WorldWideScience

Sample records for euratom basic safety

  1. Revision of the Euratom basic safety standards directive-current status

    International Nuclear Information System (INIS)

    Mundig, S.

    2011-01-01

    The European Commission is currently developing a revised Euratom Basic Safety Standards (BSS) Directive covering two major objectives: the consolidation of existing Euratom Radiation Protection legislation and the revision of the Euratom BSS. The consolidation will merge the following five Directives into one single Directive: the BSS Directive, the Medical Exposures Directive, the Public Information Directive, the Outside Workers Directive and the Directive on the Control of high-activity sealed radioactive sources and orphan sources. The revision of the Euratom BSS will take account of the latest recommendations by the International Commission on Radiological Protection and shall improve clarity of the requirements where appropriate. It is planned to introduce more binding requirements on natural radiation sources, on criteria for exemption and clearance, and on the cooperation between Member States for emergency planning and response. The provisions for regulatory control of planned exposure situations foresee a graded approach commensurate to the magnitude and likelihood of exposures from a practice. Finally, the new BSS shall take account of recent scientific developments. One additional goal is to achieve greater harmonisation between the Euratom BSS and the international BSS. While the requirements on the protection of workers, apprentices and students remain nearly unchanged, the revised BSS will clarify the roles and responsibilities of services and experts involved in technical and practical aspects of radiation protection, such as the occupational health services, the dosimetry services, the radiation protection expert and the medical physics expert. The requirements in the BSS on individual monitoring of category A workers remain unchanged, but the existing guidance on individual monitoring was revised and updated-the technical recommendations for monitoring individuals occupationally exposed to external radiation are published by the European

  2. Radiation protection of medical staff in the latest draft of the revised Euratom Basic Safety Standards directive

    International Nuclear Information System (INIS)

    Simeonov, Georgi; Mundigl, Stefan; Janssens, Augustin

    2011-01-01

    The European Union has a long and successful history of legislating in the area of radiation protection of the public, workers and individuals submitted to medical exposure, the first EuratomBasic Safety Standards” (BSS) adopted in 1959 and subsequently updated and supplemented with other Directives. The recent revision of this legislation aims to update it in the light of the latest knowledge and experience and to simplify it by consolidating the current legal acts into one Directive. The draft of the revised Euratom BSS Directive has been approved by the group of scientific experts under Euratom Treaty Article 31 and is currently undergoing the European Commission’s procedures. This draft contains several new or amended provisions relating to protection of medical staff, among them: (i) a streamlining of the annual dose limit provisions, (ii) enhancing the use of dose constraints in optimization of protection, and (iii) ensuring better recording and transfer of occupational dose data including in cases of trans-border movement of workers. The Community action to radiation protection of workers is not restricted to passing relevant legislation but also includes ‘soft action’ as issuing guidance, supporting research and stakeholders’ involvement, etc. In August 2010 the Commission issued a Communication to the Council and the European Parliament dealing with the issues in the medical uses of ionizing radiation, including those relating to radiation protection of medical staff.

  3. Modernization and consolidation of the European radiation protection legislation. The new EURATOM radiation protection basic safety standards

    International Nuclear Information System (INIS)

    Mundigl, S.

    2013-01-01

    With the development of new basic safety standards for the protection against the dangers arising from ionising radiation, foreseen in Article 2 and Article 30 of the Euratom Treaty, the European Commission modernises and consolidates the European radiation protection legislation. The new Directive offers in a single coherent document, basics safety standards for radiation protection which take account of the status-quo of science and technology, cover all relevant radiation sources, including natural radiation sources, integrate protection of workers, members of the public, patients and the environment, cover all exposure situations, planned, existing, emergency, and harmonise numerical values with international standards. After having received very positive opinions of the Article 31 Group of Experts and the European Economic and Social Committee, the proposed Directive has reached agreement in the Working Party on Atomic Questions of the European Council (WPAQ). The Opinion of the European Parliament is expected in September 2013, which would allow a publication of the Directive in the Official Journal of the European Union by the end of 2013. (orig.)

  4. Modernization and consolidation of the European radiation protection legislation. The new EURATOM radiation protection basic safety standards; Modernisierung und Konsolidierung der europaeischen Strahlenschutzgesetzgebung. Die neuen Euratom-Strahlenschutzgrundnormen

    Energy Technology Data Exchange (ETDEWEB)

    Mundigl, S. [Commission of the European Communities, Luxembourg (Luxembourg). Directorate-General for Energy, Abt. D3 - Strahlenschutz, EUFO

    2013-07-01

    With the development of new basic safety standards for the protection against the dangers arising from ionising radiation, foreseen in Article 2 and Article 30 of the Euratom Treaty, the European Commission modernises and consolidates the European radiation protection legislation. The new Directive offers in a single coherent document, basics safety standards for radiation protection which take account of the status-quo of science and technology, cover all relevant radiation sources, including natural radiation sources, integrate protection of workers, members of the public, patients and the environment, cover all exposure situations, planned, existing, emergency, and harmonise numerical values with international standards. After having received very positive opinions of the Article 31 Group of Experts and the European Economic and Social Committee, the proposed Directive has reached agreement in the Working Party on Atomic Questions of the European Council (WPAQ). The Opinion of the European Parliament is expected in September 2013, which would allow a publication of the Directive in the Official Journal of the European Union by the end of 2013. (orig.)

  5. Application of the council directive of 15 July 1980 laying down the Euratom basic safety standards for the health protection of the general public and workers against the dangers of ionizing radiation

    CERN Document Server

    Commission of the European Communities. Luxembourg

    Application of the council directive of 15 July 1980 laying down the Euratom basic safety standards for the health protection of the general public and workers against the dangers of ionizing radiation

  6. Toward a common nuclear safety culture: from knowledge creation to competence building in Euratom programmes

    International Nuclear Information System (INIS)

    Van Goethem, G.

    2010-01-01

    Content of the presentation: Introduction: towards a common nuclear safety culture 2. EU Stakeholders in nuclear fission and « Nuclear Safety Directive » June 2009 3. EURATOM policy for education (from knowledge creation …) 4. EURATOM policy for training (… to competence building) 5. Examples of EFTS running under FP-7 EURATOM 6. Conclusion: EC “seed money” for effort shared with MS

  7. Round table about the application in France of the new EURATOM directive establishing the basic radioprotection standards

    International Nuclear Information System (INIS)

    Godet, Jean-Luc; Lahaye, Thierry; Bernard, Herve

    2014-06-01

    Started in 2008, the updating works of the existing EURATOM directives are now completed with the publication in December 5, 2013 of the new 2013/59 Euratom Directive in the Official Journal of the European Union. The new directive establishes the basic protection standards relative to the health protection against ionizing radiation exposure hazards. This update allows to consolidate 5 existing directives, to take into consideration the recommendations of the International Commission on Radiological Protection (ICRP) published in 2007 (ICRP Publication 103), and to ensure consistency between the European framework with the new IAEA basic standards published in 2011. From January 17, 2014, France has a period of 4 years to transpose the new directive into national right and thus, to adjust the French national regulation included in the health, labor and environment laws to the European and international standards. This document brings together the 3 presentations (slides) made at this round table and dealing with: 1 - The transposition of Euratom directive 2013/59/ relative to basic radioprotection standards (J.L. Godet); 2 - The application in France of the new Euratom directive (T. Lahaye); 3 - A nuclear operator point of view regarding the daily application of Directive 2013-59 (H. Bernard)

  8. Basic safety standards for radiation protection and their application to internal exposures

    International Nuclear Information System (INIS)

    Dousset, M.

    Following a summary of the basic concepts on radiation protection units, the safety standards now in effect in France and those recommended by the International Commission on Radiological Protection (ICRP Publication 9, 1965) to be used as a basis to the next Euratom regulations are developed [fr

  9. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. General Safety Requirements. Pt. 3 (Chinese Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  10. Radiation protection and safety of radiation sources: International basic safety standards. General safety requirements. Pt. 3 (French Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  11. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. General Safety Requirements. Pt. 3 (Arabic Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations — European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered

  12. The new Basic Safety Standards Directive and its implications for environmental monitoring

    International Nuclear Information System (INIS)

    Janssens, Augustin; Necheva, Christina; Tanner, Vesa; Turai, István

    2013-01-01

    Monitoring of levels of radioactivity in the environment is enshrined in Chapter 3 of the Euratom Treaty, in particular its Articles 35 and 36. These requirements in primary law have had an important impact on the importance of monitoring in Europe but have not been worked out in much detail in secondary legislation. The consolidation and revision of the Basic Safety Standards Directive was an opportunity for doing so. The requirements in Directive 96/29/Euratom had remained rather general. Now, more specific text is introduced on the establishment of discharge authorisations for radioactive effluents, and on monitoring these discharges. Requirements on estimation of public exposures and on environmental monitoring programmes have largely been copied from the old basic safety standards (BSS), however. The main novelty of the new BSS is the introduction of exposure situations, as defined by the ICRP in Publication 103 (2007). Environmental monitoring as part of the management of an emergency exposure situation is now addressed more clearly. As for existing exposure situations, indoor exposure to radon requires extensive surveys of indoor air or soil concentrations, and precise requirements are made on the management of residues from industries processing naturally occurring radioactive materials (NORM) as well as on the monitoring of building materials. Although the BSS do not address specific monitoring issues, studies have been undertaken on effluents from hospitals and on long-term management of uranium mining areas. The proposal for the new Basic Safety Standards Directive is examined in the light of experience of the accident at Fukushima Dai-ichi Nuclear Power Plant disabled by the terrible tsunami on 11 March 2011. The arrangements for information exchange in a normal situation and in an emergency exposure situation need to be looked at from this perspective as well as from the perspective of smaller incidents such as the release of 131 I in Hungary in autumn

  13. Implementation of the 96/29/EURATOM industry

    International Nuclear Information System (INIS)

    Janzekovic, H.

    2005-01-01

    The European directive 96/29/EURATOM [The Council of the European Union, Council Directive of 13 May 1996 Laying down Basic Safety Standards for the Protection of the Health of Workers and the General Public against the Danger Arising from Ionising Radiation, Council Directive 96/29/EURATOM, Official Journal European Communities L 349, 21-25 (1996). ] set up in 1996 a series of specific requirements related to a safe use of radiation sources and also to the exposure of a member of public and workers. The implementation of these requirements based on the ICRP 60 is reflected in the comprehensive radiation protection measures at the user site. In addition, the requirements are reflected in a practice of a regulatory authority. The implementation of the 96/29/EURATOM in the last years in Slovenia will be discussed based on the inspection practice including inspections of industry radiography, industrial gauges and practice with smoke detectors. The problems related to the safe use of sources with recommended working life given by a producer will be discussed.(author)

  14. HERCA Action Plan in relation to the transposition and implementation of Directive 2013/59/Euratom (Euratom BSS)

    International Nuclear Information System (INIS)

    Fremout, An; Vanderlinck, Annie; Berlamont, Jolien; Van Bladel, Lodewijk; Petrova, Karla; Ulbak, Kaare; Mundigl, Stefan; ); Markkanen, Mika; Godet, Jean-Luc; Tran-Thien, Vivien; Koch, Isabell Christin; Hackstein, Matthias; Griebel, Juergen; Kamenopoulou, Vasiliki; Fennel, Stephan; Ryan, Tom; Schreiner, Alexandra; Majerus, Patrick; Vermeulen, Ton; Holo, Eldri; Wiklund, Asa; RYF, Salome; Thomas, Gareth; Wellens, Rob; Ebdon-Jackson, Steve

    2014-10-01

    On 5 December 2013, the Council of the European Union adopted Council Directive 2013/59/Euratom laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation.1 Member States have to transpose the new Basic Safety Standards Directive (BSS Directive) into their national legal systems by 6 February 2018 at the latest. At the 13. meeting of the Board of HERCA (BoH) in Vilnius in June 2014, a proposal to establish a special Task Force (TF) to make proposals in relation to HERCA activities in support of the transposition and implementation of the new Euratom BSS Directive was agreed. The BSS-TF was established, commenced its work on the basis of a 'non-questionnaire' and a discussion document. It met on one occasion on 7 October 2014 and agreed an action plan for consideration by the BoH. The agreed action plan proposal was approved by the BoH on the occasion of its 14. meeting in Stockholm, on 21-22 October 2014. The approved Action Plan covers the following areas: - Identification of HERCA's role in the transposition of the new Euratom BSS; - Definition of actions for HERCA in relation to the transposition of the BSS; - Coordination between HERCA and the EC in relation to BSS transposition activities. The Actions identified relate to several subject areas: Emergency preparedness and response; Medical exposures; Radon; Non-medical imaging exposures; RPE/RPO; General exchange of information. HERCA is a voluntary association, in which the Heads of European Radiological Protection Competent Authorities work together in order to identify common issues and propose practical solutions for these issues. It has no statutory role in relation to the transposition of the Euratom BSS. However, additional work by HERCA can support the transposition process as indicated in the Action Plan. Uniform transposition or implementation in the Member States is not an objective of HERCA activities. Clearly it will remain a matter for

  15. Impending revision of the euratom treaty

    International Nuclear Information System (INIS)

    Fahl, G.

    1979-01-01

    The decision by the European Court of Justice in the matter of the EEC's participation in international negotiations on safety problems of the nuclear fuel cycle is of basic importance, beyond the case to which it referred, in the interpretation of the respective provisions of the Euratom Treaty in the nuclear fuel sector. The reasoning of the European Court of Justice, which constitutes a reinforcement and advancement of the responsibilities and rights of the EEC, has made France ask for a revision of the Treaty. (orig.) [de

  16. EURATOM radiation protection policy - in expectation of the European Internal Market

    International Nuclear Information System (INIS)

    Eriskat, H.

    1991-01-01

    Everything should be avoided in order that varying radiation protection regulations of individual member states may not hamper the realization of the EC Internal Market, whereby the EURATOM Treaty does not really allow variability because of the following: It is the task of the Community to set up and implement uniform safety standards for the public health of the population and the working force. From this can be deduced that member states may not deviate from EURATOM basic norms when putting these standards into practice. Summarizing, it can be said that on the basis of the EURATOM Treaty the implementation of industrial targets and of the aims of public health policy do not compete with each other in principle. When observing the regulations of the European Atomic Community Treaty, no serious obstacles are to be expected for radiation protection when the European Internal Market becomes reality. (orig./HSCH) [de

  17. The EURATOM legal framework in health protection and nuclear safety

    International Nuclear Information System (INIS)

    Mondoloni, F.

    2010-01-01

    The EURATOM treaty and its derived legislation constitute a standardised base to support the development of nuclear power throughout the European Union. Health protection against the effects of radioactivity and nuclear safety are a key component of this system. For 50 years, common obligations have been gradually defined and updated to guarantee radiological protection of the peoples and the environment of Europe. At a time when increasing numbers of countries are looking to switch to or strengthen the position of nuclear power in their energy mix, health protection issues are once again topical. The Commission is taking advantage of this particular context to propose new standards, while at the same time internationally promoting the idea of a European regulatory model. Europe, whose technological expertise in the nuclear field is undisputed, has everything to gain from disseminating its radiation protection and nuclear safety values worldwide. However, while exploring new areas for community harmonization in these fields, a necessary balance needs to be retained with national systems which have proven their worth, while taking account of the respective competence of the Community and the Member States. It is by defending national positions with the community institutions that it is possible to contribute to this balance. The General Secretariat for European Affairs (SGAE), the EURATOM technical committee (CTE) and France's Permanent Representation in Brussels, form an effective system for formulating and defending these positions, thus helping to orient community work on nuclear issues. (author)

  18. Toward a common nuclear safety culture. From knowledge creation to competence building in Euratom programs

    International Nuclear Information System (INIS)

    Goethem, Georges van

    2010-01-01

    One of the main goals of the Euratom research and training programs is to contribute to the sustainability of nuclear energy by providing resources, in particular, for research and innovation in Generations II, IIII and IV (knowledge creation). Euratom training programs contribute most notably to competence building while facilitating the mutual recognition of experts and thereby continuously improving the nuclear safety culture. The Sustainable Nuclear Energy Technology Platform (SNE-TP), composed of all stakeholders of nuclear fission and radiation protection (over 75 organizations), is a driving force therein. The emphasis in this paper is on nuclear competence building under the current 7-th Euratom Framework Programme (2007 - 2013). The employers (in particular, the nuclear industry and the technical safety organisations) are naturally involved in this process. According to the IAEA definition, competence means the ability to apply knowledge, skills and attitudes so as to perform a job in an effective and efficient manner and to an established standard (S.S.S. No. RS-G-1.4 / 2001). Knowledge is usually created in higher education institutions (e.g., universities) and in (private and public) research organizations. Skills and attitudes are usually the result of specific training and on-the-job experience throughout professional life. Euratom training activities are traditionally addressed to scientists and experts with higher education. Special attention is devoted to the continuous improvement of their competencies through borderless mobility and lifelong learning in synergy with the main stakeholders. The Euratom training strategy is based on 3 objectives: 1. Analysis of the needs of society and industry with regard to a common nuclear safety culture. This issue raises important questions, for examples: What should be added to existing training schemes? How could Continuous Professional Development (CPD) be improved? Is mobility and mutual recognition of

  19. Strengths, weaknesses, opportunities and threats – swot analysis regarding the romanian participation in euratom programmes on nuclear safety topic

    International Nuclear Information System (INIS)

    Apostol, M.; Constantin, M.; Diaconu, D.

    2013-01-01

    In the frame of FP7 - NEWLANCER project, SWOT analysis (Strengths, Weaknesses, Opportunities and Threats) was performed by each partner from New Member States (NMS) in order to provide valuable input for the development of policies aimed to increase the participation of the NMS in Euratom programmes on the following topics: Generation III and IV systems and materials, Nuclear safety, Radioprotection, Radioactive waste management, and Education and training. The final objective of SWOT analysis performed by National Expert Groups on Nuclear Safety (NS) topic was to propose strategies, in order to reduce the influence of identified negative factors and to enhance influence of identified positive factors, regarding Romanian participation in Euratom programmes. (authors)

  20. Study on the strategy of negotiation for Korea-Euratom Nuclear Cooperation Agreement

    Energy Technology Data Exchange (ETDEWEB)

    Soo, Ryu Jae; Lee, Gwang Seok; Lee, Hanmyung; Jun, Eunju; Lee, Dong Hoon

    2012-09-15

    We suggested the draft of Korea-EURATOM nuclear cooperation agreement that is expected to conclude in the near future by analyzing status and policy on the nuclear development and nuclear cooperation agreement in EURATOM. We expect that results of this study will propose basic strategy and direction of negotiations for Korea-EURATOM nuclear cooperation agreement in the near future.

  1. Revision of the Euratom Basic Standards

    International Nuclear Information System (INIS)

    Recht, P.; Eriskat, H.

    1976-01-01

    In the field of radiation protection, the Commission of the European Communities possesses certain powers which allowed it to develop a common health policy and to promote the harmonization of regulations on protecting the health of workers and the population from ionizing radiations. The Community directives constitute the legal instrument which enabled the policy to be achieved; the principles are based on the recommendations of the ICRP but are adapted to the requirements of the Euratom Treaty. The revision of the standards gave the experts and the Commission the opportunity to examine in detail a certain number of new concepts recently introduced in the international recommendations and to update and improve the standards laid down for the first time in 1959. (Auth) [fr

  2. Proposals for the Radioactive Substances (Basic Safety Standards) (England and Wales) Regulations 2000 and the Radioactive Substances (Basic Safety Standards) (England and Wales) Direction 2000. Consultative document

    International Nuclear Information System (INIS)

    2000-01-01

    This document contains proposals for changes to the Radioactive Substances Act 1993 (RSA 93) and proposals for a Direction to be given to the Environment Agency in order to implement aspects of the European Directive 96/29/Euratom concerned with the control of radioactive waste. The Directive lays down basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionising radiation. With the Government pledged to making government more accessible and responsive, an important feature of this approach is effective consultation with all interested organisations. This leads to more realistic and robust proposals, which is particularly important when dealing with proposed legislation. In March this year, the Government published a consultation paper 'The Radioactive Substances Act 1993: Implementing the Revised Basic Safety Standards Directive Euratom 96/29.' This sought comments on the basic principles for change - including the setting of levels of radioactivity below which radioactive material should be considered outside the framework of regulatory control. This document forms the second stage of the consultation process with the aim of gathering views on the proposed legal instruments to implement the Directive. This document: explains the background to the proposed regulations (paragraphs 8-13); summarises the results of the consultation on principles (paragraphs 14-24); describes the proposed changes (paragraphs 25-36); includes draft Regulations (paragraphs 27-29); includes a draft Direction to the Environment Agency (paragraphs 30-36); describes the next steps (paragraphs 37-39); includes a draft Regulatory Impact Assessment (paragraphs 40-41). In general, the devolved administrations in Scotland, Wales and Northern Ireland have assumed responsibility for environmental issues and hence management of radioactive waste policies and legislation affecting their respective countries. However, this

  3. Germany: Changes in the radiation protection regime after implementation of the EURATOM Basic Standards and corresponding amendment of German law

    International Nuclear Information System (INIS)

    Peinsipp, N.

    1997-01-01

    The EURATOM Directive 96/29 of the EU Council is the basis for convergence of national radiation protection regimes towards an EU-wide Common system. The starting position looks fine: Despite the sometimes considerable divergence in political approaches to the use of atomic energy in the various EU Member States and not withstanding the higher number of Member States represented in the Council, the EURATOM Directive was passed by unanimous vote. This is primarily due to the excellent reputation of the ICRP and trust in its contributed draft proposals, so that acceptance of major contents of the Directive was not a problem. The contribution here, based on a lecture held at the Summer School for radiation protection in June 1997 in Berlin, summarizes the legal and other effects arising from transformation of the Directive and Basic Standards into German law. (orig./CB) [de

  4. Radiation Protection Of Outside Workers: Implementation Of The EC Council Directive 90/641/EURATOM

    International Nuclear Information System (INIS)

    Jannsens, A.; Schnuer, K.; Naegele, J.; Lefaure, C.; Vaillant, L.

    2006-01-01

    In the beginning of the 1980's, the problem of radiological protection of workers belonging to contracted companies (undertakings) within nuclear facilities was raised. In most of the nuclear facilities, the so-called outside workers received 80% (and even more) of the collective dose, and quite often higher individual doses than workers permanently employed by the nuclear operators. Since the outside workers radiation protection issue was not explicitly taken into account by the 1980 European Basic Safety Standards Directive, there was a need for an additional piece of European radiation protection legislation. In this context, the European Union adopted in 1990 the Council Directive 90/641/EURATOM on the radiological protection of outside workers. This Directive shall ensure at European Union level that the radiological protection situation for the outside workers is equivalent to that offered to those workers permanently employed by the operators of nuclear facilities. Since the adoption of the Directive in 1990 the geographical situation of the European Union has changed significantly. At the same time, an evolution took place in the industrial structures of the nuclear industry followed by changes of employment conditions. Furthermore, new European radiation protection requirements were issued considering scientific and technical developments in the radiological protection field and laid down in the new radiation Protection Basic Safety Standards Directive 96/29/EURATOM. Taking into account these aspects the Radiation Protection Unit of the European Commission Directorate General for Energy and Transport decided to investigate the current situation and the future status of the Outside Workers Directive 90/641/EURATOM. The European Commission Radiation Protection Unit thus awarded the CEPN with a contract in order to evaluate through a survey the level of regulatory, administrative and operational implementation of Directive 90/641/EURATOM into Member States

  5. Radiation Protection Of Outside Workers: Implementation Of The EC Council Directive 90/641/EURATOM

    Energy Technology Data Exchange (ETDEWEB)

    Jannsens, A.; Schnuer, K.; Naegele, J. [European Commission, DG Energy and Transport B. EUROFORUM, 4455, L-2920 (Luxembourg); Lefaure, C.; Vaillant, L. [Nuclear Protection Evaluation Centre (CEPN) Batiment Expansion 10000, 28 rue de la Redoute, 92263 Fontenay-aux- Roses (France)

    2006-07-01

    In the beginning of the 1980's, the problem of radiological protection of workers belonging to contracted companies (undertakings) within nuclear facilities was raised. In most of the nuclear facilities, the so-called outside workers received 80% (and even more) of the collective dose, and quite often higher individual doses than workers permanently employed by the nuclear operators. Since the outside workers radiation protection issue was not explicitly taken into account by the 1980 European Basic Safety Standards Directive, there was a need for an additional piece of European radiation protection legislation. In this context, the European Union adopted in 1990 the Council Directive 90/641/EURATOM on the radiological protection of outside workers. This Directive shall ensure at European Union level that the radiological protection situation for the outside workers is equivalent to that offered to those workers permanently employed by the operators of nuclear facilities. Since the adoption of the Directive in 1990 the geographical situation of the European Union has changed significantly. At the same time, an evolution took place in the industrial structures of the nuclear industry followed by changes of employment conditions. Furthermore, new European radiation protection requirements were issued considering scientific and technical developments in the radiological protection field and laid down in the new radiation Protection Basic Safety Standards Directive 96/29/EURATOM. Taking into account these aspects the Radiation Protection Unit of the European Commission Directorate General for Energy and Transport decided to investigate the current situation and the future status of the Outside Workers Directive 90/641/EURATOM. The European Commission Radiation Protection Unit thus awarded the CEPN with a contract in order to evaluate through a survey the level of regulatory, administrative and operational implementation of Directive 90/641/EURATOM into Member

  6. Experience gained with Euratom's nuclear materials accounting and reporting system

    International Nuclear Information System (INIS)

    Schmitt, M.; Kschwendt, H.; Maxwell, A.G.; Littlejohn, M.

    1979-01-01

    The entry into force of the Verification Agreement in early 1977, linked to the wish to update the old Euratom System created in 1959, required that a new Euratom system (Community Regulation) be established. The main aspects of this new system, together with the practical experience gained in one and a half years operation, are presented. Certain basic accounting principles incorporated in the Euratom system, which are somewhat different from IAEA principles, are discussed in detail. This includes the notion of accounting date, some correction procedure aspects as well as the continuous updating of the book inventory to the physical reality in form of inventory changes. The effect of these differences when comparing IAEA and Euratom data is also mentioned. Furthermore, certain of the verifications carried out routinely on the operator's reports as well as on the reports submitted by Euratom to IAEA, are described and quantifications are given. Some mention is also made of areas where Euratom's role goes beyond that of the IAEA, i.e. the reporting implications of accounting for material by origin and control of particular use of the materials as well as verification of ore production and processing activities. Finally, improvements and simplifications concerning reports to the IAEA are proposed. (author)

  7. EURATOM/UKAEA Association fusion research. 1998/99 progress report

    International Nuclear Information System (INIS)

    1999-11-01

    experiments in March 1998, has also been of benefit to ITER by providing data in a new region of parameter space to help test models of tokamak performance. Data from START has also been used to improve our understanding of the promising spherical tokamak concept as part of the European fusion strategy on concept improvements. Data analysis has revealed regimes of improved confinement and world-record values of β in discharges with Ohmic heating alone. The new spherical tokamak at Culham, MAST, with twice the linear dimensions of START (and almost an order of magnitude higher plasma current), was completed with the production of the first toroidal plasma in December 1998 as part of the commissioning programme. MAST is due to begin physics experiments with powerful neutral beam heating in autumn 1999, following resolution of a problem with the central solenoid used to induce the plasma current. It will provide additional data to the tokamak database to (a) provide increased confidence in models used to predict the performance of ITER and (b) explore spherical tokamak physics in conditions closer to those of a burning plasma device. Our strong programme of fusion power studies provides key input on ITER safety studies, as well as examining the longer term safety, environmental and economic aspects of fusion power plant designs. We have continued to play leading roles in European safety and environmental assessments of fusion power, and contributed to the European programme of research into socio-economic aspects of fusion. Development work on computer codes and data related to the modelling of neutron activation has ensured that the European Activation System, managed by the EURATOM/UKAEA Association, remains the world leader. Influential input to safety studies of ITER included ongoing reviews of the relevance of these to the demonstration of the safety and environmental potential of fusion power. Expertise in materials and manufacturing techniques relevant for developing

  8. Council directive of 1 June 1976 laying down the revised basic safety standards for the health protection of the general public and workers against the dangers of ionizing radiation

    International Nuclear Information System (INIS)

    1977-01-01

    As provided for in the Euratom Treaty, and in particular Article 30 thereof, basic standards for the protection of the health of workers and the general public against the dangers arising from ionizing radiations, must be established to enable each Member State in accordance with Article 33 of the Euratom Treaty to lay down provisions by legislation, regulation or administrative action to ensure compliance with each standards, to take the necessary measures with regard to teaching, education and vocational training and to make these provisions in harmony with the provisions applicable in this field in the other Member States. On 2 February 1959, the Council has adopted a directive establishing basic safety standards. These were modified partially by the directives of 5 March 1962 and 27 October 1966. The present edition reproduces the complete text of the directive amending the basic safety standards for the health protection of the population and work against the dangers of ionizing radiation adopted by the Council on 31 May 1976. These new standards take into consideration the increasing scientific knowledge in the fields of radiological protection and radiobiology and the practical experience of applying these directives in national laws

  9. Committees and groups related to the EURATOM treaty

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, F.R. [comp.] [Nordic Nuclear Safety Research, Roskilde (Denmark)

    1997-09-01

    The EURATOM Treaty has not been modified since its creation (Rome, 25 March 1957) but has simply been adapted to take account of the fusion of the executive bodies of the three original European Treaties and the enlargement with new Member States. The EURATOM Treaty is in existence simultaneously with the 1992 Maastricht Treaty. No changes in the EURATOM Treaty that influence the practical working conditions were brought about in the 1997 intergovernmental conference. This edition of the survey of groups related to the EURATOM Treaty is an update of earlier versions issued in Danish language. It is sponsored by the Nordic Committee for Nuclear Safety Research (NKS) in conjunction with the Swedish Nuclear Power Inspectorate (SKI). The main purpose is to informally provide those circles in the Nordic countries who want to get acquainted with the groups involved in work related to EURATOM with a simplified overview. The present edition is not different from earlier issues in that it contains an outline without the intent to go into details, and without the ambition to be complete. It thus does not represent an official picture of the committees and groups. Nor should it be seen as an organisation chart of related Commission services. The information is mostly based on personal contacts with persons having knowledge from work with the groups in question. The author would be grateful for corrections and suggestions in order to improve the picture given. 15 figs.

  10. Committees and groups related to the EURATOM treaty

    International Nuclear Information System (INIS)

    Marcus, F.R.

    1997-09-01

    The EURATOM Treaty has not been modified since its creation (Rome, 25 March 1957) but has simply been adapted to take account of the fusion of the executive bodies of the three original European Treaties and the enlargement with new Member States. The EURATOM Treaty is in existence simultaneously with the 1992 Maastricht Treaty. No changes in the EURATOM Treaty that influence the practical working conditions were brought about in the 1997 intergovernmental conference. This edition of the survey of groups related to the EURATOM Treaty is an update of earlier versions issued in Danish language. It is sponsored by the Nordic Committee for Nuclear Safety Research (NKS) in conjunction with the Swedish Nuclear Power Inspectorate (SKI). The main purpose is to informally provide those circles in the Nordic countries who want to get acquainted with the groups involved in work related to EURATOM with a simplified overview. The present edition is not different from earlier issues in that it contains an outline without the intent to go into details, and without the ambition to be complete. It thus does not represent an official picture of the committees and groups. Nor should it be seen as an organisation chart of related Commission services. The information is mostly based on personal contacts with persons having knowledge from work with the groups in question. The author would be grateful for corrections and suggestions in order to improve the picture given

  11. Euratom framework programme research in reactor safety main achievements of FP-4 ('94-'98), some preliminary results of FP-5 ('98-'02) and prospects for beyond 2002

    Energy Technology Data Exchange (ETDEWEB)

    Goethem, G. van; Martin Bermejo, J.; Zurita, A.; Lemaitre, P. [Commission of the European Communities, Brussels (BE). Directorate General for Science, Research and Development (DG 12)

    2001-07-01

    In this paper an overview is given of the most important aspects of the research activities organised by the European union (EU) in reactor safety, more specifically in the area ''Operational Safety of Existing Installations'', which is one of the 4 areas of the key action Nuclear Fission in the 5th Euratom framework programme (FP-5). In the introduction, a short description is given of the EU needs and the new boundary conditions for Euratom research. In the next 7 sections, the attention is drawn to a series of technical and socio-economical facts, which generate needs at the EU level and hence justify some actions - especially in terms of research - at the Commission level. The following needs have been identified and are proposed for discussion: to maintain the nuclear option open in order to ensure flexibility in energy supply; to maintain scientific and technical competence; to maintain industrial competitiveness and to prepare the next generation of reactors; to maintain a broad nuclear expertise covering both energetic and non-energetic applications; to develop environment-friendly sustainable solutions for the wastes; to share and improve the safety culture amongst the EU countries and the CEECs; and finally, to focus on public benefit and on added European value in Euratom research actions. A brief overview then is given of the European response - in terms of research - offered up to 2002 to contribute to meet some of the above needs, i.e. the Euratom research actions under FP-4 ('94-'98) and FP-5 ('98-'02). As far as the future beyond 2002 is concerned, the challenge to Euratom research is to identify networks of excellence and to reorganize itself in line with the new ERA concept (European research area). Finally conclusions are drawn on the perceived need to improve the fitness-for-purpose of Euratom research actions in the ''changing world'' and to rethink accordingly the organisation of

  12. The German atomic law on trial. The requirements of the EURATOM Nuclear Safety Directive; Deutsches Atomrecht auf dem Pruefstand. Die Anforderungen aus der EURATOM-Richtlinie zur nuklearen Sicherheit

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Dehn, Christian [E.ON Kernkraft GmbH, Hannover (Germany). Nuclear Regulation and Policy

    2016-05-15

    The EURATOM Directive on Nuclear Safety, dated 8 July 2014, is to be transposed into national law, not later than 15 August 2017. This raises the question of whether and to what extent by then the German atomic energy act is adapted to the respective requirements. On national level requirements have to be implemented now, that are already not effective. This includes the introduction of thematic peer reviews and, if necessary, regulations for the independence and effectiveness of the regulatory authorities. Here - but only here - is a need for implementation.

  13. Brexit, Euratom and nuclear proliferation

    International Nuclear Information System (INIS)

    Soedersten, Anna

    2016-01-01

    One of the issues absent from the academic (and public) debate on the United Kingdom's (UK) referendum vote to withdraw from the European Union (EU) (commonly referred to as 'Brexit') is what will happen to the UK's membership in the European Atomic Energy Community (Euratom). The Euratom Treaty was signed in Rome in 1957, together with the European Economic Community (EEC) Treaty. It was concluded for an unlimited period and it establishes a Community that has a separate legal personality from the EU. Thus, the EU and Euratom form two separate, although closely linked entities. Euratom's principal mission is related to the economy, tasked with 'creating the conditions necessary for the speedy establishment and growth of nuclear industries'; in other words, to promote the nuclear industry. This reflects the high expectations for nuclear energy in the 1950's. Some even believed that the development of nuclear energy would trigger an industrial revolution; however, Euratom only came to play a minor role in the European integration process. Despite this, the Euratom Treaty has remained, almost unchanged, since its adoption and is still frequently applied, although it is unclear to what extent it has boosted the nuclear industry. This article has a two-fold purpose. The first purpose is to address the constitutional issue of 'partial membership'. All EU member states are also members of Euratom. It has always been assumed that with membership in the EU also comes a membership in Euratom. But, what about withdrawal? What are the arguments for 'partial membership'? The second purpose of this article is to shed light on some implications of Brexit as it relates to Euratom. The most serious consequences are perhaps found in the area of nuclear non-proliferation. The United Kingdom is one of two nuclear weapon states in the EU (France being the other one). Withdrawal from Euratom means withdrawal from its control system, the system of so-called nuclear safeguards. Under

  14. EURATOM: Development, role, experience

    International Nuclear Information System (INIS)

    Tsalas, S.

    1998-01-01

    Besides description of the historical development of EURATOM and its role in safeguards the paper includes the implementation experience of EURATOM safeguards. Depending on the scope of inspection a set of measures is applied according to the following verification methods: accountancy audit, visual checks, counting and identification, non-destructive measurements, sampling and destructive analysis complemented by containment and surveillance measures. The present staff of the safeguards directorate comprises about 300 persons of which two thirds are inspectors. EURATOM has a solid legal basis for performing safeguards inspections and the necessary infrastructure for inspection support, information treatment and data evaluation. It is a full scope multinational regional safeguards system fulfilling its obligations under EURATOM Treaty and contributing to the successful implementation of the Non-proliferation treaty by satisfying its obligations in the framework of the safeguards agreements with the IAEA

  15. A programme for Euratom safeguards inspectors, used in the assay of plutonium bearing materials by passive neutron interrogation

    International Nuclear Information System (INIS)

    Vocino, V.; Farese, N.; Maucq, T.; Nebuloni, M.

    1991-01-01

    The programme PECC (Passive Euratom Coincidence Counters) has been developed at the Joint Research Center, Ispra by the Euratom Safeguards Directorate, Luxembourg and the Safety Technology Institute, Ispra for the acquisition, evaluation, management and storage of measurements data originating from passive neutron assay of plutonium bearing materials. The software accommodates the implementation of the NDA (Non Destructive Assay) procedures for all types of passive neutron coincidence deployed by the Euratom Safeguards Directorate, Luxembourg

  16. Coordination of Croatian National Legislative with EU Commission Regulation on the Application of Euratom Safeguards

    International Nuclear Information System (INIS)

    Ilijas, B.; Medakovic, S.

    2012-01-01

    Having regard to the Treaty establishing the European Atomic Energy Community (Euratom) in the view of increasing quantities of nuclear materials produced, used, carried and recycled in the Community, and also development of trade in these materials, especially in the scope of the successive enlargements of the EU, it is essential to ensure effectiveness of safeguards. Commission Regulation on the application of Euratom safeguards of 8 February 2005 is a comprehensive regulation dealing with basic technical characteristics and particular safeguard provisions of installations for the production, separation, reprocessing, storage or other use of source material or special fissile material, as well as nuclear material accountancy, transfer between states and some specific provisions. Croatia signed the 'Agreement Between the Republic of Croatia and the International Atomic Energy Agency for the Application of Safeguards in Connection with the Treaty on the Non-proliferation of Nuclear Weapons (NPT)' and a few years later 'Protocol Additional' to this Agreement that stipulates strict obligations of the Republic of Croatia under Safeguards in connection with NPT. Also, in Croatia is on power 'Act on Radiological and Nuclear Safety' which, beside others, establishes measures for ensuring the safe performance of practices involving ionising radiation sources, nuclear activities, radioactive waste disposal and the physical protection of ionising radiation sources and nuclear facilities. But on power is also 'Ordinance on control of the nuclear materials and special equipment' which refers to an old 'Act on nuclear safety', and also takes into account provisions of the NPT and 'Protocol Additional' regarding safeguards. A new ordinance should be promulgated in accordance with new act. As a new act also should be corrected before Croatia joins EU, an extensive job must be done in adjusting Croatian national legislative to Euratom safeguards.(author).

  17. The Euratom informatics architecture

    International Nuclear Information System (INIS)

    Blerot, J.F.; Kschwendt, H.

    1991-01-01

    Open systems and standards in a multi product environment are the EURATOM guidelines. Consequently, the OSI model, UNIX (POSIX) and X/OPEN specifications determine the EURATOM informatic strategy. The major objectives are the development of secured telecommunications, the migration to open systems and the integration of data processing from measurements in the plants to accountancy the headquarters

  18. Annual report of the Association EURATOM/Cea

    International Nuclear Information System (INIS)

    Magaud, Ph.; Le Vagueres, F.

