WorldWideScience

Sample records for eurdyn nonlinear transient

  1. EURDYN, Nonlinear Transient Analysis of Structure with Dynamic Loads

    International Nuclear Information System (INIS)

    Donea, J.; Giuliani, S.; Halleux, J.P.

    1987-01-01

    1 - Description of program or function: The EURDYN computer codes are under development at JRC-Ispra since 1973 for the simulation of non- linear dynamic response of fast-reactor components submitted to impulsive loading due to abnormal working conditions. They are thus mainly used in reactor safety analysis but can apply to other fields. Indeed the codes compute the elasto-plastic transient response of 2-D and thin 3-D structures submitted to fast dynamic loading generated by explosions, impacts... and represented by time dependent pressures, concentrated loads and prescribed displacements, or by initial speeds. Two releases of the structural computer codes EURDYN 01 (2-D beams and triangles and axisymmetric conical shells and triangular tori), 02 (axisymmetric and 2-D quadratic iso-parametric elements) and 03 (triangular plate elements) have already been produced in 1976(1) and 1980(2). They include material (elasto-plasticity using the classical flow theory approach) and geometrical (large displacements and rotations treated by a co-rotational technique) nonlinearities. The present version (Release 3) has been completed mid-1982 and is documented in EUR 8357 EN. The new features of Release 3, as compared to the former ones, roughly consist in: - full large strain capability for 9-node iso-parametric elements (EURDYN 02), - generalized array dimensions, - introduction of the radial return algorithm for elasto-plastic material modelling, - extension of the energy check facility to the case of prescribed displacements, - possible interface to a post-processing package including time plot facilities (TPLOT). The theoretical aspects can be found in refs. 2,4,5,6,7,8. 2 - Method of solution: - Finite element space discretization. - Explicit time integration. - Lumped masses. - EURDYN 01: 2-D co-rotational formulation including constant strain triangles (plane or axisymmetric), beams and conical shells, this last element being particularly useful for the study of thin

  2. EURDYN: computer programs for the nonlinear transient analysis of structures submitted to dynamic loading. EURDYN (Release 3): users' manual

    International Nuclear Information System (INIS)

    Halleux, J.P.

    1983-01-01

    The EURDYN computer codes are mainly designed for the simulation of nonlinear dynamic response of fast-reactor compoments submitted to impulse loading due to abnormal working conditions. Two releases of the structural computer codes EURDYN 01 (2-D beams and triangles and axisymmetric conical shells and triangular tores), 02 (axisymmetric and 2-D quadratic isoparametric elements) and 03 (triangular plate elements) have already been produced. They include material (elasto-plasticity using the classical flow theory approach) and geometrical (large displacements and rotations treated by a corotational technique) nonlinearities. The new features of Release 3 roughly consist in: full large strain capability for 9-node isoparametric elements, generalized array dimensions, introduction of the radial return algorithm for elasto-plastic material modelling, extension of the energy check facility to the case of prescribed displacements, and, possible interface to a post-processing package including time plot facilities

  3. The computer code EURDYN - 1 M (release 1) for transient dynamic fluid-structure interaction. Pt.1: governing equations and finite element modelling

    International Nuclear Information System (INIS)

    Donea, J.; Fasoli-Stella, P.; Giuliani, S.; Halleux, J.P.; Jones, A.V.

    1980-01-01

    This report describes the governing equations and the finite element modelling used in the computer code EURDYN - 1 M. The code is a non-linear transient dynamic program for the analysis of coupled fluid-structure systems; It is designed for safety studies on LMFBR components (primary containment and fuel subassemblies)

  4. The computer code EURDYN-1M (release 2). User's manual

    International Nuclear Information System (INIS)

    1982-01-01

    EURDYN-1M is a finite element computer code developed at J.R.C. Ispra to compute the response of two-dimensional coupled fluid-structure configurations to transient dynamic loading for reactor safety studies. This report gives instructions for preparing input data to EURDYN-1M, release 2, and describes a test problem in order to illustrate both the input and the output of the code

  5. Nonlinear Diffusion and Transient Osmosis

    International Nuclear Information System (INIS)

    Igarashi, Akira; Rondoni, Lamberto; Botrugno, Antonio; Pizzi, Marco

    2011-01-01

    We investigate both analytically and numerically the concentration dynamics of a solution in two containers connected by a narrow and short channel, in which diffusion obeys a porous medium equation. We also consider the variation of the pressure in the containers due to the flow of matter in the channel. In particular, we identify a phenomenon, which depends on the transport of matter across nano-porous membranes, which we call ''transient osmosis . We find that nonlinear diffusion of the porous medium equation type allows numerous different osmotic-like phenomena, which are not present in the case of ordinary Fickian diffusion. Experimental results suggest one possible candidate for transiently osmotic processes. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  6. Experimental verification of transient nonlinear acoustical holography.

    Science.gov (United States)

    Jing, Yun; Cannata, Jonathan; Wang, Tianren

    2013-05-01

    This paper presents an experimental study on nonlinear transient acoustical holography. The validity and effectiveness of a recently proposed nonlinear transient acoustical holography algorithm is evaluated in the presence of noise. The acoustic field measured on a post-focal plane of a high-intensity focused transducer is backward projected to reconstruct the pressure distributions on the focal and a pre-focal plane, which are shown to be in good agreement with the measurement. In contrast, the conventional linear holography produces erroneous results in this case where the nonlinearity involved is strong. Forward acoustic field projection was also carried out to further verify the algorithm.

  7. The computer code SEURBNUK/EURDYN. Pt. 2

    International Nuclear Information System (INIS)

    Yerkess, A.; Broadhouse, B.J.; Smith, B.L.

    1987-01-01

    SEURBNUK-2 is a two-dimensional, axisymmetric, Eulerian, finite difference containment code. The numerical procedure adopted in SEURBNUK to solve the hydrodynamic equations is based on the semi-implicit ICE method which itself is an extension of the MAC algorithm. SEURBNUK has a finite difference thin shell treatment for vessels and internal structures of arbitrary shape and includes the effects of the compressibility of the fluid. Fluid flow through porous media and porous structures can also be accommodated. SEURBNUK/EURDYN is an extension of SEURBNUK-2 in which the finite difference thin shell treatment is replaced by a finite element calculation for both thin or thick structures. This has been achieved by coupling the shell elements and axisymmetric triangular elements. Within the code, the equations of motion for the structures are solved quite separately from those for the fluid, and the timestep for the fluid can be an integer multiple of that for the structures. The interaction of the structures with the fluid is then considered as a modification to the coefficients in the pressure equations, the modifications naturally depending on the behaviour of the structures within the fluid cell. The code is limited to dealing with a single fluid, the coolant, and the bubble and the cover gas are treated as cavities of uniform pressure calculated via appropriate pressure-volume-energy relationships. This manual describes the input data specifications needed for the execution of SEURBNUK/EURDYN calculations. After explaining the output facilities information is included to aid users to avoid some common pit-falls

  8. Nonlinear Transient Growth and Boundary Layer Transition

    Science.gov (United States)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2016-01-01

    Parabolized stability equations (PSE) are used in a variational approach to study the optimal, non-modal disturbance growth in a Mach 3 at plate boundary layer and a Mach 6 circular cone boundary layer. As noted in previous works, the optimal initial disturbances correspond to steady counter-rotating streamwise vortices, which subsequently lead to the formation of streamwise-elongated structures, i.e., streaks, via a lift-up effect. The nonlinear evolution of the linearly optimal stationary perturbations is computed using the nonlinear plane-marching PSE for stationary perturbations. A fully implicit marching technique is used to facilitate the computation of nonlinear streaks with large amplitudes. To assess the effect of the finite-amplitude streaks on transition, the linear form of plane- marching PSE is used to investigate the instability of the boundary layer flow modified by spanwise periodic streaks. The onset of bypass transition is estimated by using an N- factor criterion based on the amplification of the streak instabilities. Results show that, for both flow configurations of interest, streaks of sufficiently large amplitude can lead to significantly earlier onset of transition than that in an unperturbed boundary layer without any streaks.

  9. Geometrically Nonlinear Transient Response of Laminated Plates with Nonlinear Elastic Restraints

    Directory of Open Access Journals (Sweden)

    Shaochong Yang

    2017-01-01

    Full Text Available To investigate the dynamic behavior of laminated plates with nonlinear elastic restraints, a varied constraint force model and a systematic numerical procedure are presented in this work. Several kinds of typical relationships of force-displacement for spring are established to simulate the nonlinear elastic restraints. In addition, considering the restraining moments of flexible pads, the pads are modeled by translational and rotational springs. The displacement- dependent constraint forces are added to the right-hand side of equations of motion and treated as additional applied loads. These loads can be explicitly defined, via an independent set of nonlinear load functions. The time histories of transverse displacements at typical points of the laminated plate are obtained through the transient analysis. Numerical examples show that the present method can effectively treat the geometrically nonlinear transient response of plates with nonlinear elastic restraints.

  10. The computer code Eurdyn - 1 M. (Release 1) Part 2: User's Manual

    International Nuclear Information System (INIS)

    Donea, J.; Giuliani, S.

    1979-01-01

    This report is the user's manual for the computer code Eurdyn-1 M developed at the J.R.C. Ispra for use in containment and fuel subassembly analyses for fast reactor safety studies. The input data are defined and a test problem is presented to illustrate both the input and the output of results

  11. A nonlinear analytic function expansion nodal method for transient calculations

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Han Gyn; Park, Sang Yoon; Cho, Byung Oh; Zee, Sung Quun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    The nonlinear analytic function expansion nodal (AFEN) method is applied to the solution of the time-dependent neutron diffusion equation. Since the AFEN method requires both the particular solution and the homogeneous solution to the transient fixed source problem, the derivation of the solution method is focused on finding the particular solution efficiently. To avoid complicated particular solutions, the source distribution is approximated by quadratic polynomials and the transient source is constructed such that the error due to the quadratic approximation is minimized, In addition, this paper presents a new two-node solution scheme that is derived by imposing the constraint of current continuity at the interface corner points. The method is verified through a series of application to the NEACRP PWR rod ejection benchmark problems. 6 refs., 2 figs., 1 tab. (Author)

  12. A nonlinear analytic function expansion nodal method for transient calculations

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Han Gyn; Park, Sang Yoon; Cho, Byung Oh; Zee, Sung Quun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    The nonlinear analytic function expansion nodal (AFEN) method is applied to the solution of the time-dependent neutron diffusion equation. Since the AFEN method requires both the particular solution and the homogeneous solution to the transient fixed source problem, the derivation of the solution method is focused on finding the particular solution efficiently. To avoid complicated particular solutions, the source distribution is approximated by quadratic polynomials and the transient source is constructed such that the error due to the quadratic approximation is minimized, In addition, this paper presents a new two-node solution scheme that is derived by imposing the constraint of current continuity at the interface corner points. The method is verified through a series of application to the NEACRP PWR rod ejection benchmark problems. 6 refs., 2 figs., 1 tab. (Author)

  13. Discrete oscillator design linear, nonlinear, transient, and noise domains

    CERN Document Server

    Rhea, Randall W

    2014-01-01

    Oscillators are an essential part of all spread spectrum, RF, and wireless systems, and today's engineers in the field need to have a firm grasp on how they are designed. Presenting an easy-to-understand, unified view of the subject, this authoritative resource covers the practical design of high-frequency oscillators with lumped, distributed, dielectric and piezoelectric resonators. Including numerous examples, the book details important linear, nonlinear harmonic balance, transient and noise analysis techniques. Moreover, the book shows you how to apply these techniques to a wide range of os

  14. Probabilistic finite elements for transient analysis in nonlinear continua

    Science.gov (United States)

    Liu, W. K.; Belytschko, T.; Mani, A.

    1985-01-01

    The probabilistic finite element method (PFEM), which is a combination of finite element methods and second-moment analysis, is formulated for linear and nonlinear continua with inhomogeneous random fields. Analogous to the discretization of the displacement field in finite element methods, the random field is also discretized. The formulation is simplified by transforming the correlated variables to a set of uncorrelated variables through an eigenvalue orthogonalization. Furthermore, it is shown that a reduced set of the uncorrelated variables is sufficient for the second-moment analysis. Based on the linear formulation of the PFEM, the method is then extended to transient analysis in nonlinear continua. The accuracy and efficiency of the method is demonstrated by application to a one-dimensional, elastic/plastic wave propagation problem. The moments calculated compare favorably with those obtained by Monte Carlo simulation. Also, the procedure is amenable to implementation in deterministic FEM based computer programs.

  15. Transient thermal effect, nonlinear refraction and nonlinear absorption properties of graphene oxide sheets in dispersion.

    Science.gov (United States)

    Zhang, Xiao-Liang; Liu, Zhi-Bo; Li, Xiao-Chun; Ma, Qiang; Chen, Xu-Dong; Tian, Jian-Guo; Xu, Yan-Fei; Chen, Yong-Sheng

    2013-03-25

    The nonlinear refraction (NLR) properties of graphene oxide (GO) in N, N-Dimethylformamide (DMF) was studied in nanosecond, picosecond and femtosecond time regimes by Z-scan technique. Results show that the dispersion of GO in DMF exhibits negative NLR properties in nanosecond time regime, which is mainly attributed to transient thermal effect in the dispersion. The dispersion also exhibits negative NLR in picosecond and femtosecond time regimes, which are arising from sp(2)- hybridized carbon domains and sp(3)- hybridized matrix in GO sheets. To illustrate the relations between NLR and nonlinear absorption (NLA), NLA properties of the dispersion were also studied in nanosecond, picosecond and femtosecond time regimes.

  16. Nonlinear Transient Thermal Analysis by the Force-Derivative Method

    Science.gov (United States)

    Balakrishnan, Narayani V.; Hou, Gene

    1997-01-01

    High-speed vehicles such as the Space Shuttle Orbiter must withstand severe aerodynamic heating during reentry through the atmosphere. The Shuttle skin and substructure are constructed primarily of aluminum, which must be protected during reentry with a thermal protection system (TPS) from being overheated beyond the allowable temperature limit, so that the structural integrity is maintained for subsequent flights. High-temperature reusable surface insulation (HRSI), a popular choice of passive insulation system, typically absorbs the incoming radiative or convective heat at its surface and then re-radiates most of it to the atmosphere while conducting the smallest amount possible to the structure by virtue of its low diffusivity. In order to ensure a successful thermal performance of the Shuttle under a prescribed reentry flight profile, a preflight reentry heating thermal analysis of the Shuttle must be done. The surface temperature profile, the transient response of the HRSI interior, and the structural temperatures are all required to evaluate the functioning of the HRSI. Transient temperature distributions which identify the regions of high temperature gradients, are also required to compute the thermal loads for a structural thermal stress analysis. Furthermore, a nonlinear analysis is necessary to account for the temperature-dependent thermal properties of the HRSI as well as to model radiation losses.

  17. Transient response of nonlinear polymer networks: A kinetic theory

    Science.gov (United States)

    Vernerey, Franck J.

    2018-06-01

    Dynamic networks are found in a majority of natural materials, but also in engineering materials, such as entangled polymers and physically cross-linked gels. Owing to their transient bond dynamics, these networks display a rich class of behaviors, from elasticity, rheology, self-healing, or growth. Although classical theories in rheology and mechanics have enabled us to characterize these materials, there is still a gap in our understanding on how individuals (i.e., the mechanics of each building blocks and its connection with others) affect the emerging response of the network. In this work, we introduce an alternative way to think about these networks from a statistical point of view. More specifically, a network is seen as a collection of individual polymer chains connected by weak bonds that can associate and dissociate over time. From the knowledge of these individual chains (elasticity, transient attachment, and detachment events), we construct a statistical description of the population and derive an evolution equation of their distribution based on applied deformation and their local interactions. We specifically concentrate on nonlinear elastic response that follows from the strain stiffening response of individual chains of finite size. Upon appropriate averaging operations and using a mean field approximation, we show that the distribution can be replaced by a so-called chain distribution tensor that is used to determine important macroscopic measures such as stress, energy storage and dissipation in the network. Prediction of the kinetic theory are then explored against known experimental measurement of polymer responses under uniaxial loading. It is found that even under the simplest assumptions of force-independent chain kinetics, the model is able to reproduce complex time-dependent behaviors of rubber and self-healing supramolecular polymers.

  18. The computer code SEURBNUK/EURDYN (release 1). Input and output specifications

    International Nuclear Information System (INIS)

    Smith, B.L.; Broadhouse, B.J.; Yerkess, A.

    1986-05-01

    SEURBNUK-2 is a two-dimensional, axisymmetric, Eulerian, finite difference containment code developed initially by AWRE Aldermaston, AEE Winfrith and JRC-Ispra, and more recently by AEEW, JRC and EIR Wuerenlingen. The numerical procedure adopted in SEURBNUK to solve the hydrodynamic equations is based on the semi-implicit ICE method which itself is an extension of the MAC algorithm. SEURBNUK has a finite difference thin shell treatment for vessels and internal structures of arbitrary shape and includes the effects of the compressibility of the fluid. Fluid flow through porous media and porous structures can also be accommodated. SEURBNUK/EURDYN is an extension of SEURBNUK-2 in which the finite difference thin shell treatment is replaced by a finite element calculation for both thin or thick structures. This has been achieved by coupling the finite element code EURDYN with SEURBNUK-2, allowing the use of conical shell elements and axisymmetric triangular elements. Within the code, the equations of motion for the structures are solved quite separately from those for the fluid, and the timestep for the fluid can be an integer multiple of that for the structures. The interaction of the structures with the fluid is then considered as a modification to the coefficients in the pressure equations, the modifications naturally depending on the behaviour of the structures within the fluid cell. The code is limited to dealing with a single fluid, the coolant, and the bubble and the cover gas are treated as cavities of uniform pressure calculated via appropriate pressure-volume-energy relationships. This manual describes the input data specifications needed for the execution of SEURBNUK/EURDYN calculations. After explaining the output facilities information is included to aid users to avoid some common pit-falls. (author)

  19. The computer code SEURBNUK/EURDYN (Release 1). Input and output specification

    International Nuclear Information System (INIS)

    Broadhouse, B.J.; Yerkess, A.

    1986-05-01

    SEURBNUK/EURODYN is an extension of SEURBNUK-2, a two dimensional, axisymmetric, Eulerian, finite element containment code in which the finite difference thin shell treatment is replaced by a finite element calculation for both thin and thick structures. These codes are designed to model the hydrodynamic development in time of a hypothetical core disruptive accident (HCDA) in a fast breeder reactor. This manual describes the input data specifications needed for the execution of SEURBNUK/EURDYN calculations, with information on output facilities, and aid to users to avoid some common difficulties. (UK)

  20. A sliding point contact model for the finite element structures code EURDYN

    International Nuclear Information System (INIS)

    Smith, B.L.

    1986-01-01

    A method is developed by which sliding point contact between two moving deformable structures may be incorporated within a lumped mass finite element formulation based on displacements. The method relies on a simple mechanical interpretation of the contact constraint in terms of equivalent nodal forces and avoids the use of nodal connectivity via a master slave arrangement or pseudo contact element. The methodology has been iplemented into the EURDYN finite element program for the (2D axisymmetric) version coupled to the hydro code SEURBNUK. Sample calculations are presented illustrating the use of the model in various contact situations. Effects due to separation and impact of structures are also included. (author)

  1. Evaluation of time integration methods for transient response analysis of nonlinear structures

    International Nuclear Information System (INIS)

    Park, K.C.

    1975-01-01

    Recent developments in the evaluation of direct time integration methods for the transient response analysis of nonlinear structures are presented. These developments, which are based on local stability considerations of an integrator, show that the interaction between temporal step size and nonlinearities of structural systems has a pronounced effect on both accuracy and stability of a given time integration method. The resulting evaluation technique is applied to a model nonlinear problem, in order to: 1) demonstrate that it eliminates the present costly process of evaluating time integrator for nonlinear structural systems via extensive numerical experiments; 2) identify the desirable characteristics of time integration methods for nonlinear structural problems; 3) develop improved stiffly-stable methods for application to nonlinear structures. Extension of the methodology for examination of the interaction between a time integrator and the approximate treatment of nonlinearities (such as due to pseudo-force or incremental solution procedures) is also discussed. (Auth.)

  2. Transients of the electromagnetically-induced-transparency-enhanced refractive Kerr nonlinearity

    International Nuclear Information System (INIS)

    Pack, M. V.; Camacho, R. M.; Howell, J. C.

    2007-01-01

    We report observations of the dynamics of electromagnetically induced transparency (EIT) in a Λ system when the ground states are Stark shifted. Interactions of this type exhibit large optical nonlinearities called Kerr nonlinearities, and have numerous applications. The EIT Kerr nonlinearity is relatively slow, which is a limiting factor that may make many potential applications impossible. Using rubidium atoms, we observe the dynamics of the EIT Kerr nonlinearity using a Mach-Zehnder interferometer to measure phase modulation of the EIT fields resulting from a pulsed signal beam Stark shifting the ground state energy levels. The rise times and transients agree well with theory

  3. Equivalent circuit simulation of HPEM-induced transient responses at nonlinear loads

    Directory of Open Access Journals (Sweden)

    M. Kotzev

    2017-09-01

    Full Text Available In this paper the equivalent circuit modeling of a nonlinearly loaded loop antenna and its transient responses to HPEM field excitations are investigated. For the circuit modeling the general strategy to characterize the nonlinearly loaded antenna by a linear and a nonlinear circuit part is pursued. The linear circuit part can be determined by standard methods of antenna theory and numerical field computation. The modeling of the nonlinear circuit part requires realistic circuit models of the nonlinear loads that are given by Schottky diodes. Combining both parts, appropriate circuit models are obtained and analyzed by means of a standard SPICE circuit simulator. It is the main result that in this way full-wave simulation results can be reproduced. Furthermore it is clearly seen that the equivalent circuit modeling offers considerable advantages with respect to computation speed and also leads to improved physical insights regarding the coupling between HPEM field excitation and nonlinearly loaded loop antenna.

  4. Introduction to the Explicit Finite Element Method for Nonlinear Transient Dynamics

    CERN Document Server

    Wu, Shen R

    2012-01-01

    A systematic introduction to the theories and formulations of the explicit finite element method As numerical technology continues to grow and evolve with industrial applications, understanding the explicit finite element method has become increasingly important, particularly in the areas of crashworthiness, metal forming, and impact engineering. Introduction to the Explicit FiniteElement Method for Nonlinear Transient Dynamics is the first book to address specifically what is now accepted as the most successful numerical tool for nonlinear transient dynamics. The book aids readers in master

  5. Transient stability improvement by nonlinear controllers based on tracking

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Juan M. [Centro de Investigacion y Estudios Avanzados, Guadalajara, Mexico. Av. Cientifica 1145. Col. El Bajio. Zapopan, Jal. 45015 (Mexico); Arroyave, Felipe Valencia; Correa Gutierrez, Rosa Elvira [Universidad Nacional de Colombia, Sede Medellin. Facultad de Minas, Escuela de Mecatronica (Colombia)

    2011-02-15

    This paper deals with the control problem in multi-machine electric power systems, which represent complex great scale nonlinear systems. Thus, the controller design is a challenging problem. These systems are subjected to different perturbations, such as short circuits, connection and/or disconnection of loads, lines, or generators. Then, the utilization of controllers which guarantee good performance under those perturbations is required in order to provide electrical energy to the loads with admissible stability margins. The proposed controllers are based on a systematic strategy, which calculate nonlinear controllers for generating units in a power plant, both for voltage and velocity regulation. The formulation allows designing controllers in a multi-machine power system without intricate calculations. Results on a power system of the open research indicate the proposition's suitability. The problem is formulated as a tracking problem. The designed controllers may be implemented in any electric power system. (author)

  6. Nonlinear transient waves in coupled phase oscillators with inertia.

    Science.gov (United States)

    Jörg, David J

    2015-05-01

    Like the inertia of a physical body describes its tendency to resist changes of its state of motion, inertia of an oscillator describes its tendency to resist changes of its frequency. Here, we show that finite inertia of individual oscillators enables nonlinear phase waves in spatially extended coupled systems. Using a discrete model of coupled phase oscillators with inertia, we investigate these wave phenomena numerically, complemented by a continuum approximation that permits the analytical description of the key features of wave propagation in the long-wavelength limit. The ability to exhibit traveling waves is a generic feature of systems with finite inertia and is independent of the details of the coupling function.

  7. Nonlinear Modeling of Forced Magnetic Reconnection with Transient Perturbations

    Science.gov (United States)

    Beidler, Matthew T.; Callen, James D.; Hegna, Chris C.; Sovinec, Carl R.

    2017-10-01

    Externally applied 3D magnetic fields in tokamaks can penetrate into the plasma and lead to forced magnetic reconnection, and hence magnetic islands, on resonant surfaces. Analytic theory has been reasonably successful in describing many aspects of this paradigm with regard to describing the time asymptotic-steady state. However, understanding the nonlinear evolution into a low-slip, field-penetrated state, especially how MHD events such as sawteeth and ELMs precipitate this transition, is in its early development. We present nonlinear computations employing the extended-MHD code NIMROD, building on previous work by incorporating a temporally varying external perturbation as a simple model for an MHD event that produces resonant magnetic signals. A parametric series of proof-of-principle computations and accompanying analytical theory characterize the transition into a mode-locked state with an emphasis on detailing the temporal evolution properties. Supported by DOE OFES Grants DE-FG02-92ER54139, DE-FG02-86ER53218, and the U.S. DOE FES Postdoctoral Research program administered by ORISE and managed by ORAU under DOE contract DE-SC0014664.

  8. Transient and Steady-State Responses of an Asymmetric Nonlinear Oscillator

    Directory of Open Access Journals (Sweden)

    Alex Elías-Zúñiga

    2013-01-01

    oscillator that describes the motion of a damped, forced system supported symmetrically by simple shear springs on a smooth inclined bearing surface. We also use the percentage overshoot value to study the influence of damping and nonlinearity on the transient and steady-state oscillatory amplitudes.

  9. Homogeneous shear turbulence – bypass concept via interplay of linear transient growth and nonlinear transverse cascade

    International Nuclear Information System (INIS)

    Mamatsashvili, George; Dong, Siwei; Jiménez, Javier; Khujadze, George; Chagelishvili, George; Foysi, Holger

    2016-01-01

    We performed direct numerical simulations of homogeneous shear turbulence to study the mechanism of the self-sustenance of subcritical turbulence in spectrally stable (constant) shear flows. For this purpose, we analyzed the turbulence dynamics in Fourier/wavenumber/spectral space based on the simulation data for the domain aspect ratio 1 : 1 : 1. Specifically, we examined the interplay of linear transient growth of Fourier harmonics and nonlinear processes. The transient growth of harmonics is strongly anisotropic in spectral space. This, in turn, leads to anisotropy of nonlinear processes in spectral space and, as a result, the main nonlinear process appears to be not a direct/inverse, but rather a transverse/angular redistribution of harmonics in Fourier space referred to as the nonlinear transverse cascade. It is demonstrated that the turbulence is sustained by the interplay of the linear transient, or nonmodal growth and the transverse cascade. This course of events reliably exemplifies the wellknown bypass scenario of subcritical turbulence in spectrally stable shear flows. These processes mainly operate at large length scales, comparable to the box size. Consequently, the central, small wavenumber area of Fourier space (the size of which is determined below) is crucial in the self-sustenance and is labeled the vital area. Outside the vital area, the transient growth and the transverse cascade are of secondary importance - Fourier harmonics are transferred to dissipative scales by the nonlinear direct cascade. The number of harmonics actively participating in the self-sustaining process (i.e., the harmonics whose energies grow more than 10% of the maximum spectral energy at least once during evolution) is quite large - it is equal to 36 for the considered box aspect ratio - and obviously cannot be described by low-order models. (paper)

  10. Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission

    DEFF Research Database (Denmark)

    Verhulst, Sarah; Dau, Torsten; Shera, Christopher A.

    2012-01-01

    This paper describes the implementation and performance of a nonlinear time-domain model of the cochlea for transient stimulation and human otoacoustic emission generation. The nonlinearity simulates compressive growth of measured basilar-membrane impulse responses. The model accounts...... for reflection and distortion-source otoacoustic emissions (OAEs) and simulates spontaneous OAEs through manipulation of the middle-ear reflectance. The model was calibrated using human psychoacoustical and otoacoustic tuning parameters. It can be used to investigate time-dependent properties of cochlear...

  11. Feedback control systems for non-linear simulation of operational transients in LMFBRs

    International Nuclear Information System (INIS)

    Khatib-Rahbar, M.; Agrawal, A.K.; Srinivasan, E.S.

    1979-01-01

    Feedback control systems for non-linear simulation of operational transients in LMFBRs are developed. The models include (1) the reactor power control and rod drive mechanism, (2) sodium flow control and pump drive system, (3) steam generator flow control and valve actuator dynamics, and (4) the supervisory control. These models have been incorporated into the SSC code using a flexible approach, in order to accommodate some design dependent variations. The impact of system nonlinearity on the control dynamics is shown to be significant for severe perturbations. Representative result for a 10 cent and 25 cent step insertion of reactivity and a 10% ramp change in load in 40 seconds demonstrate the suitability of this model for study of operational transients without scram in LMFBRs

  12. Volume fraction dependence of transient absorption signal and nonlinearities in metal nanocolloids

    International Nuclear Information System (INIS)

    Jayabalan, J; Singh, Asha; Khan, Salahuddin; Chari, Rama

    2013-01-01

    Electron–lattice thermalization dynamics in metal nanoparticles or in bulk metal is usually estimated by measuring the decay time of the change in transmission following an optical excitation. Such measurements can be performed in transient absorption geometry using a femtosecond laser. We find that for silver nanoplatelet/water colloids, the decay time of the transient absorption depends on the volume fraction of silver in water. By estimating the volume fraction dependence of nonlinearities in the same samples, we show that the variation in the measured decay time is due to pump-depletion effects present in the sample. The correct correction factor for taking into account pump-depletion effects in fifth- and higher-order nonlinearities is also presented. (paper)

  13. Pseudo-transient Continuation Based Variable Relaxation Solve in Nonlinear Magnetohydrodynamic Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Jin Chen

    2009-12-07

    Efficient and robust Variable Relaxation Solver, based on pseudo-transient continuation, is developed to solve nonlinear anisotropic thermal conduction arising from fusion plasma simulations. By adding first and/or second order artificial time derivatives to the system, this type of method advances the resulting time-dependent nonlinear PDEs to steady state, which is the solution to be sought. In this process, only the stiffness matrix itself is involved so that the numerical complexity and errors can be greatly reduced. In fact, this work is an extension of integrating efficient linear elliptic solvers for fusion simulation on Cray XIE. Two schemes are derived in this work, first and second order Variable Relaxations. Four factors are observed to be critical for efficiency and preservation of solution's symmetric structure arising from periodic boundary condition: refining meshes in different coordinate directions, initializing nonlinear process, varying time steps in both temporal and spatial directions, and accurately generating nonlinear stiffness matrix. First finer mesh scale should be taken in strong transport direction; Next the system is carefully initialized by the solution with linear conductivity; Third, time step and relaxation factor are vertex-based varied and optimized at each time step; Finally, the nonlinear stiffness matrix is updated by just scaling corresponding linear one with the vector generated from nonlinear thermal conductivity.

  14. Pseudo-transient Continuation Based Variable Relaxation Solve in Nonlinear Magnetohydrodynamic Simulations

    International Nuclear Information System (INIS)

    Chen, Jin

    2009-01-01

    Efficient and robust Variable Relaxation Solver, based on pseudo-transient continuation, is developed to solve nonlinear anisotropic thermal conduction arising from fusion plasma simulations. By adding first and/or second order artificial time derivatives to the system, this type of method advances the resulting time-dependent nonlinear PDEs to steady state, which is the solution to be sought. In this process, only the stiffness matrix itself is involved so that the numerical complexity and errors can be greatly reduced. In fact, this work is an extension of integrating efficient linear elliptic solvers for fusion simulation on Cray XIE. Two schemes are derived in this work, first and second order Variable Relaxations. Four factors are observed to be critical for efficiency and preservation of solution's symmetric structure arising from periodic boundary condition: refining meshes in different coordinate directions, initializing nonlinear process, varying time steps in both temporal and spatial directions, and accurately generating nonlinear stiffness matrix. First finer mesh scale should be taken in strong transport direction; Next the system is carefully initialized by the solution with linear conductivity; Third, time step and relaxation factor are vertex-based varied and optimized at each time step; Finally, the nonlinear stiffness matrix is updated by just scaling corresponding linear one with the vector generated from nonlinear thermal conductivity.

  15. Transient photoconductivity and femtosecond nonlinear optical properties of a conjugated polymer-graphene oxide composite

    Energy Technology Data Exchange (ETDEWEB)

    Nalla, Venkatram; Ji Wei [Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Polavarapu, Lakshminarayana; Manga, Kiran Kumar; Goh, Bee Min; Loh, Kian Ping; Xu Qinghua, E-mail: chmxqh@nus.edu.sg, E-mail: phyjiwei@nus.edu.sg [Department of Chemistry, National University of Singapore, Singapore 117543 (Singapore)

    2010-10-15

    A water soluble conjugated thiophene polymer, sodium salt of poly[2-(3-thienyl)ethoxy-4-butylsulfonate] (TPP), and graphene oxide (GO) composite film (GO-TPP) device was prepared. Transient photoconductivity measurements were carried out on the GO-TPP composite film using 150 ns laser pulses of 527 nm wavelength. Highly efficient photocurrent generation was observed from the GO-TPP film. The relationships of the film photoconductivity, photocurrent decay time and electron decay times with the incident light intensity were investigated. The photoconductive gain of the film was determined to be greater than 40% and to be independent of the light intensity. Furthermore, the femtosecond nonlinear optical properties of the GO-TPP film were measured using 800 nm femtosecond laser pulses and the composite film exhibited high nonlinear absorption and nonlinear refraction coefficients.

  16. Transient photoconductivity and femtosecond nonlinear optical properties of a conjugated polymer-graphene oxide composite

    International Nuclear Information System (INIS)

    Nalla, Venkatram; Ji Wei; Polavarapu, Lakshminarayana; Manga, Kiran Kumar; Goh, Bee Min; Loh, Kian Ping; Xu Qinghua

    2010-01-01

    A water soluble conjugated thiophene polymer, sodium salt of poly[2-(3-thienyl)ethoxy-4-butylsulfonate] (TPP), and graphene oxide (GO) composite film (GO-TPP) device was prepared. Transient photoconductivity measurements were carried out on the GO-TPP composite film using 150 ns laser pulses of 527 nm wavelength. Highly efficient photocurrent generation was observed from the GO-TPP film. The relationships of the film photoconductivity, photocurrent decay time and electron decay times with the incident light intensity were investigated. The photoconductive gain of the film was determined to be greater than 40% and to be independent of the light intensity. Furthermore, the femtosecond nonlinear optical properties of the GO-TPP film were measured using 800 nm femtosecond laser pulses and the composite film exhibited high nonlinear absorption and nonlinear refraction coefficients.

  17. TPLOT: An interactive data management system for transient problems 3. Edition

    International Nuclear Information System (INIS)

    Doron, R.

    1988-01-01

    This report describes the use of an interactive data management system suitable for post-processing of transient structural problems. The system is designed for IBM compatible environment (TSO command procedures) and makes use of PLOT-10 (TEKTRONIX) for graphical output (time plots). Interfaces are provided for experimental data and for various programs used in fast reactor safety analysis (EURDYN, SEURBNUK, ASTARTE, FRAP-T5, RODSWELL, SIMMER, TRACRUF, PHEAT, JOULE). Some examples are given to illustrate the system

  18. Nonlinear modeling and dynamic analysis of hydro-turbine governing system in the process of load rejection transient

    International Nuclear Information System (INIS)

    Zhang, Hao; Chen, Diyi; Xu, Beibei; Wang, Feifei

    2015-01-01

    Graphical abstract: Nonlinear dynamic transfer coefficients are introduced to the hydro-turbine governing system. In the process of load reject ion transient, the nonlinear dynamical behaviors of the system are studied in detail. - Highlights: • A novel mathematical model of a hydro-turbine governing system is established. • The process of load rejection transient is considered. • Nonlinear dynamic transfer coefficients are introduced to the system. • The bifurcation diagram with the variable t has better engineering significance. • The nonlinear dynamical behaviors of the system are studied in detail. - Abstract: This article pays attention to the mathematical modeling of a hydro-turbine governing system in the process of load rejection transient. As a pioneer work, the nonlinear dynamic transfer coefficients are introduced in a penstock system. Considering a generator system, a turbine system and a governor system, we present a novel nonlinear dynamical model of a hydro-turbine governing system. Fortunately, for the unchanged of PID parameters, we acquire the stable regions of the governing system in the process of load rejection transient by numerical simulations. Moreover, the nonlinear dynamic behaviors of the governing system are illustrated by bifurcation diagrams, Poincare maps, time waveforms and phase orbits. More importantly, these methods and analytic results will present theoretical groundwork for allowing a hydropower station in the process of load rejection transient

  19. A robust nonlinear stabilizer as a controller for improving transient stability in micro-grids.

    Science.gov (United States)

    Azimi, Seyed Mohammad; Afsharnia, Saeed

    2017-01-01

    This paper proposes a parametric-Lyapunov approach to the design of a stabilizer aimed at improving the transient stability of micro-grids (MGs). This strategy is applied to electronically-interfaced distributed resources (EI-DRs) operating with a unified control configuration applicable to all operational modes (i.e. grid-connected mode, islanded mode, and mode transitions). The proposed approach employs a simple structure compared with other nonlinear controllers, allowing ready implementation of the stabilizer. A new parametric-Lyapunov function is proposed rendering the proposed stabilizer more effective in damping system transition transients. The robustness of the proposed stabilizer is also verified based on both time-domain simulations and mathematical proofs, and an ultimate bound has been derived for the frequency transition transients. The proposed stabilizer operates by deploying solely local information and there are no needs for communication links. The deteriorating effects of the primary resource delays on the transient stability are also treated analytically. Finally, the effectiveness of the proposed stabilizer is evaluated through time-domain simulations and compared with the recently-developed stabilizers performed on a multi-resource MG. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Transient Vibration Prediction for Rotors on Ball Bearings Using Load-dependent Non-linear Bearing Stiffness

    Science.gov (United States)

    Fleming, David P.; Poplawski, J. V.

    2002-01-01

    Rolling-element bearing forces vary nonlinearly with bearing deflection. Thus an accurate rotordynamic transient analysis requires bearing forces to be determined at each step of the transient solution. Analyses have been carried out to show the effect of accurate bearing transient forces (accounting for non-linear speed and load dependent bearing stiffness) as compared to conventional use of average rolling-element bearing stiffness. Bearing forces were calculated by COBRA-AHS (Computer Optimized Ball and Roller Bearing Analysis - Advanced High Speed) and supplied to the rotordynamics code ARDS (Analysis of Rotor Dynamic Systems) for accurate simulation of rotor transient behavior. COBRA-AHS is a fast-running 5 degree-of-freedom computer code able to calculate high speed rolling-element bearing load-displacement data for radial and angular contact ball bearings and also for cylindrical and tapered roller beatings. Results show that use of nonlinear bearing characteristics is essential for accurate prediction of rotordynamic behavior.

  1. Stability of one-step methods in transient nonlinear heat conduction

    International Nuclear Information System (INIS)

    Hughes, J.R.

    1977-01-01

    The purpose of the present work is to ascertain practical stability conditions for one-step methods commonly used in transient nonlinear heat conduction analyses. In this paper the concepts of stability, appropriate to the nonlinear problem, are thoroughly discussed. They of course reduce to the usual stability critierion for the linear, constant coefficient case. However, for nonlinear problems there are differences and theses ideas are of key importance in obtaining practical stability conditions. Of particular importance is a recent result which indicates that, in a sense, the trapezoidal and midpoint families are equivalent. Thus, stability results for one family may be translated into a result for the other. The main results obtained are: The stability behaviour of the explicit Euler method in the nonlinear regime is analogous to that for linear problems. In particular, an a priori step size restriction may be determined for each time step. The precise time step restriction on implicit conditionally stable members of the trapezoidal and midpoint families is shown not to be determinable a priori. Of considerable practical significance, unconditionally stable members of the trapezoidal and midpoint families are identified. All notions of stability employed are motivated and defined, and their interpretations in practical computing are indicated. (Auth.)

  2. Stability of one-step methods in transient nonlinear heat conduction

    International Nuclear Information System (INIS)

    Hughes, J.R.

    1977-01-01

    The purpose of the present work is to ascertain practical stability conditions for one-step methods commonly used in transient nonlinear heat conduction analyses. The class of problems considered is governed by a temporally continuous, spatially discrete system involving the capacity matrix C, conductivity matrix K, heat supply vector, temperature vector and time differenciation. In the linear case, in which K and C are constant, the stability behavior of one-step methods is well known. But in this paper the concepts of stability, appropriate to the nonlinear problem, are thoroughly discussed. They of course reduce to the usual stability criterion for the linear, constant coefficient case. However, for nonlinear problems there are differences and these ideas are of key importance in obtaining practical stability conditions. Of particular importance is a recent result which indicates that, in a sense, the trapezoidal and midpoint families are quivalent. Thus, stability results for one family may be translated into a result for the other. The main results obtained are summarized as follows. The stability behavior of the explicit Euler method in the nonlinear regime is analogous to that for linear problems. In particular, an a priori step size restriction may be determined for each time step. The precise time step restriction on implicit conditionally stable members of the trapezoidal and midpoint families is shown not to be determinable a priori. Of considerable practical significance, unconditionally stable members of the trapezoidal and midpoint families are identified

  3. Uncertainty analysis of time-dependent nonlinear systems: theory and application to transient thermal hydraulics

    International Nuclear Information System (INIS)

    Barhen, J.; Bjerke, M.A.; Cacuci, D.G.; Mullins, C.B.; Wagschal, G.G.

    1982-01-01

    An advanced methodology for performing systematic uncertainty analysis of time-dependent nonlinear systems is presented. This methodology includes a capability for reducing uncertainties in system parameters and responses by using Bayesian inference techniques to consistently combine prior knowledge with additional experimental information. The determination of best estimates for the system parameters, for the responses, and for their respective covariances is treated as a time-dependent constrained minimization problem. Three alternative formalisms for solving this problem are developed. The two ''off-line'' formalisms, with and without ''foresight'' characteristics, require the generation of a complete sensitivity data base prior to performing the uncertainty analysis. The ''online'' formalism, in which uncertainty analysis is performed interactively with the system analysis code, is best suited for treatment of large-scale highly nonlinear time-dependent problems. This methodology is applied to the uncertainty analysis of a transient upflow of a high pressure water heat transfer experiment. For comparison, an uncertainty analysis using sensitivities computed by standard response surface techniques is also performed. The results of the analysis indicate the following. Major reduction of the discrepancies in the calculation/experiment ratios is achieved by using the new methodology. Incorporation of in-bundle measurements in the uncertainty analysis significantly reduces system uncertainties. Accuracy of sensitivities generated by response-surface techniques should be carefully assessed prior to using them as a basis for uncertainty analyses of transient reactor safety problems

  4. An implicit meshless scheme for the solution of transient non-linear Poisson-type equations

    KAUST Repository

    Bourantas, Georgios

    2013-07-01

    A meshfree point collocation method is used for the numerical simulation of both transient and steady state non-linear Poisson-type partial differential equations. Particular emphasis is placed on the application of the linearization method with special attention to the lagging of coefficients method and the Newton linearization method. The localized form of the Moving Least Squares (MLS) approximation is employed for the construction of the shape functions, in conjunction with the general framework of the point collocation method. Computations are performed for regular nodal distributions, stressing the positivity conditions that make the resulting system stable and convergent. The accuracy and the stability of the proposed scheme are demonstrated through representative and well-established benchmark problems. © 2013 Elsevier Ltd.

  5. Transient and Steady-State Analysis of Nonlinear RF and Microwave Circuits

    Directory of Open Access Journals (Sweden)

    Zhu Lei(Lana

    2006-01-01

    Full Text Available This paper offers a review of simulation methods currently available for the transient and steady-state analysis of nonlinear RF and microwave circuits. The most general method continues to be the time-marching approach used in Spice, but more recent methods based on multiple time dimensions are particularly effective for RF and microwave circuits. We derive nodal formulations for the most widely used multiple time dimension methods. We put special emphasis on methods for the analysis of oscillators based in the warped multitime partial differential equations (WaMPDE approach. Case studies of a Colpitts oscillator and a voltage controlled Clapp-Gouriet oscillator are presented and discussed. The accuracy of the amplitude and phase of these methods is investigated. It is shown that the exploitation of frequency-domain latency reduces the computational effort.

  6. Non-linear belt transient analysis. A hybrid model for numerical belt conveyor simulation

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, A. [Scientific Solutions, Inc., Aurora, CO (United States)

    2008-07-01

    Frictional and rolling losses along a running conveyor are discussed due to their important influence on wave propagation during starting and stopping. Hybrid friction models allow belt rubber losses and material flexing to be included in the initial tension calculations prior to any dynamic analysis. Once running tensions are defined, a numerical integration method using non-linear stiffness gradients is used to generate transient forces during starting and stopping. A modified Euler integration technique is used to simulate the entire starting and stopping cycle in less than 0.1 seconds. The procedure enables a faster scrutiny of unforeseen conveyor design issues such as low belt tension zones and high forces at drives. (orig.)

  7. An implicit meshless scheme for the solution of transient non-linear Poisson-type equations

    KAUST Repository

    Bourantas, Georgios; Burganos, Vasilis N.

    2013-01-01

    A meshfree point collocation method is used for the numerical simulation of both transient and steady state non-linear Poisson-type partial differential equations. Particular emphasis is placed on the application of the linearization method with special attention to the lagging of coefficients method and the Newton linearization method. The localized form of the Moving Least Squares (MLS) approximation is employed for the construction of the shape functions, in conjunction with the general framework of the point collocation method. Computations are performed for regular nodal distributions, stressing the positivity conditions that make the resulting system stable and convergent. The accuracy and the stability of the proposed scheme are demonstrated through representative and well-established benchmark problems. © 2013 Elsevier Ltd.

  8. Performance analysis of smart laminated composite plate integrated with distributed AFC material undergoing geometrically nonlinear transient vibrations

    Science.gov (United States)

    Shivakumar, J.; Ashok, M. H.; Khadakbhavi, Vishwanath; Pujari, Sanjay; Nandurkar, Santosh

    2018-02-01

    The present work focuses on geometrically nonlinear transient analysis of laminated smart composite plates integrated with the patches of Active fiber composites (AFC) using Active constrained layer damping (ACLD) as the distributed actuators. The analysis has been carried out using generalised energy based finite element model. The coupled electromechanical finite element model is derived using Von Karman type nonlinear strain displacement relations and a first-order shear deformation theory (FSDT). Eight-node iso-parametric serendipity elements are used for discretization of the overall plate integrated with AFC patch material. The viscoelastic constrained layer is modelled using GHM method. The numerical results shows the improvement in the active damping characteristics of the laminated composite plates over the passive damping for suppressing the geometrically nonlinear transient vibrations of laminated composite plates with AFC as patch material.

  9. CENTAR code for extended nonlinear transient analysis of extraterrestrial reactor systems

    International Nuclear Information System (INIS)

    Nassersharif, B.; Peer, J.S.; DeHart, M.D.

    1987-01-01

    Current interest in the application of nuclear reactor-driven power systems to space missions has generated a need for a systems simulation code to model and analyze space reactor systems; such a code has been initiated at Texas A and M, and the first version is nearing completion; release was anticipated in the fall of 1987. This code, named CENTAR (Code for Extended Nonlinear Transient Analysis of Extraterrestrial Reactor Systems), is designed specifically for space systems and is highly vectorizable. CENTAR is composed of several specialized modules. A fluids module is used to model fluid behavior throughout the system. A wall heat transfer module models the heat transfer characteristics of all walls, insulation, and structure around the system. A fuel element thermal analysis module is used to predict the temperature behavior and heat transfer characteristics of the reactor fuel rods. A kinetics module uses a six-group point kinetics formulation to model reactivity feedback and control and the ANS 5.1 decay-heat curve to model shutdown decay-heat production. A pump module models the behavior of thermoelectric-electromagnetic pumps, and a heat exchanger module models not only thermal effects in thermoelectric heat exchangers, but also predicts electrical power production for a given configuration. Finally, an accumulator module models coolant expansion/contraction accumulators

  10. Transients of the electromagnetically-induced-transparency-enhanced refractive Kerr nonlinearity: Theory

    International Nuclear Information System (INIS)

    Pack, M. V.; Camacho, R. M.; Howell, J. C.

    2006-01-01

    We present a theory describing the transients and rise times of the refractive Kerr nonlinearity which is enhanced using electromagnetically induced transparency (EIT). We restrict our analysis to the case of a pulsed signal field with continuous-wave EIT fields, and all fields are well below saturation. These restrictions enable the reduction of an EIT Kerr, four-level, density-matrix equation to a two-level Bloch-vector equation which has a simple and physically intuitive algebraic solution. The physically intuitive picture of a two-level Bloch vector provides insights that are easily generalized to more complex and experimentally realistic models. We consider generalization to the cases of Doppler broadening, many-level EIT systems (we consider the D1 line of 87 Rb), and optically thick media. For the case of optically thick media we find that the rise time of the refractive EIT Kerr effect is proportional to the optical thickness. The rise time of the refractive EIT Kerr effect sets important limitations for potential few-photon applications

  11. Two-dimensional nonlinear transient heat transfer analysis of variable section pin fins

    Energy Technology Data Exchange (ETDEWEB)

    Malekzadeh, P. [Department of Mechanical Engineering, School of Engineering, Persian Gulf University, Boushehr 75168 (Iran); Rahideh, H. [Department of Chemical Engineering, School of Engineering, Persian Gulf University, Boushehr 75168 (Iran)

    2009-04-15

    The two-dimensional nonlinear transient heat transfer analysis of variable cross section pin-fins is studied using the incremental differential quadrature method (IDQM) as a simple, accurate, and computationally efficient numerical tool. The formulations are general so that it can easily be used for arbitrary continuously varying cross section pin fins with the spatial-temperature dependent thermal parameters. On all external surfaces of the pin fin, the convective-radiative condition is considered. The effects of two different types of boundary conditions at the base of pin fin are investigated: time and spatial dependent temperature, and the convection heat transfer. The thermal conductivity of the pin fin is assumed to vary as a linear function of the temperature. The accuracy of the method is demonstrated by comparing its results with those generated by finite difference method. It is shown that using few grid points, results in excellent agreements with those of FDM are obtained. Less computational efforts of the method with respect to finite difference method is shown. (author)

  12. PRONTO3D users` instructions: A transient dynamic code for nonlinear structural analysis

    Energy Technology Data Exchange (ETDEWEB)

    Attaway, S.W.; Mello, F.J.; Heinstein, M.W.; Swegle, J.W.; Ratner, J.A. [Sandia National Labs., Albuquerque, NM (United States); Zadoks, R.I. [Univ. of Texas, El Paso, TX (United States)

    1998-06-01

    This report provides an updated set of users` instructions for PRONTO3D. PRONTO3D is a three-dimensional, transient, solid dynamics code for analyzing large deformations of highly nonlinear materials subjected to extremely high strain rates. This Lagrangian finite element program uses an explicit time integration operator to integrate the equations of motion. Eight-node, uniform strain, hexahedral elements and four-node, quadrilateral, uniform strain shells are used in the finite element formulation. An adaptive time step control algorithm is used to improve stability and performance in plasticity problems. Hourglass distortions can be eliminated without disturbing the finite element solution using either the Flanagan-Belytschko hourglass control scheme or an assumed strain hourglass control scheme. All constitutive models in PRONTO3D are cast in an unrotated configuration defined using the rotation determined from the polar decomposition of the deformation gradient. A robust contact algorithm allows for the impact and interaction of deforming contact surfaces of quite general geometry. The Smooth Particle Hydrodynamics method has been embedded into PRONTO3D using the contact algorithm to couple it with the finite element method.

  13. NON-LINEAR TRANSIENT HEAT CONDUCTION ANALYSIS OF INSULATION WALL OF TANK FOR TRANSPORTATION OF LIQUID ALUMINUM

    Directory of Open Access Journals (Sweden)

    Miroslav M Živković

    2010-01-01

    Full Text Available This paper deals with transient nonlinear heat conduction through the insulation wall of the tank for transportation of liquid aluminum. Tanks designed for this purpose must satisfy certain requirements regarding temperature of loading and unloading, during transport. Basic theoretical equations are presented, which describe the problem of heat conduction finite element (FE analysis, starting from the differential equation of energy balance, taking into account the initial and boundary conditions of the problem. General 3D problem for heat conduction is considered, from which solutions for two- and one-dimensional heat conduction can be obtained, as special cases. Forming of the finite element matrices using Galerkin method is briefly described. The procedure for solving equations of energy balance is discussed, by methods of resolving iterative processes of nonlinear transient heat conduction. Solution of this problem illustrates possibilities of PAK-T software package, such as materials properties, given as tabular data, or analytical functions. Software also offers the possibility to solve nonlinear and transient problems with incremental methods. Obtained results for different thicknesses of the tank wall insulation materials enable its comparison in regards to given conditions

  14. How many accelerograms to use and how to deal with scattering for transient non-linear seismic computations?

    International Nuclear Information System (INIS)

    Viallet, E.; Heinfling, G.

