WorldWideScience

Sample records for eurochemic

  1. Eurochemic: failure or instance

    International Nuclear Information System (INIS)

    Busekist, O. von

    1982-01-01

    In this article, the author draws up a balance sheet of twenty-three years of good and bad luck of the European venture Eurochemic. It turns out that an important number of errors of judgement are the source of the present difficult situation of the European market for the nuclear reprocessing. (AF)

  2. Eurochemic and the law of the host country

    International Nuclear Information System (INIS)

    Busekist, O. von

    1984-01-01

    The problematics of the convention on the constitution of Eurochemic and the statute of the Company, the commercial law, the fiscal regime, the language problem as well as the labour relations are discussed. (AF)

  3. History of the ''EUROCHEMIC'' society (1956-1990)

    International Nuclear Information System (INIS)

    Wolff, J.M.

    1996-01-01

    'EUROCHEM' society was the first common company of the European Agency for Nuclear Energy, created in 1957 by 13 european governments for the international development in the field of nuclear power reactors fuel reprocessing for extraction of residual uranium and plutonium. This book presents its research and development programs in fuel retreatment and radioactive wastes management, with european and international cooperations and also with realizations. (A.B.). 185 figs. and tabs

  4. Status of the decommissioning program of the Eurochemic reprocessing plant

    International Nuclear Information System (INIS)

    Detilleux, E.J.

    1976-01-01

    Reprocessing operations at the Eurochemic demonstration plant stopped in December 1974, after 8 years of operation. Immediately thereafter, cleaning and decontamination were begun as the first phase of the decommissioning program. The facility and reprocessing program are described to indicate the magnitude of the problem, and the requirements of the local authorities are reviewed. The technical decommissioning program consists of several phases: (1) plant cleaning and rinsing, (2) establishment of the final fissile-material balance, (3) plant decontamination for access to process equipment, (4) equipment dismantling, and (5) conditioning and storage of newly generated wastes. The two first phases have been completed, and the third one is nearing completion. Some dismantling has been performed, including the plutonium dioxide production unit. Waste-conditioning and surface-storage facilities have been built to meet the dismantling requirements. Since reprocessing may be resumed in the future, decontamination has been performed with ''smooth'' reagents to limit corrosion and dismantling has been limited to subfacilities

  5. Eurochemic reprocessing plant decommissioning. Decontamination of contaminated metal

    International Nuclear Information System (INIS)

    Walthery, R.; Teunckens, L.; Lewandowski, P.

    1998-01-01

    When decommissioning nuclear installations, large quantifies of metal components are produced as well as significant amounts of other radioactive materials, which mostly show low surface contamination. Having been used or having been brought for a while in a controlled area, marks them as 'suspected material'. In view of the very high costs for radioactive waste processing and disposal, alternatives have been considered, and much effort has been spent in recycling through decontamination, melting and unconditional release of metals. In a broader context, recycling of materials can be considered as a first order ecological priority to limit the quantities of radioactive wastes to be disposed of, to reduce the technical and economic problems involved with the management of radioactive wastes, and to make economic use of primary material and conserve natural resources of basic material for future generations. Other evaluations as the environmental impact of recycling compared to non recycling (mining or production of new material) and waste treatment, with the associated risks involved, can also be considered, as well as social and political impacts of recycling. This document gives an overview of the current practices in recycling of materials at the decommissioning of the Eurochemic reprocessing plant in Dessel, Belgium. It deals with the decontamination and measurement techniques in use, and considers related technical and economic aspects and constraints. (author)

  6. Progress and experiences from the decommissioning of the Eurochemic reprocessing plant

    International Nuclear Information System (INIS)

    Gills, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R.

    2007-01-01

    Belgoprocess started the industrial decommissioning of the main process building of the former EUROCHEMIC reprocessing plant in 1990, after completion of a pilot project in which two buildings were emptied and decontaminated to background levels. The remaining structures were demolished and the concrete debris was disposed of as industrial waste and green field conditions restored. The Eurochemic reprocessing plant operated from 1966 to 1974 to process fuel from power reactors and research reactors. The main building is a large concrete structure, comprising a surface area of 55,000 m 2 , concrete volume 12,500 m 3 , and 1,500 Mg of metal components. The building is divided into multiple cells. About 106 individual cell structures have to be dismantled, involving the removal and decontamination of equipment from each cell, the decontamination of the cell walls, ceilings and floors, the dismantling of the ventilation system. Most of the work involves hands-on operations under protective clothing tailored to each specific task. Tool automation and automatic positioning systems are successfully applied. In view of the final demolition of the main process building, the main process building is divided into three parts - each part is isolated from the others. In the middle of 2008, after the removal of the NDA-IPAN/GEA installation, the eastern part will be demolished. The paper presents a status overview of the decommissioning and decontamination activities at the main process building of the former Eurochemic reprocessing plant on the nuclear site of Dessel in Belgium. The specific BELGOPROCESS approach will be highlighted, in which the decommissioning activities are carried out on an industrial scale with special emphasis on cost minimisation, the use of technology on an industrial representative scale and the specific alpha contamination of equipment and building surfaces, requiring that the decommissioning work is done with adequate protective clothing. Also

  7. Progress and experiences from the decommissioning of the Eurochemic reprocessing plant - 16022

    International Nuclear Information System (INIS)

    Walthery, Robert; Lewandowski, Patrick; Ooms, Bart; Reusen, Nancy; Van Laer, Wim

    2009-01-01

    Belgoprocess started the industrial decommissioning of the main process building of the former EUROCHEMIC reprocessing plant in 1990, after completion of a pilot project in which two buildings were emptied and decontaminated to background levels. The remaining structures were demolished and the concrete debris was disposed of as industrial waste and green field conditions restored. The Eurochemic reprocessing plant operated from 1966 to 1974 to process fuel from power reactors and research reactors. The main building is a large concrete structure, comprising a surface area of 55,000 m 2 , concrete volume 12,500 m 3 , and 1,500 Mg of metal components. The building is divided into multiple cells. About 106 individual cell structures have to be dismantled, involving the removal and decontamination of equipment from each cell, the decontamination of the cell walls, ceilings and floors, the dismantling of the ventilation system. Most of the work involves hands-on operations under protective clothing tailored to each specific task. Tool automation and automatic positioning systems are successfully applied. In view of the final demolition of the main process building, the main process building has been divided into three parts - each part is isolated from the others. In September 2008 the eastern part of the building has been demolished. The paper presents a status overview of the decommissioning and decontamination activities at the main process building of the former Eurochemic reprocessing plant on the nuclear site of Dessel in Belgium. The specific BELGOPROCESS strategy will be highlighted, in which the decommissioning activities are carried out on an industrial scale with special emphasis on cost minimisation, the use of technology on an industrial representative scale and the specific alpha contamination of equipment and building surfaces, requiring that the decommissioning work is done with adequate protective clothing. Also specific breathing and cooling air

  8. Progress and experiences from the decommissioning of the eurochemic reprocessing plant

    International Nuclear Information System (INIS)

    Gillis, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R.

    2008-01-01

    The Eurochemic reprocessing facility at Dessel in Belgium, was constructed from 1960 to 1966. After shutdown, the plant was decontaminated from 1975 to 1979 to keep safe standby conditions at reasonable cost. When it was decided in 1986 not to resume reprocessing in Belgium, the main Belgoprocess activities changed to processing and storage of radioactive waste and to decontamination and decommissioning of obsolete nuclear facilities. The industrial decommissioning was started in 1990. This document presents the project: overview of decommissioning activities and equipment used, automation in decontamination, ensuring health and safety during the operations, release of decontaminated materials, current situation of the decommissioning activities and quality assurance program. (A.L.B.)

  9. Operational experience of gaseous effluent treatment at the Eurochemic reprocessing plant

    International Nuclear Information System (INIS)

    Osipenco, A.; Detilleux, E.

    1977-01-01

    The EUROCHEMIC fuel reprocessing plant applies the PUREX flow sheet. Two particular features of the plant influence gaseous and liquid effluents: chemical decanning and the ability to process a wide range of fuels, uranium metal or oxide, having an initial enrichment typical of power reactors (up to 5%) or material testing reactors (up to 93%). The ventilation circuits, treatment plant and monitoring equipment for gaseous releases are briefly described. No retention facilities for rare gases, tritium, or carbon-14 are provided. The releases are monitored for krypton-85, iodine-131, alpha and beta-gamma aerosols and tritium. Between 1966 and 1974 the plant processes about 200 tonnes of power reactor fuel, from which about 0.7 tonnes of plutonium and 1.5 tonnes of highly enriched uranium were separated. The most important points in the operation of the gas cleaning equipment are indicated: efficiency, operational reliability, incidents, etc.. Actual discharges as measured are compared with the limits set in the operation licence. Using the atmospheric diffusion coefficients, the dose commitment is estimated. The low level liquid effluents are passed, after neutralization, to the treatment plant of the Belgian nuclear center CEN/SCK. However, if the activity exceeds the limit set by the CEN/SCK, the effluents are concentrated by evaporation and stored on the EUROCHEMIC site. (orig.) [de

  10. Occupational radiation exposure at the Eurochemic reprocessing plant during normal operation and intervention periods

    International Nuclear Information System (INIS)

    Osipenco, A.

