study, MRT was estimated in the Attert River catchment (NW Luxembourg), where previous studies have shown that lithology exerts a major control on runoff generation. The Attert catchment lies at the transition zone of contrasting bedrock lithology: the Northern part is characterized by Devonian schist of the Ardennes massif, while sedimentary deposits of sandstone and marls dominate in the south of the catchment. As a consequence of differing lithologic characteristics, hydrological processes change across scales. The schistose catchments exhibit a delayed shallow groundwater component, sandstone catchments have slow-responding year-round groundwater component, whereas flashy runoff regimes prevails in the marly catchments. Under these circumstances, the MRTs are expected to vary significantly according to lithology, and provide additional understanding in internal catchment processes and their scale dependencies. In order to test this, bi-weekly monitoring of rainfall and discharge stable water isotope composition (oxygen-18 and deuterium) has been carried out since 2007 in 10 nested sub-catchments ranging in size from 0.4 to 247 km2 in the Attert catchment. MRT was estimated using different lumped convolution integral models and sine wave functions with varying transit times distributions (TTDs). TTDs were evaluated through calibration. Further research efforts will deal with the application of conceptual models to simulate and compare TTD, using

  12. Determining the rates and drivers of headwall erosion within glaciated catchments in the NW Himalaya

    Science.gov (United States)

    Orr, E.; Owen, L. A.; Saha, S.; Caffee, M. W.

    2017-12-01

    Rates of headwall erosion are defined for fourteen glaciated catchments in the NW Himalaya by measuring 10Be terrestrial cosmogenic nuclide concentrations in supraglacial debris. The investigated catchments are located throughout three broad climatic zones, which include the Lesser Himalaya (rainfall >1000 mm a-1), Greater Himalaya (500-1000 mm a-1) and Transhimalaya (arid catchments that are occupied by sub-polar glaciers, suggesting that there are additional controls upon periglacial domain landscape change. Other factors and catchment-specific dynamics influencing these landscapes include, temperature, surface processes, topography, valley morphology, geologic setting and glacial history. Defining rates of headwall erosion is one of the first steps to understanding the nature of sediment production and transfer within high-altitude glaciated catchments, and highlights the importance of periglacial rockfall processes in landscape evolution.

  13. Hydropedological insights when considering catchment classification

    NARCIS (Netherlands)

    Bouma, J.; Droogers, P.; Sonneveld, M.P.W.; Ritsema, C.J.; Hunink, J.E.; Immerzeel, W.W.; Kauffman, S.

    2011-01-01

    Soil classification systems are analysed to explore the potential of developing classification systems for catchments. Soil classifications are useful to create systematic order in the overwhelming quantity of different soils in the world and to extrapolate data available for a given soil type to

  14. Contributions of climate change and human activities to runoff change in seven typical catchments across China.

    Science.gov (United States)

    Zhai, Ran; Tao, Fulu

    2017-12-15

    Climate change and human activities are two major factors affecting water resource change. It is important to understand the roles of the major factors in affecting runoff change in different basins for watershed management. Here, we investigated the trends in climate and runoff in seven typical catchments in seven basins across China from 1961 to 2014. Then we attributed the runoff change to climate change and human activities in each catchment and in three time periods (1980s, 1990s and 2000s), using the VIC model and long-term runoff observation data. During 1961-2014, temperature increased significantly, while the trends in precipitation were insignificant in most of the catchments and inconsistent among the catchments. The runoff in most of the catchments showed a decreasing trend except the Yingluoxia catchment in the northwestern China. The contributions of climate change and human activities to runoff change varied in different catchments and time periods. In the 1980s, climate change contributed more to runoff change than human activities, which was 84%, 59%, -66%, -50%, 59%, 94%, and -59% in the Nianzishan, Yingluoxia, Xiahui, Yangjiaping, Sanjiangkou, Xixian, and Changle catchment, respectively. After that, human activities had played a more essential role in runoff change. In the 1990s and 2000s, human activities contributed more to runoff change than in the 1980s. The contribution by human activities accounted for 84%, -68%, and 67% in the Yingluoxia, Xiahui, and Sanjiangkou catchment, respectively, in the 1990s; and -96%, -67%, -94%, and -142% in the Nianzishan, Yangjiaping, Xixian, and Changle catchment, respectively, in the 2000s. It is also noted that after 2000 human activities caused decrease in runoff in all catchments except the Yingluoxia. Our findings highlight that the effects of human activities, such as increase in water withdrawal, land use/cover change, operation of dams and reservoirs, should be well managed. Copyright © 2017 Elsevier

  15. Comparison of physically based catchment models for estimating Phosphorus losses

    OpenAIRE

    Nasr, Ahmed Elssidig; Bruen, Michael

    2003-01-01

    As part of a large EPA-funded research project, coordinated by TEAGASC, the Centre for Water Resources Research at UCD reviewed the available distributed physically based catchment models with a potential for use in estimating phosphorous losses for use in implementing the Water Framework Directive. Three models, representative of different levels of approach and complexity, were chosen and were implemented for a number of Irish catchments. This paper reports on (i) the lessons and experience...

  16. Permafrost conditions in peatlands regulate magnitude, timing, and chemical composition of catchment dissolved organic carbon export.

    Science.gov (United States)

    Olefeldt, David; Roulet, Nigel T

    2014-10-01

    Permafrost thaw in peatlands has the potential to alter catchment export of dissolved organic carbon (DOC) and thus influence downstream aquatic C cycling. Subarctic peatlands are often mosaics of different peatland types, where permafrost conditions regulate the hydrological setting of each type. We show that hydrological setting is key to observed differences in magnitude, timing, and chemical composition of DOC export between permafrost and nonpermafrost peatland types, and that these differences influence the export of DOC of larger catchments even when peatlands are minor catchment components. In many aspects, DOC export from a studied peatland permafrost plateau was similar to that of a forested upland catchment. Similarities included low annual export (2-3 g C m(-2) ) dominated by the snow melt period (~70%), and how substantial DOC export following storms required wet antecedent conditions. Conversely, nonpermafrost fens had higher DOC export (7 g C m(-2) ), resulting from sustained hydrological connectivity during summer. Chemical composition of catchment DOC export arose from the mixing of highly aromatic DOC from organic soils from permafrost plateau soil water and upland forest surface horizons with nonaromatic DOC from mineral soil groundwater, but was further modulated by fens. Increasing aromaticity from fen inflow to outlet was substantial and depended on both water residence time and water temperature. The role of fens as catchment biogeochemical hotspots was further emphasized by their capacity for sulfate retention. As a result of fen characteristics, a 4% fen cover in a mixed catchment was responsible for 34% higher DOC export, 50% higher DOC concentrations and ~10% higher DOC aromaticity at the catchment outlet during summer compared to a nonpeatland upland catchment. Expansion of fens due to thaw thus has potential to influence landscape C cycling by increasing fen capacity to act as biogeochemical hotspots, amplifying aquatic C cycling, and

  17. Water Retention in a Small Agricultural Catchment and its Potential Improvement by Design of Water Reservoirs – A Case Study of the Bílý Potok Catchment (Czechia

    Directory of Open Access Journals (Sweden)

    Doležal Petr

    2018-03-01

    Full Text Available Water retention in the landscape is discussed in the context of conservation and improvement of both its productive and non-productive functions. We analysed the retention potential of a small agricultural catchment associated with the Bílý potok brook, investigating the possibility to improve its retention capacity and slow down the surface runoff, thus increasing the underground water resources. Method of curve numbers was used for that purposes. From results, it emerged that present maximum water retention in the Bílý potok catchment is 96.2 mm. It could increase by 101.3 mm in case of grassing about 20% arable land threatened by soil erosion. As next possibility to retain water from precipitations in landscape, capacity and transformation effect of reservoirs designed in master plans was analysed. The latest programming tools working in the GIS environment were used to assess the retention capacity of both the catchment surface and the reservoirs. Analysing master plans in the catchment, it was found that 16 designed water reservoirs (from 31 have a good potential to intercept water and transform flood discharges. In the result, priority for building of reservoirs was recommended according to their pertinence and efficiency in the studied catchment. Presented complex approach can be widely implemented, especially for better effectivity and cohesion of landscape planning and land consolidations processes.

  18. Aquifers Characterization and Productivity in Ellala Catchment ...

    African Journals Online (AJOL)

    user

    ... to weak degree of potentiality are found occupying flat to rugged topography of the catchment. ... government and non-governmental organizations. Among various .... Ellala River, forming something like graben structure. This is particularly ...

  19. Water Travel Time Distributions in Permafrost-affected Catchments: Challenges, Progress and Implications

    Science.gov (United States)

    Smith, A. A.; Piovano, T. I.; Tetzlaff, D.; Ala-aho, P. O. A.; Wookey, P. A.; Soulsby, C.

    2017-12-01

    Characterising the travel times of water has been a major research focus in catchment science over the past decade. Use of isotopes to quantify the temporal dynamics of the transformation of precipitation into runoff has revealed fundamental new insights into catchment flow paths and mixing processes that influence biogeochemical transport. However, permafrost-affected catchments have received little attention, despite their global importance in terms of rapid environmental change. Such places have limited access for data collection during critical periods (e.g. early phases of snowmelt), temporal and spatially variable freeze-thaw cycles, and the development of the active layer has a time variant influence on catchment hydrology. All of these characteristics make the application of traditional transit time estimation approaches challenging. This contribution describes an isotope-based study undertaken to provide a preliminary assessment of travel times at SikSik Creek in the Canadian Arctic. We adopted a model-data fusion approach to estimate the volumes and isotopic characteristics of snowpack and meltwater. Using sampling in the spring/summer we characterise the isotopic composition of summer rainfall, melt from residual snow, soil water and stream water. In addition, soil moisture dynamics and the temporal evolution of the active layer profile were also monitored. Transit times were estimated for soil and stream water compositions using lumped convolution integral models and temporally variable inputs including snowmelt, ice thaw, and summer rainfall. Comparing transit time estimates using a variety of inputs reveals transit time is best estimated using all available inflows (i.e. snowmelt, ice thaw, and rainfall). Early spring transit times are short, dominated by snowmelt and ice thaw and limited catchment storage when soils are predominantly frozen. However, significant and increasing mixing with water in the active layer during the summer results in more

  20. Sediment tracing in the upper Hunter catchment using elemental and mineralogical compositions: Implications for catchment-scale suspended sediment (dis)connectivity and management

    Science.gov (United States)

    Fryirs, Kirstie; Gore, Damian

    2013-07-01

    River bed colmation layers clog the interstices of gravel-bed rivers, impeding the vertical exchange of water and nutrients that drives ecosystem function in the hyporheic zone. In catchments where fine-grained sediment supply has increased since human disturbance, understanding sediment provenance and the (dis)connectivity of supply allows practitioners to target sediment source problems and treat them within catchment management plans. Release of alluvial fine-grained sediment from channel bank erosion since European settlement has resulted in the formation of a colmation layer along the upper Hunter River at Muswellbrook, eastern Australia. X-ray fluorescence spectrometry (XRF) and X-ray diffractometry (XRD) are used to determine the elemental and mineralogical signatures of colmation layer and floodplain sediment sources across this 4480 km2 catchment. This sediment tracing technique is used to construct a picture of how suspended sediment supply and (dis)connectivity operates in this catchment. In this system, the primary source areas are subcatchments in which sediments are stored largely in partly confined floodplain pockets, but from which sediment supply is unimpeded and directly connected to the receiving reach. Subcatchments in which alluvial sediment storage is significant — and which contain large, laterally unconfined valleys — are essentially 'switched off' or disconnected from the receiving reach. This is because large sediment sinks act to trap fine-grained sediment before it reaches the receiving reach, forming a buffer along the sediment conveyor belt. Given the age structure of floodplains in the receiving reach, this pattern of source area contributions and (dis)connectivity must have occurred throughout the Holocene.

  1. Attributes for NHDplus Catchments (Version 1.1) for the Conterminous United States: Population Density, 2000

    Science.gov (United States)

    Wieczorek, Michael; LaMottem, Andrew E.

    2010-01-01

    This data set represents the average population density, in number of people per square kilometer multiplied by 10 for the year 2000, compiled for every catchment of NHDPlus for the conterminous United States. The source data set is the 2000 Population Density by Block Group for the Conterminous United States (Hitt, 2003). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5

  2. Spatial structure and scaling of macropores in hydrological process at small catchment scale

    Science.gov (United States)

    Silasari, Rasmiaditya; Broer, Martine; Blöschl, Günter

    2013-04-01

    During rainfall events, the formation of overland flow can occur under the circumstances of saturation excess and/or infiltration excess. These conditions are affected by the soil moisture state which represents the soil water content in micropores and macropores. Macropores act as pathway for the preferential flows and have been widely studied locally. However, very little is known about their spatial structure and conductivity of macropores and other flow characteristic at the catchment scale. This study will analyze these characteristics to better understand its importance in hydrological processes. The research will be conducted in Petzenkirchen Hydrological Open Air Laboratory (HOAL), a 64 ha catchment located 100 km west of Vienna. The land use is divided between arable land (87%), pasture (5%), forest (6%) and paved surfaces (2%). Video cameras will be installed on an agricultural field to monitor the overland flow pattern during rainfall events. A wireless soil moisture network is also installed within the monitored area. These field data will be combined to analyze the soil moisture state and the responding surface runoff occurrence. The variability of the macropores spatial structure of the observed area (field scale) then will be assessed based on the topography and soil data. Soil characteristics will be supported with laboratory experiments on soil matrix flow to obtain proper definitions of the spatial structure of macropores and its variability. A coupled physically based distributed model of surface and subsurface flow will be used to simulate the variability of macropores spatial structure and its effect on the flow behaviour. This model will be validated by simulating the observed rainfall events. Upscaling from field scale to catchment scale will be done to understand the effect of macropores variability on larger scales by applying spatial stochastic methods. The first phase in this study is the installation and monitoring configuration of video

  3. Detecting groundwater discharge dynamics from point-to-catchment scale in a lowland stream

    DEFF Research Database (Denmark)

    Poulsen, J. R.; Sebök, Éva; Duque, C.

    2015-01-01

    was quantified using differential gauging with an acoustic Doppler current profiler (ADCP). At the catchment scale (26–114 km2), runoff sources during main rain events were investigated by hydrograph separations based on electrical conductivity (EC) and stable isotopes 2H/1H. Clear differences in runoff sources...... response to precipitation events. This shows a large variability in groundwater discharge to the stream, despite the similar lowland characteristics of sub-catchments indicating the usefulness of environmental tracers for obtaining information about integrated catchment functioning during precipitation...

  4. Quantifying nonpoint source emissions and their water quality responses in a complex catchment: A case study of a typical urban-rural mixed catchment

    Science.gov (United States)

    Chen, Lei; Dai, Ying; Zhi, Xiaosha; Xie, Hui; Shen, Zhenyao

    2018-04-01

    As two key threats to receiving water bodies, the generation mechanisms and processes of urban and agricultural nonpoint sources (NPSs) show clear differences, which lead to distinct characteristics of water quality responses with mixed land-uses catchments compared to single land-use ones. However, few studies have provided such insights in these characteristic or quantified different water environment responses to NPS pollution. In this study, an integrated modelling approach was developed for those complex catchments by combining three commonly used models: SWMM (Storm Water Management Model), SWAT (Soil and Water Assessment Tool) and MIKE 11. A case study was performed in a typical urban-rural catchment of Chao Lake, China. The simulated results indicated that urban NPS pollution responded sensitively to rainfall events and was greatly affected by the antecedent dry days. Compare to urban NPS, agricultural NPS pollution was characterized with the time-lag to rainfall depended on soil moisture and the post-rain-season emissions carried by lateral flows, and were also affected by the local farm-practice schedule. With comprehensive impacts from urban-rural land-uses, the time-interleaved urban and agricultural NPS pollution emissions and more abundant pollution accumulation both led to a decrease in the responsive time and an increase in the frequency of peak pollution concentration values even during the dry season. These obtained characteristics can provide guidance for drafting watershed management plans in similar mixed land use catchments.

  5. The Raam regional soil moisture monitoring network in the Netherlands

    Directory of Open Access Journals (Sweden)

    H.-J. F. Benninga

    2018-01-01

    Full Text Available We have established a soil moisture profile monitoring network in the Raam region in the Netherlands. This region faces water shortages during summers and excess of water during winters and after extreme precipitation events. Water management can benefit from reliable information on the soil water availability and water storing capacity in the unsaturated zone. In situ measurements provide a direct source of information on which water managers can base their decisions. Moreover, these measurements are commonly used as a reference for the calibration and validation of soil moisture content products derived from earth observations or obtained by model simulations. Distributed over the Raam region, we have equipped 14 agricultural fields and 1 natural grass field with soil moisture and soil temperature monitoring instrumentation, consisting of Decagon 5TM sensors installed at depths of 5, 10, 20, 40 and 80 cm. In total, 12 stations are located within the Raam catchment (catchment area of 223 km2, and 5 of these stations are located within the closed sub-catchment Hooge Raam (catchment area of 41 km2. Soil-specific calibration functions that have been developed for the 5TM sensors under laboratory conditions lead to an accuracy of 0.02 m3 m−3. The first set of measurements has been retrieved for the period 5 April 2016–4 April 2017. In this paper, we describe the Raam monitoring network and instrumentation, the soil-specific calibration of the sensors, the first year of measurements, and additional measurements (soil temperature, phreatic groundwater levels and meteorological data and information (elevation, soil physical characteristics, land cover and a geohydrological model available for performing scientific research. The data are available at https://doi.org/10.4121/uuid:dc364e97-d44a-403f-82a7-121902deeb56.

  6. The Raam regional soil moisture monitoring network in the Netherlands

    Science.gov (United States)

    Benninga, Harm-Jan F.; Carranza, Coleen D. U.; Pezij, Michiel; van Santen, Pim; van der Ploeg, Martine J.; Augustijn, Denie C. M.; van der Velde, Rogier

    2018-01-01

    We have established a soil moisture profile monitoring network in the Raam region in the Netherlands. This region faces water shortages during summers and excess of water during winters and after extreme precipitation events. Water management can benefit from reliable information on the soil water availability and water storing capacity in the unsaturated zone. In situ measurements provide a direct source of information on which water managers can base their decisions. Moreover, these measurements are commonly used as a reference for the calibration and validation of soil moisture content products derived from earth observations or obtained by model simulations. Distributed over the Raam region, we have equipped 14 agricultural fields and 1 natural grass field with soil moisture and soil temperature monitoring instrumentation, consisting of Decagon 5TM sensors installed at depths of 5, 10, 20, 40 and 80 cm. In total, 12 stations are located within the Raam catchment (catchment area of 223 km2), and 5 of these stations are located within the closed sub-catchment Hooge Raam (catchment area of 41 km2). Soil-specific calibration functions that have been developed for the 5TM sensors under laboratory conditions lead to an accuracy of 0.02 m3 m-3. The first set of measurements has been retrieved for the period 5 April 2016-4 April 2017. In this paper, we describe the Raam monitoring network and instrumentation, the soil-specific calibration of the sensors, the first year of measurements, and additional measurements (soil temperature, phreatic groundwater levels and meteorological data) and information (elevation, soil physical characteristics, land cover and a geohydrological model) available for performing scientific research. The data are available at https://doi.org/10.4121/uuid:dc364e97-d44a-403f-82a7-121902deeb56.

  7. Runoff generation in an intensively disturbed, abandoned farmland catchment, Central Spanish Pyreneesp

    NARCIS (Netherlands)

    García-Ruiz, J.M.; Arnáez, J.; Seeger, M.; Martí-Bono, C.; Regüés, D.; Lana-Renault, N.; White, S.

    2005-01-01

    This paper studies the hydrological response to rainstorm events of a small experimental catchment in the Central Spanish Pyrenees. The Arnás catchment was cultivated until 40 years ago, and then abandoned and affected by plant recolonisation, especially shrubs. A rainfall of a few mm is enough

  8. Scale-dependence of land use effects on water quality of streams in agricultural catchments

    International Nuclear Information System (INIS)

    Buck, Oliver; Niyogi, Dev K.; Townsend, Colin R.

    2004-01-01

    The influence of land use on water quality in streams is scale-dependent and varies in time and space. In this study, land cover patterns and stocking rates were used as measures of agricultural development in two pasture and one native grassland catchment in New Zealand and were related to water quality in streams of various orders. The amount of pasture per subcatchment correlated well to total nitrogen and nitrate in one catchment and turbidity and total phosphorous in the other catchment. Stocking rates were only correlated to total phosphorous in one pasture catchment but showed stronger correlations to ammonium, total phosphorous and total nitrogen in the other pasture catchment. Winter and spring floods were significant sources of nutrients and faecal coliforms from one of the pasture catchments into a wetland complex. Nutrient and faecal coliform concentrations were better predicted by pastural land cover in fourth-order than in second-order streams. This suggests that upstream land use is more influential in larger streams, while local land use and other factors may be more important in smaller streams. These temporal and spatial scale effects indicate that water-monitoring schemes need to be scale-sensitive. - Land use influences water quality of streams at various spatial scales

  9. Scale-dependence of land use effects on water quality of streams in agricultural catchments

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Oliver; Niyogi, Dev K.; Townsend, Colin R

    2004-07-01

    The influence of land use on water quality in streams is scale-dependent and varies in time and space. In this study, land cover patterns and stocking rates were used as measures of agricultural development in two pasture and one native grassland catchment in New Zealand and were related to water quality in streams of various orders. The amount of pasture per subcatchment correlated well to total nitrogen and nitrate in one catchment and turbidity and total phosphorous in the other catchment. Stocking rates were only correlated to total phosphorous in one pasture catchment but showed stronger correlations to ammonium, total phosphorous and total nitrogen in the other pasture catchment. Winter and spring floods were significant sources of nutrients and faecal coliforms from one of the pasture catchments into a wetland complex. Nutrient and faecal coliform concentrations were better predicted by pastural land cover in fourth-order than in second-order streams. This suggests that upstream land use is more influential in larger streams, while local land use and other factors may be more important in smaller streams. These temporal and spatial scale effects indicate that water-monitoring schemes need to be scale-sensitive. - Land use influences water quality of streams at various spatial scales.

  10. Hydrological observation of the artificial catchment `Chicken Creek

    Science.gov (United States)

    Mazur, K.; Biemelt, D.; Schoenheinz, D.; Grünewald, U.

    2009-04-01

    In Lusatia, eastern Germany, an artificial catchment called 'Chicken Creek' was developed. The catchment with an area of 6 ha was designed as hillside on the top of a refilled open mining pit. The bottom boundary was created by a 1 to 2 m thick clay layer acting as aquiclude. The catchment body consists of a 2 to 4 m mighty layer of sandy to loamy sediments acting as aquifer. The catchment 'Chicken Creek' is the central investigation site of the German-Swiss Collaborative Research Centre SFB/TRR 38. The aim of the research is to characterise various ecosystem development phases with respect to the occurring relevant structures and processes. Therefore, structures and processes as well as interactions being dominant within the initial ecosystem development phase are investigated and will be compared to those occurring in the later stages of ecosystem development. In this context, one important part of the investigations is the detailed observation of hydrological processes and the determination of the water balance components. To achieve these objectives, a comprehensive monitoring programme was planned considering the following questions: Which parameters/data are required? Which parameters/data can be measured? Which spatial and temporal resolution of observations is required? The catchment was accordingly equipped with weirs, flumes, observation wells, probes and meteorological observation stations. First results were obtained and will be presented. The gathered data provide parameters and boundary conditions for the ensuing hydro(geo)logical modeling. Conclusions e.g. from groundwater flow simulations shall allow to improve theses about the dynamic in the saturated zone and support the quantification of the groundwater discharge as component of the water balance. First research results show that precipitation related surface runoff proves to be much more dominant in the hydrological system than initially expected. Therefore, the monitoring concept had to be

  11. Modeling flash floods in ungauged mountain catchments of China: A decision tree learning approach for parameter regionalization

    Science.gov (United States)

    Ragettli, S.; Zhou, J.; Wang, H.; Liu, C.

    2017-12-01

    Flash floods in small mountain catchments are one of the most frequent causes of loss of life and property from natural hazards in China. Hydrological models can be a useful tool for the anticipation of these events and the issuing of timely warnings. Since sub-daily streamflow information is unavailable for most small basins in China, one of the main challenges is finding appropriate parameter values for simulating flash floods in ungauged catchments. In this study, we use decision tree learning to explore parameter set transferability between different catchments. For this purpose, the physically-based, semi-distributed rainfall-runoff model PRMS-OMS is set up for 35 catchments in ten Chinese provinces. Hourly data from more than 800 storm runoff events are used to calibrate the model and evaluate the performance of parameter set transfers between catchments. For each catchment, 58 catchment attributes are extracted from several data sets available for whole China. We then use a data mining technique (decision tree learning) to identify catchment similarities that can be related to good transfer performance. Finally, we use the splitting rules of decision trees for finding suitable donor catchments for ungauged target catchments. We show that decision tree learning allows to optimally utilize the information content of available catchment descriptors and outperforms regionalization based on a conventional measure of physiographic-climatic similarity by 15%-20%. Similar performance can be achieved with a regionalization method based on spatial proximity, but decision trees offer flexible rules for selecting suitable donor catchments, not relying on the vicinity of gauged catchments. This flexibility makes the method particularly suitable for implementation in sparsely gauged environments. We evaluate the probability to detect flood events exceeding a given return period, considering measured discharge and PRMS-OMS simulated flows with regionalized parameters

  12. Soft Water Level Sensors for Characterizing the Hydrological Behaviour of Agricultural Catchments

    Directory of Open Access Journals (Sweden)

    François Garnier

    2011-04-01

    Full Text Available An innovative soft water level sensor is proposed to characterize the hydrological behaviour of agricultural catchments by measuring rainfall and stream flows. This sensor works as a capacitor coupled with a capacitance to frequency converter and measures water level at an adjustable time step acquisition. It was designed to be handy, minimally invasive and optimized in terms of energy consumption and low-cost fabrication so as to multiply its use on several catchments under natural conditions. It was used as a stage recorder to measure water level dynamics in a channel during a runoff event and as a rain gauge to measure rainfall amount and intensity. Based on the Manning equation, a method allowed estimation of water discharge with a given uncertainty and hence runoff volume at an event or annual scale. The sensor was tested under controlled conditions in the laboratory and under real conditions in the field. Comparisons of the sensor to reference devices (tipping bucket rain gauge, hydrostatic pressure transmitter limnimeter, Venturi channels… showed accurate results: rainfall intensities and dynamic responses were accurately reproduced and discharges were estimated with an uncertainty usually acceptable in hydrology. Hence, it was used to monitor eleven small agricultural catchments located in the Mediterranean region. Both catchment reactivity and water budget have been calculated. Dynamic response of the catchments has been studied at the event scale through the rising time determination and at the annual scale by calculating the frequency of occurrence of runoff events. It provided significant insight into catchment hydrological behaviour which could be useful for agricultural management perspectives involving pollutant transport, flooding event and global water balance.

  13. Quantifying navigational information: The catchment volumes of panoramic snapshots in outdoor scenes.

    Directory of Open Access Journals (Sweden)

    Trevor Murray

    Full Text Available Panoramic views of natural environments provide visually navigating animals with two kinds of information: they define locations because image differences increase smoothly with distance from a reference location and they provide compass information, because image differences increase smoothly with rotation away from a reference orientation. The range over which a given reference image can provide navigational guidance (its 'catchment area' has to date been quantified from the perspective of walking animals by determining how image differences develop across the ground plane of natural habitats. However, to understand the information available to flying animals there is a need to characterize the 'catchment volumes' within which panoramic snapshots can provide navigational guidance. We used recently developed camera-based methods for constructing 3D models of natural environments and rendered panoramic views at defined locations within these models with the aim of mapping navigational information in three dimensions. We find that in relatively open woodland habitats, catchment volumes are surprisingly large extending for metres depending on the sensitivity of the viewer to image differences. The size and the shape of catchment volumes depend on the distance of visual features in the environment. Catchment volumes are smaller for reference images close to the ground and become larger for reference images at some distance from the ground and in more open environments. Interestingly, catchment volumes become smaller when only above horizon views are used and also when views include a 1 km distant panorama. We discuss the current limitations of mapping navigational information in natural environments and the relevance of our findings for our understanding of visual navigation in animals and autonomous robots.

  14. Quantifying navigational information: The catchment volumes of panoramic snapshots in outdoor scenes.

    Science.gov (United States)

    Murray, Trevor; Zeil, Jochen

    2017-01-01

    Panoramic views of natural environments provide visually navigating animals with two kinds of information: they define locations because image differences increase smoothly with distance from a reference location and they provide compass information, because image differences increase smoothly with rotation away from a reference orientation. The range over which a given reference image can provide navigational guidance (its 'catchment area') has to date been quantified from the perspective of walking animals by determining how image differences develop across the ground plane of natural habitats. However, to understand the information available to flying animals there is a need to characterize the 'catchment volumes' within which panoramic snapshots can provide navigational guidance. We used recently developed camera-based methods for constructing 3D models of natural environments and rendered panoramic views at defined locations within these models with the aim of mapping navigational information in three dimensions. We find that in relatively open woodland habitats, catchment volumes are surprisingly large extending for metres depending on the sensitivity of the viewer to image differences. The size and the shape of catchment volumes depend on the distance of visual features in the environment. Catchment volumes are smaller for reference images close to the ground and become larger for reference images at some distance from the ground and in more open environments. Interestingly, catchment volumes become smaller when only above horizon views are used and also when views include a 1 km distant panorama. We discuss the current limitations of mapping navigational information in natural environments and the relevance of our findings for our understanding of visual navigation in animals and autonomous robots.

  15. Catchment conceptualisation for examining applicability of chloride mass balance method in an area with historical forest clearance

    Directory of Open Access Journals (Sweden)

    H. Guan

    2010-07-01

    Full Text Available Of the various approaches for estimating groundwater recharge, the chloride mass balance (CMB method is one of the most frequently used, especially for arid and semiarid regions. Widespread native vegetation clearance, common in many areas globally, has changed the land surface boundary condition, posing the question as to whether the current system has reached new chloride equilibrium, required for a CMB application. Although a one-dimensional CMB can be applied at a point where the water and chloride fluxes are locally in steady state, the CMB method is usually applied at a catchment scale owing to significant lateral flows in mountains. The applicability of the CMB method to several conceptual catchment types of various chloride equilibrium conditions is examined. The conceptualisation, combined with some local climate conditions, is shown to be useful in assessing whether or not a catchment has reached new chloride equilibrium. The six conceptual catchment types are tested with eleven selected catchments in the Mount Lofty Ranges (MLR, a coastal hilly area in South Australia having experienced widespread historical forest clearance. The results show that six of the eleven catchments match a type VI chloride balance condition (chloride non-equilibrium with a gaining stream, with the ratios of stream chloride output (O over atmospheric chloride input (I, or catchment chloride O/I ratios, ranging from 2 to 4. Two catchments match a type V chloride balance condition (chloride non-equilibrium with a losing stream, with catchment chloride O/I ratios about 0.5. For these type V and type VI catchments, the CMB method is not applicable. The results also suggest that neither a chloride O/I ratio less than one nor a low seasonal fluctuation of streamflow chloride concentration (a factor below 4 guarantees a chloride equilibrium condition in the study area. A large chloride O/I value (above one and a large fluctuation of streamflow chloride

  16. Identifying the Dynamic Catchment Storage That Does Not Drive Runoff

    Science.gov (United States)

    Dralle, D.; Hahm, W. J.; Rempe, D.; Karst, N.; Thompson, S. E.; Dietrich, W. E.