    2005-01-01

    Due to increased potentialities of computers, it is nowadays possible to perform dynamic non-linear computation of structures to evaluate their ultimate behavior under seismic loads using refined finite element models. Nevertheless, one key parameter for such complex computations is the input load (i.e. input time histories) which may lead to important discrepancies in the results and therefore difficulties to deal with for engineering purpose (variability, number of time histories to use...). In this situation, the number of accelerograms to be used and the way to deal with the results is to be carefully assessed. The objective of this study is to give some elements concerning (i) the number of accelerograms to be used for transient non-linear computations and (ii) the way to account for scattering of results. For this purpose, some simplified non-linear models are used. These models represent characteristic types of non-linearities such as : - Reinforce concrete (RC) structure model (with plastic non-linearity), - PWR core model (with impact non-linearity). For each type of non-linearity, different sets of accelerograms are used (artificial and natural ones). Each set is composed of a relatively high number of accelerograms in order to get proper trends. The results are expressed in term of average and standard deviation values of the characteristic parameters for each non-linearity (i.e. ductility drift for RC structure model and impact force for PWR core model). The results show that, a relatively large number of time histories may be necessary to get proper predictions of the average value of the characteristic non-linear parameter under consideration. In that situation, it should be difficult to deal with such a result for complex studies on reel structures. Nevertheless, it may be necessarily to perform transient non-linear seismic computations for design analyses but with a reduced number of calculations. For this purpose, the previous results are analyzed

  15. Three-dimensional finite element nonlinear dynamic analysis of pile groups for lateral transient and seismic excitations

    International Nuclear Information System (INIS)

    Maheshwari, B.K.; Truman, K.Z.; El Naggar, M.H.; Gould, P.L.

    2004-01-01

    The effects of material nonlinearity of soil and separation at the soil-pile interface on the dynamic behaviour of a single pile and pile groups are investigated. An advanced plasticity-based soil model, hierarchical single surface (HiSS), is incorporated in the finite element formulation. To simulate radiation effects, proper boundary conditions are used. The model and algorithm are verified with analytical results that are available for elastic and elastoplastic soil models. Analyses are performed for seismic excitation and for the load applied on the pile cap. For seismic analysis, both harmonic and transient excitations are considered. For loading on the pile cap, dynamic stiffness of the soil-pile system is derived and the effect of nonlinearity is investigated. The effects of spacing between piles are investigated, and it was found that the effect of soil nonlinearity on the seismic response is very much dependent on the frequency of excitation. For the loading on a pile cap, the nonlinearity increases the response for most of the frequencies of excitation while decreasing the dynamic stiffness of the soil-pile system. (author)

  16. Transient and chaotic low-energy transfers in a system with bistable nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, F., E-mail: francesco.romeo@uniroma1.it [Department of Structural and Geotechnical Engineering, SAPIENZA University of Rome, Rome (Italy); Manevitch, L. I. [Institute of Chemical Physics, RAS, Moscow (Russian Federation); Bergman, L. A.; Vakakis, A. [College of Engineering, University of Illinois at Urbana–Champaign, Champaign, Illinois 61820 (United States)

    2015-05-15

    The low-energy dynamics of a two-dof system composed of a grounded linear oscillator coupled to a lightweight mass by means of a spring with both cubic nonlinear and negative linear components is investigated. The mechanisms leading to intense energy exchanges between the linear oscillator, excited by a low-energy impulse, and the nonlinear attachment are addressed. For lightly damped systems, it is shown that two main mechanisms arise: Aperiodic alternating in-well and cross-well oscillations of the nonlinear attachment, and secondary nonlinear beats occurring once the dynamics evolves solely in-well. The description of the former dissipative phenomenon is provided in a two-dimensional projection of the phase space, where transitions between in-well and cross-well oscillations are associated with sequences of crossings across a pseudo-separatrix. Whereas the second mechanism is described in terms of secondary limiting phase trajectories of the nonlinear attachment under certain resonance conditions. The analytical treatment of the two aformentioned low-energy transfer mechanisms relies on the reduction of the nonlinear dynamics and consequent analysis of the reduced dynamics by asymptotic techniques. Direct numerical simulations fully validate our analytical predictions.

  17. Approximation for Transient of Nonlinear Circuits Using RHPM and BPES Methods

    Directory of Open Access Journals (Sweden)

    H. Vazquez-Leal

    2013-01-01

    Full Text Available The microelectronics area constantly demands better and improved circuit simulation tools. Therefore, in this paper, rational homotopy perturbation method and Boubaker Polynomials Expansion Scheme are applied to a differential equation from a nonlinear circuit. Comparing the results obtained by both techniques revealed that they are effective and convenient.

  18. Measuring transient chaos in nonlinear one- and two-dimensional maps

    International Nuclear Information System (INIS)

    Buszko, Katarzyna; Stefanski, Krzysztof

    2006-01-01

    In this paper, we present results of numerical experiments on chaotic transients in families of the logistic and Henon maps. The duration of chaotic transients (the rambling time) for logistic maps estimated according to a rigorous criterion shows monotonic regularities with respect to both the period and the number of periodic window in a series of a given period. Due to inapplicability of this criterion to multidimensional maps, a more universal, though approximate, criterion is systematically studied on the family of logistic maps to optimize a choice of the free parameter value. The same approximate criterion is used to estimate rambling time for a number of periodic windows for the family of Henon maps. The dependence of the rambling time on the width of periodic windows is tested

  19. Feedback control systems for non-linear simulation of operational transients in LMFBRs

    International Nuclear Information System (INIS)

    Khatib-Rahbar, M.; Agrawal, A.K.; Srinivasan, E.S.

    Adequate modeling of Plant Control Systems (PCS) for the study of Anticipated Transients Without Scram (ATWS) is of considerable significance in the design, operation and safety evaluation of Liquid-Metal-Cooled Fast Breeder Reactor (LMFBR) systems. To assess the system response to high frequency, low consequence events, the plant needs to be dynamically simulated. The description of analytical and numerical models for PCS that have been developed and incorporated into the loop version of the Super System Code (SSC-L) are described. The importance of detailed modeling of control systems is discussed. Sample transient results obtained for a 10% ramp change of load in 40 s in the Clinch River Breeder Reactor Plant (CRBRP) are also shown

  20. INTRANS. A computer code for the non-linear structural response analysis of reactor internals under transient loads

    International Nuclear Information System (INIS)

    Ramani, D.T.

    1977-01-01

    The 'INTRANS' system is a general purpose computer code, designed to perform linear and non-linear structural stress and deflection analysis of impacting or non-impacting nuclear reactor internals components coupled with reactor vessel, shield building and external as well as internal gapped spring support system. This paper describes in general a unique computational procedure for evaluating the dynamic response of reactor internals, descretised as beam and lumped mass structural system and subjected to external transient loads such as seismic and LOCA time-history forces. The computational procedure is outlined in the INTRANS code, which computes component flexibilities of a discrete lumped mass planar model of reactor internals by idealising an assemblage of finite elements consisting of linear elastic beams with bending, torsional and shear stiffnesses interacted with external or internal linear as well as non-linear multi-gapped spring support system. The method of analysis is based on the displacement method and the code uses the fourth-order Runge-Kutta numerical integration technique as a basis for solution of dynamic equilibrium equations of motion for the system. During the computing process, the dynamic response of each lumped mass is calculated at specific instant of time using well-known step-by-step procedure. At any instant of time then, the transient dynamic motions of the system are held stationary and based on the predicted motions and internal forces of the previous instant. From which complete response at any time-step of interest may then be computed. Using this iterative process, the relationship between motions and internal forces is satisfied step by step throughout the time interval

  1. A discontinuous Galerkin method for solving transient Maxwell equations with nonlinear material properties

    KAUST Repository

    Sirenko, Kostyantyn; Asirim, Ozum Emre; Bagci, Hakan

    2014-01-01

    Discontinuous Galerkin time-domain method (DGTD) has been used extensively in computational electromagnetics for analyzing transient electromagnetic wave interactions on structures described with linear constitutive relations. DGTD expands unknown fields independently on disconnected mesh elements and uses numerical flux to realize information exchange between fields on different elements (J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Method, 2008). The numerical flux of choice for 'linear' Maxwell equations is the upwind flux, which mimics accurately the physical behavior of electromagnetic waves on discontinuous boundaries. It is obtained from the analytical solution of the Riemann problem defined on the boundary of two neighboring mesh elements.

  2. A discontinuous Galerkin method for solving transient Maxwell equations with nonlinear material properties

    KAUST Repository

    Sirenko, Kostyantyn

    2014-07-01

    Discontinuous Galerkin time-domain method (DGTD) has been used extensively in computational electromagnetics for analyzing transient electromagnetic wave interactions on structures described with linear constitutive relations. DGTD expands unknown fields independently on disconnected mesh elements and uses numerical flux to realize information exchange between fields on different elements (J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Method, 2008). The numerical flux of choice for \\'linear\\' Maxwell equations is the upwind flux, which mimics accurately the physical behavior of electromagnetic waves on discontinuous boundaries. It is obtained from the analytical solution of the Riemann problem defined on the boundary of two neighboring mesh elements.

  3. Consideration of Transient Stream/Aquifer Interaction with the Nonlinear Boussinesq Equation using HPM

    DEFF Research Database (Denmark)

    Ganji, S. S.; Barari, Amin; Sfahani, M. G.

    2011-01-01

    of time. The differential equations were solved using the method of Homotopy Perturbation. The simplicity and accuracy of the approximation are compared with “exact” solution and illustrated numerically and graphically. The results reveal that the HPM is very effective and simple and provides highly...... accurate solutions for nonlinear differential equations.......The phenomenon of stream–aquifer interaction was investigated via mathematical modeling using the Boussinesq equation. A new approximate solution of the one-dimensional Boussinesq equation is presented for a semi-infinite aquifer when the hydraulic head at the source is an arbitrary function...

  4. Nonlinear transient responses of beams and rings to impulse loading or fragment impact

    International Nuclear Information System (INIS)

    Witmer, E.A.; Stagliano, T.R.; Rodal, J.J.A.

    1977-01-01

    Nuclear power plant protective structures may be subjected to various external missiles such as aircraft and tornado-generated missiles: telephone poles, planks, pipes, rods, automobiles, and other blown vehicles. Also, 'internally-generated missiles' such as fragments from powerplant rotors and aircraft engine rotors may impact protective structures. The present paper is concerned with a very limited part of the cited fragment threat; namely, fragments from high speed rotating machinery such as (1) aircraft engine rotors and (2) stationary power plant turbine rotors. Further, it is assumed that the structures intended to contain or control these fragments consist of initially-isotopic elastic-plastic metals. Certain potential containment/control (C/C) structures behave in a planar (or two-dimensional) fashion while other fragment-attacked C/C structures will undergo general three-dimensional deformations. Predictions for only the former category of fragment-attacked structures are discussed in the present paper. Pertinent experimental data discussed on fragment-attacked structures include (a) steel-sphere impact data involving beam targets and (b) engine rotor fragment impact against a steel containment ring. In all of these cases large-deflection, elastic-plastic transient structural responses occur. (Auth.)

  5. Nonlinear transient responses of beams and rings to impulse loading or fragment impact

    International Nuclear Information System (INIS)

    Witmer, E.A.; Stagliano, T.R.; Rodal, J.J.A.

    1977-01-01

    The present paper is concerned with a very limited part of the cited fragment threat; namely, fragments from high speed rotating machinery such as (1) aircraft engine rotors and (2) stationary power plant turbine rotors. Further, it is assumed that the structures intended to contain or control these fragments consist of initially-isotropic elastic-plastic metals. Certain potential containment/control (C/C) structures behave in a planar (or two-dimensional) fashion while other fragment-attacked C/C structures will undergo general three-dimensional deformations. Predictions for only the former category of fragment-attacked structures are discussed in the present paper. Pertinent experimental data discussed here on fragment-attacked structures include (a) steel-sphere impact data involving beam targets and (b) engine rotor fragment impact against a steel containment ring. In all of these cases large-deflection, elastic-plastic transient structural response occur. The governing equations employed are presented in the present analysis to predict the responses of protective (metal) structures to engine-rotor-fragment impact. The protective structure is intended either to contain or to deflect the attacking fragments away from important regions; large-deflection, elasic-plastic structural response is expected because these protective structures must have the least feasible weight. Concise geometric and assumed-displacement-field descriptions of the several types of finite elements to be utilized in subsequent examples are given, together with several categories of strain displacement relations. Both low- and higher-order elements are discussed

  6. Geometrically nonlinear transient vibrations of actively damped anti-symmetric angle ply laminated composite shallow shell using active fibre composite (AFC) actuators

    Science.gov (United States)

    Ashok, M. H.; Shivakumar, J.; Nandurkar, Santosh; Khadakbhavi, Vishwanath; Pujari, Sanjay

    2018-02-01

    In present work, the thin laminated composite shallow shell as smart structure with AFC material’s ACLD treatment is analyzed for geometrically nonlinear transient vibrations. The AFC material is used to make the constraining layer of the ACLD treatment. Golla-Hughes-McTavish (GHM) is used to model the constrained viscoelastic layer of the ACLD treatment in time domain. Along with a simple first-order shear deformation theory the Von Kármán type non-linear strain displacement relations are used for deriving this electromechanical coupled problem. A 3-dimensional finite element model of smart composite panels integrated with the ACLD treated patches has been modelled to reveal the performance of ACLD treated patches on improving the damping properties of slender anti-symmetric angle-ply laminated shallow shell, in controlling the transient vibrations which are geometrically nonlinear. The mathematical results explain that the ACLD treated patches considerably enhance the damping properties of anti-symmetric angle-ply panels undergoing geometrically nonlinear transient vibrations.

  7. Hybrid finite difference/finite element solution method development for non-linear superconducting magnet and electrical circuit breakdown transient analysis

    International Nuclear Information System (INIS)

    Kraus, H.G.; Jones, J.L.

    1986-01-01

    The problem of non-linear superconducting magnet and electrical protection circuit system transients is formulated. To enable studying the effects of coil normalization transients, coil distortion (due to imbalanced magnetic forces), internal coil arcs and shorts, and other normal and off-normal circuit element responses, the following capabilities are included: temporal, voltage and current-dependent voltage sources, current sources, resistors, capacitors and inductors. The concept of self-mutual inductance, and the form of the associated inductance matrix, is discussed for internally shorted coils. This is a Kirchhoff's voltage loop law and Kirchhoff's current node law formulation. The non-linear integrodifferential equation set is solved via a unique hybrid finite difference/integral finite element technique. (author)

  8. Nonlinear transient heat transfer and thermoelastic analysis of thick-walled FGM cylinder with temperature-dependent material properties using Hermitian transfinite element

    Energy Technology Data Exchange (ETDEWEB)

    Azadi, Mohammad [Sharif University of Technology, Tehran (Iran, Islamic Republic of); Azadi, Mahboobeh [Shiraz University, Shiraz (Iran, Islamic Republic of)

    2009-10-15

    Nonlinear transient heat transfer and thermoelastic stress analyses of a thick-walled FGM cylinder with temperature dependent materials are performed by using the Hermitian transfinite element method. Temperature-dependency of the material properties has not been taken into account in transient thermoelastic analysis, so far. Due to the mentioned dependency, the resulting governing FEM equations of transient heat transfer are highly nonlinear. Furthermore, in all finite element analysis performed so far in the field, Lagrangian elements have been used. To avoid an artificial local heat source at the mutual boundaries of the elements, Hermitian elements are used instead in the present research. Another novelty of the present paper is simultaneous use of the transfinite element method and updating technique. Time variations of the temperature, displacements, and stresses are obtained through a numerical Laplace inversion. Finally, results obtained considering the temperature-dependency of the material properties are compared with those derived based on temperature independency assumption. Furthermore, the temperature distribution and the radial and circumferential stresses are investigated versus time, geometrical parameters and index of power law. Results reveal that the temperature-dependency effect is significant

  9. Investigation of scaling characteristics for defining design environments due to transient ground winds and near-field, nonlinear acoustic fields

    Science.gov (United States)

    Shih, C. C.

    1973-01-01

    In order to establish a foundation of scaling laws for the highly nonlinear waves associated with the launch vehicle, the basic knowledge of the relationships among the paramaters pertinent to the energy dissipation process associated with the propagation of nonlinear pressure waves in thermoviscous media is required. The problem of interest is to experimentally investigate the temporal and spacial velocity profiles of fluid flow in a 3-inch open-end pipe of various lengths, produced by the propagation of nonlinear pressure waves for various diaphragm burst pressures of a pressure wave generator. As a result, temporal and spacial characteristics of wave propagation for a parametric set of nonlinear pressure waves in the pipe containing air under atmospheric conditions were determined. Velocity measurements at five sections along the pipes of up to 210 ft. in length were made with hot-film anemometers for five pressure waves produced by a piston. The piston was derived with diaphragm burst pressures at 20, 40, 60, 80 and 100 psi in the driver chamber of the pressure wave generator.

  10. Simulation of nonlinear transient elastography: finite element model for the propagation of shear waves in homogeneous soft tissues.

    Science.gov (United States)

    Ye, W; Bel-Brunon, A; Catheline, S; Combescure, A; Rochette, M

    2018-01-01

    In this study, visco-hyperelastic Landau's model, which is widely used in acoustical physic field, is introduced into a finite element formulation. It is designed to model the nonlinear behaviour of finite amplitude shear waves in soft solids, typically, in biological tissues. This law is used in finite element models based on elastography, experiments reported in Jacob et al, the simulations results show a good agreement with the experimental study: It is observed in both that a plane shear wave generates only odd harmonics and a nonplane wave generates both odd and even harmonics in the spectral domain. In the second part, a parametric study is performed to analyse the influence of different factors on the generation of odd harmonics of plane wave. A quantitative relation is fitted between the odd harmonic amplitudes and the non-linear elastic parameter of Landau's model, which provides a practical guideline to identify the non-linearity of homogeneous tissues using elastography experiment. Copyright © 2017 John Wiley & Sons, Ltd.

  11. VISCOT: a two-dimensional and axisymmetric nonlinear transient thermoviscoelastic and thermoviscoplastic finite-element code for modeling time-dependent viscous mechanical behavior of a rock mass

    International Nuclear Information System (INIS)

    1983-04-01

    VISCOT is a non-linear, transient, thermal-stress finite-element code designed to determine the viscoelastic, fiscoplastic, or elastoplastic deformation of a rock mass due to mechanical and thermal loading. The numerical solution of the nonlinear incremental equilibrium equations within VISCOT is performed by using an explicit Euler time-stepping scheme. The rock mass may be modeled as a viscoplastic or viscoelastic material. The viscoplastic material model can be described by a Tresca, von Mises, Drucker-Prager or Mohr-Coulomb yield criteria (with or without strain hardening) with an associated flow rule which can be a power or an exponential law. The viscoelastic material model within VISCOT is a temperature- and stress-dependent law which has been developed specifically for salt rock masses by Pfeifle, Mellegard and Senseny in ONWI-314 topical report (1981). Site specific parameters for this creep law at the Richton, Permian, Paradox and Vacherie salt sites have been calculated and are given in ONWI-314 topical report (1981). A major application of VISCOT (in conjunction with a SCEPTER heat transfer code such as DOT) is the thermomechanical analysis of a rock mass such as salt in which significant time-dependent nonlinear deformations are expected to occur. Such problems include room- and canister-scale studies during the excavation, operation, and long-term post-closure stages in a salt repository. In Section 1.5 of this document the code custodianship and control is described along with the status of verification, validation and peer review of this report

  12. The joy of transient chaos

    Energy Technology Data Exchange (ETDEWEB)

    Tél, Tamás [Institute for Theoretical Physics, Eötvös University, and MTA-ELTE Theoretical Physics Research Group, Pázmány P. s. 1/A, Budapest H-1117 (Hungary)

    2015-09-15

    We intend to show that transient chaos is a very appealing, but still not widely appreciated, subfield of nonlinear dynamics. Besides flashing its basic properties and giving a brief overview of the many applications, a few recent transient-chaos-related subjects are introduced in some detail. These include the dynamics of decision making, dispersion, and sedimentation of volcanic ash, doubly transient chaos of undriven autonomous mechanical systems, and a dynamical systems approach to energy absorption or explosion.

  13. The joy of transient chaos.

    Science.gov (United States)

    Tél, Tamás

    2015-09-01

    We intend to show that transient chaos is a very appealing, but still not widely appreciated, subfield of nonlinear dynamics. Besides flashing its basic properties and giving a brief overview of the many applications, a few recent transient-chaos-related subjects are introduced in some detail. These include the dynamics of decision making, dispersion, and sedimentation of volcanic ash, doubly transient chaos of undriven autonomous mechanical systems, and a dynamical systems approach to energy absorption or explosion.

  14. Nonlinear characteristics of the rotating exciter system of power plant generators in case of electricity accidents; Transientes Verhalten des rotierenden Erregersystems von Kraftwerksgeneratoren bei elektrischen Stoerfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Ataei, Nader

    2006-05-09

    Different types of exciter are used for voltage supply to the synchronous generators of power stations depending on the required power and design. The exciter system of the generator, which as a rule consists syncronous motors and commutators, is commonly modeled in conventional models by control units with nonlinear characteristics which do not give an accurate picture of the dynamic processes inside the exciter motor. It was not possible to assess the component loads of the exciter components and the physical characteristics within the exciter system. In this study, a brushless exciter for the grid-connected synchronous generator was investigated which consists of two synchronous motors as primary and secondary exciter and two commutator bridges. A dynamic simulation model was developed for calculating the interactions between the grid, generator and exciter unit in consideration of electromagnetic and galvanic coupling. For this, the normal control units were replaced by physical components of the exciter system, i.e. electric exciter motors and commutators. The study was carried out using an enhanced version of the Siemens NETOMAC software, which provided information on the loads on the exciter components in case of internal and external failures. In particular, loads in coils and commutators were calculated that could not be measured before. The findings enable more accurate dimensioning of the exciter unit making it more fail-safe, and the protective systems can be adjusted more accurately. One important result of the investigation was the identification of all dynamic processes going on between the exciter motors, commutators, generator and grid induced by external and internal failures. (orig.) [German] Zur Spannungsversorgung der Synchrongeneratoren in Kraftwerken werden je nach Leistungsanforderung und Baukonzept unterschiedliche Erregereinrichtungen verwendet. Das Erregersystem des Generators, das in der Regel aus Erregersynchronmaschinen und

  15. Transient filament stretching rheometer II

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Rasmussen, Henrik K.; Hassager, Ole

    1997-01-01

    The Lagrangian sspecification is used to simulate the transient stretching filament rheometer. Simulations are performed for dilute PIB-solutions modeled as a four mode Oldroyd-B fluid and a semidilute PIB-solution modeled as a non-linear single integral equation. The simulations are compared...

  16. Transient anisotropic magnetic field calculation

    International Nuclear Information System (INIS)

    Jesenik, Marko; Gorican, Viktor; Trlep, Mladen; Hamler, Anton; Stumberger, Bojan

    2006-01-01

    For anisotropic magnetic material, nonlinear magnetic characteristics of the material are described with magnetization curves for different magnetization directions. The paper presents transient finite element calculation of the magnetic field in the anisotropic magnetic material based on the measured magnetization curves for different magnetization directions. For the verification of the calculation method some results of the calculation are compared with the measurement

  17. Transient analyzer

    International Nuclear Information System (INIS)

    Muir, M.D.

    1975-01-01

    The design and design philosophy of a high performance, extremely versatile transient analyzer is described. This sub-system was designed to be controlled through the data acquisition computer system which allows hands off operation. Thus it may be placed on the experiment side of the high voltage safety break between the experimental device and the control room. This analyzer provides control features which are extremely useful for data acquisition from PPPL diagnostics. These include dynamic sample rate changing, which may be intermixed with multiple post trigger operations with variable length blocks using normal, peak to peak or integrate modes. Included in the discussion are general remarks on the advantages of adding intelligence to transient analyzers, a detailed description of the characteristics of the PPPL transient analyzer, a description of the hardware, firmware, control language and operation of the PPPL transient analyzer, and general remarks on future trends in this type of instrumentation both at PPPL and in general

  18. Nonlinear Source Emulator

    DEFF Research Database (Denmark)

    Nguyen-Duy, Khiem

    of a proposed NSE system with high dynamic performance. The goal of the work is to achieve a state-of-the art transient time of 10 µs. In order to produce the arbitrary nonlinear curve, the exponential function of a typical diode is used, but the diode can be replaced by other nonlinear curve reference...... of conductive common-mode current produced by the high rate of change of voltage over time (high dv/dt) at the NSE output. v/xvii The contributions of the thesis are based on the development of both units: the low Cio isolated power supply and the high dynamic performance NSE. Both units are investigated......-of-the-art dynamic performance among devices of the same kind. It also offers a complete solution for simulation of nonlinear source systems of different sizes, both in terrestrial and non-terrestrial applications. Key words: Current transformers, dc-dc power converters, hysteresis, parasitic capacitance, system...

  19. The effect of Se/Te ratio on transient absorption behavior and nonlinear absorption properties of CuIn0.7Ga0.3(Se1-xTex)2 (0 ≤ x ≤ 1) amorphous semiconductor thin films

    Science.gov (United States)

    Karatay, Ahmet; Küçüköz, Betül; Çankaya, Güven; Ates, Aytunc; Elmali, Ayhan

    2017-11-01

    The characterization of the CuInSe2 (CIS), CuInGaSe (CIGS) and CuGaSe2 (CGS) based semiconductor thin films are very important role for solar cell and various nonlinear optical applications. In this paper, the amorphous CuIn0.7Ga0.3(Se1-xTex)2 semiconductor thin films (0 ≤ x ≤ 1) were prepared with 60 nm thicknesses by using vacuum evaporation technique. The nonlinear absorption properties and ultrafast transient characteristics were investigated by using open aperture Z-scan and ultrafast pump-probe techniques. The energy bandgap values were calculated by using linear absorption spectra. The bandgap values are found to be varying from 0.67 eV to 1.25 eV for CuIn0.7Ga0.3Te2, CuIn0.7Ga0.3Se1.6Te0.4, CuIn0.7Ga0.3Se0.4Te1.6 and CuIn0.7Ga0.3Se2 thin films. The energy bandgap values decrease with increasing telluride (Te) doping ratio in mixed CuIn0.7Ga0.3(Se1-xTex)2 films. This affects nonlinear characteristics and ultrafast dynamics of amorphous thin films. Ultrafast pump-probe experiments indicated that decreasing of bandgap values with increasing the Te amount switches from the excited state absorption signals to ultrafast bleaching signals. Open aperture Z-scan experiments show that nonlinear absorption properties enhance with decreasing bandgaps values for 65 ps pulse duration at 1064 nm. Highest nonlinear absorption coefficient was found for CuIn0.7Ga0.3Te2 thin film due to having the smallest energy bandgap.

  20. Transient pseudohypoaldosteronism

    Directory of Open Access Journals (Sweden)

    Stajić Nataša

    2011-01-01

    Full Text Available Introduction. Infants with urinary tract malformations (UTM presenting with urinary tract infection (UTI are prone to develop transient type 1 pseudohypoaldosteronism (THPA1. Objective. Report on patient series with characteristics of THPA1, UTM and/or UTI and suggestions for the diagnosis and therapy. Methods. Patients underwent blood and urine electrolyte and acid-base analysis, serum aldosterosterone levels and plasma rennin activity measuring; urinalysis, urinoculture and renal ultrasound were done and medical and/or surgical therapy was instituted. Results. Hyponatraemia (120.9±5.8 mmol/L, hyperkalaemia (6.9±0.9 mmol/L, metabolic acidosis (plasma bicarbonate, 11±1.4 mmol/L, and a rise in serum creatinine levels (145±101 μmol/L were associated with inappropriately high urinary sodium (51.3±17.5 mmol/L and low potassium (14.1±5.9 mmol/L excretion. Elevated plasma aldosterone concentrations (170.4±100.5 ng/dL and the very high levels of the plasma aldosterone to potassium ratio (25.2±15.6 together with diminished urinary K/Na values (0.31±0.19 indicated tubular resistance to aldosterone. After institution of appropriate medical and/or surgical therapy, serum electrolytes, creatinine, and acid-base balance were normalized. Imaging studies showed ureteropyelic or ureterovesical junction obstruction in 3 and 2 patients, respectively, posterior urethral valves in 3, and normal UT in 1 patient. According to our knowledge, this is the first report on THPA1 in the Serbian literature. Conclusion. Male infants with hyponatraemia, hyperkalaemia and metabolic acidosis have to have their urine examined and the renal ultrasound has to be done in order to avoid both, the underdiagnosis of THPA1 and the inappropriate medication.

  1. Nonlinear optics

    International Nuclear Information System (INIS)

    Boyd, R.W.

    1992-01-01

    Nonlinear optics is the study of the interaction of intense laser light with matter. This book is a textbook on nonlinear optics at the level of a beginning graduate student. The intent of the book is to provide an introduction to the field of nonlinear optics that stresses fundamental concepts and that enables the student to go on to perform independent research in this field. This book covers the areas of nonlinear optics, quantum optics, quantum electronics, laser physics, electrooptics, and modern optics

  2. Nonlinear optics

    CERN Document Server

    Bloembergen, Nicolaas

    1996-01-01

    Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe

  3. Transient Tsunamis in Lakes

    Science.gov (United States)

    Couston, L.; Mei, C.; Alam, M.

    2013-12-01

    A large number of lakes are surrounded by steep and unstable mountains with slopes prone to failure. As a result, landslides are likely to occur and impact water sitting in closed reservoirs. These rare geological phenomena pose serious threats to dam reservoirs and nearshore facilities because they can generate unexpectedly large tsunami waves. In fact, the tallest wave experienced by contemporary humans occurred because of a landslide in the narrow bay of Lituya in 1958, and five years later, a deadly landslide tsunami overtopped Lake Vajont's dam, flooding and damaging villages along the lakefront and in the Piave valley. If unstable slopes and potential slides are detected ahead of time, inundation maps can be drawn to help people know the risks, and mitigate the destructive power of the ensuing waves. These maps give the maximum wave runup height along the lake's vertical and sloping boundaries, and can be obtained by numerical simulations. Keeping track of the moving shorelines along beaches is challenging in classical Eulerian formulations because the horizontal extent of the fluid domain can change over time. As a result, assuming a solid slide and nonbreaking waves, here we develop a nonlinear shallow-water model equation in the Lagrangian framework to address the problem of transient landslide-tsunamis. In this manner, the shorelines' three-dimensional motion is part of the solution. The model equation is hyperbolic and can be solved numerically by finite differences. Here, a 4th order Runge-Kutta method and a compact finite-difference scheme are implemented to integrate in time and spatially discretize the forced shallow-water equation in Lagrangian coordinates. The formulation is applied to different lake and slide geometries to better understand the effects of the lake's finite lengths and slide's forcing mechanism on the generated wavefield. Specifically, for a slide moving down a plane beach, we show that edge-waves trapped by the shoreline and free

  4. Current interruption transients calculation

    CERN Document Server

    Peelo, David F

    2014-01-01

    Provides an original, detailed and practical description of current interruption transients, origins, and the circuits involved, and how they can be calculated Current Interruption Transients Calculationis a comprehensive resource for the understanding, calculation and analysis of the transient recovery voltages (TRVs) and related re-ignition or re-striking transients associated with fault current interruption and the switching of inductive and capacitive load currents in circuits. This book provides an original, detailed and practical description of current interruption transients, origins,

  5. Nonlinear Science

    CERN Document Server

    Yoshida, Zensho

    2010-01-01

    This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl

  6. Nonlinear oscillations

    CERN Document Server

    Nayfeh, Ali Hasan

    1995-01-01

    Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim

  7. Nonlinear systems

    CERN Document Server

    Palmero, Faustino; Lemos, M; Sánchez-Rey, Bernardo; Casado-Pascual, Jesús

    2018-01-01

    This book presents an overview of the most recent advances in nonlinear science. It provides a unified view of nonlinear properties in many different systems and highlights many  new developments. While volume 1 concentrates on mathematical theory and computational techniques and challenges, which are essential for the study of nonlinear science, this second volume deals with nonlinear excitations in several fields. These excitations can be localized and transport energy and matter in the form of breathers, solitons, kinks or quodons with very different characteristics, which are discussed in the book. They can also transport electric charge, in which case they are known as polarobreathers or solectrons. Nonlinear excitations can influence function and structure in biology, as for example, protein folding. In crystals and other condensed matter, they can modify transport properties, reaction kinetics and interact with defects. There are also engineering applications in electric lattices, Josephson junction a...

  8. Fast relaxation transients in a kicked damped oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Urquizu, Merce [Laboratori d' Estudis Geofisics ' Eduard Fontsere' , IEC, Barcelona (Spain); Correig, Antoni M. [Departament d' Astronomical i Meteorologia, Laboratori d' Estudis Geofisics Eduard Fontsere, UB Marti Franques 1, E-08028 Barcelona (Spain) and Laboratori d' Estudis Geofisics ' Eduard Fontsere' , IEC, Barcelona (Spain)]. E-mail: ton.correig@am.ub.es

    2007-08-15

    Although nonlinear relaxation transients are very common in nature, very few studies are devoted to its characterization, mainly due to its short time duration. In this paper, we present a study about the nature of relaxation transients in a kicked damped oscillator, in which transients are generated in terms of continuous fast changes in the parameters of the system. We have found that transient dynamics can be described, rather than in terms of bifurcation dynamics, in terms of instantaneous stretching factors, which are related to the stability of fixed points of the corresponding stroboscopic maps.

  9. Transient drainage summary report

    International Nuclear Information System (INIS)

    1996-09-01

    This report summarizes the history of transient drainage issues on the Uranium Mill Tailings Remedial Action (UMTRA) Project. It defines and describes the UMTRA Project disposal cell transient drainage process and chronicles UMTRA Project treatment of the transient drainage phenomenon. Section 4.0 includes a conceptual cross section of each UMTRA Project disposal site and summarizes design and construction information, the ground water protection strategy, and the potential for transient drainage

  10. Nonlinear optics

    CERN Document Server

    Boyd, Robert W

    2013-01-01

    Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q

  11. PSH Transient Simulation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-21

    PSH Transient Simulation Modeling presentation from the WPTO FY14 - FY16 Peer Review. Transient effects are an important consideration when designing a PSH system, yet numerical techniques for hydraulic transient analysis still need improvements for adjustable-speed (AS) reversible pump-turbine applications.

  12. Nonlinear systems

    National Research Council Canada - National Science Library

    Drazin, P. G

    1992-01-01

    This book is an introduction to the theories of bifurcation and chaos. It treats the solution of nonlinear equations, especially difference and ordinary differential equations, as a parameter varies...

  13. Nonlinear analysis

    CERN Document Server

    Gasinski, Leszek

    2005-01-01

    Hausdorff Measures and Capacity. Lebesgue-Bochner and Sobolev Spaces. Nonlinear Operators and Young Measures. Smooth and Nonsmooth Analysis and Variational Principles. Critical Point Theory. Eigenvalue Problems and Maximum Principles. Fixed Point Theory.

  14. Nonlinear flow model for well production in an underground formation

    Directory of Open Access Journals (Sweden)

    J. C. Guo

    2013-05-01

    Full Text Available Fluid flow in underground formations is a nonlinear process. In this article we modelled the nonlinear transient flow behaviour of well production in an underground formation. Based on Darcy's law and material balance equations, we used quadratic pressure gradients to deduce diffusion equations and discuss the origins of nonlinear flow issues. By introducing an effective-well-radius approach that considers skin factor, we established a nonlinear flow model for both gas and liquid (oil or water. The liquid flow model was solved using a semi-analytical method, while the gas flow model was solved using numerical simulations because the diffusion equation of gas flow is a stealth function of pressure. For liquid flow, a series of standard log-log type curves of pressure transients were plotted and nonlinear transient flow characteristics were analyzed. Qualitative and quantitative analyses were used to compare the solutions of the linear and nonlinear models. The effect of nonlinearity upon pressure transients should not be ignored. For gas flow, pressure transients were simulated and compared with oil flow under the same formation and well conditions, resulting in the conclusion that, under the same volume rate production, oil wells demand larger pressure drops than gas wells. Comparisons between theoretical data and field data show that nonlinear models will describe fluid flow in underground formations realistically and accurately.

  15. Nonlinear Relaxation in Population Dynamics

    Science.gov (United States)

    Cirone, Markus A.; de Pasquale, Ferdinando; Spagnolo, Bernardo

    We analyze the nonlinear relaxation of a complex ecosystem composed of many interacting species. The ecological system is described by generalized Lotka-Volterra equations with a multiplicative noise. The transient dynamics is studied in the framework of the mean field theory and with random interaction between the species. We focus on the statistical properties of the asymptotic behaviour of the time integral of the ith population and on the distribution of the population and of the local field.

  16. Simulation of Thermal Transients using CSMP

    International Nuclear Information System (INIS)

    Konuk, A.A.

    1981-01-01

    A mathematical model has been developed to simulate thermal transientes for the Hellum Loop of the 'Instituto de Pesquisas Energeticas e Nuleares', Sao Paulo. The model is based on the energy equation applied to the various components of the loop. The non-linear system of first order ordinary differential equation and algebraic equations has been solved using IBM'S 'System/360-Continuous System Modeling Program-CSMP'. The model has been tested satisfactory with experimental results. (Author) [pt

  17. Dynamic nonlinear analysis of shells of revolution

    International Nuclear Information System (INIS)

    Riesemann, W.A. von; Stricklin, J.A.; Haisler, W.E.

    1975-01-01

    Over the past few years a series of finite element computer programs have been developed at Texas A and M University for the static and dynamic nonlinear analysis of shells of revolution. This paper discusses one of these, DYNAPLAS, which is a program for the transient response of ring stiffened shells of revolution subjected to either asymmetric initial velocities or to asymmetric pressure loadings. Both material and geometric nonlinearities may be considered. (Auth.)

  18. Nonlinear optimization

    CERN Document Server

    Ruszczynski, Andrzej

    2011-01-01

    Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates the theory and the methods of nonlinear optimization in a unified, clear, and mathematically rigorous fashion, with detailed and easy-to-follow proofs illustrated by numerous examples and figures. The book covers convex analysis, the theory of optimality conditions, duality theory, and numerical methods for solving unconstrained and constrained optimization problems. It addresses not only classical material but also modern top...

  19. TRANSIENT ELECTRONICS CATEGORIZATION

    Science.gov (United States)

    2017-08-24

    AFRL-RY-WP-TR-2017-0169 TRANSIENT ELECTRONICS CATEGORIZATION Dr. Burhan Bayraktaroglu Devices for Sensing Branch Aerospace Components & Subsystems...SUBTITLE TRANSIENT ELECTRONICS CATEGORIZATION 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER N/A 6. AUTHOR(S) Dr. Burhan...88ABW-2017-3747, Clearance Date 31 July 2017. Paper contains color. 14. ABSTRACT Transient electronics is an emerging technology area that lacks proper

  20. Nonlinear dynamical phenomena in liquid crystals

    International Nuclear Information System (INIS)

    Wang, X.Y.; Sun, Z.M.

    1988-09-01

    Because of the existence of the orientational order and anisotropy in liquid crystals, strong nonlinear phenomena and singular behaviors, such as solitary wave, transient periodic structure, chaos, fractal and viscous fingering, can be excited by a very small disturbance. These phenomena and behaviors are in connection with physics, biology and mathematics. 12 refs, 6 figs

  1. Spectroscopic classification of transients

    DEFF Research Database (Denmark)

    Stritzinger, M. D.; Fraser, M.; Hummelmose, N. N.

    2017-01-01

    We report the spectroscopic classification of several transients based on observations taken with the Nordic Optical Telescope (NOT) equipped with ALFOSC, over the nights 23-25 August 2017.......We report the spectroscopic classification of several transients based on observations taken with the Nordic Optical Telescope (NOT) equipped with ALFOSC, over the nights 23-25 August 2017....

  2. Transient cognitive dynamics, metastability, and decision making.

    Directory of Open Access Journals (Sweden)

    Mikhail I Rabinovich

    2008-05-01

    Full Text Available The idea that cognitive activity can be understood using nonlinear dynamics has been intensively discussed at length for the last 15 years. One of the popular points of view is that metastable states play a key role in the execution of cognitive functions. Experimental and modeling studies suggest that most of these functions are the result of transient activity of large-scale brain networks in the presence of noise. Such transients may consist of a sequential switching between different metastable cognitive states. The main problem faced when using dynamical theory to describe transient cognitive processes is the fundamental contradiction between reproducibility and flexibility of transient behavior. In this paper, we propose a theoretical description of transient cognitive dynamics based on the interaction of functionally dependent metastable cognitive states. The mathematical image of such transient activity is a stable heteroclinic channel, i.e., a set of trajectories in the vicinity of a heteroclinic skeleton that consists of saddles and unstable separatrices that connect their surroundings. We suggest a basic mathematical model, a strongly dissipative dynamical system, and formulate the conditions for the robustness and reproducibility of cognitive transients that satisfy the competing requirements for stability and flexibility. Based on this approach, we describe here an effective solution for the problem of sequential decision making, represented as a fixed time game: a player takes sequential actions in a changing noisy environment so as to maximize a cumulative reward. As we predict and verify in computer simulations, noise plays an important role in optimizing the gain.

  3. Summary of transient analysis

    International Nuclear Information System (INIS)

    Saha, P.

    1984-01-01

    This chapter reviews the papers on the pressurized water reactor (PWR) and boiling water reactor (BWR) transient analyses given at the American Nuclear Society Topical Meeting on Anticipated and Abnormal Plant Transients in Light Water Reactors. Most of the papers were based on the systems calculations performed using the TRAC-PWR, RELAP5 and RETRAN codes. The status of the nuclear industry in the code applications area is discussed. It is concluded that even though comprehensive computer codes are available for plant transient analysis, there is still a need to exercise engineering judgment, simpler tools and even hand calculations to supplement these codes

  4. Nonlinear Elliptic Differential Equations with Multivalued Nonlinearities

    Indian Academy of Sciences (India)

    In this paper we study nonlinear elliptic boundary value problems with monotone and nonmonotone multivalued nonlinearities. First we consider the case of monotone nonlinearities. In the first result we assume that the multivalued nonlinearity is defined on all R R . Assuming the existence of an upper and of a lower ...

  5. Transient heat transfer in longitudinal fins of various profiles with ...

    Indian Academy of Sciences (India)

    Transient heat transfer through a longitudinal fin of various profiles is studied. The thermal conductivity and heat transfer coefficients are assumed to be temperature dependent. The resulting partial differential equation is highly nonlinear. Classical Lie point symmetry methods are employed and some reductions are ...

  6. PWR systems transient analysis

    International Nuclear Information System (INIS)

    Kennedy, M.F.; Peeler, G.B.; Abramson, P.B.

    1985-01-01

    Analysis of transients in pressurized water reactor (PWR) systems involves the assessment of the response of the total plant, including primary and secondary coolant systems, steam piping and turbine (possibly including the complete feedwater train), and various control and safety systems. Transient analysis is performed as part of the plant safety analysis to insure the adequacy of the reactor design and operating procedures and to verify the applicable plant emergency guidelines. Event sequences which must be examined are developed by considering possible failures or maloperations of plant components. These vary in severity (and calculational difficulty) from a series of normal operational transients, such as minor load changes, reactor trips, valve and pump malfunctions, up to the double-ended guillotine rupture of a primary reactor coolant system pipe known as a Large Break Loss of Coolant Accident (LBLOCA). The focus of this paper is the analysis of all those transients and accidents except loss of coolant accidents

  7. Transients: The regulator's view

    International Nuclear Information System (INIS)

    Sheron, B.W.; Speis, T.P.

    1984-01-01

    This chapter attempts to clarify the basis for the regulator's concerns for transient events. Transients are defined as both anticipated operational occurrences and postulated accidents. Recent operational experience, supplemented by improved probabilistic risk analysis methods, has demonstrated that non-LOCA transient events can be significant contributors to overall risk. Topics considered include lessons learned from events and issues, the regulations governing plant transients, multiple failures, different failure frequencies, operator errors, and public pressure. It is concluded that the formation of Owners Groups and Regulatory Response Groups within the owners groups are positive signs of the industry's concern for safety and responsible dealing with the issues affecting both the US NRC and the industry

  8. Transient multivariable sensor evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Vilim, Richard B.; Heifetz, Alexander

    2017-02-21

    A method and system for performing transient multivariable sensor evaluation. The method and system includes a computer system for identifying a model form, providing training measurement data, generating a basis vector, monitoring system data from sensor, loading the system data in a non-transient memory, performing an estimation to provide desired data and comparing the system data to the desired data and outputting an alarm for a defective sensor.

  9. Transient Seepage for Levee Engineering Analyses

    Science.gov (United States)

    Tracy, F. T.

    2017-12-01

    Historically, steady-state seepage analyses have been a key tool for designing levees by practicing engineers. However, with the advances in computer modeling, transient seepage analysis has become a potentially viable tool. A complication is that the levees usually have partially saturated flow, and this is significantly more complicated in transient flow. This poster illustrates four elements of our research in partially saturated flow relating to the use of transient seepage for levee design: (1) a comparison of results from SEEP2D, SEEP/W, and SLIDE for a generic levee cross section common to the southeastern United States; (2) the results of a sensitivity study of varying saturated hydraulic conductivity, the volumetric water content function (as represented by van Genuchten), and volumetric compressibility; (3) a comparison of when soils do and do not exhibit hysteresis, and (4) a description of proper and improper use of transient seepage in levee design. The variables considered for the sensitivity and hysteresis studies are pore pressure beneath the confining layer at the toe, the flow rate through the levee system, and a levee saturation coefficient varying between 0 and 1. Getting results for SEEP2D, SEEP/W, and SLIDE to match proved more difficult than expected. After some effort, the results matched reasonably well. Differences in results were caused by various factors, including bugs, different finite element meshes, different numerical formulations of the system of nonlinear equations to be solved, and differences in convergence criteria. Varying volumetric compressibility affected the above test variables the most. The levee saturation coefficient was most affected by the use of hysteresis. The improper use of pore pressures from a transient finite element seepage solution imported into a slope stability computation was found to be the most grievous mistake in using transient seepage in the design of levees.

  10. Theoretical basis for a transient thermal elastic-plastic stress analysis of nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hsu, T.R.; Bertels, A.W.M.; Banerjee, S.; Harrison, W.C.

    1976-07-01

    This report presents the theoretical basis for a transient thermal elastic-plastic stress analysis of a nuclear reactor fuel element subject to severe transient thermo-mechanical loading. A finite element formulation is used for both the non-linear stress analysis and thermal analysis. These two major components are linked together to form an integrated program capable of predicting fuel element transient behaviour in two dimensions. Specific case studies are presented to illustrate capabilities of the analysis. (author)

  11. Modelling structural systems for transient response analysis

    International Nuclear Information System (INIS)

    Melosh, R.J.

    1975-01-01

    This paper introduces and reports success of a direct means of determining the time periods in which a structural system behaves as a linear system. Numerical results are based on post fracture transient analyses of simplified nuclear piping systems. Knowledge of the linear response ranges will lead to improved analysis-test correlation and more efficient analyses. It permits direct use of data from physical tests in analysis and simplication of the analytical model and interpretation of its behavior. The paper presents a procedure for deducing linearity based on transient responses. Given the forcing functions and responses of discrete points of the system at various times, the process produces evidence of linearity and quantifies an adequate set of equations of motion. Results of use of the process with linear and nonlinear analyses of piping systems with damping illustrate its success. Results cover the application to data from mathematical system responses. The process is successfull with mathematical models. In loading ranges in which all modes are excited, eight digit accuracy of predictions are obtained from the equations of motion deduced. Small changes (less than 0.01%) in the norm of the transfer matrices are produced by manipulation errors for linear systems yielding evidence that nonlinearity is easily distinguished. Significant changes (greater than five %) are coincident with relatively large norms of the equilibrium correction vector in nonlinear analyses. The paper shows that deducing linearity and, when admissible, quantifying linear equations of motion from transient response data for piping systems can be achieved with accuracy comparable to that of response data

  12. Transient Nonlinear Optical Properties of Thin Film Titanium Nitride

    Science.gov (United States)

    2017-03-23

    13] • Chemical composition • Crystal structure and lattice parameters • Defect structure This tuneability will be useful in future engineering ...Nitride SarahKatie Thomas Follow this and additional works at: https://scholar.afit.edu/etd Part of the Materials Science and Engineering Commons This... Thesis is brought to you for free and open access by AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized

  13. Nonlinear Elasticity

    Science.gov (United States)

    Fu, Y. B.; Ogden, R. W.

    2001-05-01

    This collection of papers by leading researchers in the field of finite, nonlinear elasticity concerns itself with the behavior of objects that deform when external forces or temperature gradients are applied. This process is extremely important in many industrial settings, such as aerospace and rubber industries. This book covers the various aspects of the subject comprehensively with careful explanations of the basic theories and individual chapters each covering a different research direction. The authors discuss the use of symbolic manipulation software as well as computer algorithm issues. The emphasis is placed firmly on covering modern, recent developments, rather than the very theoretical approach often found. The book will be an excellent reference for both beginners and specialists in engineering, applied mathematics and physics.

  14. Nonlinear resonances

    CERN Document Server

    Rajasekar, Shanmuganathan

    2016-01-01

    This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...

  15. Transient flow combustion

    Science.gov (United States)

    Tacina, R. R.

    1984-01-01

    Non-steady combustion problems can result from engine sources such as accelerations, decelerations, nozzle adjustments, augmentor ignition, and air perturbations into and out of the compressor. Also non-steady combustion can be generated internally from combustion instability or self-induced oscillations. A premixed-prevaporized combustor would be particularly sensitive to flow transients because of its susceptability to flashback-autoignition and blowout. An experimental program, the Transient Flow Combustion Study is in progress to study the effects of air and fuel flow transients on a premixed-prevaporized combustor. Preliminary tests performed at an inlet air temperature of 600 K, a reference velocity of 30 m/s, and a pressure of 700 kPa. The airflow was reduced to 1/3 of its original value in a 40 ms ramp before flashback occurred. Ramping the airflow up has shown that blowout is more sensitive than flashback to flow transients. Blowout occurred with a 25 percent increase in airflow (at a constant fuel-air ratio) in a 20 ms ramp. Combustion resonance was found at some conditions and may be important in determining the effects of flow transients.

  16. Transient from crystallization to fractal growth observed in both boar bile and SnI sub 2 vapour

    CERN Document Server

    Zhang Ji Zhong; Xie An Jian

    2003-01-01

    A visual transient of the growth mechanism from crystallization to fractal growth was observed clearly in a drop of boar bile. The growing crystals were replaced by treelike fractal structures during solidification of the sample. It is fascinating to compare the transient with the result observed in SnI sub 2 vapour. They were completely identical, and revealed that under certain conditions a linear growth could be transferred spontaneously into nonlinear growth. It may be possible to consider the transient as a 'bridge' between linear and nonlinear growth, and to develop a quantitative expression of transient dynamics.

  17. A new transiently chaotic flow with ellipsoid equilibria

    Science.gov (United States)

    Panahi, Shirin; Aram, Zainab; Jafari, Sajad; Pham, Viet-Thanh; Volos, Christos; Rajagopal, Karthikeyan

    2018-03-01

    In this article, a simple autonomous transiently chaotic flow with cubic nonlinearities is proposed. This system represents some unusual features such as having a surface of equilibria. We shall describe some dynamical properties and behaviours of this system in terms of eigenvalue structures, bifurcation diagrams, time series, and phase portraits. Various behaviours of this system such as periodic and transiently chaotic dynamics can be shown by setting special parameters in proper values. Our system belongs to a newly introduced category of transiently chaotic systems: systems with hidden attractors. Transiently chaotic behaviour of our proposed system has been implemented and tested by the OrCAD-PSpise software. We have found a proper qualitative similarity between circuit and simulation results.

  18. Transient hardened power FETs

    International Nuclear Information System (INIS)

    Dawes, W.R. Jr.; Fischer, T.A.; Huang, C.C.C.; Meyer, W.J.; Smith, C.S.; Blanchard, R.A.; Fortier, T.J.

    1986-01-01

    N-channel power FETs offer significant advantages in power conditioning circuits. Similiarily to all MOS technologies, power FET devices are vulnerable to ionizing radiation, and are particularily susceptible to burn-out in high dose rate irradiations (>1E10 rads(Si)/sec.), which precludes their use in many military environments. This paper will summarize the physical mechanisms responsible for burn-out, and discuss various fabrication techniques designed to improve the transient hardness of power FETs. Power FET devices were fabricated with several of these techniques, and data will be presented which demonstrates that transient hardness levels in excess of 1E12 rads(Si)/sec. are easily achievable

  19. Transients in the Vivitron

    International Nuclear Information System (INIS)

    Cooke, C.M.; Frick, G.; Roumie, M.

    1993-01-01

    Electrical measurements are presented for the construction of a model for the study of transients in the Vivitron. Observation of the transmission of electrical pulses in the porticos clearly shows transmission-line behaviour. Measurements of the vector impedance of the outer porticos show the same transmission-line properties, but also gives a description of the modification from a pure transmission line due to the circular electrodes. The results of this investigation should allow the construction of a computer model which predicts the evolution of the transients in the case of a spark in the Vivitron. (orig.)

