WorldWideScience

Sample records for eurisol experimental hall

  1. General footage ISOLDE experimental hall

    CERN Multimedia

    2016-01-01

    Overview of the ISOLDE experimental hall. Equipment and experiments. Taken from the WITCH / EBIS platform: ISOLDE hall infrastructure, GHM line, LA1, LA2, LA0, central beamline, COLLAPS experiment, CRIS experiment, ISOLTRAP experiment, laser guidance from building 508 into the hall for laser spectroscopy COLLAPS and CRIS. Taken from the HIE ISOLDE shielding tunnel roof: ISOLDE hall infrastructure, WITCH experiment, VITO line, TAS experiment. General footage: High Tension room entrance and EBIS platform, staircases and passages in the experimental hall.

  2. General footage ISOLDE experimental hall HD

    CERN Multimedia

    2016-01-01

    Overview of the ISOLDE experimental hall. Equipment and experiments. Taken from the WITCH / EBIS platform: ISOLDE hall infrastructure, GHM line, LA1, LA2, LA0, central beamline, COLLAPS experiment, CRIS experiment, ISOLTRAP experiment, laser guidance from building 508 into the hall for laser spectroscopy COLLAPS and CRIS. Taken from the HIE ISOLDE shielding tunnel roof: ISOLDE hall infrastructure, WITCH experiment, VITO line, TAS experiment. General footage: High Tension room entrance and EBIS platform, staircases and passages in the experimental hall.

  3. EURISOL-DS Multi-MW Target: Experimental program associated to validation of CFD simulations of the mercury loop

    CERN Document Server

    Blumenfeld, Laure; Kadi, Yacine; Samec, Karel; Lindroos, Mats

    At the core of the Eurisol project facility, the neutron source produces spallation neutrons from a proton beam impacting dense liquid. The liquid circulates at high speed inside the source, a closed vessel with beam windows.This technical note summarises the needed of the hydraulic METEX 1 and METEX 2 data tests to contribute to validate CFD turbulent simulation of liquid metal with the LES model and FEM structural model as well as a-dimensional analysis of Laser Dopplet Velocimetry for cavitation measurements.

  4. EURISOL High Power Targets

    CERN Document Server

    Kadi, Y; Lindroos, M; Ridikas, D; Stora, T; Tecchio, L; CERN. Geneva. BE Department

    2009-01-01

    Modern Nuclear Physics requires access to higher yields of rare isotopes, that relies on further development of the In-flight and Isotope Separation On-Line (ISOL) production methods. The limits of the In-Flight method will be applied via the next generation facilities FAIR in Germany, RIKEN in Japan and RIBF in the USA. The ISOL method will be explored at facilities including ISAC-TRIUMF in Canada, SPIRAL-2 in France, SPES in Italy, ISOLDE at CERN and eventually at the very ambitious multi-MW EURISOL facility. ISOL and in-flight facilities are complementary entities. While in-flight facilities excel in the production of very short lived radioisotopes independently of their chemical nature, ISOL facilities provide high Radioisotope Beam (RIB) intensities and excellent beam quality for 70 elements. Both production schemes are opening vast and rich fields of nuclear physics research. In this article we will introduce the targets planned for the EURISOL facility and highlight some of the technical and safety cha...

  5. Views of the ATLAS experimental hall

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The shell of the ATLAS detector is seen from many angles within its cavernous underground hall. All of the eight huge toroid magnets have been installed and fixed in place. The core of the detector, the largest of its type in the world, will soon be filled with many different detector-elements to observe the results of proton-proton collisions at the LHC when it is turned on in 2008.

  6. EURISOL-DS METEX: Post-processing of the experimental data: Test matrix, Pre-calculations, Data Recording and Mining, Statistical and Advance Data Analysis

    CERN Document Server

    R. Milenkovic and S. DemetjevsE. Manfrin, F. Barbagallo, S. Joray, J. Patorski, F. Groeschel

    At its first stage, the hydraulic and structural test of the EURISOL target mock-up, named METEX1 (MErcury Target EXperiment 1), accompanied by extended thermal-hydraulic and structural computational studies, have been carefully planned and prepared at PSI (PaulScherrer Institut). The experiment will be performed by PSI on the adopted IPUL-loop in June, 2008 at IPUL, Riga, Latvia.The main objective of this document is to give a brief overview of the following: the test matrixaccompanied by computational results, the procedures and methods, which are to be used fordata acquisition, signal post-processing and validation of the computational methods.

  7. Beam Loss Ion Chamber System Upgrade for Experimental Halls

    CERN Document Server

    Dotson, Danny W

    2005-01-01

    The Beam loss Ion Chamber System (BLICS) was developed to protect Jefferson Labs transport lines, targets and beam dumps from a catastrophic "burn through." Range changes and testing was accomplished manually requiring the experiment to be shut down. The new upgraded system is based around an "off the shelf" Programmable Logic Controller located in a single controll box supporting up to ten individual detectors. All functions that formerly required an entry into the experimental hall and manual adjustment can be accomplished from the Machine Control Center (MCC). A further innovation was the addition of a High Voltage "Brick" at the detector location. A single cable supplies the required voltage for the Brick and a return line for the ion chamber signal. The read back screens display range, trip point, and accumulated dose for each location. The new system is very cost effective and significantly reduces the amount of lost experimental time.

  8. Gluonic Excitations and Experimental Hall-D at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Justin [MIT

    2014-07-01

    A new tagged photon beam facility is being constructed in experimental Hall-D at Jefferson Lab as a part of the 12 GeV upgrade program. The 9 GeV linearly-polarized photon beam will be produced via coherent Bremsstrahlung using the CEBAF electron beam, incident on a diamond radiator. The GlueX experiment in Hall-D will use this photon beam to search for and study the pattern of gluonic excitations in the meson spectrum produced through photoproduction reactions with a liquid hydrogen target. Recent lattice QCD calculations predict a rich spectrum of hybrid mesons, that are formed by exciting the gluonic field that couples the quarks. A subset of these hybrid mesons are predicted to have exotic quantum numbers which cannot be formed from a simple qq^- pair, and thus provide an ideal laboratory for testing QCD in the confinement regime. In these proceedings the status of the construction and installation of the GlueX detector will be presented, in addition to simulation results for some reactions of interest in hybrid meson searches.

  9. Evaluation of charge breeding options for EURISOL

    CERN Document Server

    Delahaye, P; Lamy, T; Marie-Jeanne, M; Kester, O; Wenander, F

    2010-01-01

    A comprehensive study of charge breeding techniques for the most ambitious ISOL-facility project, EURISOL, is presented here. It is based on results obtained during the past years at CERN-ISOLDE and LPSC Grenoble with charge breeders of both ECR and EBIS types.

  10. Quantum Hall effects recent theoretical and experimental developments

    CERN Document Server

    Ezawa, Zyun Francis

    2013-01-01

    Enthusiasm for research on the quantum Hall effect (QHE) is unbounded. The QHE is one of the most fascinating and beautiful phenomena in all branches of physics. Tremendous theoretical and experimental developments are still being made in this sphere. Composite bosons, composite fermions and anyons were among distinguishing ideas in the original edition. In the 2nd edition, fantastic phenomena associated with the interlayer phase coherence in the bilayer system were extensively described. The microscopic theory of the QHE was formulated based on the noncommutative geometry. Furthermore, the unconventional QHE in graphene was reviewed, where the electron dynamics can be treated as relativistic Dirac fermions and even the supersymmetric quantum mechanics plays a key role. In this 3rd edition, all chapters are carefully reexamined and updated. A highlight is the new chapter on topological insulators. Indeed, the concept of topological insulator stems from the QHE. Other new topics are recent prominent experime...

  11. EURISOL-DS Multi-MW Target: Design of the EURISOL Liquid metal loop

    CERN Document Server

    K. Samec (PSI)

    A Mercury loop capable of evacuating 2.7 MW of the 4 MW deposited in the Eurisol liquid metal neutron spallation target is described in the present design study.The study takes into account the effects on the loop of temperature, pressure, irradiation, liquid metal corrosion, including both steady state operations and normal transients. Accidental conditions are only briefly alluded to in the form of a description of the protection barriers and envisaged mitigation strategies.

  12. EURISOL Multi-MW Target: Preliminary Study

    CERN Document Server

    A.Herrera-Martínez and Y.Kadi

    This technical note summarises the design calculations performed within Task #2 of the EURopean Isotope Separation On-Line Radioactive Ion Beam Facility Design Study (EURISOL DS).A preliminary study was carried out in order to determine the optimum value of relevant parameters in the target design. Different scenarios were simulated using the Monte Carlo code FLUKA. Namely, sensitivity studies were performed to assess the impact of the projectile particle energy on the neutronics and energy deposition in the spallation target. The optimum target dimension was also studied for every case as well as the proper target material for the liquid metal proton-to-neutron converter, since mercury and lead-bismuth eutectic are reasonable options. The effect of the beam width on the power densities was also evaluated, taking into account the geometrical limitations of the facility. Finally, a comparison between protons and deuterons as primary particles was performed, acknowledging the limitations of using FLUKA for thes...

  13. Theoretical and Experimental Investigation of Force Estimation Errors Using Active Magnetic Bearings with Embedded Hall Sensors

    DEFF Research Database (Denmark)

    Voigt, Andreas Jauernik; Santos, Ilmar

    2012-01-01

    to ∼ 20% of the nominal air gap the force estimation error is found to be reduced by the linearized force equation as compared to the quadratic force equation, which is supported by experimental results. Additionally the FE model is employed in a comparative study of the force estimation error behavior...... of AMBs by embedding Hall sensors instead of mounting these directly on the pole surfaces, force estimation errors are investigated both numerically and experimentally. A linearized version of the conventionally applied quadratic correspondence between measured Hall voltage and applied AMB force...

  14. Experimental evidences of a large extrinsic spin Hall effect in AuW alloy

    Energy Technology Data Exchange (ETDEWEB)

    Laczkowski, P.; Rojas-Sánchez, J.-C. [Unité Mixte de Physique CNRS/Thales and Université Paris-Sud 11, 91767 Palaiseau (France); INAC/SP2M, CEA-Université Joseph Fourier, F-38054 Grenoble (France); Savero-Torres, W.; Notin, L.; Beigné, C.; Marty, A.; Attané, J.-P.; Vila, L. [INAC/SP2M, CEA-Université Joseph Fourier, F-38054 Grenoble (France); Jaffrès, H.; Reyren, N.; Deranlot, C.; George, J.-M.; Fert, A. [Unité Mixte de Physique CNRS/Thales and Université Paris-Sud 11, 91767 Palaiseau (France)

    2014-04-07

    We report an experimental study of a gold-tungsten alloy (7 at. % W concentration in Au host) displaying remarkable properties for spintronics applications using both magneto-transport in lateral spin valve devices and spin-pumping with inverse spin Hall effect experiments. A very large spin Hall angle of about 10% is consistently found using both techniques with the reliable spin diffusion length of 2 nm estimated by the spin sink experiments in the lateral spin valves. With its chemical stability, high resistivity, and small induced damping, this AuW alloy may find applications in the nearest future.

  15. The beam-handling magnet system of the KEK-PS new experimental hall

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, K.H.; Yamanoi, Y.; Minakawa, M.; Noumi, H.; Ieiri, M.; Kato, Y.; Ishii, H.; Suzuki, Y.; Takasaki, M. (Physics Dept., National Lab. for High Energy Physics, 1-1 Oho, Tsukuba-shi, Ibaraki-ken 305 (JP)); Kato, K.; Yokoi, T. (Electromagnet Div., Tokin Corp., 6-7-1 Koriyama, Taihaku-ku, Sendai 982 (JP))

    1992-01-01

    Construction work of the new counter experimental hall of the KEK 12-GeV Proton Synchrotron (KEK-PS) was completed in December, 1990. The new hall was planned to be a mini kaon factory from the start. The beam-handling magnet system of the new hall was, thus, equipped with newly developed radiation resistant magnets in order to handle a high-intensity proton beam, as reported in MT11. another important point regarding high-intensity beam handling is to realize easy maintenance of the beam line. For this purpose, all magnets of the primary proton beam line were mounted on special base plates on which quick-disconnect devices for electric power, cooling water, and interlock signals were assembled. The vacuum connections of the beam ducts located at both ends of the magnet are also operated remotely. any magnet experiencing trouble can, thus, be easily removed from the beam line and repaired remotely. In this paper the authors summarize the new ideas and new technologies employed in the beam-handling magnet system in the new experimental hall of the KEK-PS, as well as the first beam commissioning results concerning the beam line.

  16. Quantum Hall resistance standard in graphene devices under relaxed experimental conditions

    Science.gov (United States)

    Ribeiro-Palau, R.; Lafont, F.; Brun-Picard, J.; Kazazis, D.; Michon, A.; Cheynis, F.; Couturaud, O.; Consejo, C.; Jouault, B.; Poirier, W.; Schopfer, F.

    2015-11-01

    The quantum Hall effect provides a universal standard for electrical resistance that is theoretically based on only the Planck constant h and the electron charge e. Currently, this standard is implemented in GaAs/AlGaAs, but graphene's electronic properties have given hope for a more practical device. Here, we demonstrate that the experimental conditions necessary for the operation of devices made of high-quality graphene grown by chemical vapour deposition on silicon carbide can be extended and significantly relaxed compared with those for state-of-the-art GaAs/AlGaAs devices. In particular, the Hall resistance can be accurately quantized to within 1 × 10-9 over a 10 T wide range of magnetic flux density, down to 3.5 T, at a temperature of up to 10 K or with a current of up to 0.5 mA. This experimental simplification highlights the great potential of graphene in the development of user-friendly and versatile quantum standards that are compatible with broader industrial uses beyond those in national metrology institutes. Furthermore, the measured agreement of the quantized Hall resistance in graphene and GaAs/AlGaAs, with an ultimate uncertainty of 8.2 × 10-11, supports the universality of the quantum Hall effect. This also provides evidence of the relation of the quantized Hall resistance with h and e, which is crucial for the new Système International d'unités to be based on fixing such fundamental constants of nature.

  17. The supermodule insertion tool of the CMS electromagnetic calorimeter is leaving to the experimental hall located at P5.

    CERN Multimedia

    2006-01-01

    The supermodule insertion tool of the CMS electromagnetic calorimeter is leaving to the experimental hall located at P5. A successful test has been performed with a real supermodule, visible as a silver-coloured box on the last picture.

  18. Beam dynamics studies on the EURISOL driver accelerator

    CERN Document Server

    Facco, A; Paparella, R; Zenere, D; Biarrotte, J. L; Bousson, S; Ponton, A; Berkovits, D; Rodnizki, J; Duperrier, R; Uriot, D; Zvyagintsev, V

    A 1 GeV, 5 mA cw superconducting proton/H- linac, with the capability of supplying cw primary beam to up to four targets simultaneously by means of a new beam splitting scheme, is under study in the framework of the EURISOL DS project which aims to produce an engineering-oriented design of a next generation European Radioactive beam facility. The EURISOL driver accelerator would be able to accelerate also a 100 μA, 3He beam up to 2.2 GeV, and a 5 mA deuteron beam up to 264 MeV. The linac characteristics and the status of the beam dynamics studies will be presented.

  19. High Power CW Superconducting Linacs for EURISOL and XADS

    CERN Document Server

    Biarrotte, J L

    2004-01-01

    A multi-MW superconducting proton linac is proposed as the baseline solution for the EURISOL and the XADS driver accelerators. In the EURISOL project, which studies the design of the next-generation European ISOL facility, it is used to produce both neutron-deficient and neutron-rich exotic nuclei far from the valley of stability. In the PDS-XADS project, which aims to the demonstration of the feasibility of an ADS system for nuclear waste transmutation, it is used to produce the neutron flux required by the associated sub-critical reactor. In this paper, we report the main results and conclusions reached within these preliminary design studies. A special emphasis is given on the on-going and future R&D to be done to accomplish the demonstration of the full technology.

  20. EURISOL Multimegawatt Target Unit - MAFF Configuration: Dosimetry and Activation Studies

    CERN Document Server

    Luis, R; Kadi, Y; Tecchio, L; Kharoua, C; Vaz, P; Ene, D; David, J C; Goncalves, I F; Rocca, R; Romanets, Y; Negoita, F

    2011-01-01

    The EURopean Isotope Separation On-Line Radioactive Ion Beam (EURISOL) project aims at building a facility to produce radioactive ion beams with intensities two to three orders of magnitude higher than those presently available. A 4-MW (1-GeV, 4-mA) proton beam hits a liquid mercury converter, generating, by spallation reactions, high neutron fluxes that induce fission in surrounding fissile targets. In this work, Monte Carlo calculations of dose rate and activation were carried out to identify the necessary shielding and access restrictions for each section of the facility, including maintenance, storage, and remote control spaces. These calculations allowed an optimization of the materials chosen for the assembly, based on the radioprotection issues, while taking into account the desired performance of the system. The results of the design studies indicate that the intended performance parameters (namely neutron fluxes, fission rates, and easy fission target manipulation) of the EURISOL multimegawatt target...

  1. ENGINEERING DESIGN OF THE EURISOL MULTI-MW SPALLATION TARGET

    CERN Document Server

    Adonai Herrera-Martinez*, Yacine Kadi, Morteza Ashrafi-Nik, Karel Samec, Janis Freibergs, Ernests Platacis

    The European Isotope Separation On-Line Radioactive Ion Beam project (EURISOL) is set to design the ‘next-generation’ European Isotope Separation On-Line (ISOL) Radioactive Ion Beam (RIB) facility. It will extend and amplify current research on nuclear physics, nuclear astrophysics and fundamental interactions beyond the year 2010. In EURISOL, four target stations are foreseen, three direct targets of approximately 100 kW of beam power and one multi-MW target assembly, all driven by a high-power particle accelerator. In this high power target station, high-intensity RIBs of neutron-rich isotopes will be obtained by inducing fission in several actinide targets surrounding a liquid metal spallation neutron source. This article summarises the work carried out within Task 2 of the EURISOL Design Study, with special attention to the coupled neutronics of the mercury proton-to-neutron converter and the fission targets. The overall performance of the facility, which will sustain fast neutron fluxes of the order ...

  2. Engineering design of the EURISOL multi-MW spallation target

    CERN Document Server

    Herrera-Martínez, A; Ashrafi-Nik, M; Samec, K; Freibergs, J; Platacis, E

    2007-01-01

    The European Isotope Separation On-Line Radioactive Ion Beam project (EURISOL) is set to design the 'next-generation' European Isotope Separation On-Line (ISOL) Radioactive Ion Beam (RIB) facility. It will extend and amplify current research on nuclear physics, nuclear astrophysics and fundamental interactions beyond the year 2010. In EURISOL, four target stations are foreseen, three direct targets of approximately 100 kW of beam power and one multi-MW target assembly, all driven by a high-power particle accelerator. In this high power target station, high-intensity RIBs of neutron-rich isotopes will be obtained by inducing fission in several actinide targets surrounding a liquid metal spallation neutron source. This article summarises the work carried out within Task 2 of the EURISOL Design Study, with special attention to the coupled neutronics of the mercury proton-to-neutron converter and the fission targets. The overall performance of the facility, which will sustain fast neutron fluxes of the order of 1...

  3. Radiation safety with high power operation of EURISOL

    CERN Document Server

    Ridikas, D

    2007-01-01

    The European Community has launched the design study for a next generation RIB facility able to increase by a few orders of magnitude, the exotic beam intensity and availability in Europe. Forty institutes and laboratories within Europe, North America and Asia are taking part in this consortium, named EURISOL DS project (European Isotope Separation On Line Design Study). In EURISOL, four target stations are foreseen, three direct targets of approximately 100 kW of beam power and one multi-MW (MMW) target assembly, all driven by a high-power particle accelerator. In this MMW station, high-intensity RIBs of neutron-rich isotopes will be obtained by inducing fission in several actinide targets surrounding a liquid metal spallation neutron source. The envisaged increase in RIB intensities at EURISOL means a drastic increase of the radioactive inventory and corresponding radioprotection related issues. Safety aspects of the future RIB production targets (aiming at a few ~1015 fissions/s) will become decisive in li...

  4. Experimental comparison of ring and diamond shaped planar Hall effect bridge magnetic field sensors

    DEFF Research Database (Denmark)

    Henriksen, Anders Dahl; Rizzi, Giovanni; Hansen, Mikkel Fougt

    2015-01-01

    Planar Hall effect magnetic field sensors with ring and diamond shaped geometries are experimentally compared with respect to their magnetic field sensitivity and total signal variation. Theoretically, diamond shaped sensors are predicted to be 41% more sensitive than corresponding ring shaped...... improvement varied from 0% to 35% where the largest improvement was observed for sensor stacks with comparatively strong exchange bias. This is explained by the ring sensors being less affected by shape anisotropy than the diamond sensors. To study the effect of shape anisotropy, we also characterized sensors...... that were surrounded by the magnetic stack with a small gap of 3 lm. These sensors were found to be less effected by shape anisotropy and thus showed higher low-field sensitivities....

  5. Reliability enhancement of the MNP23 magnet in the East Experimental Hall

    CERN Document Server

    Bodart, D

    2012-01-01

    The MNP23 magnet is installed in the East Experimental Hall, which is a part of the PS complex located at CERN in Meyrin. It is a very compact septum magnet used to distribute the beam to the different users in the T9 line. The magnet is installed in an area exposed to high levels of ionizing radiation, and is operated at extreme water pressure and flow rate: such conditions are responsible of recurrent failures which not only produce frequent stops of the facility, but also require interventions in radioactive areas and repair of very radioactive components. Since 1970 three different designs have been attempted, all resulting in a poor reliability. This paper reports about a new modification of the magnet which has been implemented in 2010 and should ensure, in principle, a definitive fix to the problems encountered so far.

  6. EURISOL 100 kW Target Stations Operation and Implications for its Proton Driver Beam

    CERN Document Server

    Noah, Etam; Lettry, Jacques; Lindroos, Mats; Stora, Thierry

    EURISOL, the next European radioactive ion beam (RIB) facility calls for the development of target and ion source assemblies to dissipate deposited heat and to extract and ionize isotopes of interest efficiently. The EURISOL 100 kW direct targets should be designed for a goal lifetime of up to three weeks. Target operation from the moment it is installed on a target station until its exhaustion involves several phases with specific proton beam intensity requirements. This paper discusses operation of the 100 kW targets within the ongoing EURISOL Design Study, with an emphasis on the requirements for the proton driver beam.

  7. Driver beam-led EURISOL target design constraints

    CERN Document Server

    Noah, Etam; Catherall, Richard; Kadi, Yacine; Kharoua, Cyril; Lettry, Jacques

    2008-01-01

    The EURISOL (European Isotope Separation Online) Design Study is addressing new high power target design challenges. A three-step method [1] was proposed to split the high power linac proton driver beam into one $H^{-}$ branch for the 4 $MW_{b}$ [2] mercury target that produces radioactive ion beams (RIB) via spallation neutroninduced fission in a secondary actinide target and three 100 $kW_{b}$ $H^{+}$ branches for the direct targets producing RIBs via fragmentation and spallation reactions. This scheme minimises transient thermo-mechanical stresses on targets and preserves the cw nature of the driver beam in the four branches. The heat load for oxides, carbides, refractory metal foils and liquid metals is driven by the incident proton driver beam while for actinides, exothermic fission reactions are an additional contribution. This paper discusses the constraints that are specific to each class of material and the target design strategies.

  8. EURISOL-DS METEX: CERN SAFETY COMMISSION RECOMMENDATIONS

    CERN Document Server

    J.Gulley (CERN: SC/GS)

    Following a request from M. Lindroos (CERN, AB Department) a visit to the EURISOL mercury target experiment atIPUL (Institute of Physics of University of Latvia) outside Riga in Latvia was organized for 17th September 2008 with J.Gulley (CERN Safety Commission, chemical safety expert) accompanied by K. Samec (CERN, AB Department) and K.Thomsen (Paul Scherrer Institute, PSI). The aim of the visit was to provide general recommendations to IPUL on healthand safety issues related to the use of mercury, with the objective being to reduce exposure to acceptable levels, sofar as is reasonably practicable. An in‐depth process safety study using a systematic risk assessment/hazardidentification technique was outside the scope of the study.

  9. Experimental Observation of the Inverse Spin Hall Effect at Room Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Baoli; Shi, Junren; Wang, Wenxin; Zhao, Hongming; Li, Dafang; /Beijing, Inst. Phys.; Zhang, Shoucheng; /Stanford U., Phys. Dept.; Xue, Qikun; Chen, Dongmin; /Beijing, Inst. Phys.

    2010-03-16

    We observe the inverse spin Hall effect in a two-dimensional electron gas confined in Al-GaAs/InGaAs quantum wells. Specifically, they find that an inhomogeneous spin density induced by the optical injection gives rise to an electric current transverse to both the spin polarization and its gradient. The spin Hall conductivity can be inferred from such a measurement through the Einstein relation and the onsager relation, and is found to have the order of magnitude of 0.5(e{sup 2}/h). The observation is made at the room temperature and in samples with macroscopic sizes, suggesting that the inverse spin Hall effects is a robust macroscopic transport phenomenon.

  10. Experimental Study of Low Density Quantum Hall Fabry-Perot Interferometer

    Science.gov (United States)

    Glinskis, Simas; An, Sanghun; Kang, Woowon; Ocola, Leonidas; Pfeiffer, Loren; West, Ken; Baldwin, Kirk

    2015-03-01

    In this talk we report on study of interference oscillations observed in Fabry-Perot 1 . 5 μm diameter interferometers fabricated from low density, high mobility AlGaAs/GaAs heterostructures. The Fabry-Perot interferometers were fabricated using e-beam lithography and inductively coupled plasma etching to minimize sample damage. Optimization of the quantum point contacts were made by systematically varying the etching depth and monitoring the resistance of the device. So far we have been able to detect clear interference oscillations which are observed at integer quantum Hall states. The interference oscillations occur in the low magnetic field side of the Hall plateaus when there is substantial backscattering at the quantum point contacts. A linear relationship between filled Landau levels and oscillation frequencies establishes that our interferometers are in the Coulomb dominated regime described by the interacting model of quantum Hall Fabry-Perot interferometers. Study of interference oscillations in the fractional quantum Hall states are currently under progress and will be discussed.

  11. Radiation protection design of the APPA experimental hall at the FAIR facility; Strahlenschutzplanung fuer die APPA-Experimentierhalle bei FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Kissel, R.; Braeuning-Demian, A.; Conrad, I.; Evdokimov, A.; Lang, R.; Radon, T.; Zieser, B. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Belousov, A. [NASA, Pasadena, CA (United States). Jet Propulsion Lab.; Fehrenbacher, G. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); FAIR - Facility for Antiproton and Ion Research in Europe GmbH, Darmstadt (Germany)

    2016-07-01

    The APPA-research program (Atomic, Plasma Physics and Applications) comprises experiments for fundamental research in atomic and plasma physics, biophysics and materials research. A dedicated building for the experimental areas including a technical supply annex is planned. In the hall are located four different experimental setups for the four APPA collaborations. Two beamlines for protons and heavy ions, both from the SIS18 and SIS100 synchrotrons are designed. The demands for beam energies, intensities and time structure differ significantly among the experiments. Consequently, different types of beams will be used, for example uranium beams with energies of 2 GeV/nucleon and an intensity of 3 x 10{sup 11} ions/pulse (pulse length of the order of hundred nanoseconds, repetition period 180 seconds). Another experiment requires a proton beam with energies of around 10 GeV and a primary intensity of 5 x 10{sup 10} protons/second. The highest interaction rate is expected by the plasma physics experiments with about 50 % of the primary intensity. The remaining beam will be stopped in a so called beam dump producing further radiation, especially neutron radiation which must be shielded. For the design of the shielding it is necessary to know the spatial distribution of the dose rate for uranium beams and for proton beams with different energies and intensities in the experimental hall. The aim for the shielding layout is to achieve a dose rate below 0,5 μSv/hour at the premises.

  12. Skyrmions and Hall viscosity

    OpenAIRE

    Kim, Bom Soo

    2017-01-01

    We discuss the contribution of magnetic Skyrmions to the Hall viscosity and propose a simple way to identify it in experiments. The topological Skyrmion charge density has a distinct signature in the electric Hall conductivity that is identified in existing experimental data. In an electrically neutral system, the Skyrmion charge density is directly related to the thermal Hall conductivity. These results are direct consequences of the field theory Ward identities, which relate various physica...

  13. Detailed thermal stress analysis of EURISOL Fission target-First concept

    CERN Document Server

    Emeric Brun

    A first concept for the fission boxes of the planned EURISOL facility is analysed from a thermal and structural point of view. The fission boxes in this facility consists in stacks of uranium carbide sheets surrounded by tantalum blanket which are all cooled through radiative heat exchange with a convectively cooled outer stainless steel container.

  14. Experimental measurement of magnetic field null in the vacuum chamber of KTM tokamak based on matrix of 2D Hall sensors

    Energy Technology Data Exchange (ETDEWEB)

    Shapovalov, G.; Chektybayev, B., E-mail: chektybaev@nnc.kz; Sadykov, A.; Skakov, M.; Kupishev, E.

    2016-11-15

    Experimental technique of measurement of magnetic field null region inside of the KTM tokamak vacuum chamber has been developed. Square matrix of 36 2D Hall sensors, which used in the technique, allows carrying out direct measurements of poloidal magnetic field dynamics in the vacuum chamber. To better measuring accuracy, Hall sensor’s matrix was calibrated with commercial Helmholtz coils and in situ measurement of defined magnetic field from poloidal and toroidal coils. Standard KTM Data-Acquisition System has been used to collect data from Hall sensors. Experimental results of measurement of magnetic field null in the vacuum chamber of KTM are shown in the paper. Additionally results of the magnetic field null reconstruction from signals of inductive total flux loops are shown in the paper.

  15. Planar Hall effect bridge magnetic field sensors

    DEFF Research Database (Denmark)

    Henriksen, A.D.; Dalslet, Bjarke Thomas; Skieller, D.H.

    2010-01-01

    Until now, the planar Hall effect has been studied in samples with cross-shaped Hall geometry. We demonstrate theoretically and experimentally that the planar Hall effect can be observed for an exchange-biased ferromagnetic material in a Wheatstone bridge topology and that the sensor signal can...... Hall effect bridge sensors....

  16. EURISOL-DS Multi-MW Target: Cost Analysis for a Proposed Development Phase

    CERN Document Server

    Karel, Samec; Kadi, Yacine; Noah, Etam; Lettry, Jacques; Wagner, Werner; Thomsen, Knud; Patorski, Jacek; Dementevjs, Sergej; Zik, Anatoli; Platacis, Erik

    The EURISOL Design Study has reached final completion and the three institutes, CERN, IPUL and PSI, participating in the development of the Multi-Megawatt target station have met the objective of a reliable, affordable and credible design. The costs involved in the full development of such a target are forecast to reach 200 million €, approximately 15% of the total costs of the EURISOL facility.A breakdown of the costs is presented as well as an outline of future possible R&D efforts aimed at improving reliability and safety of the facility. Another important goal of the proposed R&D is to minimise development risk by focusing resources, early on in the project, on areas identified as presenting a particular risk. An example clearly identified in the study would be the conditioning of the contaminated Mercury, both during the lifetime of the facility and after decommissioning.

  17. FISSION TARGET DESIGN AND INTEGRATION OF NEUTRON CONVERTER FOR EURISOL-DS PROJECT

    CERN Document Server

    J. Bermudez, O. Alyakrinskiy, M. Barbui, F. Negoita, L. Serbina, L.B. Tecchio, E. Udup

    A study of a new fission target for EURISOL-DS is presented with a detailed description of the target. Calculations of several configurations were done using Monte Carlo code FLUKA aimed to obtaining 1015 fissions/s on single target. In Eurisol, neutrons inducing the fission reactions are produced by a proton beam 1GeV-4mA interacting with a mercury converter. The target configuration was customized to gain fission yield from the large amount of low energy neutrons produced by the Hg converter. To this purpose, the fissile material is composed by discs of 238-Uranium carbide enriched with 15 g of 235-U. Studies of several geometries were done in order to define the shape and composition of uranium target, taking into account the mechanical and space constraints

  18. Prospects for advanced electron cyclotron resonance and electron beam ion source charge breeding methods for EURISOL.

    Science.gov (United States)

    Delahaye, P; Galata, A; Angot, J; Ban, G; Celona, L; Choinski, J; Gmaj, P; Jakubowski, A; Jardin, P; Kalvas, T; Koivisto, H; Kolhinen, V; Lamy, T; Lunney, D; Maunoury, L; Porcellato, A M; Prete, G F; Steckiewicz, O; Sortais, P; Thuillier, T; Tarvainen, O; Traykov, E; Varenne, F; Wenander, F

    2012-02-01

    As the most ambitious concept of isotope separation on line (ISOL) facility, EURISOL aims at producing unprecedented intensities of post-accelerated radioactive isotopes. Charge breeding, which transforms the charge state of radioactive beams from 1+ to an n+ charge state prior to post-acceleration, is a key technology which has to overcome the following challenges: high charge states for high energies, efficiency, rapidity and purity. On the roadmap to EURISOL, a dedicated R&D is being undertaken to push forward the frontiers of the present state-of-the-art techniques which use either electron cyclotron resonance or electron beam ion sources. We describe here the guidelines of this R&D.

  19. EURISOL Multi-MW Target: First thermal-hydraulic studies for the EURISOL high-power liquid-metal target using Computational Fluid Dynamics

    CERN Document Server

    Trevor V. Dury

    A scoping study of a mercury target for the Multi-Megawatt Proton-to-Neutron Converter of theEURISOL Project has been made at PSI using the Computational Fluid Dynamics (CFD) codeCFX-4. A mesh model of a horizontal target with forced circulation was used which had beenoriginally proposed for the European Spallation Source (ESS). The heat deposition profilewhich was applied produced a total of 4 MW of heat in the fluid and 13.4 kW in the window,

  20. EURISOL-DS MULTI-MW TARGET ISSUES: BEAM WINDOW AND TRANSVERSE FILM TARGET

    CERN Document Server

    Adonai Herrera-Martínez, Yacine Kadi

    The analysis of the EURISOL-DS Multi_MW target precise geometry (Fig.1) has proved that large fission yields can be achieved with a 4 MW, providing a technically feasible design to evacuate the power deposited in the liquid mercury. Different designs for the mercury flow have been proposed, which maintain its temperature below the boiling point with moderate flow speeds (maximum 4 m/s).

  1. The EURISOL Multi Megawatt Target Station, a liquid metal target for a High Power spallation source.

    CERN Document Server

    Kharoua, C; Blumenfeld, L; Milenkovich, R; Wagner, W; Thomsen, K; Dementjevs, S; Platacis, E; Kravalis, K; Zik, A

    The European Isotope Separation On-Line Radioactive Ion Beam Facility (EURISOL) is set to be the ‘next-generation’ European Isotope Separation On-Line (ISOL) Radioactive Ion Beam (RIB) facility. It will extend and amplify current research in nuclear physics, nuclear astrophysics and fundamental interactions beyond the year 2013.In EURISOL, four target stations are foreseen, three direct targets of approximately 100 kW of beam power and one multi-MW liquid metal proton-to-neutron converter, all driven by a high-power particle accelerator. In the aforementioned multi-MW target assembly, high-intensity RIBs of neutron-rich isotopes will be obtained by inducing fission in several actinide targets surrounding a liquid metal spallation neutron source.This presentation summarises the work carried out for the Multi Megawatt target station of the EURISOL Design Study with particular attention to the coupled neutronic of the liquid converter and the overall performance of the facility, which will sustain fast neutr...

  2. Experimental demonstration of programmable multi-functional spin logic cell based on spin Hall effect

    Science.gov (United States)

    Zhang, X.; Wan, C. H.; Yuan, Z. H.; Fang, C.; Kong, W. J.; Wu, H.; Zhang, Q. T.; Tao, B. S.; Han, X. F.

    2017-04-01

    Confronting with the gigantic volume of data produced every day, raising integration density by reducing the size of devices becomes harder and harder to meet the ever-increasing demand for high-performance computers. One feasible path is to actualize more logic functions in one cell. In this respect, we experimentally demonstrate a prototype spin-orbit torque based spin logic cell integrated with five frequently used logic functions (AND, OR, NOT, NAND and NOR). The cell can be easily programmed and reprogrammed to perform desired function. Furthermore, the information stored in cells is symmetry-protected, making it possible to expand into logic gate array where the cell can be manipulated one by one without changing the information of other undesired cells. This work provides a prospective example of multi-functional spin logic cell with reprogrammability and nonvolatility, which will advance the application of spin logic devices.

  3. EURISOL-DS Multi-MW Target: Study of the WTF Liquid Metal Proton-to-Neutron Converter

    CERN Document Server

    Cyril Kharoua, Yacine Kadi (CERN)Erik Platacis, Kalvis Kravalis (IPUL)

    This technical note summarises the design calculations and experiments performed within Task #2 of the European Isotope Separation On-Line Radioactive Ion Beam Facility Design Study (EURISOL-DS) for the WTF (Windowless Transverse Film) mercury converter.A preliminary study was carried out in order to determine the heat deposition within the mercury and estimate the flow velocity needed in the film. The geometry used is based on previous analysis simulated using the Monte Carlo code FLUKA.Many experiments have been performed at IPUL to optimise an inlet nozzle capable to create a stable film. The experimental program followed to design the film former will be detailed in this report.The results of these calculations are addressing the baseline parameters. Particularly, a 1 GeV proton beam with a sigma ~2 mm Gaussian distribution impacting on a 4x30x40cm long target. The very high power density requires about 5m/s velocity in the region where the heat deposition is maximum.

  4. Transport Signatures of the Hall Viscosity.

    Science.gov (United States)

    Delacrétaz, Luca V; Gromov, Andrey

    2017-12-01

    Hall viscosity is a nondissipative response function describing momentum transport in two-dimensional systems with broken parity. It is quantized in the quantum Hall regime, and contains information about the topological order of the quantum Hall state. Hall viscosity can distinguish different quantum Hall states with identical Hall conductances, but different topological order. To date, an experimentally accessible signature of Hall viscosity is lacking. We exploit the fact that Hall viscosity contributes to charge transport at finite wavelengths, and can therefore be extracted from nonlocal resistance measurements in inhomogeneous charge flows. We explain how to determine the Hall viscosity from such a transport experiment. In particular, we show that the profile of the electrochemical potential close to contacts where current is injected is sensitive to the value of the Hall viscosity.

  5. Status of ionization by radial electron neat adaptation ion source research and development for SPIRAL2 and EURISOL-DS

    CERN Document Server

    Lau, C; Cheikh-Mhamed, M; 10.1063/1.2834316

    2008-01-01

    To take up the most challenging issue of supplying plasma ion source able to produce radioactive beams under extreme SPIRAL-2 and EURISOL irradiation conditions, an R&D program has been initiated to work out IRENA (Ionization by Radial Electrons Neat Adaptation) ion source. Using EBGP (Electron Beam Generated Plasma) concept, the ion source is specifically adapted for thick target and intense irradiation. A validation prototype has been designed, constructed and tested. Results obtained will be presented and commented and IRENA potential discussed, particularly in the framework of the multi-megawatts EURISOL.

  6. Hall C

    Data.gov (United States)

    Federal Laboratory Consortium — Hall C's initial complement of equipment (shown in the figure), includes two general-purpose magnetic spectrometers. The High Momentum Spectrometer (HMS) has a large...

  7. Hall A

    Data.gov (United States)

    Federal Laboratory Consortium — The instrumentation in Hall A at the Thomas Jefferson National Accelerator Facility was designed to study electroand photo-induced reactions at very high luminosity...

  8. 12 April 2013 - The British Royal Academy of Engineering visiting the LHC superconducting magnet test hall with R. Veness and the ATLAS experimental cavern with Collaboration Spokesperson D. Charlton.

    CERN Multimedia

    Jean-Claude Gadmer

    2013-01-01

    12 April 2013 - The British Royal Academy of Engineering visiting the LHC superconducting magnet test hall with R. Veness and the ATLAS experimental cavern with Collaboration Spokesperson D. Charlton.

  9. In-target rare nuclei production rates with EURISOL single-stage configuration

    CERN Document Server

    Chabod, S P; Ene, D; Doré, D; Blideanu, V; David, J.-Ch; Ridikas, D

    2010-01-01

    We conducted calculations of exotic nuclei production rates for 320 configurations of EURISOL (European Isotope Separation On-Line Radioactive Ion Beam Facility) direct spallation targets. The nuclei yields were evaluated using neutron generation-transport codes, completed with evolution calculations to account for nuclei decays and low energy neutron interactions. The yields were optimized for 11 selected elements (Li, Be, Ne, Mg, Ar, Ni, Ga, Kr, Sn, Hg, Fr) and 23 of their isotopes, as function of the target compositions and geometries as well as the incident proton beam energies. For the considered elements, we evaluated the yield distributions as functions of the charge and mass numbers using two different spallation models.

  10. EURISOL-DS Multi-MW Target Unit: Neutronics and shielding performance, dose rate and material activation calculations for the MAFF configuration

    CERN Document Server

    Luis, R; Goncalves, I. F; Vaz, P; Kadi, Y; Kharoua, C; Rocca, R; Tecchio, L; Negoita, F; Ene, D; David, J.C

    One of the EURISOL-DS (The EURopean Isotope Separation On-Line Radioactive Ion Beam – Design Study) objectives is to provide a safe and reliable facility layout meeting the following operational parameters:1.

  11. BEAM DYNAMICS SIMULATIONS OF SARAF ACCELERATOR INCLUDING ERROR PROPAGATION AND IMPLICATIONS FOR THE EURISOL DRIVER

    CERN Document Server

    J. Rodnizki, D. Berkovits, K. Lavie, I. Mardor, A. Shor and Y. Yanay (Soreq NRC, Yavne), K. Dunkel, C. Piel (ACCEL, Bergisch Gladbach), A. Facco (INFN/LNL, Legnaro, Padova), V. Zviagintsev (TRIUMF, Vancouver)

    AbstractBeam dynamics simulations of SARAF (Soreq Applied Research Accelerator Facility) superconducting RF linear accelerator have been performed in order to establish the accelerator design. The multi-particle simulation includes 3D realistic electromagnetic field distributions, space charge forces and fabrication, misalignment and operation errors. A 4 mA proton or deuteron beam is accelerated up to 40 MeV with a moderated rms emittance growth and a high real-estate gradient of 2 MeV/m. An envelope of 40,000 macro-particles is kept under a radius of 1.1 cm, well below the beam pipe bore radius. The accelerator design of SARAF is proposed as an injector for the EURISOL driver accelerator. The Accel 176 MHZ β0=0.09 and β0=0.15 HWR lattice was extended to 90 MeV based on the LNL 352 MHZ β0=0.31 HWR. The matching between both lattices ensures smooth transition and the possibility to extend the accelerator to the required EURISOL ion energy.

  12. Design of the EURISOL multi-MW target assembly radiation and safety issues

    CERN Document Server

    Felcini, Marta; Kadi, Yacine; Otto, Thomas; Tecchio, L

    2006-01-01

    The multi-MW target proposed for the EURISOL facility will be based on fission of uranium (or thorium) compounds to produce rare isotopes far from stability. A two-step process is used for the isotope production. First, neutrons are generated in a liquid mercury target, irradiated by the 1 GeV proton or deuteron beam, provided by the EURISOL linac driver. Then, the neutrons induce fission in a surrounding assembly of uranium carbide. R&D projects on several aspects of the target assembly are ongoing. Key criteria for the target design are a maximum beam power capability of 4 MW, a remote handling system with minimum downtime and maximum reliability, as well as radiation safety, minimization of hazards and the classification of the facility. In the framework of the ongoing radiation characterization and safety studies, radiation transport simulations have been performed to calculate the prompt radiation dose in the target and surrounding materials, as well as to determine shielding material and angle-depen...

  13. Experimental setup for deeply virtual Compton scattering (DVCS) experiment in hall A at Jefferson Laboratory; Dispositif experimental pour la diffusion Compton virtuelle dans le regime profondement inelastique dans le hall A au Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Camsonne, A

    2005-11-15

    The Hall A Deeply Virtual Compton Scattering (DVCS) experiment used the 5.757 GeV polarized electron beam available at Jefferson Laboratory and ran from september until december 2004. Using the standard Hall A left high resolution spectrometer three kinematical points were taken at a fixed x{sub b}(jorken) = 0.32 value for three Q{sup 2} values: 1.5 GeV{sup 2}, 1.91 GeV{sup 2}, 2.32 GeV{sup 2}. An electromagnetic Lead Fluoride calorimeter and a proton detector scintillator array designed to work at a luminosity of 10{sup 37} cm{sup -2}s{sup -1} were added to ensure the exclusivity of the DVCS reaction. In addition to the new detectors new custom electronics was used: a calorimeter trigger module which determines if an electron photon coincidence has occurred and a sampling system allowing to deal with pile-up events during the offline analysis. Finally the data from the kinematic at Q{sup 2} = 2.32 GeV{sup 2} and s = 5.6 GeV{sup 2} allowed to get a preliminary result for the exclusive {pi}{sup 0} electroproduction on the proton. (author)

  14. EURISOL-DS Multi-MW Target: Cavitations detection by the a Laser Doppler Vibrometer

    CERN Document Server

    Cyril Kharoua, Yacine Kadi, Jacques Lettry, Laure Blumenfeld, Karel Samec (CERN)Knud Thomsen, Sergej Dementevjs, Rade Milenkovich (PSI)Anatoli Zik, Erik Platacis (IPUL)

    This technical note summarises the innovative measurement devices used within Task #2 of the European Isotope Separation On-Line Radioactive Ion Beam Facility Design Study (EURISOL-DS) to detect the occurrence of cavitation in liquid metal flowing inside the CGS target mock-up.During the METEX hydraulic experiment carried out at IPUL (Institute of Physics of the University of Latvia), a Laser Doppler Vibrometer was used to characterize the wall vibrations of the beam window at different flow regimes. A series of tests proved the high sensitivity of the LDV to detect the occurrence of cavitation in the liquid metal flowing inside the target. In this context, a dedicated test procedure was developed to establish the validity of using LDV for detecting the onset of cavitation.

  15. Development of the EURISOL Multi-Megawatt Target Station (2005-2009): Executive Summary

    CERN Document Server

    Karel Samec et al. (CERN, IPUL, ITN and PSI)

    Advances in nano-technology, bio-technology, nuclear medicine and the fundamental sciences require a facility to continue improving current capabilities in Europe beyond the year 2010. European competitiveness could benefit greatly from a unique research facility, flexible enough to satisfy users from many different fields of science and technology. The facility would be a valuable asset enabling economies of scale and giving Europe access to cutting-edge technology at the heart of future technological advances of major economic importance. Specialised facilities already operating at full capacity such as SINQ in Switzerland, ILL in France, have demonstrated the benefits of bringing together users from different scientific backgrounds and different countries. Such a research policy may be reinforced by the improved performance and greater reach of the EURISOL project which is aimed at a larger research community. Beneficiaries include the medical sciences such as oncology, medical imagery or studies of protei...

  16. Innovative Waste Management in the Mercury Loop of the EURISOL Multi-MW Converter Target

    CERN Document Server

    PSI: Jörg Neuhausen, Dorothea Schumann, Rugard Dressler, Susanne Horn, Sabrina Lüthi, Stephan Heinitz, Suresh ChirikiCERN: Thierry Stora, Martin Eller

    The choice of mercury as target material imposes various questions concerning the safe operation of such a system that are related to the physical and chemical properties of the target material itself and the nuclear reaction products produced within the target during its life time of several decades. Therefore, a subtask was created within the EURISOL-DS project that is concerned with studying an innovative waste management for the generated radioactivity by chemical means. Such a study strongly depends on the radioactive inventory and its distribution throughout the target and loop system. Radioactive inventory calculations were performed within task 5 [6]. The distribution of nuclear reaction products and their chemical state that can be expected within the target and loop system is one of the topics covered in this report. Based on the results obtained by theoretical studies as well as laboratory scale experiments, the feasibility of waste reduction using chemical methods, both conventional (e.g. leaching...

  17. Mercury purification in the megawatt liquid metal spallation target of EURISOL-DS

    CERN Document Server

    Neuhausen, Joerg; Eller, Martin; Schumann, Dorothea; Eichler, Bernd; Horn, Susanne

    High power spallation targets are going to be used extensively in future research and technical facilities such as spallation neutron sources, neutrino factories, radioactive beam facilities or accelerator driven systems for the transmutation of long-lived nuclear waste. Within EURISOL-DS, a 4 MW liquid metal spallation target is designed to provide neutrons for a fission target, where neutron rich radionuclides will be produced. For the spallation target, mercury is planned to be used as target material. A large amount of radionuclides ranging from atomic number Z=1 to 81 will be produced in the liquid metal during long term irradiation. It is planned to remove those radionuclides by chemical or physicochemical methods to reduce its radioactivity. For the development of a purification procedure, knowledge about the chemical state of the different elements present in the mixture is required. We present a general concept of applicable separation techniques in a target system and show some results of experiment...

  18. Laurance David Hall.

    Science.gov (United States)

    Coxon, Bruce

    2011-01-01

    An account is given of the life, scientific contributions, and passing of Laurance David Hall (1938-2009), including his early history and education at the University of Bristol, UK, and the synthesis and NMR spectroscopy of carbohydrates and other natural products during ∼20 years of research and teaching at the University of British Columbia in Vancouver, Canada. Lists of graduate students, post-doctoral fellows, and sabbatical visitors are provided for this period. Following a generous endowment by Dr. Herchel Smith, Professor Hall built a new Department of Medicinal Chemistry at Cambridge University, UK, and greatly expanded his researches into the technology and applications of magnetic resonance imaging (MRI) and zero quantum NMR. MRI technology was applied both to medical problems such as the characterization of cartilage degeneration in knee joints, the measurement of ventricular function, lipid localization in animal models of atherosclerosis, paramagnetic metal complexes of polysaccharides as contrast agents, and studies of many other anatomical features, but also to several aspects of materials analysis, including food analyses, process control, and the elucidation of such physical phenomena as the flow of liquids through porous media, defects in concrete, and the visualization of fungal damage to wood. Professor Hall's many publications, patents, lectures, and honors and awards are described, and also his successful effort to keep the Asilomar facility in Pacific Grove, California as the alternating venue for the annual Experimental NMR Conference. Two memorial services for Professor Hall are remembered. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. EURISOL Desktop Assistant Toolkit (EDAT): A modeling, simulation and visualization support to the preliminary radiological assessment of RIB projects

    Science.gov (United States)

    Vamanu, D.; Vamanu, B.; Acasandrei, V.; Maceika, E.; Plukis, A.

    2010-04-01

    The paper describes an approach taken within the EURISOL-DS project (European Isotope Separation Online Radioactive Ion Beam Facility) to a number of safety and radioprotection issues raised by the advent of radioactive ion beam facilities in the cutting edge area of particle accelerators. The ensuing solution emerged from a collaborative effort of the investigating team-in-charge, affiliated with the Horia Hulubei National Institute of Physics and Nuclear Engineering in Bucharest, with expert colleagues at the Physics Institute in Vilnius, and at CERN, within the participation in the EURISOL-DS project, Sub-Task B: Radiation, Activation, Shielding and Doses of the Safety and Radioprotection, Task 5. The work was primarily geared towards the identification of knowledge and data in line with validated, accepted and nationally/internationally recommended methods and models of radiological assessment applied within the nuclear power fuel cycle, deemed to be suitable for assessing health and environmental impact of accelerator operations as well. As a result, a computer software platform code-named “EURISOL Desktop Assistant Toolkit” was developed. The software is, inter alia, capable to assess radiation doses from pure or isotopically mixed open or shielded point sources; emergency response-relevant doses; critical group doses via complex pathways, including the air, the water, and the food chain and derived release limits for the normal, routine operations of nuclear facilities. Dedicated data libraries and GIS (Geographic Information System) facilities assist the input/output operations.

  20. Experimental study of nonlinear interaction of plasma flow with charged thin current sheets: 2. Hall dynamics, mass and momentum transfer

    Directory of Open Access Journals (Sweden)

    S. Savin

    2006-01-01

    cyclotron one, in extended turbulent zones are a promising alternative in place of the usual parallel electric fields invoked in the macro-reconnection scenarios. Further cascading towards electron scales is supposed to be due to unstable parallel electron currents, which neutralize the potential differences, either resulted from the ion- burst interactions or from the inertial drift. The complicated MP shape suggests its systematic velocity departure from the local normal towards the average one, inferring domination for the MP movement of the non-local processes over the small-scale local ones. The measured Poynting vector indicates energy transmission from the MP into the upstream region with the waves triggering impulsive downstream flows, providing an input into the local flow balance and the outward movement of the MP. Equating the transverse electric field inside the MP TCS by the Hall term in the Ohm's law implies a separation of the different plasmas primarily by the Hall current, driven by the respective part of the TCS surface charge. The Hall dynamics of TCS can operate either without or as a part of a macro-reconnection with the magnetic field annihilation.