    2017-12-01

    The central importance of subsurface water storage in hydrology has resulted in numerous attempts to develop hydrograph and mass balance based techniques to quantify catchment storage state or capacity. In spite of these efforts, relatively few studies have linked catchment scale storage metrics to Critical Zone (CZ) structure and the status of water in hillslopes. Elucidating these relationships would increase the interpretability of catchment storage metrics, and aid the development of hydrologic models. Here, we propose that catchment storage consists of a dynamic component that varies on seasonal timescales, and a static component with negligible time variation. Discharge is assumed to be explicitly sensitive to changes in some fraction of the dynamic storage, while the remaining dynamic storage varies without directly influencing flow. We use a coupled mass balance and storage-discharge function approach to partition dynamic storage between these driving and non-driving storage pools, and compare inferences with direct observations of saturated and unsaturated dynamic water storages at two field sites in Northern California. We find that most dynamic catchment water storage does not drive streamflow in both sites, even during the wettest times of year. Moreover, the physical character of non-driving dynamic storage depends strongly on catchment CZ structure. At a site with a deep profile of weathered rock, the dynamic storage that drives streamflow occurs as a seasonally perched groundwater table atop fresh bedrock, and that which does not drive streamflow resides as seasonally dynamic unsaturated water in shallow soils and deep, weathered rock. At a second site with a relatively thin weathered zone, water tables rapidly rise to intersect the ground surface with the first rains of the wet season, yet only a small fraction of this dynamic saturated zone storage drives streamflow. Our findings emphasize how CZ structure governs the overlap in time and space of

  17. Assessing water quality trends in catchments with contrasting hydrological regimes

    Science.gov (United States)

    Sherriff, Sophie C.; Shore, Mairead; Mellander, Per-Erik

    2016-04-01

    Environmental resources are under increasing pressure to simultaneously achieve social, economic and ecological aims. Increasing demand for food production, for example, has expanded and intensified agricultural systems globally. In turn, greater risks of diffuse pollutant delivery (suspended sediment (SS) and Phosphorus (P)) from land to water due to higher stocking densities, fertilisation rates and soil erodibility has been attributed to deterioration of chemical and ecological quality of aquatic ecosystems. Development of sustainable and resilient management strategies for agro-ecosystems must detect and consider the impact of land use disturbance on water quality over time. However, assessment of multiple monitoring sites over a region is challenged by hydro-climatic fluctuations and the propagation of events through catchments with contrasting hydrological regimes. Simple water quality metrics, for example, flow-weighted pollutant exports have potential to normalise the impact of catchment hydrology and better identify water quality fluctuations due to land use and short-term climate fluctuations. This paper assesses the utility of flow-weighted water quality metrics to evaluate periods and causes of critical pollutant transfer. Sub-hourly water quality (SS and P) and discharge data were collected from hydrometric monitoring stations at the outlets of five small (~10 km2) agricultural catchments in Ireland. Catchments possess contrasting land uses (predominantly grassland or arable) and soil drainage (poorly, moderately or well drained) characteristics. Flow-weighted water quality metrics were calculated and evaluated according to fluctuations in source pressure and rainfall. Flow-weighted water quality metrics successfully identified fluctuations in pollutant export which could be attributed to land use changes through the agricultural calendar, i.e., groundcover fluctuations. In particular, catchments with predominantly poor or moderate soil drainage

  18. Behaviour of arsenic in forested catchments following a high-pollution period

    International Nuclear Information System (INIS)

    Novak, Martin; Erbanova, Lucie; Fottova, Daniela; Cudlin, Pavel; Kubena, Ales

    2011-01-01

    Due to high availability of adsorption sites, forested catchments could be net sinks for pollutant arsenic both during the period of increasing and decreasing pollution. We tested this hypothesis along a north-south pollution gradient in spruce die-back affected areas of Central Europe. For two water years (2007-2008), we monitored As fluxes via spruce-canopy throughfall, open-area precipitation, and runoff in four headwater catchments (Czech Republic). Since 1980, atmospheric As inputs decreased 26 times in the north, and 13 times in the south. Arsenic export by runoff was similar to atmospheric inputs at three sites, resulting in a near-zero As mass balance. One site exhibited a net export of As (2.2 g ha -1 yr -1 ). In contrast, the preceding period (1995-2006) showed much higher As fluxes, and higher As export. Czech catchments do not serve as net sinks of atmospheric As. A considerable proportion of old industrial arsenic is flushed out of the soil. - Following a period of high atmospheric As deposition, a considerable proportion of old industrial arsenic is flushed out of soil and exported from forested catchments.

  19. East African wetland-catchment data base for sustainable wetland management

    Science.gov (United States)

    Leemhuis, Constanze; Amler, Esther; Diekkrüger, Bernd; Gabiri, Geofrey; Näschen, Kristian

    2016-10-01

    Wetlands cover an area of approx. 18 Mio ha in the East African countries of Kenya, Rwanda, Uganda and Tanzania, with still a relative small share being used for food production. Current upland agricultural use intensification in these countries due to demographic growth, climate change and globalization effects are leading to an over-exploitation of the resource base, followed by an intensification of agricultural wetland use. We aim on translating, transferring and upscaling knowledge on experimental test-site wetland properties, small-scale hydrological processes, and water related ecosystem services under different types of management from local to national scale. This information gained at the experimental wetland/catchment scale will be embedded as reference data within an East African wetland-catchment data base including catchment physical properties and a regional wetland inventory serving as a base for policy advice and the development of sustainable wetland management strategies.

  20. East African wetland-catchment data base for sustainable wetland management

    Directory of Open Access Journals (Sweden)

    C. Leemhuis

    2016-10-01

    Full Text Available Wetlands cover an area of approx. 18 Mio ha in the East African countries of Kenya, Rwanda, Uganda and Tanzania, with still a relative small share being used for food production. Current upland agricultural use intensification in these countries due to demographic growth, climate change and globalization effects are leading to an over-exploitation of the resource base, followed by an intensification of agricultural wetland use. We aim on translating, transferring and upscaling knowledge on experimental test-site wetland properties, small-scale hydrological processes, and water related ecosystem services under different types of management from local to national scale. This information gained at the experimental wetland/catchment scale will be embedded as reference data within an East African wetland-catchment data base including catchment physical properties and a regional wetland inventory serving as a base for policy advice and the development of sustainable wetland management strategies.

  1. Hydrological picture of Nišava trans-boundary catchment

    Directory of Open Access Journals (Sweden)

    Hristova Nelly

    2010-01-01

    Full Text Available This work focuses on hydrographic and hydrological specific of Nišava River. It uses all hydrometric and cartographic information for the Bulgarian part of the catchment. Trans-boundary catchment of Nišava River includes four sub-basins, which are trans-borders too. There are a lot of karst areas in the river basin. The drainage density is 1.09 km/km2. Water resources of Nišava River are 170 million m3. They vary between 300.0 and 84.0 million m3. The period of high water appears in March/April and finishes in June. The frequency of monthly maximum is biggest in April or May. The monthly minimum appears most often in September or October. Floods in the catchment of the river Nišava are most often in March, May and June. Some of the rivers lose its waters in the karst areas and dries up during the summer. The average number of days with ice is between 10 and 70. The chemical and ecological status of river water is good. .

  2. The Catchment Feature Model: A Device for Multimodal Fusion and a Bridge between Signal and Sense

    Science.gov (United States)

    Quek, Francis

    2004-12-01

    The catchment feature model addresses two questions in the field of multimodal interaction: how we bridge video and audio processing with the realities of human multimodal communication, and how information from the different modes may be fused. We argue from a detailed literature review that gestural research has clustered around manipulative and semaphoric use of the hands, motivate the catchment feature model psycholinguistic research, and present the model. In contrast to "whole gesture" recognition, the catchment feature model applies a feature decomposition approach that facilitates cross-modal fusion at the level of discourse planning and conceptualization. We present our experimental framework for catchment feature-based research, cite three concrete examples of catchment features, and propose new directions of multimodal research based on the model.

  3. Design for participation in ecologically sound management of South Africa's Mlazi River catchment

    NARCIS (Netherlands)

    Auerbach, R.

    1999-01-01

    Without local participation, integrated catchment management and Landcare will not become a general reality in South Africa. With support from the South African Water Research Commission, the University of Natal's Farmer Support Group set up the Ntshongweni Catchment Management Programme

  4. The frequency of precipitation days in the Yangtze Catchment from 1950 to 2000

    International Nuclear Information System (INIS)

    Wu Yijin; Becker, Stefan; Jiang Tong; Harmann, Heike; Su Bu Da

    2004-01-01

    This paper explores the frequency of precipitation days by using different percentiles in the Yangtze River catchment from 1950 to 2000. Some interesting facts have been revealed through the present study. The positive (increasing) trends of the yearly precipitation days at the 75 th percentile appears in most of the Yangtze River catchment, especially in the northern regions of the upper and the middle reaches of the catchment. The Sichuan basin is the only region with negative trends. The transitional area from negative to positive trends is found east of the Sichuan basin in the Three Gorges area. For the 95 th percentile, the negative trend regions are still mainly in Sichuan basin but extend to northern regions and there are also obviously increasing trend centers in the middle and lower reaches of Yangtze river catchment. On the decadal time scale, the most significant positive trends at the 75th percentiles are in the middle reaches in 1980s and 1990s. The lower reaches show significant positive trends in 1980s. Those positive phases greatly contribute to the positive trends of the whole catchment during the last two decades. The most significant negative phase also occurs in the middle reaches during the earlier three decades. For this case, it seems that the precipitation days in the middle reaches are more sensitive to changes than other regions in the Yangtze River catchment. Take the Yangtze River catchment as a whole, a positive trend is very obvious for this percentile. For the 95 th percentile, the trends between the middle and lower reaches of the Yangtze River catchment are coherent: after two decades (1960s and 1970s) of negative phases, the most significant increasing trend is shown in the last two decades. On the other side, the fluctuation of the precipitation days in the catchment of the upper reaches over the 50 years is somewhat smoother than for other regions. For the whole catchment, the precipitation days in the 1950s and in the 1990s are

  5. Using a Budyko Derived Index to Evaluate the Internal Hydrological Variability of Catchments in Complex Terrain

    Science.gov (United States)

    Dominguez, M.

    2017-12-01

    Headwater catchments in complex terrain typically exhibit significant variations in microclimatic conditions across slopes. This microclimatic variability in turn, modifies land surface properties presumably altering the hydrologic dynamics of these catchments. The extent to which differences in microclimate and land cover dictate the partition of water and energy fluxes within a catchment is still poorly understood. In this study, we attempt to do an assessment of the effects of aspect, elevation and latitude (which are the principal factors that define microclimate conditions) on the hydrologic behavior of the hillslopes within catchments with complex terrain. Using a distributed hydrologic model on a number of catchments at different latitudes, where data is available for calibration and validation, we estimate the different components of the water balance to obtain the aridity index (AI = PET/P) and the evaporative index (EI = AET/P) of each slope for a number of years. We use Budyko's curve as a framework to characterize the inter-annual variability in the hydrologic response of the hillslopes in the studied catchments, developing a hydrologic sensitivity index (HSi) based on the relative change in Budyko's curve components (HSi=ΔAI/ΔEI). With this method, when the HSi values of a given hillslope are larger than 1 the hydrologic behavior of that part of the catchment is considered sensitive to changes in climatic conditions, while values approaching 0 would indicate the opposite. We use this approach as a diagnostic tool to discern the effect of aspect, elevation, and latitude on the hydrologic regime of the slopes in complex terrain catchments and to try to explain observed patterns of land cover conditions on these types of catchments.

  6. The River Network of Montenegro in the GIS Database

    Directory of Open Access Journals (Sweden)

    Goran Barović

    2017-06-01

    Full Text Available The subject of this paper is the systematization and precise identification of the structure of river networks in Montenegro in both planimetric and hypsometric dimensions, using cartometry. This includes the precise determination of the morphometric parameters of river flows, their numerical display, graphical display, and documentation. This allows for a number of analyses, for example, of individual catchments, the mutual relations of individual watercourses within a higher order catchment, and the classification of flows according to river and sea basins and their relationship to the environment. In addition, there is the potential for expanding the database further, with a view to continuous, systematic, scientific and practical follow-up in all or part of the geographic space. The cartometric analysis of the river network in Montenegro has a special scientific, and also a social value. In the geographical structure of all countries, including Montenegro, rivers occupy a central place as individual elements and integral parts of the whole. There is almost no human activity which is not related to river flows, or related phenomena and processes. The river network as part of a geographic space continues to gain in importance, and therefore studying it must connect with the other structural elements within which it functions. These are the basic relief characteristics, climate, and certain hydrographic characteristics. A complete theoretical and methodological approach to this problem forms the basis for a scientific understanding of the significance of the river network of Montenegro.

  7. Tropical montane forest conversion affects spatial and temporal nitrogen dynamics in Kenyan headwater catchment

    Science.gov (United States)

    Jacobs, Suzanne; Weeser, Björn; Breuer, Lutz; Butterbach-Bahl, Klaus; Guzha, Alphonce; Rufino, Mariana

    2017-04-01

    Deforestation and land use change (LUC) are often stated as major contributors to changes in water quality, although other catchment characteristics such as topography, geology and climate can also play a role. Understanding how stream water chemistry is affected by LUC is essential for sustainable water management and land use planning. However, there is often a lack of reliable data, especially in less studied regions such as East Africa. This study focuses on three sub-catchments (27-36 km2) with different land use types (natural forest, smallholder agriculture and tea/tree plantations) nested in a 1023 km2 headwater catchment in the Mau Forest Complex, Kenya's largest closed-canopy indigenous tropical montane forest. In the past decades approx. 25% of the natural forest was lost due to land use change. We studied seasonal, diurnal and spatial patterns of total dissolved nitrogen (TDN), nitrate (NO3-N) and dissolved organic nitrogen (DON) using a combination of high-resolution in-situ measurements, bi-weekly stream water samples and spatial sampling campaigns. Multiple linear regression analysis of the spatial data indicates that land use shows a strong influence on TDN and nitrate, while DON is more influenced by precipitation. Highest TDN and nitrate concentrations are found in tea plantations, followed by smallholder agriculture and natural forest. This ranking does not change throughout the year, though concentrations of TDN and nitrate are respectively 27.6 and 25.4% lower in all catchments during the dry season. Maximum Overlap Discrete Wavelet Transform (MODWT) analysis of the high resolution nitrate data revealed a seasonal effect on diurnal patterns in the natural forest catchment, where the daily peak shifts from early morning in the wet season to mid-afternoon in the dry season. The smallholder and tea catchment do not exhibit clear diurnal patterns. The results suggest that land use affects dissolved nitrogen concentrations, leading to higher N

  8. Exploring the Linkage between Urban Flood Risk and Spatial Patterns in Small Urbanized Catchments of Beijing, China

    Directory of Open Access Journals (Sweden)

    Lei Yao

    2017-02-01

    Full Text Available In the context of global urbanization, urban flood risk in many cities has become a serious environmental issue, threatening the health of residents and the environment. A number of hydrological studies have linked urban flooding issues closely to the spectrum of spatial patterns of urbanization, but relatively little attention has been given to small-scale catchments within the realm of urban systems. This study aims to explore the hydrological effects of small-scaled urbanized catchments assigned with various landscape patterns. Twelve typical residential catchments in Beijing were selected as the study areas. Total Impervious Area (TIA, Directly Connected Impervious Area (DCIA, and a drainage index were used as the catchment spatial metrics. Three scenarios were designed as different spatial arrangement of catchment imperviousness. Runoff variables including total and peak runoff depth (Qt and Qp were simulated by using Strom Water Management Model (SWMM. The relationship between catchment spatial patterns and runoff variables were determined, and the results demonstrated that, spatial patterns have inherent influences on flood risks in small urbanized catchments. Specifically: (1 imperviousness acts as an effective indicator in affecting both Qt and Qp; (2 reducing the number of rainwater inlets appropriately will benefit the catchment peak flow mitigation; (3 different spatial concentrations of impervious surfaces have inherent influences on Qp. These findings provide insights into the role of urban spatial patterns in driving rainfall-runoff processes in small urbanized catchments, which is essential for urban planning and flood management.

  9. Exploring the Linkage between Urban Flood Risk and Spatial Patterns in Small Urbanized Catchments of Beijing, China

    Science.gov (United States)

    Yao, Lei; Chen, Liding; Wei, Wei

    2017-01-01

    In the context of global urbanization, urban flood risk in many cities has become a serious environmental issue, threatening the health of residents and the environment. A number of hydrological studies have linked urban flooding issues closely to the spectrum of spatial patterns of urbanization, but relatively little attention has been given to small-scale catchments within the realm of urban systems. This study aims to explore the hydrological effects of small-scaled urbanized catchments assigned with various landscape patterns. Twelve typical residential catchments in Beijing were selected as the study areas. Total Impervious Area (TIA), Directly Connected Impervious Area (DCIA), and a drainage index were used as the catchment spatial metrics. Three scenarios were designed as different spatial arrangement of catchment imperviousness. Runoff variables including total and peak runoff depth (Qt and Qp) were simulated by using Strom Water Management Model (SWMM). The relationship between catchment spatial patterns and runoff variables were determined, and the results demonstrated that, spatial patterns have inherent influences on flood risks in small urbanized catchments. Specifically: (1) imperviousness acts as an effective indicator in affecting both Qt and Qp; (2) reducing the number of rainwater inlets appropriately will benefit the catchment peak flow mitigation; (3) different spatial concentrations of impervious surfaces have inherent influences on Qp. These findings provide insights into the role of urban spatial patterns in driving rainfall-runoff processes in small urbanized catchments, which is essential for urban planning and flood management. PMID:28264521

  10. North Putrajaya Catchment Area Putrajaya, Malaysia-Challenges in Water Quality Management

    International Nuclear Information System (INIS)

    Mohd Zamri Daud; Pereira, J.J.; Mazlin Mokhtar

    2011-01-01

    The Putrajaya Administrative area covers 70 % of the Putrajaya Lake catchment area. Development work carried out within the Putrajaya area abides by the rules and regulations set by the Putrajaya Corporation to ensure that the quality of the lake water and wetland within the Putrajaya area meets the stipulated benchmark standards. However, 30 % of the Putrajaya lake and wetland catchment area is located outside of administration and prerogative of the Putrajaya Corporation. The North Putrajaya catchment area which originates from the Sg. Chuau River contributes the bulk of the water that flows into the lake and wetlands of Putrajaya. Water quality data collected by the Putrajaya Corporation for the period of 2002 to 2005 has been analysed to identify major issues in the Putrajaya Wetland North Catchment area. Data from 2002 shows average percentage parameter of non-compliance Putrajaya Standard for ammoniacal nitrogen (NH 3 -N) at 43.7 %, E. coli at 31.3 % and TSS at 12.5 % while the DO and COD are both 6.2 %. For 2003, the average percentage parameter of non compliance for NH 3 -N was at 23.7 %, E. coli at 18.4 %, total coliform at 18.4 %, TSS at 2.6 %, DO at 13.2 %, COD at 13.2 % and BOD at 10.5 %. For 2004, the average percentage parameter of non complying for NH 3 -N was at 35.5 %, E. coli at 22.6 %, total coliform at 12.9 %, TSS at 9.7 %, COD at 3.2 % and BOD at 16.1 %. For 2005, the average percentage parameter of non compliance were at is 36.4 % for E. coli, 22.7 % for NH 3 -N, 18.2 % for total coliform, 13.6 % for BOD and 4.5 % for both DO and COD. In conclusion the analysed data within the four year period showed that the NH 3 -N and E. coli discharge from the north catchment area did not comply with the Putrajaya Standard. The main factors of water quality issues in the Putrajaya Wetland North Catchment area include the failure of integrating the management of the catchment areas and the stake holders attitude of total disregard of the management and

  11. Modeling seasonal water balance based on catchments' hedging strategy on evapotranspiration for climate seasonality

    Science.gov (United States)

    Wu, S.; Zhao, J.; Wang, H.

    2017-12-01

    This paper develops a seasonal water balance model based on the hypothesis that natural catchments utilize hedging strategy on evapotranspiration for climate seasonality. According to the monthly aridity index, one year is split into wet season and dry season. A seasonal water balance model is developed by analogy to a two-stage reservoir operation model, in which seasonal rainfall infiltration, evapotranspiration and saturation-excess runoff is corresponding to the inflow, release and surplus of the catchment system. Then the optimal hedging between wet season and dry season evapotranspiration is analytically derived with marginal benefit principle. Water budget data sets of 320 catchments in the United States covering the period from 1980 to 2010 are used to evaluate the performance of this model. The Nash-Sutcliffe Efficiency coefficient for evapotranspiration is higher than 0.5 in 84% of the study catchments; while the runoff is 87%. This paper validates catchments' hedging strategy on evapotranspiration for climate seasonality and shows its potential application for seasonal water balance, which is valuable for water resources planning and management.

  12. The politics of establishing catchment management agencies in South Africa: the case of the Breede-Overberg catchment management agency

    CSIR Research Space (South Africa)

    Meissner, Richard

    2016-01-01

    Full Text Available (BGCMA). We do so by applying the framework of adaptive comanagement and its institutional prescriptions: collaboration, experimentation, and a bioregional approach. We start by introducing the history of this catchment management agency (CMA...

  13. The assessment of water resources in ungauged catchments in Rwanda

    Directory of Open Access Journals (Sweden)

    O.P. Abimbola

    2017-10-01

    New hydrological insights for the region: Results of this study show that climate, physiography and land cover strongly influence the hydrology of catchments in Rwanda. Using leave-one-out cross-validation, the log-transformed models were found to predict the flow parameters more suitably. These models can be used for estimating the flow parameters in ungauged catchments in Rwanda and the methodology can be applied in any other region, as long as sufficient and good quality streamflow data is available.

  14. Soil erosion and sediment delivery issues in a large hydro-electric power reservoir catchment, Ethiopia

    Science.gov (United States)

    Nebiyu, Amsalu; Dume, Bayu; Bode, Samuel; Ram, Hari; Boeckx, Pascal

    2017-04-01

    Land degradation and associated processes such as gullying, flooding and sedimentation, are among the developmental challenges in many countries and HEP reservoirs in the Gilgel Gibe catchment, Ethiopia, are under threat from siltation. Soil erosion is one of the biggest global environmental problems resulting in both on-site and offsite effects which have economic implications and an essential actor in assessing ecosystem health and function. Sediment supply in a catchment is heterogeneous in time and space depending on climate, land use and a number of landscape characteristics such as slope, topography, soil type, vegetation and drainage conditions. In the Ethiopian highlands, sediment delivery depends on discharge, the onset of rainfall, land use and land cover, which varies between rainfall seasons. There is also a variation among catchments in suspended sediment concentration due to the variation in the catchments characteristics in Ethiopia. Rainfall-runoff relationship, sediment production and delivery to rivers or dams is variable and poorly understood; due to heterogeneous lithology; various climatic conditions across small spatial scales; land use and land management practices in Ethiopia. Spatial variation in sediment yield in Africa varies to differences in seismic activity, topography, vegetation cover and annual runoff depth. In the Gilgel-Gibe catchment, the annual sediment load of the Gilgel-Gibe River has been estimated to be about 4.5×107 tons taking the contribution of sheet erosion alone. Also, the suspended sediment yield of the tributaries in Gilgel-Gibe catchment has been estimated to be in the range of 0.4-132.1 tons per hectare per year. The soil loss due to landslide alone in the past 20 years in the catchment was about 11 t/ha/yr. Heavy rainfall, bank erosion and river incisions have been indicated as the main triggering factors for landslides and the associated sediment delivery in the Gilgel-Gibe catchment. Approaches for catchment

  15. Simulating hydrological processes of a typical small mountainous catchment in Tibetan Plateau

    Science.gov (United States)

    Xu, Y. P.; Bai, Z.; Fu, Q.; Pan, S.; Zhu, C.

    2017-12-01

    Water cycle of small watersheds with seasonal/permanent frozen soil and snow pack in Tibetan Plateau is seriously affected by climate change. The objective of this study is to find out how much and in what way the frozen soil and snow pack will influence the hydrology of small mountainous catchments in cold regions and how can the performance of simulation by a distributed hydrological model be improved. The Dong catchment, a small catchment located in Tibetan Plateau, is used as a case study. Two measurement stations are set up to collect basic meteorological and hydrological data for the modeling purpose. Annual and interannual variations of runoff indices are first analyzed based on historic data series. The sources of runoff in dry periods and wet periods are analyzed respectively. Then, a distributed hydrology soil vegetation model (DHSVM) is adopted to simulate the hydrological process of Dong catchment based on limited data set. Global sensitivity analysis is applied to help determine the important processes of the catchment. Based on sensitivity analysis results, the Epsilon-Dominance Non-Dominated Sorted Genetic Algorithm II (ɛ-NSGAII) is finally added into the hydrological model to calibrate the hydrological model in a multi-objective way and analyze the performance of DHSVM model. The performance of simulation is evaluated with several evaluation indices. The final results show that frozen soil and snow pack do play an important role in hydrological processes in cold mountainous region, in particular in dry periods without precipitation, while in wet periods precipitation is often the main source of runoff. The results also show that although the DHSVM hydrological model has the potential to model the hydrology well in small mountainous catchments with very limited data in Tibetan Plateau, the simulation of hydrology in dry periods is not very satisfactory due to the model's insufficiency in simulating seasonal frozen soil.

  16. Dynamics, chemical properties and bioavailability of DOC in an early successional catchment

    Directory of Open Access Journals (Sweden)

    U. Risse-Buhl

    2013-07-01

    Full Text Available The dynamics of dissolved organic carbon (DOC have been intensively studied in mature ecosystems, but little is known about DOC dynamics and the significance of DOC as a substrate for microbial activity in early-successional catchments. We determined the concentration, chemical composition, source, radiocarbon age, and bioavailability of DOC along the hydrological flow path from soil solution to a downstream pond in a recently constructed catchment (Chicken Creek Catchment, Germany. Soil solution, upwelling ground water, stream water, subsurface water in an alluvial fan, and pond water all had high DOC concentrations (averages: 6.0–11.6 mg DOC L–1, despite small carbon stocks in both vegetation and soil of the catchment. Solid-state CPMAS 13C NMR of DOC in upwelling ground water revealed a higher proportion of aromatic compounds (32% and a lower proportion of carbohydrates (33% than in pond water (18% and 45%, respectively. The average 14C age of DOC in upwelling ground water was 2600 to 2900 yr, while organic matter of the Quaternary substrate of the catchment had a 14C age of 3000 to 16 000 yr. Both the 14C age data and 13C NMR spectra suggest that DOC partly derived from organic matter of the Quaternary substrate (about 40 to 90% of the C in the DOC, indicating that both recent and old C of the DOC can support microbial activity during early ecosystem succession. However, in a 70 day incubation experiment, only about 11% of the total DOC was found to be bioavailable. This proportion was irrespective of the water type. Origin of the microbial communities within the catchment (enriched from soil, stream sediment or pond water also had only a marginal effect on overall DOC utilization.

  17. Assessment of vulnerability in karst aquifers using a quantitative integrated numerical model: catchment characterization and high resolution monitoring - Application to semi-arid regions- Lebanon.

    Science.gov (United States)

    Doummar, Joanna; Aoun, Michel; Andari, Fouad

    2016-04-01

    Karst aquifers are highly heterogeneous and characterized by a duality of recharge (concentrated; fast versus diffuse; slow) and a duality of flow which directly influences groundwater flow and spring responses. Given this heterogeneity in flow and infiltration, karst aquifers do not always obey standard hydraulic laws. Therefore the assessment of their vulnerability reveals to be challenging. Studies have shown that vulnerability of aquifers is highly governed by recharge to groundwater. On the other hand specific parameters appear to play a major role in the spatial and temporal distribution of infiltration on a karst system, thus greatly influencing the discharge rates observed at a karst spring, and consequently the vulnerability of a spring. This heterogeneity can only be depicted using an integrated numerical model to quantify recharge spatially and assess the spatial and temporal vulnerability of a catchment for contamination. In the framework of a three-year PEER NSF/USAID funded project, the vulnerability of a karst catchment in Lebanon is assessed quantitatively using a numerical approach. The aim of the project is also to refine actual evapotranspiration rates and spatial recharge distribution in a semi arid environment. For this purpose, a monitoring network was installed since July 2014 on two different pilot karst catchment (drained by Qachqouch Spring and Assal Spring) to collect high resolution data to be used in an integrated catchment numerical model with MIKE SHE, DHI including climate, unsaturated zone, and saturated zone. Catchment characterization essential for the model included geological mapping and karst features (e.g., dolines) survey as they contribute to fast flow. Tracer experiments were performed under different flow conditions (snow melt and low flow) to delineate the catchment area, reveal groundwater velocities and response to snowmelt events. An assessment of spring response after precipitation events allowed the estimation of the

  18. Fluvial organic carbon flux from an eroding peatland catchment, southern Pennines, UK

    Directory of Open Access Journals (Sweden)

    R. R. Pawson

    2008-03-01

    Full Text Available This study investigates for the first time the relative importance of dissolved organic carbon (DOC and particulate organic carbon (POC in the fluvial carbon flux from an actively eroding peatland catchment in the southern Pennines, UK. Event scale variability in DOC and POC was examined and the annual flux of fluvial organic carbon was estimated for the catchment. At the event scale, both DOC and POC were found to increase with discharge, with event based POC export accounting for 95% of flux in only 8% of the time. On an annual cycle, exports of 35.14 t organic carbon (OC are estimated from the catchment, which represents an areal value of 92.47 g C m−2 a−1. POC was the most significant form of organic carbon export, accounting for 80% of the estimated flux. This suggests that more research is required on both the fate of POC and the rates of POC export in eroding peatland catchments.

  19. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Physiographic Provinces

    Science.gov (United States)

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This dataset represents the area of each physiographic province (Fenneman and Johnson, 1946) in square meters, compiled for every catchment of NHDPlus for the conterminous United States. The source data are from Fenneman and Johnson's Physiographic Provinces of the United States, which is based on 8 major divisions, 25 provinces, and 86 sections representing distinctive areas having common topography, rock type and structure, and geologic and geomorphic history (Fenneman and Johnson, 1946). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins

  20. The Catchment Feature Model: A Device for Multimodal Fusion and a Bridge between Signal and Sense

    Directory of Open Access Journals (Sweden)

    Francis Quek

    2004-09-01

    Full Text Available The catchment feature model addresses two questions in the field of multimodal interaction: how we bridge video and audio processing with the realities of human multimodal communication, and how information from the different modes may be fused. We argue from a detailed literature review that gestural research has clustered around manipulative and semaphoric use of the hands, motivate the catchment feature model psycholinguistic research, and present the model. In contrast to “whole gesture” recognition, the catchment feature model applies a feature decomposition approach that facilitates cross-modal fusion at the level of discourse planning and conceptualization. We present our experimental framework for catchment feature-based research, cite three concrete examples of catchment features, and propose new directions of multimodal research based on the model.

  1. Daily Suspended Sediment Discharge Prediction Using Multiple Linear Regression and Artificial Neural Network

    Science.gov (United States)

    Uca; Toriman, Ekhwan; Jaafar, Othman; Maru, Rosmini; Arfan, Amal; Saleh Ahmar, Ansari

    2018-01-01

    Prediction of suspended sediment discharge in a catchments area is very important because it can be used to evaluation the erosion hazard, management of its water resources, water quality, hydrology project management (dams, reservoirs, and irrigation) and to determine the extent of the damage that occurred in the catchments. Multiple Linear Regression analysis and artificial neural network can be used to predict the amount of daily suspended sediment discharge. Regression analysis using the least square method, whereas artificial neural networks using Radial Basis Function (RBF) and feedforward multilayer perceptron with three learning algorithms namely Levenberg-Marquardt (LM), Scaled Conjugate Descent (SCD) and Broyden-Fletcher-Goldfarb-Shanno Quasi-Newton (BFGS). The number neuron of hidden layer is three to sixteen, while in output layer only one neuron because only one output target. The mean absolute error (MAE), root mean square error (RMSE), coefficient of determination (R2 ) and coefficient of efficiency (CE) of the multiple linear regression (MLRg) value Model 2 (6 input variable independent) has the lowest the value of MAE and RMSE (0.0000002 and 13.6039) and highest R2 and CE (0.9971 and 0.9971). When compared between LM, SCG and RBF, the BFGS model structure 3-7-1 is the better and more accurate to prediction suspended sediment discharge in Jenderam catchment. The performance value in testing process, MAE and RMSE (13.5769 and 17.9011) is smallest, meanwhile R2 and CE (0.9999 and 0.9998) is the highest if it compared with the another BFGS Quasi-Newton model (6-3-1, 9-10-1 and 12-12-1). Based on the performance statistics value, MLRg, LM, SCG, BFGS and RBF suitable and accurately for prediction by modeling the non-linear complex behavior of suspended sediment responses to rainfall, water depth and discharge. The comparison between artificial neural network (ANN) and MLRg, the MLRg Model 2 accurately for to prediction suspended sediment discharge (kg

  2. A framework for managing runoff and pollution in the rural landscape using a Catchment Systems Engineering approach.

    Science.gov (United States)

    Wilkinson, M E; Quinn, P F; Barber, N J; Jonczyk, J

    2014-01-15

    Intense farming plays a key role in increasing local scale runoff and erosion rates, resulting in water quality issues and flooding problems. There is potential for agricultural management to become a major part of improved strategies for controlling runoff. Here, a Catchment Systems Engineering (CSE) approach has been explored to solve the above problem. CSE is an interventionist approach to altering the catchment scale runoff regime through the manipulation of hydrological flow pathways throughout the catchment. By targeting hydrological flow pathways at source, such as overland flow, field drain and ditch function, a significant component of the runoff generation can be managed in turn reducing soil nutrient losses. The Belford catchment (5.7 km(2)) is a catchment scale study for which a CSE approach has been used to tackle a number of environmental issues. A variety of Runoff Attenuation Features (RAFs) have been implemented throughout the catchment to address diffuse pollution and flooding issues. The RAFs include bunds disconnecting flow pathways, diversion structures in ditches to spill and store high flows, large wood debris structure within the channel, and riparian zone management. Here a framework for applying a CSE approach to the catchment is shown in a step by step guide to implementing mitigation measures in the Belford Burn catchment. The framework is based around engagement with catchment stakeholders and uses evidence arising from field science. Using the framework, the flooding issue has been addressed at the catchment scale by altering the runoff regime. Initial findings suggest that RAFs have functioned as designed to reduce/attenuate runoff locally. However, evidence suggested that some RAFs needed modification and new RAFs be created to address diffuse pollution issues during storm events. Initial findings from these modified RAFs are showing improvements in sediment trapping capacities and reductions in phosphorus, nitrate and suspended

  3. Runoff and sediment yield from rural roads, trails and settlements in the upper Konto catchment, East Java, Indonesia

    Science.gov (United States)

    Rijsdijk, Anton; Sampurno Bruijnzeel, L. A.; Sutoto, C. Kukuh

    2007-06-01

    The potential importance of roads and settlements for the generation of storm runoff and sediment in tropical steeplands is increasingly recognised but rarely quantified. This paper presents runoff and sediment yield data for a cobbled and an unpaved road section, two large unbounded settlement plots, and several trails draining residential areas or terraced fields in a volcanic upland catchment in East Java. In addition, the sediment yield of major landslides associated with roads was quantified. The unpaved road section exhibited an average runoff coefficient of about 65% and yielded about 7 kg m - 2 yr - 1 of sediment. Both the runoff coefficient and the sediment yield for the cobbled road section (plus adjacent yards) were lower (38% and 1.9 kg m - 2 yr - 1 ). Sediment output from a 4160-m 2 hillside plot including a network of trails draining terraced fields (for which runoff and sediment outputs were shown to be negligible) was similar to that for the cobbled road (2-3 kg m - 2 yr - 1 depending on rainfall). However, a much higher value was obtained when the overall soil loss from the plot was expressed per square metre of trail surface area (ca. 42 kg m - 2 yr - 1 ) whereas the associated trail runoff coefficient was about 70%. The results obtained for several trails and large unbounded plots draining residential areas at two locations were less extreme (runoff coefficients of 24-43%; soil loss 1.3-3.5 kg m - 2 yr - 1 ). Landsliding occurred mainly at the end of the rainy season (March) and was estimated to have contributed ca. 2365 m 3 of sediment to the main road network during the 1988/89 wet season vs. ca. 905 m 3 in 1989/90 and only ca. 150 m 3 in 2000/01. It is concluded that, despite their relatively small areal extent (5% in the study area), rural roads, trails and settlements are significant producers of runoff and sediment at the catchment scale and should be included in watershed management programmes designed to reduce catchment sediment yields

  4. Water balance of a small catchment with permeable soils in Ile-Ife area, southwester Nigeria

    International Nuclear Information System (INIS)

    Ogunkoya, O. O.