  20. A split operator method for transient problems

    International Nuclear Information System (INIS)

    Belytschko, T.B.

    1983-01-01

    Numerous techniques have been developed for improving the computational efficiency of transient analysis: mesh partitioning, subcycling procedures and operator splitting methods. In mesh partitioning methods, the model is divided into subdomains which are integrated by different time integrators, typically implicit and explicit. Any stiff portions of the model are integrated by the implicit operator so that the size of the time step can be increased. In subcycling procedures, the stiff portions are integrated by smaller time steps, yielding similar benefits. However, in models for which the governing partial differential equations are basically of a parabolic character, explicit methods can become quite expensive for refined models because the size of the stable time step decreases with the square of the minimum element dimension. Thus explicit methods, whether employed alone or with partitioning or subcycling, have inherent limitations in these problems. A new procedure is here described for the element-by-element semi-implicit method of Hughes and coworkers which requires the solution of only small systems of equations. This procedure is described for a family of uniform gradient or strain elements which are widely used in nonlinear transient analysis. The diffusion equation and the equations of motion for both shells and continua have been treated, but only the former is considered herein. Results are presented for several examples which show the potential of this method for improving the efficiency of a large-scale linear and nonlinear computations. (orig./RW)

  1. [Nonlinear magnetohydrodynamics

    International Nuclear Information System (INIS)

    1994-01-01

    Resistive MHD equilibrium, even for small resistivity, differs greatly from ideal equilibrium, as do the dynamical consequences of its instabilities. The requirement, imposed by Faraday's law, that time independent magnetic fields imply curl-free electric fields, greatly restricts the electric fields allowed inside a finite-resistivity plasma. If there is no flow and the implications of the Ohm's law are taken into account (and they need not be, for ideal equilibria), the electric field must equal the resistivity times the current density. The vanishing of the divergence of the current density then provides a partial differential equation which, together with boundary conditions, uniquely determines the scalar potential, the electric field, and the current density, for any given resistivity profile. The situation parallels closely that of driven shear flows in hydrodynamics, in that while dissipative steady states are somewhat more complex than ideal ones, there are vastly fewer of them to consider. Seen in this light, the vast majority of ideal MHD equilibria are just irrelevant, incapable of being set up in the first place. The steady state whose stability thresholds and nonlinear behavior needs to be investigated ceases to be an arbitrary ad hoc exercise dependent upon the whim of the investigator, but is determined by boundary conditions and choice of resistivity profile

  2. Transient Heat Conduction

    DEFF Research Database (Denmark)

    Rode, Carsten

    1998-01-01

    Analytical theory of transient heat conduction.Fourier's law. General heat conducation equation. Thermal diffusivity. Biot and Fourier numbers. Lumped analysis and time constant. Semi-infinite body: fixed surface temperature, convective heat transfer at the surface, or constant surface heat flux...

  3. Transient cavitation in pipelines

    NARCIS (Netherlands)

    Kranenburg, C.

    1974-01-01

    The aim of the present study is to set up a one-dimensional mathematical model, which describes the transient flow in pipelines, taking into account the influence of cavitation and free gas. The flow will be conceived of as a three-phase flow of the liquid, its vapour and non-condensible gas. The

  4. Compressive Transient Imaging

    KAUST Repository

    Sun, Qilin

    2017-04-01

    High resolution transient/3D imaging technology is of high interest in both scientific research and commercial application. Nowadays, all of the transient imaging methods suffer from low resolution or time consuming mechanical scanning. We proposed a new method based on TCSPC and Compressive Sensing to achieve a high resolution transient imaging with a several seconds capturing process. Picosecond laser sends a serious of equal interval pulse while synchronized SPAD camera\\'s detecting gate window has a precise phase delay at each cycle. After capturing enough points, we are able to make up a whole signal. By inserting a DMD device into the system, we are able to modulate all the frames of data using binary random patterns to reconstruct a super resolution transient/3D image later. Because the low fill factor of SPAD sensor will make a compressive sensing scenario ill-conditioned, We designed and fabricated a diffractive microlens array. We proposed a new CS reconstruction algorithm which is able to denoise at the same time for the measurements suffering from Poisson noise. Instead of a single SPAD senor, we chose a SPAD array because it can drastically reduce the requirement for the number of measurements and its reconstruction time. Further more, it not easy to reconstruct a high resolution image with only one single sensor while for an array, it just needs to reconstruct small patches and a few measurements. In this thesis, we evaluated the reconstruction methods using both clean measurements and the version corrupted by Poisson noise. The results show how the integration over the layers influence the image quality and our algorithm works well while the measurements suffer from non-trival Poisson noise. It\\'s a breakthrough in the areas of both transient imaging and compressive sensing.

  5. Nonlinear dynamics new directions models and applications

    CERN Document Server

    Ugalde, Edgardo

    2015-01-01

    This book, along with its companion volume, Nonlinear Dynamics New Directions: Theoretical Aspects, covers topics ranging from fractal analysis to very specific applications of the theory of dynamical systems to biology. This second volume contains mostly new applications of the theory of dynamical systems to both engineering and biology. The first volume is devoted to fundamental aspects and includes a number of important new contributions as well as some review articles that emphasize new development prospects. The topics addressed in the two volumes include a rigorous treatment of fluctuations in dynamical systems, topics in fractal analysis, studies of the transient dynamics in biological networks, synchronization in lasers, and control of chaotic systems, among others. This book also: ·         Develops applications of nonlinear dynamics on a diversity of topics such as patterns of synchrony in neuronal networks, laser synchronization, control of chaotic systems, and the study of transient dynam...

  6. Transient birefringence effects in electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Parshkov, O M

    2015-01-01

    We report the results of numerical modelling of transient birefringence that arises as a result of electromagnetically induced transparency on degenerate quantum transitions between the states with J = 0, 1 and 2 in the presence of the Doppler broadening of spectral lines. It is shown that in the case of a linearly polarised control field, the effect of transient birefringence leads to a decay of the input circularly polarised probe pulse into separate linearly polarised pulses inside a medium. In the case of a circularly polarised control field, the effect of transient birefringence manifests itself in a decay of the input linearly polarised probe pulse into separate circularly polarised pulses. It is shown that the distance that a probe pulse has to pass in a medium before decaying into subpulses is considerably greater in the first case than in the second. The influence of the input probe pulse power and duration on the process of spatial separation into individual pulses inside a medium is studied. A qualitative analysis of the obtained results is presented. (nonlinear optical phenomena)

  7. Nonlinear beam mechanics

    NARCIS (Netherlands)

    Westra, H.J.R.

    2012-01-01

    In this Thesis, nonlinear dynamics and nonlinear interactions are studied from a micromechanical point of view. Single and doubly clamped beams are used as model systems where nonlinearity plays an important role. The nonlinearity also gives rise to rich dynamic behavior with phenomena like

  8. Transient osteoporosis of hip

    Directory of Open Access Journals (Sweden)

    Mahesh M Choudhary

    2015-01-01

    Full Text Available We report a case of transient osteoporosis of the hip (TOH in a 50-year-old man including the clinical presentation, diagnostic studies, management, and clinical progress. TOH is a rare self-limiting condition that typically affects middle-aged men or, less frequently, women in the third trimester of pregnancy. Affected individuals present clinically with acute hip pain, limping gait, and limited ranges of hip motion. TOH may begin spontaneously or after a minor trauma. Radiographs are typically unremarkable but magnetic resonance (MR imaging studies yield findings consistent with bone marrow edema. TOH is referred to as regional migratory osteoporosis (RMO if it travels to other joints or the contralateral hip. TOH often resembles osteonecrosis but the two conditions must be differentiated due to different prognoses and management approaches. The term TOH is often used interchangeably and synonymously with transient bone marrow edema (TBME.

  9. Fractional analysis for nonlinear electrical transmission line and nonlinear Schroedinger equations with incomplete sub-equation

    Science.gov (United States)

    Fendzi-Donfack, Emmanuel; Nguenang, Jean Pierre; Nana, Laurent

    2018-02-01

    We use the fractional complex transform with the modified Riemann-Liouville derivative operator to establish the exact and generalized solutions of two fractional partial differential equations. We determine the solutions of fractional nonlinear electrical transmission lines (NETL) and the perturbed nonlinear Schroedinger (NLS) equation with the Kerr law nonlinearity term. The solutions are obtained for the parameters in the range (0<α≤1) of the derivative operator and we found the traditional solutions for the limiting case of α =1. We show that according to the modified Riemann-Liouville derivative, the solutions found can describe physical systems with memory effect, transient effects in electrical systems and nonlinear transmission lines, and other systems such as optical fiber.

  10. Stability of Ignition Transients

    OpenAIRE

    V.E. Zarko

    1991-01-01

    The problem of ignition stability arises in the case of the action of intense external heat stimuli when, resulting from the cut-off of solid substance heating, momentary ignition is followed by extinction. Physical pattern of solid propellant ignition is considered and ignition criteria available in the literature are discussed. It is shown that the above mentioned problem amounts to transient burning at a given arbitrary temperature distribution in the condensed phase. A brief survey...

  11. Transient FDTD simulation validation

    OpenAIRE

    Jauregui Tellería, Ricardo; Riu Costa, Pere Joan; Silva Martínez, Fernando

    2010-01-01

    In computational electromagnetic simulations, most validation methods have been developed until now to be used in the frequency domain. However, the EMC analysis of the systems in the frequency domain many times is not enough to evaluate the immunity of current communication devices. Based on several studies, in this paper we propose an alternative method of validation of the transients in time domain allowing a rapid and objective quantification of the simulations results.

  12. MHD aspects of coronal transients

    International Nuclear Information System (INIS)

    Anzer, U.

    1979-10-01

    If one defines coronal transients as events which occur in the solar corona on rapid time scales (< approx. several hours) then one would have to include a large variety of solar phenomena: flares, sprays, erupting prominences, X-ray transients, white light transients, etc. Here we shall focus our attention on the latter two phenomena. (orig.) 891 WL/orig. 892 RDG

  13. Transient Angle Stability Analysis of Grid-Connected Converters with the First-order Active Power Loop

    DEFF Research Database (Denmark)

    Wu, Heng; Wang, Xiongfei

    2018-01-01

    . To tackle this challenge, this paper employs the phase portrait to analyze the transient stability of power converters, and it is found that the better transient stability performance can be achieved if the grid-connected converters are controlled as the first-order nonlinear system. Simulations...

  14. Ultrafast Degenerate Transient Lens Spectroscopy in Semiconductor Nanosctructures

    Directory of Open Access Journals (Sweden)

    Leontyev A.V.

    2015-01-01

    Full Text Available We report the non-resonant excitation and probing of the nonlinear refractive index change in bulk semiconductors and semiconductor quantum dots through degenerate transient lens spectroscopy. The signal oscillates at the center laser field frequency, and the envelope of the former in quantum dots is distinctly different from the one in bulk sample. We discuss the applicability of this technique for polarization state probing in semiconductor media with femtosecond temporal resolution.

  15. Magnetic transients in flares

    International Nuclear Information System (INIS)

    Zirin, H.; Tanaka, K.

    1981-01-01

    We present data on magnetic transients (mgtr's) observed in flares on 1980 July 1 and 5 with Big Bear videomagnetograph (VMG). The 1980 July 1 event was a white light flare in which a strong bipolar mgtr was observed, and a definite change in the sunspots occurred at the time of the flare. In the 1980 July 5 flare, a mgtr was observed in only one polarity, and, although no sunspot changes occurred simultaneous with the flare, major spot changes occurred in a period of hours

  16. Familial Transient Global Amnesia

    Directory of Open Access Journals (Sweden)

    R.Rhys Davies

    2012-12-01

    Full Text Available Following an episode of typical transient global amnesia (TGA, a female patient reported similar clinical attacks in 2 maternal aunts. Prior reports of familial TGA are few, and no previous account of affected relatives more distant than siblings or parents was discovered in a literature survey. The aetiology of familial TGA is unknown. A pathophysiological mechanism akin to that in migraine attacks, comorbidity reported in a number of the examples of familial TGA, is one possibility. The study of familial TGA cases might facilitate the understanding of TGA aetiology.

  17. Self Referencing Heterodyne Transient Grating Spectroscopy with Short Wavelength

    Directory of Open Access Journals (Sweden)

    Jakob Grilj

    2015-04-01

    Full Text Available Heterodyning by a phase stable reference electric field is a well known technique to amplify weak nonlinear signals. For short wavelength, the generation of a reference field in front of the sample is challenging because of a lack of suitable beamsplitters. Here, we use a permanent grating which matches the line spacing of the transient grating for the creation of a phase stable reference field. The relative phase among the two can be changed by a relative translation of the permanent and transient gratings in direction orthogonal to the grating lines. We demonstrate the technique for a transient grating on a VO2 thin film and observe constructive as well as destructive interference signals.

  18. Computational scheme for transient temperature distribution in PWR vessel wall

    International Nuclear Information System (INIS)

    Dedovic, S.; Ristic, P.

    1980-01-01

    Computer code TEMPNES is a part of joint effort made in Gosa Industries in achieving the technique for structural analysis of heavy pressure vessels. Transient heat conduction problems analysis is based on finite element discretization of structures non-linear transient matrix formulation and time integration scheme as developed by Wilson (step-by-step procedure). Convection boundary conditions and the effect of heat generation due to radioactive radiation are both considered. The computation of transient temperature distributions in reactor vessel wall when the water temperature suddenly drops as a consequence of reactor cooling pump failure is presented. The vessel is treated as as axisymmetric body of revolution. The program has two finite time element options a) fixed predetermined increment and; b) an automatically optimized time increment for each step dependent on the rate of change of the nodal temperatures. (author)

  19. Transient eddy feedback and low-frequency variability

    International Nuclear Information System (INIS)

    Robinson, W.A.

    1994-01-01

    Superposed on any externally driven secular climatic change are fluctuations that arise from the internal nonlinear dynamics of the climate system. These internally generated variations may involve interactions between the atmosphere and the ocean, as in the case of El Nino, or they may arise from the dynamics of the atmosphere alone. Here we discuss the dynamics of interactions between transient eddies and lower-frequency motions in the atmosphere. The interactions between more transient and more persistent motions can be divided into two types. Nonlinear interactions among the transient motions can act as an essentially random source of low-frequency motion. The idea that the low-frequencies respond in a linear way to stochastic forcing from higher frequencies has been applied to the generation of planetary waves and to the forcing of changes in global angular momentum. In addition to stochastic coupling, there are systematic interactions, denoted feedbacks, through which the persistent motions modulate their own forcing by the transient eddies. This paper discusses the dynamics of these feedbacks

  20. Measurand transient signal suppressor

    Science.gov (United States)

    Bozeman, Richard J., Jr. (Inventor)

    1994-01-01

    A transient signal suppressor for use in a controls system which is adapted to respond to a change in a physical parameter whenever it crosses a predetermined threshold value in a selected direction of increasing or decreasing values with respect to the threshold value and is sustained for a selected discrete time interval is presented. The suppressor includes a sensor transducer for sensing the physical parameter and generating an electrical input signal whenever the sensed physical parameter crosses the threshold level in the selected direction. A manually operated switch is provided for adapting the suppressor to produce an output drive signal whenever the physical parameter crosses the threshold value in the selected direction of increasing or decreasing values. A time delay circuit is selectively adjustable for suppressing the transducer input signal for a preselected one of a plurality of available discrete suppression time and producing an output signal only if the input signal is sustained for a time greater than the selected suppression time. An electronic gate is coupled to receive the transducer input signal and the timer output signal and produce an output drive signal for energizing a control relay whenever the transducer input is a non-transient signal which is sustained beyond the selected time interval.

  1. Transient regional osteoporosis

    Directory of Open Access Journals (Sweden)

    F. Trotta

    2011-09-01

    Full Text Available Transient osteoporosis of the hip and regional migratory osteoporosis are uncommon and probably underdiagnosed bone diseases characterized by pain and functional limitation mainly affecting weight-bearing joints of the lower limbs. These conditions are usually self-limiting and symptoms tend to abate within a few months without sequelae. Routine laboratory investigations are unremarkable. Middle aged men and women during the last months of pregnancy or in the immediate post-partum period are principally affected. Osteopenia with preservation of articular space and transitory edema of the bone marrow provided by magnetic resonance imaging are common to these two conditions, so they are also known by the term regional transitory osteoporosis. The appearance of bone marrow edema is not specific to regional transitory osteoporosis but can be observed in several diseases, i.e. trauma, reflex sympathetic dystrophy, avascular osteonecrosis, infections, tumors from which it must be differentiated. The etiology of this condition is unknown. Pathogenesis is still debated in particular the relationship with reflex sympathetic dystrophy, with which regional transitory osteoporosis is often identified. The purpose of the present review is to remark on the relationship between transient osteoporosis of the hip and regional migratory osteoporosis with particular attention to the bone marrow edema pattern and relative differential diagnosis.

  2. Theory of strong-field attosecond transient absorption

    International Nuclear Information System (INIS)

    Wu, Mengxi; Chen, Shaohao; Camp, Seth; Schafer, Kenneth J; Gaarde, Mette B

    2016-01-01

    Attosecond transient absorption is one of the promising new techniques being developed to exploit the availability of sub-femtosecond extreme ultraviolet (XUV) pulses to study the dynamics of the electron on its natural time scale. The temporal resolution in a transient absorption setup comes from the control of the relative delay and coherence between pump and probe pulses, while the spectral resolution comes from the characteristic width of the features that are being probed. In this review we focus on transient absorption scenarios where an attosecond pulse of XUV radiation creates a broadband excitation that is subsequently probed by a few cycle infrared (IR) laser. Because the attosecond XUV pulses are locked to the IR field cycle, the exchange of energy in the laser–matter interaction can be studied with unprecedented precision. We focus on the transient absorption by helium atoms of XUV radiation around the first ionization threshold, where we can simultaneoulsy solve the time-dependent Schrödinger equation for the single atom response and the Maxwell wave equation for the collective response of the nonlinear medium. We use a time-domain method that allows us to treat on an equal footing all the different linear and nonlinear processes by which the medium can exchange energy with the fields. We present several simple models, based on a few-level system interacting with a strong IR field, to explain many of the novel features found in attosecond transient absorption spectrograms. These include the presence of light-induced states, which demonstrate the ability to probe the dressed states of the atom. We also present a time-domain interpretation of the resonant pulse propagation features that appear in absorption spectra in dense, macroscopic media. We close by reviewing several recent experimental results that can be explained in terms of the models we discuss. Our aim is to present a road map for understanding future attosecond transient absorption

  3. On Poisson Nonlinear Transformations

    Directory of Open Access Journals (Sweden)

    Nasir Ganikhodjaev

    2014-01-01

    Full Text Available We construct the family of Poisson nonlinear transformations defined on the countable sample space of nonnegative integers and investigate their trajectory behavior. We have proved that these nonlinear transformations are regular.

  4. Transient Analysis of a Magnetic Heat Pump

    Science.gov (United States)

    Schroeder, E. A.

    1985-01-01

    An experimental heat pump that uses a rare earth element as the refrigerant is modeled using NASTRAN. The refrigerant is a ferromagnetic metal whose temperature rises when a magnetic field is applied and falls when the magnetic field is removed. The heat pump is used as a refrigerator to remove heat from a reservoir and discharge it through a heat exchanger. In the NASTRAN model the components modeled are represented by one-dimensional ROD elements. Heat flow in the solids and fluid are analyzed. The problem is mildly nonlinear since the heat capacity of the refrigerant is temperature-dependent. One simulation run consists of a series of transient analyses, each representing one stroke of the heat pump. An auxiliary program was written that uses the results of one NASTRAN analysis to generate data for the next NASTRAN analysis.

  5. Advances in nonlinear optics

    CERN Document Server

    Chen, Xianfeng; Zeng, Heping; Guo, Qi; She, Weilong

    2015-01-01

    This book presents an overview of the state of the art of nonlinear optics from weak light nonlinear optics, ultrafast nonlinear optics to electro-optical theory and applications. Topics range from the fundamental studies of the interaction between matter and radiation to the development of devices, components, and systems of tremendous commercial interest for widespread applications in optical telecommunications, medicine, and biotechnology.

  6. Transient osteoporosis of the hip

    International Nuclear Information System (INIS)

    McWalter, Patricia; Hassan Ahmed

    2007-01-01

    Transient osteoporosis of the hip is an uncommon cause of hip pain, mostly affecting healthy middle-aged men and also women in the third trimester of pregnancy. We present a case of transient osteoporosis of the hip in a 33-year-old non-pregnant female patient. This case highlights the importance of considering a diagnosis of transient osteoporosis of the hip in patients who present with hip pain. (author)

  7. The ZTF Bright Transient Survey

    Science.gov (United States)

    Fremling, C.; Sharma, Y.; Kulkarni, S. R.; Miller, A. A.; Taggart, K.; Perley, D. A.; Gooba, A.

    2018-06-01

    As a supplement to the Zwicky Transient Facility (ZTF; ATel #11266) public alerts (ATel #11685) we plan to report (following ATel #11615) bright probable supernovae identified in the raw alert stream from the ZTF Northern Sky Survey ("Celestial Cinematography"; see Bellm & Kulkarni, 2017, Nature Astronomy 1, 71) to the Transient Name Server (https://wis-tns.weizmann.ac.il) on a daily basis; the ZTF Bright Transient Survey (BTS; see Kulkarni et al., 2018; arXiv:1710.04223).

  8. Transient Infrared Emission Spectroscopy

    Science.gov (United States)

    Jones, Roger W.; McClelland, John F.

    1989-12-01

    Transient Infrared Emission Spectroscopy (TIRES) is a new technique that reduces the occurrence of self-absorption in optically thick solid samples so that analytically useful emission spectra may be observed. Conventional emission spectroscopy, in which the sample is held at an elevated, uniform temperature, is practical only for optically thin samples. In thick samples the emission from deep layers of the material is partially absorbed by overlying layers.1 This self-absorption results in emission spectra from most optically thick samples that closely resemble black-body spectra. The characteristic discrete emission bands are severely truncated and altered in shape. TIRES bypasses this difficulty by using a laser to heat only an optically thin surface layer. The increased temperature of the layer is transient since the layer will rapidly cool and thicken by thermal diffusion; hence the emission collection must be correlated with the laser heating. TIRES may be done with both pulsed and cw lasers.2,3 When a pulsed laser is used, the spectrometer sampling must be synchronized with the laser pulsing so that only emission during and immediately after each laser pulse is observed.3 If a cw laser is used, the sample must move rapidly through the beam. The hot, transient layer is then in the beam track on the sample at and immediately behind the beam position, so the spectrometer field of view must be limited to this region near the beam position.2 How much self-absorption the observed emission suffers depends on how thick the heated layer has grown by thermal diffusion when the spectrometer samples the emission. Use of a pulsed laser synchronized with the spectrometer sampling readily permits reduction of the time available for heat diffusion to about 100 acs .3 When a cw laser is used, the heat-diffusion time is controlled by how small the spectrometer field of view is and by how rapidly the sample moves past within this field. Both a very small field of view and a

  9. Anticipated transients without scram

    International Nuclear Information System (INIS)

    Lellouche, G.S.

    1980-01-01

    This article discusses in various degrees of depth the publications WASH-1270, WASH-1400, and NUREG-0460, and has as its purpose a description of the technical work done by Electric Power Research Institute (EPRI) personnel and its contractors on the subject of anticipated transients without scram (ATWS). It demonstrates the close relation between the probability of scram failure derived from historical scram data and that derived from the use of component data in a model of a system (the so-called synthesis method), such as was done in WASH-1400. The inherent conservatism of these models is demonstrated by showing that they predict significantly more events than have in fact occurred and that such models still predict scram failure probabilities low enough to make ATWS an insignificant contributor to accident risk

  10. Transient fuel melting

    International Nuclear Information System (INIS)

    Roche, L.; Schmitz, F.

    1982-10-01

    The observation of micrographic documents from fuel after a CABRI test leads to postulate a specific mode of transient fuel melting during a rapid nuclear power excursion. When reaching the melt threshold, the bands which are characteristic for the solid state are broken statistically over a macroscopic region. The time of maintaining the fuel at the critical enthalpy level between solid and liquid is too short to lead to a phase separation. A significant life-time (approximately 1 second) of this intermediate ''unsolide'' state would have consequences on the variation of physical properties linked to the phase transition solid/liquid: viscosity, specific volume and (for the irradiated fuel) fission gas release [fr

  11. Transient osteoporosis of pregnancy.

    Science.gov (United States)

    Maliha, George; Morgan, Jordan; Vrahas, Mark

    2012-08-01

    Transient osteoporosis of pregnancy (TOP) is a rare yet perhaps under-reported condition that has affected otherwise healthy pregnancies throughout the world. The condition presents suddenly in the third trimester of a usually uneventful pregnancy and progressively immobilizes the mother. Radiographic studies detect drastic loss of bone mass, elevated rates of turnover in the bone, and oedema in the affected portion. Weakness of the bone can lead to fractures during delivery and other complications for the mother. Then, within weeks of labour, symptoms and radiological findings resolve. Aetiology is currently unknown, although neural, vascular, haematological, endocrine, nutrient-deficiency, and other etiologies have been proposed. Several treatments have also been explored, including simple bed rest, steroids, bisphosphonates, calcitonin, induced termination of pregnancy, and surgical intervention. The orthopedist plays an essential role in monitoring the condition (and potential complications) as well as ensuring satisfactory outcomes for both the mother and newborn. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Location identification of closed crack based on Duffing oscillator transient transition

    Science.gov (United States)

    Liu, Xiaofeng; Bo, Lin; Liu, Yaolu; Zhao, Youxuan; Zhang, Jun; Deng, Mingxi; Hu, Ning

    2018-02-01

    The existence of a closed micro-crack in plates can be detected by using the nonlinear harmonic characteristics of the Lamb wave. However, its location identification is difficult. By considering the transient nonlinear Lamb under the noise interference, we proposed a location identification method for the closed crack based on the quantitative measurement of Duffing oscillator transient transfer in the phase space. The sliding short-time window was used to create a window truncation of to-be-detected signal. And then, the periodic extension processing for transient nonlinear Lamb wave was performed to ensure that the Duffing oscillator has adequate response time to reach a steady state. The transient autocorrelation method was used to reduce the occurrence of missed harmonic detection due to the random variable phase of nonlinear Lamb wave. Moreover, to overcome the deficiency in the quantitative analysis of Duffing system state by phase trajectory diagram and eliminate the misjudgment caused by harmonic frequency component contained in broadband noise, logic operation method of oscillator state transition function based on circular zone partition was adopted to establish the mapping relation between the oscillator transition state and the nonlinear harmonic time domain information. Final state transition discriminant function of Duffing oscillator was used as basis for identifying the reflected and transmitted harmonics from the crack. Chirplet time-frequency analysis was conducted to identify the mode of generated harmonics and determine the propagation speed. Through these steps, accurate position identification of the closed crack was achieved.

  13. Transient compressible flows in porous media

    International Nuclear Information System (INIS)

    Morrison, F.A. Jr.

    1975-09-01

    Transient compressible flow in porous media was investigated analytically. The major portion of the investigation was directed toward improving and understanding of dispersion in these flows and developing rapid accurate numerical techniques for predicting the extent of dispersion. The results are of interest in the containment of underground nuclear experiments. The transient one-dimensional transport of a trace component in a gas flow is analyzed. A conservation equation accounting for the effects of convective transport, dispersive transport, and decay, is developed. This relation, as well as a relation governing the fluid flow, is used to predict trace component concentration as a function of position and time. A detailed analysis of transport associated with the isothermal flow of an ideal gas is done. Because the governing equations are nonlinear, numerical calculations are performed. The ideal gas flow is calculated using a highly stable implicit iterative procedure with an Eulerian mesh. In order to avoid problems of anomolous dispersion associated with finite difference calculation, trace component convection and dispersion are calculated using a Lagrangian mesh. Details of the Eulerian-Lagrangian numerical technique are presented. Computer codes have been developed and implemented on the Lawrence Livermore Laboratory computer system

  14. Quantum Nonlinear Optics

    CERN Document Server

    Hanamura, Eiichi; Yamanaka, Akio

    2007-01-01

    This graduate-level textbook gives an introductory overview of the fundamentals of quantum nonlinear optics. Based on the quantum theory of radiation, Quantum Nonlinear Optics incorporates the exciting developments in novel nonlinear responses of materials (plus laser oscillation and superradiance) developed over the past decade. It deals with the organization of radiation field, interaction between electronic system and radiation field, statistics of light, mutual manipulation of light and matter, laser oscillation, dynamics of light, nonlinear optical response, and nonlinear spectroscopy, as well as ultrashort and ultrastrong laser pulse. Also considered are Q-switching, mode locking and pulse compression. Experimental and theoretical aspects are intertwined throughout.

  15. Nonlinear dynamics and complexity

    CERN Document Server

    Luo, Albert; Fu, Xilin

    2014-01-01

    This important collection presents recent advances in nonlinear dynamics including analytical solutions, chaos in Hamiltonian systems, time-delay, uncertainty, and bio-network dynamics. Nonlinear Dynamics and Complexity equips readers to appreciate this increasingly main-stream approach to understanding complex phenomena in nonlinear systems as they are examined in a broad array of disciplines. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering.

  16. Transient Go: A Mobile App for Transient Astronomy Outreach

    Science.gov (United States)

    Crichton, D.; Mahabal, A.; Djorgovski, S. G.; Drake, A.; Early, J.; Ivezic, Z.; Jacoby, S.; Kanbur, S.

    2016-12-01

    Augmented Reality (AR) is set to revolutionize human interaction with the real world as demonstrated by the phenomenal success of `Pokemon Go'. That very technology can be used to rekindle the interest in science at the school level. We are in the process of developing a prototype app based on sky maps that will use AR to introduce different classes of astronomical transients to students as they are discovered i.e. in real-time. This will involve transient streams from surveys such as the Catalina Real-time Transient Survey (CRTS) today and the Large Synoptic Survey Telescope (LSST) in the near future. The transient streams will be combined with archival and latest image cut-outs and other auxiliary data as well as historical and statistical perspectives on each of the transient types being served. Such an app could easily be adapted to work with various NASA missions and NSF projects to enrich the student experience.

  17. Distributed nonlinear optical response

    DEFF Research Database (Denmark)

    Nikolov, Nikola Ivanov

    2005-01-01

    of bound states of out of phase bright solitons and dark solitons. Also, the newly introduced analogy between the nonlocal cubic nonlinear and the quadratic nonlinear media, presented in paper B and Chapter 3 is discussed. In particular it supplies intuitive physical meaning of the formation of solitons...... in quadratic nonlinear media. In the second part of the report (Chapter 4), the possibility to obtain light with ultrabroad spectrum due to the interplay of many nonlinear effects based on cubic nonlinearity is investigated thoroughly. The contribution of stimulated Raman scattering, a delayed nonlinear...... a modified nonlinear Schroedinger model equation. Chapter 4 and papers D and E are dedicated to this part of the research....

  18. Pressure transients in pipeline systems

    DEFF Research Database (Denmark)

    Voigt, Kristian

    1998-01-01

    This text is to give an overview of the necessary background to do investigation of pressure transients via simulations. It will describe briefly the Method of Characteristics which is the defacto standard for simulating pressure transients. Much of the text has been adopted from the book Pressur...

  19. Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA) Users' Guide

    Science.gov (United States)

    Csank, Jeffrey T.; Zinnecker, Alicia M.

    2014-01-01

    The tool for turbine engine closed-loop transient analysis (TTECTrA) is a semi-automated control design tool for subsonic aircraft engine simulations. At a specific flight condition, TTECTrA produces a basic controller designed to meet user-defined goals and containing only the fundamental limiters that affect the transient performance of the engine. The purpose of this tool is to provide the user a preliminary estimate of the transient performance of an engine model without the need to design a full nonlinear controller.

  20. Transient regional osteoporosis.

    Science.gov (United States)

    Cano-Marquina, Antonio; Tarín, Juan J; García-Pérez, Miguel-Ángel; Cano, Antonio

    2014-04-01

    Transient regional osteoporosis (TRO) is a disease that predisposes to fragility fracture in weight bearing joints of mid-life women and men. Pregnant women may also suffer the process, usually at the hip. The prevalence of TRO is lower than the systemic form, associated with postmenopause and advanced age, but may be falsely diminished by under-diagnosis. The disease may be uni- or bilateral, and may migrate to distinct joints. One main feature of TRO is spontaneous recovery. Pain and progressive limitation in the functionality of the affected joint(s) are key symptoms. In the case of the form associated with pregnancy, difficulties in diagnosis derive from the relatively young age at presentation and from the clinical overlapping with the frequent aches during gestation. Densitometric osteoporosis in the affected region is not always present, but bone marrow edema, with or without joint effusion, is detected by magnetic resonance. There are not treatment guidelines, but the association of antiresorptives to symptomatic treatment seems to be beneficial. Surgery or other orthopedic interventions can be required for specific indications, like hip fracture, intra-medullary decompression, or other. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Applied hydraulic transients

    CERN Document Server

    Chaudhry, M Hanif

    2014-01-01

    This book covers hydraulic transients in a comprehensive and systematic manner from introduction to advanced level and presents various methods of analysis for computer solution. The field of application of the book is very broad and diverse and covers areas such as hydroelectric projects, pumped storage schemes, water-supply systems, cooling-water systems, oil pipelines and industrial piping systems. Strong emphasis is given to practical applications, including several case studies, problems of applied nature, and design criteria. This will help design engineers and introduce students to real-life projects. This book also: ·         Presents modern methods of analysis suitable for computer analysis, such as the method of characteristics, explicit and implicit finite-difference methods and matrix methods ·         Includes case studies of actual projects ·         Provides extensive and complete treatment of governed hydraulic turbines ·         Presents design charts, desi...

  2. Nonlinear interactions in magnetised piezoelectric semiconductor plasmas

    International Nuclear Information System (INIS)

    Sharma, Giriraj; Ghosh, S.

    2000-01-01

    Based on hydrodynamics model of plasmas an analytical investigation of frequency modulational interaction between copropagating high frequency pump and acoustic mode and consequent amplification (steady-state and transient) of the modulated waves is carried out in a magnetised piezoelectric semiconductor medium. The phenomenon of modulation amplification is treated as four wave interaction process involving cubic nonlinearity of the medium. Gain constants, threshold-pump intensities and optimum-pulse duration for the onset of modulational instabilities are estimated. The analysis has been performed in non-dispersive regime of the acoustic mode, which is one of the preconditions for achieving an appreciable initial steady-state growth of the modulated signal wave. It is found that the transient gain diminishes very rapidly if one chooses the pump pulse duration beyond the maximum gain point. Moreover, the desired value of the gain can be obtained by adjusting intensity and pulse duration of the pump and doping concentration of the medium concerned. (author)

  3. Nonlinear Dirac Equations

    Directory of Open Access Journals (Sweden)

    Wei Khim Ng

    2009-02-01

    Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.

  4. Nonlinear graphene plasmonics

    Science.gov (United States)

    Ooi, Kelvin J. A.; Tan, Dawn T. H.

    2017-10-01

    The rapid development of graphene has opened up exciting new fields in graphene plasmonics and nonlinear optics. Graphene's unique two-dimensional band structure provides extraordinary linear and nonlinear optical properties, which have led to extreme optical confinement in graphene plasmonics and ultrahigh nonlinear optical coefficients, respectively. The synergy between graphene's linear and nonlinear optical properties gave rise to nonlinear graphene plasmonics, which greatly augments graphene-based nonlinear device performance beyond a billion-fold. This nascent field of research will eventually find far-reaching revolutionary technological applications that require device miniaturization, low power consumption and a broad range of operating wavelengths approaching the far-infrared, such as optical computing, medical instrumentation and security applications.

  5. Stationary nonlinear Airy beams

    International Nuclear Information System (INIS)

    Lotti, A.; Faccio, D.; Couairon, A.; Papazoglou, D. G.; Panagiotopoulos, P.; Tzortzakis, S.; Abdollahpour, D.

    2011-01-01

    We demonstrate the existence of an additional class of stationary accelerating Airy wave forms that exist in the presence of third-order (Kerr) nonlinearity and nonlinear losses. Numerical simulations and experiments, in agreement with the analytical model, highlight how these stationary solutions sustain the nonlinear evolution of Airy beams. The generic nature of the Airy solution allows extension of these results to other settings, and a variety of applications are suggested.

  6. Generalized Nonlinear Yule Models

    OpenAIRE

    Lansky, Petr; Polito, Federico; Sacerdote, Laura

    2016-01-01

    With the aim of considering models with persistent memory we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macrovolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth...

  7. Transient Characteristics of Free Piston Vuilleurnier Cycle Heat Pumps

    Science.gov (United States)

    Matsue, Junji; Fujimoto, Norioki; Shirai, Hiroyuki

    A dynamic analysis of a free piston Vuilleumier cycle heat pump was performed using a time-stepping integration method to investigate transient characteristics under power controlling. The nonlinear relationship between displacement and force for pistons was taken into account for the motion of reciprocating components. The force for pistons is mainly caused by the pressure change of working gas varying with piston displacements; moreover nonlinear viscous dissipative force due to the oscillating flow of working gas in heat exchangers and discontinuous damping force caused by solid friction at piston seals and rod seals are included. The displacements of pistons and pressure changes in the Vuilleumier cycle heat pump were integrated by an ideal isothermal thermodynamic relationship. It was assumed that the flow friction was proportional to the kinematic pressure of working gas, and that the solid friction at the seals was due to the functions of the working gas pressure and the tension of seal springs. In order to investigate the transient characteristics of a proposed free piston Vuilleumier cycle heat pump machine when hot-side working gas temperatures and alternate force were changed, some calculations were performed and discussed. These calculation results make clear transient characteristics at starting and power controlling. It was further found that only a small amount of starter power is required in particular conditions. During controlling, the machine becomes unstable when there is ar elatively large reduction in cooling or heating power. Therefore, an auxiliary device is additionally needed to obtain stable operation, such as al inear motor.

  8. Uncertainty in simulated groundwater-quality trends in transient flow

    Science.gov (United States)

    Starn, J. Jeffrey; Bagtzoglou, Amvrossios; Robbins, Gary A.

    2013-01-01

    In numerical modeling of groundwater flow, the result of a given solution method is affected by the way in which transient flow conditions and geologic heterogeneity are simulated. An algorithm is demonstrated that simulates breakthrough curves at a pumping well by convolution-based particle tracking in a transient flow field for several synthetic basin-scale aquifers. In comparison to grid-based (Eulerian) methods, the particle (Lagrangian) method is better able to capture multimodal breakthrough caused by changes in pumping at the well, although the particle method may be apparently nonlinear because of the discrete nature of particle arrival times. Trial-and-error choice of number of particles and release times can perhaps overcome the apparent nonlinearity. Heterogeneous aquifer properties tend to smooth the effects of transient pumping, making it difficult to separate their effects in parameter estimation. Porosity, a new parameter added for advective transport, can be accurately estimated using both grid-based and particle-based methods, but predictions can be highly uncertain, even in the simple, nonreactive case.

  9. Internal Decoupling in Nonlinear Process Control

    Directory of Open Access Journals (Sweden)

    Jens G. Balchen

    1988-07-01

    Full Text Available A simple method has been investigated for the total or partial removal of the effect of non-linear process phenomena in multi-variable feedback control systems. The method is based upon computing the control variables which will drive the process at desired rates. It is shown that the effect of model errors in the linearization of the process can be partly removed through the use of large feedback gains. In practice there will be limits on how large gains can he used. The sensitivity to parameter errors is less pronounced and the transient behaviour is superior to that of ordinary PI controllers.

  10. Explosive and radio-selected Transients: Transient Astronomy with ...

    Indian Academy of Sciences (India)

    40

    sitive measurements will lead to very accurate mass loss estimation in these supernovae. .... transients are powerful probes of intervening media owing to dispersion ...... A., & Chandra, P. 2011, Nature Communications,. 2, 175. Chakraborti, S.

  11. Nonlinear evolution equations

    CERN Document Server

    Uraltseva, N N

    1995-01-01

    This collection focuses on nonlinear problems in partial differential equations. Most of the papers are based on lectures presented at the seminar on partial differential equations and mathematical physics at St. Petersburg University. Among the topics explored are the existence and properties of solutions of various classes of nonlinear evolution equations, nonlinear imbedding theorems, bifurcations of solutions, and equations of mathematical physics (Navier-Stokes type equations and the nonlinear Schrödinger equation). The book will be useful to researchers and graduate students working in p

  12. Nonlinear Physics of Plasmas

    CERN Document Server

    Kono, Mitsuo

    2010-01-01

    A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.

  13. Nonlinear optics at interfaces

    International Nuclear Information System (INIS)

    Chen, C.K.

    1980-12-01

    Two aspects of surface nonlinear optics are explored in this thesis. The first part is a theoretical and experimental study of nonlinear intraction of surface plasmons and bulk photons at metal-dielectric interfaces. The second part is a demonstration and study of surface enhanced second harmonic generation at rough metal surfaces. A general formulation for nonlinear interaction of surface plasmons at metal-dielectric interfaces is presented and applied to both second and third order nonlinear processes. Experimental results for coherent second and third harmonic generation by surface plasmons and surface coherent antiStokes Raman spectroscopy (CARS) are shown to be in good agreement with the theory

  14. Nonlinear drift tearing mode

    International Nuclear Information System (INIS)

    Zelenyj, L.M.; Kuznetsova, M.M.

    1989-01-01

    Nonlinear study of magnetic perturbation development under single-mode conditions in collision-free plasma in configurations with the magnetic field shear is investigated. Results are obtained with regard of transverse component of electrical field and its effect on ion dynamics within wide range of ion Larmor radius value and values of magnetic field shear. Increments of nonlinear drift tearing mode are obtained and it is shown that excitation drastic conditions of even linearly stable modes are possible. Mechanism of instability nonlinear stabilization is considered and the value of magnetic island at the saturation threshold is estimeted. Energy of nonlinear drift tearing mode is discussed

  15. Transient-Switch-Signal Suppressor

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1995-01-01

    Circuit delays transmission of switch-opening or switch-closing signal until after preset suppression time. Used to prevent transmission of undesired momentary switch signal. Basic mode of operation simple. Beginning of switch signal initiates timing sequence. If switch signal persists after preset suppression time, circuit transmits switch signal to external circuitry. If switch signal no longer present after suppression time, switch signal deemed transient, and circuit does not pass signal on to external circuitry, as though no transient switch signal. Suppression time preset at value large enough to allow for damping of underlying pressure wave or other mechanical transient.

  16. Electromagnetic transients in power cables

    CERN Document Server

    da Silva, Filipe Faria

    2013-01-01

    From the more basic concepts to the most advanced ones where long and laborious simulation models are required, Electromagnetic Transients in Power Cables provides a thorough insight into the study of electromagnetic transients and underground power cables. Explanations and demonstrations of different electromagnetic transient phenomena are provided, from simple lumped-parameter circuits to complex cable-based high voltage networks, as well as instructions on how to model the cables.Supported throughout by illustrations, circuit diagrams and simulation results, each chapter contains exercises,

  17. Nonlinear coherent structures in granular crystals

    Science.gov (United States)

    Chong, C.; Porter, Mason A.; Kevrekidis, P. G.; Daraio, C.

    2017-10-01

    The study of granular crystals, which are nonlinear metamaterials that consist of closely packed arrays of particles that interact elastically, is a vibrant area of research that combines ideas from disciplines such as materials science, nonlinear dynamics, and condensed-matter physics. Granular crystals exploit geometrical nonlinearities in their constitutive microstructure to produce properties (such as tunability and energy localization) that are not conventional to engineering materials and linear devices. In this topical review, we focus on recent experimental, computational, and theoretical results on nonlinear coherent structures in granular crystals. Such structures—which include traveling solitary waves, dispersive shock waves, and discrete breathers—have fascinating dynamics, including a diversity of both transient features and robust, long-lived patterns that emerge from broad classes of initial data. In our review, we primarily discuss phenomena in one-dimensional crystals, as most research to date has focused on such scenarios, but we also present some extensions to two-dimensional settings. Throughout the review, we highlight open problems and discuss a variety of potential engineering applications that arise from the rich dynamic response of granular crystals.

  18. Polarization Nonlinear Optics of Quadratically Nonlinear Azopolymers

    International Nuclear Information System (INIS)

    Konorov, S.O.; Akimov, D.A.; Ivanov, A.A.; Petrov, A.N.; Alfimov, M.V.; Yakimanskii, A.V.; Smirnov, N.N.; Ivanova, V.N.; Kudryavtsev, V.V.; Podshivalov, A.A.; Sokolova, I.M.; Zheltikov, A.M.

    2005-01-01

    The polarization properties of second harmonic and sum-frequency signals generated by femtosecond laser pulses in films of polymers containing covalent groups of an azobenzothiazole chromophore polarized by an external electric field are investigated. It is shown that the methods of polarization nonlinear optics make it possible to determine the structure of oriented molecular dipoles and reveal important properties of the motion of collectivized πelectrons in organic molecules with strong optical nonlinearities. The polarization measurements show that the tensor of quadratic nonlinear optical susceptibility of chromophore fragments oriented by an external field in macromolecules of the noted azopolymers has a degenerate form. This is indicative of a predominantly one-dimensional character of motion of collectivized π electrons along an extended group of atoms in such molecules

  19. Nonlinearities and synchronization in musical acoustics and music psychology

    CERN Document Server

    Bader, Rolf

    2013-01-01

    Nonlinearities are a crucial and founding principle in nearly all musical systems, may they be musical instruments, timbre or rhythm perception and production, or neural networks of music perception. This volume gives an overview about present and past research in these fields. In Musical Acoustics, on the one hand the nonlinearities in musical instruments often produce the musically interesting features. On the other, musical instruments are nonlinear by nature, and tone production is the result of synchronization and self-organization within the instruments. Furthermore, as nearly all musical instruments are driven by impulses an Impulse Pattern Formulation (IPF) is suggested, an iterative framework holding for all musical instruments. It appears that this framework is able to reproduce the complex and perceptionally most salient initial transients of musical instruments. In Music Psychology, nonlinearities are present in all areas of musical features, like pitch, timbre, or rhythm perception. In terms of r...

  20. Transient or permanent fisheye views

    DEFF Research Database (Denmark)

    Jakobsen, Mikkel Rønne; Hornbæk, Kasper

    2012-01-01

    Transient use of information visualization may support specific tasks without permanently changing the user interface. Transient visualizations provide immediate and transient use of information visualization close to and in the context of the user’s focus of attention. Little is known, however......, about the benefits and limitations of transient visualizations. We describe an experiment that compares the usability of a fisheye view that participants could call up temporarily, a permanent fisheye view, and a linear view: all interfaces gave access to source code in the editor of a widespread...... programming environment. Fourteen participants performed varied tasks involving navigation and understanding of source code. Participants used the three interfaces for between four and six hours in all. Time and accuracy measures were inconclusive, but subjective data showed a preference for the permanent...

  1. Transient thyrotoxicosis during nivolumab treatment

    NARCIS (Netherlands)

    van Kooten, M. J.; van den Berg, G.; Glaudemans, A. W. J. M.; Hiltermann, T. J. N.; Groen, H. J. M.; Rutgers, A.; Links, T. P.

    Two patients presented with transient thyrotoxicosis within 2-4 weeks after starting treatment with nivolumab. This thyrotoxicosis turned into hypothyroidism within 6-8 weeks. Temporary treatment with a beta blocker may be sufficient.

  2. Transient two-phase flow

    International Nuclear Information System (INIS)

    Hsu, Y.Y.

    1974-01-01

    The following papers related to two-phase flow are summarized: current assumptions made in two-phase flow modeling; two-phase unsteady blowdown from pipes, flow pattern in Laval nozzle and two-phase flow dynamics; dependence of radial heat and momentum diffusion; transient behavior of the liquid film around the expanding gas slug in a vertical tube; flooding phenomena in BWR fuel bundles; and transient effects in bubble two-phase flow. (U.S.)

  3. Nonlinear dynamics in Nuclotron

    International Nuclear Information System (INIS)

    Dinev, D.

    1997-01-01

    The paper represents an extensive study of the nonlinear beam dynamics in the Nuclotron. Chromatic effects, including the dependence of the betatron tunes on the amplitude, and chromatic perturbations have been investigated taking into account the measured field imperfections. Beam distortion, smear, dynamic aperture and nonlinear acceptance have been calculated for different particle energies and betatron tunes

  4. Nonlinear Optics and Applications

    Science.gov (United States)

    Abdeldayem, Hossin A. (Editor); Frazier, Donald O. (Editor)

    2007-01-01

    Nonlinear optics is the result of laser beam interaction with materials and started with the advent of lasers in the early 1960s. The field is growing daily and plays a major role in emerging photonic technology. Nonlinear optics play a major role in many of the optical applications such as optical signal processing, optical computers, ultrafast switches, ultra-short pulsed lasers, sensors, laser amplifiers, and many others. This special review volume on Nonlinear Optics and Applications is intended for those who want to be aware of the most recent technology. This book presents a survey of the recent advances of nonlinear optical applications. Emphasis will be on novel devices and materials, switching technology, optical computing, and important experimental results. Recent developments in topics which are of historical interest to researchers, and in the same time of potential use in the fields of all-optical communication and computing technologies, are also included. Additionally, a few new related topics which might provoke discussion are presented. The book includes chapters on nonlinear optics and applications; the nonlinear Schrodinger and associated equations that model spatio-temporal propagation; the supercontinuum light source; wideband ultrashort pulse fiber laser sources; lattice fabrication as well as their linear and nonlinear light guiding properties; the second-order EO effect (Pockels), the third-order (Kerr) and thermo-optical effects in optical waveguides and their applications in optical communication; and, the effect of magnetic field and its role in nonlinear optics, among other chapters.

  5. Nonlinear optical systems

    CERN Document Server

    Lugiato, Luigi; Brambilla, Massimo

    2015-01-01

    Guiding graduate students and researchers through the complex world of laser physics and nonlinear optics, this book provides an in-depth exploration of the dynamics of lasers and other relevant optical systems, under the umbrella of a unitary spatio-temporal vision. Adopting a balanced approach, the book covers traditional as well as special topics in laser physics, quantum electronics and nonlinear optics, treating them from the viewpoint of nonlinear dynamical systems. These include laser emission, frequency generation, solitons, optically bistable systems, pulsations and chaos and optical pattern formation. It also provides a coherent and up-to-date treatment of the hierarchy of nonlinear optical models and of the rich variety of phenomena they describe, helping readers to understand the limits of validity of each model and the connections among the phenomena. It is ideal for graduate students and researchers in nonlinear optics, quantum electronics, laser physics and photonics.

  6. Harnessing quantum transport by transient chaos.

    Science.gov (United States)

    Yang, Rui; Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso; Pecora, Louis M

    2013-03-01

    Chaos has long been recognized to be generally advantageous from the perspective of control. In particular, the infinite number of unstable periodic orbits embedded in a chaotic set and the intrinsically sensitive dependence on initial conditions imply that a chaotic system can be controlled to a desirable state by using small perturbations. Investigation of chaos control, however, was largely limited to nonlinear dynamical systems in the classical realm. In this paper, we show that chaos may be used to modulate or harness quantum mechanical systems. To be concrete, we focus on quantum transport through nanostructures, a problem of considerable interest in nanoscience, where a key feature is conductance fluctuations. We articulate and demonstrate that chaos, more specifically transient chaos, can be effective in modulating the conductance-fluctuation patterns. Experimentally, this can be achieved by applying an external gate voltage in a device of suitable geometry to generate classically inaccessible potential barriers. Adjusting the gate voltage allows the characteristics of the dynamical invariant set responsible for transient chaos to be varied in a desirable manner which, in turn, can induce continuous changes in the statistical characteristics of the quantum conductance-fluctuation pattern. To understand the physical mechanism of our scheme, we develop a theory based on analyzing the spectrum of the generalized non-Hermitian Hamiltonian that includes the effect of leads, or electronic waveguides, as self-energy terms. As the escape rate of the underlying non-attracting chaotic set is increased, the imaginary part of the complex eigenenergy becomes increasingly large so that pointer states are more difficult to form, making smoother the conductance-fluctuation pattern.

  7. Transient Response Dynamic Module Modifications to Include Static and Kinetic Friction Effects

    Science.gov (United States)

    Misel, J. E.; Nenno, S. B.; Takahashi, D.

    1984-01-01

    A methodology that supports forced transient response dynamic solutions when both static and kinetic friction effects are included in a structural system model is described. Modifications that support this type of nonlinear transient response solution are summarized for the transient response dynamics (TRD) NASTRAN module. An overview of specific modifications for the NASTRAN processing subroutines, INITL, TRD1C, and TRD1D, are described with further details regarding inspection of nonlinear input definitions to define the type of nonlinear solution required, along with additional initialization requirements and specific calculation subroutines to successfully solve the transient response problem. The extension of the basic NASTRAN nonlinear methodology is presented through several stages of development to the point where constraint equations and residual flexibility effects are introduced into the finite difference Newmark-Beta recurrsion formulas. Particular emphasis is placed on cost effective solutions for large finite element models such as the Space Shuttle with friction degrees of freedom between the orbiter and payloads mounted in the cargo bay. An alteration to the dynamic finite difference equations of motion is discussed, which allows one to include friction effects at reasonable cost for large structural systems such as the Space Shuttle. Data are presented to indicate the possible impact of transient friction loads to the payload designer for the Space Shuttle. Transient response solution data are also included, which compare solutions without friction forces and those with friction forces for payloads mounted in the Space Shuttle cargo bay. These data indicate that payload components can be sensitive to friction induced loads.