  1. Observation of the Zero Hall Plateau in a Quantum Anomalous Hall Insulator

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yang; Feng, Xiao; Ou, Yunbo; Wang, Jing; Liu, Chang; Zhang, Liguo; Zhao, Dongyang; Jiang, Gaoyuan; Zhang, Shou-Cheng; He, Ke; Ma, Xucun; Xue, Qi-Kun; Wang, Yayu

    2015-09-16

    We report experimental investigations on the quantum phase transition between the two opposite Hall plateaus of a quantum anomalous Hall insulator. We observe a well-defined plateau with zero Hall conductivity over a range of magnetic field around coercivity when the magnetization reverses. The features of the zero Hall plateau are shown to be closely related to that of the quantum anomalous Hall effect, but its temperature evolution exhibits a significant difference from the network model for a conventional quantum Hall plateau transition. We propose that the chiral edge states residing at the magnetic domain boundaries, which are unique to a quantum anomalous Hall insulator, are responsible for the novel features of the zero Hall plateau.

  2. Quantum critical Hall exponents

    CERN Document Server

    Lütken, C A

    2014-01-01

    We investigate a finite size "double scaling" hypothesis using data from an experiment on a quantum Hall system with short range disorder [1-3]. For Hall bars of width w at temperature T the scaling form is w(-mu)T(-kappa), where the critical exponent mu approximate to 0.23 we extract from the data is comparable to the multi-fractal exponent alpha(0) - 2 obtained from the Chalker-Coddington (CC) model [4]. We also use the data to find the approximate location (in the resistivity plane) of seven quantum critical points, all of which closely agree with the predictions derived long ago from the modular symmetry of a toroidal sigma-model with m matter fields [5]. The value nu(8) = 2.60513 ... of the localisation exponent obtained from the m = 8 model is in excellent agreement with the best available numerical value nu(num) = 2.607 +/- 0.004 derived from the CC-model [6]. Existing experimental data appear to favour the m = 9 model, suggesting that the quantum Hall system is not in the same universality class as th...

  3. Studies on the benefit of extended capabilities of the driver accelerator for EURISOL

    CERN Document Server

    Schmidt, K.-H; Lukic, S; Ricciardi, M. V; Veselsky, M

    Possibilities are studied for the optimization of EURISOL rare nuclide yields in specific regions of the nuclear chart by building the driver accelerator in a way that enables accelerating several additional beam species, to specific energies, besides the baseline 1 GeV proton beam. Nuclide production rates with these driver beams are compared to the production rates expected with the 1 GeV proton beam in the direct-production and the high-power-converter scenarios. Arguments are presented to show that several additional driver-beam scenarios could provide substantial benefit for the production of nuclides in specific regions of the nuclear chart. The quantitative values in this report are preliminary in the sense that they depend on assumptions on the values of some key parameters which are subject to technical development, e.g. maximum beam intensities or limits on the target heat load. The different scenarios are compared from the aspect of nuclide yields. The arguments presented here, when complemented by...

  4. Design of a compact high-power neutron source—The EURISOL converter target

    Science.gov (United States)

    Samec, K.; Milenković, R. Ž.; Dementjevs, S.; Ashrafi-Nik, M.; Kalt, A.

    2009-07-01

    The EURISOL project, a multi-lateral initiative supported by the EU, aims to develop a facility to achieve high yields of isotopes in radioactive beams and extend the variety of these isotopes towards more exotic types. The neutron source at the heart of the projected facility is designed to generate isotopes by fissioning uranium carbide (UC) targets arranged around a 4 MW neutron source. For reasons of efficiency, it is essential that the neutron source be as compact as possible, to avoid losing neutrons by absorption whilst maximising the escaping neutron flux, thus increasing the number of fissions in the UC targets. The resulting configuration presents a challenge in terms of absorbing heat deposition rates of up to 8 kW/cm3 in the neutron source; it has led to the selection of liquid metal for the target material. The current paper presents the design of a compact high-power liquid-metal neutron source comprising a specially optimised beam window concept. The design is based on two-dimensional (2D) and three-dimensional (3D) computational fluid dynamics (CFD) numerical simulations for thermal hydraulics and hydraulic aspects, as well as finite-element method (FEM) for assessing thermo-mechanical stability. The resulting optimised design was validated by a dedicated hydraulic test under realistic flow conditions. A full-scale mock-up was built at the Paul Scherrer Institute (PSI) and was tested at the Institute of Physics of the University of Latvia (IPUL).

  5. Design of a compact high-power neutron source-The EURISOL converter target

    Energy Technology Data Exchange (ETDEWEB)

    Samec, K. [Paul Scherrer Institut, Villigen, 5232 Villigen (Switzerland)], E-mail: karel.samec@psi.ch; Milenkovic, R.Z.; Dementjevs, S.; Ashrafi-Nik, M.; Kalt, A. [Paul Scherrer Institut, Villigen, 5232 Villigen (Switzerland)

    2009-07-21

    The EURISOL project, a multi-lateral initiative supported by the EU, aims to develop a facility to achieve high yields of isotopes in radioactive beams and extend the variety of these isotopes towards more exotic types. The neutron source at the heart of the projected facility is designed to generate isotopes by fissioning uranium carbide (UC) targets arranged around a 4 MW neutron source. For reasons of efficiency, it is essential that the neutron source be as compact as possible, to avoid losing neutrons by absorption whilst maximising the escaping neutron flux, thus increasing the number of fissions in the UC targets. The resulting configuration presents a challenge in terms of absorbing heat deposition rates of up to 8 kW/cm{sup 3} in the neutron source; it has led to the selection of liquid metal for the target material. The current paper presents the design of a compact high-power liquid-metal neutron source comprising a specially optimised beam window concept. The design is based on two-dimensional (2D) and three-dimensional (3D) computational fluid dynamics (CFD) numerical simulations for thermal hydraulics and hydraulic aspects, as well as finite-element method (FEM) for assessing thermo-mechanical stability. The resulting optimised design was validated by a dedicated hydraulic test under realistic flow conditions. A full-scale mock-up was built at the Paul Scherrer Institute (PSI) and was tested at the Institute of Physics of the University of Latvia (IPUL)

  6. Mesoscopic effects in the quantum Hall regime

    Indian Academy of Sciences (India)

    may be of relevance to experimentally observed transitions between quantum Hall states and the insulating phase ... In this paper, we discuss the mesoscopic effects in the quantum Hall regime, in particu- lar the effects of ...... finite sizes, due to the presence of long length scales, quantum interference effects can be cut-off at ...

  7. The Eurisol report. A feasibility study for a European isotope-separation-on-line radioactive ion beam facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-12-01

    The Eurisol project aims at a preliminary design study of the next-generation European isotope separation on-line (ISOL) radioactive ion beam (RIB) facility. In this document, the scientific case of high-intensity RIBs using the ISOL method is first summarised, more details being given in appendix A. It includes: 1) the study of atomic nuclei under extreme and so-far unexplored conditions of composition (i.e. as a function of the numbers of protons and neutrons, or the so-called isospin), rotational angular velocity (or spin), density and temperature, 2) the investigation of the nucleosynthesis of heavy elements in the Universe, an important part of nuclear astrophysics, 3) a study of the properties of the fundamental interactions which govern the properties of the universe, and in particular of the violation of some of their symmetries, 4) potential applications of RIBs in solid-state physics and in nuclear medicine, for example, where completely new fields could be opened up by the availability of high-intensity RIBs produced by the ISOL method. The proposed Eurisol facility is then presented, with particular emphasis on its main components: the driver accelerator, the target/ion-source assembly, the mass-selection system and post-accelerator, and the required scientific instrumentation. Special details of these components are given in appendices B to E, respectively. The estimates of the costs of the Eurisol, construction and running costs, have been performed in as much details as is presently possible. The total capital cost (installation manpower cost included) of the project is estimated to be of the order of 630 million Euros within 20%. In general, experience has shown that operational costs per annum for large accelerator facilities are about 10% of the capital cost. (A.C.)

  8. EURISOL-DS Multi-MW Target: Thermal Behaviour of the fission target disk arrangement inspired by the MAFF project

    CERN Document Server

    Cyril Kharoua, Yacine Kadi and the EURISOL-DS Task#2 collaboration

    This technical note summarises the design calculations performed within Task #2 of the European Isotope Separation On-Line Radioactive Ion Beam Facility Design Study (EURISOL-DS) [1] for the thermal behaviour of the fission target.A preliminary study was carried out in order to determine the heat deposition within the fissile material and estimate the temperature rise. This new solution takes into account the problems related to effusion/diffusion of radioactive isotopes inside a thick target. To enhance the extraction rates and the thermal behaviour it is proposed to study a solution where the fissile material is split into an arrangement of disks.

  9. 'EURISOL Desktop Assistant Toolkit' (EDAT): a modeling, simulation and visualization support to the preliminary radiological assessment of RIB projects

    CERN Document Server

    Vamanu, D; Acasandrei, V; Plukis, A; Maceika, E

    The paper describes an approach taken within EURISOL-DS project (European Isotope Separation On-Line Radioactive Ion Beam Facility) to a number of safety and radioprotection issues raised by the advent of radioactive ion beam facilities in the cutting edge area of particle accelerators. The ensuing solution emerged from a collaborative effort of the investigating team-in-charge, affiliated with ‘Horia Hulubei’ National Institute of Physics and Nuclear Engineering in Bucharest, with expert colleagues at the Physics Institute in Vilnius, and at CERN.

  10. EURISOL-DS Multi-MW Target Preliminary Study of the Thermal Behaviour of the fission target inspired by the MAFF project

    CERN Document Server

    Cyril Kharoua, Yacine Kadi

    This technical note summarises the design calculations performed within Task #2 of the European Isotope Separation On-Line Radioactive Ion Beam Facility Design Study (EURISOL-DS) [1] for the thermal behaviour of the fission target. A preliminary study was carried out in order to determine the heat deposition within the fissile material and estimate the temperature raise.

  11. The fluctuation Hall conductivity and the Hall angle in type-II superconductor under magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Tinh, Bui Duc, E-mail: tinhbd@hnue.edu.vn [Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam); Department of Physics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi (Viet Nam); Hoc, Nguyen Quang; Thu, Le Minh [Department of Physics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi (Viet Nam)

    2016-02-15

    Highlights: • The time-dependent Ginzburg–Landau was used to calculate fluctuation Hall conductivity and Hall angle in type-II superconductor in 2D and 3D. • We obtain analytical expressions for the fluctuation Hall conductivity and the Hall angle summing all Landau levels without need to cutoff higher Landau levels to treat arbitrary magnetic field. • The results were compared to the experimental data on YBCO. - Abstract: The fluctuation Hall conductivity and the Hall angle, describing the Hall effect, are calculated for arbitrary value of the imaginary part of the relaxation time in the frame of the time-dependent Ginzburg–Landau theory in type II-superconductor with thermal noise describing strong thermal fluctuations. The self-consistent Gaussian approximation is used to treat the nonlinear interaction term in dynamics. We obtain analytical expressions for the fluctuation Hall conductivity and the Hall angle summing all Landau levels without need to cutoff higher Landau levels to treat arbitrary magnetic field. The results are compared with experimental data on high-T{sub c} superconductor.

  12. The quantum Hall effects: Philosophical approach

    Science.gov (United States)

    Lederer, P.

    2015-05-01

    The Quantum Hall Effects offer a rich variety of theoretical and experimental advances. They provide interesting insights on such topics as gauge invariance, strong interactions in Condensed Matter physics, emergence of new paradigms. This paper focuses on some related philosophical questions. Various brands of positivism or agnosticism are confronted with the physics of the Quantum Hall Effects. Hacking's views on Scientific Realism, Chalmers' on Non-Figurative Realism are discussed. It is argued that the difficulties with those versions of realism may be resolved within a dialectical materialist approach. The latter is argued to provide a rational approach to the phenomena, theory and ontology of the Quantum Hall Effects.

  13. EURISOL-DS Multi-MW Target Preliminary Study of the Liquid Metal Proton-to-Neutron Converter

    CERN Document Server

    Herrera-Martínez, A; CERN. Geneva. AB Department

    2006-01-01

    This technical note summarises the design calculations performed within Task #2 of the European Isotope Separation On-Line Radioactive Ion Beam Facility Design Study (EURISOL-DS) [1]. A preliminary study was carried out in order to determine the optimum value of relevant parameters in the target design. Different scenarios were simulated using the Monte Carlo code FLUKA [2]. Namely, sensitivity studies were performed to assess the impact of the projectile particle energy on the neutronics and energy deposition in the spallation target. The optimal target dimensions were also studied for every case as well as the proper target material for the liquid metal proton-to-neutron converter, since mercury and lead-bismuth eutectic are reasonable options. The effect of the beam width on the power densities was also evaluated, taking into account the geometrical limitations of the facility. Finally, a comparison between protons and deuterons as primary particles was performed, acknowledging the limitations of using FLU...

  14. EURISOL-DS Multi-MWatt Hg Target: Neutron flux and fission rate calculations for the MAFF configuration

    CERN Document Server

    Romanets, Y; Vaz, P; Herrera-Martinez, A; Kadi, Y; Kharoua, C; Lettry, J; Lindroos, M

    The EURISOL (The EURopean Isotope Separation On-Line Radioactive Ion Beam) project aims at producing high intensity radioactive ion beams produced by neutron induced fission on a fissile target (235U) surrounding a liquid mercury converter. A proton beam of 1 GeV and 4 MW impinges on the Hg converter generating by spallation reactions high neutron fluxes. In this work the state-of-the-art Monte Carlo codes MCNPX and FLUKA were used to assess the neutronics performance of the system which geometry, inspired from the MAFF concept, allows a versatile manipulation of the fission targets. The objective of the study was to optimize the geometry of the system and the materials used in the fuel and reflector elements of the system, in order to achieve the highest possible fission rate.

  15. Quantum Spin Hall Effect

    Energy Technology Data Exchange (ETDEWEB)

    Bernevig, B.Andrei; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-01-15

    The quantum Hall liquid is a novel state of matter with profound emergent properties such as fractional charge and statistics. Existence of the quantum Hall effect requires breaking of the time reversal symmetry caused by an external magnetic field. In this work, we predict a quantized spin Hall effect in the absence of any magnetic field, where the intrinsic spin Hall conductance is quantized in units of 2 e/4{pi}. The degenerate quantum Landau levels are created by the spin-orbit coupling in conventional semiconductors in the presence of a strain gradient. This new state of matter has many profound correlated properties described by a topological field theory.

  16. 27 Febuary 2012 - US DoE Associate Director of Science for High Energy Physics J. Siegrist visiting the LHC superconducting magnet test hall with adviser J.-P. Koutchouk and engineer M. Bajko; in CMS experimental cavern with Spokesperson J. Incadela;in ATLAS experimental cavern with Deputy Spokesperson A. Lankford; in ALICE experimental cavern with Spokesperson P. Giubellino; signing the guest book with Director for Accelerators and Technology S. Myers.

    CERN Multimedia

    Laurent Egli

    2012-01-01

    27 Febuary 2012 - US DoE Associate Director of Science for High Energy Physics J. Siegrist visiting the LHC superconducting magnet test hall with adviser J.-P. Koutchouk and engineer M. Bajko; in CMS experimental cavern with Spokesperson J. Incadela;in ATLAS experimental cavern with Deputy Spokesperson A. Lankford; in ALICE experimental cavern with Spokesperson P. Giubellino; signing the guest book with Director for Accelerators and Technology S. Myers.

  17. Halls Lake 1990

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Salt marsh habitats along the shoreline of Halls Lake are threatened by wave erosion, but the reconstruction of barrier islands to reduce this erosion will modify or...

  18. Topological honeycomb magnon Hall effect: A calculation of thermal Hall conductivity of magnetic spin excitations

    Energy Technology Data Exchange (ETDEWEB)

    Owerre, S. A., E-mail: solomon@aims.ac.za [African Institute for Mathematical Sciences, 6 Melrose Road, Muizenberg, Cape Town 7945, South Africa and Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo, Ontario N2L 2Y5 (Canada)

    2016-07-28

    Quite recently, the magnon Hall effect of spin excitations has been observed experimentally on the kagome and pyrochlore lattices. The thermal Hall conductivity κ{sup xy} changes sign as a function of magnetic field or temperature on the kagome lattice, and κ{sup xy} changes sign upon reversing the sign of the magnetic field on the pyrochlore lattice. Motivated by these recent exciting experimental observations, we theoretically propose a simple realization of the magnon Hall effect in a two-band model on the honeycomb lattice. The magnon Hall effect of spin excitations arises in the usual way via the breaking of inversion symmetry of the lattice, however, by a next-nearest-neighbour Dzyaloshinsky-Moriya interaction. We find that κ{sup xy} has a fixed sign for all parameter regimes considered. These results are in contrast to the Lieb, kagome, and pyrochlore lattices. We further show that the low-temperature dependence on the magnon Hall conductivity follows a T{sup 2} law, as opposed to the kagome and pyrochlore lattices. These results suggest an experimental procedure to measure thermal Hall conductivity within a class of 2D honeycomb quantum magnets and ultracold atoms trapped in a honeycomb optical lattice.

  19. Quantum Hall effect in multi-terminal suspended graphene devices

    Science.gov (United States)

    Ghahari, Fereshte; Zhao, Yue; Bolotin, Kirill; Kim, Philip

    2010-03-01

    The integer and fractional quantum hall effects have been already observed in two terminal suspended graphene devices. However in this two probe device geometry, mixing between magnetoresistance ρxx and Hall resistance ρxy for incompletely developed quantum Hall states leads to substantial deviation of conductance plateaus values. In this talk, we present the experimental results from four terminal suspended graphene devices. The quality of quantum Hall effect will be discussed in muti-terminal device geometry in conjunction with the current-induced annealing process to improve the quality of graphene samples.

  20. Measurement and analysis of turbulent liquid metal flow in a high-power spallation neutron source-EURISOL

    CERN Document Server

    Samec, K; Blumenfeld, L; Kharoua, C; Dementjevs, S; Milenkovic, R Z

    2011-01-01

    The European Isotope Separation On-Line (EURISOL) design study completed in 2009 examined means of producing exotic nuclei for fundamental research. One of the critical components identified in the study was a high-power neutron spallation source in which a target material is impacted by a proton beam producing neutrons by a process known as spallation. Due to the high heat power deposition, liquid metal, in this case mercury, is the only viable choice as target material. Complex issues arise from the use of liquid metal. It is characterised by an unusually low Prandtl number and a higher thermal expansivity than conventional fluids. The turbulence structure in LM is thereby affected and still an object of intense research, hampered in part by measurement difficulties. The use of Computational Fluid Dynamics (CFD) allowed a satisfactory design for the neutron source to be found rapidly with little iteration. However it was feared that the development of the boundary layer and associated turbulence would not b...

  1. Extraordinary hall balance

    Science.gov (United States)

    Zhang, S. L.; Liu, Y.; Collins-McIntyre, L. J.; Hesjedal, T.; Zhang, J. Y.; Wang, S. G.; Yu, G. H.

    2013-01-01

    Magnetoresistance (MR) effects are at the heart of modern information technology. However, future progress of giant and tunnelling MR based storage and logic devices is limited by the usable MR ratios of currently about 200% at room-temperature. Colossal MR structures, on the other hand, achieve their high MR ratios of up to 106% only at low temperatures and high magnetic fields. We introduce the extraordinary Hall balance (EHB) and demonstrate room-temperature MR ratios in excess of 31,000%. The new device concept exploits the extraordinary Hall effect in two separated ferromagnetic layers with perpendicular anisotropy in which the Hall voltages can be configured to be carefully balanced or tipped out of balance. Reprogrammable logic and memory is realised using a single EHB element. PACS numbers: 85.75.Nn,85.70.Kh,72.15.Gd,75.60.Ej. PMID:23804036

  2. ENCOURAGING ELECTRICITY SAVINGS IN A UNIVERSITY RESIDENTIAL HALL THROUGH A COMBINATION OF FEEDBACK, VISUAL PROMPTS, AND INCENTIVES

    Science.gov (United States)

    Bekker, Marthinus J; Cumming, Tania D; Osborne, Nikola K.P; Bruining, Angela M; McClean, Julia I; Leland, Louis S

    2010-01-01

    This experiment investigated the combined use of visual prompts, daily feedback, and rewards to reduce electricity consumption in a university residential hall. After a 17-day baseline period, the experimental intervention was introduced in the intervention hall, and no change was made in the control hall. Energy usage decreased in the intervention hall, but energy usage did not change appreciably in the control hall. In the intervention hall, mean daytime and nighttime savings were 16.2% and 10.7%, respectively, compared to savings of 3.8% (day) and 6.5% (night) in the control hall. PMID:21119909

  3. HEDSA Town Hall Meeting

    Science.gov (United States)

    Afeyan, Bedros

    2017-10-01

    HEDSA will hold its Town Hall meeting on Wednesday October 25 at 12:30pm in the Wisconsin Center. The new steering committee members and HEDSA leadership will be announced. A report will be given on 2017 HEDSA activities. Program Managers from Federal Funding Agencies such as OFES, NNSA, AFOSR and NSF will provide updates on the state of sponsored research in HED plasmas, and to engage the community in an open dialogue. The HEDSA Town Hall is a ``bring your own lunch'' meeting. Current members of HEDSA and all graduate students are strongly encouraged to attend. To join HEDSA please visit HEDSA.org

  4. Air temperature gradient in large industrial hall

    Science.gov (United States)

    Karpuk, Michał; Pełech, Aleksander; Przydróżny, Edward; Walaszczyk, Juliusz; Szczęśniak, Sylwia

    2017-11-01

    In the rooms with dominant sensible heat load, volume airflow depends on many factors incl. pre-established temperature difference between exhaust and supply airflow. As the temperature difference is getting higher, airflow volume drops down, consequently, the cost of AHU is reduced. In high industrial halls with air exhaust grids located under the ceiling additional temperature gradient above working zone should be taken into consideration. In this regard, experimental research of the vertical air temperature gradient in high industrial halls were carried out for the case of mixing ventilation system The paper presents the results of air temperature distribution measurements in high technological hall (mechanically ventilated) under significant sensible heat load conditions. The supply airflow was delivered to the hall with the help of the swirl diffusers while exhaust grids were located under the hall ceiling. Basing on the air temperature distribution measurements performed on the seven pre-established levels, air temperature gradient in the area between 2.0 and 7.0 m above the floor was calculated and analysed.

  5. The Monty Hall Dilemma

    NARCIS (Netherlands)

    Barteld Kooi, [No Value

    2006-01-01

    Samenvatting: In het begin van de jaren negentig brak een wereldwijde discussie los over een probleem dat in het Engels 'The Monty Hall Dilemma' wordt genoemd. Marilyn vos Savant, die in het Guinness Book of World Records wordt genoemd als degene met het

  6. Halle, Prof. Thore Gustaf.

    Indian Academy of Sciences (India)

    Home; Fellowship. Fellow Profile. Elected: 1947 Honorary. Halle, Prof. Thore Gustaf. Date of birth: 25 September 1884. Date of death: 12 May 1964. YouTube; Twitter; Facebook; Blog. Academy News. IAS Logo. Theory Of Evolution. Posted on 23 January 2018. Joint Statement by the Three Science Academies of India on ...

  7. Hall Sweet Home

    Science.gov (United States)

    Oguntoyinbo, Lekan

    2011-01-01

    Many urban and commuter universities have their sights set on students who are unlikely to connect with the college and likely to fail unless the right strategies are put in place to help them graduate. In efforts to improve retention rates, commuter colleges are looking to an unusual suspect: residence halls. The author discusses how these…

  8. 18 January 2011 - Ing. Vittorio Malacalza, ASG Superconductors S.p.A, Italy in the LHC superconducting magnet test hall with Deputy Department Head L. Rossi, in the LHC tunnel at Point 5 and CMS experimental area with Spokesperson G. Tonelli.

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    18 January 2011 - Ing. Vittorio Malacalza, ASG Superconductors S.p.A, Italy in the LHC superconducting magnet test hall with Deputy Department Head L. Rossi, in the LHC tunnel at Point 5 and CMS experimental area with Spokesperson G. Tonelli.

  9. CERN News: Slow ejection efficiency at the PS; Vacuum tests on the ISR; Fire in the neutrino beam-line; Prototype r.f . cavity for the Booster; Crane-bridge in ISR experimental hall; Modifications to the r.f . system at the PS

    CERN Multimedia

    1969-01-01

    CERN News: Slow ejection efficiency at the PS; Vacuum tests on the ISR; Fire in the neutrino beam-line; Prototype r.f . cavity for the Booster; Crane-bridge in ISR experimental hall; Modifications to the r.f . system at the PS

  10. Unconventional quantum Hall effect in Floquet topological insulators

    KAUST Repository

    Tahir, M.

    2016-07-27

    We study an unconventional quantum Hall effect for the surface states of ultrathin Floquet topological insulators in a perpendicular magnetic field. The resulting band structure is modified by photon dressing and the topological property is governed by the low-energy dynamics of a single surface. An exchange of symmetric and antisymmetric surface states occurs by reversing the lights polarization. We find a novel quantum Hall state in which the zeroth Landau level undergoes a phase transition from a trivial insulator state, with Hall conductivity αyx = 0 at zero Fermi energy, to a Hall insulator state with αyx = e2/2h. These findings open new possibilities for experimentally realizing nontrivial quantum states and unusual quantum Hall plateaus at (±1/2,±3/2,±5/2, ...)e2/h. © 2016 IOP Publishing Ltd Printed in the UK.

  11. Magnetometria por efeito Hall

    OpenAIRE

    Fernández Pinto, Janeth

    2010-01-01

    Construímos um magnetômetro utilizando dois sensores Hall de GaAs (Toshiba- THS118) operando em um modo diferencial. Cada sensor tem um circuito préamplificador associado a ele e a diferencia de voltagem entre eles é amplificada com um ganho variável de 30 - 7000. Os sensores Hall têm dimensões típicas de 1,5 x 1,7 x 0,6 mm3 e foram montados separados um do outro de 0,71 mm, em uma configuração espacial planar. O magnetômetro foi testado usando tanto correntes dc (Idc) quant...

  12. Relativistic Hall effect.

    Science.gov (United States)

    Bliokh, Konstantin Y; Nori, Franco

    2012-03-23

    We consider the relativistic deformation of quantum waves and mechanical bodies carrying intrinsic angular momentum (AM). When observed in a moving reference frame, the centroid of the object undergoes an AM-dependent transverse shift. This is the relativistic analogue of the spin-Hall effect, which occurs in free space without any external fields. Remarkably, the shifts of the geometric and energy centroids differ by a factor of 2, and both centroids are crucial for the Lorentz transformations of the AM tensor. We examine manifestations of the relativistic Hall effect in quantum vortices and mechanical flywheels and also discuss various fundamental aspects of this phenomenon. The perfect agreement of quantum and relativistic approaches allows applications at strikingly different scales, from elementary spinning particles, through classical light, to rotating black holes.

  13. The quantum Hall impedance standard

    Science.gov (United States)

    Schurr, J.; Kučera, J.; Pierz, K.; Kibble, B. P.

    2011-02-01

    Alternating current measurements of double-shielded quantum Hall devices have revealed a fascinating property of which only a quantum effect is capable: it can detect its own frequency dependence and convert it to a current dependence which can be used to eliminate both of them. According to an experimentally verified model, the residual frequency dependence is smaller than the measuring uncertainty of 1.3 × 10-9 kHz-1. In this way, a highly precise quantum standard of impedance can be established, without having to correct for any calculated frequency dependence and without the need for any artefact with a calculated frequency dependence. Nothing else like that is known to us and we hope that our results encourage other national metrology institutes to also apply it to impedance metrology and further explore its beautiful properties.

  14. TCC2, the target hall of the SPS North Area

    CERN Multimedia

    1978-01-01

    In the foreground can be seen the three proton beam branches leading to the targets enclosed in an assembly of iron blocks with the positioning mechanism on top. In the background, the six secondary beams lead off towards the experimental areas, H2/P2, H4/E4/P4 (from T2 via TT81) and H6, H8 (from T4 via TT82) towards the hall EHN1, M2 from T6 via TT83 towards the hall EHN2. The development proton beam line P0 leads off from T4 via TT83 towards TCC8 and hall ECN3 (NAHIF).

  15. Antiferromagnetic skyrmion crystals: Generation, topological Hall, and topological spin Hall effect

    Science.gov (United States)

    Göbel, Börge; Mook, Alexander; Henk, Jürgen; Mertig, Ingrid

    2017-08-01

    Skyrmions are topologically nontrivial, magnetic quasiparticles that are characterized by a topological charge. A regular array of skyrmions, a skyrmion crystal (SkX), features the topological Hall effect (THE) of electrons, which, in turn, gives rise to the Hall effect of the skyrmions themselves. It is commonly believed that antiferromagnetic skyrmion crystals (AFM-SkXs) lack both effects. In this Rapid Communication, we present a generally applicable method to create stable AFM-SkXs by growing a two-sublattice SkX onto a collinear antiferromagnet. As an example we show that both types of skyrmion crystals, conventional and antiferromagnetic, exist in honeycomb lattices. While AFM-SkXs with equivalent lattice sites do not show a THE, they exhibit a topological spin Hall effect. On top of this, AFM-SkXs on inequivalent sublattices exhibit a nonzero THE, which may be utilized in spintronics devices. Our theoretical findings call for experimental realization.

  16. Hall viscosity: A link between quantum Hall systems, plasmas and liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lingam, Manasvi, E-mail: manasvi@physics.utexas.edu

    2015-07-17

    In this Letter, the assumption of two simple postulates is shown to give rise to a Hall viscosity term via an action principle formulation. The rationale behind the two postulates is clearly delineated, and the connections to an intrinsic angular momentum are emphasized. By employing this methodology, it is shown that Hall viscosity appears in a wide range of fields, and the interconnectedness of quantum Hall systems, plasmas and nematic liquid crystals is hypothesized. Potential avenues for experimental and theoretical work arising from this cross-fertilization are also indicated. - Highlights: • Connections between simple 2D fluid models in different fields of physics presented. • Structure emerges via varied physical mechanisms driven by internal angular momentum. • Properties of these models such as Casimirs, equilibria and stability are analyzed.

  17. Magnesium Hall Thruster

    Science.gov (United States)

    Szabo, James J.

    2015-01-01

    This Phase II project is developing a magnesium (Mg) Hall effect thruster system that would open the door for in situ resource utilization (ISRU)-based solar system exploration. Magnesium is light and easy to ionize. For a Mars- Earth transfer, the propellant mass savings with respect to a xenon Hall effect thruster (HET) system are enormous. Magnesium also can be combusted in a rocket with carbon dioxide (CO2) or water (H2O), enabling a multimode propulsion system with propellant sharing and ISRU. In the near term, CO2 and H2O would be collected in situ on Mars or the moon. In the far term, Mg itself would be collected from Martian and lunar regolith. In Phase I, an integrated, medium-power (1- to 3-kW) Mg HET system was developed and tested. Controlled, steady operation at constant voltage and power was demonstrated. Preliminary measurements indicate a specific impulse (Isp) greater than 4,000 s was achieved at a discharge potential of 400 V. The feasibility of delivering fluidized Mg powder to a medium- or high-power thruster also was demonstrated. Phase II of the project evaluated the performance of an integrated, highpower Mg Hall thruster system in a relevant space environment. Researchers improved the medium power thruster system and characterized it in detail. Researchers also designed and built a high-power (8- to 20-kW) Mg HET. A fluidized powder feed system supporting the high-power thruster was built and delivered to Busek Company, Inc.

  18. Hall Potential Distribution in Anti-Hall bar Geometry

    Science.gov (United States)

    Tarquini, Vinicio; Knighton, Talbot; Wu, Zhe; Huang, Jian; Pfeiffer, Loren; West, Ken

    A high quality system has been fabricated in an Anti-Hall bar geometry, by opening a 1.4 x 2.0 mm rectangular window using wet etching in the middle of a 2.4 x 3.0 mm two-dimensional high-mobility (μ = 2 . 6 × 106 cm2/(V .s)) hole system confined in a 20 nm wide (100) GaAs quantum well. Topologically this system is equivalent to a normal Hall bar even though there is an extra set of edges in the center. This configuration allows us to probe the Hall potential distribution in relation to the formation of edge channels. The Quantum Hall measurements at 30 mK show a standard behavior of the outer edges. At each Hall plateau the inner edge becomes an equipotential and the Hall voltage between the inner and outer edges exhibits a drastic asymmetry for the upper and lower arms of the sample. At various integer fillings, depending on the chirality, the voltage drop across one of the arms measures 0 while the drop across the other one is equal to the Hall voltage. This behavior will be explained in terms of the dynamical process of forming the edge channels which also will account for the more irregular behavior of the Hall potential in more disordered systems. NSF DMR-1410302.

  19. Encouraging Electricity Savings in a University Residential Hall through a Combination of Feedback, Visual Prompts, and Incentives

    Science.gov (United States)

    Bekker, Marthinus J.; Cumming, Tania D.; Osborne, Nikola K. P.; Bruining, Angela M.; McClean, Julia I.; Leland, Louis S., Jr.

    2010-01-01

    This experiment investigated the combined use of visual prompts, daily feedback, and rewards to reduce electricity consumption in a university residential hall. After a 17-day baseline period, the experimental intervention was introduced in the intervention hall, and no change was made in the control hall. Energy usage decreased in the…

  20. EURISOL-DS Multi-MW Target Preliminary Study of the WTF(Windowless Transverse Film) Liquid Metal Proton-to-Neutron Converter

    CERN Document Server

    Cyril Kharoua, Yacine Kadi, Karel Samec, Roberto Rocca

    This technical note summarises the design calculations performed within Task #2 of the European Isotope Separation On-Line Radioactive Ion Beam Facility Design Study (EURISOL-DS) [1] for the WTF (Windowless Transverse Film) mercury converter. A preliminary study was carried out in order to determine the heat deposition within the mercury and estimate the mercury velocity needed in the film. The geometry used is based on previous analysis simulated using the Monte Carlo code FLUKA [2]. The results of these calculations show the baseline parameters, which will be used for the detailed design. Particularly, with a 1 GeV proton beam with a ~2 mm Gaussian distribution on a 4x30x40cm long target and with a 5m/s velocity at the peak power density region seems a suitable solution.

  1. Eurisol-DS Multi MW Target Preliminary Study of the Windlowless Transverse Film (WTF) Liquid Metal Proton-to Neutron Converter

    CERN Document Server

    Kadi, Y; Rocca, R; Samec, K

    2008-01-01

    This technical note summarises the design calculations performed within Task#2 of the European Isotope Separation On-Line Radioactive Ion Beam Facility Design Study (EURISOL-DS) for the WTF (Windowless Transverse Film) mercur converter. A preliminary study was carried out in order to determine the heat deposition within the mercury and estimate the mercury velocity needed in the film. The geometry used is based on previous analysis simulated using the Monte Carlo code FLUKA. The results of these calculations show the baseline parameters, which will be used for the detailed design. Particularly, with a 1 GeV proton beam with a $\\sigma$ ~2 mm Gaussian distribution on a 4x30x40cm long target and with a 5m/s velocity at the peak power density region seems a suitable solution.

  2. Quantum Hall Electron Nematics

    Science.gov (United States)

    MacDonald, Allan

    In 2D electron systems hosted by crystals with hexagonal symmetry, electron nematic phases with spontaneously broken C3 symmetry are expected to occur in the quantum Hall regime when triplets of Landau levels associated with three different Fermi surface pockets are partially filled. The broken symmetry state is driven by intravalley Coulombic exchange interactions that favor spontaneously polarized valley occupations. I will discuss three different examples of 2D electron systems in which this type of broken symmetry state is expected to occur: i) the SnTe (111) surface, ii) the Bi (111) surface. and iii) unbalanced bilayer graphene. This type of quantum Hall electron nematic state has so far been confirmed only in the Bi (111) case, in which the anisotropic quasiparticle wavefunctions of the broken symmetry state were directly imaged. In the SnTe case the nematic state phase boundary is controlled by a competition between intravalley Coulomb interactions and intervalley scattering processes that increase in relative strength with magnetic field. An in-plane Zeeman field alters the phase diagram by lifting the three-fold Landau level degeneracy, yielding a ground state energy with 2 π/3 periodicity as a function of Zeeman-field orientation angle. I will comment on the possibility of observing similar states in the absence of a magnetic field. Supported by DOE Division of Materials Sciences and Engineering Grant DE-FG03-02ER45958.

  3. The ISOLDE hall

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Since 1992, after its move from the 600 MeV SC, ISOLDE is a customer of the Booster (then 1 GeV, now 1.4 GeV). The intense Booster beam (some 3E13 protons per pulse) is directed onto a target, from which a mixture of isotopes emanates. After ionization and electrostatic acceleration to 60 keV, they enter one of the 2 spectrometers (General Purpose Separator: GPS, and High Resolution Separator: HRS) from which the selected ions are directed to the experiments. The photos show: the REX-ISOLDE post accelerator; the mini-ball experiment; an overview of the ISOLDE hall. In the picture (_12) of the hall, the separators are behind the wall. From either of them, beams can be directed into any of the many beamlines towards the experiments, some of which are visible in the foreground. The elevated cubicle at the left is EBIS (Electron Beam Ion Source), which acts as a charge-state multiplier for the REX facility. The ions are further mass analzyzed and passed on to the linac which accelerates them to higher energies. T...

  4. Cosmopolitanism - Conversation with Stuart Hall

    OpenAIRE

    Hall, Stuart

    2006-01-01

    Forty minute conversation between Stuart Hall and Pnina Werbner, filmed and edited by Haim Bresheeth. Synopsis by Sarah Harrison. Conversation between Stuart Hall and Pnina Werbner on the theme of Cosmopolitanism (to be shown at the Association of Social Anthropologists Silver Jubilee conference in 2006), in March 2006

  5. Farm Hall: The Play

    Science.gov (United States)

    Cassidy, David C.

    2013-03-01

    It's July 1945. Germany is in defeat and the atomic bombs are on their way to Japan. Under the direction of Samuel Goudsmit, the Allies are holding some of the top German nuclear scientists-among them Heisenberg, Hahn, and Gerlach-captive in Farm Hall, an English country manor near Cambridge, England. As secret microphones record their conversations, the scientists are unaware of why they are being held or for how long. Thinking themselves far ahead of the Allies, how will they react to the news of the atomic bombs? How will these famous scientists explain to themselves and to the world their failure to achieve even a chain reaction? How will they come to terms with the horror of the Third Reich, their work for such a regime, and their behavior during that period? This one-act play is based upon the transcripts of their conversations as well as the author's historical work on the subject.

  6. Hall Effect Gyrators and Circulators

    Directory of Open Access Journals (Sweden)

    Giovanni Viola

    2014-05-01

    Full Text Available The electronic circulator and its close relative the gyrator are invaluable tools for noise management and signal routing in the current generation of low-temperature microwave systems for the implementation of new quantum technologies. The current implementation of these devices using the Faraday effect is satisfactory but requires a bulky structure whose physical dimension is close to the microwave wavelength employed. The Hall effect is an alternative nonreciprocal effect that can also be used to produce desired device functionality. We review earlier efforts to use an Ohmically contacted four-terminal Hall bar, explaining why this approach leads to unacceptably high device loss. We find that capacitive coupling to such a Hall conductor has much greater promise for achieving good circulator and gyrator functionality. We formulate a classical Ohm-Hall analysis for calculating the properties of such a device, and show how this classical theory simplifies remarkably in the limiting case of the Hall angle approaching 90°. In this limit, we find that either a four-terminal or a three-terminal capacitive device can give excellent circulator behavior, with device dimensions far smaller than the ac wavelength. An experiment is proposed to achieve GHz-band gyration in millimeter (and smaller scale structures employing either semiconductor heterostructure or graphene Hall conductors. An inductively coupled scheme for realizing a Hall gyrator is also analyzed.

  7. Hall mobility in lead selenide and its analysis in MathCad computer environment

    OpenAIRE

    Budzhak, Ya. S.; Zub, O. V.

    2010-01-01

    This thesis demonstrates that current carriers in an experimental crystal diffuse on the thermal vibrations of lattice by means of regression analysis of experimental data for Hall mobility of PbSe crystals.

  8. Spin Hall effects for cold atoms in a light induced gauge potential

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Shi-Liang; /Michigan U., MCTP /South China Normal U.; Fu, Hao; /Michigan U., MCTP; Wu, C.-J.; /Santa Barbara, KITP; Zhang, S.-C.; /Stanford U., Phys. Dept.; Duan, L.-M. /Michigan U., MCTP

    2010-03-16

    We propose an experimental scheme to observe spin Hall effects with cold atoms in a light induced gauge potential. Under an appropriate configuration, the cold atoms moving in a spatially varying laser field experience an effective spin-dependent gauge potential. Through numerical simulation, we demonstrate that such a gauge field leads to observable spin Hall currents under realistic conditions. We also discuss the quantum spin Hall state in an optical lattice.

  9. Topological Hall and spin Hall effects in disordered skyrmionic textures

    KAUST Repository

    Ndiaye, Papa Birame

    2017-02-24

    We carry out a thorough study of the topological Hall and topological spin Hall effects in disordered skyrmionic systems: the dimensionless (spin) Hall angles are evaluated across the energy-band structure in the multiprobe Landauer-Büttiker formalism and their link to the effective magnetic field emerging from the real-space topology of the spin texture is highlighted. We discuss these results for an optimal skyrmion size and for various sizes of the sample and find that the adiabatic approximation still holds for large skyrmions as well as for nanoskyrmions. Finally, we test the robustness of the topological signals against disorder strength and show that the topological Hall effect is highly sensitive to momentum scattering.

  10. Topological Hall and Spin Hall Effects in Disordered Skyrmionic Textures

    Science.gov (United States)

    Ndiaye, Papa Birame; Akosa, Collins; Manchon, Aurelien; Spintronics Theory Group Team

    We carry out a throughout study of the topological Hall and topological spin Hall effects in disordered skyrmionic systems: the dimensionless (spin) Hall angles are evaluated across the energy band structure in the multiprobe Landauer-Büttiker formalism and their link to the effective magnetic field emerging from the real space topology of the spin texture is highlighted. We discuss these results for an optimal skyrmion size and for various sizes of the sample and found that the adiabatic approximation still holds for large skyrmions as well as for few atomic size-nanoskyrmions. Finally, we test the robustness of the topological signals against disorder strength and show that topological Hall effect is highly sensitive to momentum scattering. This work was supported by the King Abdullah University of Science and Technology (KAUST) through the Award No OSR-CRG URF/1/1693-01 from the Office of Sponsored Research (OSR).

  11. Double Hall sensor structure reducing voltage offset

    Science.gov (United States)

    Oszwaldowski, M.; El-Ahmar, S.

    2017-07-01

    In this paper, we report on the double Hall sensor structure (DHSS) in which the voltage offset can be effectively reduced. The DHSS is composed of two standard Hall sensors that are activated with two currents from electrically independent current sources. The operation principle of the DHSS is explained in detail, and the concluded properties of the DHSS are confirmed in the experimental part of the paper. The measurements are performed on DHSSs based on InSb thin films. The offset is reduced by about three orders of magnitude. The minimum value of the reduced offset obtained is 10 μV. It appears that the minimum reduced offset is limited by the electric noise. The advantage of DHSS is that it can be manufactured with the standard thin film technology enabling effective miniaturization of the system. The DHSS can effectively be used for the measurements of the Hall effect in ultra-thin layers containing the two dimensional electron gas, such as the epitaxial graphene.

  12. "Hall mees" Linnateatris / Triin Sinissaar

    Index Scriptorium Estoniae

    Sinissaar, Triin

    1999-01-01

    Tallinn Linnateatri ja Raadioteatri ühislavastus "Hall mees" Gill Adamsi näidendi järgi, lavastaja Eero Spriit, osades Helene Vannari ja Väino Laes, kunstnik Kustav - Agu Püüman. Esietendus 22. okt

  13. Herstructurering Stageprocessen Van Hall Larenstein

    NARCIS (Netherlands)

    Schelvis-Smit, A.A.M.

    2009-01-01

    Verslag van de herstructurering van het stageproces bij het Onderwijsbureau van Hogelschool VanHall Larenstein. Uitgangspunt hierbij was het onderling uitwisselbaar worden van personeel bij het uitvoeren van werkzaamheden met betrekking tot stages.

  14. Shared Magnetics Hall Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In the proposed Phase II program, Busek Co. will demonstrate an innovative methodology for clustering Hall thrusters into a high performance, very high power...

  15. A game generalizing Hall's theorem

    OpenAIRE

    Rabern, Landon

    2012-01-01

    We characterize the initial positions from which the first player has a winning strategy in a certain two-player game. This provides a generalization of Hall's theorem. Vizing's edge coloring theorem follows from a special case.

  16. Shared Magnetics Hall Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In the proposed Phase I program, Busek Co. will demonstrate an innovative methodology for clustering Hall thrusters into a high performance, very high power...

  17. Sheldon-Hall syndrome

    Directory of Open Access Journals (Sweden)

    Bamshad Michael J

    2009-03-01

    Full Text Available Abstract Sheldon-Hall syndrome (SHS is a rare multiple congenital contracture syndrome characterized by contractures of the distal joints of the limbs, triangular face, downslanting palpebral fissures, small mouth, and high arched palate. Epidemiological data for the prevalence of SHS are not available, but less than 100 cases have been reported in the literature. Other common clinical features of SHS include prominent nasolabial folds, high arched palate, attached earlobes, mild cervical webbing, short stature, severe camptodactyly, ulnar deviation, and vertical talus and/or talipes equinovarus. Typically, the contractures are most severe at birth and non-progressive. SHS is inherited in an autosomal dominant pattern but about half the cases are sporadic. Mutations in either MYH3, TNNI2, or TNNT3 have been found in about 50% of cases. These genes encode proteins of the contractile apparatus of fast twitch skeletal muscle fibers. The diagnosis of SHS is based on clinical criteria. Mutation analysis is useful to distinguish SHS from arthrogryposis syndromes with similar features (e.g. distal arthrogryposis 1 and Freeman-Sheldon syndrome. Prenatal diagnosis by ultrasonography is feasible at 18–24 weeks of gestation. If the family history is positive and the mutation is known in the family, prenatal molecular genetic diagnosis is possible. There is no specific therapy for SHS. However, patients benefit from early intervention with occupational and physical therapy, serial casting, and/or surgery. Life expectancy and cognitive abilities are normal.

  18. Admittance of multiterminal quantum Hall conductors at kilohertz frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, C. [Departamento de Física, Universidad Militar Nueva Granada, Carrera 11 101-80 Bogotá D.C. (Colombia); Consejo, C.; Chaubet, C., E-mail: christophe.chaubet@univ-montp2.fr [Université Montpellier 2, Laboratoire Charles Coulomb UMR5221, F-34095 Montpellier, France and CNRS, Laboratoire Charles Coulomb UMR5221, F-34095 Montpellier (France); Degiovanni, P. [Université de Lyon, Fédération de Physique Andrée Marie Ampère, CNRS, Laboratoire de Physique de l' Ecole Normale Supérieure de Lyon, 46 allée d' Italie, 69364 Lyon Cedex 07 (France)

    2014-03-28

    We present an experimental study of the low frequency admittance of quantum Hall conductors in the [100 Hz, 1 MHz] frequency range. We show that the frequency dependence of the admittance of the sample strongly depends on the topology of the contacts connections. Our experimental results are well explained within the Christen and Büttiker approach for finite frequency transport in quantum Hall edge channels taking into account the influence of the coaxial cables capacitance. In the Hall bar geometry, we demonstrate that there exists a configuration in which the cable capacitance does not influence the admittance measurement of the sample. In this case, we measure the electrochemical capacitance of the sample and observe its dependence on the filling factor.

  19. Interactions, disorder and spin waves in quantum Hall ferromagnets near integer filling

    CERN Document Server

    Rapsch, S

    2001-01-01

    dynamics is discussed in chapter 5 and employed to study spin waves in a domain wall structure. A hydrodynamic theory of spin waves is used to treat long-wavelength excitations of randomly disordered quantum Hall ferromagnets. Finally, the contribution of spin waves to the optical conductivity is studied in chapter 6. Predictions are made for the experimental signatures of spin waves in disordered quantum Hall systems. The observability of these signatures is discussed both for transport measurements and NMR experiments. The interplay between exchange interactions and disorder is studied in quantum Hall ferromagnets near integer filling. Both analytical and numerical methods are used to investigate a non-linear sigma model of these systems in the limit of vanishing Zeeman coupling and at zero temperature. Chapter 1 gives an introduction to the quantum Hall effect and to quantum Hall ferromagnets in particular. A brief review of existing work on disordered quantum Hall systems is included. In chapters 2-4, the...

  20. Iodine Hall Thruster

    Science.gov (United States)

    Szabo, James

    2015-01-01

    Iodine enables dramatic mass and cost savings for lunar and Mars cargo missions, including Earth escape and near-Earth space maneuvers. The demonstrated throttling ability of iodine is important for a singular thruster that might be called upon to propel a spacecraft from Earth to Mars or Venus. The ability to throttle efficiently is even more important for missions beyond Mars. In the Phase I project, Busek Company, Inc., tested an existing Hall thruster, the BHT-8000, on iodine propellant. The thruster was fed by a high-flow iodine feed system and supported by an existing Busek hollow cathode flowing xenon gas. The Phase I propellant feed system was evolved from a previously demonstrated laboratory feed system. Throttling of the thruster between 2 and 11 kW at 200 to 600 V was demonstrated. Testing showed that the efficiency of iodine fueled BHT-8000 is the same as with xenon, with iodine delivering a slightly higher thrust-to-power (T/P) ratio. In Phase II, a complete iodine-fueled system was developed, including the thruster, hollow cathode, and iodine propellant feed system. The nominal power of the Phase II system is 8 kW; however, it can be deeply throttled as well as clustered to much higher power levels. The technology also can be scaled to greater than 100 kW per thruster to support megawatt-class missions. The target thruster efficiency for the full-scale system is 65 percent at high specific impulse (Isp) (approximately 3,000 s) and 60 percent at high thrust (Isp approximately 2,000 s).

  1. Ventilation systems for high halls

    Energy Technology Data Exchange (ETDEWEB)

    Sodec, F.; Veldboer, W.

    1982-02-01

    A ventilation system for high halls is described which meets the demands of steady air flow in spite of inverse thermal currents, intensive ventilation of working areas during heating and cooling and ventilation free of draught. The main element of the ventilation system is the air outlet in the ceiling, with variable beam direction. The horizontal, rotated beams are superimposed by a vertical beam whose strength may be varied. This way, the beam direction can be adapted to the thermal load of the hall and the height of blowout. The blowout angle is large for heating and small for cooling. Studies have shown that halls are ventilated thoroughly and free of draught by this system. The variable, rotary outlet presented in the article is best suited for heights of 4.00 to 12.00 m. The outlet, with a rated diameter of 400 mm, has been in use for two years now in fields as varied as diecasting works, halls at fairs, sports halls, etc. The air volume flow rate is 1000 to 3000 m/sup 3//h per outlet. A bigger version is now being developed; it will have a rated diameter of 710 mm and an air volume flow rate of 3000 to 9000 m/sup 3//h.

  2. Composite fermions a unified view of the quantum Hall regime

    CERN Document Server

    1998-01-01

    One of the most exciting recent developments to have emerged from the quantum Hall effect is the subject of composite fermions. This important volume gives a self-contained, comprehensive description of the subject, including fundamentals, more advanced theoretical work, and results from experimental observations of composite fermions.

  3. The CMS experimental cavern

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    These images taken in early September 2005 show the cathedral-like cavern into which the CMS experiment will be installed. The 26X26X60 cubic metre hall is the largest underground cavern at CERN, located under the town of Cessy in France. Weighing 12 500 tonnes, the huge CMS detector will be assembled in a specially constructed hall above ground before being lowered into the experimental hall ready for the LHC start-up in 2008.

  4. Novel concepts in Hall sensors

    Science.gov (United States)

    Mani, R. G.

    1996-03-01

    Hall effect devices are widely used as position sensors and contactless switches in applications ranging from electric motors to soft drink machines and automobiles. Such devices typically operate in an adverse environment where offset voltages originating from various physical effects limit the effective sensitivity of the sensor to the weak magnetic field (B device that automatically reduces such spurious offsets is desirable because improved 'signal to offset' would relax manufacturing tolerances and other constraints within the sensor system. Here, we examine some techniques and sensor configurations (R. G. Mani, K. von Klitzing, F. Jost, K. Marx, S. Lindenkreuz, and H. P. Trah, Appl. Phys. Lett. 67, 2223, 1995.) based on the so called 'anti Hall bar' geometry that promise the possibility of a Silicon based Hall sensor with a field equivalent offset well below 1 mT.

  5. EURISOL-DS multi-MW target unit: Neutronics performance and shielding assessment, dose rate and material activation calculations for the MAFF configuration

    CERN Document Server

    Romanets, Y; Kadi, Y; Luis, R; Goncalves, I F; Tecchio, L; Kharoua, C; Vaz, P; Ene, D; David, J C; Rocca, R; Negoita, F

    2010-01-01

    One of the objectives of the EURISOL (EURopean Isotope Separation On-Line Radioactive Ion Beam) Design Study consisted of providing a safe and reliable facility layout and design for the following operational parameters and characteristics: (a) a 4 MW proton beam of 1 GeV energy impinging on a mercury target (the converter); (b) high neutron fluxes (similar to 3 x 10(16) neutrons/s) generated by spallation reactions of the protons impinging in the converter and (c) fission rate on fissile U-235 targets in excess of 10(15) fissions/s. In this work, the state-of-the-art Monte Carlo codes MCNPX (Pelowitz, 2005) and FLUKA (Vlachoudis, 2009; Ferrari et al., 2008) were used to characterize the neutronics performance and to perform the shielding assessment (Herrera-Martinez and Kadi, 2006; Cornell, 2003) of the EURISOLTarget Unit and to provide estimations of dose rate and activation of different components, in view of the radiation safety assessment of the facility. Dosimetry and activation calculations were perfor...