    2000-01-01

    Three - year and annual catchment water balances were drawn for a small l catchment (44 ha.) in southwestern Nigeria. The equation: P - Q - E T - Δs = O was not resolved. Rather, the terms on the left did not sum to zero. The residual, which are between 4% and 5% of total rainfall, were consistently negative. A probable source of error is the use of Thornthwaite's potential evaporation in estimating catchment evapotranspiration. Potential evapotranspiration is higher than actual evapotranspiration in the study area due to the limited evaporation opportunity during the approximately five - mouth dry season. Given that the study catchment had runoff patterns that are simi liar to those of larger rivers in the region the computed catchment water balance indicated that 37% of annual rainfall may be taken as the runoff coefficient for the region. This suggests that the engineer's coefficient (0.35 - 0.45) used in assessment of surface water resources in southwestern Nigeria, is reasonable

  5. Reaction and relaxation in a coarse-grained fluvial system following catchment-wide disturbance

    Science.gov (United States)

    Tunnicliffe, Jon; Brierley, Gary; Fuller, Ian C.; Leenman, Anya; Marden, Mike; Peacock, Dave

    2018-04-01

    The Waiapu River catchment (drainage area of 1734-km2) is one of the most prolific conveyors of sediment in the world, annually delivering roughly 35 Mt of fine material to the ocean from eroding gullies, hillslopes, and reworked sediment on valley floors. Tectonic and geologic influences, in combination with a dynamic climate influenced by tropical cyclones and clearance of vegetation from steep hillslopes, predisposes this region to high rates of erosion. The bedload sediment regime of the river is strongly influenced by several exceptionally large gullies and gully complexes that produce a coarse-grained, poorly sorted sediment mixture. Rapid abrasion and breakdown leads to high rates of suspended sediment yield. A wave of bedload material, manifesting as elevated bed levels and significant widening of active alluvial fills, has been triggered by large inputs of hillslope material from a few key tributary catchments following Cyclone Bola in 1988. We review the evidence for the relaxation process of the sedimentary system in the subsequent 29 years, appraising some of the legacy effects that may endure, as associated with reworking of the considerable alluvial stores within the Waiapu system. We use Structure-from-Motion (SfM) techniques and archival aerial photos to quantify changes in sediment storage at the base of two major gully systems in recent decades. A record of over 850 cross section surveys at 62 sites on 10 rivers throughout the catchment (1958-2017) indicates recent transition from a trend of continuous accumulation to downcutting and remobilisation of valley-bottom deposits. The channel cross sections provide a minimum estimate of sediment flux from source areas to the lower reaches of the river, giving a rudimentary but spatially extensive picture of the wave of material cascading through the drainage network. The largest impacts occur in the upper steepland rivers, closest to the landslide-derived sediment supply. Transport rates here, as

  6. Composição de resíduos de varrição e resíduos carreados pela rede de drenagem, em uma bacia hidrográfica urbana Litter composition delivered by street sweeping and by the storm drainage network, in an urban catchment

    Directory of Open Access Journals (Sweden)

    Marllus Gustavo Ferreira Passos das Neves

    2011-12-01

    Full Text Available Apresentam-se aqui resultados de estudo sobre a composição física de resíduos sólidos de varrição e também daqueles vindos por uma rede de drenagem, em uma bacia hidrográfica urbana, identificando, dentre outros, influências da frequência do serviço de varrição e da época do ano. Os resíduos de varrição foram provenientes de várias partes do solo da bacia e os da rede de drenagem eram retirados de um poço de casa de bombas, para onde convergia todo o escoamento da rede. Alguns resultados interessantes: em média, 23% da massa de varrição são de lixo seco, predominando plásticos moles. Mais presença de plásticos duros ocorreu nas áreas de varrição diária. Com a análise dos resíduos vindos pela drenagem: o plástico Pet apareceu mais na rede em precipitações intensas do que nos sacos de varrição. Plásticos moles sempre ocorrem na varrição e na drenagem ao longo do ano.This paper presents results of a study about physical composition of litter from street sweeping and also those delivered by a storm drainage network urban catchment, identifying, among others, influences of the frequency of sweeping service and the season. The litter from sweeping came from several parts of the catchment and those delivered by a storm drainage network were taken from a well pump house, convergence point of the flow. Some interesting results: on average, 23% of the street sweeping mass is dry litter, predominantly soft plastics. More presence of hard plastics occurred at areas of daily sweeping. With the analysis of litter in the storm drainage network: pet plastics are more delivered by storm drainage network in intense rainfall than appear in bags sweeping. Soft plastics always occur in the bags sweeping and into storm drainage network throughout the year.

  7. Remote sensing entropy to assess the sustainability of rainfall in tropical catchment

    Science.gov (United States)

    Mahmud, M. R.; Reba, M. N. M.; Wei, J. S.; Razak, N. H. Abdul

    2018-02-01

    This study demonstrated the utility of entropy computation using the satellite precipitation remote sensing data to assess the sustainability of rainfall in tropical catchments. There were two major issues need to be anticipated in monitoring the tropical catchments; first is the frequent monitoring of the rainfall and second is the appropriate indicator that sensitive to rainfall pattern changes or disorder. For the first issue, the use of satellite remote sensing precipitation data is suggested. Meanwhile for the second issue, the utilization of entropy concept in interpreting the disorder of temporal rainfall can be used to assess the sustain ability had been successfully adopted in some studies. Therefore, we hypothesized that the use of satellite precipitation as main data to compute entropy can be a novel tool in anticipating the above-mentioned conflict earlier. The remote sensing entropy results and in-situ river level showed good agreement indicating its reliability. 72% of the catchment has moderate to good rainfall supply during normal or non-drought condition. However, our result showed that the catchments were highly sensitive to drought especially in the west coast and southern part of the Peninsular Malaysia. High resiliency was identified in the east coast. We summarized that the proposed entropy-quantity scheme was a useful tool for cost-effective, quick, and operational sustainability assessment This study demonstrated the utility of entropy computation using the satellite precipitation remote sensing data to assess the sustainability of rainfall in tropical catchments.

  8. Social Learning through Participatory Integrated Catchment Risk Assessment in the Solomon Islands

    Directory of Open Access Journals (Sweden)

    Suzanne Hoverman

    2011-06-01

    Full Text Available In developed countries a social learning approach has been shown to support Integrated Water Resources Management (IWRM by fostering stakeholders' understanding of system complexity, recognition of mutual dependence, appreciation of others' perspectives, and development of the capacity to work together and to create mutual trust. Much less is known about social learning's potential in less developed small island states, particularly postconflict island states, where integration must navigate prescriptive management, limited resources, widely differing world views, a history of adversarial relationships, and unsuccessful attempts at government-community collaboration. This paper analyzes the transformative aspects of a social learning experience that occurred during research facilitating participatory integrated catchment management in the Pacific. The study elicited community and expert knowledge to create systems understanding to generate and analyze complex scenarios for integrated catchment risk assessment in the Kongulai catchment, Solomon Islands. Separate sequenced and then combined discussions led to facilitated exploration of others' subjective assessment of catchment risks and management options. Issues of transparency, trust, accountability, and mutual responsibility were explored in carefully created discursive spaces, assisted by the immediacy of personal contact and the absence of complex bureaucratic structures. Despite historical difficulties, through the use of bridging individuals, participants were generally able to transcend the constraints of their individual knowledge cultures, expand awareness and appreciation of the complexity of human-environment systems for IWRM, and envisage new opportunities for productively working together in integrated catchment management.

  9. Impact of climate seasonality on catchment yield: A parameterization for commonly-used water balance formulas

    Science.gov (United States)

    de Lavenne, Alban; Andréassian, Vazken

    2018-03-01

    This paper examines the hydrological impact of the seasonality of precipitation and maximum evaporation: seasonality is, after aridity, a second-order determinant of catchment water yield. Based on a data set of 171 French catchments (where aridity ranged between 0.2 and 1.2), we present a parameterization of three commonly-used water balance formulas (namely, Turc-Mezentsev, Tixeront-Fu and Oldekop formulas) to account for seasonality effects. We quantify the improvement of seasonality-based parameterization in terms of the reconstitution of both catchment streamflow and water yield. The significant improvement obtained (reduction of RMSE between 9 and 14% depending on the formula) demonstrates the importance of climate seasonality in the determination of long-term catchment water balance.

  10. Comparison of direct outflow calculated by modified SCS-CN methods for mountainous and highland catchments in upper Vistula Basin, Poland and lowland catchment in South Carolina, U.S.A

    Science.gov (United States)

    A. Walega; A. Cupak; D.M. Amatya; E. Drozdzal

    2017-01-01

    The aim of the study is to compare direct outflow from storm events estimated using modifications of original SCS-CN procedure. The study was conducted in a mountainous catchment of Kamienica River and a highland catchment draining Stobnica River located in Upper Vistula water region, both in Poland, and a headwater lowland watershed WS80 located at the Santee...

  11. Parameterization of a Hydrological Model for a Large, Ungauged Urban Catchment

    Directory of Open Access Journals (Sweden)

    Gerald Krebs

    2016-10-01

    Full Text Available Urbanization leads to the replacement of natural areas by impervious surfaces and affects the catchment hydrological cycle with adverse environmental impacts. Low impact development tools (LID that mimic hydrological processes of natural areas have been developed and applied to mitigate these impacts. Hydrological simulations are one possibility to evaluate the LID performance but the associated small-scale processes require a highly spatially distributed and explicit modeling approach. However, detailed data for model development are often not available for large urban areas, hampering the model parameterization. In this paper we propose a methodology to parameterize a hydrological model to a large, ungauged urban area by maintaining at the same time a detailed surface discretization for direct parameter manipulation for LID simulation and a firm reliance on available data for model conceptualization. Catchment delineation was based on a high-resolution digital elevation model (DEM and model parameterization relied on a novel model regionalization approach. The impact of automated delineation and model regionalization on simulation results was evaluated for three monitored study catchments (5.87–12.59 ha. The simulated runoff peak was most sensitive to accurate catchment discretization and calibration, while both the runoff volume and the fit of the hydrograph were less affected.

  12. Modelling spatial and temporal variations of annual suspended sediment yields from small agricultural catchments.

    Science.gov (United States)

    Rymszewicz, A; Bruen, M; O'Sullivan, J J; Turner, J N; Lawler, D M; Harrington, J R; Conroy, E; Kelly-Quinn, M

    2018-04-01

    Estimates of sediment yield are important for ecological and geomorphological assessment of fluvial systems and for assessment of soil erosion within a catchment. Many regulatory frameworks, such as the Convention for the Protection of the Marine Environment of the North-East Atlantic, derived from the Oslo and Paris Commissions (OSPAR) require reporting of annual sediment fluxes. While they may be measured in large rivers, sediment flux is rarely measured in smaller rivers. Measurements of sediment transport at a national scale can be also challenging and therefore, sediment yield models are often utilised by water resource managers for the predictions of sediment yields in the ungauged catchments. Regression based models, calibrated to field measurements, can offer an advantage over complex and computational models due to their simplicity, easy access to input data and due to the additional insights into factors controlling sediment export in the study sites. While traditionally calibrated to long-term average values of sediment yields such predictions cannot represent temporal variations. This study addresses this issue in a novel way by taking account of the variation from year to year in hydrological variables in the developed models (using annual mean runoff, annual mean flow, flows exceeded in five percentage of the time (Q5) and seasonal rainfall estimated separately for each year of observations). Other parameters included in the models represent spatial differences influenced by factors such as soil properties (% poorly drained soils and % peaty soils), land-use (% pasture or % arable lands), channel slope (S1085) and drainage network properties (drainage density). Catchment descriptors together with year-specific hydrological variables can explain both spatial differences and inter-annual variability of suspended sediment yields. The methodology is demonstrated by deriving equations from Irish data-sets (compiled in this study) with the best model

  13. Keeping the secret: Insights from repeated catchment-scale tracer experiments under transient conditions

    Science.gov (United States)

    Bogner, Christina; Hauhs, Michael; Lange, Holger

    2016-04-01

    Catchment-level tracer experiments are generally performed to identify site-specific hydrological response functions of the catchment. The existence and uniqueness of these response functions are hardly ever questioned. Here, we report on a series of replicated tracer experiments in two small first-order catchments, G1 (0.6 ha, roofed) and F4 (2.3 ha, without roof) at Gårdsjön in SW Sweden. The soils in both catchments are shallow (500 m2) the experiments were done without a roof mostly at transient conditions. The catchment F4 was equipped with a sprinkler system with a watering capacity of around 38-45 m3 day-1. Natural rainfall comes in addition. A bromide tracer solution was injected to groundwater at a single location about 40 m upstream the weir over a period of less than an hour, and was monitored using a set of groundwater tubes and the weir at the outlet over the following 4 days. In addition, discharge was measured. The experiments were repeated each summer from 2007 to 2015. While steady state conditions were guaranteed in G1, steady runoff has been achieved only four times in F4. We investigated tracer recovery rates against cumulated runoff since tracer application. Substantially different transit times and qualitatively different behaviour of the breakthrough curves were observed, even under steady state conditions. In G1, no single system response function could be identified in 5 replicates. Similarly, the catchment response functions in F4 under steady state differed between experiments. However, they remained in a similar range as in G1. Based on these results, we question the identifiability of flow paths and system properties, such as saturated water content or hydrologic transmissivity, at the catchment scale using tracer experiments. Rather, the series demonstrate the utter importance of the initial and boundary conditions which largely determine the response of the system to inert tracer pulses.

  14. Catchment-coastal zone interaction based upon scenario and model analysis: Elbe and the German Bight case study

    NARCIS (Netherlands)

    Hofmann, J.; Behrendt, H.; Gilbert, A.J.; Janssen, R.; Kannen, A.; Kappenberg, J.W.; Lenhart, H.; Lise, W.; Nunneri, C.; Windhorst, W.

    2005-01-01

    This paper presents a holistic strategy on the interaction of activities in the Elbe river basin and their effects on eutrophication in the coastal waters of the German Bight. This catchment-coastal zone interaction is the main target of the EUROCAT (EUROpean CATchments, catchment changes and their

  15. Catchment2Coast: A systems approach to coupled river-coastal ecosystem science and management

    CSIR Research Space (South Africa)

    Monteiro, PMS

    2009-07-01

    Full Text Available Catchment2Coast was an interdisciplinary research and modelling project that aimed to improve understanding of the linkages between coastal ecosystems and the adjacent river catchments. The project involved nine partner organizations from three...

  16. The role of a dambo in the hydrology of a catchment and the river network downstream

    Directory of Open Access Journals (Sweden)

    C. J. von der Heyden

    2003-01-01

    Full Text Available Dambos are shallow, seasonally inundated wetlands and are a widespread landform in Central and Southern Africa. Owing to their importance in local agriculture and as a water resource, the hydrology of dambos is of considerable interest: varied, and sometimes contradictory, hydrological characteristics have been described in the literature. The issues in contention focus on the role of the dambo in (i the catchment evapotranspiration (ET budget, (ii flood flow retardation and attenuation, and (iii sustaining dry season flow to the river down-stream. In addition, both rainfall and groundwater have been identified as the dominant source of water to the dambo and various hydrogeological models have been proposed to describe the hydrological functions of the landform. In this paper, hydrological and geochemical data collected over a full hydrological year are used to investigate and describe the hydrological functions of a dambo in north-western Zambia. The Penman estimate of wetland ET was less than the ET from the miombo-wooded interfluve and the wetland has been shown to have little effect on flood flow retardation or attenuation. Discharge of water stored within the wetland contributed little to the dry season flow from the dambo, which was sustained primarily by groundwater discharge. Flow in a perched aquifer within the catchment soils contributed a large portion of baseflow during the rains and early dry season. This source ceased by the mid dry season, implying that the sustained middle to late dry season streamflow from the wetland is through discharge of a deeper aquifer within the underlying regolith or bedrock. This hypothesis is tested through an analysis of groundwater and wetland geochemistry. Various physical parameters, PHREEQC model results and end member mixing analysis (EMMA suggest strongly that the deep Upper Roan dolomite aquifer is the source of sustained discharge from the wetland. Keywords: dambo, hydrology, hydrogeology

  17. Microbial source tracking and transfer hydrodynamics in rural catchments.

    Science.gov (United States)

    Murphy, Sinead; Bhreathnach, Niamh; O'Flaherty, Vincent; Jordan, Philip; Wuertz, Stefan

    2013-04-01

    In Ireland, bacterial pathogens from continual point source pollution and intermittent pollution from diffuse sources can impact both drinking water supplies and recreational waters. This poses a serious public health threat. Observing and establishing the source of faecal pollution is imperative for the protection of water quality and human health. Traditional culture methods to detect such pollution via faecal indicator bacteria have been widely utilised but do not decipher the source of pollution. To combat this, microbial source tracking, an important emerging molecular tool, is applied to detect host-specific markers in faecally contaminated waters. The aim of this study is to target ruminant and human-specific faecal Bacteroidales and Bacteroides 16S rRNA genes within rural river catchments in Ireland and investigate hydrological transfer dependencies. During storm events and non-storm periods, 1L untreated water samples, taken every 2 hours over a 48-hour time period at the spring (Cregduff) or outlet (Dunleer), and large (5-20L) untreated water samples were collected from two catchment sites. Cregduff is a spring emergence under a grassland karst landscape in Co. Mayo (west coast of Ireland) and Dunleer is a mixed landuse over till soils in Co. Louth (east coast). From a risk assessment point of view, the catchments are very different. Samples were filtered through 0.2µm nitrocellulose filters to concentrate bacterial cells which then underwent chemical extraction of total nucleic acids. Animal and human stool samples were also collected from the catchments to determine assay sensitivity and specificity following nucleic acid extraction. Aquifer response to seasonal events was assessed by monitoring coliforms and E. coli occurrence using the IDEXX Colisure® Quanti Tray®/2000 system in conjunction with chemical and hydrological parameters. Autoanalysers deployed at each catchment monitor multiple water parameters every 10 min such as phosphorus, nitrogen

  18. Modeling and assessment of hydrological changes in a developing urban catchment

    OpenAIRE

    Guan, M; Sillanpää, N; Koivusalo, H

    2015-01-01

    Urbanization strongly changes natural catchment by increasing impervious coverage and by creating a need for efficient drainage systems. Such land cover changes lead to more rapid hydrological response to storms and change distribution of peak and low flows. This study aims to explore and assess how gradual hydrological changes occur during urban development from rural area to a medium-density residential catchment. The Stormwater Management Model (SWMM) is utilized to simulate a series of sc...

  19. Runoff Responses to Forest Thinning at Plot and Catchment Scales in a Headwater Catchment Draining Japanese Cypress Forest

    Science.gov (United States)

    We examined the effect of forest thinning on runoff generation at plot and catchment scales in headwater basins draining a Japanese cypress (Chamaecyparis obtusa) forest. We removed 58.3% of the stems (corresponding to 43.2% of the basal area) in the treated headwater basin (catc...

  20. Catchment response to lava damming: integrating field observation, geochronology and landscape evolution modelling

    NARCIS (Netherlands)

    Van Gorp, Wouter; Schoorl, Jeroen M.; Temme, Arnaud J. A. M.; Reimann, Tony; Wijbrans, Jan R.; Maddy, Darrel; Demir, Tuncer; Veldkamp, Tom

    2016-01-01

    Combining field reconstruction and landscape evolution modelling can be useful to investigate the relative role of different drivers on catchment response. The Geren Catchment (~45 km2) in western Turkey is suitable for such a study, as it has been influenced by uplift, climate change and lava

  1. Transport of sediment through a channel network during a post-fire debris flow

    Science.gov (United States)

    Nyman, P.; Box, W. A. C.; Langhans, C.; Stout, J. C.; Keesstra, S.; Sheridan, G. J.

    2017-12-01

    Transport processes linking sediment in steep headwaters with rivers during high magnitude events are rarely examined in detail, particularly in forested settings where major erosion events are rare and opportunities for collecting data are limited. Yet high magnitude events in headwaters are known to drive landscape change. This study examines how a debris flow after wildfire impacts on sediment transport from small headwaters (0.02 km2) through a step pool stream system within a larger 14 km2 catchment, which drains into the East Ovens River in SE Australia. Sediment delivery from debris flows was modelled and downstream deposition of sediment was measured using a combination of aerial imagery and field surveys. Particle size distributions were measured for all major deposits. These data were summarised to map sediment flux as a continuous variable over the drainage network. Total deposition throughout the stream network was 39 x 103 m3. Catchment efflux was 61 x 103 m3 (specific sediment yield of 78 ton ha-1), which equates to 400-800 years of background erosion, based on measurements in nearby catchments. Despite the low gradient (ca. 0.1 m m-1) of the main channel there was no systematic downstream sorting in sediment deposits in the catchment. This is due to debris flow processes operating throughout the stream network, with lateral inputs sustaining the process in low gradient channels, except in the most downstream reaches where the flow transitioned towards hyper-concentrated flow. Overall, a large proportion ( 88%) of the eroded fine fraction (<63 micron) exited the catchment, when compared to the overall ratio (55%) of erosion to deposition. The geomorphic legacy of this post-wildfire event depends on scale. In the lower channels (steam order 4-5), where erosion was nearly equal to deposition, the event had no real impact on total sediment volumes stored. In upper channels (stream orders < 3) erosion was widespread but deposition rates were low. So

  2. Fungicides transport in runoff from vineyard plot and catchment: contribution of non-target areas.

    Science.gov (United States)

    Lefrancq, Marie; Payraudeau, Sylvain; García Verdú, Antonio Joaquín; Maillard, Elodie; Millet, Maurice; Imfeld, Gwenaël

    2014-04-01

    Surface runoff and erosion during the course of rainfall events are major processes of pesticides transport from agricultural land to aquatic ecosystem. These processes are generally evaluated either at the plot or the catchment scale. Here, we compared at both scales the transport and partitioning in runoff water of two widely used fungicides, i.e., kresoxim-methyl (KM) and cyazofamid (CY). The objective was to evaluate the relationship between fungicides runoff from the plot and from the vineyard catchment. The results show that seasonal exports for KM and CY at the catchment were larger than those obtained at the plot. This underlines that non-target areas within the catchment largely contribute to the overall load of runoff-associated fungicides. Estimations show that 85 and 62 % of the loads observed for KM and CY at the catchment outlet cannot be explained by the vineyard plots. However, the partitioning of KM and CY between three fractions, i.e., the suspended solids (>0.7 μm) and two dissolved fractions (i.e., between 0.22 and 0.7 µm and plot scales enable to evaluate the sources areas of pesticide off-site transport.

  3. Total and methyl mercury concentrations and fluxes from small boreal forest catchments in Finland

    International Nuclear Information System (INIS)

    Porvari, Petri; Verta, Matti

    2003-01-01

    Peatlands have higher methyl mercury output than uplands. - Total mercury (TotHg) and methyl mercury (MeHg) concentrations were studied in runoff from eight small (0.02-1.3 km 2 ) boreal forest catchments (mineral soil and peatland) during 1990-1995. Runoff waters were extremely humic (TOC 7-70 mg l -1 ). TotHg concentrations varied between 0.84 and 24 ng l -1 and MeHg between 0.03 and 3.8 ng l -1 . TotHg fluxes from catchments ranged from 0.92 to 1.8 g km -2 a -1 , and MeHg fluxes from 0.03 to 0.33 g km -2 a -1 . TotHg concentrations and output fluxes measured in runoff water from small forest catchments in Finland were comparable with those measured in other boreal regions. By contrast, MeHg concentrations were generally higher. Estimates for MeHg output fluxes in this study were comparable at sites with forests and wetlands in Sweden and North America, but clearly higher than those measured at upland or agricultural sites in other studies. Peatland catchments released more MeHg than pure mineral soil or mineral soil catchments with minor area of peatland

  4. Urbanisation, coastal development and vulnerability, and catchments

    CSIR Research Space (South Africa)

    Ntombela, Cebile

    2015-01-01

    Full Text Available The growth of urban areas that form coastal cities, especially in the WIO, places an increasing demand on natural coastal extractive and non-extractive resources. The use and conversion of coastal land and catchments is considered a permanent effect...

  5. Quantification of Runoff as Influenced by Morphometric Characteristics in a Rural Complex Catchment

    Science.gov (United States)

    Abdulkareem, Jabir Haruna; Pradhan, Biswajeet; Sulaiman, Wan Nor Azmin; Jamil, Nor Rohaizah

    2018-03-01

    This study addresses the critical scientific question of assessing the relationship between morphometric features and the hydrological factors that increase the risk of flooding in Kelantan River basin, Malaysia. Two hypotheses were developed to achieve this aim, namely: the alternate hypothesis (runoff, is influenced by morphometric characteristics in the study watershed) and the null hypothesis (runoff is not influenced by morphometric characteristics). First, the watershed was delineated into four major catchments, namely: Galas, Pergau, Lebir, and Nenggiri. Next, quantitative morphometric characters such as linear aspects, areal aspects, and relief aspects were determined on each of these catchments. Furthermore, HEC-HMS and flood response analyses were employed to simulate the hydrological response of the catchments. From the results of morphometric analysis, profound spatial changes were observed between runoff features of Kelantan River and the morphometric characteristics. The length of overflow that was related to drainage density and constant channel maintenance was found to be 0.12 in Pergau, 0.04 in both Nenggiri and Lebir, and 0.03 in Galas. Drainage density as influenced by geology and vegetation density was found to be low in all the catchments (0.07-0.24). Results of hydrological response indicated that Lebir, Nenggiri, Galas, and Pergau recorded a flood response factor of 0.75, 0.63, 0.40, and 0.05, respectively. Therefore, Lebir and Nenggiri are more likely to be flooded during a rainstorm. There was no clear indication with regard to the catchment that emerged as the most prevailing in all the morphological features. Hence, the alternate hypothesis was affirmed. This study can be replicated in other catchments with different hydrologic setup.

  6. Study on Runoff Debit in the Catchment Area of Waduk Gajah Mungkur Wonogiri

    Directory of Open Access Journals (Sweden)

    Alif Noor Anna

    2004-01-01

    Water resource is one of natural resources, that is very vital. It needed to be used and to be kept throughly. For those purposes need good and directed plan, in which one of the basic component of it plan have to be supported by available a complete hydrological data and it analysis. One of hydrological data analysis is to estimate runoff of catchement area, which can be used for planning the hydrologi construction. This research aim: 1 to calculate the run off discharge by thornwaite Mather Method, monthly, annualy, and the average on the catchment through a sample of Keduang, Temon, Alang, and Wuryantoro areas; 2 to analyze the difference of the run off discharge (at no. 1 by observation resulted from trend analysis. Based on the calculation, it appears, thornwaite-mather method showed that high discharge (moreover limit 0 in dry month. From the research result, it appears, that calculation discharge graphic had lower differentation than observation discharge graphic. From sample of catchment areas that have been investigated, from the highest to the lowest deviation was Wuryantoro catchment area (78,8%, Temon catchment area (47,38%, Alang catchment area (46,45%, and Keduang catchment area (24,98% respectively. The condition like above caused by intervation of man. Not only did he influence vegetatively, but he influenced technically as well. From these conservation, technical conservation (flood and construction and reservoir was the highest influence to run off discharge calculation. The run off discharge that was calculated by thornthwite-Mather Method based on air temperate, rainy, altitude, and water holding capacity only, but groundwater supply didn’t be calculated.

  7. Response of current phosphorus mitigation measures across the nutrient transfer continuum in two hydrological contrasting agricultural catchments

    Science.gov (United States)

    McDonald, Noeleen; Shore, Mairead; Mellander, Per-Erik; Shortle, Ger; Jordan, Phil

    2015-04-01

    Effective assessment of National Action Programme (NAP) measures introduced under the EU Nitrates Directive (ND), to manage nutrient use and risk of loss to waters from agriculture, is best achieved when examined across the nutrient transfer continuum at catchment scale. The Irish NAP measures are implemented on a whole-territory basis for both nitrogen (N) and phosphorus (P), with P being the key trophic pressure. The aim of this research was to observe the efficacy of P regulation measures and P source management across the transfer continuum and resultant water quality status (i.e. source to impact), in two contrasting agricultural catchments over a four year period. The catchments are ca. 11 km2 and are located in the south-east of Ireland. One is well-drained and arable dominated, while the other is mostly poorly-drained and grassland dominated. In 2009 and 2013 soil surveys for plant-available P were carried out (Importantly, the proportion of farmland with excessive soil P concentrations decreased in both the arable (20% to 11.8%) and grassland catchments (5.9 to 3.6%). However, soil P concentrations also declined critically in both catchments, as proportional areas below the national crop agronomic optimum thresholds (grassland; indicates a reduced or sustained level of P inputs in both catchments. Indications of responses to soil P change in the surface waters of these catchments appeared to be highly influenced by their hydrological differences and the impact that annual and inter-annual climate and hydrological processes have on nutrient delivery. In the arable catchment total reactive P (TRP) concentrations in interpreted pathways declined across the quickflow, interflow and shallow groundwater of the slowflow, while TRP concentrations in the deeper groundwater, mostly contributing to baseflow, remained the same. However, the complexity of the flow pathways in the grassland catchment made it difficult to determine any trends in P concentrations as a

  8. Selected examples of needs for long term pilot areas in Mediterranean catchments: a mountain traditional agricultural system and a large and regulated hydrographic basin in Southern Spain

    Science.gov (United States)

    José Polo, María; Herrero, Javier; Millares, Agustín; José Pérez-Palazón, María; Pimentel, Rafael; Aguilar, Cristina; Jurado, Alicia; Contreras, Eva; Gómez-Beas, Raquel; Carpintero, Miriam; Gulliver, Zacarías

    2015-04-01

    Integrated River Basin Management (IRBM) aims at planning water, land and other natural resources for an equitable and sustainable management, also capable of preserving or restoring freshwater ecosystems. Long term series of significant variables at different scales and a sound knowledge of the river basin processes are needed to establish the current state and past&future evolution of the hydrological system, soil use and vegetation distribution, and their social impacts and feedbacks. This is particularly crucial if future scenario analyses are to be performed to assess decision-making processes and adaptive plans. This work highlights the need for an adequate design and development of process-oriented monitoring systems at the basin scale in a decision-making framework. First, the hydrologic monitoring network of the Guadalfeo River Basin, in the southern face of Sierra Nevada Range (Spain), is shown, in a pilot catchment of 1300 km2 in which snow processes in Mediterranean conditions have been studied over the last ten years with a holistic approach. The network development and the main features of the dataset are described together with their use for different scientific and environmental applications; their benefits for assessing social and economic impact in the rural environment are shown from a study case in which the sustainability of ancient channels fed by snowmelt, in use since the XIIIth century for traditional irrigated crops in the mountainous area, was assessed in a future scenarios analyses. Secondly, the standard flow and water quality monitoring networks in the Guadalquivir River Basin, a large (57400 km2) and highly regulated agricultural catchment in southern Spain, are shown, and their strengths and weaknessess for an IRBM framework are analysed. Sediments and selected pollutants are used to trace soil erosion and agricultural/urban exports throughout the catchment, and the final loads to the river estuary in the Atlantic Ocean are assessed

  9. A soil moisture network for SMOS validation in Western Denmark

    DEFF Research Database (Denmark)

    Bircher, Simone; Skou, N.; Jensen, Karsten Høgh

    2012-01-01

    network was established in the Skjern River Catchment, Denmark. The objectives of this article are to describe a method to implement a network suited for SMOS validation, and to present sample data collected by the network to verify the approach. The design phase included (1) selection of a single SMOS...... between the north-east and south-west were found to be small. A first comparison between the 0–5 cm network averages and the SMOS soil moisture (level 2) product is in range with worldwide validation results, showing comparable trends for SMOS retrieved soil moisture (R2 of 0.49) as well as initial soil......). Based on these findings, the network performs according to expectations and proves to be well-suited for its purpose. The discrepancies between network and SMOS soil moisture will be subject of subsequent studies...