    1980-01-01

    The Eurochemic reprocessing plant is a direct-maintenance, demonstration facility. From 1966 to 1974 it has processed about 180 tonnes of natural or low-enriched uranium, mainly as oxide, and about 30 tonnes of alloys of aluminium and highly enriched uranium. In this period, the operation was stopped for the time necessary to build and connect a new unit for the separation and purification of plutonium. As from 1975, all equipment was rinsed in order to put the plant in standby, some particular equipment was dismantled and a campaign of systematic decontamination was started. Simultaneously, the necessary steps were taken for the solidification and conditioning for storage or disposal of the wastes produced during the operation of the plant. The methods used to determine the individual doses due to external or internal irradiation are shortly described, as well as the rules set up for limiting these doses or for authorizing planned exposures. For the period 1966-1978 the paper shows the distribution of yearly individual and collective doses recorded for the permanent staff and for workers occupied for limited times. Correlations are shown between the absorbed doses and the nature of the work (normal operation, intervention, etc.) or the function in the enterprise (operation, maintenance, health physics, etc.). A small number of incidents leading to intakes or doses higher than normal did occur. However, experience has shown that careful planning and close collaboration between operational and health physics staff have resulted in keeping the doses within the authorized limits. (author)

  11. Decontamination and partial dismantling of the Eurochemic reprocessing plant. Lessons learnt with respect to health physics and waste management

    International Nuclear Information System (INIS)

    Osipenco, A.; Detilleux, E.; Ferrari, P.

    1980-01-01

    After nine years in use, the installations of the Eurochemic reprocessing plant were washed down and decontaminated to enable access to be gained to all the cells and some items of equipment, the reuse of which is not envisaged, and dismantled. The procedures followed to ensure the radiation protection of the workers and the means and results of individual dosimetry are described. Some suggestions, mainly covering the lay-out of the cells and the items of equipment, are made in order to reduce still more the doses incurred. The production and control of the liquid and solid waste resulting from the decontamination and dismantling illustrate the advantage of using very high pressure water jets on the one hand and a careful covering of the walls and floors on the other [fr

  12. The System for Controlling Source and Special Nuclear Material at the Eurochemic Reprocessing Plant; Systeme de Controle des Matieres Nucleaires Brutes et Speciales a l'Usine de Traitement D'Eurochemic; Sistema kontrolya nad iskhodnym i spetsial'nym yadernym materialom na zavode evrokhimicheskoj kompanii po regeneratsii yadernogo topliva; Control de Materiales Nucleares Basicos y de Materiales Fisionables Especiales en la Planta de Regeneracion de la Eurochemic

    Energy Technology Data Exchange (ETDEWEB)

    Frenzel, W.; Schueller, W. [EUROCHEMIC, MOL (Belgium)

    1966-02-15

    Eurochemic is constructing a reprocessing plant near Mol (Belgium). The main characteristics of the plant and the different process steps are summarized. To maintain proper control of source and special nuclear material, the facilities of the company are divided into material balance areas. All transfers into and out of these areas are determined. Depending on their significance for the overall material balance, different precision requirements have been established according to a scale of significance which is briefly discussed. To adjust the book balance, physical inventories are periodically performed. The corresponding inventory procedures are outlined. The books used for nuclear materials accounting and the principles of the accounting system are summarized. (author) [French] La societe Eurochemic fait actuellement construire une usine de traitement chimique pres de Mol (Belgique). L'auteur indique succinctement les principales caracteristiques de l'usine et les differentes etapes du traitement. Pour assurer un controle correct des matieres nucleaires brutes et speciales, les installations d'Eurochemic sont divisees en secteurs de mesures. Tous les transferts entre ces secteurs de mesure sont determines quantitativement. Les mesures sont faites avec des degres de precision differents qui ont ete fixes en fonction de leur importance pour le bilan matieres general; les auteurs examinent brievement les criteres appliques a cette fin. Pour verifier le bilan, on procede periodiquement a des inventaires materiels. La facon dont sont menes ces inventaires est exposee dans ses grandes lignes. Les auteurs indiquent les livres utilises pour la comptabilite des matieres nucleaires et resument les principes du systeme comptable. (author) [Spanish] La compania Eurochemic esta construyendo una planta de regeneracion en Mol (Belgica). Los autores resumen las principales caracteristicas de la instalacion, y las distintas fases del proceso industrial. Para mantener un control

  13. Decontamination and partial dismantling of the Eurochemic plant. Part 1

    International Nuclear Information System (INIS)

    Detilleux, E.; Geens, L.; Hild, W.; Klonk, W.

    1980-09-01

    A description is given of the partial dismantling of the dissolver used for fuel elements of up to 1.6 wt % 235 U enrichment, and of the total dismantling of the dissolver for highly enriched fuel elements. The corresponding head-end cells have been decontaminated, allowing prolonged interventions, either in view of refurbishing or complete dismantling. An assessment of required manpower, dose commitments, material consumption, and waste production for all operations is given. (author)

  14. Storage facility for solid medium level waste at Eurochemic

    International Nuclear Information System (INIS)

    Balseyro-Castro, M.

    1976-01-01

    An engineered surface storage facility is described; it will serve for the interim storage of solid and solidified medium-level waste resulting from the reprocessing of irradiated fuels. Up till now, two storage bunkers have been constructed. Each of them is 64 m long, 12 m wide and 8 m high and can take up to about 5,000 drums of 220 1 volume. The drums are stored in a vertical position and in four layers. The waste product drums are transported by a wagon to the entrance of the bunkers from where they are transferred in to the bunker by an overhead crane which is remotely controlled by high-frequency modulated laser beams. A closed-circuit camera is used to watch the handling operations. The waste stored is fully retrievable, either by means of an overhead crane of a lift-truck and can then be transported to an ultimate storage site

  15. The bituminization of intermediate level liquid radioactive wastes at Eurochemic. Part 3

    International Nuclear Information System (INIS)

    Demonie, M.; Hild, W.; Kokkelenberg, F.; Kretschmer, H.

    1980-10-01

    After 5.050 hours of operation, the screw elements of the extruder evaporator in the bituminization plant have been exchanged for elements with a higher abrasion resistance. The report describes the various working phases that have led, within ten weeks, to a successful accomplishment, and gives details on the required manpower, the total dose commitment, the wastes produced, and the wear of the extruder screw elements. (author)

  16. Status of ANSI standards on decommissioning of nuclear reprocessing facilities

    International Nuclear Information System (INIS)

    Graham, H.B.

    1975-01-01

    A definition of decommissioning is given, and the preparation of ANSI Standard, ''General Design Criteria for Nuclear Reprocessing Facilities'' (N101.3) is discussed. A Eurochemic report, entitled ''The Shutdown of Reprocessing Facilities--Results of Preliminary Studies on the Installations Belonging to Eurochemic,'' was used in the preparation of this standard. (U.S.)

  17. OECD Nuclear Energy Agency. 5 activity report. 1976

    International Nuclear Information System (INIS)

    1977-01-01

    The main activities of the Agency are reviewed: nuclear power trends; regulatory aspects of nuclear power; technical developments: Eurochemic, Halden, Dragon, food irradiation; gas-cooled fast reactors, isotopic batteries; nuclear data Centers

  18. OECD Nuclear Energy Agency. 3. Activity report, 1974

    International Nuclear Information System (INIS)

    1975-01-01

    The main activities of the Agency are reviewed: study of nuclear power trends; regulatory aspects of nuclear power; technical developments: Eurochemic, Halden, Dragon, food irradiation, gas-cooled fast reactors, direct conversion, isotopic batteries; nuclear energy information

  19. International cooperation in the field of reprocessing

    International Nuclear Information System (INIS)

    Busekist, O. von

    1983-01-01

    Following a definition of the concept of international cooperation, this paper discusses existing and possible legal and institutional arrangements in the reprocessing field, with particular reference to the legal framework set up for the European Company for the Chemical Processing of Irradiated Fuels (Eurochemic). (NEA) [fr

  20. Activity report 1983

    International Nuclear Information System (INIS)

    Delande, E.; Drent, W.