  6. Spin-Hall nano-oscillator: A micromagnetic study

    Energy Technology Data Exchange (ETDEWEB)

    Giordano, A.; Azzerboni, B.; Finocchio, G. [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, C.da di Dio, I-98166 Messina (Italy); Carpentieri, M. [Department of Electrical and Information Engineering, Politecnico of Bari, via E. Orabona 4, I-70125 Bari (Italy); Laudani, A. [Department of Engineering, University of Roma Tre, via V. Volterra 62, I-00146 Roma (Italy); Gubbiotti, G. [Istituto Officina dei Materiali del CNR (CNR-IOM), Unità di Perugia c/o Dipartimento di Fisica e Geologia, Via A. Pascoli, 06123 Perugia (Italy)

    2014-07-28

    This Letter studies the dynamical behavior of spin-Hall nanoscillators from a micromagnetic point of view. The model parameters have been identified by reproducing recent experimental data quantitatively. Our results indicate that a strongly localized mode is observed for in-plane bias fields such as in the experiments, while predict the excitation of an asymmetric propagating mode for large enough out-of plane bias field similarly to what observed in spin-torque nanocontact oscillators. Our findings show that spin-Hall nanoscillators can find application as spin-wave emitters for magnonic applications where spin waves are used for transmission and processing information on nanoscale.

  7. Crossover between spin swapping and Hall effect in disordered systems

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed

    2015-07-16

    We theoretically study the crossover between spin Hall effect and spin swapping, a recently predicted phenomenon that consists of the interchange between the current flow and its spin polarization directions [M. B. Lifshits and M. I. Dyakonov, Phys. Rev. Lett. 103, 186601 (2009)]. Using a tight-binding model with spin-orbit coupled disorder, spin Hall effect, spin relaxation, and spin swapping are treated on equal footing. We demonstrate that spin swapping and spin Hall effect present very different dependencies as a function of the spin-orbit coupling and disorder strengths and confirm that the former exceeds the latter in the parameter range considered. Three setups are proposed for the experimental observation of the spin swapping effect.

  8. Metal-to-insulator switching in quantum anomalous Hall states

    Science.gov (United States)

    Pan, Lei; Kou, Xufeng; Wang, Jing; Fan, Yabin; Choi, Eun Sang; Shao, Qiming; Zhang, Shou Cheng; Wang, Kang Lung

    Quantum anomalous Hall effect (QAHE) was recently achieved in magnetic topological insulator films as a form of dissipationless transport without external magnetic field. However, the universal phase diagram of QAHE and its relation with quantum Hall effect (QHE) remain to be investigated. Here, we report the experimental observation of the giant longitudinal resistance peak and zero Hall conductance plateau at the coercive field in the six quintuple-layer (Cr0.12Bi0.26Sb0.62)2 Te3 film, and demonstrate the metal-to-insulator switching between two opposite QAHE plateau states up to 0.3 K. The universal QAHE phase diagram is further confirmed through the angle-dependent measurements. Our results address that the quantum phase transitions in both QAHE and QHE regimes are in the same universality class, yet the microscopic details are different.

  9. Carl Gustav Jung and Granville Stanley Hall on Religious Experience.

    Science.gov (United States)

    Kim, Chae Young

    2016-08-01

    Granville Stanley Hall (1844-1924) with William James (1842-1910) is the key founder of psychology of religion movement and the first American experimental or genetic psychologist, and Carl Gustav Jung (1875-1961) is the founder of the analytical psychology concerned sympathetically about the religious dimension rooted in the human subject. Their fundamental works are mutually connected. Among other things, both Hall and Jung were deeply interested in how the study of religious experience is indispensable for the depth understanding of human subject. Nevertheless, except for the slight indication, this common interest between them has not yet been examined in academic research paper. So this paper aims to articulate preliminary evidence of affinities focusing on the locus and its function of the inner deep psychic dimension as the religious in the work of Hall and Jung.

  10. ATLAS Assembly Hall Open Day

    CERN Multimedia

    Patrice Loiez

    2004-01-01

    To mark the 50th Anniversary of the founding of CERN, a day of tours, displays and presentations was held in October 2004. The assembly halls for the experiments that were waiting to be installed on the LHC, such as ATLAS shown here, were transformed into display areas and cafés.

  11. Hypernuclear Spectroscopy at JLab Hall C

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Osamu; Doi, Daisuke; Fujii, Yu; Toshiyuki, Gogami; Kanda, Hiroki; Kaneta, M; Kawama, Daisuke; Maeda, Kazushige; Maruta, Tomofumi; Matsumura, Akihiko; Nagao, Sho; Nakamura, Satoshi; Shichijo, Ayako; Tamura, Hirokazu; Taniya, Naotaka; Yamamoto, Taku; Yokota, Kosuke; Kato, S; Sato, Yoshinori; Takahashi, Toshiyuki; Noumi, Hiroyuki; Motoba, T; Hiyama, E; Albayrak, Ibrahim; Ates, Ozgur; Chen, Chunhua; Christy, Michael; Keppel, Cynthia; Kohl, Karl; Li, Ya; Liyanage, Anusha Habarakada; Tang, Liguang; Walton, T; Ye, Zhihong; Yuan, Lulin; Zhu, Lingyan; Baturin, Pavlo; Boeglin, Werner; Dhamija, Seema; Markowitz, Pete; Raue, Brian; Reinhold, Joerg; Hungerford, Ed; Ent, Rolf; Fenker, Howard; Gaskell, David; Horn, Tanja; Jones, Mark; Smith, Gregory; Vulcan, William; Wood, Stephen; Johnston, C; Simicevic, Neven; Wells, Stephen; Samantha, Chhanda; Hu, Bitao; Shen, Ji; Wang, W; Zhang, Xiaozhuo; Zhang, Yi; Feng, Jing; Fu, Y; Zhou, Jian; Zhou, S; Jiang, Yi; Lu, H; Yan, Xinhu; Ye, Yunxiu; Gan, Liping; Ahmidouch, Abdellah; Danagoulian, Samuel; Gasparian, Ashot; Elaasar, Mostafa; Wesselmann, Frank; Asaturyan, Arshak; Margaryan, Amur; Mkrtchyan, Arthur; Mkrtchyan, Hamlet; Tadevosyan, Vardan; Androic, Darko; Furic, Miroslav; Petkovic, Tomislav; Seva, Tomislav; Niculescu, Gabriel; Niculescu, Maria-Ioana; Rodriguez, Victor; Cisbani, Evaristo; Cusanno, Francesco; Garibaldi, Franco; Urciuoli, Guido; De Leo, Raffaele; Maronne, S; Achenbach, Carsten

    2010-03-01

    Since the 1st generation experiment, E89-009, which was successfully carried out as a pilot experiment of (e,e'K+) hypernuclear spectroscopy at JLab Hall C in 2000, precision hypernuclear spectroscopy by the (e,e'K+) reactions made considerable progress. It has evolved to the 2nd generation experiment, E01-011, in which a newly constructed high resolution kaon spectrometer (HKS) was installed and the “Tilt method” was adopted in order to suppress large electromagnetic background and to run with high luminosity. Preliminary high-resolution spectra of 7ΛHe and 28ΛAl together with that of 12ΛB that achieved resolution better than 500 keV(FWHM) were obtained. The third generation experiment, E05-115, has completed data taking with an experimental setup combining a new splitter magnet, high resolution electron spectrometer (HES) and the HKS used in the 2nd generation experiment. The data were accumulated with targets of 7Li, 9Be, 10B, 12C and 52Cr as well as with those of CH2 and H2O for calibration. The analysis is under way with particular emphasis of determining precision absolute hypernuclear masses. In this article, hypernuclear spectroscopy program in the wide mass range at JLab Hall C that has undergone three generation is described.

  12. Stress dependence of the Hall coefficient of a nickel-base superalloy

    Science.gov (United States)

    Kosaka, Daigo; Frishman, Anatoli; Nakagawa, Norio

    2016-02-01

    This paper reports on the Hall Effect and their stress dependence, observed experimentally on the superalloy Inconel® 718. The work is motivated by the desire to develop a nondestructive method of characterizing the near-surface protective residual stress in metals. Our approach is based on Hall Effect measurements, because it is anticipated that these measurements are less contaminated by cold work and other effects than conductivity-based measurements such as eddy current. The challenge is that, in metals, the Hall coefficient is very small. To achieve the required sensitivity, the Hall coefficient was measured with an AC injected current and an AC magnetic field. The measurements were performed on a thin film sample. The Hall coefficient was found to be positive, and varies proportionally to the applied tension. The proportionality coefficient is significantly larger than estimated from the volumetric effect in a free carrier model.

  13. Anomalous Hall effect scaling in ferromagnetic thin films

    KAUST Repository

    Grigoryan, Vahram L.

    2017-10-23

    We propose a scaling law for anomalous Hall effect in ferromagnetic thin films. Our approach distinguishes multiple scattering sources, namely, bulk impurity, phonon for Hall resistivity, and most importantly the rough surface contribution to longitudinal resistivity. In stark contrast to earlier laws that rely on temperature- and thickness-dependent fitting coefficients, this scaling law fits the recent experimental data excellently with constant parameters that are independent of temperature and film thickness, strongly indicating that this law captures the underlying physical processes. Based on a few data points, this scaling law can even fit all experimental data in full temperature and thickness range. We apply this law to interpret the experimental data for Fe, Co, and Ni and conclude that (i) the phonon-induced skew scattering is unimportant as expected; (ii) contribution from the impurity-induced skew scattering is negative; (iii) the intrinsic (extrinsic) mechanism dominates in Fe (Co), and both the extrinsic and intrinsic contributions are important in Ni.

  14. Scaling of the Quantum Anomalous Hall Effect as an Indicator of Axion Electrodynamics.

    Science.gov (United States)

    Grauer, S; Fijalkowski, K M; Schreyeck, S; Winnerlein, M; Brunner, K; Thomale, R; Gould, C; Molenkamp, L W

    2017-06-16

    We report on the scaling behavior of V-doped (Bi,Sb)_{2}Te_{3} samples in the quantum anomalous Hall regime for samples of various thickness. While previous quantum anomalous Hall measurements showed the same scaling as expected from a two-dimensional integer quantum Hall state, we observe a dimensional crossover to three spatial dimensions as a function of layer thickness. In the limit of a sufficiently thick layer, we find scaling behavior matching the flow diagram of two parallel conducting topological surface states of a three-dimensional topological insulator each featuring a fractional shift of 1/2e^{2}/h in the flow diagram Hall conductivity, while we recover the expected integer quantum Hall behavior for thinner layers. This constitutes the observation of a distinct type of quantum anomalous Hall effect, resulting from 1/2e^{2}/h Hall conductance quantization of three-dimensional topological insulator surface states, in an experiment which does not require decomposition of the signal to separate the contribution of two surfaces. This provides a possible experimental link between quantum Hall physics and axion electrodynamics.

  15. City Hall and Territorial Development

    Directory of Open Access Journals (Sweden)

    Carlos Borrás Querol

    1999-10-01

    Full Text Available The current economic conditions impose a new role upon the local administration, a new one added to its traditional role as administrators of public services and managers of the local territory. City Halls are increasingly widening their action area to include spheres of interest that were previously not dealt with: fundamentally – jobs promotion and encouraging economic development. With respect to this, the article describes the important experience of the City Hall of Alcalá la Real (Jaén, whose trajectory of enacting strategies for local development are alternatives to the model of speculative development, strategies whose objective is to direct the potential for local community development by matching the interests of the citizens and the system of productivity in a balanced and sustainable manner, thereby contributing not only to the creation of new businesses and favoring the creation of jobs, but the advancement of territorial balance and social cohesion.

  16. Hall Sensors for Extreme Temperatures

    Directory of Open Access Journals (Sweden)

    Maciej Oszwaldowski

    2011-01-01

    Full Text Available We report on the preparation of the first complete extreme temperature Hall sensor. This means that the extreme-temperature magnetic sensitive semiconductor structure is built-in an extreme-temperature package especially designed for that purpose. The working temperature range of the sensor extends from −270 °C to +300 °C. The extreme-temperature Hall-sensor active element is a heavily n-doped InSb layer epitaxially grown on GaAs. The magnetic sensitivity of the sensor is ca. 100 mV/T and its temperature coefficient is less than 0.04 %/K. This sensor may find applications in the car, aircraft, spacecraft, military and oil and gas industries.

  17. Symmetric functions and Hall polynomials

    CERN Document Server

    MacDonald, Ian Grant

    1998-01-01

    This reissued classic text is the acclaimed second edition of Professor Ian Macdonald's groundbreaking monograph on symmetric functions and Hall polynomials. The first edition was published in 1979, before being significantly expanded into the present edition in 1995. This text is widely regarded as the best source of information on Hall polynomials and what have come to be known as Macdonald polynomials, central to a number of key developments in mathematics and mathematical physics in the 21st century Macdonald polynomials gave rise to the subject of double affine Hecke algebras (or Cherednik algebras) important in representation theory. String theorists use Macdonald polynomials to attack the so-called AGT conjectures. Macdonald polynomials have been recently used to construct knot invariants. They are also a central tool for a theory of integrable stochastic models that have found a number of applications in probability, such as random matrices, directed polymers in random media, driven lattice gases, and...

  18. Layered quantum Hall insulators with ultracold atoms

    Energy Technology Data Exchange (ETDEWEB)

    Zamora, A. [ICFO-Institut de Ciencies Fotoniques, Av. Carl Friedrich Gauss 3, E-08860 Castelldefels (Barcelona) (Spain); Szirmai, G. [ICFO-Institut de Ciencies Fotoniques, Av. Carl Friedrich Gauss 3, E-08860 Castelldefels (Barcelona) (Spain); Research Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest (Hungary); Lewenstein, M. [ICFO-Institut de Ciencies Fotoniques, Av. Carl Friedrich Gauss 3, E-08860 Castelldefels (Barcelona) (Spain); ICREA-Institucio Catalana de Recerca i Estudis Avancats, Passeig Lluis Companys 23, E-08010 Barcelona (Spain)

    2011-11-15

    We consider a generalization of the two-dimensional (2D) quantum Hall insulator to a noncompact, non-Abelian gauge group, the Heisenberg-Weyl group. We show that this kind of insulator is actually a layered three-dimensional (3D) insulator with nontrivial topology. We further show that nontrivial combinations of quantized transverse conductivities can be engineered with the help of a staggered potential. We investigate the robustness and topological nature of this conductivity and connect it to the surface modes of the system. We also propose a simple experimental realization with ultracold atoms in 3D confined to a 2D square lattice with the third dimension being mapped to a gauge coordinate.

  19. Photovoltaic Hall effect in graphene

    Science.gov (United States)

    Oka, Takashi; Aoki, Hideo

    2009-02-01

    Response of electronic systems in intense lights (ac electric fields) to dc source-drain fields is formulated with the Floquet method. We have then applied the formalism to graphene, for which we show that a nonlinear effect of a circularly polarized light can open a gap in the Dirac cone, which is predicted to lead to a photoinduced dc Hall current. This is numerically confirmed for a graphene ribbon attached to electrodes with the Keldysh Green’s function.

  20. Library rooms or Library halls

    OpenAIRE

    Alfredo Serrai

    2013-01-01

    Library Halls, understood as Renaissance and Baroque architectural creations, along with the furnishings and decorations, accomplish a cognitive task and serve to transmit knowledge. The design of these spaces based on the idea that they should reflect the merits and content of the collections housed within them, in order to prepare the mind of the reader to respect and admire the volumes. In accordance with this principle, in the fifteenth century library rooms had a basilican shape, with tw...

  1. 6 February 2012 - Supreme Audit Institutions from Norway, Poland, Spain and Switzerland visiting the LHC tunnel at Point 5, CMS underground experimental area, CERN Control Centre and LHC superconducting magnet test hall. Delegations are throughout accompanied by Swiss P. Jenni, Polish T. Kurtyka, Spanish J. Salicio, Norwegian S. Stapnes and International Relations Adviser R. Voss. (Riksrevisjonen, Oslo; Tribunal de Cuentas , Madrid; the Court of Audit of Switzerland and Najwyzsza Izba Kontroli, Varsaw)

    CERN Multimedia

    Jean-Claude Gadmer

    2012-01-01

    6 February 2012 - Supreme Audit Institutions from Norway, Poland, Spain and Switzerland visiting the LHC tunnel at Point 5, CMS underground experimental area, CERN Control Centre and LHC superconducting magnet test hall. Delegations are throughout accompanied by Swiss P. Jenni, Polish T. Kurtyka, Spanish J. Salicio, Norwegian S. Stapnes and International Relations Adviser R. Voss. (Riksrevisjonen, Oslo; Tribunal de Cuentas , Madrid; the Court of Audit of Switzerland and Najwyzsza Izba Kontroli, Varsaw)

  2. Conceptual design report, CEBAF basic experimental equipment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-04-13

    The Continuous Electron Beam Accelerator Facility (CEBAF) will be dedicated to basic research in Nuclear Physics using electrons and photons as projectiles. The accelerator configuration allows three nearly continuous beams to be delivered simultaneously in three experimental halls, which will be equipped with complementary sets of instruments: Hall A--two high resolution magnetic spectrometers; Hall B--a large acceptance magnetic spectrometer; Hall C--a high-momentum, moderate resolution, magnetic spectrometer and a variety of more dedicated instruments. This report contains a short description of the initial complement of experimental equipment to be installed in each of the three halls.

  3. A Comparative Study of the Efficacy of Intervention Strategies on Student Electricity Use in Campus Residence Halls

    Science.gov (United States)

    Wisecup, Allison K.; Grady, Dennis; Roth, Richard A.; Stephens, Julio

    2017-01-01

    Purpose: The purpose of this study was to determine whether, and how, electricity consumption by students in university residence halls were impacted through three intervention strategies. Design/methodology/approach: The current investigation uses a quasi-experimental design by exposing freshman students in four matched residence halls and the…

  4. Quantum spin/valley Hall effect and topological insulator phase transitions in silicene

    KAUST Repository

    Tahir, M.

    2013-04-26

    We present a theoretical realization of quantum spin and quantum valley Hall effects in silicene. We show that combination of an electric field and intrinsic spin-orbit interaction leads to quantum phase transitions at the charge neutrality point. This phase transition from a two dimensional topological insulator to a trivial insulating state is accompanied by a quenching of the quantum spin Hall effect and the onset of a quantum valley Hall effect, providing a tool to experimentally tune the topological state of silicene. In contrast to graphene and other conventional topological insulators, the proposed effects in silicene are accessible to experiments.

  5. Interaction Induced Quantum Valley Hall Effect in Graphene

    Directory of Open Access Journals (Sweden)

    E. C. Marino

    2015-03-01

    Full Text Available We use pseudo-quantum electrodynamics in order to describe the full electromagnetic interaction of the p electrons in graphene in a consistent 2D formulation. We first consider the effect of this interaction in the vacuum polarization tensor or, equivalently, in the current correlator. This allows us to obtain the T→0 conductivity after a smooth zero-frequency limit is taken in Kubo’s formula. Thereby, we obtain the usual expression for the minimal conductivity plus corrections due to the interaction that bring it closer to the experimental value. We then predict the onset of an interaction-driven spontaneous quantum valley Hall effect below an activation temperature of the order of 2 K. The transverse (Hall valley conductivity is evaluated exactly and shown to coincide with the one in the usual quantum Hall effect. Finally, by considering the effects of pseudo-quantum electrodynamics, we show that the electron self-energy is such that a set of P- and T-symmetric gapped electron energy eigenstates are dynamically generated, in association with the quantum valley Hall effect.

  6. Spin Hall effect by surface roughness

    KAUST Repository

    Zhou, Lingjun

    2015-01-08

    The spin Hall and its inverse effects, driven by the spin orbit interaction, provide an interconversion mechanism between spin and charge currents. Since the spin Hall effect generates and manipulates spin current electrically, to achieve a large effect is becoming an important topic in both academia and industries. So far, materials with heavy elements carrying a strong spin orbit interaction, provide the only option. We propose here a new mechanism, using the surface roughness in ultrathin films, to enhance the spin Hall effect without heavy elements. Our analysis based on Cu and Al thin films suggests that surface roughness is capable of driving a spin Hall angle that is comparable to that in bulk Au. We also demonstrate that the spin Hall effect induced by surface roughness subscribes only to the side-jump contribution but not the skew scattering. The paradigm proposed in this paper provides the second, not if only, alternative to generate a sizable spin Hall effect.

  7. Quantum Beats of Resonant Tunneling between Fractional Quantum Hall Edges

    Science.gov (United States)

    Maasilta, Ilari J.; Goldman, V. J.

    1997-03-01

    We report measurements of resonant tunneling between two fractional quantum Hall edges in a quantum antidot geometry (I. J. Maasilta and V. J. Goldman, to appear in Phys. Rev. B 55),(1997).. We observe beats in the conductance oscillations, whose evolution as a function of experimental parameters is discussed. Possible explanations in terms of different models (G. Kirczenow Phys. Rev. B 53), 15767 (1996), M. Geller et. al, preprint. are presented.

  8. Quantum fluctuation theorem in an interacting setup: point contacts in fractional quantum Hall edge state devices.

    Science.gov (United States)

    Komnik, A; Saleur, H

    2011-09-02

    We verify the validity of the Cohen-Gallavotti fluctuation theorem for the strongly correlated problem of charge transfer through an impurity in a chiral Luttinger liquid, which is realizable experimentally as a quantum point contact in a fractional quantum Hall edge state device. This is accomplished via the development of an analytical method to calculate the full counting statistics of the problem in all the parameter regimes involving the temperature, the Hall voltage, and the gate voltage.

  9. Anomalous Hall effect in polycrystalline Ni films

    KAUST Repository

    Guo, Zaibing

    2012-02-01

    We systematically studied the anomalous Hall effect in a series of polycrystalline Ni films with thickness ranging from 4 to 200 nm. It is found that both the longitudinal and anomalous Hall resistivity increased greatly as film thickness decreased. This enhancement should be related to the surface scattering. In the ultrathin films (46 nm thick), weak localization corrections to anomalous Hall conductivity were studied. The granular model, taking into account the dominated intergranular tunneling, has been employed to explain this phenomenon, which can explain the weak dependence of anomalous Hall resistivity on longitudinal resistivity as well. © 2011 Elsevier Ltd. All rights reserved.

  10. Library rooms or Library halls

    Directory of Open Access Journals (Sweden)

    Alfredo Serrai

    2013-12-01

    Full Text Available Library Halls, understood as Renaissance and Baroque architectural creations, along with the furnishings and decorations, accomplish a cognitive task and serve to transmit knowledge. The design of these spaces based on the idea that they should reflect the merits and content of the collections housed within them, in order to prepare the mind of the reader to respect and admire the volumes. In accordance with this principle, in the fifteenth century library rooms had a basilican shape, with two or three naves, like churches, reflecting thus the spiritual value of the books contained there. Next to that inspiring function, library rooms had also the task of representing the entire logical and conceptual universe of human knowledge in a figurative way, including for this purpose also the and Kunst- und Wunderkammern, namely the collections of natural, artficial objects, and works of art. The importance of library rooms and their function was understood already in the early decades of the seventeenth century, as underlined in the treatise, Musei sive Bibliothecae tam privatae quam publicae Extructio, Instructio, Cura, Usus, written by the Jesuit Claude Clément and published in 1635. Almost the entire volume is dedicated to the decoration and ornamentation of the Saloni, and the function of the library is identified exclusively with the preservation and decoration of the collection, neglecting more specifically bibliographic aspects or those connected to library science. The architectural structure of the Saloni was destined to change in relation to two factors, namely the form of books, and the sources of light. As a consequence, from the end of the sixteenth century – or perhaps even before if one considers the fragments of the Library of Urbino belonging to Federico da Montefeltro – shelves and cabinets have been placed no longer in the center of the room, but were set against the walls. This new disposition of the furniture, surmounted by

  11. The Duesseldorf fairground. New building of hall 6; Messe Duesseldorf. Neubau der Halle 6

    Energy Technology Data Exchange (ETDEWEB)

    Gampfer, W.; Wendt, W.; Paar, A.; Schwarz, A.; Klemp, P.; Ambaum, P.; Joppen, H.; Hesse, D.; Hauser, K. [Messe Duesseldorf GmbH (Germany)

    2001-07-01

    The Duesseldorf fairground is highly successful and is constantly growing. With the inauguration of the new Hall 6 in May 2000, the former twelve halls have now become 17. The new Hall 6 will also be used for sports events, concerts, meetings etc. [German] Der Erfolg der Messe Duesseldorf laesst sich am stetigen Wachstum der Ausstellungsbereiche ablesen. So wurden aus den ehemals zwoelf Hallen bis heute mit der Einweihung der Neuen Halle 6 im Mai 2000 17 Hallen. Die zuletzt hinzugekommene Halle 6 wird neben der ueberwiegenden Nutzung als Messehalle auch als tagesbelichtete Mehrzweckhalle fuer Veranstaltungen, wie z.B. Sportveranstaltungen, Grosskonzerte, Versammlungen etc., genutzt. (orig.)

  12. Mesoscopic effects in the quantum Hall regime

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 58; Issue 2 ... Mesoscopic effects; quantum Hall transitions; finite-size scaling. ... When band mixing between multiple Landau levels is present, mesoscopic effects cause a crossover from a sequence of quantum Hall transitions for weak disorder to classical behavior ...

  13. Kelvin's Canonical Circulation Theorem in Hall Magnetohydrodynamics

    CERN Document Server

    Shivamoggi, B K

    2016-01-01

    The purpose of this paper is to show that, thanks to the restoration of the legitimate connection between the current density and the plasma flow velocity in Hall magnetohydrodynamics (MHD), Kelvin's Circulation Theorem becomes valid in Hall MHD. The ion-flow velocity in the usual circulation integral is now replaced by the canonical ion-flow velocity.

  14. Novel optical probe for quantum Hall system

    Indian Academy of Sciences (India)

    Surface photovoltage spectroscopy; quantum Hall effect; Landau levels; edge states. Abstract. Surface photovoltage (SPV) spectroscopy has been used for the first time to explore Landau levels of a two-dimensional electron gas (2DEG) in modulation doped InP/InGaAs/InP QW in the quantum Hall regime. The technique ...

  15. Hall devices improve electric motor efficiency

    Science.gov (United States)

    Haeussermann, W.

    1979-01-01

    Efficiency of electric motors and generators is reduced by radial magnetic forces created by symmetric fields within device. Forces are sensed and counteracted by Hall devices on excitation or control windings. Hall generators directly measure and provide compensating control of anu asymmetry, eliminating additional measurements needed for calibration feedback control loop.

  16. Planar Hall effect sensor with magnetostatic compensation layer

    DEFF Research Database (Denmark)

    Dalslet, Bjarke Thomas; Donolato, Marco; Hansen, Mikkel Fougt

    2012-01-01

    Demagnetization effects in cross-shaped planar Hall effect sensors cause inhomogeneous film magnetization and a hysteretic sensor response. Furthermore, when using sensors for detection of magnetic beads, the magnetostatic field from the sensor edges attracts and holds magnetic beads near the sen...... flow 60 times smaller than a flow that failed to remove beads from an uncompensated sensor.......Demagnetization effects in cross-shaped planar Hall effect sensors cause inhomogeneous film magnetization and a hysteretic sensor response. Furthermore, when using sensors for detection of magnetic beads, the magnetostatic field from the sensor edges attracts and holds magnetic beads near...... the sensor edges causing inhomogeneous and non-specific binding of the beads. We show theoretically that adding a compensation magnetic stack beneath the sensor stack and exchange-biasing it antiparallel to the sensor stack, the magnetostatic field is minimized. We show experimentally that the compensation...

  17. Quantum Hall effect in epitaxial graphene with permanent magnets.

    Science.gov (United States)

    Parmentier, F D; Cazimajou, T; Sekine, Y; Hibino, H; Irie, H; Glattli, D C; Kumada, N; Roulleau, P

    2016-12-06

    We have observed the well-kown quantum Hall effect (QHE) in epitaxial graphene grown on silicon carbide (SiC) by using, for the first time, only commercial NdFeB permanent magnets at low temperature. The relatively large and homogeneous magnetic field generated by the magnets, together with the high quality of the epitaxial graphene films, enables the formation of well-developed quantum Hall states at Landau level filling factors v = ±2, commonly observed with superconducting electro-magnets. Furthermore, the chirality of the QHE edge channels can be changed by a top gate. These results demonstrate that basic QHE physics are experimentally accessible in graphene for a fraction of the price of conventional setups using superconducting magnets, which greatly increases the potential of the QHE in graphene for research and applications.

  18. Hall hole mobility in boron-doped homoepitaxial diamond

    Science.gov (United States)

    Pernot, J.; Volpe, P. N.; Omnès, F.; Muret, P.; Mortet, V.; Haenen, K.; Teraji, T.

    2010-05-01

    Hall hole mobility of boron-doped homoepitaxial (100) diamond samples has been investigated in the temperature range of 100-900 K, both experimentally and theoretically. The temperature dependence of the mobility measured in high-quality and low boron-doped materials was compared with theoretical calculations to determine the phonon-hole coupling constants (deformation potential for acoustic phonons and coupling constant for optical phonons). The maximum hole mobility is found to be close to 2000cm2/Vs at room temperature. For boron-doped material, the hole scattering by neutral boron atoms is shown to be important in diamond due to the high ionization energy of the boron acceptor. The doping dependence of the Hall hole mobility is established for boron-doping levels ranging between 1014 and 1020cm-3 at 300 and 500 K. The physical reasons which make diamond a semiconductor with a higher mobility than other semiconductors of column IV are discussed.

  19. Quantum Hall Effect (QHE) in ABA stacked trilayer graphene

    Science.gov (United States)

    Stepanov, Petr; Barlas, Yafis; Gillgren, Nathaniel; Taniguchi, Takashi; Lau, Jeanie

    2015-03-01

    Since its experimental discovery in 2004 graphene was under extensive research as a promising counterpart of silicon for the future electronics application as well as an excellent model of 2 dimensional electron gas. Here we investigate quantum Hall effect in ABA trilayer graphene - hexagonal boron nitride heterostructures. Landau Levels (LL) crossings at low filling factors were observed and explored at different external electric fields. The formation of the QH states as an interaction of monlayer-like and bilayer-like branches will be discussed. We will present the most recent experimental results.

  20. High precision micro-scale Hall Effect characterization method using in-line micro four-point probes

    DEFF Research Database (Denmark)

    Petersen, Dirch Hjorth; Hansen, Ole; Lin, Rong

    2008-01-01

    Accurate characterization of ultra shallow junctions (USJ) is important in order to understand the principles of junction formation and to develop the appropriate implant and annealing technologies. We investigate the capabilities of a new micro-scale Hall effect measurement method where Hall...... effect is measured with collinear micro four-point probes (M4PP). We derive the sensitivity to electrode position errors and describe a position error suppression method to enable rapid reliable Hall effect measurements with just two measurement points. We show with both Monte Carlo simulations...... and experimental measurements, that the repeatability of a micro-scale Hall effect measurement is better than 1 %. We demonstrate the ability to spatially resolve Hall effect on micro-scale by characterization of an USJ with a single laser stripe anneal. The micro sheet resistance variations resulting from...

  1. Stability of the Hall sensors performance under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Duran, I.; Hron, M.; Stockel, J. [Institute of Plasma Physics, Association EURATOM/IPP.CR, Praha (Czech Republic); Viererbl, L.; Vsolak, R.; Cerva, V. [Nuclear Research Institute plc (Czech Republic); Bolshakova, I.; Holyaka, R. [Lviv Polytechnic National Univ. (Ukraine); Vayakis, G. [ITER International Team, Naka Joint Work Site, Naka, Ibaraki (Japan)

    2004-07-01

    A principally new diagnostic method must be developed for magnetic measurements in steady state regime of operation of fusion reactor. One of the options is the use of transducers based on Hall effect. The use of Hall sensors in ITER is presently limited by their questionable radiation and thermal stability. Issues of reliable operation in ITER like radiation and thermal environment are addressed in the paper. The results of irradiation tests of candidate Hall sensors in LVR-15 and IBR-2 experimental fission reactors are presented. Stable operation (deterioration of sensitivity below one percent) of the specially prepared sensors was demonstrated during irradiation by the total fluence of 3.10{sup 16} n/cm{sup 2} in IBR-2 reactor. Increasing the total neutron fluence up to 3.10{sup 17} n/cm{sup 2} resulted in deterioration of the best sensor's output still below 10% as demonstrated during irradiation in LVR-15 fission reactor. This level of neutron is already higher than the expected ITER life time neutron fluence for a sensor location just outside the ITER vessel. (authors)

  2. {gamma} (2) modular symmetry, renormalization group flow and the quantum hall effect

    Energy Technology Data Exchange (ETDEWEB)

    Georgelin, Yvon [Groupe de Physique Theorique, Institut de Physique Nucleaire, Orsay (France); Masson, Thierry; Wallet, Jean-Christophe [Laboratoire de Physique Theorique (UMR 8627), Universitdede Paris-Sud, Orsay (France)

    2000-01-14

    We construct a family of holomorphic {beta}-functions whose renormalization group (RG) flow preserves the {gamma} (2) modular symmetry and reproduces the observed stability of the Hall plateaus. The semicircle law relating the longitudinal and Hall conductivities that has been experimentally observed is obtained from the integration of the RG equations for any permitted transition which can be identified from the selection rules encoded in the flow diagram. The generic scale dependence of the conductivities is found to agree qualitatively with the present experimental data. The existence of a crossing point occurring in the crossover of the permitted transitions is discussed. (author)

  3. Exploring 4D quantum Hall physics with a 2D topological charge pump.

    Science.gov (United States)

    Lohse, Michael; Schweizer, Christian; Price, Hannah M; Zilberberg, Oded; Bloch, Immanuel

    2018-01-03

    The discovery of topological states of matter has greatly improved our understanding of phase transitions in physical systems. Instead of being described by local order parameters, topological phases are described by global topological invariants and are therefore robust against perturbations. A prominent example is the two-dimensional (2D) integer quantum Hall effect: it is characterized by the first Chern number, which manifests in the quantized Hall response that is induced by an external electric field. Generalizing the quantum Hall effect to four-dimensional (4D) systems leads to the appearance of an additional quantized Hall response, but one that is nonlinear and described by a 4D topological invariant-the second Chern number. Here we report the observation of a bulk response with intrinsic 4D topology and demonstrate its quantization by measuring the associated second Chern number. By implementing a 2D topological charge pump using ultracold bosonic atoms in an angled optical superlattice, we realize a dynamical version of the 4D integer quantum Hall effect. Using a small cloud of atoms as a local probe, we fully characterize the nonlinear response of the system via in situ imaging and site-resolved band mapping. Our findings pave the way to experimentally probing higher-dimensional quantum Hall systems, in which additional strongly correlated topological phases, exotic collective excitations and boundary phenomena such as isolated Weyl fermions are predicted.

  4. Spin Chirality and Hall-Like Transport Phenomena of Spin Excitations

    Science.gov (United States)

    Han, Jung Hoon; Lee, Hyunyong

    2017-01-01

    Experimental and theoretical aspects of Hall-type transport of spins in magnetic insulators are reviewed. A general formalism for linear response theory of thermal Hall transport in the spin model is developed, which is general enough to be applicable to both the magnon and the paramagnetic, spin-liquid regimes. The expression of the energy current operator in the spin language is shown to be closely related to the spin chirality operator. Recent experiments on magnon-mediated thermal Hall transport in the two-dimensional kagome, and three-dimensional pyrochlore ferromagnetic insulators are reviewed in light of the multi-band magnon theory of Hall transport, and compared to the more mysterious thermal Hall transport found in the putative quantum spin ice material. As realizations of spin-chirality driven magnon transport in the real space, we review the general theory of emergent gauge fields governing the magnon dynamics in the textured magnet, and discuss its application to the magnon-Skyrmion scattering problem. Topological magnon Hall effect driven by the Skyrmion texture is discussed.

  5. Exploring 4D quantum Hall physics with a 2D topological charge pump

    Science.gov (United States)

    Lohse, Michael; Schweizer, Christian; Price, Hannah M.; Zilberberg, Oded; Bloch, Immanuel

    2018-01-01

    The discovery of topological states of matter has greatly improved our understanding of phase transitions in physical systems. Instead of being described by local order parameters, topological phases are described by global topological invariants and are therefore robust against perturbations. A prominent example is the two-dimensional (2D) integer quantum Hall effect: it is characterized by the first Chern number, which manifests in the quantized Hall response that is induced by an external electric field. Generalizing the quantum Hall effect to four-dimensional (4D) systems leads to the appearance of an additional quantized Hall response, but one that is nonlinear and described by a 4D topological invariant—the second Chern number. Here we report the observation of a bulk response with intrinsic 4D topology and demonstrate its quantization by measuring the associated second Chern number. By implementing a 2D topological charge pump using ultracold bosonic atoms in an angled optical superlattice, we realize a dynamical version of the 4D integer quantum Hall effect. Using a small cloud of atoms as a local probe, we fully characterize the nonlinear response of the system via in situ imaging and site-resolved band mapping. Our findings pave the way to experimentally probing higher-dimensional quantum Hall systems, in which additional strongly correlated topological phases, exotic collective excitations and boundary phenomena such as isolated Weyl fermions are predicted.

  6. Bound values for Hall conductivity of heterogeneous medium under ...

    Indian Academy of Sciences (India)

    Bound values for Hall conductivity under quantum Hall effect (QHE) conditions in inhomogeneous medium has been studied. It is shown that bound values for Hall conductivity differ from bound values for metallic conductivity. This is due to the unusual character of current percolation under quantum Hall effect conditions.

  7. Iodine Hall Thruster for Space Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek Co. Inc. proposes to develop a high power (high thrust) electric propulsion system featuring an iodine fueled Hall Effect Thruster (HET). The system to be...

  8. Iodine Hall Thruster for Space Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In the Phase I program, Busek Co. Inc. tested an existing Hall thruster, the BHT-8000, on iodine propellant. The thruster was fed by a high flow iodine feed system,...

  9. AA under construction in its hall

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    The Antiproton Accumulator was installed in a specially built hall. Here we see it at an "early" stage of installation, just a few magnets on the floor, no vacuum chamber at all, but: 3 months later there was circulating beam !

  10. Success of Hall technique crowns questioned.

    Science.gov (United States)

    Nainar, S M Hashim

    2012-01-01

    Hall technique is a method of providing stainless steel crowns for primary molars without tooth preparation and requires no local anesthesia. Literature review showed inconclusive evidence and therefore this technique should not be used in clinical practice.

  11. Dual Mode Low Power Hall Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Sample and return missions desire and missions like Saturn Observer require a low power Hall thruster that can operate at high thrust to power as well as high...

  12. Light Metal Propellant Hall Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to develop light metal Hall Effect thrusters that will help reduce the travel time, mass, and cost of SMD spacecraft. Busek has identified three...

  13. Two LHC dipole magnets in assembly hall

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The final LHC components are completed in the assembly hall, prior to installation in the tunnel. These pictures show two 15-m long LHC cryogenic magnets, both before and after insertion into their blue vacuum vessel.

  14. Giant thermal Hall effect in multiferroics

    Science.gov (United States)

    Ideue, T.; Kurumaji, T.; Ishiwata, S.; Tokura, Y.

    2017-08-01

    Multiferroics, in which dielectric and magnetic orders coexist and couple with each other, attract renewed interest for their cross-correlated phenomena, offering a fundamental platform for novel functionalities. Elementary excitations in such systems are strongly affected by the lattice-spin interaction, as exemplified by the electromagnons and the magneto-thermal transport. Here we report an unprecedented coupling between magnetism and phonons in multiferroics, namely, the giant thermal Hall effect. The thermal transport of insulating polar magnets (ZnxFe1-x)2Mo3O8 is dominated by phonons, yet extremely sensitive to the magnetic structure. In particular, large thermal Hall conductivities are observed in the ferrimagnetic phase, indicating unconventional lattice-spin interactions and a new mechanism for the Hall effect in insulators. Our results show that the thermal Hall effect in multiferroic materials can be an effective probe for strong lattice-spin interactions and provide a new tool for magnetic control of thermal currents.

  15. NAS Decadal Review Town Hall

    Science.gov (United States)

    The National Academies of Sciences, Engineering and Medicine is seeking community input for a study on the future of materials research (MR). Frontiers of Materials Research: A Decadal Survey will look at defining the frontiers of materials research ranging from traditional materials science and engineering to condensed matter physics. Please join members of the study committee for a town hall to discuss future directions for materials research in the United States in the context of worldwide efforts. In particular, input on the following topics will be of great value: progress, achievements, and principal changes in the R&D landscape over the past decade; identification of key MR areas that have major scientific gaps or offer promising investment opportunities from 2020-2030; and the challenges that MR may face over the next decade and how those challenges might be addressed. This study was requested by the Department of Energy and the National Science Foundation. The National Academies will issue a report in 2018 that will offer guidance to federal agencies that support materials research, science policymakers, and researchers in materials research and other adjoining fields. Learn more about the study at http://nas.edu/materials.

  16. Generic Superweak Chaos Induced by Hall Effect

    OpenAIRE

    Ben-Harush, Moti; Dana, Itzhack

    2016-01-01

    We introduce and study the "kicked Hall system" (KHS), i.e., charged particles periodically kicked in the presence of uniform magnetic ($\\mathbf{B}$) and electric ($\\mathbf{E}$) fields that are perpendicular to each other and to the kicking direction. We show that for resonant values of $B$ and $E$ and in the weak-chaos regime of sufficiently small nonintegrability parameter $\\kappa$ (the kicking strength), there exists a \\emph{generic} family of periodic kicking potentials for which the Hall...

  17. Turbulence Measurements in a Tropical Zoo Hall

    Science.gov (United States)

    Eugster, Werner; Denzler, Basil; Bogdal, Christian

    2017-04-01

    The Masoala rainforest hall of the Zurich Zoo, Switzerland, covers a ground surface area of 10,856 m2 and reaches 30 m in height. With its transparent ETFE foiled roof it provides a tropical climate for a large diversity of plants and animals. In combination with an effort to estimate dry deposition of elemental mercury, we made an attempt to measure turbulent transfer velocity with an ultrasonic anemometer inside the hall. Not surprising, the largest turbulence elements were on the order of the hall dimension. Although the dimensions of the hall seem to be small (200,000 m3) for eddy covariance flux measurements and the air circulation inside the hall was extremely weak, the spectra of wind velocity components and virtual (sonic) temperature obeyed the general statistical description expected under unconstrained outdoor measurement conditions. We will present results from a two-week measurement campaign in the Masoala rainforest hall and make a suggestion for the deposition velocity to be used to estimate dry deposition of atmospheric components to the tropical vegetation surface.

  18. Microwave generation by spin Hall nanooscillators with nanopatterned spin injector

    Energy Technology Data Exchange (ETDEWEB)

    Zholud, A., E-mail: azholud@emory.edu; Urazhdin, S. [Department of Physics, Emory University, Atlanta, Georgia 30322 (United States)

    2014-09-15

    We experimentally study spin Hall nano-oscillators based on Pt/ferromagnet bilayers with nanopatterned Pt spin injection layer. We demonstrate that both the spectral characteristics and the electrical current requirements can be simultaneously improved by reducing the spin injection area. Moreover, devices with nanopatterned Pt spin injector exhibit microwave generation over a wide temperature range that extends to room temperature. Studies of devices with additional Pt spacers under the device electrodes show that the oscillation characteristics are affected not only by the spin injection geometry but also by the effects of Pt/ferromagnet interface on the dynamical properties of the ferromagnet.

  19. Minimal Excitations in the Fractional Quantum Hall Regime

    Science.gov (United States)

    Rech, J.; Ferraro, D.; Jonckheere, T.; Vannucci, L.; Sassetti, M.; Martin, T.

    2017-02-01

    We study the minimal excitations of fractional quantum Hall edges, extending the notion of levitons to interacting systems. Using both perturbative and exact calculations, we show that they arise in response to a Lorentzian potential with quantized flux. They carry an integer charge, thus involving several Laughlin quasiparticles, and leave a Poissonian signature in a Hanbury Brown-Twiss partition noise measurement at low transparency. This makes them readily accessible experimentally, ultimately offering the opportunity to study real-time transport of Abelian and non-Abelian excitations.

  20. Hard-wall confinement of a fractional quantum Hall liquid

    Science.gov (United States)

    Macaluso, E.; Carusotto, I.

    2017-10-01

    We make use of numerical exact diagonalization calculations to explore the physics of ν =1 /2 bosonic fractional quantum Hall droplets in the presence of experimentally realistic cylindrically symmetric hard-wall potentials. This kind of confinement is found to produce very different many-body spectra compared to a harmonic trap or the so-called extremely steep limit. For a relatively weak confinement, the degeneracies are lifted and the low-lying excited states organize themselves in energy branches that can be explained in terms of their Jack polynomial representation. For a strong confinement, a strong spatial deformation of the droplet is found, with an unexpected depletion of its central density.

  1. Experiments on Quantum Hall Topological Phases in Ultra Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Du, Rui-Rui [Rice Univ., Houston, TX (United States). Dept. of Physics and Astronomy

    2015-02-14

    This project is to cool electrons in semiconductors to extremely low temperatures and to study new states of matter formed by low-dimensional electrons (or holes). At such low temperatures (and with an intense magnetic field), electronic behavior differs completely from ordinary ones observed at room temperatures or regular low temperature. Studies of electrons at such low temperatures would open the door for fundamental discoveries in condensed matter physics. Present studies have been focused on topological phases in the fractional quantum Hall effect in GaAs/AlGaAs semiconductor heterostructures, and the newly discovered (by this group) quantum spin Hall effect in InAs/GaSb materials. This project consists of the following components: 1) Development of efficient sample cooling techniques and electron thermometry: Our goal is to reach 1 mK electron temperature and reasonable determination of electron temperature; 2) Experiments at ultra-low temperatures: Our goal is to understand the energy scale of competing quantum phases, by measuring the temperature-dependence of transport features. Focus will be placed on such issues as the energy gap of the 5/2 state, and those of 12/5 (and possible 13/5); resistive signature of instability near 1/2 at ultra-low temperatures; 3) Measurement of the 5/2 gaps in the limit of small or large Zeeman energies: Our goal is to gain physics insight of 5/2 state at limiting experimental parameters, especially those properties concerning the spin polarization; 4) Experiments on tuning the electron-electron interaction in a screened quantum Hall system: Our goal is to gain understanding of the formation of paired fractional quantum Hall state as the interaction pseudo-potential is being modified by a nearby screening electron layer; 5) Experiments on the quantized helical edge states under a strong magnetic field and ultralow temperatures: our goal is to investigate both the bulk and edge states in a quantum spin Hall insulator under

  2. The quantum Hall effect at 5/2 filling factor.

    Science.gov (United States)

    Willett, R L

    2013-07-01

    Experimental discovery of a quantized Hall state at 5/2 filling factor presented an enigmatic finding in an established field of study that has remained an open issue for more than twenty years. In this review we first examine the experimental requirements for observing this state and outline the initial theoretical implications and predictions. We will then follow the chronology of experimental studies over the years and present the theoretical developments as they pertain to experiments, directed at sets of issues. These topics will include theoretical and experimental examination of the spin properties at 5/2; is the state spin polarized? What properties of the higher Landau levels promote development of the 5/2 state, what other correlation effects are observed there, and what are their interactions with the 5/2 state? The 5/2 state is not a robust example of the fractional quantum Hall effect: what experimental and material developments have allowed enhancement of the effect? Theoretical developments from initial pictures have promoted the possibility that 5/2 excitations are exceptional; do they obey non-abelian statistics? The proposed experiments to determine this and their executions in various forms will be presented: this is the heart of this review. Experimental examination of the 5/2 excitations through interference measurements will be reviewed in some detail, focusing on recent results that demonstrate consistency with the picture of non-abelian charges. The implications of this in the more general physics picture is that the 5/2 excitations, shown to be non-abelian, should exhibit the properties of Majorana operators. This will be the topic of the last review section.

  3. Tutorial: Physics and modeling of Hall thrusters

    Science.gov (United States)

    Boeuf, Jean-Pierre

    2017-01-01

    Hall thrusters are very efficient and competitive electric propulsion devices for satellites and are currently in use in a number of telecommunications and government spacecraft. Their power spans from 100 W to 20 kW, with thrust between a few mN and 1 N and specific impulse values between 1000 and 3000 s. The basic idea of Hall thrusters consists in generating a large local electric field in a plasma by using a transverse magnetic field to reduce the electron conductivity. This electric field can extract positive ions from the plasma and accelerate them to high velocity without extracting grids, providing the thrust. These principles are simple in appearance but the physics of Hall thrusters is very intricate and non-linear because of the complex electron transport across the magnetic field and its coupling with the electric field and the neutral atom density. This paper describes the basic physics of Hall thrusters and gives a (non-exhaustive) summary of the research efforts that have been devoted to the modelling and understanding of these devices in the last 20 years. Although the predictive capabilities of the models are still not sufficient for a full computer aided design of Hall thrusters, significant progress has been made in the qualitative and quantitative understanding of these devices.

  4. Exchange-biased planar Hall effect sensor optimized for biosensor applications

    DEFF Research Database (Denmark)

    Damsgaard, Christian Danvad; Freitas, S.C.; Freitas, P.P.

    2008-01-01

    This article presents experimental investigations of exchange-biased Permalloy planar Hall effect sensor crosses with a fixed active area of w x w = 40 x 40 mu m(2) and Permalloy thicknesses of t = 20, 30, and 50 nm. It is shown that a single domain model describes the system well...

  5. Diagnostic Setup for Characterization of Near-Anode Processes in Hall Thrusters

    Energy Technology Data Exchange (ETDEWEB)

    L. Dorf; Y. Raitses; N.J. Fisch

    2003-09-08

    A diagnostic setup for characterization of near-anode processes in Hall-current plasma thrusters consisting of biased and emissive electrostatic probes, high-precision positioning system and low-noise electronic circuitry was developed and tested. Experimental results show that radial probe insertion does not cause perturbations to the discharge and therefore can be used for accurate near-anode measurements.

  6. A mobile ferromagnetic shape detection sensor using a Hall sensor array and magnetic imaging.

    Science.gov (United States)

    Misron, Norhisam; Shin, Ng Wei; Shafie, Suhaidi; Marhaban, Mohd Hamiruce; Mailah, Nashiren Farzilah

    2011-01-01

    This paper presents a mobile Hall sensor array system for the shape detection of ferromagnetic materials that are embedded in walls or floors. The operation of the mobile Hall sensor array system is based on the principle of magnetic flux leakage to describe the shape of the ferromagnetic material. Two permanent magnets are used to generate the magnetic flux flow. The distribution of magnetic flux is perturbed as the ferromagnetic material is brought near the permanent magnets and the changes in magnetic flux distribution are detected by the 1-D array of the Hall sensor array setup. The process for magnetic imaging of the magnetic flux distribution is done by a signal processing unit before it displays the real time images using a netbook. A signal processing application software is developed for the 1-D Hall sensor array signal acquisition and processing to construct a 2-D array matrix. The processed 1-D Hall sensor array signals are later used to construct the magnetic image of ferromagnetic material based on the voltage signal and the magnetic flux distribution. The experimental results illustrate how the shape of specimens such as square, round and triangle shapes is determined through magnetic images based on the voltage signal and magnetic flux distribution of the specimen. In addition, the magnetic images of actual ferromagnetic objects are also illustrated to prove the functionality of mobile Hall sensor array system for actual shape detection. The results prove that the mobile Hall sensor array system is able to perform magnetic imaging in identifying various ferromagnetic materials.

  7. Many-electron quantum dots in the fractional quantum Hall regime

    Science.gov (United States)

    Emperador, A.; Lipparini, E.; Pederiva, F.

    2005-07-01

    We perform configuration-interaction calculations in quantum dots with N=8,10 electrons in the fractional quantum Hall regime by using an optimized basis which takes into account interaction effects. In the N=10 phase diagram we find two very stable configurations which are precursor of the bulk ν=2/3 and ν=3/5 states observed in the Hall resistance of the two-dimensional electron gas, and many quasidegenerate configurations which can be related to the quasistable states experimentally found around the ν=1/2 region.

  8. Analytical theory and possible detection of the ac quantum spin Hall effect.

    Science.gov (United States)

    Deng, W Y; Ren, Y J; Lin, Z X; Shen, R; Sheng, L; Sheng, D N; Xing, D Y

    2017-07-11

    We develop an analytical theory of the low-frequency ac quantum spin Hall (QSH) effect based upon the scattering matrix formalism. It is shown that the ac QSH effect can be interpreted as a bulk quantum pumping effect. When the electron spin is conserved, the integer-quantized ac spin Hall conductivity can be linked to the winding numbers of the reflection matrices in the electrodes, which also equal to the bulk spin Chern numbers of the QSH material. Furthermore, a possible experimental scheme by using ferromagnetic metals as electrodes is proposed to detect the topological ac spin current by electrical means.

  9. Local orbitals approach to the anomalous Hall and Nernst effects in itinerant ferromagnets

    Directory of Open Access Journals (Sweden)

    Středa Pavel

    2014-07-01

    Full Text Available Linear response of the orbital momentum to the gradient of the chemical potential is used to obtain anomalous Hall conductivity. Transition from the ideal Bloch system for which the conductivity is determined by the Berry phase curvatures to the case of strong disorder for which the conductivity becomes dependent on the relaxation time is analysed. Presented tight-binding model reproduces experimentally observed qualitative features of the anomalous Hall conductivity and the transverse Peltier coefficient in the so called bad-metal and scattering-independent regimes.