    2002-01-01

    This annual report presents research activities, which have been performed in 2002 by the French EURATOM-Cea association in the frame of the European technology program. The first section describes EFDA (European fusion development agreement) activities and related developments carried out by the association. The second one is dedicated to the underlying technology program and finally the third one presents the inertial confinement fusion activities. In each section the tasks are sorted out according to the EFDA main fields: physics (heating and current drive, remote participation, diagnostics), vessel/in-vessel (vessel/blanket, plasma facing components, remote handling), magnet, tritium breeding and materials (water cooled lithium lead blanket, helium cooled pebble bed blanket, helium cooled lithium lead blanket, reduced activation ferritic martensitic steels, advanced materials, neutron source, fuel cycle), safety and environment, system studies (power plant conceptual studies, socio-economic studies) and JET technology activities. The EURATOM-Cea association is involved in all these studies

  19. Annual report of the Association EURATOM/Cea

    Energy Technology Data Exchange (ETDEWEB)

    Magaud, Ph; Le Vagueres, F

    2002-07-01

    This annual report presents research activities, which have been performed in 2002 by the French EURATOM-Cea association in the frame of the European technology program. The first section describes EFDA (European fusion development agreement) activities and related developments carried out by the association. The second one is dedicated to the underlying technology program and finally the third one presents the inertial confinement fusion activities. In each section the tasks are sorted out according to the EFDA main fields: physics (heating and current drive, remote participation, diagnostics), vessel/in-vessel (vessel/blanket, plasma facing components, remote handling), magnet, tritium breeding and materials (water cooled lithium lead blanket, helium cooled pebble bed blanket, helium cooled lithium lead blanket, reduced activation ferritic martensitic steels, advanced materials, neutron source, fuel cycle), safety and environment, system studies (power plant conceptual studies, socio-economic studies) and JET technology activities. The EURATOM-Cea association is involved in all these studies.

  20. European constitution and EURATOM treaty

    International Nuclear Information System (INIS)

    Heller, W.

    2003-01-01

    The European Council held in Laeken in December 2001 had decided to call a convention preparing the next conference of the heads of state and government which, among other topics, was to deliberate the question of a fully formulated European constitution. Under the presidency of Giscard d'Estaing, all delegates to the European Convention on July 10, 2003 signed the draft treaty for a European constitution. This final document is the basis of the conference of the heads of state and government to begin in October 2003. On this occasion, the draft of a separate chapter on energy could well come up again for examination. This chapter had been introduced only at the end of the deliberations of the convention and adds to the competences of the EU institutions. Also the Euratom Treaty was a topic of the convention preparing the constitution. As the presidency felt that no specific issues had been raised in the Laeken declaration, it is proposed to adapt the Euratom Treaty to the new provisions of the constitution by adding a protocol. This would mean that the European Atomic Energy Community, for the time being, would retain its independent legal status. The contents would have to be examined at some later date. Consequently, the real discussion of the Euratom Treaty is yet to come. Also, the speedy completion of the single market for electricity would make it desirable for the Community to adopt a uniform, positive stance in the use of nuclear power at the best possible safety standards so as to ensure a level playing field. Current events entailing power failures in the United States and the United Kingdom have alerted the public to the problem of the continuity of power supply. This could well be the beginning of a new, unbiased, balanced energy discussion in a bigger Europe. (orig.)

  1. Main outcomes from the EURATOM-ROSATOM ERCOSAM SAMARA parallel projects for hydrogen safety of LWR - 15357

    International Nuclear Information System (INIS)

    Paladino, D.; Kiselev, A.

    2015-01-01

    ERCOSAM and SAMARA are the acronyms for 2 parallel projects co-financed respectively by EURATOM and ROSATOM during the 2010-2014 period with the general aim to advance the knowledge on the phenomenology associated to the hydrogen and steam spreading and stratification in the LWR containment during a severe accident. The important peculiarity of the project was its experimental and analytical investigation of the impact of safety systems such as spray, coolers and PAR (Passive Autocatalytic Recombiners) on the distribution of gas species (hydrogen, steam and air). The main outcomes of the ERCOSAM-SAMARA projects are presented in this paper. The research needs, which could be considered in follow-up activities, are also identified. (authors)

  2. Spain and Portugal facing Euratom. Some considerations in the access of Spain and Portugal to Euratom

    International Nuclear Information System (INIS)

    Corretjer, L.; Lopez Rodriguez, M.

    1985-01-01

    The access of Spain and Portugal to the European Community of Atomic Energy (EURATOM) will give rise to significative consequences and it is a subject which must be thoroughly considered as to its implications regarding the present state of nuclear development in both countries and with regard to their reciprocal relations in nuclear energy matters. To determine such consequences and implications it is necessary, first of all, to analyze what EURATOM is and how it acts, in addition to consider the situation of each of its Member States as to the utilization of nuclear energy. As well, it is necessary to explain the evolution and the present situation of nuclear development in Spain and in Portugal and their mutual relations in this field. In pursuit of such analysis we may determine the possible consequences of their access; this is made bearing in mind each of the aspects in which EURATOM acts, according to the Treaty and the ''acquis communitaire'', and dividing them into common consequences and individual ones for both countries. The whole exposition, which was studied and carried out from an exclusively technical point of view, has a result the deduction of the joint possibilities offered to Spain and Portugal to make use of EURATOM's availabilities and of the joint actions which both countries may achieve to benefit as much as possible from their access to EURATOM. (author)

  3. Safety Training: Basic Safety and Access Courses

    CERN Multimedia

    Antonella Vignes

    2005-01-01

    Objective The purpose of the basic safety courses is to increase awareness for everyone working on the CERN site (CERN staff, associates, outside companies, students and apprentices) of the various existing on-site hazards, and how to recognize and avoid them. Safety course changes The current organization for basic safety courses is changing. There will be two main modifications: the organization of the courses and the implementation of a specific new training course for the LHC machine during the LHC tests and hardware commissioning phase. Organizational changes This concerns the existing basic safety training, currently called level1, level2 and level3. Under the new procedure, a video will be projected in registration building 55 and will run every day at 14.00 and 15.00 in English. The duration of the video will be 50 minutes. The course contents will be the same as the slides currently used, plus a video showing real situations. With this new organization, attendees will systematically follow the...

  4. Safety Training: basic safety and access courses

    CERN Multimedia

    2005-01-01

    Objective The purpose of the basic safety courses is to increase awareness for everyone working on the CERN site (CERN staff, associates, outside companies, students and apprentices) of the various hazards existing on site, and how to recognise and avoid them. Safety course changes The current organisation of basic safety courses is changing. There will be two main modifications: the organisation of the courses and the implementation of a specific new training course for the LHC machine during the LHC tests and hardware commissioning phase. Organisational changes This concerns the existing basic safety training, currently called level 1, level 2 and level 3. Under the new procedure, a video will be projected in registration building 55 and will run every day at 14.00 and 15.00 in English. The duration of the video will be 50 minutes. The course contents will be the same as the slides currently used, plus a video showing real situations. With this new organization, participants will systematically follow...

  5. ETSON views on R and D priorities for implementation of the 2014 Euratom Directive on safety of nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    Van Dorsselaere, Jean-Pierre [IRSN/PSN, Saint-Paul-lez-Durance (France); Mustoe, Jeremy; Power, Steve [Amec Foster Wheeler RSD, Birchwood Park, Warrington (United Kingdom); Adorni, Martina [Bel V, Brussels (Belgium); Schaffrath, Andreas [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany); Nieminen, Anna [VTT Technical Research Centre of Finland Ltd. (Finland)

    2016-11-15

    Following the Fukushima-Daiichi accident in 2011, the Council Directive 2014/87/Euratom has reinforced the previous 2009 Directive that had established a Community framework for the safety of nuclear installations. In particular, one new article introduces a high-level EU-wide safety objective of preventing accidents through defence- in-depth and avoiding radioactive releases outside a nuclear installation. For achieving this objective, the research necessary outcomes are mainly a better knowledge of the involved physical phenomena and its capitalization in methodologies and tools such as simulation codes. ETSON, the European Technical Safety Organisation Network, had already identified in its Position Paper in 2011 the main R and D priorities. The present paper underlines that most of these priorities, with a few updates due to progress of knowledge, remain consistent with the objectives of this new Directive. And it illustrates the ETSON involvement through examples of on-going or planned R and D national and international projects.

  6. Implementation of Council Directive 96/29 EURATOM. Notice to owners, operators and managers of ships, inland waterways craft and fishing vessels, masters, officers and ratings of merchant ships, and skippers and crew of fishing vessels and persons in charge of inland waterway craft

    International Nuclear Information System (INIS)

    2001-01-01

    This Marine Guidance Note draws attention to the obligations under several statutory regulations to ensure compliance with Council Directive 96/29 Euratom of 13 May 1996 laying down basic safety standards for the protection and health of workers and the general public against the dangers arising from ionising radiation. (author)

  7. Inventory of present verification techniques. Viewpoint of EURATOM

    International Nuclear Information System (INIS)

    Kloeckner, W.; Eecken, D. Van der; Gmelin, W.

    1998-01-01

    Starting from the role of Euratom as an established regional safeguards system, an overview is given of verification techniques currently practised by Euratom. In the stage-light of a rapidly changing and complex international safeguards scene, Euratom considers it has an important role to play. Having in mind the possibilities created by accelerating modern technology, recommendations are given for an enhanced use of technological means in safeguards. The viewpoint of Euratom is that the majority of methodologies and techniques in place may very well be copied to or used for a cut-off verification system currently under discussion

  8. The 15th German Atomic Energy Act Amendment to the implementation of the EURATOM nuclear safety directive; Die 15. AtG-Novelle zur Umsetzung der EURATOM-Sicherheits-Richtlinie

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Dehn, Christian [PreussenElektra GmbH, Hannover (Germany)

    2017-06-15

    The 15th German Atomic Energy Act Amendment has now passed the parliamentary legislative procedure with the decision of the Bundestag in the third reading of 30 March 2017. The publication in the Federal Law Gazette (Bundesgesetzblatt) is still pending. The background of the amendment is the addition to the Euratom safeguards directive adopted by the European Council in July 2014. This directive has to be implemented in the national regulations of the EURATOM Member States. However, since most of these supplements were already standard in German atomic law, the regulatory requirements for Germany were low. This is also explicitly stated in the statement to the act.

  9. The roles of Euratom and the IAEA in nuclear non-proliferation - a Euratom view

    International Nuclear Information System (INIS)

    Szymanski, P.

    2013-01-01

    The IAEA safeguards conclusion that all nuclear material has remained in peaceful activities in a State is based on the finding that there are no indications of diversion of declared nuclear material from peaceful activities and no indications of undeclared nuclear material or activities in the State as a whole. The state-level concept that has been introduced by the IAEA in this respect allows and obliges the IAEA to take into account state specific factors to determine the set of safeguards activities to be applied in a State. The effectiveness of the EURATOM regional safeguards systems, its cooperation with the IAEA and its independence from States and operators are among the factors which the IAEA needs to consider in order to apply safeguards in an effective and efficient way. Socio-economic and political factors like the support to international non-proliferation should also be factors in this concept. The intended evolution of the state-level concept by the IAEA then should result in making better use of the activities of EURATOM safeguards. This is possible by the IAEA relying more on the EURATOM activities for the verification of declared nuclear material and the IAEA concentrating on getting assurance on the absence of undeclared materials and activities. Developing a regional-level concept that supplements the state-level concept can contribute to determine the extent to which the IAEA can make better use of EURATOM safeguards in the future. (author)

  10. Fusion technology. Annual report of the Association CEA/EURATOM 1997

    International Nuclear Information System (INIS)

    Magaud, P.; Le Vagueres, F.

    1998-01-01

    The research and development work performed by the French EURATOM-CEA Association for fusion technology is part of the Fusion Programme of the European Community. This report compiles the work carried out during the year 1997 as follows: The ITER CEA activities and related developments are described in the first section (plasma facing components, vacuum vessel and shield, magnets, remote handling, safety); The second part is dedicated to the Long Term activities as Blankets and material developments, long term safety, socio-economic problem; The Underlying Technology activities are compiled in the third part of this report (plasma facing components, vacuum vessel and shield, magnets, remote handling, safety); And the fourth part describes the inertial confinement studies. (K.A.)

  11. Fusion technology. Annual report of the Association CEA/EURATOM 1997

    Energy Technology Data Exchange (ETDEWEB)

    Magaud, P.; Le Vagueres, F

    1998-12-31

    The research and development work performed by the French EURATOM-CEA Association for fusion technology is part of the Fusion Programme of the European Community. This report compiles the work carried out during the year 1997 as follows: The ITER CEA activities and related developments are described in the first section (plasma facing components, vacuum vessel and shield, magnets, remote handling, safety); The second part is dedicated to the Long Term activities as Blankets and material developments, long term safety, socio-economic problem; The Underlying Technology activities are compiled in the third part of this report (plasma facing components, vacuum vessel and shield, magnets, remote handling, safety); And the fourth part describes the inertial confinement studies. (K.A.)

  12. Fusion technology. Annual report of the Association CEA/EURATOM 1997

    Energy Technology Data Exchange (ETDEWEB)

    Magaud, P; Le Vagueres, F

    1999-12-31

    The research and development work performed by the French EURATOM-CEA Association for fusion technology is part of the Fusion Programme of the European Community. This report compiles the work carried out during the year 1997 as follows: The ITER CEA activities and related developments are described in the first section (plasma facing components, vacuum vessel and shield, magnets, remote handling, safety); The second part is dedicated to the Long Term activities as Blankets and material developments, long term safety, socio-economic problem; The Underlying Technology activities are compiled in the third part of this report (plasma facing components, vacuum vessel and shield, magnets, remote handling, safety); And the fourth part describes the inertial confinement studies. (K.A.)

  13. The EURATOM research and training programme in its wider context

    International Nuclear Information System (INIS)

    Deffrennes, M.

    2008-01-01

    In this presentation research and training activities of the EURATOM are reviewed. This review consists of the following parts: Setting the scene; EURATOM research framework programme; Sustainable nuclear energy technology platform; Strategic energy technology plan; EURATOM FP and international cooperation.

  14. Education, Training and the Euratom Framework Programme

    International Nuclear Information System (INIS)

    Jouve, A.; Van Goethem, G.; )

    2009-01-01

    The maintaining of knowledge implies education and training programmes that ensure not only the instruction of students and trainees but also the transfer of knowledge across generations. This is especially important for research in the Euratom field in the present context of nuclear renaissance. DG-Research is responsible for the implementation of the Euratom Framework Programme on nuclear research and training. Through these activities, it is striving to promote the integration of national radiation protection research programmes in Europe, including education and training in radiation protection. These education and training activities supported in the Euratom Programme are helping to establish top-quality teaching modules assembled into masters programmes or higher-level training packages jointly qualified and mutually recognised across the EU. This Euratom approach is entirely in line with the Bologna process. This paper presents and discusses the various actions in education and training in radiation protection supported by DG- Research. (authors)

  15. 46 CFR 129.220 - Basic safety.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Basic safety. 129.220 Section 129.220 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS General Requirements § 129.220 Basic safety. (a) Electrical equipment and installations must be suitable...

  16. International need of discussion concerning the implementation of the guideline 2013/59/Euratom; Internationaler Diskussionsbedarf bei der Umsetzung der Richtlinie 2013/59/Euratom

    Energy Technology Data Exchange (ETDEWEB)

    Brendebach, Boris [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Koeln (Germany). Fachgebiet ' ' Stilllegung' '

    2017-10-01

    The implementation of the requirements of the guideline 2014/59/Euratom (radiation protection safety standards) is challenging for a number of EU member states. Several initiatives were introduced to support the member states accomplishing these challenges. In the frame of the initiatives indications were identified with respect to the need of harmonization for the embodiment of the regulations and the need of the recommendations for the implementation of the requirements. The contribution describes several initiatives and demonstrates exemplary the extracted insights.

  17. Implementation of ICRP-60, BBS-115 and the patient directives in radiation safety regulations of TAEK

    International Nuclear Information System (INIS)

    Okyar, H.B.; Vural, M.

    2001-01-01

    The use of radiation sources offers a wide range of benefits throughout the world in medicine, research and industry. Precautions are, however, necessary in order to limit the exposure of persons to the radiation that is emitted. The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS) were published as IAEA Safety Series No 115 in 1996. This publication marks the culmination of efforts that have continued over the past decades towards harmonization of radiation protection and safety standards internationally. The purpose of the Standards is to establish basic requirements for the protection against the risks associated with exposure to ionizing radiation and for the safety of radiation sources that may deliver such exposure. The Standards are based primarily on the recommendations of the ICRP which is a non-governmental scientific organization to establish basic principles and recommendations for radiation protection; the most recent recommendations of the ICRP were issued in 1991. In 1997, the Council of the European Union published a new directive laying down the general principles of the radiation protection of individuals undergoing exposures to ionizing radiations related to medical exposures (Directive 97/43 Euratom). Directive 97/43 Euratom is a supplement to Directive 96/29 Euratom on the basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionizing radiations. The European Directives 96/29-97/43 Euratom and BSS-115 constitute a complete and coherent set of regulatory measures on radiation protection. In Turkey, the infrastructure exists to account for ionizing radiation sources by, for example, a system of licensing, legislative requirements on the user to keep appropriate records and perhaps to report to the TAEK on a periodic basis or, in the case of imported items (including re-export procedures) and customs

  18. Occupational radiation exposure in international recommendations on radiation protection: Basic standards under review

    International Nuclear Information System (INIS)

    Kraus, W.

    1996-01-01

    The ICRP publication 60 contains a number of new recommendations on the radiological protection of occupationally exposed persons. The recommendations have been incorporated to a very large extent in the BSS, the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources, a publication elaborated by the IAEA in cooperation with many other international organisations, and in the Euratom Basic Safety Standards (EUR) to be published soon. However, there exist some considerable discrepancies in some aspects of the three publications. The ICRP committee has set up a task group for defining four general principles of occupational radiation protection, and a safety guide is in preparation under the responsibility of the IAEA. ''StrahlenschutzPraxis'' will deal with this subject in greater detail after publication of these two important international publications. The article in hand discusses some essential aspects of the recommendations published so far. (orig.) [de

  19. Basic safety principles for nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Shiguan

    1989-01-01

    To ensure the safety operation of nuclear power plant, one should strictly adhere to the implelmentation of safety codes and the establishment of nuclear safety code system, as well as the applicable basic safety principles of nuclear power plants. This article briefly introduce the importance of nuclear codes and its economic benefits and the implementation of basic safety principles to be accumulated in practice for many years by various countries

  20. How current are EURATOM provisions on nuclear supply and ownership in view of the European Union's enlargement?

    International Nuclear Information System (INIS)

    Bouquet, A.

    2001-01-01

    This contribution is mainly based on two papers presented at nuclear law conferences in 1998 and 2001, respectively setting out the special provisions governing supplies of nuclear fuels to the European Union (Chapter 6 of the Treaty establishing the European Atomic Energy Community, hereinafter referred to as the 'Euratom Treaty') and the right of ownership of the Euratom Community (Chapter 8 of the Euratom Treaty). These special Treaty provisions cannot be compared to anything observed in other legal systems. Hence, with their introduction into the legal systems of the new European Union member states, the question arises as to how current these provisions are and how they have been implemented in practice. Two of the fundamental objectives of the Euratom Treaty most relevant in this field are to ensure that all users in the Community receive a regular and equitable supply of ores and nuclear fuels (Article 2d Euratom) and to exercise the Community's right of ownership with respect to special fissile materials (Article 2f Euratom). Furthermore, the objectives of ensuring the establishment of the basic installations necessary for the development of nuclear energy in the Community (Article 2c Euratom), of safeguarding that material is not diverted from its intended use (Article 2e Euratom), of establishing a common market (Article 2g Euratom) and of maintaining external relations (Article 2h Euratom) can be relevant to nuclear trade and to the Supply Agency's action. The Treaty's philosophy with regard to supply and ownership is the result of a delicate compromise between public authority interventionism and a more free market approach. The interventionism resulted in a monopolistic system of supplies (exclusive right to conclude contracts, right of option, public authority ownership), whereas the free market approach brought about the commercial organisation of the entity responsible for the implementation of supply provisions (separate legal entity, market

  1. Challenges for EURATOM research and training in the frame of the European 'Higher Education' And 'Research' areas

    International Nuclear Information System (INIS)

    Goethem, G. Van

    2009-01-01

    The paper is intended to answer two major questions of the modern society: 1) What are the challenges for EURATOM Research and Training in the frame of the European 'Higher Education' and 'Research' areas? (main stakeholders); 2) What kind of response is offered by the EURATOM RD and DD and E and T programmes in nuclear fission and radiation protection? (scientific and societal impact). The actions of the research policy in the EU are not conducted for the sake of acquiring Knowledge as a goal per se, but as a support to other EU policies, in particular, the Energy policy. In the area of fission and radiation protection, this Community policy implies the co-operation of all stakeholders (most of them participate in the EURATOM programmes), that is: research organisations (public and private, power and medical applications, etc); systems suppliers (e.g. nuclear vendors, engineering companies, etc); energy providers (e.g. electric utilities, heat and/or hydrogen vendors, etc); nuclear regulatory bodies and associated technical safety organizations (TSO); education and training (E and T) institutions, and, in particular, universities; civil society and the international institutional framework (IAEA and OECD/NEA). The emphasis in the paper is on the improvements all along the history of nuclear fission power (Generations I, II and III) as well as on the visionary innovation proposed by the 'Generation IV International Forum' (GIF). International research (in particular, EURATOM), in this area is guided by the four 'GIF Technology Goals for industry and society', namely: sustainability: e.g. enhanced fuel utilisation and optimal waste management; economics: e.g. minimisation of costs of MWe installed and MWh generated; safety and reliability: e.g. robust safety architecture, no need for off-site measures; proliferation resistance and physical protection: e.g. absence of separated Pu. EURATOM research and training is presented in the broader context of the new EU policy

  2. Revisited. Euratom's ownership of special fissile materials

    International Nuclear Information System (INIS)

    Pelzer, Norbert

    2015-01-01

    Among all Treaties on the Foundation of the European Community, seemingly, the Euratom Treaty ist the most unobtrusive one having even nearly been declared dead occasionally. For the opponents of nuclear energy the treaty is a thorn in their side because it aims for the peaceful exploitation of nuclear energy. Actually, the treaty likewise aims for the protection of dangers of nuclear energy and encloses a bundle of collective control instruments. The protective purpose provides the community with a strong position in numerous fields towards nuclear energy users including the right to intervene in the operations of nuclear facilities. The communitie's position is further strengthened by the communitie's ownership on special fissile materials. The EAEC Treaty determines: 'Special fissile materials are owned by the community'. The material content of Euratom's ownership is limited by Article 87 of the EAEC Treaty: Unlimited right of use and consumption is granted to the properly possessors unless obligations of the Euratom Treaty oppose. Inherently, the community does not have these rights. It was asked what would be left to the owner Euratom if the properly possessor is entitled to unlimited right of use and even right of consumption.

  3. A programme for Euratom safeguards inspectors, used in the assay of high enriched (H.E.U.) and low enriched (L.E.U.) uranium fuel materials by active neutron interrogation

    International Nuclear Information System (INIS)

    Vocino, V.; Farese, N.; Maucq, T.; Nebuloni, M.

    1991-01-01

    The programme AECC (Active Euratom Coincidence Counters) has been developed at the Joint Research Center, Ispra by the Euratom Safeguards Directorate, Luxembourg and the Safety Technology Institute, Ispra for the acquisition, evaluation, management and storage of measurement data originating from active neutron interrogation of HEU and LEU fuel materials. The software accommodates the implementation of the NDA (Non Destructive Assay) procedures for the Active Well Coincidence Counters and Active Neutron Coincidence Counters deployed by the Euratom Safeguards Directorate, Luxembourg

  4. EURATOM research and training programme: towards a new way of developing-teaching science, closer to the end-users

    International Nuclear Information System (INIS)

    Van Goethem, G.

    2015-01-01

    EURATOM is not isolated in the European Energy policy. Nuclear fission is part of the European energy mix, together with renewable energy sources (Article 194 of Lisbon Treaty, 2007).Research, innovation and education are at the heart of the EURATOM Treaty 1 (Rome, 1957), dedicated to peaceful applications of nuclear fission. One of the main objectives of the EURATOM Treaty is to contribute to the sustainability of nuclear energy by developing and sharing appropriate knowledge, skills and proficiencies in nuclear fission and radiation protection. EURATOM programmes 2 consist in end-user driven projects in selected topics, gathering the best research organisations and structured as follows: -) research and innovation projects which contribute to generating advanced knowledge and scientific understanding of interest to industrial applications, -) education and training projects, including continuous professional development, which contribute to developing skills and proficiencies. Fission technologies can be transmitted to the next generations only within the framework of a responsible strategy regarding waste management and/or recycling of fissile and fertile materials. In this context, EURATOM research and training programmes insist, in particular, on the implementation of geological disposal for spent fuel and high-level radioactive waste and/or on Generation-IV developments aiming at efficient resource utilisation and waste minimisation. Safety improvements in Generation-II (e.g. related to long-term operation) and in Generation-III (e.g. related to severe accident management) are also addressed. As regards radiation protection research, the emphasis of EURATOM programmes is on better quantification of risks at low dose and how they vary between individuals (of particular interest in radio-diagnosis and radio-therapy). Special efforts are dedicated to a common nuclear safety and radiation protection culture, based on the highest achievable standards. Also

  5. Guidelines for authorities and operators from the EURATOM regulation according to nuclear safety

    International Nuclear Information System (INIS)

    Karpenstein, Ulrich

    2010-01-01

    At 22nd July, 2009 the guideline 2009/71/EURATOM on a community framework for the nuclear security of nuclear installations comes into effect. A lot of regulations of this guideline intervene very deeply in the competencies of the member states. In acknowledgment of the national responsibility for nuclear security, the guideline grants large free space to the member states. Thereby, the guideline aims at a general legal framework and a mutual learning process off.

  6. Challenges of the EURATOM basic standards implementation in Germany; Herausforderungen bei der Umsetzung der Euratom-Grundnormen in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Akbarian, G.S.; Vogel, J. [Bundesministerium fuer Umwelt, Naturschutz und Reaktorsicherheit, Bonn (Germany)

    2013-07-01

    The transposition of the new Council Directive laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation will entail a comprehensive revision of the German Radiation Protection Ordinance, the X-Ray Ordinance and the Precautionary Radiation Protection Act. This is, inter alia, due to the treatment of practices involving naturally-occurring radioactive material as planned exposure situations; the requirement to establish dose constraints for occupational, public and - partly - medical exposure; the new provisions against indoor exposure to radon in dwellings and at workplaces; new provisions on building materials emitting ionizing radiation and the very detailed provisions on emergency. Particularly those areas for which also at international level a need to address radiation protection has been identified will benefit from the new legislation. (orig.)

  7. Euratom innovation in nuclear fission: Community research in reactor systems and fuel cycles

    International Nuclear Information System (INIS)

    Goethem, G. van; Hugon, M.; Bhatnagar, V.; Manolatos, P.; Deffrennes, M.

    2007-01-01

    The following questions are naturally at the heart of the current Euratom research and training framework programme:(1)What are the challenges facing the European Union nuclear fission research community in the short (today), medium (2010) and long term (2040)? (2)What kind of research and technological development (RTD) does Euratom offer to respond to these challenges, in particular in the area of reactor systems and fuel cycles? In the general debate about energy supply technologies there are challenges of both a scientific and technological (S/T) as well as an economic and political (E/P) nature. Though the Community research programme acts mainly on the former, there is nevertheless important links with Community policy. These not only exist in the specific area of nuclear policy, but also more generally as is depicted in the following figure. It is shown in the particular area of nuclear fission, to what extent Euratom research, education and innovation ('Knowledge Triangle' in above figure) respond to the following long-term criteria: (1) sustainability, (2) economics, (3) safety, and (4) proliferation resistance. Research and innovation in nuclear fission technology has broad and extended geographical, disciplinary and time horizons:- the community involved extends to all 25 EU Member States and beyond; - the research assembles a large variety of scientific disciplines; - three generations of nuclear power technologies (called II, III and IV) are involved, with the timescales extending from now to around the year 2040. To each of these three generations, a couple of challenges are associated (six in total):- Generation II (1970-2000, today): security of supply+environmental compatibility; - Generation III (around 2010): enhanced safety and competitiveness (economics); - Generation IV (around 2040): cogeneration of heat and power, and full recycling. At the European Commission (EC), the research related to nuclear reactor systems and fuel cycles is

  8. Radiation protection and safety of radiation sources international basic safety standards

    CERN Document Server

    International Atomic Energy Agency. Vienna

    2014-01-01

    The Board of Governors of the IAEA first approved Basic Safety Standards in June 1962; they were published by the IAEA as IAEA Safety Series No. 9. A revised edition was issued in 1967. A third revision was published by the IAEA as the 1982 Edition of IAEA Safety Series No. 9 ; this edition was jointly sponsored by the IAEA, ILO, OECD/NEA and the WHO. The next edition was International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources, published by the IAEA as IAEA Safety Series No. 115 in February 1996, and jointly sponsored by the FAO, IAEA, ILO, OECD/NEA, PAHO and the WHO.

  9. The 1987-1988 progress report of the CEA-Euratom Association Research Laboratory

    International Nuclear Information System (INIS)

    1989-05-01

    The progress report of the CEA-Euratom Association Research Group, concerning 1987 and 1988 activities, is presented. The report involves the work carried out for assembling the Tore Supra system. The different components and the operating modes are described. The report includes: the Tore Supra construction and running, theoretical work, numerical calculations and results, the tritium technology, safety studies, supraconductors and bobbins. The Tore Supra contributions to the JET program are given [fr

  10. European Radiation Protection Course - Basics

    International Nuclear Information System (INIS)

    Massiot, Philippe; Ammerich, Marc; Viguier, Herve; Jimonet, Christine; Bruchet, Hugues; Vivier, Alain; Bodineau, Jean-Christophe; Etard, Cecile; Metivier, Henri; Moreau, Jean-Claude; Nourredine, Abdel-Mijd

    2014-01-01

    Radiation protection is a major challenge in the industrial applications of ionising radiation, both nuclear and non-nuclear, as well as in other areas such as the medical and research domains. The overall objective of this textbook is to participate to the development of European high-quality scheme and good practices for education and training in radiation protection (RP), coming from the new Council Directive 2013/59/Euratom laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation. These ERPTS (European Radiation Protection Training Scheme) reflects the needs of the Radiation Protection Expert (RPE) and the Radiation Protection Officer (RPO), specifically with respect to the Directive 2013/59/Euratom in all sectors where ionising radiation are applied. To reflect the RPE training scheme, six chapters have been developed in this textbook: Radioactivity and nuclear physics; Interaction of ionising radiation with matter; Dosimetry; Biological effects of ionising radiation; Detection and measurement of ionising radiation; Uses of sources of ionising radiation. The result is a homogeneous textbook, dealing with the ERPTS learning outcomes suggested by ENETRAPII project (European Network on Education and Training in Radiological Protection II) from the 7. Framework Programme. A cyber-book is also part of the whole training material to develop the concept of 'learning more' (http://www.rpe-training.eu). The production of this first module 'basics' training material, in the combined form of a textbook plus a cyber-book as learning tools, will contribute to facilitate mutual recognition and enhanced mobility of these professionals across the European Union. (authors)

  11. Annual report of the Association EURATOM-Cea 2004 (executive summary)

    International Nuclear Information System (INIS)

    2004-01-01

    Progress in fusion technology is constant over the years and this report once again highlights a number of important steps that have been accomplished in this domain. This document is the executive summary of the full annual report, summarizing activities performed by the EURATOM-Cea association. This report has been organized into 10 issues: 1) physics integration, 2) reactor vessel, 3) plasma facing components, 4) remote handling, 5) magnets structures, 6) tritium breeding blankets, 7) structural material, 8) safety and environment, 9) system study, and 10) ITER site preparation

  12. Annual report of the Association EURATOM-Cea 2005 (executive summary)

    International Nuclear Information System (INIS)

    2005-01-01

    Progress in fusion technology is constant over the years and this report once again highlights a number of important steps that have been accomplished in this domain. This document is the executive summary of the full annual report, summarizing activities performed by the EURATOM-Cea association. This report has been organized into 10 issues: 1) physics integration, 2) reactor vessel, 3) plasma facing components, 4) remote handling, 5) magnets structures, 6) tritium breeding blankets, 7) structural material, 8) safety and environment, 9) system study, and 10) ITER site preparation

  13. Criticality safety basics, a study guide

    Energy Technology Data Exchange (ETDEWEB)

    V. L. Putman

    1999-09-01

    This document is a self-study and classroom guide, for criticality safety of activities with fissile materials outside nuclear reactors. This guide provides a basic overview of criticality safety and criticality accident prevention methods divided into three parts: theory, application, and history. Except for topic emphasis, theory and history information is general, while application information is specific to the Idaho National Engineering and Environmental Laboratory (INEEL). Information presented here should be useful to personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. However, the guide's primary target audience is fissile material handler candidates.

  14. Criticality safety basics, a study guide

    International Nuclear Information System (INIS)

    Putman, V.L.

    1999-01-01

    This document is a self-study and classroom guide, for criticality safety of activities with fissile materials outside nuclear reactors. This guide provides a basic overview of criticality safety and criticality accident prevention methods divided into three parts: theory, application, and history. Except for topic emphasis, theory and history information is general, while application information is specific to the Idaho National Engineering and Environmental Laboratory (INEEL). Information presented here should be useful to personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. However, the guide's primary target audience is fissile material handler candidates

  15. ''Brexit means Brexit''. Also a British withdrawal of the EURATOM treaty?; ''Brexit means Brexit''. Exit auch fuer den EURATOM-Vertrag?

    Energy Technology Data Exchange (ETDEWEB)

    Feldmann, Ulrike

    2016-08-15

    In a referendum on 23 June 2016, 51.9 % of the British voters decided to leave the EU. The question did not include explicitly the exit from the EURATOM Treaty (EAV). Since the 2009 Lisbon Treaty the Euratom Community is a supranational organisation of the new EU. This raises the question whether the exit of Britain from the EU also means an exit from the Euratom treaty.

  16. Setting up decommissioning funds for nuclear facilities - a competence problem for EURATOM

    International Nuclear Information System (INIS)

    Danwitz, Th. von

    2003-01-01

    The nuclear package presented by the European Commission in the autumn of 2002 has added considerable practical significance to the problem of the vertical limits of competence between the Community and its member states within the framework of the Euratom Treaty. The question most important to Germany is the authority of the European Atomic Energy Community to oblige its member states to set up funds for financing the decommissioning of nuclear facilities. As the Euratom Treaty contains no explicit competences of Euratom for regulations of this type, the article examines the content and range of Art. 30 ff. of the Euratom Treaty, the unwritten authority resulting from factual connections and the nature of the problems involved, looks at the importance of international agreements as far as legal competences are implied, and deals with a possible competence based on the right to amend the Treaty under Art. 203, Euratom Treaty. (orig.) [de

  17. FP-4 and FP-5 Euratom research activities in the field of plant life management

    International Nuclear Information System (INIS)

    Lemaitre, P.; Goethem, G. van

    2001-01-01

    In this paper an overview is given of the European Union (EU) Euratom research conducted through shared cost and concerted actions in the field of plant life management. After a general introduction on the organisation of the research framework programmes the achievements of the 4th framework programme (FP-4/1994-1998) and the activities under the 5th framework programme (FP-5/1999-2002) in the field of plant life management are presented and discussed in detail. Besides technological safety requirements, socio-economic aspects are becoming increasingly important due to the level of public and political acceptance and to the economic pressure of deregulated electricity markets. It is shown that research conducted in the Euratom framework may contribute to meet these requirements, thereby maintaining nuclear power as a competitive and sustainable option for the energy policy of the European Union. (author)

  18. Basic Safety Standards for Radiation Protection

    International Nuclear Information System (INIS)

    1962-01-01

    Pursuant to the provisions of its Statute relevant to the adoption and application of safety standards for protection against radiation, the Agency convened a panel of experts which formulated the Basic Safety Standards set forth in this publication. The panel met under the chairmanship of Professor L. Bugnard, Director of the French Institut National d'Hygiene, and representatives of the United Nations and of several of its specialized agencies participated in its work. The Basic Safety Standards thus represent the result of a most careful assessment of the variety of complex scientific and administrative problems involved. Nevertheless, of course, they will need to be revised from time to time in the light of advances in scientific knowledge, of comments received from Member States and of the work of other competent international organizations. The Agency's Board of Governors in June 1962 approved the Standards as a first edition, subject to later revision as mentioned above, and authorized Director General Sigvard Eklund to apply the Standards in Agency and Agency-assisted operations and to invite Governments of Member States to take them as a basis in formulating national regulations or recommendations on protection against the dangers arising from ionizing radiations. It is mainly for this last purpose that the Basic Safety Standards are now being published in the Safety Series; but it is hoped that this publication will also interest a much wider circle of readers.

  19. Radiation protection and safety in medical use of ionising radiation in Republic of Bulgaria - Harmonisation of the national legislation with Euratom directives

    International Nuclear Information System (INIS)

    Ingilizova, K.; Vassileva, J.; Rupova, I.; Pavlova, A.

    2005-01-01

    From February 2002 to November 2003 the National Centre of Radiobiology and Radiation Protection conducted a PHARE twinning project 'Radiation Protection and Safety at Medical Use of Ionising Radiation'. The main purposes of the project were the harmonisation of Bulgarian legislation in the field of radiation protection with EC Directives 96/29 and 97/43 Euratom, and the establishment of appropriate institutional infrastructure and administrative framework for their implementation. This paper presents the main results of the project: elaboration of Ordinance for Protection of Individuals from Medical Exposure; performance of a national survey of distribution of patient doses in diagnostic radiology and of administered activities in nuclear medicine and establishment of national reference levels for the most common diagnostic procedures. (authors)

  20. Licensee responsibility for nuclear power plant safety

    International Nuclear Information System (INIS)

    Schneider, Horst

    2010-01-01

    Simple sentences easy to grasp are desirable in regulations and bans. However, in a legal system, their meaning must be unambiguous. Article 6, Paragraph 1 of the EURATOM Directive on a community framework for the nuclear safety of nuclear facilities of June 2009 states that 'responsibility for the nuclear safety of a nuclear facility is incumbent primarily on the licensee.' The draft 'Safety Criteria for Nuclear Power Plants, Revision D, April 2009' of the German Federal Ministry for the Environment, Nature Conservation, and Nuclear Safety (BMU) (A Module 1, 'Safety Criteria for Nuclear Power Plants: Basic Safety Criteria' / '0 Principles' Paragraph 2) reads: 'Responsibility for ensuring safety rests with the licensee. He shall give priority to compliance with the safety goal over the achievement of other operational objectives.' In addition, the existing rules and regulations, whose rank is equivalent to that of international regulations, assign priority to the safety goal to be pursued by the licensee over all other objectives of the company. The operator's responsibility for nuclear safety can be required and achieved only on the basis of permits granted, which must meet legal requirements. The operator's proximity to plant operation is the reason for his 'primary responsibility.' Consequently, verbatim incorporation of Article 6, Paragraph 1 of the EURATOM Directive would only be a superscript added to existing obligations of the operator - inclusive of a safety culture designed as an incentive to further 'the spirit of safety-related actions' - without any new legal contents and consequences. In the reasons of the regulation, this would have to be clarified in addition to the cryptic wording of 'responsibility.. primarily,' at the same time expressing that operators and authorities work together in a spirit of openness and trust. (orig.)

  1. Defining safety goals. 2. Basic Consideration on Defining Safety Goals

    International Nuclear Information System (INIS)

    Hakata, T.

    2001-01-01

    The purpose of this study is to develop basic safety goals that are rational and consistent for all nuclear facilities, including nuclear power plants and fuel cycle facilities. Basic safety goals (risk limits) by an index of radiation dose are discussed, which are based on health effects of detriment and fatality and risk levels presumably accepted by society. The contents of this paper are the personal opinions of the author. The desirable structure of safety goals is assumed to be 'basic safety goals plus specific safety goals (or supplemental safety goals) for each sort of facility, which reflects their characteristics'. The requisites of the basic safety goals must include (a) rational bases (scientific and social), (b) comprehensiveness (common to all sorts of nuclear facilities covering from normal to accidental conditions), and (c) applicability. To meet the requirements, the basic safety goals might have to be a risk profile expression by an index of radiation dose. The societal rationality is consideration of absolute risk levels (10 -6 or 10 -7 /yr) and/or relative risk factors (such as 0.1% of U.S. safety goals) that the general public accepts as tolerable. The following quantitative objectives are adopted in this study for protection of average individuals in the vicinity of a nuclear facility: 1. The additive annual radiation dose during normal operation must be -4 /yr (health detriment), 2x10 -6 /yr (latent cancer and severe hereditary effects), and 10 -7 /yr (acute fatality) from the statistics in Japan. The radiation effects on human beings are determined by recommendations of UNSCEAR (Ref. 1) and ICRP. The health effects considered are non-severe stochastic health detriment, i.e., detectable opacities of lens of eye (threshold 5 0.5 to 2 Sv), depression of hematopoiesis of bone marrow (0.5 Sv), and depression of reproductive capability (temporary sterility of testes ) (0.15 Sv). The LD 50/60 of acute fatality is ∼4 Sv, and fatalities by latent

  2. Nuclear data for waste transmutation in the EURATOM RTD fifth framework programme

    International Nuclear Information System (INIS)

    Bhatnagar, V.P.; Hugon, M.