    1984-07-01

    The reports presents an account of the activities of the Eurochemic Company for the chemical processing of irradiated fuels, in the fiscal year l982. It deals with legal and administrative matters, industrial development, plant operation, new works, health and safety, library and documentation, and conferences and symposia. (AF)

  1. The acid digestion process for radioactive waste: The radioactive waste management series. Volume II

    International Nuclear Information System (INIS)

    Cecille, L.; Simon, R.

    1983-01-01

    This volume focuses on the acid digestion process for the treatment of alpha combustible solid waste by presenting detailed performance figures for the principal sub-assemblies of the Alona pilot plant, Belgium. Experience gained from the operation of the US RADTU plant, the only other acid digestion pilot plant, is also summarized, and the performances of these two plants compared. In addition, the research and development programmes carried out or supported by the Commission of the European Communities are reviewed, and details of an alternative to acid digestion for waste contamination described. Topics considered include review of the treatment of actinides-bearing radioactive wastes; alpha waste arisings in fuel fabrication; Alona Demonstration Facility for the acid digestion process at Eurochemic Mol (Belgium); the treatment of alpha waste at Eurochemic by acid digestion-feed pretreatment and plutonium recovery; US experience with acid digestion of combustible transuranic waste; and The European Communities R and D actions on alpha waste

  2. Activity report 1979

    International Nuclear Information System (INIS)

    Delande, E.; Drent, W.

    1980-07-01

    The activites of the Eurochemic (European Company for the Chemical Processing of Irradiated Fuels) at Mol is summarized under the following headings: the decontamination and intervention in the Fuel Reception and Storage Building, the active operation of the bituminization facility, the construction of two additional storage bunkers, the full active operation of the section for the handling of solid waste and the construction of various units for the conditioning of organic liquid waste and plutonium hearing solid wastes. (AF)

  3. Activity report 1980

    International Nuclear Information System (INIS)

    Drent, W.; Delande, E.

    1981-07-01

    The EUROCHEMIC Company's activity report for fiscal year 1980 covers the following topics: administrative and commercial matters; personnel; cleaning and decontamination works in the reprocessing plant; operation of the bituminization facility; active treatment of the spent solvent in the Eurowatt facility; operation of the waste sorting and shredding unit, preparing the plutonium contaminated solid wastes for conditioning and recovery of plutonium; radiation protection and library and documentation. (AF)

  4. Nuclear material inventory estimation in solvent extraction contactors III. Final report for the period 1 January 1988 - 28 February 1989

    International Nuclear Information System (INIS)

    Beyerlein, A.L.; Geldard, J.F.

    1989-03-01

    Simple mathematical models have been developed for estimating the nuclear material inventory in the solvent extraction contactors of nuclear fuel reprocessing facilities from measured nuclear material concentrations in the tanks feeding the purification cycles. The report describes the models and their application to the Eurochemic Reprocessing Plant in Belgium, and the development of a computer simulation program, PUPART, for investigating the effects of process variation as well as measurement error on near-real-time accounting methods. Figs and tabs

  5. Definition of a dismantling project

    International Nuclear Information System (INIS)

    Meyers, H.; Claes, J.; Geens, L.

    1988-01-01

    The shutdown of the fuel reprocessing plant of Eurochemic having been decided, a study for defining the facilities to be dismantled and how to do it, was conducted by Belgoprocess. The cost of the operation was estimated by an accurate investigation and by a pilot project on the dismantling of the wastes storage building. The work carried out up to now and the problems to be solved are summarized [fr

  6. Activity report 1976

    International Nuclear Information System (INIS)

    Drent, W.; Delande, E.

    1977-07-01

    The principal activities of Eurochemic plant in the fields of reprocessing and the closing-down program are presented in this report that covers the period 1 January to 31 December 1976. Works in the plant are closely related to the decontamination of the process cells and the completation of the bituminization plant and storage facility. The solidification processes for the high-level liquid waste have been definied and the negotiations in view of setting up an international R and D program for the embedding of solidified high-level waste into metal patrices have been pursued. (A.F.)

  7. Experience gained in the management of radioactive waste from maintenance, decontamination and partial decommissioning of a reprocessing plant and conclusions resulting for the management of radioactive wastes from nuclear power plants

    International Nuclear Information System (INIS)

    Hild, W.

    1983-01-01

    After a short description of the historical background of Eurochemic, its main tasks and the various operational phases, a detailed description of the waste management principles applied is presented. The practical experience in the waste treatment is reported for both the operational phase of the reprocessing plant and its decontamination and partial decommissioning after shutdown. Based on this experience and the presented data, an assessment of the practical operations is made and conclusions are drawn. Finally, recommendations are formulated both for the general waste management policy and the practical waste treatment processes in nuclear power reactors. (author)

  8. Evolution of international nuclear cooperation

    International Nuclear Information System (INIS)

    Goldschmidt, Bertrand

    1978-01-01

    The various stages of the history of the International Cooperation in nuclear matters are reviewed: isolationism period at the end of the war with the anglosaxon monopoly; opening period with the 1955 Geneva Conference and the creation of organisms within the framework of Euratom (the six European countries), of OCED (NEA) and of UNO (IAEA); industrial realizations period with Euratom research centres (Ispra, Geel, Karlsruhe and Petten) and the NEA enterprises (Halden, Dragon project, Eurochemic). The international industrial accords in the domains of exploitation and uranium enrichment are recalled and the program for the international evaluating of the fuel cycle (INFCE) is mentioned [fr

  9. Activity report 1981

    International Nuclear Information System (INIS)

    Delande, E.; Drent, W.

    1982-07-01

    This report reviews the main activities of the Eurochemic company for the fiscal year 1981. These activities are: the plant operation including the safeguards for special nuclear materials, the management of radioactive wastes and the analytical services, new works such as vitrification project, Pamela building and the design for the storage of vitrified wastes. The industrial development concerns the Eurowatt process for solvent treatment, the wet combustion for plutonium bearing solid wastes, the separation of mercury, the incorporation of solid wastes into a polymer concrete matrix and the Pamela process. The health and safety division, the library and documentation service and the administrative matters are also presented. (AF)

  10. Activity report 1984

    International Nuclear Information System (INIS)

    Drent, W.

    1985-07-01

    For the fiscal year 1984, the technical activities of Eurochemic were: a) the cleaning of the vessels having contained medium level liquid wastes and the incorporation into bitumen of the resulting solution, b) the conditioning of plutonium contaminated solid waste, c) the civil engineering works of Building 29 were completed and the mounting of equipment was begun. The installation will assure the surface storage of the blocks resulting from vitrification, by means of Pamela installation of the high-level liquid wastes. The report includes administrative matters as well as health and safety activity. (AF)

  11. Provisions relating to Nuclear Energy. II - International Conventions

    International Nuclear Information System (INIS)

    This book published by the Portuguese Junta de Energia Nuclear (Nuclear Energy Commission) reproduces in Portuguese and in the original language (English or French), texts of a series of international conventions in the nuclear field and the Statutes of international nuclear organisations and undertakings. The following are among the texts included: the Statutes of the IAEA, NEA, Eurochemic; the Euratom Treaty; the Tlatelolco Treaty; the co-operation agreement between Portugal and the United States on the peaceful uses of nuclear energy. (NEA) [fr

  12. Concrete crushing and sampling, a methodology and technology for the unconditional release of concrete material from decommissioning

    International Nuclear Information System (INIS)

    Gills, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R.

    2007-01-01

    Belgoprocess started the industrial decommissioning of the main process building of the former Eurochemic reprocessing plant in 1990, after completion of a pilot project. Two small storage buildings for final products from reprocessing were dismantled to verify the assumptions made in a previous paper study on decommissioning, to demonstrate and develop dismantling techniques and to train personnel. Both buildings were emptied and decontaminated to background levels. They were demolished and the remaining concrete debris was disposed of as industrial waste and green field conditions restored. Currently, the decommissioning operations carried out at the main building have made substantial progress. They are executed on an industrial scale. In view of the final demolition of the building, foreseen to start in the middle of 2008, a clearance methodology for the concrete from the cells into the Eurochemic building has been developed. It considers at least one complete measurement of all concrete structures and the removal of all detected residual radionuclides. This monitoring sequence is followed by a controlled demolition of the concrete structures and crushing of the resulting concrete parts to smaller particles. During the crushing operations, metal parts are separated from the concrete and representative concrete samples are taken. The frequency of sampling meets the prevailing standards. In a further step, the concrete samples are milled, homogenised, and a smaller fraction is sent to the laboratory for analyses. The paper describes the developed concrete crushing and sampling methodology. (authors)

  13. Criteria, standards and policies regarding decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Detilleux, E.; Lennemann, W.