  10. Lithogenic and cosmogenic tracers in catchment hydrology

    International Nuclear Information System (INIS)

    Nimz, G.J.

    1995-01-01

    A variety of physical processes affect solute concentrations within catchment waters. The isotopic compositions of the solutes can indicate which processes have determined the observed concentrations. These processes together constitute the physical history of the water, which is one of the primary concerns in hydrology. Many groundwater solutes are derived as a result of interaction between the water and the rock and/or soil within the system. These are termed open-quotes lithogenicclose quotes solutes. The isotopic compositions of these solutes provide information regarding rock-water interactions. Many other solutes have their isotopic compositions determined both internally and externally to the catchment system. Important members of this group include solutes that have isotopic compositions produced by atomic particle interactions with other nuclides. The source of the atomic particles can be cosmic radiation (producing open-quotes cosmogenicclose quotes nuclides in the atmosphere and land surface), anthropogenic nuclear reactions (producing open-quotes thermonuclearclose quotes nuclides), or radioactive and fission decay of naturally-occurring elements, such as U and Th (producing open-quotes in-situclose quotes lithogenic nuclides in the deep subsurface). Current language usage often combines all of the atomic particle-produced nuclides under the heading open-quotes cosmogenic nuclidesclose quotes, and for simplicity we will often follow that usage, although always clearly indicating which variety is being discussed. This paper addresses the processes that affect the lithogenic and cosmogenic solute compositions in groundwater, and how these compositions can therefore be used in integrative ways to understand the physical history of groundwater within a catchment system

  11. Modeling of facade leaching in urban catchments

    Science.gov (United States)

    Coutu, S.; Del Giudice, D.; Rossi, L.; Barry, D. A.

    2012-12-01

    Building facades are protected from microbial attack by incorporation of biocides within them. Flow over facades leaches these biocides and transports them to the urban environment. A parsimonious water quantity/quality model applicable for engineered urban watersheds was developed to compute biocide release from facades and their transport at the urban basin scale. The model couples two lumped submodels applicable at the basin scale, and a local model of biocide leaching at the facade scale. For the facade leaching, an existing model applicable at the individual wall scale was utilized. The two lumped models describe urban hydrodynamics and leachate transport. The integrated model allows prediction of biocide concentrations in urban rivers. It was applied to a 15 km2urban hydrosystem in western Switzerland, the Vuachère river basin, to study three facade biocides (terbutryn, carbendazim, diuron). The water quality simulated by the model matched well most of the pollutographs at the outlet of the Vuachère watershed. The model was then used to estimate possible ecotoxicological impacts of facade leachates. To this end, exceedance probabilities and cumulative pollutant loads from the catchment were estimated. Results showed that the considered biocides rarely exceeded the relevant predicted no-effect concentrations for the riverine system. Despite the heterogeneities and complexity of (engineered) urban catchments, the model application demonstrated that a computationally "light" model can be employed to simulate the hydrograph and pollutograph response within them. It thus allows catchment-scale assessment of the potential ecotoxicological impact of biocides on receiving waters.

  12. Lithogenic and cosmogenic tracers in catchment hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Nimz, G.J.

    1995-01-01

    A variety of physical processes affect solute concentrations within catchment waters. The isotopic compositions of the solutes can indicate which processes have determined the observed concentrations. These processes together constitute the physical history of the water, which is one of the primary concerns in hydrology. Many groundwater solutes are derived as a result of interaction between the water and the rock and/or soil within the system. These are termed {open_quotes}lithogenic{close_quotes} solutes. The isotopic compositions of these solutes provide information regarding rock-water interactions. Many other solutes have their isotopic compositions determined both internally and externally to the catchment system. Important members of this group include solutes that have isotopic compositions produced by atomic particle interactions with other nuclides. The source of the atomic particles can be cosmic radiation (producing {open_quotes}cosmogenic{close_quotes} nuclides in the atmosphere and land surface), anthropogenic nuclear reactions (producing {open_quotes}thermonuclear{close_quotes} nuclides), or radioactive and fission decay of naturally-occurring elements, such as U and Th (producing {open_quotes}in-situ{close_quotes} lithogenic nuclides in the deep subsurface). Current language usage often combines all of the atomic particle-produced nuclides under the heading {open_quotes}cosmogenic nuclides{close_quotes}, and for simplicity we will often follow that usage, although always clearly indicating which variety is being discussed. This paper addresses the processes that affect the lithogenic and cosmogenic solute compositions in groundwater, and how these compositions can therefore be used in integrative ways to understand the physical history of groundwater within a catchment system.

  13. Flash Flood Type Identification within Catchments in Beijing Mountainous Area

    Science.gov (United States)

    Nan, W.

    2017-12-01

    Flash flood is a common type of disaster in mountainous area, Flash flood with the feature of large flow rate, strong flushing force, destructive power, has periodically caused loss to life and destruction to infrastructure in mountainous area. Beijing as China's political, economic and cultural center, the disaster prevention and control work in Beijing mountainous area has always been concerned widely. According to the transport mechanism, sediment concentration and density, the flash flood type identification within catchment can provide basis for making the hazards prevention and mitigation policy. Taking Beijing as the study area, this paper extracted parameters related to catchment morphological and topography features respectively. By using Bayes discriminant, Logistic regression and Random forest, the catchments in Beijing mountainous area were divided into water floods process, fluvial sediment transport process and debris flows process. The results found that Logistic regression analysis showed the highest accuracy, with the overall accuracy of 88.2%. Bayes discriminant and Random forest had poor prediction effects. This study confirmed the ability of morphological and topography features to identify flash flood process. The circularity ratio, elongation ratio and roughness index can be used to explain the flash flood types effectively, and the Melton ratio and elevation relief ratio also did a good job during the identification, whereas the drainage density seemed not to be an issue at this level of detail. Based on the analysis of spatial patterns of flash flood types, fluvial sediment transport process and debris flow process were the dominant hazards, while the pure water flood process was much less. The catchments dominated by fluvial sediment transport process were mainly distributed in the Yan Mountain region, where the fault belts were relatively dense. The debris flow process prone to occur in the Taihang Mountain region thanks to the abundant

  14. Comparison of Water Flows in Four European Lagoon Catchments under a Set of Future Climate Scenarios

    Directory of Open Access Journals (Sweden)

    Cornelia Hesse

    2015-02-01

    Full Text Available Climate change is supposed to remarkably affect the water resources of coastal lagoons as they are highly vulnerable to changes occurring at their catchment and/or ocean or sea boundaries. Probable impacts of projected climate changes on catchment hydrology and freshwater input were assessed using the eco-hydrological model SWIM (Soil and Water Integrated Model for the drainage areas of four European lagoons: Ria de Aveiro (Portugal, Mar Menor (Spain, Tyligulskyi Liman (Ukraine and Vistula Lagoon (Poland/Russia under a set of 15 climate scenarios covering the time period until the year 2100. Climate change signals for all regions show continuously increasing trends in temperature, but various trends in precipitation. Precipitation is projected to decrease in two catchments on the Iberian Peninsula and increase in the Baltic region catchment, and does not show a clear trend in the catchment located near the Black Sea. The average projected changes in freshwater inputs reflect these changes in climate conditions, but often show variability between the scenarios, in future periods, and within the catchments. According to the individual degrees of water management influences in the four drainage basins, the climate sensitivity of river inflows is differently pronounced in each.

  15. Catchment variability and parameter estimation in multi-objective regionalisation of a rainfall-runoff model

    NARCIS (Netherlands)

    Deckers, Dave L.E.H.; Booij, Martijn J.; Rientjes, T.H.M.; Krol, Martinus S.

    2010-01-01

    This study attempts to examine if catchment variability favours regionalisation by principles of catchment similarity. Our work combines calibration of a simple conceptual model for multiple objectives and multi-regression analyses to establish a regional model between model sensitive parameters and

  16. Techniques for assessing the effects of afforestation on catchment hydrology: the South African experience

    CSIR Research Space (South Africa)

    Dye, PJ

    2006-08-01

    Full Text Available research into the effects of forest plantations on catchment hydrology. This paper provides a brief overview of some of the techniques employed by South African hydrological researchers to understand the link between afforestation and catchment water yields....

  17. Application of GIS-based SCS-CN method in West Bank catchments, Palestine

    Directory of Open Access Journals (Sweden)

    Sameer Shadeed

    2010-03-01

    Full Text Available Among the most basic challenges of hydrology are the prediction and quantification of catchment surface runoff. The runoff curve number (CN is a key factor in determining runoff in the SCS (Soil Conservation Service based hydrologic modeling method. The traditional SCS-CN method for calculating the composite curve number is very tedious and consumes a major portion of the hydrologic modeling time. Therefore, geographic information systems (GIS are now being used in combination with the SCS-CN method. This paper assesses the modeling of flow in West Bank catchments using the GIS-based SCS-CN method. The West Bank, Palestine, is characterized as an arid to semi-arid region with annual rainfall depths ranging between 100 mm in the vicinity of the Jordan River to 700 mm in the mountains extending across the central parts of the region. The estimated composite curve number for the entire West Bank is about 50 assuming dry conditions. This paper clearly demonstrates that the integration of GIS with the SCS-CN method provides a powerful tool for estimating runoff volumes in West Bank catchments, representing arid to semi-arid catchments of Palestine.

  18. Impact of Catchment Area Activities on Water Quality in Small Retention Reservoirs

    Directory of Open Access Journals (Sweden)

    Oszczapińska Katarzyna

    2018-01-01

    Full Text Available The aim of the study was to evaluate catchment area impact on small water reservoirs condition in Podlasie. The researches were conducted in two different catchment areas. Topiło reservoir, located in Podlasie area in the south-east of Białowieża Forest, has typical sylvan catchment. Second reservoir, Dojlidy, is located also in Podlasie, in the south-east of Białystok as a part of Dojlidy Ponds. In contrast to Topiło, Dojlidy has agricultural catchment. Water samples collected from five sites along each reservoir were analysed for the presence of total nitrogen and phosphorus, chlorophyll “a”, reaction, turbidity and conductivity. Researches took place in spring, summer and autumn 2013 (Topiło Lake and 2014/2015 (Dojlidy. The lowest trophic state was observed in autumn and the highest in summer. Because of the high loads of phosphorus received by the reservoirs, this element did not limit primary production. Calculated TSI values based on total phosphorus were always markedly higher than calculated on chlorophyll-a and total nitrogen. Both reservoirs demonstrated TSI indexes specific to hypertrophic lakes due to large amount of total phosphorus.

  19. Impact of Catchment Area Activities on Water Quality in Small Retention Reservoirs

    Science.gov (United States)

    Oszczapińska, Katarzyna; Skoczko, Iwona; Szczykowska, Joanna

    2018-02-01

    The aim of the study was to evaluate catchment area impact on small water reservoirs condition in Podlasie. The researches were conducted in two different catchment areas. Topiło reservoir, located in Podlasie area in the south-east of Białowieża Forest, has typical sylvan catchment. Second reservoir, Dojlidy, is located also in Podlasie, in the south-east of Białystok as a part of Dojlidy Ponds. In contrast to Topiło, Dojlidy has agricultural catchment. Water samples collected from five sites along each reservoir were analysed for the presence of total nitrogen and phosphorus, chlorophyll "a", reaction, turbidity and conductivity. Researches took place in spring, summer and autumn 2013 (Topiło Lake) and 2014/2015 (Dojlidy). The lowest trophic state was observed in autumn and the highest in summer. Because of the high loads of phosphorus received by the reservoirs, this element did not limit primary production. Calculated TSI values based on total phosphorus were always markedly higher than calculated on chlorophyll-a and total nitrogen. Both reservoirs demonstrated TSI indexes specific to hypertrophic lakes due to large amount of total phosphorus.

  20. Characterising phosphorus transfers in rural catchments using a continuous bank-side analyser

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available A six-month series of high-resolution synchronous stream discharge and total phosphorus (TP concentration data is presented from a 5 km2 agricultural catchment in the Lough Neagh basin, Northern Ireland. The data are hourly averages of 10-minute measurements using a new bankside, automatic, continuous monitoring technology. Three TP transfer "event-types" occur in this catchment: (1 chronic, storm independent transfers; (2 acute, storm dependent transfers; (3 acute, storm independent transfers. Event-type 2 transferred over 90% of the total 279 kg TP load in 39% of the total period; it corresponded to diffuse transfers from agricultural soils. Event-types 1 and 3, however, maintained the river in a highly eutrophic state between storm events and were characteristic of point source pollution, despite there being no major industrial or municipal point sources. Managing P transfers at the catchment scale requires a robust monitoring technology to differentiate between dynamic, multiple sources and associated event types and so enable a reliable assessment of the performance of mitigation measures, monitored at catchment outlets. The synchronous and continuous TP and discharge data series generated in this study demonstrate how this is possible.

  1. Pollution indicators in groundwater of two agricultural catchments in Lower Silesia (Poland)

    Science.gov (United States)

    Kasperczyk, Lidia; Modelska, Magdalena; Staśko, Stanisław

    2016-12-01

    The article discusses the content and source of mineral nitrogen compounds in groundwater, based on the data collected in two river catchments in two series (spring and autumn 2014). The study area comprises two catchments located in Lower Silesia, Poland - Cicha Woda and Sąsiecznica. Both catchments are characterised agricultural character of development. In the both researched areas, the points of State Environmental Monitoring (SEM) are located but only the Cicha Woda area is classified as nitrate vulnerable zone (NVZ). To analyse and compare the contamination of Quaternary and Neogene aquifers, the concentration of nitrates, nitrites, ammonium and potassium ions was measured primarily. Results showed the exceedance of nitrogen mineral forms of shallow groundwater Quaternary aquifer in both basins. The concentration of nitrates range from 0.08 to 142.12 mgNO3 -/dm3 (Cicha Woda) and from 2.6 to 137.65 mg NO3 -/dm3 (Sąsiecznica). The major source of pollution is probably the intensive agriculture activity. It causes a degradation of the shallow groundwater because of nitrate, nitrite, potassium, phosphates and ammonium contents. There was no observed contamination of anthropogenic origin in the deeper Neogene aquifer of Cicha Woda catchment.

  2. Detecting surface runoff location in a small catchment using distributed and simple observation method

    Science.gov (United States)

    Dehotin, Judicaël; Breil, Pascal; Braud, Isabelle; de Lavenne, Alban; Lagouy, Mickaël; Sarrazin, Benoît

    2015-06-01

    Surface runoff is one of the hydrological processes involved in floods, pollution transfer, soil erosion and mudslide. Many models allow the simulation and the mapping of surface runoff and erosion hazards. Field observations of this hydrological process are not common although they are crucial to evaluate surface runoff models and to investigate or assess different kinds of hazards linked to this process. In this study, a simple field monitoring network is implemented to assess the relevance of a surface runoff susceptibility mapping method. The network is based on spatially distributed observations (nine different locations in the catchment) of soil water content and rainfall events. These data are analyzed to determine if surface runoff occurs. Two surface runoff mechanisms are considered: surface runoff by saturation of the soil surface horizon and surface runoff by infiltration excess (also called hortonian runoff). The monitoring strategy includes continuous records of soil surface water content and rainfall with a 5 min time step. Soil infiltration capacity time series are calculated using field soil water content and in situ measurements of soil hydraulic conductivity. Comparison of soil infiltration capacity and rainfall intensity time series allows detecting the occurrence of surface runoff by infiltration-excess. Comparison of surface soil water content with saturated water content values allows detecting the occurrence of surface runoff by saturation of the soil surface horizon. Automatic records were complemented with direct field observations of surface runoff in the experimental catchment after each significant rainfall event. The presented observation method allows the identification of fast and short-lived surface runoff processes at a small spatial and temporal resolution in natural conditions. The results also highlight the relationship between surface runoff and factors usually integrated in surface runoff mapping such as topography, rainfall

  3. Estimating Catchment-Scale Snowpack Variability in Complex Forested Terrain, Valles Caldera National Preserve, NM

    Science.gov (United States)

    Harpold, A. A.; Brooks, P. D.; Biederman, J. A.; Swetnam, T.

    2011-12-01

    Difficulty estimating snowpack variability across complex forested terrain currently hinders the prediction of water resources in the semi-arid Southwestern U.S. Catchment-scale estimates of snowpack variability are necessary for addressing ecological, hydrological, and water resources issues, but are often interpolated from a small number of point-scale observations. In this study, we used LiDAR-derived distributed datasets to investigate how elevation, aspect, topography, and vegetation interact to control catchment-scale snowpack variability. The study area is the Redondo massif in the Valles Caldera National Preserve, NM, a resurgent dome that varies from 2500 to 3430 m and drains from all aspects. Mean LiDAR-derived snow depths from four catchments (2.2 to 3.4 km^2) draining different aspects of the Redondo massif varied by 30%, despite similar mean elevations and mixed conifer forest cover. To better quantify this variability in snow depths we performed a multiple linear regression (MLR) at a 7.3 by 7.3 km study area (5 x 106 snow depth measurements) comprising the four catchments. The MLR showed that elevation explained 45% of the variability in snow depths across the study area, aspect explained 18% (dominated by N-S aspect), and vegetation 2% (canopy density and height). This linear relationship was not transferable to the catchment-scale however, where additional MLR analyses showed the influence of aspect and elevation differed between the catchments. The strong influence of North-South aspect in most catchments indicated that the solar radiation is an important control on snow depth variability. To explore the role of solar radiation, a model was used to generate winter solar forcing index (SFI) values based on the local and remote topography. The SFI was able to explain a large amount of snow depth variability in areas with similar elevation and aspect. Finally, the SFI was modified to include the effects of shading from vegetation (in and out of

  4. Understanding catchment behaviour through model concept improvement

    NARCIS (Netherlands)

    Fenicia, F.

    2008-01-01

    This thesis describes an approach to model development based on the concept of iterative model improvement, which is a process where by trial and error different hypotheses of catchment behaviour are progressively tested, and the understanding of the system proceeds through a combined process of

  5. Effects of Channelisation, Riparian Structure and Catchment Area on Physical Habitats in Small Lowland Streams

    DEFF Research Database (Denmark)

    Pedersen, Morten Lauge

    2009-01-01

    Rivers and streams form a longitudinal network in which physical conditions and biological processes change through the river system. Geomorphology, topography, geology and hydraulic conditions change from site to site within the river system, thereby creating a complex network of reaches that ar.......e. a confined and steep valley (V-shaped) is less likely to be used for agricultural production compared to a broad valley. The results are useful to water managers, who seek to identify natural and impacted physical conditions in large river systems....... that are dominated by a hierarchy of physical processes. The complexity is further enhanced by local human alteration of the physical structure, natural processes and alteration of the riparian areas. The aim of the study was to analyse variations in land use and riparian characteristics along small Danish streams...... and to determine the effect of channelisation on physical habitats. Physical stream characteristics were measured in 149 stream small and medium sized Danish streams (catchment area: 0.1 to 67.2 km2). The measured physical parameters included discharge, stream slope, width, depth, current velocity, substrata...

  6. A catchment scale evaluation of multiple stressor effects in headwater streams

    DEFF Research Database (Denmark)

    Rasmussen, J. J.; McKnight, Ursula S.; Loinaz, Maria Christina

    2013-01-01

    studied 11 headwater streams in the Hove catchment in the Copenhagen region. All sites had substantial physical habitat and water quality impairments due to anthropogenic influence (intensive agriculture, urban settlements, contaminated sites and low base-flow due to water abstraction activities...... insecticides were probably essential contributors to the overall ecological impairment of these streams. Our results suggest that headwater streams should be considered in future management and mitigation plans. Catchment-based management is necessary because several anthropogenic stressors exceeded...

  7. Base cation depletion and potential long-term acidification of Norwegian catchments

    International Nuclear Information System (INIS)

    Kirchner, J.W.; Lydersen, E.

    1995-01-01

    Long-term monitoring data from Norwegian catchments show that since the late 1970s, sulfate deposition and runoff sulfate concentrations have declined significantly. However, water quality has not significantly improved, because reductions in runoff sulfate have been matched by equal declines in calcium and magnesium concentrations. Long-term declines in runoff Ca and Mg are most pronounced at catchments subject to highly acidic deposition; the observed rates of decline are quantitatively consistent with depletion of exchangeable bases by accelerated leaching under high acid loading. Even though water quality has not recovered, reductions in acid deposition have been valuable because they have prevented significant acidification that would otherwise have occurred under constant acid deposition. Ongoing depletion of exchangeable bases from these catchments implies that continued deposition reductions will be needed to avoid further acidification and that recovery from acidification will be slow. 31 refs., 2 figs., 4 tabs

  8. Modeling flash floods in ungauged mountain catchments of China: A decision tree learning approach for parameter regionalization

    Science.gov (United States)

    Ragettli, S.; Zhou, J.; Wang, H.; Liu, C.; Guo, L.

    2017-12-01

    Flash floods in small mountain catchments are one of the most frequent causes of loss of life and property from natural hazards in China. Hydrological models can be a useful tool for the anticipation of these events and the issuing of timely warnings. One of the main challenges of setting up such a system is finding appropriate model parameter values for ungauged catchments. Previous studies have shown that the transfer of parameter sets from hydrologically similar gauged catchments is one of the best performing regionalization methods. However, a remaining key issue is the identification of suitable descriptors of similarity. In this study, we use decision tree learning to explore parameter set transferability in the full space of catchment descriptors. For this purpose, a semi-distributed rainfall-runoff model is set up for 35 catchments in ten Chinese provinces. Hourly runoff data from in total 858 storm events are used to calibrate the model and to evaluate the performance of parameter set transfers between catchments. We then present a novel technique that uses the splitting rules of classification and regression trees (CART) for finding suitable donor catchments for ungauged target catchments. The ability of the model to detect flood events in assumed ungauged catchments is evaluated in series of leave-one-out tests. We show that CART analysis increases the probability of detection of 10-year flood events in comparison to a conventional measure of physiographic-climatic similarity by up to 20%. Decision tree learning can outperform other regionalization approaches because it generates rules that optimally consider spatial proximity and physical similarity. Spatial proximity can be used as a selection criteria but is skipped in the case where no similar gauged catchments are in the vicinity. We conclude that the CART regionalization concept is particularly suitable for implementation in sparsely gauged and topographically complex environments where a proximity

  9. Ensemble prediction of floods – catchment non-linearity and forecast probabilities

    Directory of Open Access Journals (Sweden)

    C. Reszler

    2007-07-01

    Full Text Available Quantifying the uncertainty of flood forecasts by ensemble methods is becoming increasingly important for operational purposes. The aim of this paper is to examine how the ensemble distribution of precipitation forecasts propagates in the catchment system, and to interpret the flood forecast probabilities relative to the forecast errors. We use the 622 km2 Kamp catchment in Austria as an example where a comprehensive data set, including a 500 yr and a 1000 yr flood, is available. A spatially-distributed continuous rainfall-runoff model is used along with ensemble and deterministic precipitation forecasts that combine rain gauge data, radar data and the forecast fields of the ALADIN and ECMWF numerical weather prediction models. The analyses indicate that, for long lead times, the variability of the precipitation ensemble is amplified as it propagates through the catchment system as a result of non-linear catchment response. In contrast, for lead times shorter than the catchment lag time (e.g. 12 h and less, the variability of the precipitation ensemble is decreased as the forecasts are mainly controlled by observed upstream runoff and observed precipitation. Assuming that all ensemble members are equally likely, the statistical analyses for five flood events at the Kamp showed that the ensemble spread of the flood forecasts is always narrower than the distribution of the forecast errors. This is because the ensemble forecasts focus on the uncertainty in forecast precipitation as the dominant source of uncertainty, and other sources of uncertainty are not accounted for. However, a number of analyses, including Relative Operating Characteristic diagrams, indicate that the ensemble spread is a useful indicator to assess potential forecast errors for lead times larger than 12 h.

  10. How runoff begins (and ends): characterizing hydrologic response at the catchment scale

    Science.gov (United States)

    Mirus, Benjamin B.; Loague, Keith

    2013-01-01

    Improved understanding of the complex dynamics associated with spatially and temporally variable runoff response is needed to better understand the hydrology component of interdisciplinary problems. The objective of this study was to quantitatively characterize the environmental controls on runoff generation for the range of different streamflow-generation mechanisms illustrated in the classic Dunne diagram. The comprehensive physics-based model of coupled surface-subsurface flow, InHM, is employed in a heuristic mode. InHM has been employed previously to successfully simulate the observed hydrologic response at four diverse, well-characterized catchments, which provides the foundation for this study. The C3 and CB catchments are located within steep, forested terrain; the TW and R5 catchments are located in gently sloping rangeland. The InHM boundary-value problems for these four catchments provide the corner-stones for alternative simulation scenarios designed to address the question of how runoff begins (and ends). Simulated rainfall-runoff events are used to systematically explore the impact of soil-hydraulic properties and rainfall characteristics. This approach facilitates quantitative analysis of both integrated and distributed hydrologic responses at high-spatial and temporal resolution over the wide range of environmental conditions represented by the four catchments. The results from 140 unique simulation scenarios illustrate how rainfall intensity/depth, subsurface permeability contrasts, characteristic curve shapes, and topography provide important controls on the hydrologic-response dynamics. The processes by which runoff begins (and ends) are shown, in large part, to be defined by the relative rates of rainfall, infiltration, lateral flow convergence, and storage dynamics within the variably saturated soil layers.

  11. Land use and cover changes in the Likangala catchment of the Lake ...

    African Journals Online (AJOL)

    High soil losses of 100t ha–1 yr–1 were estimated in the upper reaches of the catchment. High rainfall kinetic energy and poor vegetation cover were major determinants of soil loss. Sediment yield was high (374t km–2 yr–1) in the more degraded catchment of the Likangala River, compared to 315t km–2 yr–1 in the less ...

  12. Knickpoint Propagation and Hillslope Response in the Mangataikapua Catchment, Waipaoa River, New Zealand

    Science.gov (United States)

    Cerovski-Darriau, C.; Roering, J. J.; Bilderback, E. L.

    2012-12-01

    Base level change can cause differential incision in fluvial networks, driving a transient hillslope response as slopes attempt to adjust to a new base level. Following a shift to a warmer, wetter climate after the Last Glacial Maximum (LGM) (~17.5 ka), the Waipaoa River (NZ) rapidly incised ~120 m leaving perched relict hillslopes that are still adjusting to that base level fall. While previous studies of the Waipaoa basin have only focused on sediment contribution from channel incision or a few individual large earthflows, here we analyze an entire catchment that experiences widespread adjustment due to earthflow activity. In the Mangataikapua catchment—a tributary of the Waipaoa River principally comprised of weak mélange—we see wholesale relaxation of hillslopes due to pervasive post-LGM earthflows. Less than 6% of the mélange area retains relict terrain unaltered by earthflows, exemplifying the importance of including hillslope sediment contribution. Incision has propagated ~9 km upstream along the mainstem of the Mangataikapua (~86% of the channel length) and has created 80 m of relief at the junction with the Waipaoa. Continued adjustment along Mangataikapua tributaries and slopes is evident from knickpoints in the channels and changes in gradient, curvature, and degree of earthflow-altered terrain on the hillslopes. By identifying the location of this transition in channels and on the hillslopes, we can estimate the amount of post-LGM hillslope relaxation. We analyzed 10 major sub-catchments (drainage areas >35,000 m2) in the mélange on the southeastern side of the catchment. We used slope-area plots, in conjunction with normalized steepness index values (ksn) generated with the Stream Profiler (www.geomorphtools.org), to determine the degree to which the tributary channels have adjusted to incision along the mainstem. Preliminary results show an "upper zone" of relict channel morphology with an average curvature value of θ=-0.3 (±0.1 s.d.) and a

  13. Drivers of plant species composition in siliceous spring ecosystems: groundwater chemistry, catchment traits or spatial factors?

    Directory of Open Access Journals (Sweden)

    Carl BEIERKUHNLEIN

    2009-08-01

    Full Text Available Spring water reflects the hydrochemistry of the aquifer in the associated catchments. On dense siliceous bedrock, the nearsurface groundwater flow is expected to be closely related to the biogeochemical processes of forest ecosystems, where the impact of land use is also low. We hypothesize that the plant species composition of springs mainly reflects hydrochemical conditions. Therefore, springs may serve as indicator systems for biogeochemical processes in complex forest ecosystems. To test this hypothesis, we investigate the influence of spring water chemical properties, catchment traits, and spatial position on plant species composition for 73 springs in forested catchments in central Germany, using non-metric multidimensional scaling (NMDS, Mantel tests, and path analyses. Partial Mantel tests and path analyses reveal that vegetation is more greatly influenced by spring water chemistry than by catchment traits. Consequently, the catchment's influence on vegetation is effective in an indirect way, via spring water. When considering spatial aspects (in particular altitude in addition, the explanatory power of catchment traits for spring water properties is reduced almost to zero. As vegetation shows the highest correlation with the acidity gradient, we assume that altitude acts as a sum parameter that incorporates various acidifying processes in the catchment. These processes are particularly related to altitude – through bedrock, climatic parameters and forest vegetation. The species composition of undisturbed springs is very sensitive in reflecting such conditions and may serve as an integrative tool for detecting complex ecological processes.

  14. Attributes for NHDPlus catchments (Version 1.1) for the conterminous United States: STATSGO soil characteristics

    Science.gov (United States)

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents estimated soil variables compiled for every catchment of NHDPlus for the conterminous United States. The variables included are cation exchange capacity, percent calcium carbonate, slope, water-table depth, soil thickness, hydrologic soil group, soil erodibility (k-factor), permeability, average water capacity, bulk density, percent organic material, percent clay, percent sand, and percent silt. The source data set is the State Soil ( STATSGO ) Geographic Database (Wolock, 1997). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee

  15. Ecohydrological modelling of water discharge and nitrate loads in a mesoscale lowland catchment, Germany

    Directory of Open Access Journals (Sweden)

    N. Fohrer

    2009-08-01

    Full Text Available The aims of this study are to identify the capacities of applying an ecohydrological model for simulating flow and to assess the impact of point and non-point source pollution on nitrate loads in a complex lowland catchment, which has special hydrological characteristics in comparison with those of other catchments. The study area Kielstau catchment has a size of approximately 50 km2 and is located in the North German lowlands. The water quality is not only influenced by the predominating agricultural land use in the catchment as cropland and pasture, but also by six municipal wastewater treatment plants.

    Ecohydrological models like the SWAT model (Soil and Water Assessment Tool are useful tools for simulating nutrient loads in river catchments. Diffuse entries from the agriculture resulting from fertilizers as well as punctual entries from the wastewater treatment plants are implemented in the model set-up.

    The results of this study show good agreement between simulated and measured daily discharges with a Nash-Sutcliffe efficiency and a correlation coefficient of 0.76 and 0.88 for the calibration period (November 1998 to October 2004; 0.75 and 0.92 for the validation period (November 2004 to December 2007. The model efficiency for daily nitrate loads is 0.64 and 0.5 for the calibration period (June 2005 to May 2007 and the validation period (June 2007 to December 2007, respectively. The study revealed that SWAT performed satisfactorily in simulating daily flow and nitrate loads at the lowland catchment in Northern Germany.