  8. Direct time-domain techniques for transient radiation and scattering

    International Nuclear Information System (INIS)

    Miller, E.K.; Landt, J.A.

    1976-01-01

    A tutorial introduction to transient electromagnetics, focusing on direct time-domain techniques, is presented. Physical, mathematical, numerical, and experimental aspects of time-domain methods, with emphasis on wire objects excited as antennas or scatters are examined. Numerous computed examples illustrate the characteristics of direct time-domain procedures, especially where they may offer advantages over procedures in the more familiar frequency domain. These advantages include greater solution efficiency for many types of problems, the ability to handle nonlinearities, improved physical insight and interpretability, availability of wide-band information from a single calculation, and the possibility of isolating interactions among various parts of an object using time-range gating

  9. Transient magnetoviscosity of dilute ferrofluids

    International Nuclear Information System (INIS)

    Soto-Aquino, Denisse; Rinaldi, Carlos

    2011-01-01

    The magnetic field induced change in the viscosity of a ferrofluid, commonly known as the magnetoviscous effect and parameterized through the magnetoviscosity, is one of the most interesting and practically relevant aspects of ferrofluid phenomena. Although the steady state behavior of ferrofluids under conditions of applied constant magnetic fields has received considerable attention, comparatively little attention has been given to the transient response of the magnetoviscosity to changes in the applied magnetic field or rate of shear deformation. Such transient response can provide further insight into the dynamics of ferrofluids and find practical application in the design of devices that take advantage of the magnetoviscous effect and inevitably must deal with changes in the applied magnetic field and deformation. In this contribution Brownian dynamics simulations and a simple model based on the ferrohydrodynamics equations are applied to explore the dependence of the transient magnetoviscosity for two cases: (I) a ferrofluid in a constant shear flow wherein the magnetic field is suddenly turned on, and (II) a ferrofluid in a constant magnetic field wherein the shear flow is suddenly started. Both simulations and analysis show that the transient approach to a steady state magnetoviscosity can be either monotonic or oscillatory depending on the relative magnitudes of the applied magnetic field and shear rate. - Research Highlights: →Rotational Brownian dynamics simulations were used to study the transient behavior of the magnetoviscosity of ferrofluids. →Damped and oscillatory approach to steady state magnetoviscosity was observed for step changes in shear rate and magnetic field. →A model based on the ferrohydrodynamics equations qualitatively captured the damped and oscillatory features of the transient response →The transient behavior is due to the interplay of hydrodynamic, magnetic, and Brownian torques on the suspended particles.

  10. Nonlinear analysis of NPP safety against the aircraft attack

    International Nuclear Information System (INIS)

    Králik, Juraj; Králik, Juraj

    2016-01-01

    The paper presents the nonlinear probabilistic analysis of the reinforced concrete buildings of nuclear power plant under the aircraft attack. The dynamic load is defined in time on base of the airplane impact simulations considering the real stiffness, masses, direction and velocity of the flight. The dynamic response is calculated in the system ANSYS using the transient nonlinear analysis solution method. The damage of the concrete wall is evaluated in accordance with the standard NDRC considering the spalling, scabbing and perforation effects. The simple and detailed calculations of the wall damage are compared.

  11. Nonlinear analysis of NPP safety against the aircraft attack

    Energy Technology Data Exchange (ETDEWEB)

    Králik, Juraj, E-mail: juraj.kralik@stuba.sk [Faculty of Civil Engineering, STU in Bratislava, Radlinského 11, 813 68 Bratislava (Slovakia); Králik, Juraj, E-mail: kralik@fa.stuba.sk [Faculty of Architecture, STU in Bratislava, Námestie Slobody 19, 812 45 Bratislava (Slovakia)

    2016-06-08

    The paper presents the nonlinear probabilistic analysis of the reinforced concrete buildings of nuclear power plant under the aircraft attack. The dynamic load is defined in time on base of the airplane impact simulations considering the real stiffness, masses, direction and velocity of the flight. The dynamic response is calculated in the system ANSYS using the transient nonlinear analysis solution method. The damage of the concrete wall is evaluated in accordance with the standard NDRC considering the spalling, scabbing and perforation effects. The simple and detailed calculations of the wall damage are compared.

  12. Nonlinear photonic metasurfaces

    Science.gov (United States)

    Li, Guixin; Zhang, Shuang; Zentgraf, Thomas

    2017-03-01

    Compared with conventional optical elements, 2D photonic metasurfaces, consisting of arrays of antennas with subwavelength thickness (the 'meta-atoms'), enable the manipulation of light-matter interactions on more compact platforms. The use of metasurfaces with spatially varying arrangements of meta-atoms that have subwavelength lateral resolution allows control of the polarization, phase and amplitude of light. Many exotic phenomena have been successfully demonstrated in linear optics; however, to meet the growing demand for the integration of more functionalities into a single optoelectronic circuit, the tailorable nonlinear optical properties of metasurfaces will also need to be exploited. In this Review, we discuss the design of nonlinear photonic metasurfaces — in particular, the criteria for choosing the materials and symmetries of the meta-atoms — for the realization of nonlinear optical chirality, nonlinear geometric Berry phase and nonlinear wavefront engineering. Finally, we survey the application of nonlinear photonic metasurfaces in optical switching and modulation, and we conclude with an outlook on their use for terahertz nonlinear optics and quantum information processing.

  13. Nonlinear crack mechanics

    International Nuclear Information System (INIS)

    Khoroshun, L.P.

    1995-01-01

    The characteristic features of the deformation and failure of actual materials in the vicinity of a crack tip are due to their physical nonlinearity in the stress-concentration zone, which is a result of plasticity, microfailure, or a nonlinear dependence of the interatomic forces on the distance. Therefore, adequate models of the failure mechanics must be nonlinear, in principle, although linear failure mechanics is applicable if the zone of nonlinear deformation is small in comparison with the crack length. Models of crack mechanics are based on analytical solutions of the problem of the stress-strain state in the vicinity of the crack. On account of the complexity of the problem, nonlinear models are bason on approximate schematic solutions. In the Leonov-Panasyuk-Dugdale nonlinear model, one of the best known, the actual two-dimensional plastic zone (the nonlinearity zone) is replaced by a narrow one-dimensional zone, which is then modeled by extending the crack with a specified normal load equal to the yield point. The condition of finite stress is applied here, and hence the length of the plastic zone is determined. As a result of this approximation, the displacement in the plastic zone at the abscissa is nonzero

  14. Law of nonlinear flow in saturated clays and radial consolidation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    It was derived that micro-scale amount level of average pore radius of clay changed from 0.01 to 0.1 micron by an equivalent concept of flow in porous media. There is good agreement between the derived results and test ones. Results of experiments show that flow in micro-scale pore of saturated clays follows law of nonlinear flow. Theoretical analyses demonstrate that an interaction of solid-liquid interfaces varies inversely with permeability or porous radius. The interaction is an important reason why nonlinear flow in saturated clays occurs. An exact mathematical model was presented for nonlinear flow in micro-scale pore of saturated clays. Dimension and physical meanings of parameters of it are definite. A new law of nonlinear flow in saturated clays was established. It can describe characteristics of flow curve of the whole process of the nonlinear flow from low hydraulic gradient to high one. Darcy law is a special case of the new law. A mathematical model was presented for consolidation of nonlinear flow in radius direction in saturated clays with constant rate based on the new law of nonlinear flow. Equations of average mass conservation and moving boundary, and formula of excess pore pressure distribution and average degree of consolidation for nonlinear flow in saturated clay were derived by using an idea of viscous boundary layer, a method of steady state in stead of transient state and a method of integral of an equation. Laws of excess pore pressure distribution and changes of average degree of consolidation with time were obtained. Results show that velocity of moving boundary decreases because of the nonlinear flow in saturated clay. The results can provide geology engineering and geotechnical engineering of saturated clay with new scientific bases. Calculations of average degree of consolidation of the Darcy flow are a special case of that of the nonlinear flow.

  15. Nonlinear wave equations

    CERN Document Server

    Li, Tatsien

    2017-01-01

    This book focuses on nonlinear wave equations, which are of considerable significance from both physical and theoretical perspectives. It also presents complete results on the lower bound estimates of lifespan (including the global existence), which are established for classical solutions to the Cauchy problem of nonlinear wave equations with small initial data in all possible space dimensions and with all possible integer powers of nonlinear terms. Further, the book proposes the global iteration method, which offers a unified and straightforward approach for treating these kinds of problems. Purely based on the properties of solut ions to the corresponding linear problems, the method simply applies the contraction mapping principle.

  16. Pressure transients across HEPA filters

    International Nuclear Information System (INIS)

    Gregory, W.; Reynolds, G.; Ricketts, C.; Smith, P.R.

    1977-01-01

    Nuclear fuel cycle facilities require ventilation for health and safety reasons. High efficiency particulate air (HEPA) filters are located within ventilation systems to trap radioactive dust released in reprocessing and fabrication operations. Pressure transients within the air cleaning systems may be such that the effectiveness of the filtration system is questioned under certain accident conditions. These pressure transients can result from both natural and man-caused phenomena: atmospheric pressure drop caused by a tornado or explosions and nuclear excursions initiate pressure pulses that could create undesirable conditions across HEPA filters. Tornado depressurization is a relatively slow transient as compared to pressure pulses that result from combustible hydrogen-air mixtures. Experimental investigation of these pressure transients across air cleaning equipment has been undertaken by Los Alamos Scientific Laboratory and New Mexico State University. An experimental apparatus has been constructed to impose pressure pulses across HEPA filters. The experimental equipment is described as well as preliminary results using variable pressurization rates. Two modes of filtration of an aerosol injected upstream of the filter is examined. A laser instrumentation for measuring the aerosol release, during the transient, is described

  17. Recent development of transient electronics

    Directory of Open Access Journals (Sweden)

    Huanyu Cheng

    2016-01-01

    Full Text Available Transient electronics are an emerging class of electronics with the unique characteristic to completely dissolve within a programmed period of time. Since no harmful byproducts are released, these electronics can be used in the human body as a diagnostic tool, for instance, or they can be used as environmentally friendly alternatives to existing electronics which disintegrate when exposed to water. Thus, the most crucial aspect of transient electronics is their ability to disintegrate in a practical manner and a review of the literature on this topic is essential for understanding the current capabilities of transient electronics and areas of future research. In the past, only partial dissolution of transient electronics was possible, however, total dissolution has been achieved with a recent discovery that silicon nanomembrane undergoes hydrolysis. The use of single- and multi-layered structures has also been explored as a way to extend the lifetime of the electronics. Analytical models have been developed to study the dissolution of various functional materials as well as the devices constructed from this set of functional materials and these models prove to be useful in the design of the transient electronics.

  18. Wide Field Radio Transient Surveys

    Science.gov (United States)

    Bower, Geoffrey

    2011-04-01

    The time domain of the radio wavelength sky has been only sparsely explored. Nevertheless, serendipitous discovery and results from limited surveys indicate that there is much to be found on timescales from nanoseconds to years and at wavelengths from meters to millimeters. These observations have revealed unexpected phenomena such as rotating radio transients and coherent pulses from brown dwarfs. Additionally, archival studies have revealed an unknown class of radio transients without radio, optical, or high-energy hosts. The new generation of centimeter-wave radio telescopes such as the Allen Telescope Array (ATA) will exploit wide fields of view and flexible digital signal processing to systematically explore radio transient parameter space, as well as lay the scientific and technical foundation for the Square Kilometer Array. Known unknowns that will be the target of future transient surveys include orphan gamma-ray burst afterglows, radio supernovae, tidally-disrupted stars, flare stars, and magnetars. While probing the variable sky, these surveys will also provide unprecedented information on the static radio sky. I will present results from three large ATA surveys (the Fly's Eye survey, the ATA Twenty CM Survey (ATATS), and the Pi GHz Survey (PiGSS)) and several small ATA transient searches. Finally, I will discuss the landscape and opportunities for future instruments at centimeter wavelengths.

  19. Chernobyl reactor transient simulation study

    International Nuclear Information System (INIS)

    Gaber, F.A.; El Messiry, A.M.

    1988-01-01

    This paper deals with the Chernobyl nuclear power station transient simulation study. The Chernobyl (RBMK) reactor is a graphite moderated pressure tube type reactor. It is cooled by circulating light water that boils in the upper parts of vertical pressure tubes to produce steam. At equilibrium fuel irradiation, the RBMK reactor has a positive void reactivity coefficient. However, the fuel temperature coefficient is negative and the net effect of a power change depends upon the power level. Under normal operating conditions the net effect (power coefficient) is negative at full power and becomes positive under certain transient conditions. A series of dynamic performance transient analysis for RBMK reactor, pressurized water reactor (PWR) and fast breeder reactor (FBR) have been performed using digital simulator codes, the purpose of this transient study is to show that an accident of Chernobyl's severity does not occur in PWR or FBR nuclear power reactors. This appears from the study of the inherent, stability of RBMK, PWR and FBR under certain transient conditions. This inherent stability is related to the effect of the feed back reactivity. The power distribution stability in the graphite RBMK reactor is difficult to maintain throughout its entire life, so the reactor has an inherent instability. PWR has larger negative temperature coefficient of reactivity, therefore, the PWR by itself has a large amount of natural stability, so PWR is inherently safe. FBR has positive sodium expansion coefficient, therefore it has insufficient stability it has been concluded that PWR has safe operation than FBR and RBMK reactors

  20. HEDL experimental transient overpower program

    International Nuclear Information System (INIS)

    Hikido, T.; Culley, G.E.

    1976-01-01

    HEDL is conducting a series of experiments to evaluate the performance of Fast Flux Test Facility (FFTF) prototypic fuel pins up to the point of cladding breach. A primary objective of the program is to demonstrate the adequacy of fuel pin and Plant Protective System (PPS) designs for terminated transients. Transient tests of prototypic FFTF fuel pins previously irradiated in the Experimental Breeder Reactor-II (EBR-II) have demonstrated the adequacy of the PPS and fuel pin designs and indicate that a very substantial margin exists between PPS-terminated transients and that required to produce fuel pin cladding failure. Additional experiments are planned to extend the data base to high burnup, high fluence fuel pin specimens

  1. Transient voltage oscillations in coils

    International Nuclear Information System (INIS)

    Chowdhuri, P.

    1985-01-01

    Magnet coils may be excited into internal voltage oscillations by transient voltages. Such oscillations may electrically stress the magnet's dielectric components to many times its normal stress. This may precipitate a dielectric failure, and the attendant prolonged loss of service and costly repair work. Therefore, it is important to know the natural frequencies of oscillations of a magnet during the design stage, and to determine whether the expected switching transient voltages can excite the magnet into high-voltage internal oscillations. The series capacitance of a winding significantly affects its natural frequencies. However, the series capacitance is difficult to calculate, because it may comprise complex capacitance network, consisting of intra- and inter-coil turn-to-turn capacitances of the coil sections. A method of calculating the series capacitance of a winding is proposed. This method is rigorous but simple to execute. The time-varying transient voltages along the winding are also calculated

  2. Transient analysis of DTT rakes

    International Nuclear Information System (INIS)

    Kamath, P.S.; Lahey, R.T. Jr.

    1981-01-01

    This paper presents an analytical model for the determination of the cross-sectionally averaged transient mass flux of a two-phase fluid flowing in a conduit instrumented by a Drag-Disk Turbine Transducer (DTT) Rake and a multibeam gamma densitometer. Parametric studies indicate that for a typical blowdown transient, dynamic effects such as rotor inertia can be important for the turbine-meter. In contrast, for the drag-disk, a frequency response analysis showed that the quasisteady solution is valid below a forcing frequency of about 10 Hz, which is faster than the time scale normally encountered during blowdowns. The model showed reasonably good agreement with full scale transient rake data, where the flow regimes were mostly homogeneous or stratified, thus indicating that the model is suitable for the analysis of a DTT rake. (orig.)

  3. Photostable nonlinear optical polycarbonates

    NARCIS (Netherlands)

    Faccini, M.; Balakrishnan, M.; Diemeer, Mart; Torosantucci, Riccardo; Driessen, A.; Reinhoudt, David; Verboom, Willem

    2008-01-01

    Highly thermal and photostable nonlinear optical polymers were obtained by covalently incorporating the tricyanovinylidenediphenylaminobenzene (TCVDPA) chromophore to a polycarbonate backbone. NLO polycarbonates with different chromophore attachment modes and flexibilities were synthesized. In spite

  4. Nonlinear singular elliptic equations

    International Nuclear Information System (INIS)

    Dong Minh Duc.

    1988-09-01

    We improve the Poincare inequality, the Sobolev imbedding theorem and the Trudinger imbedding theorem and prove a Mountain pass theorem. Applying these results we study a nonlinear singular mixed boundary problem. (author). 22 refs

  5. Nonlinear Optical Terahertz Technology

    Data.gov (United States)

    National Aeronautics and Space Administration — We develop a new approach to generation of THz radiation. Our method relies on mixing two optical frequency beams in a nonlinear crystalline Whispering Gallery Mode...

  6. Nonlinear differential equations

    CERN Document Server

    Struble, Raimond A

    2017-01-01

    Detailed treatment covers existence and uniqueness of a solution of the initial value problem, properties of solutions, properties of linear systems, stability of nonlinear systems, and two-dimensional systems. 1962 edition.

  7. Terahertz semiconductor nonlinear optics

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias

    2013-01-01

    In this proceedings we describe our recent results on semiconductor nonlinear optics, investigated using single-cycle THz pulses. We demonstrate the nonlinear absorption and self-phase modulation of strong-field THz pulses in doped semiconductors, using n-GaAs as a model system. The THz...... nonlinearity in doped semiconductors originates from the near-instantaneous heating of free electrons in the ponderomotive potential created by electric field of the THz pulse, leading to ultrafast increase of electron effective mass by intervalley scattering. Modification of effective mass in turn leads...... to a decrease of plasma frequency in semiconductor and produces a substantial modification of THz-range material dielectric function, described by the Drude model. As a result, the nonlinearity of both absorption coefficient and refractive index of the semiconductor is observed. In particular we demonstrate...

  8. Ultrafast nonlinear optics

    CERN Document Server

    Leburn, Christopher; Reid, Derryck

    2013-01-01

    The field of ultrafast nonlinear optics is broad and multidisciplinary, and encompasses areas concerned with both the generation and measurement of ultrashort pulses of light, as well as those concerned with the applications of such pulses. Ultrashort pulses are extreme events – both in terms of their durations, and also the high peak powers which their short durations can facilitate. These extreme properties make them powerful experiment tools. On one hand, their ultrashort durations facilitate the probing and manipulation of matter on incredibly short timescales. On the other, their ultrashort durations can facilitate high peak powers which can drive highly nonlinear light-matter interaction processes. Ultrafast Nonlinear Optics covers a complete range of topics, both applied and fundamental in nature, within the area of ultrafast nonlinear optics. Chapters 1 to 4 are concerned with the generation and measurement of ultrashort pulses. Chapters 5 to 7 are concerned with fundamental applications of ultrasho...

  9. Nonlinear surface Alfven waves

    International Nuclear Information System (INIS)

    Cramer, N.F.

    1991-01-01

    The problem of nonlinear surface Alfven waves propagating on an interface between a plasma and a vacuum is discussed, with dispersion provided by the finite-frequency effect, i.e. the finite ratio of the frequency to the ion-cyclotron frequency. A set of simplified nonlinear wave equations is derived using the method of stretched co-ordinates, and another approach uses the generation of a second-harmonic wave and its interaction with the first harmonic to obtain a nonlinear dispersion relation. A nonlinear Schroedinger equation is then derived, and soliton solutions found that propagate as solitary pulses in directions close to parallel and antiparallel to the background magnetic field. (author)

  10. Nonlinear Structural Analysis

    Indian Academy of Sciences (India)

    The Structures Panel of the Aeronautics Research and Development Board of India ... A great variety of topics was covered, including themes such as nonlinear finite ... or shell structures, and three are on the composite form of construction, ...

  11. A nonlinear oscillatory problem

    International Nuclear Information System (INIS)

    Zhou Qingqing.

    1991-10-01

    We have studied the nonlinear oscillatory problem of orthotropic cylindrical shell, we have analyzed the character of the oscillatory system. The stable condition of the oscillatory system has been given. (author). 6 refs

  12. Degenerate nonlinear diffusion equations

    CERN Document Server

    Favini, Angelo

    2012-01-01

    The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asympt...

  13. Introduction to nonlinear science

    CERN Document Server

    Nicolis, G

    1995-01-01

    One of the most unexpected results in science in recent years is that quite ordinary systems obeying simple laws can give rise to complex, nonlinear or chaotic, behavior. In this book, the author presents a unified treatment of the concepts and tools needed to analyze nonlinear phenomena and to outline some representative applications drawn from the physical, engineering, and biological sciences. Some of the interesting topics covered include: dynamical systems with a finite number of degrees of freedom, linear stability analysis of fixed points, nonlinear behavior of fixed points, bifurcation analysis, spatially distributed systems, broken symmetries, pattern formation, and chaotic dynamics. The author makes a special effort to provide a logical connection between ordinary dynamical systems and spatially extended systems, and to balance the emphasis on chaotic behavior and more classical nonlinear behavior. He also develops a statistical approach to complex systems and compares it to traditional deterministi...

  14. Nonlinear Wave Propagation

    Science.gov (United States)

    2015-05-07

    associated with the lattice background; the nonlinearity is derived from the inclusion of cubic nonlinearity. Often the background potential is periodic...dispersion branch we can find discrete evolution equations for the envelope associated with the lattice NLS equation (1) by looking for solutions of...spatial operator in the above NLS equation can be elliptic, hyperbolic or parabolic . We remark that further reduction is possible by going into a moving

  15. Nonlinear dynamics and astrophysics

    International Nuclear Information System (INIS)

    Vallejo, J. C.; Sanjuan, M. A. F.

    2000-01-01

    Concepts and techniques from Nonlinear Dynamics, also known as Chaos Theory, have been applied successfully to several astrophysical fields such as orbital motion, time series analysis or galactic dynamics, providing answers to old questions but also opening a few new ones. Some of these topics are described in this review article, showing the basis of Nonlinear Dynamics, and how it is applied in Astrophysics. (Author)

  16. Transient analysis of multicavity klystrons

    International Nuclear Information System (INIS)

    Lavine, T.L.; Miller, R.H.; Morton, P.L.; Ruth, R.D.

    1988-09-01

    We describe a model for analytic analysis of transients in multicavity klystron output power and phase. Cavities are modeled as resonant circuits, while bunching of the beam is modeled using linear space-charge wave theory. Our analysis has been implemented in a computer program which we use in designing multicavity klystrons with stable output power and phase. We present as examples transient analysis of a relativistic klystron using a magnetic pulse compression modulator, and of a conventional klystron designed to use phase shifting techniques for RF pulse compression. 4 refs., 4 figs

  17. Transient formation of forbidden lines

    International Nuclear Information System (INIS)

    Rosmej, F.B.; Rosmej, O.N.

    1996-01-01

    An explanation of anomalously long time scales in the transient formation of forbidden lines is proposed. The concept is based on a collisionally induced density dependence of the relaxation times of metastable level populations in transient plasma. Generalization leads to an incorporation of diffusion phenomena. We demonstrate this new concept for the simplest atomic system: the He-like isoelectronic sequence. A new interpretation of the observed long duration and anomalously high intensity of spin-forbidden emission in hot plasmas is given. (author)

  18. Transient formation of forbidden lines

    Energy Technology Data Exchange (ETDEWEB)

    Rosmej, F.B. [Bochum Univ., Ruhr (Germany). Inst. fuer Experimentalphysik V; Rosmej, O.N. [VNIIFTRI, Moscow Region (Russian Federation). MISDC

    1996-05-14

    An explanation of anomalously long time scales in the transient formation of forbidden lines is proposed. The concept is based on a collisionally induced density dependence of the relaxation times of metastable level populations in transient plasma. Generalization leads to an incorporation of diffusion phenomena. We demonstrate this new concept for the simplest atomic system: the He-like isoelectronic sequence. A new interpretation of the observed long duration and anomalously high intensity of spin-forbidden emission in hot plasmas is given. (author).

  19. Pescara benchmarks: nonlinear identification

    Science.gov (United States)

    Gandino, E.; Garibaldi, L.; Marchesiello, S.

    2011-07-01

    Recent nonlinear methods are suitable for identifying large systems with lumped nonlinearities, but in practice most structural nonlinearities are distributed and an ideal nonlinear identification method should cater for them as well. In order to extend the current NSI method to be applied also on realistic large engineering structures, a modal counterpart of the method is proposed in this paper. The modal NSI technique is applied on one of the reinforced concrete beams that have been tested in Pescara, under the project titled "Monitoring and diagnostics of railway bridges by means of the analysis of the dynamic response due to train crossing", financed by Italian Ministry of Research. The beam showed a softening nonlinear behaviour, so that the nonlinearity concerning the first mode is characterized and its force contribution is quantified. Moreover, estimates for the modal parameters are obtained and the model is validated by comparing the measured and the reconstructed output. The identified estimates are also used to accurately predict the behaviour of the same beam, when subject to different initial conditions.

  20. Nonlinear Multiantenna Detection Methods

    Directory of Open Access Journals (Sweden)

    Chen Sheng

    2004-01-01

    Full Text Available A nonlinear detection technique designed for multiple-antenna assisted receivers employed in space-division multiple-access systems is investigated. We derive the optimal solution of the nonlinear spatial-processing assisted receiver for binary phase shift keying signalling, which we refer to as the Bayesian detector. It is shown that this optimal Bayesian receiver significantly outperforms the standard linear beamforming assisted receiver in terms of a reduced bit error rate, at the expense of an increased complexity, while the achievable system capacity is substantially enhanced with the advent of employing nonlinear detection. Specifically, when the spatial separation expressed in terms of the angle of arrival between the desired and interfering signals is below a certain threshold, a linear beamformer would fail to separate them, while a nonlinear detection assisted receiver is still capable of performing adequately. The adaptive implementation of the optimal Bayesian detector can be realized using a radial basis function network. Two techniques are presented for constructing block-data-based adaptive nonlinear multiple-antenna assisted receivers. One of them is based on the relevance vector machine invoked for classification, while the other on the orthogonal forward selection procedure combined with the Fisher ratio class-separability measure. A recursive sample-by-sample adaptation procedure is also proposed for training nonlinear detectors based on an amalgam of enhanced -means clustering techniques and the recursive least squares algorithm.

  1. Pescara benchmarks: nonlinear identification

    International Nuclear Information System (INIS)

    Gandino, E; Garibaldi, L; Marchesiello, S

    2011-01-01

    Recent nonlinear methods are suitable for identifying large systems with lumped nonlinearities, but in practice most structural nonlinearities are distributed and an ideal nonlinear identification method should cater for them as well. In order to extend the current NSI method to be applied also on realistic large engineering structures, a modal counterpart of the method is proposed in this paper. The modal NSI technique is applied on one of the reinforced concrete beams that have been tested in Pescara, under the project titled M onitoring and diagnostics of railway bridges by means of the analysis of the dynamic response due to train crossing , financed by Italian Ministry of Research. The beam showed a softening nonlinear behaviour, so that the nonlinearity concerning the first mode is characterized and its force contribution is quantified. Moreover, estimates for the modal parameters are obtained and the model is validated by comparing the measured and the reconstructed output. The identified estimates are also used to accurately predict the behaviour of the same beam, when subject to different initial conditions.

  2. Introduction to nonlinear acoustics

    Science.gov (United States)

    Bjørnø, Leif

    2010-01-01

    A brief review of the basic principles of fluid mechanics needed for development of linear and nonlinear ultrasonic concepts will be given. The fundamental equations of nonlinear ultrasonics will be derived and their physical properties explained. It will be shown how an originally monochromatic finite-amplitude ultrasonic wave, due to nonlinear effects, will distort during its propagation in time and space to form higher harmonics to its fundamental frequency. The concepts of shock formation will be presented. The material nonlinearity, described by the nonlinearity parameter B/A of the material, and the convective nonlinearity, described by the ultrasonic Mach Number, will be explained. Two procedures for determination of B/A will briefly be described and some B/A-values characterizing biological materials will be presented. Shock formation, described by use of the Goldberg Number,and Ultrasonic Saturation will be discussed.. An introduction to focused ultrasonic fields will be given and it will be shown how the ultrasonic intensity will vary axially and laterally in and near the focal region and how the field parameters of interest to biomedical applications may be described by use of the KZK-Model. Finally, an introduction will be given to the parametric acoustic array formed by mixing and interaction of two monochromatic, finite-amplitude ultrasonic waves in a liquid and the potentials of this mixing process in biomedical ultrasound will briefly be mentioned.

  3. Short-term depression and transient memory in sensory cortex.

    Science.gov (United States)

    Gillary, Grant; Heydt, Rüdiger von der; Niebur, Ernst

    2017-12-01

    Persistent neuronal activity is usually studied in the context of short-term memory localized in central cortical areas. Recent studies show that early sensory areas also can have persistent representations of stimuli which emerge quickly (over tens of milliseconds) and decay slowly (over seconds). Traditional positive feedback models cannot explain sensory persistence for at least two reasons: (i) They show attractor dynamics, with transient perturbations resulting in a quasi-permanent change of system state, whereas sensory systems return to the original state after a transient. (ii) As we show, those positive feedback models which decay to baseline lose their persistence when their recurrent connections are subject to short-term depression, a common property of excitatory connections in early sensory areas. Dual time constant network behavior has also been implemented by nonlinear afferents producing a large transient input followed by much smaller steady state input. We show that such networks require unphysiologically large onset transients to produce the rise and decay observed in sensory areas. Our study explores how memory and persistence can be implemented in another model class, derivative feedback networks. We show that these networks can operate with two vastly different time courses, changing their state quickly when new information is coming in but retaining it for a long time, and that these capabilities are robust to short-term depression. Specifically, derivative feedback networks with short-term depression that acts differentially on positive and negative feedback projections are capable of dynamically changing their time constant, thus allowing fast onset and slow decay of responses without requiring unrealistically large input transients.

  4. Fundamentals of nonlinear optical materials

    Indian Academy of Sciences (India)

    Nonlinear optics; nonlinear polarization; optical fiber communication; optical switch- ing. PACS Nos 42.65Tg; ... The importance of nonlinear optics is to understand the nonlinear behavior in the induced polarization and to ..... but much work in material development and characterization remains to be done. 16. Conclusion.

  5. Numerical method for the nonlinear Fokker-Planck equation

    International Nuclear Information System (INIS)

    Zhang, D.S.; Wei, G.W.; Kouri, D.J.; Hoffman, D.K.

    1997-01-01

    A practical method based on distributed approximating functionals (DAFs) is proposed for numerically solving a general class of nonlinear time-dependent Fokker-Planck equations. The method relies on a numerical scheme that couples the usual path-integral concept to the DAF idea. The high accuracy and reliability of the method are illustrated by applying it to an exactly solvable nonlinear Fokker-Planck equation, and the method is compared with the accurate K-point Stirling interpolation formula finite-difference method. The approach is also used successfully to solve a nonlinear self-consistent dynamic mean-field problem for which both the cumulant expansion and scaling theory have been found by Drozdov and Morillo [Phys. Rev. E 54, 931 (1996)] to be inadequate to describe the occurrence of a long-lived transient bimodality. The standard interpretation of the transient bimodality in terms of the flat region in the kinetic potential fails for the present case. An alternative analysis based on the effective potential of the Schroedinger-like Fokker-Planck equation is suggested. Our analysis of the transient bimodality is strongly supported by two examples that are numerically much more challenging than other examples that have been previously reported for this problem. copyright 1997 The American Physical Society

  6. Nonlinear Approaches in Engineering Applications

    CERN Document Server

    Jazar, Reza

    2012-01-01

    Nonlinear Approaches in Engineering Applications focuses on nonlinear phenomena that are common in the engineering field. The nonlinear approaches described in this book provide a sound theoretical base and practical tools to design and analyze engineering systems with high efficiency and accuracy and with less energy and downtime. Presented here are nonlinear approaches in areas such as dynamic systems, optimal control and approaches in nonlinear dynamics and acoustics. Coverage encompasses a wide range of applications and fields including mathematical modeling and nonlinear behavior as applied to microresonators, nanotechnologies, nonlinear behavior in soil erosion,nonlinear population dynamics, and optimization in reducing vibration and noise as well as vibration in triple-walled carbon nanotubes. This book also: Provides a complete introduction to nonlinear behavior of systems and the advantages of nonlinearity as a tool for solving engineering problems Includes applications and examples drawn from the el...

  7. Transient attenuation in optical fibers

    International Nuclear Information System (INIS)

    Hopkins, A.A.; Kelly, R.E.; Looney, L.D.; Lyons, P.B.

    1984-01-01

    Low and high energy pulsed electron beams were used to generate radiation-induced transient attenuation in high-OH, Suprasil core, PCS fibers, demonstrating the energy dependence of the radiation damage and recovery mechanisms. A radiation resistant low-OH fiber was studied and its performance contrasted to that of high-OH materials. Several fibers with differing core compositions were also studied

  8. Charging transient in polyvinyl formal

    Indian Academy of Sciences (India)

    Unknown

    401–406. © Indian Academy of Sciences. 401. Charging transient in polyvinyl formal. P K KHARE*, P L JAIN† and R K PANDEY‡. Department of Postgraduate Studies & Research in Physics & Electronics, Rani Durgavati University,. Jabalpur 482 001, India. †Department of Physics, Government PG College, Damoh 470 ...

  9. Fuel rod behaviour during transients

    International Nuclear Information System (INIS)

    Hughes, H.; Haste, T.J.; Cameron, R.F.; Sinclair, J.E.

    1982-04-01

    The fuel pin performance code SLEUTH, the transient codes FRAP-T5 and TRAFIC and the clad deformation code CANSWEL-2 are described. It is shown how the codes treat gas release, pin cooling, cladding deformation and interaction, gap conductance etc. The materials properties used are indicated. (author)

  10. Simulation Model of a Transient

    DEFF Research Database (Denmark)

    Jauch, Clemens; Sørensen, Poul; Bak-Jensen, Birgitte

    2005-01-01

    This paper describes the simulation model of a controller that enables an active-stall wind turbine to ride through transient faults. The simulated wind turbine is connected to a simple model of a power system. Certain fault scenarios are specified and the turbine shall be able to sustain operati...

  11. Stationary and Transient Response Statistics

    DEFF Research Database (Denmark)

    Madsen, Peter Hauge; Krenk, Steen

    1982-01-01

    The covariance functions for the transient response of a linear MDOF-system due to stationary time limited excitation with an arbitrary frequency content are related directly to the covariance functions of the stationary response. For rational spectral density functions closed form expressions fo...

  12. 50 years of nonlinear optics

    International Nuclear Information System (INIS)

    Shen Yuanrang

    2011-01-01

    This article presents a brief introduction to the birth and early investigations of nonlinear optics, such as second harmonic generation,sum and difference frequency generation, stimulated Raman scattering,and self-action of light etc. Several important research achievements and applications of nonlinear optics are presented as well, including nonlinear optical spectroscopy, phase conjugation and adaptive optics, coherent nonlinear optics, and high-order harmonic generation. In the end, current and future research topics in nonlinear optics are summarized. (authors)

  13. [Transient amnesia in the elderly].

    Science.gov (United States)

    Sellal, François

    2006-03-01

    The two main aetiologies of transient amnesia in the elderly are idiopathic transient global amnesia (TGA) and iatrogenic or toxic amnesia. Vascular and epileptic amnesia are less common. According to the literature, transient psychogenic amnesia, which is a frequent cause of amnesia at age 30 to 50, is very rare in the elderly. TGA is the prototypical picture of transient amnesia. It occurs more often after age 50, with no identified cause, even if some authors accept emotional stress or minor head trauma as occasional precipitants. The mechanism of TGA remains a matter of discussion. It may be the consequence of a spreading depression similar to that described in migraine with aura, but other arguments support an ischemic mechanism. Iatrogenic amnesias are mainly caused by benzodiazepines (BZs) or anticholinergics. The former may occur in a non-anxious subject, who is not a usual consumer of BZ and takes a single dose. The latter are more often due to a hypersensitivity to anticholinergic drugs, in particular in patients presenting with a covert, incipient Alzheimer's disease. A vascular origin must be considered when amnesia is accompanied by other neurological symptoms, and when the regression of the amnesic disorder is slow, lasting several days. It results from lesions involving various mechanisms and locations, mainly subcortical. Partial seizures, most often mesio-temporal, more rarely frontal, may be the cause of transient amnesia in the elderly, in the absence of a past history of epilepsy. The red flag supportive of an epileptic origin is the repetition of stereotyped amnesic episodes. EEG demonstration of seizures may be difficult and the response to antiepileptic drugs effective on partial seizures is usually good.

  14. Research of the transient management in TQNPC

    International Nuclear Information System (INIS)

    Guo Longzhang; Lin Chuanqing

    2008-01-01

    Transient management is the basic technical subject in nuclear power plant. Since the Third Qinshan nuclear power company (TQNPC) successful completes the commissioning in 2003, the transient management work start at the transient management item selection and the flow definition. Now TQNPC have a complete transient management system and the management flow. In the last two years, TNQPC have finished the historic transient data collection for two units, and confirmed that the plant's key systems and equipments are at safe state. The development of the transient management subject would build a reliable foundation for the plant safe operation, plant lifetime management and periodic safety review. (author)

  15. Nonlinear Fokker-Planck Equations Fundamentals and Applications

    CERN Document Server

    Frank, Till Daniel

    2005-01-01

    Providing an introduction to the theory of nonlinear Fokker-Planck equations, this book discusses fundamental properties of transient and stationary solutions, emphasizing the stability analysis of stationary solutions by means of self-consistency equations, linear stability analysis, and Lyapunov's direct method. Also treated are Langevin equations and correlation functions. Nonlinear Fokker-Planck Equations addresses various phenomena such as phase transitions, multistability of systems, synchronization, anomalous diffusion, cut-off solutions, travelling-wave solutions and the emergence of power law solutions. A nonlinear Fokker-Planck perspective to quantum statistics, generalized thermodynamics, and linear nonequilibrium thermodynamics is given. Theoretical concepts are illustrated where possible by simple examples. The book also reviews several applications in the fields of condensed matter physics, the physics of porous media and liquid crystals, accelerator physics, neurophysics, social sciences, popul...

  16. Transient Response Analysis of Metropolis Learning in Games

    KAUST Repository

    Jaleel, Hassan

    2017-10-19

    The objective of this work is to provide a qualitative description of the transient properties of stochastic learning dynamics like adaptive play, log-linear learning, and Metropolis learning. The solution concept used in these learning dynamics for potential games is that of stochastic stability, which is based on the stationary distribution of the reversible Markov chain representing the learning process. However, time to converge to a stochastically stable state is exponential in the inverse of noise, which limits the use of stochastic stability as an effective solution concept for these dynamics. We propose a complete solution concept that qualitatively describes the state of the system at all times. The proposed concept is prevalent in control systems literature where a solution to a linear or a non-linear system has two parts, transient response and steady state response. Stochastic stability provides the steady state response of stochastic learning rules. In this work, we study its transient properties. Starting from an initial condition, we identify the subsets of the state space called cycles that have small hitting times and long exit times. Over the long time scales, we provide a description of how the distributions over joint action profiles transition from one cycle to another till it reaches the globally optimal state.

  17. Transient reflectivity on vertically aligned single-wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Galimberti, Gianluca; Ponzoni, Stefano; Ferrini, Gabriele [Interdisciplinary Laboratory for Advanced Materials Physics (i-LAMP) and Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, I-25121 Brescia (Italy); Hofmann, Stephan [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Arshad, Muhammad [Zernike Institute for Advanced Materials, University of Groningen (Netherlands); ICTP, Strada Costiera 11, I-34151 Trieste (Italy); National Centre for Physics Quaid-i-Azam University Islamabad (Pakistan); Cepek, Cinzia [Istituto Officina dei Materiali — CNR, Laboratorio TASC, Area Science Park, Basovizza, I-34149 Trieste (Italy); Pagliara, Stefania, E-mail: pagliara@dmf.unicatt.it [Interdisciplinary Laboratory for Advanced Materials Physics (i-LAMP) and Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, I-25121 Brescia (Italy)

    2013-09-30

    One-color transient reflectivity measurements are carried out on two different samples of vertically aligned single-wall carbon nanotube bundles and compared with the response recently published on unaligned bundles. The negative sign of the optical response for both samples indicates that the free electron character revealed on unaligned bundles is only due to the intertube interactions favored by the tube bending. Neither the presence of bundles nor the existence of structural defects in aligned bundles is able to induce a free-electron like behavior of the photoexcited carriers. This result is also confirmed by the presence of non-linear excitonic effects in the transient response of the aligned bundles. - Highlights: • Transient reflectivity measurements on two aligned carbon nanotube samples • Relationship between unalignment and/or bundling and intertube interaction • The bundling is not able to modify the intertube interactions • The presence of structural defects does not affect the intertube interactions • A localized exciton-like behavior has been revealed in these samples.

  18. Transient Response Analysis of Metropolis Learning in Games

    KAUST Repository

    Jaleel, Hassan; Shamma, Jeff S.

    2017-01-01

    The objective of this work is to provide a qualitative description of the transient properties of stochastic learning dynamics like adaptive play, log-linear learning, and Metropolis learning. The solution concept used in these learning dynamics for potential games is that of stochastic stability, which is based on the stationary distribution of the reversible Markov chain representing the learning process. However, time to converge to a stochastically stable state is exponential in the inverse of noise, which limits the use of stochastic stability as an effective solution concept for these dynamics. We propose a complete solution concept that qualitatively describes the state of the system at all times. The proposed concept is prevalent in control systems literature where a solution to a linear or a non-linear system has two parts, transient response and steady state response. Stochastic stability provides the steady state response of stochastic learning rules. In this work, we study its transient properties. Starting from an initial condition, we identify the subsets of the state space called cycles that have small hitting times and long exit times. Over the long time scales, we provide a description of how the distributions over joint action profiles transition from one cycle to another till it reaches the globally optimal state.

  19. An appraisal of computational techniques for transient heat conduction equation

    International Nuclear Information System (INIS)

    Kant, T.

    1983-01-01

    A semi-discretization procedure in which the ''space'' dimension is discretized by the finite element method is emphasized for transient problems. This standard methodology transforms the space-time partial differential equation (PDE) system into a set of ordinary differential equations (ODE) in time. Existing methods for transient heat conduction calculations are then reviewed. Existence of two general classes of time integration schemes- implicit and explicit is noted. Numerical stability characteristics of these two methods are elucidated. Implicit methods are noted to be numerically stable, permitting large time steps, but the cost per step is high. On the otherhand, explicit schemes are noted to be inexpensive per step, but small step size is required. Low computational cost of the explicit schemes make it very attractive for nonlinear problems. However, numerical stability considerations requiring use of very small time steps come in the way of its general adoption. Effectiveness of the fourth-order Runge-Kutta-Gill explicit integrator is then numerically evaluated. Finally we discuss some very recent works on development of computational algorithms which not only achieve unconditional stability, high accuracy and convergence but involve computations on matrix equations of elements only. This development is considered to be very significant in the light of our experience gained for simple heat conduction calculations. We conclude that such algorithms have the potential for further developments leading to development of economical methods for general transient analysis of complex physical systems. (orig.)

  20. Transient Stability Assessment of Power Systems With Uncertain Renewable Generation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Villegas Pico, Hugo Nestor [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Aliprantis, Dionysios C. [Purdue University; Lin, Xiaojun [Purdue University

    2017-08-09

    The transient stability of a power system depends heavily on its operational state at the moment of a fault. In systems where the penetration of renewable generation is significant, the dispatch of the conventional fleet of synchronous generators is uncertain at the time of dynamic security analysis. Hence, the assessment of transient stability requires the solution of a system of nonlinear ordinary differential equations with unknown initial conditions and inputs. To this end, we set forth a computational framework that relies on Taylor polynomials, where variables are associated with the level of renewable generation. This paper describes the details of the method and illustrates its application on a nine-bus test system.

  1. A calculation method for transient flow distribution of SCWR(CSR1000)

    International Nuclear Information System (INIS)

    Chen, Juan; Zhou, Tao; Chen, Jie; Liu, Liang; Muhammad, Ali Shahzad; Muhammad, Zeeshan Ali; Xia, Bangyang

    2017-01-01

    The supercritical water reactor CSR1000 is selected for the study. A parallel channel flow transient flow distribution module is developed, which is used for solving unsteady nonlinear equations. The incorporated programs of SCAC-CSR1000 are executed on normal and abnormal operating conditions. The analysis shows that: 1. Transient flow distribution can incorporate parallel channel flow calculation, with an error less than 0.1%; 2. After a total loss of coolant flow, the flow of each channel shows a downward trend; 3. In the event of introducing a traffic accident, the first coolant flow shows an increasing trend.

  2. Nonlinear dynamics of structures

    CERN Document Server

    Oller, Sergio

    2014-01-01

    This book lays the foundation of knowledge that will allow a better understanding of nonlinear phenomena that occur in structural dynamics.   This work is intended for graduate engineering students who want to expand their knowledge on the dynamic behavior of structures, specifically in the nonlinear field, by presenting the basis of dynamic balance in non‐linear behavior structures due to the material and kinematics mechanical effects.   Particularly, this publication shows the solution of the equation of dynamic equilibrium for structure with nonlinear time‐independent materials (plasticity, damage and frequencies evolution), as well as those time dependent non‐linear behavior materials (viscoelasticity and viscoplasticity). The convergence conditions for the non‐linear dynamic structure solution  are studied, and the theoretical concepts and its programming algorithms are presented.  

  3. Nonlinear Dot Plots.

    Science.gov (United States)

    Rodrigues, Nils; Weiskopf, Daniel

    2018-01-01

    Conventional dot plots use a constant dot size and are typically applied to show the frequency distribution of small data sets. Unfortunately, they are not designed for a high dynamic range of frequencies. We address this problem by introducing nonlinear dot plots. Adopting the idea of nonlinear scaling from logarithmic bar charts, our plots allow for dots of varying size so that columns with a large number of samples are reduced in height. For the construction of these diagrams, we introduce an efficient two-way sweep algorithm that leads to a dense and symmetrical layout. We compensate aliasing artifacts at high dot densities by a specifically designed low-pass filtering method. Examples of nonlinear dot plots are compared to conventional dot plots as well as linear and logarithmic histograms. Finally, we include feedback from an expert review.

  4. Multidimensional nonlinear descriptive analysis

    CERN Document Server

    Nishisato, Shizuhiko

    2006-01-01

    Quantification of categorical, or non-numerical, data is a problem that scientists face across a wide range of disciplines. Exploring data analysis in various areas of research, such as the social sciences and biology, Multidimensional Nonlinear Descriptive Analysis presents methods for analyzing categorical data that are not necessarily sampled randomly from a normal population and often involve nonlinear relations. This reference not only provides an overview of multidimensional nonlinear descriptive analysis (MUNDA) of discrete data, it also offers new results in a variety of fields. The first part of the book covers conceptual and technical preliminaries needed to understand the data analysis in subsequent chapters. The next two parts contain applications of MUNDA to diverse data types, with each chapter devoted to one type of categorical data, a brief historical comment, and basic skills peculiar to the data types. The final part examines several problems and then concludes with suggestions for futu...

  5. Nonlinear elastic waves in materials

    CERN Document Server

    Rushchitsky, Jeremiah J

    2014-01-01

    The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...

  6. Nonlinear excitations in biomolecules

    International Nuclear Information System (INIS)

    Peyrard, M.

    1995-01-01

    The aim of the workshop entitled ''Nonlinear Excitations in Biomolecules'' is to attempt to bridge the gap between the physicists and biologists communities which is mainly due to language and cultural barriers. The progress of nonlinear science in the last few decades which have shown that the combination of nonlinearity, which characterize most biological phenomena, and cooperative effects in a system having a large number of degrees of freedom, can give rise to coherent excitations with remarkable properties. New concepts, such as solitons nd nonlinear energy localisation have become familiar to physicists and applied mathematicians. It is thus tempting to make an analogy between these coherent excitations and the exceptional stability of some biological processes, such as for instance DNA transcription, which require the coordination of many events in the ever changing environment of a cell. Physicists are now invoking nonlinear excitations to describe and explain many bio-molecular processes while biologists often doubt that the seemingly infinite variety of phenomena that they are attempting to classify can be reduced to such simple concepts. A large part of the meeting is devoted to tutorial lectures rather than to latest research results. The book provides a pedagogical introduction to the two topics forming the backbone of the meeting: the theory of nonlinear excitations and solitons, and their application in biology; and the structure and function of biomolecules, as well as energy and charge transport in biophysics. In order to emphasize the link between physics and biology, the volume is not divided along these two topics but according to biological subjects. Each chapter starts with a short introduction attempting to help the reader to find his way among the contributions and point out the connection between them. 23 lectures over the 32 presented have been selected and refers to quantum properties of macro-molecules. (J.S.)

  7. Nuclear power plant transients: where are we

    International Nuclear Information System (INIS)

    Majumdar, D.

    1984-05-01

    This document is in part a postconference review and summary of the American Nuclear Society sponsored Anticipated and Abnormal Plant Transients in Light Water Reactors Conference held in Jackson, Wyoming, September 26-29, 1983, and in part a reflection upon the issues of plant transients and their impact on the viability of nuclear power. This document discusses state-of-the-art knowledge, deficiencies, and future directions in the plant transients area as seen through this conference. It describes briefly what was reported in this conference, emphasizes areas where it is felt there is confidence in the nuclear industry, and also discusses where the experts did not have a consensus. Areas covered in the document include major issues in operational transients, transient management, transient events experience base, the status of the analytical tools and their capabilities, probabilistic risk assessment applications in operational transients, and human factors impact on plant transients management

  8. Oscillations in nonlinear systems

    CERN Document Server

    Hale, Jack K

    2015-01-01

    By focusing on ordinary differential equations that contain a small parameter, this concise graduate-level introduction to the theory of nonlinear oscillations provides a unified approach to obtaining periodic solutions to nonautonomous and autonomous differential equations. It also indicates key relationships with other related procedures and probes the consequences of the methods of averaging and integral manifolds.Part I of the text features introductory material, including discussions of matrices, linear systems of differential equations, and stability of solutions of nonlinear systems. Pa

  9. Nonlinearity in nanomechanical cantilevers

    DEFF Research Database (Denmark)

    Villanueva Torrijo, Luis Guillermo; Karabalin, R. B.; Matheny, M. H.

    2013-01-01

    Euler-Bernoulli beam theory is widely used to successfully predict the linear dynamics of micro-and nanocantilever beams. However, its capacity to characterize the nonlinear dynamics of these devices has not yet been rigorously assessed, despite its use in nanoelectromechanical systems developmen....... These findings underscore the delicate balance between inertial and geometric nonlinear effects in the fundamental mode, and strongly motivate further work to develop theories beyond the Euler-Bernoulli approximation. DOI: 10.1103/PhysRevB.87.024304...

  10. Coupled nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, J; Scott, A C

    1983-01-01

    Topics discussed include transitions in weakly coupled nonlinear oscillators, singularly perturbed delay-differential equations, and chaos in simple laser systems. Papers are presented on truncated Navier-Stokes equations in a two-dimensional torus, on frequency locking in Josephson point contacts, and on soliton excitations in Josephson tunnel junctions. Attention is also given to the nonlinear coupling of radiation pulses to absorbing anharmonic molecular media, to aspects of interrupted coarse-graining in stimulated excitation, and to a statistical analysis of long-term dynamic irregularity in an exactly soluble quantum mechanical model.

  11. Engineered nonlinear lattices

    DEFF Research Database (Denmark)

    Clausen, Carl A. Balslev; Christiansen, Peter Leth; Torner, L.

    1999-01-01

    We show that with the quasi-phase-matching technique it is possible to fabricate stripes of nonlinearity that trap and guide light like waveguides. We investigate an array of such stripes and find that when the stripes are sufficiently narrow, the beam dynamics is governed by a quadratic nonlinear...... discrete equation. The proposed structure therefore provides an experimental setting for exploring discrete effects in a controlled manner. In particular, we show propagation of breathers that are eventually trapped by discreteness. When the stripes are wide the beams evolve in a structure we term...

  12. Nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind

    2012-01-01

    Since the 4e appeared, a fast evolution of the field has occurred. The 5e of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers, the basis of all our telecommunications infastructure as well as being used in the medical field. Reflecting the big developments in research, this new edition includes major new content: slow light effects, which offers a reduction in noise and power consumption and more ordered network traffic-stimulated Brillouin scattering; vectorial treatment of highly nonlinear fibers; and a brand new chapter o

  13. Fast thermal transients on valve

    International Nuclear Information System (INIS)

    Ferjancic, M.; Stok, B.; Halilovic, M.; Koc, P.; Mole, N.; Otrin, Z.; Kotar, A.