    1977-01-01

    The paper discusses the decontamination and decommissioning experiences encountered at the Eurochemic fuel reprocessing plant, their implications and the knowledge gained from these experiences. It includes the results of technical reviews made by the Nuclear Energy Agency of OECD and the International Atomic Energy Agency regarding decommissioning nuclear facilities. The conlusions which are presented should weigh heavily in the considerations of the national authorities involved in regulating nuclear power programmes. The paper notes the special planning that should be arranged between those responsible for the nuclear facility and competent public authorities who jointly should make a realistic determination of the eventual disposition of the nuclear facility, even before it is built. Recommendations cover the responsibilities of nuclear plant entrepreneurs, designers, operators, and public and regulatory authorities [fr

  14. Reprocessing in Sweden: History and perspective

    International Nuclear Information System (INIS)

    Hultgren, Aa.; Oesterlund, C.G.

    1990-10-01

    Against the background of nuclear power development and installation in Sweden an overview is presented of the parallel domestic development of the reprocessing of spent nuclear fuel. The original selection of the natural uranium - heavy water reactor in the 1950s included spent fuel reprocessing and recycle, and process and plant studies were performed to that end. The switch to light water reactors in the 1960s did not change the planning to recycle; however, the participation in the Eurochemic undertaking, and the delay in the nuclear programme stopped further domestic development work. A number of governmental committee investigations in the 1970s on the radioactive waste issue and, above all, the decision to phase out nuclear power by 2010, after a referendum following the TMI-accident, finally resulted in a decision to plan only for direct disposal of spent nuclear fuel. This policy still prevails. (42 refs.)

  15. ONDRAF/NIRAS and high-level radioactive waste management in Belgium

    International Nuclear Information System (INIS)

    Decamps, F.

    1993-01-01

    The National Agency for Radioactive Waste and Enriched Fissile Materials, ONDRAF/NIRAS, is a public body with legal personality in charge of managing all radioactive waste on Belgian territory, regardless of its origin and source. It is also entrusted with tasks related to the management of enriched fissile materials, plutonium containing materials and used or unused nuclear fuel, and with certain aspects of the dismantling of closed down nuclear facilities. High-level radioactive waste management comprises essentially and for the time being the storage of high-level liquid waste produced by the former EUROCHEMIC reprocessing plant and of high-level and very high-level heat producing waste resulting from the reprocessing in France of Belgian spent fuel, as well as research and development (R and D) with regard to geological disposal in clay of this waste type

  16. Royal Order of 30 March 1981 determining the duties and conditions of operation of the public body responsible for radioactive waste and fissile materials management

    International Nuclear Information System (INIS)

    1981-01-01

    The purpose of this Royal Order is to set up a public body to be responsible for management of the storage of conditioned radioactive waste, waste disposal, its transport as well as that of plutonium-bearing or enriched fissile materials, and plutonium storage. It must become operational as soon as possible, in particular in the perspective of the Eurochemic Company's technical operations ceasing as from 31 December 1981. This body will be named the National Body for Radioactive Waste and Fissile Materials (ONDRAF). As respects plutonium-bearing or enriched fissile materials, ONDRAF will deal with the transport of materials which, in accordance with the IAEA recommendations [INFCIRC/225/Rev. 1], require physical protection measures (NEA) [fr

  17. 4. Activity report of the Nuclear Energy Agency. 1975

    International Nuclear Information System (INIS)

    1976-01-01

    Despite the many economic and related difficulties experienced throughout the OECD area during 1975, for nuclear power the year brought much promise, together with consolidation and some incouragement for the nuclear industry. 1975 saw a concentration of NEA's technical work on nuclear safety, radioactive waste management, and studies related to the nuclear fuel cycle. NEA's work on regulatory questions was also important. Besides NEA's substantial involvement in the preparation of Extension Agreements for the Halden and Dragon Reactor Projects and for the International Food Irradiation Project, as well as the Agreement to establish a research and development program at Eurochemic on high-activity waste treatment, the Agency has also been closely concerned with scientific and technological developments both within these Projects and in other areas

  18. Radiation protection during backfitting or dismantling work in the controlled area of nuclear facilities

    International Nuclear Information System (INIS)

    Baumann, J.; Kausch, S.; Palmowski, J.

    1980-01-01

    Backfitting measures or dismantling activities within the controlled area put special requirements on radiological protection. This is to be shown by the example of the following cases. Sanitation of the general decontamination services of the Karlsruhe Nuclear Research Center; waste water, equipment decontamination, incineration and packaging facility; dismantling and disposal of high-radiation components including decontamination of buildings of the Eurochemic reprocessing plant at Mol; reconstruction of the HDR plant for safety experiments together with waste management for components and systems, as e.g. pressure vessel internals, pipes etc.; exchange of the steam dryer and the water separator including planning of the conditioning process in the Wuergassen nuclear power plant. This lecture deals with the engineering and organizational problems, especially accounting for radiological protection and enters into planning of measures for radiological protection, their organization and execution, problems of direct and remote-controlled work also being discussed. The question of personnel qualification is also commented on. (orig.) [de

  19. Studies on the treatment of organic wastes. Part 5

    International Nuclear Information System (INIS)

    Eschrich, H.; Humblet, L.; Geel, J. van.

    1980-09-01

    The Eurowatt process involves the quantitative extraction of tributyl phosphate (TBP), degradation products, and radionuclides from spent solvent mixtures by anhydrous phosphoric acid resulting in the recovery of a decontaminated diluent phase. The purified diluent can be reused or disposed of by burning. The radioactive TBP-phosphoric acid phase is heated to about 200 0 C to decompose the organic compounds to volatile hydrocarbons and non-volatile inorganic phosphoric acids. The inactive organic compounds are burned; the residual phosphoric acids, containing all the radionuclides, are conditioned for final storage by conversion into a phosphate glass or ceramic. Eurochemic's Eurowatt pilot installation is described and essential process data and results are given. (author)

  20. Activity report 1977

    International Nuclear Information System (INIS)

    Delande, E.; Drent, W.

    1978-07-01

    The principal activities of Eurochemic plant in the fields of reprocessing and the solidification and conditioning of liquid wastes are presented in this report that covers the period 1 January to 31 December 1977. Works in the plant are closely related to the handling of fuel element and the treatment of solid wastes as well as the management of liquid wastes. Industrial development activities have been primarily devoted to the solidification of HEWC (highly enriched waste concentrate) by means of the Lotes process; the treatment of spent solvent by means of the Eurowatt process; the treatment of the plutonium-bearing solid wastes by the Eurowetcomb process and the conditioning of highly activity non-combustible solid wastes by incorporation into polymer-concrete matrix . (AF)

  1. Activity report 1978

    International Nuclear Information System (INIS)

    Delande, E.; Drent, W.

    1979-07-01

    The principal activities of Eurochemic plant in the fields of reprocessing and the solidification and conditioning of liquid and solid wastes are presented in this report that covers the period 1 January to 31 December 1978. Works in the plant are closely related to the decontamination in cooperation with specialized firms. Active operation of bituminization facility was started in June, and a total of 66 m 3 of medium level waste was incorporated into bitumen by the end of 1978. The associated storage facility was in active operation since June and preliminary studies for its extension were completed. A facility was completed for the conditioning of solid wastes arising from the decontamination operation of solid wastes whch were stored under water during plant operation. (AF)

  2. Project and feedback experience on nuclear facility decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, J.L. [ENRESA (Spain); Benest, T.G. [United Kingdom Atomic Energy Authority, Windscale, Cumbria (United Kingdom); Tardy, F.; Lefevre, Ph. [Electricite de France (EDF/CIDEN), 69 - Villeurbanne (France); Willis, A. [VT Nuclear Services (United Kingdom); Gilis, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R. [Belgoprocess (Belgium); Jeanjacques, M. [CEA Saclay, 91 - Gif sur Yvette (France); Bohar, M.P.; Bremond, M.P.; Poyau, C.; Mandard, L.; Boissonneau, J.F.; Fouquereau, A.; Pichereau, E.; Binet, C. [CEA Fontenay aux Roses, 92 (France); Fontana, Ph.; Fraize, G. [CEA Marcoule 30 (France); Seurat, Ph. [AREVA NC, 75 - Paris (France); Chesnokov, A.V.; Fadin, S.Y.; Ivanov, O.P.; Kolyadin, V.I.; Lemus, A.V.; Pavlenko, V.I.; Semenov, S.G.; Shisha, A.D.; Volkov, V.G.; Zverkov, Y.A. [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)

    2008-11-15

    This series of 6 short articles presents the feedback experience that has been drawn from various nuclear facility dismantling and presents 3 decommissioning projects: first, the WAGR project that is the UK demonstration project for power reactor decommissioning (a review of the tools used to dismantle the reactor core); secondly, the dismantling project of the Bugey-1 UNGG reactor for which the dismantling works of the reactor internals is planned to be done underwater; and thirdly, the decommissioning project of the MR reactor in the Kurchatov Institute. The feedback experience described concerns nuclear facilities in Spain (Vandellos-1 and the CIEMAT research center), in Belgium (the Eurochemic reprocessing plant), and in France (the decommissioning of nuclear premises inside the Fontenay-aux-roses Cea center and the decommissioning of the UP1 spent fuel reprocessing plant at the Marcoule site). (A.C.)