  10. Acoustics in rock and pop music halls

    DEFF Research Database (Denmark)

    Adelman-Larsen, Niels Werner; Thompson, Eric Robert; Gade, Anders Christian

    2007-01-01

    The existing body of literature regarding the acoustic design of concert halls has focused almost exclusively on classical music, although there are many more performances of rhythmic music, including rock and pop. Objective measurements were made of the acoustics of twenty rock music venues...... in Denmark and a questionnaire was used in a subjective assessment of those venues with professional rock musicians and sound engineers. Correlations between the objective and subjective results lead, among others, to a recommendation for reverberation time as a function of hall volume. Since the bass...

  11. Prototype dining hall energy efficiency study

    Energy Technology Data Exchange (ETDEWEB)

    Mazzucchi, R.P.; Bailey, S.A.; Zimmerman, P.W.

    1988-06-01

    The energy consumption of food service facilities is among the highest of any commercial building type, owing to the special requirements for food preparation, sanitation, and ventilation. Consequently, the US Air Force Engineering and Services Center (AFESC) contracted with Pacific Northwest Laboratory (PNL) to collect and analyze end-use energy consumption data for a prototypical dining hall and make specific recommendations on cost-effective energy conservation options. This information will be used to establish or update criteria for dining hall designs and retrofits as appropriate. 6 refs., 21 figs., 23 tabs.

  12. EL CROWN HALL. CONTEXTO Y PROYECTO

    Directory of Open Access Journals (Sweden)

    Laura Lizondo Sevilla

    2010-05-01

    Full Text Available RESUMEN El artículo enmarca el edificio del Crown Hall en el contexto docente y arquitectónico de Mies van der Rohe. Revisa sus inicios en la Bauhaus con su primera intervención en un espacio docente para la Bauhaus de Berlín en 1932, así como su marcha a Estados Unidos, los planteamientos arquitectónicos del campus del IIT y el proyecto del Crown Hall. El texto incide en el estudio del proceso proyectual del Crown Hall analizando la evolución de su concepción arquitectónica a través de las diferentes versiones del proyecto. Se constata la transición desde los primeros planteamientos arquitectónicos de los edificios del campus del IIT proyectados por Mies hacia el planteamiento del gran espacio unitario del Crown Hall. Este proyecto se puede entender desde la creciente importancia de la estructura, la claridad constructiva y el manejo del acero y vidrio como únicos materiales de la imagen del edificio y el carácter flexible y unitario del espacio. Finalmente se hace referencia al concepto del "espacio universal" en la arquitectura de Mies, como un concepto abstracto que supera los de flexibilidad de uso o unidad espacial, insinuando, a modo de reflexión, las principales variables que definirían el espacio universal miesiano.SUMMARY The article showcases the Crown Hall building in the educational and architectural context of Mies van der Rohe. It reviews his beginnings in the Bauhaus with his first intervention in an educational space for the Bauhaus of Berlin in 1932, as well as his sojourn to the United States, and the architectural approaches to the IIT campus and the Crown Hall project. The text touches on the study of the planning process for the Crown Hall, analysing the evolution of its architectural conception, through the different versions of the project. The article covers the transition from the first architectural approaches for the IIT campus buildings, planned by Mies, to the approach of the large unitary space of

  13. Estimating the spin diffusion length and the spin Hall angle from spin pumping induced inverse spin Hall voltages

    Science.gov (United States)

    Roy, Kuntal

    2017-11-01

    There exists considerable confusion in estimating the spin diffusion length of materials with high spin-orbit coupling from spin pumping experiments. For designing functional devices, it is important to determine the spin diffusion length with sufficient accuracy from experimental results. An inaccurate estimation of spin diffusion length also affects the estimation of other parameters (e.g., spin mixing conductance, spin Hall angle) concomitantly. The spin diffusion length for platinum (Pt) has been reported in the literature in a wide range of 0.5-14 nm, and in particular it is a constant value independent of Pt's thickness. Here, the key reasonings behind such a wide range of reported values of spin diffusion length have been identified comprehensively. In particular, it is shown here that a thickness-dependent conductivity and spin diffusion length is necessary to simultaneously match the experimental results of effective spin mixing conductance and inverse spin Hall voltage due to spin pumping. Such a thickness-dependent spin diffusion length is tantamount to the Elliott-Yafet spin relaxation mechanism, which bodes well for transitional metals. This conclusion is not altered even when there is significant interfacial spin memory loss. Furthermore, the variations in the estimated parameters are also studied, which is important for technological applications.

  14. Anisotropic pseudopotential characterization of quantum Hall systems under a tilted magnetic field

    Science.gov (United States)

    Yang, Bo; Lee, Ching Hua; Zhang, Chi; Hu, Zi-Xiang

    2017-11-01

    We analytically derived the effective two-body interaction for a finite thickness quantum Hall system with a harmonic perpendicular confinement and an in-plane magnetic field. The anisotropic effective interaction in the lowest Landau level (LLL) and first Landau level (1LL) are expanded in the basis of the generalized pseudopotentials (PPs), and we analyze how the coefficients of some prominent isotropic and anisotropic PPs depend on the thickness of the sample and the strength of the in-plane magnetic field. We also investigate the stability of the topological quantum Hall states, especially the Laughlin state and its emergent guiding center metric, which we can now compute analytically. An interesting reorientation of the anisotropy direction of the Laughlin state in the 1LL is revealed, and we also discuss various possible experimental ramifications for this quantum Hall system with broken rotational symmetry.

  15. Four Beam Generation for Simultaneous Four-Hall Operation at CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Kazimi, Reza [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Grames, Joseph M. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Hansknecht, John C. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Hofler, Alicia S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Lahti, George E. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Plawski, Tomasz E. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Poelker, Matt [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Suleiman, RIad S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wang, Yan [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-05-01

    As part of the CEBAF 12 GeV upgrade at Jefferson Lab, a new experimental hall was added to the existing three halls. To deliver beam to all four halls simultaneous-ly, a new timing pattern for electron bunches is needed at the injector. This pattern change has consequences for the frequency of the lasers at the photogun, beam behavior in the chopping system, beam optics due to space charge, and setup procedures. We have successfully demonstrated this new pattern using the three existing drive lasers. The implementation of the full system will occur when the fourth laser is added and upgrades to the Low Level RF (LLRF) are complete. In this paper we explain the new bunch pattern, the challenges for setting and measuring the pattern such as 180° RF phase ambiguity, addition of the fourth laser to the laser table and LLRF upgrade.

  16. Chiral Anomaly as the Origin of the Planar Hall Effect in Weyl Semimetals

    Science.gov (United States)

    Nandy, S.; Sharma, Girish; Taraphder, A.; Tewari, Sumanta

    2017-10-01

    In condensed matter physics, the term "chiral anomaly" implies the violation of the separate number conservation laws of Weyl fermions of different chiralities in the presence of parallel electric and magnetic fields. One effect of the chiral anomaly in the recently discovered Dirac and Weyl semimetals is a positive longitudinal magnetoconductance. Here we show that chiral anomaly and nontrivial Berry curvature effects engender another striking effect in Weyl semimetals, the planar Hall effect (PHE). Remarkably, the PHE manifests itself when the applied current, magnetic field, and the induced transverse "Hall" voltage all lie in the same plane, precisely in a configuration in which the conventional Hall effect vanishes. In this work we treat the PHE quasiclassically, and predict specific experimental signatures for type-I and type-II Weyl semimetals that can be directly checked in experiments.

  17. Voltage transients in thin-film InSb Hall sensor

    Directory of Open Access Journals (Sweden)

    Alexey Bardin

    Full Text Available The work is reached to study temperature transients in thin-film Hall sensors. We experimentally study InSb thin-film Hall sensor. We find transients of voltage with amplitude about 10 μV on the sensor ports after current switching. We demonstrate by direct measurements that the transients is caused by thermo-e.m.f., and both non-stationarity and heterogeneity of temperature in the film. We find significant asymmetry of temperature field for different direction of the current, which is probably related to Peltier effect. The result can be useful for wide range of scientist who works with switching of high density currents in any thin semiconductor films. 2000 MSC: 41A05, 41A10, 65D05, 65D17, Keywords: Thin-films, Semiconductors, Hall sensor, InSb, thermo-e.m.f.

  18. Quantum control approach to creating and detecting fractional quantum Hall puddles

    Science.gov (United States)

    Baur, Stefan; Hazzard, Kaden; Mueller, Erich

    2009-05-01

    We theoretically explore a novel approach to generating few-body analogs of bosonic fractional quantum Hall states [1]. We consider an array of identical few-atom clusters (n = 2, 3, 4), each cluster trapped at the node of an optical lattice. By temporally varying the amplitude and phase of the trapping lasers, one can introduce a rotating deformation at each site. This allows for coherently transferring atoms into highly correlated states. We study target state fidelities and experimental signatures by exactly solving the many-body time dependent Schrödinger equation within a truncated basis. In addition to bosonic quantum hall states our method provides a path to create fermionic quantum hall states and other exotic states. [1] SKB, KRAH, and EJM, Phys. Rev. A 78, 061608(R) (2008)

  19. Z3 Parafermionic Zero Modes without Andreev Backscattering from the 2 /3 Fractional Quantum Hall State

    Science.gov (United States)

    Alavirad, Yahya; Clarke, David; Nag, Amit; Sau, Jay D.

    2017-11-01

    Parafermionic zero modes are a novel set of excitations displaying non-Abelian statistics somewhat richer than that of Majorana modes. These modes are predicted to occur when nearby fractional quantum Hall edge states are gapped by an interposed superconductor. Despite substantial experimental progress, we argue that the necessary crossed Andreev reflection in this arrangement is a challenging milestone to reach. We propose a superconducting quantum dot array structure on a fractional quantum Hall edge that can lead to parafermionic zero modes from coherent superconducting forward scattering on a quantum Hall edge. Such coherent forward scattering has already been demonstrated in recent experiments. We show that for a spin-singlet superconductor interacting with loops of spin unpolarized 2 /3 fractional quantum edge, even an array size of order 10 should allow one to systematically tune into a parafermionic degeneracy.

  20. A review of the quantum Hall effects in MgZnO/ZnO heterostructures.

    Science.gov (United States)

    Falson, Joseph; Kawasaki, Masashi

    2018-01-22

    This review visits recent experimental efforts on high mobility two-dimensional electron systems (2DES) hosted at the MgxZn1-xO/ZnO heterointerface. We begin with the growth of these samples, and highlight the key characteristics of ozone-assisted molecular beam epitaxy required for their production. The transport characteristics of these structures are found to rival that of traditional semiconductor material systems, as signified by the high electron mobility (μ > 1,000,000 cm2/Vs) and rich quantum Hall features. Owing to a large effective mass and small dielectric constant, interaction effects are an order of magnitude stronger in comparison with the well studied GaAs-based 2DES. The strong correlation physics results in robust Fermi-liquid renormalization of the effective mass and g-factor of carriers, which in turn dictates the parameter space for the quantum Hall effect. Finally, we explore the quantum Hall effect with a particular emphasis on the spin degree of freedom of carriers, and how their large spin splitting allows control of the ground states encountered at ultra-low temperatures within the fractional quantum Hall regime. A particular emphasis is put on the physics of even-denominator fractional quantum Hall states, whose observation and underlying character remain elusive and exotic. © 2018 IOP Publishing Ltd.

  1. Growth of β-Tungsten Films Towards a Giant Spin Hall Effect Logic Device

    Science.gov (United States)

    Jayanthinarasimham, Avyaya; Medikonda, Manasa; Matsubayashi, Akitomo; Nolting, Westly; Diebold, Alain; Labella, Vincent

    2014-03-01

    Spin orbit interaction in a semiconductor and metal result in spin current transverse to a charge current, this is spin Hall effect. It was theoretically predicted by Dyakonov. et. al and J.E.Hirsch, but not until it was experimentally confirmed in 2004 by Kato, Y.K. et al. did it attract the much attention. Recent spin Hall effect studies in metals like β-Ta, β-W produce spin currents strong enough to switch an adjacent magnetic layer. α and β phases of Tungsten are strongly governed by film resistance, thickness, base pressure and oxygen availability. The metastable β-W is known to exhibit giant spin Hall effect. Deposition conditions selective to β phase should be used to fabricate these devices. A step wise process flow for a fully functioning device that combines the giant spin Hall effect and magnetic tunnel junction needs to be explored. This poster will present our work on fabricating and characterizing thicker tungsten films, dominated with β-phase, towards a giant spin Hall Effect structures utilizing the 300 mm wafer processing facilities at CNSE.

  2. Heavy Gas Cerenkov Detector for Jefferson Lab Hall C

    Science.gov (United States)

    Li, Wenliang

    2013-10-01

    The Thomas Jefferson National Accelerator Facility (JLab) has undertaken the 12 GeV Upgrade to double the accelerating energy of its electron beam. This attracts many interesting proposals to probe the quark-gluon nature of nuclear matter at higher energy therefore a new set of equipment are required. A new Super High Momentum Spectrometer (SHMS) is currently under construction for the experimental Hall C. University of Regina is assigned to construct the Heavy Gas Cerenkov Detector as part of SHMS focal plane detectors. This detector will be used as critical component for good pion identification in the SHMS experimental program. In this presentation, we will report the design, current status and expected performance. Supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

  3. Hall MHD Stability and Turbulence in Magnetically Accelerated Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    H. R. Strauss

    2012-11-27

    The object of the research was to develop theory and carry out simulations of the Z pinch and plasma opening switch (POS), and compare with experimental results. In the case of the Z pinch, there was experimental evidence of ion kinetic energy greatly in excess of the ion thermal energy. It was thought that this was perhaps due to fine scale turbulence. The simulations showed that the ion energy was predominantly laminar, not turbulent. Preliminary studies of a new Z pinch experiment with an axial magnetic field were carried out. The axial magnetic is relevant to magneto - inertial fusion. These studies indicate the axial magnetic field makes the Z pinch more turbulent. Results were also obtained on Hall magnetohydrodynamic instability of the POS.

  4. Quantized Anomalous Hall Effect in Magnetic Topological Insulators

    National Research Council Canada - National Science Library

    Rui Yu; Wei Zhang; Hai-Jun Zhang; Shou-Cheng Zhang; Xi Dai; Zhong Fang

    2010-01-01

    .... In a quantum anomalous Hall insulator, spontaneous magnetic moments and spin-orbit coupling combine to give rise to a topologically nontrivial electronic structure, leading to the quantized Hall...

  5. Bound values for Hall conductivity of heterogeneous medium under ...

    Indian Academy of Sciences (India)

    - ditions in inhomogeneous medium has been studied. It is shown that bound values for. Hall conductivity differ from bound values for metallic conductivity. This is due to the unusual character of current percolation under quantum Hall effect ...

  6. Planar Hall effect based characterization of spin orbital torques in Ta/CoFeB/MgO structures

    Energy Technology Data Exchange (ETDEWEB)

    Jamali, Mahdi; Zhao, Zhengyang; Zhang, Delin; Smith, Angeline K.; Wang, Jian-Ping, E-mail: jpwang@umn.edu [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States); DC, Mahendra [Department of Physics, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Li, Hongshi [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2016-04-07

    The spin orbital torques in Ta/CoFeB/MgO structures are experimentally investigated utilizing the planar Hall effect and magnetoresistance measurement. By angular field characterization of the planar Hall resistance at ±current, the differential resistance which is directly related to the spin orbital torques is derived. Upon curve fitting of the analytical formulas over the experimental results, it is found that the anti-damping torque, also known as spin Hall effect, is sizable while a negligible field-like torque is observed. A spin Hall angle of about 18 ± 0.6% is obtained for the Ta layer. Temperature dependent study of the spin orbital torques is also performed. It is found that temperature does not significantly modify the spin Hall angle. By cooling down the sample down to 100 K, the obtained spin Hall angle has a maximum value of about 20.5 ± 0.43%.

  7. Topological spin Hall effect resulting from magnetic skyrmions

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Gen; Liu, Yizhou; Barlas, Yafis; Zang, Jiadong; Lake, Roger K.

    2015-07-01

    The intrinsic spin Hall effect originates from the topology of the Bloch bands in momentum space. The duality between real space and momentum space calls for a spin Hall effect induced from a real space topology in analogy to the topological Hall effect of skyrmions. We theoretically demonstrate the topological spin Hall effect in which a pure transverse spin current is generated from a skyrmion spin texture.

  8. Nonexponential sound decay in concert halls

    Science.gov (United States)

    Kanev, N. G.

    2016-01-01

    The paper presents acoustic measurement results for two concert halls in which nonexponential sound decay is observed. Quantitative estimates are given for how the obtained decay laws differ from exponential. Problems are discussed that arise when using reverberation time to assess the quality of room acoustics with nonexponential sound decay.

  9. Concept of Operating Indoor Skiing Halls with

    DEFF Research Database (Denmark)

    Paul, Joachim

    2003-01-01

    Indoor skiing halls are conventionally operated at low temperatures and with either crushed ice as snow substitute or snow made from freezing water in cold air. Both systems have a high energy demand for air cooling, floor freezing and consequently snow harvest. At the same time the snow at the top...

  10. View of CMS in the assembly hall

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The CMS detector is stored in the assembly hall at Cessy, France. Once the detector has been fully assembled on the surface, it will be lowered into its cathedral-like cavern. A large range of physics will be studied in this experiment, including the possibility of extra dimensions and the search for the Higgs Boson.

  11. Room acoustic properties of concert halls

    DEFF Research Database (Denmark)

    Gade, Anders Christian

    1996-01-01

    A large database of values of various room acoustic parameters has provided the basis for statistical analyses of how and how much the acoustic properties of concert halls are influenced by their size, shape, and absorption area (as deduced from measured reverberation time). The data have been...

  12. Supersymmetry in the Fractional Quantum Hall Regime

    CERN Document Server

    Sagi, Eran

    2016-01-01

    Supersymmetry (SUSY) is a symmetry transforming bosons to fermions and vice versa. Indications of its existence have been extensively sought after in high-energy experiments. However, signatures of SUSY have yet to be detected. In this manuscript we propose a condensed matter realization of SUSY on the edge of a Read-Rezayi quantum Hall state, given by filling factors of the form $\

  13. Massive Skyrmions in quantum Hall ferromagnets

    NARCIS (Netherlands)

    Abolfath, M.; Mullen, K.; Stoof, H.T.C.

    2001-01-01

    We apply the theory of elasticity to study the effects of Skyrmion mass on lattice dynamics in quantum Hall systems. We find that massive Skyrme lattices behave like a Wigner crystal in the presence of a uniform perpendicular magnetic field. We make a comparison with the microscopic Hartree-Fock

  14. Hall Thruster With an External Acceleration Zone

    National Research Council Canada - National Science Library

    Gascon, Nicolas; Corey, Ronald L; Cappelli, Mark A; Hargus, William

    2005-01-01

    ... of wall material, or magnetic field intensity. When operated with a low background pressure, the particular Hall discharge studied here creates an ion accelerating electrostatic field mainly outside of the channel, in a narrow zone located 5-20 mm away from the exit plane.

  15. Large Spin Hall Angle in Vanadium Film

    Science.gov (United States)

    Wang, Tao; Fan, Xin; Wang, Wenrui; Xie, Yunsong; Warsi, Muhammad A.; Wu, Jun; Chen, Yunpeng; Lorenz, Virginia O.; Xiao, John Q.

    We report the large spin Hall angle observed in Vanadium film with small grain size and distorted lattice parameter. The spin Hall angle is quantified by measuring current-induced spin-orbit torque in V/CoFeB bilayer using optical spin torque magnetometer based on polar magneto-optical Kerr effect (MOKE). The spin Hall angle as large as θSH = -0.071 has been observed in V/CoFeB bilayer Structural analysis, using X-ray diffraction (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED), confirms films grown at room temperature have very small grain size and enlarged lattice parameter. The Vanadium films with distorted crystal structure also have high resistivity (>200 μΩ cm) and long spin diffusion length (~16.3 nm) measured via spin pumping experiment. This finding of spin Hall effect enhancement in more disordered structure will provide insights for understanding and exploiting materials with strong spin orbit interaction, especially in light 3d transition metals which promise long spin diffusion length.

  16. Development and applications of mesoscopic hall microprobes

    NARCIS (Netherlands)

    Novoselov, Konstantin S.

    2004-01-01

    This thesis is devoted to the further development of the local Hall magnetometery technique, and its application for studying ferromagnetic domain wall propagation on the sub-atomic scale. First the ballistic electron transport in a strong, non-uniform magnetic field is discussed. Than a possible

  17. Individualization in a Lecture Hall Setting.

    Science.gov (United States)

    Halyard, Rebecca A.

    A two-quarter Human Anatomy and Physiology course for health-science students has been developed which incorporates the principles of individualization while maintaining the lecture hall setting. The lecture method contributes the following components to the course: (1) no special equipment or supplies; (2) personal interaction between instructor…

  18. Asymmetry of the Hall Conductance Fluctuations in a Random Magnetic Field

    Science.gov (United States)

    1998-06-01

    and CNRS-LCMI, F-38042, Grenoble, France § Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland ¶ Instituto de Fisica de Sao Carlos, 13560-970...samples (2 × 2 /•m×/zm) with a dimpled 2 DEG. This type of structures provides an experimental alternative for studying a spatially varying magnetic field...height of the dimples 0.1 Itm, which agrees well the experimental observations. The Hall resistance together with B-linear background reveals

  19. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators.

    Science.gov (United States)

    Guterding, Daniel; Jeschke, Harald O; Valentí, Roser

    2016-05-17

    Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions.

  20. Inertial-Hall effect: the influence of rotation on the Hall conductivity

    Directory of Open Access Journals (Sweden)

    Julio E. Brandão

    2015-01-01

    Full Text Available Inertial effects play an important role in classical mechanics but have been largely overlooked in quantum mechanics. Nevertheless, the analogy between inertial forces on mass particles and electromagnetic forces on charged particles is not new. In this paper, we consider a rotating non-interacting planar two-dimensional electron gas with a perpendicular uniform magnetic field and investigate the effects of the rotation in the Hall conductivity. The rotation introduces a shift and a split in the Landau levels. As a consequence of the break of the degeneracy, the counting of the states fully occupied below the Fermi energy increases, tuning the Hall quantization steps. The rotation also changes the quantum Hall plateau widths. Additionally, we find the Hall quantization steps as a function of rotation at a fixed value of the magnetic field.

  1. Dust exposure in indoor climbing halls.

    Science.gov (United States)

    Weinbruch, Stephan; Dirsch, Thomas; Ebert, Martin; Hofmann, Heiko; Kandler, Konrad

    2008-05-01

    The use of hydrated magnesium carbonate hydroxide (magnesia alba) for drying the hands is a strong source for particulate matter in indoor climbing halls. Particle mass concentrations (PM10, PM2.5 and PM1) were measured with an optical particle counter in 9 indoor climbing halls and in 5 sports halls. Mean values for PM10 in indoor climbing halls are generally on the order of 200-500 microg m(-3). For periods of high activity, which last for several hours, PM10 values between 1000 and 4000 microg m(-3) were observed. PM(2.5) is on the order of 30-100 microg m(-3) and reaches values up to 500 microg m(-3), if many users are present. In sports halls, the mass concentrations are usually much lower (PM10 indoor climbing were observed. The size distribution and the total particle number concentration (3.7 nm-10 microm electrical mobility diameter) were determined in one climbing hall by an electrical aerosol spectrometer. The highest number concentrations were between 8000 and 12 000 cm(-3), indicating that the use of magnesia alba is no strong source for ultrafine particles. Scanning electron microscopy and energy-dispersive X-ray microanalysis revealed that virtually all particles are hydrated magnesium carbonate hydroxide. In-situ experiments in an environmental scanning electron microscope showed that the particles do not dissolve at relative humidities up to 100%. Thus, it is concluded that solid particles of magnesia alba are airborne and have the potential to deposit in the human respiratory tract. The particle mass concentrations in indoor climbing halls are much higher than those reported for schools and reach, in many cases, levels which are observed for industrial occupations. The observed dust concentrations are below the current occupational exposure limits in Germany of 3 and 10 mg m(-3) for respirable and inhalable dust. However, the dust concentrations exceed the German guide lines for work places without use of hazardous substances. In addition

  2. Digital technology impacts on the Arnhem transfer hall structural design

    NARCIS (Netherlands)

    Van de Straat, R.; Hofman, S.; Coenders, J.L.; Paul, J.C.

    2015-01-01

    The new Transfer Hall in Arnhem is one of the key projects to prepare the Dutch railways for the increased future demands for capacity. UNStudio developed a master plan in 1996 for the station area of which the completion of the Transfer Hall in 2015 will be a final milestone. The Transfer Hall is a

  3. Hall Plateaus at magic angles in ultraquantum Bismuth

    Science.gov (United States)

    Benoît, Fauqué.

    2009-03-01

    The behaviour of a three-dimensional electron gas in the presence of a magnetic field strong enough to put all carriers in the first Landau level (i.e. beyond the quantum limit) is a longstanding question of theoretical condensed matter physics [1]. This issue has been recently explored by two high-field experiments on elemental semi-metal Bismuth. In a first study of transport coefficients (which are dominated by hole-like carriers), the Nernst coefficient presented three unexpected maxima that are concomitant with quasi-plateaux in the Hall coefficient [2]. In a second series of experiments, torque magnetometry (which mainly probes the three Dirac valley electron pockets) detected a field-induced phase transition [3]. The full understanding of the electron and hole behaviours above the quantum limit of pure Bi is therefore still under debate. In this talk, we will present our measurement of the Hall resistivity and torque magnetometry with magnetic field up to 31 T and rotating in the trigonal-bisectrix plane [4]. The Hall response is dominated by the hole pockets according to its sign as well as the period and the angular dependence of its quantum oscillations. In the vicinity of the quantum limit, it presents additional anomalies which are the fingerprints of the electron pockets. We found that for particular orientations of the magnetic field (namely ``magic angles''), the Hall response becomes field-independent within the experimental resolution around 20T. This drastic dependence of the plateaux on the field orientation provides strong constraints for theoretical scenarios. [4pt] [1] Bertrand I. Halperin, Japanese Journal of Applied Physics, 26, Supplement 26-3 (1987).[0pt] [2] Kamran Behnia, Luis Balicas, Yakov Kopelevich, Science, 317, 1729 (2008).[0pt] [3] Lu Li, J. G. Checkelsky, Y. S. Hor, C. Uher, A. F. Hebard, R. J. Cava, and N. P. Ong , Science, 321, 5888 (2008).[0pt] [4] Benoît Fauqu'e, Luis Balicas, Ilya Sheikin, Jean Paul Issi and Kamran Behnia

  4. Spatially resolved Hall effect measurement in a single semiconductor nanowire

    Science.gov (United States)

    Storm, Kristian; Halvardsson, Filip; Heurlin, Magnus; Lindgren, David; Gustafsson, Anders; Wu, Phillip M.; Monemar, Bo; Samuelson, Lars

    2012-12-01

    Efficient light-emitting diodes and photovoltaic energy-harvesting devices are expected to play an important role in the continued efforts towards sustainable global power consumption. Semiconductor nanowires are promising candidates as the active components of both light-emitting diodes and photovoltaic cells, primarily due to the added freedom in device design offered by the nanowire geometry. However, for nanowire-based components to move past the proof-of-concept stage and be implemented in production-grade devices, it is necessary to precisely quantify and control fundamental material properties such as doping and carrier mobility. Unfortunately, the nanoscale geometry that makes nanowires interesting for applications also makes them inherently difficult to characterize. Here, we report a method to carry out Hall measurements on single core-shell nanowires. Our technique allows spatially resolved and quantitative determination of the carrier concentration and mobility of the nanowire shell. As Hall measurements have previously been completely unavailable for nanowires, the experimental platform presented here should facilitate the implementation of nanowires in advanced practical devices.

  5. Parametric studies of the Hall current plasma thruster

    Science.gov (United States)

    Ashkenazy, J.; Raitses, Y.; Appelbaum, G.

    1998-05-01

    The Hall current plasma thruster accelerates a plasma jet by an axial electric field and an applied radial magnetic field in an annular ceramic channel. A relatively large current density (>0.1 A/cm2) can be obtained as the acceleration mechanism is not limited by space charge effects. Such a device can be used as a small rocket engine on board spacecraft with the advantage of a large jet velocity compared to conventional rocket engines (10000-30000 m/s versus 2000-4800 m/s). An experimental Hall thruster was constructed and operated in a broad range of operating conditions and under various configuration variations. Electrical, magnetic and plasma diagnostics, and as well accurate thrust and gas flow rate measurements, have been used to investigate the dependence of thruster behavior on the applied voltage, gas flow rate, magnetic field, channel geometry and wall material. The studies conducted so far have demonstrated a significant effect of channel material on thruster electrical characteristics and the existence of an optimal channel length for a given flow rate. Representative results highlighting these findings are presented.

  6. Diagnostics Systems for Permanent Hall Thrusters Development

    Science.gov (United States)

    Ferreira, Jose Leonardo; Soares Ferreira, Ivan; Santos, Jean; Miranda, Rodrigo; Possa, M. Gabriela

    This work describes the development of Permanent Magnet Hall Effect Plasma Thruster (PHALL) and its diagnostic systems at The Plasma Physics Laboratory of University of Brasilia. The project consists on the construction and characterization of plasma propulsion engines based on the Hall Effect. Electric thrusters have been employed in over 220 successful space missions. Two types stand out: the Hall-Effect Thruster (HET) and the Gridded Ion Engine (GIE). The first, which we deal with in this project, has the advantage of greater simplicity of operation, a smaller weight for the propulsion subsystem and a longer shelf life. It can operate in two configurations: magnetic layer and anode layer, the difference between the two lying in the positioning of the anode inside the plasma channel. A Hall-Effect Thruster-HET is a type of plasma thruster in which the propellant gas is ionized and accelerated by a magneto hydrodynamic effect combined with electrostatic ion acceleration. So the essential operating principle of the HET is that it uses a J x B force and an electrostatic potential to accelerate ions up to high speeds. In a HET, the attractive negative charge is provided by electrons at the open end of the Thruster instead of a grid, as in the case of the electrostatic ion thrusters. A strong radial magnetic field is used to hold the electrons in place, with the combination of the magnetic field and the electrostatic potential force generating a fast circulating electron current, the Hall current, around the axis of the Thruster, mainly composed by drifting electrons in an ion plasma background. Only a slow axial drift towards the anode occurs. The main attractive features of the Hall-Effect Thruster are its simple design and operating principles. Most of the Hall-Effect Thrusters use electromagnet coils to produce the main magnetic field responsible for plasma generation and acceleration. In this paper we present a different new concept, a Permanent Magnet Hall

  7. Accurate micro Hall effect measurements on scribe line pads

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Petersen, Dirch Hjorth; Wang, Fei

    2009-01-01

    Hall mobility and sheet carrier density are important parameters to monitor in advanced semiconductor production. If micro Hall effect measurements are done on small pads in scribe lines, these parameters may be measured without using valuable test wafers. We report how Hall mobility can...... be extracted from micro four-point measurements performed on a rectangular pad. The dimension of the investigated pad is 400 × 430 ¿m2, and the probe pitches range from 20 ¿m to 50 ¿m. The Monte Carlo method is used to find the optimal way to perform the Hall measurement and extract Hall mobility most...

  8. Identifying concert halls from source presence vs room presence.

    Science.gov (United States)

    Haapaniemi, Aki; Lokki, Tapio

    2014-06-01

    Identification of concert halls was studied to uncover whether the early or late part of the acoustic response is more salient in a hall's fingerprint. A listening test was conducted with auralizations of measured halls using full, hybrid, and truncated impulse responses convolved with anechoic symphonic music. Subjects identified halls more reliably based on differences in early responses rather than late responses, although varying the late response had more effect on acoustic parameters. The results suggest that in a typical situation with running symphonic music, the early response determines the perceptual fingerprint of a hall more than the late response.

  9. The impact of Hall physics on magnetized high energy density plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Gourdain, P.-A.; Seyler, C. E.; Atoyan, L.; Greenly, J. B.; Hammer, D. A.; Kusse, B. R.; Pikuz, S. A.; Potter, W. M.; Schrafel, P. C.; Shelkovenko, T. A. [Cornell University, Ithaca, New York 14853 (United States)

    2014-05-15

    Hall physics is often neglected in high energy density plasma jets due to the relatively high electron density of such jets (n{sub e} ∼ 10{sup 19} cm{sup −3}). However, the vacuum region surrounding the jet has much lower densities and is dominated by Hall electric field. This electric field redirects plasma flows towards or away from the axis, depending on the radial current direction. A resulting change in the jet density has been observed experimentally. Furthermore, if an axial field is applied on the jet, the Hall effect is enhanced and ignoring it leads to serious discrepancies between experimental results and numerical simulations. By combining high currents (∼1 MA) and magnetic field helicity (15° angle) in a pulsed power generator such as COBRA, plasma jets can be magnetized with a 10 T axial field. The resulting field enhances the impact of the Hall effect by altering the density profile of current-free plasma jets and the stability of current-carrying plasma jets (e.g., Z-pinches)

  10. Photonic topological boundary pumping as a probe of 4D quantum Hall physics.

    Science.gov (United States)

    Zilberberg, Oded; Huang, Sheng; Guglielmon, Jonathan; Wang, Mohan; Chen, Kevin P; Kraus, Yaacov E; Rechtsman, Mikael C

    2018-01-03

    When a two-dimensional (2D) electron gas is placed in a perpendicular magnetic field, its in-plane transverse conductance becomes quantized; this is known as the quantum Hall effect. It arises from the non-trivial topology of the electronic band structure of the system, where an integer topological invariant (the first Chern number) leads to quantized Hall conductance. It has been shown theoretically that the quantum Hall effect can be generalized to four spatial dimensions, but so far this has not been realized experimentally because experimental systems are limited to three spatial dimensions. Here we use tunable 2D arrays of photonic waveguides to realize a dynamically generated four-dimensional (4D) quantum Hall system experimentally. The inter-waveguide separation in the array is constructed in such a way that the propagation of light through the device samples over momenta in two additional synthetic dimensions, thus realizing a 2D topological pump. As a result, the band structure has 4D topological invariants (known as second Chern numbers) that support a quantized bulk Hall response with 4D symmetry. In a finite-sized system, the 4D topological bulk response is carried by localized edge modes that cross the sample when the synthetic momenta are modulated. We observe this crossing directly through photon pumping of our system from edge to edge and corner to corner. These crossings are equivalent to charge pumping across a 4D system from one three-dimensional hypersurface to the spatially opposite one and from one 2D hyperedge to another. Our results provide a platform for the study of higher-dimensional topological physics.

  11. Microscopic Origin of the Valley Hall Effect in Transition Metal Dichalcogenides Revealed by Wavelength-Dependent Mapping

    Science.gov (United States)

    Ubrig, Nicolas; Jo, Sanghyun; Philippi, Marc; Costanzo, Davide; Berger, Helmuth; Kuzmenko, Alexey B.; Morpurgo, Alberto F.

    2017-09-01

    The band structure of many semiconducting monolayer transition metal dichalcogenides (TMDs) possesses two degenerate valleys, with equal and opposite Berry curvature. It has been predicted that, when illuminated with circularly polarized light, interband transitions generate an unbalanced non-equilibrium population of electrons and holes in these valleys, resulting in a finite Hall voltage at zero magnetic field when a current flows through the system. This is the so-called valley Hall effect that has recently been observed experimentally. Here, we show that this effect is mediated by photo-generated neutral excitons and charged trions, and not by inter-band transitions generating independent electrons and holes. We further demonstrate an experimental strategy, based on wavelength dependent spatial mapping of the Hall voltage, which allows the exciton and trion contributions to the valley Hall effect to be discriminated in the measurement. These results represent a significant step forward in our understanding of the microscopic origin of photo-induced valley Hall effect in semiconducting transition metal dichalcogenides, and demonstrate experimentally that composite quasi-particles, such as trions, can also possess a finite Berry curvature.

  12. Music hall Markneukirchen; Musikhalle in Markneukirchen

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1996-01-01

    The article presents the new building of the music hall Markneukirchen. From the planned use of the building result very high demands on the ventilation system in order to keep to a sound power level of less than 30 dB(A) in the hall. The building services are dealt with using numerous flowsheets and diagrams: Heat supply, ventilation system, sanitary system, building management, instrumentation and control, electric and lighting systems. (BWI) [Deutsch] Der vorliegende Beitrag stellt den Neubau der Musikhalle Markneukirchen vor. Durch das Nutzungskonzept ergeben sich fuer die Einhaltung eines Schalleistungspegels von weniger als 30 dB(A) im Saalbereich an die Lueftungsanlage sehr hohe Ansprueche. Es werden die raumlufttechnischen Anlagen anhand zahlreicher Flussbilder und Abbildungen vorgestellt: Waermeversorgung, Lueftungstechnik, Sanitaertechnik, Gebaeudeleit- und MSR-Technik, Elektro- und Lichttechnik. (BWI)

  13. Stuart Hall and Cultural Studies, circa 1983

    Directory of Open Access Journals (Sweden)

    Ann Curthoys

    2017-11-01

    Full Text Available Stuart Hall sought to internationalise theoretical debates and to create Cultural Studies as interdisciplinary. We chart his theoretical journey through a detailed examination of a series of lectures delivered in 1983 and now published for the first time. In these lectures, he discusses theorists such as E.P. Thompson, Raymond Williams, Louis Althusser, Levi Strauss and Antonio Gramsci, and explores the relationship between ideas and social structure, the specificities of class and race, and the legacies of slavery. We note his turn towards metaphors of divergence and dispersal and highlight how autobiographical and deeply personal Hall is in these lectures, especially in his ego histoire moment of traumatic memory recovery.

  14. Three halls for music performance in Chile

    Science.gov (United States)

    Delannoy, Jaime; Heuffemann, Carolina; Ramirez, Daniel; Galvez, Fernando

    2002-11-01

    The primary purpose of this work was to investigate about the present acoustic conditions of used architectonic spaces in Santiago of Chile for orchestras of classic music performance. The studied halls were three: Aula Magna Universidad de Santiago, Teatro Municipal de Nunoa, and Teatro Baquedano. The used methodology was based on studies made by L. Beranek, M. Barron, among others, in concert halls worldwide. As it guides, for the measurement procedure, physical parameters RT, EDT, C50, C80, LF, BR, G, U50 were evaluated according to norm ISO 3382. On the other hand, it has been defined, to proposal way, a questionnaire of subjective valuation directed to musicians, specialized conductors, and listeners.

  15. Anyons in Integer Quantum Hall Magnets

    Directory of Open Access Journals (Sweden)

    Armin Rahmani

    2013-08-01

    Full Text Available Strongly correlated fractional quantum Hall liquids support fractional excitations, which can be understood in terms of adiabatic flux insertion arguments. A second route to fractionalization is through the coupling of weakly interacting electrons to topologically nontrivial backgrounds such as in polyacetylene. Here, we demonstrate that electronic fractionalization combining features of both these mechanisms occurs in noncoplanar itinerant magnetic systems, where integer quantum Hall physics arises from the coupling of electrons to the magnetic background. The topologically stable magnetic vortices in such systems carry fractional (in general, irrational electronic quantum numbers and exhibit Abelian anyonic statistics. We analyze the properties of these topological defects by mapping the distortions of the magnetic texture onto effective non-Abelian vector potentials. We support our analytical results with extensive numerical calculations.

  16. Conjunctures, crises, and cultures: Valuing Stuart Hall

    OpenAIRE

    Clarke, John

    2014-01-01

    This article explores the significance of the work of Stuart Hall for social and political anthropology. It identifies the concern with concrete conjunctural analysis, the continuing attention to the problem of hegemony, and the centrality of a politics of articulation in theory and practice as core features of Hall’s work. The article also touches on his complex relationship with theory and theorising while grounding his work in a series of political and ethical commitments within and beyond...

  17. Homotopy arguments for quantized Hall conductivity

    CERN Document Server

    Richter, T

    2002-01-01

    Using the strong localization bounds obtained by the Aizenman-Molcanov method for a particle in a magnetic field and a disordered potential, we show that the zero-temperature Hall conductivity of a gas of such particles is quantized and constant as long as both Fermi energy and disorder coupling parameter vary in a region of strong localization of the corresponding two-dimensional phase diagram.

  18. SERVIR Town Hall - Connecting Space to Village

    Science.gov (United States)

    Limaye, Ashutosh S.; Searby, Nancy D.; Irwin, Daniel; Albers, Cerese

    2013-01-01

    SERVIR, a joint NASA-USAID project, strives to improve environmental decision making through the use of Earth observations, models, and geospatial technology innovations. SERVIR connects these assets with the needs of end users in Mesoamerica, East Africa, and Hindu Kush-Himalaya regions. This Town Hall meeting will engage the AGU community by exploring examples of connecting Space to Village with SERVIR science applications.

  19. Quantum spin Hall phase in multilayer graphene

    OpenAIRE

    García-Martínez, N. A.; Lado, Jose L.; Fernández Rossier, Joaquín

    2015-01-01

    The so-called quantum spin Hall phase is a topologically nontrivial insulating phase that is predicted to appear in graphene and graphenelike systems. In this paper we address the question of whether this topological property persists in multilayered systems. We consider two situations: purely multilayer graphene and heterostructures where graphene is encapsulated by trivial insulators with a strong spin-orbit coupling. We use a four-orbital tight-binding model that includes full atomic spin-...

  20. SPS beam to the West Hall

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    One of the two target stations feeding the West Hall (see Annual Report 1976). After the proton beam was split into three branches, the outer two were directed on to targets in the cast iron shielding box, the centre one passing through the box to another target station downstream. Five different targets could be put in each beam, controlled by the mechanism seen on top.

  1. Multipole expansion in the quantum hall effect

    Energy Technology Data Exchange (ETDEWEB)

    Cappelli, Andrea [INFN, Sezione di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino, Firenze (Italy); Randellini, Enrico [INFN, Sezione di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino, Firenze (Italy); Dipartimento di Fisica, Università di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino, Firenze (Italy)

    2016-03-15

    The effective action for low-energy excitations of Laughlin’s states is obtained by systematic expansion in inverse powers of the magnetic field. It is based on the W-infinity symmetry of quantum incompressible fluids and the associated higher-spin fields. Besides reproducing the Wen and Wen-Zee actions and the Hall viscosity, this approach further indicates that the low-energy excitations are extended objects with dipolar and multipolar moments.

  2. Acoustics in rock and pop music halls

    DEFF Research Database (Denmark)

    Larsen, Niels Werner; Thompson, Eric Robert; Gade, Anders Christian

    2007-01-01

    The existing body of literature regarding the acoustic design of concert halls has focused almost exclusively on classical music, although there are many more performances of rhythmic music, including rock and pop. Objective measurements were made of the acoustics of twenty rock music venues...... frequency sounds are typically highly amplified, they play an important role in the subjective ratings and the 63-Hz-band must be included in objective measurements and recommendations....

  3. Anomalous Sequence of Quantum Hall Liquids Revealing a Tunable Lifshitz Transition in Bilayer Graphene

    Science.gov (United States)

    Varlet, Anastasia; Bischoff, Dominik; Simonet, Pauline; Watanabe, Kenji; Taniguchi, Takashi; Ihn, Thomas; Ensslin, Klaus; Mucha-Kruczyński, Marcin; Fal'ko, Vladimir I.

    2014-09-01

    Bilayer graphene is a unique system where both the Fermi energy and the low-energy electron dispersion can be tuned. This is brought about by an interplay between trigonal warping and the band gap opened by a transverse electric field. Here, we drive the Lifshitz transition in bilayer graphene to experimentally controllable carrier densities by applying a large transverse electric field to a h-BN-encapsulated bilayer graphene structure. We perform magnetotransport measurements and investigate the different degeneracies in the Landau level spectrum. At low magnetic fields, the observation of filling factors -3 and -6 quantum Hall states reflects the existence of three maxima at the top of the valence-band dispersion. At high magnetic fields, all integer quantum Hall states are observed, indicating that deeper in the valence band the constant energy contours are singly connected. The fact that we observe ferromagnetic quantum Hall states at odd-integer filling factors testifies to the high quality of our sample. This enables us to identify several phase transitions between correlated quantum Hall states at intermediate magnetic fields, in agreement with the calculated evolution of the Landau level spectrum. The observed evolution of the degeneracies, therefore, reveals the presence of a Lifshitz transition in our system.

  4. Conductivity tensor in a holographic quantum Hall ferromagnet

    Directory of Open Access Journals (Sweden)

    Joel Hutchinson

    2014-11-01

    Full Text Available The Hall and longitudinal conductivities of a recently studied holographic model of a quantum Hall ferromagnet are computed using the Karch–O'Bannon technique. In addition, the low temperature entropy of the model is determined. The holographic model has a phase transition as the Landau level filling fraction is increased from zero to one. We argue that this phase transition allows the longitudinal conductivity to have features qualitatively similar to those of two dimensional electron gases in the integer quantum Hall regime. The argument also applies to the low temperature limit of the entropy. The Hall conductivity is found to have an interesting structure. Even though it does not exhibit Hall plateaux, it has a flattened dependence on the filling fraction with a jump, analogous to the interpolation between Hall plateaux, at the phase transition.

  5. Commemorative Symposium on the Hall Effect and its Applications

    CERN Document Server

    Westgate, C

    1980-01-01

    In 1879, while a graduate student under Henry Rowland at the Physics Department of The Johns Hopkins University, Edwin Herbert Hall discovered what is now universally known as the Hall effect. A symposium was held at The Johns Hopkins University on November 13, 1979 to commemorate the lOOth anniversary of the discovery. Over 170 participants attended the symposium which included eleven in­ vited lectures and three speeches during the luncheon. During the past one hundred years, we have witnessed ever ex­ panding activities in the field of the Hall effect. The Hall effect is now an indispensable tool in the studies of many branches of condensed matter physics, especially in metals, semiconductors, and magnetic solids. Various components (over 200 million!) that utilize the Hall effect have been successfully incorporated into such devices as keyboards, automobile ignitions, gaussmeters, and satellites. This volume attempts to capture the important aspects of the Hall effect and its applications. It includes t...

  6. Scattering Effect on Anomalous Hall Effect in Ferromagnetic Transition Metals

    KAUST Repository

    Zhang, Qiang

    2017-11-30

    The anomalous Hall effect (AHE) has been discovered for over a century, but its origin is still highly controversial theoretically and experimentally. In this study, we investigated the scattering effect on the AHE for both exploring the underlying physics and technical applications. We prepared Cox(MgO)100-x granular thin films with different Co volume fraction (34≤≤100) and studied the interfacial scattering effect on the AHE. The STEM HAADF images confirmed the inhomogeneous granular structure of the samples. As decreases from 100 to 34, the values of longitudinal resistivity () and anomalous Hall resistivity (AHE) respectively increase by about four and three orders in magnitude. The linear scaling relation between the anomalous Hall coefficient () and the measured at 5 K holds in both the as-prepared and annealed samples, which suggests a skew scattering dominated mechanism in Cox(MgO)100-x granular thin films. We prepared (Fe36//Au12/), (Ni36//Au12/) and (Ta12//Fe36/) multilayers to study the interfacial scattering effect on the AHE. The multilayer structures were characterized by the XRR spectra and TEM images of cross-sections. For the three serials of multilayers, both the and AHE increase with , which clearly shows interfacial scattering effect. The intrinsic contribution decreases with increases in the three serials of samples, which may be due to the crystallinity decaying or the finite size effect. In the (Fe36//Au12/) samples, the side-jump contribution increases with , which suggests an interfacial scattering-enhanced side jump. In the (Ni36//Au12/) samples, the side-jump contribution decreases with increases, which could be explained by the opposite sign of the interfacial scattering and grain boundary scattering contributed side jump. In the (Ta12//Fe36/) multilayers, the side-jump contribution changed from negative to positive, which is also because of the opposite sign of the interfacial scattering and grain boundary scattering

  7. Basic Instrumentation for Hall A at Jefferson Jab

    Energy Technology Data Exchange (ETDEWEB)

    The Jefferson Lab Hall A Collaboration

    2003-07-01

    The instrumentation in Hall A at the JLab was designed to study electro- and photo-induced reactions at very high luminosity and good momentum and angular resolution for at least one of the reaction products. A collaboration of approximately 50 institutions from all over the world has actively contributed and participated in the design, construction and commissioning of the Hall A instrumentation. The basic Hall A equipment is described herein.

  8. Precision of single-engage micro Hall effect measurements

    DEFF Research Database (Denmark)

    Henrichsen, Henrik Hartmann; Hansen, Ole; Kjær, Daniel

    2014-01-01

    Recently a novel microscale Hall effect measurement technique has been developed to extract sheet resistance (RS), Hall sheet carrier density (NHS) and Hall mobility (μH) from collinear micro 4-point probe measurements in the vicinity of an insulating boundary [1]. The technique measures in less......]. In this study we calculate the measurement error on RS, NHS and μH resulting from electrode position errors, probe placement, sample size and Hall signal magnitude. We show the relationship between measurement precision and electrode pitch, which is important when down-scaling the micro 4-point probe to fit...

  9. Hall Sensor Output Signal Fault-Detection & Safety Implementation Logic

    Directory of Open Access Journals (Sweden)

    Lee SangHun

    2016-01-01

    Full Text Available Recently BLDC motors have been popular in various industrial applications and electric mobility. Recently BLDC motors have been popular in various industrial applications and electric mobility. In most brushless direct current (BLDC motor drives, there are three hall sensors as a position reference. Low resolution hall effect sensor is popularly used to estimate the rotor position because of its good comprehensive performance such as low cost, high reliability and sufficient precision. Various possible faults may happen in a hall effect sensor. This paper presents a fault-tolerant operation method that allows the control of a BLDC motor with one faulty hall sensor and presents the hall sensor output fault-tolerant control strategy. The situations considered are when the output from a hall sensor stays continuously at low or high levels, or a short-time pulse appears on a hall sensor signal. For fault detection, identification of a faulty signal and generating a substitute signal, this method only needs the information from the hall sensors. There are a few research work on hall effect sensor failure of BLDC motor. The conventional fault diagnosis methods are signal analysis, model based analysis and knowledge based analysis. The proposed method is signal based analysis using a compensation signal for reconfiguration and therefore fault diagnosis can be fast. The proposed method is validated to execute the simulation using PSIM.

  10. High Efficiency Hall Thruster Discharge Power Converter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek leveraged previous, internally sponsored, high power, Hall thruster discharge converter development which allowed it to design, build, and test new printed...

  11. Planar Hall Effect Sensors for Biodetection

    DEFF Research Database (Denmark)

    Rizzi, Giovanni

    as labels and planar Hall effect bridge (PHEB) magnetic field sensor as readout for the beads. The choice of magnetic beads as label is motivated by the lack of virtually any magnetic background from biological samples. Moreover, magnetic beads can be manipulated via an external magnetic field...... system capable of generating both temperature and concentration gradients over the sensor surface. The temperature and buffer concentration can be varied in order to perform denaturation analysis of the DNA hybrids. In this thesis, this kind assay is tested with temperature varying from 20ºC to 70º...

  12. Neutronic design of MYRRHA reactor hall shielding

    Science.gov (United States)

    Celik, Yurdunaz; Stankovskiy, Alexey; Eynde, Gert Van den

    2017-09-01

    The lateral shielding of a 600 MeV proton linear accelerator beam line in the MYRRHA reactor hall has been assessed using neutronic calculations by the MCNPX code complemented with analytical predictions. Continuous beam losses were considered to define the required shielding thickness that meets the requirements for the dose rate limits. Required shielding thicknesses were investigated from the viewpoint of accidental full beam loss as well as beam loss on collimator. The results confirm that the required shielding thicknesses are highly sensitive to the spatial shape of the beam and strongly divergent beam losses. Therefore shielding barrier should be designed according to the more conservative assumptions.

  13. DESIGN OF SUBSOIL IMPROVEMENT BELOW HALL FLOORS

    Directory of Open Access Journals (Sweden)

    Peter Turček

    2017-10-01

    Full Text Available The construction of an industrial park is now being prepared near the town of Nitra. The investor fixed very strict conditions for the bearing capacity and, above all, the settlement of halls and their floors. The geological conditions at the construction site are difficult: there are soft clay soils with high compressibility and low bearing capacity. A detailed analysis of soil improvement was made. Stone columns were prepared to be fitted into an approximately 5 m thick layer of soft clay. The paper shows the main steps used in the design of the stone columns.

  14. Current correlations in quantum spin Hall insulators.

    Science.gov (United States)

    Schmidt, Thomas L

    2011-08-26

    We consider a four-terminal setup of a two-dimensional topological insulator (quantum spin Hall insulator) with local tunneling between the upper and lower edges. The edge modes are modeled as helical Luttinger liquids and the electron-electron interactions are taken into account exactly. Using perturbation theory in the tunneling, we derive the cumulant generating function for the interedge current. We show that different possible transport channels give rise to different signatures in the current noise and current cross correlations, which could be exploited in experiments to elucidate the interplay between electron-electron interactions and the helical nature of the edge states. © 2011 American Physical Society

  15. The Impact of a Health Campaign on Hand Hygiene and Upper Respiratory Illness among College Students Living in Residence Halls.