    2002-01-01

    For the design of an Accelerator Driven Sub-critical System (ADS), nuclear cross section data are required over a wide energy range for the spallation target and structural materials. The paper summarises the EURATOM RTD Fifth Framework (FP5) Programme structure, nuclear data projects and the international collaboration in this field including that with International Science and Technology Centre (ISTC), Moscow. Two shared cost projects (HINDAS, total budget: 3.26 MEuro and n TOF ND ADS, 6.52 MEuro) in the EURATOM FP5 Programme aim to provide the above required data by performing experiments at most of the major accelerator facilities across Europe. The first project, HINDAS, will carry out basic cross section measurements, nuclear model simulations and data evaluations in the 20-200 MeV energy region and beyond for iron, lead and uranium. The second project, n TOF ND ADS, aims at the production, evaluation and dissemination of neutron cross sections for most of the radioisotopes (actinides and long-lived fission products) that are being considered for transmutation in the energy range from 1 eV up to 250 MeV. (author)

  3. Problems encountered in embodying the principles of ICRP-26 and the revised IAEA safety standards into UK national legislation

    International Nuclear Information System (INIS)

    Beaver, P.F.

    1979-01-01

    This paper describes the United Kingdom procedures and format for safety legislation and goes on to show how the necessary legislation for radiological protection will fit into the general framework. The United Kingdom, as a member of the European Community and EURATOM, is bound to implement the Euratom Directive on radiological protection within the next few years. The latest draft of the Directive takes account of the recommendations of ICRP-26 and further, a recent draft of the revised IAEA Basic Safety Standards is a composite of both the Directive and ICRP-26. Thus, the effect of embodying the principles of the Directive is to embody the principles of ICRP-26 and the Basic Safety Standards. Some of the problems which have been met are described and in particular there is discussion of the problems arising from the incorporation of the three ICRP-26 facets of dose control, namely justification, optimization and limitation, into a legislative package. The UK system of evolving safety legislation now requires considerable participation by all the parties affected (or by their representatives). This paper indicates that the involvement of persons affected, coupled with a legislative package which consists of a hierarchy of (a) regulations; (b) codes of practice; and (c) guidance notes, will result in the fundamental principles of ICRP-26 being incorporated into UK legislation in a totally acceptable way. (author)

  4. Changes in Polish law related to the implementation of COUNCIL DIRECTIVE 2013/59/EURATOM of 5 December 2013

    Science.gov (United States)

    Wołoszczuk, Katarzyna; Skubacz, Krystian; Podgórska, Zuzanna

    2018-01-01

    Radon is an invisible, naturally occurring radioactive noble gas. According to the WHO report, it is the most important cause of lung cancer after smoking [1]. Recent epidemiological studies show that a statistically significant increase in the risk of lung cancer already occurs as a result of prolonged exposure to radon inside rooms where the concentration is at 100 Bq/m3 and increases by 16% per 100 Bq/m3 increase (considering a prolonged exposure period). For this reason, the Council Directive 2013/59/Euratom (BSS) [2] establishing the basic safety standards for the protection against the hazards related to ionizing radiation, that was passed in 2013, pays particular attention to issues related to radon exposure. BSS reduce radon concentration limits in workplaces to 300 Bq/m3. According to the regulations in force, the BSS must be implemented in the Polish Atomic Law no later than 6th February 2018.

  5. The main requirements of the International Basic Safety Standards

    International Nuclear Information System (INIS)

    Webb, G.A.M.

    1998-01-01

    The main requirements of the new international basic safety standards are discussed, including such topics as health effects of ionizing radiations, the revision of basic safety standards, the requirements for radiation protection practices, the requirements for intervention,and the field of regulatory infrastructures. (A.K.)

  6. Euratom research and training in generation IV systems with emphasis on V/HTR

    International Nuclear Information System (INIS)

    Goethem, G. van; Manolatos, P.; Fuetterer, M.

    2006-01-01

    In this overview paper, the following questions are addressed: (1) What are the challenges facing the European Union nuclear fission research community in the short (today), medium (2010) and long term (2040)? (2) What kind of research and technological development (RTD) does Euratom offer to respond to these challenges, in particular in the area of reactor systems and fuel cycles? In the general debate about energy supply technologies there are challenges of both a scientific and technological (S/T) as well as an economic and political (E/P) nature. Though the Community research programme acts mainly on the former, there is nevertheless important links with Community policy. These not only exist in the specific area of nuclear policy. It is shown in the particular area of nuclear fission, to what extent Euratom research, education and innovation ('Knowledge Triangle: Education, Research, and Innovation') respond to the S/T challenges: (1) sustainability, (2) economics, (3) safety, and (4) proliferation resistance. At the European Commission (EC), the research related to nuclear reactor systems and fuel cycles is principally under the responsibility of the 2 Directorates Generals (DG) DG Research (RTD, located in Brussels), which implements and manages the programme of 'indirect actions', and the DG Joint Research Centre (JRC, headquarters in Brussels and 7 scientific institutes in 5 Member States) which carries out 'direct actions' in their own laboratories. In this HTR-2006 introductory paper, the emphasis is on the indirect and direct actions of the 6 th Euratom research framework programme 2003-2006, FP-6, with special emphasis on V/HTR Generation IV research. (orig.)

  7. Standardization activities of the Euratom Neutron Radiography Working Group

    International Nuclear Information System (INIS)

    Domanus, J.

    1982-06-01

    In 1979 a working group on neutron radiography was formed at Euratom. The purpose of this group is the standardization of neutron radiographic methods in the field of nuclear fuel. Activities of this Neutron Radiography Working Group are revised. Classification of defects revealed by neutron radiography is illustrated in a special atlas. Beam purity and sensitivity indicators are tested together with a special calibration fuel pin. All the Euratom neutron radiography centers will perform comparative neutron radiography with those items. The measuring results obtained, using various measuring aparatus will form the basis to formulate conclusions about the best measuring methods and instruments to be used in that field. Besides the atlas of neutron radiographic findings in light water reactor fuel, the Euratom Neutron Radiogrphy Working Group has published a neutron radiography handbook in which the neutron radiography installations in the European Community are also described. (author)

  8. The Euratom supply agency. A small ENERGY UNION?

    Energy Technology Data Exchange (ETDEWEB)

    Blohm-Hieber, Ute [European Commission, Luxembourg (Luxembourg). Unit - Nuclear Fuel Market Operations

    2015-11-15

    In the 1950s, when the European Communities were founded the ECSC (Treaty establishing the European Coal and Steel Community), concluded for 50 years and the EURATOM Treaty (Treaty establishing the European Atomic Energy Community), with unlimited validity, were signed. On the present political agenda of the European Union, energy supply security has a high priority. The Juncker Commission therefore focusses on the concept of an Energy Union. The Euratom Treaty provides one successful example of a ''small sectorial Energy Union'' and may serve as stimulation for reflections for the Energy Union in other sectors.

  9. EURATOM, origin and contents of Community European of the energy atomic; EURATOM, origen y contenidos de Comunidad Europea de la energia atomica

    Energy Technology Data Exchange (ETDEWEB)

    Prieto Serrano, N.

    2015-07-01

    After the creation, in 1951, of the European Community of the Coal and steel (ECSC), the first step in a Europe together, Federal, Belgium Germany, France, Italy, Luxembourg, and the Netherlands signed in March 1957, the treaties of Rome that established the foundations for the creation of the European Economic Community (EEC) and the European Community Atomic Energy (CEEa or Euratom). We started with this a series of articles dedicated to pregnancy, the content and issued legislation of the Euratom Treaty, particularly in the areas that most affect the management of radioactive waste. (Author)

  10. The Euratom Treaty v. Treaties of the European Union: limits of competence and interaction

    International Nuclear Information System (INIS)

    Ptasekaite, Rasa

    2011-07-01

    The main aim of this research was to analyse the interaction between the Euratom Treaty and the TFEU in certain specific fields - environmental nuclear liability, transport of radioactive substances and common market (free movement of goods, competition law and state aid). However, before doing that, certain introduction to regulation of the Euratom Treaty, its special features and the changes made by the Lisbon Treaty seemed beneficial. Therefore, the research consists of two parts - the introduction to the Euratom Treaty and the assessment of the relation between the Euratom Treaty and the TFEU in the areas mentioned above. The conclusions related to each of the areas are presented in the end of each chapter while the general conclusions of the research are provided in the end. The literature used in the research include legislative and non-legislative acts of the Euratom Community and the European Union, Judgements of the Court of Justice of the European Union, publications of various researchers and internet resources

  11. The Euratom Treaty v. Treaties of the European Union: limits of competence and interaction

    Energy Technology Data Exchange (ETDEWEB)

    Ptasekaite, Rasa

    2011-07-15

    The main aim of this research was to analyse the interaction between the Euratom Treaty and the TFEU in certain specific fields - environmental nuclear liability, transport of radioactive substances and common market (free movement of goods, competition law and state aid). However, before doing that, certain introduction to regulation of the Euratom Treaty, its special features and the changes made by the Lisbon Treaty seemed beneficial. Therefore, the research consists of two parts - the introduction to the Euratom Treaty and the assessment of the relation between the Euratom Treaty and the TFEU in the areas mentioned above. The conclusions related to each of the areas are presented in the end of each chapter while the general conclusions of the research are provided in the end. The literature used in the research include legislative and non-legislative acts of the Euratom Community and the European Union, Judgements of the Court of Justice of the European Union, publications of various researchers and internet resources.

  12. Basic safety principles: Lessons learned

    International Nuclear Information System (INIS)

    Erp, J.B. van

    1997-01-01

    The presentation reviews the following issues: basic safety principles and lessons learned; some conclusions from the Kemeny report on the accident at TMI; some recommendations from the Kemeny report on the accident at TMI; conclusions and recommendations from the Rogovin report on the accident on TMI; instrumentation deficiencies (from Rogovin report)

  13. Basic safety principles: Lessons learned

    Energy Technology Data Exchange (ETDEWEB)

    Erp, J.B. van [Argonne National Lab., IL (United States)

    1997-09-01

    The presentation reviews the following issues: basic safety principles and lessons learned; some conclusions from the Kemeny report on the accident at TMI; some recommendations from the Kemeny report on the accident at TMI; conclusions and recommendations from the Rogovin report on the accident on TMI; instrumentation deficiencies (from Rogovin report).

  14. The safety of radiation sources and the security of radioactive materials: The situation in Italy

    International Nuclear Information System (INIS)

    Mezzanotte, R.; Sgrilli, E.

    2001-01-01

    An outline of the relevant Italian legislation is provided in the report in order to give an overview of the country's situation concerning the safety of radiation sources and the security of radioactive materials. The main rules making up the Italian system are itemized in the report, as regards statutes and legislative acts. Legislative Decree no. 241, 2001, will transpose into Italian legislation the directive 96/29 Euratom, which lays down European Basic Safety Standards in accordance with the recommendations of ICRP Publication 60. The report also refers to the Italian regulatory system and how it is structured and operated. (author)

  15. Fusion technology. Annual report of the. Association Cea/EURATOM; Technologie de fusion.Rapport annuel de l`association CEA/Euratom

    Energy Technology Data Exchange (ETDEWEB)

    Magaud, P; Le Vagueres, F

    1997-12-31

    In 1996, the French EURATOM-CEA Association made significant contributions to the European technology programme. This work is compiled in this report as follows: the ITER CEA activities and related developments are described in the first section; blankets and material developments for DEMO, long term safety studies are summarised in the second part; the Underlying Technology activities are compiled in the third part of this report. In each section, the tasks are sorted out to respect the European presentation. For an easy reading, appendix 4 gives the list of tasks in alphabetical order with a page reference list. The CEA is in charge of the French Technology programme. Three specific organizational directions of the CEA, located on four sites (see appendix 5) are involves in this programme: Advanced Technologies Direction (DTA), for Material task; Nuclear Reactors Direction (DRN), for Blanket design, Neutronic problems, Safety tasks; Physical Sciences Direction (DSM) uses the competence of the Tore Supra team in the Magnet design and plasma Facing Component field. The CEA programme is completed by collaborations with Technicatome, COMEX-Nucleaire and Ecole Polytechnique. The breakdown of the programme by Directions is presented in figure 1. The allocation of tasks is given in appendix 2 and in appendix 3, the related publications. (author).

  16. Fusion technology. Annual report of the. Association Cea/EURATOM; Technologie de fusion.Rapport annuel de l`association CEA/Euratom

    Energy Technology Data Exchange (ETDEWEB)

    Magaud, P.; Le Vagueres, F.

    1996-12-31

    In 1996, the French EURATOM-CEA Association made significant contributions to the European technology programme. This work is compiled in this report as follows: the ITER CEA activities and related developments are described in the first section; blankets and material developments for DEMO, long term safety studies are summarised in the second part; the Underlying Technology activities are compiled in the third part of this report. In each section, the tasks are sorted out to respect the European presentation. For an easy reading, appendix 4 gives the list of tasks in alphabetical order with a page reference list. The CEA is in charge of the French Technology programme. Three specific organizational directions of the CEA, located on four sites (see appendix 5) are involves in this programme: Advanced Technologies Direction (DTA), for Material task; Nuclear Reactors Direction (DRN), for Blanket design, Neutronic problems, Safety tasks; Physical Sciences Direction (DSM) uses the competence of the Tore Supra team in the Magnet design and plasma Facing Component field. The CEA programme is completed by collaborations with Technicatome, COMEX-Nucleaire and Ecole Polytechnique. The breakdown of the programme by Directions is presented in figure 1. The allocation of tasks is given in appendix 2 and in appendix 3, the related publications. (author).

  17. EUROATOM-treaty and intergovernmental conference; Euratom-Vertrag und Regierungskonferenz

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, S. [Bundesministerium fuer Wirtschaft und Technologie Berlin/Bonn, Bonn (Germany). Referat III B 4

    2007-10-15

    On June 26, 2007 the European Council decided under the chairmanship of the Head of State of the German Government, Angela Merkel, to work out a ''Reform Treaty'' for the European Union. The current version of the ''Reform Treaty'' and the Intergovernmental Conference are a successful result of the German and French policy for Europe. The process will be continued under the Portuguese chairmanship of the European Union. The ''Reform Treaty'' includes a special separate energy chapter. The chapter includes targets for an EU-energy policy as well as targets for the peaceful uses of nuclear energy. Furthermore special technical topics of a revision of the EURATOM-Treaty are mentioned. General revisions of the EURATOM-Treaty or a special Intergovernmental Conference on the EURATOM-Treaty are not expected. Maybe, the European Parliament will get more competence in some parts of decision making processes. Due to the differing views on the peaceful uses of nuclear energy in the EU member states a revision of the EUROATOM-Treaty is more unlikely expected. (orig.)

  18. Basic safety standards for radiation protection. 1982 ed

    International Nuclear Information System (INIS)

    1982-01-01

    The International Atomic Energy Agency, the World Health Organization, the International Labour Organisation and the Nuclear Energy Agency of the OECD have undertaken to provide jointly a world-wide basis for harmonized and up-to-date radiation protection standards. The new Basic Safety Standards for Radiation Protection are based upon the latest recommendations by the International Commission on Radiological Protection (ICRP) which are essentially contained in its Publication No.26. These new Basic Safety Standards have been elaborated by an Advisory Group of Experts which met in Vienna from 10-14 October 1977, from 23-27 October 1978 and from 1-12 December 1980 under the joint auspices of the IAEA, ILO, WHO and the Nuclear Energy Agency of the OECD. Comments on the draft Basic Safety Standards received from Member States and relevant organizations were taken into account by the Advisory Group in the process of preparation of the revised Basic Safety Standards for Radiation Protection, which are published by the IAEA on behalf of the four sponsoring organizations. One of the main features of this revision is an increased emphasis on the recommendation to keep all exposures to ionizing radiation as low as reasonably achievable, economic and social factors being taken into account; consequently, radiation protection should not only apply the basic dose limits but also comply with this recommendation. Detailed guidance is given to assist those who have to decide on the implementation of this recommendation in particular cases. Another important feature is the recommendation of a more coherent method for achieving consistency in limiting risks to health, irrespective of whether the risk is of uniform or non-uniform exposure of the body.

  19. ''Brexit means Brexit''. Also a British withdrawal of the EURATOM treaty?

    International Nuclear Information System (INIS)

    Feldmann, Ulrike

    2016-01-01

    In a referendum on 23 June 2016, 51.9 % of the British voters decided to leave the EU. The question did not include explicitly the exit from the EURATOM Treaty (EAV). Since the 2009 Lisbon Treaty the Euratom Community is a supranational organisation of the new EU. This raises the question whether the exit of Britain from the EU also means an exit from the Euratom treaty.

  20. Political and legal problems of international nuclear supply agreements: the Euratom experience

    International Nuclear Information System (INIS)

    Allen, D.W.

    1983-01-01

    This paper analyses the Chapters in the Euratom Treaty which are relevant to uranium supply agreements and the European Community's powers in international relations as conferred by the Treaty. It also examines the agreements concluded by Euratom with the US, Canada and Australia respectively with emphasis on their nuclear non-proliferation aspects. (NEA) [fr

  1. Report 1991-1992 Association Euratom-Confederation Suisse

    International Nuclear Information System (INIS)

    1993-05-01

    This is the first integrated biannual report of the Swiss-Euratom Association, one of the twelve Associations of the European programme for controlled nuclear fusion research. Up until now, each Swiss group presented its activities within the framework of the institution to which it belonged. The report of the CRPP, whose research is almost entirely dedicated to fusion, gave a good picture of the Swiss programme in physics but the important technological activities of the PSI were described separately in the PSI report, out of its natural context and buried amongst a multitude of other projects. We hope that this report will contribute to a better knowledge of the Association and appreciation of its work. It is also the answer to an old Euratom desire to have each Association publish such an integrated report of its activities. (author) 69 figs., tabs., refs

  2. Association Euratom - Confederation Suisse: Report 1991 - 1992

    International Nuclear Information System (INIS)

    1993-01-01

    This is the first integrated biannual report of the Swiss-Euratom Association, one of the twelve Associations of the European programme for controlled nuclear fusion research. Up until now, each Swiss group presented its activities within the framework of the institution to which it belonged. The report of the CRPP, whose research is almost entirely dedicated to fusion, gave a good picture of the Swiss programme in physics but the important technological activities of the PSI were described separately in the PSI report, out of its natural context and buried amongst a multitude of other projects. We hope that this report will contribute to a better knowledge of the Association and appreciation of its work. It is also the answer to an old Euratom desire to have each Association publish such an integrated report of its activities. (author) figs., tabs., refs

  3. Advanced Messaging Concept Development Basic Safety Message

    Data.gov (United States)

    Department of Transportation — Contains all Basic Safety Messages (BSMs) collected during the Advanced Messaging Concept Development (AMCD) field testing program. For this project, all of the Part...

  4. Cooperation in research in the European Atomic Energy Community (EURATOM)

    International Nuclear Information System (INIS)

    Marka, Philippe.

    1977-01-01

    This work studies the legal instruments for cooperative research granted to Euratom under the Treaty establishing the European Atomic Energy Community, and the conditions whereby concrete use was made of these instruments. This assessment of Euratom's efforts to launch a community nuclear industry is accompanied by an analysis of the respective roles of the bodies of the Community, the Council and the Commission, as well as of the circumstances which, according to the author, have led to a paralysis of this institution. (NEA) [fr

  5. 2007-2008 activity report of the Association EURATOM-CEA (Executive summary)

    International Nuclear Information System (INIS)

    Labasse, F.

    2008-01-01

    This document is the executive summary of the full report, summarizing activities performed by EURATOM-CEA association in 2007-2008. The activities are various and have involved different issues like the study of dust generation processes and measurement techniques, ICRH antenna design for heating, integration studies inside the port-plug for diagnostics and in-situ divertor thermography, or the helium cooled lithium lead (HCLL) breeding blanket concept. Activities have been made to study the properties of the line defects governing the plastic behavior of iron base materials. Different options have been investigated for the superconducting magnet system. The measurement of in-vessel tritium inventory by laser induced breakdown spectroscopy (LIBS) technique has been investigated. 2007-2008 were also dedicated to the manufacture and complete tests of the AIA (Articulated Inspection Arm). AIA is designed to inspect divertor cassettes and the vacuum vessel first wall. Activities based on safety analysis or tests of ITER safety open issues have been carried out using several CEA facilities and expertise

  6. EURATOM achievements and challenges in facilitating Pan-European infrastructure collaborative efforts

    International Nuclear Information System (INIS)

    Garbil, Roger

    2017-01-01

    The European Atomic Energy Community (Euratom) Research and Training framework programmes are benefiting from a consistent success in pursuing excellence in research and facilitating Pan European collaborative efforts across a broad range of nuclear science and technologies, nuclear fission and radiation protection. To fulfil Euratom R and D programmes keys objectives of maintaining high levels of nuclear knowledge and building a more dynamic and competitive European industry, promotion of Pan-European mobility of researchers are implemented by co-financing transnational access to research infrastructures (RIs) and joint research activities. 'Euratom Achievements and Challenges' show the benefits of research efforts in key fields, of building an effective 'critical mass', of promoting the creation of 'centres of excellence' with an increased support for 'open access to key research infrastructures', exploitation of research results, management of knowledge, dissemination and sharing of learning outcomes.

  7. Verification of the Correctness and Completeness of Nuclear Operators' Declarations by Euratom

    International Nuclear Information System (INIS)

    Meylemans, P.; Szymanski, P.; Synetos, S.; Beuseling, P.; Jirsa, P.; Ciccarello, S.; Kilb, W.; Klumpp, P.; Schwalbach, P.; Schoop, K.; Koutsoyannopoulos, C.; Lahogue, Y.; Persson, L.; Coadou, J.; Koehne, W.; Kahnmeyer, W.; Dratschmidt, H.; Thomas, M.; Lahogue-Incerti, M.; )

    2015-01-01

    We present the Euratom nuclear safeguards system, a supranational system used to verify the operators' and States' (when required by the Additional Protocol) declarations. The verifications performed by the European Commission serve to conclude on the nondiversion of the civil stocks of nuclear materials in the territories of EU Member States (Article 77a Euratom Treaty) and to fulfil obligations stemming from nuclear cooperation agreements with third States and international organizations such as the IAEA (Article 77b). In line with multilateral safeguards agreements and their respective additional protocols, as well as under the New Partnership Approach, Euratom works closely with the IAEA in order to avoid unnecessary duplication of efforts while maintaining the ability of both organizations to reach independent conclusions. In our paper the focus lies on the verifications performed before transmitting data to the IAEA. Starting from the sheer volume of data we describe checks and other operations performed (e.g., format adaptations) on the nuclear material accountancy (NMAC) data and Additional Protocol declarations; including quality assurance measures. We also present some statistics on the related workload, including answering queries from the IAEA. We describe the IT tools developed by Euratom for nuclear operators to submit their declarations and which are subsequently verified by Euratom before being transmitted to the IAEA. Moreover, we present support activities aiming at improving the operators' NMAC systems such as audits (including audits of measurement systems). We conclude by presenting the challenges lying ahead and ways to address them to further strengthen and improve the quality of the Euratom work and cooperation with the IAEA. (author)

  8. EURATOM achievements and challenges in facilitating Pan-European infrastructure collaborative efforts

    Energy Technology Data Exchange (ETDEWEB)

    Garbil, Roger [European Commission, Brussels (Belgium). DG Research and Innovation, Euratom Fission

    2017-10-15

    The European Atomic Energy Community (Euratom) Research and Training framework programmes are benefiting from a consistent success in pursuing excellence in research and facilitating Pan European collaborative efforts across a broad range of nuclear science and technologies, nuclear fission and radiation protection. To fulfil Euratom R and D programmes keys objectives of maintaining high levels of nuclear knowledge and building a more dynamic and competitive European industry, promotion of Pan-European mobility of researchers are implemented by co-financing transnational access to research infrastructures (RIs) and joint research activities. 'Euratom Achievements and Challenges' show the benefits of research efforts in key fields, of building an effective 'critical mass', of promoting the creation of 'centres of excellence' with an increased support for 'open access to key research infrastructures', exploitation of research results, management of knowledge, dissemination and sharing of learning outcomes.

  9. The role of Euratom

    International Nuclear Information System (INIS)

    Grunwald, J.

    1988-01-01

    The accident at Chernobyl highlighted the insufficient co-ordination between European Community Member States in case of a nuclear accident. This chapter describes the measures taken by the Commission of the Communities, in particular by controlling imports of foods from Eastern European countries, to prevent contamination in Community countries. Having learnt the lessons from Chernobyl, the Community institutions have undertaken, on the basis of the Euratom Treaty, a vast programme of action relying on strong and prompt coordination of the national policies of all the Member States (NEA) [fr

  10. The Nuclear Safeguards and Security Activities under Euratom Research and Training Programme

    International Nuclear Information System (INIS)

    Abousahl, S.; Palajova, Z.; Janssens, W.A.M.; Luetzenkirchen, K.; Goncalves, J.G.M.; Aregbe, Y.; )

    2015-01-01

    Nuclear safeguards and security are absolute priorities for the EU. At technical level, the Joint Research Centre (JRC) as the European Commission's in-house science service plays an important role in the field of nuclear research, training and education that include nuclear safety, safeguards and security. The JRC's nuclear research activities are defined in a Council Regulation on the research and training programme of the European Atomic Energy Community. The JRC works closely with EC safeguards authority, whose mission is to ensure that nuclear material within the EU is not diverted from its intended use according to Euratom treaty. Technologies, methodologies and trainings are developed according to the Euratom Safeguards inspectorate's needs. In the area of nuclear security, the JRC contributes to the development of specific expertise in the field of nuclear forensics and border security detection as well as related training efforts for first front-line responders and national experts. The JRC provides its expert support for the implementation of internal EU action plans mainly in the field of radiological and nuclear security. At an international level, the JRC cooperates with the IAEA mainly through the EC support programme on the control of nuclear materials and facilities in order to avoid proliferation or diversion. Close cooperation with IAEA nuclear security is developed through the recent signature of a dedicated practical arrangement. Key partnerships have also been developed in the field of safeguards and security with the US-DoE, Russia, Japan and China. In addition, JRC contributes significantly to the EU nuclear safeguards and security outreach activities implemented under the Instrument for Nuclear Safety Cooperation and Instrument contributing to Stability and Peace. In this paper we will highlight some of the JRC contributions to the enhancement of nuclear safeguards and security at EU and international levels. (author)

  11. 2007-2008 activity report of the Association EURATOM-CEA (Full Report)

    International Nuclear Information System (INIS)

    Labasse, F.

    2009-01-01

    This document summarizes the activities performed by EURATOM-CEA association in 2007-2008. The activities are various and have involved different issues like the study of dust generation processes and measurement techniques, ICRH antenna design for heating, integration studies inside the port-plug for diagnostics and in-situ divertor thermography, or the helium cooled lithium lead (HCLL) breeding blanket concept. Activities have been made to study the properties of the line defects governing the plastic behavior of iron base materials. Different options have been investigated for the superconducting magnet system. The measurement of in-vessel tritium inventory by laser induced breakdown spectroscopy (LIBS) technique has been investigated. 2007-2008 were also dedicated to the manufacture and complete tests of the AIA (Articulated Inspection Arm). AIA is designed to inspect divertor cassettes and the vacuum vessel first wall. Activities based on safety analysis or tests of ITER safety open issues have been carried out using several CEA facilities and expertise. This document is divided into 5 sections: 1) physics integration, 2) in-vessel, 3) magnet system and cryogenics, 4) tritium breeding and materials, 5) safety and environment, 6) system studies, 7) design support and procurement, 8) JET technology

  12. EURATOM Success Stories in Facilitating Pan-European E&T Collaborative Efforts

    International Nuclear Information System (INIS)

    Garbil, R.

    2016-01-01

    Full text: The European Atomic Energy Community (Euratom) Research and Training framework programmes are benefiting from a consistent success in pursuing excellence in research and facilitating Pan-European collaborative efforts across a broad range of nuclear science and technologies, nuclear fission and radiation protection. To fulfil Euratom R&D programmes keys objectives of maintaining high levels of nuclear knowledge and building a more dynamic and competitive European industry, promotion of Pan-European mobility of researchers are implemented by co-financing transnational access to research infrastructures and joint research activities through to research and innovation and coordination and support actions funding schemes. Establishment by the research community of European technology platforms are being capitalized. Mapping of research infrastructures and E&T capabilities is allowing a closer cooperation within the European Union and beyond, benefiting from multilateral international agreements and from closer cooperation between Euratom, OECD/NEA and IAEA and international fora. “Euratom success stories” in facilitating Pan-European E&T collaborative efforts through research and training framework programmes show the benefits of research efforts in key fields, of building an effective “critical mass”, of promoting the creation of “centres of excellence” with an increased support for “open access to key research infrastructures”, exploitation of research results, management of knowledge, dissemination and sharing of learning outcomes. (author

  13. Topical points of community policy concerning nuclear safety relevant to the Internal Market

    International Nuclear Information System (INIS)

    Schroeder, M.

    1991-01-01

    Starting with the Internal Market concept, the lecture describes general and specific expectations directed to the nuclear community from a point of view of nuclear safety, and analyzes those aspects of nuclear safety, EC policy focuses on. There are the following chapters: 1. Selection of sites for nuclear installations, 2. installation and reactor safety, 3. radioactive waste management, 4. decommissioning of nuclear installations, 5. radioactive waste storage, 6. coping with nuclear accidents and other radiological emergency situations. Sophistication of public health and environmental protection within the framework of the EURATOM Treaty is seen in connection with interim and final storage as well as reprocessing of radioactive waste, and with the decommissioning of nuclear facilities on the basis of section 30 ff., and installation and reactor safety on the basis of section 203 EURATOM Treaty. Improving the protection of public health in particular is possible and necessary in order to make the EURATOM community into a proper nuclear community of law. (orig./HSCH) [de

  14. Euratom experience in safeguarding reprocessing and thermal reactor mixed oxide fuel fabrication facilities within the European Community

    International Nuclear Information System (INIS)

    1978-11-01

    The legal basis and instruments for the application of safeguards in the European Community are described. Euratom safeguards apply throughout the fuel cycle starting at the ore stage. Euratom has had experience in the application of safeguards to small and medium size reprocessing and MOX fabrication plants. In reprocessing plants accountancy, containment and surveillance methods are applied and the plant is divided into three material balance areas. Similar procedures are applied at fabrication plants. Euratom inspectors apply their main verification activities at strategic points but have the right of access at any time to all places which contain nuclear material. Under the Euratom-IAEA Agreements 'Joint Teams' of Euratom and IAEA inspectors will operate together to minimise the burden on operators and to avoid duplication of effort while enabling both organisations to achieve their safeguards objectives

  15. SACSESS – the EURATOM FP7 project on actinide separation from spent nuclear fuels

    Directory of Open Access Journals (Sweden)

    Bourg Stéphane

    2015-12-01

    Full Text Available Recycling of actinides by their separation from spent nuclear fuel, followed by transmutation in fast neutron reactors of Generation IV, is considered the most promising strategy for nuclear waste management. Closing the fuel cycle and burning long-lived actinides allows optimizing the use of natural resources and minimizing the long-term hazard of high-level nuclear waste. Moreover, improving the safety and sustainability of nuclear power worldwide. This paper presents the activities striving to meet these challenges, carried out under the Euratom FP7 collaborative project SACSESS (Safety of Actinide Separation Processes. Emphasis is put on the safety issues of fuel reprocessing and waste storage. Two types of actinide separation processes, hydrometallurgical and pyrometallurgical, are considered, as well as related aspects of material studies, process modeling and the radiolytic stability of solvent extraction systems. Education and training of young researchers in nuclear chemistry is of particular importance for further development of this field.

  16. Integrating system safety into the basic systems engineering process

    Science.gov (United States)

    Griswold, J. W.

    1971-01-01

    The basic elements of a systems engineering process are given along with a detailed description of what the safety system requires from the systems engineering process. Also discussed is the safety that the system provides to other subfunctions of systems engineering.

  17. EURATOM. Considered from an economic perspective

    International Nuclear Information System (INIS)

    Balke, Siegfried

    2015-01-01

    The European Atomic Energy Community (EAG-EURATOM), which was organisationally established on 1st January 1958, is not to the same degree part of an economic discussion as the European Economic Community. The EAG has a strongly accentuated technical-scientific character and is often economically considered as appendix of major economic integration efforts within Europe. Still it would be wrong not to suspect economical effective components within the European Atomic Energy Community. The opposite is already recognisable as the EAG needs to integrate itself into a system of international organisations and institutions, which are already existent in the field of a friendly exploitation of nuclear power and which embrace a larger geographical field as the six - member-states of the EURATOM, the European Economic Community and the European Coal and Steel Community. One advantage of the treaty on establishing the European community is that it considers the Atomic Energy Community as an important but not independent branch from general economic activity. The organisational bracket for all three European Treaties of Integration will be the common Parliament and - what is to be expected, in its practical impact a -not to be underestimated- joint headquarters for all three institutions.

  18. Basic safety principles of KLT-40C reactor plants

    International Nuclear Information System (INIS)

    Beliaev, V.; Polunichev, V.

    2000-01-01

    The KLT-40 NSSS has been developed for a floating power block of a nuclear heat and power station on the basis of ice-breaker-type NSSS (Nuclear Steam Supply System) with application of shipbuilding technologies. Basic reactor plant components are pressurised water reactor, once-through coil-type steam generator, primary coolant pump, emergency protection rod drive mechanisms of compensate group-electromechanical type. Basic RP components are incorporated in a compact steam generating block which is arranged within metal-water shielding tank's caissons. Domestic regulatory documents on safety were used for the NSSS design. IAEA recommendations were also taken into account. Implementation of basic safety principles adopted presently for nuclear power allowed application of the KLT-40C plant for a floating power unit of a nuclear co-generation station. (author)

  19. Fusion yearbook. Association Euratom-Tekes Annual report 2011

    Energy Technology Data Exchange (ETDEWEB)

    Airila, M.; Karttunen, S. (eds.)

    2012-07-01

    This Annual Report summarises the fusion research activities of the Finnish and Estonian Research Units of the Association Euratom-Tekes in 2011. The emphasis of EFDA is in exploiting JET and co-ordinating physics research in the Associations. In addition, emerging technology and goal oriented training (GOT) activities are under EFDA. R and D Grants for the Joint Undertaking 'Fusion for Energy' on remote handling for ITER divertor maintenance and MEMS magnetometer development constituted a significant fraction of the total research volume. The activities of the Research Unit are divided in the fusion physics under the Contract of Association and EFDA. The physics work is carried out at VTT, Aalto University (AU), University of Helsinki and University of Tartu. The research areas of the EFDA Workprogramme within Association Euratom-Tekes are (i) Heat and particle transport and fast particle studies, (ii) Plasma-wall interactions and material transport in SOL region, and (iii) Code development and diagnostics. Association Euratom-Tekes participated in the EFDA JET Workprogramme 2011, including C28 experiments with the ITER-like wall, diagnostics development and code integration. Two persons were seconded to the JET operating team, one physicist (codes and modelling) and one engineer (remote handling) in preparation of the ITER-like wall. The Association participated also in the 2011 experimental programmes of ASDEX Upgrade at IPP, DIII-D at GA and C-Mod at MIT. The technology work is carried out at VTT, Aalto University, Tampere University of Technology (TUT) and Lappeenranta University of Technology (LUT) in close collaboration with Finnish industry. Industrial participation is co-ordinated by Tekes. The technology research and development includes the DTP2 facility at VTT Tampere, materials and joining techniques, vessel/in-vessel components, magnetic diagnostics by micromechanical magnetometers for ITER, upgrading of the JET NPA diagnostics, Power Plant

  20. Fusion yearbook. Association Euratom-Tekes Annual report 2011

    International Nuclear Information System (INIS)

    Airila, M.; Karttunen, S.

    2012-01-01

    This Annual Report summarises the fusion research activities of the Finnish and Estonian Research Units of the Association Euratom-Tekes in 2011. The emphasis of EFDA is in exploiting JET and co-ordinating physics research in the Associations. In addition, emerging technology and goal oriented training (GOT) activities are under EFDA. R and D Grants for the Joint Undertaking 'Fusion for Energy' on remote handling for ITER divertor maintenance and MEMS magnetometer development constituted a significant fraction of the total research volume. The activities of the Research Unit are divided in the fusion physics under the Contract of Association and EFDA. The physics work is carried out at VTT, Aalto University (AU), University of Helsinki and University of Tartu. The research areas of the EFDA Workprogramme within Association Euratom-Tekes are (i) Heat and particle transport and fast particle studies, (ii) Plasma-wall interactions and material transport in SOL region, and (iii) Code development and diagnostics. Association Euratom-Tekes participated in the EFDA JET Workprogramme 2011, including C28 experiments with the ITER-like wall, diagnostics development and code integration. Two persons were seconded to the JET operating team, one physicist (codes and modelling) and one engineer (remote handling) in preparation of the ITER-like wall. The Association participated also in the 2011 experimental programmes of ASDEX Upgrade at IPP, DIII-D at GA and C-Mod at MIT. The technology work is carried out at VTT, Aalto University, Tampere University of Technology (TUT) and Lappeenranta University of Technology (LUT) in close collaboration with Finnish industry. Industrial participation is co-ordinated by Tekes. The technology research and development includes the DTP2 facility at VTT Tampere, materials and joining techniques, vessel/in-vessel components, magnetic diagnostics by micromechanical magnetometers for ITER, upgrading of the JET NPA diagnostics, Power Plant Physics

  1. EURATOM safeguards efforts in the development of spent fuel verification methods by non-destructive assay

    Energy Technology Data Exchange (ETDEWEB)

    Matloch, L.; Vaccaro, S.; Couland, M.; De Baere, P.; Schwalbach, P. [Euratom, Communaute europeenne de l' energie atomique - CEEA (European Commission (EC))

    2015-07-01

    The back end of the nuclear fuel cycle continues to develop. The European Commission, particularly the Nuclear Safeguards Directorate of the Directorate General for Energy, implements Euratom safeguards and needs to adapt to this situation. The verification methods for spent nuclear fuel, which EURATOM inspectors can use, require continuous improvement. Whereas the Euratom on-site laboratories provide accurate verification results for fuel undergoing reprocessing, the situation is different for spent fuel which is destined for final storage. In particular, new needs arise from the increasing number of cask loadings for interim dry storage and the advanced plans for the construction of encapsulation plants and geological repositories. Various scenarios present verification challenges. In this context, EURATOM Safeguards, often in cooperation with other stakeholders, is committed to further improvement of NDA methods for spent fuel verification. In this effort EURATOM plays various roles, ranging from definition of inspection needs to direct participation in development of measurement systems, including support of research in the framework of international agreements and via the EC Support Program to the IAEA. This paper presents recent progress in selected NDA methods. These methods have been conceived to satisfy different spent fuel verification needs, ranging from attribute testing to pin-level partial defect verification. (authors)

  2. Overview on radiation protection norms in West Europe

    International Nuclear Information System (INIS)

    Bennett, E.; Lennartz, R.

    1988-01-01

    The motive behind the treaty establishing the European Atomic Energy Community (Euratom) was the post-war conviction that nuclear energy was vital for developing and strengthening industry. The Treaty was intended to provide the framework in which this process could take place. Accordingly, it gave Euratom the task of creating the conditions for the establishment and rapid growth of the nuclear industry and thus providing for an increase in living standards and the development of trade with non-Member States (Article 1 of Euratom Treaty). To enable Euratom to perform its task, Article 2 lists a number of activities to be undertaken, with those mentioned in paragraph (b) being of particular interest, i.e. (Euratom shall) establish uniform safety standards to protect the health of workers and the general public and ensure that they are applied. The exploitation of nuclear energy is thus indissolubly linked with health protection. The uniform safety standards, referred to in Article 30 of the Euratom Treaty as 'basic standards', comprise: maximum permissible doses compatible with adequate safety; maximum permissible levels of exposure and contamination; principles governing health surveillance of workers. They form the core of European policy toward radiation protection. 1 ref., 1 tab

  3. Switzerland: What does the EURATOM Directive imply for a non-EU-Member State?; Schweiz: was bedeutet die EURATOM-Richtlinie fuer ein Nicht-EG-Land?