  3. Project and feedback experience on nuclear facility decommissioning

    International Nuclear Information System (INIS)

    Santiago, J.L.; Benest, T.G.; Tardy, F.; Lefevre, Ph.; Willis, A.; Gilis, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R.; Jeanjacques, M.; Bohar, M.P.; Bremond, M.P.; Poyau, C.; Mandard, L.; Boissonneau, J.F.; Fouquereau, A.; Pichereau, E.; Binet, C.; Fontana, Ph.; Fraize, G.; Seurat, Ph.; Chesnokov, A.V.; Fadin, S.Y.; Ivanov, O.P.; Kolyadin, V.I.; Lemus, A.V.; Pavlenko, V.I.; Semenov, S.G.; Shisha, A.D.; Volkov, V.G.; Zverkov, Y.A.

    2008-01-01

    This series of 6 short articles presents the feedback experience that has been drawn from various nuclear facility dismantling and presents 3 decommissioning projects: first, the WAGR project that is the UK demonstration project for power reactor decommissioning (a review of the tools used to dismantle the reactor core); secondly, the dismantling project of the Bugey-1 UNGG reactor for which the dismantling works of the reactor internals is planned to be done underwater; and thirdly, the decommissioning project of the MR reactor in the Kurchatov Institute. The feedback experience described concerns nuclear facilities in Spain (Vandellos-1 and the CIEMAT research center), in Belgium (the Eurochemic reprocessing plant), and in France (the decommissioning of nuclear premises inside the Fontenay-aux-roses Cea center and the decommissioning of the UP1 spent fuel reprocessing plant at the Marcoule site). (A.C.)

  4. The Belgoprocess Strategy Relating to the Management of Materials from Decommissioning

    International Nuclear Information System (INIS)

    Teunckens, L.; Lewandowski, P.; Walthery, R.; Ooms, B.

    2003-01-01

    Belgium started its nuclear program quite early. The first installations were constructed in the fifties, and presently, more than 55 % of the Belgian electricity production is provided by nuclear power plants. After 30 years of nuclear experience, Belgium started decommissioning of nuclear facilities in the eighties with two main projects: the BR3-PWR plant and the Eurochemic reprocessing plant. The BR3-decommissioning project is carried out at the Belgian Nuclear Research Centre, while the decommissioning of the former Eurochemic reprocessing plant is managed and operated by Belgoprocess n.v., which is also operating the centralized waste treatment facilities and the interim storage for Belgian radioactive waste. Some fundamental principles have to be considered for the management of materials resulting from the decommissioning of nuclear installations, equipment and/or components, mainly based on the guidelines of the ''IAEA-Safety Fundamentals. The Principles of Radioactive Waste Management. Safety Series No. 111-F, IAEA, Vienna, 1995'' with respect to radioactive waste management. Two of the fundamental principles indicated in this document are specifically dealing with the strategy for the management of materials from decommissioning, ''Generation of radioactive waste shall be kept to the minimum practicable'' (seventh principle), and ''Radioactive waste shall be managed in such a way that it will not impose undue burdens on future generations'' (fifth principle). Based on these fundamental principles, Belgoprocess has made a straightforward choice for a strategy with minimization of the amount of materials to be managed as radioactive waste. This objective is obtained through the use of advanced decontamination techniques and the unconditional release of decontaminated materials. Unconditionally released materials are recycled, such as i.e., metal materials that are removed to conventional melting facilities, or are removed to conventional industrial

  5. Spent fuel strategy for the BR2 reactor

    International Nuclear Information System (INIS)

    Gubel, P.; Collard, G.

    1998-01-01

    The Belgian MTR reactor is fuelled with HEU UAl x elements and the fuel cycle was normally closed by reprocessing consecutively in Belgium (Eurochemic), France (Marcoule) and finally in the U.S.A. (Idaho Falls and Savannah River). When the acceptance of spent fuel by the U.S. was terminated, the facility was left with a huge backlog of used elements stored under water. After a few years, urgent and mandatory actions were required to maintain the BR2 facility operating. Later the accent was put on the evaluation of an optimum long term solution for the BR2 spent fuel during the projected 15 years life extension after the refurbishment executed between 1995 and 1997. The paper gives an overview of these successive actions taken during the last years as well as the handled various criteria for comparing and evaluating the available long-term alternatives. After commitment to reprocessing in existing facilities operated for aluminum fuels the focus of the BR2 fuel cycle strategy is now moving to the procurement of the necessary HEU fuel for securing the long-term operation of the facility. (author)

  6. The OEEC European Nuclear Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1961-07-15

    The European Nuclear Energy Agency (ENEA) was set up in December 1957 as part of the OEEC to develop nuclear collaboration in Western Europe. The promotion of joint undertakings is one of the most important functions of ENEA, and why one of the first committees of the Agency to be set up was its Top Level Group on Co-operation in the Reactor Field. International collaboration in joint undertakings enables resources in effort, equipment and money to be pooled for the maximum benefit of the countries participating, and is the only way whereby a sufficiently wide range of research possibilities can be covered in a reasonable time. Examples fro such projects are: 1) Halden project - a joint three-year project to exploit the boiling heavy water reactor built by the Norwegian Institute for Atom energy at Halden; 2) Dragon Project - to investigate the possibilities of high-temperature gas-cooled reactors centered on the construction and operation, by an international team, of an experimental 20 MWt high-temperature gas-cooled reactor (Dragon) at the UK Atomic Energy Establishment at Winfrith; 3) Eurochemic - with a principle objective to construct an experimental plant for the treatment of used uranium fuel from reactors in the participating countries; 4) Nuclear Shops. In addition to promoting joint undertakings, a function of ENEA is to encourage scientific and technical collaboration between national research organizations. Co-operation has been facilitated in the areas od nuclear data, food irradiation, environment radioactivity, training, information and nuclear legislation.

  7. Road transport of LWR spent fuel in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Bach, R.

    1987-01-01

    Since 1967, when fuel from LWRs was first transported by road from the Kahl reactor in the Federal Republic of Germany to the Eurochemic reprocessing plant in Belgium, a total of more than 400 road transports have been performed without any adverse effect on the environment. In the beginning, road transport was the dominant mode. However, in recent years large capacity rail flasks with a weight ranging from 80 to 110 tonnes have been put into service in order to cope with the increasing demand of transport services and to replace existing smaller flasks designed primarily for road transport. Therefore, the number of spent fuel transports by road has declined. However, road transport of heavy flasks from reactor sites without a direct rail link to a nearby rail terminal has become an important task and a number of special problems have had to be solved. The following items are discussed, with special emphasis placed on heavy load transports by road from the reactor to a nearby rail terminal: design of road transport equipment to meet the requirements of the national traffic law; application of technical and administrative procedures to meet the IAEA Regulations; transport restrictions due to overload/oversize; transfer of the flask from the reactor to the transport vehicle; handling of the flask at the rail terminal; turn-around inspection and periodic maintenance of equipment to ensure safe performance of transport; and physical protection during transport and handling at rail terminals. (author). 4 figs

  8. Institutional arrangements for the reduction of proliferation risks formulation, evaluation, and implementation of institutional concepts. Appendices

    International Nuclear Information System (INIS)

    1979-12-01

    The purpose of this supporting analysis is to provide a foundation for developing a model, an international or multinational institution capable of accomodating the back end of the fuel cycle, while meeting US nonproliferation goals. The analysis is based on a review of selected, defunct and extant institutions which, although not necessarily concerned with nonproliferation, have faced a trade-off between acceptability and effectiveness in meeting their objectives. Discussion of the various institutions is divided into three categories: international organizations, multinational consortia, and cartels or producer associations. Examples of international organizations include the International Seabed Authority, Intelsat, the United Nations and the International Atomic Energy Agency (IAEA). The International Seabed Authority is discussed. Multinational consortia are organizations that have been developed primarily to meet common commercial objectives. Membership includes at least three member nations. Examples include the Scandinavian Airline System (SAS), URENCO, Unilever, Royal Dutch Shell, Eurochemic, Eurodif, Euratom, European Coal and Steel Community, and Serena. Cartels or producer associations are multinational agreements that restrict market forces; viz, production, market share, customers or prices. Examples include the Intergovernmental Council of Copper Exporting Countries (CIPEC), the Organization of Petroleum Exporting Countries (OPEC), and the Fifth International Tin Agreement (ITA), as well as agreements governing diamonds and uranium, bauxite and coffee. OPEC, CIPEC and ITA are discussed

  9. The European Nuclear Energy Tribunal

    International Nuclear Information System (INIS)

    Marchetti, D.