  16. Spatiotemporal dynamics of suspended sediment within an actively urbanizing peri-urban catchment in Portugal

    Science.gov (United States)

    Walsh, Rory; Ferreira, Carla; Ferreira, Antonio

    2016-04-01

    Suspended sediment levels tend to be enhanced in urban catchments, but vary considerably with (amongst many other factors) the degree of active urban development or redevelopment within the catchment and 'urbanization style'. Relatively little, however, is known about the relationship between suspended solids and urbanization style in peri-urban Mediterranean environments. This paper focuses on spatiotemporal suspended sediment dynamics within a typical Portuguese peri-urban catchment, Ribeira dos Covoes, that is undergoing rapid urbanization. The catchment currently has a 40% urban cover, with 17% impervious surfaces, dispersed between woodland (56%) and agricultural areas (4%). The study uses suspended sediment concentration measurements made at the catchment outlet (ESAC) and in three upstream tributaries: (i) Espírito Santo, with a largest urban area (49%); (ii) Porto Bordalo, 39% urbanized; and (iii) Quinta, 22% urbanized, most of which (18%) being an enterprise park under construction. Water sampling was carried out manually during 10 storm hydrographs between October 2011 and March 2013. Suspended sediment concentrations (SSC) were derived by laboratory analysis of the filtered samples using the gravimetric method. In addition total dissolved solids concentrations (TDS) were estimated using conductivity readings. Greatest SSCs were recorded in the Quinta sub-catchment and at the catchment outlet at ESAC (113-4320 mg L-1 and 200-1656 mg L-1, respectively) than in the Espírito Santo and Porto Bordalo sub-catchments (183-852 mg L-1 and 47-598 mg L-1 respectively, despite their greater impervious cover. The greatest SSCs for Quinta result from it containing the construction site, but it showed lower TDS (56-4010 mg L-1), perhaps due to the coarse sandy nature of the construction site. Higher TDS concentrations, however, were displayed in Porto Bordalo (27-5400 mg L-1), possibly due to the loamy soil. Espírito Santo, comprising sandy-loam soils, displayed 27

  17. Suspended sediment apportionment in a South-Korean mountain catchment

    Science.gov (United States)

    Birkholz, Axel; Meusburger, Katrin; Park, Ji-Hyung; Alewell, Christine

    2016-04-01

    Due to the rapid agricultural expansion and intensification during the last decades in South-Korea, large areas of hill slope forests were transformed to paddies and vegetable fields. The intensive agriculture and the easily erodible soils in our catchment are a major reason for the increased erosion causing suspended sediments to infiltrate into the close drinking water reservoir. The drinking water reservoir Lake Soyang provides water supply for over ten million people in Seoul. Landscape managers need to know the exact origin of these sediments before they can create landscape amelioration schemes. We applied a compound-specific stable isotope (CSSI) approach (Alewell et al., 2015) to apportion the sources of the suspended sediments between forest and agricultural soil contribution to the suspended sediments in a different catchment and applied the same approach to identify and quantify the different sources of the suspended sediments in the river(s) contributing to Lake Soyang. We sampled eight soil sites within the catchment considering the different landuse types forest, rice paddies, maize and vegetables. Suspended sediments were sampled at three outlets of the different sub-catchments. Soils and suspended sediments are analysed for bulk carbon and nitrogen isotopes, compound-specific carbon isotopes of plant-wax derived long-chain fatty acids and long-chain n-alkanes. Fatty acid and alkane isotopes are then used in mixing calculations and the mixing model software IsoSource to find out the contribution of the different source soils to the suspended sediments. We present first data of the source soils and the suspended sediments. C. Alewell, A. Birkholz, K. Meusburger, Y. Schindler-Wildhaber, L. Mabit, 2015. Sediment source attribution from multiple land use systems with CSIA. Biogeosciences Discuss. 12: 14245-14269.

  18. Spatial and temporal variations in landscape evolution: historic and longer-term sediment flux through global catchments

    Science.gov (United States)

    Covault, Jacob A.; Craddock, William H.; Romans, Brian W.; Fildani, Andrea; Gosai, Mayur

    2013-01-01

    Sediment generation and transport through terrestrial catchments influence soil distribution, geochemical cycling of particulate and dissolved loads, and the character of the stratigraphic record of Earth history. To assess the spatiotemporal variation in landscape evolution, we compare global compilations of stream gauge–derived () and cosmogenic radionuclide (CRN)–derived (predominantly 10Be; ) denudation of catchments (mm/yr) and sediment load of rivers (Mt/yr). Stream gauges measure suspended sediment loads of rivers during several to tens of years, whereas CRNs provide catchment-integrated denudation rates at 102–105-yr time scales. Stream gauge–derived and CRN-derived sediment loads in close proximity to one another (temporary storage of sediment in flood plains can provide stream gauge–based sediment loads and denudation rates that are applicable over longer periods than the durations of gauge measurements. The buffering capacity of catchments also has implications for interpreting the stratigraphic record; delayed sediment transfer might complicate the stratigraphic record of external forcings and catchment modification.

  19. Review article: Hydrological modeling in glacierized catchments of central Asia - status and challenges

    Science.gov (United States)

    Chen, Yaning; Li, Weihong; Fang, Gonghuan; Li, Zhi

    2017-02-01

    Meltwater from glacierized catchments is one of the most important water supplies in central Asia. Therefore, the effects of climate change on glaciers and snow cover will have increasingly significant consequences for runoff. Hydrological modeling has become an indispensable research approach to water resources management in large glacierized river basins, but there is a lack of focus in the modeling of glacial discharge. This paper reviews the status of hydrological modeling in glacierized catchments of central Asia, discussing the limitations of the available models and extrapolating these to future challenges and directions. After reviewing recent efforts, we conclude that the main sources of uncertainty in assessing the regional hydrological impacts of climate change are the unreliable and incomplete data sets and the lack of understanding of the hydrological regimes of glacierized catchments of central Asia. Runoff trends indicate a complex response to changes in climate. For future variation of water resources, it is essential to quantify the responses of hydrologic processes to both climate change and shrinking glaciers in glacierized catchments, and scientific focus should be on reducing uncertainties linked to these processes.

  20. Effects of harvest on carbon and nitrogen dynamics in a Pacific Northwest forest catchment

    Science.gov (United States)

    We used a new ecohydrological model, Visualizing Ecosystems for Land Management Assessments (VELMA), to analyze the effects of forest harvest on catchment carbon and nitrogen dynamics. We applied the model to a 10 ha headwater catchment in the western Oregon Cascade Range where t...

  1. Rainfall-interception-evaporation-runoff relationships in a semi-arid catchment, northern Limpopo basin, Zimbabwe

    NARCIS (Netherlands)

    Love, D.; Uhlenbrook, S.; Corzo Perez, G.; Twomlow, S.; Zaag, van der P.

    2010-01-01

    Characterizing the response of a catchment to rainfall, in terms of the production of runoff vs the interception, transpiration and evaporation of water, is the first important step in understanding water resource availability in a catchment. This is particularly important in small semi-arid

  2. Hydrological response of a small catchment burned by experimental fire

    Directory of Open Access Journals (Sweden)

    C. R. Stoof

    2012-02-01

    Full Text Available Fire can considerably change hydrological processes, increasing the risk of extreme flooding and erosion events. Although hydrological processes are largely affected by scale, catchment-scale studies on the hydrological impact of fire in Europe are scarce, and nested approaches are rarely used. We performed a catchment-scale experimental fire to improve insight into the drivers of fire impact on hydrology. In north-central Portugal, rainfall, canopy interception, streamflow and soil moisture were monitored in small shrub-covered paired catchments pre- and post-fire. The shrub cover was medium dense to dense (44 to 84% and pre-fire canopy interception was on average 48.7% of total rainfall. Fire increased streamflow volumes 1.6 times more than predicted, resulting in increased runoff coefficients and changed rainfall-streamflow relationships – although the increase in streamflow per unit rainfall was only significant at the subcatchment-scale. Fire also fastened the response of topsoil moisture to rainfall from 2.7 to 2.1 h (p = 0.058, and caused more rapid drying of topsoils after rain events. Since soil physical changes due to fire were not apparent, we suggest that changes resulting from vegetation removal played an important role in increasing streamflow after fire. Results stress that fire impact on hydrology is largely affected by scale, highlight the hydrological impact of fire on small scales, and emphasize the risk of overestimating fire impact when upscaling plot-scale studies to the catchment-scale. Finally, they increase understanding of the processes contributing to post-fire flooding and erosion events.

  3. Policy networking as capacity building : An analysis of regional road development conflict in Indonesia

    NARCIS (Netherlands)

    Hudalah, Delik; Winarso, Haryo; Woltjer, Johan

    2010-01-01

    This article explores the potential of policy networking as an important aspect of capacity building. It deals with a road development project related to the regional planning issue of North Bandung Area (NBA), a water catchment area facing the expansion of Bandung Metropolitan Area, West Java,

  4. Policy networking as capacity building : An analysis of regional road development conflict in Indonesia

    NARCIS (Netherlands)

    Hudalah, Delik; Winarso, Haryo; Woltjer, Johan

    This article explores the potential of policy networking as an important aspect of capacity building. It deals with a road development project related to the regional planning issue of North Bandung Area (NBA), a water catchment area facing the expansion of Bandung Metropolitan Area, West Java,

  5. A multi-objective approach to improve SWAT model calibration in alpine catchments

    Science.gov (United States)

    Tuo, Ye; Marcolini, Giorgia; Disse, Markus; Chiogna, Gabriele

    2018-04-01

    Multi-objective hydrological model calibration can represent a valuable solution to reduce model equifinality and parameter uncertainty. The Soil and Water Assessment Tool (SWAT) model is widely applied to investigate water quality and water management issues in alpine catchments. However, the model calibration is generally based on discharge records only, and most of the previous studies have defined a unique set of snow parameters for an entire basin. Only a few studies have considered snow observations to validate model results or have taken into account the possible variability of snow parameters for different subbasins. This work presents and compares three possible calibration approaches. The first two procedures are single-objective calibration procedures, for which all parameters of the SWAT model were calibrated according to river discharge alone. Procedures I and II differ from each other by the assumption used to define snow parameters: The first approach assigned a unique set of snow parameters to the entire basin, whereas the second approach assigned different subbasin-specific sets of snow parameters to each subbasin. The third procedure is a multi-objective calibration, in which we considered snow water equivalent (SWE) information at two different spatial scales (i.e. subbasin and elevation band), in addition to discharge measurements. We tested these approaches in the Upper Adige river basin where a dense network of snow depth measurement stations is available. Only the set of parameters obtained with this multi-objective procedure provided an acceptable prediction of both river discharge and SWE. These findings offer the large community of SWAT users a strategy to improve SWAT modeling in alpine catchments.

  6. Influence of Plantation Establishment on Discharge Characteristics in a Small Catchment of Tropical Forest

    Directory of Open Access Journals (Sweden)

    Siti Aisah Shamsuddin

    2014-01-01

    Full Text Available A study was conducted on the impact of forest clearance on discharge from newly established Hopea odorata plantations catchment (14.4 ha. The stands were two years old when this study commenced in year 2006 and the data collection was carried out for two years. The forested catchment (C3 was clear-cut during the preparation of the forest plantation and catchment C1 was left undisturbed. Discharge and rainfall were measured continuously for two years. The discharge measured from years 1997 to 2003 was used also to determine the water yield before and after forest clear-cut. This study showed that the plantation catchment is more responsive to storm with higher total water yield than in the forested catchment. The effect of forest clear cutting to discharge was clearly shown by the increment in the amount following the clear-cut activities and time taken for the recovery of the discharge back to its original state was almost three years. The peak discharge in C3 also was affected in which the biggest change was obtained during the forest clear-cutting period compared with during calibration and after clearing periods. This study is useful as basis for improving the existing guidelines on forest plantation establishment.

  7. Evaluating an ecosystem management approach for improving water quality in two contrasting study catchments in south-west England.

    Science.gov (United States)

    Glendell, Miriam; Brazier, Richard

    2014-05-01

    The European Water Framework Directive (WFD) 2000 established a new emphasis for the management of freshwaters by establishing ecologically-based water quality targets that are to be achieved through holistic, catchment-scale, ecosystem management approaches. However, significant knowledge gaps still exist in the understanding of the cumulative effectiveness of multiple mitigation measures on a number of pollutants at a catchment scale. This research furthers the understanding of the effectiveness of an ecosystem management approach to deliver catchment-scale water quality improvements in two contrasting study catchments in south-west England: the lowland agricultural Aller and the upland semi-natural Horner Water. Characterisation of the spatial variability of soil properties (bulk density, total carbon, nitrogen, C:N ratio, stable isotope δ15N, total, organic and inorganic phosphorus) in the two study catchments demonstrated extensive alteration of soil properties in the agricultural catchment, with likely long-term implications for the restoration of ecosystem functioning and water quality management (Glendell et al., 2014b). Further, the agricultural catchment supported a proportionally greater total fluvial carbon (dissolved and particulate) export than the semi-natural catchment. During an eight month period for which a comparable continuous turbidity record was available, the estimated SS yields from the agricultural catchment (25.5-116.2 t km-2) were higher than from the semi-natural catchment (21.7-57.8 t km-2). In addition, the agricultural catchment exported proportionally more TPC (0.51-2.59 kg mm-1) than the semi-natural catchment (0.36-0.97 kg mm-1) and a similar amount of DOC (0.26-0.52 kg mm-1 in the Aller and 0.24-0.32 kg mm-1 in Horner Water), when normalised by catchment area and total discharge, despite the lower total soil carbon pool, thus indicating an enhanced fluvial loss of sediment and carbon (Glendell and Brazier, in review). Whilst

  8. Temperature signal in suspended sediment export from an Alpine catchment

    Science.gov (United States)

    Costa, Anna; Molnar, Peter; Stutenbecker, Laura; Bakker, Maarten; Silva, Tiago A.; Schlunegger, Fritz; Lane, Stuart N.; Loizeau, Jean-Luc; Girardclos, Stéphanie

    2018-01-01

    Suspended sediment export from large Alpine catchments ( > 1000 km2) over decadal timescales is sensitive to a number of factors, including long-term variations in climate, the activation-deactivation of different sediment sources (proglacial areas, hillslopes, etc.), transport through the fluvial system, and potential anthropogenic impacts on the sediment flux (e.g. through impoundments and flow regulation). Here, we report on a marked increase in suspended sediment concentrations observed near the outlet of the upper Rhône River Basin in the mid-1980s. This increase coincides with a statistically significant step-like increase in basin-wide mean air temperature. We explore the possible explanations of the suspended sediment rise in terms of changes in water discharge (transport capacity), and the activation of different potential sources of fine sediment (sediment supply) in the catchment by hydroclimatic forcing. Time series of precipitation and temperature-driven snowmelt, snow cover, and ice melt simulated with a spatially distributed degree-day model, together with erosive rainfall on snow-free surfaces, are tested to explore possible reasons for the rise in suspended sediment concentration. We show that the abrupt change in air temperature reduced snow cover and the contribution of snowmelt, and enhanced ice melt. The results of statistical tests show that the onset of increased ice melt was likely to play a dominant role in the suspended sediment concentration rise in the mid-1980s. Temperature-driven enhanced melting of glaciers, which cover about 10 % of the catchment surface, can increase suspended sediment yields through an increased contribution of sediment-rich glacial meltwater, increased sediment availability due to glacier recession, and increased runoff from sediment-rich proglacial areas. The reduced extent and duration of snow cover in the catchment are also potential contributors to the rise in suspended sediment concentration through

  9. Accessibility of tertiary hospitals in Finland: A comparison of administrative and normative catchment areas.

    Science.gov (United States)

    Huotari, Tiina; Antikainen, Harri; Keistinen, Timo; Rusanen, Jarmo

    2017-06-01

    The determination of an appropriate catchment area for a hospital providing highly specialized (i.e. tertiary) health care is typically a trade-off between ensuring adequate client volumes and maintaining reasonable accessibility for all potential clients. This may pose considerable challenges, especially in sparsely inhabited regions. In Finland, tertiary health care is concentrated in five university hospitals, which provide services in their dedicated catchment areas. This study utilizes Geographic Information Systems (GIS), together with grid-based population data and travel-time estimates, to assess the spatial accessibility of these hospitals. The current geographical configuration of the hospitals is compared to a normative assignment, with and without capacity constraints. The aim is to define optimal catchment areas for tertiary hospitals so that their spatial accessibility is as equal as possible. The results indicate that relatively modest improvements can be achieved in accessibility by using normative assignment to determine catchment areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Combining Neural Networks with Existing Methods to Estimate 1 in 100-Year Flood Event Magnitudes

    Science.gov (United States)

    Newson, A.; See, L.

    2005-12-01

    Over the last fifteen years artificial neural networks (ANN) have been shown to be advantageous for the solution of many hydrological modelling problems. The use of ANNs for flood magnitude estimation in ungauged catchments, however, is a relatively new and under researched area. In this paper ANNs are used to make estimates of the magnitude of the 100-year flood event (Q100) for a number of ungauged catchments. The data used in this study were provided by the Centre for Ecology and Hydrology's Flood Estimation Handbook (FEH), which contains information on catchments across the UK. Sixteen catchment descriptors for 719 catchments were used to train an ANN, which was split into a training, validation and test data set. The goodness-of-fit statistics on the test data set indicated good model performance, with an r-squared value of 0.8 and a coefficient of efficiency of 79 percent. Data for twelve ungauged catchments were then put through the trained ANN to produce estimates of Q100. Two other accepted methodologies were also employed: the FEH statistical method and the FSR (Flood Studies Report) design storm technique, both of which are used to produce flood frequency estimates. The advantage of developing an ANN model is that it provides a third figure to aid a hydrologist in making an accurate estimate. For six of the twelve catchments, there was a relatively low spread between estimates. In these instances, an estimate of Q100 could be made with a fair degree of certainty. Of the remaining six catchments, three had areas greater than 1000km2, which means the FSR design storm estimate cannot be used. Armed with the ANN model and the FEH statistical method the hydrologist still has two possible estimates to consider. For these three catchments, the estimates were also fairly similar, providing additional confidence to the estimation. In summary, the findings of this study have shown that an accurate estimation of Q100 can be made using the catchment descriptors of

  11. Raingauge-Based Rainfall Nowcasting with Artificial Neural Network

    Science.gov (United States)

    Liong, Shie-Yui; He, Shan

    2010-05-01

    Rainfall forecasting and nowcasting are of great importance, for instance, in real-time flood early warning systems. Long term rainfall forecasting demands global climate, land, and sea data, thus, large computing power and storage capacity are required. Rainfall nowcasting's computing requirement, on the other hand, is much less. Rainfall nowcasting may use data captured by radar and/or weather stations. This paper presents the application of Artificial Neural Network (ANN) on rainfall nowcasting using data observed at weather and/or rainfall stations. The study focuses on the North-East monsoon period (December, January and February) in Singapore. Rainfall and weather data from ten stations, between 2000 and 2006, were selected and divided into three groups for training, over-fitting test and validation of the ANN. Several neural network architectures were tried in the study. Two architectures, Backpropagation ANN and Group Method of Data Handling ANN, yielded better rainfall nowcasting, up to two hours, than the other architectures. The obtained rainfall nowcasts were then used by a catchment model to forecast catchment runoff. The results of runoff forecast are encouraging and promising.With ANN's high computational speed, the proposed approach may be deliverable for creating the real-time flood early warning system.

  12. Simulating high frequency water quality monitoring data using a catchment runoff attenuation flux tool (CRAFT).

    Science.gov (United States)

    Adams, Russell; Quinn, Paul F; Perks, Matthew; Barber, Nicholas J; Jonczyk, Jennine; Owen, Gareth J

    2016-12-01

    High resolution water quality data has recently become widely available from numerous catchment based monitoring schemes. However, the models that can reproduce time series of concentrations or fluxes have not kept pace with the advances in monitoring data. Model performance at predicting phosphorus (P) and sediment concentrations has frequently been poor with models not fit for purpose except for predicting annual losses. Here, the data from the Eden Demonstration Test Catchments (DTC) project have been used to calibrate the Catchment Runoff Attenuation Flux Tool (CRAFT), a new, parsimonious model developed with the aim of modelling both the generation and attenuation of nutrients and sediments in small to medium sized catchments. The CRAFT has the ability to run on an hourly timestep and can calculate the mass of sediments and nutrients transported by three flow pathways representing rapid surface runoff, fast subsurface drainage and slow groundwater flow (baseflow). The attenuation feature of the model is introduced here; this enables surface runoff and contaminants transported via this pathway to be delayed in reaching the catchment outlet. It was used to investigate some hypotheses of nutrient and sediment transport in the Newby Beck Catchment (NBC) Model performance was assessed using a suite of metrics including visual best fit and the Nash-Sutcliffe efficiency. It was found that this approach for water quality models may be the best assessment method as opposed to using a single metric. Furthermore, it was found that, when the aim of the simulations was to reproduce the time series of total P (TP) or total reactive P (TRP) to get the best visual fit, that attenuation was required. The model will be used in the future to explore the impacts on water quality of different mitigation options in the catchment; these will include attenuation of surface runoff. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. A Synoptic Climatology of Heavy Rain Events in the Lake Eyre and Lake Frome Catchments

    Directory of Open Access Journals (Sweden)

    Michael John Pook

    2014-11-01

    Full Text Available The rare occasions when Lake Eyre in central, southern Australia fills with water excite great interest and produce major ecological responses. The filling of other smaller lakes such as Lake Frome, have less impact but can contribute important information about the current and past climates of these arid regions. Here, the dominant synoptic systems responsible for heavy rainfall over the catchments of Lake Eyre and Lake Frome since 1950 are identified and compared. Heavy rain events are defined as those where the mean catchment rainfall for 24 hours reaches a prescribed threshold. There were 25 such daily events at Lake Eyre and 28 in the Lake Frome catchment. The combination of a monsoon trough at mean sea level and a geopotential trough in the mid-troposphere was found to be the synoptic system responsible for the majority of the heavy rain events affecting Lake Eyre and one in five of the events at Lake Frome. Complex fronts where subtropical interactions occurred with Southern Ocean fronts also contributed over 20% of the heavy rainfall events in the Frome catchment. Surface troughs without upper air support were found to be associated with 10% or fewer of events in each catchment, indicating that mean sea level pressure analyses alone do not adequately capture the complexity of the heavy rainfall events. At least 80% of the heavy rain events across both catchments occurred when the Southern Oscillation Index (SOI was in its positive phase, and for Lake Frome, the SOI exceeded +10 on 60% of occasions, suggesting that the background atmospheric state in the Pacific Ocean was tilted towards La Niña. Hydrological modeling of the catchments suggests that the 12-month running mean of the soil moisture in a sub-surface layer provides a low frequency filter of the precipitation and matches measured lake levels relatively well.

  14. Prioritization of catchments based on soil erosion using remote sensing and GIS.

    Science.gov (United States)

    Khadse, Gajanan K; Vijay, Ritesh; Labhasetwar, Pawan K

    2015-06-01

    Water and soil are the most essential natural resources for socioeconomic development and sustenance of life. A study of soil and water dynamics at a watershed level facilitates a scientific approach towards their conservation and management. Remote sensing and Geographic Information System are tools that help to plan and manage natural resources on watershed basis. Studies were conducted for the formulation of catchment area treatment plan based on watershed prioritization with soil erosion studies using remote sensing techniques, corroborated with Geographic Information System (GIS), secondary data and ground truth information. Estimation of runoff and sediment yield is necessary in prioritization of catchment for the design of soil conservation structures and for identifying the critical erosion-prone areas of a catchment for implementation of best management plan with limited resources. The Universal Soil Loss Equation, Sediment Yield Determination and silt yield index methods are used for runoff and soil loss estimation for prioritization of the catchments. On the basis of soil erosion classes, the watersheds were grouped into very high, high, moderate and low priorities. High-priority watersheds need immediate attention for soil and water conservation, whereas low-priority watershed having good vegetative cover and low silt yield index may not need immediate attention for such treatments.

  15. The role of land use and soils in regulating water flow in small headwater catchments of the Andes

    Science.gov (United States)

    Roa-GarcíA, M. C.; Brown, S.; Schreier, H.; Lavkulich, L. M.

    2011-05-01

    Land use changes can have a significant impact on the terrestrial component of the water cycle. This study provides a comparison of three small headwater catchments in the Andean mountains of Colombia with different composition of land use. Several methods were used to quantify differences in the hydrological behavior of these catchments such as flow duration curves, stormflow analysis, and the linear reservoir concept. They were combined with an analysis of the characteristics of soils that contribute to understanding the aggregate catchment hydrological behavior. Andisols, which are soils formed in volcanic areas and with a large capacity to hold water, amplify differences in land use and limit the potential impact of land use management activities (conservation or restoration) on the water regulation function of catchments. Of the three studied catchments, less variability of flows was observed from the catchment with a larger percentage of area in forest, and a slower decrease of flows in the dry season was observed for the catchment with a relatively higher percentage of area in wetlands. Evidence is provided for the infiltration trade-off hypothesis for tropical environments, which states that after forest removal, soil infiltration rates are smaller and the water losses through quick flow are larger than the gains by reduced evapotranspiration; this is compatible with the results of the application of the linear reservoir concept showing a faster release of water for the least forested catchment.

  16. Sediment budgets of mountain catchments: Scale dependence and the influence of land-use

    Science.gov (United States)

    Förster, Helga; Dotterweich, Markus; Wunderlich, Jürgen

    2010-05-01

    Long-term sediment budgets of forested mountain catchments are scarcely investigated today. This is because they are traditionally expected to show few erosion features and low sediment delivery. This opinion originates from process-based hydrological studies proving the runoff preventing properties of trees and forest soils. In addition mountain areas have been colonized later and only sporadically compared to the fruitful loess-covered lowlands. On the other hand steep hillslopes, narrow valleys and the availability of regolith cause a high erosion potential. And there is evidence that historical floods and yearly occurring storms initiate intensive but local and sporadic erosion events. Sediment budgets from zero-order catchments of the Palatinate Forest in the south-western sandstone escarpment in Rhineland-Palatinate show spatially varying intensities of land use impact and relief conditions. The budgets are based on field data and a soilscape model of an upper periglacial cover bed with a homogenous thickness. OSL- and 14C-dates of colluvial deposits allow relating erosion events to land-use changes derived from historical maps and written archives. The presented case studies from the Palatinate Forest are of special interest as the high proximity to the loess-covered and intensively cultivated Rhine Graben effected settlement and land-use intensity in the mountain catchments. Clear cuts for settlements were joined by deforestation for agriculture and stretched mainly along the Haardtrand and high order valleys. Off these areas the strength of interference in the forest ecosystem depended on transport possibilities and distance to the Rhine Graben. In the vicinity strong devastation and clear cutting occurred. With increasing distance the felling intensity decreased and some parts seem to be nearly undisturbed until the 18th century. The needs for wood were controlled by the economical development as well as political decisions on local to European scale. The

  17. Effects of wildfire on catchment runoff response: a modeling approach to detect changes in snow-dominated forested catchments

    Science.gov (United States)

    Jan Seibert; Jeffrey J. McDonnell; Richard D. Woodsmith

    2010-01-01

    Wildfire is an important disturbance affecting hydrological processes through alteration of vegetation cover and soil characteristics. The effects of fire on hydrological systems at the catchment scale are not well known, largely because site specific data from both before and after wildfire are rare. In this study a modelling approach was employed for change detection...

  18. Direct runoff assessment using modified SME method in catchments in the Upper Vistula River Basin

    Science.gov (United States)

    Wałęga, A.; Rutkowska, A.; Grzebinoga, M.

    2017-04-01

    Correct determination of direct runoff is crucial for proper and safe dimensioning of hydroengineering structures. It is commonly assessed using SCS-CN method developed in the United States. However, due to deficiencies of this method, many improvements and modifications have been proposed. In this paper, a modified Sahu-Mishra-Eldo (SME) method was introduced and tested for three catchments located in the upper Vistula basin. Modification of SME method involved a determination of maximum potential retention S based on CN parameter derived from SCS-CN method. The modified SME method yielded direct runoff values very similar to those observed in the investigated catchments. Moreover, it generated significantly smaller errors in the direct runoff estimation as compared with SCS-CN and SME methods in the analyzed catchments. This approach may be used for estimating the runoff in uncontrolled catchments.

  19. Anomaly in the rainfall-runoff behaviour of the Meuse catchment. Climate, land-use, or land-use management?

    Directory of Open Access Journals (Sweden)

    F. Fenicia

    2009-09-01

    Full Text Available The objective of this paper is to investigate the time variability of catchment characteristics in the Meuse basin through its effect on catchment response. The approach uses a conceptual model to represent rainfall-runoff behaviour of this catchment, and evaluates possible time-dependence of model parameters. The main hypothesis is that conceptual model parameters, although not measurable quantities, are representative of specific catchment attributes (e.g. geology, land-use, land management, topography. Hence, we assume that eventual trends in model parameters are representative of catchment attributes that may have changed over time. The available hydrological record involves ninety years of data, starting in 1911. During this period the Meuse catchment has undergone significant modifications. The catchment structural modifications, although documented, are not available as "hard-data". Hence, our results should be considered as "plausible hypotheses". The main motivation of this work is the "anomaly" found in the rainfall runoff behaviour of the Meuse basin, where ninety years of rainfall-runoff simulations show a consistent overestimation of the runoff in the period between 1930 and 1965. Different authors have debated possible causes for the "anomaly", including climatic variability, land-use change and data errors. None of the authors considered the way in which the land is used by for instance agricultural and forestry practises. This aspect influenced the model design, which has been configured to account for different evaporation demand of growing forest. As a result of our analysis, we conclude that the lag time of the catchment has decreased significantly over time, which we attribute to more intensive drainage and river training works. Furthermore, we hypothesise that forest rotation has had a significant impact on the evaporation of the catchment. These results contrast with previous studies, where the effect of land-use change on

  20. Comparing chemical analysis with literature studies to identify micropollutants in a catchment of Copenhagen (DK)

    DEFF Research Database (Denmark)

    Lützhøft, Hans-Christian Holten; Birch, Heidi; Eriksson, Eva

    2011-01-01

    on urban surface runoff originating from a well defined catchment of Copenhagen (Denmark) with an inventory of potential pollution sources for the same catchment. The selected catchment covers an area with roads, a shopping centre, a parking lot, office buildings, a gymnasium and some restaurants....... The literature approach is limited to the range of included PSs and to how and which information is compiled, whereas the analytical chemical approach is limited to the selection of analyzed substances, sensitivity and precision. Comparing the two approaches of chemical analysis with literature study to identify...

  1. Modeling of Faecal Contamination in Water from Catchment to Shellfish Growing Area

    OpenAIRE

    Bougeard, Morgane; Le Saux, Jean-claude; Perenne, Nicolas; Le Guyader, Soizick; Pommepuy, Monique

    2009-01-01

    During rainstorms, watersheds can introduce large amounts of faecal pollution into the rivers and sea, leading to shellfish contamination. In this study, we assessed Escherichia coli fluxes from a catchment, and their impact on estuarine water quality, using two assembled models. For the catchment, the agro-hydrological model SWAT was implemented integrating land uses, soil, topography, rainfall and other climatic data on Daoulas watershed (France). Initially, the SWAT model was calibrated an...

  2. Landscape Controls of CH4 Fluxes in a Catchment of the Forest Tundra in Northern Siberia

    Science.gov (United States)

    Flessa, H.; Rodionov, A.; Guggenberger, G.; Fuchs, H.; Magdon, P.; Shibistova, O.; Zrazhevskaya, G.; Kasansky, O.; Blodau, C.

    2007-12-01

    Soils have the capacity to both produce and consume atmospheric methane. The direction and the size of net- CH4 exchange between soils and atmosphere is mainly controlled by the soil aeration, temperature and the amount of bioavailable organic matter. All these factors are strongly influenced by distribution and seasonal dynamics of permafrost. Thus, distribution of permafrost and the thickness of the active layer can exert strong influence on CH4 dynamics in artic and northern boreal ecosystems. We analyzed the spatial and temporal variability of net-CH4 exchange within a catchment located in the Siberian forest tundra at the eastern shore of the lower Yenissej River to constrain the current function of this region as a sink or source of atmospheric CH4 and to gain insight into the potential for climatic change to alter the rate and form of carbon cycling and CH4 fluxes in this region. Net-fluxes of CH4 were measured from July to November 2003 and from August 2006 to July 2007 on representative soils of the catchment (mineral soils with different thawing depth, soils of bog plateaux) and on a thermokarst pond. In addition, dissolved CH4 in the stream draining the catchment was determined. Field observations, classification of landscape structures from satellite images and flux measurements were combined to estimate total catchment CH4 exchange. Nearly all soils of the catchment were net-sinks of atmospheric CH4 with annual CH4-C uptake rates ranging between 1.2 and 0.2 kg ha-1 yr-1. The active layer depth was the main factor determining the size of CH4 uptake. Total net-exchange of CH4 from the catchment was dominated by ponds that covered only about 2% of the catchment area. Due to high CH4 emission from these aquatic systems, the catchment was a net source of atmospheric CH4 with a mean annual emission of approximately 170 kg CH4-C ha-1. CH4 concentration in streams draining the catchment can help to identify areas with high CH4 production. The results suggest

  3. The Demonstration Test Catchment Approach to Land and Water Management in the river Eden Watershed, UK. (Invited)

    Science.gov (United States)

    Jonczyk, J.; Quinn, P. F.; Haygarth, P.; Reaney, S.; Wilkinson, M.; Burke, S.; McGonigle, D.; Harris, B.