    Energy Technology Data Exchange (ETDEWEB)

    Jeschki, W. [Hauptabt. fuer die Sicherheit der Kernanlagen (HSK), Villigen (Switzerland). Abt. Strahlenschutz und Notfallplanung; Stoll, E. [Hauptabt. fuer die Sicherheit der Kernanlagen (HSK), Villigen (Switzerland). Sektion Radiologischer Arbeitsschutz

    1997-12-31

    Member States of the EU are obliged to transform the Directive and its legal and administrative provisions into national laws by 13 March 2000. Switzerland is not a Member State, and hence is not obliged to provide for harmonisation of its legal regime with the European provisions, but there are reasons advocating consideration of the European Basic Standards and appropriate necessary action at the national level. The contribution here explains relevant aspects and the impacts on the radiation protection regime in Switzerland. (orig./CB) [Deutsch] Die Mitgliedstaaten der EU sind aufgefordert, bis zum 13. Maerz 2000 die erforderlichen Rechts- und Verwaltungsvorschriften zu schaffen, um der Richtlinie 96/29 EURATOM nachzukommen. Die Schweiz gehoert derzeit nicht zur EG. Sie muss daher ihre Strahlenschutz-Gesetzgebung nicht nach der EG-Richtlinie ausrichten. Dennoch gibt es Gruende, dass sich die Schweiz mit der Richtlinie auseinandersetzt. Die Bedeutung fuer den Strahlenschutz in der Schweiz wird im Folgenden erlaeutert. (orig.)

  4. Fusion technology. Annual report of the. Association Cea/EURATOM

    International Nuclear Information System (INIS)

    Magaud, P.; Le Vagueres, F.

    1996-01-01

    In 1996, the French EURATOM-CEA Association made significant contributions to the European technology programme. This work is compiled in this report as follows: the ITER CEA activities and related developments are described in the first section; blankets and material developments for DEMO, long term safety studies are summarised in the second part; the Underlying Technology activities are compiled in the third part of this report. In each section, the tasks are sorted out to respect the European presentation. For an easy reading, appendix 4 gives the list of tasks in alphabetical order with a page reference list. The CEA is in charge of the French Technology programme. Three specific organizational directions of the CEA, located on four sites (see appendix 5) are involves in this programme: Advanced Technologies Direction (DTA), for Material task; Nuclear Reactors Direction (DRN), for Blanket design, Neutronic problems, Safety tasks; Physical Sciences Direction (DSM) uses the competence of the Tore Supra team in the Magnet design and plasma Facing Component field. The CEA programme is completed by collaborations with Technicatome, COMEX-Nucleaire and Ecole Polytechnique. The breakdown of the programme by Directions is presented in figure 1. The allocation of tasks is given in appendix 2 and in appendix 3, the related publications. (author)

  5. The Momentum of the European Directive on Nuclear Safety: From the Complexity of Nuclear Safety to Key Messages. Addressed to European citizens

    International Nuclear Information System (INIS)

    Pouleur, Y.; Krs, P.

    2010-01-01

    This paper intends to present the key issues of the directive (council directive 2009/71/EURATOM establishing a Community framework for the nuclear safety of nuclear installations, approved by the Permanent Representatives Committee (C.O.R.E.P.E.R. 2) on 24. June and by the Council of Ministers on 25. June in the environment Council. It was published on 2. July in the Official Journal, O.J. L 172:18 and is to be transposed by 22. July 2011): a summary of the institutional context, the international framework in the field of nuclear safety developed in fora such as the International Atomic energy Agency (IAEA), the basic principles of nuclear safety and the compromises that were necessary to finally reach the consensus on the text. The goal of the authors is to offer an objective and accurate analysis that could be used for the interpretation and better understanding of the directive. (N.C.)

  6. New investment powers of Euratom

    International Nuclear Information System (INIS)

    Hahn, O.

    1979-01-01

    A steady expansion of nuclear capacity in the European Community is one of the major ways of preventing unacceptable rises in oil imports. Over the period 1978 to 1985, the creation of the necessary nuclear capacity will require about Pound42000 million, and to help utilities Euratom is prepared to provide loans up to 20 per cent of the total investment cost of a project. The purpose is to complement, not replace, traditional financing resources. Fuel cycle facilities may be prominent in future loans. (U.K.)

  7. EURATOM safeguards implementation in France and cooperation with the IAEA

    International Nuclear Information System (INIS)

    Oddou, J.

    2013-01-01

    International safeguards in France are applied both by: -) the European Commission (EC), through the Chapter 7 of the EURATOM Treaty; -) the International Atomic Energy Agency (IAEA) as France is a party to the NPT and has concluded a safeguards agreement with IAEA. With the exception of mining, France has a complete nuclear fuel cycle from ore concentrates to waste. Based on the legal framework of the EURATOM Treaty, all civil nuclear facilities and all civil nuclear materials are safeguarded by EURATOM wherever they are in France. Therefore the two conversion plants, the two enrichment plants, the three fuel fabrication plants, the 59 nuclear power plants including the EPR of Flamanville under construction, the 2 reprocessing plants in La Hague, the five facilities for waste treatment and numerous research centers and reactors of CEA are declared and controlled by the European Commission. The activities of the EURATOM inspectors are of various kind depending of the facility and the type of inspection. The most common checks are: identification and counting of the nuclear material, verification of accountancy declaration vs. physical follow-up of the nuclear material, non-destructive analysis and destructive analysis after sampling in large bulk handling facilities. There is a strong cooperation between IAEA and EC: the majority of IAEA inspections in France are joint team inspections with the EC. This pooling of equipment and teams can save money and human resources. Equipment for containment and surveillance are paid whether by the EC or by the IAEA and can be used by both bodies of inspectors. With the principle of 'One Job One Person', verification activities are done only once and it saves time for the inspectors and the operators. The paper is followed by the slides of the presentation. (A.C.)

  8. Italy, EURATOM and Early Research on Controlled Thermonuclear Fusion (1957-1962)

    International Nuclear Information System (INIS)

    Curli, Barbara

    2017-01-01

    This chapter traces the early origins of European collaboration in controlled thermonuclear fusion research, within the larger picture of Cold War nuclear policy in the late 1950s-early 1960s, and as a consequence of the signing of the EURATOM treaty in 1957. It then presents some preliminary findings on the Association contract which was signed in 1960 between EURATOM and Italy, in order to carry out research in controlled thermonuclear fusion at the then newly created 'Laboratori nazionali di Frascati', near Rome, within the framework of the Comitato Nazionale Energia Nucleare (CNEN), the Italian civilian nuclear energy agency.

  9. Criticality Safety Basics for INL FMHs and CSOs

    Energy Technology Data Exchange (ETDEWEB)

    V. L. Putman

    2012-04-01

    Nuclear power is a valuable and efficient energy alternative in our energy-intensive society. However, material that can generate nuclear power has properties that require this material be handled with caution. If improperly handled, a criticality accident could result, which could severely harm workers. This document is a modular self-study guide about Criticality Safety Principles. This guide's purpose it to help you work safely in areas where fissionable nuclear materials may be present, avoiding the severe radiological and programmatic impacts of a criticality accident. It is designed to stress the fundamental physical concepts behind criticality controls and the importance of criticality safety when handling fissionable materials outside nuclear reactors. This study guide was developed for fissionable-material-handler and criticality-safety-officer candidates to use with related web-based course 00INL189, BEA Criticality Safety Principles, and to help prepare for the course exams. These individuals must understand basic information presented here. This guide may also be useful to other Idaho National Laboratory personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. This guide also includes additional information that will not be included in 00INL189 tests. The additional information is in appendices and paragraphs with headings that begin with 'Did you know,' or with, 'Been there Done that'. Fissionable-material-handler and criticality-safety-officer candidates may review additional information at their own discretion. This guide is revised as needed to reflect program changes, user requests, and better information. Issued in 2006, Revision 0 established the basic text and integrated various programs from former contractors. Revision 1 incorporates operation and program changes implemented since 2006. It also incorporates suggestions, clarifications

  10. EURATOM strategy towards fusion energy

    International Nuclear Information System (INIS)

    Varandas, C.

    2007-01-01

    Research and development (Research and Development) activities in controlled thermonuclear fusion have been carried out since the 60's of the last century aiming at providing a new clean, powerful, practically inexhaustive, safe, environmentally friend and economically attractive energy source for the sustainable development of our society.The EURATOM Fusion Programme (EFP) has the leadership of the magnetic confinement Research and Development activities due to the excellent results obtained on JET and other specialized devices, such as ASDEX-Upgrade, TORE SUPRA, FTU, TCV, TEXTOR, CASTOR, ISTTOK, MAST, TJ-II, W7-X, RFX and EXTRAP. JET is the largest tokamak in operation and the single device that can use deuterium and tritium mixes. It has produced 16 MW of fusion power, during 3 seconds, with an energy amplification of 0.6. The next steps of the EFP strategy towards fusion energy are ITER complemented by a vigorous Accompanying Programme, DEMO and a prototype of a fusion power plant. ITER, the first experimental fusion reactor, is a large-scale project (35-year duration, 10000 MEuros budget), developed in the frame of a very broad international collaboration, involving EURATOM, Japan, Russia Federation, United States of America, Korea, China and India. ITER has two main objectives: (i) to prove the scientific and technical viability of fusion energy by producing 500 MW, during 300 seconds and a energy amplification between 10 and 20; and (ii) to test the simultaneous and integrated operation of the technologies needed for a fusion reactor. The Accompanying Programme aims to prepare the ITER scientific exploitation and the DEMO design, including the development of the International Fusion Materials Irradiation Facility (IFMIF). A substantial part of this programme will be carried out in the frame of the Broader Approach, an agreement signed by EURATOM and Japan. The main goal of DEMO is to produce electricity, during a long time, from nuclear fusion reactions. The

  11. Proposals of new basic concepts on safety and radioactive waste and of new High Temperature Gas-cooled Reactor based on these basic concepts

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Masuro, E-mail: ogawa.masuro@jaea.go.jp

    2016-11-15

    Highlights: • The author proposed new basic concepts on safety and radioactive waste. • A principle of ‘continue confining’ to realize the basic concept on safety is also proposed. • It is indicated that only a HTGR can attain the conditions required from the principle. • Technologies to realize the basic concept on radioactive waste are also discussed. • A New HTGR system based on the new basic concepts is proposed. - Abstract: A new basic concept on safety of ‘Not causing any serious catastrophe by any means’ and a new basic concept on radioactive waste of ‘Not returning any waste that possibly affects the environment’ are proposed in the present study, aiming at nuclear power plants which everybody can accept, in consideration of the serious catastrophe that happened at Fukushima Japan in 2011. These new basic concepts can be found to be valid in comparison with basic concepts on safety and waste in other industries. The principle to realize the new basic concept on safety is, as known well as the inherent safety, to use physical phenomena such as Doppler Effect and so on which never fail to work even if all equipment and facilities for safety lose their functions. In the present study, physical phenomena are used to ‘continue confining’, rather than ‘confine’, because the consequence of emission of radioactive substances to the environment cannot be mitigated. To ‘continue confining’ is meant to apply natural correction to fulfill inherent safety function. Fission products must be detoxified to realize the new basic concept on radioactive waste, aiming at the final processing and disposal of radioactive wastes as same as that in the other wastes such as PCB, together with much efforts not to produce radioactive wastes and to reduce their volume nevertheless if they are emitted. Technology development on the detoxification is one of the most important subjects. A new High Temperature Gas-cooled Reactor, namely the New HTGR

  12. Proposals of new basic concepts on safety and radioactive waste and of new High Temperature Gas-cooled Reactor based on these basic concepts

    International Nuclear Information System (INIS)

    Ogawa, Masuro

    2016-01-01

    Highlights: • The author proposed new basic concepts on safety and radioactive waste. • A principle of ‘continue confining’ to realize the basic concept on safety is also proposed. • It is indicated that only a HTGR can attain the conditions required from the principle. • Technologies to realize the basic concept on radioactive waste are also discussed. • A New HTGR system based on the new basic concepts is proposed. - Abstract: A new basic concept on safety of ‘Not causing any serious catastrophe by any means’ and a new basic concept on radioactive waste of ‘Not returning any waste that possibly affects the environment’ are proposed in the present study, aiming at nuclear power plants which everybody can accept, in consideration of the serious catastrophe that happened at Fukushima Japan in 2011. These new basic concepts can be found to be valid in comparison with basic concepts on safety and waste in other industries. The principle to realize the new basic concept on safety is, as known well as the inherent safety, to use physical phenomena such as Doppler Effect and so on which never fail to work even if all equipment and facilities for safety lose their functions. In the present study, physical phenomena are used to ‘continue confining’, rather than ‘confine’, because the consequence of emission of radioactive substances to the environment cannot be mitigated. To ‘continue confining’ is meant to apply natural correction to fulfill inherent safety function. Fission products must be detoxified to realize the new basic concept on radioactive waste, aiming at the final processing and disposal of radioactive wastes as same as that in the other wastes such as PCB, together with much efforts not to produce radioactive wastes and to reduce their volume nevertheless if they are emitted. Technology development on the detoxification is one of the most important subjects. A new High Temperature Gas-cooled Reactor, namely the New HTGR

  13. The European nuclear safety and radiation protection area: steps and prospects

    International Nuclear Information System (INIS)

    Gillet, G.

    2010-01-01

    Launched with enthusiasm and determination in 1957, The European Atomic Energy Community (EAEC - EURATOM), which aimed to promote the development of a 'powerful nuclear industry' in Europe, has not ultimately fulfilled the wishes of its founding fathers. Rapidly, and on a topic as strategic as the peaceful use of the atom, national reflexes prevailed. The Chernobyl disaster, in 1986, also substantially slowed down the use of nuclear energy in Europe. Nuclear safety and radiation protection have followed two different paths. Backed by Chapter III of the EURATOM treaty, over time the EAEC has developed a substantial legislative corpus on radiation protection. Meanwhile, and strange as it may seem, nuclear safety has remained the poor relation, on the grounds that the treaty does not grant EURATOM competence in the area. It is true that legislation was adopted in reaction to Chernobyl, but for a long time there was no specific regulation of nuclear safety in the EU. The European nuclear safety and radiation protection area owes its construction to Community mechanisms as well as to informal initiatives by safety authorities. Today, more than ever, this centre provides consistency, an overall balance which should both strengthen it and impose it as an international reference. Progress can now be expected on waste management, radiation protection and the safety objectives of new reactors. (author)

  14. The Euratom Seventh Framework Programme FP7 (2007-2011

    Directory of Open Access Journals (Sweden)

    Garbil R.

    2010-10-01

    Full Text Available The objective of the Seventh Euratom Framework Program in the area of nuclear fission and radiation protection is to establish a sound scientific and technical basis to accelerate practical developments of nuclear energy related to resource efficiency, enhancing safety performance, cost-effectiveness and safer management of long-lived radioactive waste. Key cross-cutting topics such as the nuclear fuel cycle, actinide chemistry, risk analysis, safety assessment, even societal and governance issues are linked to the individual technical areas. Research need to explore new scientific and techno- logical opportunities and to respond in a flexible way to new policy needs that arise. The following activities are to be pursued. (a Management of radioactive waste, research on partitioning and transmutation and/or other concepts aimed at reducing the amount and/or hazard of the waste for disposal; (b Reactor systems research to underpin the con- tinued safe operation of all relevant types of existing reactor systems (including fuel cycle facilities, life-time extension, development of new advanced safety assessment methodologies and waste-management aspects of future reactor systems; (c Radiation protection research in particular on the risks from low doses on medical uses and on the management of accidents; (d Infrastructures and support given to the availability of, and cooperation between, research infrastructures necessary to maintain high standards of technical achievement, innovation and safety in the European nuclear sector and Research Area. (e Human resources, mobility and training support to be provided for the retention and further development of scientific competence, human capacity through joint training activities in order to guarantee the availability of suitably qualified researchers, engineers and employees in the nuclear sector over the longer term.

  15. 5th December 1990 - Royal Order amending the provisions of the General Regulations for protection at work, concerning the protection of workers against the hazards of ionizing radiation

    International Nuclear Information System (INIS)

    1990-01-01

    This Royal Order amending the 1946 General Regulations for the protection of workers against the hazards of ionizing radiation implements on a national level the European Community Directives No. 80/836 Euratom of 15 July 1980 laying down basic safety standards for the health protection of the general public and workers against the hazards of ionizing radiations and No. 84/466 Euratom of 3 September 1984 laying down basic measures for the radiation protection of persons undergoing medical examination or treatment [fr

  16. Safety research basic plan of JNC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Japan Nuclear Cycle Development Institute (JNC) formally succeeded to Power Reactor and Nuclear Fuel Development Corporation (PNC) on October, 1 1998. This report describes the basic plan for major program of JNC which consists of two parts: management philosophy of the new institute and the latest revised medium term program. In the first part, the primary mission of JNC is to perform its R and D concentrating on fast breeder reactor and its fuel cycle, and treatment and disposal of high-level radioactive wastes, while at the same time giving special consideration to safety. In the second, individual programs in the new basic plan are discussed in detail. The outline and schedule of each program are also attached in the table form. (H. Itami)

  17. Recent developments in the implementation of Euratom safeguards

    International Nuclear Information System (INIS)

    Gmelin, W.; Bommelle, P.; Sharpe, B.W.; Love, B.

    1983-01-01

    The EURATOM safeguards system is based legally on the 1958 Treaty of Rome establishing the original Community of six (now 10) countries. Under this safeguards system, the Commission has, inter alia, ''to satisfy itself that any particular safeguarding obligations assumed by the Community under an agreement concluded with a third state or an international organisation are complied with'' (art. 77b). The practical implementation of safeguards within the Community is significantly influenced by the requirements of: (a) the three different agreements between the Community, its Member States and the IAEA, concerning the application of IAEA safeguards to some or all of the civil nuclear materials in the Community, and (b) the various agreements between the Community and certain third countries, concerning inter alia the application of safeguards within the Community to nuclear materials supplied, directly or indirectly, by these third countries. Within the past four years significant developments have occurred in both groups of agreements. The EURATOM safeguards organisation is the only multinational safeguards organisation in the world, and currently has a staff of some 120 inspectors, with appropriate administrative support, and can draw for research and development work on the resources of the Community's Joint Research Centre. The recent changes in inspection techniques, particularly in relation to non-destructive assay techniques, and the implementation of containment and surveillance measures, are discussed. A description is given of the experience gained in recent years in the operation of ''Joint Teams'' of EURATOM and IAEA inspectors in certain plants as well as the continuing experience gained under the normal regime, using the observation principle, as foreseen in the respective Agreement

  18. Nuclear criticality safety basics for personnel working with nuclear fissionable materials. Phase I

    International Nuclear Information System (INIS)

    Vausher, A.L.

    1984-10-01

    DOE order 5480.1A, Chapter V, ''Safety of Nuclear Facilities,'' establishes safety procedures and requirements for DOE nuclear facilities. The ''Nuclear Criticality Safety Basic Program - Phase I'' is documented in this report. The revised program has been developed to clearly illustrate the concept of nuclear safety and to help the individual employee incorporate safe behavior in his daily work performance. Because of this, the subject of safety has been approached through its three fundamentals: scientific basis, engineering criteria, and administrative controls. Only basics of these three elements were presented. 5 refs

  19. FFUSION yearbook 1996. Annual report of the Finnish research unit. Association EURATOM-TEKES

    Energy Technology Data Exchange (ETDEWEB)

    Karttunen, S; Paettikangas, T [eds.; VTT Energy, Espoo (Finland)

    1997-05-01

    Finnish fusion programme (FFUSION) is one of the eleven national energy research programmes funded by the Technological Development Centre of Finland (TEKES). The FFUSION programme was fully integrated into European Fusion Programme just after Finland joined the European Union. The contract of Association Euratom and Tekes was signed in 1995 and extends to the end of 1999. Finland became a member of JET Joint Undertaking in 1996, other contracts with Euratom include NET agreement and the Staff Mobility Agreement. FFUSION programme with participating research institutes and universities forms the Fusion Research Unit of the Association Euratom-Tekes. This annual report summarises the research activities of the Finnish Research Unit in 1996. The programme consists of two parts: Physics and Technology. The research areas of the physics are: Fusion plasma engineering, Radio-frequency heating and plasma diagnostics, and Plasma-wall interactions - ion-beam studies. The technology is focused into three areas: Fusion reactor materials (first wall components and joining techniques), Remote handling and viewing systems, and Superconductors

  20. Assessment of basic safety issues

    International Nuclear Information System (INIS)

    Queniart, D.

    1996-01-01

    Work on the French-German common safety approach for future nuclear power plants continued in 1994 to allow for more detailed discussion of some major issues, taking into account the options provided by the industry for the EPR (European Pressurized water Reactor) project, as described in the document entitled 'Conceptual Safety Features Review File'. Seven meetings of a GPR/RSK advisory experts subgroup, six GPR/RSK plenary sessions and six meetings of the safety authorities (DFD) dealt with the following topics: design of the systems and use of probabilistic approaches, application of a 'break preclusion' approach to the main primary pipings, protection against external hazards (aircraft crashes, explosions, earthquakes), provisions with respect to accidents involving core melt and to containment design, radiological consequences of reference accidents and accidents involving core melt at low pressure. The important aspects of the joint policy are recalled in the presentation. The whole set of GPR/RSK recommendations were agreed by the French and German safety authorities during the DFD meetings of 1994 and early 1995. The utilities decided to begin the basic design phase in February, 1995. Work is now continuing to develop the common French-German approach for future nuclear power plants, in the same way as before. In 1995, this mainly covers the design of the containment and of the systems, but also new issues such as the protection against secondary side overpressurization, radiological protection of workers and radioactive wastes. (J.S.). 3 figs., 1 tab

  1. Ionising radiations. Joint consultative document. Supplementary proposals for provision on radiological protection and draft advice from the National Radiological Protection Board to the Health and Safety Commission

    International Nuclear Information System (INIS)

    1979-01-01

    The consultative document is in two parts. Part 1 indicates the amendments to the first consultative document which would be required in order to implement (in the United Kingdom) the 1978 Draft Euratom Directive (on Basic Safety Standards for the health protection of the general public and workers against the dangers of ionising radiations). Part 2 deals with the system of dose limitation contained within the Euratom Directive. This aspect is discussed, in relation to the Articles of the Directive, under the following headings: limitation of doses for controllable exposures, limits of doses for exposed workers, limitation of doses for apprentices and students, planned special exposures, dose limits for members of the public. The Commission of the European Communities proposals for a draft Directive on Radiological Protection are reproduced as an Appendix, without Annexes. (U.K.)

  2. The implications of the new ICRP recommendations on the legislation community radiation protection

    International Nuclear Information System (INIS)

    Eriskat, H.

    1992-01-01

    One of the fundamental tasks attributed to the European Community by the Euratom Treaty is to establish uniform safety standards for the health protection of the general public and workers against the dangers of ionising radiation. Ever since 1959, when for the first time, following a proposal by the Commission, the Council of Ministers issued the Basic Safety Standards under form of a Directive, they were reviewed and amended on a regular basis taking into account to a large extent the recommendations of the International Commission on Radiological Protection (ICRP). The aim of the ongoing revision of the Basic Safety Standards Directives (80/836 EURATOM and 84/466 EURATOM) is to reinforce radiation protection thoughout the Community to assure the best possible protection of the workers and public. This partial revision of the basic safety standards needs careful interpretation of the ICRP recommendations, taking into account existing legislation in Member States and an evaluation of the applicability of such a revision in both implementation in legislation and in the daily practice of radiation protection. At the same time, the actual revision's impact on other community Directives in the area of radiation protection has to be considered and, if necessary, these Directives have to be brought in line with the modified Basic Safety Standards. Finally, this revision has to take into account as well the possible repercussion on radiation protection of the future single European Market in order to continue to assure the high level of protection obtained until now. (author)

  3. Law on protection against ionising radiation and nuclear safety in Slovenia

    International Nuclear Information System (INIS)

    Breznik, B.; Krizman, M.; Skrk, D.; Tavzes, R.

    2003-01-01

    The existing legislation related to nuclear and radiation safety in Slovenia was introduced in 80's. The necessity for the new law is based on the new radiation safety standards (ICRP 60) and the intention of Slovenia to harmonize the legislation with the European Union. The harmonization means adoption of the basic safety standards and other relevant directives and regulations of Euratom. The nuclear safety section of this law is based on the legally binding international conventions ratified by Slovenia. The general approach is similar to that of some members of Nuclear Energy Agency (OECD). The guidelines of the law were set by the Ministry of the Environment and Spatial Planning, Nuclear Safety Administration, and Ministry of Health. The expert group of the Ministry of Environment and Spatial Planning and the Ministry of Health together with the representatives of the users of the ionising sources and representatives of the nuclear sector, prepared the draft of the subject law. The emphasis in this paper is given to main topics and solutions related to the control of the occupationally exposed workers, radiation safety, licensing, nuclear and waste safety, and radiation protection of people and patients. (authors)

  4. Association Euratom - DTU, Technical University of Denmark, Department of Physics - Annual Progress Report 2011

    DEFF Research Database (Denmark)

    The programme of the Research Unit of the Fusion Association Euratom – DTU, Technical University of Denmark (until 31-12- 2011: Association Euratom – Risø DTU) covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport...... temperature superconductors. Other activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2011....

  5. Effects of the new radiation protection act on the radiation protection register and the monitoring of occupational radiation exposure; Auswirkungen des neuen Strahlenschutzgesetzes auf das Strahlenschutzregister und die berufliche Strahlenueberwachung

    Energy Technology Data Exchange (ETDEWEB)

    Frasch, G. [Bundesamt fuer Strahlenschutz (Germany)

    2016-07-01

    The implementation of DIRECTIVE 2013/59 / EURATOM (EURATOM Basic Safety Standards) is via the new radiation protection law and brings in the monitoring of occupational radiation among others two significant new features and changes: - Introduction of a unique personal identifier, - update of the occupational categories. Both require technical and organizational changes in the data transmission of the licensees to the dosimetry services and the radiation protection register.

  6. Effects of the new radiation protection act on the radiation protection register and the monitoring of occupational radiation exposure

    International Nuclear Information System (INIS)

    Frasch, G.

    2016-01-01

    The implementation of DIRECTIVE 2013/59 / EURATOM (EURATOM Basic Safety Standards) is via the new radiation protection law and brings in the monitoring of occupational radiation among others two significant new features and changes: - Introduction of a unique personal identifier, - update of the occupational categories. Both require technical and organizational changes in the data transmission of the licensees to the dosimetry services and the radiation protection register.

  7. 171 ROYAL DECREE 1891/1991 of 30 December 1991 on the installation and use of X-ray equipment for the purposes of medical diagnosis

    International Nuclear Information System (INIS)

    1992-01-01

    The Decree lays down the rules enabling government authorities to monitor the proper functioning of such appliances. It takes account of the Council of European Communities' Directive 80/836/Euratom amended by Directive 84/466/Euratom on basic safety standards for the health protection of the general public and workers against the dangers of ionization and Directive 84/467/Euratom laying down basic measures for the radiation protection of persons undergoing medical examination or treatment. The Decree provides for a register of firms authorised to sell and maintain medical X-ray equipment, and a register of the equipment installed. It also sets out requirements relating to third party liability insurance, and to the qualifications and training of personnel operating the equipment. (NEA)

  8. Basic safety principles for nuclear power plants

    International Nuclear Information System (INIS)

    1988-01-01

    Nuclear power plant safety requires a continuing quest for excellence. All individuals concerned should constantly be alert to opportunities to reduce risks to the lowest practicable level. The quest, however, is most likely to be fruitful if it is based on an understanding of the underlying objectives and principles of nuclear safety, and the way in which its aspects are interrelated. This report is an attempt to provide a logical framework for such an understanding. The proposed objectives and principles of nuclear safety are interconnected and must be taken as a whole; they do not constitute a menu from which selection can be made. The report takes account of current issues and developments. It includes the concept of safety objectives and the use of probabilistic safety assessment. Reliability targets for safety systems are discussed. The concept of a 'safety culture' is crucial. Attention has been paid to the need for planning for accident management. The report contains objectives and principles. The objectives state what is to be achieved; the principles state how to achieve it. In each case, the basic principle is stated as briefly as possible. The accompanying discussion comments on the reasons for the principle and its importance, as well as exceptions, the extent of coverage and any necessary clarification. The discussion is as important as the principle it augments. 4 figs

  9. Annual report of the Association EURATOM-Cea 2005 (full report)

    International Nuclear Information System (INIS)

    Salmon, Th.; Le Vagueres, F.

    2005-01-01

    This annual report summarizes activities performed by the EURATOM-Cea association in 2005. The activities carried out in the field 'physics integration' are mainly linked to the ion cyclotron range of frequency antenna development and to the development of diagnostic components. The vacuum vessel studies have mainly focused at welding techniques and at qualification of inspection methods along the vacuum vessel inter-sector weld. On the plasma facing component side investigations have been performed on material knowledge (CuCrZr creep-fatigue studies, neutron effects on material properties of CFC, development and optimisation of Be/CuCrZr joining techniques and studies dedicated to the divertor. In the field 'magnets', EURATOM-Cea association has devoted a major part of its effort to the studies of advanced Nb 3 Sn strands for the toroidal field coil, and the first full size conductor sample was manufactured. Within the frame of Test Blanket Module (TBM), activities mainly concerned the improvement and completion of the TBM engineering design. Within the frame of the Helium Cooled Pebble Bed concept programmes, studies about the development of Li 2 TiO 3 pebbles are on going. The main objective of 2005 which was to improve the shape of Li 2 TiO 3 pebbles has been successfully achieved. EURATOM-Cea maintained significant involvement in the development of structural materials for a fusion reactor. A strong effort has been made on a program of laser detritiation associated with remote handling. (A.C.)

  10. Nuclear safeguards in the European Union carried out by the European Commission or: the EURATOM treaty. The unknown nature

    International Nuclear Information System (INIS)

    Kilb, Wolfgang

    2016-01-01

    Nuclear safeguards in the 28 Member States of the European Union are based on a complex structure of national, supranational and international legal acts: A first approach are the three ''S'' to be met: security, safety, safeguards. The EURATOM safeguards are based on two pillars: the control of nuclear material itself, as well as different types of international agreements: the first refers to ''agreements with a third State'', the second on ''agreement with an international organization''.

  11. Assessment of IAEA safety series no. 75-INSAG-3 - ''basic safety principles for nuclear power plants''

    International Nuclear Information System (INIS)

    1989-01-01

    The International Atomic Energy Agency Safety Series No. 75-INSAG--3, 'Basic Safety Principles for Nuclear Power Plants' is reviewed in the light of the Advisory Committee on Nuclear Safety reports ACNS--2, 'Safety Objectives for Nuclear Activities in Canada', and ACNS--4, 'Recommended General Safety Requirements for Nuclear Power Plants'. The INSAG safety objectives are consistent with the safety objectives stated in ACNS--2 but are less general, applying only to nuclear power plants. The INSAG safety principles are, in general, consistent with the requirements stated in ACNS--4 but put more emphasis on 'safety culture'. They give little attention to reactor plant effluents, waste management, or decommissioning. (fig., 5 refs.)

  12. Proposals for Radiation (Emergency Preparedness and Public Information) Regulations (Northern Ireland). Consultative document

    International Nuclear Information System (INIS)

    2001-06-01

    This Consultative Document (CD) contains proposals by the Health and Safety Executive for Northern Ireland (HSENI) for the Radiation (Emergency Preparedness and Public Information) Regulations (Northern Ireland) (REPPIR(NI)), to partly implement, for Northern Ireland, the articles on intervention in cases of radiological emergency contained in Council Directive 96/29/Euratom on the basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionising radiation (Euratom BSS96 Directive), insofar as they apply to (a) premises, and (b) transport by rail

  13. Nuclear fusion project. Semi-annual report of the Association KfK/EURATOM

    International Nuclear Information System (INIS)

    1986-11-01

    Nuclear fusion is one of the main activities of the Karlsruhe Nuclear Research Center (KfK). It is organized as a project under the Directorate of Reactor Development and Safety. The work of KfK concentrates on technology aspects of nuclear fusion with magnetic confinement. It is part of the European Fusion Programme where KfK participates as an association to EURATOM. Close links have been established to the Max Planck Institute for Plasma Physics (IPP). In the Entwicklungsgemeinschaft Kernfusion KfK and IPP cooperate for the development of future fusion experiments joining the experience gained in plasma physics (IPP) and materials, safety, and nuclear technology (KfK), respectively. As in the present strategy of the European Fusion Programme the Next European Tokamak (NET) is foreseen as the major next step, most of the activities of KfK address this subject. In addition to the contributions to NET, studies are carried out to innovate INTOR, the worldwide cooperation for an experimental reactor under the auspices of IAEA. Furthermore, the Entwicklungsgemeinschaft Kernfusion has evaluated the feasibility of a fusion reactor with a stellarator confinement. (orig./GG)

  14. FFUSION yearbook 1997. Annual report of the Finnish fusion research unit. Association EURATOM-TEKES

    Energy Technology Data Exchange (ETDEWEB)

    Karttunen, S; Paettikangas, T [eds.; VTT Energy, Espoo (Finland)

    1998-02-01

    Finnish fusion programme (FFUSION) is one of the eleven national energy research programmes funded by the Technological Development Centre of Finland (TEKES). The FFUSION programme was fully integrated into European Fusion Programme just after Finland joined the European Union. The contract of Association Euratom and Tekes was signed in 1995 and extends to the end of 1999. Finland became a member of JET Joint Undertaking in 1996, other contracts with Euratom include NET agreement and the Staff Mobility Agreement. FFUSION programme with participating research institutes and universities forms the Fusion Research Unit of the Association Euratom-Tekes. This annual report summarises the research activities of the Finnish Research Unit in 1997. The programme consists of two parts: Physics and Technology. The research areas of the physics are: Fusion plasma engineering, and Radio-frequency heating and Plasma diagnostics. The technology is focused into three areas: Fusion reactor materials (first wall components and joining techniques), Remote handling and viewing systems, and Superconductors

  15. Nuclear power use backed by EURATOM law. European Court of Justice ruling points the way ahead in cross-border litigation

    International Nuclear Information System (INIS)

    Schneider, Horst

    2010-01-01

    The Europeanization of nuclear safety has become highly evident with the adoption of the EURATOM Safety Directive of June 25, 2009. It will remain in the focus of public attention because its transposition into national law is to be completed by July 22, 2011. The subject of nuclear safety is treated also by the European Court of Justice (ECJ). The Court's rulings may even set the courses of events. It is not only EURATOM rules and regulations and secondary European law in the format of directives which are up for review, but also more extensive principles of European law. The main sources of dispute are the different nuclear energy policies and non-uniform safety regulations of member states. Cross-border events again and again trigger such disputes. One such constellation constitutes the background to the latest ECJ ruling of October 27, 2009 about nuclear safety and radiation protection. Action before an Austrian court was brought against a nuclear power plant situated in the Czech Republic and licensed by Czech authorities. Cessation of emissions of hazardous ionizing radiation by that plant and, thus, ultimately shutdown of that plant were demanded. The special feature of the case is the fact that the action was filed with an Austrian (civil) court and heard there. As the ECJ had commented in 2006 on a procedural question before legal proceedings were started, the issue at stake now was the right to bring action out of Austria against the nuclear power plant licensed in the Czech Republic. In Austrian law, there is no such right of cessation with respect to plants licensed in Austria, but only a right to claim damages. Against this background some thoughts are expressed about, and forecasts attempted of, European nuclear and radiation protection law. In this assessment, the difficult, multifaceted issues of European law rank second to the explanations of practical consequences for the development of nuclear power in EU member states. (orig.)

  16. Criticality Safety Basics for INL Emergency Responders

    Energy Technology Data Exchange (ETDEWEB)

    Valerie L. Putman

    2012-08-01

    This document is a modular self-study guide about criticality safety principles for Idaho National Laboratory emergency responders. This guide provides basic criticality safety information for people who, in response to an emergency, might enter an area that contains much fissionable (or fissile) material. The information should help responders understand unique factors that might be important in responding to a criticality accident or in preventing a criticality accident while responding to a different emergency.

    This study guide specifically supplements web-based training for firefighters (0INL1226) and includes information for other Idaho National Laboratory first responders. However, the guide audience also includes other first responders such as radiological control personnel.

    For interested readers, this guide includes clearly marked additional information that will not be included on tests. The additional information includes historical examples (Been there. Done that.), as well as facts and more in-depth information (Did you know …).

    INL criticality safety personnel revise this guide as needed to reflect program changes, user requests, and better information. Revision 0, issued May 2007, established the basic text. Revision 1 incorporates operation, program, and training changes implemented since 2007. Revision 1 increases focus on first responders because later responders are more likely to have more assistance and guidance from facility personnel and subject matter experts. Revision 1 also completely reorganized the training to better emphasize physical concepts behind the criticality controls that help keep emergency responders safe. The changes are based on and consistent with changes made to course 0INL1226.

  17. International basic safety standards for protecting against ionizing radiation and for the safety of radiation sources

    International Nuclear Information System (INIS)

    1996-01-01

    The purpose of the Standards is to establish basic requirements for protection against the risks associated with exposure to ionizing radiation (hereinafter termed radiation) and for the safety of radiation sources that may deliver such exposure. The Standards have been developed from widely accepted radiation protection and safety principles, such as those published in the Annals of the ICRP and the IAEA Safety Series. They are intended to ensure the safety of all types of radiation sources and, in doing so, to complement standards already developed for large and complex radiation sources, such as nuclear reactors and radioactive waste management facilities. For the sources, more specific standards, such as those issued by the IAEA, are typically needed to achieve acceptable levels of safety. As these more specific standards are generally consistent with the Standards, in complying with them, such more complex installations will also generally comply with the Standards. The Standards are limited to specifying basic requirements of radiation protection and safety, with some guidance on how to apply them. General guidance on applying some of the requirements is available in the publications of the Sponsoring Organizations and additional guidance will be developed as needed in the light of experience gained in the application of the Standards. Tabs

  18. International basic safety standards for protecting against ionizing radiation and for the safety of radiation sources

    International Nuclear Information System (INIS)

    1997-01-01

    The purpose of the Standards is to establish basic requirements for protection against the risks associated with exposure to ionizing radiation (hereinafter termed radiation) and for the safety of radiation sources that may deliver such exposure. The Standards have been developed from widely accepted radiation protection and safety principles, such as those published in the Annals of the ICRP and the IAEA Safety Series. They are intended to ensure the safety of all types of radiation sources and, in doing so, to complement standards already developed for large and complex radiation sources, such as nuclear reactors and radioactive waste management facilities. For the sources, more specific standards, such as those issued by the IAEA, are typically needed to achieve acceptable levels of safety. As these more specific standards are generally consistent with the Standards, in complying with them, such more complex installations will also generally comply with the Standards. The Standards are limited to specifying basic requirements of radiation protection and safety, with some guidance on how to apply them. General guidance on applying some of the requirements is available in the publications of the Sponsoring Organizations and additional guidance will be developed as needed in the light of experience gained in the application of the Standards

  19. A Program Applying Professional Safety Basics in Construction Projects

    Directory of Open Access Journals (Sweden)

    Entisar Kadhim Rasheed

    2016-04-01

    Full Text Available When industrial and constructional renaissance started in the world, the great interest was going on towards the equipment’s, which was the first mean for production. After industry was settled the interest was going on towards the men ship which manpower on which the production depends. It was approved that it represents the basic part in all of the processes and the protection of those individuals against dangers of these equipment’s, industry and its accidents was the basic things which was studied in many researches until it crystallized in general principles for all industries and other take care in each industry. The professional safety is concerned as restrict which aims to take care of humanitarian and material principles also to raise the production of these principles, in the aspect of safety, health and providing the suitable healthy condition to the worker so he can feel safety, confidence and sociological settle, this will increase the production. So In order to maintain the manpower of business risks and to enable them to fulfill their role better to increase production and improve the quality and maintain the machine and supporting the national economy and keep pace with industrial developments and technological came the idea of research to focus on the importance of studying the subject of occupational safety by conducting a field survey to see the reality of professional safety in the relevant departments and work sites and through a questionnaire on the subject and conduct personal interviews with those concerned in this area and to prepare a program for the application of professional safety for each resource (labor, machines, materials, money in construction sites and departments concerned.