    1977-01-01

    The European Nuclear Energy Tribunal was set up within the Organisation for European Economic Co-operation (now the Organisation for Economic Co-operation and Development) on 20th December 1957 under the Convention on Security Control. Seven independent judges are appointed for five years by decision of the Council of the Organisation; if the Tribunal includes no judge of the nationality of a party in a dispute submitted to it, the Government concerned may select an additional judge in that case. The Tribunal is competent in matters of security control, third party liability and activities of one of the Organisation's joint undertakings. At the request of any Government party to the Security Control Convention, to the Eurochemic Convention or to the Paris Convention and Brussels Supplementary Convention it may be convened to resolve any dispute concerning the interpretation or application thereof. While the Tribunal has not yet been called upon to exercise its judgment it is nonetheless an important and necessary instrument for Member States engaged in nuclear activities at international level. (NEA) [fr

  10. The OEEC European Nuclear Energy Agency

    International Nuclear Information System (INIS)

    1961-01-01

    The European Nuclear Energy Agency (ENEA) was set up in December 1957 as part of the OEEC to develop nuclear collaboration in Western Europe. The promotion of joint undertakings is one of the most important functions of ENEA, and why one of the first committees of the Agency to be set up was its Top Level Group on Co-operation in the Reactor Field. International collaboration in joint undertakings enables resources in effort, equipment and money to be pooled for the maximum benefit of the countries participating, and is the only way whereby a sufficiently wide range of research possibilities can be covered in a reasonable time. Examples fro such projects are: 1) Halden project - a joint three-year project to exploit the boiling heavy water reactor built by the Norwegian Institute for Atom energy at Halden; 2) Dragon Project - to investigate the possibilities of high-temperature gas-cooled reactors centered on the construction and operation, by an international team, of an experimental 20 MWt high-temperature gas-cooled reactor (Dragon) at the UK Atomic Energy Establishment at Winfrith; 3) Eurochemic - with a principle objective to construct an experimental plant for the treatment of used uranium fuel from reactors in the participating countries; 4) Nuclear Shops. In addition to promoting joint undertakings, a function of ENEA is to encourage scientific and technical collaboration between national research organizations. Co-operation has been facilitated in the areas od nuclear data, food irradiation, environment radioactivity, training, information and nuclear legislation

  11. Processing of LLW arising from dismantling activities in a reprocessing facility

    International Nuclear Information System (INIS)

    Geens, L.G.; Geens, L.P.; Vandeven, I.

    1990-01-01

    The Eurochemic reprocessing facility, at the Mol-Dessel site in Belgium was in active operation from July 1966 until January 1975. In total, about 210 Mg of various types of irradiated nuclear fuels were processed. After the shut-down the plant has been partially decontaminated in view of recommissioning. When the recommissioning option was abandoned, the decision was taken in 1986 to dismantle the plant. A 2 years study resulted in the start of a pilot project: the dismantling of two smaller buildings, previously used for storage of uranyl nitrate and used solvent. The minimization of radioactive waste generation was also one of the major goals of this project. The report deals with the different steps in the minimization of radioactive waste generation during the dismantling activities. First, an estimation of the amounts of radioactive waste, expected to be generated, was made. In a second step the actual waste production during dismantling operations was minimized and compared with the estimations. Finally, a large part of the primary radioactive dismantling waste has been completely decontaminated, resulting in much lower amounts of nuclear waste generated. 2 refs., 3 figs., 2 tabs

  12. Institutional arrangements for the reduction of proliferation risks formulation, evaluation, and implementation of institutional concepts. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The purpose of this supporting analysis is to provide a foundation for developing a model, an international or multinational institution capable of accomodating the back end of the fuel cycle, while meeting US nonproliferation goals. The analysis is based on a review of selected, defunct and extant institutions which, although not necessarily concerned with nonproliferation, have faced a trade-off between acceptability and effectiveness in meeting their objectives. Discussion of the various institutions is divided into three categories: international organizations, multinational consortia, and cartels or producer associations. Examples of international organizations include the International Seabed Authority, Intelsat, the United Nations and the International Atomic Energy Agency (IAEA). The International Seabed Authority is discussed. Multinational consortia are organizations that have been developed primarily to meet common commercial objectives. Membership includes at least three member nations. Examples include the Scandinavian Airline System (SAS), URENCO, Unilever, Royal Dutch Shell, Eurochemic, Eurodif, Euratom, European Coal and Steel Community, and Serena. Cartels or producer associations are multinational agreements that restrict market forces; viz, production, market share, customers or prices. Examples include the Intergovernmental Council of Copper Exporting Countries (CIPEC), the Organization of Petroleum Exporting Countries (OPEC), and the Fifth International Tin Agreement (ITA), as well as agreements governing diamonds and uranium, bauxite and coffee. OPEC, CIPEC and ITA are discussed.

  13. Evolution of nuclear chemical industry in France; Evolution de l'industrie chimique nucleaire en France

    Energy Technology Data Exchange (ETDEWEB)

    Fould, M H [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    The present characteristics can be summarized in one word: expansion. Impelled by the CEA, but also by such organisations as the Electricite de France and the Merchant Marine, the French nuclear effort for the years 1957-1961 reaches about 600 thousand millions francs; over half this sum will be spent by chemical industry on research, pilot installations, construction of plants and delivery. The aim is to work efficiently, quickly and profitably. This is achieved through close collaboration between the big state organisations and private industry. It is chiefly along the following lines that this large scale effort is carried on: - thorough chemical treatment of increasing tonnages of ores from the French Union, with the aim of producing pure, plentiful and cheap uranium. - careful preparation of nuclear fuels, economical and perfectly adapted to the various types of reactor in operation or under construction. - Further treatment of irradiated fuels to extract the plutonium completely, as well as the uranium and certain fission products. industrial manufacture of material of nuclear purity or corrosion resistant required by the technology of energy producing or research reactors. - Supply to the many foreign or French users of isotopes and radioactive tracers required by medicine, industry and agriculture in ever-increasing numbers. - Meticulous chemical treatment of gaseous or liquid effluent in strictly controlled stations in order that reactors and their annexes will be perfectly safe to use. This account shows the great extent of the effort laid out by a young, energetic chemical industry in full swing. Having made sure of its techniques and set up numerous installations it is fully in a position to confront the French atomic programme. In addition it is able and anxious to associate with the developments of foreign atomic industry, especially EURATOM and Eurochemic. (author) [French] Un mot en resume les caracteristiques presentes: l'expansion. Sous l

  14. Present trends in radioactive waste management policies in OECD countries and related international co-operative efforts

    International Nuclear Information System (INIS)

    Olivier, J.P.

    1977-01-01

    In recent years waste management has received increased attention not only at the national level but also internationally in order to harmonise to some extent the policies and practices to be followed and to continue to achieve a high safety standard in this field. In particular, discussions are taking place between OECD Member countries on the definition of objectives, concepts and strategies for radioactive waste management with a view to presenting coherent overall systems covering not only the treatment and storage aspects for the short term but also the longer term problems of disposal in the context of a rapidly developing nuclear fuel cycle. The technical, administrative, legal and financial aspects of the waste management problems are being discussed and various approaches are envisaged for the future. In addition to the discussion of policies and practices, a significant effort is also being initiated on research and development. The disposal problem has been given priority particularly as far as high level waste and alpha bearing wastes are concerned. Close international co-operation has been initiated in this sector as well as on the conditioning of high level radioactive waste. As a result of these efforts an international R and D programme is being established at the site of the Eurochemic reprocessing plant on the incorporation of high level waste into metal matrices. Increased co-operation is also taking place concerning other waste management problems such as the management of gaseous waste, alpha waste and cladding hulls and the question of dismantling and decommissioning of obsolete nuclear facilities. The paper describes in detail the results achieved so far through this co-operation between OECD Member countries and presents current plans for future activities [fr

  15. Concrete crushing and sampling, a methodology and technology for the unconditional release of concrete material from decommissioning

    International Nuclear Information System (INIS)

    Baumann, S.; Teunckens, L.; Walthery, R.; Lewandowski, P.; Millen, D.