    Science.gov (United States)

    White, Cindy; Kolble, Robin; Carlson, Rebecca; Lipson, Natasha

    2005-01-01

    Hand hygiene is a key element in preventing the transmission of cold and flu viruses. The authors conducted an experimental-control design study in 4 campus residence halls to determine whether a message campaign about hand hygiene and the availability of gel hand sanitizer could decrease cold and flu illness and school and work absenteeism. Their…

  16. Bimetric Theory of Fractional Quantum Hall States

    Science.gov (United States)

    Gromov, Andrey; Son, Dam Thanh

    2017-10-01

    We present a bimetric low-energy effective theory of fractional quantum Hall (FQH) states that describes the topological properties and a gapped collective excitation, known as the Girvin-Macdonald-Platzman (GMP) mode. The theory consists of a topological Chern-Simons action, coupled to a symmetric rank-2 tensor, and an action à la bimetric gravity, describing the gapped dynamics of a spin-2 mode. The theory is formulated in curved ambient space and is spatially covariant, which allows us to restrict the form of the effective action and the values of phenomenological coefficients. Using bimetric theory, we calculate the projected static structure factor up to the k6 order in the momentum expansion. To provide further support for the theory, we derive the long-wave limit of the GMP algebra, the dispersion relation of the GMP mode, and the Hall viscosity of FQH states. The particle-hole (PH) transformation of the theory takes a very simple form, making the duality between FQH states and their PH conjugates manifest. We also comment on the possible applications to fractional Chern insulators, where closely related structures arise. It is shown that the familiar FQH observables acquire a curious geometric interpretation within the bimetric formalism.

  17. Quantum spin Hall phase in multilayer graphene

    Science.gov (United States)

    García-Martínez, N. A.; Lado, J. L.; Fernández-Rossier, J.

    2015-06-01

    The so-called quantum spin Hall phase is a topologically nontrivial insulating phase that is predicted to appear in graphene and graphenelike systems. In this paper we address the question of whether this topological property persists in multilayered systems. We consider two situations: purely multilayer graphene and heterostructures where graphene is encapsulated by trivial insulators with a strong spin-orbit coupling. We use a four-orbital tight-binding model that includes full atomic spin-orbit coupling and we calculate the Z2 topological invariant of the bulk states as well as the edge states of semi-infinite crystals with armchair termination. For homogeneous multilayers we find that even when the spin-orbit interaction opens a gap for all possible stackings, only those with an odd number of layers host gapless edge states while those with an even number of layers are trivial insulators. For heterostructures where graphene is encapsulated by trivial insulators, it turns out that interlayer coupling is able to induce a topological gap whose size is controlled by the spin-orbit coupling of the encapsulating materials, indicating that the quantum spin Hall phase can be induced by proximity to trivial insulators.

  18. Bimetric Theory of Fractional Quantum Hall States

    Directory of Open Access Journals (Sweden)

    Andrey Gromov

    2017-11-01

    Full Text Available We present a bimetric low-energy effective theory of fractional quantum Hall (FQH states that describes the topological properties and a gapped collective excitation, known as the Girvin-Macdonald-Platzman (GMP mode. The theory consists of a topological Chern-Simons action, coupled to a symmetric rank-2 tensor, and an action à la bimetric gravity, describing the gapped dynamics of a spin-2 mode. The theory is formulated in curved ambient space and is spatially covariant, which allows us to restrict the form of the effective action and the values of phenomenological coefficients. Using bimetric theory, we calculate the projected static structure factor up to the k^{6} order in the momentum expansion. To provide further support for the theory, we derive the long-wave limit of the GMP algebra, the dispersion relation of the GMP mode, and the Hall viscosity of FQH states. The particle-hole (PH transformation of the theory takes a very simple form, making the duality between FQH states and their PH conjugates manifest. We also comment on the possible applications to fractional Chern insulators, where closely related structures arise. It is shown that the familiar FQH observables acquire a curious geometric interpretation within the bimetric formalism.

  19. Hypernuclear spectroscopy with electron beam at JLab Hall C

    Energy Technology Data Exchange (ETDEWEB)

    Yuu Fujii

    2010-12-01

    Hypernuclear spectroscopy with electron beam at JLab Hall C has been studied since 2000. The first experiment, JLab E89-009, used Short Orbit Spectrometer (SOS) as a kaon arm and a split-pole type spectrometer (ENGE) as an electron arm. E89-009 employed zero-degree tagging method, which tags scattered electrons at zero-degree and the kaon arm also covered zero-degree. This method obtains maximum yield of hypernuclei but sufferers from high rate background of electrons from bremsstrahlung and positrons from pair-creation. Nevertheless, this experiment demonstrated the possibility of the (e,e' K{sup +}) reaction for hypernuclear spectroscopy by obtaining a hypernuclear mass spectrum with an energy resolution of better than 1 MeV (FWHM) [1][2]. However, poor signal to noise ratio and poor statistics requires us to improve the experimental setup. Therefore, E01-011 experiment was proposed based on the success of the JLab E01-011 experiment. Improvements of E01-011 from E09-009 can be summarized as: 1. Employed newly constructed high resolution kaon spectrometer (HKS) as a kaon arm. 2. Employed so-called 'tilt-method' for the electron arm. With the newly constructed HKS, having 2-10-4 momentum resolution, we expect an energy resolution of 400 keV (FWHM). The 'tilt-method' means the electron arm is tilted vertically to the splitter dispersive plane to avoid background electrons from bremsstrahlung and moeller scattering. The setup allowed us to use up to a few tens beam. The experiment was performed in 2005 and final result will be shown shortly. The third experiment, JLab E05-115 experiment was proposed as a natural extension of E01-011 experiment and will be performed in 2009. Improvements of experimental setup are, 1. Employed newly constructed high resolution electron spectrometer (HES) as a electron arm, 2. Employed a new charge-separation magnet (Splitter), fully customized for hypernuclear experiment at Hall C. With the third generation

  20. Benchmark experiments on neutron streaming through JET Torus Hall penetrations

    Science.gov (United States)

    Batistoni, P.; Conroy, S.; Lilley, S.; Naish, J.; Obryk, B.; Popovichev, S.; Stamatelatos, I.; Syme, B.; Vasilopoulou, T.; contributors, JET

    2015-05-01

    Neutronics experiments are performed at JET for validating in a real fusion environment the neutronics codes and nuclear data applied in ITER nuclear analyses. In particular, the neutron fluence through the penetrations of the JET torus hall is measured and compared with calculations to assess the capability of state-of-art numerical tools to correctly predict the radiation streaming in the ITER biological shield penetrations up to large distances from the neutron source, in large and complex geometries. Neutron streaming experiments started in 2012 when several hundreds of very sensitive thermo-luminescence detectors (TLDs), enriched to different levels in 6LiF/7LiF, were used to measure the neutron and gamma dose separately. Lessons learnt from this first experiment led to significant improvements in the experimental arrangements to reduce the effects due to directional neutron source and self-shielding of TLDs. Here we report the results of measurements performed during the 2013-2014 JET campaign. Data from new positions, at further locations in the South West labyrinth and down to the Torus Hall basement through the air duct chimney, were obtained up to about a 40 m distance from the plasma neutron source. In order to avoid interference between TLDs due to self-shielding effects, only TLDs containing natural Lithium and 99.97% 7Li were used. All TLDs were located in the centre of large polyethylene (PE) moderators, with natLi and 7Li crystals evenly arranged within two PE containers, one in horizontal and the other in vertical orientation, to investigate the shadowing effect in the directional neutron field. All TLDs were calibrated in the quantities of air kerma and neutron fluence. This improved experimental arrangement led to reduced statistical spread in the experimental data. The Monte Carlo N-Particle (MCNP) code was used to calculate the air kerma due to neutrons and the neutron fluence at detector positions, using a JET model validated up to the

  1. Quantization of Hall Resistance at the Metallic Interface between an Oxide Insulator and SrTiO3

    DEFF Research Database (Denmark)

    Trier, Felix; Prawiroatmodjo, Guenevere E. D. K.; Zhong, Zhicheng

    2016-01-01

    The two-dimensional metal forming at the interface between an oxide insulatorand SrTiO3 provides new opportunities for oxide electronics. However, the quantum Hall effect, one of the most fascinating effects of electrons confined in two dimensions, remains underexplored at these complex oxide...... heterointerfaces. Here, we report the experimental observation of quantized Hall resistance in a SrTiO3 heterointerface based on the modulation-doped amorphous-LaAlO3/SrTiO3 heterostructure, which exhibits both highelectron mobility exceeding 10, 000 cm2/V s and low carrier density on the order of ~1012 cm-2....... Along with unambiguous Shubnikov-de Haasoscillations, the spacing of the quantized Hall resistance suggests that the interface is comprised of a single quantum well with ten parallel conducting two-dimensional subbands. This provides new insight into the electronic structure of conducting oxide...

  2. The first vineyard concert hall in North America

    Science.gov (United States)

    Jaffe, Christopher; Rivera, Carlos

    2002-11-01

    The first vineyard or surround concert hall designed and built in the Western Hemisphere is the Sala Nezahualcoyotl in Mexico City. The Hall was completed in 1976 and is part of the Cultural Center at the Universidad Nacional Autonoma de Mexico. The hall was named after a Toltec poet, architect, and musician who lived in the 15th century and was the Renaissance man of his day. In order to provide the familiar traditional sound of the rectangular (shoebox) European Hall, the acoustic designers set the criteria for reverberation times through the frequency spectrum and the Initial Time Delay Gap at every seat in the house to match the measurements taken at the Grosser Musik vereinssaal in Vienna and Boston Symphony Hall. In this paper we discuss the techniques used to create the traditional sound in a vineyard hall and the reaction of musicians and audiences to the completed facility. The Sala was the model for Suntory Hall in Japan which in turn spawned a number of vineyard halls in Japan. Most recently, the vineyard style seems to be appealing to more and more symphonic organizations in Europe and North America.

  3. Magnetoresistance in quantum Hall metals due to Pancharatnam ...

    Indian Academy of Sciences (India)

    electron flow is independent of these spacings (require small changes to the phase factor, or negligible changes to the group momentum of a wavefunction). Here, we shall further elaborate on these two processes, and use them to derive and discuss the Hall resistance in quantum Hall metals for both fractional and integer ...

  4. Cultural Composition: Stuart Hall on Ethnicity and the Discursive Turn.

    Science.gov (United States)

    Drew, Julie

    1998-01-01

    Interviews Stuart Hall, a black public intellectual and an activist of the New Left. Discusses the growing disillusionment with cultural studies now that it is no longer in its ascendancy; the proliferation of pedagogical practices given a cultural studies tag; Hall's approval of the use of popular culture in the composition classroom; and the…

  5. Whose Big Prize? A Response to Hall and Gunter

    Science.gov (United States)

    Furlong, John

    2009-01-01

    This article presents the author's response to Hall and Gunter who accuse the author of trying to mount "a stout defence" of New Labour's reforms of the teaching profession. Hall and Gunter go further and accuse the author of "triumphalism" in his use of the title "Tony Blair's big prize". Their second and more…

  6. Spatial sensitivity mapping of Hall crosses using patterned magnetic nanostructures

    NARCIS (Netherlands)

    Alexandrou, M.; Nutter, P.W.; Delalande, M.Y.; de Vries, Jeroen; Hill, E.W.; Schedin, F.; Abelmann, Leon; Thomson, T.

    2010-01-01

    Obtaining an accurate profile of the spatial sensitivity of Hall cross structures is crucial if such devices are to be used to analyze the switching behavior of magnetic nanostructures and determine the switching field distribution of bit patterned media. Here, we have used the anomalous Hall effect

  7. Acoustic investigations of concert halls for rock music

    DEFF Research Database (Denmark)

    Adelman-Larsen, Niels Werner; Thompson, Eric Robert; Gade, Anders Christian

    2007-01-01

    Objective measurement data and subjective evaluations have been collected from 20 small-/medium-sized halls in Denmark used for amplified rhythmic music concerts (pop, rock, jazz). The purpose of the study was to obtain knowledge about optimum acoustic conditions for this type of hall. The study...

  8. Acoustic Requirements for a Multi-Purpose Hall.

    Science.gov (United States)

    Schulte, W. Allen

    2002-01-01

    This case study examines the proposed design of a new lecture/recital hall in Centennial Hall at Lynchburg College that will be used for lectures, public events, a film studies course, and musical recitals. It explores the audio-visual challenges presented by the differing acoustical requirements for the building. (EV)

  9. The Impact of Coed Residence Halls on Self-Actualization

    Science.gov (United States)

    Schroeder, Charles C.; LeMay, Morris L.

    1973-01-01

    The purpose of the present study was to determine if there were initial differences on selected scales of the Personal Orientation Inventory (POI) between students who chose to live in coed residence halls and those who chose to live in traditional single-sex residence halls, and also if residing in coed living units affected the further…

  10. Mary E. Hall: Dawn of the Professional School Librarian

    Science.gov (United States)

    Alto, Teresa

    2012-01-01

    A century ago, a woman named Mary E. Hall convinced school leaders of the need for the professional school librarian--a librarian who cultivated a love of reading, academic achievement, and independent learning skills. After graduating from New York City's Pratt Institute Library School in 1895, Hall developed her vision for the high school…

  11. A Residential Paradox?: Residence Hall Attributes and College Student Outcomes

    Science.gov (United States)

    Bronkema, Ryan; Bowman, Nicholas A.

    2017-01-01

    The researchers of this brief observed that few environments have the potential to shape the outcomes of college students as much as residence halls. As a result, residence halls have the capacity to foster a strong sense of community as well as other important outcomes such as college satisfaction and academic achievement. However, given the high…

  12. G. Stanley Hall's Adolescence: A centennial reappraisal introduction.

    Science.gov (United States)

    Arnett, Jeffrey Jensen; Cravens, Hamilton

    2006-08-01

    This article is an overview of the special issue "G. Stanley Hall's Adolescence: A Centennial Reappraisal." First, a brief biography of Hall is presented. Then each of the six articles in the special issue is summarized. Three of the articles are by historians and three are by psychologists, but all six articles integrate history and psychology.

  13. Stuart Hall on Racism and the Importance of Diasporic Thinking

    Science.gov (United States)

    Rizvi, Fazal

    2015-01-01

    In this article, I want to show how my initial encounter with the work of Stuart Hall was grounded in my reading of the later philosophy of Ludwig Wittgenstein, and was shaped by my interest in understanding the nature of racism across the three countries in which I had lived. Over the years, Hall's various writings have helped me to make sense of…

  14. Hybrid-PIC Modeling of a High-Voltage, High-Specific-Impulse Hall Thruster

    Science.gov (United States)

    Smith, Brandon D.; Boyd, Iain D.; Kamhawi, Hani; Huang, Wensheng

    2013-01-01

    The primary life-limiting mechanism of Hall thrusters is the sputter erosion of the discharge channel walls by high-energy propellant ions. Because of the difficulty involved in characterizing this erosion experimentally, many past efforts have focused on numerical modeling to predict erosion rates and thruster lifespan, but those analyses were limited to Hall thrusters operating in the 200-400V discharge voltage range. Thrusters operating at higher discharge voltages (V(sub d) >= 500 V) present an erosion environment that may differ greatly from that of the lower-voltage thrusters modeled in the past. In this work, HPHall, a well-established hybrid-PIC code, is used to simulate NASA's High-Voltage Hall Accelerator (HiVHAc) at discharge voltages of 300, 400, and 500V as a first step towards modeling the discharge channel erosion. It is found that the model accurately predicts the thruster performance at all operating conditions to within 6%. The model predicts a normalized plasma potential profile that is consistent between all three operating points, with the acceleration zone appearing in the same approximate location. The expected trend of increasing electron temperature with increasing discharge voltage is observed. An analysis of the discharge current oscillations shows that the model predicts oscillations that are much greater in amplitude than those measured experimentally at all operating points, suggesting that the differences in oscillation amplitude are not strongly associated with discharge voltage.

  15. Formulation of the relativistic quantum Hall effect and parity anomaly

    Science.gov (United States)

    Yonaga, Kouki; Hasebe, Kazuki; Shibata, Naokazu

    2016-06-01

    We present a relativistic formulation of the quantum Hall effect on Haldane sphere. An explicit form of the pseudopotential is derived for the relativistic quantum Hall effect with/without mass term. We clarify particular features of the relativistic quantum Hall states with the use of the exact diagonalization study of the pseudopotential Hamiltonian. Physical effects of the mass term to the relativistic quantum Hall states are investigated in detail. The mass term acts as an interpolating parameter between the relativistic and nonrelativistic quantum Hall effects. It is pointed out that the mass term unevenly affects the many-body physics of the positive and negative Landau levels as a manifestation of the "parity anomaly." In particular, we explicitly demonstrate the instability of the Laughlin state of the positive first relativistic Landau level with the reduction of the charge gap.

  16. Asymmetric nonlinear response of the quantized Hall effect

    Science.gov (United States)

    Siddiki, A.; Horas, J.; Kupidura, D.; Wegscheider, W.; Ludwig, S.

    2010-11-01

    An asymmetric breakdown of the integer quantized Hall effect (IQHE) is investigated. This rectification effect is observed as a function of the current value and its direction in conjunction with an asymmetric lateral confinement potential defining the Hall bar. Our electrostatic definition of the Hall bar via Schottky gates allows a systematic control of the steepness of the confinement potential at the edges of the Hall bar. A softer edge (flatter confinement potential) results in more stable Hall plateaus, i.e. a breakdown at a larger current density. For one soft and one hard edge, the breakdown current depends on its direction, resembling rectification. This nonlinear magneto-transport effect confirms the predictions of an emerging screening theory of the IQHE.

  17. Construction and Operation of a Differential Hall Element Magnetometer

    Science.gov (United States)

    Calkins, Matthew W.; Javernick, Philip D.; Quintero, Pedro A.; Calm, Yitzi M.; Meisel, Mark W.

    2012-02-01

    A Differential Hall Element Magnetometer (DHEM) was constructed to measure the magnetic saturation and coercive fields of small samples consisting of magnetic nanoparticles that may have biomedical applications. The device consists of two matched Hall elements that can be moved through the room temperature bore of a 9 Tesla superconducting magnet. The Hall elements are wired in opposition such that a null response, to within a small offset, is measured in the absence of a sample that may be located on top of one unit. A LabVIEW program controls the current through the Hall elements and measures the net Hall voltage while simultaneously moving the probe through the magnetic field by regulating a linear stepper motor. Ultimately, the system will be tested to obtain a figure of merit using successively smaller samples. Details of the apparatus will be provided along with preliminary data.

  18. Suitable reverberation time for halls for rock and pop music

    DEFF Research Database (Denmark)

    Adelman-Larsen, Niels Werner; Thompson, Eric Robert; Gade, Anders Christian

    2010-01-01

    The existing body of literature regarding the acoustic design of concert halls has focused almost exclusively on classical music, although there are many more performances of popular music, including rock and pop. Objective measurements were made of the acoustics of 20 rock music venues in Denmark...... and a questionnaire was used in a subjective assessment of those venues with professional rock musicians and sound engineers as expert listeners. Correlations between the measurements show that clarity, including bass frequencies down to 63 Hz, is important for the general impression of the acoustics of the hall....... The best-rated halls in the study have reverberation times that are approximately frequency independent from 0.6 to 1.2 s for hall volumes from 1000 to 6000 m3. The worst rated halls in the study had significantly higher reverberation times in the 63 and 125 Hz bands. Since most audiences at rock concerts...

  19. Fractional quantum Hall states of bosons on cones

    Science.gov (United States)

    Wu, Ying-Hai; Tu, Hong-Hao; Sreejith, G. J.

    2017-09-01

    Motivated by a recent experiment, which synthesizes Landau levels for photons on cones [Schine et al., Nature (London) 534, 671 (2016), 10.1038/nature17943], and more generally the interest in understanding gravitational responses of quantum Hall states, we study fractional quantum Hall states of bosons on cones. A variety of trial wave functions for conical systems are constructed and compared with exact diagonalization results. The tip of a cone is a localized geometrical defect with singular curvature, which can modify the density profiles of quantum Hall states. The density profiles on cones can be used to extract some universal information about quantum Hall states. The values of certain quantities are computed numerically using the density profiles of some quantum Hall states and they agree with analytical predictions.

  20. The aerogel threshold Cherenkov detector for the high momentum spectrometer in Hall C at Jefferson lab

    Energy Technology Data Exchange (ETDEWEB)

    Razmik Asaturyan; Rolf Ent; Howard Fenker; David Gaskell; Garth Huber; Mark Jones; David Mack; Hamlet Mkrtchyan; Bert Metzger; Nadia Novikoff; Vardan Tadevosyan; William Vulcan; Stephen Wood

    2004-11-09

    We describe a new aerogel threshold Cherenkov detector installed in the HMS spectrometer in Hall C at Jefferson Lab. The Hall C experimental program in 2003 required an improved particle identification system for better identification of {pi}/K/p, which was achieved by installing an additional threshold Cherenkov counter. Two types of aerogel with n = 1.03 and n = 1.015 allow one to reach {approx}10{sup -3} proton and 10{sup -2} kaon rejection in the 1-5 GeV/c momentum range with pion detection efficiency better than 99% (97%). The detector response shows no significant position dependence due to a diffuse light collection technique. The diffusion box was equipped with 16 Photonis XP4572 PMT's. The mean number of photoelectrons in saturation was {approx}16 and {approx}8, respectively. Moderate particle identification is feasible near threshold.

  1. Valley polarized quantum Hall effect and topological insulator phase transitions in silicene

    KAUST Repository

    Tahir, M.

    2013-01-25

    The electronic properties of silicene are distinct from both the conventional two dimensional electron gas and the famous graphene due to strong spin orbit interaction and the buckled structure. Silicene has the potential to overcome limitations encountered for graphene, in particular the zero band gap and weak spin orbit interaction. We demonstrate a valley polarized quantum Hall effect and topological insulator phase transitions. We use the Kubo formalism to discuss the Hall conductivity and address the longitudinal conductivity for elastic impurity scattering in the first Born approximation. We show that the combination of an electric field with intrinsic spin orbit interaction leads to quantum phase transitions at the charge neutrality point, providing a tool to experimentally tune the topological state. Silicene constitutes a model system for exploring the spin and valley physics not accessible in graphene due to the small spin orbit interaction.

  2. Spatially Resolved Study of Backscattering in the Quantum Spin Hall State

    Directory of Open Access Journals (Sweden)

    Markus König

    2013-04-01

    Full Text Available The discovery of the quantum spin Hall (QSH state, and topological insulators in general, has sparked strong experimental efforts. Transport studies of the quantum spin Hall state have confirmed the presence of edge states, showed ballistic edge transport in micron-sized samples, and demonstrated the spin polarization of the helical edge states. While these experiments have confirmed the broad theoretical model, the properties of the QSH edge states have not yet been investigated on a local scale. Using scanning gate microscopy to perturb the QSH edge states on a submicron scale, we identify well-localized scattering sites which likely limit the expected nondissipative transport in the helical edge channels. In the micron-sized regions between the scattering sites, the edge states appear to propagate unperturbed, as expected for an ideal QSH system, and are found to be robust against weak induced potential fluctuations.

  3. Mover Position Detection for PMTLM Based on Linear Hall Sensors through EKF Processing.

    Science.gov (United States)

    Yan, Leyang; Zhang, Hui; Ye, Peiqing

    2017-04-06

    Accurate mover position is vital for a permanent magnet tubular linear motor (PMTLM) control system. In this paper, two linear Hall sensors are utilized to detect the mover position. However, Hall sensor signals contain third-order harmonics, creating errors in mover position detection. To filter out the third-order harmonics, a signal processing method based on the extended Kalman filter (EKF) is presented. The limitation of conventional processing method is first analyzed, and then EKF is adopted to detect the mover position. In the EKF model, the amplitude of the fundamental component and the percentage of the harmonic component are taken as state variables, and they can be estimated based solely on the measured sensor signals. Then, the harmonic component can be calculated and eliminated. The proposed method has the advantages of faster convergence, better stability and higher accuracy. Finally, experimental results validate the effectiveness and superiority of the proposed method.

  4. Quasiparticle-mediated spin Hall effect in a superconductor.

    Science.gov (United States)

    Wakamura, T; Akaike, H; Omori, Y; Niimi, Y; Takahashi, S; Fujimaki, A; Maekawa, S; Otani, Y

    2015-07-01

    In some materials the competition between superconductivity and magnetism brings about a variety of unique phenomena such as the coexistence of superconductivity and magnetism in heavy-fermion superconductors or spin-triplet supercurrent in ferromagnetic Josephson junctions. Recent observations of spin-charge separation in a lateral spin valve with a superconductor evidence that these remarkable properties are applicable to spintronics, although there are still few works exploring this possibility. Here, we report the experimental observation of the quasiparticle-mediated spin Hall effect in a superconductor, NbN. This compound exhibits the inverse spin Hall (ISH) effect even below the superconducting transition temperature. Surprisingly, the ISH signal increases by more than 2,000 times compared with that in the normal state with a decrease of the injected spin current. The effect disappears when the distance between the voltage probes becomes larger than the charge imbalance length, corroborating that the huge ISH signals measured are mediated by quasiparticles.

  5. Enhanced Nonadiabaticity in Vortex Cores due to the Emergent Hall Effect

    KAUST Repository

    Bisig, André

    2017-01-04

    We present a combined theoretical and experimental study, investigating the origin of the enhanced nonadiabaticity of magnetic vortex cores. Scanning transmission x-ray microscopy is used to image the vortex core gyration dynamically to measure the nonadiabaticity with high precision, including a high confidence upper bound. We show theoretically, that the large nonadiabaticity parameter observed experimentally can be explained by the presence of local spin currents arising from a texture induced emergent Hall effect. This study demonstrates that the magnetic damping α and nonadiabaticity parameter β are very sensitive to the topology of the magnetic textures, resulting in an enhanced ratio (β/α>1) in magnetic vortex cores or Skyrmions.

  6. On-Chip Microwave Quantum Hall Circulator

    Directory of Open Access Journals (Sweden)

    A. C. Mahoney

    2017-01-01

    Full Text Available Circulators are nonreciprocal circuit elements that are integral to technologies including radar systems, microwave communication transceivers, and the readout of quantum information devices. Their nonreciprocity arises from the interference of microwaves over the centimeter scale of the signal wavelength, in the presence of bulky magnetic media that breaks time-reversal symmetry. Here, we realize a completely passive on-chip microwave circulator with size 1/1000th the wavelength by exploiting the chiral, “slow-light” response of a two-dimensional electron gas in the quantum Hall regime. For an integrated GaAs device with 330  μm diameter and about 1-GHz center frequency, a nonreciprocity of 25 dB is observed over a 50-MHz bandwidth. Furthermore, the nonreciprocity can be dynamically tuned by varying the voltage at the port, an aspect that may enable reconfigurable passive routing of microwave signals on chip.

  7. Magnetic circuit for hall effect plasma accelerator

    Science.gov (United States)

    Manzella, David H. (Inventor); Jacobson, David T. (Inventor); Jankovsky, Robert S. (Inventor); Hofer, Richard (Inventor); Peterson, Peter (Inventor)

    2009-01-01

    A Hall effect plasma accelerator includes inner and outer electromagnets, circumferentially surrounding the inner electromagnet along a thruster centerline axis and separated therefrom, inner and outer magnetic conductors, in physical connection with their respective inner and outer electromagnets, with the inner magnetic conductor having a mostly circular shape and the outer magnetic conductor having a mostly annular shape, a discharge chamber, located between the inner and outer magnetic conductors, a magnetically conducting back plate, in magnetic contact with the inner and outer magnetic conductors, and a combined anode electrode/gaseous propellant distributor, located at a bottom portion of the discharge chamber. The inner and outer electromagnets, the inner and outer magnetic conductors and the magnetically conducting back plate form a magnetic circuit that produces a magnetic field that is largely axial and radially symmetric with respect to the thruster centerline.

  8. Quantum Hall Effect in Hydrogenated Graphene

    Science.gov (United States)

    Guillemette, J.; Sabri, S. S.; Wu, Binxin; Bennaceur, K.; Gaskell, P. E.; Savard, M.; Lévesque, P. L.; Mahvash, F.; Guermoune, A.; Siaj, M.; Martel, R.; Szkopek, T.; Gervais, G.

    2013-04-01

    The quantum Hall effect is observed in a two-dimensional electron gas formed in millimeter-scale hydrogenated graphene, with a mobility less than 10cm2/V·s and corresponding Ioffe-Regel disorder parameter (kFλ)-1≫1. In a zero magnetic field and low temperatures, the hydrogenated graphene is insulating with a two-point resistance of the order of 250h/e2. The application of a strong magnetic field generates a negative colossal magnetoresistance, with the two-point resistance saturating within 0.5% of h/2e2 at 45 T. Our observations are consistent with the opening of an impurity-induced gap in the density of states of graphene. The interplay between electron localization by defect scattering and magnetic confinement in two-dimensional atomic crystals is discussed.

  9. The Hall Technique 10 years on: Questions and answers.

    Science.gov (United States)

    Innes, N P T; Evans, D J P; Bonifacio, C C; Geneser, M; Hesse, D; Heimer, M; Kanellis, M; Machiulskiene, V; Narbutaité, J; Olegário, I C; Owais, A; Araujo, M P; Raggio, D P; Splieth, C; van Amerongen, E; Weber-Gasparoni, K; Santamaria, R M

    2017-03-24

    It is ten years since the first paper on the Hall Technique was published in the British Dental Journal and almost 20 years since the technique first came to notice. Dr Norna Hall a (now retired) general dental practitioner from the north of Scotland had, for many years, been managing carious primary molar teeth by cementing preformed metal crowns over them, with no local anaesthesia, tooth preparation or carious tissue removal. This first report, a retrospective analysis of Dr Hall's treatments, caused controversy. How could simply sealing a carious lesion, with all the associated bacteria and decayed tissues, possibly be clinically successful? Since then, growing understanding that caries is essentially a biofilm driven disease rather than an infectious disease, explains why the Hall Technique, and other 'sealing in' carious lesion techniques, are successful. The intervening ten years has seen robust evidence from several randomised control trials that are either completed or underway. These have found the Hall Technique superior to comparator treatments, with success rates (no pain or infection) of 99% (UK study) and 100% (Germany) at one year, 98% and 93% over two years (UK and Germany) and 97% over five years (UK). The Hall Technique is now regarded as one of several biological management options for carious lesions in primary molars. This paper covers commonly asked questions about the Hall Technique and speculates on what lies ahead.

  10. Feasibility of ultra-sensitive 2D layered Hall elements

    Science.gov (United States)

    Joo, Min-Kyu; Kim, Joonggyu; Lee, Gwanmu; Kim, Hyun; Lee, Young Hee; Suh, Dongseok

    2017-06-01

    A Hall effect sensor is an analog transducer that detects a magnetic flux. The general requirements for its high magnetic sensitivity in conventional semiconductors are high carrier mobility and ultra-thin conduction channel in the material’s and the device’s point of view. Recently, graphene Hall elements (GHEs) that satisfy those conditions have been demonstrated with a current-normalized magnetic sensitivity (S I) superior to that of Si-based Hall sensors. Nevertheless, the feasibility of Hall elements based on an atomically thin monolayer transition metal dichalcogenide (TMD) system has not been studied thus far, although such a system would further enable a largely suppressed 2D carrier density. Herein, we show the strategy how to achieve the highest possible S I in a TMD-based Hall element in terms of the device structure as well as the operating bias condition. A monolayer molybdenum disulfide Hall element (MHE) on a hexagonal boron nitride (h-BN) thin film was fabricated, and the best bias conditions were selected based on the analytical model for zero-field transconductance data. Finally, the maximum S I of MHE/h-BN was found to be ~3000 V/AT. This work sheds light on the feasibility of TMD-based Hall element systems.

  11. Sensitivity of resistive and Hall measurements to local inhomogeneities

    DEFF Research Database (Denmark)

    Koon, Daniel W.; Wang, Fei; Petersen, Dirch Hjorth

    2014-01-01

    We derive exact, analytic expressions for the sensitivity of sheet resistance and Hall sheet resistance measurements to local inhomogeneities for the cases of nonzero magnetic fields, strong perturbations, and perturbations over a finite area, extending our earlier results on weak perturbations. We...... express these sensitivities for conductance tensor components and for other charge transport quantities. Both resistive and Hall sensitivities, for a van der Pauw specimen in a finite magnetic field, are a superposition of the zero-field sensitivities to both sheet resistance and Hall sheet resistance...

  12. Effective Field Theory of Fractional Quantized Hall Nematics

    Energy Technology Data Exchange (ETDEWEB)

    Mulligan, Michael; /MIT, LNS; Nayak, Chetan; /Station Q, UCSB; Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC

    2012-06-06

    We present a Landau-Ginzburg theory for a fractional quantized Hall nematic state and the transition to it from an isotropic fractional quantum Hall state. This justifies Lifshitz-Chern-Simons theory - which is shown to be its dual - on a more microscopic basis and enables us to compute a ground state wave function in the symmetry-broken phase. In such a state of matter, the Hall resistance remains quantized while the longitudinal DC resistivity due to thermally-excited quasiparticles is anisotropic. We interpret recent experiments at Landau level filling factor {nu} = 7/3 in terms of our theory.

  13. Anomalous Hall effect in Fe/Gd bilayers

    KAUST Repository

    Xu, W. J.

    2010-04-01

    Non-monotonic dependence of anomalous Hall resistivity on temperature and magnetization, including a sign change, was observed in Fe/Gd bilayers. To understand the intriguing observations, we fabricated the Fe/Gd bilayers and single layers of Fe and Gd simultaneously. The temperature and field dependences of longitudinal resistivity, Hall resistivity and magnetization in these films have also been carefully measured. The analysis of these data reveals that these intriguing features are due to the opposite signs of Hall resistivity/or spin polarization and different Curie temperatures of Fe and Gd single-layer films. Copyright (C) EPLA, 2010

  14. Signal conditioning and processing for metallic Hall sensors.

    Czech Academy of Sciences Publication Activity Database

    Entler, Slavomír; Ďuran, Ivan; Sládek, P.; Vayakis, G.; Kočan, M.

    2017-01-01

    Roč. 123, November (2017), s. 783-786 ISSN 0920-3796. [SOFT 2016: Symposium on Fusion Technology /29./. Prague, 05.09.2016-09.09.2016] R&D Projects: GA MŠk LG14002 Institutional support: RVO:61389021 Keywords : Hall sensor * Lock-in * Synchronous detection * Current spinning * Hall effect * Planar hall effect suppression Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.319, year: 2016 http://www.sciencedirect.com/science/article/pii/S0920379617305070

  15. Hall effect in CNT doped YBCO high temperature superconductor

    Directory of Open Access Journals (Sweden)

    S Dadras

    2010-09-01

    Full Text Available In order to study Hall effect in pure and CNT doped YBCO polycrystalline samples, we have measured longitudinal and transverse voltages at the different magnetic field (0-9T in the vortex state. We found a sign reversal for pure sample near 3T and double sign reversal of the Hall coefficient for CNT doped sample near 3 and 5T. It can be deduced that CNT doping caused strong flux pinning and Hall double sign reversal in this compound.

  16. Study of the catastrophic discharge phenomenon in a Hall thruster

    Science.gov (United States)

    Ding, Yongjie; Su, Hongbo; Li, Peng; Wei, Liqiu; Li, Hong; Peng, Wuji; Xu, Yu; Sun, Hezhi; Yu, Daren

    2017-10-01

    In a 1350-W Hall-effect thruster, in which a technique for pushing down the magnetic field is implemented, a catastrophic discharge phenomenon is identified by varying the magnetic field strength while keeping all other operating parameters constant. According to experiments, before and after the discharge catastrophe, the plume changes from focusing state to a divergent state, and discharge parameters such as discharge current and thrust exhibit noticeable changes. The divergence half-angle of the plume increases from 22° to 46°. The oscillation amplitude and mean values of the discharge current significantly increase from 0.8 A to 4 A and from 4.6 A to 6.3 A, respectively, while the thrust increases from 89.3 mN to 91 mN. Analysis of the experimental results shows that as the maximum magnetic field of the thruster we developed is in the plume region, the acceleration occurs in the plume region and a large number of Xe2+ ions appear in the plume area, the catastrophic discharge phenomenon observed.

  17. Cluster multipole theory for anomalous Hall effect in antiferromagnets

    Science.gov (United States)

    Suzuki, M.-T.; Koretsune, T.; Ochi, M.; Arita, R.

    2017-03-01

    We introduce a cluster extension of multipole moments to discuss the anomalous Hall effect (AHE) in both ferromagnetic (FM) and antiferromagnetic (AFM) states in a unified framework. We first derive general symmetry requirements for the AHE in the presence or absence of the spin-orbit coupling by considering the symmetry of the Berry curvature in k space. The cluster multipole (CMP) moments are then defined to quantify the macroscopic magnetization in noncollinear AFM states as a natural generalization of the magnetization in FM states. We identify the macroscopic CMP order which induces the AHE. The theoretical framework is applied to the noncollinear AFM states of Mn3Ir , for which an AHE was predicted in a first-principles calculation, and Mn3Z (Z =Sn ,Ge ), for which a large AHE was recently discovered experimentally. We further compare the AHE in Mn3Z and bcc Fe in terms of the CMP. We show that the AHE in Mn3Z is characterized by the magnetization of a cluster octupole moment in the same manner as that in bcc Fe characterized by the magnetization of the dipole moment.

  18. Superconducting Analogue of the Parafermion Fractional Quantum Hall States

    Directory of Open Access Journals (Sweden)

    Abolhassan Vaezi

    2014-07-01

    Full Text Available Read-Rezayi Z_{k} parafermion wave functions describe ν=2+(k/kM+2 fractional quantum Hall (FQH states. These states support non-Abelian excitations from which protected quantum gates can be designed. However, there is no experimental evidence for these non-Abelian anyons to date. In this paper, we study the ν=2/k FQH-superconductor heterostructure and find the superconducting analogue of the Z_{k} parafermion FQH state. Our main tool is the mapping of the FQH into coupled one-dimensional chains, each with a pair of counterpropagating modes. We show that by inducing intrachain pairing and charge preserving backscattering with identical couplings, the one-dimensional chains flow into gapless Z_{k} parafermions when k<4. By studying the effect of interchain coupling, we show that every parafermion mode becomes massive except for the two outermost ones. Thus, we achieve a fractional topological superconductor whose chiral edge state is described by a Z_{k} parafermion conformal field theory. For instance, we find that a ν=2/3 FQH in proximity to a superconductor produces a Z_{3} parafermion superconducting state. This state is topologically indistinguishable from the non-Abelian part of the ν=12/5 Read-Rezayi state. Both of these systems can host Fibonacci anyons capable of performing universal quantum computation through braiding operations.

  19. Nonequilibrium noise in transport across a tunneling contact between ν =2/3 fractional quantum Hall edges

    Science.gov (United States)

    Shtanko, O.; Snizhko, K.; Cheianov, V.

    2014-03-01

    In a recent experimental paper [Bid et al., Nature 466, 585 (2010), 10.1038/nature09277] a qualitative confirmation of the existence of upstream neutral modes at the ν =2/3 quantum Hall edge was reported. Using the chiral Luttinger liquid theory of the quantum Hall edge we develop a quantitative model of the experiment of Bid et al. A good quantitative agreement of our theory with the experimental data reinforces the conclusion of the existence of the upstream neutral mode. Our model also enables us to extract important quantitative information about nonequilibrium processes in Ohmic and tunneling contacts from the experimental data. In particular, for ν =2/3, we find a power-law dependence of the neutral mode temperature on the charge current injected from the Ohmic contact.

  20. A Redundancy Mechanism Design for Hall-Based Electronic Current Transformers

    Directory of Open Access Journals (Sweden)

    Kun-Long Chen

    2017-03-01

    Full Text Available Traditional current transformers (CTs suffer from DC and AC saturation and remanent magnetization in many industrial applications. Moreover, the drawbacks of traditional CTs, such as closed iron cores, bulky volume, and heavy weight, further limit the development of an intelligent power protection system. In order to compensate for these drawbacks, we proposed a novel current measurement method by using Hall sensors, which is called the Hall-effect current transformer (HCT. The existing commercial Hall sensors are electronic components, so the reliability of the HCT is normally worse than that of the traditional CT. Therefore, our study proposes a redundancy mechanism for the HCT to strengthen its reliability. With multiple sensor modules, the method has the ability to improve the accuracy of the HCT as well. Additionally, the proposed redundancy mechanism monitoring system provides a condition-based maintenance for the HCT. We verify our method with both simulations and an experimental test. The results demonstrate that the proposed HCT with a redundancy mechanism can almost achieve Class 0.2 for measuring CTs according to IEC Standard 60044-8.

  1. Fractionalizing Majorana Fermions: Non-Abelian Statistics on the Edges of Abelian Quantum Hall States

    Directory of Open Access Journals (Sweden)

    Netanel H. Lindner

    2012-10-01

    Full Text Available We study the non-Abelian statistics characterizing systems where counterpropagating gapless modes on the edges of fractional quantum Hall states are gapped by proximity coupling to superconductors and ferromagnets. The most transparent example is that of a fractional quantum spin Hall state, in which electrons of one spin direction occupy a fractional quantum Hall state of ν=1/m, while electrons of the opposite spin occupy a similar state with ν=-1/m. However, we also propose other examples of such systems, which are easier to realize experimentally. We find that each interface between a region on the edge coupled to a superconductor and a region coupled to a ferromagnet corresponds to a non-Abelian anyon of quantum dimension sqrt[2m]. We calculate the unitary transformations that are associated with the braiding of these anyons, and we show that they are able to realize a richer set of non-Abelian representations of the braid group than the set realized by non-Abelian anyons based on Majorana fermions. We carry out this calculation both explicitly and by applying general considerations. Finally, we show that topological manipulations with these anyons cannot realize universal quantum computation.

  2. Nontrivial transition of transmission in a highly open quantum point contact in the quantum Hall regime

    Science.gov (United States)

    Hong, Changki; Park, Jinhong; Chung, Yunchul; Choi, Hyungkook; Umansky, Vladimir

    2017-11-01

    Transmission through a quantum point contact (QPC) in the quantum Hall regime usually exhibits multiple resonances as a function of gate voltage and high nonlinearity in bias. Such behavior is unpredictable and changes sample by sample. Here, we report the observation of a sharp transition of the transmission through an open QPC at finite bias, which was observed consistently for all the tested QPCs. It is found that the bias dependence of the transition can be fitted to the Fermi-Dirac distribution function through universal scaling. The fitted temperature matches quite nicely to the electron temperature measured via shot-noise thermometry. While the origin of the transition is unclear, we propose a phenomenological model based on our experimental results that may help to understand such a sharp transition. Similar transitions are observed in the fractional quantum Hall regime, and it is found that the temperature of the system can be measured by rescaling the quasiparticle energy with the effective charge (e*=e /3 ). We believe that the observed phenomena can be exploited as a tool for measuring the electron temperature of the system and for studying the quasiparticle charges of the fractional quantum Hall states.

  3. Auralization of concert hall acoustics using finite difference time domain methods and wave field synthesis

    Science.gov (United States)

    Hochgraf, Kelsey

    Auralization methods have been used for a long time to simulate the acoustics of a concert hall for different seat positions. The goal of this thesis was to apply the concept of auralization to a larger audience area that the listener could walk through to compare differences in acoustics for a wide range of seat positions. For this purpose, the acoustics of Rensselaer's Experimental Media and Performing Arts Center (EMPAC) Concert Hall were simulated to create signals for a 136 channel wave field synthesis (WFS) system located at Rensselaer's Collaborative Research Augmented Immersive Virtual Environment (CRAIVE) Laboratory. By allowing multiple people to dynamically experience the concert hall's acoustics at the same time, this research gained perspective on what is important for achieving objective accuracy and subjective plausibility in an auralization. A finite difference time domain (FDTD) simulation on a three-dimensional face-centered cubic grid, combined at a crossover frequency of 800 Hz with a CATT-Acoustic(TM) simulation, was found to have a reverberation time, direct to reverberant sound energy ratio, and early reflection pattern that more closely matched measured data from the hall compared to a CATT-Acoustic(TM) simulation and other hybrid simulations. In the CRAIVE lab, nine experienced listeners found all hybrid auralizations (with varying source location, grid resolution, crossover frequency, and number of loudspeakers) to be more perceptually plausible than the CATT-Acoustic(TM) auralization. The FDTD simulation required two days to compute, while the CATT-Acoustic(TM) simulation required three separate TUCT(TM) computations, each taking four hours, to accommodate the large number of receivers. Given the perceptual advantages realized with WFS for auralization of a large, inhomogeneous sound field, it is recommended that hybrid simulations be used in the future to achieve more accurate and plausible auralizations. Predictions are made for a

  4. Specific heat and Hall effect of the ferromagnetic Kondo lattice UCu0.9Sb2

    Science.gov (United States)

    Tran, V. H.; Bukowski, Z.

    2017-06-01

    We have investigated the electrical resistivity ρ, specific heat C p and Hall coefficient R H on a single crystal of a ferromagnetic Kondo lattice UCu0.9Sb2. The experimental ρ (T) , C p (T) and {{R}\\text{H}}(T) data evidence a bulk magnetic phase transition at {{T}\\text{C}}=113 K, and additionally exhibit an unexpected bump located in the temperature range T C/10-T C/3. UCu0.9Sb2 has an enhanced electronic specific heat coefficient γ ˜ 71 mJ molK-2, corresponding to Kondo temperature {{T}\\text{K}}˜ 6.8 K. An analysis of the Hall effect data for j//(a, b)-plane and H// c-axis reveals that the low-temperature ordinary Hall coefficient R 0 is positive, suggesting that p-type electrical conductivity is dominant. The density of the carriers at 2 K is about 0.6 holes f.u.-1, which may categorize the studied compound into class of low carrier density compounds. Combined γ and R 0 data divulge an effective mass of charge carriers {{m}\\ast}˜ 27 m e . This finding together with quite low Hall mobility {μ\\text{H}}=25 cm2 Vs-1 and Kadowaki-Woods ratio {{r}\\text{KW}}=0.98× ~{{10}-5} μ Ω cm (mol K2 mJ-1)2, manifest the development of heavy-fermion state in the ferromagnetic UCu0.9Sb2 compound at low temperatures.

  5. The impact of Hall physics on magnetized high energy density plasma jets

    Science.gov (United States)

    Gourdain, Pierre-Alexandre

    2013-10-01

    Magnetized high energy density (HED) plasma jets produced by radial foil explosions on pulsed power machines have improved our understanding of the fundamental mechanisms driving flowing matter under extreme conditions. Experiments and simulations indicate that magnetic fields are crucial in the formation and stability of strongly collimated plasma jets, a property also shared by astrophysical jets originating from black holes and protostars. It is understood that these magnetic fields also generate electric fields, often associated with the dynamo effect. In fact, when the Lundquist number is large enough, the dynamo effect is frequently seen as the dominant electric field driver of flowing plasmas. This is true inside the collimated jet where the density (> 1019 cm-3) , velocity ( 50 eV) are high enough to preclude the dominance of any other type of electric fields. However, the ion flow speed is much lower than the speed of light. As a result, dynamo electric fields do not impact noticeably fluid motion since electric stresses are negligible compared to magnetic stresses. On the other hand, Hall physics dominates the low density plasma surrounding the jet (< 1018 cm-3) . In this region, electron speeds can be orders of magnitude higher than the bulk flow velocity as ion and electron fluids are decoupled. As a result, electric stresses can rival with magnetic stresses and Hall physics does impact the overall plasma dynamics. This talk will discuss how HED plasmas are subjected to Hall physics and how it impacts the particle confinement as well as the MHD stability of plasma jets. After focusing on experimental results and numerical simulations from the PERSEUS code, the talk will extend its conclusions to inertial fusion regimes where Hall physics could also alter plasma confinement and stability. Research supported by NNSA/DOE Grant Cooperative Agreements DE-FC52-06NA 00057, DE-NA 0001836 and NSF Grant PHY-1102471.

  6. From University Heights to Cooperstown: Halls of Fame and American Memory

    Science.gov (United States)

    Friss, Evan J.

    2005-01-01

    This article examines the development and function of American halls of fame as cultural memory institutions. By comparing the Hall of Fame for Great Americans with the National Baseball Hall of Fame, the author posits that halls of fame illuminate the ways in which cultural memory institutions can, through an archival process, preserve, instill,…

  7. Magnesium Hall Thruster for Solar System Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation being developed in this program is a Mg Hall Effect Thruster system that would open the door for In-Situ Resource Utilization based solar system...

  8. High Throughput Hall Thruster for Small Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek is developing a high throughput nominal 100-W Hall Effect Thruster. This device is well sized for spacecraft ranging in size from several tens of kilograms to...

  9. High Throughput Hall Thruster for Small Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek Co. Inc. proposes to develop a high throughput, nominal 100 W Hall Effect Thruster (HET). This HET will be sized for small spacecraft (< 180 kg), including...

  10. Pragmatic data fusion uncertainty concerns: Tribute to Dave L. Hall

    CSIR Research Space (South Africa)

    Blasch, E

    2016-07-01

    Full Text Available Over the course of Dave Hall's career, he highlighted various concerns associated with the implementation of data fusion methods. Many of the issues included the role of uncertainty in data fusion, practical implementation of sensor fusion systems...

  11. High Input Voltage Hall Thruster Discharge Converter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall scope of this Phase I/II effort is the development of a high efficiency 15kW (nominal) Hall thruster discharge converter. In Phase I, Busek Co. Inc. will...

  12. Recent concert halls and opera house in Japan

    Science.gov (United States)

    Hidaka, Takayuki

    2004-05-01

    Since we invited Dr. Beranek to Japan for the first time in 1989, we had been working together with him for a period of 13 years, until 2001, on seven hall projects as acoustic design consultants. All of these halls are of premium importance to Japan. Dr. Beranek always came up with innovative concepts and helped create halls endowed with high acoustic originality. These halls are now loved by music-related people and music fanciers and regarded as the pride of Japan. The reviews and studies achieved through these projects were published as seven J. Acoust Soc. Am papers to disclose the outcome in an objective way to the public. A brief outline of the history of our collaboration and its background are presented.

  13. Quantum Theory of Conducting Matter Superconductivity and Quantum Hall Effect

    CERN Document Server

    Fujita, Shigeji; Godoy, Salvador

    2009-01-01

    Explains major superconducting properties including zero resistance, Meissner effect, sharp phase change, flux quantization, excitation energy gap, and Josephson effects using quantum statistical mechanical calculations. This book covers the 2D superconductivity and the quantum Hall effects

  14. Investigating Anisotropic Quantum Hall States with Bimetric Geometry

    Science.gov (United States)

    Gromov, Andrey; Geraedts, Scott D.; Bradlyn, Barry

    2017-10-01

    We construct a low energy effective theory of anisotropic fractional quantum Hall (FQH) states. We develop a formalism similar to that used in the bimetric approach to massive gravity, and apply it to describe Abelian anisotropic FQH states in the presence of external electromagnetic and geometric backgrounds. We derive a relationship between the shift, the Hall viscosity, and a new quantized coupling to anisotropy, which we term anisospin. We verify this relationship by numerically computing the Hall viscosity for a variety of anisotropic quantum Hall states using the density matrix renormalization group. Finally, we apply these techniques to the problem of nematic order and clarify certain disagreements that exist in the literature about the meaning of the coefficient of the Berry phase term in the nematic effective action.

  15. A High Performance Cathode Heater for Hall Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High current hollow cathodes are the baseline electron source for next generation high power Hall thrusters. Currently for electron sources providing current levels...

  16. Quantized anomalous Hall effect in magnetic topological insulators.

    Science.gov (United States)

    Yu, Rui; Zhang, Wei; Zhang, Hai-Jun; Zhang, Shou-Cheng; Dai, Xi; Fang, Zhong

    2010-07-02

    The anomalous Hall effect is a fundamental transport process in solids arising from the spin-orbit coupling. In a quantum anomalous Hall insulator, spontaneous magnetic moments and spin-orbit coupling combine to give rise to a topologically nontrivial electronic structure, leading to the quantized Hall effect without an external magnetic field. Based on first-principles calculations, we predict that the tetradymite semiconductors Bi2Te3, Bi2Se3, and Sb2Te3 form magnetically ordered insulators when doped with transition metal elements (Cr or Fe), in contrast to conventional dilute magnetic semiconductors where free carriers are necessary to mediate the magnetic coupling. In two-dimensional thin films, this magnetic order gives rise to a topological electronic structure characterized by a finite Chern number, with the Hall conductance quantized in units of e2/h (where e is the charge of an electron and h is Planck's constant).

  17. Magnesium Hall Thruster for Solar System Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to prove the feasibility of a Mg Hall effect thruster system that would open the door for In-Situ Resource Utilization (ISRU) based solar system...

  18. Positive operator valued measures and the quantum Monty Hall problem

    Directory of Open Access Journals (Sweden)

    Claudia Zander

    2006-09-01

    Full Text Available A quantum version of the Monty Hall problem, based upon the Positive Operator Valued Measures (POVM formalism, is proposed. It is shown that basic normalization and symmetry arguments lead univocally to the associated POVM elements, and that the classical probabilities associated with the Monty Hall scenario are recovered for a natural choice of the measurement operators.Uma visão quântica do problema Monty Hall é proposta baseada no formalismo das Medidas Avaliadas do Operador Positivo (POVM. Demonstra-se que os argumentos de normalização básica e simetria levam de maneira inequívoca para elementos associados a POVM e que as probabilidades clássicas associadas ao cenário Monty Hall são recuperadas para uma escolha natural de medidas operadoras.