  20. Euratom Research Contributing to Better Risk Governance

    International Nuclear Information System (INIS)

    Kelly, Neale; Forsstroem, Hans

    2003-01-01

    Over the past decade, greater attention has increasingly been given to broader, less technical, issues in determining the scope and content of research carried out under the auspices of the European Atomic Energy Community (Euratom) Framework Programmes. This reflects a more general trend, in particular a need for research to take due account of the ethical, social, legal, regulatory and wider cultural aspects resulting from the development and exploitation of its outcomes. These considerations are fully embedded within the 61 Framework Programme and are matters which must be explicitly addressed by most projects. The increasing importance of these aspects is exemplified by the inclusion in the 6th Framework Programme of 'science and society' and 'citizens and governance in a knowledge based society' as two of its priorities. The paper summarises Euratom research being carried out in the 5th Framework Programme that addresses broader, less technical, issues in particular those that are concerned with better approaches to risk governance and broader stakeholder involvement or participation. This research is mainly being carried out in the areas of radioactive waste management and the management of nuclear emergencies but is complemented by research of a more general nature concerned with risk governance. Further research in these areas will continue in the 61 Frarnework Programme with increasing attention given to how it can be practically exploited

  1. 41 CFR 102-80.10 - What are the basic safety and environmental management policies for real property?

    Science.gov (United States)

    2010-07-01

    ... safety and environmental management policies for real property? 102-80.10 Section 102-80.10 Public... MANAGEMENT REGULATION REAL PROPERTY 80-SAFETY AND ENVIRONMENTAL MANAGEMENT General Provisions § 102-80.10 What are the basic safety and environmental management policies for real property? The basic safety and...

  2. Exclusion, exemption, clearance European Union approach

    International Nuclear Information System (INIS)

    Janssens, A.

    1997-01-01

    The presentation overviews the following issues: Euratom Basic Safety Standards; administrative requirements; radiation protection of the population. Scope of the Standards: natural radiation sources; exclusion. Exemption; Clearance; Import of radioactive scrap metal

  3. Research activities on high-temperature gas-cooled reactors (HTRs) in the 5. EURATOM RTD Framework programme

    International Nuclear Information System (INIS)

    Martin-Bermejo, J.; Hugon, M.; Van Goethem, G.

    2002-01-01

    One of the areas of research of the 'nuclear fission' key action of the 5. EURATOM RTD Framework Programme (FP5) is the safety and efficiency of future systems. The main objective of this area is to investigate and evaluate new or revisited concepts (both reactors and alternative fuels) for nuclear energy that offer potential longer term benefits in terms of cost, safety, waste management, use of fissile material, less risk of diversion and sustainability. Several projects related to high-temperature gas-cooled reactors (HTRs) were retained by the European Commission (EC) services. They address important issues such as HTR fuel technology, HTR fuel cycle, HTR materials, power conversion systems and licensing. Most of these projects have already started and are progressing according to the schedule. They are the initial core of activities of a European Network on 'High-temperature Reactor Technology' (HTR-TN) recently set up by 18 EU organisations. (authors)

  4. The legal points at issue concerning the Non-proliferation Treaty and the verification agreement of EURATOM with the IAEA

    International Nuclear Information System (INIS)

    Zieger, G.

    1975-01-01

    An excellent and comprehensive but very juridicial contribution on: Development and content of the Non-proliferation Treaty, the problems which this Treaty poses for EURATOM (a common market, common supply, joint enterprises, Non-proliferation Treaty and France), the compatibility of the Non-proliferation Treaty with the EURATOM Treaty, verification agreement EURATOM - IAEA (the IAEA as the supervisory authority, the control system of the IAEA, guidelines elaborated by the IAEA to be used as the basis for negotiating safeguard agreements, national systems of accounting for and control of nuclear material IAEA supervision as a secondary control, principles of IAEA supervision, secrecy, conflict management), conclusion of the verification agreement, deviations from the guidelines elaborated by the IAEA to be used as the basis for negotiating safeguard agreements legal reflexions (verification agreement and Non-proliferation Treaty, reservations concerning the Non-proliferation Treaty, questions of competence between EURATOM and member states without nuclear weapons, problems of equal treatment). (HP/LN) [de

  5. Results of the EURATOM programme for comparison of individual dosemeters

    International Nuclear Information System (INIS)

    Julius, H.W.

    1976-01-01

    The results of the EURATOM dosemeter comparison-program for dosemeters used in the member states are given. Especially the results obtained in the Netherlands are examined and evaluated. The design and characteristics of the badge developed by the TNO-RD which are based on a thermoluminescent dosemeter are given

  6. Implementation of The European Directive 96/29 EURATOM In Ireland

    International Nuclear Information System (INIS)

    Organo, C.

    2004-01-01

    The European Union Basic Safety Standard (BSS) Directive (96/29/EURATOM) is revised in line with scientific developments approximately every 10 to 15 years. The most recent revision, which took place in 1996, includes special provisions concerning exposure to natural sources of ionising radiation. Title VII of the revised Directive sets down a framework for controlling work activities where the presence of natural radiation sources leads to a significant increase in exposure to workers or members of the public, which cannot be disregarded from the radiation protection point of view. The implementation of Title VII resulted in significant legal changes in Ireland. It has been incorporated into Irish law by a Ministerial Order (Statutory Instrument No. 125 of 2000) which came into force in May 2000. This presentation will review the measures taken and progress achieved so far by the national regulatory agency, the Radiological Protection Institute of Ireland (RPII) since the coming into force of the new regulations in Ireland. Based on their economical significance, a group of three major industries currently active in Ireland have been investigated from a list of work activities which, on the basis of the literature, were considered liable to involve work practices resulting in exposure to NORM. They include: the gas extraction and production industry, the peat- and coal-firing power generation industry. For each of them, the RPII made an initial assessment of the scale of the problem by reviewing existing (non exhaustive) literature. Following this first step, meetings with the industry management responsible for the personnel and/or the Health and Safety and/or the environment were organised to increase their level of awareness with regard to the current legislation and discuss the potential consequences. This allowed us to compile information characteristic of each case and focus our interest on particular issues. Field investigations were carried out and

  7. Annual report of the Association EURATOM-Cea 2004 (full report)

    International Nuclear Information System (INIS)

    Magaud, Ph.; Le Vagueres, F.

    2004-01-01

    This annual report summarizes activities performed by the EURATOM-Cea association in 2004. The activities carried out in the field 'physics integration' are mainly linked to neutral beam developments and to the development of diagnostic components. In particular, in-situ diagnostics of the plasma facing surface have been studied. Concerning 'vessel activities', the manufacturing of the ITER primary first wall panel by HIP forming has been investigated. A dummy mock-up was produced to validate the manufacturing feasibility. A new welding process able to improve welding productivity has been investigated, it is based on a hybrid laser/TIG process called Hybrid Laser Conduction Welding. A ITER first wall mock-up has been successfully manufactured using induction brazing. In the field 'magnets', EURATOM-Cea association was involved to provide input information for establishing the final dimension details of the ITER cryo-plant. EURATOM-Cea is also involved with the design of different parts of the ITER magnet system and the fabrication of mock-ups for some critical parts of the coils. In the field 'tritium breeding and materials', activities have mainly concerned the improvement and completion of the TBM (tritium breeding module) engineering design. A new batch of 1 kilogram of Li 2 TiO 3 pebbles with a size distribution in the range 0.6 to 0.8 mm was produced in 2004. Concerning materials, activities were focused on the EUROFER, a reduced activation martensitic steel. Activities performed in the field 'system studies' are dedicated to the power plant conceptual studies. In 2004, activities were focused on the reactor model AB, based on a helium-cooled lithium-lead blanket. (A.C.)

  8. Nuclear law - Nuclear safety

    International Nuclear Information System (INIS)

    Pontier, Jean-Marie; Roux, Emmanuel; Leger, Marc; Deguergue, Maryse; Vallar, Christian; Pissaloux, Jean-Luc; Bernie-Boissard, Catherine; Thireau, Veronique; Takahashi, Nobuyuki; Spencer, Mary; Zhang, Li; Park, Kyun Sung; Artus, J.C.

    2012-01-01

    This book contains the contributions presented during a one-day seminar. The authors propose a framework for a legal approach to nuclear safety, a discussion of the 2009/71/EURATOM directive which establishes a European framework for nuclear safety in nuclear installations, a comment on nuclear safety and environmental governance, a discussion of the relationship between citizenship and nuclear, some thoughts about the Nuclear Safety Authority, an overview of the situation regarding the safety in nuclear waste burying, a comment on the Nome law with respect to electricity price and nuclear safety, a comment on the legal consequences of the Fukushima accident on nuclear safety in the Japanese law, a presentation of the USA nuclear regulation, an overview of nuclear safety in China, and a discussion of nuclear safety in the medical sector

  9. Experience with the 1985 UK ionizing radiation regulations: the regulators' viewpoint

    International Nuclear Information System (INIS)

    Bines, W.P.; Beaver, P.F.

    1991-01-01

    The Ionising Radiations Regulations 1985 achieved UK implementation of the Euratom Basic Safety Standards Directive; interim action has taken account of recent revisions of risk estimates and the regulations will not be revised in advance of renegotiation of the Euratom Directive. Wide ranging consultation, central to the development of health and safety legislation in the UK, leads to greater co-operation between regulators and regulated and more acceptable legislation. Examples of co-operation, also of methods of enforcement and the use made of them, are given. The authors conclude that the regulations have stood the test of experience well. (Author)

  10. EURATOM in a New Europe

    International Nuclear Information System (INIS)

    Lightner, J.J.; Wolcott, A.L.

    1992-01-01

    As the European Community (EC) approaches its thirty-fifth anniversary, it faces new challenges in opening markets to competition during a period of recession in the West. The degree to which the EC emphasizes protectionism rather than open competition in world markets will have a profound effect on international trade. In the nuclear fuel market, the EC faces a dilemma as the new nations of the former Soviet Union seek markets in the West for those few products they can sell profitably, while some EC producers seek protection for their existing customer base. The EURATOM Supply Agency, which was established to ensure the equitable and reliable supply of nuclear fuel within the EC, is struggling to address this issue while Europe is rapidly changing

  11. Euratom's accounting procedures to comply with IAEA requirements

    International Nuclear Information System (INIS)

    Kschwendt, H.

    1980-01-01

    The accounting concept used by the operators for nuclear materials accountancy is different from the evaluation concept used by IAEA. Euratom integrated these two concepts thus allowing for an automatic transformation from the one to the other concept (establishment of reports to IAEA by computer). Particular procedures have been developed to ensure the corrections of the accountancy in both concepts and to perform the retrospective corrections as required by IAEA. 4 refs

  12. Implementation of the basic safety standards directive in the UK

    International Nuclear Information System (INIS)

    Bines, W.

    2003-01-01

    Implementation of the European Council BSS Directive 96/29/Euratom in the UK is not achieved through any one piece of legislation (though the majority of the provisions are implemented by the Ionising Radiations Regulations 1999) but by a mosaic of provisions, supported by codes of practice, non-statutory guidance and administrative arrangements. The paper describes some of the features of UK occupational radiation protection and the reason for the apparent differences between the UK and other EU Member States in their approach to agreeing the precise provisions of European legislation. (author)

  13. ENETRAP III WP7. European guidance on the implementation of the requirements of the EURATOM BSS; ENETRAP III WP7. Europaeische Leitlinien zur Umsetzung der Aus- und Weiterbildungs-Anforderungen der EURATOM-Grundnormen im Strahlenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Paynter, R. [EUTERP (Netherlands); Stewart, J. [PHE (United Kingdom); Schmitt-Hannig, A. [BfS (Germany); Coeck, M. [SCK-CEN (Belgium); Falcao, A. [IST (Portugal)

    2016-07-01

    The Euratom BSS lays down specific requirements for the Radiation Protection Expert (RPE) and for the Radiation Protection Officer (RPO) and education and training requirements associated with these roles. A guidance document has been developed within the framework of ENETRAP III WP7 ''Guidance to support the implementation of E and T requirements for RPE and RPO as defined in the Euratom BSS''. The objective of WP7 activities is to facilitate the implementation of the new requirements for RPE and RPO in Member States and to help ensuring a consistent approach throughout the European Union.

  14. The practical implementation of safety culture

    Energy Technology Data Exchange (ETDEWEB)

    Touzet, Rodolfo [Comision Nacional de Energia Atomica, Buenos Aires. (Argentina)

    2008-07-01

    When, during the review of the Chernobyl accident, the INSAG Committee introduced the term 'Safety Culture', it spread very quickly. Later on, as a result of activities sponsored by the IAEA, the original Safety Culture concept was extended to include a large number of issues that are typical requirements of Quality Assurance Unfortunately, the way in which certain organizations approached this subject has not helped to find the right way for it to be implemented. Safety Culture is not mentioned at all in ICRP-60 and in the new recommendations of 2005 it does not even appear in the principal body and only a minor reference exists. The IAEA's Basic Safety Standards deal with the requirements for Safety Culture and for Quality Assurance as absolutely individual issues; however, Safety Culture should be considered as a part of the Quality System. Very recently the situation was strongly improved by the release of the new standard 'The Management System for Facilities and Activities' Safety Requirements GS-R-3. The EURATOM 97/43 Directive, used in the European Community for the preparation of regulations for medical practice, which, while inspired by ICRP-73, does not even mention Safety Culture. Increasing personnel training is not enough if, at the same time, there are no activities aimed at improving their attitude towards quality and safety. To achieve a change in Culture in the organization or to implant the new concept, there must be a suitable supporting Methodology to allow it to be put into practice. If not, the Safety Culture will only be a simple expression of wishes without any chance of success. Criteria, methodology and effective practical tools must be available. Two basic principles for the management system (GSR-3): a) All the tasks may be considered as 'a system of interactive processes'; b) All persons must take part in order to achieve safety and quality. These two principles are the basis of the strategy for the development of a Safety Culture

  15. The practical implementation of safety culture

    International Nuclear Information System (INIS)

    Touzet, Rodolfo

    2008-01-01

    When, during the review of the Chernobyl accident, the INSAG Committee introduced the term 'Safety Culture', it spread very quickly. Later on, as a result of activities sponsored by the IAEA, the original Safety Culture concept was extended to include a large number of issues that are typical requirements of Quality Assurance Unfortunately, the way in which certain organizations approached this subject has not helped to find the right way for it to be implemented. Safety Culture is not mentioned at all in ICRP-60 and in the new recommendations of 2005 it does not even appear in the principal body and only a minor reference exists. The IAEA's Basic Safety Standards deal with the requirements for Safety Culture and for Quality Assurance as absolutely individual issues; however, Safety Culture should be considered as a part of the Quality System. Very recently the situation was strongly improved by the release of the new standard 'The Management System for Facilities and Activities' Safety Requirements GS-R-3. The EURATOM 97/43 Directive, used in the European Community for the preparation of regulations for medical practice, which, while inspired by ICRP-73, does not even mention Safety Culture. Increasing personnel training is not enough if, at the same time, there are no activities aimed at improving their attitude towards quality and safety. To achieve a change in Culture in the organization or to implant the new concept, there must be a suitable supporting Methodology to allow it to be put into practice. If not, the Safety Culture will only be a simple expression of wishes without any chance of success. Criteria, methodology and effective practical tools must be available. Two basic principles for the management system (GSR-3): a) All the tasks may be considered as 'a system of interactive processes'; b) All persons must take part in order to achieve safety and quality. These two principles are the basis of the strategy for the development of a Safety Culture

  16. Euratom multi-camera optical surveillance system (EMOSS) - a digital solution

    International Nuclear Information System (INIS)

    Otto, P.; Wagner, H.G.; Taillade, B.; Pryck, C. de.

    1991-01-01

    In 1989 the Euratom Safeguards Directorate of the Commission of the European Communities drew up functional and draft technical specifications for a new fully digital multi-camera optical surveillance system. HYMATOM of Castries designed and built a prototype unit for laboratory and field tests. This paper reports and system design and first test results

  17. The work of the 'Irradiation Damage' sub-group of the EURATOM Working Group on Research Reactor Dosimetry

    International Nuclear Information System (INIS)

    Genthon, J.P.

    1975-01-01

    The EURATOM Working Group on Reactor Dosimetry is investigating the problems of the dosimetry of radiation damage experiments. Papers have been published on the dosimetry of graphite and irradiation of metals: the model chosen, the quantities employed to express the fluences, numerical values, measurements, and measurement techniques. The ensuing work of the EURATOM Working Group of Reactor Dosimetry in these areas will deal with the measurement methods required for the dosimetry of radiation damage. (Auth.)

  18. FISA-2009 Conference on Euratom Research and Training Activities: Nuclear Fission - Past, Present and Future (Generation-II, -III and -IV + Partitioning and Transmutation)

    International Nuclear Information System (INIS)

    Bhatnagar, V.; Deffrennes, M.; Hugon, M.; Manolatos, P.; Ptackova, K.; Van Goethem, G.; Webster, S.

    2011-01-01

    This paper is an introduction to the research and training activities carried out under the Euratom 7th Framework Programme (FP7, 2007-2011) in the field of nuclear fission science and technology, covering in particular nuclear systems and safety, and including innovative reactor systems and partitioning and transmutation. It is based on the more than 40 invited lectures that were delivered by Euratom project coordinators and keynote speakers at the FISA-2009 Conference (), organised by the European Commission DG Research, 22-24 June 2009, Prague, Czech Republic. The Euratom programme must be considered in the context of current and future nuclear technology and the respective research effort: ·Generation-II (i.e. yesterday, NPP construction 1970-2000): safety and reliability of nuclear facilities and energy independence in order to ensure security of supply worldwide; ·Generation-III (i.e. today, construction 2000-2040+): continuous improvement of safety and reliability, and increased industrial competitiveness in a growing energy market; ·Generation-IV (i.e. tomorrow, construction from 2040) for increased sustainability though optimal utilisation of natural resources and waste minimisation, and increased proliferation resistance. Consequently, the focus of the lectures devoted to Generation-II and -III is on the major scientific challenges and technological developments needed to guarantee safety and reliability, in particular issues associated with plant lifetime extension and operation. The focus of the lectures devoted to Generation-IV is on the design objectives and associated research issues that have been agreed upon internationally, in particular the ambitious criteria and technology goals established at the international level by the Generation-IV International Forum (GIF). In the future, electricity must continue to be produced competitively, and in addition high temperature process heat may also be required, while exploiting a maximum of fissile and

  19. Euratom research and training in nuclear reactor safety: Towards European research and the higher education area

    International Nuclear Information System (INIS)

    Goethem, G. van

    2004-01-01

    In this invited lecture, research and training in nuclear fission are looked at from a European perspective with emphasis on the three success factors of any European policy, namely: common needs, vision and instruments, that ought to be strongly shared amongst the stakeholders across the Member States concerned. As a result, the following questions are addressed: What is driving the current EU trend towards more research, more education and more training, in general? Regarding nuclear fission, in particular, who are the end-users of Euratom 'research and training' and what are their expectations from EU programmes? Do all stakeholders share the same vision about European research and training in nuclear fission? What are the instruments proposed by the European Commission (EC) to conduct joint research programmes of common interest for the nuclear fission community? In conclusion, amongst the stakeholders in Europe, there seems to be a wide consensus about common needs and instruments, but not about a common vision regarding nuclear. (author)

  20. State of implementation of directive 2013/59/Euratom regarding radon protection in selected member states of the European Union; Stand der Umsetzung der Richtlinie 2013/59/Euratom hinsichtlich des Radonschutzes in ausgewaehlten Mitgliedstaaten der EU

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, Stephanie [Saechsisches Staatsministerium fuer Umwelt und Landwirtschaft (Germany)

    2015-07-01

    Directive 2013/59/Euratom came 6th February 2014 into force. The member states have to implement the directive into national legislation until 6th of February 2018. According to different legal structures in the member states legislation will be comparable with regards to content, but may be implemented in different legal areas. Additionally the different current experience regarding radon regulation as well as different expertise with all aspects of radon protection will affect the implementation. Activities for implementation started in many member states, but at present it is not possible to make a mandatory statement for any member state, which modifications will come until 2018. On the other hand it is assumed that member states who have engaged themselves with radon protection issues since many years will not change their plans basically until 2018. The member states mentioned in the following text are chosen exemplary. A comprehensive compilation of the situation in all member states of the European Union was not possible. The inclusion of Switzerland resulted from the fact, that this European country is basically orientating its radon regulations on the international state of the art and international (also European) legislation.

  1. On regulation of environmental responsibility in the final stage of the nuclear fuel cycle. - Parallel regulation within the framework of Euratom and the Lisbon-treaty

    International Nuclear Information System (INIS)

    Erhag, Thomas

    2010-09-01

    In Sweden, the responsibility for the disposal of spent nuclear fuel is regulated in various laws and regulations. This means that there is an overlap between laws providing a sometimes vague and weak legal situation. Although attempts have been made to coordinate environmental and nuclear law these attempts have not succeeded. Recently, several Swedish reports have again described the fact that we have a parallel system of legal rules for the handling of spent nuclear fuel and the consequences of this. Foremost attention has been drawn to the fact that the licensing of a repository must be made both under the Nuclear Safety Act and the Environmental Code. The regulation referred to above is Swedish, and both the parallel regulation of nuclear safety-, radiation protection- and environmental- responsibility, and the relationship between such legislation, has its own Swedish history. However, Swedish legislation in all these areas is also under the influence of international regulations. This article describes the parallel regulation of nuclear safety and radiation protection issues on a European level. It shows that the division and logic found in the relationship between the Swedish laws is only partially reflected at European level. First treated is the relationship between the EC-treaty and Euratom. The article then turns to examples of regulatory responsibility for waste management and communication of information relating to license applications (environmental impact assessments) for the final disposal of spent nuclear fuel within the framework of Euratom and the EC-treaty. Finally, it discusses the implications of this type of parallel regulation for the Swedish licensing procedure

  2. On regulation of environmental responsibility in the final stage of the nuclear fuel cycle. - Parallel regulation within the framework of Euratom and the Lisbon-treaty

    Energy Technology Data Exchange (ETDEWEB)

    Erhag, Thomas (Dept. of Law, Univ. of Goeteborg, Goeteborg (Sweden)), e-mail: thomas.erhag@law.gu.se

    2010-09-15

    In Sweden, the responsibility for the disposal of spent nuclear fuel is regulated in various laws and regulations. This means that there is an overlap between laws providing a sometimes vague and weak legal situation. Although attempts have been made to coordinate environmental and nuclear law these attempts have not succeeded. Recently, several Swedish reports have again described the fact that we have a parallel system of legal rules for the handling of spent nuclear fuel and the consequences of this. Foremost attention has been drawn to the fact that the licensing of a repository must be made both under the Nuclear Safety Act and the Environmental Code. The regulation referred to above is Swedish, and both the parallel regulation of nuclear safety-, radiation protection- and environmental- responsibility, and the relationship between such legislation, has its own Swedish history. However, Swedish legislation in all these areas is also under the influence of international regulations. This article describes the parallel regulation of nuclear safety and radiation protection issues on a European level. It shows that the division and logic found in the relationship between the Swedish laws is only partially reflected at European level. First treated is the relationship between the EC-treaty and Euratom. The article then turns to examples of regulatory responsibility for waste management and communication of information relating to license applications (environmental impact assessments) for the final disposal of spent nuclear fuel within the framework of Euratom and the EC-treaty. Finally, it discusses the implications of this type of parallel regulation for the Swedish licensing procedure

  3. Association Euratom - Risø National Laboratory annual progress report for 1998

    DEFF Research Database (Denmark)

    Lynov, Jens-Peter; Singh, Bachu Narain

    1999-01-01

    The programme of the Research Unit of the Fusion Association Euratom - Risø National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics forfusion plasmas and studies of nonlinear dynamica....... The technology activities also include contibutions to macrotasks, which are carried out under the programme for Socio-Economic Research on Fusion(SERF). A summary is presented of the results obtained in the Research Unit during 1998.......The programme of the Research Unit of the Fusion Association Euratom - Risø National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics forfusion plasmas and studies of nonlinear dynamical...... processes related to electrostatic turbulence and turbulent transport in magnetised plasmas. The activities in technology cover investigations of radiation damage of fusion reactor materials. Theseactivities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme...

  4. Quench detection system of the EURATOM coil for the Large Coil Task

    International Nuclear Information System (INIS)

    Noether, G.; Gauss, S.; Maurer, W.; Siewerdt, L.; Ulbricht, A.; Wuechner, F.

    1989-01-01

    A special quench detection system has been developed for the EURATOM Large Coil Task (LCT) coil. The system is based on a bridge circuit which uses a special 'two in hand' winding technique for the pancakes of the EURATOM LCT coil. The electronic circuit was designed in a fail safe way to prevent failure of the quench detector due to failure of one of its components. A method for quick balancing of the quench detection system in a large toroidal magnet system was applied. The quench detection system worked very reliably during the experimental phase of the LCT and was within the quench detection level setting of 50 mV, i.e. the system was not sensitive to poloidal field transients at or below this level. Non-electrical methods for quench detection were also investigated. (author)

  5. Report by the work-group on 'safety of medical devices emitting ionizing radiations'. Articulation of radiation protection requirements of the 97/43/Euratom directive and IAEA recommendations with the essential requirements of the 93/42/CEE directive related to medical devices used in external radiotherapy

    International Nuclear Information System (INIS)

    2010-01-01

    As some dysfunctions and events had been reported in 2007 and 2008 in field of radiotherapy, this report aims at clarifying the articulation between the different European regulations concerning medical devices emitting ionizing radiations and radiation protection. The authors report a survey with device manufacturers, and analyze the content of the different regulations and recommendations. Then, the authors recommend and propose a set of actions related to the IAEA requirements and recommendations, to CE marking requirements, and to new radiation protection and safety requirements present in the Euratom directive

  6. Preparation + consultation = better regulation

    International Nuclear Information System (INIS)

    Bines, W.

    2001-01-01

    This paper describes the recent experience of the Health and Safety Commission and its executive arm, the Health and Safety Executive (H.S.E.), in consulting over implementation of the bulk of the revised Basic Safety Standards Directive 96/29/EURATOM (the B.B.S.directive) and provides a personal assessment of the successful and challenges of this approach. (N.C.)

  7. Research activities on high temperature gas-cooled rectors (HTRs) in the fifth EURATOM RTD framework programme

    International Nuclear Information System (INIS)

    Martin-Bermejo, J.; Hugon, M.

    2001-01-01

    One of the areas of research of the nuclear fission key action of the Fifth EURATOM RTD Framework Programme (FP5) is safety and efficiency of future systems, which has as an objective to investigate and evaluate new or revisited concepts for nuclear energy that offer potential longer-term benefits in terms of cost, safety, waste management, use of fissile material, less risk of diversion and sustainability. After the first call for proposals of FP5, several projects related to high temperature gas-cooled reactors (HTRs) were retained by the European Commission (EC) services. They address important issues such as HTR fuel technology, HTR fuel cycle and HTR materials. In the next call for proposals (deadline January 2001) the EC expects other important HTR-related items not covered by the first call (e.g. power conversion systems and system analysis) to be addressed. The EC also expects proposals for strategy studies and/or thematic networks on the assessment of applications of nuclear energy other than generation of electricity via hydrogen production. (authors)

  8. Fire safety in dental clinics: Basics for dentists and dental students

    Directory of Open Access Journals (Sweden)

    Kalyana Chakravarthy Pentapati

    2015-01-01

    Full Text Available Fire safety is essential component and requirement in health care sector. It includes components like emergency exits, manual call outs, different types of fire extinguishers, safe assembly area, fire hydrant system with water sprinkler systems etc. We attempt to provide some basics about fire and fire safety that are prerequisite for safe working environment in dental clinics along with some recommendations that can be incorporated in the curriculum.

  9. Development of an Assessment Method for Building Materials Under Euratom Scope.

    Science.gov (United States)

    de With, Govert

    2017-11-01

    In 2013, the European Commission published its basic safety standards for protection against the dangers arising from exposure to ionizing radiation (Council Directive 2013/59/Euratom)-also known as EU-BSS. As a result, the use of raw materials with potentially elevated activity concentrations such as fly ash, phosphogypsum, and slags will now fall under EU-BSS scope when applied in building materials. In light of this new policy, a variety of tools are available to assess compliance with the 1-mSv y reference level for building materials. At the heart of these tools is a gamma-spectrometric determination of the naturally occurring radionuclides Ra, Th, and K in the material of concern. As a large number of construction products contain a certain amount of the raw material that falls under the scope of the EU regulation, this policy will lead to substantial measurement of building materials that pose little radiation risk. For this reason, a method is developed to enable assessment against the 1-mSv value not on the basis of gamma-spectrometric analysis but rather based on the product's material composition. The proposed method prescribes a maximum permitted content of raw materials with potentially elevated activity concentrations in terms of a weight percentage of the end product, where the raw materials of concern are defined as those listed in Annex XIII of the EU-BSS. The permitted content is a function of the product's surface density. Therefore, a product with a low surface density of up to 25 kg m can consist of nearly 100% raw materials with potentially elevated activity concentrations, and this percentage drops to around 15% for products with a surface density of around 500 kg m. Building materials that comply with these requirements on product composition are exempt from testing, while products that do not comply must perform regular gamma-spectrometric analysis. A full validation and testing of the method is provided. In addition, the paper discusses

  10. Supervision of nuclear material in the Federal Republic of Germany by the Commission of the European Communities (Euratom) and the International Atomic Energy Organisation (IAEO)

    International Nuclear Information System (INIS)

    Brueckner, C.

    1979-01-01

    Since the fifties Euratom has controlled nuclear material in the Federal Republic of Germany. When the verification agreement came into force in the treaty on the non-proliferation of atomic weapons in February 1977, the International Atomic Energy Organisation (IAEO) has commenced the supervision of nuclear material in German nuclear energy installations. The author describes the basic principle of the supervision and the possible effects on the installations. In addition, he also deals with the discussions which have flared up about the international supervision of nuclear material, and indicates possible future developments. (orig.) [de

  11. The countdown for the negotiations on the exit of Great Britain from the EU and Euratom has begun; Alea iacta est. Der Countdown fuer die Verhandlungen ueber den Ausstieg Grossbritanniens aus EU und EURATOM hat begonnen

    Energy Technology Data Exchange (ETDEWEB)

    Feldmann, Ulrike

    2017-07-15

    On 29 March 2017 the official letter from the United Kingdom to the President of the EU Council was presented to inform the European Council of its intention to withdraw from the European Union (EU). The period of 2 years in Article 50 of the EU Treaty provided for the exit negotiations has thus begun to run. In the letter to the President of the Council, the UK Government expressly declares its intention to withdraw from the EU and from the Euratom Treaty (EAV). Thus the controversy about the conjunction of the withdrawal from the EU and Euratom has become obsolete.

  12. Sustainable energy systems and the EURATOM research programme

    International Nuclear Information System (INIS)

    Webster, S.; Van Goethem, G.; )

    2007-01-01

    We are at a turning point in European research. With the launch of the EU's 7th Framework Programme, committing some Euro 53 billion of public funds to the European research effort over the next 7 years, Europe has finally woken up to the importance of Research and Development in the realisation of the most fundamental objectives defining the Union: growth, competitiveness, and knowledge. At the same time, and with strong links to growth and competitiveness but also to environmental protection, the Union is in the throws of an intense debate on future energy policy and climate change. Part of the research budget, some would say too small a part, is earmarked for energy - in particular the technological aspects of low carbon systems such renewables. This effort, together with measures to improve the EU's security and independence of supply, are essential if Europe is to respond effectively to solve the future energy conundrum. But where does nuclear fit in all this? What will the Union be doing in the area of nuclear research? Indeed, does nuclear figure at all in the long-term plans of the Union? Through the EURATOM part of the Framework Programme, the EU is maintaining important support to up-stream research in the area of advanced reactor technologies. This effort is being coordinated at the global level through EURATOM's membership of the Generation-IV International Forum. Though EU research in this field still has its critics among the Member States, and despite the relatively small sums currently committed, the leverage effect of current actions is significant and this is set to grow in the future. The imminent setting up of a Strategic Energy Technology Plan, as part of the European Commission on-going activities in the field of energy policy, and the feedback from independent experts in the Advisory Group on Energy and the EURATOM Scientific and Technical Committee all point to following conclusions: EU support for research on advanced nuclear fission

  13. An analysis of a regional nuclear safeguards organisation: the European Atomic Energy Community (EURATOM) and the development of nuclear safeguards in Western Europe

    International Nuclear Information System (INIS)

    Howlett, Darryl.

    1988-08-01

    This thesis argues that the nuclear safeguards system implemented by EURATOM in Western Europe has come to fruition as a result of a complex political process. This process has involved negotiations over the exact limits on safeguards interventions into the nuclear affairs of the European Community. There are two dimensions to these negotiations. On the one hand, they involve EURATOM and its member states over the necessary limits on safeguards intervention in member states' domestic nuclear affairs. On the other, there are negotiations between EURATOM and several actors outside the region, particularly the International Atomic Energy Agency. The thesis concludes by arguing that international safeguards organisations, of which EURATOM is a regional example, have made important contributions to arms control and international security. In the process, certain kinds of precedents and procedures which have potential for broader application have been established. (author)

  14. Training activities on radiation protection in nuclear medicine in the frame of the EURATOM FP7 collaborative project MADEIRA

    International Nuclear Information System (INIS)

    Giussani, Augusto; Mattsson, Sören; Mikuž, Marko; Cantone, Marie Claire; Hoeschen, Christoph

    2011-01-01

    MADEIRA was a Collaborative Project cofunded by the European Commission through the EURATOM Seventh Research Framework Programme. It was structured into four scientific work packages, and its aim was to optimize the efficacy and safety of 3D functional imaging in nuclear medicine and thereby to reduce the radiation exposures of the patients while keeping or even improving the quality of the diagnostic information. Additionally, a fifth work package was dedicated to training and dissemination activities, including the organization of specific training courses, as well as research exchange programs for young scientists. This manuscript summarizes the experience gained during the Training Courses, in particular the one devoted to aspects of radiation protection in nuclear medicine.

  15. Association Euratom - Risø National Laboratory, Technical University of Denmark - Annual Progress Report 2007

    DEFF Research Database (Denmark)

    Michelsen, Poul; Korsholm, Søren Bang; Juul Rasmussen, Jens

    The programme of the Research Unit of the Fusion Association Euratom - Risø National Laboratory, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the pla......The programme of the Research Unit of the Fusion Association Euratom - Risø National Laboratory, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction...... phased out during 2007. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2007....

  16. FISA 2009 - 7th European Commission conference on EURATOM research and training in reactor systems. Conference proceedings

    International Nuclear Information System (INIS)

    Goethem, G. van; Manolatos, P.; Hugon, M.; Bhatnagar, V.; Deffrennes, M.; Webster, S.

    2010-01-01

    The main achievements of the first series of projects under EURATOM FP-7 for nuclear research and training activities (2007 to 2011) were discussed. Approximately 500 participants were registered at FISA 2009 and at the 7 post-conference workshops, representing a wide audience of nuclear scientists and decision makers coming from 32 countries worldwide. The focus of the conference was on scientific and technological research in the following areas: nuclear plant life management for existing reactors (Generation II), severe accident management (Generation III), assessment of future nuclear fission systems (Generation IV), partitioning and transmutation systems (innovative fuels), access to large research infrastructures, and nuclear education and training. Special attention was devoted to the societal and industrial goals of GIF: sustainability, industrial competitiveness, safety and reliability, proliferation resistance. (orig.)

  17. Safety controls according to the non-proliferation treaty in EC countries

    International Nuclear Information System (INIS)

    Pander, J. von.

    1978-01-01

    Above all, content and extent of the duty conferred upon the IAEA according to article III, paragraph 1 of the NP treaty which implies the conducting of safety controls and the consequences resulting here from are examined. Including the peaceful use of nuclear energy developing under international law the agreement on safety control signed on 5th April 1973 between IAEA and EURATOM as well as its seven non-nuclear-weapon member states is discussed, along with its technical and its implicit legal problems. In detail the manifold technical and judicial problems of IAEA safety controls are shown, their realization requiring a well-working cooperation between IAEA and the European Communities. As only the non-nuclear-weapon member states of the EC are subject to the IAEA safety control system within the frame of this agreement the following questions are discussed: 1. effects on the member status after the signing of the EURATOM contract and 2. granting the principle of equal treatment for all member states as against the nuclear-weapon member states of the EC, France and the United Kingdom. (orig./HP) [de

  18. Education and training requirements in the revised European Basic Safety Standards Directive

    International Nuclear Information System (INIS)

    Mundigl, S.

    2009-01-01

    The European Commission is currently developing a modified European Basic Safety Standards Directive covering two major objectives: the consolidation of existing European Radiation Protection legislation, and the revision of the European Basic Safety Standards. The consolidation will merge the following five Directives into one single Directive: the Basic Safety Standards Directive, the Medical Exposures Directive, the Public Information Directive, the Outside Workers Directive, and the Directive on the Control of high-activity sealed radioactive sources and orphan sources. The revision of the European Basic Safety Standards will take account of the latest recommendations by the International Commission on Radiological Protection (ICRP) and shall improve clarity of the requirements where appropriate. It is planned to introduce more binding requirements on natural radiation sources, on criteria for clearance, and on the cooperation between Member States for emergency planning and response, as well as a graded approach for regulatory control. One additional goal is to achieve greater harmonisation between the European BSS and the international BSS. Following a recommendation from the Article 31 Group of Experts, the current draft of the modified BSS will highlight the importance of education and training by dedicating a specific title to radiation protection education, training and information. This title will include a general requirement on the Member States to ensure the establishment of an adequate legislative and administrative framework for providing appropriate radiation protection education, training and information. In addition, there will be specific requirements on training in the medical field, on information and training of workers in general, of workers potentially exposed to orphan sources, and to emergency workers. The revised BSS directive will include requirements on the competence of a radiation protection expert (RPE) and of a radiation protection

  19. History of the nuclear matter safety and control law

    International Nuclear Information System (INIS)

    Dean, G.

    1994-01-01

    In this text we give the history of the law creation on the control and safety of nuclear matter. Initially based on the CEA regulation single owner of nuclear matter, the development of nuclear energy has conducted the French government to edict law in relation with IAEA and Euratom recommendations

  20. Euratom experience with video surveillance - Single camera and other non-multiplexed

    International Nuclear Information System (INIS)

    Otto, P.; Cozier, T.; Jargeac, B.; Castets, J.P.; Wagner, H.G.; Chare, P.; Roewer, V.

    1991-01-01

    The Euratom Safeguards Directorate (ESD) has been using a number of single camera video systems (Ministar, MIVS, DCS) and non-multiplexed multi-camera systems (Digiquad) for routine safeguards surveillance applications during the last four years. This paper describes aspects of system design and considerations relevant for installation. It reports on system reliability and performance and presents suggestions on future improvements

  1. EURATOM safeguards. Safeguards verifications in reprocessing plants

    International Nuclear Information System (INIS)

    Heppleston, M.

    1999-01-01

    This paper provides a brief historical view of the legal basis for EURATOM. The specific application of safeguards to large scale reprocessing plants, from the theoretical model to the practical application of inspection is considered. The challenge to adequately safeguard major commercial reprocessing facilities has led to many novel approaches being developed. These lessons will also benefit other safeguard projects as a result. Good cooperation between the operator and regulator is essential for the satisfactory installation of adequate safeguard controls. The use of modern data processing technology combined with other diverse monitoring techniques has shown that a major industrial scale reprocessing plant can be controlled under international safeguards to provide a high level of assurance [ru

  2. EURATOM work on standard defects and dimensional measurements in neutron radiography of nuclear fuel elements

    International Nuclear Information System (INIS)

    Domanus, J.C.