    2010-12-01

    The Demonstration Test Catchment (DTC) initiative is a five year project to address pollution issues in catchments. The initiative will study the wider environmental problems suffered by catchments which are under intense farming pressures and potential climate change impacts. The UK Department for Food, Agriculture and Rural Affairs (Defra) in partnership with the Environment Agency for England and Wales (EA) have funded this initiative to answer key policy concerns in catchments. The first key step has been the establishment of a ‘research platform’ at three catchments in the UK (The Eden, Wensum and Hampshire Avon) whereby funding of 9.3 million dollars has gone into funding new equipment and pollution sampling regimes have been established. Within each catchment between three and four, 8-10km2 sub-catchments have been established. The experimental design and thinking for DTCs will be explained fully in this paper. The next phase of the project will install an extensive suite of land management and pollution mitigation interventions. In parallel to this monitoring work, a full knowledge exchange package will seek to engage with farmers, the rural community and understand the governance regime at the broader catchment scale. There is also a need for a modelling component to upscale the findings to the whole of the UK. Whilst this is an ambitious goal, there is a very basic commitment of working with rural communities to come up with real solutions that will help underpin effective policy making for the future. The research platform covers a multi-scale approach to the monitoring strategy that will allow local grouping of mitigation measures to be studied local in terms of impact and propagated to the catchment scale. Even with high level of funding, the DTC can only fully instrument a catchment of 8-10km2. Beyond this scale, the EA and the standard catchment monitoring will continue as normal. The focus here is to prove that mitigation can be achieved within

  4. The Stream-Catchment (StreamCat) Dataset: A database of watershed metrics for the conterminous USA

    Science.gov (United States)

    We developed an extensive database of landscape metrics for ~2.65 million streams, and their associated catchments, within the conterminous USA: The Stream-Catchment (StreamCat) Dataset. These data are publically available and greatly reduce the specialized geospatial expertise n...

  5. Rainfall-runoff modelling of the Okavango River catchment to assess impacts of land use change on runoff and downstream ecosystems

    Science.gov (United States)

    Milzow, Christian; Bauer-Gottwein, Peter

    2010-05-01

    The competition between human water use and ecosystem water use is one of the major challenges for water resources management at the global scale. We analyse the situation for the Okavango River basin of southern Africa. The Okavango River is representative for many large rivers throughout the developing world in that it is ungauged and poorly studied. The Okavango basin - spanning over Angola, Namibia and Botswana - represents a multi-objective problem in an international setting. Economic benefits of agricultural development and conservation of ecosystem services call for opposed actions. A semi-distributed rainfall-runoff model of the Okavango catchment is set up using the Soil and Water Assessment Tool (SWAT). The model is sufficiently physically based to simulate the impact on runoff of extent of agricultural use, crop types and management practices. Precipitation and temperature inputs are taken from datasets covering large parts of the globe. The methodology can thus easily be applied for other ungauged catchments. For temperature we use the ERA-Interim reanalysis product of the European Centre for Medium-Range Weather Forecasts and for precipitation the Famine Early Warning Systems Network data (FEWS-Net). Tropical Rainfall Measurement Mission (TRMM) data resulted in poor model performance compared to the FEWS-Net data. Presently, the upstream catchment in Angola is largely pristine and agriculture is basically restricted to dry land subsistence farming. But economic growth in Angola is likely to result in agricultural development and consequent impacts on catchment runoff. Land use scenarios that are simulated include large scale irrigated agriculture with water extractions from the river and the shallow aquifer. Climate change impacts are also studied and compared to land use change impacts. The downstream part of the basin consists of the large Okavango Wetlands, which are a biodiversity hotspot of global importance and, through tourism, an important

  6. Contribution of atmospheric nitrogen deposition to diffuse pollution in a typical hilly red soil catchment in southern China.

    Science.gov (United States)

    Shen, Jianlin; Liu, Jieyun; Li, Yong; Li, Yuyuan; Wang, Yi; Liu, Xuejun; Wu, Jinshui

    2014-09-01

    Atmospheric nitrogen (N) deposition is currently high and meanwhile diffuse N pollution is also serious in China. The correlation between N deposition and riverine N export and the contribution of N deposition to riverine N export were investigated in a typical hilly red soil catchment in southern China over a two-year period. N deposition was as high as 26.1 to 55.8kgN/(ha·yr) across different land uses in the studied catchment, while the riverine N exports ranged from 7.2 to 9.6kgN/(ha·yr) in the forest sub-catchment and 27.4 to 30.3kgN/(ha·yr) in the agricultural sub-catchment. The correlations between both wet N deposition and riverine N export and precipitation were highly positive, and so were the correlations between NH4(+)-N or NO3(-)-N wet deposition and riverine NH4(+)-N or NO3(-)-N exports except for NH4(+)-N in the agricultural sub-catchment, indicating that N deposition contributed to riverine N export. The monthly export coefficients of atmospheric deposited N from land to river in the forest sub-catchment (with a mean of 14%) presented a significant positive correlation with precipitation, while the monthly contributions of atmospheric deposition to riverine N export (with a mean of 18.7% in the agricultural sub-catchment and a mean of 21.0% in the whole catchment) were significantly and negatively correlated with precipitation. The relatively high contribution of N deposition to diffuse N pollution in the catchment suggests that efforts should be done to control anthropogenic reactive N emissions to the atmosphere in hilly red soil regions in southern China. Copyright © 2014. Published by Elsevier B.V.

  7. Seasonal contribution of terrestrial organic matter and biological oxygen demand to the Baltic Sea from three contrasting river catchments

    DEFF Research Database (Denmark)

    Reader, H. E.; Stedmon, C. A.; Kritzberg, E. S.

    2014-01-01

    organic carbon (DOC) concentrations were positively correlated with discharge from forested catchments over the year. While the overall concentrations of DOC were several times higher in the southern two catchments, higher discharge in the northern catchment resulted in the annual loadings of DOC being...

  8. Carrying away and redistribution of radioisotopes on the Peyne catchment basin. Preliminary report

    International Nuclear Information System (INIS)

    Duffa, C.; Danic, F.

    2006-01-01

    The transfers of radioisotopes present in soils and sediments are essentially conditioned by the mobilities of the physical vectors which constitute their supports. The water is the main vector of natural transfer, radioisotopes being associated with it under dissolved or particulate shape. The rainout and the hydrous erosion are responsible in particular for the carrying away and for the redistribution of contaminants following an atmospheric deposit on a catchment basin. However their effect is not the same in any point of the catchment basin. The work begun here aims at elaborating a classification of the grounds sensitivity towards this phenomenon of radioisotopes carrying away. The different factors of sensitivity have been identified: pluviometry, slope, soils occupation and soils nature. The Peyne catchment basin, that presents an important variability of these four parameters, constitutes the experimental site for this study. On this catchment basin, we search to identify the areas the most sensitive to the carrying away of radioisotopes, by combining a theoretical predictive approach based on the cartography and a descriptive approach basing on the sampling and the analysis of soils samples. (N.C.)

  9. Strategic Evaluation Tool for Surface Water Quality Management Remedies in Drinking Water Catchments

    Directory of Open Access Journals (Sweden)

    Huda Almaaofi

    2017-09-01

    Full Text Available Drinking water catchments (DWC are under pressure from point and nonpoint source pollution due to the growing human activities. This worldwide challenge is causing number of adverse effects, such as degradation in water quality, ecosystem health, and other economic and social pressures. Different evaluation tools have been developed to achieve sustainable and healthy drinking water catchments. However, a holistic and strategic framework is still required to adequately consider the uncertainty associated with feasible management remedies of surface water quality in drinking water catchments. A strategic framework was developed to adequately consider the uncertainty associated with management remedies for surface water quality in drinking water catchments. A Fuzzy Multiple Criteria Decision Analysis (FMCDA approach was embedded into a strategic decision support framework to evaluate and rank water quality remediation options within a typical fixed budget constraint faced by bulk water providers. The evaluation framework consists of four core aspects; namely, water quality, environmental, economic and social, and number of associated quantitative and qualitative criteria and sub-criteria. Final remediation strategy ranking was achieved through the application of the Euclidean Distance by the In-center of Centroids (EDIC.

  10. Estimating sedimentation rates and sources in a partially urbanized catchment using caesium-137

    Science.gov (United States)

    Ormerod, L. M.

    1998-06-01

    While there has been increased interest in determining sedimentation rates and sources in agricultural and forested catchments in recent years, there have been few studies dealing with urbanized catchments. A study of sedimentation rates and sources within channel and floodplain deposits of a partially urbanized catchment has been undertaken using the 137Cs technique. Results for sedimentation rates showed no particular downstream pattern. This may be partially explained by underestimation of sedimentation rates at some sites by failure to sample the full 137Cs profile, floodplain erosion and deliberate removal of sediment. Evidence of lateral increases in net sedimentation rates with distance from the channel may be explained by increased floodplain erosion at sites closer to the channel and floodplain formation by lateral deposition. Potential sediment sources for the catchment were considered to be forest topsoil, subsurface material and sediments derived from urban areas, which were found to be predominantly subsurface material. Tracing techniques showed an increase in subsurface material for downstream sites, confirming expectations that subsurface material would increase in the downstream direction in response to the direct and indirect effects of urbanization.

  11. Dissolved organic nitrogen (DON) losses from nested artificially drained lowland catchments with contrasting soil types

    Science.gov (United States)

    Tiemeyer, Bärbel; Kahle, Petra; Lennartz, Bernd

    2010-05-01

    Artificial drainage is a common practice to improve moisture and aeration conditions of agricultural land. It shortens the residence time of water in the soil and may therefore contribute to the degradation of peatlands as well as to the still elevated level of diffuse pollution of surface water bodies, particularly if flow anomalies like preferential flow cause a further acceleration of water and solute fluxes. Especially in the case of nitrate, artificially drained sub-catchments are found to control the catchment-scale nitrate losses. However, it is frequently found that nitrate losses and nitrogen field balances do not match. At the same time, organic fertilizers are commonly applied and, especially in lowland catchments, organic soils have been drained for agricultural use. Thus, the question arises whether dissolved organic nitrogen (DON) forms an important component of the nitrogen losses from artificially drained catchments. However, in contrast to nitrate and even to dissolved organic carbon (DOC), this component is frequently overlooked, especially in nested catchment studies with different soil types and variable land use. Here, we will present data from a hierarchical water quantity and quality measurement programme in the federal state Mecklenburg-Vorpommern (North-Eastern Germany). The monitoring programme in the pleistocene lowland catchment comprises automatic sampling stations at a collector drain outlet (4.2 ha catchment), at a ditch draining arable land on mineral soils (179 ha), at a ditch mainly draining grassland on organic soils (85 ha) and at a brook with a small rural catchment (15.5 km²) of mixed land use and soil types. At all sampling stations, daily to weekly composite samples were taken, while the discharge and the meteorological data were recorded continuously. Water samples were analyzed for nitrate-nitrogen, ammonium-nitrogen and total nitrogen. We will compare two years: 2006/07 was a very wet year (P = 934 mm) with a high summer

  12. Quantifying the variability of snowpack properties and processes in a small-forested catchment representative of the boreal zone

    Science.gov (United States)

    Parajuli, A.; Nadeau, D.; Anctil, F.; Parent, A. C.; Bouchard, B.; Jutras, S.

    2017-12-01

    In snow-fed catchments, it is crucial to monitor and to model snow water equivalent (SWE), particularly to simulate the melt water runoff. However, the distribution of SWE can be highly heterogeneous, particularly within forested environments, mainly because of the large variability in snow depths. Although the boreal forest is the dominant land cover in Canada and in a few other northern countries, very few studies have quantified the spatiotemporal variability of snow depths and snowpack dynamics within this biome. The objective of this paper is to fill this research gap, through a detailed monitoring of snowpack dynamics at nine locations within a 3.57 km2 experimental forested catchment in southern Quebec, Canada (47°N, 71°W). The catchment receives 6 m of snow annually on average and is predominantly covered with balsam fir stand with some traces of spruce and white birch. In this study, we used a network of nine so-called `snow profiling stations', providing automated snow depth and snowpack temperature profile measurements, as well as three contrasting sites (juvenile, sapling and open areas) where sublimation rates were directly measured with flux towers. In addition, a total of 1401 manual snow samples supported by 20 snow pits measurements were collected throughout the winter of 2017. This paper presents some preliminary analyses of this unique dataset. Simple empirical relations relying SWE with easy-to-determine proxies, such as snow depths and snow temperature, are tested. Then, binary regression trees and multiple regression analysis are used to model SWE using topographic characteristics (slope, aspect, elevation), forest features (tree height, tree diameter, forest density and gap fraction) and meteorological forcing (solar radiation, wind speed, snow-pack temperature profile, air temperature, humidity). An analysis of sublimation rates comparing open area, saplings and juvenile forest is also presented in this paper.

  13. Effect of catchment properties and flood generation regime on copula selection for bivariate flood frequency analysis

    Science.gov (United States)

    Filipova, Valeriya; Lawrence, Deborah; Klempe, Harald

    2018-02-01

    Applying copula-based bivariate flood frequency analysis is advantageous because the results provide information on both the flood peak and volume. More data are, however, required for such an analysis, and it is often the case that only data series with a limited record length are available. To overcome this issue of limited record length, data regarding climatic and geomorphological properties can be used to complement statistical methods. In this paper, we present a study of 27 catchments located throughout Norway, in which we assess whether catchment properties, flood generation processes and flood regime have an effect on the correlation between flood peak and volume and, in turn, on the selection of copulas. To achieve this, the annual maximum flood events were first classified into events generated primarily by rainfall, snowmelt or a combination of these. The catchments were then classified into flood regime, depending on the predominant flood generation process producing the annual maximum flood events. A contingency table and Fisher's exact test were used to determine the factors that affect the selection of copulas in the study area. The results show that the two-parameter copulas BB1 and BB7 are more commonly selected in catchments with high steepness, high mean annual runoff and rainfall flood regime. These findings suggest that in these types of catchments, the dependence structure between flood peak and volume is more complex and cannot be modeled effectively using a one-parameter copula. The results illustrate that by relating copula types to flood regime and catchment properties, additional information can be supplied for selecting copulas in catchments with limited data.

  14. A catchment scale evaluation of multiple stressor effects in headwater streams.

    Science.gov (United States)

    Rasmussen, Jes J; McKnight, Ursula S; Loinaz, Maria C; Thomsen, Nanna I; Olsson, Mikael E; Bjerg, Poul L; Binning, Philip J; Kronvang, Brian

    2013-01-01

    Mitigation activities to improve water quality and quantity in streams as well as stream management and restoration efforts are conducted in the European Union aiming to improve the chemical, physical and ecological status of streams. Headwater streams are often characterised by impairment of hydromorphological, chemical, and ecological conditions due to multiple anthropogenic impacts. However, they are generally disregarded as water bodies for mitigation activities in the European Water Framework Directive despite their importance for supporting a higher ecological quality in higher order streams. We studied 11 headwater streams in the Hove catchment in the Copenhagen region. All sites had substantial physical habitat and water quality impairments due to anthropogenic influence (intensive agriculture, urban settlements, contaminated sites and low base-flow due to water abstraction activities in the catchment). We aimed to identify the dominating anthropogenic stressors at the catchment scale causing ecological impairment of benthic macroinvertebrate communities and provide a rank-order of importance that could help in prioritising mitigation activities. We identified numerous chemical and hydromorphological impacts of which several were probably causing major ecological impairments, but we were unable to provide a robust rank-ordering of importance suggesting that targeted mitigation efforts on single anthropogenic stressors in the catchment are unlikely to have substantial effects on the ecological quality in these streams. The SPEcies At Risk (SPEAR) index explained most of the variability in the macroinvertebrate community structure, and notably, SPEAR index scores were often very low (<10% SPEAR abundance). An extensive re-sampling of a subset of the streams provided evidence that especially insecticides were probably essential contributors to the overall ecological impairment of these streams. Our results suggest that headwater streams should be considered in

  15. Spatial and temporal dynamics of nitrate fluxes in a mesoscale catchment

    Science.gov (United States)

    Muller, C.; Musolff, A.; Strachauer, U.; Brauns, M.; Tarasova, L.; Merz, R.; Knoeller, K.

    2017-12-01

    Spatially and temporally variable and often superimposing processes like mobilization and turnover of N-species strongly affect nitrate fluxes at catchment outlets. It remains thus challenging to determine dominant nitrate sources to derive an effective river management. Here, we combine data sets from two spatially highly resolved key-date monitoring campaigns of nitrate fluxes along a mesoscale catchment in Germany with four years of monitoring data from two representative sites within the catchment. The study area is characterized by a strong land use gradient from pristine headwaters to lowland sub-catchments with intense agricultural land use and wastewater sources. Flow conditions were assessed by a hydrograph separation showing the clear dominance of base flow during both investigations. However, the absolute amounts of discharge differed significantly from each other (outlet: 1.42 m³ s-1 versus 0.43 m³ s-1). Nitrate concentration and flux in the headwater was found to be low. In contrast, nitrate loads further downstream originate from anthropogenic sources such as effluents from wastewater treatment plants (WWTP) and agricultural land use. The agricultural contribution did not vary in terms of nitrate concentration and isotopic signature between the years but in terms of flux. The contrasting amounts of discharge between the years led to a strongly increased relative wastewater contribution with decreasing discharge. This was mainly manifested in elevated δ18O-NO3- values downstream from the wastewater discharge. The four-year monitoring at two sides clearly indicates the chemostatic character of the agricultural N-source and its distinct, yet stable isotopic fingerprint. Denitrification was found to play no dominant role only for controlling nitrate loads in the river. The spatially highly resolved monitoring approach helped to accurately define hot spots of nitrate inputs into the stream while the long-term information allowed a classification of the

  16. Characterization of atmospheric deposition and runoff water on a small suburban catchment

    OpenAIRE

    LAMPREA, Diana Katerine; RUBAN, Véronique

    2011-01-01

    A study of air quality and atmospheric deposition on a small urban catchment (Pin Sec catchment) has been carried out in Nantes, France, in 2007 and 2008 in the frame of a federative project aimed at understanding the origin of pollution in urban environments. Carbon monoxide, nitrogen monoxide, nitrogen dioxide, ozone, sulphur dioxide and particles less than 10 µm (PM 10) were monitored for air quality, whereas heavy metals, Polycyclic aromatic hydrocarbons (PAHs) and pesticides were analyze...

  17. Integrated catchment modelling in a Semi-arid area

    CSIR Research Space (South Africa)

    Bugan, Richard DH

    2010-09-01

    Full Text Available , will increasingly need water quality and quantity management tools to be able to make informed decisions. Integrated catchment modelling (ICM) is regarded as being a valuable tool for integrated water resource management. It enables officials and scientists to make...

  18. Regional lead isotope study of a polluted river catchment: River Wear, Northern England, UK

    International Nuclear Information System (INIS)

    Shepherd, Thomas J.; Chenery, Simon R.N.; Pashley, Vanessa; Lord, Richard A.; Ander, Louise E.; Breward, Neil; Hobbs, Susan F.; Horstwood, Matthew; Klinck, Benjamin A.; Worrall, Fred

    2009-01-01

    High precision, lead isotope analyses of archived stream sediments from the River Wear catchment, northeast England (1986-88), provide evidence for three main sources of anthropogenic lead pollution; lead mining, industrial lead emissions and leaded petrol. In the upper catchment, pollution is totally controlled and dominated by large lead discharges from historic mining centres in the North Pennine Orefield ( 208 Pb/ 206 Pb, 207 Pb/ 206 Pb ratios range from 2.0744-2.0954 and 0.8413-0.8554 respectively). In the lower catchment, co-extensive with the Durham Coalfield and areas of high population density, pollution levels are lower and regionally more uniform. Isotope ratios are systematically higher than in the upper catchment ( 208 Pb/ 206 Pb, 207 Pb/ 206 Pb ratios range from 2.0856-2.1397 and 0.8554-0.8896 respectively) and far exceed values determined for the geogenic regional background. Here, the pollution is characterised by the atmospheric deposition of industrial lead and petrol lead. Lead derived from the combustion of coal, although present, is masked by the other two sources. Recent sediments from the main channel of the River Wear are isotopically indistinguishable from older, low order stream sediments of the North Pennine Orefield, indicating that contamination of the river by lead mining waste (up to several 1000 mg/kg Pb at some locations) continues to pose an environmental problem; a pattern that can be traced all the way to the tidal reach. Using within-catchment isotope variation and sediment lead concentrations, estimates can be made of the discharges from discrete mines or groups of mines to the overall level of lead pollution in the River Wear. As well as providing information pertinent to source apportionment and on-going catchment remediation measures, the database is a valuable resource for epidemiologists concerned with the health risks posed by environmental lead.

  19. Managing riparian zone vegetation to sustain streamflow: results of paired catchment experiments in South Africa

    CSIR Research Space (South Africa)

    Scott, DF

    1999-07-01

    Full Text Available be no closer than 20-50 m from streams and other water bodies. This paper presents the results of three catchment experiments, analysed by the paired catchment method that aimed to provide a quantitative evaluation of the water yield savings attributable...

  20. Potential possibilities of water retention in agricultural loess catchments

    Directory of Open Access Journals (Sweden)

    Zubala Tomasz

    2016-09-01

    Full Text Available The growing water deficit and the increased demand for water, as well as economic problems and inadequate spatial planning in many regions indicate a necessity of developing more effective rules of programming and realisation of works concerning the water management in small catchments. The paper presents a sample analysis of the possibilities of increasing water retention in the agricultural loess catchments with periodic streams. The scope of the study included the determination of physical parameters of selected sub-catchments (geometry, soil cover, land use, etc. and of the sources of threat to water resources, resulting from construction and geomorphological conditions. Pre-design assumptions of dammings were developed, taking into account anti-erosion protective measures, and treatments increasing the landscape retention of water were proposed. Creating surface retention objects should be an important source of water in simplified agroecosystems, especially in regions, where productivity to a great extent depends on natural weather conditions. Proper management of the fourth-order loess basin of the Ciemięga River (area of about 150 km2, the presence of 50 lateral valleys could give a temporary reservoir retention reaching 500 thousand m3. Farmers should be encouraged to seek “own water sources” (including the accumulation of water within wasteland, using appropriate economic instruments (tax reliefs for the documented volume of retained water, e.g. in small retention reservoirs.

  1. Stormflow influence on nutrient dynamics in micro-catchments under contrasting land use in the Cerrado and Amazon Biomes, Brazil

    Science.gov (United States)

    Edelmann, Katharina; Nóbrega, Rodolfo L. B.; Gerold, Gerhard

    2017-04-01

    The Amazon and Cerrado biomes in Brazil have been under intense land-use change during the past few decades. The conversion of native vegetation to pastures and croplands has caused impacts on hydrological processes in these biomes, resulting in increased streamflow and nutrient fluxes. Our aim was to compare the nutrient dynamics during stormflow events in two pairs of adjacent micro-catchments with similar physical characteristics under contrasting land use, i.e. native vegetation (rainforest or cerrado) and pasture. One pair of catchments was located in the Amazon and the other in the Cerrado, both on the Amazon Agricultural Frontier in the Brazilian states of Mato Grosso and Pará. We collected hydrological and hydrochemical data on 50 stormflow events on a sub-hourly resolution during the wet seasons of 2013 and 2014. We compared the dynamics of total inorganic carbon (TIC), total organic carbon (TOC), dissolved organic carbon (DOC), nitrate (NO3), calcium (Ca), potassium (K), and magnesium (Mg) in different hydrograph parts, i.e. rising limb, peak and recession limb, between the catchments within the same biome. For the Cerrado biome, our findings show that the nutrient concentrations in the stormflows were higher in the pasture catchment than in the cerrado catchment. In the Amazon biome, we found an inverse relationship with higher concentrations in the forest catchment than in the pasture catchment, except for TIC and K. Most nutrients in the cerrado catchment had the highest concentrations in the rising limb. Mg, however, reached highest concentrations during peak discharge, and lowest in the recession limb. In the adjacent pasture catchment, in contrast, the highest nutrient concentrations were observed during the peak discharge (TIC, TOC, Ca) or the recession limb (DOC, NO3, K, Mg) with lowest in the rising limb, except for NO3, which showed the lowest concentrations during peak discharge. In the Amazon forest catchment, the peak discharge showed the

  2. Identifying evidence of climate change impact on extreme events in permeable chalk catchments

    Science.gov (United States)

    Butler, A. P.; Nubert, S.

    2009-12-01

    The permeable chalk catchments of southern England are vital for the economy and well being of the UK. Not only important as a water resource, their freely draining soils support intensive agricultural production, and the rolling downs and chalk streams provide important habitants for many protected plant and animal species. Consequently, there are concerns about the potential impact of climate change on such catchments, particularly in relation to groundwater recharge. Of major concern are possible changes in extreme events, such as groundwater floods and droughts, as any increase in the frequency and/or severity of these has important consequences for water resources, ecological systems and local infrastructure. Studies of climate change impact on extreme events for such catchments have indicated that, under medium and high emissions scenarios, droughts are likely to become more severe whilst floods less so. However, given the uncertainties in such predictions and the inherent variability in historic data, producing definitive evidence of changes in flood/drought frequency/severity poses a significant challenge. Thus, there is a need for specific extreme event statistics that can be used as indicators of actual climate change in streamflow and groundwater level observations. Identifying such indicators that are sufficiently robust requires catchments with long historic time series data. One such catchment is the River Lavant, an intermittent chalk stream in West Sussex, UK. Located within this catchment is Chilgrove House, the site of the UK’s longest groundwater monitoring well (with a continuous record of water level observations of varying frequency dating back to 1836). Using a variety of meteorological datasets, the behaviour of the catchment has been modelled, from 1855 to present, using a 'leaky aquifer' conceptual model. Model calibration was based on observed daily streamflow, at a gauging station just outside the town of Chichester, from 1970. Long

  3. A soil-landscape framework for understanding spatial and temporal variability in biogeochemical processes in catchments

    Science.gov (United States)

    McGuire, K. J.; Bailey, S. W.; Ross, D. S.

    2017-12-01

    Heterogeneity in biophysical properties within catchments challenges how we quantify and characterize biogeochemical processes and interpret catchment outputs. Interactions between the spatiotemporal variability of hydrological states and fluxes and soil development can spatially structure catchments, leading to a framework for understanding patterns in biogeochemical processes. In an upland, glaciated landscape at the Hubbard Brook Experimental Forest (HBEF) in New Hampshire, USA, we are embracing the structure and organization of soils to understand the spatial relations between runoff production zones, distinct soil-biogeochemical environments, and solute retention and release. This presentation will use observations from the HBEF to demonstrate that a soil-landscape framework is essential in understanding the spatial and temporal variability of biogeochemical processes in this catchment. Specific examples will include how laterally developed soils reveal the location of active runoff production zones and lead to gradients in primary mineral dissolution and the distribution of weathering products along hillslopes. Soil development patterns also highlight potential carbon and nitrogen cycling hotspots, differentiate acidic conditions, and affect the regulation of surface water quality. Overall, this work demonstrates the importance of understanding the landscape-level structural organization of soils in characterizing the variation and extent of biogeochemical processes that occur in catchments.

  4. Water and Sediment Output Evaluation Using Cellular Automata on Alpine Catchment: Soana, Italy - Test Case

    Science.gov (United States)

    Pasculli, Antonio; Audisio, Chiara; Sciarra, Nicola

    2017-12-01

    In the alpine contest, the estimation of the rainfall (inflow) and the discharge (outflow) data are very important in order to, at least, analyse historical time series at catchment scale; determine the hydrological maximum and minimum estimate flood and drought frequency. Hydrological researches become a precious source of information for various human activities, in particular for land use management and planning. Many rainfall- runoff models have been proposed to reflect steady, gradually-varied flow condition inside a catchment. In these last years, the application of Reduced Complexity Models (RCM) has been representing an excellent alternative resource for evaluating the hydrological response of catchments, within a period of time up to decades. Hence, this paper is aimed at the discussion of the application of the research code CAESAR, based on cellular automaton (CA) approach, in order to evaluate the water and the sediment outputs from an alpine catchment (Soana, Italy), selected as test case. The comparison between the predicted numerical results, developed through parametric analysis, and the available measured data are discussed. Finally, the analysis of a numerical estimate of the sediment budget over ten years is presented. The necessity of a fast, but reliable numerical support when the measured data are not so easily accessible, as in Alpine catchments, is highlighted.

  5. Temperature signal in suspended sediment export from an Alpine catchment

    Directory of Open Access Journals (Sweden)

    A. Costa

    2018-01-01

    Full Text Available Suspended sediment export from large Alpine catchments ( >  1000 km2 over decadal timescales is sensitive to a number of factors, including long-term variations in climate, the activation–deactivation of different sediment sources (proglacial areas, hillslopes, etc., transport through the fluvial system, and potential anthropogenic impacts on the sediment flux (e.g. through impoundments and flow regulation. Here, we report on a marked increase in suspended sediment concentrations observed near the outlet of the upper Rhône River Basin in the mid-1980s. This increase coincides with a statistically significant step-like increase in basin-wide mean air temperature. We explore the possible explanations of the suspended sediment rise in terms of changes in water discharge (transport capacity, and the activation of different potential sources of fine sediment (sediment supply in the catchment by hydroclimatic forcing. Time series of precipitation and temperature-driven snowmelt, snow cover, and ice melt simulated with a spatially distributed degree-day model, together with erosive rainfall on snow-free surfaces, are tested to explore possible reasons for the rise in suspended sediment concentration. We show that the abrupt change in air temperature reduced snow cover and the contribution of snowmelt, and enhanced ice melt. The results of statistical tests show that the onset of increased ice melt was likely to play a dominant role in the suspended sediment concentration rise in the mid-1980s. Temperature-driven enhanced melting of glaciers, which cover about 10 % of the catchment surface, can increase suspended sediment yields through an increased contribution of sediment-rich glacial meltwater, increased sediment availability due to glacier recession, and increased runoff from sediment-rich proglacial areas. The reduced extent and duration of snow cover in the catchment are also potential contributors to the rise in suspended sediment

  6. A dynamic model of caesium transport in lakes and their catchments

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, Sandra; Jenkins, Alan (Institute of Hydrology, Wallingford (UK)); Hilton, John (Institute of Freshwater Ecology, Ambleside (UK). Windermere Lab.)

    1991-04-01

    A mathematical model has been developed to predict radiocaesium concentrations over time within individual compartments of the lake and its catchment. The lake has been divided into five compartments; catchment, lake water (epilimnion and hypolimnion during stratification), lake sediment and fish. Radiocaesium enters the lake via contaminated rainfall and catchment runoff. A proportion of this radiocaesium absorbs onto suspended solids in the lake. This proportion is represented by a distribution coefficient. Sedimentation of the suspended solids occurs at a rate defined by the areal removal coefficient and results in increased caesium concentrations in the sediment. The ingestion of radiocaesium by either water column or benthic feeding fish is described by transfer functions. The model has been tested against data collected from Esthwaite water and Windermere shortly after the Chernobyl reactor accident from May 1986 to December 1987. The model simulates observed radiocaesium concentrations in Esthwaite lake water and sediment and also in lake water, sediment and fish in Windermere. The model could form the basis of a valuable management tool for the water industry should a major airborne pollution event occur again. (author).

  7. Microplastic contamination of river beds significantly reduced by catchment-wide flooding

    Science.gov (United States)

    Hurley, Rachel; Woodward, Jamie; Rothwell, James J.

    2018-04-01

    Microplastic contamination of the oceans is one of the world's most pressing environmental concerns. The terrestrial component of the global microplastic budget is not well understood because sources, stores and fluxes are poorly quantified. We report catchment-wide patterns of microplastic contamination, classified by type, size and density, in channel bed sediments at 40 sites across urban, suburban and rural river catchments in northwest England. Microplastic contamination was pervasive on all river channel beds. We found multiple urban contamination hotspots with a maximum microplastic concentration of approximately 517,000 particles m-2. After a period of severe flooding in winter 2015/16, all sites were resampled. Microplastic concentrations had fallen at 28 sites and 18 saw a decrease of one order of magnitude. The flooding exported approximately 70% of the microplastic load stored on these river beds (equivalent to 0.85 ± 0.27 tonnes or 43 ± 14 billion particles) and eradicated microbead contamination at 7 sites. We conclude that microplastic contamination is efficiently flushed from river catchments during flooding.

  8. Long-term monitored catchments in Norway - a hydrologic and chemical evaluation -

    Energy Technology Data Exchange (ETDEWEB)

    Lydersen, E

    1994-10-20

    About 20 years ago, long-term monitoring of small Norwegian catchments were initiated, because of increasing concern regarding acidification of surface water and damage to fish populations. Long range transported air pollutants were considered to be the major acidification factor and so both precipitation and runoff chemistry were included in the monitoring programme. This report contains a thorough hydrologic and chemical evaluation of precipitation and runoff water separately as well as relationships between precipitation chemistry and runoff chemistry. The data comes from four catchments: Birkenes, Storgama, Langtjern and Kaarvatn. The chapters are (1) Sampling and analysis, (2) Description of the catchments, (3) Hydrology, (4) Chemistry, with subsections on wet deposition, dry deposition, concentration of marine compounds with distance from the sea, acid precipitation, runoff chemistry, sulphuric acid and other acidifying compounds, acid neutralizing capacity, and aluminium, (5) Time trends in precipitation and runoff chemistry. The time trends are evaluated in relation to the declining emissions of sulphur compounds in Europe since the late seventies. 134 refs., 213 figs., 54 tabs.