  19. Survey of the Fermilab D0 detector collision hall

    Energy Technology Data Exchange (ETDEWEB)

    Babatunde O' Sheg Oshinowo

    2001-07-20

    The Fermilab D0 detector was used for the discovery of the top quark during Run I in 1996. It had been upgraded to exploit the physics potential to be presented by the Main Injector and the Tevatron Collider during Run II. The upgrade of the D0 detector was fully commissioned on March 1, 2001, and thus marked the official start of the Run II experiment. The detector which weighs about 5500 tons, was assembled in the Assembly Hall. Prior to moving the detector into the Collision Hall, the existing survey monuments were densified in the Collision Hall with new monuments. This paper discusses the survey of the Collision Hall using a combination of the Laser Tracker, BETS, V-Stars, and other Optical systems to within the specified accuracy of {+-}0.5mm.

  20. Hall Mobility of Amorphous Ge2Sb2Te5

    National Research Council Canada - National Science Library

    Baily, S. A; Emin, David; Li, Heng

    2006-01-01

    The electrical conductivity, Seebeck coefficient, and Hall coefficient of 3 micron thick films of amorphous Ge2Sb2Te5 have been measured as functions of temperature from room temperature down to as low as 200 K...

  1. Acoustics in Halls for Speech and Music

    Science.gov (United States)

    Gade, Anders C.

    This chapter deals specifically with concepts, tools, and architectural variables of importance when designing auditoria for speech and music. The focus will be on cultivating the useful components of the sound in the room rather than on avoiding noise from outside or from installations, which is dealt with in Chap. 11. The chapter starts by presenting the subjective aspects of the room acoustic experience according to consensus at the time of writing. Then follows a description of their objective counterparts, the objective room acoustic parameters, among which the classical reverberation time measure is only one of many, but still of fundamental value. After explanations on how these parameters can be measured and predicted during the design phase, the remainder of the chapter deals with how the acoustic properties can be controlled by the architectural design of auditoria. This is done by presenting the influence of individual design elements as well as brief descriptions of halls designed for specific purposes, such as drama, opera, and symphonic concerts. Finally, some important aspects of loudspeaker installations in auditoria are briefly touched upon.

  2. Quantum Spin Hall phase in multilayer graphene

    Science.gov (United States)

    Garcia, Noel; Lado, Jose Luis; Fernandez-Rossier, Joaquin; Theory of Nanostructures Team

    2015-03-01

    We address the question of whether multilayer graphene systems are Quantum Spin Hall (QSH) insulators. Since interlayer coupling coples pz orbitals to s orbitals of different layers and Spin-Orbit (SO) couples pz orbitals with px and py of opposite spins, new spins mixing channels appear in the multilayer scenario that were not present in the monolayer. These new spin-mixing channels cast a doubt on the validity of the spin-conserving Kane-Mele model for multilayers and motivates our choice of a four orbital tight-binding model in the Slater-Koster approximation with intrinsic Spin-Orbit interaction. To completely determine if the QSH phase is present we calculate for different number of layers both the Z2 invariant for different stackings (only for inversion symmetric systems), and the density of states at the edge of semi-infinite graphene ribbon with armchair termination. We find that systems with even number of layers are normal insulators while systems with odd number of layers are QSH insulators, regardless of the stacking. We acknowledge financial support by Marie-Curie-ITN 607904-SPINOGRAPH.

  3. The integer quantum hall effect revisited

    Energy Technology Data Exchange (ETDEWEB)

    Michalakis, Spyridon [Los Alamos National Laboratory; Hastings, Matthew [Q STATION, CALIFORNIA

    2009-01-01

    For T - L x L a finite subset of Z{sup 2}, let H{sub o} denote a Hamiltonian on T with periodic boundary conditions and finite range, finite strength intetactions and a unique ground state with a nonvanishing spectral gap. For S {element_of} T, let q{sub s} denote the charge at site s and assume that the total charge Q = {Sigma}{sub s {element_of} T} q{sub s} is conserved. Using the local charge operators q{sub s}, we introduce a boundary magnetic flux in the horizontal and vertical direction and allow the ground state to evolve quasiadiabatically around a square of size one magnetic flux, in flux space. At the end of the evolution we obtain a trivial Berry phase, which we compare, via a method reminiscent of Stokes Theorem. to the Berry phase obtained from an evolution around an exponentially small loop near the origin. As a result, we show, without any averaging assumption, that the Hall conductance is quantized in integer multiples of e{sup 2}/h up to exponentially small corrections of order e{sup -L/{zeta}}, where {zeta}, is a correlation length that depends only on the gap and the range and strength of the interactions.

  4. Brand new hall in the main building

    CERN Multimedia

    Corinne Pralavorio

    2014-01-01

    The renovation of the UNIQA and post office premises is getting under way, with their reopening scheduled for the spring.   The renovation of the large hall in the main building (Building 500) has finally reached the home straight. As of this week, building contractors will get to work on the last part – the offices of UNIQA and La Poste. In the last week of November, the two concessions moved their offices across Route Scherrer to the same part of Building 510 where UBS was temporarily housed during the bank’s refurbishment. Their services were therefore unavailable for one day. The renovation work will last until the spring, with the new offices expected to open in May 2015. Between now and then, the windows and insulation will be completely refitted, with a view to reducing heat loss considerably, and, above all, the premises will be modernised to improve customer reception and service. For example, UNIQA’s new premises will feature a confidential area, guarantee...

  5. Supersymmetry in the fractional quantum Hall regime

    Science.gov (United States)

    Sagi, Eran; Santos, Raul A.

    2017-05-01

    Supersymmetry (SUSY) is a symmetry transforming bosons to fermions and vice versa. Indications of its existence have been extensively sought after in high-energy experiments. However, signatures of SUSY have yet to be detected. In this paper we study a condensed matter realization of SUSY on the edge of a Read-Rezayi quantum Hall state, given by filling factors of the form ν =k/k +2 , where k is an integer. As we show explicitly, this strongly interacting state exhibits an N =2 SUSY. This allows us to use a topological invariant—the Witten index—defined specifically for supersymmetric theories, to count the difference between the number of bosonic and fermionic zero modes in a circular edge. In this system, we argue that the edge hosts k +1 protected zero modes. We further discuss the stability of SUSY with respect to generic perturbations and find that much of the above results remain unchanged. In particular, these results directly apply to the well-established ν =1 /3 Laughlin state, in which case SUSY is a robust property of the edge theory. These results unveil a hidden topological structure on the long-studied Read-Rezayi states.

  6. Low-Cost, High-Performance Hall Thruster Support System

    Science.gov (United States)

    Hesterman, Bryce

    2015-01-01

    Colorado Power Electronics (CPE) has built an innovative modular PPU for Hall thrusters, including discharge, magnet, heater and keeper supplies, and an interface module. This high-performance PPU offers resonant circuit topologies, magnetics design, modularity, and a stable and sustained operation during severe Hall effect thruster current oscillations. Laboratory testing has demonstrated discharge module efficiency of 96 percent, which is considerably higher than current state of the art.

  7. What is the Hallé? | Smith | Philosophical Papers

    African Journals Online (AJOL)

    I address what I call 'the number issue', which is raised by our ordinary talk and beliefs about certain social groups and institutions, and I take the Hallé orchestra as my example. The number issue is that of whether the Hallé is one individual or several individuals. I observe that if one holds that it is one individual, one faces ...

  8. Pseudospectral Model for Hybrid PIC Hall-effect Thruster Simulation

    Science.gov (United States)

    2015-07-01

    Paper 3. DATES COVERED (From - To) July 2015-July 2015 4. TITLE AND SUBTITLE Pseudospectral model for hybrid PIC Hall-effect thruster simulationect...of a pseudospectral azimuthal-axial hybrid- PIC HET code which is designed to explicitly resolve and filter azimuthal fluctuations in the...661-275-5908 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Pseudospectral model for hybrid PIC Hall-effect thruster simulation IEPC

  9. High-performance LED luminaire for sports hall

    Science.gov (United States)

    Lee, Xuan-Hao; Yang, Jin-Tsung; Chien, Wei-Ting; Chang, Jung-Hsuan; Lo, Yi-Chien; Lin, Che-Chu; Sun, Ching-Cherng

    2015-09-01

    In this paper, we present a luminaire design with anti-glare and energy-saving effects for sports hall. Compared with traditional lamps using in a badminton court, the average illuminance on the ground of the proposed LED luminaire is enhanced about 300%. Besides, the uniformity is obviously enhanced and improved. The switch-on speed of lighting in sports hall is greatly reduced from 5-10 minutes to 1 second. The simulation analysis and the corresponding experiment results are demonstrated.

  10. Quantum Hall Mach-Zehnder interferometer at fractional filling factors

    OpenAIRE

    Deviatov, E. V.; Egorov, S. V.; Biasiol, G.; Sorba, L.

    2012-01-01

    We use a Mach-Zehnder quantum Hall interferometer of a novel design to investigate the interference effects at fractional filling factors. Our device brings together the advantages of usual Mach-Zehnder and Fabry-Perot quantum Hall interferometers. It realizes the simplest-for-analysis Mach-Zehnder interference scheme, free from Coulomb blockade effects. By contrast to the standard Mach-Zehnder realization, our device does not contain an etched region inside the interference loop. For the fir...

  11. Hall effect in amorphous calcium-aluminum alloys

    Science.gov (United States)

    Mayeya, F. M.; Howson, M. A.

    1994-02-01

    We present results of the Hall effect measurements in CaAl(Au) amorphous alloys. The Hall coefficients have been found to be negative and independent of temperature. Their magnitudes deviate significantly from the nearly-free-electron calculations, and are reduced by gold doping. These deviations have been accounted for from considerations of the unusual electronic structure of CaAl, and the effects of both s-d hybridization and side-jump mechanism on the conduction electrons.

  12. Stainless Steel Crown Placement Utilizing the Hall Technique

    Science.gov (United States)

    2017-03-23

    Utilizing the Hall Technique 6. TITLE OF MATERIAL TO BE PUBLISHED OR PRESENTED: Stainless Steel Crown Placement Utilizing the Hall Technique 7. FUNDING...40-401 IP. AND 59 MDWI 41-108. I HAVE READ THE FINAL VERSION OF THE ATTACHED MATERIAL AND CERTIFY THAT IT IS AN ACCURATE MANUS-CRIPT FOR PUBLICATION...DEPARTMENT OF THE AIR FORCE 59TH MEDICAL WING (AETC) JOINT BASE SAN ANTONIO - LACKLAND TEXAS MEMORANDUM FOR SGDTG ATIN: LCDR DANIEL J. FUHRMANN

  13. Tunnelling anomalous and planar Hall effects (Conference Presentation)

    Science.gov (United States)

    Matos-Abiague, Alex; Scharf, Benedikt; Han, Jong E.; Hankiewicz, Ewelina M.; Zutic, Igor

    2016-10-01

    We theoretically show how the interplay between spin-orbit coupling (SOC) and magnetism can result in a finite tunneling Hall conductance, transverse to the applied bias. For two-dimensional tunnel junctions with a ferromagnetic lead and magnetization perpendicular to the current flow, the detected anomalous Hall voltage can be used to extract information not only about the spin polarization but also about the strength of the interfacial SOC. In contrast, a tunneling current across a ferromagnetic barrier on the surface of a three-dimensional topological insulator (TI) can induce a planar Hall response even when the magnetization is oriented along the current flow[1]. The tunneling nature of the states contributing to the planar Hall conductance can be switched from the ordinary to the Klein regimes by the electrostatic control of the barrier strength. This allows for an enhancement of the transverse response and a giant Hall angle, with the tunneling planar Hall conductance exceeding the longitudinal component. Despite the simplicity of a single ferromagnetic region, the TI/ferromagnet system exhibits a variety of functionalities. In addition to a spin-valve operation for magnetic sensing and storing information, positive, negative, and negative differential conductances can be tuned by properly adjusting the barrier potential and/or varying the magnetization direction. Such different resistive behaviors in the same system are attractive for potential applications in reconfigurable spintronic devices. [1] B. Scharf, A. Matos-Abiague, J. E. Han, E. M. Hankiewicz, and I. Zutic, arXiv:1601.01009 (2016).

  14. Physics Nobel Prize Goes to Tsui, Stormer and Laughlin for the Fractional Quantum Hall Effect

    Energy Technology Data Exchange (ETDEWEB)

    Schwarzschild, Bertram

    1998-12-15

    This year's Nobel Prize in Physics is shared by Robert Laughlin (Stanford), Horst Stormer (Columbia University and Bell Laboratories) and Daniel Tsui (Princeton), for their roles in the discovery and explanation of the fractional quantum Hall effect. In 1982, when Stormer and Tsui were experimenters at Bell Labs, they and their colleague Arthur Gossard discovered this totally unexpected quantum effect in the transport properties of two‐dimensional electron gases at low temperature in strong magnetic fields.’ (See PHYSICS TODAY, July 1983, page 19.)

  15. Optimal Protection of Reactor Hall Under Nuclear Fuel Container Drop Using Simulation Methods

    Directory of Open Access Journals (Sweden)

    Králik Juraj

    2014-12-01

    Full Text Available This paper presents of the optimal design of the damping devices cover of reactor hall under impact of nuclear fuel container drop of type TK C30. The finite element idealization of nuclear power plant structure is used in software ANSYS. The steel pipe damper system is proposed for dissipation of the kinetic energy of the container free fall in comparison with the experimental results. The probabilistic and sensitivity analysis of the damping devices was considered on the base of the simulation methods in program AntHill using the Monte Carlo method.

  16. Superconducting coupling of ∖nu = 1 quantum Hall edges states in graphene

    Science.gov (United States)

    Shi, Jing K.; Lee, Gil-Ho; Watanabe, Kenji; Taniguchi, Takashi; Kim, Philip

    Over the past few years, there have been intense experimental and theoretical developments in engineering topological states with various material platforms. One candidate system of realizing zero energy Majorana mode is employing the coupling of superconductivity and spin non-degenerated quantum Hall edge states in a two-dimensional material. In this talk, we present quantum transport study on quasi-one dimensional superconducting electrodes fabricated on high-quality boron nitride encapsulated graphene. The crossed Andreev process and the Josephson effect are investigated at a graphene filling factor of ∖nu = 1 with different magnetic fields and temperatures, which would serve as direct probes of topological superconductivity.

  17. Mode Transitions in Hall Effect Thrusters

    Science.gov (United States)

    Sekerak, Michael J.; Longmier, Benjamin W.; Gallimore, Alec D.; Brown, Daniel L.; Hofer, Richard R.; Polk, James E.

    2013-01-01

    Mode transitions have been commonly observed in Hall Effect Thruster (HET) operation where a small change in a thruster operating parameter such as discharge voltage, magnetic field or mass flow rate causes the thruster discharge current mean value and oscillation amplitude to increase significantly. Mode transitions in a 6-kW-class HET called the H6 are induced by varying the magnetic field intensity while holding all other operating parameters constant and measurements are acquired with ion saturation probes and ultra-fast imaging. Global and local oscillation modes are identified. In the global mode, the entire discharge channel oscillates in unison and azimuthal perturbations (spokes) are either absent or negligible. Downstream azimuthally spaced probes show no signal delay between each other and are very well correlated to the discharge current signal. In the local mode, signals from the azimuthally spaced probes exhibit a clear delay indicating the passage of "spokes" and are not well correlated to the discharge current. These spokes are localized oscillations propagating in the ExB direction that are typically 10-20% of the mean value. In contrast, the oscillations in the global mode can be 100% of the mean value. The transition between global and local modes occurs at higher relative magnetic field strengths for higher mass flow rates or higher discharge voltages. The thrust is constant through mode transition but the thrust-to-power decreased by 25% due to increasing discharge current. The plume shows significant differences between modes with the global mode significantly brighter in the channel and the near-field plasma plume as well as exhibiting a luminous spike on thruster centerline. Mode transitions provide valuable insight to thruster operation and suggest improved methods for thruster performance characterization.

  18. [The anatomy of Johann Samuel Eduard d'Alton (1803-1854)--his life and work in Halle (Saale)].

    Science.gov (United States)

    Zwiener, Sabine; Göbbel, Luminita; Schultka, Rüdiger

    2002-11-01

    After the death of Johann Friedrich Meckel (1781-1833), Eduard d'Alton was appointed to be his successor. From 1834 to 1854, he was Professor of Anatomy and head of the "Anatomisches Theater" at the University of Halle. In the literature we can only find little details about him. The aim is to investigate his life and work. Before he came to Halle, he was first professor at the Academy of Arts in Berlin. Then few years later he received the professorship of anatomy and physiology at the Friedrich-Wilhelm-University in Berlin. During his work as anatomist and physiologist in Halle he was rector twice, in 1845 and 1846. d'Alton worked very accurately and highly engaged. He supported the students' education very conscientiously but, since he was strict and exacting at the same time, he was not very popular. His extraordinary drawings of human and comparative anatomy earned him great recognition. In 1850, he published the "Handbuch der menschlichen Anatomie". d'Alton was mainly engaged in comparative anatomy, embryology and teratology and performed experimental embryological tests. In 1853, he published a catalogue of teratological preparations many of which can still be found in the Anatomical Collections in Halle.

  19. First e⁻/γ Commissioning Results for the GlueX Experiment/Hall D at CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    McCaughan, Michael D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Satogata, Todd J. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Roblin, Yves R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Benesch, Jay F. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2015-09-01

    Experimental Hall D, with flagship experiment GlueX, was constructed as part of the 12 GeV CEBAF upgrade. A new magnetically extracted electron beam line was installed to support this hall. Bremsstrahlung photons from retractable radiators are delivered to the experiment through a series of collimators following a long drift to allow for beam convergence. Coherent Bremsstrahlung generated by interaction with a diamond radiator will achieve a nominal 40% linear polarization and photon energies between 8.5 and 9 GeV from 12.1 GeV electrons, which are then tagged or diverted to a medium power 60kW electron dump. The expected photon flux is 107-108 Hz. This paper discusses the experimental line design, commissioning experience gained since first beam in spring 2014, and the present results of beam commissioning by the experiment.

  20. A scanning tunneling microscopy based potentiometry technique and its application to the local sensing of the spin Hall effect

    OpenAIRE

    Ting Xie; Michael Dreyer; David Bowen; Dan Hinkel; R. E. Butera; Charles Krafft; Isaak Mayergoyz

    2017-01-01

    A scanning tunneling microscopy based potentiometry technique for the measurements of the local surface electric potential is presented. A voltage compensation circuit based on this potentiometry technique is developed and employed to maintain a desired tunneling voltage independent of the bias current flow through the film. The application of this potentiometry technique to the local sensing of the spin Hall effect is outlined and some experimental results are reported.

  1. A scanning tunneling microscopy based potentiometry technique and its application to the local sensing of the spin Hall effect

    OpenAIRE

    Xie, Ting; Dreyer, Michael; Bowen, David; Hinkel, Dan; Butera, R. E.; Krafft, Charles; Mayergoyz, Isaak

    2017-01-01

    A scanning tunneling microscopy based potentiometry technique for the measurements of the local surface electric potential is presented and illustrated by experiments performed on current-carrying thin tungsten films. The obtained results demonstrate a sub-millivolt resolution in the measured surface potential. The application of this potentiometry technique to the local sensing of the spin Hall effect is outlined and some experimental results are reported.

  2. A scanning tunneling microscopy based potentiometry technique and its application to the local sensing of the spin Hall effect

    Science.gov (United States)

    Xie, Ting; Dreyer, Michael; Bowen, David; Hinkel, Dan; Butera, R. E.; Krafft, Charles; Mayergoyz, Isaak

    2017-12-01

    A scanning tunneling microscopy based potentiometry technique for the measurements of the local surface electric potential is presented. A voltage compensation circuit based on this potentiometry technique is developed and employed to maintain a desired tunneling voltage independent of the bias current flow through the film. The application of this potentiometry technique to the local sensing of the spin Hall effect is outlined and some experimental results are reported.

  3. Deep Exclusive Pseudoscalar Meson Production at Jefferson Lab Hall C

    Energy Technology Data Exchange (ETDEWEB)

    Basnet, Samip [Univ. of Regina, SK (Canada)

    2017-09-01

    Measurements of exclusive meson production are a useful tool in the study of hadronic structure. In particular, one can discern the relevant degrees of freedom at different distance scales through these studies. In the transition region between low momentum transfer (where a description of hadronic degrees of freedom in terms of effective hadronic Lagrangians is valid) and high momentum transfer (where the degrees of freedom are quarks and gluons), the predictive power of Quantum Chromodynamics (QCD), the theory of the strong interaction, is limited due to the absence of a complete solution. Thus, one has to rely upon experimental data from the non-perturbative intermediate-energy regime to thoroughly understand the onset of perturbative QCD (pQCD) as the momentum transfer is increased. This work involves two deep exclusive meson electroproduction experiments at Jefferson Lab (JLab). The p(e,e'pi+)n reaction is studied at fixed Q^2 and W of 2.5 GeV2 and 2.0 GeV, respectively, while varying the four momentum transfer to the nucleon -t from 0.2 to 2.1 GeV2 . As -t is increased, the hadronic interaction scale is reduced independently of the observation scale of the virtual photon, providing valuable information about the hard- scattering process in general. The data was taken at JLab Hall C in 2003, as a part of the experiment E01-004, Fpi-2, using the High Momentum Spectrometer (HMS) and Short Orbit Spectrometer (SOS), and in this work, the results of the differential cross section analysis are presented and compared to prior data, as well as two theoretical models. Using these results over a wide -t range, the transition from hard to soft QCD is also studied. In addition, the p(e,e'K+)Lambda(Sigma0) reactions are also studied. Despite their importance in elucidating the reaction mechanism underlying strangeness production, we still do not have complete understanding of these reactions above the resonance region. The experiment, E12- 09-011, intends to

  4. Seville City Hall Chapter Room ceiling decoration

    Directory of Open Access Journals (Sweden)

    Robador, M. D.

    2010-02-01

    Full Text Available The present article describes a chemical and physical study of the colour, chemical composition and mineral phases of the decorative materials in the Seville City Hall Chapter House ceiling. The findings showed that the inner most layer of material, calcite, was covered with white lead, in turn concealed under a layer of gilded bole. The ceiling underwent re-gilding, also over bole, due in all likelihood to wear on the original gold leaf. In the nineteenth century, the entire ceiling with the exception of the inscriptions was whitewashed with calcite and white lead. Silver was employed on King John I’s sword (coffer 27. Gold leaf was used to adorn the royal attributes: crowns, belts, sceptres, swords and rosary beads. The high reliefs were likewise gilded. The pigments identified on the ceiling adornments included azurite, malachite, vermilion and gas black. A lime and ground dolomite mortar was used throughout.

    El objetivo de este trabajo es el estudio de diferentes aspectos, como el color, la composición química y las fases mineralógicas presentes en los diferentes materiales que forman la ornamentación del techo de la Sala Capitular del Ayuntamiento de Sevilla, mediante métodos físicos y químicos. Nuestros resultados muestran que el dorado fue realizado sobre una capa de bol previamente depositada sobre una lámina de blanco de plomo que cubría un estrato de calcita. Posteriormente, y probablemente debido a alteraciones en el dorado original, el techo fue de nuevo dorado usando una técnica similar. En el siglo XIX, casi todo el techo, excepto las zonas con inscripciones, fue blanqueado usando una mezcla de calcita y blanco de plomo. Se empleó plata para cubrir la espada del rey Juan I (casetón 27. Finísimas láminas de oro se usaron para decorar los atributos reales: coronas, cinturones, cetros, espadas y rosarios. En diferentes partes de la decoración fueron detectados pigmentos como azurita, malaquita, bermellón y

  5. Concert hall acoustics assessment with individually elicited attributes.

    Science.gov (United States)

    Lokki, Tapio; Patynen, Jukka; Kuusinen, Antti; Vertanen, Heikki; Tervo, Sakari

    2011-08-01

    Concert hall acoustics was evaluated with a descriptive sensory analysis method by employing an individual vocabulary development technique. The goal was to obtain sensory profiles of three concert halls by eliciting perceptual attributes for evaluation and comparison of the halls. The stimuli were gathered by playing back anechoic symphony music from 34 loudspeakers on stage in each concert hall and recording the sound field with a microphone array. Four musical programs were processed for multichannel 3D sound reproduction in the actual listening test. Twenty screened assessors developed their individual set of attributes and performed a comparative evaluation of nine seats, three in each hall. The results contain the distinctive groups of elicited attributes and show good agreement within assessors, even though they applied individual attributes when rating the samples. It was also found that loudness and distance gave the strongest perceptual direction to the principal component basis. In addition, the study revealed that the perception of reverberance is related to the size of the space or to the enveloping reverberance, depending on the assessor.

  6. Perception of music dynamics in concert hall acoustics.

    Science.gov (United States)

    Pätynen, Jukka; Lokki, Tapio

    2016-11-01

    Dynamics is one of the principal means of expressivity in Western classical music. Still, preceding research on room acoustics has mostly neglected the contribution of music dynamics to the acoustic perception. This study investigates how the different concert hall acoustics influence the perception of varying music dynamics. An anechoic orchestra signal, containing a step in music dynamics, was rendered in the measured acoustics of six concert halls at three seats in each. Spatial sound was reproduced through a loudspeaker array. By paired comparison, naive subjects selected the stimuli that they considered to change more during the music. Furthermore, the subjects described their foremost perceptual criteria for each selection. The most distinct perceptual factors differentiating the rendering of music dynamics between halls include the dynamic range, and varying width of sound and reverberance. The results confirm the hypothesis that the concert halls render the performed music dynamics differently, and with various perceptual aspects. The analysis against objective room acoustic parameters suggests that the perceived dynamic contrasts are pronounced by acoustics that provide stronger sound and more binaural incoherence by a lateral sound field. Concert halls that enhance the dynamics have been found earlier to elicit high subjective preference.

  7. G. Stanley Hall, Child Study, and the American Public.

    Science.gov (United States)

    Young, Jacy L

    2016-01-01

    In the final decades of the 19th century psychologist Granville Stanley Hall was among the most prominent pedagogical experts in the nation. The author explores Hall's carefully crafted persona as an educational expert, and his engagements with the American public, from 1880 to 1900, arguably the height of his influence. Drawing from accounts of Hall's lecture circuit in the popular press, a map of his talks across the nation is constructed to assess the geographic scope of his influence. These talks to educators on the psychology underlying childhood and pedagogy, and his views and research on child life more generally, were regularly discussed in newspapers and popular periodicals. The venues in which Hall's ideas were disseminated, discussed, and in some cases, dismissed are described. His efforts to mobilize popular support for, and assistance with, his research endeavors in child study are also discussed. Such efforts were controversial both within the burgeoning field of psychology and among the public. Through his various involvements in pedagogy, and concerted efforts to engage with the American public, Hall helped establish psychology's relevance to parenting and educational practices.

  8. Optical detection of spin Hall effect in metals

    Science.gov (United States)

    van T Erve, Olaf; Hanbicki, Aubrey; Li, Connie; Jonker, Berend

    Spin Hall effects in metals have been successfully measured using electrical methods such as nonlocal spin valve transport, ferromagnetic resonance or spin torque transfer experiments. These methods require complex processing techniques and measuring setups. Here we present room temperature measurements of the spin Hall effect in non-magnetic metals such as Pt and β-W using a standard bench top magneto-optic Kerr effect (MOKE) system. With this system, one can readily determine the angular dependence of the induced polarization on the bias current direction. When a bias current is applied, the spin Hall effect causes electrons of opposite spin to be scattered in opposite directions, resulting in a spin accumulation at the surface of the film. The MOKE signal tracks the applied square wave bias current with an amplitude and phase directly related to the spin Hall angle. Using this technique, we show that the spin-Hall angle of β-W is opposite in sign and significantly larger than that of Pt. In addition, we use this technique to detect spin diffusion from β-W into Al thin films, as well as spin diffusion from the topological surface states of Bi2Se3 into Al. We will also show direct modulation of the reflected light up to 100 kHz, using Bi doped Cu samples. This work was supported by internal programs at NRL.

  9. Suitable reverberation times for halls for rock and pop music.

    Science.gov (United States)

    Adelman-Larsen, Niels Werner; Thompson, Eric R; Gade, Anders C

    2010-01-01

    The existing body of literature regarding the acoustic design of concert halls has focused almost exclusively on classical music, although there are many more performances of popular music, including rock and pop. Objective measurements were made of the acoustics of 20 rock music venues in Denmark and a questionnaire was used in a subjective assessment of those venues with professional rock musicians and sound engineers as expert listeners. Correlations between the measurements show that clarity, including bass frequencies down to 63 Hz, is important for the general impression of the acoustics of the hall. The best-rated halls in the study have reverberation times that are approximately frequency independent from 0.6 to 1.2 s for hall volumes from 1000 to 6000 m(3). The worst rated halls in the study had significantly higher reverberation times in the 63 and 125 Hz bands. Since most audiences at rock concerts are standing, absorption coefficients were measured with a standing audience from 63 Hz to 4 kHz. These measurements showed that a standing audience absorbs about five times as much energy in mid-/high-frequency bands as in low-frequency bands.

  10. Higher (odd) dimensional quantum Hall effect and extended dimensional hierarchy

    Science.gov (United States)

    Hasebe, Kazuki

    2017-07-01

    We demonstrate dimensional ladder of higher dimensional quantum Hall effects by exploiting quantum Hall effects on arbitrary odd dimensional spheres. Non-relativistic and relativistic Landau models are analyzed on S 2 k - 1 in the SO (2 k - 1) monopole background. The total sub-band degeneracy of the odd dimensional lowest Landau level is shown to be equal to the winding number from the base-manifold S 2 k - 1 to the one-dimension higher SO (2 k) gauge group. Based on the chiral Hopf maps, we clarify the underlying quantum Nambu geometry for odd dimensional quantum Hall effect and the resulting quantum geometry is naturally embedded also in one-dimension higher quantum geometry. An origin of such dimensional ladder connecting even and odd dimensional quantum Hall effects is illuminated from a viewpoint of the spectral flow of Atiyah-Patodi-Singer index theorem in differential topology. We also present a BF topological field theory as an effective field theory in which membranes with different dimensions undergo non-trivial linking in odd dimensional space. Finally, an extended version of the dimensional hierarchy for higher dimensional quantum Hall liquids is proposed, and its relationship to quantum anomaly and D-brane physics is discussed.

  11. Electronic transport in two-dimensional systems in the quantum hall regime

    Science.gov (United States)

    Tarquini, Vinicio

    edges reveals a breakdown in discontinuous steps characterized by exactly the Landau level spacing. These results are the first-time evidence for a resonant quantum tunneling mechanism realized through aligning the edge and bulk energy levels. We also explored the fundamental physics of graphene-based devices with an eye focused on possible applications as ultra-high gain and quantum efficiency hybrid graphene-quantum dots phototransistors. We have confirmed that natural graphene presents better transport properties as mobility (10-fold higher) and delta point closer to zero. Also we have been able to observe the anomalous quantum Hall effect, unique to graphene, symbol of the high quality of the device. More experimental work is needed to gain more insights on the real efficiency of the devices and a more efficient fabrication.

  12. Ultra-low temperature studies of the even denominator fractional quantum Hall states

    Science.gov (United States)

    Samkharadze, Nodar

    We have constructed a specialized experimental setup with integrated magnetic field independent thermometry, which has enabled us to cool the charge carriers in two dimensional electron gases down to 5 mK, and reliably measure the temperature. Using this setup, we have conducted studies of nu=5/2 fractional quantum Hall state(FQHS) in so far unexplored regions of the parameter space. Using a sample with a tunable density, we observe, for the first time, an evidence of a transition at nu=5/2 filling factor. This transition takes place at the lowest density at which nu=5/2 state had been measured to date, around 6x1010cm-2. Using a different set of samples, we also demonstrate a consistent way to account for the disorder contribution to the energy gap of nu=5/2 FQHS for several samples of vastly different densities. This lets us quantify, for the first time, the dependence of the experimentally measured intrinsic gap at nu=5/2 on Landau level mixing alone. Finally, we have conducted an ultra-low temperature study of the fractional quantum Hall states in the 1/3mK, the magnetoresistance exhibits developing FQHS at nu=4/11; 5/13, 6/17 and 3/8. However, we find that at lower temperatures only the nu=4/11 and 5/13 develop incompressibility, while the nu=6/17 and 3/8 remain compressible.

  13. IUPAP C-10 Award Talk: From Topological Insulators to Quantum Anomalous Hall Effect

    Science.gov (United States)

    Chang, Cui-Zu

    The quantum anomalous Hall (QAH) effect can be considered as the quantum Hall (QH) effect without external magnetic field, which can be realized by time reversal symmetry breaking in a topologically non-trivial system. A QAH system carries spin-polarized dissipationless chiral edge transport channels without the need for external energy input, hence may have huge impact on future electronic and spintronic device applications for ultralow-power consumption. The many decades quest for the experimental realization of QAH phenomenon became a possibility in 2006 with the discovery of topological insulators (TIs). In 2013, the QAH effect was observed in thin films of Cr-doped TI for the first time. Two years later in a near ideal system, V-doped TI, contrary to the negative prediction from first principle calculations, a high-precision QAH quantization with more robust magnetization and a perfectly dissipationless chiral current flow was demonstrated. In this talk, I will introduce the route to the experimental observation of the QAH effect in above-mentioned two systems, and discuss the zero magnetic field dissipationless edge current flow as well as the origin of the dissipative channels in the QAH state. Finally I will talk about our recent progress on the QAH insulator-Anderson insulator quantum phase transition and its scaling behaviors.

  14. Andreev reflection at graphene-superconductor interface in the quantum Hall regime

    Science.gov (United States)

    Wang, Da; Telford, Evan; Benyamini, Avishai; Wieteska, Andrew; Hone, James; Dean, Cory; Pasupathy, Abhay

    At metal-superconductor interface Andreev processes occur where an electron tunneling into the superconductor carries with it a second electron, effectively reflecting a hole with opposite momentum back into the metal. This is due to the superconducting gap, which, at low energies, only allows the formation of cooper pairs inside the superconductor, representing an accessible way to measure many body tunneling phenomena. An important requirement for strong Andreev processes is a clean interface with a high transmission probability. As shown recently, graphene and bi-layer graphene are perfect candidates as they can have extremely clean interfaces to superconductors. Graphene also has a remarkably large mean free path, which allows accurate measurement of reflected and transmitted currents. In the quantum hall regime, chiral edge states open new possibilities to measure novel Andreev processes. So far, experimental evidence and a clear physical picture of Andreev processes at the interface of graphene systems in the quantum Hall regime is a work in progress. In this work, we present recent experimental results on graphene-superconductor interfaces created in a well-controlled inert atmosphere.

  15. Diaphragm Effect of Steel Space Roof Systems in Hall Structures

    Directory of Open Access Journals (Sweden)

    Mehmet FENKLİ

    2015-09-01

    Full Text Available Hall structures have been used widely for different purposes. They have are reinforced concrete frames and shear wall with steel space roof systems. Earthquake response of hall structures is different from building type structures. One of the most critical nodes is diaphragm effect of steel space roof on earthquake response of hall structures. Diaphragm effect is depending on lateral stiffness capacity of steel space roof system. Lateral stiffness of steel space roof system is related to modulation geometry, support conditions, selected sections and system geometry. In current paper, three representative models which are commonly used in Turkey were taken in to account for investigation. Results of numerical tests were present comparatively

  16. Nonlinear analysis of magnetization dynamics excited by spin Hall effect

    Science.gov (United States)

    Taniguchi, Tomohiro

    2015-03-01

    We investigate the possibility of exciting self-oscillation in a perpendicular ferromagnet by the spin Hall effect on the basis of a nonlinear analysis of the Landau-Lifshitz-Gilbert (LLG) equation. In the self-oscillation state, the energy supplied by the spin torque during a precession on a constant energy curve should equal the dissipation due to damping. Also, the current to balance the spin torque and the damping torque in the self-oscillation state should be larger than the critical current to destabilize the initial state. We find that these conditions in the spin Hall system are not satisfied by deriving analytical solutions of the energy supplied by the spin transfer effect and the dissipation due to the damping from the nonlinear LLG equation. This indicates that the self-oscillation of a perpendicular ferromagnet cannot be excited solely by the spin Hall torque.

  17. Stability of fractional quantum Hall states in disordered photonic systems

    Science.gov (United States)

    DeGottardi, Wade; Hafezi, Mohammad

    2017-11-01

    The possibility of realizing fractional quantum Hall liquids in photonic systems has attracted a great deal of interest of late. Unlike electronic systems, interactions in photonic systems must be engineered from nonlinear elements and are thus subject to positional disorder. The stability of the topological liquid relies on repulsive interactions. In this paper we investigate the stability of fractional quantum Hall liquids to impurities which host attractive interactions. Employing the Bose–Hubbard model with a magnetic field, we find that for sufficiently strong attractive interactions these impurities can destroy the topological liquid. However, we find that the liquid is quite robust to these defects, a fact which bodes well for the realization of topological quantum Hall liquids in photonic systems.

  18. Composed planar Hall effect sensors with dual-mode operation

    Directory of Open Access Journals (Sweden)

    Vladislav Mor

    2016-02-01

    Full Text Available We present a composed planar Hall effect sensor with two modes of operation: (a an ON mode where the composed sensor responds to magnetic field excitations similarly to the response of a regular planar Hall effect sensor, and (b an OFF mode where the response is negligible. The composed planar Hall effect sensor switches from the OFF mode to the ON mode when it is exposed to a magnetic field which exceeds a certain threshold determined by the sensor design. The features of this sensor make it useful as a switch triggered by magnetic field and as a sensing device with memory, as its mode of operation indicates exposure to a magnetic field larger than a certain threshold without the need to be activated during the exposure itself.

  19. Quantum Hall effect in graphene with superconducting electrodes.

    Science.gov (United States)

    Rickhaus, Peter; Weiss, Markus; Marot, Laurent; Schönenberger, Christian

    2012-04-11

    We have realized an integer quantum Hall system with superconducting contacts by connecting graphene to niobium electrodes. Below their upper critical field of 4 T, an integer quantum Hall effect coexists with superconductivity in the leads but with a plateau conductance that is larger than in the normal state. We ascribe this enhanced quantum Hall plateau conductance to Andreev processes at the graphene-superconductor interface leading to the formation of so-called Andreev edge-states. The enhancement depends strongly on the filling-factor and is less pronounced on the first plateau due to the special nature of the zero energy Landau level in monolayer graphene. © 2012 American Chemical Society

  20. Topological Phase Transitions in the Photonic Spin Hall Effect

    Science.gov (United States)

    Kort-Kamp, W. J. M.

    2017-10-01

    The recent synthesis of two-dimensional staggered materials opens up burgeoning opportunities to study optical spin-orbit interactions in semiconducting Dirac-like systems. We unveil topological phase transitions in the photonic spin Hall effect in the graphene family materials. It is shown that an external static electric field and a high frequency circularly polarized laser allow for active on-demand manipulation of electromagnetic beam shifts. The spin Hall effect of light presents a rich dependence with radiation degrees of freedom, and material properties, and features nontrivial topological properties. We discover that photonic Hall shifts are sensitive to spin and valley properties of the charge carriers, providing an unprecedented pathway to investigate spintronics and valleytronics in staggered 2D semiconductors.

  1. Maximizing utilization of sport halls during peak hours

    DEFF Research Database (Denmark)

    Iversen, Evald Bundgård; Forsberg, Peter

    BACKGROUNDDuring peak hours (4.30pm-8pm) demand for timeslots in sport halls in Denmark are high and there are few timeslots available. Further, focus on how public resources are spent most efficient is increasing (Iversen, 2013). This makes it interesting to analyse how utilization could...... be increased during peak hours. DATA AND METHODOLOGYData is collected by observation of activities during two weeks on for example whether halls are used or not; the amount of playing field used; and number of participants (Iversen, 2012). Data on 1.331 activities in 36 sport halls across 4 municipalities have...... been collected. RESULTS The number of participants per activity is higher during peak hours, which is expected when demand is high. However, the usage of sport floor only differs slightly between peak and low hours. Both during peak and low hours on average 80-100 per cent of floor space is used...

  2. EURISOL MERCURY TARGET EXPERIMENT: CERN SAFETY REPORT

    CERN Document Server

    J. Gulley (CERN SC/GS)

    Report on a visit to the mercury-handling lab at IPUL. The aim was to provide recommendations to IPUL on general health and safety issues relatring to the handling of mercury, the objective being to reduce exposure to acceptable levels, so far as is reasonably practical.

  3. A topological Dirac insulator in a quantum spin Hall phase.

    Science.gov (United States)

    Hsieh, D; Qian, D; Wray, L; Xia, Y; Hor, Y S; Cava, R J; Hasan, M Z

    2008-04-24

    When electrons are subject to a large external magnetic field, the conventional charge quantum Hall effect dictates that an electronic excitation gap is generated in the sample bulk, but metallic conduction is permitted at the boundary. Recent theoretical models suggest that certain bulk insulators with large spin-orbit interactions may also naturally support conducting topological boundary states in the quantum limit, which opens up the possibility for studying unusual quantum Hall-like phenomena in zero external magnetic fields. Bulk Bi(1-x)Sb(x) single crystals are predicted to be prime candidates for one such unusual Hall phase of matter known as the topological insulator. The hallmark of a topological insulator is the existence of metallic surface states that are higher-dimensional analogues of the edge states that characterize a quantum spin Hall insulator. In addition to its interesting boundary states, the bulk of Bi(1-x)Sb(x) is predicted to exhibit three-dimensional Dirac particles, another topic of heightened current interest following the new findings in two-dimensional graphene and charge quantum Hall fractionalization observed in pure bismuth. However, despite numerous transport and magnetic measurements on the Bi(1-x)Sb(x) family since the 1960s, no direct evidence of either topological Hall states or bulk Dirac particles has been found. Here, using incident-photon-energy-modulated angle-resolved photoemission spectroscopy (IPEM-ARPES), we report the direct observation of massive Dirac particles in the bulk of Bi(0.9)Sb(0.1), locate the Kramers points at the sample's boundary and provide a comprehensive mapping of the Dirac insulator's gapless surface electron bands. These findings taken together suggest that the observed surface state on the boundary of the bulk insulator is a realization of the 'topological metal'. They also suggest that this material has potential application in developing next-generation quantum computing devices that may

  4. Hall effect on tearing mode instabilities in tokamak

    Science.gov (United States)

    Zhang, W.; Ma, Z. W.; Wang, S.

    2017-10-01

    The tearing mode instability is one of the most important dynamic processes in space and laboratory plasmas. Hall effects, resulting from the decoupling of electron and ion motions, can cause fast development and rotation of the perturbation structure of the tearing mode. A high-accuracy nonlinear magnetohydrodynamics code is developed to study Hall effects on the evolution of tearing modes in the Tokamak geometry. It is found that the linear growth rate increases with the increase in the ion skin depth and the self-consistently generated rotation can greatly alter the dynamic behavior of the double tearing mode.

  5. Spin Hall magnetoresistance in antiferromagnet/normal metal bilayers

    KAUST Repository

    Manchon, Aurelien

    2017-01-01

    We investigate the emergence of spin Hall magnetoresistance in a magnetic bilayer composed of a normal metal adjacent to an antiferromagnet. Based on a recently derived drift diffusion equation, we show that the resistance of the bilayer depends on the relative angle between the direction transverse to the current flow and the Néel order parameter. While this effect presents striking similarities with the spin Hall magnetoresistance recently reported in ferromagnetic bilayers, its physical origin is attributed to the anisotropic spin relaxation of itinerant spins in the antiferromagnet.

  6. Disorder Effect of Quantum Anomalous Hall effect in Graphene

    Science.gov (United States)

    Qiao, Zhenhua; Yang, Shengyuan A.; Tse, Wang-Kong; Yao, Yugui; Wang, Jian; Niu, Qian

    2011-03-01

    We investigate the possibility of realizing quantum anomalous Hall effect in graphene. We show that a bulk energy gap can be opened in the presence of both Rashba spin-orbit coupling and an exchange field. We calculate the Berry curvature distribution and find a nonzero Chern number for the valence bands and demonstrate the existence of gapless edge states. Inspired by this finding, we also study, by first-principles method, a concrete example of graphene with Fe atoms adsorbed on top, obtaining the same result. We further study the disorder effect of this quantum anomalous Hall effect and show how this state is localized in the presence of strong disorders.

  7. Porting a Hall MHD Code to a Graphic Processing Unit

    Science.gov (United States)

    Dorelli, John C.

    2011-01-01

    We present our experience porting a Hall MHD code to a Graphics Processing Unit (GPU). The code is a 2nd order accurate MUSCL-Hancock scheme which makes use of an HLL Riemann solver to compute numerical fluxes and second-order finite differences to compute the Hall contribution to the electric field. The divergence of the magnetic field is controlled with Dedner?s hyperbolic divergence cleaning method. Preliminary benchmark tests indicate a speedup (relative to a single Nehalem core) of 58x for a double precision calculation. We discuss scaling issues which arise when distributing work across multiple GPUs in a CPU-GPU cluster.

  8. Inverse spin Hall effect in a closed loop circuit

    Energy Technology Data Exchange (ETDEWEB)

    Omori, Y.; Auvray, F.; Wakamura, T.; Niimi, Y., E-mail: niimi@issp.u-tokyo.ac.jp [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8581 (Japan); Fert, A. [Unité Mixte de Physique CNRS/Thales, 91767 Palaiseau France associée à l' Université de Paris-Sud, 91405 Orsay (France); Otani, Y. [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8581 (Japan); RIKEN-CEMS, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2014-06-16

    We present measurements of inverse spin Hall effects (ISHEs), in which the conversion of a spin current into a charge current via the ISHE is detected not as a voltage in a standard open circuit but directly as the charge current generated in a closed loop. The method is applied to the ISHEs of Bi-doped Cu and Pt. The derived expression of ISHE for the loop structure can relate the charge current flowing into the loop to the spin Hall angle of the SHE material and the resistance of the loop.

  9. Impact of external conditions on energy consumption in industrial halls

    Science.gov (United States)

    Żabnieńśka-Góra, Alina

    2017-11-01

    The energy demand for heating the halls buildings is high. The impact on this may have the technology of production, building construction and technology requirements (HVAC systems). The isolation of the external partitions, the location of the object in relation to the surrounding buildings and the degree of the interior insolation (windows and skylights) are important in the context of energy consumption. The article discusses the impact of external conditions, wind and sunlight on energy demand in the industrial hall. The building model was prepared in IDA ICE 4.0 simulation software. Model validation was done based on measurements taken in the analyzed building.

  10. Skyrmion-induced anomalous Hall conductivity on topological insulator surfaces

    Science.gov (United States)

    Araki, Yasufumi; Nomura, Kentaro

    2017-10-01

    Electron-spin momentum locking together with background magnetic textures can significantly alter the electron transport properties. We investigate theoretically the electron transport at the interface between a topological insulator and a magnetic insulator with magnetic skyrmions on the top. In contrast to the conventional topological Hall effect in normal metals, the skyrmions yield an additional contribution to the anomalous Hall conductivity even in the absence of in-plane magnetic texture, arising from the phase factor characteristic of Dirac electrons acquired at the skyrmion boundary.

  11. Wind tunnel tests of tent halls of different shape

    Directory of Open Access Journals (Sweden)

    Porowska Agnieszka

    2017-01-01

    Full Text Available Aerodynamic investigations of wind pressure distribution on the surfaces of models of tent halls were carried out in the boundary layer wind tunnel at the Cracow University of Technology. Four types of objects of different shapes and construction were tested. Although tent halls are significantly vulnerable with respect to the wind action, there is no information about pressure distribution on objects of such type in standards, codes and normalization documents. Obtained results indicate that it is necessary to take into account different configurations of wind action while designing of the analysed structures.

  12. Quantum inferring acausal structures and the Monty Hall problem

    Science.gov (United States)

    Kurzyk, Dariusz; Glos, Adam

    2016-12-01

    This paper presents a quantum version of the Monty Hall problem based upon the quantum inferring acausal structures, which can be identified with generalization of Bayesian networks. Considered structures are expressed in formalism of quantum information theory, where density operators are identified with quantum generalization of probability distributions. Conditional relations between quantum counterpart of random variables are described by quantum conditional operators. Presented quantum inferring structures are used to construct a model inspired by scenario of well-known Monty Hall game, where we show the differences between classical and quantum Bayesian reasoning.

  13. Fractional Quantum Hall Plateau Transitions and Composite Fermi Liquids

    Science.gov (United States)

    Cho, Gil Young; Moon, Eun-Gook; Fradkin, Eduardo

    We will investigate relationship between the fractional quantum Hall plateau transition from Laughlin state at ν =1/2 n + 1 to a trivial insulator, and composite Fermi liquid at ν =1/2 (2 n + 1) . We use the recently-developed quantum field theoretic technique, 3d dualities, in combinations with the coupled-wire descriptions for quantum Hall states. We will show that we can also access various other phases, including non-abelian paired states at ν =1/2 (2 n + 1) , from the plateau transition. This work is supported by the Brain Korea 21 PLUS Project of Korea Government and KAIST start-up funding (GYC & EGM).

  14. Real-space and reciprocal-space Berry phases in the Hall effect of Mn(1-x)Fe(x)Si.

    Science.gov (United States)

    Franz, C; Freimuth, F; Bauer, A; Ritz, R; Schnarr, C; Duvinage, C; Adams, T; Blügel, S; Rosch, A; Mokrousov, Y; Pfleiderer, C

    2014-05-09

    We report an experimental and computational study of the Hall effect in Mn(1-x)Fe(x)Si, as complemented by measurements in Mn(1-x)Co(x)Si, when helimagnetic order is suppressed under substitutional doping. For small x the anomalous Hall effect (AHE) and the topological Hall effect (THE) change sign. Under larger doping the AHE remains small and consistent with the magnetization, while the THE grows by over a factor of 10. Both the sign and the magnitude of the AHE and the THE are in excellent agreement with calculations based on density functional theory. Our study provides the long-sought material-specific microscopic justification that, while the AHE is due to the reciprocal-space Berry curvature, the THE originates in real-space Berry phases.

  15. Realizing and adiabatically preparing bosonic integer and fractional quantum Hall states in optical lattices

    Science.gov (United States)

    He, Yin-Chen; Grusdt, Fabian; Kaufman, Adam; Greiner, Markus; Vishwanath, Ashvin

    2017-11-01

    We study the ground states of two-dimensional lattice bosons in an artificial gauge field. Using state-of-the-art density matrix renormalization group (DMRG) simulations we obtain the zero-temperature phase diagram for hard-core bosons at densities nb with flux nϕ per unit cell, which determines a filling ν =nb/nϕ . We find the bosonic Jain sequence [ν =p /(p +1 )] states, in particular, a bosonic integer quantum Hall phase at ν =2 , are fairly robust in the hard-core boson limit, In addition to identifying Hamiltonians whose ground states realize these phases, we discuss their preparation, beginning from independent chains, and ramping up interchain couplings. Using time-dependent DMRG simulations, these are shown to reliably produce states close to the ground state for experimentally relevant system sizes. Our proposal only utilizes existing experimental capabilities.

  16. A realistic quantum capacitance model for quantum Hall edge state based Fabry-Pérot interferometers.

    Science.gov (United States)

    Kilicoglu, O; Eksi, D; Siddiki, A

    2017-01-25

    In this work, the classical and the quantum capacitances are calculated for a Fabry-Pérot interferometer operating in the integer quantized Hall regime. We first consider a rotationally symmetric electrostatic confinement potential and obtain the widths and the spatial distribution of the insulating (incompressible) circular strips using a charge density profile stemming from self-consistent calculations. Modelling the electrical circuit of capacitors composed of metallic gates and incompressible/compressible strips, we investigate the conditions to observe Aharonov-Bohm (quantum mechanical phase dependent) and Coulomb blockade (capacitive coupling dependent) effects reflected in conductance oscillations. In a last step, we solve the Schrödinger and the Poisson equations self-consistently in a numerical manner taking into account realistic experimental geometries. We find that, describing the conductance oscillations either by Aharanov-Bohm or Coulomb blockade strongly depends on sample properties also other than size, therefore, determining the origin of these oscillations requires further experimental and theoretical investigation.

  17. Spin-Hall effect and circular birefringence of a uniaxial crystal plate

    CERN Document Server

    Bliokh, K Y; Prajapati, C; Puentes, G; Viswanathan, N K; Nori, F

    2016-01-01

    The linear birefringence of uniaxial crystal plates is known since the 17th century. Here we demonstrate, both theoretically and experimentally, a fine lateral circular birefringence of such crystal plates. We show that this effect is a novel example of the spin-Hall effect of light, i.e., a transverse spin-dependent shift of the paraxial light beam transmitted through the plate. The well-known linear birefringence and the new circular birefringence form an interesting analogy with the Goos-Hanchen and Imbert-Fedorov beam shifts that appear in the light reflection at a dielectric interface. We report the experimental observation of the effect in a remarkably simple system of a tilted half-wave plate and polarizers using polarimetric and quantum-weak-measurement techniques for the beam-shift measurements.

  18. Electronic properties of {mu}c-Si:H layers investigated with Hall measurements

    Energy Technology Data Exchange (ETDEWEB)

    Bronger, T.