    1981-10-01

    In 1979 a working group on neutron radiography was formed at Euratom. The purpose of this group is the standardization of neutron radiographic methods in the field of nuclear fuel. First priority was given to the development of image quality indicators and standard objects for the determination of accuracy of dimensional measurements from neutron radiographs. For that purpose beam purity and sensitivity indicators as well as a calibration fuel pin were designed and fabricated at Risoe. All the Euratom neutron radiography centers have recieved the above items for comparative neutron radiography. The measuring results obtained, using various measuring apparatus, will form the basis to formulate conclusions about the best measuring methods and instruments to be used in that field. (author)

  3. The European nuclear safety and radiation protection area: steps and prospects; L'Europe de la surete nucleaire et de la radioprotection: grandes etapes et perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Gillet, G. [Autorite de Surete Nucleaire, Dir. des relations internationales 75 - Paris (France)

    2010-11-15

    Launched with enthusiasm and determination in 1957, The European Atomic Energy Community (EAEC - EURATOM), which aimed to promote the development of a 'powerful nuclear industry' in Europe, has not ultimately fulfilled the wishes of its founding fathers. Rapidly, and on a topic as strategic as the peaceful use of the atom, national reflexes prevailed. The Chernobyl disaster, in 1986, also substantially slowed down the use of nuclear energy in Europe. Nuclear safety and radiation protection have followed two different paths. Backed by Chapter III of the EURATOM treaty, over time the EAEC has developed a substantial legislative corpus on radiation protection. Meanwhile, and strange as it may seem, nuclear safety has remained the poor relation, on the grounds that the treaty does not grant EURATOM competence in the area. It is true that legislation was adopted in reaction to Chernobyl, but for a long time there was no specific regulation of nuclear safety in the EU. The European nuclear safety and radiation protection area owes its construction to Community mechanisms as well as to informal initiatives by safety authorities. Today, more than ever, this centre provides consistency, an overall balance which should both strengthen it and impose it as an international reference. Progress can now be expected on waste management, radiation protection and the safety objectives of new reactors. (author)

  4. The 7 basic tools of quality applied to radiological safety

    International Nuclear Information System (INIS)

    Gonzalez F, J.A.

    1991-01-01

    This work seeks to establish a series of correspondences among the search of the quality and the optimization of the doses received by the occupationally exposed personnel. There are treated about the seven basic statistic tools of the quality: the Pareto technique, Cause effect diagrams, Stratification, Verification sheet, Histograms, Dispersion diagrams and Graphics and control frames applied to the Radiological Safety

  5. Recent developments in the European Union radiation protection policy

    International Nuclear Information System (INIS)

    Courades, J.M.

    1996-01-01

    All activities in the field of radiation protection are based on the Euratom Treaty. Both the Single European Act and the Maastricht Treaty leave the Euratom Treaty practically unchanged. So far the Commission has considered that the provisions of the Euratom Treaty, in particular its Chapter III - health and safety, give enough competence to the Community, and an acceptable level of safety is reached through the carrying out of a number of duties incumbent on the Community institutions and the Member States. It is to be noted that the task of the Euratom Treaty, as set out in its Article 1, is to c reate the conditions necessary for the speedy establishment and growth of nuclear industries . However, for several years, the Commission has recognised that the major contribution it could make to achieve the task of the Treaty is by ensuring a high level of protection and safety in all activities concerned with radioactivity and nuclear energy. The following is a list of the major provisions of the Treaty on which activities in the field of radiation protection are based.Article 2b) Euratom Treaty requires the Community to establish uniform safety standards to protect the health of workers and of the general public and ensure that they are applied. The meaning and the procedure for such standards is given in Articles 30-32 of the Treaty. Article 33) of the Euratom Treaty sets out that draft national regulations on radiation protection are communicated to the Commission which may wish to issue recommendations within three months. Article 35 imposes on Member States the establishment of facilities to carry out the environmental monitoring of radioactivity and to ensure compliance with the basic safety standards. It also gives the Commission the right of access to such facilities. Article 37 requires Member States to provide the Commission with such general data on any plan for the disposal of radioactive waste as will make it possible to evaluate its possible impact on

  6. Fifty Years of Safeguards under the EURATOM Treaty. A Regulatory Review

    International Nuclear Information System (INIS)

    Patel, B.; Chare, P.

    2007-01-01

    March 2007 marked the 50th anniversary of the signing of one of the founding treaties of the European Community. The EURATOM Treaty has its origins at a time when the stability of energy supplies in Europe was a major concern. Recently, much debate has centred on the possible reform or repeal of some parts of the treaty, given that its original aim was to promote and oversee the development of nuclear energy in Europe. This debate has focused attention on the future contribution of nuclear power to increasing energy demands in an enlarged Europe. However, despite these issues there is near universal agreement that the EURATOM Treaty has played a vital role in the protection of European citizens through the controls required for nuclear materials. Chapter 7 of the treaty (Safeguards) confers wide regulatory powers to the European Commission to ensure that civil nuclear materials are not diverted from their intended use as declared by the operators. This paper describes the early period of operation of the safeguards inspectorate, and gives statistics on the numbers and types of inspections carried out by the EURATOM inspectors, and discusses from an operational point of view the value of inspection activities. Further, a critical appraisal of Articles 77-85 within Chapter 7 is made. The paper also considers those safeguards requirements that are important to strengthen, in order to maintain a strong regulatory system to oversee future challenges, particularly in the context of increasing decommissioning activities within Europe. It is noteworthy that fifty-years after the founding of the treaty, many of the concerns about security of energy supply have re-emerged. It is a measure of the vision and forward thinking of its founders that the treaty has successfully overseen the safe and secure development of nuclear power in Europe (which currently provides a third of its electricity needs) and despite the many changes and developments that have occurred, that the

  7. Association Euratom - Risoe National Laboratory. Annual progress report 2002

    International Nuclear Information System (INIS)

    Bindslev, H.; Singh, B.N.

    2003-05-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. (au)

  8. Association Euratom - Risoe National Laboratory annual progress report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Lynov, J P; Michelsen, P; Singh, B N [eds.

    1995-06-01

    The program of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within (a) studies of nonlinear dynamical processes in magnetized plasmas, (b) development of laser diagnostics for fusion plasmas, and (c) development of pellet injectors for fusion experiments. The activities in technology cover (a) radiation damage of fusion reactor materials and (b) water radiolysis under ITER conditions. A summary of the activities in 1994 is presented. (au) 20 ills., 19 refs.

  9. Association Euratom - Risoe National Laboratory annual progress report 1995

    International Nuclear Information System (INIS)

    Lynov, J.P.; Singh, B.N.

    1996-05-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within studies of nonlinear dynamical processes in magnetized plasmas, and development of pellet injectors for fusion experiments. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step and the Long-term Technology programme. A summary is presented of the results obtained in the Research Unit during 1995. (au) 5 tabs., 32 ills., 33 refs

  10. Association Euratom - Risoe National Laboratory annual progress report 1994

    International Nuclear Information System (INIS)

    Lynov, J.P.; Michelsen, P.; Singh, B.N.

    1995-06-01

    The program of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within (a) studies of nonlinear dynamical processes in magnetized plasmas, (b) development of laser diagnostics for fusion plasmas, and (c) development of pellet injectors for fusion experiments. The activities in technology cover (a) radiation damage of fusion reactor materials and (b) water radiolysis under ITER conditions. A summary of the activities in 1994 is presented. (au) 20 ills., 19 refs

  11. Radioactive waste management and public participation in the EU. Lessons learnt from the EURATOM research framework programmes

    Energy Technology Data Exchange (ETDEWEB)

    Ferraro, Gianluca [European Commission, Joint Research Centre, Petten (Netherlands); Martell, Meritxell [Merience SCP, Barcelona (Spain)

    2015-12-15

    Since 2000, the EURATOM Framework Programmes have dedicated political attention and economic support to public participation in radioactive waste management (RWM). Although a one-fit-all solution for a participatory RWM does not exist, the diversity that characterizes the European Union (EU) offers a relevant pool of knowledge and experience. The Joint Research Centre has used the knowledge and experience cumulated by relevant EURATOM projects to define a list of general principles for a more participatory approach to RWM. The principles explained in this article can ultimately work as indications for the changes and strategic actions that are needed for a better RWM in the EU.

  12. Radioactive waste management and public participation in the EU. Lessons learnt from the EURATOM research framework programmes

    International Nuclear Information System (INIS)

    Ferraro, Gianluca; Martell, Meritxell

    2015-01-01

    Since 2000, the EURATOM Framework Programmes have dedicated political attention and economic support to public participation in radioactive waste management (RWM). Although a one-fit-all solution for a participatory RWM does not exist, the diversity that characterizes the European Union (EU) offers a relevant pool of knowledge and experience. The Joint Research Centre has used the knowledge and experience cumulated by relevant EURATOM projects to define a list of general principles for a more participatory approach to RWM. The principles explained in this article can ultimately work as indications for the changes and strategic actions that are needed for a better RWM in the EU.

  13. The countdown for the negotiations on the exit of Great Britain from the EU and Euratom has begun

    International Nuclear Information System (INIS)

    Feldmann, Ulrike

    2017-01-01

    On 29 March 2017 the official letter from the United Kingdom to the President of the EU Council was presented to inform the European Council of its intention to withdraw from the European Union (EU). The period of 2 years in Article 50 of the EU Treaty provided for the exit negotiations has thus begun to run. In the letter to the President of the Council, the UK Government expressly declares its intention to withdraw from the EU and from the Euratom Treaty (EAV). Thus the controversy about the conjunction of the withdrawal from the EU and Euratom has become obsolete.

  14. Basic principles on the safety evaluation of the HTGR hydrogen production system

    International Nuclear Information System (INIS)

    Ohashi, Kazutaka; Nishihara, Tetsuo; Tazawa, Yujiro; Tachibana, Yukio; Kunitomi, Kazuhiko

    2009-03-01

    As HTGR hydrogen production systems, such as HTTR-IS system or GTHTR300C currently being developed by Japan Atomic Energy Agency, consists of nuclear reactor and chemical plant, which are without a precedent in the world, safety design philosophy and regulatory framework should be newly developed. In this report, phenomena to be considered and events to be postulated in the safety evaluation of the HTGR hydrogen production systems were investigated and basic principles to establish acceptance criteria for the explosion and toxic gas release accidents were provided. Especially for the explosion accident, quantitative criteria to the reactor building are proposed with relating sample calculation results. It is necessary to treat abnormal events occurred in the hydrogen production system as an 'external events to the nuclear plant' in order to classify the hydrogen production system as no-nuclear facility' and basic policy to meet such requirement was also provided. (author)

  15. Solar Photovoltaic DC Systems: Basics and Safety: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    McNutt, Peter F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sekulic, William R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dreifuerst, Gary [Lawrence Livermore National Laboratory - retired

    2018-04-02

    Solar Photovoltaic (PV) systems are common and growing with 42.4 GW installed capacity in U.S. (almost 15 GW added in 2016). This paper will help electrical workers, and emergency responders understand the basic operating principles and hazards of PV DC arrays. We briefly discuss the following aspects of solar photovoltaic (PV) DC systems: the effects of solar radiation and temperature on output power; PV module testing standards; common system configurations; a simple PV array sizing example; NEC guidelines and other safety features; DC array commissioning, periodic maintenance and testing; arc-flash hazard potential; how electrical workers and emergency responders can and do work safely around PV arrays; do moonlight and artificial lighting pose a real danger; typical safe operating procedures; and other potential DC-system hazards to be aware of. We also present some statistics on PV DC array electrical incidents and injuries. Safe PV array operation is possible with a good understanding of PV DC arrays basics and having good safe operating procedures in place.

  16. Euratom Safeguards: Improving Safeguards by Cooperation in R&D and Implementation

    International Nuclear Information System (INIS)

    Schwalbach, P.; Schoop, K.; Ancius, D.; Marszalek, Y.; Smejkal, A.; Vaccaro, S.; De Baere, P.; Koutsoyannopoulos, C.; Meylemans, P.; Murtezi, M.; Persson, L.; Synetos, S.; Tempesta, S.; Canadell Bofarull, V.; Turner, D.; Goncalves, J.G.M.; Peerani, P.; Berndt, R.; Stringa, E.; Richir, P.; Sequeira, V.; Tagziria, H.; Janssens, W.A.M.; Zuleger, E.; Luetzenkirchen, K.; )

    2015-01-01

    Euratom Safeguards, implemented on the basis of the Euratom Treaty by the European Commission's Directorate Nuclear Safeguards, is the largest Regional Safeguards System and involved in many R&D activities of its own, often in close cooperation with external partners. Most of the results of these activities are shared with or offered to the IAEA. The work described in this paper is complementary to the projects run by the European Commission Cooperative Support Programme (ECSP) to the IAEA. The ECSP activities will be described elsewhere at this conference. The present paper will provide an overview on R&D activities run in addition to the ECSP, and will attempt to link them to the capabilities discussed by the IAEA in the Long Term R&D Plan. The range of topics will include work on unattended data acquisition systems (hard- and software), advanced data analysis tools, news from seals related technology, containment and design verification applications of 3D lasers, activities to keep standard measurement technologies sustainable etc. Work done with the IAEA in preparation of new facilities and facility types will be discussed briefly. The paper will also highlight some current challenges and make suggestions how to address them. (author)

  17. The Euratom research and training framework programme in its wider context

    International Nuclear Information System (INIS)

    Deffrennes, Marc

    2008-01-01

    Nuclear Energy is today providing 1/3 of the electricity in the EU: 150 Nuclear Power Plants generate 130 GWe. The EU has a recognised leadership in nuclear technology with competencies in all aspects of the fuel cycle. Nevertheless there are major challenges: - Energy-related and technical challenges: security of supply, environmental protection and waste issues, competitiveness, and non-proliferation issues. - The political challenge, which affects Europe in particular with differences of opinion between Member States on this sensitive issue. - The ageing of the nuclear expertise, especially acute in Europe, but also has a global dimension. There are a number of EU strategic initiatives in the area of technology/R and D, linking policy and financing instruments, that are helping to address the technical challenges above: - The Euratom Research and Training Programme - the Commission's Energy Package of 10 January 2007, endorsed by Council a few months later, sets the well known 2020 3 x 20 targets, and announces the associated Strategic Energy Technology Plan - SET Plan. - A key Commission-promoted initiative, the Sustainable Nuclear Energy Technology Platform (SNE-TP). - The Commission is also now fostering the International Cooperation dimension of the Euratom Framework Programme, in synergy with other specific cooperation instruments. (orig.)

  18. EFOMP policy statement 16: The role and competences of medical physicists and medical physics experts under 2013/59/EURATOM.

    Science.gov (United States)

    Caruana, Carmel J; Tsapaki, Virginia; Damilakis, John; Brambilla, Marco; Martín, Guadalupe Martín; Dimov, Asen; Bosmans, Hilde; Egan, Gillian; Bacher, Klaus; McClean, Brendan

    2018-04-01

    On 5 December 2013 the European Council promulgated Directive 2013/59/EURATOM. This Directive is important for Medical Physicists and Medical Physics Experts as it puts the profession on solid foundations and describes it more comprehensively. Much commentary regarding the role and competences has been developed in the context of the European Commission project "European Guidelines on the Medical Physics Expert" published as Radiation Protection Report RP174. The guidelines elaborate on the role and responsibilities under 2013/59/EURATOM in terms of a mission statement and competence profile in the specialty areas of Medical Physics relating to medical radiological services, namely Diagnostic and Interventional Radiology, Radiation Oncology and Nuclear Medicine. The present policy statement summarises the provisions of Directive 2013/59/EURATOM regarding the role and competences, reiterates the results of the European Guidelines on the Medical Physics Expert document relating to role and competences of the profession and provides additional commentary regarding further issues arising following the publication of the RP174 guidelines. Copyright © 2018. Published by Elsevier Ltd.

  19. Basic concept on safety regulation for land disposal of low level radioactive solid wastes

    International Nuclear Information System (INIS)

    1985-01-01

    As to the land disposal of low level radioactive solid wastes, to which the countermeasures have become the urgent problem at present, it is considered to be a realistic method to finally store the solid wastes concentratedly outside the sites of nuclear power stations and others, and effort has been exerted by those concerned to realize it. Besides, as for extremely low level radioactive solid wastes, the measures of disposing them corresponding to the radioactivity level are necessary, and the concrete method has been examined. The Committee on Safety Regulation for Radioactive Wastes has discussed the safety regulation for those since April, 1984, and the basic concept on the safety regulation was worked up. It is expected that the safety of the land disposal of low level radioactive solid wastes can be ensured when the safety regulation is carried out in conformity with this basic concept. The present status of the countermeasures to the land disposal of low level radioactive solid wastes is shown. As the concrete method, the disposal in shallow strate has been generally adopted. At present, the plan for the final storage in Aomori Prefecture is considered, and it will be started with the first stage of four-stage control. (Kako, I.)

  20. State of implementation of directive 2013/59/Euratom regarding radon protection in selected member states of the European Union

    International Nuclear Information System (INIS)

    Hurst, Stephanie

    2015-01-01

    Directive 2013/59/Euratom came 6th February 2014 into force. The member states have to implement the directive into national legislation until 6th of February 2018. According to different legal structures in the member states legislation will be comparable with regards to content, but may be implemented in different legal areas. Additionally the different current experience regarding radon regulation as well as different expertise with all aspects of radon protection will affect the implementation. Activities for implementation started in many member states, but at present it is not possible to make a mandatory statement for any member state, which modifications will come until 2018. On the other hand it is assumed that member states who have engaged themselves with radon protection issues since many years will not change their plans basically until 2018. The member states mentioned in the following text are chosen exemplary. A comprehensive compilation of the situation in all member states of the European Union was not possible. The inclusion of Switzerland resulted from the fact, that this European country is basically orientating its radon regulations on the international state of the art and international (also European) legislation.

  1. Association Euratom - Risoe National Laboratory annual progress report 2000

    International Nuclear Information System (INIS)

    Lynov, J.P.; Singh, B.N.

    2001-08-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics for fusion plasmas and studies of nonlinear dynamical processes related to turbulence and turbulent transport in the edge region of magnetised fusion plasmas. The activities in technology cover investigations of radiation damage of fusion rector materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2000. (au)

  2. Association Euratom - Risoe National Laboratory annual progress report 1999

    International Nuclear Information System (INIS)

    Lynov, J.P.; Singh, B.N.

    2001-01-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics for fusion plasmas and studies of nonlinear dynamical processes related to electrostatic turbulence and turbulent transport in magnetised plasmas. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 1999. (au)

  3. Association Euratom - Risø National Laboratory annual progress report 2000

    DEFF Research Database (Denmark)

    Lynov, Jens-Peter; Singh, Bachu Narain

    2001-01-01

    The programme of the Research Unit of the Fusion Association Euratom - Risø National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics forfusion plasmas and studies of nonlinear dynamical...... processes related to turbulence and turbulent transport in the edge region of magnetised fusion plasmas. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology...

  4. Association Euratom - Risø National Laboratory annual progress report 1999

    DEFF Research Database (Denmark)

    2001-01-01

    The programme of the Research Unit of the Fusion Association Euratom - Risø National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics forfusion plasmas and studies of nonlinear dynamical...... processes related to electrostatic turbulence and turbulent transport in magnetised plasmas. The activities in technology cover investigations of radiation damage of fusion reactor materials. Theseactivities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary...

  5. Association Euratom - Risø National Laboratory annual progress report 2002

    DEFF Research Database (Denmark)

    2003-01-01

    The programme of the Research Unit of the Fusion Association Euratom - Risø National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction withthe plasma equilibrium and particles....... The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations ofradiation damage of fusion reactor materials. These activities contribute to the Next Step......, the Long-term and the Underlying Fusion Technology programme....

  6. The Security Plan for the Joint Euratom/IAEA Remote Monitoring Network

    International Nuclear Information System (INIS)

    Stronkhorst, J.; Schoop, K.; Ruuska, K.; Kurek, S.; Levert, J.F.

    2015-01-01

    The European Commission and the IAEA have installed surveillance systems in all larger civil European nuclear facilities. The monitoring data is gathered by optical surveillance systems, electronic sealing systems and numerous measuring devices. The on-site joint Euratom/IAEA monitoring networks operate in general completely isolated from the operator's IT systems. To largely improve data security and reliability, remote data transmission (RDT) is installed on a growing number of sites, and the inspection data is daily transferred to the Data Collect Servers in Luxembourg and Vienna. A growing number of RDT connections and a growing number of security threats require an IT security policy that is pro-active as well as reactive in an efficient way. The risk based approach used in setting up the security plans assesses all elements of the monitoring network, from the implemented technical solution and the assessment of the security needs and threats, up to the incident handling and lessons learned. The results of the assessments are, for each individual RDT connection, described in the technical paragraphs and annexes, including system descriptions, network plans and contact information. The principles of secure data handling as implemented in the shared Euratom /IAEA monitoring network can apply to a broad range of industrial monitoring systems, where human interaction is in general the largest security risk. (author)

  7. Association Euratom - Risoe National Laboratory annual progress report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Bindslev, H.; Singh, B.N (eds.)

    2005-06-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2004. (au)

  8. Association Euratom - Risoe National Laboratory annual progress report 2005

    Energy Technology Data Exchange (ETDEWEB)

    Bindslev, H.; Singh, B.N. (eds.)

    2006-11-15

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2005. (au)

  9. Association Euratom - Risoe National Laboratory annual progress report 1996

    Energy Technology Data Exchange (ETDEWEB)

    Lynov, J.P.; Singh, B.N. [eds.

    1997-05-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics for fusion plasmas and studies of nonlinear dynamical processes related to electrostatic turbulence and turbulent transport in magnetized plasmas. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 1996. (au) 5 tabs., 25 ills., 11 refs.

  10. Association Euratom - Risoe National Laboratory annual progress report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Bindslev, H; Singh, B N

    2004-05-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2003. (au)

  11. Association Euratom - Risoe National Laboratory annual progress report 1996

    International Nuclear Information System (INIS)

    Lynov, J.P.; Singh, B.N.

    1997-05-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics for fusion plasmas and studies of nonlinear dynamical processes related to electrostatic turbulence and turbulent transport in magnetized plasmas. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 1996. (au) 5 tabs., 25 ills., 11 refs

  12. Association Euratom - Risoe National Laboratory annual progress report 2005

    International Nuclear Information System (INIS)

    Bindslev, H.; Singh, B.N.

    2006-11-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2005. (au)

  13. Association Euratom - Risoe National Laboratory. Annual progress report 2001

    International Nuclear Information System (INIS)

    Bindslev, H.; Singh, B.N.

    2002-06-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2001. (au)

  14. On reforming chapter VI of the Euratom Treaty

    International Nuclear Information System (INIS)

    Sandtner, W.

    1984-01-01

    The supply of uranium to the countries of the EC has been provided for in Chapter VI of the European Treaty. An Euratom Supply Agency was created, which enjoys a monopoly. However, this arrangement was hardly ever utilized in practice. For this reason, several attempts were made in the course of time to reform Chapter VI, most recently in 1979 on the initiative of France. The EC Commission now presented a ''new nuclear power strategy'' in early 1982, which was followed by a detailed report about the proposed changes in late 1982. Its main points as outlined and discussed in this article are these: defining the range of application; the unity of the market; international relations; solidarity measures; the future role of the Supply Agency. (orig.) [de

  15. What future for Euratom as the UK prepares for its 'nuclear independence'?

    International Nuclear Information System (INIS)

    Shepherd, John

    2017-01-01

    UK government ministers have been keeping European leaders guessing over what their negotiating position will be when formal talks start about the 'divorce' from the European Union. However, for the nuclear energy community, there was one very certain statement in recent weeks about what Brexit will also mean: withdrawal from the Euratom Treaty.

  16. What future for Euratom as the UK prepares for its 'nuclear independence'?

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, John [nuclear 24, Redditch (United Kingdom)

    2017-03-15

    UK government ministers have been keeping European leaders guessing over what their negotiating position will be when formal talks start about the 'divorce' from the European Union. However, for the nuclear energy community, there was one very certain statement in recent weeks about what Brexit will also mean: withdrawal from the Euratom Treaty.

  17. Finnish solution to increased basic professional training needs in nuclear safety

    International Nuclear Information System (INIS)

    Kyrki-Ramaeki, R.; Koskinen, K.

    2008-01-01

    The Finnish nuclear energy organizations have in cooperation arranged basic professional training courses on nuclear safety due to fast increased education needs. Especially the new nuclear power plant construction project turned the situation acute, but there was also a need to preserve the tacit knowledge of many nuclear experts retiring within the next ten years. From 2003, the YK courses have been arranged five times with altogether 270 participants. The need of this kind of complementary education is still seen high in Finland, and the YK6 course is to be arranged during the next winter. There has not been seen to be legal incompetence due to the likelihood of bias in the education even that the participating organizations have differing and/or opposing roles. It is seen that a real safety culture presumes that nuclear safety is a common goal, and even the competition for market shares is no obstacle for cooperation. (authors)

  18. Basic Safety Standards for Radiation Protection - 1967 Edition

    International Nuclear Information System (INIS)

    1967-01-01

    This first revision of the Basic Safety Standards was approved by the IAEA Board of Governors in September 1965. It was prepared with the assistance of a panel of experts chaired by Prof. L. Bugnard, Director of the French Institut National d'Hygiene, and attended by representatives of several international organizations. Comments from Member States were considered and changes were introduced on the basis of recommendations made by the International Commission on Radiological Protection in 1966. The Director General of the IAEA has been authorized by the Board to apply the revised Standards to IAEA and IAEA-assisted operations. It has also been recommended that the national regulations of Member States should conform, as far as is practicable, to the revised Standards. (author)

  19. Basic researches on thermo-hydraulic non-equilibrium phenomena related to nuclear reactor safety

    International Nuclear Information System (INIS)

    Sakurai, Akira; Kataoka, Isao; Aritomi, Masanori.

    1989-01-01

    A review was made of recent developments of fundamental researches on thermo-hydraulic non-equilibrium phenomena related to light water reactor safety, in relation to problems to be solved for the improvement of safety analysis codes. As for the problems related to flow con ditions, fundamental researches on basic conservation equations and constitutive equations for transient two-phase flow were reviewed. Regarding to the problems related to thermal non-equilibrium phenomena, fundamental researches on film boiling in pool and forced convection, transient boiling heat transfer and flow behavior caused by pressure transients were reviewed. (author)

  20. 877-Royal Decree 1753/1987 of 25 November partly amending the Regulations on health protection against ionizing radiation, approved by Royal Decree 2519/1982 of 12 August

    International Nuclear Information System (INIS)

    1988-01-01

    This Decree modifies the 1982 Royal Decree on Radiation Protection as a result of Spain's entry into the European Community and its taking into account of EURATOM Radiation Protection Directives 80/836. The 1987 Decree amends relevant provisions of the 1982 Decree to reflect the basic safety standards of the EURATOM Directives concerning the types of activities which imply exposure, the justification and optimisation of exposure and the requirement that individual doses not exceed specified limits. The annual dose equivalent limits are set out in Annex II to the Decree while Annex III gives the annual limits of intake by inhalation and ingestion for workers and members of the public [fr

  1. Improvement of the radiation protection in medicine by implementation of the Council Directive 97/43/EURATOM

    International Nuclear Information System (INIS)

    Milu, C.; Dumitrescu, A.

    2005-01-01

    The European Council Directive No. 97/43/EURATOM was approved on 30 June 1997 and refers to health protection of individuals against the damages of ionising radiation in relation to medical exposure, superseding the Directive 84/466/EURATOM. As in most European countries, medical exposure is the main man-made radiation exposure of population. Of particular concern in radiation protection in medicine is the use of X-rays for diagnostic purposes, involving potential radiation exposure of young population and of pregnant women. The 97/43/EURATOM Directive is now fully adopted into Romanian legislation and a plan for its implementation has been established. Several practical issues have already arisen and they are related to (1) justification of individual medical exposure (patient selection) due to unclear distribution of responsibilities between the prescriber and the practitioner; (2) justification of medical exposures with no direct health benefit for the exposed person (reconsideration of health screening programmes, exposure of individuals as part of medico-legal procedures); (3) patient dosimetry and the use of Diagnostic Reference Levels (need of procedures and equipment); (4) QA/QC (procedure, training and test facilities); (5) examination of biomedical and medical research by an ethics committee; (6) application of Dose Constraints and Clinical Audit concepts; (7) prohibition of fluoroscopy examinations without an image intensification. An intensive training programme of the personnel involved (practitioners, inspection) was started and special efforts for the acquisition of appropriate equipment are made with the aim to improve radiation protection in medicine, through the implementation of the EU Directive.(author)

  2. Association Euratom - Risoe National Laboratory annual progress report 2006

    Energy Technology Data Exchange (ETDEWEB)

    Michelsen, P.K.; Singh, B.N. (eds.)

    2007-09-15

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2006. (au)

  3. Association Euratom - Risoe National Laboratory annual progress report 1997

    International Nuclear Information System (INIS)

    Lynov, J.P.; Singh, B.N.

    1998-11-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics for fusion plasmas and studies of nonlinear dynamical processes related to electrostatic turbulence and turbulent transport in magnetised plasmas. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. The technology activities also include contributions to macrotasks carried out under the programme for Socio-Economic Research on Fusion (SERF). A summary is presented of the results obtained in the Research Unit during 1997. (au)

  4. Association Euratom - Risoe National Laboratory annual progress report 2006

    International Nuclear Information System (INIS)

    Michelsen, P.K.; Singh, B.N.

    2007-09-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2006. (au)

  5. The application of redundancy-related basic safety principles to the 1400 MWE reactor core standby cooling system

    International Nuclear Information System (INIS)

    Bertrand, R.

    1990-01-01

    This memorandum shall provide the background for the work of the European Community Commission which is to analyze safety principles relating to redundancy. The redundancy-related basic safety principles applied in French nuclear power plants are the following: . the single-failure criterion, . provisions additional to application of the single-failure criterion. These are mainly provisions made at the design stage to minimize risks associated with common cause failures or the risks of human error which can lead to such failures: - protection against hazards of internal and external origin, - the geographical or physical separation of equipment, - the independence of electrical power supplies and distribution systems, - the additional resources and associated operating procedures making it possible to accommodate total loss of the safety systems. The scope also includes the operating rules which ensure availability of redundant safety-related equipment. The provisions relating to the single-failure criterion are detailed in Basic Safety Rule 1.3.A appended. The application of these principles proposed by the operating organization and accepted by the safety authorities for the design and operation of the standby core cooling system (System RIS) is explained

  6. EURATOM-CEA association contributions to the 21st symposium on fusion technology

    International Nuclear Information System (INIS)

    Garin, P.; Grosman, A.; Beaumont, B.

    2000-11-01

    The 27 contributions of EURATOM-Cea association have been gathered with 6 additional papers and 1 invited paper in this document. Most papers concern Tore-Supra and deal with the ergodic divertor, particle injection, impedance concept for ICRF antennas, low hybrid current drive, RF systems, the 118 GHz ECRH experiment, the inner first wall, improved vacuum vessel protection, pellet injection, material activation, and the CIEL project. 3 of the additional papers concern the model coil of ITER

  7. EURATOM-CEA association contributions to the 21st symposium on fusion technology

    Energy Technology Data Exchange (ETDEWEB)

    Garin, P; Grosman, A; Beaumont, B [and others

    2000-11-01

    The 27 contributions of EURATOM-Cea association have been gathered with 6 additional papers and 1 invited paper in this document. Most papers concern Tore-Supra and deal with the ergodic divertor, particle injection, impedance concept for ICRF antennas, low hybrid current drive, RF systems, the 118 GHz ECRH experiment, the inner first wall, improved vacuum vessel protection, pellet injection, material activation, and the CIEL project. 3 of the additional papers concern the model coil of ITER.

  8. The use of a basic safety investment model in a practical risk management context

    International Nuclear Information System (INIS)

    Aven, Terje; Hiriart, Yolande

    2011-01-01

    We consider a basic model in economic safety analysis: a firm is willing to invest an amount x in safety measures to avoid an accident A, which in the case of occurrence, leads to a loss of size L. The probability of an accident is a function of x. The optimal value of x is determined by minimizing the expected costs. In the paper, we re-examine this model by adopting a practical risk/safety management perspective. We question how this model can be used for guiding the firm and regulators in determining the proper level of investment in safety. Attention is given to issues like how to determine the probability of an accident and how to take into account uncertainties that extend beyond the expected value. It is concluded that the model, with suitable extensions and if properly implemented, provides a valuable decision support tool. By focusing on investment levels and stimulating thereby the generation of alternative risk-reducing measures, the model is considered particularly useful in risk reduction (ALARP) processes. - Highlights: → It is shown how to use a basic investment model in a practical risk management setting. → The model may be a valuable decision support tool if properly implemented. → It guides decision makers on risk reduction and how to determine what is ALARP. → The model stimulates the generation of alternative risk-reducing measures.

  9. LearnSafe. Learning organisations for nuclear safety

    International Nuclear Information System (INIS)

    Wahlstroem, B.; Kettunen, J.; Reiman, T.

    2005-03-01

    The nuclear power industry is currently undergoing a period of major change, which has brought with it a number of challenges. These changes have forced the nuclear power plants to initiate their own processes of change in order to adapt to the new situation. This adaptation must not compromise safety at any time, but during a rapid process of change there is a danger that minor problems may trigger a chain of events leading to a degraded safety. Organisational learning has been identified as an important component in ensuring the continued safety and efficiency of nuclear organisations. In response to these challenges a project LearnSafe 'Learning organisations for nuclear safety' was set up and funded by the European Community under the 5th Euratom Framework Programme. The present report gives an account of the LearnSafe project and its major results. (orig.)

  10. Trends and needs in experimentation and numerical simulation for LWR safety

    International Nuclear Information System (INIS)

    Yadigaroglu, G.; Andreani, M.; Dreier, J.; Coddington, P.

    2003-01-01

    The very complex phenomena that need to be considered in safety analyses require use of sophisticated analytical tools. Basically, one-dimensional (1D) system codes have been used for a long time and have reached a degree of maturity. There are, however, limits to their capabilities and further developments are underway; these are outlined. The development of new generations of tools and methods can profit from the availability of increasingly powerful computers and advances in multiphase flow, information technology and numerical techniques. Three-dimensional (3D) situations need also to be addressed more frequently now. Certain developments in these directions that are already taking place in various EURATOM research programs and elsewhere are briefly reviewed; case studies of applications are discussed and lessons drawn. Future safety analyses for nuclear power plants may include use of Computational Fluid Dynamics (CFD) for parts of the primary system and the containment. First applications in this direction have already been made. Although 3D, single-phase CFD computations are commonplace, the size of the systems considered make these quite challenging. The real challenges lie, however, in two-phase flow CFD applications that are still at their very infancy. Coupling of neutronic and thermal-hydraulic codes is also necessary for certain problems

  11. Trends and needs in experimentation and numerical simulation for LWR safety

    Energy Technology Data Exchange (ETDEWEB)

    Yadigaroglu, G. E-mail: yadigaroglu@iet.mavt.ethz.ch; Andreani, M.; Dreier, J.; Coddington, P

    2003-04-01

    The very complex phenomena that need to be considered in safety analyses require use of sophisticated analytical tools. Basically, one-dimensional (1D) system codes have been used for a long time and have reached a degree of maturity. There are, however, limits to their capabilities and further developments are underway; these are outlined. The development of new generations of tools and methods can profit from the availability of increasingly powerful computers and advances in multiphase flow, information technology and numerical techniques. Three-dimensional (3D) situations need also to be addressed more frequently now. Certain developments in these directions that are already taking place in various EURATOM research programs and elsewhere are briefly reviewed; case studies of applications are discussed and lessons drawn. Future safety analyses for nuclear power plants may include use of Computational Fluid Dynamics (CFD) for parts of the primary system and the containment. First applications in this direction have already been made. Although 3D, single-phase CFD computations are commonplace, the size of the systems considered make these quite challenging. The real challenges lie, however, in two-phase flow CFD applications that are still at their very infancy. Coupling of neutronic and thermal-hydraulic codes is also necessary for certain problems.

  12. The Storage of Thermal Reactor Safety Analysis data (STRESA)

    International Nuclear Information System (INIS)

    Tanarro Colodron, J.

    2016-01-01

    Full text: Storage of Thermal Reactor Safety Analysis data (STRESA) is an online information system that contains three technical databases: 1) European Nuclear Research Facilities, open to all online visitors; 2) Nuclear Experiments, available only to registered users; 3) Results Data, being the core content of the information system, its availability depends on the role and organisation of each user. Its main purpose is to facilitate the exchange of experimental data produced by large Euratom funded scientific projects addressing severe accidents, providing at the same time a secure repository for this information. Due to its purpose and architecture, it has become an important asset for networks of excellence as SARNET or NUGENIA. The Severe Accident ResearchNetwork of Excellence (SARNET)was set up in 2004 under the aegis of the research Euratom Framework Programmes to study severe accidents in watercooled nuclear power plants. Coordinated by the IRSN, SARNET unites 43 organizations involved in research on nuclear reactor safety in 18 European countries plus the USA, Canada, South Korea and India. In 2013, SARNET became fully integrated in the Technical Area N2(TA2), named “Severe accidents” of NUGENIA association, devoted to R&D on fission technology of Generation II and III. (author

  13. Association Euratom - Risø National Laboratory annual progress report 2005

    DEFF Research Database (Denmark)

    2006-01-01

    The programme of the Research Unit of the Fusion Association Euratom - Risø National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction withthe plasma equilibrium and particles....... The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations ofradiation damage of fusion reactor materials. These activities contribute to the Next Step......, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2005....

  14. Association Euratom - Risø National Laboratory annual progress report 2003

    DEFF Research Database (Denmark)

    2004-01-01

    The programme of the Research Unit of the Fusion Association Euratom - Risø National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction withthe plasma equilibrium and particles....... The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations ofradiation damage of fusion reactor materials. These activities contribute to the Next Step......, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2003....

  15. Association Euratom - Risø National Laboratory annual progress report 2001

    DEFF Research Database (Denmark)

    2002-01-01

    The programme of the Research Unit of the Fusion Association Euratom - Risø National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction withthe plasma equilibrium and particles....... The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations ofradiation damage of fusion reactor materials. These activities contribute to the Next Step......, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2001....

  16. Association Euratom - Risoe National Laboratory Annual Progress Report 1998

    International Nuclear Information System (INIS)

    Lynov, J.P.; Singh, B.N.

    1999-08-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics for fusion plasmas and studies of nonlinear dynamical processes related to electrostatic turbulence and turbulent transport in magnetised plasmas. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. The technology activities also include contributions to macrotasks, which are carried out under the programme for Socio-Economic Research on Fusion (SERF). A summary is presented of the results obtained in the Research Unit during 1998. (au)

  17. Association Euratom - Risoe National Laboratory Annual Progress Report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Lynov, J.P.; Singh, B.N. [eds.

    1999-08-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics for fusion plasmas and studies of nonlinear dynamical processes related to electrostatic turbulence and turbulent transport in magnetised plasmas. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. The technology activities also include contributions to macrotasks, which are carried out under the programme for Socio-Economic Research on Fusion (SERF). A summary is presented of the results obtained in the Research Unit during 1998. (au) 27 ills., 18 refs.

  18. Association Euratom - Risoe National Laboratory annual progress report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Lynov, J.P.; Singh, B.N. [eds.

    1998-11-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics for fusion plasmas and studies of nonlinear dynamical processes related to electrostatic turbulence and turbulent transport in magnetised plasmas. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. The technology activities also include contributions to macrotasks carried out under the programme for Socio-Economic Research on Fusion (SERF). A summary is presented of the results obtained in the Research Unit during 1997. (au) 5 tabs., 30 ills., 12 refs.