  9. A dynamic model of caesium transport in lakes and their catchments

    International Nuclear Information System (INIS)

    McDougall, Sandra; Jenkins, Alan; Hilton, John

    1991-01-01

    A mathematical model has been developed to predict radiocaesium concentrations over time within individual compartments of the lake and its catchment. The lake has been divided into five compartments; catchment, lake water (epilimnion and hypolimnion during stratification), lake sediment and fish. Radiocaesium enters the lake via contaminated rainfall and catchment runoff. A proportion of this radiocaesium absorbs onto suspended solids in the lake. This proportion is represented by a distribution coefficient. Sedimentation of the suspended solids occurs at a rate defined by the areal removal coefficient and results in increased caesium concentrations in the sediment. The ingestion of radiocaesium by either water column or benthic feeding fish is described by transfer functions. The model has been tested against data collected from Esthwaite water and Windermere shortly after the Chernobyl reactor accident from May 1986 to December 1987. The model simulates observed radiocaesium concentrations in Esthwaite lake water and sediment and also in lake water, sediment and fish in Windermere. The model could form the basis of a valuable management tool for the water industry should a major airborne pollution event occur again. (author)

  10. Comorbid mental disorders in substance users from a single catchment area - a clinical study

    Directory of Open Access Journals (Sweden)

    Malt Ulrik F

    2011-02-01

    Foundation's Network Entry Questionnaire. Biochemical assessments will reveal somatic diseases that may contribute to the patient's symptoms. Discussion This study is unique because the material represents a complete sample of first-time-admitted treatment seekers with SUD from a single catchment area. Earlier studies have not focused on first-time-admitted patients, so chronically ill patients, may have been overrepresented in those samples. This study will contribute new knowledge about mental disorders in first-time-admitted SUD patients.

  11. Sedimentation studies at MUDA catchment area, Kedah, Malaysia

    International Nuclear Information System (INIS)

    Kamarudin Samuding; Juhari Yusuf; Wan Abdul Aziz; Juhari Latiff

    2000-01-01

    A study on the sediment size distribution and determination of sediment density profile in the selected area of Muda dam catchment area, Kedah is presented. The objective of the study was to establish a base line data of the input sedimentation with regards to the effects of development within the catchment in the future. Three main sampling locations were identified namely at Sungai Teliang, Sungai Muda and Muda reservoir. Measurement of sediment thickness was performed by using nuclear gauges i.e. direct transmission and backscattering methods. Results showed that the grain size distribution of sediment ranges from gravel to clay sizes. In the reservoir and downstream of the river, most of the samples studied consisting of fine sediment i.e silt and clay sizes (<63,um). However, sediment distribution in the upstream section of Sungai Teliang mainly consist of fine to coarse sand. Sediment density profiles in the reservoir showed little changes, whereas bed sediment profiles in the river cross-sectional areas exhibit some changes. The results also showed that thickness of bedload sediment were different from one location to another, in which the thickness may achieve up to 0.75 metre in some areas. Based on the sediment distribution profile analysis, the study site could be divided into two parts comprising of dynamic area (region) covering selected locations along the river and deposited sediment in the reservoir. Basic information derived from this study may provide as one of the important inputs for the MADA reservoir management authority in monitoring, supervising y and identifying rate and source of sediment in the catchment area

  12. Ecohydrological modeling of a tropical tidal catchment exposed to anthropogenic pressure

    Science.gov (United States)

    Lorenz, Malte; Zeunert, Stephanie; Meon, Günter

    2016-04-01

    The study area is the highly polluted estuary system of the Thi Vai river and its catchment, located in South Vietnam. It is part of Vietnam's core regions for the development of industrial and agricultural production. The middle and lower parts of the river form an estuary, which is strongly affected by the tide. As a result of untreated industrial waste water discharges, the Thi Vai river was considered as ecological dead from 1990 to 2008. Although the water quality of the Thi Vai has been improved due to waste water treatment and control, it must be still considered as polluted. These first successes could be rapidly negated by the ongoing development of industry, population and agriculture. Today the water quality management is solely focused on the industrial zones adjacent to the estuary. The contribution of the catchment to the water quality pollution is not considered yet. To quantify the pollution of the Thi Vai estuary and its catchment, a monitoring system for water quantity and quality was installed. The water quality of the Thi Vai estuary and its main tributaries is affected by elevated concentrations of NH4, NO2 and TSS and partly reduced DO concentrations. Within the German-Vietnamese BMBF research project EWATEC-COAST a model based management system was developed as an instrument for a sustainable improvement of the water quality of the Thi Vai estuary and the Thi Vai catchment. Among others, the system consists of the hydrodynamic water quality model DELFT 3D and the ecohydrological catchment model PANTA RHEI WQ. The ecohydrological model PANTA RHEI WQ was developed within the research project. The developed ecohydrological model allows a sub-daily time step and includes in-stream water quality procedures, accounting for the interaction of aquatic biomass, dissolved oxygen, nutrients, detritus and sediment. Therefore, the implemented water quality model overcomes deficits found in common ecohydrological models. Despite of the scarce data

  13. The StreamCat Dataset: Accumulated Attributes for NHDPlusV2 (Version 2.1) Catchments for the Conterminous United States: National Atmospheric Deposition Program National Trends Network - Nitrogen Deposition

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset represents deposition estimates of nutrients within individual local NHDPlusV2 catchments and upstream, contributing watersheds based on the National...

  14. 640 CLIMATE CHANGE IN GILGEL ABBAY CATCHMENT UPPER ...

    African Journals Online (AJOL)

    Osondu

    Those areas of upper catchment with higher altitude have received more rainfall and ... climate systems (Lambin and Geist, 2006; ... This impact is ... agriculture, forestry, fisheries, and water supply. (USEPA ... Ethiopian Journal of Environmental Studies and Management Vol. ... greenhouse gases may be sought in historical.

  15. Avoiding Implementation Failure in Catchment Landscapes: A Case Study in Governance of the Great Barrier Reef.

    Science.gov (United States)

    Dale, Allan P; Vella, Karen; Gooch, Margaret; Potts, Ruth; Pressey, Robert L; Brodie, Jon; Eberhard, Rachel

    2017-10-04

    Water quality outcomes affecting Australia's Great Barrier Reef (GBR) are governed by multi-level and multi-party decision-making that influences forested and agricultural landscapes. With international concern about the GBR's declining ecological health, this paper identifies and focuses on implementation failure (primarily at catchment scale) as a systemic risk within the overall GBR governance system. There has been limited integrated analysis of the full suite of governance subdomains that often envelop defined policies, programs and delivery activities that influence water quality in the GBR. We consider how the implementation of separate purpose-specific policies and programs at catchment scale operate against well-known, robust design concepts for integrated catchment governance. We find design concerns within ten important governance subdomains that operate within GBR catchments. At a whole-of-GBR scale, we find a weak policy focus on strengthening these delivery-oriented subdomains and on effort integration across these subdomains within catchments. These governance problems when combined may contribute to failure in the implementation of major national, state and local government policies focused on improving water quality in the GBR, a lesson relevant to landscapes globally.

  16. Determination of Curve Number for snowmelt-runoff floods in a small catchment

    Directory of Open Access Journals (Sweden)

    L. Hejduk

    2015-06-01

    Full Text Available One of the widely used methods for predicting flood runoff depth from ungauged catchments is the curve number (CN method, developed by Soil Conservation Service (SCS of US Department of Agriculture. The CN parameter can be computed directly from recorded rainfall depths and direct runoff volumes in case of existing data. In presented investigations, the CN parameter has been computed for snowmelt-runoff events based on snowmelt and rainfall measurements. All required data has been gathered for a small agricultural catchment (A = 23.4 km2 of Zagożdżonka river, located in Central Poland. The CN number received from 28 snowmelt-runoff events has been compared with CN computed from rainfall-runoff events for the same catchment. The CN parameter, estimated empirically varies from 64.0 to 94.8. The relation between CN and snowmelt depth was investigated in a similar procedure to relation between CN and rainfall depth.

  17. Applications of the PyTOPKAPI model to ungauged catchments

    African Journals Online (AJOL)

    in this work as an alternative model calibration procedure for streamflow simulation from .... catchment is divided into direct runoff and infiltration, which reflects the nonlinear relationship between the soil water storage and the saturated ...

  18. Analysis of catchments response to severe drought event for ...

    African Journals Online (AJOL)

    Nafiisah

    The run sum analysis method was a sound method which indicates in ... intensity and duration of stream flow depletion between nearby catchments. ... threshold level analysis method, and allows drought events to be described in more.

  19. The effect of water storage change in ET estimation in humid catchments based on water balance models and Budyko framework

    Science.gov (United States)

    Wang, Tingting; Sun, Fubao; Liu, Changming; Liu, Wenbin; Wang, Hong

    2017-04-01

    An accurate estimation of ET in humid catchments is essential in water-energy budget research and water resource management etc, while it remains a huge challenge and there is no well accepted explanation for the difficulty of annual ET estimation in humid catchments so far. Here we presents the ET estimation in 102 humid catchments over China based on the Budyko framework and two hydrological models: abcd model and Xin'anjiang mdoel, in comparison with ET calculated from the water balance equation (ETwb) on the ground that the ΔS is approximately zero at multiannual and annual time scale. We provides a possible explanation for this poorly annual ET estimation in humid catchments as well. The results show that at multi-annual timescale, the Budyko framework works fine in ET estimation in humid catchments, while at annual time scale, neither the Budyko framework nor the hydrological models can estimate ET well. The major cause for this poorly estimated annual ET in humid catchments is the neglecting of the ΔS in ETwb since it enlarge the variability of real actual evapotranspiration. Much improvement has been made when compared estimated ET + ΔS with those ETwb, and the bigger the catchment area is, the better this improvement is. It provides a reasonable explanation for the poorly estimated annual ET in humid catchments and reveals the important role of the ΔS in ET estimation and validation. We highlight that the annual ΔS shouldn't be taken as zero in water balance equation in humid catchments.

  20. Analysis of streamflow variability in Alpine catchments at multiple spatial and temporal scales

    Science.gov (United States)

    Pérez Ciria, T.; Chiogna, G.

    2017-12-01

    Alpine watersheds play a pivotal role in Europe for water provisioning and for hydropower production. In these catchments, temporal fluctuations of river discharge occur at multiple temporal scales due to natural as well as anthropogenic driving forces. In the last decades, modifications of the flow regime have been observed and their origin lies in the complex interplay between construction of dams for hydro power production, changes in water management policies and climatic changes. The alteration of the natural flow has negative impacts on the freshwater biodiversity and threatens the ecosystem integrity of the Alpine region. Therefore, understanding the temporal and spatial variability of river discharge has recently become a particular concern for environmental protection and represents a crucial contribution to achieve sustainable water resources management in the Alps. In this work, time series analysis is conducted for selected gauging stations in the Inn and the Adige catchments, which cover a large part of the central and eastern region of the Alps. We analyze the available time series using the continuous wavelet transform and change-point analyses for determining how and where changes have taken place. Although both catchments belong to different climatic zones of the Greater Alpine Region, streamflow properties share some similar characteristics. The comparison of the collected streamflow time series in the two catchments permits detecting gradients in the hydrological system dynamics that depend on station elevation, longitudinal location in the Alps and catchment area. This work evidences that human activities (e.g., water management practices and flood protection measures, changes in legislation and market regulation) have major impacts on streamflow and should be rigorously considered in hydrological models.

  1. Groundwater denitrification in two agricultural river catchments: influence of hydro-geological setting and aquifer geochemistry

    Science.gov (United States)

    McAleer, Eoin; Mellander, Per-Erik; Coxon, Catherine; Richards, Karl G.; Jahangir, Mohammad M. R.

    2015-04-01

    Identifying subsurface environments with a natural capacity for denitrification is important for improving agricultural management. At the catchment scale, a complex hierarchy of landscape, hydro-geological and physico-chemical characteristics combine to affect the distribution of groundwater nitrate (NO3-). This study was conducted along four instrumented hillslopes in two ca. 10km2 agricultural river catchments in Ireland, one dominated by arable and one by grassland agriculture. Both catchments are characterised by well drained soils, but have differing aquifer characteristics. The arable catchment is underlain by weathered Ordovician slate bedrock which is extensively fractured with depth. The grassland catchment is characterised by Devonian sandstone bedrock, exhibiting both lateral (from upslope to near stream) and vertical variations in permeability along each hillslope. The capacity for groundwater denitrification was assessed by examining the concentration and distribution patterns of N species (total nitrogen, nitrate, nitrite, ammonium), dissolved organic carbon (DOC), dissolved oxygen (DO) and redox potential (Eh) in monthly samples from shallow and deep groundwater piezometers (n=37). Additionally, the gaseous products of denitrification: nitrous oxide (N2O) and excess dinitrogen (excess N2) were measured seasonally using gas chromatography and membrane inlet mass spectroscopy, respectively. The slate catchment was characterised by uniformity, both laterally and vertically, in aquifer geochemistry and gaseous denitrification products. The four year spatial mean groundwater NO3--N concentration was 6.89 mg/l and exhibited low spatial and temporal variability (temporal SD: 1.19 mg/l, spatial SD: 1.185 mg/l). Elevated DO concentrations (mean: 9.75 mg/l) and positive Eh (mean: +176.5mV) at all sample horizons indicated a setting with little denitrification potential. This non-reducing environment was reflected in a low accumulation of denitrification

  2. Estimating runoff from ungauged catchments for reservoir water ...

    African Journals Online (AJOL)

    The Lower Middle Zambezi Basin is sandwiched between three hydropower ... This study applied a rainfall-runoff model (HEC-HMS) and GIS techniques to ... Missing data were generated using the mean value infilling method. ... A hydrological model, HEC- HMS, was used to simulate runoff from the ungauged catchments.

  3. Quantifying sediment-associated metal dispersal using Pb isotopes: Application of binary and multivariate mixing models at the catchment-scale

    International Nuclear Information System (INIS)

    Bird, Graham; Brewer, Paul A.; Macklin, Mark G.; Nikolova, Mariyana; Kotsev, Tsvetan; Mollov, Mihail; Swain, Catherine

    2010-01-01

    In this study Pb isotope signatures were used to identify the provenance of contaminant metals and establish patterns of downstream sediment dispersal within the River Maritsa catchment, which is impacted by the mining of polymetallic ores. A two-fold modelling approach was undertaken to quantify sediment-associated metal delivery to the Maritsa catchment; employing binary mixing models in tributary systems and a composite fingerprinting and mixing model approach in the wider Maritsa catchment. Composite fingerprints were determined using Pb isotopic and multi-element geochemical data to characterize sediments delivered from tributary catchments. Application of a mixing model allowed a quantification of the percentage contribution of tributary catchments to the sediment load of the River Maritsa. Sediment delivery from tributaries directly affected by mining activity contributes 42-63% to the sediment load of the River Maritsa, with best-fit regression relationships indicating that sediments originating from mining-affected tributaries are being dispersed over 200 km downstream. - Pb isotopic evidence used to quantify sediment-associated metal delivery within a mining-affected river catchment.

  4. River network bedload model: a tool to investigate the impact of flow regulation on grain size distribution in a large Alpine catchment

    Science.gov (United States)

    Costa, Anna; Molnar, Peter

    2017-04-01

    Sediment transport rates along rivers and the grain size distribution (GSD) of coarse channel bed sediment are the result of the long term balance between transport capacity and sediment supply. Transport capacity, mainly a function of channel geometry and flow competence, can be altered by changes in climatic forcing as well as by human activities. In Alpine rivers it is hydropower production systems that are the main causes of modification to the transport capacity of water courses through flow regulation, leading over longer time scales to the adjustment of river bed GSDs. We developed a river network bedload transport model to evaluate the impacts of hydropower on the transfer of sediments and the GSDs of the Upper Rhône basin, a 5,200 km2 catchment located in the Swiss Alps. Many large reservoirs for hydropower production have been built along the main tributaries of the Rhône River since the 1960s, resulting in a complex system of intakes, tunnels, and pumping stations. Sediment storage behind dams and intakes, is accompanied by altered discharge due to hydropower operations, mainly higher flow in winter and lower in summer. It is expected that this change in flow regime may have resulted in different bedload transport. However, due the non-linear, threshold-based nature of the relation between discharge and sediment mobilization, the effects of changed hydraulic conditions are not easily deducible, and because observations of bedload in pre- and post-dam conditions are usually not available, a modelling approach is often necessary. In our modelling approach, the river network is conceptualized as a series of connected links (river reaches). Average geometric characteristics of each link (width, length, and slope of cross section) are extracted from digital elevation data, while surface roughness coefficients are assigned based on the GSD. Under the assumptions of rectangular prismatic cross sections and normal flow conditions, bed shear stress is estimated

  5. Process-based modelling of a headwater catchment in semi-arid conditions: the influence of macropore flow

    NARCIS (Netherlands)

    Schaik, N.L.M.B.; Bronstert, A.; Jong, S.M.; Jetten, V.G.; Dam, van J.C.; Ritsema, C.J.; Schnabel, S.

    2014-01-01

    Subsurface stormflow is thought to occur mainly in humid environments with steep terrains. However, in semi-arid areas, preferential flow through macropores can also result in a significant contribution of subsurface stormflow to catchment runoff for varying catchment conditions. Most hydrological

  6. Statistical analysis of hydrological response in urbanising catchments based on adaptive sampling using inter-Amount times

    NARCIS (Netherlands)

    ten Veldhuis, J.A.E.; Schleiss, M.A.

    2017-01-01

    Urban catchments are typically characterised by a more flashy nature of the hydrological response compared to natural catchments. Predicting flow changes associated with urbanisation is not straightforward, as they are influenced by interactions between impervious cover, basin size, drainage

  7. Sediment sources in the Upper Severn catchment: a fingerprinting approach

    Directory of Open Access Journals (Sweden)

    A. L. Collins

    1997-01-01

    Full Text Available Suspended sediment sources in the Upper Severn catchment are quantified using a composite fingerprinting technique combining statistically-verified signatures with a multivariate mixing model. Composite fingerprints are developed from a suite of diagnostic properties comprising trace metal (Fe, Mn, AI, heavy metal (Cu, Zn, Pb, Cr, Co, Ni, base cation (Na, Mg, Ca, K, organic (C, N, radiometric (137Cs, 210Pb, and other (total P determinands. A numerical mixing model, to compare the fingerprints of contemporary catchment source materials with those of fluvial suspended sediment in transit and those of recent overbank floodplain deposits, provides a means of quantifying present and past sediment sources respectively. Sources are classified in terms of eroding surface soils under different land uses and channel banks. Eroding surface soils are the most important source of the contemporary suspended sediment loads sampled at the Institute of Hydrology flow gauging stations at Plynlimon and at Abermule. The erosion of forest soils, associated with the autumn and winter commercial activities of the Forestry Commission, is particularly evident. Reconstruction of sediment provenance over the recent past using a sediment core from the active river floodpiain at Abermule, in conjunction with a 137Cs chronology, demonstrates the significance of recent phases of afforestation and deforestation for accelerated catchment soil erosion.

  8. Spatial and temporal variation of residence time and storage volume of subsurface water evaluated by multi-tracers approach in mountainous headwater catchments

    Science.gov (United States)

    Tsujimura, Maki; Yano, Shinjiro; Abe, Yutaka; Matsumoto, Takehiro; Yoshizawa, Ayumi; Watanabe, Ysuhito; Ikeda, Koichi

    2015-04-01

    Headwater catchments in mountainous region are the most important recharge area for surface and subsurface waters, additionally time and stock information of the water is principal to understand hydrological processes in the catchments. However, there have been few researches to evaluate variation of residence time and storage volume of subsurface water in time and space at the mountainous headwaters especially with steep slope. We performed an investigation on age dating and estimation of storage volume using simple water budget model in subsurface water with tracing of hydrological flow processes in mountainous catchments underlain by granite, Paleozoic and Tertiary, Yamanashi and Tsukuba, central Japan. We conducted hydrometric measurements and sampling of spring, stream and ground waters in high-flow and low-flow seasons from 2008 through 2012 in the catchments, and CFCs, stable isotopic ratios of oxygen-18 and deuterium, inorganic solute constituent concentrations were determined on all water samples. Residence time of subsurface water ranged from 11 to 60 years in the granite catchments, from 17 to 32 years in the Paleozoic catchments, from 13 to 26 years in the Tertiary catchments, and showed a younger age during the high-flow season, whereas it showed an older age in the low-flow season. Storage volume of subsurface water was estimated to be ranging from 10 ^ 4 to 10 ^ 6 m3 in the granite catchments, from 10 ^ 5 to 10 ^ 7 m3 in the Paleozoic catchments, from 10 ^ 4 to 10 ^ 6 m3 in the Tertiary catchments. In addition, seasonal change of storage volume in the granite catchments was the highest as compared with those of the Paleozoic and the Tertiary catchments. The results suggest that dynamic change of hydrological process seems to cause a larger variation of the residence time and storage volume of subsurface water in time and space in the granite catchments, whereas higher groundwater recharge rate due to frequent fissures or cracks seems to cause larger

  9. Delay in catchment nitrogen load to streams following restrictions on fertilizer application

    DEFF Research Database (Denmark)

    Vervloet, Lidwien S. C.; Binning, Philip John; Borgesen, Christen D.

    2018-01-01

    A MIKE SHE hydrological-solute transport model including nitrate reduction is employed to evaluate the delayed response in nitrogen loads in catchment streams following the implementation of nitrogen mitigation measures since the 1980s. The nitrate transport lag times between the root zone...... and the streams for the period 1950-2011 were simulated for two catchments in Denmark and compared with observational data. Results include nitrogen concentration and mass discharge to streams. By automated baseflow separation, stream discharge was separated into baseflow and drain flow components...

  10. Using artificial soil sediment mixtures for calibrating fingerprinting techniques at catchment scale

    International Nuclear Information System (INIS)

    Torres Astorga, Romina; Martin, Osvaldo A.; Velasco, Ricardo Hugo; Santos-Villalobos, Sergio de los; Mabit, Lionel; Dercon, Gerd

    2016-01-01

    Soil erosion and related sediment transportation and deposition are key environmental problems in Central Argentina. Certain land use practices, such as intensive grazing, are considered particularly harmful in causing erosion and sediment mobilization. In our studied catchment, Sub Catchment Estancia Grande (630 hectares), 23 km north east from San Luis, characterized by erosive loess soils, we tested sediment source fingerprinting techniques to identify critical hot spots of land degradation, based on the concentration of 43 elements determined by Energy Dispersive X Ray Fluorescence (EDXRF).

  11. Hydrologic regime alteration of a Mediterranean catchment under climate change projection

    Science.gov (United States)

    Sellami, Haykel; Benabdallah, Sihem; La Jeunesse, Isabelle; Herrmann, Frank; Vanclooster, Marnik

    2014-05-01

    Most of the climate models projections for the Mediterranean basin have showed that the region will likely to experience a general tendency towards drier climate conditions with decreases in total precipitation, increases in temperature, alterations in the rainfall extreme events and droughts frequency (IPCC, 2007; Giorgi and Lionello, 2008; López-Moreno et al., 2011). The region is already suffering from water resources scarcity and vulnerability which are expected to amplify in the next century (Ludwig et al., 2011; Schneider et al., 2013). Therefore, assessing the impact of climate change on the hydrologic regime of Mediterranean catchments is with a major concern not only to scientist but also to water resources policy makers and general public. However, most of the climate change impact studies focus on the flow regime on global or regional scale rather than on the catchment scale which is more useful and more appropriate to guide practical mitigation and adaptation policy. This is because hydro-climate modeling at the local scale is confronted to the variability in climate, topography, geology, lack of observations and anthropogenic activities within the catchment. Furthermore, it is well recognized that hydrological and climate models forecasts are always affected with uncertainty making the assessment of climate change impact on Mediterranean catchment hydrology more challenging. This work aims to assess the impact of climate change on a Mediterranean catchment located in North Africa (the Chiba catchment in northeast Tunisia) through a conjunctive use of physically based hydrological model (SWAT) driven with four climate models*. Quantification of the impact of climate change has been conducted by means of the Indicators of Hydrologic Alteration (Richter et al., 1996) which are also ecologically meaningful. By comparing changes in these indicators in the reference period (1971-2000) to the projected ones in the future (2041-2070), it was possible to draw

  12. Catchment Integration of Sensor Array Observations to Understand Hydrologic Connectivity

    Science.gov (United States)

    Redfern, S.; Livneh, B.; Molotch, N. P.; Suding, K.; Neff, J. C.; Hinckley, E. L. S.

    2017-12-01

    Hydrologic connectivity and the land surface water balance are likely to be impacted by climate change in the coming years. Although recent work has started to demonstrate that climate modulates connectivity, we still lack knowledge of how local ecology will respond to environmental and atmospheric changes and subsequently interact with connectivity. The overarching goal of this research is to address and forecast how climate change will affect hydrologic connectivity in an alpine environment, through the use of near-surface observations (temperature, humidity, soil moisture, snow depth) from a new 16-sensor array (plus 5 precipitation gauges), together with a distributed hydrologic model, over a small catchment on Colorado's Niwot Ridge (above 3000m). Model simulations will be constrained to distributed sensor measurements taken in the study area and calibrated with streamflow. Periods of wetting and dry-down will be analyzed to identify signatures of connectivity across the landscape, its seasonal signals and its sensitivity to land cover. Further work will aim to develop future hydrologic projections, compare model output with related observations, conduct multi-physics experiments, and continue to expand the existing sensor network.

  13. On the monitoring and prediction of flash floods in small and medium-sized catchments - the EXTRUSO project

    Science.gov (United States)

    Wiemann, Stefan; Eltner, Anette; Sardemann, Hannes; Spieler, Diana; Singer, Thomas; Thanh Luong, Thi; Janabi, Firas Al; Schütze, Niels; Bernard, Lars; Bernhofer, Christian; Maas, Hans-Gerd

    2017-04-01

    Flash floods regularly cause severe socio-economic damage worldwide. In parallel, climate change is very likely to increase the number of such events, due to an increasing frequency of extreme precipitation events (EASAC 2013). Whereas recent work primarily addresses the resilience of large catchment areas, the major impact of hydro-meteorological extremes caused by heavy precipitation is on small areas. Those are very difficult to observe and predict, due to sparse monitoring networks and only few means for hydro-meteorological modelling, especially in small catchment areas. The objective of the EXTRUSO project is to identify and implement appropriate means to close this gap by an interdisciplinary approach, combining comprehensive research expertise from meteorology, hydrology, photogrammetry and geoinformatics. The project targets innovative techniques for achieving spatio-temporal densified monitoring and simulations for the analysis, prediction and warning of local hydro-meteorological extreme events. The following four aspects are of particular interest: 1. The monitoring, analysis and combination of relevant hydro-meteorological parameters from various sources, including existing monitoring networks, ground radar, specific low-cost sensors and crowdsourcing. 2. The determination of relevant hydro-morphological parameters from different photogrammetric sensors (e.g. camera, laser scanner) and sensor platforms (e.g. UAV (unmanned aerial vehicle) and UWV (unmanned water vehicle)). 3. The continuous hydro-meteorological modelling of precipitation, soil moisture and water flows by means of conceptual and data-driven modelling. 4. The development of a collaborative, web-based service infrastructure as an information and communication point, especially in the case of an extreme event. There are three major applications for the planned information system: First, the warning of local extreme events for the population in potentially affected areas, second, the support

  14. Testing the transferability of regression equations derived from small sub-catchments to a large area in central Sweden

    Directory of Open Access Journals (Sweden)

    C. Xu

    2003-01-01

    Full Text Available There is an ever increasing need to apply hydrological models to catchments where streamflow data are unavailable or to large geographical regions where calibration is not feasible. Estimation of model parameters from spatial physical data is the key issue in the development and application of hydrological models at various scales. To investigate the suitability of transferring the regression equations relating model parameters to physical characteristics developed from small sub-catchments to a large region for estimating model parameters, a conceptual snow and water balance model was optimised on all the sub-catchments in the region. A multiple regression analysis related model parameters to physical data for the catchments and the regression equations derived from the small sub-catchments were used to calculate regional parameter values for the large basin using spatially aggregated physical data. For the model tested, the results support the suitability of transferring the regression equations to the larger region. Keywords: water balance modelling,large scale, multiple regression, regionalisation

  15. Improving catchment discharge predictions by inferring flow route contributions from a nested-scale monitoring and model setup

    Science.gov (United States)

    van der Velde, Y.; Rozemeijer, J. C.; de Rooij, G. H.; van Geer, F. C.; Torfs, P. J. J. F.; de Louw, P. G. B.

    2011-03-01

    Identifying effective measures to reduce nutrient loads of headwaters in lowland catchments requires a thorough understanding of flow routes of water and nutrients. In this paper we assess the value of nested-scale discharge and groundwater level measurements for the estimation of flow route volumes and for predictions of catchment discharge. In order to relate field-site measurements to the catchment-scale an upscaling approach is introduced that assumes that scale differences in flow route fluxes originate from differences in the relationship between groundwater storage and the spatial structure of the groundwater table. This relationship is characterized by the Groundwater Depth Distribution (GDD) curve that relates spatial variation in groundwater depths to the average groundwater depth. The GDD-curve was measured for a single field site (0.009 km2) and simple process descriptions were applied to relate groundwater levels to flow route discharges. This parsimonious model could accurately describe observed storage, tube drain discharge, overland flow and groundwater flow simultaneously with Nash-Sutcliff coefficients exceeding 0.8. A probabilistic Monte Carlo approach was applied to upscale field-site measurements to catchment scales by inferring scale-specific GDD-curves from the hydrographs of two nested catchments (0.4 and 6.5 km2). The estimated contribution of tube drain effluent (a dominant source for nitrates) decreased with increasing scale from 76-79% at the field-site to 34-61% and 25-50% for both catchment scales. These results were validated by demonstrating that a model conditioned on nested-scale measurements improves simulations of nitrate loads and predictions of extreme discharges during validation periods compared to a model that was conditioned on catchment discharge only.

  16. Assessing catchment-scale erosion and yields of suspended solids from improved temperate grassland.

    Science.gov (United States)

    Bilotta, G S; Krueger, T; Brazier, R E; Butler, P; Freer, J; Hawkins, J M B; Haygarth, P M; Macleod, C J A; Quinton, J N

    2010-03-01

    This paper quantifies the yields of suspended solids (SS) from a headwater catchment managed as improved temperate grassland, providing the first direct, catchment-scale evidence of the rates of erosion from this land-use in the UK and assessing the threat posed to aquatic ecosystems. High-resolution monitoring of catchment hydrology and the concentrations of SS and volatile organic matter (VOM) were carried out in the first-order channel of the Den Brook headwater catchment in Devon (UK) during the 2006-2007 hydrological season. The widely used 'rating curve' (discharge-concentration) approach was employed to estimate yields of SS, but as demonstrated by previous researchers, this study showed that discharge is a poor predictor of SS concentrations and therefore any yields estimated from this technique are likely to be highly uncertain. Nevertheless, for the purpose of providing estimates of yields that are comparable to previous studies on other land uses/sources, this technique was adopted albeit in an uncertainty-based framework. The findings suggest that contrary to the common perception, grasslands can be erosive landscapes with SS yields from this catchment estimated to be between 0.54 and 1.21 t ha(-1) y(-1). In terms of on-site erosion problems, this rate of erosion does not significantly exceed the commonly used 'tolerable' threshold in the UK ( approximately 1 t ha(-1) y(-1)). In terms of off-site erosion problems, it is argued here that the conventional expression of SS yield as a bulk annual figure has little relevance to the water quality and ecological status of surface waters and therefore an alternative technique (the concentration-frequency curve) is developed within this paper for the specific purpose of assessing the ecological threat posed by the delivery of SS into surface waters. This technique illustrates that concentrations of SS recorded at the catchment outlet frequently exceed the water quality guidelines, such as those of the EU

  17. An interactive modelling tool for understanding hydrological processes in lowland catchments

    Science.gov (United States)

    Brauer, Claudia; Torfs, Paul; Uijlenhoet, Remko

    2016-04-01

    Recently, we developed the Wageningen Lowland Runoff Simulator (WALRUS), a rainfall-runoff model for catchments with shallow groundwater (Brauer et al., 2014ab). WALRUS explicitly simulates processes which are important in lowland catchments, such as feedbacks between saturated and unsaturated zone and between groundwater and surface water. WALRUS has a simple model structure and few parameters with physical connotations. Some default functions (which can be changed easily for research purposes) are implemented to facilitate application by practitioners and students. The effect of water management on hydrological variables can be simulated explicitly. The model description and applications are published in open access journals (Brauer et al, 2014). The open source code (provided as R package) and manual can be downloaded freely (www.github.com/ClaudiaBrauer/WALRUS). We organised a short course for Dutch water managers and consultants to become acquainted with WALRUS. We are now adapting this course as a stand-alone tutorial suitable for a varied, international audience. In addition, simple models can aid teachers to explain hydrological principles effectively. We used WALRUS to generate examples for simple interactive tools, which we will present at the EGU General Assembly. C.C. Brauer, A.J. Teuling, P.J.J.F. Torfs, R. Uijlenhoet (2014a): The Wageningen Lowland Runoff Simulator (WALRUS): a lumped rainfall-runoff model for catchments with shallow groundwater, Geosci. Model Dev., 7, 2313-2332. C.C. Brauer, P.J.J.F. Torfs, A.J. Teuling, R. Uijlenhoet (2014b): The Wageningen Lowland Runoff Simulator (WALRUS): application to the Hupsel Brook catchment and Cabauw polder, Hydrol. Earth Syst. Sci., 18, 4007-4028.