    2007-01-01

    One of the regulatory body methods to supervise nuclear safety of a nuclear power plant is a review of plant modifications and evaluation of their impact on plant operating experience. The Slovenian Nuclear Safety Administration (SNSA) licensed in April 2003 the use of leak-before-break (LBB) methodology in the Krsko NPP for the primary loop including surge line and connecting pipelines with minimal diameter of 6 inch. The SNSA decision based also on fracture mechanics analyses that include direct pipe failure mechanisms such as water hammer, creep damage, erosion and corrosion, fatigue and environmental conditions over the entire life of the plant. The evaluation of the operating transients pointed out, that presumed loadings, used for the LBB analysis, did not incorporate all the fast thermal transients data. For that purpose the SNSA requested Faculty of Mechanical Engineering (FS) in Ljubljana to perform additional analyses. The results of the analysis shall confirm the validity of the LBB analysis. (author)

  14. Pressure transient in liquid lines

    International Nuclear Information System (INIS)

    Sun, J.G.; Wang, X.Q.

    1995-01-01

    The pressure surge that results from a step change of flow in liquid pipelines, commonly known as water hammer, was analyzed by an eigenfunction method. A differential-integral Pressure wave equation and a linearized velocity equation were derived from the equations of mass and momentum conservation. Waveform distortion due to viscous dissipation and pipe-wall elastic expansion is characterized by a dimensionless transmission number K. The pressure surge condition, which is mathematically singular, was used in the solution procedure. The exact solutions from numerical calculation of the differential-integral equation provide a complete Pressure transient in the pipe. The problems are also calculated With the general-purpose computer code COMMIX, which solves the exact mass conservation equation and Navier-Stokes equations. These solutions were compared with published experimental results, and agreement was good. The effect of turbulence on the pressure transient is discussed in the light of COMMIX calculational results

  15. Superresolution microscopy with transient binding.

    Science.gov (United States)

    Molle, Julia; Raab, Mario; Holzmeister, Susanne; Schmitt-Monreal, Daniel; Grohmann, Dina; He, Zhike; Tinnefeld, Philip

    2016-06-01

    For single-molecule localization based superresolution, the concentration of fluorescent labels has to be thinned out. This is commonly achieved by photophysically or photochemically deactivating subsets of molecules. Alternatively, apparent switching of molecules can be achieved by transient binding of fluorescent labels. Here, a diffusing dye yields bright fluorescent spots when binding to the structure of interest. As the binding interaction is weak, the labeling is reversible and the dye ligand construct diffuses back into solution. This approach of achieving superresolution by transient binding (STB) is reviewed in this manuscript. Different realizations of STB are discussed and compared to other localization-based superresolution modalities. We propose the development of labeling strategies that will make STB a highly versatile tool for superresolution microscopy at highest resolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Electromagnetic Transients in Power Cables

    DEFF Research Database (Denmark)

    Silva, Filipe Faria Da; Bak, Claus Leth

    . The chapter ends by proposing a systematic method that can be used when doing the insulation co-ordination study for a line, as well as the modelling requirements, both modelling depth and modelling detail of the equipment, for the study of the different types of transients followed by a step-by-step generic...... typically used for the screens of cables (both-ends bonding and cross-boding) and also presents methods that can be used to estimate the maximum current of a cable for different types of soils, i.e. thermal calculations. The end of the chapter introduces the shunt reactor, which is an important element...... detail of the equipment, for the study of the different types of transients followed by a step-by-step generic example....

  17. A mathematical model for the simulation of thermal transients in the water loop of IPEN

    International Nuclear Information System (INIS)

    Pontedeiro, A.C.

    1980-01-01

    A mathematical model for simulation of thermal transients in the water loop at the Instituto de Pesquisas Energeticas e Nucleares, Sao Paulo, Brasil, is developed. The model is based on energy equations applied to the components of the experimental water loop. The non-linear system of first order diferencial equations and of non-linear algebraic equations obtained through the utilization of the IBM 'System/360-Continous System Modeling Program' (CSMP) is resolved. An optimization of the running time of the computer is made and a typical simulation of the water loop is executed. (Author) [pt

  18. Surface radiation fluxes in transient climate simulations

    Science.gov (United States)

    Garratt, J. R.; O'Brien, D. M.; Dix, M. R.; Murphy, J. M.; Stephens, G. L.; Wild, M.

    1999-01-01

    Transient CO 2 experiments from five coupled climate models, in which the CO 2 concentration increases at rates of 0.6-1.1% per annum for periods of 75-200 years, are used to document the responses of surface radiation fluxes, and associated atmospheric properties, to the CO 2 increase. In all five models, the responses of global surface temperature and column water vapour are non-linear and fairly tightly constrained. Thus, global warming lies between 1.9 and 2.7 K at doubled, and between 3.1 and 4.1 K at tripled, CO 2, whilst column water vapour increases by between 3.5 and 4.5 mm at doubled, and between 7 and 8 mm at tripled, CO 2. Global cloud fraction tends to decrease by 1-2% out to tripled CO 2, mainly the result of decreases in low cloud. Global increases in column water, and differences in these increases between models, are mainly determined by the warming of the tropical oceans relative to the middle and high latitudes; these links are emphasised in the zonal profiles of warming and column water vapour increase, with strong water vapour maxima in the tropics. In all models the all-sky shortwave flux to the surface S↓ (global, annual average) changes by less than 5 W m -2 out to tripled CO 2, in some cases being essentially invariant in time. In contrast, the longwave flux to the surface L↓ increases significantly, by 25 W m -2 typically at tripled CO 2. The variations of S↓ and L↓ (clear-sky and all-sky fluxes) with increase in CO 2 concentration are generally non-linear, reflecting the effects of ocean thermal inertia, but as functions of global warming are close to linear in all five models. This is best illustrated for the clear-sky downwelling fluxes, and the net radiation. Regionally, as illustrated in zonal profiles and global distributions, greatest changes in both S↓ and L↓ are the result primarily of local maxima in warming and column water vapour increases.

  19. LLL transient-electromagnetics-measurement facility

    International Nuclear Information System (INIS)

    Deadrick, F.J.; Miller, E.K.; Hudson, H.G.

    1975-01-01

    The operation and hardware of the Lawrence Livermore Laboratory's transient-electromagnetics (EM)-measurement facility are described. The transient-EM range is useful for determining the time-domain transient responses of structures to incident EM pulses. To illustrate the accuracy and utility of the EM-measurement facility, actual experimental measurements are compared to numerically computed values

  20. Learning from anticipated and abnormal plant transients

    International Nuclear Information System (INIS)

    Varnado, B.

    1983-01-01

    A report is given of the American Nuclear Society topical meeting on Anticipated and Abnormal Transients in Light Water Reactors held in Jackson, Wyoming in September 1983. Industry involvement in the evaluation of operating experience, human error contributions, transient management, thermal hydraulic modelling, the role of probabilistic risk assessment and the cost of transient incidents are discussed. (U.K.)

  1. A transient absorption study of allophycocyanin

    Indian Academy of Sciences (India)

    Transient dynamics of allophycocyanin trimers and monomers are observed by using the pump-probe, transient absorption technique. The origin of spectral components of the transient absorption spectra is discussed in terms of both kinetics and spectroscopy. We find that the energy gap between the ground and excited ...

  2. Adaptive sampling of AEM transients

    Science.gov (United States)

    Di Massa, Domenico; Florio, Giovanni; Viezzoli, Andrea

    2016-02-01

    This paper focuses on the sampling of the electromagnetic transient as acquired by airborne time-domain electromagnetic (TDEM) systems. Typically, the sampling of the electromagnetic transient is done using a fixed number of gates whose width grows logarithmically (log-gating). The log-gating has two main benefits: improving the signal to noise (S/N) ratio at late times, when the electromagnetic signal has amplitudes equal or lower than the natural background noise, and ensuring a good resolution at the early times. However, as a result of fixed time gates, the conventional log-gating does not consider any geological variations in the surveyed area, nor the possibly varying characteristics of the measured signal. We show, using synthetic models, how a different, flexible sampling scheme can increase the resolution of resistivity models. We propose a new sampling method, which adapts the gating on the base of the slope variations in the electromagnetic (EM) transient. The use of such an alternative sampling scheme aims to get more accurate inverse models by extracting the geoelectrical information from the measured data in an optimal way.

  3. Transient virulence of emerging pathogens.

    Science.gov (United States)

    Bolker, Benjamin M; Nanda, Arjun; Shah, Dharmini

    2010-05-06

    Should emerging pathogens be unusually virulent? If so, why? Existing theories of virulence evolution based on a tradeoff between high transmission rates and long infectious periods imply that epidemic growth conditions will select for higher virulence, possibly leading to a transient peak in virulence near the beginning of an epidemic. This transient selection could lead to high virulence in emerging pathogens. Using a simple model of the epidemiological and evolutionary dynamics of emerging pathogens, along with rough estimates of parameters for pathogens such as severe acute respiratory syndrome, West Nile virus and myxomatosis, we estimated the potential magnitude and timing of such transient virulence peaks. Pathogens that are moderately evolvable, highly transmissible, and highly virulent at equilibrium could briefly double their virulence during an epidemic; thus, epidemic-phase selection could contribute significantly to the virulence of emerging pathogens. In order to further assess the potential significance of this mechanism, we bring together data from the literature for the shapes of tradeoff curves for several pathogens (myxomatosis, HIV, and a parasite of Daphnia) and the level of genetic variation for virulence for one (myxomatosis). We discuss the need for better data on tradeoff curves and genetic variance in order to evaluate the plausibility of various scenarios of virulence evolution.

  4. Cortical computations via transient attractors.

    Directory of Open Access Journals (Sweden)

    Oliver L C Rourke

    Full Text Available The ability of sensory networks to transiently store information on the scale of seconds can confer many advantages in processing time-varying stimuli. How a network could store information on such intermediate time scales, between typical neurophysiological time scales and those of long-term memory, is typically attributed to persistent neural activity. An alternative mechanism which might allow for such information storage is through temporary modifications to the neural connectivity which decay on the same second-long time scale as the underlying memories. Earlier work that has explored this method has done so by emphasizing one attractor from a limited, pre-defined set. Here, we describe an alternative, a Transient Attractor network, which can learn any pattern presented to it, store several simultaneously, and robustly recall them on demand using targeted probes in a manner reminiscent of Hopfield networks. We hypothesize that such functionality could be usefully embedded within sensory cortex, and allow for a flexibly-gated short-term memory, as well as conferring the ability of the network to perform automatic de-noising, and separation of input signals into distinct perceptual objects. We demonstrate that the stored information can be refreshed to extend storage time, is not sensitive to noise in the system, and can be turned on or off by simple neuromodulation. The diverse capabilities of transient attractors, as well as their resemblance to many features observed in sensory cortex, suggest the possibility that their actions might underlie neural processing in many sensory areas.

  5. Cortical computations via transient attractors.

    Science.gov (United States)

    Rourke, Oliver L C; Butts, Daniel A

    2017-01-01

    The ability of sensory networks to transiently store information on the scale of seconds can confer many advantages in processing time-varying stimuli. How a network could store information on such intermediate time scales, between typical neurophysiological time scales and those of long-term memory, is typically attributed to persistent neural activity. An alternative mechanism which might allow for such information storage is through temporary modifications to the neural connectivity which decay on the same second-long time scale as the underlying memories. Earlier work that has explored this method has done so by emphasizing one attractor from a limited, pre-defined set. Here, we describe an alternative, a Transient Attractor network, which can learn any pattern presented to it, store several simultaneously, and robustly recall them on demand using targeted probes in a manner reminiscent of Hopfield networks. We hypothesize that such functionality could be usefully embedded within sensory cortex, and allow for a flexibly-gated short-term memory, as well as conferring the ability of the network to perform automatic de-noising, and separation of input signals into distinct perceptual objects. We demonstrate that the stored information can be refreshed to extend storage time, is not sensitive to noise in the system, and can be turned on or off by simple neuromodulation. The diverse capabilities of transient attractors, as well as their resemblance to many features observed in sensory cortex, suggest the possibility that their actions might underlie neural processing in many sensory areas.

  6. Nonlinear silicon photonics

    Science.gov (United States)

    Tsia, Kevin K.; Jalali, Bahram

    2010-05-01

    An intriguing optical property of silicon is that it exhibits a large third-order optical nonlinearity, with orders-ofmagnitude larger than that of silica glass in the telecommunication band. This allows efficient nonlinear optical interaction at relatively low power levels in a small footprint. Indeed, we have witnessed a stunning progress in harnessing the Raman and Kerr effects in silicon as the mechanisms for enabling chip-scale optical amplification, lasing, and wavelength conversion - functions that until recently were perceived to be beyond the reach of silicon. With all the continuous efforts developing novel techniques, nonlinear silicon photonics is expected to be able to reach even beyond the prior achievements. Instead of providing a comprehensive overview of this field, this manuscript highlights a number of new branches of nonlinear silicon photonics, which have not been fully recognized in the past. In particular, they are two-photon photovoltaic effect, mid-wave infrared (MWIR) silicon photonics, broadband Raman effects, inverse Raman scattering, and periodically-poled silicon (PePSi). These novel effects and techniques could create a new paradigm for silicon photonics and extend its utility beyond the traditionally anticipated applications.

  7. Nonlinear Regression with R

    CERN Document Server

    Ritz, Christian; Parmigiani, Giovanni

    2009-01-01

    R is a rapidly evolving lingua franca of graphical display and statistical analysis of experiments from the applied sciences. This book provides a coherent treatment of nonlinear regression with R by means of examples from a diversity of applied sciences such as biology, chemistry, engineering, medicine and toxicology.

  8. Nonlinear silicon photonics

    Science.gov (United States)

    Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.

    2017-09-01

    Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.

  9. Generalized Nonlinear Yule Models

    Science.gov (United States)

    Lansky, Petr; Polito, Federico; Sacerdote, Laura

    2016-11-01

    With the aim of considering models related to random graphs growth exhibiting persistent memory, we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macroevolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth rates. Among the main results we derive the explicit distribution of the number of in-links of a webpage chosen uniformly at random recognizing the contribution to the asymptotics and the finite time correction. The mean value of the latter distribution is also calculated explicitly in the most general case. Furthermore, in order to show the usefulness of our results, we particularize them in the case of specific birth rates giving rise to a saturating behaviour, a property that is often observed in nature. The further specialization to the non-fractional case allows us to extend the Yule model accounting for a nonlinear growth.

  10. Intramolecular and nonlinear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.J. [Argonne National Laboratory, IL (United States)

    1993-12-01

    Research in this program focuses on three interconnected areas. The first involves the study of intramolecular dynamics, particularly of highly excited systems. The second area involves the use of nonlinear dynamics as a tool for the study of molecular dynamics and complex kinetics. The third area is the study of the classical/quantum correspondence for highly excited systems, particularly systems exhibiting classical chaos.

  11. Balancing for nonlinear systems

    NARCIS (Netherlands)

    Scherpen, J.M.A.

    1993-01-01

    We present a method of balancing for nonlinear systems which is an extension of balancing for linear systems in the sense that it is based on the input and output energy of a system. It is a local result, but gives 'broader' results than we obtain by just linearizing the system. Furthermore, the

  12. THE EFFECTS OF TRANSIENTS ON PHOTOSPHERIC AND CHROMOSPHERIC POWER DISTRIBUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, T.; Banerjee, D.; Pant, V. [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India); Henriques, V. M. J.; Prasad, S. Krishna; Mathioudakis, M.; Jess, D., E-mail: tsamanta@iiap.res.in, E-mail: v.henriques@qub.ac.uk [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN (United Kingdom)

    2016-09-01

    We have observed a quiet-Sun region with the Swedish 1 m Solar Telescope equipped with the CRISP Imaging SpectroPolarimeter. High-resolution, high-cadence, H α line scanning images were taken to observe different layers of the solar atmosphere from the photosphere to upper chromosphere. We study the distribution of power in different period bands at different heights. Power maps of the upper photosphere and the lower chromosphere show suppressed power surrounding the magnetic-network elements, known as “magnetic shadows.” These also show enhanced power close to the photosphere, traditionally referred to as “power halos.” The interaction between acoustic waves and inclined magnetic fields is generally believed to be responsible for these two effects. In this study we explore whether small-scale transients can influence the distribution of power at different heights. We show that the presence of transients, like mottles, Rapid Blueshifted Excursions (RBEs), and Rapid Redshifted Excursions (RREs), can strongly influence the power maps. The short and finite lifetime of these events strongly affects all power maps, potentially influencing the observed power distribution. We show that Doppler-shifted transients like RBEs and RREs that occur ubiquitously can have a dominant effect on the formation of the power halos in the quiet Sun. For magnetic shadows, transients like mottles do not seem to have a significant effect on the power suppression around 3 minutes, and wave interaction may play a key role here. Our high-cadence observations reveal that flows, waves, and shocks manifest in the presence of magnetic fields to form a nonlinear magnetohydrodynamic system.

  13. Transient nature of late Pleistocene climate variability.

    Science.gov (United States)

    Crowley, Thomas J; Hyde, William T

    2008-11-13

    Climate in the early Pleistocene varied with a period of 41 kyr and was related to variations in Earth's obliquity. About 900 kyr ago, variability increased and oscillated primarily at a period of approximately 100 kyr, suggesting that the link was then with the eccentricity of Earth's orbit. This transition has often been attributed to a nonlinear response to small changes in external boundary conditions. Here we propose that increasing variablility within the past million years may indicate that the climate system was approaching a second climate bifurcation point, after which it would transition again to a new stable state characterized by permanent mid-latitude Northern Hemisphere glaciation. From this perspective the past million years can be viewed as a transient interval in the evolution of Earth's climate. We support our hypothesis using a coupled energy-balance/ice-sheet model, which furthermore predicts that the future transition would involve a large expansion of the Eurasian ice sheet. The process responsible for the abrupt change seems to be the albedo discontinuity at the snow-ice edge. The best-fit model run, which explains almost 60% of the variance in global ice volume during the past 400 kyr, predicts a rapid transition in the geologically near future to the proposed glacial state. Should it be attained, this state would be more 'symmetric' than the present climate, with comparable areas of ice/sea-ice cover in each hemisphere, and would represent the culmination of 50 million years of evolution from bipolar nonglacial climates to bipolar glacial climates.

  14. Identification of nonlinear anelastic models

    International Nuclear Information System (INIS)

    Draganescu, G E; Bereteu, L; Ercuta, A

    2008-01-01

    A useful nonlinear identification technique applied to the anelastic and rheologic models is presented in this paper. First introduced by Feldman, the method is based on the Hilbert transform, and is currently used for identification of the nonlinear vibrations

  15. Nonlinear chaos control and synchronization

    NARCIS (Netherlands)

    Huijberts, H.J.C.; Nijmeijer, H.; Schöll, E.; Schuster, H.G.

    2007-01-01

    This chapter contains sections titled: Introduction Nonlinear Geometric Control Some Differential Geometric Concepts Nonlinear Controllability Chaos Control Through Feedback Linearization Chaos Control Through Input-Output Linearization Lyapunov Design Lyapunov Stability and Lyapunov's First Method

  16. Nonlinear interaction of s-polarized surface waves at the boundary of a semibounded magnetized plasma

    International Nuclear Information System (INIS)

    Amein, W.H.; El-Siragy, N.M.; Nagy, O.Z.; Sayed, Y.A.

    1981-01-01

    Nonlinear interaction of S-Polarized surface waves at the boundary of a semibounded magnetized plasma is investigated. The expressions of the amplitudes of the generated waves are found. It is shown that, the generated waves with combined frequencies are equally radiated from the transient layer into plasma and vacuum

  17. Neural-Based Compensation of Nonlinearities in an Airplane Longitudinal Model with Dynamic-Inversion Control

    Directory of Open Access Journals (Sweden)

    YanBin Liu

    2017-01-01

    Full Text Available The inversion design approach is a very useful tool for the complex multiple-input-multiple-output nonlinear systems to implement the decoupling control goal, such as the airplane model and spacecraft model. In this work, the flight control law is proposed using the neural-based inversion design method associated with the nonlinear compensation for a general longitudinal model of the airplane. First, the nonlinear mathematic model is converted to the equivalent linear model based on the feedback linearization theory. Then, the flight control law integrated with this inversion model is developed to stabilize the nonlinear system and relieve the coupling effect. Afterwards, the inversion control combined with the neural network and nonlinear portion is presented to improve the transient performance and attenuate the uncertain effects on both external disturbances and model errors. Finally, the simulation results demonstrate the effectiveness of this controller.

  18. Nonlinearity and disorder: Classification and stability of nonlinear impurity modes

    DEFF Research Database (Denmark)

    Sukhorukov, Andrey A.; Kivshar, Yuri S.; Bang, Ole

    2001-01-01

    We study the effects produced by competition of two physical mechanisms of energy localization in inhomogeneous nonlinear systems. As an example, we analyze spatially localized modes supported by a nonlinear impurity in the generalized nonlinear Schrödinger equation and describe three types of no...... the case of a power-law nonlinearity in detail. We discuss several scenarios of the instability-induced dynamics of the nonlinear impurity modes, including the mode decay or switching to a new stable state, and collapse at the impurity site....

  19. Terahertz Nonlinear Optics in Semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias C.

    2013-01-01

    We demonstrate the nonlinear optical effects – selfphase modulation and saturable absorption of a single-cycle THz pulse in a semiconductor. Resulting from THz-induced modulation of Drude plasma, these nonlinear optical effects, in particular, lead to self-shortening and nonlinear spectral...... breathing of a single-cycle THz pulse in a semiconductor....

  20. FRF decoupling of nonlinear systems

    Science.gov (United States)

    Kalaycıoğlu, Taner; Özgüven, H. Nevzat

    2018-03-01

    Structural decoupling problem, i.e. predicting dynamic behavior of a particular substructure from the knowledge of the dynamics of the coupled structure and the other substructure, has been well investigated for three decades and led to several decoupling methods. In spite of the inherent nonlinearities in a structural system in various forms such as clearances, friction and nonlinear stiffness, all decoupling studies are for linear systems. In this study, decoupling problem for nonlinear systems is addressed for the first time. A method, named as FRF Decoupling Method for Nonlinear Systems (FDM-NS), is proposed for calculating FRFs of a substructure decoupled from a coupled nonlinear structure where nonlinearity can be modeled as a single nonlinear element. Depending on where nonlinear element is, i.e., either in the known or unknown subsystem, or at the connection point, the formulation differs. The method requires relative displacement information between two end points of the nonlinear element, in addition to point and transfer FRFs at some points of the known subsystem. However, it is not necessary to excite the system from the unknown subsystem even when the nonlinear element is in that subsystem. The validation of FDM-NS is demonstrated with two different case studies using nonlinear lumped parameter systems. Finally, a nonlinear experimental test structure is used in order to show the real-life application and accuracy of FDM-NS.

  1. Rogue waves in nonlinear science

    International Nuclear Information System (INIS)

    Yan Zhenya

    2012-01-01

    Rogue waves, as a special type of solitary waves, play an important role in nonlinear optics, Bose-Einstein condensates, ocean, atmosphere, and even finance. In this report, we mainly review on the history of the rogue wave phenomenon and recent development of rogue wave solutions in some nonlinear physical models arising in the fields of nonlinear science.

  2. H∞ Balancing for Nonlinear Systems

    NARCIS (Netherlands)

    Scherpen, Jacquelien M.A.

    1996-01-01

    In previously obtained balancing methods for nonlinear systems a past and a future energy function are used to bring the nonlinear system in balanced form. By considering a different pair of past and future energy functions that are related to the H∞ control problem for nonlinear systems we define

  3. Transient hyperthyroidism of hyperemesis gravidarum.

    Science.gov (United States)

    Tan, Jackie Y L; Loh, Keh Chuan; Yeo, George S H; Chee, Yam Cheng

    2002-06-01

    To characterise the clinical, biochemical and thyroid antibody profile in women with transient hyperthyroidism of hyperemesis gravidarum. Prospective observational study. Hospital inpatient gynaecological ward. Women admitted with hyperemesis gravidarum and found to have hyperthyroidism. Fifty-three women were admitted with hyperemesis gravidarum and were found to have hyperthyroidism. Each woman was examined for clinical signs of thyroid disease and underwent investigations including urea, creatinine, electrolytes, liver function test, thyroid antibody profile and serial thyroid function test until normalisation. Gestation at which thyroid function normalised, clinical and thyroid antibody profile and pregnancy outcome (birthweight, gestation at delivery and Apgar score at 5 minutes). Full data were available for 44 women. Free T4 levels normalised by 15 weeks of gestation in the 39 women with transient hyperthyroidism while TSH remained suppressed until 19 weeks of gestation. None of these women were clinically hyperthyroid. Thyroid antibodies were not found in most of them. Median birthweight in the infants of mothers who experienced weight loss of > 5% of their pre-pregnancy weight was lower compared with those of women who did not (P = 0.093). Five women were diagnosed with Graves' disease based on clinical features and thyroid antibody profile. In transient hyperthyroidism of hyperemesis gravidarum, thyroid function normalises by the middle of the second trimester without anti-thyroid treatment. Clinically overt hyperthyroidism and thyroid antibodies are usually absent. Apart from a non-significant trend towards lower birthweights in the infants of mothers who experienced significant weight loss, pregnancy outcome was generally good. Routine assessment of thyroid function is unnecessary for women with hyperemesis gravidarum in the absence of any clinical features of hyperthyroidism.

  4. Nonlinear dynamics of trions under strong optical excitation in monolayer MoSe2.

    Science.gov (United States)

    Ye, Jialiang; Yan, Tengfei; Niu, Binghui; Li, Ying; Zhang, Xinhui

    2018-02-05

    By employing ultrafast transient reflection measurements based on two-color pump-probe spectroscopy, the population and valley polarization dynamics of trions in monolayer MoSe 2 were investigated at relatively high excitation densities under near-resonant excitation. Both the nonlinear dynamic photobleaching of the trion resonance and the redshift of the exciton resonance were found to be responsible for the excitation-energy- and density-dependent transient reflection change as a result of many-body interactions. Furthermore, from the polarization-resolved measurements, it was revealed that the initial fast population and polarization decay process upon strong photoexcitation observed for trions was determined by trion formation, transient phase-space filling and the short valley lifetime of excitons. The results provide a basic understanding of the nonlinear dynamics of population and valley depolarization of trions, as well as exciton-trion correlation in atomically thin MoSe 2 and other transition metal dichalcogenide materials.

  5. Nonlinear closed-loop control theory

    International Nuclear Information System (INIS)

    Perez, R.B.; Otaduy, P.J.; Abdalla, M.

    1992-01-01

    Traditionally, the control of nuclear power plants has been implemented by the use of proportional-integral (PI) control systems. PI controllers are both simple and, within their calibration range, highly reliable. However, PIs provide little performance information that could be used to diagnose out-of-range events or the nature of unanticipated transients that may occur in the plant. To go beyond the PI controller, the new control algorithms must deal with the physical system nonlinearities and with the reality of uncertain dynamics terms in its mathematical model. The tool to develop a new kind of control algorithm is provided by Optimal Control Theory. In this theory, a norm is minimized which incorporates the constraint that the model equations should be satisfied at all times by means of the Lagrange multipliers. Optimal control algorithms consist of two sets of coupled equations: (1) the model equations, integrated forward in time; and (2) the equations for the Lagrange multipliers (adjoints), integrated backwards in time. There are two challenges: dealing with large sets of coupled nonlinear equations and with a two-point boundary value problem that must be solved iteratively. In this paper, the rigorous conversion of the two-point boundary value problem into an initial value problem is presented. In addition, the incorporation into the control algorithm of ''real world'' constraints such as sensors and actuators, dynamic response functions and time lags introduced by the digitalization of analog signals is presented. (Author)

  6. Transient analysis of a U-tube natural circulation steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Gaikwad, A J; Kumar, Rajesh; Bhadra, Anu; Chakraborty, G; Venkat Raj, V [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    A computer code has been developed, for transient thermal-hydraulic analysis of proposed 500 MWe PHWR steam generator. The transient behaviour of a nuclear power plant is very much dependent on the steam generator performance, as it provides a thermal linkage between the primary and secondary systems. Study of dynamics of steam generator is essential for over all power plant dynamics as well as design of control systems for steam generator. A mathematical model has been developed for the simulation of thermal-hydraulic phenomena in a U tube natural circulation steam generator. Fluid model is based on one dimensional, nonlinear, single fluid conservation equations of mass, momentum, energy and equation of state. This model includes coupled two phase flow heat transfer and natural circulation. The model accounts for both compressibility and thermal expansion effects. The process simulation and results obtained for transients such as step change in load and total loss of feed water are presented. (author). 5 refs., 7 figs.

  7. A theory of post-stall transients in axial compression systems. I - Development of equations

    Science.gov (United States)

    Moore, F. K.; Greitzer, E. M.

    1985-01-01

    An approximate theory is presented for post-stall transients in multistage axial compression systems. The theory leads to a set of three simultaneous nonlinear third-order partial differential equations for pressure rise, and average and disturbed values of flow coefficient, as functions of time and angle around the compressor. By a Galerkin procedure, angular dependence is averaged, and the equations become first order in time. These final equations are capable of describing the growth and possible decay of a rotating-stall cell during a compressor mass-flow transient. It is shown how rotating-stall-like and surgelike motions are coupled through these equations, and also how the instantaneous compressor pumping characteristic changes during the transient stall process.

  8. Nonlinear differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics.

  9. Nonlinear (Anharmonic Casimir Oscillator

    Directory of Open Access Journals (Sweden)

    Habibollah Razmi

    2011-01-01

    Full Text Available We want to study the dynamics of a simple linear harmonic micro spring which is under the influence of the quantum Casimir force/pressure and thus behaves as a (an nonlinear (anharmonic Casimir oscillator. Generally, the equation of motion of this nonlinear micromechanical Casimir oscillator has no exact solvable (analytical solution and the turning point(s of the system has (have no fixed position(s; however, for particular values of the stiffness of the micro spring and at appropriately well-chosen distance scales and conditions, there is (are approximately sinusoidal solution(s for the problem (the variable turning points are collected in a very small interval of positions. This, as a simple and elementary plan, may be useful in controlling the Casimir stiction problem in micromechanical devices.

  10. Limits to Nonlinear Inversion

    DEFF Research Database (Denmark)

    Mosegaard, Klaus

    2012-01-01

    For non-linear inverse problems, the mathematical structure of the mapping from model parameters to data is usually unknown or partly unknown. Absence of information about the mathematical structure of this function prevents us from presenting an analytical solution, so our solution depends on our......-heuristics are inefficient for large-scale, non-linear inverse problems, and that the 'no-free-lunch' theorem holds. We discuss typical objections to the relevance of this theorem. A consequence of the no-free-lunch theorem is that algorithms adapted to the mathematical structure of the problem perform more efficiently than...... pure meta-heuristics. We study problem-adapted inversion algorithms that exploit the knowledge of the smoothness of the misfit function of the problem. Optimal sampling strategies exist for such problems, but many of these problems remain hard. © 2012 Springer-Verlag....

  11. Nonlinear Photonics 2014: introduction.

    Science.gov (United States)

    Akhmediev, N; Kartashov, Yaroslav

    2015-01-12

    International Conference "Nonlinear Photonics-2014" took place in Barcelona, Spain on July 27-31, 2014. It was a part of the "Advanced Photonics Congress" which is becoming a traditional notable event in the world of photonics. The current focus issue of Optics Express contains contributions from the participants of the Conference and the Congress. The articles in this focus issue by no means represent the total number of the congress contributions (around 400). However, it demonstrates wide range of topics covered at the event. The next conference of this series is to be held in 2016 in Australia, which is the home of many researchers working in the field of photonics in general and nonlinear photonics in particular.

  12. Nonlinear data assimilation

    CERN Document Server

    Van Leeuwen, Peter Jan; Reich, Sebastian

    2015-01-01

    This book contains two review articles on nonlinear data assimilation that deal with closely related topics but were written and can be read independently. Both contributions focus on so-called particle filters. The first contribution by Jan van Leeuwen focuses on the potential of proposal densities. It discusses the issues with present-day particle filters and explorers new ideas for proposal densities to solve them, converging to particle filters that work well in systems of any dimension, closing the contribution with a high-dimensional example. The second contribution by Cheng and Reich discusses a unified framework for ensemble-transform particle filters. This allows one to bridge successful ensemble Kalman filters with fully nonlinear particle filters, and allows a proper introduction of localization in particle filters, which has been lacking up to now.

  13. Essentials of nonlinear optics

    CERN Document Server

    Murti, Y V G S

    2014-01-01

    Current literature on Nonlinear Optics varies widely in terms of content, style, and coverage of specific topics, relative emphasis of areas and the depth of treatment. While most of these books are excellent resources for the researchers, there is a strong need for books appropriate for presenting the subject at the undergraduate or postgraduate levels in Universities. The need for such a book to serve as a textbook at the level of the bachelors and masters courses was felt by the authors while teaching courses on nonlinear optics to students of both science and engineering during the past two decades. This book has emerged from an attempt to address the requirement of presenting the subject at college level. A one-semester course covering the essentials can effectively be designed based on this.

  14. Nonlinear differential equations

    International Nuclear Information System (INIS)

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics

  15. The forced nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Kaup, D.J.; Hansen, P.J.

    1985-01-01

    The nonlinear Schroedinger equation describes the behaviour of a radio frequency wave in the ionosphere near the reflexion point where nonlinear processes are important. A simple model of this phenomenon leads to the forced nonlinear Schroedinger equation in terms of a nonlinear boundary value problem. A WKB analysis of the time evolution equations for the nonlinear Schroedinger equation in the inverse scattering transform formalism gives a crude order of magnitude estimation of the qualitative behaviour of the solutions. This estimation is compared with the numerical solutions. (D.Gy.)

  16. Nonlinear electrodynamics and cosmology

    International Nuclear Information System (INIS)

    Breton, Nora

    2010-01-01

    Nonlinear electrodynamics (NLED) generalizes Maxwell's theory for strong fields. When coupled to general relativity NLED presents interesting features like the non-vanishing of the trace of the energy-momentum tensor that leads to the possibility of violation of some energy conditions and of acting as a repulsive contribution in the Raychaudhuri equation. This theory is worth to study in cosmological and astrophysical situations characterized by strong electromagnetic and gravitational fields.

  17. Nonlinear fibre optics overview

    DEFF Research Database (Denmark)

    Travers, J. C.; Frosz, Michael Henoch; Dudley, J. M.

    2010-01-01

    The optical fiber based supercontinuum source has recently become a significant scientific and commercial success, with applications ranging from frequency comb production to advanced medical imaging. This one-of-a-kind book explains the theory of fiber supercontinuum broadening, describes......, provides a background to the associated nonlinear optical processes, treats the generation mechanisms from continuous wave to femtosecond pulse pump regimes and highlights the diverse applications. A full discussion of numerical methods and comprehensive computer code are also provided, enabling readers...

  18. Damped nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Nicholson, D.R.; Goldman, M.V.

    1976-01-01

    High frequency electrostatic plasma oscillations described by the nonlinear Schrodinger equation in the presence of damping, collisional or Landau, are considered. At early times, Landau damping of an initial soliton profile results in a broader, but smaller amplitude soliton, while collisional damping reduces the soliton size everywhere; soliton speeds at early times are unchanged by either kind of damping. For collisional damping, soliton speeds are unchanged for all time

  19. Nonlinear characterization of a bolted, industrial structure using a modal framework

    Science.gov (United States)

    Roettgen, Daniel R.; Allen, Matthew S.

    2017-02-01

    This article presents measurements from a sub assembly of an off-the-shelf automotive exhaust system containing a bolted-flange connection and uses a recently proposed modal framework to develop a nonlinear dynamic model for the structure. The nonlinear identification and characterization methods used are reviewed to highlight the strengths of the current approach and the areas where further development is needed. This marks the first use of these new testing and nonlinear identification tools, and the associated modal framework, on production hardware with a realistic joint and realistic torque levels. To screen the measurements for nonlinearities, we make use of a time frequency analysis routine designed for transient responses called the zeroed early-time fast Fourier transform (ZEFFT). This tool typically reveals the small frequency shifts and distortions that tend to occur near each mode that is affected by the nonlinearity. The damping in this structure is found to be significantly nonlinear and a Hilbert transform is used to characterize the damping versus amplitude behavior. A model is presented that captures these effects for each mode individually (e.g. assuming negligible nonlinear coupling between modes), treating each mode as a single degree-of-freedom oscillator with a spring and viscous damping element in parallel with a four parameter Iwan model. The parameters of this model are identified for each of the structure's modes that exhibited nonlinearity and the resulting nonlinear model is shown to capture the stiffness and damping accurately over a large range of response amplitudes.

  20. Effect of initial strain and material nonlinearity on the nonlinear static and dynamic response of graphene sheets

    Science.gov (United States)

    Singh, Sandeep; Patel, B. P.

    2018-06-01

    Computationally efficient multiscale modelling based on Cauchy-Born rule in conjunction with finite element method is employed to study static and dynamic characteristics of graphene sheets, with/without considering initial strain, involving Green-Lagrange geometric and material nonlinearities. The strain energy density function at continuum level is established by coupling the deformation at continuum level to that at atomic level through Cauchy-Born rule. The atomic interactions between carbon atoms are modelled through Tersoff-Brenner potential. The governing equation of motion obtained using Hamilton's principle is solved through standard Newton-Raphson method for nonlinear static response and Newmark's time integration technique to obtain nonlinear transient response characteristics. Effect of initial strain on the linear free vibration frequencies, nonlinear static and dynamic response characteristics is investigated in detail. The present multiscale modelling based results are found to be in good agreement with those obtained through molecular mechanics simulation. Two different types of boundary constraints generally used in MM simulation are explored in detail and few interesting findings are brought out. The effect of initial strain is found to be greater in linear response when compared to that in nonlinear response.

  1. Nonlinearity without superluminality

    International Nuclear Information System (INIS)

    Kent, Adrian

    2005-01-01

    Quantum theory is compatible with special relativity. In particular, though measurements on entangled systems are correlated in a way that cannot be reproduced by local hidden variables, they cannot be used for superluminal signaling. As Czachor, Gisin, and Polchinski pointed out, this is not generally true of general nonlinear modifications of the Schroedinger equation. Excluding superluminal signaling has thus been taken to rule out most nonlinear versions of quantum theory. The no-superluminal-signaling constraint has also been used for alternative derivations of the optimal fidelities attainable for imperfect quantum cloning and other operations. These results apply to theories satisfying the rule that their predictions for widely separated and slowly moving entangled systems can be approximated by nonrelativistic equations of motion with respect to a preferred time coordinate. This paper describes a natural way in which this rule might fail to hold. In particular, it is shown that quantum readout devices which display the values of localized pure states need not allow superluminal signaling, provided that the devices display the values of the states of entangled subsystems as defined in a nonstandard, although natural, way. It follows that any locally defined nonlinear evolution of pure states can be made consistent with Minkowski causality

  2. The course of transient hypochondriasis.

    Science.gov (United States)

    Barsky, A J; Cleary, P D; Sarnie, M K; Klerman, G L

    1993-03-01

    This study examined the longitudinal course of patients known to have had a previous episode of transient hypochondriasis. Twenty-two transiently hypochondriacal patients and 24 nonhypochondriacal patients from the same general medical clinic were reexamined after an average of 22 months with the use of self-report questionnaires, structured diagnostic interviews, and medical record review. The hypochondriacal patients continued to manifest significantly more hypochondriacal symptoms, more somatization, and more psychopathological symptoms at follow-up. They also reported significantly more amplification of bodily sensations and more functional disability and utilized more medical care. These differences persisted after control for differences in medical morbidity and marital status. Only one hypochondriacal patient, however, had a DSM-III-R diagnosis of hypochondriasis at follow-up. Multivariate analyses revealed that the only significant predictors of hypochondriacal symptoms at follow-up were hypochondriacal symptoms and the tendency to amplify bodily sensations at the baseline evaluation. Hypochondriacal symptoms appear to have some temporal stability: patients who experienced hypochondriacal episodes at the beginning of the study were significantly more hypochondriacal 2 years later than comparison patients. They were not, however, any more likely to develop DSM-III-R-defined hypochondriasis. Thus, hypochondriacal symptoms may be distinct from the axis I disorder. The data are also compatible with the hypothesis that preexisting amplification of bodily sensations is an important predictor of subsequent hypochondriacal symptoms.

  3. Transient global amnesia: current perspectives

    Directory of Open Access Journals (Sweden)

    Spiegel DR

    2017-10-01

    Full Text Available David R Spiegel, Justin Smith, Ryan R Wade, Nithya Cherukuru, Aneel Ursani, Yuliya Dobruskina, Taylor Crist, Robert F Busch, Rahim M Dhanani, Nicholas Dreyer Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk, VA, USA Abstract: Transient global amnesia (TGA is a clinical syndrome characterized by the sudden onset of an extraordinarily large reduction of anterograde and a somewhat milder reduction of retrograde episodic long-term memory. Additionally, executive functions are described as diminished. Although it is suggested that various factors, such as migraine, focal ischemia, venous flow abnormalities, and epileptic phenomena, are involved in the pathophysiology and differential diagnosis of TGA, the factors triggering the emergence of these lesions are still elusive. Recent data suggest that the vulnerability of CA1 neurons to metabolic stress plays a pivotal part in the pathophysiological cascade, leading to an impairment of hippocampal function during TGA. In this review, we discuss clinical aspects, new imaging findings, and recent clinical–epidemiological data with regard to the phenotype, functional anatomy, and putative cellular mechanisms of TGA. Keywords: transient global amnesia, vascular, migraines, psychiatric

  4. Transient trimethylaminuria related to menstruation

    Science.gov (United States)

    Shimizu, Makiko; Cashman, John R; Yamazaki, Hiroshi

    2007-01-01

    Background Trimethylaminuria, or fish odor syndrome, includes a transient or mild malodor caused by an excessive amount of malodorous trimethylamine as a result of body secretions. Herein, we describe data to support the proposal that menses can be an additional factor causing transient trimethylaminuria in self-reported subjects suffering from malodor and even in healthy women harboring functionally active flavin-containing monooxygenase 3 (FMO3). Methods FMO3 metabolic capacity (conversion of trimethylamine to trimethylamine N-oxide) was defined as the urinary ratio of trimethylamine N-oxide to total trimethylamine. Results Self-reported Case (A) that was homozygous for inactive Arg500stop FMO3, showed decreased metabolic capacity of FMO3 (i.e., ~10% the unaffected metabolic capacity) during 120 days of observation. For Case (B) that was homozygous for common [Glu158Lys; Glu308Gly] FMO3 polymorphisms, metabolic capacity of FMO3 was almost ~90%, except for a few days surrounding menstruation showing 90%) metabolic capacity, however, on days around menstruation the FMO3 metabolic capacity was decreased to ~60–70%. Conclusion Together, these results indicate that abnormal FMO3 capacity is caused by menstruation particularly in the presence, in homozygous form, of mild genetic variants such as [Glu158Lys; Glu308Gly] that cause a reduced FMO3 function. PMID:17257434

  5. Prismatic Core Coupled Transient Benchmark

    International Nuclear Information System (INIS)

    Ortensi, J.; Pope, M.A.; Strydom, G.; Sen, R.S.; DeHart, M.D.; Gougar, H.D.; Ellis, C.; Baxter, A.; Seker, V.; Downar, T.J.; Vierow, K.; Ivanov, K.

    2011-01-01

    The Prismatic Modular Reactor (PMR) is one of the High Temperature Reactor (HTR) design concepts that have existed for some time. Several prismatic units have operated in the world (DRAGON, Fort St. Vrain, Peach Bottom) and one unit is still in operation (HTTR). The deterministic neutronics and thermal-fluids transient analysis tools and methods currently available for the design and analysis of PMRs have lagged behind the state of the art compared to LWR reactor technologies. This has motivated the development of more accurate and efficient tools for the design and safety evaluations of the PMR. In addition to the work invested in new methods, it is essential to develop appropriate benchmarks to verify and validate the new methods in computer codes. The purpose of this benchmark is to establish a well-defined problem, based on a common given set of data, to compare methods and tools in core simulation and thermal hydraulics analysis with a specific focus on transient events. The benchmark-working group is currently seeking OECD/NEA sponsorship. This benchmark is being pursued and is heavily based on the success of the PBMR-400 exercise.

  6. Dynamic nonlinear analysis of shells of revolution

    International Nuclear Information System (INIS)

    Von Riesemann, W.A.; Stricklin, J.A.; Haisler, W.E.

    1975-01-01

    DYNAPLAS is a program for the transient response of ring stiffened shells of revolution subjected to either asymmetric initial velocities or to asymmetric pressure loadings. Both material and geometric nonlinearities may be considered. The present version, DYNAPLAS II, began with the programs SAMMSOR and DYNASOR. As is the case for the earlier programs, a driver program, SAMMSOR III, generates the stiffness and mass matrices for the harmonics under consideration. A highly refined meridionally curved axisymmetric thin shell of revolution element is used in conjunction with beam type ring stiffeners in the circumferential direction. The shell element uses a cubic displacement function and through static condensation a basic eight degree of freedom element is generated. The shell material may be isotropic or orthotropic. DYNAPLAS II uses the 'displacement' method of analysis in which the nonlinearities are treated as pseudo loads on the right-hand side of the equations of motion. The equations are written for each Fourier harmonic used in representing the asymmetric loading components, and although the left-hand side of the equations is uncoupled, the right-hand side is coupled by the nonlinear pseudo loads. The strain displacement equations of Novozhilov are used and the incremental theory of plasticity is used with the von Mises yield condition and associated flow rule. Either isotropic work hardening or the mechanical sublayer model may be used. Strain rate effects may be included. Either the explicit central difference method or the implcit Houbolt method are available. The program has found use in the analysis of containment vessels for light water reactors

  7. Transient modeling of electrochemically assisted CO2 capture and release

    DEFF Research Database (Denmark)

    Singh, Shobhana; Stechel, Ellen B.; Buttry, Daniel A.

    2017-01-01

    to analyze the time-dependent behavior of CO2 capture and electro-migration transport across the cell length. Given high nonlinearity of the system, we used a finite element method (FEM) to numerically solve the coupled mass transport equations. The model describes the concentration profiles by taking......The present work aims to develop a model of a new electrochemical CO2 separation and release technology. We present a one-dimensional transient model of an electrochemical cell for point source CO2 capture and release, which mainly focuses on the simultaneous mass transport and complex chemical...... reactions associated with the separation process. For concreteness, we use an ionic liquid (IL) with 2 M thiolate anion (RS−) in 1 M disulfide (RSSR) as an electrolyte in the electrochemical cell to capture, transport and release CO2 under standard operating conditions. We computationally solved the model...

  8. Master-3.0: multi-purpose analyzer for static and transient effects of reactors

    International Nuclear Information System (INIS)

    Cho, Byung Oh; Joo, Han Gyu; Cho, Jin Young; Song, Jae Seung; Zee, Sung Quun

    2002-03-01

    MASTER-3.0 (Multi-purpose Analyzer for Static and Transient Effects of Reactors) is a nuclear design code based on the multi-group diffusion theory to calculate the steady-state and transient pressurized water reactor core in a 3-dimensional Cartesian or hexagonal geometry. Its neutronics model solves the space-time dependent neutron diffusion equations with NIM (Nodal Integration Method), NEM (Nodal Expansion Method), AFEN (Analytic Function Expansion Nodal Method)/NEM Hybrid Method, NNEM (Non-linear Nodal Expansion Method) or NANM (Non-linear Analytic Nodal Method) for a Cartesian geometry and with NTPEN (Non-linear Triangle-based Polynomial Expansion Nodal Method), AFEN (Analytic Function Expansion Nodal)/NEM Hybrid Method or NLFM (Non-linear Local Fine-Mesh Method) for a hexagonal one. Coarse mesh rebalancing, Krylov Subspace method, energy group restriction/prolongation method and asymptotic extrapolation method are implemented to accelerate the convergence of iteration process. MASTER-3.0 performs microscopic depletion calculations using microscopic cross sections provided by CASMO-3 or HELIOS and also has the reconstruction capability of pin information by use of MSS-IAS (Method of Successive Smoothing with Improved Analytic Solution). For the thermal-hydraulic calculation, fuel temperature table or COBRA3-C/P or MATRA model can be used selectively. In addition, MASTER-3.0 is designed to cover various PWRs including SMART as well as WH- and CE-type reactors, providing all data required in their design procedures

  9. A COMETHE version with transient capability

    International Nuclear Information System (INIS)

    Vliet, J. van; Lebon, G.; Mathieu, P.

    1980-01-01

    A version of the COMETHE code is under development to simulate transient situations. This paper focuses on some aspects of the transient heat transfer models. Initially the coupling between transient heat transfer and other thermomechanical models is discussed. An estimation of the thermal characteristic times shows that the cladding temperatures are often in quasi-steady state. In order to reduce the computing time, calculations are therefore switched from a transient to a quasi-static numerical procedure as soon as such a quasi-equilibrium is detected. The temperature calculation is performed by use of the Lebon-Lambermont restricted variational principle, with piecewise polynoms as trial functions. The method has been checked by comparison with some exact results and yields good agreement for transient as well as for quasi-static situations. This method therefore provides a valuable tool for the simulation of the transient behaviour of nuclear reactor fuel rods. (orig.)

  10. Experience with transients in German NPPs

    International Nuclear Information System (INIS)

    Lindauer, E.

    1984-01-01

    This chapter examines reactor accidents in the Federal Republic of Germany based on the formal reporting system for licensee event reports (LERs) and a special investigation on all unplanned power variations in 3 PWRs. The significant transients experienced by BWR type reactors are analyzed. The main goal is to find weak points which caused the transient or influenced its course in an unfavorable way in order to improve the affected plant and others. The complete survey of all transients, with normally little or no safety relevance, allows statistical evaluations and the analysis of trends. It is concluded that significant transients were mainly experienced at older plants, whereas plants of an advanced design produced very few significant transients. The most frequent human errors which lead to transients are failure search in electronic systems and errors during design and commissioning

  11. Transient analysis for resolving safety issues

    International Nuclear Information System (INIS)

    Chao, J.; Layman, W.

    1987-01-01

    The Nuclear Safety Analysis Center (NSAC) has a Generic Safety Analysis Program to help resolve high priority generic safety issues. This paper describes several high priority safety issues considered at NSAC and how they were resolved by transient analysis using thermal hydraulics and neutronics codes. These issues are pressurized thermal shock (PTS), anticipated transients without scram (ATWS), steam generator tube rupture (SGTR), and reactivity transients in light of the Chernobyl accident

  12. Analysis of transient signals by Wavelet transform

    International Nuclear Information System (INIS)

    Penha, Rosani Libardi da; Silva, Aucyone A. da; Ting, Daniel K.S.; Oliveira Neto, Jose Messias de

    2000-01-01

    The objective of this work is to apply the Wavelet Transform in transient signals. The Wavelet technique can outline the short time events that are not easily detected using traditional techniques. In this work, the Wavelet Transform is compared with Fourier Transform, by using simulated data and rotor rig data. This data contain known transients. The wavelet could follow all the transients, what do not happen to the Fourier techniques. (author)

  13. Instrument response during overpower transients at TREAT

    International Nuclear Information System (INIS)

    Meek, C.C.; Bauer, T.H.; Hill, D.J.; Froehle, P.H.; Klickman, A.E.; Tylka, J.P.; Doerner, R.C.; Wright, A.E.

    1982-01-01

    A program to empirically analyze data residuals or noise to determine instrument response that occurs during in-pile transient tests is out-lined. As an example, thermocouple response in the Mark III loop during a severe overpower transient in TREAT is studied both in frequency space and in real-time. Time intervals studied included both constant power and burst portions of the power transient. Thermocouple time constants were computed. Benefits and limitations of the method are discussed

  14. Nonlinear robust hierarchical control for nonlinear uncertain systems

    Directory of Open Access Journals (Sweden)

    Leonessa Alexander

    1999-01-01

    Full Text Available A nonlinear robust control-system design framework predicated on a hierarchical switching controller architecture parameterized over a set of moving nominal system equilibria is developed. Specifically, using equilibria-dependent Lyapunov functions, a hierarchical nonlinear robust control strategy is developed that robustly stabilizes a given nonlinear system over a prescribed range of system uncertainty by robustly stabilizing a collection of nonlinear controlled uncertain subsystems. The robust switching nonlinear controller architecture is designed based on a generalized (lower semicontinuous Lyapunov function obtained by minimizing a potential function over a given switching set induced by the parameterized nominal system equilibria. The proposed framework robustly stabilizes a compact positively invariant set of a given nonlinear uncertain dynamical system with structured parametric uncertainty. Finally, the efficacy of the proposed approach is demonstrated on a jet engine propulsion control problem with uncertain pressure-flow map data.

  15. OPTICAL TRANSIENT DETECTOR (OTD) LIGHTNING V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Optical Transient Detector (OTD) records optical measurements of global lightning events in the daytime and nighttime. The data includes individual point...

  16. Discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities

    DEFF Research Database (Denmark)

    Khare, A.; Rasmussen, Kim Ø; Salerno, M.