    2007-02-28

    In the present work, the electronic properties of thin layers of PECVD-grown {mu}c-Si:H have been examined using the Hall effect. The main focus was on the mobility of the carriers because this is a crucial limiting factor for the electronic quality of this material, however, the density of free carriers as well as the conductivity were also determined. In order to get a picture as comprehensive as possible, a sample matrix was studied consisting of samples with different n-type doping levels and different crystallinities. Additionally, doped samples with artificially implanted defects which could be annealed gradually were investigated. All measurements have been made temperature-dependently. During the work, a new computer control and analysis program was developed from scratch for the Hall setup. It allows for high automation as well as comprehensive error estimation, both of which being very important for high ohmic samples. All samples showed a thermally activated mobility and carrier concentration, however, there is no single activation energy. Instead, all Arrhenius plots exhibited a more or less pronounced convex curvature. This curvature was identified with the parallel connection of a broad distribution of barriers in the material, which are limiting to the transport and are overcome by thermoionic emission. From this, the model of normally distributed barriers (NDB) was derived, mathematically investigated, and successfully applied to the experimental data of this work and (for not too highly doped samples) of other works. As a significant validation of the NDB model, the relative room-temperature mobility values could be calculated just from the Arrhenius slopes and curvatures. A very important dependence turned out to be mobility versus carrier concentration. In particular the annealed sample showed a clear {mu} {proportional_to} n{sup 1/2} behaviour, which could be backed with the sample matrix. Additionally, Hall measurements on HWCVD-grown {mu

  19. The value of h/e2 from quantum Hall effect

    Directory of Open Access Journals (Sweden)

    Keshav N. Shrivastava

    2010-02-01

    Full Text Available The quantum Hall effect and the emergence of the value of h/e2 is found to be understood within five steps. Here h is the Planck's constant and e is the charge of the electron. The Hall resistivity is found to become a function of spin. For positive spin, one value is found but for negative sign in the spin, another value occurs. In this way, there is never only one value of the resistivity but doubling of values. The value of h/e2 is a special case of the more general dependence of resistivity on the spin. We investigate the effect of Landau levels. For extreme quantum limit, n=0, the effective charge of the electron becomes (1/2ge. The fractional charge arises for a finite value of the angular momentum. There is a formation of spin clusters. As the field increases, there is a phase transition from spin ½ to spin 3/2 so that g value becomes 4 and various values of n in Landau levels, g(n+1/2, form plateaus in the Hall resistivity. For finite values of the orbital angular momenta, many fractional charges emerge. The fractional as well as the integral values of the charge are in full agreement with the experimental data. The generalised constant is h/[(1/2ge]e which under special conditions becomes h/e2, the ratio of Planck's constant to the square of the electron charge. The flux is usually quantised in units of o =hc/e. When the angular momentum is properly taken into account, hc/e is replaced by hc/(1/2ge. Thus, we predict a new superfluid which has (1/2ge in place of the charge, e.

  20. Invited Article: An integrated mid-infrared, far-infrared, and terahertz optical Hall effect instrument

    Energy Technology Data Exchange (ETDEWEB)

    Kühne, P., E-mail: kuehne@huskers.unl.edu; Schubert, M., E-mail: schubert@engr.unl.edu; Hofmann, T., E-mail: thofmann@engr.unl.edu [Department of Electrical Engineering and Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States); Herzinger, C. M., E-mail: cherzinger@jawoollam.com; Woollam, J. A., E-mail: jwoollam@jawoollam.com [J. A. Woollam Co., Inc., 645 M Street, Suite 102, Lincoln, Nebraska 68508-2243 (United States)

    2014-07-15

    We report on the development of the first integrated mid-infrared, far-infrared, and terahertz optical Hall effect instrument, covering an ultra wide spectral range from 3 cm{sup −1} to 7000 cm{sup −1} (0.1–210 THz or 0.4–870 meV). The instrument comprises four sub-systems, where the magneto-cryostat-transfer sub-system enables the usage of the magneto-cryostat sub-system with the mid-infrared ellipsometer sub-system, and the far-infrared/terahertz ellipsometer sub-system. Both ellipsometer sub-systems can be used as variable angle-of-incidence spectroscopic ellipsometers in reflection or transmission mode, and are equipped with multiple light sources and detectors. The ellipsometer sub-systems are operated in polarizer-sample-rotating-analyzer configuration granting access to the upper left 3 × 3 block of the normalized 4 × 4 Mueller matrix. The closed cycle magneto-cryostat sub-system provides sample temperatures between room temperature and 1.4 K and magnetic fields up to 8 T, enabling the detection of transverse and longitudinal magnetic field-induced birefringence. We discuss theoretical background and practical realization of the integrated mid-infrared, far-infrared, and terahertz optical Hall effect instrument, as well as acquisition of optical Hall effect data and the corresponding model analysis procedures. Exemplarily, epitaxial graphene grown on 6H-SiC, a tellurium doped bulk GaAs sample and an AlGaN/GaN high electron mobility transistor structure are investigated. The selected experimental datasets display the full spectral, magnetic field and temperature range of the instrument and demonstrate data analysis strategies. Effects from free charge carriers in two dimensional confinement and in a volume material, as well as quantum mechanical effects (inter-Landau-level transitions) are observed and discussed exemplarily.

  1. Hall Effect Thruster for High Power Solar Electric Propulsion Technology Demonstration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to develop a flight version of a high power Hall Effect thruster. While numerous high power Hall Effect thrusters have been demonstrated in the...

  2. Measured Early Lateral Energy Fractions in Concert Halls and Opera Houses

    Science.gov (United States)

    BARRON, M.

    2000-04-01

    In the 30 years since early lateral reflections were first suggested as important for concert halls, spatial impression and source broadening have become almost universally accepted as essential characteristics of halls with good acoustics. Two objective measures of source broadening have been proposed. Measured values of the best defined of these measures, the early lateral energy fraction (LF), are considered here. Results from two independent measurement surveys are discussed. Comparisons of LF values by hall show a significant link between hall mean LF and hall width. There is however considerable overlap between measured LF values in different halls so the relevance of describing halls by their mean early lateral energy fraction values is questionable. The behaviour of LF values within auditoria is discussed for different concert hall plan forms and within opera houses. A measure of source broadening including sound level is proposed and results considered in the context of auditorium design.

  3. Observation of the Quantum Anomalous Hall Insulator to Anderson Insulator Quantum Phase Transition and its Scaling Behavior.

    Science.gov (United States)

    Chang, Cui-Zu; Zhao, Weiwei; Li, Jian; Jain, J K; Liu, Chaoxing; Moodera, Jagadeesh S; Chan, Moses H W

    2016-09-16

    Fundamental insight into the nature of the quantum phase transition from a superconductor to an insulator in two dimensions, or from one plateau to the next or to an insulator in the quantum Hall effect, has been revealed through the study of its scaling behavior. Here, we report on the experimental observation of a quantum phase transition from a quantum-anomalous-Hall insulator to an Anderson insulator in a magnetic topological insulator by tuning the chemical potential. Our experiment demonstrates the existence of scaling behavior from which we extract the critical exponent for this quantum phase transition. We expect that our work will motivate much further investigation of many properties of quantum phase transition in this new context.

  4. Spin Seebeck effect and spin Hall magnetoresistance at high temperatures for a Pt/yttrium iron garnet hybrid structure.

    Science.gov (United States)

    Wang, Shuanhu; Zou, Lvkuan; Zhang, Xu; Cai, Jianwang; Wang, Shufang; Shen, Baogen; Sun, Jirong

    2015-11-14

    Based on unique experimental setups, the temperature dependences of the longitudinal spin Seebeck effect (LSSE) and spin Hall magnetoresistance (SMR) of the Pt/yttrium iron garnet (Pt/YIG) hybrid structure are determined in a wide temperature range up to the Curie temperature of YIG. From a theoretical analysis of the experimental relationship between the SMR and temperature, the spin mixing conductance of the Pt/YIG interface is deduced as a function of temperature. Adopting the deduced spin mixing conductance, the temperature dependence of the LSSE is well reproduced based on the magnon spin current theory. Our research sheds new light on the controversy about the theoretical models for the LSSE.

  5. Finite-temperature effective boundary theory of the quantized thermal Hall effect

    OpenAIRE

    Nakai, Ryota; Ryu, Shinsei; Nomura, Kentaro

    2015-01-01

    A finite-temperature effective free energy of the boundary of a quantized thermal Hall system is derived microscopically from the bulk two-dimensional Dirac fermion coupled with a gravitational field. In two spatial dimensions, the thermal Hall conductivity of fully gapped insulators and superconductors is quantized and given by the bulk Chern number, in analogy to the quantized electric Hall conductivity in quantum Hall systems. From the perspective of effective action functionals, two disti...

  6. Stuart Hall and the Theory and Practice of Articulation

    Science.gov (United States)

    Clarke, John

    2015-01-01

    In this article, I argue that the idea of articulation links three different dimensions of Stuart Hall's work: it is central to the work of cultural politics, to the work of hegemony and to his practice of embodied pedagogy. I claim that his approach to pedagogy entails the art of listening combined with the practice of theorising in the service…

  7. Challenges of scanning hall microscopy using batch fabricated probes

    NARCIS (Netherlands)

    Hatakeyama, Kodai

    2016-01-01

    Scanning Hall probe microscopy is a widely used technique for quantitative high resolution imaging of magnetic stray fields. Up to now probes with nanometer spatial resolution have only been realized by electron beam lithography, which is a slow and expensive fabrication technique. In this thesis,

  8. NASA HERMeS Hall Thruster Electrical Configuration Characterization

    Science.gov (United States)

    Peterson, Peter; Kamhawi, Hani; Huang, Wensheng; Yim, John; Herman, Daniel; Williams, George; Gilland, James; Hofer, Richard

    2016-01-01

    NASAs Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Technology Demonstration Unit-1 (TDU-1) Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight ready propulsion system. Part of the technology maturation was to test the TDU-1 thruster in several ground based electrical configurations to assess the thruster robustness and suitability to successful in-space operation. The ground based electrical configuration testing has recently been demonstrated as an important step in understanding and assessing how a Hall thruster may operate differently in space compared to ground based testing, and to determine the best configuration to conduct development and qualification testing. This presentation will cover the electrical configuration testing of the TDU-1 HERMeS Hall thruster in NASA Glenn Research Centers Vacuum Facility 5. The three electrical configurations examined are the thruster body tied to facility ground, thruster floating, and finally the thruster body electrically tied to cathode common. The TDU-1 HERMeS was configured with two different exit plane boundary conditions, dielectric and conducting, to examine the influence on the electrical configuration characterization.

  9. Sensitivity of resistive and Hall measurements to local inhomogeneities

    DEFF Research Database (Denmark)

    Koon, Daniel W.; Wang, Fei; Petersen, Dirch Hjorth

    2013-01-01

    We derive exact, analytic expressions for the sensitivity of resistive and Hall measurements to local inhomogeneities in a specimen's material properties in the combined linear limit of a weak perturbation over an infinitesimal area in a small magnetic field. We apply these expressions both to four...

  10. From quantum confinement to quantum Hall effect in graphene nanostructures

    NARCIS (Netherlands)

    Guimaraes, M. H. D.; Shevtsov, O.; Waintal, X.; van Wees, B. J.

    2012-01-01

    We study the evolution of the two-terminal conductance plateaus with a magnetic field for armchair graphene nanoribbons (GNRs) and graphene nanoconstrictions (GNCs). For GNRs, the conductance plateaus of 2e(2)/h at zero magnetic field evolve smoothly to the quantum Hall regime, where the plateaus in

  11. Tondiraba jäähall = Tondiraba ice arena

    Index Scriptorium Estoniae

    2015-01-01

    Tondiraba jäähall Tallinnas Varraku tänav 14, valminud 2014. Arhitektid Ott Kadarik, Mihkel Tüür, Kadri Tamme (Kadarik Tüür Arhitektid OÜ), insener Paavo Pikand. Eesti Kultuurkapitali Arhitektuuri sihtkapitali aastapreemia 2014

  12. Design of an Efficient Incinerator for Independence Hall, University ...

    African Journals Online (AJOL)

    The menace constituted by improperly disposed solid waste has led to an increase in growing awareness towards solid waste disposal alternatives. The case of Independence Hall in University of Ibadan, Nigeria is not different as delay in the ultimate collection of the waste makes the storage site become an eye-sore and ...

  13. Stop Tobacco in Restaurants: Fifth Grade Students STIR City Hall

    Science.gov (United States)

    Morris, Ronald Vaughan

    2008-01-01

    This article discusses a campaign called STIR: Stop Tobacco in Restaurants, that was started by fourth and fifth grade students. The goal was to end smoking in public places, including restaurants, bowling alleys, sports bars, and pool halls. For two years they motivated their peers, coordinated an information campaign to urge kids and adults to…

  14. Relationship between room shape and acoustics of rectangular concert halls

    DEFF Research Database (Denmark)

    Klosak, Andrzej K.; Gade, Anders Christian

    2008-01-01

    Extensive acoustics computer simulations have been made using Odeon computer simulation software. In 24 rectangular rooms representing "shoe-box" type concert halls with volumes of 8 000 m3, 12 000 m3 and 16 000 m3 from 300 to 850 measurements positions have been analysed. Only room averaged...

  15. Effect of Hall Current and Finite Larmor Radius Corrections on ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy; Volume 37; Issue 3. Effect of Hall Current and Finite Larmor Radius Corrections on Thermal Instability of Radiative Plasma for Star Formation in Interstellar Medium (ISM). Sachin Kaothekar. Research Article Volume 37 Issue 3 September 2016 Article ID 23 ...

  16. Effect of Hall Current and Finite Larmor Radius Corrections on ...

    Indian Academy of Sciences (India)

    Abstract. The effects of finite ion Larmor radius (FLR) corrections,. Hall current and radiative heat-loss function on the thermal instability of an infinite homogeneous, viscous plasma incorporating the effects of finite electrical resistivity, thermal conductivity and permeability for star formation in interstellar medium have been ...

  17. Quantum Hall physics: Hierarchies and conformal field theory techniques

    Science.gov (United States)

    Hansson, T. H.; Hermanns, M.; Simon, S. H.; Viefers, S. F.

    2017-04-01

    The fractional quantum Hall effect, being one of the most studied phenomena in condensed matter physics during the past 30 years, has generated many ground-breaking new ideas and concepts. Very early on it was realized that the zoo of emerging states of matter would need to be understood in a systematic manner. The first attempts to do this, by Haldane and Halperin, set an agenda for further work which has continued to this day. Since that time the idea of hierarchies of quasiparticles condensing to form new states has been a pillar of our understanding of fractional quantum Hall physics. In the 30 years that have passed since then, a number of new directions of thought have advanced our understanding of fractional quantum Hall states and have extended it in new and unexpected ways. Among these directions is the extensive use of topological quantum field theories and conformal field theories, the application of the ideas of composite bosons and fermions, and the study of non-Abelian quantum Hall liquids. This article aims to present a comprehensive overview of this field, including the most recent developments.

  18. new concepts of a modified hall - petch type relationship

    African Journals Online (AJOL)

    NIJOTECH

    Abstract. A modified form of the Hall - Perch equation, where the average grain diameter is replaced by the surface to volume ratio of internal boundaries (Sv), is considered. Working with this model, a flow stress – Sv relationship dominated by geometrically necessary dislocations (GNDs) is derived for the low strain region.

  19. Virtual Environment of Real Sport Hall and Analyzing Rendering Quality

    Directory of Open Access Journals (Sweden)

    Filip Popovski

    2015-02-01

    Full Text Available Here is presented virtual environment of a real sport hall created in Quest3D VR Edition. All analyzes of the rendering quality, techniques of interaction and performance of the system in real time are presented. We made critical analysis on all of these techniques on different machines and have excellent results.

  20. Magnetoresistance in quantum Hall metals due to Pancharatnam ...

    Indian Academy of Sciences (India)

    We discuss the relevant physical postulates with respect to these physical processes to qualitatively reproduce the measured Hall resistance's zigzag curve for both the integer and the ... Manuscript received: 14 January 2014; Manuscript revised: 15 May 2014; Accepted: 16 June 2014; Early published: 11 January 2015 ...

  1. Acceptability of the Hall Technique to parents and children.

    Science.gov (United States)

    Page, Lyndie A Foster; Boyd, Dorothy H; Davidson, Sarah E; McKay, Samantha K; Thomson, W Murray; Innes, Nicola P

    2014-03-01

    To investigate the acceptability of stainless steel crowns placed by dental therapists on children's primary molars using the Hall Technique. Mixed methods approach, using qualitative inductive analysis and quantitative analysis. Hawke's Bay Community Oral Health Service One focus group was conducted and ten thirty-minute phone interviews were undertaken with parents of children who had previously had a stainless steel crown placed using the Hall Technique (over the period 1 December 2011 to 31 May 2012). An inductive approach was used to analyse the qualitative research data, and the information was arranged into several categories based on the key themes which arose. Children treated with the Hall Technique were asked immediately after treatment whether they had enjoyed their visit to the clinic that day. Common themes were found with regard to appearance, pain, the procedure, and general opinions on acceptability. Nearly all (90%) of the children responded positively about their visit to the clinic. There was a high degree of acceptance among both parents and children for stainless steel crown placement using the Hall Technique in this group.

  2. Hall kirjandus võrgustunud maailmas / Anneli Kuiv

    Index Scriptorium Estoniae

    Kuiv, Anneli

    2003-01-01

    1997. aasta määratluse kohaselt on hall kirjandus "kirjandus, mida toodetakse kõikidel tasanditel valitsus- ja teadusasutuste, äri- ja tootmisringkondade poolt nii trükituna kui ka elektroonselt, kuid mis ei ole kirjastustööstuse kontrolli all"

  3. Planar Hall effect sensor for magnetic micro- and nanobead detection

    DEFF Research Database (Denmark)

    Ejsing, Louise Wellendorph; Hansen, Mikkel Fougt; Menon, Aric Kumaran

    2004-01-01

    Magnetic bead sensors based on the planar Hall effect in thin films of exchange-biased permalloy have been fabricated and characterized. Typical sensitivities are 3 muV/Oe mA. The sensor response to an applied magnetic field has been measured without and with coatings of commercially available 2 ...

  4. Low-frequency noise in planar Hall effect bridge sensors

    DEFF Research Database (Denmark)

    Persson, Anders; Bejhedb, R.S.; Bejhed, R.S.

    2011-01-01

    The low-frequency characteristics of planar Hall effect bridge sensors are investigated as function of the sensor bias current and the applied magnetic field. The noise spectra reveal a Johnson-like spectrum at high frequencies, and a 1/f-like excess noise spectrum at lower frequencies, with a knee...

  5. Decomposition of fractional quantum Hall states: New symmetries and approximations

    NARCIS (Netherlands)

    Thomale, R.; Estienne, B.; Regnault, N.; Bernevig, B.A.

    2010-01-01

    Abstract: We provide a detailed description of a new symmetry structure of the monomial (Slater) expansion coefficients of bosonic (fermionic) fractional quantum Hall states first obtained in Ref. 1, which we now extend to spin-singlet states. We show that the Haldane-Rezayi spin-singlet state can

  6. Ion Velocity Measurements in a Linear Hall Thruster

    National Research Council Canada - National Science Library

    Gascon, Nicolas; Cappelli, Mark A; Hargus, William A., Jr

    2005-01-01

    ... of wall material, or magnetic field intensity. When operated with a low background pressure, the particular Hall discharge studied here creates an ion accelerating electrostatic field mainly outside of the channel, in a narrow zone located 5-20 mm away from the exit plane.

  7. Mini array of quantum Hall devices based on epitaxial graphene

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, S.; Lebedeva, N. [Department of Micro and Nanosciences, Aalto University, Micronova, Tietotie 3, Espoo (Finland); Hämäläinen, J.; Iisakka, I.; Immonen, P.; Manninen, A. J.; Satrapinski, A. [VTT Technical Research Centre of Finland Ltd., Centre for Metrology MIKES, P.O. Box 1000, 02044 VTT (Finland)

    2016-05-07

    Series connection of four quantum Hall effect (QHE) devices based on epitaxial graphene films was studied for realization of a quantum resistance standard with an up-scaled value. The tested devices showed quantum Hall plateaux R{sub H,2} at a filling factor v = 2 starting from a relatively low magnetic field (between 4 T and 5 T) when the temperature was 1.5 K. The precision measurements of quantized Hall resistance of four QHE devices connected by triple series connections and external bonding wires were done at B = 7 T and T = 1.5 K using a commercial precision resistance bridge with 50 μA current through the QHE device. The results showed that the deviation of the quantized Hall resistance of the series connection of four graphene-based QHE devices from the expected value of 4×R{sub H,2} = 2 h/e{sup 2} was smaller than the relative standard uncertainty of the measurement (<1 × 10{sup −7}) limited by the used resistance bridge.

  8. College Sports Fan Aggression: Implications for Residence Hall Discipline.

    Science.gov (United States)

    Coons, Christine Jansen; And Others

    1995-01-01

    Evaluated relationship between spectator aggression at football games and residence hall discipline. Results indicated that there is significant correlation, on five variables tested, between fan behavior and the increase of disciplinary cases during football weekends. Provides suggestions for interventions to reduce disciplinary actions. (JBJ)

  9. The Marketing of Residence Halls: A Question of Positioning.

    Science.gov (United States)

    Parker, R. Stephen; And Others

    1996-01-01

    A survey of 343 college residence hall directors revealed percentages of private and public institutions offering different amenities, main selling points in promotional brochures, and the most common resident complaints. Results were compared with those of a resident survey concerning the importance of various housing attributes. Implications for…

  10. Energy efficient heating and ventilation of large halls

    CERN Document Server

    Hojer, Ondrej; Kabele, Karel; Kotrbaty, Miroslav; Sommer, Klaus; Petras, Dusan

    2011-01-01

    This guidebook is focused on modern methods for design, control and operation of energy efficient heating systems in large spaces and industrial halls. The book deals with thermal comfort, light and dark gas radiant heaters, panel radiant heating, floor heating and industrial air heating systems. Various heating systems are illustrated with case studies. Design principles, methods and modeling tools are presented for various systems.

  11. Darrell Hall Covos-Day Books, Weltevreden Park, South Africa ...

    African Journals Online (AJOL)

    published in 1991 and a second edition in 1994. His second work, entitled Long Tom, deals with the history of the famous 155mm Creusot siege guns of the Boers. His last work, The. Hall handbook of the Anglo-Boer War, was published posthumously in 1999 under the editorship of Fransjohan Pretorius and Gilbert Torlage.

  12. Quantum Hall Ferroelectrics and Nematics in Multivalley Systems

    Directory of Open Access Journals (Sweden)

    Inti Sodemann

    2017-12-01

    Full Text Available We study broken symmetry states at integer Landau-level fillings in multivalley quantum Hall systems whose low-energy dispersions are anisotropic. When the Fermi surface of individual pockets lacks twofold rotational symmetry, like in bismuth (111 [Feldman et al. , Observation of a Nematic Quantum Hall Liquid on the Surface of Bismuth, Science 354, 316 (2016SCIEAS0036-807510.1126/science.aag1715] and in Sn_{1-x}Pb_{x}Se (001 [Dziawa et al., Topological Crystalline Insulator States in Pb_{1-x}Sn_{x}Se, Nat. Mater. 11, 1023 (2012NMAACR1476-112210.1038/nmat3449] surfaces, interactions tend to drive the formation of quantum Hall ferroelectric states. We demonstrate that the dipole moment in these states has an intimate relation to the Fermi surface geometry of the parent metal. In quantum Hall nematic states, like those arising in AlAs quantum wells, we demonstrate the existence of unusually robust Skyrmion quasiparticles.

  13. Exotic galilean symmetry, non-commutativity & the Hall effect

    OpenAIRE

    Horvathy, P.

    2005-01-01

    The ``exotic'' particle model associated with the two-parameter central extension of the planar Galilei group can be used to derive the ground states of the Fractional Quantum Hall Effect. Similar equations arise for a semiclassical Bloch electron. Exotic Galilean symmetry is also be shared by Chern-Simons field theory of the Moyal type.

  14. A two fluid description of the Quantum Hall Soliton

    Energy Technology Data Exchange (ETDEWEB)

    Freivogel, Ben [Stanford Univ., Stanford, CA (United States); Susskind, Leonard [Stanford Univ., Stanford, CA (United States); Toumbas, Nicolaos [Stanford Univ., Stanford, CA (United States)

    2015-02-03

    We show that the Quantum Hall Soliton constructed in [1] is stable under small perturbations. We find that creating quasiparticles actually lowers the energy of the system, and discuss whether this indicates an instability on the time scales relevant to the problem.

  15. A Spreadsheet Simulation of the Monty Hall Problem

    Science.gov (United States)

    Patterson, Mike C.; Harmel, Bob; Friesen, Dan

    2010-01-01

    The "Monty Hall" problem or "Three Door" problem--where a person chooses one of three doors in hope of winning a valuable prize but is subsequently offered the choice of changing his or her selection--is a well known and often discussed probability problem. In this paper, the structure, history, and ultimate solution of the…

  16. Numerical simulation of SMART-1 Hall-thruster plasma interactions

    NARCIS (Netherlands)

    Tajmar, Martin; Sedmik, René; Scharlemann, Carsten

    2009-01-01

    SMART-1 has been the first European mission using a Hall thruster to reach the moon. An onboard plasma diagnostic package allowed a detailed characterization of the thruster exhaust plasma and its interactions with the spacecraft. Analysis of in-flight data revealed, amongst others, an unpredicted

  17. Mechanism of sound absorption by seated audience in halls.

    Science.gov (United States)

    Nishihara, N; Hidaka, T; Beranek, L L

    2001-11-01

    Four methods are explored for predicting the reverberation times in fully occupied halls for music as related to the sound absorption by their audiences. The methods for providing audience absorptions include two that use reverberation chambers, namely, the ISO 354 method (and other similar standards) (ISO) and Kath and Kuhl's method (K & K) [Acustica 15, 127-131 (1965)], and two that use average data from halls, i.e., Beranek's method (COH) [Concert and Opera Halls: How They Sound (Acoustical Society of America, Melville, NY, 1996)], and the average audience power-per-seat absorption which in practice is multiplied by the number of seats (AA). These methods are applied to the calculation of reverberation times in six existing halls, fully occupied, and the results were compared with actual measurements. The COH method was best for predictions over the entire frequency range. The K & K method showed the highest accuracy at mid-frequencies. Both the ISO and the K & K methods yielded wide differences for the measurements in the 125- and 250-Hz bands. The AA method was as good as the COH method when the measurements for the six halls were averaged, but showed a wide spread in the predictions around the average because it does not consider the degree of upholstering of the seats. It was hypothecated by the authors that the principal reasons for the ISO and K & K discrepancies at low frequencies were (a) differences between the degree of sound diffusion in actual halls and that in reverberation chambers, and (b) lack of information on the mechanisms of absorption of sound by people seated side-by-side in rows, particularly for near-grazing incidence sound fields. First, this article explores the sound diffusivity in a reverberation chamber and in the halls using CAD models. A probability density function of the incident angles of the sound rays that impinge on the audiences is defined and was measured for each case. Using a unique method, the sound absorption

  18. The influence of profiled ceilings on sports hall acoustics : Ground effect predictions and scale model measurements

    NARCIS (Netherlands)

    Wattez, Y.C.M.; Tenpierik, M.J.; Nijs, L.

    2018-01-01

    Over the last few years, reverberation times and sound pressure levels have been measured in many sports halls. Most of these halls, for instance those made from stony materials, perform as predicted. However, sports halls constructed with profiled perforated steel roof panels have an unexpected

  19. The use of Hall technique preformed metal crowns by specialist paediatric dentists in the UK

    OpenAIRE

    Roberts, A; McKay, A; Albadri, S

    2018-01-01

    Examines treatment planning involving Hall technique preformed metal crowns by specialists in paediatric dentistry. Explores clinical situations in which specialists in paediatric dentistry feel it is appropriate or not to fit Hall technique preformed metal crowns. Investigates which types of carious lesions are being treated with Hall technique preformed metal crowns by specialists in paediatric dentistry.

  20. Welcome to USA 15, the first large underground hall for the LHC

    CERN Multimedia

    2001-01-01

    The first of the four huge underground halls for LHC is ready. USA 15 will be the service hall for ATLAS. It has taken three years to finish the first underground hall for LHC. It is 62 metres long and 20 metres diameter.

  1. 78 FR 37553 - Maternal Health Town Hall Listening Session; Notice of Meeting

    Science.gov (United States)

    2013-06-21

    ... ideas in support of the National Maternal Health Initiative. The Town Hall Listening Session will serve... HUMAN SERVICES Health Resources and Services Administration Maternal Health Town Hall Listening Session; Notice of Meeting Name: Maternal Health Town Hall Listening Session. Date and Time: August 27, 2013, 2:00...

  2. Gender Differences in the Relationship of Hall Directors' Transformational and Transactional Leadership and Achieving Styles.

    Science.gov (United States)

    Komives, Susan R.

    1991-01-01

    In seven-campus study, found significant gender differences in self-perceptions of leadership and achieving style among hall directors (n=74). Found only hall director relational achieving styles were related to resident assistants' work unit's assessment of their hall director's transformational leadership. (Author)

  3. The Relationship of Hall Directors' Transformational and Transactional Leadership to Select Resident Assistant Outcomes.

    Science.gov (United States)

    Komives, Susan R.

    1991-01-01

    Multicampus study examined transformational and transactional leadership factors of hall directors (n=84) and resident assistants (n=806). Results indicated both male and female hall directors practiced transformational leadership behaviors. Hall director leadership behavior accounted for two-thirds of the variance in resident assistant…

  4. Source and Extraction for Simultaneous Four-hall Beam Delivery System at CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Kazimi, Reza; Wang, Haipeng; Spata, Mike F.; Hansknecht, John C.

    2013-06-01

    A new design for simultaneous delivery of the electron beam to all four 12 GeV CEBAF experimental halls* requires a new 750 MHz RF separator system in the 5th pass extraction region, a 250 MHz repetition rate for its beams, and addition of a fourth laser at the photo-cathode gun. The proposed system works in tandem with the existing 500 MHz RF separators and beam repetition rate on the lower passes. The new 5th pass RF separators will have the same basic design but modified to run at 750 MHz. The change to the beam repetition rate will be at the photo-cathode gun through an innovative upgrade of the seed laser driver system using electro-optic modulators. The new laser system also allows addition of the fourth laser. The new RF separators, the new laser system and other hardware changes required to implement the Four-Hall operation delivery system will be discussed in this paper.

  5. Phase diagram of insulating crystal and quantum Hall states in ABC-stacked trilayer graphene

    Science.gov (United States)

    Côté, R.; Rondeau, Maxime; Gagnon, Anne-Marie; Barlas, Yafis

    2012-09-01

    In the presence of a perpendicular magnetic field, ABC-stacked trilayer graphene's chiral band structure supports a 12-fold degenerate N=0 Landau level (LL). Along with the valley and spin degrees of freedom, the zeroth LL contains additional quantum numbers associated with the LL orbital index n=0,1,2. Remote interlayer hopping terms and external potential difference ΔB between the layers lead to LL splitting by introducing a gap ΔLL between the degenerate zero-energy triplet LL orbitals. Assuming that the spin and valley degrees of freedom are frozen, we study the phase diagram of this system resulting from competition of the single particle LL splitting and Coulomb interactions within the Hartree-Fock approximation at integer filling factors. In some range [ΔLLc,1,ΔLLc,2] of the gap ΔLL, the uniform QH state is unstable to the formation of a crystal state at integer filling factors while outside of this range, the ground state is a uniform quantum Hall state where the electrons occupy the lowest unoccupied LL orbital index. The transition between the uniform and crystal states should be characterized by a Hall plateau transition as a function of ΔLL at a fixed filling factor. We also study the properties of this crystal state and discuss its experimental detection.

  6. Spin current swapping and Hanle spin Hall effect in a two-dimensional electron gas

    Science.gov (United States)

    Shen, Ka; Raimondi, R.; Vignale, G.

    2015-07-01

    We analyze the effect known as "spin current swapping" (SCS) due to electron-impurity scattering in a uniform spin-polarized two-dimensional electron gas. In this effect a primary spin current Jia (lower index for spatial direction, upper index for spin direction) generates a secondary spin current Jai if i ≠a , or Jjj, with j ≠i , if i =a . Contrary to naive expectation, the homogeneous spin current associated with the uniform drift of the spin polarization in the electron gas does not generate a swapped spin current by the SCS mechanism. Nevertheless, a swapped spin current will be generated, if a magnetic field is present, by a completely different mechanism, namely, the precession of the spin Hall spin current in the magnetic field. We refer to this second mechanism as Hanle spin Hall effect, and we notice that it can be observed in an experiment in which a homogeneous drift current is passed through a uniformly magnetized electron gas. In contrast to this, we show that an unambiguous observation of SCS requires inhomogeneous spin currents, such as those that are associated with spin diffusion in a metal, and no magnetic field. An experimental setup for the observation of the SCS is therefore proposed.

  7. Some applications of the field theory to condensed matter physics: the different sides of the quantum Hall effect; Quelques applications de la theorie des champs a la physique de la matiere condensee: l'effet Hall quantique dans tous ses etats

    Energy Technology Data Exchange (ETDEWEB)

    Chandelier, F

    2003-12-01

    The quantum Hall effect appears in low temperature electron systems submitted to intense magnetic fields. Electrons are trapped in a thin layer ({approx} 100.10{sup -8} cm thick) at the interface between 2 semiconductors or between a semiconductor and an insulating material. This thesis presents 3 personal contributions to the physics of plane systems and particularly to quantum Hall effect systems. The first contribution is a topological approach, it involves the study of Landau's problem in a geometry nearing that of Hall effect experiments. A mathematical formalism has been defined and by using the Kubo's formula, the quantification of the Hall conductivity can be linked to the Chern class of threaded holes. The second contribution represents a phenomenological approach based on dual symmetries and particularly on modular symmetries. This contribution uses visibility diagrams that have already produced right predictions concerning resistivity curves or band structures. The introduction of a physical equivalence has allowed us to build a phase diagram for the quantum Hall effect at zero temperature. This phase diagram agrees with the experimental facts concerning : -) the existence of 2 insulating phases, -) direct transitions between an insulating phase and any Hall phase through integer or fractionary values of the filling factor ({nu}), -) selection rules, and -) classification of the Hall states and their distribution around a metal state. The third contribution concerns another phenomenological approach based on duality symmetries. We have considered a class of (2+1)-dimensional effective models with a Maxwell-Chern-Simons part that includes a non-locality. This non-locality implies the existence of a hidden duality symmetry with a Z{sub 2} component: z {yields} 1/z. This symmetry has allowed us to meet the results of the Fisher's law concerning the components of the resistivity tensor. (A.C.)

  8. Hybrid Experimental-Numerical Stress Analysis.

    Science.gov (United States)

    1983-04-01

    A. 1. and Riley# W. F., Introduction to Pho hanics, Pren- tics -Hall, Englewood Cliffs# 1965P pp. 185-186. 8. Rao, G. V., "Experimental-numerical...Naw1 o a. CA *924 Loe Amnl*&. Ca 10024 Profesor T. V. Cosng Or. IF. Sm#Amv Or. M. P. gtesProfeesr Ulert pried University of Agree on"ser si pmlo

  9. Experimental programme at the PS and ISR

    CERN Multimedia

    1974-01-01

    We are aware that, for some of our readers, it is useful to have, from time to time, a run-through of the current research at CERN. Covering the whole programme in this way, it is not possible to give the full story of each experiment. They are listed here according to the Experimental Hall in which they are located.

  10. Magnetic field deformation due to electron drift in a Hall thruster

    OpenAIRE

    Han Liang; Ding Yongjie; Zhang Xu; Wei Liqiu; Yu Daren

    2017-01-01

    The strength and shape of the magnetic field are the core factors in the design of the Hall thruster. However, Hall current can affect the distribution of static magnetic field. In this paper, the Particle-In-Cell (PIC) method is used to obtain the distribution of Hall current in the discharge channel. The Hall current is separated into a direct and an alternating part to calculate the induced magnetic field using Finite Element Method Magnetics (FEMM). The results show that the direct Hall c...

  11. Design and Realization of a Three Degrees of Freedom Displacement Measurement System Composed of Hall Sensors Based on Magnetic Field Fitting by an Elliptic Function

    Directory of Open Access Journals (Sweden)

    Bo Zhao

    2015-09-01

    Full Text Available This paper presents the design and realization of a three degrees of freedom (DOFs displacement measurement system composed of Hall sensors, which is built for the XYθz displacement measurement of the short stroke stage of the reticle stage of lithography. The measurement system consists of three pairs of permanent magnets mounted on the same plane on the short stroke stage along the Y, Y, X directions, and three single axis Hall sensors correspondingly mounted on the frame of the reticle stage. The emphasis is placed on the decoupling and magnetic field fitting of the three DOFs measurement system. The model of the measurement system is illustrated, and the XY positions and θZ rotation of the short stroke stage can be obtained by decoupling the sensor outputs. A magnetic field fitting by an elliptic function-based compensation method is proposed. The practical field intensity of a permanent magnet at a certain plane height can be substituted for the output voltage of a Hall sensors, which can be expressed by the elliptic function through experimental data as the crucial issue to calculate the three DOFs displacement. Experimental results of the Hall sensor displacement measurement system are presented to validate the proposed three DOFs measurement system.

  12. Scanning Hall Probe Microscopy of Magnetic Vortices inVery Underdoped yttrium-barium-copper-oxide

    Energy Technology Data Exchange (ETDEWEB)

    Guikema, Janice Wynn; /SLAC, SSRL

    2005-12-02

    Since their discovery by Bednorz and Mueller (1986), high-temperature cuprate superconductors have been the subject of intense experimental research and theoretical work. Despite this large-scale effort, agreement on the mechanism of high-T{sub c} has not been reached. Many theories make their strongest predictions for underdoped superconductors with very low superfluid density n{sub s}/m*. For this dissertation I implemented a scanning Hall probe microscope and used it to study magnetic vortices in newly available single crystals of very underdoped YBa{sub 2}Cu{sub 3}O{sub 6+x} (Liang et al. 1998, 2002). These studies have disproved a promising theory of spin-charge separation, measured the apparent vortex size (an upper bound on the penetration depth {lambda}{sub ab}), and revealed an intriguing phenomenon of ''split'' vortices. Scanning Hall probe microscopy is a non-invasive and direct method for magnetic field imaging. It is one of the few techniques capable of submicron spatial resolution coupled with sub-{Phi}{sub 0} (flux quantum) sensitivity, and it operates over a wide temperature range. Chapter 2 introduces the variable temperature scanning microscope and discusses the scanning Hall probe set-up and scanner characterizations. Chapter 3 details my fabrication of submicron GaAs/AlGaAs Hall probes and discusses noise studies for a range of probe sizes, which suggest that sub-100 nm probes could be made without compromising flux sensitivity. The subsequent chapters detail scanning Hall probe (and SQUID) microscopy studies of very underdoped YBa{sub 2}Cu{sub 3}O{sub 6+x} crystals with T{sub c} {le} 15 K. Chapter 4 describes two experimental tests for visons, essential excitations of a spin-charge separation theory proposed by Senthil and Fisher (2000, 2001b). We searched for predicted hc/e vortices (Wynn et al. 2001) and a vortex memory effect (Bonn et al. 2001) with null results, placing upper bounds on the vison energy inconsistent with

  13. Observation of the Quantum-Anomalous-Hall Insulator to Anderson Insulator Quantum Phase Transition in Magnetic Topological Insulators

    Science.gov (United States)

    Chang, Cui-Zu; Zhao, Wei-Wei; Li, Jian; Jain, J. K.; Liu, Chaoxing; Moodera, Jagadeesh S.; Chan, Moses H. W.

    The quantum anomalous Hall (QAH) effect can be considered as the quantum Hall (QH) effect without external magnetic field, which can be realized by time reversal symmetry breaking in a topologically non-trivial system, and in thin films of magnetically-doped TI. A QAH system carries spin-polarized dissipationless chiral edge transport channels without the need for external energy input, hence may have huge impact on future electronic and spintronic device applications for ultralow-power consumption. The observation of QAH effect has opened up exciting new physics and thus understanding the physical nature of this novel topological quantum state, can lead to a rapid development of this field. In this talk, we will report our recent progress about the experimental observation of a quantum phase transition from a quantum-anomalous-Hall (QAH) insulator to an Anderson insulator by tuning the chemical potential, and finally discuss the existence of scaling behavior for this quantum phase transition. Work Supported by funding from NSF (DMR-1207469), NSF (DMR-0819762) (MIT MRSEC), ONR (N00014-13-1-0301), and the STC Center for Integrated Quantum Materials under NSF Grant DMR-1231319.

  14. Topological approach to quantum Hall effects and its important applications: higher Landau levels, graphene and its bilayer

    Science.gov (United States)

    Jacak, Janusz; Łydżba, Patrycja; Jacak, Lucjan

    2017-05-01

    In this paper the topological approach to quantum Hall effects is carefully described. Commensurability conditions together with proposed generators of a system braid group are employed to establish the fractional quantum Hall effect hierarchies of conventional semiconductors, monolayer and bilayer graphene structures. Obtained filling factors are compared with experimental data and a very good agreement is achieved. Preliminary constructions of ground-state wave functions in the lowest Landau level are put forward. Furthermore, this work explains why pyramids of fillings from higher bands are not counterparts of the well-known composite-fermion hierarchy - it provides with the cause for an intriguing robustness of ν = 7/3 , 8/3 and 5/2 states (also in graphene). The argumentation why paired states can be developed in two-subband systems (wide quantum wells) only when the Fermi energy lies in the first Landau level is specified. Finally, the paper also clarifies how an additional surface in bilayer systems contributes to an observation of the fractional quantum Hall effect near half-filling, ν = 1/2 .

  15. On the low-field Hall coefficient of graphite

    Directory of Open Access Journals (Sweden)

    P. Esquinazi

    2014-11-01

    Full Text Available We have measured the temperature and magnetic field dependence of the Hall coefficient (RH in three, several micrometer long multigraphene samples of thickness between ∼9 to ∼30 nm in the temperature range 0.1 to 200 K and up to 0.2 T field. The temperature dependence of the longitudinal resistance of two of the samples indicates the contribution from embedded interfaces running parallel to the graphene layers. At low enough temperatures and fields RH is positive in all samples, showing a crossover to negative values at high enough fields and/or temperatures in samples with interfaces contribution. The overall results are compatible with the reported superconducting behavior of embedded interfaces in the graphite structure and indicate that the negative low magnetic field Hall coefficient is not intrinsic of the ideal graphite structure.

  16. The Hall Technique for managing carious primary molars.

    Science.gov (United States)

    Innes, Nicola; Evans, Dafydd; Hall, Norna

    2009-10-01

    The Hall Technique, a method of managing carious primary molars effectively with preformed metal crowns, without the use of local anaesthesia, caries removal or tooth preparation of any kind, is described.The technique is illustrated with a case report.The evidence underpinning the technique is discussed, along with indications and contra-indications for its use, and details of where clinicians can obtain further information on the technique if they are considering using it. Research evidence has indicated that the Hall Technique is effective in managing dental caries in primary molar teeth when used by General Dental Practitioners, and is preferred by them, their child patients and the children's parents to conventional restorative methods for these teeth.

  17. Chiral Exact Relations for Helicities in Hall Magnetohydrodynamic Turbulence

    CERN Document Server

    Banerjee, Supratik

    2016-01-01

    Besides total energy, three-dimensional incompressible Hall magnetohydrodynamics (MHD) possesses two inviscid invariants which are the magnetic helicity and the generalized helicity. New exact relations are derived for homogeneous (non-isotropic) stationary Hall MHD turbulence (and also for its inertialess electron MHD limit) with non-zero helicities and in the asymptotic limit of large Reynolds numbers. The universal laws are written only in terms of mixed second-order structure functions, i.e. the scalar product of two different increments. It provides, therefore, a direct measurement of the dissipation rates for the corresponding invariant flux. This study shows that the generalized helicity cascade is strongly linked to the left polarized fluctuations while the magnetic helicity cascade is linked to the right polarized fluctuations.

  18. Multi-region relaxed Hall magnetohydrodynamics with flow

    CERN Document Server

    Lingam, Manasvi; Hudson, Stuart R

    2016-01-01

    The recent formulations of multi-region relaxed magnetohydrodynamics (MRxMHD) have generalized the famous Woltjer-Taylor states by incorporating a collection of "ideal barriers" that prevent global relaxation, and flow. In this paper, we generalize MRxMHD with flow to include Hall effects (MRxHMHD), and thereby obtain the partially relaxed counterparts of the famous double Beltrami states as a special subset. The physical and mathematical consequences arising from the introduction of the Hall term are also presented. We demonstrate that our results (in the ideal MHD limit) constitute an important subset of ideal MHD equilibria, and we compare our approach against other variational principles proposed for deriving the relaxed states.

  19. Recent advances in the spin Hall effect of light

    Science.gov (United States)

    Ling, Xiaohui; Zhou, Xinxing; Huang, Kun; Liu, Yachao; Qiu, Cheng-Wei; Luo, Hailu; Wen, Shuangchun

    2017-06-01

    The spin Hall effect (SHE) of light, as an analogue of the SHE in electronic systems, is a promising candidate for investigating the SHE in semiconductor spintronics/valleytronics, high-energy physics and condensed matter physics, owing to their similar topological nature in the spin-orbit interaction. The SHE of light exhibits unique potential for exploring the physical properties of nanostructures, such as determining the optical thickness, and the material properties of metallic and magnetic thin films and even atomically thin two-dimensional materials. More importantly, it opens a possible pathway for controlling the spin states of photons and developing next-generation photonic spin Hall devices as a fundamental constituent of the emerging spinoptics. In this review, based on the viewpoint of the geometric phase gradient, we give a detailed presentation of the recent advances in the SHE of light and its applications in precision metrology and future spin-based photonics.

  20. Creating a bosonic fractional quantum Hall state by pairing fermions

    Science.gov (United States)

    Repellin, Cécile; Yefsah, Tarik; Sterdyniak, Antoine

    2017-10-01

    We numerically study the behavior of spin-1 /2 fermions on a two-dimensional square lattice subject to a uniform magnetic field, where opposite spins interact via an on-site attractive interaction. Starting from the noninteracting case where each spin population is prepared in a quantum Hall state with unity filling, we follow the evolution of the system as the interaction strength is increased. Above a critical value and for sufficiently low flux density, we observe the emergence of a twofold quasidegeneracy accompanied by the opening of an energy gap to the third level. Analysis of the entanglement spectra shows that the gapped ground state is the bosonic 1 /2 Laughlin state. Our work therefore provides compelling evidence of a topological phase transition from the fermionic quantum Hall state at unity filling to the bosonic Laughlin state at a critical attraction strength of the order of the one-body spectrum linewidth.

  1. Precise quantization of anomalous Hall effect near zero magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Bestwick, A. J. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Fox, E. J. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Kou, Xufeng [Univ. of California, Los Angeles, CA (United States); Pan, Lei [Univ. of California, Los Angeles, CA (United States); Wang, Kang L. [Univ. of California, Los Angeles, CA (United States); Goldhaber-Gordon, D. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-05-04

    In this study, we report a nearly ideal quantum anomalous Hall effect in a three-dimensional topological insulator thin film with ferromagnetic doping. Near zero applied magnetic field we measure exact quantization in the Hall resistance to within a part per 10,000 and a longitudinal resistivity under 1 Ω per square, with chiral edge transport explicitly confirmed by nonlocal measurements. Deviations from this behavior are found to be caused by thermally activated carriers, as indicated by an Arrhenius law temperature dependence. Using the deviations as a thermometer, we demonstrate an unexpected magnetocaloric effect and use it to reach near-perfect quantization by cooling the sample below the dilution refrigerator base temperature in a process approximating adiabatic demagnetization refrigeration.

  2. Tearing mode dynamics and sawtooth oscillation in Hall-MHD

    Science.gov (United States)

    Ma, Zhiwei; Zhang, Wei; Wang, Sheng

    2017-10-01

    Tearing mode instability is one of the most important dynamic processes in space and laboratory plasmas. Hall effects, resulted from the decoupling of electron and ion motions, could cause the fast development and perturbation structure rotation of the tearing mode and become non-negligible. We independently developed high accuracy nonlinear MHD code (CLT) to study Hall effects on the dynamic evolution of tearing modes with Tokamak geometries. It is found that the rotation frequency of the mode in the electron diamagnetic direction is in a good agreement with analytical prediction. The linear growth rate increases with increase of the ion inertial length, which is contradictory to analytical solution in the slab geometry. We further find that the self-consistently generated rotation largely alters the dynamic behavior of the double tearing mode and the sawtooth oscillation. National Magnetic Confinement Fusion Science Program of China under Grant No. 2013GB104004 and 2013GB111004.

  3. Simulating Smoke Filling in Big Halls by Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    W. K. Chow

    2011-01-01

    Full Text Available Many tall halls of big space volume were built and, to be built in many construction projects in the Far East, particularly Mainland China, Hong Kong, and Taiwan. Smoke is identified to be the key hazard to handle. Consequently, smoke exhaust systems are specified in the fire code in those areas. An update on applying Computational Fluid Dynamics (CFD in smoke exhaust design will be presented in this paper. Key points to note in CFD simulations on smoke filling due to a fire in a big hall will be discussed. Mathematical aspects concerning of discretization of partial differential equations and algorithms for solving the velocity-pressure linked equations are briefly outlined. Results predicted by CFD with different free boundary conditions are compared with those on room fire tests. Standards on grid size, relaxation factors, convergence criteria, and false diffusion should be set up for numerical experiments with CFD.

  4. Quantum anomalous Hall effect in 2D organic topological insulators.

    Science.gov (United States)

    Wang, Z F; Liu, Zheng; Liu, Feng

    2013-05-10

    The quantum anomalous Hall effect (QAHE) is a fundamental transport phenomenon in the field of condensed-matter physics. Without an external magnetic field, spontaneous magnetization combined with spin-orbit coupling gives rise to a quantized Hall conductivity. So far, a number of theoretical proposals have been made to realize the QAHE, but all based on inorganic materials. Here, using first-principles calculations, we predict a family of 2D organic topological insulators for realizing the QAHE. Designed by assembling molecular building blocks of triphenyl-transition-metal compounds into a hexagonal lattice, this new class of organic materials is shown to have a nonzero Chern number and exhibits a gapless chiral edge state within the Dirac gap.

  5. Can ensemble condition in a hall be improved and measured?

    DEFF Research Database (Denmark)

    Gade, Anders Christian

    1988-01-01

    of the ceiling reflectors; and (c) changing the position of the orchestra on the platform. These variables were then tested in full scale experiments in the hall including subjective evaluation by the orchestra in order to verify their effects under practical conditions. New objective parameters, which showed......In collaboration with the Danish Broadcasting Corporation an extensive series of experiments has been carried out in The Danish Radio Concert Hall with the practical purpose of trying to improve the ensemble conditions on the platform for the resident symphony orchestra. First, a series...... of experiments in a 1:20 scale model indicated that among several suggested means the following would be the most effective and acceptable: (a) changing the shape of the sidewalls in the platform area in order to make them reflect sound back to the musicians more effectively; (b) lowering and redesigning...

  6. Spin Hall effect-driven spin torque in magnetic textures

    KAUST Repository

    Manchon, Aurelien

    2011-07-13

    Current-induced spin torque and magnetization dynamics in the presence of spin Hall effect in magnetic textures is studied theoretically. The local deviation of the charge current gives rise to a current-induced spin torque of the form (1 - ΒM) × [(u 0 + αH u 0 M) ∇] M, where u0 is the direction of the injected current, H is the Hall angle and is the non-adiabaticity parameter due to spin relaxation. Since αH and ×can have a comparable order of magnitude, we show that this torque can significantly modify the current-induced dynamics of both transverse and vortex walls. © 2011 American Institute of Physics.

  7. Admittance measurements in the quantum Hall effect regime

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, C., E-mail: carlos.hernandezr@unimilitar.edu.co [Departamento de Física, Universidad Militar Nueva Granada, Carrera 11 # 101-80, Bogotá D.C. (Colombia); Laboratorio de Magnetismo, Departamento de Física, Universidad de los Andes, A.A. 4976, Bogotá D.C. (Colombia); Consejo, C.; Chaubet, C. [Laboratoire Charles Coulomb L2C, Université Montpellier II, Pl. E. Bataillon, 34095 Montpellier Cedex 5 (France)

    2014-11-15

    In this work we present an admittance study of a two-dimensional electron gas (2DEG) in the quantum Hall effect (QHE) regime. We have studied several Hall bars in different contacts configurations in the frequency range 100 Hz–1 MHz. Our interpretation is based on the Landauer–Büttiker theory and takes into account both the capacitance and the topology of the coaxial cables which are connected to the sample holder. We show that we always observe losses through the capacitive impedance of the coaxial cables, except in the two contacts configuration in which the cable capacitance does not influence the admittance measurement of the sample. In this case, we measure the electrochemical capacitance of the 2DEG and show its dependence with the filling factor ν.