  18. Disease network of mental disorders in Korea.

    Science.gov (United States)

    Choi, Myoungje; Lee, Dong-Woo; Cho, Maeng Je; Park, Jee Eun; Gim, Minsook

    2015-12-01

    Network medicine considers networks among genes, diseases, and individuals. Networks of mental disorders remain poorly understood, despite their high comorbidity. In this study, a network of mental disorders in Korea was constructed to offer a complementary approach to treatment. Data on the prevalence and morbidity of mental disorders were obtained from the 2006 and 2011 Korean Epidemiologic Catchment Area Study, including 22 psychiatric disorders. Nodes in the network were disease phenotypes identified by Diagnostic and Statistical Manual of Mental Disorders-IV, and the links connected phenotypes showing significant comorbidity. Odds ratios were used to quantify the distance between disease pairs. Network centrality was analyzed with and without weighting of the links between disorders. Degree centrality was correlated with suicidal behaviors and use of mental health services. In 2011 and 2006, degree centrality was highest for major depressive disorder, followed by nicotine dependence and generalized anxiety disorder (2011) or alcohol dependence (2006). Weighted degree centrality was highest in conversion disorder in both years. Therefore, major depressive disorder and nicotine dependence are highly connected to other mental disorders in Korea, indicating their comorbidity and possibility of shared biological mechanisms. The use of networks could enhance the understanding of mental disorders to provide effective mental health services.

  19. Sediment yield estimation in mountain catchments of the Camastra reservoir, southern Italy: a comparison among different empirical methods

    Science.gov (United States)

    Lazzari, Maurizio; Danese, Maria; Gioia, Dario; Piccarreta, Marco

    2013-04-01

    Sedimentary budget estimation is an important topic for both scientific and social community, because it is crucial to understand both dynamics of orogenic belts and many practical problems, such as soil conservation and sediment accumulation in reservoir. Estimations of sediment yield or denudation rates in southern-central Italy are generally obtained by simple empirical relationships based on statistical regression between geomorphic parameters of the drainage network and the measured suspended sediment yield at the outlet of several drainage basins or through the use of models based on sediment delivery ratio or on soil loss equations. In this work, we perform a study of catchment dynamics and an estimation of sedimentary yield for several mountain catchments of the central-western sector of the Basilicata region, southern Italy. Sediment yield estimation has been obtained through both an indirect estimation of suspended sediment yield based on the Tu index (mean annual suspension sediment yield, Ciccacci et al., 1980) and the application of the Rusle (Renard et al., 1997) and the USPED (Mitasova et al., 1996) empirical methods. The preliminary results indicate a reliable difference between the RUSLE and USPED methods and the estimation based on the Tu index; a critical data analysis of results has been carried out considering also the present-day spatial distribution of erosion, transport and depositional processes in relation to the maps obtained from the application of those different empirical methods. The studied catchments drain an artificial reservoir (i.e. the Camastra dam), where a detailed evaluation of the amount of historical sediment storage has been collected. Sediment yield estimation obtained by means of the empirical methods have been compared and checked with historical data of sediment accumulation measured in the artificial reservoir of the Camastra dam. The validation of such estimations of sediment yield at the scale of large catchments

  20. Natural flood management in Southwell (Nottinghamshire, UK): an interdisciplinary approach in a rural-urban catchment

    Science.gov (United States)

    Wells, Josh; Labadz, Jillian; Islam, Mofa; Smith, Amanda; Disney, Andrew; Thorne, Colin

    2017-04-01

    The town of Southwell (Nottinghamshire, UK) is situated within a rural catchment and has experienced multiple flood events. In summer 2013 an extreme event occurred in which 107.6mm of rain fell within two hours, flooding up to 300 homes. As a result, a voluntary flood action group was established in the community (Southwell Flood Forum). An experimental natural flood management research project has been developed within the Potwell Dyke catchment (above Southwell). This has led to the creation of a catchment partnership of relevant stakeholders (academics, community, statutory bodies, local government and conservation organisations). Prior to intervention, water level monitoring was installed at five locations and flows were gauged for approximately one year. Rainfall data are available from the university weather station within the catchment. Ten large woody debris dams were installed on two of the streams within the catchment in summer 2016. In November, a stream restoration took place to reinstate historic meanders and create online storage in a previously ditched channel reach, together with the construction of five earth bunds in the corners of the fields. These interventions are designed to store and slow water whilst promoting ecological gains. The research takes an interdisciplinary approach. The aims are to assess the extent to which natural food management (NFM) can reduce fluvial flood occurrence but also identify and analyse current barriers to NFM uptake. Interviews with landowners in the catchment have taken place. Practitioners have also been interviewed in order to discuss the barriers to current uptake from an industry perspective. This study therefore not only addresses the evidence gap but also draws upon current barriers to advise future NFM projects. This paper will present preliminary findings from the hydrological monitoring and summarise barriers identified and lessons learned from stakeholder engagement activities.

  1. Estimating emissions of PFOS and PFOA to the Danube River catchment and evaluating them using a catchment-scale chemical transport and fate model

    International Nuclear Information System (INIS)

    Lindim, C.; Cousins, I.T.; Gils, J. van

    2015-01-01

    Novel approaches for estimating the emissions of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) to surface waters are explored. The Danube River catchment is used to investigate emissions contributing to riverine loads of PFOS and PFOA and to verify the accuracy of estimates using a catchment-scale dynamic fugacity-based chemical transport and fate model (STREAM-EU; Spatially and Temporally Resolved Exposure Assessment Model for European basins). Model accuracy evaluation performed by comparing STREAM-EU predicted concentrations and monitoring data for the Danube and its tributaries shows that the best estimates for PFOS and PFOA emissions in the Danube region are obtained by considering the combined contributions of human population, wealth (based on local gross domestic product (GDP)) and wastewater treatment. Human population alone cannot explain the levels of PFOS and PFOA found in the Danube catchment waters. Introducing wealth distribution information in the form of local GDPs improves emission estimates markedly, likely by better representing emissions resulting from consumer trends, industrial and commercial sources. For compounds such as PFOS and PFOA, whose main sink and transport media is the aquatic compartment, a major source to freshwater are wastewater treatment plants. Introducing wastewater treatment information in the emission estimations also further improves emission estimates. - Highlights: • Novel approaches for estimating PFOS/PFOA emissions to surface waters are explored. • Human population alone cannot explain the levels of PFOS/PFOA found in the Danube. • Best estimates are obtained when considering population, wealth and WWTP together.

  2. The role of groundwater in streamflow in a headwater catchment with sub-humid climate

    Science.gov (United States)

    Liu, Yaping; Tian, Fuqiang; Hu, Hongchang; Tie, Qiang

    2015-04-01

    Recent studies have suggested that bedrock groundwater can exert considerable influence on streamflow in headwater catchments under humid climate. However, study of the role of bedrock groundwater is still challenged due to limited direct observation data. In this study, by utilizing observed hydrometric and hydrochemical data, we aimed at characterize the bedrock groundwater's response to rainfall at hillslope and catchment scales in a small headwater catchment with sub-humid climate. We selected Xitaizi catchment with area of 6.7 km in the earth-rock mountain region, which located in the north of Beijing, China, as study area. The catchment bedrock is mainly consist of fractured granite. Four weather stations were installed to observe the weather condition and soil volumetric water content (VWC) at depth of 10-60 cm with 10-minute interval. Five wells with depth of 10 m were drilled in two slopes to monitor the bedrock water table by pneumatic water gauge. At slope 1, the soil VWC at depth of 10-80 cm were also observed by soil moisture sensors, and surface/subsurface hillslope runoff at three different layers (0-20cm, 20-80cm, 80-300cm) was observed by three recording buckets. Field works were conducted from July 2013 to November 2014. During the period, precipitation, river, spring and groundwater were sampled nearly monthly. Water temperature, electrical conductivity (EC) and pH were measured in site with portable instruments. In addition, the precipitation, river and groundwater were also sampled intensively during two storm events. All the samples were subjected to stable isotope analysis, the samples taken monthly during the period from July 2013 to July 2014 were subjected to hydrochemistry analysis. Our results show that: (1) the bedrock groundwater is the dominant component of streamflow in the headwater catchment with sub-humid climate; (2) stream is recharged by groundwater sourcing from different mountains with different hydrochemistry characteristics

  3. Regional lead isotope study of a polluted river catchment: River Wear, Northern England, UK

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, Thomas J., E-mail: shepherdtj@aol.com [Department of Earth Sciences, University of Durham, Science Laboratories, Durham DH1 3LE (United Kingdom); Chenery, Simon R.N. [British Geological Survey, Nicker Hill, Keyworth, Nottingham NG12 5GG (United Kingdom); Pashley, Vanessa [NERC Isotope Geosciences Laboratory, Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG (United Kingdom); Lord, Richard A. [School of Science and Technology, University of Teesside, Middlesbrough, Tees Valley TS1 3BA (United Kingdom); Ander, Louise E.; Breward, Neil; Hobbs, Susan F. [British Geological Survey, Nicker Hill, Keyworth, Nottingham NG12 5GG (United Kingdom); Horstwood, Matthew [NERC Isotope Geosciences Laboratory, Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG (United Kingdom); Klinck, Benjamin A. [British Geological Survey, Nicker Hill, Keyworth, Nottingham NG12 5GG (United Kingdom); Worrall, Fred [Department of Earth Sciences, University of Durham, Science Laboratories, Durham DH1 3LE (United Kingdom)

    2009-08-15

    High precision, lead isotope analyses of archived stream sediments from the River Wear catchment, northeast England (1986-88), provide evidence for three main sources of anthropogenic lead pollution; lead mining, industrial lead emissions and leaded petrol. In the upper catchment, pollution is totally controlled and dominated by large lead discharges from historic mining centres in the North Pennine Orefield ({sup 208}Pb/{sup 206}Pb, {sup 207}Pb/{sup 206}Pb ratios range from 2.0744-2.0954 and 0.8413-0.8554 respectively). In the lower catchment, co-extensive with the Durham Coalfield and areas of high population density, pollution levels are lower and regionally more uniform. Isotope ratios are systematically higher than in the upper catchment ({sup 208}Pb/{sup 206}Pb, {sup 207}Pb/{sup 206}Pb ratios range from 2.0856-2.1397 and 0.8554-0.8896 respectively) and far exceed values determined for the geogenic regional background. Here, the pollution is characterised by the atmospheric deposition of industrial lead and petrol lead. Lead derived from the combustion of coal, although present, is masked by the other two sources. Recent sediments from the main channel of the River Wear are isotopically indistinguishable from older, low order stream sediments of the North Pennine Orefield, indicating that contamination of the river by lead mining waste (up to several 1000 mg/kg Pb at some locations) continues to pose an environmental problem; a pattern that can be traced all the way to the tidal reach. Using within-catchment isotope variation and sediment lead concentrations, estimates can be made of the discharges from discrete mines or groups of mines to the overall level of lead pollution in the River Wear. As well as providing information pertinent to source apportionment and on-going catchment remediation measures, the database is a valuable resource for epidemiologists concerned with the health risks posed by environmental lead.

  4. Effectiveness of hydrological forest restoration projects on soil erosion control in Mediterranean catchment

    International Nuclear Information System (INIS)

    Castillo, V. M.; Boix Fayos, C.; Vente, J. de; Martinez-Mena, M.; Barbera, G. G.

    2009-01-01

    Extensive land use changes have occurred in many Mediterranean catchments as a result of reforestation and the abandonment of agricultural activities. Besides this, the establishment of check-dams has been promoted to reduce soil erosion and sediment transport. In this study a combination of field work, mapping and modelling was used to test influence of land use scenarios with and without sediment control structures on sediment yield at catchment scale. Model simulation shows that in a scenario without check-dams, the land used changes between 1956 and 1997 caused a progressive decrease in sediment yield of 54%. In a scenario without land use changes but with check-dams, about 77% of the sediment yield was retained behind the dams. Both land use changes and check-dams are effective measures decreasing sediment yield in catchment, however they act at very different temporal scales. (Author) 5 refs.

  5. Spatial patterns of stream temperatures and electric conductivity in a mesoscale catchment

    Science.gov (United States)

    Lieder, Ernestine; Weiler, Markus; Blume, Theresa

    2017-04-01

    Stream temperature and electric conductivity (EC) are both relatively easily measured and can provide valuable information on runoff generation processes and catchment storage.This study investigates the spatial variability of stream temperature and EC in a mesoscale basin. We focus on the mesoscale (sub-catchments and reach scale), and long term (seasonal / annual) stream temperature and EC patterns. Our study basin is the Attert catchment in Luxembourg (288km2), which contains multiple sub-catchments of different geology, topography and land use patterns. We installed 90 stream temperature and EC sensors at sites across the basin in summer 2015. The collected data is complemented by land use and discharge data and an extensive climate data set. Thermal sensitivity was calculated as the slope of daily air temperature-water-temperature regression line and describes the sensitivity of stream temperature to long term environmental change. Amplitude sensitivity was calculated as slope of the daily air and water temperature amplitude regression and describes the short term warming capacity of the stream. We found that groups with similar long term thermal and EC patterns are strongly related to different geological units. The sandstone reaches show the coldest temperatures and lowest annual thermal sensitivity to air temperature. The slate reaches are characterized by comparably low EC and high daily temperature amplitudes and amplitude sensitivity. Furthermore, mean annual temperatures and thermal sensitivities increase exponentially with drainage area, which can be attributed to the accumulation of heat throughout the system. On the reach scale, daily stream temperature fluctuations or sensitivities were strongly influenced by land cover distribution, stream shading and runoff volume. Daily thermal sensitivities were low for headwater streams; peaked for intermediate reaches in the middle of the catchment and then decreased again further downstream with increasing

  6. Mitigating Agricultural Diffuse Pollution: Learning from The River Eden Demonstration Test Catchment Experiments

    Science.gov (United States)

    Reaney, S. M.; Barker, P. A.; Haygarth, P.; Quinn, P. F.; Aftab, A.; Barber, N.; Burke, S.; Cleasby, W.; Jonczyk, J. C.; Owen, G. J.; Perks, M. T.; Snell, M. A.; Surridge, B.

    2016-12-01

    Freshwater systems continue to fail to achieve their ecological potential and provide associated ecological services due to poor water quality. A key driver of the failure to achieve good status under the EU Water Framework Directive derives from non-point (diffuse) pollution of sediment, phosphorus and nitrogen from agricultural landscapes. While many mitigation options exist, a framework is lacking which provides a holistic understanding of the impact of mitigation scheme design on catchment function and agronomics. The River Eden Demonstration Test Catchment project (2009-2017) in NW England uses an interdisciplinary approach including catchment hydrology, sediment-nutrient fluxes and farmer attitudes, to understand ecological function and diffuse pollution mitigation feature performance. Water flow (both surface and groundwater) and quality monitoring focused on three ca. 10km2 catchments with N and P measurements every 30 minutes. Ecological status was determined by monthly diatom community analysis and supplemented by macrophyte, macroinvertebrate and fish surveys. Changes in erosion potential and hydrological connectivity were monitored using extensive Landsat images and detailed UAV monitoring. Simulation modelling work utilised hydrological simulation models (CRAFT, CRUM3 and HBV-Light) and SCIMAP based risk mapping. Farmer behaviour and attitudes have been assessed with surveys, interviews and diaries. A suite of mitigation features have been installed including changes to land management - e.g. aeriation, storage features within a `treatment train', riparian fencing and woodland creation. A detailed dataset of the integrated catchment hydrological, water quality and ecological behaviour over multiple years, including a drought period and an extreme rainfall event, highlights the interaction between ecology, hydrological and nutrient dynamics that are driven by sediment and nutrients exported within a small number of high magnitude storm events. Hence

  7. Manganese Biogeochemistry in a Central Czech Republic Catchment

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Tomáš; Shanley, J. B.; Krám, P.; Mihaljevič, M.; Drahota, Petr

    2007-01-01

    Roč. 186, 1-4 (2007), s. 149-165 ISSN 0049-6979 R&D Projects: GA ČR GA205/04/0060 Institutional research plan: CEZ:AV0Z30130516 Keywords : manganese * catchment * weathering * biogeochemistry * biotite weathering * forest ecosystem * mass balance Subject RIV: DD - Geochemistry Impact factor: 1.224, year: 2007

  8. What is the Source? Post-glacial sediment flux from the Waipaoa Catchment, New Zealand

    Science.gov (United States)

    Bilderback, E. L.; Pettinga, J. R.; Litchfield, N. J.; Quigley, M.; Marden, M.

    2011-12-01

    In the Waipaoa, and for much of the eastern North Island, the shift from the last glacial coldest period to the current interglacial climatic regime resulted in Late Pleistocene-Holocene catchment-wide channel incision (Berryman et al., 2000; Litchfield and Berryman, 2005). Only ~25% of the total post 18 ka sediment yield for the Waipaoa Catchment can be accounted for by channel incision, one of the most widespread and most effective erosive processes in the catchment (Orpin et al., 2006; Marden et al., 2008). We find that deep-seated landslides, which are pervasive, cannot make up this apparent source area sediment deficit. This presents a challenge to our current understanding of the Waipaoa Sedimentary System. New high resolution topographic data sets (lidar and photogrammetry) combined with tephrochronology and field mapping have enabled us to approximate the sediment flux from post 18 ka deep-seated landslides. The sediment delivered to the offshore sink from these upper Waipaoa landslides is likely to be less than 20% of the sediment volume calculated for channel incision. A further GIS analysis of the ~2500 km2 Waipaoa catchment using work from Crosby and Whipple (2006) delineating relict topography and Marden et al. (2008) accounting for river incision and slopes stabilized behind terrace remnants indicates that only about half of the available catchment area could have contributed additional large volumes of sediment to the offshore post 18 ka sink. The presence of tephra cover older than 18 ka on landforms ranging from flat ridgelines to steep (>30 degree) slopes in this remaining terrestrial source area suggests that it has not been eroded en mass. The apparent source deficit remains even though many of the major erosive processes available to fill this deficit have been studied and the potentially contributing catchment area is dramatically reduced by these studies. This analysis raises questions about erosive processes and our ability to balance large

  9. Computer system for catchment management: background, concepts and development

    CSIR Research Space (South Africa)

    Le Maitre, David C

    1993-01-01

    Full Text Available Managers of natural areas require a wide variety of up-to-date and accurate information and maps to manage their lands effectively. This paper reviews the objectives of conservation management, and the problems faced by mountain catchment managers...

  10. Importance of including small-scale tile drain discharge in the calibration of a coupled groundwater-surface water catchment model

    DEFF Research Database (Denmark)

    Hansen, Anne Lausten; Refsgaard, Jens Christian; Christensen, Britt Stenhøj Baun

    2013-01-01

    the catchment. In this study, a coupled groundwater-surface water model based on the MIKE SHE code was developed for the 4.7 km2 Lillebæk catchment in Denmark, where tile drain flow is a major contributor to the stream discharge. The catchment model was calibrated in several steps by incrementally including...... the observation data into the calibration to see the effect on model performance of including diverse data types, especially tile drain discharge. For the Lillebæk catchment, measurements of hydraulic head, daily stream discharge, and daily tile drain discharge from five small (1–4 ha) drainage areas exist....... The results showed that including tile drain data in the calibration of the catchment model improved its general performance for hydraulic heads and stream discharges. However, the model failed to correctly describe the local-scale dynamics of the tile drain discharges, and, furthermore, including the drain...

  11. The constructed catchment Chicken Creek as Critical Zone Observatory under transition

    Science.gov (United States)

    Gerwin, Werner; Schaaf, Wolfgang; Elmer, Michael; Hinz, Christoph

    2014-05-01

    The constructed catchment Chicken Creek was established in 2005 as an experimental landscape laboratory for ecosystem research. The 6 ha area with clearly defined horizontal as well as vertical boundary conditions was left for an unrestricted primary succession. All Critical Zone elements are represented at this site, which allows the study of most processes occurring at the interface of bio-, pedo-, geo- and hydrosphere. It provides outstanding opportunities for investigating interactions and feedbacks between different evolving compartments during ecosystem development. The catchment is extensively instrumented since 2005 in order to detect transition stages of the ecosystem. Data recorded with a high spatial and temporal resolution include hydrological, geomorphological, pedological, limnological as well as biological parameters. In contrast to other Critical Zone Observatories, this site offers the unique situation of an early stage ecosystem with highly dynamic system properties. The first years of development were characterized by a fast formation of geomorphological structures due to massive erosion processes at the initially non-vegetated surface. Hydrological processes led to the establishment of a local groundwater body within 5 years. In the following years the influence of biological structures like vegetation patterns gained an increasing importance. Feedbacks between developing vegetation and e.g. hydrological features became more and more dominant. As a result, different phases of ecosystem development could be distinguished until now. This observatory offers manifold possibilities to identify and disentangle complex interactions between Critical Zone processes in situ under natural conditions. The originally low complexity of the system is growing with time facilitating the identification of influences of newly developing structures on system functions. Thus, it is possible to study effects of small-scale processes on the whole system at the

  12. Prediction of dissolved reactive phosphorus losses from small agricultural catchments: calibration and validation of a parsimonious model

    Directory of Open Access Journals (Sweden)

    C. Hahn

    2013-10-01

    Full Text Available Eutrophication of surface waters due to diffuse phosphorus (P losses continues to be a severe water quality problem worldwide, causing the loss of ecosystem functions of the respective water bodies. Phosphorus in runoff often originates from a small fraction of a catchment only. Targeting mitigation measures to these critical source areas (CSAs is expected to be most efficient and cost-effective, but requires suitable tools. Here we investigated the capability of the parsimonious Rainfall-Runoff-Phosphorus (RRP model to identify CSAs in grassland-dominated catchments based on readily available soil and topographic data. After simultaneous calibration on runoff data from four small hilly catchments on the Swiss Plateau, the model was validated on a different catchment in the same region without further calibration. The RRP model adequately simulated the discharge and dissolved reactive P (DRP export from the validation catchment. Sensitivity analysis showed that the model predictions were robust with respect to the classification of soils into "poorly drained" and "well drained", based on the available soil map. Comparing spatial hydrological model predictions with field data from the validation catchment provided further evidence that the assumptions underlying the model are valid and that the model adequately accounts for the dominant P export processes in the target region. Thus, the parsimonious RRP model is a valuable tool that can be used to determine CSAs. Despite the considerable predictive uncertainty regarding the spatial extent of CSAs, the RRP can provide guidance for the implementation of mitigation measures. The model helps to identify those parts of a catchment where high DRP losses are expected or can be excluded with high confidence. Legacy P was predicted to be the dominant source for DRP losses and thus, in combination with hydrologic active areas, a high risk for water quality.

  13. Improving catchment discharge predictions by inferring flow route contributions from a nested-scale monitoring and model setup

    Directory of Open Access Journals (Sweden)

    Y. van der Velde

    2011-03-01

    Full Text Available Identifying effective measures to reduce nutrient loads of headwaters in lowland catchments requires a thorough understanding of flow routes of water and nutrients. In this paper we assess the value of nested-scale discharge and groundwater level measurements for the estimation of flow route volumes and for predictions of catchment discharge. In order to relate field-site measurements to the catchment-scale an upscaling approach is introduced that assumes that scale differences in flow route fluxes originate from differences in the relationship between groundwater storage and the spatial structure of the groundwater table. This relationship is characterized by the Groundwater Depth Distribution (GDD curve that relates spatial variation in groundwater depths to the average groundwater depth. The GDD-curve was measured for a single field site (0.009 km2 and simple process descriptions were applied to relate groundwater levels to flow route discharges. This parsimonious model could accurately describe observed storage, tube drain discharge, overland flow and groundwater flow simultaneously with Nash-Sutcliff coefficients exceeding 0.8. A probabilistic Monte Carlo approach was applied to upscale field-site measurements to catchment scales by inferring scale-specific GDD-curves from the hydrographs of two nested catchments (0.4 and 6.5 km2. The estimated contribution of tube drain effluent (a dominant source for nitrates decreased with increasing scale from 76–79% at the field-site to 34–61% and 25–50% for both catchment scales. These results were validated by demonstrating that a model conditioned on nested-scale measurements improves simulations of nitrate loads and predictions of extreme discharges during validation periods compared to a model that was conditioned on catchment discharge only.

  14. Temporal distribution of sediment yield from catchments covered by different pine plantation areas

    Directory of Open Access Journals (Sweden)

    Tyas Mutiara Basuki

    2018-04-01

    Full Text Available Soil erosion and sedimentation are environmental problems faced by tropical countries. Many researches on soil erosion-sedimentation have been conducted with various results. Quantifying soil erosion-sedimentation and its temporal distribution are important for watershed management. Therefore, a study with the objective to quantify the amount of suspended sediment from catchments under various pine plantation areas was conducted. The research was undertaken during 2010 to 2017 in seven catchments with various percentage of pine coverage in Kebumen Regency, Central Java Province. The rainfall data were collected from two rainfall stations. A tide gauge was installed at the outlet of each catchment to monitor stream water level. The water samples for every stream water level increment were analyzed to obtain sediment concentration. The results showed that monthly suspended sediment of the catchments was high in January to April and October to December, and low in May to September. The annual suspended sediment fluctuated during the study period. Non-linear correlations were observed between suspended sediment and rainfall as well as suspended sediment and percentage pine areas. The line trend between suspended sediment and percentage of pine areas showed that the increase in pine areas decreased suspended sediment, with the slope of the graph is sharp at the percentage of pine areas from 8% to 40%, then is gentle for pine plantation areas more than 40%.

  15. Assessment of Climate Change Impacts on Water Resources in Three Representative Ukrainian Catchments Using Eco-Hydrological Modelling

    Directory of Open Access Journals (Sweden)

    Iulii Didovets

    2017-03-01

    Full Text Available The information about climate change impact on river discharge is vitally important for planning adaptation measures. The future changes can affect different water-related sectors. The main goal of this study was to investigate the potential water resource changes in Ukraine, focusing on three mesoscale river catchments (Teteriv, Upper Western Bug, and Samara characteristic for different geographical zones. The catchment scale watershed model—Soil and Water Integrated Model (SWIM—was setup, calibrated, and validated for the three catchments under consideration. A set of seven GCM-RCM (General Circulation Model-Regional Climate Model coupled climate scenarios corresponding to RCPs (Representative Concentration Pathways 4.5 and 8.5 were used to drive the hydrological catchment model. The climate projections, used in the study, were considered as three combinations of low, intermediate, and high end scenarios. Our results indicate the shifts in the seasonal distribution of runoff in all three catchments. The spring high flow occurs earlier as a result of temperature increases and earlier snowmelt. The fairly robust trend is an increase in river discharge in the winter season, and most of the scenarios show a potential decrease in river discharge in the spring.

  16. Integrating Environmental and Socio-Economic Indicators of a Linked Catchment-Coastal System Using Variable Environmental Intensity

    Science.gov (United States)

    Dymond, John R.; Davie, Tim J. A.; Fenemor, Andrew D.; Ekanayake, Jagath C.; Knight, Ben R.; Cole, Anthony O.; de Oca Munguia, Oscar Montes; Allen, Will J.; Young, Roger G.; Basher, Les R.; Dresser, Marc; Batstone, Chris J.

    2010-09-01

    Can we develop land use policy that balances the conflicting views of stakeholders in a catchment while moving toward long term sustainability? Adaptive management provides a strategy for this whereby measures of catchment performance are compared against performance goals in order to progressively improve policy. However, the feedback loop of adaptive management is often slow and irreversible impacts may result before policy has been adapted. In contrast, integrated modelling of future land use policy provides rapid feedback and potentially improves the chance of avoiding unwanted collapse events. Replacing measures of catchment performance with modelled catchment performance has usually required the dynamic linking of many models, both biophysical and socio-economic—and this requires much effort in software development. As an alternative, we propose the use of variable environmental intensity (defined as the ratio of environmental impact over economic output) in a loose coupling of models to provide a sufficient level of integration while avoiding significant effort required for software development. This model construct was applied to the Motueka Catchment of New Zealand where several biophysical (riverine water quantity, sediment, E. coli faecal bacteria, trout numbers, nitrogen transport, marine productivity) models, a socio-economic (gross output, gross margin, job numbers) model, and an agent-based model were linked. An extreme set of land use scenarios (historic, present, and intensive) were applied to this modelling framework. Results suggest that the catchment is presently in a near optimal land use configuration that is unlikely to benefit from further intensification. This would quickly put stress on water quantity (at low flow) and water quality ( E. coli). To date, this model evaluation is based on a theoretical test that explores the logical implications of intensification at an unlikely extreme in order to assess the implications of likely growth

  17. Afforestation, seasalt episodes and acidification - A paired catchment study in western Norway

    International Nuclear Information System (INIS)

    Larssen, Thorjorn; Holme, Jorun

    2006-01-01

    As acid deposition has declined during the past 15-20 years in western Norway, afforestation and episodic seasalt deposition have become factors of increasing importance in explaining the mobilization of toxic aluminum (Al n+ ) to rivers and lakes. We conducted a paired catchment at four sites in western Norway across a gradient in acid deposition to evaluate the importance of afforestation and seasalt episodes. Streamwater was sampled intensively before, during and after seasalt episodes over a three-year period. A seasalt episode in January 2003 caused considerable impact on the streamwater chemistry. pH dropped and concentrations of Al n+ increased due to cation exchange of Na + ions for H + and Al n+ in the soil. The response was larger in streams draining the catchments which receive high acid deposition and in those afforested with spruce as compared with adjacent catchments in native birch. The results indicate that acid pulses induced by episodic inputs of seasalts are exacerbated by land use change from native birch to planted spruce. - Seasalt episodes cause higher mobilization of toxic aluminum in sites afforested with spruce

  18. Flood routing in ungauged catchments using Muskingum methods ...

    African Journals Online (AJOL)

    Flood-routing techniques are utilised to estimate the stages, or rates of flow, in order to predict flood wave propagation along river reaches. Models can be developed for gauged catchments and their parameters related to physical characteristics such as slope, reach width, reach length so that the approach can be applied ...

  19. Fish Assemblage Patterns as a Tool to Aid Conservation in the Olifants River Catchment (East), South Africa

    Science.gov (United States)

    South Africa has committed to address freshwater conservation at the catchment scale, using a combination of landscape-level and species-level features as surrogates of freshwater biodiversity. Here we examined fishes in the Olifants catchment, where multiple anthropogenic pressu...

  20. Sediment fingerprinting in agricultural catchments: A critical re-examination of source discrimination and data corrections

    Science.gov (United States)

    Smith, Hugh G.; Blake, William H.

    2014-01-01

    Fine sediment source fingerprinting techniques have been widely applied in agricultural river catchments. Successful source discrimination in agricultural environments depends on the key assumption that land-use source signatures imprinted on catchment soils are decipherable from those due to other landscape factors affecting soil and sediment properties. In this study, we re-examine this critical assumption by investigating (i) the physical and chemical basis for source discrimination and (ii) potential factors that may confound source un-mixing in agricultural catchments, including particle size and organic matter effects on tracer properties. The study is situated in the River Tamar, a predominantly agricultural catchment (920 km2) in south-west England that has also been affected by mining. Source discrimination focused on pasture and cultivated land uses and channel banks. Monthly, time-integrated suspended sediment samples were collected across seven catchments for a 12-month period. Physical and chemical properties measured in source soils and sediment included fallout radionuclides (137Cs, excess 210Pb), major and minor element geochemical constituents, total organic carbon and particle size. Source discrimination was entirely dependent on differences in tracer property concentrations between surface and sub-surface soils. This is based on fallout radionuclide concentrations that are surface-elevated, while many geochemical properties are surface-depleted due to weathering and pedogenetic effects, although surface soil contamination can reverse this trend. However, source discrimination in the study catchments was limited by (i) rotation of cultivated and pasture fields resulting in reduced differences between these two sources, and (ii) the cultivated source signature resembling a mix of the pasture and channel bank sources for many tracer properties. Furthermore, a combination of metal pollution from abandoned historic mines and organic enrichment of