    2006-01-01

    -Ladik equation. As a common property, these equations possess three kinds of exact analytical stationary solutions for which the Peierls-Nabarro barrier is zero. Several properties of these solutions, including stability, discrete breathers, and moving solutions, are investigated.......A class of discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities is introduced. These equations are derived from the same Hamiltonian using different Poisson brackets and include as particular cases the saturable discrete nonlinear Schrodinger equation and the Ablowitz...

  17. Transient shielded liquid hydrogen containers

    International Nuclear Information System (INIS)

    Varghese, A.P.; Herring, R.H.

    1990-01-01

    The storage of hydrogen in the liquid phase has been limited in duration due to the thermal performance constraints of conventional Liquid Hydrogen containers available. Conventional Liquid Hydrogen containers lose hydrogen because of their relatively high heat leak and variations in usage pattern of hydrogen due to shutdowns. Local regulations also discourage venting of hydrogen. Long term storage of Liquid Hydrogen without product loss was usually accomplished using Liquid Nitrogen sacrificial shields. This paper reports on a new low heat leak container developed and patented that will extend the storage time of liquid hydrogen by five hundred percent. The principle of operation of the Transient Shields which makes the extraordinary performance of this container feasible is described in this paper. Also covered are the impact of this new container on present applications of hydrogen and the new opportunities afforded to Liquid hydrogen in the world hydrogen market

  18. Transient ischemic attack: diagnostic evaluation.

    Science.gov (United States)

    Messé, Steven R; Jauch, Edward C

    2008-08-01

    A transient ischemic attack portends significant risk of a stroke. Consequently, the diagnostic evaluation in the emergency department is focused on identifying high-risk causes so that preventive strategies can be implemented. The evaluation consists of a facilitated evaluation of the patient's metabolic, cardiac, and neurovascular systems. At a minimum, the following tests are recommended: fingerstick glucose level, electrolyte levels, CBC count, urinalysis, and coagulation studies; noncontrast computed tomography (CT) of the head; electrocardiography; and continuous telemetry monitoring. Vascular imaging studies, such as carotid ultrasonography, CT angiography, or magnetic resonance angiography, should be performed on an urgent basis and prioritized according to the patient's risk stratification for disease. Consideration should be given for echocardiography if no large vessel abnormality is identified.

  19. Measurement of fast transient pressures

    International Nuclear Information System (INIS)

    Procaccia, Henri

    1978-01-01

    The accuracy, reliability and sensitivity of a pressure transducers define its principal static characteristics. When the quantity measured varies with time, the measurement carries a dynamic error and a delay depending on the frequency of this variation. Hence, when fast pressure changes in a fluid have to be determined, different kinds of pressure transducers can be used depending on their inherent dynamic characteristics which must be compared with those of the transient phenomenon to be analysed. The text describes the pressure transducers generally employed in industry for analysing such phenomenon and gives two practical applications developed in the EDF: the first submits the measurements and results of pump cavitation tests carried out at the Vitry II EDF power station; the second deals with hammer blows particularly noticed in nuclear power stations and required the use of transducers of exceptionally high performance such as strain gauge transducers and piezoelectric transducers (response time within 1m sec.) [fr

  20. Transient photoconductivity in amorphous semiconductors

    International Nuclear Information System (INIS)

    Mpawenayo, P.

    1997-07-01

    Localized states in amorphous semiconductors are divided in disorder induced shallow trap levels and dangling bonds deep states. Dangling bonds are assumed here to be either neutral or charged and their energy distribution is a single gaussian. Here, it is shown analytically that transient photocurrent in amorphous semiconductors is fully controlled by charge carriers transitions between localized states for one part and tunneling hopping carriers on the other. Localized dangling bonds deep states act as non radiative recombination centres, while hopping tunnelling is assisted by the Coulomb interaction between defects sites. The half-width of defects distribution is the disorder parameter that determines the carrier hopping time between defects sites. The macroscopic time that explains the long decay response times observed will all types of amorphous semiconductors is duly thought to be temperature dependent. Basic equations developed by Longeaud and Kleider are solved for the general case of a semiconductor after photo-generation. It turns out that the transient photoconductivity decay has two components; one with short response times from carriers trap-release transitions between shallow levels and extended states and a hopping component made of inter-dependent exponentials whose time constants span in larger ranges depending on disorder. The photoconductivity hopping component appears as an additional term to be added to photocurrents derived from existing models. The results of the present study explain and complete the power law decay derived in the multiple trapping models developed 20 years ago only in the approximation of the short response time regime. The long response time regime is described by the hopping macroscopic time. The present model is verified for all samples of amorphous semiconductors known so far. Finally, it is proposed to improved the modulated photoconductivity calculation techniques by including the long-lasting hopping dark documents

  1. Non-linear osmosis

    Science.gov (United States)

    Diamond, Jared M.

    1966-01-01

    1. The relation between osmotic gradient and rate of osmotic water flow has been measured in rabbit gall-bladder by a gravimetric procedure and by a rapid method based on streaming potentials. Streaming potentials were directly proportional to gravimetrically measured water fluxes. 2. As in many other tissues, water flow was found to vary with gradient in a markedly non-linear fashion. There was no consistent relation between the water permeability and either the direction or the rate of water flow. 3. Water flow in response to a given gradient decreased at higher osmolarities. The resistance to water flow increased linearly with osmolarity over the range 186-825 m-osM. 4. The resistance to water flow was the same when the gall-bladder separated any two bathing solutions with the same average osmolarity, regardless of the magnitude of the gradient. In other words, the rate of water flow is given by the expression (Om — Os)/[Ro′ + ½k′ (Om + Os)], where Ro′ and k′ are constants and Om and Os are the bathing solution osmolarities. 5. Of the theories advanced to explain non-linear osmosis in other tissues, flow-induced membrane deformations, unstirred layers, asymmetrical series-membrane effects, and non-osmotic effects of solutes could not explain the results. However, experimental measurements of water permeability as a function of osmolarity permitted quantitative reconstruction of the observed water flow—osmotic gradient curves. Hence non-linear osmosis in rabbit gall-bladder is due to a decrease in water permeability with increasing osmolarity. 6. The results suggest that aqueous channels in the cell membrane behave as osmometers, shrinking in concentrated solutions of impermeant molecules and thereby increasing membrane resistance to water flow. A mathematical formulation of such a membrane structure is offered. PMID:5945254

  2. Parallel time domain solvers for electrically large transient scattering problems

    KAUST Repository

    Liu, Yang

    2014-09-26

    Marching on in time (MOT)-based integral equation solvers represent an increasingly appealing avenue for analyzing transient electromagnetic interactions with large and complex structures. MOT integral equation solvers for analyzing electromagnetic scattering from perfect electrically conducting objects are obtained by enforcing electric field boundary conditions and implicitly time advance electric surface current densities by iteratively solving sparse systems of equations at all time steps. Contrary to finite difference and element competitors, these solvers apply to nonlinear and multi-scale structures comprising geometrically intricate and deep sub-wavelength features residing atop electrically large platforms. Moreover, they are high-order accurate, stable in the low- and high-frequency limits, and applicable to conducting and penetrable structures represented by highly irregular meshes. This presentation reviews some recent advances in the parallel implementations of time domain integral equation solvers, specifically those that leverage multilevel plane-wave time-domain algorithm (PWTD) on modern manycore computer architectures including graphics processing units (GPUs) and distributed memory supercomputers. The GPU-based implementation achieves at least one order of magnitude speedups compared to serial implementations while the distributed parallel implementation are highly scalable to thousands of compute-nodes. A distributed parallel PWTD kernel has been adopted to solve time domain surface/volume integral equations (TDSIE/TDVIE) for analyzing transient scattering from large and complex-shaped perfectly electrically conducting (PEC)/dielectric objects involving ten million/tens of millions of spatial unknowns.

  3. Nonlinear diffusion equations

    CERN Document Server

    Wu Zhuo Qun; Li Hui Lai; Zhao Jun Ning

    2001-01-01

    Nonlinear diffusion equations, an important class of parabolic equations, come from a variety of diffusion phenomena which appear widely in nature. They are suggested as mathematical models of physical problems in many fields, such as filtration, phase transition, biochemistry and dynamics of biological groups. In many cases, the equations possess degeneracy or singularity. The appearance of degeneracy or singularity makes the study more involved and challenging. Many new ideas and methods have been developed to overcome the special difficulties caused by the degeneracy and singularity, which

  4. Methods of nonlinear analysis

    CERN Document Server

    Bellman, Richard Ernest

    1970-01-01

    In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat

  5. Nonlinear optimal control theory

    CERN Document Server

    Berkovitz, Leonard David

    2012-01-01

    Nonlinear Optimal Control Theory presents a deep, wide-ranging introduction to the mathematical theory of the optimal control of processes governed by ordinary differential equations and certain types of differential equations with memory. Many examples illustrate the mathematical issues that need to be addressed when using optimal control techniques in diverse areas. Drawing on classroom-tested material from Purdue University and North Carolina State University, the book gives a unified account of bounded state problems governed by ordinary, integrodifferential, and delay systems. It also dis

  6. Topics in Nonlinear Dynamics

    DEFF Research Database (Denmark)

    Mosekilde, Erik

    Through a significant number of detailed and realistic examples this book illustrates how the insights gained over the past couple of decades in the fields of nonlinear dynamics and chaos theory can be applied in practice. Aomng the topics considered are microbiological reaction systems, ecological...... food-web systems, nephron pressure and flow regulation, pulsatile secretion of hormones, thermostatically controlled radiator systems, post-stall maneuvering of aircrafts, transfer electron devices for microwave generation, economic long waves, human decision making behavior, and pattern formation...... in chemical reaction-diffusion systems....

  7. Nonlinear dynamics in psychology

    Directory of Open Access Journals (Sweden)

    Stephen J. Guastello

    2001-01-01

    Full Text Available This article provides a survey of the applications of nonlinear dynamical systems theory to substantive problems encountered in the full scope of psychological science. Applications are organized into three topical areas – cognitive science, social and organizational psychology, and personality and clinical psychology. Both theoretical and empirical studies are considered with an emphasis on works that capture the broadest scope of issues that are of substantive interest to psychological theory. A budding literature on the implications of NDS principles in professional practice is reported also.

  8. Nonlinear Hamiltonian systems

    DEFF Research Database (Denmark)

    Jørgensen, Michael Finn

    1995-01-01

    It is generally very difficult to solve nonlinear systems, and such systems often possess chaotic solutions. In the rare event that a system is completely solvable, it is said to integrable. Such systems never have chaotic solutions. Using the Inverse Scattering Transform Method (ISTM) two...... particular configurations of the Discrete Self-Trapping (DST) system are shown to be completely solvable. One of these systems includes the Toda lattice in a certain limit. An explicit integration is carried through for this Near-Toda lattice. The Near-Toda lattice is then generalized to include singular...

  9. Nonlinear surface electromagnetic phenomena

    CERN Document Server

    Ponath, H-E

    1991-01-01

    In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are

  10. Oscillators from nonlinear realizations

    Science.gov (United States)

    Kozyrev, N.; Krivonos, S.

    2018-02-01

    We construct the systems of the harmonic and Pais-Uhlenbeck oscillators, which are invariant with respect to arbitrary noncompact Lie algebras. The equations of motion of these systems can be obtained with the help of the formalism of nonlinear realizations. We prove that it is always possible to choose time and the fields within this formalism in such a way that the equations of motion become linear and, therefore, reduce to ones of ordinary harmonic and Pais-Uhlenbeck oscillators. The first-order actions, that produce these equations, can also be provided. As particular examples of this construction, we discuss the so(2, 3) and G 2(2) algebras.

  11. Global Analysis of Nonlinear Dynamics

    CERN Document Server

    Luo, Albert

    2012-01-01

    Global Analysis of Nonlinear Dynamics collects chapters on recent developments in global analysis of non-linear dynamical systems with a particular emphasis on cell mapping methods developed by Professor C.S. Hsu of the University of California, Berkeley. This collection of contributions prepared by a diverse group of internationally recognized researchers is intended to stimulate interests in global analysis of complex and high-dimensional nonlinear dynamical systems, whose global properties are largely unexplored at this time. This book also: Presents recent developments in global analysis of non-linear dynamical systems Provides in-depth considerations and extensions of cell mapping methods Adopts an inclusive style accessible to non-specialists and graduate students Global Analysis of Nonlinear Dynamics is an ideal reference for the community of nonlinear dynamics in different disciplines including engineering, applied mathematics, meteorology, life science, computational science, and medicine.  

  12. Nonlinearity management in higher dimensions

    International Nuclear Information System (INIS)

    Kevrekidis, P G; Pelinovsky, D E; Stefanov, A

    2006-01-01

    In the present paper, we revisit nonlinearity management of the time-periodic nonlinear Schroedinger equation and the related averaging procedure. By means of rigorous estimates, we show that the averaged nonlinear Schroedinger equation does not blow up in the higher dimensional case so long as the corresponding solution remains smooth. In particular, we show that the H 1 norm remains bounded, in contrast with the usual blow-up mechanism for the focusing Schroedinger equation. This conclusion agrees with earlier works in the case of strong nonlinearity management but contradicts those in the case of weak nonlinearity management. The apparent discrepancy is explained by the divergence of the averaging procedure in the limit of weak nonlinearity management

  13. Collapse of nonlinear Langmuir waves

    International Nuclear Information System (INIS)

    Malkin, V.M.

    1986-01-01

    The dispersion of sufficiently intensive Langmuir waves is determined by intrinsic (electron) nonlinearity. During Langmuir collapse the wave energy density required for the appearance of electron nonlinearity is attained, generally speaking, prior to the development of dissipative processes. Up to now, the effect of electron nonlinearity on the collapse dynamics and spectrum of strong Langmuir turbulence ( which may be very appreciable ) has not been studied extensively because of the difficulty of describing nonlinear Langmuir waves. In the present paper the positive determinacy of the electron nonlinear hamiltonian is proven, the increment of modulation instability of a nonlinear Langmuir wave cluster localized in a cavity is calculated, and the universal law of their collapse is found

  14. Laser linewidth narrowing using transient spectral hole burning

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, Charles W.; Cone, Rufus L. [Department of Physics, Montana State University, Bozeman, MT 59715 (United States); Böttger, Thomas, E-mail: tbottger@usfca.edu [Department of Physics and Astronomy, 2130 Fulton Street, University of San Francisco, San Francisco, CA 94117 (United States)

    2014-08-01

    We demonstrate significant narrowing of laser linewidths by high optical density materials with inhomogeneously broadened absorption. As a laser propagates through the material, the nonlinear spectral hole burning process causes a progressive self-filtering of the laser spectrum, potentially reaching values less than the homogeneous linewidth. The transient spectral hole dynamically adjusts itself to the instantaneous frequency of the laser, passively suppressing laser phase noise and side modes over the entire material absorption bandwidth without the need for electronic or optical feedback to the laser. Wide bandwidth laser phase noise suppression was demonstrated using Er{sup 3+} doped Y{sub 2}SiO{sub 5} and LiNbO{sub 3} at 1.5 μm by employing time-delayed self-heterodyne detection of an external cavity diode laser to study the spectral narrowing effect. Our method is not restricted to any particular wavelength or laser system and is attractive for a range of applications where ultra-low phase noise sources are required. - Highlights: • We demonstrate significant laser linewidths narrowing by high optical density materials. • Nonlinear spectral hole burning causes progressive self-filtering of laser spectrum. • Filter dynamically adjusts itself to the instantaneous frequency of the laser. • Demonstrated at 1.5 μm in Er{sup 3+} doped Y{sub 2}SiO{sub 5} and LiNbO{sub 3}. • Linewidth filtering is not restricted to any particular wavelength or laser system.

  15. Applications of nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind

    2008-01-01

    * The only book describing applications of nonlinear fiber optics * Two new chapters on the latest developments: highly nonlinear fibers and quantum applications* Coverage of biomedical applications* Problems provided at the end of each chapterThe development of new highly nonlinear fibers - referred to as microstructured fibers, holey fibers and photonic crystal fibers - is the next generation technology for all-optical signal processing and biomedical applications. This new edition has been thoroughly updated to incorporate these key technology developments.The bo

  16. Recent topics in nonlinear PDE

    International Nuclear Information System (INIS)

    Mimura, Masayasu; Nishida, Takaaki

    1984-01-01

    The meeting on the subject of nonlinear partial differential equations was held at Hiroshima University in February, 1983. Leading and active mathematicians were invited to talk on their current research interests in nonlinear pdes occuring in the areas of fluid dynamics, free boundary problems, population dynamics and mathematical physics. This volume contains the theory of nonlinear pdes and the related topics which have been recently developed in Japan. (Auth.)

  17. Repetitive transient extraction for machinery fault diagnosis using multiscale fractional order entropy infogram

    Science.gov (United States)

    Xu, Xuefang; Qiao, Zijian; Lei, Yaguo

    2018-03-01

    The presence of repetitive transients in vibration signals is a typical symptom of local faults of rotating machinery. Infogram was developed to extract the repetitive transients from vibration signals based on Shannon entropy. Unfortunately, the Shannon entropy is maximized for random processes and unable to quantify the repetitive transients buried in heavy random noise. In addition, the vibration signals always contain multiple intrinsic oscillatory modes due to interaction and coupling effects between machine components. Under this circumstance, high values of Shannon entropy appear in several frequency bands or high value of Shannon entropy doesn't appear in the optimal frequency band, and the infogram becomes difficult to interpret. Thus, it also becomes difficult to select the optimal frequency band for extracting the repetitive transients from the whole frequency bands. To solve these problems, multiscale fractional order entropy (MSFE) infogram is proposed in this paper. With the help of MSFE infogram, the complexity and nonlinear signatures of the vibration signals can be evaluated by quantifying spectral entropy over a range of scales in fractional domain. Moreover, the similarity tolerance of MSFE infogram is helpful for assessing the regularity of signals. A simulation and two experiments concerning a locomotive bearing and a wind turbine gear are used to validate the MSFE infogram. The results demonstrate that the MSFE infogram is more robust to the heavy noise than infogram and the high value is able to only appear in the optimal frequency band for the repetitive transient extraction.

  18. Characterizing hydraulic fractures in shale gas reservoirs using transient pressure tests

    Directory of Open Access Journals (Sweden)

    Cong Wang

    2015-06-01

    This work presents an unconventional gas reservoir simulator and its application to quantify hydraulic fractures in shale gas reservoirs using transient pressure data. The numerical model incorporates most known physical processes for gas production from unconventional reservoirs, including two-phase flow of liquid and gas, Klinkenberg effect, non-Darcy flow, and nonlinear adsorption. In addition, the model is able to handle various types and scales of fractures or heterogeneity using continuum, discrete or hybrid modeling approaches under different well production conditions of varying rate or pressure. Our modeling studies indicate that the most sensitive parameter of hydraulic fractures to early transient gas flow through extremely low permeability rock is actually the fracture-matrix contacting area, generated by fracturing stimulation. Based on this observation, it is possible to use transient pressure testing data to estimate the area of fractures generated from fracturing operations. We will conduct a series of modeling studies and present a methodology using typical transient pressure responses, simulated by the numerical model, to estimate fracture areas created or to quantity hydraulic fractures with traditional well testing technology. The type curves of pressure transients from this study can be used to quantify hydraulic fractures in field application.

  19. Linear and nonlinear analysis of density wave instability phenomena

    International Nuclear Information System (INIS)

    Ambrosini, Walter

    1999-01-01

    In this paper the mechanism of density-wave oscillations in a boiling channel with uniform and constant heat flux is analysed by linear and nonlinear analytical tools. A model developed on the basis of a semi-implicit numerical discretization of governing partial differential equations is used to provide information on the transient distribution of relevant variables along the channel during instabilities. Furthermore, a lumped parameter model and a distributed parameter model developed in previous activities are also adopted for independent confirmation of the observed trends. The obtained results are finally put in relation with the picture of the phenomenon proposed in classical descriptions. (author)

  20. Nonlinear dynamic analysis of nuclear reactor primary coolant systems

    International Nuclear Information System (INIS)

    Saffell, B.F. Jr.; Macek, R.W.; Thompson, T.R.; Lippert, R.F.

    1979-01-01

    The ADINA computer code is utilized to perform mechanical response analysis of pressurized reactor primary coolant systems subjected to postulated loss-of-coolant accident (LOCA) loadings. Specifically, three plant analyses are performed utilizing the geometric and material nonlinear analysis capabilities of ADINA. Each reactor system finite element model represents the reactor vessel and internals, piping, major components, and component supports in a single coupled model. Material and geometric nonlinear capabilities of the beam and truss elements are employed in the formulation of each finite element model. Loadings applied to each plant for LOCA dynamic analysis include steady-state pressure, dead weight, strain energy release, transient piping hydraulic forces, and reactor vessel cavity pressurization. Representative results are presented with some suggestions for consideration in future ADINA code development

  1. Non-linear elastic thermal stress analysis with phase changes

    International Nuclear Information System (INIS)

    Amada, S.; Yang, W.H.

    1978-01-01

    The non-linear elastic, thermal stress analysis with temperature induced phase changes in the materials is presented. An infinite plate (or body) with a circular hole (or tunnel) is subjected to a thermal loading on its inner surface. The peak temperature around the hole reaches beyond the melting point of the material. The non-linear diffusion equation is solved numerically using the finite difference method. The material properties change rapidly at temperatures where the change of crystal structures and solid-liquid transition occur. The elastic stresses induced by the transient non-homogeneous temperature distribution are calculated. The stresses change remarkably when the phase changes occur and there are residual stresses remaining in the plate after one cycle of thermal loading. (Auth.)

  2. WHAMSE: a program for three-dimensional nonlinear structural dynamics

    International Nuclear Information System (INIS)

    Belytschko, T.; Tsay, C.S.

    1982-02-01

    WHAMSE is a computer program for the nonlinear, transient analysis of structures. The formulation includes both geometric and material nonlinearities, so problems with large displacements and elastic-plastic behavior can be treated. Explicit time integration is used, so the program is most suitable for implusive loads. Energy balance calculations are provided to check numerical stability. The mass matrix is lumped. A finite element format is used for the description of the problem geometry, so the program is quite versatile in treating complex engineering structures. The following elements are included: a triangular element for thin plates and shells, a beam element, a spring element and a rigid body. Mesh generation features are provided to simplify program input. Other features of the program are: (1) a restart capability; (2) a variety of output options, such as printer plots or CALCOMP plots of selected time histories, picture (snapshot) output, and CALCOMP plots of the undeformed and deformed structure

  3. Perspectives of nonlinear dynamics

    International Nuclear Information System (INIS)

    Jackson, E.A.

    1985-03-01

    Four lectures were given weekly in October and November, 1984, and some of the ideas presented here will be of use in the future. First, a brief survey of the historical development of nonlinear dynamics since about 1890 was given, and then, a few topics were discussed in detail. The objective was to introduce some of many concepts and methods which are presently used for describing nonlinear dynamics. The symbiotic relationship between sciences of all types and mathematics, two main categories of the models describing nature, the method for describing the dynamics of a system, the idea of control parameters and topological dimension, the asymptotic properties of dynamics, abstract dynamics, the concept of embedding, singular perturbation theory, strange attractor, Fermi-Pasta-Ulam phenomena, an example of computer heuristics, the idea of elementary catastrophe theory and so on were explained. The logistic map is the simplest introduction to complex dynamics. The complicated dynamics is referred to as strange attractors. Two-dimensional maps are the highest dimensional maps commonly studied. These were discussed in detail. (Kako, I.)

  4. Nonlinearities in Behavioral Macroeconomics.

    Science.gov (United States)

    Gomes, Orlando

    2017-07-01

    This article undertakes a journey across the literature on behavioral macroeconomics, with attention concentrated on the nonlinearities that the behavioral approach typically suggests or implies. The emphasis is placed on thinking the macro economy as a living organism, composed of many interacting parts, each one having a will of its own, which is in sharp contrast with the mechanism of the orthodox view (well represented by the neoclassical or new Keynesian dynamic stochastic general equilibrium - DSGE - model). The paper advocates that a thorough understanding of individual behavior in collective contexts is the only possible avenue to further explore macroeconomic phenomena and the often observed 'anomalies' that the benchmark DSGE macro framework is unable to explain or justify. After a reflection on the role of behavioral traits as a fundamental component of a new way of thinking the economy, the article proceeds with a debate on some of the most relevant frameworks in the literature that somehow link macro behavior and nonlinearities; covered subjects include macro models with disequilibrium rules, agent-based models that highlight interaction and complexity, evolutionary switching frameworks, and inattention based decision problems. These subjects have, as a fundamental point in common, the use of behavioral elements to transform existing interpretations of the economic reality, making it more evident how irregular fluctuations emerge and unfold on the aggregate.

  5. Non-Linear Dynamics of Saturn's Rings

    Science.gov (United States)

    Esposito, L. W.

    2016-12-01

    Non-linear processes can explain why Saturn's rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. Stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, that push the system across thresholds that lead to persistent states. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like `straw' that can explain the halo morphology and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; this requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping explains both small and large particles at resonances. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating it as an asymmetric random walk with reflecting boundaries

  6. Nonlinear Waves in Complex Systems

    DEFF Research Database (Denmark)

    2007-01-01

    The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations, it is the ......The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations...

  7. Problems in nonlinear resistive MHD

    International Nuclear Information System (INIS)

    Turnbull, A.D.; Strait, E.J.; La Haye, R.J.; Chu, M.S.; Miller, R.L.

    1998-01-01

    Two experimentally relevant problems can relatively easily be tackled by nonlinear MHD codes. Both problems require plasma rotation in addition to the nonlinear mode coupling and full geometry already incorporated into the codes, but no additional physics seems to be crucial. These problems discussed here are: (1) nonlinear coupling and interaction of multiple MHD modes near the B limit and (2) nonlinear coupling of the m/n = 1/1 sawtooth mode with higher n gongs and development of seed islands outside q = 1

  8. Plasma transport studies using transient techniques

    International Nuclear Information System (INIS)

    Simonen, T.C.; Brower, D.L.; Efthimion, P.

    1991-01-01

    Selected topics from the Transient Transport sessions of the Transport Task Force Workshop, held February 19-23, 1990, in Hilton Head, South Carolina are summarized. Presentations on sawtooth propagation, ECH modulation, particle modulation, and H-mode transitions are included. The research results presented indicated a growing theoretical understanding and experimental sophistication in the application of transient techniques to transport studies. (Author)

  9. The LOFAR Transients Key Science Project

    NARCIS (Netherlands)

    Stappers, B.; Fender, R.; Wijers, R.

    2009-01-01

    The Transients Key Science Project (TKP) is one of six Key Science Projects of the next generation radio telescope LOFAR. Its aim is the study of transient and variable low-frequency radio sources with an extremely broad science case ranging from relativistic jet sources to pulsars, exoplanets,

  10. Transient receptor potential channels in essential hypertension

    DEFF Research Database (Denmark)

    Liu, Daoyan; Scholze, Alexandra; Zhu, Zhiming

    2006-01-01

    The role of nonselective cation channels of the transient receptor potential channel (TRPC) family in essential hypertension has not yet been investigated.......The role of nonselective cation channels of the transient receptor potential channel (TRPC) family in essential hypertension has not yet been investigated....

  11. Nonlinear Response of Strong Nonlinear System Arisen in Polymer Cushion

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2013-01-01

    Full Text Available A dynamic model is proposed for a polymer foam-based nonlinear cushioning system. An accurate analytical solution for the nonlinear free vibration of the system is derived by applying He's variational iteration method, and conditions for resonance are obtained, which should be avoided in the cushioning design.

  12. Synchronizing noisy nonidentical oscillators by transient uncoupling

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, Aditya, E-mail: adityat@iitk.ac.in; Mannattil, Manu, E-mail: mmanu@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 (India); Schröder, Malte, E-mail: malte@nld.ds.mpg.de [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); Timme, Marc, E-mail: timme@nld.ds.mpg.de [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); Department of Physics, Technical University of Darmstadt, 64289 Darmstadt (Germany); Chakraborty, Sagar, E-mail: sagarc@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 (India); Mechanics and Applied Mathematics Group, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016 (India)

    2016-09-15

    Synchronization is the process of achieving identical dynamics among coupled identical units. If the units are different from each other, their dynamics cannot become identical; yet, after transients, there may emerge a functional relationship between them—a phenomenon termed “generalized synchronization.” Here, we show that the concept of transient uncoupling, recently introduced for synchronizing identical units, also supports generalized synchronization among nonidentical chaotic units. Generalized synchronization can be achieved by transient uncoupling even when it is impossible by regular coupling. We furthermore demonstrate that transient uncoupling stabilizes synchronization in the presence of common noise. Transient uncoupling works best if the units stay uncoupled whenever the driven orbit visits regions that are locally diverging in its phase space. Thus, to select a favorable uncoupling region, we propose an intuitive method that measures the local divergence at the phase points of the driven unit's trajectory by linearizing the flow and subsequently suppresses the divergence by uncoupling.

  13. Transient survivability of LMR oxide fuel pins

    International Nuclear Information System (INIS)

    Weber, E.T.; Pitner, A.L.; Bard, F.E.; Culley, G.E.; Hunter, C.W.

    1986-01-01

    Fuel pin integrity during transient events must be assessed for both the core design and safety analysis phases of a reactor project. A significant increase in the experience related to limits of integrity for oxide fuel pins in transient overpower events has been realized from testing of fuel pins irradiated in FFTF and PFR. Fourteen FFTF irradiated fuel pins were tested in TREAT, representing a range of burnups, overpower ramp rates and maximum overpower conditions. Results of these tests along with similar testing in the PFR/TREAT program, provide a demonstration of significant safety margins for oxide fuel pins. Useful information applied in analytical extrapolation of fuel pin test data have been developed from laboratory transient tests on irradiated fuel cladding (FCTT) and on unirradiated fuel pellet deformation. These refinements in oxide fuel transient performance are being applied in assessment of transient capabilities of long lifetime fuel designs using ferritic cladding

  14. Characterizing transient noise in the LIGO detectors

    Science.gov (United States)

    Nuttall, L. K.

    2018-05-01

    Data from the LIGO detectors typically contain many non-Gaussian noise transients which arise due to instrumental and environmental conditions. These non-Gaussian transients can be an issue for the modelled and unmodelled transient gravitational-wave searches, as they can mask or mimic a true signal. Data quality can change quite rapidly, making it imperative to track and find new sources of transient noise so that data are minimally contaminated. Several examples of transient noise and the tools used to track them are presented. These instances serve to highlight the diverse range of noise sources present at the LIGO detectors during their second observing run. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.

  15. Nuclear reactors transients identification and classification system

    International Nuclear Information System (INIS)

    Bianchi, Paulo Henrique

    2008-01-01

    This work describes the study and test of a system capable to identify and classify transients in thermo-hydraulic systems, using a neural network technique of the self-organizing maps (SOM) type, with the objective of implanting it on the new generations of nuclear reactors. The technique developed in this work consists on the use of multiple networks to do the classification and identification of the transient states, being each network a specialist at one respective transient of the system, that compete with each other using the quantization error, that is a measure given by this type of neural network. This technique showed very promising characteristics that allow the development of new functionalities in future projects. One of these characteristics consists on the potential of each network, besides responding what transient is in course, could give additional information about that transient. (author)

  16. Monte Carlo simulation of nonlinear reactive contaminant transport in unsaturated porous media

    International Nuclear Information System (INIS)

    Giacobbo, F.; Patelli, E.

    2007-01-01

    In the current proposed solutions of radioactive waste repositories, the protective function against the radionuclide water-driven transport back to the biosphere is to be provided by an integrated system of engineered and natural geologic barriers. The occurrence of several nonlinear interactions during the radionuclide migration process may render burdensome the classical analytical-numerical approaches. Moreover, the heterogeneity of the barriers' media forces approximations to the classical analytical-numerical models, thus reducing their fidelity to reality. In an attempt to overcome these difficulties, in the present paper we adopt a Monte Carlo simulation approach, previously developed on the basis of the Kolmogorov-Dmitriev theory of branching stochastic processes. The approach is here extended for describing transport through unsaturated porous media under transient flow conditions and in presence of nonlinear interchange phenomena between the liquid and solid phases. This generalization entails the determination of the functional dependence of the parameters of the proposed transport model from the water content and from the contaminant concentration, which change in space and time during the water infiltration process. The corresponding Monte Carlo simulation approach is verified with respect to a case of nonreactive transport under transient unsaturated flow and to a case of nonlinear reactive transport under stationary saturated flow. Numerical applications regarding linear and nonlinear reactive transport under transient unsaturated flow are reported

  17. Model-free inference of direct network interactions from nonlinear collective dynamics.

    Science.gov (United States)

    Casadiego, Jose; Nitzan, Mor; Hallerberg, Sarah; Timme, Marc

    2017-12-19

    The topology of interactions in network dynamical systems fundamentally underlies their function. Accelerating technological progress creates massively available data about collective nonlinear dynamics in physical, biological, and technological systems. Detecting direct interaction patterns from those dynamics still constitutes a major open problem. In particular, current nonlinear dynamics approaches mostly require to know a priori a model of the (often high dimensional) system dynamics. Here we develop a model-independent framework for inferring direct interactions solely from recording the nonlinear collective dynamics generated. Introducing an explicit dependency matrix in combination with a block-orthogonal regression algorithm, the approach works reliably across many dynamical regimes, including transient dynamics toward steady states, periodic and non-periodic dynamics, and chaos. Together with its capabilities to reveal network (two point) as well as hypernetwork (e.g., three point) interactions, this framework may thus open up nonlinear dynamics options of inferring direct interaction patterns across systems where no model is known.

  18. Nonlinearity Mechanism and Correction of Sapphire Fiber Temperature Sensor on Blackbody Cavity

    Directory of Open Access Journals (Sweden)

    Tiejun Cao

    2014-06-01

    Full Text Available Based on the principle of blackbody radiation, sapphire optic fiber temperature sensor has been more widely used in recent years, and its temperature range is between 800 ~ 2000 oC, and the response time is in 10-2 magnitude, and transient temperature measurement can be high precision in harsh environments. Nonlinear constraints on sapphire fiber temperature sensor affect the accuracy and stability of the sensor. In order to solve the nonlinear problems which exist in the measurement, at first, the sapphire fiber optic temperature sensor temperature measurement principle and nonlinear generation mechanism are studied; secondly piecewise linear interpolation and spline interpolation linearization algorithm is designed with combining the nonlinear characteristics of sapphire optical fiber temperature sensor, and the program is designed on its linear and associated signal processing. Experimental results show that a good linearization of sapphire fiber optic temperature sensor can been achieved in this method.

  19. Clinical applications of transient elastography

    Directory of Open Access Journals (Sweden)

    Kyu Sik Jung

    2012-06-01

    Full Text Available Chronic liver disease represents a major public health problem, accounting for significant morbidity and mortality worldwide. As prognosis and management depend mainly on the amount and progression of liver fibrosis, accurate quantification of liver fibrosis is essential for therapeutic decision-making and follow-up of chronic liver diseases. Even though liver biopsy is the gold standard for evaluation of liver fibrosis, non-invasive methods that could substitute for invasive procedures have been investigated during past decades. Transient elastography (TE, FibroScan® is a novel non-invasive method for assessment of liver fibrosis with chronic liver disease. TE can be performed in the outpatient clinic with immediate results and excellent reproducibility. Its diagnostic accuracy for assessment of liver fibrosis has been demonstrated in patients with chronic viral hepatitis; as a result, unnecessary liver biopsy could be avoided in some patients. Moreover, due to its excellent patient acceptance, TE could be used for monitoring disease progression or predicting development of liver-related complications. This review aims at discussing the usefulness of TE in clinical practice.

  20. Defect detection using transient thermography

    International Nuclear Information System (INIS)

    Mohd Zaki Umar; Ibrahim Ahmad; Ab Razak Hamzah; Wan Saffiey Wan Abdullah

    2008-08-01

    An experimental research had been carried out to study the potential of transient thermography in detecting sub-surface defect of non-metal material. In this research, eight pieces of bakelite material were used as samples. Each samples had a sub-surface defect in the circular shape with different diameters and depths. Experiment was conducted using one-sided Pulsed Thermal technique. Heating of samples were done using 30 kWatt adjustable quartz lamp while infra red (IR) images of samples were recorded using THV 550 IR camera. These IR images were then analysed with ThermofitTMPro software to obtain the Maximum Absolute Differential Temperature Signal value, ΔΤ m ax and the time of its appearance, τ m ax (ΔΤ). Result showed that all defects were able to be detected even for the smallest and deepest defect (diameter = 5 mm and depth = 4 mm). However the highest value of Differential Temperature Signal (ΔΤ m ax), were obtained at defect with the largest diameter, 20 mm and at the shallowest depth, 1 mm. As a conclusion, the sensitivity of the pulsed thermography technique to detect sub-surface defects of bakelite material is proportionately related with the size of defect diameter if the defects are at the same depth. On the contrary, the sensitivity of the pulsed thermography technique inversely related with the depth of defect if the defects have similar diameter size. (Author)

  1. Transient shocks beyond the heliopause

    International Nuclear Information System (INIS)

    Fermo, R L; Pogorelov, N V; Burlaga, L F

    2015-01-01

    The heliopause is a rich, dynamic surface affected by the time-dependent solar wind. Stream interactions due to coronal mass ejections (CMEs), corotating interaction regions (CIRs), and other transient phenomena are known to merge producing global merged interaction regions (GMIRs). Numerical simulations of the solar wind interaction with the local interstellar medium (LISM) show that GMIRs, as well other time-dependent structures in the solar wind, may produce compression/rarefaction waves and shocks in the LISM behind the heliopause. These shocks may initiate wave activity observed by the Voyager spacecraft. The magnetometer onboard Voyager 1 indeed observed a few structures that may be interpreted as shocks. We present numerical simulations of such shocks in the year of 2000, when both Voyager spacecraft were in the supersonic solar wind region, and in 2012, when Voyager 1 observed traveling shocks. In the former case, Voyager observations themselves provide time- dependent boundary conditions in the solar wind. In the latter case, we use OMNI data at 1 AU to analyze the plasma and magnetic field behavior after Voyager 1 crossed the heliospheric boundary. Numerical results are compared with spacecraft observations. (paper)

  2. Transient phenomena in multiphase flow

    International Nuclear Information System (INIS)

    Afgan, N.H.

    1988-01-01

    This book is devoted to formulation of the two-phase system. Emphasis is given to classical instantaneous equations of mass momentum and energy for local conditions and respective averaging procedures and their relevance to the structure of transfer laws. In formulating an equation for a two-velocity continuum, two-phase dispersed flow, two-velocity and local inertial effects associated with contraction and expansion of the mixture have been considered. Particular attention is paid to the effects of interface topology and area concentration as well as the latter's dependence on interfacial transfer laws. Also covered are low bubble concentrations in basic nonuniform unsteady flow where interactions between bubbles are negligible but where the effects of bubbles must still be considered. Special emphasis has been given to the pairwise interaction of the bubble and respective hydrodynamic equations describing the motion of a pair of spherical bubbles through a liquid This book introduces turbulence phenomena in two-phase flow and related problems of phase distribution in two-phase flow. This includes an extensive survey of turbulence and phase distribution models in transient two-phase flow. It is shown that if the turbulent structure of the continuous phase of bubbly two-phase is either measured or can be predicted, then the observed lateral phase distribution can be determined by using an multidimensional two-fluid model in which all lateral forces are properly modeled

  3. Perspectives on Nonlinear Filtering

    KAUST Repository

    Law, Kody

    2015-01-01

    The solution to the problem of nonlinear filtering may be given either as an estimate of the signal (and ideally some measure of concentration), or as a full posterior distribution. Similarly, one may evaluate the fidelity of the filter either by its ability to track the signal or its proximity to the posterior filtering distribution. Hence, the field enjoys a lively symbiosis between probability and control theory, and there are plenty of applications which benefit from algorithmic advances, from signal processing, to econometrics, to large-scale ocean, atmosphere, and climate modeling. This talk will survey some recent theoretical results involving accurate signal tracking with noise-free (degenerate) dynamics in high-dimensions (infinite, in principle, but say d between 103 and 108 , depending on the size of your application and your computer), and high-fidelity approximations of the filtering distribution in low dimensions (say d between 1 and several 10s).

  4. Nonlinear Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Hansen, Kim Per

    2004-01-01

    Despite the general recession in the global economy and the collapse of the optical telecommunication market, research within specialty fibers is thriving. This is, more than anything else, due to the technology transition from standard all-glass fibers to photonic crystal fibers, which, instead....... The freedom to design the dispersion profile of the fibers is much larger and it is possible to create fibers, which support only a single spatial mode, regardless of wavelength. In comparison, the standard dispersion-shifted fibers are limited by a much lower index-contrast between the core and the cladding...... in 1996, and are today on their way to become the dominating technology within the specialty fiber field. Whether they will replace the standard fiber in the more traditional areas like telecommunication transmission, is not yet clear, but the nonlinear photonic crystal fibers are here to stay....

  5. Nonlinear estimation and classification

    CERN Document Server

    Hansen, Mark; Holmes, Christopher; Mallick, Bani; Yu, Bin

    2003-01-01

    Researchers in many disciplines face the formidable task of analyzing massive amounts of high-dimensional and highly-structured data This is due in part to recent advances in data collection and computing technologies As a result, fundamental statistical research is being undertaken in a variety of different fields Driven by the complexity of these new problems, and fueled by the explosion of available computer power, highly adaptive, non-linear procedures are now essential components of modern "data analysis," a term that we liberally interpret to include speech and pattern recognition, classification, data compression and signal processing The development of new, flexible methods combines advances from many sources, including approximation theory, numerical analysis, machine learning, signal processing and statistics The proposed workshop intends to bring together eminent experts from these fields in order to exchange ideas and forge directions for the future

  6. Nonlinear Water Waves

    CERN Document Server

    2016-01-01

    This volume brings together four lecture courses on modern aspects of water waves. The intention, through the lectures, is to present quite a range of mathematical ideas, primarily to show what is possible and what, currently, is of particular interest. Water waves of large amplitude can only be fully understood in terms of nonlinear effects, linear theory being not adequate for their description. Taking advantage of insights from physical observation, experimental evidence and numerical simulations, classical and modern mathematical approaches can be used to gain insight into their dynamics. The book presents several avenues and offers a wide range of material of current interest. Due to the interdisciplinary nature of the subject, the book should be of interest to mathematicians (pure and applied), physicists and engineers. The lectures provide a useful source for those who want to begin to investigate how mathematics can be used to improve our understanding of water wave phenomena. In addition, some of the...

  7. Perspectives on Nonlinear Filtering

    KAUST Repository

    Law, Kody

    2015-01-07

    The solution to the problem of nonlinear filtering may be given either as an estimate of the signal (and ideally some measure of concentration), or as a full posterior distribution. Similarly, one may evaluate the fidelity of the filter either by its ability to track the signal or its proximity to the posterior filtering distribution. Hence, the field enjoys a lively symbiosis between probability and control theory, and there are plenty of applications which benefit from algorithmic advances, from signal processing, to econometrics, to large-scale ocean, atmosphere, and climate modeling. This talk will survey some recent theoretical results involving accurate signal tracking with noise-free (degenerate) dynamics in high-dimensions (infinite, in principle, but say d between 103 and 108 , depending on the size of your application and your computer), and high-fidelity approximations of the filtering distribution in low dimensions (say d between 1 and several 10s).

  8. Wave transmission in nonlinear lattices

    International Nuclear Information System (INIS)

    Hennig, D.; Tsironis, G.P.

    1999-01-01

    The interplay of nonlinearity with lattice discreteness leads to phenomena and propagation properties quite distinct from those appearing in continuous nonlinear systems. For a large variety of condensed matter and optics applications the continuous wave approximation is not appropriate. In the present review we discuss wave transmission properties in one dimensional nonlinear lattices. Our paradigmatic equations are discrete nonlinear Schroedinger equations and their study is done through a dynamical systems approach. We focus on stationary wave properties and utilize well known results from the theory of dynamical systems to investigate various aspects of wave transmission and wave localization. We analyze in detail the more general dynamical system corresponding to the equation that interpolates between the non-integrable discrete nonlinear Schroedinger equation and the integrable Albowitz-Ladik equation. We utilize this analysis in a nonlinear Kronig-Penney model and investigate transmission and band modification properties. We discuss the modifications that are effected through an electric field and the nonlinear Wannier-Stark localization effects that are induced. Several applications are described, such as polarons in one dimensional lattices, semiconductor superlattices and one dimensional nonlinear photonic band gap systems. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  9. Solving Nonlinear Coupled Differential Equations

    Science.gov (United States)

    Mitchell, L.; David, J.

    1986-01-01

    Harmonic balance method developed to obtain approximate steady-state solutions for nonlinear coupled ordinary differential equations. Method usable with transfer matrices commonly used to analyze shaft systems. Solution to nonlinear equation, with periodic forcing function represented as sum of series similar to Fourier series but with form of terms suggested by equation itself.

  10. Nonlinear Elasticity of Doped Semiconductors

    Science.gov (United States)

    2017-02-01

    AFRL-RY-WP-TR-2016-0206 NONLINEAR ELASTICITY OF DOPED SEMICONDUCTORS Mark Dykman and Kirill Moskovtsev Michigan State University...2016 4. TITLE AND SUBTITLE NONLINEAR ELASTICITY OF DOPED SEMICONDUCTORS 5a. CONTRACT NUMBER FA8650-16-1-7600 5b. GRANT NUMBER 5c. PROGRAM...vibration amplitude. 15. SUBJECT TERMS semiconductors , microresonators, microelectromechanical 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  11. Nonlinear evolution of MHD instabilities

    International Nuclear Information System (INIS)

    Bateman, G.; Hicks, H.R.; Wooten, J.W.; Dory, R.A.

    1975-01-01

    A 3-D nonlinear MHD computer code was used to study the time evolution of internal instabilities. Velocity vortex cells are observed to persist into the nonlinear evolution. Pressure and density profiles convect around these cells for a weak localized instability, or convect into the wall for a strong instability. (U.S.)

  12. Nonlinear theory of elastic shells

    International Nuclear Information System (INIS)

    Costa Junior, J.A.

    1979-08-01

    Nonlinear theory of elastic shells is developed which incorporates both geometric and physical nonlinearities and which does not make use of the well known Love-Kirchhoff hypothesis. The resulting equations are formulated in tensorial notation and are reduced to the ones of common use when simplifying assumptions encountered in the especific litterature are taken. (Author) [pt

  13. Balancing for Unstable Nonlinear Systems

    NARCIS (Netherlands)

    Scherpen, J.M.A.

    1993-01-01

    A previously obtained method of balancing for stable nonlinear systems is extended to unstable nonlinear systems. The similarity invariants obtained by the concept of LQG balancing for an unstable linear system can also be obtained by considering a past and future energy function of the system. By

  14. Transient wave behaviour over an underwater sliding hump from experiments and analytical and numerical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Callaghan, David P.; Nielsen, Peter [The University of Queensland, School of Civil Engineering, Brisbane (Australia); Ahmadi, Afshin [Kellogg Brown and Root Pty Ltd, Brisbane, QLD (Australia)

    2011-12-15

    Flume measurements of a one-dimensional sliding hump starting from rest in quiescence fresh water indicate that when the hump travels at speed less than the shallow-water wave celerity, three waves emerge, travelling in two directions. One wave travels in the opposite direction to the sliding hump at approximately the shallow-water wave celerity (backward free wave). Another wave travels approximately in step with the hump (forced wave), and the remaining wave travels in the direction of the hump at approximately the shallow-water wave celerity (forward free wave). These experiments were completed for a range of sliding hump speed relative to the shallow-water wave celerity, up to unity of this ratio, to investigate possible derivation from solutions of the Euler equation with non-linear and non-hydrostatic terms being included or excluded. For the experimental arrangements tested, the forced waves were negative (depression or reduced water surface elevation) waves while the free waves were positive (bulges or increased water surface elevation). For experiments where the sliding hump travelled at less than 80% of the shallow-water wave celerity did not include transient behaviour measurements (i.e. when the three waves still overlapped). The three wave framework was partially supported by these measurements in that the separated forward and forced waves were compared to measurements. For the laboratory scale experiments, the forward free wave height was predicted reasonably by the long-wave equation (ignoring non-linear and non-hydrostatic terms) when the sliding hump speed was less than 80% of the shallow-water wave celerity. The forced wave depression magnitude required the Euler equations for all hump speed tested. The long-wave solution, while being valid in a limited parameter range, does predict the existence of the three waves as found in these experiments (forward travelling waves measured quantitatively while the backward travelling waves visually by video

  15. Nonlinear hyperbolic waves in multidimensions

    CERN Document Server

    Prasad, Phoolan

    2001-01-01

    The propagation of curved, nonlinear wavefronts and shock fronts are very complex phenomena. Since the 1993 publication of his work Propagation of a Curved Shock and Nonlinear Ray Theory, author Phoolan Prasad and his research group have made significant advances in the underlying theory of these phenomena. This volume presents their results and provides a self-contained account and gradual development of mathematical methods for studying successive positions of these fronts.Nonlinear Hyperbolic Waves in Multidimensions includes all introductory material on nonlinear hyperbolic waves and the theory of shock waves. The author derives the ray theory for a nonlinear wavefront, discusses kink phenomena, and develops a new theory for plane and curved shock propagation. He also derives a full set of conservation laws for a front propagating in two space dimensions, and uses these laws to obtain successive positions of a front with kinks. The treatment includes examples of the theory applied to converging wavefronts...

  16. Cubication of conservative nonlinear oscillators

    International Nuclear Information System (INIS)

    Belendez, Augusto; Alvarez, Mariela L; Fernandez, Elena; Pascual, Inmaculada

    2009-01-01

    A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear and cubic terms depend on the initial amplitude, A, while in a Taylor expansion of the restoring force these coefficients are independent of A. The replacement of the original nonlinear equation by an approximate Duffing equation allows us to obtain an approximate frequency-amplitude relation as a function of the complete elliptic integral of the first kind. Some conservative nonlinear oscillators are analysed to illustrate the usefulness and effectiveness of this scheme.

  17. Fission gas behavior during fast thermal transients

    International Nuclear Information System (INIS)

    Esteves, R.G.

    1976-01-01

    The behavior of non-equilibrium fission in fuel elements undergoing fast thermal transients is analyzed. To facilitate the analysis, a new variable, the equilibrium variable (EV) is defined. This variable, together with bubble radius, completely specifies a bubble with respect to its size and equilibrium condition. The analysis is coded using a two-variable (radius and EV) multigroup numerical approximation that accepts as input the time-temperature history, the time-fission rate history, and the time-thermal gradient history of the fuel element. Studies were performed to test the code for convergence with respect to the time interval and the number of groups chosen. For a series of transient simulation studies, the measurements obtained at HEDL (microscopic examination of intragranular porosity in oxide fuel transient-tested in TREAT) are used. Two different transient histories were selected; the first, a high-temperature transient (HTT) with a peak at 2477 0 K and the second, a low-temperature transient (LTT) with a peak-temperature at 2000 0 K. The LTT was simulated for three different conditions: Bubbles were allowed to move via (a) only biased migration, (b) via random migration, and (c) via both mechanisms. The HTT was also run for both mechanisms. The agreement with HEDL microscopic observations was fair for bubbles smaller than 964 A in diameter, and poor for larger bubbles. Bubbles that grew during the heat-up part of the transient were frozen at a larger size during the cool down

  18. Nonlinear Ritz approximation for Fredholm functionals

    Directory of Open Access Journals (Sweden)

    Mudhir A. Abdul Hussain

    2015-11-01

    Full Text Available In this article we use the modify Lyapunov-Schmidt reduction to find nonlinear Ritz approximation for a Fredholm functional. This functional corresponds to a nonlinear Fredholm operator defined by a nonlinear fourth-order differential equation.

  19. Breatherlike impurity modes in discrete nonlinear lattices

    DEFF Research Database (Denmark)

    Hennig, D.; Rasmussen, Kim; Tsironis, G. P.

    1995-01-01

    We investigate the properties of a disordered generalized discrete nonlinear Schrodinger equation, containing both diagonal and nondiagonal nonlinear terms. The equation models a Linear host lattice doped with nonlinear impurities. We find different types of impurity states that form itinerant...

  20. Characterizing SI Engine Transient Fuel Consumption in ALPHA

    Science.gov (United States)

    Examine typical transient engine operation encountered over the EPA's vehicle and engine testing drive cycles to characterize that transient fuel usage, and then describe the changes made to ALPHA to better model transient engine operation.

  1. New developments in French transient monitoring: SYSFAC

    International Nuclear Information System (INIS)

    L'huby, Y.; Genette, P.; Faidy, C.; Kappler, F.; Balley, J.; Bimont, G.