  19. Basic concept of fuel safety design and assessment for sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Nakae, Nobuo; Baba, Toshikazu; Kamimura, Katsuichiro

    2013-03-01

    'Philosophy in Safety Evaluation of Fast Breeder Reactors' was published as a guideline for safety design and safety evaluation of Sodium-Cooled Fast Reactor in Japan. This guideline points out that cladding creep and swelling due to internal pressure should be taken into account since the fuel is used under high temperature and high burnup, and that fuel assembly deformation and the prevention from coolant channel blockage should be taken into account in viewpoints of nuclear and thermal hydraulic design. However, the requirements including their criteria and evaluation items are not described. Two other domestic guidelines related to core design are applied for fuel design of fast reactor, but the description is considered to not be enough to practically use. In addition, technical standard for nuclear fuel used in power reactors is also applied for fuel inspection. Therefore, the technical standard and guideline for fuel design and safety evaluation are considered to be very important issue for nuclear safety regulation. This document has been developed according to the following steps: The guidelines and the technical standards, which are prepared in foreign countries and international organization, were reviewed. The technical background concerning fuel design and safety evaluation for fast reactor was collected and summarized in the world wide scale. The basic concept of fuel safety design and assessment for sodium-cooled fast reactor was developed by considering a wide range of views of the specialists in Japan. In order to discuss the content with foreign specialists IAEA Consultancy Meetings have been held on January, 2011 and January, 2012. The participants of the meeting came from USA, UK, EC, India, China and South Korea. The specialists of IAEA and JNES were also joined. Although this document is prepared for application to 'Monju'(prototype LMFR), it may be applied to experimental, demonstration and commercial types of LMFR after revising it by taking

  20. The legal regime of nuclear materials supply and international safeguards laid down in the EURATOM treaty, and how it has been modified by subsequent practice

    International Nuclear Information System (INIS)

    Manig, W.

    1993-01-01

    Practice deviating from the authentic text of the EURATOM treaty is lawful only when based on official and accepted interpretation of the EURATOM treaty, or on amendment by accepted practice. According to Art. 204 of the Constituent Act, amendments require governmental consent and ratification. The chapters of the EURATOM treaty dealing with nuclear materials supply and nuclear safeguards have been made subject to simplified procedures of revision. The procedures of revision stipulated in the treaty do not altogether rule out amendment based on principles other than those stipulated. The European Communities do not have the status of a federation, so that Member States have a vital say in procedures for revision of the Communities' constituent acts. They have the right to initiate and adopt amendments by procedures not mentioned in the treaty. Constituent acts of international organisations, particularly of those endowed with supranational authority, like EURATOM, may only be modified if the interests of the organisation, normally safeguarded by its bodies, are left untouched. Amendments must not be put down in writing. There is the possibility of tacit amendment, if the common practice reflects a consensus among all parties concerned about the particular amendment. Such amendment by continuous, common practice is subject to the general constraints governing amendment of the constituent acts of the three European Communities (participation of the bodies of the organisation, acquis communautaire). The amendments relating to nuclear materials supply and the international safeguards which have been created by practice are in line with these provisions, as the Commission, the Council, Member States and the supply agency are practising the amended procedures, so that the amendments of chapters VI and VII of the Constituent Act of EURATOM, as expressed in practice, are legally effective. (orig./HP) [de

  1. Competence preservation through education

    International Nuclear Information System (INIS)

    Ham, U.; Koessler, M.

    2013-01-01

    For fulfilling their tasks GNS depends on personnel with specific knowledge and competence. GNS answers to these challenges by various measures for education and training in order to have skilled personnel available nowadays and in the future. By these measures and the internal organisation regarding responsibilities in radiation protection requirements resulting from the expected Euratom Basic Safety Standards (BSS) are met. (orig.)

  2. Eurex Euratom-CNEN agreement tenth annual report for the year 1974

    International Nuclear Information System (INIS)

    Calleri, G.; Dworschak, H.; Rolandi, G.

    1977-01-01

    This report covers the tenth year of activity in connection with the Eurex project since the signing of Euratom-CNEN Agreement no.001-64-11 RC-II for the construction, operation use for industrial research purposes of the Eurex plant. The report summarizes the contents of three four-monthly reports published during 1974 and presents a summary statement of expenditure. The report contains the following parts: management of the reprocessing division; planning and construction of the plant (modification); cold tests; laboratory and pilot-scale experiments prior to start-up of the plant; industrial operation of the plant

  3. The legal situation relating to the reprocessing in other EC member countries of spent fuel from German nuclear power stations

    International Nuclear Information System (INIS)

    Haedrich, H.

    1993-01-01

    The author states that reprocessing can continue, showing by his analysis that discontinuing the reprocessing of spent fuel from Germany in installations in France or Great Britain would mean a breach of - prior-ranking - Euratom law, which offers equally efficient protection of public security and public health and safety in accordance with the internationally defined and accepted state of the art in science and technology. In addition, such a decision would mean an infringement of the basic principles of the free market economy as laid down by the Euratom treaty and by the EC treaty, as there are no facts or conditions allowing application of the exemption provision given by the EC treaty. (orig./HP) [de

  4. Position paper. Input from the French Nuclear Society to the Public Stakeholder consultation on the H2020 and the Euratom research programs. Paris, January 12, 2017

    International Nuclear Information System (INIS)

    Faudon, Valerie; Le Ngoc, Boris

    2017-01-01

    The French Nuclear Society is calling for the following actions at the EU level: Revitalize EURATOM R and D around a common ambition from the group of countries engaged in nuclear energy: The European Commission, the 'guardian of the Treaties', must fully implement the EURATOM Treaty provisions. The first objective set in Article 2(a) of the Treaty is to 'promote research'. Chapter I of the Treaty is dedicated to R and D and Article 4 tasks the Commission for 'promoting and facilitating nuclear research in the Member States and for complementing it by carrying out a Community research and training programme'. R and D on nuclear fission reactors and on the fuel cycle is necessary to strengthen the European industry's technological leadership. New governance practices must be negotiated with countries that do not wish to use nuclear energy in their future energy mix, including Germany, so they do not block initiatives around the development of nuclear energy. Countries wishing to use nuclear power should be able to fully use the provisions of the EURATOM Treaty for the implementation of common objectives. The EU must include and champion nuclear research, such as the United States, Canada and the United Kingdom do, in the intergovernmental initiative 'Mission Innovation' (commitment to double public investment in clean energy research and development in the next five years), developed within the framework of the United Nations Convention against Climate Change. Re-launch European research on new concepts of fission reactors: The EU has gradually withdrawn from research on new fission reactors. It allocated only 316 million euros to nuclear fission over 2014-2018, focusing on issues of safety, radiation protection and waste management, and ignoring future fission reactors. This compares with the euros 5.9 billion allocated over 2014-2020, (more than 10 times more) under Horizon 2020 in its 'Secure, Clean and Efficient

  5. JRC-IE's research of safety of Gen IV systems

    International Nuclear Information System (INIS)

    Tsige-Tamirat, H.; Ranguelova, V.; Feutterer, M.; Ammirabile, L.; Carlsson, J.; D'Agata, E.; Laurie, M.; Magallon, D.

    2010-01-01

    The Institute for Energy (IE), one of the seven scientific Institutes of the Joint Research Centre (JRC) of the European Commission, has the mission to provide scientific and technical support for the conception, development, implementation and monitoring of community policies related to energy. To accomplish its mission, IE performs research in the areas of renewable energies, safety and sustainability of nuclear energy for current and future reactor systems, energy technic/economic assessment, and security of energy supply. The Generation IV International Forum (GIF) is a cooperative international endeavour organized to carry out R and D needed to establish the feasibility and performance capabilities of the next generation nuclear energy systems and support the progress towards their realization. The EU, represented by EURATOM and with the JRC as implementing agent, is working together with other GIF partners to perform pre-competitive R and D on key technologies to be implemented in future nuclear systems. IE is engaged in experimental research, simulation and modeling, scientific, feasibility and engineering studies on innovative nuclear reactor systems needed to support the EURATOM contribution to GEN IV initiative, in particular in assessment of innovative fuels and materials, development of new reactor core concepts and safety solutions and knowledge management and preservation. IE's research activities on Generation IV reactor systems are focused on the assessment of the potential of such systems to meet long term EU energy needs with respect to economical advantages, enhanced safety, sustainability, and proliferation resistance. IE participates in international collaborations and has bilateral research cooperation both with European and non-European partners. This paper gives an overview of IE's current research activities on the Gen IV reactor systems related to safety. (authors)

  6. EURATOM, the year 2000 and its impact on the reporting system and instrumentation

    International Nuclear Information System (INIS)

    Chare, P.J.

    1999-01-01

    Presentation includes the Y2K potential problem areas, its impact on the reporting system and instrumentation as well as achievements done so far. The potential problem areas are: reporting system, headquarters system, installed instrumentation and stand alone instrumentation. A complete list of EURATOM equipment is listed. Specific problem areas concerned include data acquisition programmes. Reporting system is Y2K compatible, headquarters systems will be after upgrading, problems concerning instrumentation are identified and will be upgraded in 1999

  7. Annual report for the steering committee of the association Euratom-Belgian State for fusion 1996

    Energy Technology Data Exchange (ETDEWEB)

    Moons, F.; Bogaerts, W.; Decreton, M.; Biver, E.; Coenen, S.; Benoit, Ph.; Coheur, L.; Deboodt, P.; Andreev, D.

    1996-09-01

    This report is prepared for the annual steering committee meting of the Association Euratom - Belgian State for Fusion. The period October 1995 to September 1996 is reported on.The fusion technology work performed at the Belgian Nuclear Research Centre SCK/CEN, the Department of Metallurgy and Materials Engineering of the Louvain University (Belgium) and S.A. Gradel, a Luxemburg company, is described.

  8. Annual report for the steering committee of the association Euratom-Belgian State for fusion 1996

    International Nuclear Information System (INIS)

    Moons, F.; Bogaerts, W.; Decreton, M.; Biver, E.; Coenen, S.; Benoit, Ph.; Coheur, L.; Deboodt, P.; Andreev, D.

    1996-09-01

    This report is prepared for the annual steering committee meting of the Association Euratom - Belgian State for Fusion. The period October 1995 to September 1996 is reported on.The fusion technology work performed at the Belgian Nuclear Research Centre SCK/CEN, the Department of Metallurgy and Materials Engineering of the Louvain University (Belgium) and S.A. Gradel, a Luxemburg company, is described

  9. Nuclear fusion project. Annual report of the Association KfK/EURATOM

    International Nuclear Information System (INIS)

    Kast, G.

    1990-09-01

    Report on the technology program for NET: Plasma facing components, magnets, tritium fuel cycle, basic blanket, remote handling and maintenance, safety and environment, solid breeder and liquid metal test blankets, mechanical properties of pre- and post-irradiation of 1.4914 steel (MANET). ECRH power sources, NET study contracts. (HP)

  10. Nuclear Fusion Project. Annual report of the Association KfK/EURATOM

    International Nuclear Information System (INIS)

    Kast, G.

    1991-10-01

    Report on the technology program for NET: Plasma facing components magnets, tritium fuel cycle, basic blanket, remote handling and maintenance, safety and environment, solid breeder and liquid metal test blankets, mechanical properties of pre- and post-irradiation of 1.4914 steel (MANET). ECRH power sources, NET study contracts. (orig.)

  11. Construction products performances and basic requirements for fire safety of facades in energy rehabilitation of buildings

    Directory of Open Access Journals (Sweden)

    Laban Mirjana Đ.

    2015-01-01

    Full Text Available Construction product means any product or kit which is produced and placed on the market for incorporation in a permanent manner in construction works, or parts thereof, and the performance of which has an effect on the performance of the construction works with respect to the basic requirements for construction works. Safety in case of fire and Energy economy and heat retention represent two among seven basic requirements which building has to meet according to contemporary technical rules on planning and construction. Performances of external walls building materials (particularly reaction to fire could significantly affect to fire spread on the façade and other building parts. Therefore, façade shaping and materialization in building renewal process, has to meet the fire safety requirement, as well as the energy requirement. Brief survey of fire protection regulations development in Serbia is presented in the paper. Preventive measures for fire risk reduction in building façade energy renewal are proposed according to contemporary fire safety requirements.

  12. Nuclear safeguards in the Federal Republic of Germany by the Commission of the European Communities, EURATOM, and the International Atomic Energy Agency (IAEA)

    International Nuclear Information System (INIS)

    Brueckner, C.

    1979-10-01

    The author reviews the developement of the legal and contractual bases for nuclear safeguards. In doing so, he deals with the EURATOM treaty, the non-proliferation treaty, the verification treaty; adjustment of control by means of the EURATOM regulation no. 3222/76 and the implementary law on the verification treaty. In the second part, he examines the control concept which is based on keeping books on materials, making-out balance sheets and on balance-sheet auditing. He sees problems arising as nuclear safeguards are introduced in nuclear installations in the endeavour to develop nuclear safeguards any further. (HSCH) [de

  13. Elements of safety and non proliferation

    International Nuclear Information System (INIS)

    Jalouneix, Jean; Aurelle, Jacques; Funk, Pierre; Ladsous, David; Bon Nguyen, Romuald; Goue, Georges; Lefevre, Odile

    2015-01-01

    This book on nuclear safety and non proliferation is based on knowledge and expertise of the IRSN. The first chapter addresses the safety of nuclear materials, of their installations and of their transportations. It proposes some contextual elements, presents the general guidelines of the French nuclear safety arrangement, the approach to take risks into account, the involved governmental and public bodies, the legal framework, and the protection and control arrangement (in terms of planning of safety-related activities, in terms of operator obligations, in terms of exercises and management crisis). The second part addresses the safety of radioactive sources: context (peculiarity, losses and thefts), international framework (source categories, Euratom directive), and the French organisation. The third chapter addresses nuclear non proliferation: historical background (creation and role of the IAEA and of the EAEC, definitions), principle of statements, inspection process, and French organisation (legal framework, governmental bodies, the IRSN). The last chapter addresses the issue of chemical non proliferation: historical background, international context (Convention on chemical weapons, organisation for their ban), and the French organisation

  14. Application of the Ionizing Radiations Regulations 1985 to a research establishment in the UK

    International Nuclear Information System (INIS)

    Ashton, I.; Walker, J.M.G.

    1988-01-01

    Three important reasons for the UK Health and Safety Executive to embark on the preparation of the Ionising Radiation Regulations were: the International Commission on Radiological Protection (ICRP) Publication 26 revised the basic recommendations for radiation protection on which national provisions are based; As members of the European Commission the UK is bound by the Euratom Directives to align its national legislation with other member states. The Directives lay down the basic safety standards for the health protection of the general public and workers against the dangers of ionising radiation; The UK Health and Safety at Work etc. Act 1974 allows outdated legislation to be progressively replaced by a system of regulations and approved codes of practice designed to maintain or improve the standards of health, safety and welfare in the workplace

  15. Proposal for basic safety requirements regarding the disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    1980-04-01

    A working group commissioned to prepare proposals for basic safety requirements for the storage and transport of radioactive waste prepared its report to the Danish Agency of Environmental Protection. The proposals include: radiation protection requirements, requirements concerning the properties of high-level waste units, the geological conditions of the waste disposal location, the supervision of waste disposal areas. The proposed primary requirements for safety evaluation of the disposal of high-level waste in deep geological formations are of a general nature, not being tied to specific assumptions regarding the waste itself, the geological and other conditions at the place of disposal, and the technical methods of disposal. It was impossible to test the proposals for requirements on a working repository. As no country has, to the knowledge of the working group, actually disposed of hifg-level radioactive waste or approved of plans for such disposal. Methods for evaluating the suitability of geological formations for waste disposal, and background material concerning the preparation of these proposals for basic safety requirements relating to radiation, waste handling and geological conditions are reviewed. Appended to the report is a description of the phases of the fuel cycle that are related to the storage of spent fuel and the disposal of high-level reprocessing waste in a salt formation. It should be noted that the proposals of the working group are not limited to the disposal of reprocessed fuel, but also include the direct disposal of spent fuel as well as disposal in geological formations other than salt. (EG)

  16. Technical safety Organisations (TSO) contribute to European Nuclear Safety

    International Nuclear Information System (INIS)

    Repussard, J.

    2010-01-01

    Nuclear safety and radiation protection rely on science to achieve high level prevention objectives, through the analysis of safety files proposed by the licensees. The necessary expertise needs to be exercised so as to ensure adequate independence from nuclear operators, appropriate implementation of state of the art knowledge, and a broad spectrum of analysis, adequately ranking the positive and negative points of the safety files. The absence of a Europe-wide nuclear safety regime is extremely costly for an industry which has to cope with a highly competitive and open international environment, but has to comply with fragmented national regulatory systems. Harmonization is therefore critical, but such a goal is difficult to achieve. Only a gradual policy, made up of planned steps in each of the three key dimensions of the problem (energy policy at EU level, regulatory harmonization, consolidation of Europe-wide technical expertise capability) can be successful to achieve the required integration on the basis of the highest safety levels. TSO's contribute to this consolidation, with the support of the EC, in the fields of research (EURATOM-Programmes), of experience feedback analysis (European Clearinghouse), of training and knowledge management (European Training and Tutoring Institute, EUROSAFE). The TSO's network, ETSON, is becoming a formal organisation, able to enter into formal dialogue with EU institutions. However, nuclear safety nevertheless remains a world wide issue, requiring intensive international cooperation, including on TSO issues. (author)

  17. Calls for proposals for Indirect IDT Action within the specific (Euratom) Research and Training Programme on Nuclear Energy (2002-2006); Convocatorias de propuestas de accion indirecta de IDT dentro del progrma especifico (Euratom) de investigacion y formacion sobre energia nuclear (2002-2006)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The official diary of the European Union C 273 of 14 November, 2003, published the Calls for Indirect IDT Action for the Euratom Research and Training Programme on Nuclear Energy. The complete text of these Calls are reproduced in page 29. (Author)

  18. Comparative study of legal limits of safety requirements for nuclear installations

    International Nuclear Information System (INIS)

    Schattke, Herbert.

    1983-01-01

    This paper makes a detailed analysis of safety philosophies and principles of radiological protection at international and national levels according to a standardised plan for purposes of comparison. It describes the relevant regulations of the IAEA, OECD/NEA and Euratom and those of the US, UK, France, Italy, the Netherlands, Switzerland and the Federal Republic of Germany. The author points out that the ICRP recommendations are the guidelines in the radiation protection field. (NEA) [fr

  19. Report of the 52. meeting of the Superior Council of the Nuclear Safety and Information (project)

    International Nuclear Information System (INIS)

    2000-01-01

    Since june 2000, the CSSIN (Superior Council on Nuclear Safety and Information) decided to present the meeting of its sessions, on the Internet site of the Nuclear Safety Authority. This document is the meeting project concerning the session of the 27 june 2000. The following subjects have been treated: the Blayais accident and its consequences; the Euratom Directive transposition on the workers and people protection; methodology and organization of the CSSIN concerning the civil nuclear installations and the radiation protection; actualization of the CSSIN heading in the Internet site of the Nuclear Safety Authority. (A.L.B.)

  20. Nuclear Data for Safe Operation and Waste Transmutation: ANDES (Accurate Nuclear Data for nuclear Energy Sustainability); Datos nucleares para la operacion segura y la transmutacion de residuos: Andes (Datos Nucleares Precisos para la Sostenibilidad de la Energia Nuclear)

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, E. M.

    2014-07-01

    Nuclear research within the 7th Framework Program (FP7 and FP7+2) of EURATOM has devoted a significant fraction of its efforts to the development of advanced nuclear fuel cycles and reactor concepts, mainly fast reactors, aiming to improve the long term sustainability by reduction of the final wastes, optimal use of natural resources and improvement of safety in the present and future nuclear installations. The new design need more accurate basic nuclear data for isotopes, like minor actinides, potentially playing an important role in the operation, fuel concept, safety or final wastes of those reactors and fuel cycles. Four projects, ANDES, ERINDA, EUFRAT and CHANDA, supported by EURATOM within the FP7 and FP7+2, have put together most of the European Nuclear Data community to respond efficiently and in a coordinated way to those needs. This paper summarizes the objectives, and main achievements of ANDES, the project responsible for most of the measurements and technical achievements that was coordinated by CIEMAT. Indeed, CIEMAT has coordinated the nuclear data R and D projects within EURATOM during the last 7 years (NUDATRA domain of EUROTRANS, and ANDES) and will continue this coordination in the CHANDA project till 2017. (Author)

  1. Nuclear fusion project. Semi-annual report of the Association KfK/Euratom

    International Nuclear Information System (INIS)

    Kast, G.

    1989-11-01

    Report on the technology program for NET: Plasma facing components, magnets, tritium fuel cycle, basic blanket, remote handling and maintenance, safety and environment, solid breeder and liquid metal test blankets, mechanical properties of pre- and post-irradiation of 1.4914 steel (MANET), ECRH power sources, NET study contracts. (HP)

  2. 23081 - Royal Decree No. 1132 of 14 September 1990 laying down basic measures for radiation protection of persons undergoing medical examination or treatment

    International Nuclear Information System (INIS)

    1990-01-01

    This Royal Decree incorporates into Spanish regulations Directive 84/466 Euratom which lays down basic measures for the radiation protection of persons undergoing medical examination or treatment. Any exposure to radiation for medical purposes must be medically justified and be conducted under the responsibility of a medical or dental practitioner adequately trained in the radiation protection field. All relevant facilities must be recorded in the national inventories to avoid unnecessary proliferation of such equipment [fr

  3. Annual report of the Association EURATOM/CEA 2003 (executive summary)

    International Nuclear Information System (INIS)

    2003-01-01

    3 different materials (copper base, stainless steel and mono-crystalline molybdenum) have been selected for mirrors used in diagnostic purposes. A new diagnostic for thermographic analysis has been developed for JET. The EURATOM-Cea association is involved in the development of the first ITER neutral beam injector (in particular the source and the accelerator) and in the design of the ITER neutral beam test facility. The EURATOM-Cea association has contributed to the design of an ITER-relevant ICRH launcher that will be installed on JET during the 2004 shutdown. The development of an industrial cutting and welding laser tool for fabrication and maintenance of hydraulic connector parts of the ITER blanket module has been achieved in 2003. Work on the manufacture of the ITER primary first wall panel by HIP forming is ongoing. In the field 'plasma facing components' activities have focused on flat tile technology and particularly on the possibility of failure in cascade of these tiles. A full-scale prototype mock-up of the ITER divertor vertical target has been high flux tested. The hot isostatic pressing technique has been selected for the fabrication of lot of fusion reactor components. Concerning remote handling activities, the feasibility studies for the remote maintenance (cutting, welding and inspection) of the ITER divertor cooling pipe with bore tools have been achieved. In the field 'magnet', activities have focused on an extensive characterization of 3 types of NbTi strand candidate for ITER PF coils and on the thermohydraulic properties of cable-in-conduit conductors. The helium cooled lithium lead (HCLL) breeding blanket concept has been developed for the test blanket module. In the field 'structural materials', work has been dedicated to the development of reduced activation ferritic martensitic steel and of SiC-SiC ceramic composites and of tungsten alloys. In the framework of fusion waste management, different processes that could be used for tritium

  4. Research Institute ITAL. Association EURATOM ITAL. Annual report 1982

    International Nuclear Information System (INIS)

    1983-01-01

    The Research Institute ITAL is one of the institutes of the Division for Agricultural Research of the Dutch Ministry of Agriculture and Fisheries. For certain aspects of its programme it is also a partner in the Association EURATOM-ITAL with the Commission of the European Community. This annual report deals with: molecular genetic methods for plant breeding; biotechnical production of valuable compounds by means of (plant) cell cultures and microorganisms; soil biology including the rhizosphere; radioactive contamination of the environment and its public health risks; the synergistic interaction between radiation and other mutagenic agents; a new approach in malaria control by means of radiation genetic research on insects; genetic sexing in the Mediterranean fruitfly, Ceratitis capitata; food irradiation (activities within the contract of the Dutch Government with the IAEA in Vienna and the FAO in Rome on food irradiation technology for developing countries). (Auth.)

  5. Overview of EU research activities in transmutation and innovative reactor systems within the Euratom framework programmes

    International Nuclear Information System (INIS)

    Bhatnagar, V.

    2009-01-01

    European Community (EC) (currently 27 Member States) shared-cost research has been organised in Framework Programmes (FP) of durations of 4 - 5 years since 1984. The 6th European Atomic Energy Community (EURATOM) Framework Programme (2002 - 06) and the current 7th FP (2007 - 11) have been allocated a fission research budget respectively of 209 and 287 Million Euro from the EC. There are 10 projects (total budget 70 M Euro, EC contribution 38 M Euro) in all aspects of transmutation ranging from road-mapping exercise to large integrated projects on accelerator driven systems, lead-cooled fast critical systems for waste transmutation, technology, fuel, accelerator facilities for nuclear data etc. In Innovative Reactor concepts, there are about half-a-dozen projects (total budget 30 M Euro, EC contribution 16 M Euro) including High Temperature Reactors, Gas-cooled Fast reactors, road-mapping exercise on sodium fast reactors etc. The main research and training activities in FP7 are: management of radioactive waste, reactor systems, radiation protection, infrastructures, human resources and mobility and training. In the two call for proposals (2007 and 2008) in FP7, 8 projects have been accepted in transmutation and innovative reactor concepts (total budget 53 M Euro, EC contribution 32 M Euro). These research projects cover activities ranging from materials, fuels, treatment of irradiated graphite waste, European sodium fast reactor to the establishment of a Central Design Team of a fast-spectrum transmutation device in Europe. The third call for proposals is underway requesting proposals on nuclear data, thermal hydraulics, gas and lead-cooled fast reactor systems with a total EC budget of 20 M Euro. International collaboration is an important element of the EU research policy. This overview paper will present elements of the strategy of EURATOM research and training in waste management including accelerator driven transmutation systems and Innovative reactor concepts

  6. The directive establishing a community framework for the nuclear safety of nuclear installations: the European Union approach to nuclear safety

    International Nuclear Information System (INIS)

    Garribba, M.; Chirtes, A.; Nauduzaite, M.

    2009-01-01

    This article aims at explaining the evolution leading to the adoption of the recent Council Directive 2009/71/EURATOM establishing a Community framework for the nuclear safety of nuclear installations adopted with the consent of all 27 members states following the overwhelming support of the European Parliament, that creates for the first time, a binding legal framework that brings legal certainty to European Union citizens and reinforces the role and independence of national regulators. The paper is divided into three sections. The first section addresses the competence of the European Atomic energy Community to legislate in the area of nuclear safety. It focuses on the 2002 landmark ruling of the European Court of justice that confirmed this competence by recognizing the intrinsic link between radiation protection and nuclear safety. The second part describes the history of the Nuclear safety directive from the initial 2003 European Commission proposal to today 's text in force. The third part is dedicated to a description of the content of the Directive and its implications on the further development of nuclear safety in the European Union. (N.C.)

  7. Association Euratom - DTU, Technical University of Denmark, Department of Physics - Annual Progress Report 2012

    DEFF Research Database (Denmark)

    The programme of the Research Unit of the Fusion Association Euratom – DTU, Technical University of Denmark covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium...... and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. Within fusion technology there are activities on fusion materials research (Tungsten and ODSFS). Other activities are system analysis...

  8. Association Euratom - DTU, Technical University of Denmark, Department of Physics - Annual Progress Report 2013

    DEFF Research Database (Denmark)

    The programme of the Research Unit of the Fusion Association Euratom – DTU, Technical University of Denmark covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium...... and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. Within fusion technology there are activities on fusion materials research (Tungsten and ODSFS). Other activities are system analysis...

  9. New French basic safety rule on seismic input ground motions

    International Nuclear Information System (INIS)

    Forner, Sophie; Boulaigue, Yves

    2002-01-01

    French regulatory practice requires that the main safety functions of a land-based major nuclear facility, in particular in accordance with its specific characteristics, safe shutdown, cooling and containment of radioactive substances, be assured during and/or after earthquake events that can plausibly occur at the site where the installation is located. This rule specifies an acceptable method for determining the seismic motion to be taken into account when designing a facility to address the seismic risk. In regions where deformation factors are low, such as in metropolitan France, the intervals between strong earthquakes are long and it can be difficult to associate some earthquakes with known faults. In addition, despite substantial progress in recent years, it is difficult, given the French seismotectonic situation, to identify potentially seismogenic faults and determine the characteristics of the earthquakes that are liable to occur. Therefore, the approach proposed in this Basic Safety Rule is intended to avoid this difficulty by allowing for all direct and indirect influences that can play a role in the occurrence of earthquakes, as well as all seismic knowledge. Furthermore, as concerns calculation of seismic motion, the low number of records of strong motion in metropolitan France makes it necessary to use data from other regions of the world

  10. Results and exploitation of FP-4 and FP-5 research in the area 'Safety of existing installations'. Part II

    International Nuclear Information System (INIS)

    Goethem, G. van; Zurita, A.; Manolatos, P.; Casalta, S.

    2004-01-01

    An overview is given of the most important achievements of the research programme co-financed by the European Union (EU) in the area of LWR safety over the FP-4 and FP-5 periods from the end-users point of view. The end-users are: the contracting organisations (i.e. utilities and associated engineering companies, regulatory bodies and associated technical safety organisations, manufacturing industry and associated services), the non-contracting organisations (including decision makers and opinion leaders) and the European Commission. Besides Community research strategy and programme implementation aspects in general, this paper is focusing on the S/T achievements obtained by multi-partner projects in the - 7 clusters of multi-partner projects in Euratom FP-4 (1994-1998): AGE for structural ageing, INV and EXV for in-vessel core degradation and ex-vessel molten corium coolability, ST for radiological source term, CONT for containment integrity, AMM for accident management measures and INNO for innovative safety features - the total cost of the 67 multipartner projects comprised in this Community research was Euro 71.3 million, out of which Euro 35.9 million was contributed by the EU budget - 3 clusters of multi-partner projects in Euratom FP-5 (1998-2002): PLEM for plant life extension and management; SAM for severe accident management and EVOL for evolutionary safety concepts - the total cost of the 71 multipartner projects comprised in this Community research is Euro 85.4 million, out of which Euro 43.5 million is contributed by the EU budget. The objectives of this Community research are discussed and a number of FP-4 and FP-5 projects are selected to demonstrate to what extent the proposed objectives were indeed met. Besides technological requirements, socio-economic aspects are becoming increasingly important due to the level of public and political acceptance and to the economic pressure of deregulated electricity markets; this is also discussed. Finally the

  11. Fusion Yearbook. 2008 Annual report Association Euratom-Tekes

    International Nuclear Information System (INIS)

    Nora, M.; Karttunen, S.

    2009-05-01

    This Annual Report summarises the fusion research activities of the Finnish and Estonian Research Units of the Association Euratom-Tekes in 2008. The activities of the Research Unit are divided in the fusion physics under the Contract of Association and new EFDA. A few EFDA Technology Tasks and Contracts were still running in 2008 and are now completed. New R and D Grant work on remote handling for ITER launched by the Joint Undertaking 'Fusion for Energy' started in 2008. The Physics Programme is carried out at VTT - Technical Research Centre of Finland, Helsinki University of Technology (TKK) and University of Helsinki (UH). The research areas of the Physics Programme are: (i) Heat and particle transport, MHD physics and plasma edge phenomena, (ii) Plasma-wall interactions and material transport in SOL region, and (iii) Code development and diagnostics. Association Euratom-Tekes participated actively in the EFDA JET Workprogramme 2008 and exploitation of JET facilities in experimental campaigns C20-C25. Three persons were seconded to the UKAEA operating team, two physicists in codes and modelling and one engineer in remote handling. One person was a Task Force Leader in TF T (transport). One engineer from VTT was seconded to the ITER IO at Cadarache in 2008 (Assembly). Practically all physics activities of the Research Unit are carried out in co-operation with other Associations with the focus on EFDA JET work. In addition to EFDA JET activities, the Tekes Association participated in the 2008 experimental programme of ASDEX Upgrade (AUG). Several staff mobility visits of total 530 days took place in 2008. The Technology work is carried out at VTT, Helsinki University of Technology (TKK), Tampere University of Technology (TUT) and Lappeenranta University of Technology (LUT) in close collaboration with Finnish industry. The technology research and development is focused on the remote handling, vessel/in-vessel materials and components plus some activities in

  12. Si no. 43 of 1991 - European Communities (ionizing radiation) regulations, 1991

    International Nuclear Information System (INIS)

    1991-01-01

    These Regulations entered into force on 5 April 1991 and repeal the Factories Ionizing Radiations (Sealed Sources) Regulations, 1972 and the Factories Ionizing Radiations (Unsealed Sources) Regulations, 1972. They were made in implementation of the European Communities' Council Directive 80/836 Euratom of 15 July 1980, as amended by Council Directive 84/467 Euratom of 3 September 1984, laying down the basic safety standards for the health protection of the general public and workers against the dangers of ionizing radiation. They also complement the Nuclear Energy (General Control of Fissile Fuels, Radioactive Substances and Irradiation Apparatus) Order, 1977 with regard to licensing requirements. They apply to the production, processing, handling, use, transport, storage, etc. of natural and artificial radioactive substances and to any other activity which involves a hazard arising from ionizing radiation. (NEA) [fr

  13. Radiation safety and quality control assurance in X-ray diagnostics 1998

    International Nuclear Information System (INIS)

    Servomaa, A.

    1998-03-01

    The report is based on a seminar course of lectures 'Radiation safety and quality assurance in X-ray diagnostics 1998' organized by the Radiation and Nuclear Safety Authority (STUK) in Finland. The lectures included actual information on X-ray examinations: methods of quality assurance, methods of measuring and calculating patient doses, examination frequencies, patient doses, occupational doses, and radiation risks. Paediatric X-ray examinations and interventional procedures were the most specific topics. The new Council Directive 97/43/Euratom on medical exposure, and the European Guidelines on quality criteria for diagnostic radiographic images, were discussed in several lectures. Lectures on general radiation threats and preparedness, examples of radiation accidents, and emergency preparedness in hospitals were also included. (editor)

  14. The European Federation of Organisations for Medical Physics Policy Statement No. 6.1: Recommended Guidelines on National Registration Schemes for Medical Physicists

    OpenAIRE

    Christofides, S; Isidoro, J; Pesznyak, C; Bumbure, L; Cremers, Fn; Schmidt, WF

    2016-01-01

    This EFOMP Policy Statement is an update of Policy Statement No. 6 first published in 1994. The present version takes into account the European Union Parliament and Council Directive 2013/55/EU that amends Directive 2005/36/EU on the recognition of professional qualifications and the European Union Council Directive 2013/59/EURATOM laying down the basic safety standards for protection against the dangers arising from exposure to ionising radiation. The European Commission Radiation Protection...

  15. The tendency of medical electrical equipment - IEC 60601-2-54: Particular requirements for the basic safety and essential performance of x-ray equipment for radiography and radioscopy

    International Nuclear Information System (INIS)

    Roh, Young Hoon; Kim, Jung Min

    2015-01-01

    Medical electrical equipment - Part 1: General requirement for basic safety and essential performance of MFDS was revised as 3th edition and Medical electrical equipment Part 2-54: Particular requirements for the basic safety and essential performance of X-ray equipment will be expected to be announced as notification. Therefore this technical report was written to introduce provision of the particular requirements, replacement, addition, amendment. The purpose of this particular requirements is to secure requirements for basic safety and essential performance of X-ray equipment for radiography and radioscopy. X-ray high voltage generator, mechanical protective device, protection against radiation is included in this particular requirements. Medical electrical equipment - Part 1, Part 1-2, Part 1-3 is applied to this particular requirements. If the requirements is announced as notification, It is expected to widen understanding for basic safety and essential performance of X-ray equipment for radiography and radioscopy and play a part to internationalize of medical equipment

  16. Progress in Slovak nuclear legislation in 2011-2012

    International Nuclear Information System (INIS)

    Pospisil, Martin

    2012-01-01

    In the legislative area, the Nuclear Regulatory Authority of the Slovak Republic focused on 3 basic topics. First, the Slovak Atomic Act (Act No. 541/2004 on peaceful use of nuclear energy) was amended to include provisions of Council Directive 2009/71/Euratom. The key changes concerned the definition of a nuclear installation, introduction of a definition of safety culture, detailed specification of administrative, technical, organisational and financial requirements for licensees aimed to ensure nuclear safety quality management. Second, preparatory work was done on 2 new regulations: regulation on the requirements for nuclear safety and regulation on quality management. Third, regulations encompassing changes in the Atomic Act were prepared. (orig.)

  17. Analytical quality control concept in the Euratom on-site laboratories

    International Nuclear Information System (INIS)

    Mayer, K.; Duinslaeger, L.; Cromboom, O.; Ottmar, H.; Wojnowski, D.; Vegt, H. van der

    2001-01-01

    Full text: Two on-site laboratories have been developed, installed, commissioned and put into routine operation by the Euratom safeguards office (ESO), jointly with the Institute for Transuranium Elements (ITU). These laboratories are operated by ITU staff and provide verification measurement results on samples taken by Euratom inspectors. The analysts work in weekly changing shift teams, manage the laboratories and operate the various analytical techniques. Operating such a laboratory at a remote location, without a senior scientist immediately available in case of problems, The existing boundary conditions challenge the robustness of the entire laboratory, i.e. comprising staff and instrumentation. In order to continuously ensure a high degree of reliability of the measurement results, a stringent quality control system was implemented. The quality control concept for the two on-site laboratories was developed at a very early stage and implemented in the pre-OSL training facility at ITU. This enabled to thoroughly test and develop further the concept. At the same time the analysts get acquainted with the quality control procedures in place and they are instilled with the principles. The quality control concept makes use of a fully computerized data management and data acquisition system. All measurement devices, including balances, density meters, mass spectrometers, passive neutron counter, hybrid K-edge instrument, gamma spectrometers and alpha spectrometers are networked and data exchange is performed on electronic basis. A specifically developed laboratory information management system collects individual measurement data, calculates intermediate and final result and shares the information with a quality control module. In order to ensure the reliability of the results, which are reported to the ESO inspectorate, five levels of quality control were implemented. The present paper describes in detail the different levels of quality control, which check the

  18. Level of knowledge among the population of radiation safety basic issues

    Directory of Open Access Journals (Sweden)

    S. A. Zelencova

    2015-01-01

    Full Text Available The goal of research was to determine the level of knowledge among the population on issues like sources of ionising radiation, methods of ionising radiation measurement, measures of self-protection in case of threating or actual radioactive pollution in the district, and to study self-estimation by the population of their knowledge of radiation safety issues. Research was carried out using the method of questioning of population groups in three regions close to the places of previous peaceful nuclear explosions (Arkhangelsk, Murmansk and Tyumen regions, and in five Far East regions of the Russian Federation (Kamchatka, Khabarovsk, Primorsky, Magadan and South-Sakhalin regions after radiation accident in Japan at "Fukushima-1" NPP. This research included processing of 243 questionnaires from the regions close to places of previous peaceful nuclear explosions and 216 questionnaires from the Far East regions.The analysis of obtained questioning results enabled to make the following conclusions: the level of knowledge among the population about the basic concepts of radiation safety appeared to be generally low among respondents of all eight territories. Considerable number of respondents in seven groups correctly mentioned the x-ray device as a source of ionising radiation (from 71 to 88 % of answers. In Murmansk region – only 52 % of the answers. Respondents of the same seven groups often correctly answered the question on how to detect ionising radiation (only with devices – from 68 to 98 % in different groups. The smallest number of correct answers to this question (42 % is also noted among respondents from the Murmansk region.Level of knowledge on self-protection measures at threating or actual radioactive pollution of the places of residence appeared a little higher among the Far East region population, who had actual concerns regarding the threat of radioactive pollution at the present time. However, in all eight investigated groups

  19. Ionizing radiations in Italian health care structures

    International Nuclear Information System (INIS)

    Fizzano, M.R.; Frusteri, L.

    2006-01-01

    The Council of the European Union has completely renewed the framework regarding radiation protection by adopting some directives: Directive 97/43 EURATOM lays down the general principles of the radiation protection of individuals undergoing exposure to ionising radiations related to medical exposures, as a supplement of Directive 96/29 EURATOM laying down the basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionising radiations.The incorporation into Italian legislation of the European Community directives on the improvement of health and safety at work has promoted a vast effort in order to revise the surveillance approach in many facilities, including hospitals. In Italy, safety law is referred to every workplace; anyway the use of ionising radiations is ruled by specific laws. So in the health care structures it is necessary integrating both the laws and this process is often difficult to carry on. The Italian Legislative Decree 230/95, one the main laws that aim to protect workers against ionising radiations, introduced Directive 96/29/EURATOM. This Decree asks that a doctor and a technical expert analyse the workplace and classify area and workers in according to dose of ionising radiation established by law. The Italian Legislative Decree 626/94 asks that risk analysis in general is made by doctor and specialist in risk. So, in case of risk from ionising radiation, all these figures have to cooperate in order to make an evaluation risk document. (N.C.)