    2002-01-01

    Belgoprocess started the industrial decommissioning of the main process building of the former Eurochemic reprocessing plant in 1990, after completion of a pilot project. Two small storage buildings for final products from reprocessing were dismantled to verify the assumptions made in a previous paper study on decommissioning, to demonstrate and develop dismantling techniques and to train personnel. Both buildings were emptied and decontaminated to background levels. They were demolished and the remaining concrete debris was disposed of as industrial waste and green field conditions restored. Currently, the decommissioning operations carried out at the main building have made substantial progress. They are executed on an industrial scale and will continue till the end of 2005. In view of the final demolition of the building, a clearance methodology has to be proposed. Application of the methodology applied for the storage buildings of the pilot project is complicated for several reasons. Although this methodology is not rejected as such, an alternative has been studied thoroughly. It considers at least one complete measurement of all concrete structures and the removal of all detected residual radioactivity. This monitoring sequence is followed by a controlled demolition of the concrete structures and crushing of the resulting concrete parts to smaller particles. During the crushing operations, metal parts are separated from the concrete and representative concrete samples are taken. The frequency of sampling meets the prevailing standards. In a further step, the concrete samples are milled, homogenised, and a smaller fraction is sent to the laboratory for analyses. The paper describes the developed concrete crushing and sampling methodology. (authors)

  16. High-level waste processing and disposal

    International Nuclear Information System (INIS)

    Crandall, J.L.; Krause, H.; Sombret, C.; Uematsu, K.

    1984-11-01

    Without reprocessing, spent LWR fuel itself is generally considered an acceptable waste form. With reprocessing, borosilicate glass canisters, have now gained general acceptance for waste immobilization. The current first choice for disposal is emplacement in an engineered structure in a mined cavern at a depth of 500-1000 meters. A variety of rock types are being investigated including basalt, clay, granite, salt, shale, and volcanic tuff. This paper gives specific coverage to the national high level waste disposal plans for France, the Federal Republic of Germany, Japan and the United States. The French nuclear program assumes prompt reprocessing of its spent fuels, and France has already constructed the AVM. Two larger borosilicate glass plants are planned for a new French reprocessing plant at La Hague. France plans to hold the glass canisters in near-surface storage for a forty to sixty year cooling period and then to place them into a mined repository. The FRG and Japan also plan reprocessing for their LWR fuels. Both are currently having some fuel reprocessed by France, but both are also planning reprocessing plants which will include waste vitrification facilities. West Germany is now constructing the PAMELA Plant at Mol, Belgium to vitrify high level reprocessing wastes at the shutdown Eurochemic Plant. Japan is now operating a vitrification mockup test facility and plans a pilot plant facility at the Tokai reprocessing plant by 1990. Both countries have active geologic repository programs. The United State program assumes little LWR fuel reprocessing and is thus primarily aimed at direct disposal of spent fuel into mined repositories. However, the US have two borosilicate glass plants under construction to vitrify existing reprocessing wastes

  17. Criteria, standards and policies regarding decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Detilleux, E.; Lennemann, W.L.

    1977-01-01

    At the end of this century, there will probably be around 2500 operating nuclear power reactors, along with all the other nuclear fuel cycle facilities supporting their operation. Eventually these facilities, one by one, will be shut down and it will be necessary to dispose of them as with any redundant industrial facility or plant. Some parts of a nuclear fuel cycle facility can be dismantled by conventional methods, but those parts which have become contaminated with radioactive nuclear products or induced radioactivity must be subject to rigid controls and restrictions and handled by special dismantling and disposal procedures. In many cases, the resulting quantity of radioactive waste is likely to be relatively large and dismantling quite costly. Decommissioning nuclear facilities is a multifaceted problem involving planners, design engineers, operators, waste managers and regulatory authorities. Preparation for decommissioning should begin as early as site selection and plant design. The corner stone for the preparation of a decommissioning programme is the definition of its extent, meeting the requirements for public and environmental protection during the period that the radioactive material is of concern. The paper discusses the decontamination and decommissioning experience at the Eurochemic fuel reprocessing plant, the implications and the knowledge gained from this experience. It includes the results of technical reviews made by the Nuclear Energy Agency of OECD and the International Atomic Energy Agency regarding decommissioning nuclear facilities. The paper notes the special planning that should be arranged between those responsible for the nuclear facility and competent public authorities who should jointly make a realistic determination of the eventual disposition of the nuclear facility, even before it is built. Recommendations cover the responsibilities of nuclear plant entrepreneurs, designers, operators, and public and regulatory authorities

  18. Abrasive blasting, a technique for the industrial decontamination of metal components and concrete blocks from decommissioning to unconditional release levels

    International Nuclear Information System (INIS)

    Gills, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R.

    2007-01-01

    When decommissioning nuclear installations, large quantities of metal components are produced as well as significant amounts of other radioactive materials, which mostly show low surface contamination. Having been used or having been brought for a while in a controlled area marks them as 'suspected material'. In view of the very high costs for radioactive waste processing and disposal, alternatives have been considered, and much effort has gone to recycling through decontamination, melting and unconditional release of metals. In a broader context, recycling of materials can considered to be a first order ecological priority in order to limit the quantities of radioactive wastes for final disposal and to reduce the technical and economic problems involved with the management of radioactive wastes. It will help as well to make economic use of primary material and to conserve natural resources of basic material for future generations. In a demonstration programme, Belgoprocess has shown that it is economically interesting to decontaminate metal components to unconditional release levels using dry abrasive blasting techniques, the unit cost for decontamination being only 30 % of the global cost for radioactive waste treatment, conditioning, storage and disposal. As a result, an industrial dry abrasive blasting unit was installed in the Belgoprocess central decontamination infrastructure. At the end of December 2006, more than 1,128 Mg of contaminated metal has been treated as well as 313 Mg of concrete blocks. The paper gives an overview of the experience relating to the decontamination of metal material and concrete blocks at the decommissioning of the Eurochemic reprocessing plant in Dessel, Belgium as well from the decontamination of concrete containers by abrasive blasting. (authors)

  19. The decommissioning of nuclear facilities; Le demantelement des installations nucleaires de base

    Energy Technology Data Exchange (ETDEWEB)

    Niel, J.Ch.; Rieu, J.; Lareynie, O.; Delrive, L.; Vallet, J.; Girard, A.; Duthe, M.; Lecomte, C.; Rozain, J.P.; Nokhamzon, J.G.; Davoust, M.; Eyraud, J.L.; Bernet, Ph.; Velon, M.; Gay, A.; Charles, Th.; Leschaeva, M.; Dutzer, M.; Maocec, Ch.; Gillet, G.; Brut, F.; Dieulot, M.; Thuillier, D.; Tournebize, F.; Fontaine, V.; Goursaud, V.; Birot, M.; Le Bourdonnec, Th.; Batandjieva, B.; Theis, St.; Walker, St.; Rosett, M.; Cameron, C.; Boyd, A.; Aguilar, M.; Brownell, H.; Manson, P.; Walthery, R.; Wan Laer, W.; Lewandowski, P.; Dorms, B.; Reusen, N.; Bardelay, J.; Damette, G.; Francois, P.; Eimer, M.; Tadjeddine, A.; Sene, M.; Sene, R

    2008-11-15

    This file includes five parts: the first part is devoted to the strategies of the different operators and includes the following files: the decommissioning of nuclear facilities Asn point of view, decommissioning of secret nuclear facilities, decommissioning at the civil Cea strategy and programs, EDF de-construction strategy, Areva strategy for decommissioning of nuclear facilities; the second one concerns the stakes of dismantling and includes the articles as follow: complete cleanup of buildings structures in nuclear facilities, decommissioning of nuclear facilities and safety assessment, decommissioning wastes management issues, securing the financing of long-term decommissioning and waste management costs, organizational and human factors in decommissioning projects, training for the decommissioning professions: the example of the Grenoble University master degree; the third part is devoted to the management of dismantling work sites and includes the different articles as follow: decommissioning progress at S.I.C.N. plant, example of decommissioning work site in Cea Grenoble: Siloette reactor decommissioning, matters related to decommissioning sites, decommissioning of french nuclear installations: the viewpoint of a specialist company, specificities of inspections during decommissioning: the Asn inspector point of view; the fourth part is in relation with the international approach and includes as follow: IAEA role in establishing a global safety regime on decommissioning, towards harmonization of nuclear safety practices in Europe: W.E.N.R.A. and the decommissioning of nuclear facilities, EPA superfund program policy for decontamination and decommissioning, progress with remediation at Sellafield, progress and experiences from the decommissioning of the Eurochemic reprocessing plant in Belgium, activities of I.R.S.N. and its daughter company Risk-audit I.r.s.n./G.r.s. international in the field of decommissioning of nuclear facilities in eastern countries

  20. Management of radioactive wastes from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1976-01-01

    processes that first produce a calcine, which then is incorporated into a glass melt, to processes which vitrify the concentrated high-level liquid waste in one step. A novel approach, being investigated at Eurochemic, is the incorporation of a high-level waste calcine into metal matrices

  1. Ageing of EUROBITUM bituminised radioactive waste

    International Nuclear Information System (INIS)

    Valcke, E.