    1991-01-01

    After more than ten years of experience with Transient Monitoring and Logging Procedure (TMLP) and six years of successfully experience with Fatiguemeters, EDF has decided to study a new concept of Fatigue Monitoring System: SYSFAC. This new automatic system which is developed to be operating in all the French PWR units is composed of three modules: mechanical transient logging, functional transient logging and fatiguemeters. This application must be connected to the on-site data acquisition system without complementary instrumentation on the plant. (author)

  2. Transient phenomena in electrical power systems

    CERN Document Server

    Venikov, V A; Higinbotham, W

    1964-01-01

    Electronics and Instrumentation, Volume 24: Transient Phenomena in Electrical Power Systems presents the methods for calculating the stability and the transient behavior of systems with forced excitation control. This book provides information pertinent to the analysis of transient phenomena in electro-mechanical systems.Organized into five chapters, this volume begins with an overview of the principal requirements in an excitation system. This text then explains the electromagnetic and electro-mechanical phenomena, taking into account the mutual action between the components of the system. Ot

  3. Transient analysis capabilities at ABB-CE

    International Nuclear Information System (INIS)

    Kling, C.L.

    1992-01-01

    The transient capabilities at ABB-Combustion Engineering (ABB-CE) Nuclear Power are a function of the computer hardware and related network used, the computer software that has evolved over the years, and the commercial technical exchange agreements with other related organizations and customers. ABB-CEA is changing from a mainframe/personal computer network to a distributed workstation/personal computer local area network. The paper discusses computer hardware, mainframe computing, personal computers, mainframe/personal computer networks, workstations, transient analysis computer software, design/operation transient analysis codes, safety (licensed) analysis codes, cooperation with ABB-Atom, and customer support

  4. Transient burnout in flow reduction condition

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Kuroyanagi, Toshiyuki

    1981-01-01

    A transient flow reduction burnout experiment was conducted with water in a uniformly heated, vertically oriented tube. Test pressures ranged from 0.5 to 3.9 MPa. An analytical method was developed to obtain transient burnout conditions at the exit. A simple correlation to predict the deviation of the transient burnout mass velocity at the tube exit from the steady state mass velocity obtained as a function of steam-water density ratio and flow reduction rate. The correlation was also compared with the other data. (author)

  5. MASTER-2.0: Multi-purpose analyzer for static and transient effects of reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Byung Oh; Song, Jae Seung; Joo, Han Gyu [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-01-01

    MASTER-2.0 (Multi-purpose Analyzer for Static and Transient Effects of Reactors) is a nuclear design code based on the two group diffusion theory to calculate the steady-state and transient pressurized water reactor core in a 3-dimensional Cartesian or hexagonal geometry. Its neutronics model solves the space-time dependent neutron diffusion equations with NIM(Nodal Integration Method), NEM (Nodal Expansion Method), AFEN (Analytic Function Expansion Nodal Method)/NEM Hybrid Method, NNEM (Non-linear Nodal Expansion Method) or NANM (Non-linear Analytic Nodal Method) for a Cartesian geometry and with AFEN/NEM Hybrid Method or NLFM (Non-linear Local Fine-Mesh Method) for a hexagonal one. Coarse mesh rebalancing, Krylov Subspace method and asymptotic extrapolation method are implemented to accelerate the convergence of iteration process. Master-2.0 performs microscopic depletion calculations using microscopic cross sections provided by CASMO-3 or HELIOS and also has the reconstruction capability of pin information by use of MSS-IAS (Method of Successive Smoothing with Improved Analytic Solution). For the thermal-hydraulic calculation, fuel temperature table or COBRA3-C/P model can be used selectively. In addition, MASTER-2.0 is designed to cover various PWRs including SMART as well as WH-and CE-type reactors, providing all data required in their design procedures. (author). 39 refs., 12 figs., 4 tabs.

  6. Response of Non-Linear Shock Absorbers-Boundary Value Problem Analysis

    Science.gov (United States)

    Rahman, M. A.; Ahmed, U.; Uddin, M. S.

    2013-08-01

    A nonlinear boundary value problem of two degrees-of-freedom (DOF) untuned vibration damper systems using nonlinear springs and dampers has been numerically studied. As far as untuned damper is concerned, sixteen different combinations of linear and nonlinear springs and dampers have been comprehensively analyzed taking into account transient terms. For different cases, a comparative study is made for response versus time for different spring and damper types at three important frequency ratios: one at r = 1, one at r > 1 and one at r <1. The response of the system is changed because of the spring and damper nonlinearities; the change is different for different cases. Accordingly, an initially stable absorber may become unstable with time and vice versa. The analysis also shows that higher nonlinearity terms make the system more unstable. Numerical simulation includes transient vibrations. Although problems are much more complicated compared to those for a tuned absorber, a comparison of the results generated by the present numerical scheme with the exact one shows quite a reasonable agreement

  7. Roles of dispersal, stochasticity, and nonlinear dynamics in the spatial structuring of seasonal natural enemy-victim populations

    Science.gov (United States)

    Patrick C. Tobin; Ottar N. Bjornstad

    2005-01-01

    Natural enemy-victim systems may exhibit a range of dynamic space-time patterns. We used a theoretical framework to study spatiotemporal structuring in a transient natural enemy-victim system subject to differential rates of dispersal, stochastic forcing, and nonlinear dynamics. Highly mobile natural enemies that attacked less mobile victims were locally spatially...

  8. Spatial solitons in nonlinear photonic crystals

    DEFF Research Database (Denmark)

    Corney, Joel Frederick; Bang, Ole

    2000-01-01

    We study solitons in one-dimensional quadratic nonlinear photonic crystals with periodic linear and nonlinear susceptibilities. We show that such crystals support stable bright and dark solitons, even when the effective quadratic nonlinearity is zero.......We study solitons in one-dimensional quadratic nonlinear photonic crystals with periodic linear and nonlinear susceptibilities. We show that such crystals support stable bright and dark solitons, even when the effective quadratic nonlinearity is zero....

  9. Nonlinear identification of process dynamics using neural networks

    International Nuclear Information System (INIS)

    Parlos, A.G.; Atiya, A.F.; Chong, K.T.

    1992-01-01

    In this paper the nonlinear identification of process dynamics encountered in nuclear power plant components is addressed, in an input-output sense, using artificial neural systems. A hybrid feedforward/feedback neural network, namely, a recurrent multilayer perceptron, is used as the model structure to be identified. The feedforward portion of the network architecture provides its well-known interpolation property, while through recurrency and cross-talk, the local information feedback enables representation of temporal variations in the system nonlinearities. The standard backpropagation learning algorithm is modified, and it is used for the supervised training of the proposed hybrid network. The performance of recurrent multilayer perceptron networks in identifying process dynamics is investigated via the case study of a U-tube steam generator. The response of representative steam generator is predicted using a neural network, and it is compared to the response obtained from a sophisticated computer model based on first principles. The transient responses compare well, although further research is warranted to determine the predictive capabilities of these networks during more severe operational transients and accident scenarios

  10. L1 adaptive control of uncertain gear transmission servo systems with deadzone nonlinearity.

    Science.gov (United States)

    Zuo, Zongyu; Li, Xiao; Shi, Zhiguang

    2015-09-01

    This paper deals with the adaptive control problem of Gear Transmission Servo (GTS) systems in the presence of unknown deadzone nonlinearity and viscous friction. A global differential homeomorphism based on a novel differentiable deadzone model is proposed first. Since there exist both matched and unmatched state-dependent unknown nonlinearities, a full-state feedback L1 adaptive controller is constructed to achieve uniformly bounded transient response in addition to steady-state performance. Finally, simulation results are included to show the elimination of limit cycles, in addition to demonstrating the main results in this paper. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  11. A numerical thermal-hydraulic model to simulate the fast transients in a supercritical water channel subjected to sharp pressure variations

    NARCIS (Netherlands)

    Dutta, G.; Jiang, J.; Maitri, R.; Zhang, C.

    2016-01-01

    The present work demonstrates the extension of a thermal-hydraulic model, THRUST, with an objective to simulate the fast transient flow dynamics in a supercritical water channel of circular cross section. THRUST is a 1-D model which solves the nonlinearly coupled mass, axial momentum and energy

  12. LDRD report nonlinear model reduction

    Energy Technology Data Exchange (ETDEWEB)

    Segalman, D.; Heinstein, M.

    1997-09-01

    The very general problem of model reduction of nonlinear systems was made tractable by focusing on the very large subclass consisting of linear subsystems connected by nonlinear interfaces. Such problems constitute a large part of the nonlinear structural problems encountered in addressing the Sandia missions. A synthesis approach to this class of problems was developed consisting of: detailed modeling of the interface mechanics; collapsing the interface simulation results into simple nonlinear interface models; constructing system models by assembling model approximations of the linear subsystems and the nonlinear interface models. These system models, though nonlinear, would have very few degrees of freedom. A paradigm problem, that of machine tool vibration, was selected for application of the reduction approach outlined above. Research results achieved along the way as well as the overall modeling of a specific machine tool have been very encouraging. In order to confirm the interface models resulting from simulation, it was necessary to develop techniques to deduce interface mechanics from experimental data collected from the overall nonlinear structure. A program to develop such techniques was also pursued with good success.

  13. Nonlinear adaptive robust back stepping force control of hydraulic load simulator: Theory and experiments

    International Nuclear Information System (INIS)

    Yao, Jianyong; Jiao, Zongxia; Yao, Bin

    2014-01-01

    High performance robust force control of hydraulic load simulator with constant but unknown hydraulic parameters is considered. In contrast to the linear control based on hydraulic linearization equations, hydraulic inherent nonlinear properties and uncertainties make the conventional feedback proportional-integral-derivative (PID) control not yield to high performance requirements. Furthermore, the hydraulic system may be subjected to non-smooth and discontinuous nonlinearities due to the directional change of valve opening. In this paper, based on a nonlinear system model of hydraulic load simulator, a discontinuous projection-based nonlinear adaptive robust back stepping controller is developed with servo valve dynamics. The proposed controller constructs a novel stable adaptive controller and adaptation laws with additional pressure dynamic related unknown parameters, which can compensate for the system nonlinearities and uncertain parameters, meanwhile a well-designed robust controller is also synthesized to dominate the model uncertainties coming from both parametric uncertainties and uncertain nonlinearities including unmodeled and ignored system dynamics. The controller theoretically guarantee a prescribed transient performance and final tracking accuracy in presence of both parametric uncertainties and uncertain nonlinearities; while achieving asymptotic output tracking in the absence of unstructured uncertainties. The implementation issues are also discussed for controller simplification. Some comparative results are obtained to verify the high-performance nature of the proposed controller.

  14. Nonlinear adaptive robust back stepping force control of hydraulic load simulator: Theory and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jianyong [Nanjing University of Science and Technology, Nanjing (China); Jiao, Zongxia [Beihang University, Beijing (China); Yao, Bin [Purdue University, West Lafayette (United States)

    2014-04-15

    High performance robust force control of hydraulic load simulator with constant but unknown hydraulic parameters is considered. In contrast to the linear control based on hydraulic linearization equations, hydraulic inherent nonlinear properties and uncertainties make the conventional feedback proportional-integral-derivative (PID) control not yield to high performance requirements. Furthermore, the hydraulic system may be subjected to non-smooth and discontinuous nonlinearities due to the directional change of valve opening. In this paper, based on a nonlinear system model of hydraulic load simulator, a discontinuous projection-based nonlinear adaptive robust back stepping controller is developed with servo valve dynamics. The proposed controller constructs a novel stable adaptive controller and adaptation laws with additional pressure dynamic related unknown parameters, which can compensate for the system nonlinearities and uncertain parameters, meanwhile a well-designed robust controller is also synthesized to dominate the model uncertainties coming from both parametric uncertainties and uncertain nonlinearities including unmodeled and ignored system dynamics. The controller theoretically guarantee a prescribed transient performance and final tracking accuracy in presence of both parametric uncertainties and uncertain nonlinearities; while achieving asymptotic output tracking in the absence of unstructured uncertainties. The implementation issues are also discussed for controller simplification. Some comparative results are obtained to verify the high-performance nature of the proposed controller.

  15. Nonlinear transient dynamic response of pressure relief valves for a negative containment system

    International Nuclear Information System (INIS)

    Aziz, T.S.; Duff, C.G.; Tang, J.H.K.

    1979-01-01

    The response of the piston for the postulated simultaneous effect of pressure and an earthquake is obtained for different parameters and accident conditions. Response quantities such as accelerations, displacements, rotations, diaphragm forces as well as opening time during a design basis earthquake are obtained. The results of the different analyses, as related to the functional operability of the valves, are evaluated and discussed. (orig.)

  16. Non-linear transient behavior during soil liquefaction based on re-evaluation of seismic records

    OpenAIRE

    Kamagata, S.; Takewaki, Izuru

    2015-01-01

    Focusing on soil liquefaction, the seismic records during the Niigata-ken earthquake in 1964, the southern Hyogo prefecture earthquake in 1995 and the 2011 off the Pacific coast of Tohoku earthquake are analyzed by the non-stationary Fourier spectra. The shift of dominant frequency in the seismic record of Kawagishi-cho during the Niigata-ken earthquake is evaluated based on the time-variant property of dominant frequencies. The reduction ratio of the soil stiffness is evaluated from the shif...

  17. simulation of electromagnetic transients in power systems

    African Journals Online (AJOL)

    Dr Obe

    1996-09-01

    Sep 1, 1996 ... Transients in power systems are initiated by abrupt changes to otherwise steady operating conditions. These changes would .... The method is applicable both to single transmission in real time. The method is applicable both ...

  18. The economic impact of reactor transients

    International Nuclear Information System (INIS)

    Rossin, A.D.; Vine, G.L.

    1984-01-01

    This chapter discusses the cost estimation of transients and the causal relationship between transients and accidents. It is suggested that the calculation of the actual cost of a transient that has occurred is impossible without computerized records. Six months of operating experience reports, based on a survey of pressurized water reactors (PWRs) and boiling water reactors (BWRs) conducted by the Nuclear Safety Analysis Center (NSAC), are analyzed. The significant costs of a reactor transient are the repair costs resulting from severe damage to plant equipment, the cost of scrams (the actions the system is designed to take to avoid safety risks), US NRC fines, negative publicity, utility rates and revenues. It is estimated that the Three Mile Island-2 accident cost the US over $100 billion in nuclear plant delays and cancellations, more expensive fuel, oil imports, backfits, bureaucratic, administrative and legal costs, and lost productivity

  19. Fuel cladding mechanical properties for transient analysis

    International Nuclear Information System (INIS)

    Johnson, G.D.; Hunter, C.W.; Hanson, J.E.

    1976-01-01

    Out-of-pile simulated transient tests have been conducted on irradiated fast-reactor fuel pin cladding specimens at heating rates of 10 0 F/s (5.6 0 K/s) and 200 0 F/s (111 0 K/s) to generate mechanical property information for use in describing cladding behavior during off-normal events. Mechanical property data were then analyzed, applying the Larson-Miller Parameter to the effects of heating rate and neutron fluence. Data from simulated transient tests on TREAT-tested fuel pins demonstrate that Plant Protective System termination of 3$/s transients prevents significant damage to cladding. The breach opening produced during simulated transient testing is shown to decrease in size with increasing neutron fluence

  20. Detection of Transient Signals in Doppler Spectra

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Signal processing is used to detect transient signals in the presence of noise. Two embodiments are disclosed. In both embodiments, the time series from a remote...

  1. Transient management using the safety function approach

    International Nuclear Information System (INIS)

    Corcoran, W.R.; Barrow, J.H.; Bischoff, G.C.; Callaghan, V.M.; Pearce, R.T.

    1984-01-01

    The safety function approach is described. Its use in the development of a transient management procedures system includes optimal recovery procedures tailored to specific, anticipated symptom sets and a functional recovery procedure which is more general. Simulator evaluations are described

  2. Development of a transient criticality evaluation method

    International Nuclear Information System (INIS)

    Pain, C.C.; Eaton, M.D.; Miles, B.; Ziver, A.K.; Gomes, J.L.M.A.; Umpleby, A.P.; Piggott, M.D.; Goddard, A.J.H.; Oliveira, C.R.E. de

    2005-01-01

    In developing a transient criticality evaluation method we model, in full spatial/temporal detail, the neutron fluxes and consequent power and the evolving material properties - their flows, energies, phase changes etc. These methods are embodied in the generic method FETCH code which is based as far as possible on basic principles and is capable of use in exploring safety-related situations somewhat beyond the range of experiment. FETCH is a general geometry code capable of addressing a range of criticality issues in fissile materials. The code embodies both transient radiation transport and transient fluid dynamics. Work on powders, granular materials, porous media and solutions is reviewed. The capability for modelling transient criticality for chemical plant, waste matrices and advanced reactors is also outlined. (author)

  3. RFSP simulations of Darlington FINCH refuelling transient

    International Nuclear Information System (INIS)

    Carruthers, E.V.; Chow, H.C.

    1997-01-01

    Immediately after refuelling of a channel, the fresh bundles are free of fission products. Xenon-135, the most notable of the saturating fission products, builds up to an equilibrium level in about 30 h. The channel power of the refuelled channel would therefore initially peak and then drop to a steady-state level. The RFSP code can track saturating-fission-product transients and power transients. The Fully INstrumented CHannels (FINCHs) in Darlington NGS provides channel power data on the refuelling power transients. In this paper, such data has been used to identify the physical evidence of the fission-product transient effect on channel power, and to validate RFSP fission-product-driver calculation results. (author)

  4. Climatic feedbacks between stationary and transient eddies

    International Nuclear Information System (INIS)

    Branscome, L.E.

    1994-01-01

    Stationary eddies make a significant contribution to poleward heat transport during Northern Hemisphere winter, equaling the transport by transient eddies. On the other hand, stationary eddy transport during the summer is negligible. The effect of topography on time-mean stationary waves and low-frequency variability has been widely studied. In contrast, little attention has been given to the climatic feedbacks associated with stationary eddies. Furthermore, the relationship between stationary and transient eddies in the context of global and regional climate is not well understood. The response of the climate system to anthropogenic forcing is likely to have some dependence on stationary wave transport and its interaction with transient eddies. Some early GCM simulations and observational analyses indicate a strong feedback between the meridional heat fluxes of stationary and transient eddies

  5. Acoustic Transient Source Localization From an Aerostat

    National Research Council Canada - National Science Library

    Scanlon, Michael; Reiff, Christian; Noble, John

    2006-01-01

    The Army Research Laboratory (ARL) has conducted experiments using acoustic sensor arrays suspended below tethered aerostats to detect and localize transient signals from mortars, artillery and small arms fire...

  6. Attosecond transient absorption spectroscopy of molecular hydrogen

    International Nuclear Information System (INIS)

    Martín, Fernando; González-Castrillo, Alberto; Palacios, Alicia; Argenti, Luca; Cheng, Yan; Chini, Michael; Wang, Xiaowei; Chang, Zenghu

    2015-01-01

    We extend attosecond transient absorption spectroscopy (ATAS) to the study of hydrogen molecules, demonstrating the potential of the technique to resolve – simultaneously and with state resolution – both the electronic and nuclear dynamics. (paper)

  7. Nonlinear time heteronymous damping in nonlinear parametric planetary systems

    Czech Academy of Sciences Publication Activity Database

    Hortel, Milan; Škuderová, Alena

    2014-01-01

    Roč. 225, č. 7 (2014), s. 2059-2073 ISSN 0001-5970 Institutional support: RVO:61388998 Keywords : nonlinear dynamics * planetary systems * heteronymous damping Subject RIV: JT - Propulsion, Motors ; Fuels Impact factor: 1.465, year: 2014

  8. Nonlinear dynamical triggering of slow slip

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Paul A [Los Alamos National Laboratory; Knuth, Matthew W [WISCONSIN; Kaproth, Bryan M [PENN STATE; Carpenter, Brett [PENN STATE; Guyer, Robert A [Los Alamos National Laboratory; Le Bas, Pierre - Yves [Los Alamos National Laboratory; Daub, Eric G [Los Alamos National Laboratory; Marone, Chris [PENN STATE

    2010-12-10

    Among the most fascinating, recent discoveries in seismology have been the phenomena of triggered slip, including triggered earthquakes and triggered-tremor, as well as triggered slow, silent-slip during which no seismic energy is radiated. Because fault nucleation depths cannot be probed directly, the physical regimes in which these phenomena occur are poorly understood. Thus determining physical properties that control diverse types of triggered fault sliding and what frictional constitutive laws govern triggered faulting variability is challenging. We are characterizing the physical controls of triggered faulting with the goal of developing constitutive relations by conducting laboratory and numerical modeling experiments in sheared granular media at varying load conditions. In order to simulate granular fault zone gouge in the laboratory, glass beads are sheared in a double-direct configuration under constant normal stress, while subject to transient perturbation by acoustic waves. We find that triggered, slow, silent-slip occurs at very small confining loads ({approx}1-3 MPa) that are smaller than those where dynamic earthquake triggering takes place (4-7 MPa), and that triggered slow-slip is associated with bursts of LFE-like acoustic emission. Experimental evidence suggests that the nonlinear dynamical response of the gouge material induced by dynamic waves may be responsible for the triggered slip behavior: the slip-duration, stress-drop and along-strike slip displacement are proportional to the triggering wave amplitude. Further, we observe a shear-modulus decrease corresponding to dynamic-wave triggering relative to the shear modulus of stick-slips. Modulus decrease in response to dynamical wave amplitudes of roughly a microstrain and above is a hallmark of elastic nonlinear behavior. We believe that the dynamical waves increase the material non-affine elastic deformation during shearing, simultaneously leading to instability and slow-slip. The inferred

  9. Design with Nonlinear Constraints

    KAUST Repository

    Tang, Chengcheng

    2015-12-10

    Most modern industrial and architectural designs need to satisfy the requirements of their targeted performance and respect the limitations of available fabrication technologies. At the same time, they should reflect the artistic considerations and personal taste of the designers, which cannot be simply formulated as optimization goals with single best solutions. This thesis aims at a general, flexible yet e cient computational framework for interactive creation, exploration and discovery of serviceable, constructible, and stylish designs. By formulating nonlinear engineering considerations as linear or quadratic expressions by introducing auxiliary variables, the constrained space could be e ciently accessed by the proposed algorithm Guided Projection, with the guidance of aesthetic formulations. The approach is introduced through applications in different scenarios, its effectiveness is demonstrated by examples that were difficult or even impossible to be computationally designed before. The first application is the design of meshes under both geometric and static constraints, including self-supporting polyhedral meshes that are not height fields. Then, with a formulation bridging mesh based and spline based representations, the application is extended to developable surfaces including origami with curved creases. Finally, general approaches to extend hard constraints and soft energies are discussed, followed by a concluding remark outlooking possible future studies.

  10. Nonlinear functional analysis

    CERN Document Server

    Deimling, Klaus

    1985-01-01

    topics. However, only a modest preliminary knowledge is needed. In the first chapter, where we introduce an important topological concept, the so-called topological degree for continuous maps from subsets ofRn into Rn, you need not know anything about functional analysis. Starting with Chapter 2, where infinite dimensions first appear, one should be familiar with the essential step of consider­ ing a sequence or a function of some sort as a point in the corresponding vector space of all such sequences or functions, whenever this abstraction is worthwhile. One should also work out the things which are proved in § 7 and accept certain basic principles of linear functional analysis quoted there for easier references, until they are applied in later chapters. In other words, even the 'completely linear' sections which we have included for your convenience serve only as a vehicle for progress in nonlinearity. Another point that makes the text introductory is the use of an essentially uniform mathematical languag...

  11. Scalable Nonlinear Compact Schemes

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Debojyoti [Argonne National Lab. (ANL), Argonne, IL (United States); Constantinescu, Emil M. [Univ. of Chicago, IL (United States); Brown, Jed [Univ. of Colorado, Boulder, CO (United States)

    2014-04-01

    In this work, we focus on compact schemes resulting in tridiagonal systems of equations, specifically the fifth-order CRWENO scheme. We propose a scalable implementation of the nonlinear compact schemes by implementing a parallel tridiagonal solver based on the partitioning/substructuring approach. We use an iterative solver for the reduced system of equations; however, we solve this system to machine zero accuracy to ensure that no parallelization errors are introduced. It is possible to achieve machine-zero convergence with few iterations because of the diagonal dominance of the system. The number of iterations is specified a priori instead of a norm-based exit criterion, and collective communications are avoided. The overall algorithm thus involves only point-to-point communication between neighboring processors. Our implementation of the tridiagonal solver differs from and avoids the drawbacks of past efforts in the following ways: it introduces no parallelization-related approximations (multiprocessor solutions are exactly identical to uniprocessor ones), it involves minimal communication, the mathematical complexity is similar to that of the Thomas algorithm on a single processor, and it does not require any communication and computation scheduling.

  12. Acoustic-gravity nonlinear structures

    Directory of Open Access Journals (Sweden)

    D. Jovanović

    2002-01-01

    Full Text Available A catalogue of nonlinear vortex structures associated with acoustic-gravity perturbations in the Earth's atmosphere is presented. Besides the previously known Kelvin-Stewart cat's eyes, dipolar and tripolar structures, new solutions having the form of a row of counter-rotating vortices, and several weakly two-dimensional vortex chains are given. The existence conditions for these nonlinear structures are discussed with respect to the presence of inhomogeneities of the shear flows. The mode-coupling mechanism for the nonlinear generation of shear flows in the presence of linearly unstable acoustic-gravity waves, possibly also leading to intermittency and chaos, is presented.

  13. Nonlinear Dynamic Phenomena in Mechanics

    CERN Document Server

    Warminski, Jerzy; Cartmell, Matthew P

    2012-01-01

    Nonlinear phenomena should play a crucial role in the design and control of engineering systems and structures as they can drastically change the prevailing dynamical responses. This book covers theoretical and applications-based problems of nonlinear dynamics concerned with both discrete and continuous systems of interest in civil and mechanical engineering. They include pendulum-like systems, slender footbridges, shape memory alloys, sagged elastic cables and non-smooth problems. Pendulums can be used as a dynamic absorber mounted in high buildings, bridges or chimneys. Geometrical nonlinear

  14. Non-linear optical materials

    CERN Document Server

    Saravanan, R

    2018-01-01

    Non-linear optical materials have widespread and promising applications, but the efforts to understand the local structure, electron density distribution and bonding is still lacking. The present work explores the structural details, the electron density distribution and the local bond length distribution of some non-linear optical materials. It also gives estimation of the optical band gap, the particle size, crystallite size, and the elemental composition from UV-Visible analysis, SEM, XRD and EDS of some non-linear optical materials respectively.

  15. Nonlinear modulation of ionization waves

    International Nuclear Information System (INIS)

    Bekki, Naoaki

    1981-01-01

    In order to investigate the nonlinear characteristics of ionization waves (moving-striations) in the positive column of glow discharge, a nonlinear modulation of ionization waves in the region of the Pupp critical current is analysed by means of the reductive perturbation method. The modulation of ionization waves is described by a nonlinear Schroedinger type equation. The coefficients of the equation are evaluated using the data of the low pressure Argon-discharge, and the simple solutions (plane wave and envelope soliton type solutions) are presented. Under a certain condition an envelope soliton is propagated through the positive column. (author)

  16. Cable system transients theory, modeling and simulation

    CERN Document Server

    Ametani, Akihiro; Nagaoka, Naoto

    2015-01-01

    A systematic and comprehensive introduction to electromagnetic transient in cable systems, written by the internationally renowned pioneer in this field Presents a systematic and comprehensive introduction to electromagnetic transient in cable systems Written by the internationally renowned pioneer in the field Thorough coverage of the state of the art on the topic, presented in a well-organized, logical style, from fundamentals and practical applications A companion website is available

  17. Partial discharge transients: The field theoretical approach

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson; Crichton, George C

    1998-01-01

    Up until the mid-1980s the theory of partial discharge transients was essentially static. This situation had arisen because of the fixation with the concept of void capacitance and the use of circuit theory to address what is in essence a field problem. Pedersen rejected this approach and instead...... began to apply field theory to the problem of partial discharge transients. In the present paper, the contributions of Pedersen using the field theoretical approach will be reviewed and discussed....

  18. Atucha I nuclear power plant transients analysis

    International Nuclear Information System (INIS)

    Castano, J.; Schivo, M.

    1987-01-01

    A program for the transients simulation thermohydraulic calculation without loss of coolant (KWU-ENACE development) to evaluate Atucha I nuclear power plant behaviour is used. The program includes systems simulation and nuclear power plants control bonds with real parameters. The calculation results show a good agreement with the output 'protocol' of various transients of the nuclear power plant, keeping the error, in general, lesser than ± 10% from the variation of the nuclear power plant's state variables. (Author)

  19. PC-Reactor-core transient simulation code

    International Nuclear Information System (INIS)

    Nakata, H.

    1989-10-01

    PC-REATOR, a reactor core transient simulation code has been developed for the real-time operator training on a IBM-PC microcomputer. The program presents capabilities for on-line exchange of the operating parameters during the transient simulation, by friendly keyboard instructions. The model is based on the point-kinetics approximation, with 2 delayed neutron percursors and up to 11 decay power generating groups. (author) [pt

  20. Modeling of Transients in an Enrichment Circuit

    International Nuclear Information System (INIS)

    Fernandino, Maria; Delmastro, Dario; Brasnarof, Daniel

    2003-01-01

    In the present work a mathematical model is presented in order to describe the dynamic behavior inside a closed enrichment loop, the latter representing a single stage of an uranium gaseous diffusion enrichment cascade.The analytical model is turned into a numerical model, and implemented through a computational code.Transients of two species separation were numerically analyzed, including setting times of each magnitude, behavior of each one of them during different transients, and redistribution of concentrations along the closed loop

  1. Transient Exciplex Formation Electron Transfer Mechanism

    OpenAIRE

    Michael G. Kuzmin; Irina V. Soboleva; Elena V. Dolotova

    2011-01-01

    Transient exciplex formation mechanism of excited-state electron transfer reactions is analyzed in terms of experimental data on thermodynamics and kinetics of exciplex formation and decay. Experimental profiles of free energy, enthalpy, and entropy for transient exciplex formation and decay are considered for several electron transfer reactions in various solvents. Strong electronic coupling in contact pairs of reactants causes substantial decrease of activation energy relative to that for c...

  2. Single-shot measurement of nonlinear absorption and nonlinear refraction.

    Science.gov (United States)

    Jayabalan, J; Singh, Asha; Oak, Shrikant M

    2006-06-01

    A single-shot method for measurement of nonlinear optical absorption and refraction is described and analyzed. A spatial intensity variation of an elliptical Gaussian beam in conjugation with an array detector is the key element of this method. The advantages of this single-shot technique were demonstrated by measuring the two-photon absorption and free-carrier absorption in GaAs as well as the nonlinear refractive index of CS2 using a modified optical Kerr setup.

  3. Nonlinear optical control of Josephson coupling in cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Casandruc, Eliza

    2017-03-15

    In High-T{sub C} cuprates superconducting Cu-O planes alternate with insulating layers along the crystallographic c-axis, making the materials equivalent to Josephson junctions connected in series. The most intriguing consequence is that the out-of-plane superconducting transport occurs via Cooper pairs tunneling across the insulating layers and can be predicted by the Josephson tunneling equations. Nonlinear interaction between light fields and the superconducting carriers serves as a powerful dynamical probe of cuprates, while offering opportunities for controlling them in an analogous fashion to other stimuli such as pressure and magnetic fields. The main goal of this thesis work is to use intense transient light fields to control the interlayer superconducting transport on ultrafast time scales. This was achieved by tuning the wavelength of such light pulses to completely different ranges, in order to either directly excite Josephson Plasma Waves in the nonlinear regime, or efficiently melt the competing charge and spin order phase, which in certain cuprates quenches the Josephson tunneling at equilibrium. In a first study, I have utilized strong field terahertz transients with frequencies tuned to the Josephson plasma resonance (JPR) to coherently control the c-axis superconducting transport. The Josephson relations have a cubic nonlinearity which is exploited to achieve two related, albeit slightly different, phenomena. Depending on the driving pulse, solitonic breathers were excited with narrow-band multi-cycle pulses in La{sub 1.84}Sr{sub 0.16}CuO{sub 4} while broad-band half-cycle pulses were employed to achieve a parametric amplification of Josephson Plasma Waves in La{sub 1.905}Ba{sub 0.095}CuO{sub 4}. These experiments are supported by extensive modeling, showing exceptional agreement. A comprehensive study illustrates the strong enhancement of the nonlinear effects near the JPR frequency. Then, I turned to investigate the competition between

  4. Transient ischemic attack presenting in an elderly patient with transient ophthalmic manifestations

    Directory of Open Access Journals (Sweden)

    Sparshi Jain

    2016-01-01

    Full Text Available Transient ischemic attack (TIA is a transient neurological deficit of cerebrovascular origin without infarction which may last only for a short period and can have varying presentations. We report a case of 58-year-old male with presenting features of sudden onset transient vertical diplopia and transient rotatory nystagmus which self-resolved within 12 h. Patient had no history of any systemic illness. On investigating, hematological investigations and neuroimaging could not explain these sudden and transient findings. A TIA could possibly explain these sudden and transient ocular findings in our patient. This case report aims to highlight the importance of TIA for ophthalmologists. We must not ignore these findings as these could be warning signs of an impending stroke which may or may not be detected on neuroimaging. Thus, early recognition, primary prevention strategies, and timely intervention are needed.

  5. Flow transients experiments with refrigerant-12

    International Nuclear Information System (INIS)

    Celata, G.P.; D'Annibale, F.; Farello, G.E.; Setaro, T.

    1986-01-01

    Flow transients have been investigated in a wide range of thermal-hydraulics situations with Refrigerannt-12. Six pressures (including the reference to PWR and BWR characteristic liquid to vapour densities ratios), several periods of the flowrate transients coastdown during the simulated flow decays, and different specific mass flowrate have been studied emploiyng a circular duct test section (Dsub(i)=7,5 mm). Two heated lengths of the test section have been considered (L = 2300 and 1180 mm). Experimental data have shown the complete inadequacy of steady-state critical heat flux correlations in predicting the onset of boiling crisis during fast flow transients (half-flow decay time, tsub(h)lt5.0-6.0 s). The flow transient does not show dependence, in terms of DNB conditions ,upon the length of the test section: the ratio between transient and steady-state critical mass flowrate is not dependent on the tested geometry. The time interval from the start of the flowrate transient to the onset of DNB (time to crisis), has been experimentally determined for all the runs. Data analysis for a better theoretical prediction of the phenomenon has been accomplished, and a design correlation for DNB conditons and time to crisis prediction has been proposed

  6. Indirect synthesis of multi-degree of freedom transient systems. [linear programming for a kinematically linear system

    Science.gov (United States)

    Pilkey, W. D.; Chen, Y. H.

    1974-01-01

    An indirect synthesis method is used in the efficient optimal design of multi-degree of freedom, multi-design element, nonlinear, transient systems. A limiting performance analysis which requires linear programming for a kinematically linear system is presented. The system is selected using system identification methods such that the designed system responds as closely as possible to the limiting performance. The efficiency is a result of the method avoiding the repetitive systems analyses accompanying other numerical optimization methods.

  7. Nonlinear dynamics of attractive magnetic bearings

    Science.gov (United States)

    Hebbale, K. V.; Taylor, D. L.

    1987-01-01

    The nonlinear dynamics of a ferromagnetic shaft suspended by the force of attraction of 1, 2, or 4 independent electromagnets is presented. Each model includes a state variable feedback controller which has been designed using the pole placement method. The constitutive relationships for the magnets are derived analytically from magnetic circuit theory, and the effects of induced eddy currents due to the rotation of the journal are included using Maxwell's field relations. A rotor suspended by four electro-magnets with closed loop feedback is shown to have nine equilibrium points within the bearing clearance space. As the rotor spin speed increases, the system is shown to pass through a Hopf bifurcation (a flutter instability). Using center manifold theory, this bifurcation can be shown to be of the subcritical type, indicating an unstable limit cycle below the critical speed. The bearing is very sensitive to initial conditions, and the equilibrium position is easily upset by transient excitation. The results are confirmed by numerical simulation.

  8. Nonlinear dynamics new directions theoretical aspects

    CERN Document Server

    Ugalde, Edgardo

    2015-01-01

    This book, along with its companion volume, Nonlinear Dynamics New Directions: Models and Applications, covers topics ranging from fractal analysis to very specific applications of the theory of dynamical systems to biology. This first volume is devoted to fundamental aspects and includes a number of important new contributions as well as some review articles that emphasize new development prospects. The second volume contains mostly new applications of the theory of dynamical systems to both engineering and biology. The topics addressed in the two volumes include a rigorous treatment of fluctuations in dynamical systems, topics in fractal analysis, studies of the transient dynamics in biological networks, synchronization in lasers, and control of chaotic systems, among others. This book also: ·         Presents a rigorous treatment of fluctuations in dynamical systems and explores a range of topics in fractal analysis, among other fundamental topics ·         Features recent developments on...

  9. Computation of the current density in nonlinear materials subjected to large current pulses

    International Nuclear Information System (INIS)

    Hodgdon, M.L.; Hixson, R.S.; Parsons, W.M.

    1991-01-01

    This paper reports that the finite element method and the finite difference method are used to calculate the current distribution in two nonlinear conductors. The first conductor is a small ferromagnetic wire subjected to a current pulse that rises to 10,000 Amperes in 10 microseconds. Results from the transient thermal and transient magnetic solvers of the finite element code FLUX2D are used to compute the current density in the wire. The second conductor is a metal oxide varistor. Maxwell's equations, Ohm's law and the varistor relation for the resistivity and the current density of p = αj -β are used to derive a nonlinear differential equation. The solutions of the differential equation are obtained by a finite difference approximation and a shooting method. The behavior predicted by these calculations is in agreement with experiments

  10. Fuzzy Adaptive Compensation Control of Uncertain Stochastic Nonlinear Systems With Actuator Failures and Input Hysteresis.

    Science.gov (United States)

    Wang, Jianhui; Liu, Zhi; Chen, C L Philip; Zhang, Yun

    2017-10-12

    Hysteresis exists ubiquitously in physical actuators. Besides, actuator failures/faults may also occur in practice. Both effects would deteriorate the transient tracking performance, and even trigger instability. In this paper, we consider the problem of compensating for actuator failures and input hysteresis by proposing a fuzzy control scheme for stochastic nonlinear systems. Compared with the existing research on stochastic nonlinear uncertain systems, it is found that how to guarantee a prescribed transient tracking performance when taking into account actuator failures and hysteresis simultaneously also remains to be answered. Our proposed control scheme is designed on the basis of the fuzzy logic system and backstepping techniques for this purpose. It is proven that all the signals remain bounded and the tracking error is ensured to be within a preestablished bound with the failures of hysteretic actuator. Finally, simulations are provided to illustrate the effectiveness of the obtained theoretical results.

  11. PTAC: a computer program for pressure-transient analysis, including the effects of cavitation. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Kot, C A; Youngdahl, C K

    1978-09-01

    PTAC was developed to predict pressure transients in nuclear-power-plant piping systems in which the possibility of cavitation must be considered. The program performs linear or nonlinear fluid-hammer calculations, using a fixed-grid method-of-characteristics solution procedure. In addition to pipe friction and elasticity, the program can treat a variety of flow components, pipe junctions, and boundary conditions, including arbitrary pressure sources and a sodium/water reaction. Essential features of transient cavitation are modeled by a modified column-separation technique. Comparisons of calculated results with available experimental data, for a simple piping arrangement, show good agreement and provide validation of the computational cavitation model. Calculations for a variety of piping networks, containing either liquid sodium or water, demonstrate the versatility of PTAC and clearly show that neglecting cavitation leads to erroneous predictions of pressure-time histories.

  12. An improved direct feedback linearization technique for transient stability enhancement and voltage regulation of power generators

    Energy Technology Data Exchange (ETDEWEB)

    Kenne, Godpromesse [Laboratoire d' Automatique et d' Informatique Appliquee (LAIA), Departement de Genie Electrique, Universite de Dschang, B.P. 134 Bandjoun, Cameroun; Goma, Raphael; Lamnabhi-Lagarrigue, Francoise [Laboratoire des Signaux et Systemes (L2S), CNRS-SUPELEC, Universite Paris XI, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France); Nkwawo, Homere [Departement GEII, Universite Paris XIII, IUT Villetaneuse, 99 Avenue Jean Baptiste Clement, 93430 Villetaneuse (France); Arzande, Amir; Vannier, Jean Claude [Departement Energie, Ecole Superieure d' Electricite-SUPELEC, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette (France)

    2010-09-15

    In this paper, a simple improved direct feedback linearization design method for transient stability and voltage regulation of power systems is discussed. Starting with the classical direct feedback linearization technique currently applied to power systems, an adaptive nonlinear excitation control of synchronous generators is proposed, which is new and effective for engineering. The power angle and mechanical power input are not assumed to be available. The proposed method is based on a standard third-order model of a synchronous generator which requires only information about the physical available measurements of angular speed, active electric power and generator terminal voltage. Experimental results of a practical power system show that fast response, robustness, damping, steady-state and transient stability as well as voltage regulation are all achieved satisfactorily. (author)

  13. Investigation of photoelectronic processes in CdIn2S4 by photoinduced current transient spectroscopy

    International Nuclear Information System (INIS)

    Serpi, A.

    1986-01-01

    Photoelectronic processes in CdIn 2 S 4 are investigated by four-gate photoinduced current transient spectroscopy. In general the photocurrent decay transients are non-exponential because of a nonlinear multichannel recombination mechanism. Nevertheless suitable extrinsic excitation allows to open one recombination channel only and so to evidence a purely exponential relaxation. The detailed analysis of this process leads to the interpretation that the defects associated with the energy levels continuously distributed below the conduction band act as relay centres for radiative recombination of photoelectrons rather than as thermal emitting traps. An electron trapping level located at about 0.6 eV from the bottom of the conduction band is also evidenced. (author)

  14. Proposed Suitable Methods to Detect Transient Regime Switching to Improve Power Quality with Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Javad Safaee Kuchaksaraee

    2016-10-01

    Full Text Available The increasing consumption of electrical energy and the use of non-linear loads that create transient regime states in distribution networks is increasing day by day. This is the only reason due to which the analysis of power quality for energy sustainability in power networks has become more important. Transients are often created by energy injection through switching or lightning and make changes in voltage and nominal current. Sudden increase or decrease in voltage or current makes characteristics of the transient regime. This paper shed some lights on the capacitor bank switching, which is one of the main causes for oscillatory transient regime states in the distribution network, using wavelet transform. The identification of the switching current of capacitor bank and the internal fault current of the transformer to prevent the unnecessary outage of the differential relay, it propose a new smart method. The accurate performance of this method is shown by simulation in EMTP and MATLAB (matrix laboratory software.

  15. Nonlinear optics principles and applications

    CERN Document Server

    Li, Chunfei

    2017-01-01

    This book reflects the latest advances in nonlinear optics. Besides the simple, strict mathematical deduction, it also discusses the experimental verification and possible future applications, such as the all-optical switches. It consistently uses the practical unit system throughout. It employs simple physical images, such as "light waves" and "photons" to systematically explain the main principles of nonlinear optical effects. It uses the first-order nonlinear wave equation in frequency domain under the condition of “slowly varying amplitude approximation" and the classical model of the interaction between the light and electric dipole. At the same time, it also uses the rate equations based on the energy-level transition of particle systems excited by photons and the energy and momentum conservation principles to explain the nonlinear optical phenomenon. The book is intended for researchers, engineers and graduate students in the field of the optics, optoelectronics, fiber communication, information tech...

  16. Nonlinear Dynamics in Spear Wigglers

    International Nuclear Information System (INIS)

    2002-01-01

    BL11, the most recently installed wiggler in the SPEAR storage ring at SSRL, produces a large nonlinear perturbation of the electron beam dynamics, which was not directly evident in the integrated magnetic field measurements. Measurements of tune shifts with betatron oscillation amplitude and with closed orbit shifts were used to characterize the nonlinear fields of the SPEAR insertion devices (IDs). Because of the narrow pole width in BL11, the nonlinear fields seen along the wiggling electron trajectory are dramatically different than the flip coil measurements made along a straight line. This difference explains the tune shift measurements and the observed degradation in dynamic aperture. Corrector magnets to cancel the BL11 nonlinear fields are presently under construction

  17. Device Applications of Nonlinear Dynamics

    CERN Document Server

    Baglio, Salvatore

    2006-01-01

    This edited book is devoted specifically to the applications of complex nonlinear dynamic phenomena to real systems and device applications. While in the past decades there has been significant progress in the theory of nonlinear phenomena under an assortment of system boundary conditions and preparations, there exist comparatively few devices that actually take this rich behavior into account. "Device Applications of Nonlinear Dynamics" applies and exploits this knowledge to make devices which operate more efficiently and cheaply, while affording the promise of much better performance. Given the current explosion of ideas in areas as diverse as molecular motors, nonlinear filtering theory, noise-enhanced propagation, stochastic resonance and networked systems, the time is right to integrate the progress of complex systems research into real devices.

  18. Nonlinear programming analysis and methods

    CERN Document Server

    Avriel, Mordecai

    2012-01-01

    This text provides an excellent bridge between principal theories and concepts and their practical implementation. Topics include convex programming, duality, generalized convexity, analysis of selected nonlinear programs, techniques for numerical solutions, and unconstrained optimization methods.

  19. q-Deformed nonlinear maps

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 64; Issue 3 ... Keywords. Nonlinear dynamics; logistic map; -deformation; Tsallis statistics. ... As a specific example, a -deformation procedure is applied to the logistic map. Compared ...

  20. Born-Infeld Nonlinear Electrodynamics

    International Nuclear Information System (INIS)

    Bialynicki-Birula, I.

    1999-01-01

    This is only a summary of a lecture delivered at the Infeld Centennial Meeting. In the lecture the history of the Born-Infeld nonlinear electrodynamics was presented and some general features of the theory were discussed. (author)

  1. Nonlinear compression of optical solitons

    Indian Academy of Sciences (India)

    linear pulse propagation is the nonlinear Schrödinger (NLS) equation [1]. There are ... Optical pulse compression finds important applications in optical fibres. The pulse com ..... to thank CSIR, New Delhi for financial support in the form of SRF.

  2. Nonlinear transformations of random processes

    CERN Document Server

    Deutsch, Ralph

    2017-01-01

    This concise treatment of nonlinear noise techniques encountered in system applications is suitable for advanced undergraduates and graduate students. It is also a valuable reference for systems analysts and communication engineers. 1962 edition.

  3. Extreme Nonlinear Optics An Introduction

    CERN Document Server

    Wegener, Martin

    2005-01-01

    Following the birth of the laser in 1960, the field of "nonlinear optics" rapidly emerged. Today, laser intensities and pulse durations are readily available, for which the concepts and approximations of traditional nonlinear optics no longer apply. In this regime of "extreme nonlinear optics," a large variety of novel and unusual effects arise, for example frequency doubling in inversion symmetric materials or high-harmonic generation in gases, which can lead to attosecond electromagnetic pulses or pulse trains. Other examples of "extreme nonlinear optics" cover diverse areas such as solid-state physics, atomic physics, relativistic free electrons in a vacuum and even the vacuum itself. This book starts with an introduction to the field based primarily on extensions of two famous textbook examples, namely the Lorentz oscillator model and the Drude model. Here the level of sophistication should be accessible to any undergraduate physics student. Many graphical illustrations and examples are given. The followi...

  4. Nonlinear dynamics: Challenges and perspectives

    Indian Academy of Sciences (India)

    fields such as economics, social dynamics and so on [6–10]. These nonlinear ..... developing all-optical computers in homogeneous bulk media such as pho- ... suggestions have been given to develop effective chaos-based cryptographic.

  5. Nonlinear Optics: Principles and Applications

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Tidemand-Lichtenberg, Peter

    of applications, Nonlinear Optics: Principles and Applications effectively bridges physics and mathematics with relevant applied material for real-world use. The book progresses naturally from fundamental aspects to illustrative examples, and presents a strong theoretical foundation that equips the reader...... and matter, this text focuses on the physical understanding of nonlinear optics, and explores optical material response functions in the time and frequency domain....

  6. Dynamics of nonlinear feedback control

    OpenAIRE

    Snippe, H.P.; Hateren, J.H. van

    2007-01-01

    Feedback control in neural systems is ubiquitous. Here we study the mathematics of nonlinear feedback control. We compare models in which the input is multiplied by a dynamic gain (multiplicative control) with models in which the input is divided by a dynamic attenuation (divisive control). The gain signal (resp. the attenuation signal) is obtained through a concatenation of an instantaneous nonlinearity and a linear low-pass filter operating on the output of the feedback loop. For input step...

  7. On nonlinear periodic drift waves

    International Nuclear Information System (INIS)

    Kauschke, U.; Schlueter, H.

    1990-09-01

    Nonlinear periodic drift waves are investigated on the basis of a simple perturbation scheme for both the amplitude and inverse frequency. The coefficients for the generation of the forced harmonics are derived, a nonlinear dispersion relation is suggested and a criterion for the onset of the modulational instability is obtained. The results are compared with the ones obtained with the help of a standard KBM-treatment. Moreover cnoidal drift waves are suggested and compared to an experimental observation. (orig.)

  8. Competitive nonlinear pricing and bundling

    OpenAIRE

    Armstrong, Mark; Vickers, John

    2006-01-01

    We examine the impact of multiproduct nonlinear pricing on profit, consumer surplus and welfare in a duopoly. When consumers buy all their products from one firm (the one-stop shopping model), nonlinear pricing leads to higher profit and welfare, but often lower consumer surplus, than linear pricing. By contrast, in a unit-demand model where consumers may buy one product from one firm and another product from another firm, bundling generally acts to reduce profit and welfare and to boost cons...

  9. Transient diabetes insipidus in pregnancy

    Science.gov (United States)

    Gunawardana, Kavinga; Grossman, Ashley

    2015-01-01

    Summary Gestational diabetes insipidus (DI) is a rare complication of pregnancy, usually developing in the third trimester and remitting spontaneously 4–6 weeks post-partum. It is mainly caused by excessive vasopressinase activity, an enzyme expressed by placental trophoblasts which metabolises arginine vasopressin (AVP). Its diagnosis is challenging, and the treatment requires desmopressin. A 38-year-old Chinese woman was referred in the 37th week of her first single-gestation due to polyuria, nocturia and polydipsia. She was known to have gestational diabetes mellitus diagnosed in the second trimester, well-controlled with diet. Her medical history was unremarkable. Physical examination demonstrated decreased skin turgor; her blood pressure was 102/63 mmHg, heart rate 78 beats/min and weight 53 kg (BMI 22.6 kg/m2). Laboratory data revealed low urine osmolality 89 mOsmol/kg (350–1000), serum osmolality 293 mOsmol/kg (278–295), serum sodium 144 mmol/l (135–145), potassium 4.1 mmol/l (3.5–5.0), urea 2.2 mmol/l (2.5–6.7), glucose 3.5 mmol/l and HbA1c 5.3%. Bilirubin, alanine transaminase, alkaline phosphatase and full blood count were normal. The patient was started on desmopressin with improvement in her symptoms, and normalisation of serum and urine osmolality (280 and 310 mOsmol/kg respectively). A fetus was delivered at the 39th week without major problems. After delivery, desmopressin was stopped and she had no further evidence of polyuria, polydipsia or nocturia. Her sodium, serum/urine osmolality at 12-weeks post-partum were normal. A pituitary magnetic resonance imaging (MRI) revealed the neurohypophyseal T1-bright spot situated ectopically, with a normal adenohypophysis and infundibulum. She remains clinically well, currently breastfeeding, and off all medication. This case illustrates some challenges in the diagnosis and management of transient gestational DI. Learning points Gestational DI is a rare complication of

  10. Transient diabetes insipidus in pregnancy.

    Science.gov (United States)

    Marques, Pedro; Gunawardana, Kavinga; Grossman, Ashley

    2015-01-01

    Gestational diabetes insipidus (DI) is a rare complication of pregnancy, usually developing in the third trimester and remitting spontaneously 4-6 weeks post-partum. It is mainly caused by excessive vasopressinase activity, an enzyme expressed by placental trophoblasts which metabolises arginine vasopressin (AVP). Its diagnosis is challenging, and the treatment requires desmopressin. A 38-year-old Chinese woman was referred in the 37th week of her first single-gestation due to polyuria, nocturia and polydipsia. She was known to have gestational diabetes mellitus diagnosed in the second trimester, well-controlled with diet. Her medical history was unremarkable. Physical examination demonstrated decreased skin turgor; her blood pressure was 102/63 mmHg, heart rate 78 beats/min and weight 53 kg (BMI 22.6 kg/m(2)). Laboratory data revealed low urine osmolality 89 mOsmol/kg (350-1000), serum osmolality 293 mOsmol/kg (278-295), serum sodium 144 mmol/l (135-145), potassium 4.1 mmol/l (3.5-5.0), urea 2.2 mmol/l (2.5-6.7), glucose 3.5 mmol/l and HbA1c 5.3%. Bilirubin, alanine transaminase, alkaline phosphatase and full blood count were normal. The patient was started on desmopressin with improvement in her symptoms, and normalisation of serum and urine osmolality (280 and 310 mOsmol/kg respectively). A fetus was delivered at the 39th week without major problems. After delivery, desmopressin was stopped and she had no further evidence of polyuria, polydipsia or nocturia. Her sodium, serum/urine osmolality at 12-weeks post-partum were normal. A pituitary magnetic resonance imaging (MRI) revealed the neurohypophyseal T1-bright spot situated ectopically, with a normal adenohypophysis and infundibulum. She remains clinically well, currently breastfeeding, and off all medication. This case illustrates some challenges in the diagnosis and management of transient gestational DI. Gestational DI is a rare complication of pregnancy occurring in two to four out of

  11. Nonlinear optics principles and applications

    CERN Document Server

    Rottwitt, Karsten

    2014-01-01

    IntroductionReview of linear opticsInduced polarizationHarmonic oscillator modelLocal field correctionsEstimated nonlinear responseSummaryTime-domain material responseThe polarization time-response functionThe Born-Oppenheimer approximationRaman scattering response function of silicaSummaryMaterial response in the frequency domain, susceptibility tensorsThe susceptibility tensorThe induced polarization in the frequency domainSum of monochromatic fieldsThe prefactor to the induced polarizationThird-order polarization in the Born-Oppenheimer approximation in the frequency domainKramers-Kronig relationsSummarySymmetries in nonlinear opticsSpatial symmetriesSecond-order materialsThird-order nonlinear materialsCyclic coordinate-systemContracted notation for second-order susceptibility tensorsSummaryThe nonlinear wave equationMono and quasi-monochromatic beamsPlane waves - the transverse problemWaveguidesVectorial approachNonlinear birefringenceSummarySecond-order nonlinear effectsGeneral theoryCoupled wave theoryP...