  8. Extraordinary Hall-effect in colloidal magnetic nanoparticle films

    Energy Technology Data Exchange (ETDEWEB)

    Ben Gur, Leah; Tirosh, Einat [School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel); Segal, Amir [School of Physics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel); Markovich, Gil, E-mail: gilmar@post.tau.ac.il [School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel); Gerber, Alexander, E-mail: gerber@post.tau.ac.il [School of Physics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel)

    2017-03-15

    Colloidal nickel nanoparticles (NPs) coated with polyvinylpyrrolidone (PVP) were synthesized. The nanoparticle dispersions were deposited on substrates and dried under mild heating to form conductive films. The films exhibited very small coercivity, nearly metallic conductivity, and a significant extraordinary Hall effect signal. This method could be useful for preparing simple, printed magnetic field sensors with the advantage of relatively high sensitivity around zero magnetic field, in contrast to magnetoresistive sensors, which have maximal field sensitivity away from zero magnetic field. - Highlights: • Ni nanoparticle ink capable of forming conductive films on drying. • The Ni nanoparticle films exhibit significant extraordinary Hall effect. • This system could be used for preparing printed magnetic field sensors integrated in 3D printed structures.

  9. Dissipative quantum hall effect in graphene near the Dirac point.

    Science.gov (United States)

    Abanin, Dmitry A; Novoselov, Kostya S; Zeitler, Uli; Lee, Patrick A; Geim, A K; Levitov, L S

    2007-05-11

    We report on the unusual nature of the nu=0 state in the integer quantum Hall effect (QHE) in graphene and show that electron transport in this regime is dominated by counterpropagating edge states. Such states, intrinsic to massless Dirac quasiparticles, manifest themselves in a large longitudinal resistivity rho(xx) > or approximately h/e(2), in striking contrast to rho(xx) behavior in the standard QHE. The nu=0 state in graphene is also predicted to exhibit pronounced fluctuations in rho(xy) and rho(xx) and a smeared zero Hall plateau in sigma(xy), in agreement with experiment. The existence of gapless edge states puts stringent constraints on possible theoretical models of the nu=0 state.

  10. Equilibration of quantum hall edge states and its conductance fluctuations in graphene p-n junctions

    Science.gov (United States)

    Kumar, Chandan; Kuiri, Manabendra; Das, Anindya

    2018-02-01

    We report an observation of conductance fluctuations (CFs) in the bipolar regime of quantum hall (QH) plateaus in graphene (p-n-p/n-p-n) devices. The CFs in the bipolar regime are shown to decrease with increasing bias and temperature. At high temperature (above 7 K) the CFs vanishes completely and the flat quantized plateaus are recovered in the bipolar regime. The values of QH plateaus are in theoretical agreement based on full equilibration of chiral channels at the p-n junction. The amplitude of CFs for different filling factors follows a trend predicted by the random matrix theory. Although, there are mismatch in the values of CFs between the experiment and theory but at higher filling factors the experimental values become closer to the theoretical prediction. The suppression of CFs and its dependence has been understood in terms of time dependent disorders present at the p-n junctions.

  11. Interaction-driven quantum anomalous Hall effect in halogenated hematite nanosheets

    Science.gov (United States)

    Liang, Qi-Feng; Zhou, Jian; Yu, Rui; Wang, Xi; Weng, Hongming

    2017-11-01

    Based on first-principle calculations and k .p model analysis, we show that the quantum anomalous Hall (QAH) insulating phase can be realized in the functionalized hematite (or α -Fe2O3 ) nanosheet, and the obtained topological gap can be as large as ˜300 meV . The driving force of the topological phase is the strong interactions of localized Fe 3 d electrons operating on the quadratic band crossing point of the noninteracting band structures. Such an interaction driven QAH insulator is different from the single particle band topology mechanism in the experimentally realized QAH insulator, the magnetic ion doped topological insulator film. Depending on the thickness of the nanosheet, a topological insulating state with helical-like or chiral edge states can be realized. Our work provides a realization of the interaction-driven QAH insulating state in a realistic material.

  12. Metal Hall sensors for the new generation fusion reactors of DEMO scale

    Science.gov (United States)

    Bolshakova, I.; Bulavin, M.; Kargin, N.; Kost, Ya.; Kuech, T.; Kulikov, S.; Radishevskiy, M.; Shurygin, F.; Strikhanov, M.; Vasil'evskii, I.; Vasyliev, A.

    2017-11-01

    For the first time, the results of on-line testing of metal Hall sensors based on nano-thickness (50-70) nm gold films, which was conducted under irradiation by high-energy neutrons up to the high fluences of 1 · 1024 n · m-2, are presented. The testing has been carried out in the IBR-2 fast pulsed reactor in the neutron flux with the intensity of 1.5 · 1017 n · m-2 · s-1 at the Joint Institute for Nuclear Research. The energy spectrum of neutron flux was very close to that expected for the ex-vessel sensors locations in the ITER experimental reactor. The magnetic field sensitivity of the gold sensors was stable within the whole fluence range under research. Also, sensitivity values at the start and at the end of irradiation session were equal within the measurement error (fusion reactors of DEMO scale.

  13. Optical determination of Shockley-Read-Hall and interface recombination currents in hybrid perovskites

    Science.gov (United States)

    Sarritzu, Valerio; Sestu, Nicola; Marongiu, Daniela; Chang, Xueqing; Masi, Sofia; Rizzo, Aurora; Colella, Silvia; Quochi, Francesco; Saba, Michele; Mura, Andrea; Bongiovanni, Giovanni

    2017-03-01

    Metal-halide perovskite solar cells rival the best inorganic solar cells in power conversion efficiency, providing the outlook for efficient, cheap devices. In order for the technology to mature and approach the ideal Shockley-Queissier efficiency, experimental tools are needed to diagnose what processes limit performances, beyond simply measuring electrical characteristics often affected by parasitic effects and difficult to interpret. Here we study the microscopic origin of recombination currents causing photoconversion losses with an all-optical technique, measuring the electron-hole free energy as a function of the exciting light intensity. Our method allows assessing the ideality factor and breaks down the electron-hole recombination current into bulk defect and interface contributions, providing an estimate of the limit photoconversion efficiency, without any real charge current flowing through the device. We identify Shockley-Read-Hall recombination as the main decay process in insulated perovskite layers and quantify the additional performance degradation due to interface recombination in heterojunctions.

  14. Observation of interaction-induced modulations of a quantum Hall liquid's area

    Science.gov (United States)

    Sivan, I.; Choi, H. K.; Park, Jinhong; Rosenblatt, A.; Gefen, Yuval; Mahalu, D.; Umansky, V.

    2016-07-01

    Studies of electronic interferometers, based on edge-channel transport in the quantum Hall effect regime, have been stimulated by the search for evidence of abelian and non-abelian anyonic statistics of fractional charges. In particular, the electronic Fabry-Pérot interferometer has been found to be Coulomb dominated, thus masking coherent Aharonov-Bohm interference patterns: the flux trapped within the interferometer remains unchanged as the applied magnetic field is varied, barring unobservable modulations of the interference area. Here we report on conductance measurements indicative of the interferometer's area `breathing' with the variation of the magnetic field, associated with observable (a fraction of a flux quantum) variations of the trapped flux. This is the result of partial (controlled) screening of Coulomb interactions. Our results introduce a novel experimental tool for probing anyonic statistics.

  15. Terahertz Coherent Synchrotron Radiation in the MIT-Bates South Hall Ring

    CERN Document Server

    Wang, Fuhua; Cheever, Dan; Farkhondeh, Manouchehr; Franklin, Wilbur; Graves, William; Ihloff, Ernie; Podobedov, Boris; Sannibale, Fernando; Tschalär, C; Wang, Defa; Wang, Dong; Zwart, Townsend; van der Laan, Jan

    2005-01-01

    We investigate the terahertz coherent synchrotron radiation (CSR) potential of the South Hall Ring (SHR) at MIT-Bates Linear Accelerator Center. The SHR is equipped with a unique single cavity, 2.856 GHz RF system. The high RF frequency is advantageous for producing short bunch length and for having higher bunch current threshold to generate stable CSR. Combining with other techniques such as external pulse stacking cavity, femtosecond laser slicing, the potential for generating ultra-stable, high power, broadband terahertz CSR is very attractive. Beam dynamics issues related to short bunch length operation, and may associated with the high frequency RF system, such as multi-bunch instability are concerned. They could affect bunch length, bunch intensity and beam stability. The SHR is ideal for experimental exploration of these problems. Results of initial test of low momentum compaction lattice and bunch length measurements are presented and compared to expectations.

  16. Is MOKE a Viable Method for Probing Spin Hall Effect in Metals?

    Science.gov (United States)

    Su, Yudan; Wang, Hua; Li, Jie; Tian, Chuanshan; Wu, Ruqian; Jin, Xiaofeng; Shen, Y. R.

    In a recent publication, van`t Erve et al. reported observation of the magneto-optical Kerr effect (MOKE) from the spin Hall effect (SHE) in beta-tungsten (β-W) and platinum (Pt) films. This is most interesting, as it would provide an alternative means to probe SHE in metals. However, despite repeated attempts on different samples, we were unable to find a true SHE-induced MOKE signal from β-W and Pt. Both our theoretical estimate and experimental results indicate that the MOKE signal from SHE in metals ought to be very weak, below the detection limit of currently available MOKE setups. The false MOKE signal observed by van't Erve et al. likely came from the unbalanced ac heating effect.

  17. Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes.

    Science.gov (United States)

    Kapitanova, Polina V; Ginzburg, Pavel; Rodríguez-Fortuño, Francisco J; Filonov, Dmitry S; Voroshilov, Pavel M; Belov, Pavel A; Poddubny, Alexander N; Kivshar, Yuri S; Wurtz, Gregory A; Zayats, Anatoly V

    2014-01-01

    The routing of light in a deep subwavelength regime enables a variety of important applications in photonics, quantum information technologies, imaging and biosensing. Here we describe and experimentally demonstrate the selective excitation of spatially confined, subwavelength electromagnetic modes in anisotropic metamaterials with hyperbolic dispersion. A localized, circularly polarized emitter placed at the boundary of a hyperbolic metamaterial is shown to excite extraordinary waves propagating in a prescribed direction controlled by the polarization handedness. Thus, a metamaterial slab acts as an extremely broadband, nearly ideal polarization beam splitter for circularly polarized light. We perform a proof of concept experiment with a uniaxial hyperbolic metamaterial at radio-frequencies revealing the directional routing effect and strong subwavelength λ/300 confinement. The proposed concept of metamaterial-based subwavelength interconnection and polarization-controlled signal routing is based on the photonic spin Hall effect and may serve as an ultimate platform for either conventional or quantum electromagnetic signal processing.

  18. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state.

    Science.gov (United States)

    Okada, Ken N; Takahashi, Youtarou; Mogi, Masataka; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S; Ogawa, Naoki; Kawasaki, Masashi; Tokura, Yoshinori

    2016-07-20

    Electrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics. The universal relation composed of the observed Faraday and Kerr rotation angles but not of any material parameters (for example, dielectric constant and magnetic susceptibility) well exhibits the trajectory towards the fine structure constant in the quantized limit.

  19. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state

    Science.gov (United States)

    Okada, Ken N.; Takahashi, Youtarou; Mogi, Masataka; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S.; Ogawa, Naoki; Kawasaki, Masashi; Tokura, Yoshinori

    2016-07-01

    Electrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics. The universal relation composed of the observed Faraday and Kerr rotation angles but not of any material parameters (for example, dielectric constant and magnetic susceptibility) well exhibits the trajectory towards the fine structure constant in the quantized limit.

  20. Suitable reverberation time for halls for rock and pop music

    OpenAIRE

    Adelman-Larsen, Niels Werner; Thompson, Eric Robert; Gade, Anders Christian

    2010-01-01

    The existing body of literature regarding the acoustic design of concert halls has focused almost exclusively on classical music, although there are many more performances of popular music, including rock and pop. Objective measurements were made of the acoustics of 20 rock music venues in Denmark and a questionnaire was used in a subjective assessment of those venues with professional rock musicians and sound engineers as expert listeners. Correlations between the measurements show that clar...

  1. Extraordinary Hall-effect in colloidal magnetic nanoparticle films

    Science.gov (United States)

    Ben Gur, Leah; Tirosh, Einat; Segal, Amir; Markovich, Gil; Gerber, Alexander

    2017-03-01

    Colloidal nickel nanoparticles (NPs) coated with polyvinylpyrrolidone (PVP) were synthesized. The nanoparticle dispersions were deposited on substrates and dried under mild heating to form conductive films. The films exhibited very small coercivity, nearly metallic conductivity, and a significant extraordinary Hall effect signal. This method could be useful for preparing simple, printed magnetic field sensors with the advantage of relatively high sensitivity around zero magnetic field, in contrast to magnetoresistive sensors, which have maximal field sensitivity away from zero magnetic field.

  2. The design and performance of the electromagnetic calorimeters in Hall C at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Vardan Tadevosyan, Hamlet Mkrtchyan, Arshak Asaturyan, Arthur Mkrtchyan, Simon Zhamkochyan

    2012-12-01

    The design and performance of the electromagnetic calorimeters in the magnetic spectrometers in Hall C at Jefferson Lab are presented. For the existing HMS and SOS spectrometers, construction information and comparisons of simulated and experimental results are presented. The design and simulated performance for a new calorimeter to be used in the new SHMS spectrometer is also presented. We have developed and constructed electromagnetic calorimeters from TF-1 type lead-glass blocks for the HMS and SOS magnetic spectrometers at JLab Hall C. The HMS/SOS calorimeters are of identical design and construction except for their total size. Blocks of dimension 10 cm × 10 cm × 70 cm are arranged in four planes and stacked 13 and 11 blocks high in the HMS and SOS respectively. The energy resolution of these calorimeters is better than 6%/√E, and pion/electron (π/e) separation of about 100:1 has been achieved in energy range 1–5 GeV. Good agreement has been observed between the experimental and GEANT4 simulated energy resolutions. The HMS/SOS calorimeters have been used nearly in all Hall C experiments, providing good energy resolution and a high pion suppression factor. No significant deterioration in their performance has been observed in the course of use since 1994. For the SHMS spectrometer, presently under construction, details on the calorimeter design and accompanying GEANT4 simulation efforts are given. A Preshower+Shower design was selected as the most cost-effective among several design choices. The preshower will consist of a layer of 28 modules with TF-1 type lead glass radiators, stacked in two columns. The shower part will consist of 224 modules with F-101 type lead glass radiators, stacked in a “fly's eye” configuration of 14 columns and 16 rows. The active area of 120 × 130 cm(2) will encompass the beam envelope at the calorimeter. The anticipated performance of the new calorimeter is simulated over the full momentum range of the SHMS, predicting

  3. Direct comparison of fractional and integer quantized Hall resistance

    Science.gov (United States)

    Ahlers, Franz J.; Götz, Martin; Pierz, Klaus

    2017-08-01

    We present precision measurements of the fractional quantized Hall effect, where the quantized resistance {{R}≤ft[ 1/3 \\right]} in the fractional quantum Hall state at filling factor 1/3 was compared with a quantized resistance {{R}[2]} , represented by an integer quantum Hall state at filling factor 2. A cryogenic current comparator bridge capable of currents down to the nanoampere range was used to directly compare two resistance values of two GaAs-based devices located in two cryostats. A value of 1-(5.3  ±  6.3) 10-8 (95% confidence level) was obtained for the ratio ({{R}≤ft[ 1/3 \\right]}/6{{R}[2]} ). This constitutes the most precise comparison of integer resistance quantization (in terms of h/e 2) in single-particle systems and of fractional quantization in fractionally charged quasi-particle systems. While not relevant for practical metrology, such a test of the validity of the underlying physics is of significance in the context of the upcoming revision of the SI.

  4. Sound quality (SQ) of concert halls: Physical and subjective attributes

    Science.gov (United States)

    Beranek, Leo L.

    2003-10-01

    Each new concert hall has the following stated goal: ``Acoustics equal to the best in the world.'' The owner can specify the number of seats, areas of public spaces, lighting intensities, etc. But, the attributes of acoustical quality cannot as yet be specified. Most acoustical consultants seem to feel that a ``seat of the pants'' experience is the only possible specification. But the architect's goal is a monument to himself and he believes the acoustical consultant should achieve the ``best in the world'' goal without visible means. Numbers for specifications are needed. In this paper 40 years of pertinent research are described: What are the critical physical attributes of good acoustics, how do we measure them, and how can they be translated into architectural specifications? Four steps have been involved: (1) interviews of conductors and music critics to determine (a) their acoustical rank orderings of a large number of halls and (b) which acoustical characteristics do they believe are important, viz., reverberance, strength of sound, etc.; (2) a determination of which physical measures correlate with their beliefs plus others that are physiologically important; (3) measurements of those physical quantities in the rank-ordered halls; and (5) the correlation of the measured values with the subjective quality ratings.

  5. Symmetry-protected quantum spin Hall phases in two dimensions.

    Science.gov (United States)

    Liu, Zheng-Xin; Wen, Xiao-Gang

    2013-02-08

    Symmetry-protected topological (SPT) states are short-range entangled states with symmetry. Nontrivial SPT states have symmetry-protected gapless edge excitations. In 2 dimension (2D), there are an infinite number of nontrivial SPT phases with SU(2) or SO(3) symmetry. These phases can be described by SU(2) or SO(3) nonlinear-sigma models with a quantized topological θ term. At an open boundary, the θ term becomes the Wess-Zumino-Witten term and consequently the boundary excitations are decoupled gapless left movers and right movers. Only the left movers (if θ>0) carry the SU(2) or SO(3) quantum numbers. As a result, the SU(2) SPT phases have a half-integer quantized spin Hall conductance and the SO(3) SPT phases have an even-integer quantized spin Hall conductance. Both the SU(2) and SO(3) SPT phases are symmetric under their U(1) subgroup and can be viewed as U(1) SPT phases with even-integer quantized Hall conductance.

  6. Mission and System Advantages of Iodine Hall Thrusters

    Science.gov (United States)

    Dankanich, John W.; Szabo, James; Pote, Bruce; Oleson, Steve; Kamhawi, Hani

    2014-01-01

    The exploration of alternative propellants for Hall thrusters continues to be of interest to the community. Investments have been made and continue for the maturation of iodine based Hall thrusters. Iodine testing has shown comparable performance to xenon. However, iodine has a higher storage density and resulting higher ?V capability for volume constrained systems. Iodine's vapor pressure is low enough to permit low-pressure storage, but high enough to minimize potential adverse spacecraft-thruster interactions. The low vapor pressure also means that iodine does not condense inside the thruster at ordinary operating temperatures. Iodine is safe, it stores at sub-atmospheric pressure, and can be stored unregulated for years on end; whether on the ground or on orbit. Iodine fills a niche for both low power (10kW) electric propulsion regimes. A range of missions have been evaluated for direct comparison of Iodine and Xenon options. The results show advantages of iodine Hall systems for both small and microsatellite application and for very large exploration class missions.

  7. Magnetic mirror effect in a cylindrical Hall thruster

    Science.gov (United States)

    Jiang, Yiwei; Tang, Haibin; Ren, Junxue; Li, Min; Cao, Jinbin

    2018-01-01

    For cylindrical Hall thrusters, the magnetic field geometry is totally different from that in conventional Hall thrusters. In this study, we investigate the magnetic mirror effect in a fully cylindrical Hall thruster by changing the number of iron rings (0–5), which surround the discharge channel wall. The plasma properties inside the discharge channel and plume area are simulated with a self-developed PIC-MCC code. The numerical results show significant influence of magnetic geometry on the electron confinement. With the number of rings increasing above three, the near-wall electron density gap is reduced, indicating the suppression of neutral gas leakage. The electron temperature inside the discharge channel reaches its peak (38.4 eV) when the magnetic mirror is strongest. It is also found that the thruster performance has strong relations with the magnetic mirror as the propellant utilisation efficiency reaches the maximum (1.18) at the biggest magnetic mirror ratio. Also, the optimal magnetic mirror improves the multi-charged ion dynamics, including the ion production and propellant utilisation efficiency.

  8. Topological thermal Hall effect in frustrated kagome antiferromagnets

    Science.gov (United States)

    Owerre, S. A.

    2017-01-01

    In frustrated magnets the Dzyaloshinsky-Moriya interaction (DMI) arising from spin-orbit coupling can induce a magnetic long-range order. Here, we report a theoretical prediction of the thermal Hall effect in frustrated kagome magnets such as KCr3(OH) 6(SO4) 2 and KFe3(OH) 6(SO4)2 . The thermal Hall effects in these materials are induced by scalar spin chirality as opposed to DMI in previous studies. The scalar spin chirality originates from the magnetic-field-induced chiral spin configuration due to noncoplanar spin textures, but in general it can be spontaneously developed as a macroscopic order parameter in chiral quantum spin liquids. Therefore, we infer that there is a possibility of the thermal Hall effect in frustrated kagome magnets such as herbertsmithite ZnCu3(OH) 6Cl2 and the chromium compound Ca10Cr7O28 , although they also show evidence of magnetic long-range order in the presence of applied magnetic field or pressure.

  9. Typology of Retractable Roof Structures in Stadiums and Sports Halls

    Directory of Open Access Journals (Sweden)

    Andrej Mahovič

    2015-10-01

    Full Text Available Retractable roof structures are one of the four fundamental systems (in addition to the playing area, stands and facade in a stadium and sports hall. The roof protects users against various weather conditions and creates optimum circumstances for carrying out different activities. Stadiums and sports halls with retractable roof structures can host a greater variety of activities, improve the quality of their implementation and the quality of visitors’ experience, and affect the perception and experience of people using or observing such buildings. A retractable roof structure allows for natural lighting and ventilation of the venue, gives optimal conditions for grass growth on the playing field, and reduces costs of use and maintenance of the building. Different typologies of movement of roof structures (frequency of opening and closing, design of the structure, and methods of movement are categorised in terms of their architectural and structural design. Application of different retractable roof systems worldwide is indicator of their effectiveness and efficiency, and is basis for use of movement also in other fundamental systems of stadiums and sports halls. Research and identification of characteristics of retractable roof structures lead to the design of new moving systems that can with the application of the moving principle change the purpose of movable elements or assume the characteristics of other fundamental systems.

  10. New photomultiplier active base for Hall C Jefferson Lab lead tungstate calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Vladimir E. [JLAB; Mkrtchyan, Hamlet G. [Artem Alikhanian National Laboratory

    2012-11-01

    A new photomultiplier tube active base was designed and tested. The base combines active voltage division circuit and fast amplifier, powered by the current flowing through voltage divider. This base is developed to upgrade older photomultiplier bases of Jefferson Lab lead-tungsten calorimeter (about ˜1200 crystals of PbWO{sub 4} from the PrimEx experimental setup). This is needed for the extension of detectors' rate capability to meet requirements of new Hall C proposal PR12-11-102 of measurements of the L/T separated cross sections and their ratio R = πL/πT in neutral-pion p(e,e'π0)p deep exclusive and p(p(e,e'π{sup 0})p)X semi-inclusive scattering regions. New active base is direct replacement of older passive base circuit without adding of additional power or signal lines. However, it extends detectors rate capability with factor over 20. Moreover, transistorized voltage divider improves detector's amplitude resolution due to reduction of photomultiplier gain dependence from tube anode current. The PMT active base is the invention disclosed in V. Popov's U.S. Patent No. 6,791,269, which successfully works over ten years in several Jefferson Lab Cherenkov detectors. The following design is a new revised and improved electronic circuit with better gain stability and linearity in challenge to meet requirements of new Hall C experimental setup. New active base performance was tested using fast LED light source and Pr:LuAG scintillator and gamma sources. Electronics radiation hardness was tested on JLab accelerator. Results of testing R4125 Hamamatsu photomultiplier tube in new active base are presented.

  11. Spin dynamics simulations of topological magnon insulators: From transverse current correlation functions to the family of magnon Hall effects

    Science.gov (United States)

    Mook, Alexander; Henk, Jürgen; Mertig, Ingrid

    2016-11-01

    We demonstrate theoretically that atomistic spin dynamics simulations of topological magnon insulators (TMIs) provide access to the magnon-mediated transport of both spin and heat. The TMIs, modeled by kagome ferromagnets with Dzyaloshinskii-Moriya interaction, exhibit nonzero transverse-current correlation functions from which conductivities are derived for the entire family of magnon Hall effects. Both longitudinal and transverse conductivities are studied in dependence on temperature and on an external magnetic field. A comparison between theoretical and experimental results for Cu(1,3-benzenedicarboxylate), a recently discovered TMI, is drawn.

  12. Localized NMR Mediated by Electrical-Field-Induced Domain Wall Oscillation in Quantum-Hall-Ferromagnet Nanowire.

    Science.gov (United States)

    Miyamoto, S; Miura, T; Watanabe, S; Nagase, K; Hirayama, Y

    2016-03-09

    We present fractional quantum Hall domain walls confined in a gate-defined wire structure. Our experiments utilize spatial oscillation of domain walls driven by radio frequency electric fields to cause nuclear magnetic resonance. The resulting spectra are discussed in terms of both large quadrupole fields created around the wire and hyperfine fields associated with the oscillating domain walls. This provides the experimental fact that the domain walls survive near the confined geometry despite of potential deformation, by which a localized magnetic resonance is allowed in electrical means.

  13. Spin disorder effect in anomalous Hall effect in MnGa

    Science.gov (United States)

    Mendonça, A. P. A.; Varalda, J.; Schreiner, W. H.; Mosca, D. H.

    2017-12-01

    We report on resistivity and Hall effect in MnGa thin films grown by molecular beam epitaxy on GaAs substrates. Highly (1 1 1)-textured MnGa film with L10 structure exhibits hard magnetic properties with coercivities as high as 20 kOe and spin disorder mechanisms contributing to the Hall conductivity at room temperature. Density functional theory calculations were performed to determine the intrinsic Berry curvature in the momentum space with chiral spin structure that results in an anomalous Hall conductivity of 127 (Ωcm)-1 comparable to that measured at low temperature. In addition to residual and side-jump contributions, which are enhanced by thermal activation, both anomalous Hall conductivity and Hall angle increase between 100 K and room temperature. The present results reinforce the potential of Mn-Ga system for developing Hall effect-based spintronic devices.

  14. The lead-glass electromagnetic calorimeters for the magnetic spectrometers in Hall C at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Mkrtchyan, Hamlet [Yerevan Physics Institute, JLAB; Carlini, Roger D. [JLAB; Tadevosyan, Vardan H. [Yerevan Physics Institute; Arrington, John Robert [ANL; Asaturyan, Arshak Razmik [Yerevan Physics Institute; Christy, Michael Eric [Hampton U.; Dutta, Dipangkar [Mississippi State U.; Ent, Rolf [JLAB; Fenker, Howard C. [JLAB; Gaskell, David J. [JLAB; Horn, Tanja [Catholic University of America, JLAB; Jones, Mark K. [JLAB; Keppel, Cynthia [JLAB, Hampton U.; Mack, David J. [JLAB; Malace, Simona P. [Triangle Universities Nuclear Laboratory and Duke University; Mkrtchyan, Arthur [Yerevan Physics Institute; Niculescu, Maria-Ioana [James Madison U.; Seely, Charles Jason [MIT; Tvaskis, Vladas [University of Manitoba; Wood, Stephen A. [JLAB; Zhamkochyan, Simon [Yerevan Physics Institute

    2013-08-01

    The electromagnetic calorimeters of the various magnetic spectrometers in Hall C at Jefferson Lab are presented. For the existing HMS and SOS spectrometers design considerations, relevant construction information, and comparisons of simulated and experimental results are included. The energy resolution of the HMS and SOS calorimeters is better than $\\sigma/E \\sim 6%/\\sqrt E $, and pion/electron ($\\pi/e$) separation of about 100:1 has been achieved in energy range 1 -- 5 GeV. Good agreement has been observed between the experimental and simulated energy resolutions, but simulations systematically exceed experimentally determined $\\pi^-$ suppression factors by close to a factor of two. For the SHMS spectrometer presently under construction details on the design and accompanying GEANT4 simulation efforts are given. The anticipated performance of the new calorimeter is predicted over the full momentum range of the SHMS. Good electron/hadron separation is anticipated by combining the energy deposited in an initial (preshower) calorimeter layer with the total energy deposited in the calorimeter.

  15. Optimal Volume for Concert Halls Based on Ando’s Subjective Preference and Barron Revised Theories

    Directory of Open Access Journals (Sweden)

    Salvador Cerdá

    2014-03-01

    Full Text Available The Ando-Beranek’s model, a linear version of Ando’s subjective preference theory, obtained by the authors in a recent work, was combined with Barron revised theory. An optimal volume region for each reverberation time was obtained for classical music in symphony orchestra concert halls. The obtained relation was tested with good agreement with the top rated halls reported by Beranek and other halls with reported anomalies.

  16. Comparisons between Computer Simulations of Room Acoustical Parameters and those Measured in Concert Halls

    DEFF Research Database (Denmark)

    Rindel, Jens Holger; Shiokawa, Hiroyoshi; Christensen, Claus Lynge

    1999-01-01

    A number of European concert halls were surveyed in 1989. In this paper comparisons are made between measured room acoustical parameters and those obtained from computer simulations using the ODEON program version 3.1 on two concert halls. One is Musikverein in Vienna and the other is Concertgebouw...... in Amsterdam. Comparisons are also made between the results obtained from computer simulations using models with high geometrical fidelity and those from models with simplifications to geometry on both concert halls....

  17. The study of a new PARRNe experimental area using an electron linac close to the Orsay tandem

    CERN Document Server

    Essabaa, S; Ausset, P; Baronick, J P; Bergot, J P; Boulot, A; Clapier, F; Coacolo, J L; Curaudeau, J M; Dupont, F; Galès, Sydney; Gardès, D; Grialou, D; Ibrahim, F; Junquera, T; Kandry-Rody, S; Lefort, H; Le Scornet, J C; Lesrel, J; M'Garrech, S; Müller, A C; Rouvière, N; Tkatchenko, A; Waast, B; Rinolfi, Louis; Rossat, G; Bienvenu, G; Bourdon, J C; Garvey, Terence; Jacquemard, B; Omeich, M

    2002-01-01

    The Production of neutron-rich radioactive nuclei through fission is currently prime of research interest for the future radioactive beam facilities. For example in the EURISOL[1] project, photo-fission and fast neutron induced fission are proposed. The photo-fission cross-section for 238U is about 0.16 barn (against 1.6 barn for fast neutrons of 40 MeV) but the conversion electrons/gammas is much more efficient than that of deuterons/neutrons. It was necessary, to test this new method of production, to carry out, in equivalent conditions, an experiment of the type PARRNe-1 using a 50 MeV electron beam. In April 2001, production of fission fragments induced by gammas proved to be successful. Bremsstrahlung gamma rays were produced by the few nA-50 MeV electron beam delivered by the CERN LEP Injector Linac (LIL). This promising alternative has stimulated the study of a new experimental area at IPNO based on an electron Linac close to the Tandem, through a collaboration with LAL and CERN PS groups.

  18. Low-Cost High-Performance Hall Thruster Support System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Colorado Power Electronics (CPE) has built an innovative modular power processing unit (PPU) for Hall Thrusters, including discharge, magnet, heater and keeper...

  19. Anisotropic anomalous Hall effect in triangular itinerant ferromagnet Fe3GeTe2

    Science.gov (United States)

    Wang, Yihao; Xian, Cong; Wang, Jian; Liu, Bingjie; Ling, Langsheng; Zhang, Lei; Cao, Liang; Qu, Zhe; Xiong, Yimin

    2017-10-01

    Magnetic frustrated materials are of great interest for their novel spin-dependent transport properties. We report an anisotropic anomalous Hall effect in the triangular itinerant ferromagnet Fe3GeTe2 . When the current flows along the a b plane, Fe3GeTe2 exhibits the conventional anomalous Hall effect below the Curie temperature Tc, which can be depicted by Karplus-Luttinger theory. On the other hand, the topological Hall effect shows up below Tc with current along the c axis. The enhancement of Hall resistivity can be attributed to the chiral effect during the spin-flop process.

  20. Tunable symmetry breaking and helical edge transport in a graphene quantum spin Hall state.

    Science.gov (United States)

    Young, A F; Sanchez-Yamagishi, J D; Hunt, B; Choi, S H; Watanabe, K; Taniguchi, T; Ashoori, R C; Jarillo-Herrero, P

    2014-01-23

    Low-dimensional electronic systems have traditionally been obtained by electrostatically confining electrons, either in heterostructures or in intrinsically nanoscale materials such as single molecules, nanowires and graphene. Recently, a new method has emerged with the recognition that symmetry-protected topological (SPT) phases, which occur in systems with an energy gap to quasiparticle excitations (such as insulators or superconductors), can host robust surface states that remain gapless as long as the relevant global symmetry remains unbroken. The nature of the charge carriers in SPT surface states is intimately tied to the symmetry of the bulk, resulting in one- and two-dimensional electronic systems with novel properties. For example, time reversal symmetry endows the massless charge carriers on the surface of a three-dimensional topological insulator with helicity, fixing the orientation of their spin relative to their momentum. Weakly breaking this symmetry generates a gap on the surface, resulting in charge carriers with finite effective mass and exotic spin textures. Analogous manipulations have yet to be demonstrated in two-dimensional topological insulators, where the primary example of a SPT phase is the quantum spin Hall state. Here we demonstrate experimentally that charge-neutral monolayer graphene has a quantum spin Hall state when it is subjected to a very large magnetic field angled with respect to the graphene plane. In contrast to time-reversal-symmetric systems, this state is protected by a symmetry of planar spin rotations that emerges as electron spins in a half-filled Landau level are polarized by the large magnetic field. The properties of the resulting helical edge states can be modulated by balancing the applied field against an intrinsic antiferromagnetic instability, which tends to spontaneously break the spin-rotation symmetry. In the resulting canted antiferromagnetic state, we observe transport signatures of gapped edge states

  1. Influence of the magnetic field configuration on the plasma flow in Hall thrusters

    Science.gov (United States)

    Andreussi, T.; Giannetti, V.; Leporini, A.; Saravia, M. M.; Andrenucci, M.

    2018-01-01

    In Hall propulsion, the thrust is provided by the acceleration of ions in a plasma generated in a cross-field configuration. Standard thruster configurations have annular channels with an almost radial magnetic field at the channel exit. A potential difference is imposed in the axial direction and the intensity of the magnetic field is calibrated in order to hinder the electron motion, while leaving the ions non-magnetised. Magnetic field lines can be assumed, as a first approximation, as lines of constant electron temperature and of thermalized potential. In typical thruster configurations, the discharge occurs inside a ceramic channel and, due to plasma–wall interactions, the electron temperature is typically low, less than few tens of eV. Hence, the magnetic field lines can be effectively used to tailor the distribution of the electrostatic potential. However, the erosion of the ceramic walls caused by the ion bombardment represents the main limiting factor of the thruster lifetime and new thruster configurations are currently under development. For these configurations, classical first order models of the plasma dynamics fail to grasp the influence of the magnetic topology on the plasma flow. In the present paper, a novel approach to investigate the correlation between magnetic field topology and thruster performance is presented. Due to the anisotropy induced by the magnetic field, the gradients of the plasma properties are assumed to be mainly in the direction orthogonal to the local magnetic field, thus enabling a quasi-one-dimensional description in magnetic coordinates. Theoretical and experimental investigations performed on a 5 kW class Hall thruster with different magnetic field configurations are then presented and discussed.

  2. Photoproduction of Light and Exotic Mesons in Hall D

    Science.gov (United States)

    Meyer, Curtis

    2000-10-01

    The Jefferson Lab Hall D collaboration is proposing a program to search for and study gluonic excitations of mesons using 8-9 GeV linearly polarized photon beams. By extending the nearly non-existent meson data in photoproduction, as well as taking advantage of a spin 1 probe, we expect to be able to produce and study hybrid mesons with exotic, or non q-barq quantum numbers. The properties of these mesons yield information on the dynamic nature of gluons, and yield information on the issue of confinement.

  3. Topological Hall conductivity of vortex and skyrmion spin textures

    Energy Technology Data Exchange (ETDEWEB)

    Jalil, M. B. A., E-mail: elembaj@nus.edu.sg; Ghee Tan, Seng [Department of Electrical and Computer Engineering, National University of Singapore, 1 Engineering Drive 3, Singapore 117576 (Singapore); Data Storage Institute, Agency for Science, Technology and Research (A-STAR), DSI Building, 5 Engineering Drive 1, Singapore 117608 (Singapore); Eason, Kwaku; Kong, Jian Feng [Data Storage Institute, Agency for Science, Technology and Research (A-STAR), DSI Building, 5 Engineering Drive 1, Singapore 117608 (Singapore)

    2014-05-07

    We analyze the topological Hall conductivity experienced by conduction electrons whose spins are strongly coupled to axially symmetric spin textures, such as magnetic vortex and skyrmion of types I and II, theoretically by gauge theory, and numerically via micromagnetic simulations. The numerical results are in agreement with the theoretical predictions. Divergence between the two is seen when the vortex/skyrmion core radius is comparable or larger than the element size, and when the skyrmion configuration breaks down at high Dzyaloshinskii-Moriya interaction strength.

  4. Subjective ranking of concert halls substantiated through orthogonal objective parameters.

    Science.gov (United States)

    Cerdá, Salvador; Giménez, Alicia; Cibrián, Rosa; Girón, Sara; Zamarreño, Teófilo

    2015-02-01

    This paper studies the global subjective assessment, obtained from mean values of the results of surveys addressed to members of the audience of live concerts in Spanish auditoriums, through the mean values of the three orthogonal objective parameters (Tmid, IACCE3, and LEV), expressed in just noticeable differences (JNDs), regarding the best-valued hall. Results show that a linear combination of the relative variations of orthogonal parameters can largely explain the overall perceived quality of the sample. However, the mean values of certain orthogonal parameters are not representative, which shows that an alternative approach to the problem is necessary. Various possibilities are proposed.

  5. Redundant speed control for brushless Hall effect motor

    Science.gov (United States)

    Nola, F. J. (Inventor)

    1973-01-01

    A speed control system for a brushless Hall effect device equipped direct current (D.C.) motor is described. Separate windings of the motor are powered by separate speed responsive power sources. A change in speed, upward or downward, because of the failure of a component of one of the power sources results in a corrective signal being generated in the other power source to supply an appropriate power level and polarity to one winding to cause the motor to be corrected in speed.

  6. Hall-Petch relationship in a nanotwinned nickel alloy

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Leon L. [Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269 (United States)], E-mail: leon.shaw@uconn.edu; Ortiz, Angel L. [Departamento de Ingenieria Mecanica, Energetica y de los Materiales Universidad de Extremadura, 06071 Badajoz (Spain); Villegas, Juan C. [Intel Corporation, Chandler, AZ 85226 (United States)

    2008-06-15

    The Hall-Petch relationship in a nanotwinned alloy with absence of dislocation pile-ups is investigated for the first time. It is shown that, when the twin spacing is large (d > 150 nm), the hardness exhibits a d{sup -1/2} dependence. However, when the twin spacing is small (d < 100 nm), a d{sup -1} dependence results. These phenomena are interpreted based on dislocation-mediated mechanisms corroborated by the analysis of electron microscopy and X-ray diffractometry.

  7. TOPICAL REVIEW: Spin current, spin accumulation and spin Hall effect

    Directory of Open Access Journals (Sweden)

    Saburo Takahashi and Sadamichi Maekawa

    2008-01-01

    Full Text Available Nonlocal spin transport in nanostructured devices with ferromagnetic injector (F1 and detector (F2 electrodes connected to a normal conductor (N is studied. We reveal how the spin transport depends on interface resistance, electrode resistance, spin polarization and spin diffusion length, and obtain the conditions for efficient spin injection, spin accumulation and spin current in the device. It is demonstrated that the spin Hall effect is caused by spin–orbit scattering in nonmagnetic conductors and gives rise to the conversion between spin and charge currents in a nonlocal device. A method of evaluating spin–orbit coupling in nonmagnetic metals is proposed.

  8. Gaussian free fields at the integer quantum Hall plateau transition

    Energy Technology Data Exchange (ETDEWEB)

    Bondesan, R., E-mail: roberto.bondesan@phys.ox.ac.uk [Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Wieczorek, D.; Zirnbauer, M.R. [Institut für Theoretische Physik, Universität zu Köln, Zülpicher Straße 77, 50937 Köln (Germany)

    2017-05-15

    In this work we put forward an effective Gaussian free field description of critical wavefunctions at the transition between plateaus of the integer quantum Hall effect. To this end, we expound our earlier proposal that powers of critical wave intensities prepared via point contacts behave as pure scaling fields obeying an Abelian operator product expansion. Our arguments employ the framework of conformal field theory and, in particular, lead to a multifractality spectrum which is parabolic. We also derive a number of old and new identities that hold exactly at the lattice level and hinge on the correspondence between the Chalker–Coddington network model and a supersymmetric vertex model.

  9. Quantum pump in quantum spin Hall edge states

    Science.gov (United States)

    Cheng, Fang

    2016-09-01

    We present a theory for quantum pump in a quantum spin Hall bar with two quantum point contacts (QPCs). The pump currents can be generated by applying harmonically modulating gate voltages at QPCs. The phase difference between the gate voltages introduces an effective gauge field, which breaks the time-reversal symmetry and generates pump currents. The pump currents display very different pump frequency dependence for weak and strong e-e interaction. These unique properties are induced by the helical feature of the edge states, and therefore can be used to detect and control edge state transport.

  10. Shielding evaluation of neutron generator hall by Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Pujala, U.; Selvakumaran, T.S.; Baskaran, R.; Venkatraman, B. [Radiological Safety Division, Indira Gandhi Center for Atomic Research, Kalpakkam (India); Thilagam, L.; Mohapatra, D.K., E-mail: swathythila2@yahoo.com [Safety Research Institute, Atomic Energy Regulatory Board, Kalpakkam (India)

    2017-04-01

    A shielded hall was constructed for accommodating a D-D, D-T or D-Be based pulsed neutron generator (NG) with 4π yield of 10{sup 9} n/s. The neutron shield design of the facility was optimized using NCRP-51 methodology such that the total dose rates outside the hall areas are well below the regulatory limit for full occupancy criterion (1 μSv/h). However, the total dose rates at roof top, cooling room trench exit and labyrinth exit were found to be above this limit for the optimized design. Hence, additional neutron shielding arrangements were proposed for cooling room trench and labyrinth exits. The roof top was made inaccessible. The present study is an attempt to evaluate the neutron and associated capture gamma transport through the bulk shields for the complete geometry and materials of the NG-Hall using Monte Carlo (MC) codes MCNP and FLUKA. The neutron source terms of D-D, D-T and D-Be reactions are considered in the simulations. The effect of additional shielding proposed has been demonstrated through the simulations carried out with the consideration of the additional shielding for D-Be neutron source term. The results MC simulations using two different codes are found to be consistent with each other for neutron dose rate estimates. However, deviation up to 28% is noted between these two codes at few locations for capture gamma dose rate estimates. Overall, the dose rates estimated by MC simulations including additional shields shows that all the locations surrounding the hall satisfy the full occupancy criteria for all three types of sources. Additionally, the dose rates due to direct transmission of primary neutrons estimated by FLUKA are compared with the values calculated using the formula given in NCRP-51 which shows deviations up to 50% with each other. The details of MC simulations and NCRP-51 methodology for the estimation of primary neutron dose rate along with the results are presented in this paper. (author)

  11. Partition functions of non-Abelian quantum Hall states

    Energy Technology Data Exchange (ETDEWEB)

    Cappelli, Andrea; Viola, Giovanni, E-mail: andrea.cappelli@fi.infn.it, E-mail: giovanni.viola@fi.infn.it [INFN, Sezione di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy)

    2011-02-18

    Partition functions of edge excitations are obtained for non-Abelian Hall states in the second Landau level, such as the anti-Read-Rezayi state, the Bonderson-Slingerland hierarchy and the Wen non-Abelian fluid, as well as for the non-Abelian spin-singlet state. The derivation is straightforward and unique starting from the non-Abelian conformal field theory data and solving the modular invariance conditions. The partition functions provide a complete account of the excitation spectrum and are used to describe experiments of Coulomb blockade and thermopower.

  12. Band structure in bulk entanglement spectrum of quantum Hall state

    Science.gov (United States)

    Lu, Chi-Ken; Chiou, D.-W.; Lin, F.-L.

    We study the bulk entanglement spectrum of integer quantum Hall state with a symmetric checkerboard partition of space. By reformulating the correlation matrix in a guiding center representation, we show that the problem is mapped to a two-dimensional lattice with unit vector determined by the field and partition grid. The bulk entanglement spectrum shows the particle-hole symmetry and the band touching, whic are related to the dual symmetry of partition and the Chern number, respectively. The work was supported by Ministry of Science and Technology Taiwan.

  13. Role of magnetic exchange interaction due to magnetic anisotropy on inverse spin Hall voltage at FeSi3%/Pt thin film bilayer interface

    Science.gov (United States)

    Shah, Jyoti; Ahmad, Saood; Chaujar, Rishu; Puri, Nitin K.; Negi, P. S.; Kotnala, R. K.

    2017-12-01

    In our recent studies inverse spin Hall voltage (ISHE) was investigated by ferromagnetic resonance (FMR) using bilayer FeSi3%/Pt thin film prepared by pulsed laser deposition (PLD) technique. In ISHE measurement microwave signal was applied on FeSi3% film along with DC magnetic field. Higher magnetization value along the film-plane was measured by magnetic hysteresis (M-H) loop. Presence of magnetic anisotropy has been obtained by M-H loop which showed easy direction of magnetization when applied magnetic field is parallel to the film plane. The main result of this study is that FMR induced inverse spin Hall voltage 12.6 μV at 1.0 GHz was obtained across Pt layer. Magnetic exchange field at bilayer interface responsible for field torque was measured 6 × 1014 Ω-1 m-2 by spin Hall magnetoresistance. The damping torque and spin Hall angle have been evaluated as 0.084 and 0.071 respectively. Presence of Si atom in FeSi3% inhomogenize the magnetic exchange field among accumulated spins at bilayer interface and feebly influenced by spin torque of FeSi3% layer. Weak field torque suppresses the spin pumping to Pt layer thus low value of inverse spin Hall voltage is obtained. This study provides an excellent opportunity to investigate spin transfer torque effect, thus motivating a more intensive experimental effort for its utilization at maximum potential. The improvement in spin transfer torque may be useful in spin valve, spin battery and spin transistor application.

  14. Conducting wall Hall thrusters in magnetic shielding and standard configurations

    Science.gov (United States)

    Grimaud, Lou; Mazouffre, Stéphane

    2017-07-01

    Traditional Hall thrusters are fitted with boron nitride dielectric discharge channels that confine the plasma discharge. Wall properties have significant effects on the performances and stability of the thrusters. In magnetically shielded thrusters, interactions between the plasma and the walls are greatly reduced, and the potential drop responsible for ion acceleration is situated outside the channel. This opens the way to the utilization of alternative materials for the discharge channel. In this work, graphite walls are compared to BN-SiO2 walls in the 200 W magnetically shielded ISCT200-MS and the unshielded ISCT200-US Hall thrusters. The magnetically shielded thruster shows no significant change in the discharge current mean value and oscillations, while the unshielded thruster's discharge current increases by 25% and becomes noticeably less stable. The electric field profile is also investigated through laser spectroscopy, and no significant difference is recorded between the ceramic and graphite cases for the shielded thruster. The unshielded thruster, on the other hand, has its acceleration region shifted 15% of the channel length downstream. Lastly, the plume profile is measured with planar probes fitted with guard rings. Once again the material wall has little influence on the plume characteristics in the shielded thruster, while the unshielded one is significantly affected.

  15. Working with Cyril M. Harris at Benaroya Hall

    Science.gov (United States)

    Hoover, Robert M.; Taylor, Ashton

    2005-09-01

    To contribute to a project such as Benaroya Hall, now the home of the Seattle Symphony Orchestra, as team members of acoustical giant Cyril M. Harris was a golden opportunity for Robert M. Hoover and Ashton Taylor. Their involvement in the project and association with Cyril began at the early stages of the project as consultants in noise control. During the schematic design phase, Cyril dictated to the LMN Architects design team that authority for all noise control decisions rested with Bob Hoover. This led to good working relationships, especially with the mechanical engineering firm and the air-conditioning contractor. Throughout the project, Cyril insisted upon the highest standards of materials and workmanship, and relied on the expertise of his acoustical design team, even if it went against his initial idea on some issue. At the beginning with the setting of noise criteria and in the finished building when measuring background sound, Cyril participated in the noise control process. Benaroya Hall has been critically acclaimed by the media and musicians, it was an honor for both Bob Hoover and Ashton Taylor to be part of that success.

  16. Anomalous Hall effect in Fe/Au multilayers

    KAUST Repository

    Zhang, Q.

    2016-07-22

    To understand the interfacial scattering effect on the anomalous Hall effect (AHE), we prepared multilayers of (Fe(36/n)nm/Au(12/n)nm)n using an e-beam evaporator. This structure design allowed us to investigate the effect of interfacial scattering on the AHE, while keeping the samples\\' thickness and composition unchanged. We measured the (magneto)transport properties of the samples in a wide temperature range (10–310 K) with magnetic fields up to 50 kOe. We found that the scaling between the anomalous Hall resistivity (ρAHE) and longitudinal resistivity (ρxx) can be roughly described by ρAHE∼ργxx with γ=2.65±0.10 and 1.90 ± 0.04 for samples from n=1 to n=4 and samples from n=4 to n=12, respectively. Our quantitative analysis results showed that the interfacial scattering suppresses the contribution of the intrinsic mechanism and gives rise to a side-jump contribution.

  17. Hanbury Brown and Twiss correlations in quantum Hall systems

    Science.gov (United States)

    Campagnano, Gabriele; Zilberberg, Oded; Gornyi, Igor V.; Gefen, Yuval

    2013-12-01

    We study a Hanbury Brown and Twiss (HBT) interferometer formed with chiral edge channels of a quantum Hall system. HBT cross correlations are calculated for a device operating both in the integer and fractional quantum Hall regimes, the latter at Laughlin filling fractions. We find that in both cases, when the current is dominated by electron tunneling, current-current correlations show antibunching, characteristic of fermionic correlations. When the current-current correlations are dominated by quasiparticle tunneling, the correlations reveal bunching, characteristic of bosons. For electron tunneling, we use the Keldysh technique, and show that the result for fractional filling factors can be obtained in a simple way from the results of the integer case. It is shown that quasiparticle-dominated cross-current correlations can be analyzed by means of a quantum master-equation approach. We present here a detailed derivation of the results [Campagnano , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.109.106802 109, 106802 (2012)] and generalize them to all Laughlin fractions.

  18. Quantum Hall drag of exciton condensate in graphene

    Science.gov (United States)

    Liu, Xiaomeng; Watanabe, Kenji; Taniguchi, Takashi; Halperin, Bertrand I.; Kim, Philip

    2017-08-01

    An exciton condensate is a Bose-Einstein condensate of electron and hole pairs bound by the Coulomb interaction. In an electronic double layer (EDL) subject to strong magnetic fields, filled Landau states in one layer bind with empty states of the other layer to form an exciton condensate. Here we report exciton condensation in a bilayer graphene EDL separated by hexagonal boron nitride. Driving current in one graphene layer generates a near-quantized Hall voltage in the other layer, resulting in coherent exciton transport. Owing to the strong Coulomb coupling across the atomically thin dielectric, quantum Hall drag in graphene appears at a temperature ten times higher than previously observed in a GaAs EDL. The wide-range tunability of densities and displacement fields enables exploration of a rich phase diagram of Bose-Einstein condensates across Landau levels with different filling factors and internal quantum degrees of freedom. The observed robust exciton condensation opens up opportunities to investigate various many-body exciton phases.

  19. Photonic spin Hall effect in metasurfaces: a brief review

    Directory of Open Access Journals (Sweden)

    Liu Yachao

    2016-07-01

    Full Text Available The photonic spin Hall effect (SHE originates from the interplay between the photon-spin (polarization and the trajectory (extrinsic orbital angular momentum of light, i.e. the spin-orbit interaction. Metasurfaces, metamaterials with a reduced dimensionality, exhibit exceptional abilities for controlling the spin-orbit interaction and thereby manipulating the photonic SHE. Spin-redirection phase and Pancharatnam-Berry phase are the manifestations of spin-orbit interaction. The former is related to the evolution of the propagation direction and the latter to the manipulation with polarization state. Two distinct forms of splitting based on these two types of geometric phases can be induced by the photonic SHE in metasurfaces: the spin-dependent splitting in position space and in momentum space. The introduction of Pacharatnam-Berry phases, through space-variant polarization manipulations with metasurfaces, enables new approaches for fabricating the spin-Hall devices. Here, we present a short review of photonic SHE in metasurfaces and outline the opportunities in spin photonics.

  20. Photovoltaic Hall Effect in Dirac systems -- Application to Graphene

    Science.gov (United States)

    Oka, Takashi; Aoki, Hideo

    2009-03-01

    We theoretically propose to irradiate electron systems with massless Dirac dispersion with circularly polarized light, for which we predict that the photo-irradiation can induce a dc Hall effect in the absence of static, uniform magnetic fields. The effect bears a geometric origin, traced back to the non-adiabatic phase (Aharonov-Anandan phase) which is acquired by the motion of k-points in the Brilliouin zone when they encircle the Dirac cones. The Kubo formula for linear responses is extended to the nonlinear effects via the Floquet formalism for strong ac fields, which is used to calculate the photo-induced Berry curvature. The irradiation induces a dynamical gap at the Dirac point which gives rise to a universal ac Wannier-Stark ladder in Dirac systems observable in the density of states. We further use the Keldysh + Floquet method to analyze finite graphene systems, which confirms the existence of photovoltaic dc Hall effect. The required strength of the circularly polarized light to observe these effects is estimated to be O(10^7eV/m), which is within an accessible range for present laser sources. (arXiv:0807.4767)