    2009-01-01

    Since the end of the 1970s, about 3000 m 3 of Eurobitum bituminised radioactive waste has been produced by the EUROCHEMIC/BELGOPROCESS reprocessing facility for the incorporation of precipitation sludges and evaporator concentrates originating from the chemical reprocessing of spent nuclear fuel. Eurobitum is a homogeneous mixture of 60 weigh percent of bitumen and 40 weight percent of waste, of which NaNO3 is the most important component (60-75 weight percent ). The preferred option of ONDRAF/NIRAS for the long-term management of Eurobitum is final disposal in a geologically stable underground clay formation. The Boom Clay is presently being studied as a reference host formation. Due to a combination of favourable properties, the Boom Clay will delay and spread in time the migration of the radionuclides, allowing the majority to decay before reaching the aquifers. Owing to the importance of the clay host formation in the overall repository safety, the processes induced by the emplacement of Eurobitum should not negatively affect the long-term safety functions of this barrier. Basically, two types of disturbances can be distinguished: (1) a mechanical disturbance, caused by the build-up of a pressure in and around the waste, and (2) a chemical disturbance by the release of large amounts of NaNO3 and of water-soluble, organic, potentially complexing molecules due to radiolytic and chemical degradation of the bitumen. The extent of some of these processes will be affected by the continuous evolution of the rheological properties of the bitumen, especially in the presence of oxygen and/or radiation. This ageing results in a harder bitumen, which tends to loose its binding capacity and which becomes increasingly brittle. Fissures and changes in membrane properties of bitumen in terms of oxygen and water diffusion are expected to favour the penetration of oxygen, thus amplifying the ageing deeper inside the product, and the infiltration of pore water, thus possibly

  2. The decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Niel, J.Ch.; Rieu, J.; Lareynie, O.; Delrive, L.; Vallet, J.; Girard, A.; Duthe, M.; Lecomte, C.; Rozain, J.P.; Nokhamzon, J.G.; Davoust, M.; Eyraud, J.L.; Bernet, Ph.; Velon, M.; Gay, A.; Charles, Th.; Leschaeva, M.; Dutzer, M.; Maocec, Ch.; Gillet, G.; Brut, F.; Dieulot, M.; Thuillier, D.; Tournebize, F.; Fontaine, V.; Goursaud, V.; Birot, M.; Le Bourdonnec, Th.; Batandjieva, B.; Theis, St.; Walker, St.; Rosett, M.; Cameron, C.; Boyd, A.; Aguilar, M.; Brownell, H.; Manson, P.; Walthery, R.; Wan Laer, W.; Lewandowski, P.; Dorms, B.; Reusen, N.; Bardelay, J.; Damette, G.; Francois, P.; Eimer, M.; Tadjeddine, A.; Sene, M.; Sene, R.

    2008-01-01

    This file includes five parts: the first part is devoted to the strategies of the different operators and includes the following files: the decommissioning of nuclear facilities Asn point of view, decommissioning of secret nuclear facilities, decommissioning at the civil Cea strategy and programs, EDF de-construction strategy, Areva strategy for decommissioning of nuclear facilities; the second one concerns the stakes of dismantling and includes the articles as follow: complete cleanup of buildings structures in nuclear facilities, decommissioning of nuclear facilities and safety assessment, decommissioning wastes management issues, securing the financing of long-term decommissioning and waste management costs, organizational and human factors in decommissioning projects, training for the decommissioning professions: the example of the Grenoble University master degree; the third part is devoted to the management of dismantling work sites and includes the different articles as follow: decommissioning progress at S.I.C.N. plant, example of decommissioning work site in Cea Grenoble: Siloette reactor decommissioning, matters related to decommissioning sites, decommissioning of french nuclear installations: the viewpoint of a specialist company, specificities of inspections during decommissioning: the Asn inspector point of view; the fourth part is in relation with the international approach and includes as follow: IAEA role in establishing a global safety regime on decommissioning, towards harmonization of nuclear safety practices in Europe: W.E.N.R.A. and the decommissioning of nuclear facilities, EPA superfund program policy for decontamination and decommissioning, progress with remediation at Sellafield, progress and experiences from the decommissioning of the Eurochemic reprocessing plant in Belgium, activities of I.R.S.N. and its daughter company Risk-audit I.r.s.n./G.r.s. international in the field of decommissioning of nuclear facilities in eastern countries

  3. COGEMA Experience in Uranous Nitrate Preparation

    International Nuclear Information System (INIS)

    Tison, E.; Bretault, Ph.

    2006-01-01

    Separation and purification of plutonium by PUREX process is based on a sequence of extraction and back extraction which requires reducing plutonium Pu IV (extractable form) into Pu III (inextractable form) Different reducers can be used to reduce Pu IV into Pu III. Early plants such as that for Magnox fuel at Sellafield used ferrous sulfamate while UP 1 at Marcoule used uranous sulfamate. These reducers are efficient and easy to prepare but generates ferric and/or sulphate ions and so complicates management of the wastes from the plutonium purification cycle. Recent plants such as UP3 and UP2 800 at La Hague, THORP at Sellafield, and RRP at Rokkasho Mura (currently under tests) use uranous nitrate (U IV) stabilized by hydrazinium nitrate (N 2 H 5 NO 3 ) and hydroxyl ammonium nitrate (HAN). In the French plants, uranous nitrate is used in U-Pu separation and alpha barrier and HAN is used in Pu purification. Compared to sulfamate, U IV does not generate extraneous chemical species and uranyl nitrate (U VI) generated by reducing Pu IV follows the main uranium stream. More over uranous nitrate is prepared from reprocessed purified uranyl nitrate taken at the outlet of the reprocessing plant. Hydrazine and HAN offer the advantage to be salt-free reagents. Uranous nitrate can be generated either by electrolysis or by catalytic hydrogenation process. Electrolytic process has been implemented in early plant UP 1 at Marcoule (when changing reducer from uranous sulfamate to uranous nitrate) and was used again in UP2 plant at La Hague. However, the electrolytic process presented several disadvantages such as a low conversion rate and problems associated with the use of mercury. Electrolysis cells with no mercury were developed for the Eurochemic plant in Belgium and then implemented in the first Japanese reprocessing plant in Tokai-Mura. But finally, in 1975, the electrolytic process was abandoned in favor of the catalytic hydrogenation process developed at La Hague. The

  4. Pyrolysis of Spent Ion Exchange Resins

    International Nuclear Information System (INIS)

    Braehler, Georg; Slametschka, Rainer

    2012-09-01

    and is disposed of as medium level waste. The organic components pass into the pyrolysis gas which is burnt. The flue gas is further cleaned. TBP pyrolysis facilities have been built in France (La Hague), Belgium (Mol) and in Japan (Rokkashomura). The Belgian plant has recently ceased operating as all the TBP arising from Eurochemic operations had been successfully processed. The facility in Japan is in the commissioning stage. Many experiments have been carried out at the existing facilities, and also in corresponding pilot plants including NUKEM's own, to extend the range of waste that can be processed. Initial tests have shown that IEX can be decomposed by pyrolysis with very good results, yielding an inert and chemically resistant product. No additives are necessary. The main constituent of the product, the pyrolysate or ash, is carbon. It has been discovered that the entire radioactive inventory remains in the pyrolysate during pyrolysis of the IEX. This is achieved by relatively low process temperatures that prevent highly volatile nuclides such as the cesium nuclides from passing into the gaseous phase. Sintered metal filters in pyrolysis plant ensure that even the radioactivity bonded to the dust remains in the pyrolysate. In addition to the radionuclides, the main constituents of the residue are carbon from the original polystyrene matrix and sulphur from the functional groups. The pyrolysate occurs as a flowable solid material and not as a melt. It is thus easy to handle and can be compressed or cemented, depending on the requirements for interim and permanent storage. Any further constituents such as inorganic filter materials or even other organic materials do not interfere with the process, they are dried, calcined or also pyrolyzed. Hydrocarbons such as methane or propene, steam and low volumes of ammonia are the products in gaseous form. The pyrolysis gas generated must be burnt in a burner and then passed to the emission control system and the