  12. Modeling nonlinearities in MEMS oscillators.

    Science.gov (United States)

    Agrawal, Deepak K; Woodhouse, Jim; Seshia, Ashwin A

    2013-08-01

    We present a mathematical model of a microelectromechanical system (MEMS) oscillator that integrates the nonlinearities of the MEMS resonator and the oscillator circuitry in a single numerical modeling environment. This is achieved by transforming the conventional nonlinear mechanical model into the electrical domain while simultaneously considering the prominent nonlinearities of the resonator. The proposed nonlinear electrical model is validated by comparing the simulated amplitude-frequency response with measurements on an open-loop electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. Next, the essential nonlinearities in the oscillator circuit are investigated and a mathematical model of a MEMS oscillator is proposed that integrates the nonlinearities of the resonator. The concept is illustrated for MEMS transimpedance-amplifier- based square-wave and sine-wave oscillators. Closed-form expressions of steady-state output power and output frequency are derived for both oscillator models and compared with experimental and simulation results, with a good match in the predicted trends in all three cases.

  13. Bifurcation structures and transient chaos in a four-dimensional Chua model

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, Anderson, E-mail: hoffande@gmail.com; Silva, Denilson T. da; Manchein, Cesar, E-mail: cesar.manchein@udesc.br; Albuquerque, Holokx A., E-mail: holokx.albuquerque@udesc.br

    2014-01-10

    A four-dimensional four-parameter Chua model with cubic nonlinearity is studied applying numerical continuation and numerical solutions methods. Regarding numerical solution methods, its dynamics is characterized on Lyapunov and isoperiodic diagrams and regarding numerical continuation method, the bifurcation curves are obtained. Combining both methods the bifurcation structures of the model were obtained with the possibility to describe the shrimp-shaped domains and their endoskeletons. We study the effect of a parameter that controls the dimension of the system leading the model to present transient chaos with its corresponding basin of attraction being riddled.

  14. Dynamic transient analysis of rupture disks by the finite-element method

    International Nuclear Information System (INIS)

    Hsieh, B.J.

    1975-02-01

    A finite element method utilizing the principle of virtual work in convected coordinates is used to analyze the axisymmetric dynamic transient response of rupture disks. This method can treat non-linearities arising both from inelastic material properties and large displacements/rotations provided that the convected strains are small. This report contains extensive calculations using a variety of rupture disk geometries and attempts to relate the static buckling of such disks to their dynamic response characteristics. A majority of the calculations treat the response of 18 inch disks typical of those currently considered for use in the Clinch River Breeder Reactor intermediate heat transport system

  15. Modelling the transient behaviour of pulsed current tungsten-inert-gas weldpools

    Science.gov (United States)

    Wu, C. S.; Zheng, W.; Wu, L.

    1999-01-01

    A three-dimensional model is established to simulate the pulsed current tungsten-inert-gas (TIG) welding process. The goal is to analyse the cyclic variation of fluid flow and heat transfer in weldpools under periodic arc heat input. To this end, an algorithm, which is capable of handling the transience, nonlinearity, multiphase and strong coupling encountered in this work, is developed. The numerical simulations demonstrate the transient behaviour of weldpools under pulsed current. Experimental data are compared with numerical results to show the effectiveness of the developed model.

  16. A boundary integral method for a dynamic, transient mode I crack problem with viscoelastic cohesive zone

    KAUST Repository

    Leise, Tanya L.

    2009-08-19

    We consider the problem of the dynamic, transient propagation of a semi-infinite, mode I crack in an infinite elastic body with a nonlinear, viscoelastic cohesize zone. Our problem formulation includes boundary conditions that preclude crack face interpenetration, in contrast to the usual mode I boundary conditions that assume all unloaded crack faces are stress-free. The nonlinear viscoelastic cohesive zone behavior is motivated by dynamic fracture in brittle polymers in which crack propagation is preceeded by significant crazing in a thin region surrounding the crack tip. We present a combined analytical/numerical solution method that involves reducing the problem to a Dirichlet-to-Neumann map along the crack face plane, resulting in a differo-integral equation relating the displacement and stress along the crack faces and within the cohesive zone. © 2009 Springer Science+Business Media B.V.

  17. Comparison of transient electron heat transport in LHD helical and JT-60U tokamak plasmas

    International Nuclear Information System (INIS)

    Inagaki, S.; Ida, K.; Tamura, N.; Shimozuma, T.; Kubo, S.; Nagayama, Y.; Kawahata, K.; Sudo, S.; Ohkubo, K.; Takenaga, H.; Isayama, A.; Takizuka, T.; Kamada, Y.; Miura, Y.

    2005-01-01

    Transient transport experiments are performed in plasmas with and without Internal Transport Barrier (ITB) on LHD and JT-60U. The dependence of χ e on electron temperature, T e , and electron temperature gradient, ∇T e , is analyzed by an empirical non-linear heat transport model. In plasmas without ITB, two different types of non-linearity of the electron heat transport are observed from cold/heat pulse propagation. The χ e depends on T e and ∇T e in JT-60U, while the ∇T e dependence is weak in LHD. Inside the ITB region, there is no or weak ∇T e dependence both in LHD and JT-60U. A cold pulse growing driven by the negative T e dependence of χ e is observed inside the ITB region (LHD) and near the boundary of the ITB region (JT-60U). (author)

  18. BOOK REVIEW: Nonlinear Magnetohydrodynamics

    Science.gov (United States)

    Shafranov, V.

    1998-08-01

    Nonlinear magnetohydrodynamics by Dieter Biskamp is a thorough introduction to the physics of the most impressive non-linear phenomena that occur in conducting magnetoplasmas. The basic systems, in which non-trivial dynamic processes are observed, accompanied by changes of geometry of the magnetic field and the effects of energy transformation (magnetic energy into kinetic energy or the opposite effect in magnetic dynamos), are the plasma magnetic confinement systems for nuclear fusion and space plasmas, mainly the solar plasma. A significant number of the examples of the dynamic processes considered are taken from laboratory plasmas, for which an experimental check of the theory is possible. Therefore, though the book is intended for researchers and students interested in both laboratory, including nuclear fusion, and astrophysical plasmas, it is most probably closer to the first category of reader. In the Introduction the author notes that unlike the hydrodynamics of non-conducting fluids, where the phenomena caused by rapid fluid motions are the most interesting, for plasmas in a strong magnetic field the quasi-static configurations inside which the local dynamic processes occur are often the most important. Therefore, the reader will also find in this book rather traditional material on the theory of plasma equilibrium and stability in magnetic fields. In addition, it is notable that, as opposed to a linear theory, the non-linear theory, as a rule, cannot give quite definite explanations or predictions of phenomena, and consequently there are in the book many results obtained by consideration of numerical models with the use of supercomputers. The treatment of non-linear dynamics is preceded by Chapters 2 to 4, in which the basics of MHD theory are presented with an emphasis on the role of integral invariants of the magnetic helicity type, a derivation of the reduced MHD equations is given, together with examples of the exact solutions of the equilibrium

  19. Four RNA families with functional transient structures.

    Science.gov (United States)

    Zhu, Jing Yun A; Meyer, Irmtraud M

    2015-01-01

    Protein-coding and non-coding RNA transcripts perform a wide variety of cellular functions in diverse organisms. Several of their functional roles are expressed and modulated via RNA structure. A given transcript, however, can have more than a single functional RNA structure throughout its life, a fact which has been previously overlooked. Transient RNA structures, for example, are only present during specific time intervals and cellular conditions. We here introduce four RNA families with transient RNA structures that play distinct and diverse functional roles. Moreover, we show that these transient RNA structures are structurally well-defined and evolutionarily conserved. Since Rfam annotates one structure for each family, there is either no annotation for these transient structures or no such family. Thus, our alignments either significantly update and extend the existing Rfam families or introduce a new RNA family to Rfam. For each of the four RNA families, we compile a multiple-sequence alignment based on experimentally verified transient and dominant (dominant in terms of either the thermodynamic stability and/or attention received so far) RNA secondary structures using a combination of automated search via covariance model and manual curation. The first alignment is the Trp operon leader which regulates the operon transcription in response to tryptophan abundance through alternative structures. The second alignment is the HDV ribozyme which we extend to the 5' flanking sequence. This flanking sequence is involved in the regulation of the transcript's self-cleavage activity. The third alignment is the 5' UTR of the maturation protein from Levivirus which contains a transient structure that temporarily postpones the formation of the final inhibitory structure to allow translation of maturation protein. The fourth and last alignment is the SAM riboswitch which regulates the downstream gene expression by assuming alternative structures upon binding of SAM. All

  20. Advanced Instrumentation for Transient Reactor Testing

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Michael L.; Anderson, Mark; Imel, George; Blue, Tom; Roberts, Jeremy; Davis, Kurt

    2018-01-31

    Transient testing involves placing fuel or material into the core of specialized materials test reactors that are capable of simulating a range of design basis accidents, including reactivity insertion accidents, that require the reactor produce short bursts of intense highpower neutron flux and gamma radiation. Testing fuel behavior in a prototypic neutron environment under high-power, accident-simulation conditions is a key step in licensing nuclear fuels for use in existing and future nuclear power plants. Transient testing of nuclear fuels is needed to develop and prove the safety basis for advanced reactors and fuels. In addition, modern fuel development and design increasingly relies on modeling and simulation efforts that must be informed and validated using specially designed material performance separate effects studies. These studies will require experimental facilities that are able to support variable scale, highly instrumented tests providing data that have appropriate spatial and temporal resolution. Finally, there are efforts now underway to develop advanced light water reactor (LWR) fuels with enhanced performance and accident tolerance. These advanced reactor designs will also require new fuel types. These new fuels need to be tested in a controlled environment in order to learn how they respond to accident conditions. For these applications, transient reactor testing is needed to help design fuels with improved performance. In order to maximize the value of transient testing, there is a need for in-situ transient realtime imaging technology (e.g., the neutron detection and imaging system like the hodoscope) to see fuel motion during rapid transient excursions with a higher degree of spatial and temporal resolution and accuracy. There also exists a need for new small, compact local sensors and instrumentation that are capable of collecting data during transients (e.g., local displacements, temperatures, thermal conductivity, neutron flux, etc.).

  1. Deciphering the imprint of topology on nonlinear dynamical network stability

    International Nuclear Information System (INIS)

    Nitzbon, J; Schultz, P; Heitzig, J; Kurths, J; Hellmann, F

    2017-01-01

    Coupled oscillator networks show complex interrelations between topological characteristics of the network and the nonlinear stability of single nodes with respect to large but realistic perturbations. We extend previous results on these relations by incorporating sampling-based measures of the transient behaviour of the system, its survivability, as well as its asymptotic behaviour, its basin stability. By combining basin stability and survivability we uncover novel, previously unknown asymptotic states with solitary, desynchronized oscillators which are rotating with a frequency different from their natural one. They occur almost exclusively after perturbations at nodes with specific topological properties. More generally we confirm and significantly refine the results on the distinguished role tree-shaped appendices play for nonlinear stability. We find a topological classification scheme for nodes located in such appendices, that exactly separates them according to their stability properties, thus establishing a strong link between topology and dynamics. Hence, the results can be used for the identification of vulnerable nodes in power grids or other coupled oscillator networks. From this classification we can derive general design principles for resilient power grids. We find that striving for homogeneous network topologies facilitates a better performance in terms of nonlinear dynamical network stability. While the employed second-order Kuramoto-like model is parametrised to be representative for power grids, we expect these insights to transfer to other critical infrastructure systems or complex network dynamics appearing in various other fields. (paper)

  2. Non-linear simulations of ELMs in ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Lessig, Alexander; Hoelzl, Matthias; Orain, Francois; Guenter, Sibylle [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, 85748 Garching (Germany); Becoulet, Marina; Huysmans, Guido [CEA-IRFM, Cadarache, 13108 Saint-Paul-Lez-Durance (France); Collaboration: the ASDEX Upgrade Team

    2016-07-01

    Large edge localized modes (ELMs) are a severe concern for the operation of future tokamak devices like ITER or DEMO due to the high transient heat loads induced on divertor targets and wall structures. It is therefore important to study ELMs both theoretically and experimentally in order to obtain a comprehensive understanding of the underlying mechanisms which is necessary for the prediction of ELM properties and the design of ELM mitigation systems. Using the non-linear MHD code JOREK, we have performed first simulations of full ELM crashes in ASDEX Upgrade, taking into account a large number of toroidal Fourier harmonics. The evolution of the toroidal mode spectrum has been investigated. In particular, we confirm the previously observed non-linear drive of linearly sub-dominant low-n components in the early non-linear phase of the ELM crash. Preliminary comparisons of the simulations with experimental observations regarding heat and particle losses, pedestal evolution and heat deposition patterns are shown. On the long run we aim at code validation as well as an improved understanding of the ELM dynamics and possibly a better characterization of different ELM types.

  3. Nonlinear modal analysis in NPP dynamics: a proposal

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2005-07-01

    We propose and briefly suggest how to apply the analytical tools of nonlinear modal analysis (NMA) to problems of nuclear reactor kinetics, NPP dynamics, and NPP instrumentation and control. The proposed method is closely related with recent approaches by modal analysis using the reactivity matrix with feedbacks to couple neutron kinetics with thermal hydraulics in the reactors core. A nonlinear system of ordinary differential equations for mode amplitudes is obtained, projecting the dynamic equations of a model of NPP onto the eigenfunctions of a suitable adjoint operator. A steady state solution of the equations is taken as a reference, and the behaviour of transient solutions in some neighbourhood of the steady state solution is studied by an extension of Liapunov's First Method that enables to cope directly with the non-linear terms in the dynamics. In NPP dynamics these differential equations for the mode amplitudes are of polynomial type of low degree A few dominant modes can usually be identified. These mode amplitudes evolve almost independently of the other modes, more slowly and tending to slave the other mode amplitudes. Using asymptotic methods, it is possible to calculate a closed form analytical approximation to the response to finite amplitude perturbations from the given steady spatial pattern (the origin of the space of mode amplitudes).When there is finite amplitude instability, the method allows us to calculate the threshold amplitude as a well defined function of system's parameters. This is a most significant accomplishment that the other methods cannot afford

  4. Nonlinear transport of dynamic system phase space

    International Nuclear Information System (INIS)

    Xie Xi; Xia Jiawen

    1993-01-01

    The inverse transform of any order solution of the differential equation of general nonlinear dynamic systems is derived, realizing theoretically the nonlinear transport for the phase space of nonlinear dynamic systems. The result is applicable to general nonlinear dynamic systems, with the transport of accelerator beam phase space as a typical example

  5. A reliable treatment for nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Khani, F.; Hamedi-Nezhad, S.; Molabahrami, A.

    2007-01-01

    Exp-function method is used to find a unified solution of nonlinear wave equation. Nonlinear Schroedinger equations with cubic and power law nonlinearity are selected to illustrate the effectiveness and simplicity of the method. It is shown that the Exp-function method, with the help of symbolic computation, provides a powerful mathematical tool for solving nonlinear equation

  6. Identification of Nonlinear Dynamic Systems Possessing Some Non-linearities

    Directory of Open Access Journals (Sweden)

    Y. N. Pavlov

    2015-01-01

    Full Text Available The subject of this work is the problem of identification of nonlinear dynamic systems based on the experimental data obtained by applying test signals to the system. The goal is to determinate coefficients of differential equations of systems by experimental frequency hodographs and separate similar, but different, in essence, forces: dissipative forces with the square of the first derivative in the motion equations and dissipative force from the action of dry friction. There was a proposal to use the harmonic linearization method to approximate each of the nonlinearity of "quadratic friction" and "dry friction" by linear friction with the appropriate harmonic linearization coefficient.Assume that a frequency transfer function of the identified system has a known form. Assume as well that there are disturbances while obtaining frequency characteristics of the realworld system. As a result, the points of experimentally obtained hodograph move randomly. Searching for solution of the identification problem was in the hodograph class, specified by the system model, which has the form of the frequency transfer function the same as the form of the frequency transfer function of the system identified. Minimizing a proximity criterion (measure of the experimentally obtained system hodograph and the system hodograph model for all the experimental points described and previously published by one of the authors allowed searching for the unknown coefficients of the frequenc ransfer function of the system model. The paper shows the possibility to identify a nonlinear dynamic system with multiple nonlinearities, obtained on the experimental samples of the frequency system hodograph. The proposed algorithm allows to select the nonlinearity of the type "quadratic friction" and "dry friction", i.e. also in the case where the nonlinearity is dependent on the same dynamic parameter, in particular, on the derivative of the system output value. For the dynamic

  7. Ultrafast nonlinear optical processes in metal-dielectric nanocomposites and nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang-Hyon

    2012-04-13

    This work reports results of a theoretical study of nonlinear optical processes in metal-dielectric nanocomposites used for the increase of the nonlinear coefficients and for plasmonic field enhancement. The main results include the study of the transient saturable nonlinearity in dielectric composites doped with metal nanoparticles, its physical mechanism as well its applications in nonlinear optics. For the study of the transient response, a time-depending equation for the dielectric function of the nanocomposite using the semi-classical two-temperature model is derived. By using this approach, we study the transient nonlinear characteristics of these materials in comparison with preceding experimental measurements. The results show that these materials behave as efficient saturable absorbers for passive mode-locking of lasers in the spectral range from the visible to near IR. We present results for the modelocked dynamics in short-wavelength solid-state and semiconductor disk lasers; in this spectral range other efficient saturable absorbers do not exist. We suggest a new mechanism for the realization of slow light phenomenon by using glasses doped with metal nanoparticles in a pump-probe regime near the plasmonic resonance. Furthermore, we study femtosecond plasmon generation by mode-locked surface plasmon polariton lasers with Bragg reflectors and metal-gain-absorber layered structures. In the final part of the thesis, we present results for high-order harmonic generation near a metallic fractal rough surface. The results show a possible reduction of the pump intensities by three orders of magnitudes and two orders of magnitudes higher efficiency compared with preceding experimental results by using bow-tie nanostructures.

  8. Final report. [Nonlinear magnetohydrodynamics

    International Nuclear Information System (INIS)

    Montgomery, D.C.

    1998-01-01

    This is a final report on the research activities carried out under the above grant at Dartmouth. During the period considered, the grant was identified as being for nonlinear magnetohydrodynamics, considered as the most tractable theoretical framework in which the plasma problems associated with magnetic confinement of fusion plasmas could be studied. During the first part of the grant's lifetime, the author was associated with Los Alamos National Laboratory as a consultant and the work was motivated by the reversed-field pinch. Later, when that program was killed at Los Alamos, the problems became ones that could be motivated by their relation to tokamaks. Throughout the work, the interest was always on questions that were as fundamental as possible, compatible with those motivations. The intent was always to contribute to plasma physics as a science, as well as to the understanding of mission-oriented confined fusion plasmas. Twelve Ph.D. theses were supervised during this period and a comparable number of postdoctoral research associates were temporarily supported. Many of these have gone on to distinguished careers, though few have done so in the context of the controlled fusion program. Their work was a combination of theory and numerical computation, in gradually less and less idealized settings, moving from rectangular periodic boundary conditions in two dimensions, through periodic straight cylinders and eventually, before the grant was withdrawn, to toroids, with a gradually more prominent role for electrical and mechanical boundary conditions. The author never had access to a situation where he could initiate experiments and relate directly to the laboratory data he wanted. Computers were the laboratory. Most of the work was reported in referred publications in the open literature, copies of which were transmitted one by one to DOE at the time they appeared. The Appendix to this report is a bibliography of published work which was carried out under the

  9. Switching transients in a superconducting coil

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, D.W.

    1983-01-01

    A study is made of the transients caused by the fast dump of large superconducting coils. Theoretical analysis, computer simulation, and actual measurements are used. Theoretical analysis can only be applied to the simplest of models. In the computer simulations two models are used, one in which the coil is divided into ten segments and another in which a single coil is employed. The circuit breaker that interrupts the current to the power supply, causing a fast dump, is represented by a time and current dependent conductance. Actual measurements are limited to measurements made incidental to performance tests on the MFTF Yin-yang coils. It is found that the breaker opening time is the critical factor in determining the size and shape of the transient. Instantaneous opening of the breaker causes a lightly damped transient with large amplitude voltages to ground. Increasing the opening time causes the transient to become a monopulse of decreasing amplitude. The voltages at the external terminals are determined by the parameters of the external circuit. For fast opening times the frequency depends on the dump resistor inductance, the circuit capacitance, and the amplitude on the coil current. For slower openings the dump resistor inductance and the current determine the amplitude of the voltage to ground at the terminals. Voltages to ground are less in the interior of the coil, where transients related to the parameters of the coil itself are observed

  10. SPIRITS: Uncovering Unusual Infrared Transients with Spitzer

    International Nuclear Information System (INIS)

    Kasliwal, Mansi M.; Jencson, Jacob E.; Tinyanont, Samaporn; Cao, Yi; Cook, David; Bally, John; Masci, Frank; Armus, Lee; Cody, Ann Marie; Bond, Howard E.; Contreras, Carlos; Dykhoff, Devin A.; Amodeo, Samuel; Carlon, Robert L.; Cass, Alexander C.; Corgan, David T.; Faella, Joseph; Boyer, Martha; Cantiello, Matteo; Fox, Ori D.

    2017-01-01

    We present an ongoing, five-year systematic search for extragalactic infrared transients, dubbed SPIRITS—SPitzer InfraRed Intensive Transients Survey. In the first year, using Spitzer /IRAC, we searched 190 nearby galaxies with cadence baselines of one month and six months. We discovered over 1958 variables and 43 transients. Here, we describe the survey design and highlight 14 unusual infrared transients with no optical counterparts to deep limits, which we refer to as SPRITEs (eSPecially Red Intermediate-luminosity Transient Events). SPRITEs are in the infrared luminosity gap between novae and supernovae, with [4.5] absolute magnitudes between −11 and −14 (Vega-mag) and [3.6]–[4.5] colors between 0.3 mag and 1.6 mag. The photometric evolution of SPRITEs is diverse, ranging from <0.1 mag yr −1 to >7 mag yr −1 . SPRITEs occur in star-forming galaxies. We present an in-depth study of one of them, SPIRITS 14ajc in Messier 83, which shows shock-excited molecular hydrogen emission. This shock may have been triggered by the dynamic decay of a non-hierarchical system of massive stars that led to either the formation of a binary or a protostellar merger.

  11. SPIRITS: Uncovering Unusual Infrared Transients with Spitzer

    Energy Technology Data Exchange (ETDEWEB)

    Kasliwal, Mansi M.; Jencson, Jacob E.; Tinyanont, Samaporn; Cao, Yi; Cook, David [Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Bally, John [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309 (United States); Masci, Frank; Armus, Lee [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Cody, Ann Marie [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Bond, Howard E. [Dept. of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Contreras, Carlos [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Dykhoff, Devin A.; Amodeo, Samuel; Carlon, Robert L.; Cass, Alexander C.; Corgan, David T.; Faella, Joseph [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street, S. E., University of Minnesota, Minneapolis, MN 55455 (United States); Boyer, Martha [NASA Goddard Space Flight Center, MC 665, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Cantiello, Matteo [Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010 (United States); Fox, Ori D. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2017-04-20

    We present an ongoing, five-year systematic search for extragalactic infrared transients, dubbed SPIRITS—SPitzer InfraRed Intensive Transients Survey. In the first year, using Spitzer /IRAC, we searched 190 nearby galaxies with cadence baselines of one month and six months. We discovered over 1958 variables and 43 transients. Here, we describe the survey design and highlight 14 unusual infrared transients with no optical counterparts to deep limits, which we refer to as SPRITEs (eSPecially Red Intermediate-luminosity Transient Events). SPRITEs are in the infrared luminosity gap between novae and supernovae, with [4.5] absolute magnitudes between −11 and −14 (Vega-mag) and [3.6]–[4.5] colors between 0.3 mag and 1.6 mag. The photometric evolution of SPRITEs is diverse, ranging from <0.1 mag yr{sup −1} to >7 mag yr{sup −1}. SPRITEs occur in star-forming galaxies. We present an in-depth study of one of them, SPIRITS 14ajc in Messier 83, which shows shock-excited molecular hydrogen emission. This shock may have been triggered by the dynamic decay of a non-hierarchical system of massive stars that led to either the formation of a binary or a protostellar merger.

  12. Transient particle emission measurement with optical techniques

    Science.gov (United States)

    Bermúdez, Vicente; Luján, José M.; Serrano, José R.; Pla, Benjamín

    2008-06-01

    Particulate matter is responsible for some respiratory and cardiovascular diseases. In addition, it is one of the most important pollutants of high-speed direct injection (HSDI) passenger car engines. Current legislation requires particulate dilution tunnels for particulate matter measuring. However for development work, dilution tunnels are expensive and sometimes not useful since they are not able to quantify real-time particulate emissions during transient operation. In this study, the use of a continuous measurement opacimeter and a fast response HFID is proven to be a good alternative to obtain instantaneous particle mass emissions during transient operation (due to particulate matter consisting mainly of soot and SOF). Some methods and correlations available from literature, but developed for steady conditions, are evaluated during transient operation by comparing with mini-tunnel measurements during the entire MVEG-A transient cycle. A new correlation was also derived from this evaluation. Results for soot and SOF (obtained from the new correlation proposed) are compared with soot and SOF captured with particulate filters, which have been separated by means of an SOF extraction method. Finally, as an example of ECU design strategies using these sort of correlations, the EGR valve opening is optimized during transient operation. The optimization is performed while simultaneously taking into account instantaneous fuel consumption, particulate emissions (calculated with the proposed correlation) and other regulated engine pollutants.

  13. Complex motions and chaos in nonlinear systems

    CERN Document Server

    Machado, José; Zhang, Jiazhong

    2016-01-01

    This book brings together 10 chapters on a new stream of research examining complex phenomena in nonlinear systems—including engineering, physics, and social science. Complex Motions and Chaos in Nonlinear Systems provides readers a particular vantage of the nature and nonlinear phenomena in nonlinear dynamics that can develop the corresponding mathematical theory and apply nonlinear design to practical engineering as well as the study of other complex phenomena including those investigated within social science.

  14. Cascaded nonlinearities for ultrafast nonlinear optical science and applications

    DEFF Research Database (Denmark)

    Bache, Morten

    the cascading nonlinearity is investigated in detail, especially with focus on femtosecond energetic laser pulses being subjected to this nonlinear response. Analytical, numerical and experimental results are used to understand the cascading interaction and applications are demonstrated. The defocusing soliton...... observations with analogies in fiber optics are observed numerically and experimentally, including soliton self-compression, soliton-induced resonant radiation, supercontinuum generation, optical wavebreaking and shock-front formation. All this happens despite no waveguide being present, thanks...... is of particular interest here, since it is quite unique and provides the solution to a number of standing challenges in the ultrafast nonlinear optics community. It solves the problem of catastrophic focusing and formation of a filaments in bulk glasses, which even under controlled circumstances is limited...

  15. Input saturation in nonlinear multivariable processes resolved by nonlinear decoupling

    Directory of Open Access Journals (Sweden)

    Jens G. Balchen

    1995-04-01

    Full Text Available A new method is presented for the resolution of the problem of input saturation in nonlinear multivariable process control by means of elementary nonlinear decoupling (END. Input saturation can have serious consequences particularly in multivariable control because it may lead to very undesirable system behaviour and quite often system instability. Many authors have searched for systematic techniques for designing multivariable control systems in which saturation may occur in any of the control variables (inputs, manipulated variables. No generally accepted method seems to have been presented so far which gives a solution in closed form. The method of elementary nonlinear decoupling (END can be applied directly to the case of saturation control variables by deriving as many control strategies as there are combinations of saturating control variables. The method is demonstrated by the multivariable control of a simulated Fluidized Catalytic Cracker (FCC with very convincing results.

  16. Separative performance transients in a gas centrifuge

    International Nuclear Information System (INIS)

    Olander, D.R.

    1979-01-01

    A general method has been developed to calculate the behavior of the exit compositions from a gas centrifuge under unsteady conditions. The method utilizes the basic enrichment gradient equations derived by Cohen, which, in this case, contain time derivatives of the partial 235 U inventories. These partial differential equations are converted to ordinary differential equations by a linear approximation to the axial concentration distribution for use in the inventory terms only. With this simplification, analytical solution is possible for the feed concentration transient. The transient driven by a change in the feed flow rate, however, requires numerical solution. For analysis of ideal cascades in the unsteady state, the transient flow and separation characteristics of the centrifuge must be combined with total uranium and 235 U material balances on each stage

  17. Transient effects in friction fractal asperity creep

    CERN Document Server

    Goedecke, Andreas

    2013-01-01

    Transient friction effects determine the behavior of a wide class of mechatronic systems. Classic examples are squealing brakes, stiction in robotic arms, or stick-slip in linear drives. To properly design and understand mechatronic systems of this type, good quantitative models of transient friction effects are of primary interest. The theory developed in this book approaches this problem bottom-up, by deriving the behavior of macroscopic friction surfaces from the microscopic surface physics. The model is based on two assumptions: First, rough surfaces are inherently fractal, exhibiting roughness on a wide range of scales. Second, transient friction effects are caused by creep enlargement of the real area of contact between two bodies. This work demonstrates the results of extensive Finite Element analyses of the creep behavior of surface asperities, and proposes a generalized multi-scale area iteration for calculating the time-dependent real contact between two bodies. The toolset is then demonstrated both...

  18. Transient response in granular bounded heap flows

    Science.gov (United States)

    Xiao, Hongyi; Ottino, Julio M.; Lueptow, Richard M.; Umbanhowar, Paul B.

    2017-11-01

    Heap formation, a canonical granular flow, is common in industry and is also found in nature. Here, we study the transition between steady flow states in quasi-2D bounded heaps by suddenly changing the feed rate from one fixed value to another. During the transition, in both experiments and discrete element method simulations, an additional wedge of flowing particles propagates over the rising free surface. The downstream edge of the wedge - the wedge front - moves downstream with velocity inversely proportional to the square root of time. An additional longer duration transient process continues after the wedge front reaches the downstream wall. The transient flux profile during the entire transition is well modeled by a diffusion-like equation derived from local mass balance and a local linear relation between the flux and the surface slope. Scalings for the transient kinematics during the flow transitions are developed based on the flux profiles. Funded by NSF Grant CBET-1511450.

  19. NALAP: an LMFBR system transient code

    International Nuclear Information System (INIS)

    Martin, B.A.; Agrawal, A.K.; Albright, D.C.; Epel, L.G.; Maise, G.

    1975-07-01

    NALAP is a LMFBR system transient code. This code, adapted from the light water reactor transient code RELAP 3B, simulates thermal-hydraulic response of sodium cooled fast breeder reactors when subjected to postulated accidents such as a massive pipe break as well as a variety of other upset conditions that do not disrupt the system geometry. Various components of the plant are represented by control volumes. These control volumes are connected by junctions some of which may be leak or fill junctions. The fluid flow equations are modeled as compressible, single-stream flow with momentum flux in one dimension. The transient response is computed by integrating the thermal-hydraulic conservation equations from user-initialized operating conditions by an implicit numerical scheme. Point kinetics approximation is used to represent the time dependent heat generation in the reactor core

  20. Modeling of environmentally induced transients within satellites

    Science.gov (United States)

    Stevens, N. John; Barbay, Gordon J.; Jones, Michael R.; Viswanathan, R.

    1987-01-01

    A technique is described that allows an estimation of possible spacecraft charging hazards. This technique, called SCREENS (spacecraft response to environments of space), utilizes the NASA charging analyzer program (NASCAP) to estimate the electrical stress locations and the charge stored in the dielectric coatings due to spacecraft encounter with a geomagnetic substorm environment. This information can then be used to determine the response of the spacecraft electrical system to a surface discharge by means of lumped element models. The coupling into the electronics is assumed to be due to magnetic linkage from the transient currents flowing as a result of the discharge transient. The behavior of a spinning spacecraft encountering a severe substorm is predicted using this technique. It is found that systems are potentially vulnerable to upset if transient signals enter through the ground lines.

  1. Transient risk factors of acute occupational injuries

    DEFF Research Database (Denmark)

    Østerlund, Anna H; Lander, Flemming; Nielsen, Kent

    2017-01-01

    Objectives The objectives of this study were to (i) identify transient risk factors of occupational injuries and (ii) determine if the risk varies with age, injury severity, job task, and industry risk level. Method A case-crossover design was used to examine the effect of seven specific transient...... risk factors (time pressure, disagreement with someone, feeling sick, being distracted by someone, non-routine task, altered surroundings, and broken machinery and materials) for occupational injuries. In the study, 1693 patients with occupational injuries were recruited from a total of 4002...... in relation to sex, age, job task, industry risk level, or injury severity. Conclusion Use of a case-crossover design identified several worker-related transient risk factors (time pressure, feeling sick, being distracted by someone) that led to significantly increased risks for occupational injuries...

  2. Positron beam studies of transients in semiconductors

    International Nuclear Information System (INIS)

    Beling, C.D.; Ling, C.C.; Cheung, C.K.; Naik, P.S.; Zhang, J.D.; Fung, S.

    2006-01-01

    Vacancy-sensing positron deep level transient spectroscopy (PDLTS) is a positron beam-based technique that seeks to provide information on the electronic ionization levels of vacancy defects probed by the positron through the monitoring of thermal transients. The experimental discoveries leading to the concept of vacancy-sensing PDLTS are first reviewed. The major problem associated with this technique is discussed, namely the strong electric fields establish in the near surface region of the sample during the thermal transient which tend to sweep positrons into the contact with negligible defect trapping. New simulations are presented which suggest that under certain conditions a sufficient fraction of positrons may be trapped into ionizing defects rendering PDLTS technique workable. Some suggestions are made for techniques that might avoid the problematic electric field problem, such as optical-PDLTS where deep levels are populated using light and the use of high forward bias currents for trap filling

  3. Transient Exciplex Formation Electron Transfer Mechanism

    Directory of Open Access Journals (Sweden)

    Michael G. Kuzmin

    2011-01-01

    Full Text Available Transient exciplex formation mechanism of excited-state electron transfer reactions is analyzed in terms of experimental data on thermodynamics and kinetics of exciplex formation and decay. Experimental profiles of free energy, enthalpy, and entropy for transient exciplex formation and decay are considered for several electron transfer reactions in various solvents. Strong electronic coupling in contact pairs of reactants causes substantial decrease of activation energy relative to that for conventional long-range ET mechanism, especially for endergonic reactions, and provides the possibility for medium reorganization concatenated to gradual charge shift in contrast to conventional preliminary medium and reactants reorganization. Experimental criteria for transient exciplex formation (concatenated mechanism of excited-state electron transfer are considered. Available experimental data show that this mechanism dominates for endergonic ET reactions and provides a natural explanation for a lot of known paradoxes of ET reactions.

  4. Turbofan compressor dynamics during afterburner transients

    Science.gov (United States)

    Kurkov, A. P.

    1976-01-01

    The effects of afterburner light-off and shut-down transients on the compressor stability are investigated. The reported experimental results are based on detailed high response pressure and temperature measurements on the TF30-P-3 turbofan engine. The tests were performed in an altitude test chamber simulating high altitude engine operation. It is shown that during both types of transients, flow breaks down in the forward part of the fan bypass duct. At a sufficiently low engine inlet pressure this resulted in a compressor stall. Complete flow breakdown within the compressor was preceded by a rotating stall. At some locations in the compressor, rotating stall cells initially extended only through part of the blade span. For the shutdown transient the time between first and last detected occurrence of rotating stall is related to the flow Reynolds number. An attempt was made to deduce the number and speed of propagation of rotating stall cells.

  5. Characterization of electrical appliances in transient state

    Science.gov (United States)

    Wójcik, Augustyn; Winiecki, Wiesław

    2017-08-01

    The article contains the study about electrical appliance characterization on the basis of power grid signals. To represent devices, parameters of current and voltage signals recorded during transient states are used. In this paper only transients occurring as a result of switching on devices are considered. The way of data acquisition performed in specialized measurement setup developed for electricity load monitoring is described. The paper presents the method of transients detection and the method of appliance parameters calculation. Using the set of acquired measurement data and appropriate software the set of parameters for several household appliances operating in different operating conditions was processed. Usefulness of appliances characterization in Non-Intrusive Appliance Load Monitoring System (NIALMS) with the use of proposed method is discussed focusing on obtained results.

  6. Investigation of nonlinear I–V behavior of CNTs filled polymer composites

    International Nuclear Information System (INIS)

    Wang, Jian; Yu, Shuhui; Luo, Suibin; Chu, Baojin; Sun, Rong; Wong, Ching-Ping

    2016-01-01

    Graphical abstract: - Highlights: • Mechanism of nonlinear behavior of the CNT composites was systematically investigated. • There are one linear region (I) and two nonlinear regions (II and III) in the I–V curves. • This phenomenon was analyzed based on hopping, tunneling and Joule heating effects. - Abstract: Nonlinear current–voltage (I–V) behavior is a typical feature of polymeric composites containing conductor or semiconductor fillers, which are desired to handle the transient voltage and electrostatic discharge (ESD) of microelectronic devices. In this paper, the mechanism of nonlinear behavior of carbon nanotubes (CNTs) filled polymer composites in the applied electric field was explored. The I–V curves of the composites exhibited three regions. The variation of current at low voltages (region I) is linear. Under relatively higher voltages (region II), the variation is nonlinear and grows rapidly with voltage. As the voltage is further increased, the I–V curve is still non-linear (region III), but the growth rate is significantly slowed down. The I–V characteristics in the above three regions were analyzed systematically based on the calculation of the electrons hopping from the conduction band of CNTs to epoxy, the induced current under electric field, as well as Joule-heating and tunneling effect.

  7. Nonlinear analysis of pupillary dynamics.

    Science.gov (United States)

    Onorati, Francesco; Mainardi, Luca Tommaso; Sirca, Fabiola; Russo, Vincenzo; Barbieri, Riccardo

    2016-02-01

    Pupil size reflects autonomic response to different environmental and behavioral stimuli, and its dynamics have been linked to other autonomic correlates such as cardiac and respiratory rhythms. The aim of this study is to assess the nonlinear characteristics of pupil size of 25 normal subjects who participated in a psychophysiological experimental protocol with four experimental conditions, namely “baseline”, “anger”, “joy”, and “sadness”. Nonlinear measures, such as sample entropy, correlation dimension, and largest Lyapunov exponent, were computed on reconstructed signals of spontaneous fluctuations of pupil dilation. Nonparametric statistical tests were performed on surrogate data to verify that the nonlinear measures are an intrinsic characteristic of the signals. We then developed and applied a piecewise linear regression model to detrended fluctuation analysis (DFA). Two joinpoints and three scaling intervals were identified: slope α0, at slow time scales, represents a persistent nonstationary long-range correlation, whereas α1 and α2, at middle and fast time scales, respectively, represent long-range power-law correlations, similarly to DFA applied to heart rate variability signals. Of the computed complexity measures, α0 showed statistically significant differences among experimental conditions (pnonlinear dynamics, (b) three well-defined and distinct long-memory processes exist at different time scales, and (c) autonomic stimulation is partially reflected in nonlinear dynamics. (c) autonomic stimulation is partially reflected in nonlinear dynamics.

  8. Introduction to nonlinear dispersive equations

    CERN Document Server

    Linares, Felipe

    2015-01-01

    This textbook introduces the well-posedness theory for initial-value problems of nonlinear, dispersive partial differential equations, with special focus on two key models, the Korteweg–de Vries equation and the nonlinear Schrödinger equation. A concise and self-contained treatment of background material (the Fourier transform, interpolation theory, Sobolev spaces, and the linear Schrödinger equation) prepares the reader to understand the main topics covered: the initial-value problem for the nonlinear Schrödinger equation and the generalized Korteweg–de Vries equation, properties of their solutions, and a survey of general classes of nonlinear dispersive equations of physical and mathematical significance. Each chapter ends with an expert account of recent developments and open problems, as well as exercises. The final chapter gives a detailed exposition of local well-posedness for the nonlinear Schrödinger equation, taking the reader to the forefront of recent research. The second edition of Introdu...

  9. Transient behaviour of small HTR for cogeneration

    International Nuclear Information System (INIS)

    Verkerk, E.C.; Van Heek, A.I.

    2000-01-01

    The Dutch market for combined generation of heat and power identifies a unit size of 40 MW thermal for the conceptual design of a nuclear cogeneration plant. The ACACIA system provides 14 MWe electricity combined with 17 t/h of high temperature steam (220 deg C, 10 bar) with a pebble-bed high temperature reactor directly coupled with a helium compressor and a helium turbine. The design of this small CHP unit that is used for industrial applications is mainly based on a pre-feasibility study in 1996, performed by a joint working group of five Dutch organisations, in which technical feasibility was shown. Thermal hydraulic and reactor physics analyses show favourable control characteristics during normal operation and a benign response to loss of helium coolant and loss of flow conditions. Throughout the response on these highly infrequent conditions, ample margin exists between the highest fuel temperatures and the temperature above which fuel degradation will occur. To come to quantitative statements about the ACACIA transient behaviour, a calculational coupling between the high temperature reactor core analysis code package PANTHER/DIREKT and the thermal hydraulic code RELAP5 for the energy conversion system has been made. This coupling offers a more realistic simulation of the entire system, since it removes the necessity of forcing boundary conditions on the simulation models at the data transfer points. In this paper, the models used for the dynamic components of the energy conversion system are described, and the results of the calculation for two operational transients in order to demonstrate the effects of the interaction between reactor core and its energy conversion system are shown. Several transient cases that are representative as operational transients for an HTR will be discussed, including one representing a load rejection case that shows the functioning of the control system, in particular the bypass valve. Another transient is a load following

  10. Nonlinear absorption dynamics using field-induced surface hopping: zinc porphyrin in water.

    Science.gov (United States)

    Röhr, Merle I S; Petersen, Jens; Wohlgemuth, Matthias; Bonačić-Koutecký, Vlasta; Mitrić, Roland

    2013-05-10

    We wish to present the application of our field-induced surface-hopping (FISH) method to simulate nonlinear absorption dynamics induced by strong nonresonant laser fields. We provide a systematic comparison of the FISH approach with exact quantum dynamics simulations on a multistate model system and demonstrate that FISH allows for accurate simulations of nonlinear excitation processes including multiphoton electronic transitions. In particular, two different approaches for simulating two-photon transitions are compared. The first approach is essentially exact and involves the solution of the time-dependent Schrödinger equation in an extended manifold of excited states, while in the second one only transiently populated nonessential states are replaced by an effective quadratic coupling term, and dynamics is performed in a considerably smaller manifold of states. We illustrate the applicability of our method to complex molecular systems by simulating the linear and nonlinear laser-driven dynamics in zinc (Zn) porphyrin in the gas phase and in water. For this purpose, the FISH approach is connected with the quantum mechanical-molecular mechanical approach (QM/MM) which is generally applicable to large classes of complex systems. Our findings that multiphoton absorption and dynamics increase the population of higher excited states of Zn porphyrin in the nonlinear regime, in particular in solution, provides a means for manipulating excited-state properties, such as transient absorption dynamics and electronic relaxation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Spectro-spatial analysis of wave packet propagation in nonlinear acoustic metamaterials

    Science.gov (United States)

    Zhou, W. J.; Li, X. P.; Wang, Y. S.; Chen, W. Q.; Huang, G. L.

    2018-01-01

    The objective of this work is to analyze wave packet propagation in weakly nonlinear acoustic metamaterials and reveal the interior nonlinear wave mechanism through spectro-spatial analysis. The spectro-spatial analysis is based on full-scale transient analysis of the finite system, by which dispersion curves are generated from the transmitted waves and also verified by the perturbation method (the L-P method). We found that the spectro-spatial analysis can provide detailed information about the solitary wave in short-wavelength region which cannot be captured by the L-P method. It is also found that the optical wave modes in the nonlinear metamaterial are sensitive to the parameters of the nonlinear constitutive relation. Specifically, a significant frequency shift phenomenon is found in the middle-wavelength region of the optical wave branch, which makes this frequency region behave like a band gap for transient waves. This special frequency shift is then used to design a direction-biased waveguide device, and its efficiency is shown by numerical simulations.

  12. Tool for the Integrated Dynamic Numerical Propulsion System Simulation (NPSS)/Turbine Engine Closed-Loop Transient Analysis (TTECTrA) User's Guide

    Science.gov (United States)

    Chin, Jeffrey C.; Csank, Jeffrey T.

    2016-01-01

    The Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA ver2) is a control design tool thatenables preliminary estimation of transient performance for models without requiring a full nonlinear controller to bedesigned. The program is compatible with subsonic engine models implemented in the MATLAB/Simulink (TheMathworks, Inc.) environment and Numerical Propulsion System Simulation (NPSS) framework. At a specified flightcondition, TTECTrA will design a closed-loop controller meeting user-defined requirements in a semi or fully automatedfashion. Multiple specifications may be provided, in which case TTECTrA will design one controller for each, producing acollection of controllers in a single run. Each resulting controller contains a setpoint map, a schedule of setpointcontroller gains, and limiters; all contributing to transient characteristics. The goal of the program is to providesteady-state engine designers with more immediate feedback on the transient engine performance earlier in the design cycle.

  13. Shaking of reinforced concrete structures subjected to transient dynamic analysis

    International Nuclear Information System (INIS)

    Rouzaud, Christophe

    2015-01-01

    In the design of nuclear engineering structures security and safety present a crucial aspect. Civil engineering design and the qualification of materials to dynamic loads must consider the accelerations which they undergo. These accelerations could integrate seismic activity and shaking movements consecutive to aircraft impact with higher cut-off frequency. Current methodologies for assessing this shock are based on transient analyses using classical finite element method associated with explicit numerical schemes or projection on modal basis, often linear. In both cases, to represent in meaningful way a medium-frequency content, it should implement a mesh refinement which is hardly compatible with the size of models of the civil engineering structures. In order to extend industrial methodologies used and to allow a better representation of the behavior of the structure in medium-frequency, an approach coupling a temporal and non-linear analysis for shock area with a frequency approach to treatment of shaking with VTCR (Variational Theory of Complex Rays) has been used. The aim is to use the computational efficiency of the implemented strategy, including medium frequency to describe the nuclear structures to aircraft impact. (author)

  14. Network thermodynamic approach compartmental analysis. Na+ transients in frog skin.

    Science.gov (United States)

    Mikulecky, D C; Huf, E G; Thomas, S R

    1979-01-01

    We introduce a general network thermodynamic method for compartmental analysis which uses a compartmental model of sodium flows through frog skin as an illustrative example (Huf and Howell, 1974a). We use network thermodynamics (Mikulecky et al., 1977b) to formulate the problem, and a circuit simulation program (ASTEC 2, SPICE2, or PCAP) for computation. In this way, the compartment concentrations and net fluxes between compartments are readily obtained for a set of experimental conditions involving a square-wave pulse of labeled sodium at the outer surface of the skin. Qualitative features of the influx at the outer surface correlate very well with those observed for the short circuit current under another similar set of conditions by Morel and LeBlanc (1975). In related work, the compartmental model is used as a basis for simulation of the short circuit current and sodium flows simultaneously using a two-port network (Mikulecky et al., 1977a, and Mikulecky et al., A network thermodynamic model for short circuit current transients in frog skin. Manuscript in preparation; Gary-Bobo et al., 1978). The network approach lends itself to computation of classic compartmental problems in a simple manner using circuit simulation programs (Chua and Lin, 1975), and it further extends the compartmental models to more complicated situations involving coupled flows and non-linearities such as concentration dependencies, chemical reaction kinetics, etc.

  15. Transient waves in visco-elastic media

    CERN Document Server

    Ricker, Norman

    1977-01-01

    Developments in Solid Earth Geophysics 10: Transient Waves in Visco-Elastic Media deals with the propagation of transient elastic disturbances in visco-elastic media. More specifically, it explores the visco-elastic behavior of a medium, whether gaseous, liquid, or solid, for very-small-amplitude disturbances. This volume provides a historical overview of the theory of the propagation of elastic waves in solid bodies, along with seismic prospecting and the nature of seismograms. It also discusses the seismic experiments, the behavior of waves propagated in accordance with the Stokes wave

  16. Transient elastography for liver fibrosis diagnosis

    DEFF Research Database (Denmark)

    Andersen, Ellen Sloth; Christensen, Peer Brehm; Weis, Nina

    2008-01-01

    Liver biopsy is considered the "golden standard" for assessment of hepatic fibrosis. However, the procedure has limitations because of inconvenience and rare but serious complications as bleeding. Furthermore, sampling errors are frequent, and interobserver variability often poses problems....... Recently, a modified ultrasound scanner (transient elastography) has been developed to assess fibrosis. The device measures liver elasticity, which correlates well with the degree of fibrosis. Studies have shown that transient elastography is more accurate in diagnosing cirrhosis than minor to moderate...... to be a valuable diagnostic procedure and follow-up of patients with chronic liver diseases....

  17. Transient elastography for liver fibrosis diagnosis

    DEFF Research Database (Denmark)

    Andersen, Ellen Sloth; Christensen, Peer Brehm; Weis, Nina

    2009-01-01

    Liver biopsy is considered the "golden standard" for assessment of hepatic fibrosis. However, the procedure has limitations because of inconvenience and rare but serious complications as bleeding. Furthermore, sampling errors are frequent, and interobserver variability often poses problems....... Recently, a modified ultrasound scanner (transient elastography) has been developed to assess fibrosis. The device measures liver elasticity, which correlates well with the degree of fibrosis. Studies have shown that transient elastography is more accurate in diagnosing cirrhosis than minor to moderate...... to be a valuable diagnostic procedure and follow-up of patients with chronic liver diseases....

  18. Transient thermal camouflage and heat signature control

    Science.gov (United States)

    Yang, Tian-Zhi; Su, Yishu; Xu, Weikai; Yang, Xiao-Dong

    2016-09-01

    Thermal metamaterials have been proposed to manipulate heat flux as a new way to cloak or camouflage objects in the infrared world. To date, however, thermal metamaterials only operate in the steady-state and exhibit detectable, transient heat signatures. In this letter, the theoretical basis for a thermal camouflaging technique with controlled transient diffusion is presented. This technique renders an object invisible in real time. More importantly, the thermal camouflaging device instantaneously generates a pre-designed heat signature and behaves as a perfect thermal illusion device. A metamaterial coating with homogeneous and isotropic thermal conductivity, density, and volumetric heat capacity was fabricated and very good camouflaging performance was achieved.

  19. Nonlinear adaptive control system design with asymptotically stable parameter estimation error

    Science.gov (United States)

    Mishkov, Rumen; Darmonski, Stanislav

    2018-01-01

    The paper presents a new general method for nonlinear adaptive system design with asymptotic stability of the parameter estimation error. The advantages of the approach include asymptotic unknown parameter estimation without persistent excitation and capability to directly control the estimates transient response time. The method proposed modifies the basic parameter estimation dynamics designed via a known nonlinear adaptive control approach. The modification is based on the generalised prediction error, a priori constraints with a hierarchical parameter projection algorithm, and the stable data accumulation concepts. The data accumulation principle is the main tool for achieving asymptotic unknown parameter estimation. It relies on the parametric identifiability system property introduced. Necessary and sufficient conditions for exponential stability of the data accumulation dynamics are derived. The approach is applied in a nonlinear adaptive speed tracking vector control of a three-phase induction motor.

  20. Comparison among nonlinear excitation control strategies used for damping power system oscillations

    International Nuclear Information System (INIS)

    Leon, A.E.; Solsona, J.A.; Valla, M.I.

    2012-01-01

    Highlights: ► A description and comparison of nonlinear control strategies for synchronous generators are presented. ► Advantages of using nonlinear controllers are emphasized against the use of classical PSSs. ► We find that a particular selection of IDA gains achieve the same performance that FL controllers. - Abstract: This work is focused on the problem of power system stability. A thorough description of nonlinear control strategies for synchronous generator excitation, which are designed for damping oscillations and improving transient stability on power systems, is presented along with a detailed comparison among these modern strategies and current solutions based on power system stabilizers. The performance related to damping injection in each controller, critical time enhancement, robustness against parametric uncertainties, and control signal energy consumption is analyzed. Several tests are presented to validate discussions on various advantages and disadvantages of each control strategy.