  20. Ionizing radiations in Italian health care structures

    Energy Technology Data Exchange (ETDEWEB)

    Fizzano, M.R.; Frusteri, L. [Technical Advisory Dept. for Risk Assessment and Prevention, Italian Workers Compensation Authority, Rome (Italy)

    2006-07-01

    The Council of the European Union has completely renewed the framework regarding radiation protection by adopting some directives: Directive 97/43 EURATOM lays down the general principles of the radiation protection of individuals undergoing exposure to ionising radiations related to medical exposures, as a supplement of Directive 96/29 EURATOM laying down the basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionising radiations.The incorporation into Italian legislation of the European Community directives on the improvement of health and safety at work has promoted a vast effort in order to revise the surveillance approach in many facilities, including hospitals. In Italy, safety law is referred to every workplace; anyway the use of ionising radiations is ruled by specific laws. So in the health care structures it is necessary integrating both the laws and this process is often difficult to carry on. The Italian Legislative Decree 230/95, one the main laws that aim to protect workers against ionising radiations, introduced Directive 96/29/EURATOM. This Decree asks that a doctor and a technical expert analyse the workplace and classify area and workers in according to dose of ionising radiation established by law. The Italian Legislative Decree 626/94 asks that risk analysis in general is made by doctor and specialist in risk. So, in case of risk from ionising radiation, all these figures have to cooperate in order to make an evaluation risk document. (N.C.)

  1. Nuclear Safety. 1997

    International Nuclear Information System (INIS)

    1998-01-01

    A quick review of the nuclear safety at EDF may be summarized as follows: - the nuclear safety at EDF maintains at a rather good standard; - none of the incidents that took place has had any direct impact upon safety; - the availability remained good; - initiation of the floor 4 reactor generation (N4 unit - 1450 MW) ensued without major difficulties (the Civaux 1 NPP has been coupled to the power network at 24 december 1997); - the analysis of the incidents interesting from the safety point of view presents many similarities with earlier ones. Significant progress has been recorded in promoting actively and directly a safe operation by making visible, evident and concrete the exertion of the nuclear operation responsibility and its control by the hierarchy. The report develops the following chapters and subjects: 1. An overview on 1997; 1.1. The technical issues of the nuclear sector; 1.2. General performances in safety; 1.3. The main incidents; 1.4. Wastes and radiation protection; 2. Nuclear safety management; 2.1. Dynamics and results; 2.2. Ameliorations to be consolidated; 3. Other important issues in safety; 3.1. Probabilistic safety studies; 3.2. Approach for safety re-evaluation; 3.3. The network safety; 3.4. Crisis management; 3.5. The Lifetime program; 3.6. PWR; 3.7. Documentation; 3.8. Competence; 4. Safety management in the future; 4.1. An open future; 4.2. The fast neutron NPP at Creys-Malville; 4.3. Stabilization of the PWR reference frame; 4.4. Implementing the EURATOM directive regarding the radiation protection standards; 4.5. Development of biomedical research and epidemiological studies; 4.6. New regulations concerning the liquid and gaseous effluents; 5. Visions of an open future; 5.1. Alternative views upon safety ay EDF; 5.2. Safety authority; 5.3. International considerations; 5.4. What happens abroad; 5.5. References from non-nuclear domain. Four appendices are added referring to policy of safety management, policy of human factors in NPPs

  2. Association Euratom - Risø National Laboratory for Sustainable Energy, Technical University of Denmark - Annual Progress Report 2009

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Juul Rasmussen, Jens

    The programme of the Research Unit of the Fusion Association Euratom - Risø National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its...... superconductors. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2009....

  3. CEC radiation protection research and training program

    International Nuclear Information System (INIS)

    Gerber, G.B.

    1991-01-01

    The Radiation Protection Program (RPP), initiated as a consequence of the Euratom Treaty aims to promote: scientific knowledge to evaluate possible risks from low doses of natural, medical and man-made radiation; development of methods to assess radiological risks; incentive and support for cooperation between scientists of Member States; expertise in radiation protection by training scientists and the scientific basis for continual updating of the 'Basic Safety Standards', and the evolution of radiation protection concepts and practices. 3 refs

  4. A fuzzy-based reliability approach to evaluate basic events of fault tree analysis for nuclear power plant probabilistic safety assessment

    International Nuclear Information System (INIS)

    Purba, Julwan Hendry

    2014-01-01

    Highlights: • We propose a fuzzy-based reliability approach to evaluate basic event reliabilities. • It implements the concepts of failure possibilities and fuzzy sets. • Experts evaluate basic event failure possibilities using qualitative words. • Triangular fuzzy numbers mathematically represent qualitative failure possibilities. • It is a very good alternative for conventional reliability approach. - Abstract: Fault tree analysis has been widely utilized as a tool for nuclear power plant probabilistic safety assessment. This analysis can be completed only if all basic events of the system fault tree have their quantitative failure rates or failure probabilities. However, it is difficult to obtain those failure data due to insufficient data, environment changing or new components. This study proposes a fuzzy-based reliability approach to evaluate basic events of system fault trees whose failure precise probability distributions of their lifetime to failures are not available. It applies the concept of failure possibilities to qualitatively evaluate basic events and the concept of fuzzy sets to quantitatively represent the corresponding failure possibilities. To demonstrate the feasibility and the effectiveness of the proposed approach, the actual basic event failure probabilities collected from the operational experiences of the David–Besse design of the Babcock and Wilcox reactor protection system fault tree are used to benchmark the failure probabilities generated by the proposed approach. The results confirm that the proposed fuzzy-based reliability approach arises as a suitable alternative for the conventional probabilistic reliability approach when basic events do not have the corresponding quantitative historical failure data for determining their reliability characteristics. Hence, it overcomes the limitation of the conventional fault tree analysis for nuclear power plant probabilistic safety assessment

  5. European Legislation to Prevent Loss of Control of Sources and to Recover Orphan Sources, and Other Requirements Relevant to the Scrap Metal Industry

    Energy Technology Data Exchange (ETDEWEB)

    Janssens, A.; Tanner, V.; Mundigl, S., E-mail: augustin.janssens@ec.europa.eu [European Commission (Luxembourg)

    2011-07-15

    European legislation (Council Directive 2003/122/EURATOM) has been adopted with regard to the control of high-activity sealed radioactive sources (HASS). This Directive is now part of an overall recast of current radiation protection legislation. At the same time the main Directive, 96/29/EURATOM, laying down Basic Safety Standards (BSS) for the health protection of the general public and workers against the dangers of ionizing radiation, is being revised in the light of the new recommendations of the International Commission on Radiological Protection (ICRP). The provisions for exemption and clearance are a further relevant feature of the new BSS. The current issues emerging from the revision and recast of the BSS are discussed, in the framework of the need to protect the scrap metal industry from orphan sources and to manage contaminated metal products. (author)

  6. Association Euratom - Risoe National Laboratory, Technical Univ. of Denmark. Annual progress report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Michelsen, P.K.; Korsholm, S.B.; Rasmussen, J.J. (eds.)

    2008-04-15

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology on investigations of radiation damage of fusion reactor materials have been phased out during 2007. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2007. (Author)

  7. Association Euratom - Risoe National Laboratory, Technical Univ. of Denmark. Annual progress report 2007

    International Nuclear Information System (INIS)

    Michelsen, P.K.; Korsholm, S.B.; Rasmussen, J.J.

    2008-04-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology on investigations of radiation damage of fusion reactor materials have been phased out during 2007. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2007. (Author)

  8. Amendment of the atomic energy basic law and other related laws and establishment of the nuclear safety commission

    International Nuclear Information System (INIS)

    Ochi, Kenji

    1978-01-01

    The Atomic Energy Basic Law and related several laws were amended in the recent diet session. The amendment of the laws was requested after the radiation leakage from nuclear-powered ship ''Mutsu''. The reform of administrative system of atomic energy development and utilization are consisted of two important points: one is to establish the Nuclear Safety Commission for strengthening nuclear safety administration, and the other is to give an authority to each ministry or agency to regulate nuclear power reactor from the establishment to operation according to its original mission. (author)

  9. The safety concept of the Federal Government concerning waste management

    International Nuclear Information System (INIS)

    Pfaffelhuber, J.K.

    1976-01-01

    The safety concept of the FRG concerning waste management is based on the ultimate aim of having in operation until 1985 nuclear power plants with a capacity of approx. 45,000 MWe, i.e. 50 nuclear power plants with an annual fuel consumption of 1,500 tons. A critical survey shows that there is still a great number of questions to be solved, concerning the fuel cycle in particular in terms of industrial standards, and that various problems ought to be the subject of R and D activities. Activities in the field of waste management so far are concerned only with project studies and details of project definition studies. On the one hand, the principles of the safety concept for waste management are to make possible and to guarantee the operation of nuclear facilities, and on the other hand, they are to subject those facilities which serve the purpose of waste disposal to similar safety regulations as the nuclear power plants are subjected to. The integrated waste disposal system of the Federal government for CWRs until the mid eighties is described. R+D activities are still necessary, in particular concerning reprocessing techniques, techniques in the reprocessing of Pu, the conditioning of highly active wastes, testing final storage techniques, and in the field of retention of gaseous radioactive nuclides (iodine, krypton, tritium) and of safeguarding waste disposal parks against terrorists and sabotage. The legal basis for the protection of the citizen is the Atomic Energy Act and its ordinances, EURATOM basic standards, and ICRP recommendations, some of which were tightened up for the FRG. Some recommendations of the Strahlenschutzkommision - radiation exposure, storage and separation of 85 Kr, 129 J, 131 J, and 133 Xe - are dealt with in detail. (HPH/LN) [de

  10. Association Euratom - Risø National Laboratory for Sustainable Energy, Technical University of Denmark - Annual Progress Report 2008

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Juul Rasmussen, Jens

    The programme of the Research Unit of the Fusion Association Euratom - Risø National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its...... been initiated in 2008. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2008....

  11. Annual report for the steering committee of the association Euratom-Belgian State for fusion 1999

    International Nuclear Information System (INIS)

    Decreton, M.

    1999-10-01

    This report is prepared for the annual steering committee meting of the Association Euratom - Belgian State in the area of fusion reactor technology. The Belgian contribution focuses on the assessment of the first wall and blanket materials under radiation and coolant interaction and on developments for the remote handling in maintenance activities. The period October 1998 to September 1999 is reported on.The fusion technology work performed at the Belgian Nuclear Research Centre SCK/CEN, the Department of Metallurgy and Materials Engineering of the Louvain University (Belgium) and S.A. Gradel, a Luxemburg-based organisation, is described

  12. Annual report for the steering committee of the association Euratom-Belgian State for fusion 1999

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    1999-10-01

    This report is prepared for the annual steering committee meting of the Association Euratom - Belgian State in the area of fusion reactor technology. The Belgian contribution focuses on the assessment of the first wall and blanket materials under radiation and coolant interaction and on developments for the remote handling in maintenance activities. The period October 1998 to September 1999 is reported on.The fusion technology work performed at the Belgian Nuclear Research Centre SCK/CEN, the Department of Metallurgy and Materials Engineering of the Louvain University (Belgium) and S.A. Gradel, a Luxemburg-based organisation, is described.

  13. Nuclear industry calls on UK to avoid disruption of 'disorderly' withdrawal from Euratom

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, David [NucNet, Brussels (Belgium)

    2017-07-15

    The UK will need to set priorities for Brexit talks if it is to avoid disruption in the nuclear sector and the possibility of a disorderly withdrawal from the Euratom Treaty affecting ambitious plans to build new nuclear reactors, Tom Greatrex, chief executive of the London-based Nuclear Industry Association (NIA), said. Mr Greatrex, a former Labour MP and shadow energy minister, warned that a lack of prioritisation in Brexit talks could lead to problems related to moving nuclear-purpose components and difficulties collaborating with counties in nuclear R and D projects with significant economic, industrial and scientific impact.

  14. Annual report for the steering committee of the association Euratom-Belgian State for fusion 1998

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    1998-10-01

    This report is prepared for the annual steering committee meting of the Association Euratom - Belgian State in the area of fusion reactor technology. The Belgian contribution focuses on the assessment of the first wall and blanket materials under radiation and coolant interaction and on developments for the remote handling in maintenance activities. The period October 1997 to September 1998 is reported on.The fusion technology work performed at the Belgian Nuclear Research Centre SCK/CEN, the Department of Metallurgy and Materials Engineering of the Louvain University (Belgium) and S.A. Gradel, a Luxemburg-based organisation, is described.

  15. Annual report for the steering committee of the association Euratom-Belgian State for fusion 1998

    International Nuclear Information System (INIS)

    Decreton, M.

    1998-10-01

    This report is prepared for the annual steering committee meting of the Association Euratom - Belgian State in the area of fusion reactor technology. The Belgian contribution focuses on the assessment of the first wall and blanket materials under radiation and coolant interaction and on developments for the remote handling in maintenance activities. The period October 1997 to September 1998 is reported on.The fusion technology work performed at the Belgian Nuclear Research Centre SCK/CEN, the Department of Metallurgy and Materials Engineering of the Louvain University (Belgium) and S.A. Gradel, a Luxemburg-based organisation, is described

  16. Association EURATOM-FZJ. Annual progress report 2011. SC-FZJ 88(12)/4.1.2

    International Nuclear Information System (INIS)

    2011-01-01

    Forschungszentrum Juelich (FZJ) as a EURATOM Association coordinates its fusion research activities within the Nuclear Fusion Project (KFS). The programme is based on several insti-tutes and is well embedded into the European fusion research structure. The major part of the Juelich research activities is located within the Institute of Energy and Climate Research (IEK). This is organized along a number of institute parts, among which fusion research is concentrat-ed within IEK-4 Plasma Physics - the former Institute for Plasma Physics IPP- and IEK-2 Microstructure and Properties of Materials. The IEK-4 Plasma Physics has the largest share of scientific staff in physics and technology for fusion, operates the TEXTOR tokamak, performs scientific work on JET and DIII-D, supports the Wendelstein 7-X construction and takes up significant projects related to the development of ITER. IEK-2 operates the high heat flux test facilities JUDITH 1 and 2 which are installed inside a hot cell and in a controlled area which is licensed to operate with toxic and radiating materials; this group represents the materials science expertise within the Juelich fusion pro-gramme. The Central Technology Division (ZAT) provides engineering expertise and specialised workshop capacities. The Juelich Supercomputing Centre (JSC) operates various types of supercomputer systems, among which one device (HPC-FF) is dedicated exclusively to fusion research within EFDA. The Association EURATOM-FZJ has very close contacts to the neighbouring EURATOM associations in Belgium and The Netherlands. In 1996 they together have founded the Trilat-eral Euregio Cluster (TEC) which provides a clustering of resources in order to perform a co-ordinated R and D programme, to operate or construct large facilities (TEXTOR, MAGNUM-PSI), to combine different kinds of expertise and to allow for the forming of a strong partner-ship as a consortium within the ITER construction phase. An updated TEC agreement with a strong

  17. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations. To be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. And to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  18. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2003-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations. To be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. And to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  19. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2000-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations; to be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources; and to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  20. Nuclear Polluters' Charter. Council directive 96/29/EURATOM (OJ L159 29th June 1996), the 'Basic Standards Directive'; briefing for MPs and MEPs

    International Nuclear Information System (INIS)

    Bramhall, R.

    1997-01-01

    The nuclear industry has huge 'back end' problems: acres of radioactive waste stacked up with no final disposal route; hundreds of thousands of tonnes of metals, glass, plastic, and concrete too 'hot' to re-use or dump. Sea dumping has been ruled out, Nirex's deep repository is back to square one, the waste mountain is growing, and hundreds of nuclear factories and power stations await decommissioning. But by May 2000 the UK and all member states are required to conform with a dangerously vague and permissive Directive, and deregulate much of this expensive, embarrassing, and harmful waste. Below certain very lax limits it will become a financial asset to be sold on the open market. What cannot be sold will be landfilled and incinerated without restriction. Ostensibly, the Directive is a 'harmonisation' of radiation exposure standards. It was promulgated by the European Commission under the Euratom Treaty of 1957. The European Parliament has no power over Euratom, and (with one exception) amendments advised by MEPs were ignored. The Directive effectively deregulates reuse, recycling, disposal, and incineration of radioactive materials below certain threshold levels. It specifically allows recycling of contaminated materials and drops a precautionary proviso used in earlier European legislation. Spokesmen from the nuclear industry, the regulators, and the Commission openly admit that there is nothing to stop hundreds of thousands of tonnes of radioactive materials from nuclear licensed sites - potentially, their entire inventory - being diluted into industrial feedstocks of recyclable materials and ending up in consumer goods, fertilisers or any product. The Commission's view is let the buyers beware if they don't want contaminated goods or raw materials. National radiation protection agencies which advise the Commission and national governments claim that there is no threat to health, according to internationally accepted radiation risk factors. But those same

  1. Workshop Euratom Directive 97/43. New trends in radiation protection in clinical practice, in research and in regulation

    International Nuclear Information System (INIS)

    Mazzei, F.

    1999-01-01

    The Euratom Directive 97/43 on health protection of individuals against the dangers of ionizing radiation in relation to medical exposure is presented. In particular the following topics are focused, with a multidisciplinary approach, on: diagnostic reference levels in radiodiagnostics and nuclear medicine; radiation protection in paediatrics, in interventional radiology and in computer tomography; radiation protection radiotherapy, radiation protection in medical research; radiation protection in prenatal and neonatal exposure; radiation protection in medical-legal exposures [it

  2. IAEA safety fundamentals: the safety of nuclear installations and the defence in depth concept

    International Nuclear Information System (INIS)

    Aro, I.

    2005-01-01

    This presentation is a replica of the similar presentation provided by the IAEA Basic Professional Training Course on Nuclear Safety. The presentation utilizes the IAEA Safety Series document No. 110, Safety Fundamentals: the Safety of Nuclear Installations. The objective of the presentation is to provide the basic rationale for actions in provision of nuclear safety. The presentation also provides basis to understand national nuclear safety requirements. There are three Safety Fundamentals documents in the IAEA Safety Series: one for nuclear safety, one for radiation safety and one for waste safety. The IAEA is currently revising its Safety Fundamentals by combining them into one general Safety Fundamentals document. The IAEA Safety Fundamentals are not binding requirements to the Member States. But, a very similar text has been provided in the Convention on Nuclear Safety which is legally binding for the Member State after ratification by the Parliament. This presentation concentrates on nuclear safety. The Safety Fundamentals documents are the 'policy documents' of the IAEA Safety Standards Series. They state the basic objectives, concepts and principles involved in ensuring protection and safety in the development and application of atomic energy for peaceful purposes. They will state - without providing technical details and without going into the application of principles - the rationale for actions necessary in meeting Safety Requirements. Chapter 7 of this presentation describes the basic features of defence in depth concept which is referred to in the Safety Fundamentals document. The defence in depth concept is a key issue in reaching high level of safety specifically at the design stage but as the reader can see the extended concept also refers to the operational stage. The appendix has been taken directly from the IAEA Basic Professional Training Course on Nuclear Safety and applied to the Finnish conditions. The text originates from the references

  3. Education and training for industry: share initiatives and best practices. Challenges for EURATOM research and training in the frame of the European 'Higher Education' and 'Research' areas

    Energy Technology Data Exchange (ETDEWEB)

    Van Goethem, Georges [European Commission, DG RTD, Energy - Euratom, Brussels (Belgium)

    2008-07-01

    For the sake of clarification, education and training (E and T) are defined as follows: - Education is a basic or life-long learning process: education is broader than training and encompasses the need to maintain completeness and continuity of competences across generations (it is essentially a knowledge-driven process, involving academic institutions as suppliers, and students as customers). - Training is learning a particular skill required to deliver a particular outcome: training is about schooling activities other than regular academic education schemes (it is essentially an application-driven process, involving industrial/regulatory training organisations as suppliers, and professionals as customers). The goal of the EURATOM education programmes is, in collaboration with academia, to offer instruments that help produce top-quality teaching modules that can be assembled into higher level training packages or Masters programmes that are jointly qualified and mutually recognised across the EU. This is done naturally in line with the Bologna process (ERASMUS). The following four objectives have been agreed upon (ENEN): - Modular courses and common qualification approach (offer a coherent E and T framework and ensure top-quality for each module); - One mutual recognition system across the European Union (e.g. European Credit Transfer and accumulation System of ERASMUS /ECTS/); - Mobility for teachers and students across the EU (prepare the 'internal market' for free circulation of nuclear experts); - Feedback from 'stakeholders' (Both scientific and financial). (involve the 'future employers' in the process, thereby getting additional funding). The goal of the EURATOM training programmes is, in collaboration with 'future employers', to identify commonalties amongst CPD actions ('Continuous Professional Development'). The following four objectives have been agreed upon ('EURATOM Fission Training Scheme

  4. 'RADAR': Euratom's standard unattended data acquisition system

    International Nuclear Information System (INIS)

    Schwalbach, P.; Holzleitner, L.; Jung, S.; Chare, P.; Smejkal, A.; Swinhoe, M.; Kloeckner, W.

    2001-01-01

    Full text: The physical verification of nuclear material is an essential part of Euratom's inspection activities. Industrial plants handling large amounts of bulk material typically require large numbers of measurements. Modem plants, particularly plutonium-handling facilities, are normally automated and make it difficult for the inspector to access the material. Adapting to the plant requirements with respect to safety and security as well as economics (throughput), safeguards instrumentation is today often integrated into the plant. In order to optimize scarce inspection resources, the required measurements as well as the data analysis have to be done automatically as far as feasible. For automatic measurements Euratom has developed a new unattended data acquisition system, called RADAR (Remote Acquisition of Data and Review), which has been deployed to more than a dozen installations, handling more than 100 sensors (neutron and gamma radiations detectors, balances, seals, identity readers, switches, etc.). RADAR is the standard choice for new systems but is also replacing older automatic data systems slowly as they become outdated. RADAR and most of the associated analysis tools are the result of an in-house development, with the support of external software contractors where appropriate. Experience with turn-key systems led, in 1997, to the conclusion that in-house development would be a more effective use of resources than to buy third party products. RADAR has several layers, which will be discussed in detail in the presentation. The inner core of the package consists of services running under Windows NT. This core has watchdog and logging functions, contains a scheduler and takes care of replicating files across a network. Message and file exchange is based on TCP/IP. The replicator service contains compression and encryption facilities, the encryption is based on POP. With the help of routers, e.g. from CISCO, network connections to remote locations can be

  5. Health and safety in the nuclear age

    International Nuclear Information System (INIS)

    1988-01-01

    In their Communication to the Council on the development of Community measures for the application of Chapter III of the Euratom Treaty - Health and safety (COM(86) 434 final) the Commission of the European Communities announced their intention to initiate a 'Standing Conference on Health and Safety in the Nuclear Age' in order to contribute to an increase of information on nuclear activities. Following this proposition, the Commission (Directorate-General for Employment, Social Affairs and Education, Health and Safety Directorate) organized the first meeting of this Standing Conference in Luxembourg on 5, 6 and 7 October 1987 with the theme 'Information for the public and the media on health protection and safety with regard to nuclear activities'. About 120 participants representing scientific experts, the media, the bodies concerned with environmental or consumer protection, the social partners and interested national and international organizations, took part in this conference. It was the first time at European Community level that a meeting allowed an exchange of positions on the health problems related to ionizing radiation by all the parties interested in this subject. The Commission was asked to pursue this dialogue in order to improve the perception of citizens of the Community of the potential risks and the methods of protection brought into force in the nuclear field

  6. The role of the article 31 experts group in harmonising the standards for radiation protection in the European Union

    International Nuclear Information System (INIS)

    Govaerts, P.

    2002-01-01

    Article 2 of the Euratom (European Atomic Energy Community) treaty requires the establishment of uniform safety standards to be implemented by each member state: Article 2, b: In order to perform its task the community shall establish uniform safety standards to protect the health of workers and of the general public and ensure that they are applied. The scope of those standards is defined by Article 30 and relates to doses compatible with adequate safety; levels of exposure and contamination; the fundamental principles governing the health surveillance of workers. Article 31 stipulates the decision making process with respect to those standards. Article 31: The basic standards shall be worked out by the Commission after it has obtained the opinion of a group of persons appointed by the Scientific and Technical Committee from among scientific experts, and in particular public health experts, in the Member States. The Commission shall obtain the opinion of the Economic and Social Committee on these basic standards. After consulting the Assembly the Council shall, on a proposal from the Commission, which shall forward to it the opinions from these Committees, establish the basic safety standards; the Council shall act by a qualified majority

  7. EURATOM's Programme of Participation in Power Reactor Construction; Le programme de participation d'Euratom aux reacteurs de puissance; Programma uchastiya v razrabotke ehnergeticheskikh reaktorov Evratoma; El programa de participacion de la Euratom en la construccion y explotacion de reactores de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Ramadier, R. C.; Parker, E. [Communaute Europoenne de l' Energie Atomique, Bruxelles (Belgium)

    1963-10-15

    One of the means used by the Commission of EURATOM to promote the development of a European nuclear industry is a programme of ''Community participation'', under which the Commission will participate in power reactor construction up to a total expenditure of 32 million European Monetary Agreement units of account. The return for this will be the acquisition of information on the design, construction, start-up and operation of such reactors. So far, proposals from three companies have resulted in the signing of contracts. These companies are: (a) The Societa Elettronucleare Nazionale (SENN), which is constructing a station of 150 MW(e) net in Italy, equipped with a double-cycle boiling-water reactor; (b) The Societa Italiana Meridionale Energia Atomica (SIMEA), which has undertaken to construct a station f 200 MW(e) net in Italy, equipped with a natural uranium-graphite-CO{sub 2} reactor; (c) The Societe d'Energie Nucleaire Franco-Belge des Ardennes (SENA), which has undertaken to construct, on the French-Belgian border, a station which will be equipped with a pressurized-water reactor and whose output will reach, and probably exceed, 242 MW(e) net. Further, the Commission has been requested by the Rheinisch-Westfalisches Elektrizitatswerk - Bayernwerke (RWE-BW) group and the N.V. Samenwerkende Electriciteits-Productiebedrijve to take part in the construction o f two other power reactors - the first a 237 MW(e) double-cycle boiling-water reactor, and the second a 50 MW(e) single-cycle, natural-circulation boiling-water reactor. Community participation can take various forms, one of them being the sharing of any deficit that might result from the production of electricity by the stations during their first years of operation. The effect of EURATOM's participation has been to encourage the construction of some of these nuclear power stations. Moreover, it has resulted in the gathering of extremely useful information and w ill continue to do so in the years to come

  8. Association EURATOM-FZJ. Annual progress report 2010. Nuclear fusion project. SC-FZJ 86(11)/4.1.2

    International Nuclear Information System (INIS)

    Schorn, Ralph P.

    2011-01-01

    Forschungszentrum Juelich (FZJ) as a EURATOM Association coordinates its fusion research activities within the Nuclear Fusion Project (KFS). The programme is based on several institutes and is well embedded into the European fusion research structure, where FZJ is now focussing on the two topics ''plasma-wall interactions'' and ''ITER technology''. The major part of the Juelich research activities is located within the Institute of Energy and Climate Research (IEK). The former Institute for Plasma Physics (IPP, now IEK-4 Plasma Physics) has by far the largest share of scientific staff in physics and technology for fusion, operates the TEXTOR tokamak, performs scientific work on JET and DIII-D, supports the Wendelstein 7-X construc-tion and takes up significant projects related to the ITER development. IEK-2 (Microstructure and Properties of Materials) operates the high heat flux test facilities JUDITH 1 and 2 which are installed inside a hot cell and in a controlled area which is licensed to operate with toxic and radiating materials; this group represents the materials science expertise within the Juelich fusion programme. The Central Technology Division (ZAT) provides engineering expertise and specialised workshop capacities. The Juelich Supercomputing Centre (JSC) operates various types of supercomputer systems, among which one device (HPC-FF) is dedicated exclusively to fusion research within EFDA. The Association EURATOM-FZJ has very close contacts to the neighbouring EURATOM associations in Belgium and The Netherlands. In 1996 they together have founded the Trilateral Euregio Cluster (TEC) which provides a clustering of resources in order to perform a co-ordinated R and D programme, to operate or construct large facilities (TEXTOR, MAGNUM-PSI), to combine different kinds of expertise and to allow for the forming of a strong partner-ship as a consortium within the ITER construction phase. An updated TEC agreement with a

  9. Radiation safety and quality control assurance in X-ray diagnostics 1998; Saeteilyturvallisuus ja laadunvarmistus roentgendiagnostiikassa 1998

    Energy Technology Data Exchange (ETDEWEB)

    Servomaa, A [ed.

    1998-03-01

    The report is based on a seminar course of lectures `Radiation safety and quality assurance in X-ray diagnostics 1998` organized by the Radiation and Nuclear Safety Authority (STUK) in Finland. The lectures included actual information on X-ray examinations: methods of quality assurance, methods of measuring and calculating patient doses, examination frequencies, patient doses, occupational doses, and radiation risks. Paediatric X-ray examinations and interventional procedures were the most specific topics. The new Council Directive 97/43/Euratom on medical exposure, and the European Guidelines on quality criteria for diagnostic radiographic images, were discussed in several lectures. Lectures on general radiation threats and preparedness, examples of radiation accidents, and emergency preparedness in hospitals were also included. (editor)

  10. Regulation and inspection support radiation protection in nuclear and other installations

    International Nuclear Information System (INIS)

    Williams, M.K.; Potter, C.; Harbison, S.A.

    1996-01-01

    Over the past fifty years, radiation protection legislation in the UK has developed from a narrow industry-specific base to a comprehensive package of regulations and supporting Approved Code of Practice, with additional provisions for nuclear installations. Development of this legislation mirrors progress in international understanding about the risks from exposure to ionising radiation. The current Ionising Radiations Regulations 1985 largely implement the Euratom 1980 Basic Safety Standards Directive and place particular emphasis on the need to keep exposure as low as reasonably practicable. The regulations have been underpinned by the development of the concept of the Tolerability of Risk and the application of the ALARP/ALARA principle, particularly at nuclear installations. Analysis of dose data on HSE's Central Index of Dose Information has shown the general success of this approach in the UK; the data have also allowed targeting of inspection effort. Currently, the Health and Safety Commission and Executive are developing plans for implementing the revised EU Basic Safety Standards Directive. (author)

  11. A licensee's viewpoint of Europe and nuclear safety

    International Nuclear Information System (INIS)

    Fourest, B.

    2010-01-01

    In the 1950's, one could have been forgiven for believing that the first civil applications of atomic energy would be international. The 'Atom for peace' speech by President Eisenhower, which opened up American nuclear technology to the free world, the creation of the International Atomic Energy Agency and, in Europe, the signing of the EURATOM Treaty, which along with the coal and steel treaty was one of the foundation stones for the construction of Europe, should have enabled the development of widespread international cooperation. Nothing could have been further from the truth and for the next thirty years nuclear power was a purely national affair with a strong nationalistic flavour. The countries which borrowed water reactor technology from the United States adapted it to their national situations and even if the principles and basic concepts of nuclear safety were common to all the countries concerned, they rapidly began to implement them differently. The late 1980's revealed the limits of these purely national strategies: the Chernobyl accident, which clearly showed that no country could remain indifferent to what was happening beyond its borders, the cost of construction and of installation licensing processes that were everywhere different, allied with a significant fall in the price of oil, thereby affecting the competitiveness of nuclear energy, led to the closure of nuclear programs in a large number of countries, in any case in the United States and Europe. Practically the only exception was France, where a strategy of standardisation in the design, construction and operation of a single model developed by a single manufacturer, Framatome, in a series of incremental plant designs, an overall architect and single licensee, EDF, ensured the success of the French nuclear programme, in terms of both safety and economic competitiveness. (author)

  12. Auto Safety

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Auto Safety KidsHealth / For Parents / Auto Safety What's in this ... by teaching some basic rules. Importance of Child Safety Seats Using a child safety seat (car seat) ...

  13. Association EURATOM-FZJ. Annual progress report 2013. SC-FZJ-92-(14)-4.1.3

    International Nuclear Information System (INIS)

    2013-01-01

    The Helmholtz Association's (HGF) fusion activities are in line with the European fusion re-search programme. The following Helmholtz Centres are involved: Max Planck Institute of Plasma Physics (IPP, Garching and Greifswald), Karlsruhe Institute of Technology (KIT), and Forschungszentrum Juelich (FZJ). This report presents results having been achieved by FZJ during the final year of the Association (2013). Forschungszentrum Juelich coordinates its fusion research activities within several institutes and is well embedded into the European fusion research structures, the work programme of which is oriented along the European Road Map for the Realization of Fusion Electricity. The major part of the Juelich research activities is located within the Institute of Energy and Climate Research (IEK). This is organized along a number of institute parts, among which fusion research is concentrated within IEK-Plasma Physics and IEK-Microstructure and Properties of Materials. The IEK-Plasma Physics has the largest share of scientific staff in physics and technology for fusion, operated the TEXTOR tokamak, performs scientific work on JET and DIII-D, supports the Wendelstein 7-X construction and takes up significant projects related to the development of ITER. The appointment in 2012 of a new second director at IEK-4 (Prof. Linsmeier) strengthens in particular the materials science expertise within the Juelich fusion programme. This will complement the activities which are based on the operation of the high heat flux test facilities JUDITH 1 and 2. They are installed inside a Hot Cell and in a controlled area which are licensed for operating with toxic and radiating materials. The Association EURATOM-FZJ has very close contacts to the neighbouring EURATOM associations in Belgium and The Netherlands. In 1996 together they have founded the Trilateral Euregio Cluster (TEC) which provides a clustering of resources in order to perform a co-ordinated R and D programme, to operate

  14. Association EURATOM-FZJ. Annual progress report 2013. SC-FZJ-92-(14)-4.1.3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    The Helmholtz Association's (HGF) fusion activities are in line with the European fusion re-search programme. The following Helmholtz Centres are involved: Max Planck Institute of Plasma Physics (IPP, Garching and Greifswald), Karlsruhe Institute of Technology (KIT), and Forschungszentrum Juelich (FZJ). This report presents results having been achieved by FZJ during the final year of the Association (2013). Forschungszentrum Juelich coordinates its fusion research activities within several institutes and is well embedded into the European fusion research structures, the work programme of which is oriented along the European Road Map for the Realization of Fusion Electricity. The major part of the Juelich research activities is located within the Institute of Energy and Climate Research (IEK). This is organized along a number of institute parts, among which fusion research is concentrated within IEK-Plasma Physics and IEK-Microstructure and Properties of Materials. The IEK-Plasma Physics has the largest share of scientific staff in physics and technology for fusion, operated the TEXTOR tokamak, performs scientific work on JET and DIII-D, supports the Wendelstein 7-X construction and takes up significant projects related to the development of ITER. The appointment in 2012 of a new second director at IEK-4 (Prof. Linsmeier) strengthens in particular the materials science expertise within the Juelich fusion programme. This will complement the activities which are based on the operation of the high heat flux test facilities JUDITH 1 and 2. They are installed inside a Hot Cell and in a controlled area which are licensed for operating with toxic and radiating materials. The Association EURATOM-FZJ has very close contacts to the neighbouring EURATOM associations in Belgium and The Netherlands. In 1996 together they have founded the Trilateral Euregio Cluster (TEC) which provides a clustering of resources in order to perform a co-ordinated R and D programme, to operate

  15. Children and Their Basic Needs.

    Science.gov (United States)

    Prince, Debra Lindsey; Howard, Esther M.

    2002-01-01

    Describes obstacles presented by poverty in the fulfillment of the basic needs of children. Individually addresses Maslow's five basic needs with regard to children reared in poverty: (1) physiological needs; (2) safety needs; (3) belonging and love needs; (4) self-esteem needs; and (5) self-actualization needs. (Author/SD)

  16. The european approach to quality assurance in diagnostic radiology

    International Nuclear Information System (INIS)

    Benini, A.

    1997-01-01

    The european and increasingly the international organizations are emphasizing the importance of appropriate quality assurance programmes in diagnostic radiology. The European Directive (particularly the directive 84/466/EURATOM). the various publications of the International Commission for radiation protection (ICRP), related to protection of the patients and workers and the Basic Safety Standards of the International Atomic Energy Agency (IAEA) might be considered the landmarks of the new approach to the problems of dose reduction and quality in diagnostic radiology. In particular ICRP maintains a watching brief on all aspects related to radiation protection and makes recommendations concerning basic principles. Since ICRP 26 (1977), several ICRP publications have dealt with all the principal fields of diagnostic radiology. The IAEA has recently published the new Basic Safety Standards including guidance levels for the most common diagnostic investigations.Within the European countries the European Union and the European legislation have strong influence of the implementation of radiation protection and Q A at a national level. This has led to a substantial effort in the european countries to establish national standards and basic quality requirements. (author)

  17. Current legal issues of European integration in the area of peaceful uses of nuclear energy

    International Nuclear Information System (INIS)

    Handrlica, Jakub

    2009-01-01

    The main issues of current discussions concerning the status of European integration in the area of peaceful uses of nuclear energy are described with focus on the present and future of the EURATOM Treaty. The basic features of the EURATOM Treaty are highlighted and those issues which are currently subject to discussion in foreign literature (e.g. EURATOM's legitimacy, specification of competencies, obsolete provisions, etc.) are pointed out. The major attempts to reform the wording of the EURATOM Treaty and the relevance of the Treaty to its Member States in the future, in relation to the 'Nuclear New Build' in particular, are also described. (orig.)

  18. The Lisbon Treaty and the role of the European Parliament in the European Atomic Energy Community; Der Vertrag von Lissabon (EUV) und die Rolle des Europaeischen Parlaments im Rahmen der Europaeischen Atomgemeinschaft (EURATOM / EAGV)

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, S. [Staatskanzlei des Landes Sachsen-Anhalt, Magdeburg (Germany)

    2008-01-15

    In June 2007, the European Council commissioned an intergovernmental conference to draft a 'treaty of reform' of the European Union. The wording of the treaty was signed by the heads of state and government of the member countries on December 13, 2007. The ongoing process of ratification in the 27 EU member countries is to be completed before the next elections to the European Parliament in June 2009. The treaty is now referred to as 'Lisbon Treaty'. The Lisbon Treaty (Treaty Amending the Treaty about the European Union and the Treaty Establishing the European Community) does not replace the European Treaties currently in force, but merely amends them. Also the 'Treaty Establishing the European Atomic Energy Community (EURATOM)' is amended in this way. On the basis of the contributions about 'The German Presidency Program of the Council Working Group on Nuclear Issues - an Interim Report' (W. Sandtner and S. Thomas) and 'Euratom Treaty and Intergovernmental Conference' (S. Thomas), current links to the Euratom Treaty with potential amendments are presented and commented upon. (orig.)

  19. MARS: Story on Molten Salt Actinide Recycler and Transmuter Development by Rosatom in Co-operation with Euratom

    International Nuclear Information System (INIS)

    Ignatiev, V.; Feynberg, O.; Gnidoi, I.; Konakov, S.; Kormilitsyn, M.; Merzliakov, A.; Surenkov, A.; Uglov, V.; Zagnitko, A.

    2015-01-01

    New design options of MOSART and MSFR systems without and with U-Th support fuelled with different compositions of transuranic elements trifluorides from spent LWR fuel both based on homogeneous cores and used fuel salts with high enough solubility for transuranic elements trifluorides are being examined within MARS (Rosatom) and EVOL (Euratom) parallel coordinated projects. The paper has the main objective of presenting the fuel cycle flexibility of the mentioned above systems while accounting technical constrains and experimental data received in this study. A brief description is given of the calculation core neutronics properties and fuel cycle scenarios as well as experimental results on key fuel salt properties, salt chemistry control and combined materials compatibility to satisfy MOSART and MSFR systems requirements. Measurements described mainly concern phase behaviour and transport properties data for selected fuel salts. As for fuel salt clean-up operations in MOSART and MSFR fuel cycles, the most uncertain its part concerning rare earth removal is discussed. Last section is focused on the compatibility of special Ni-based alloys with fuel salt selected at temperatures required for MOSART and MSFR operation. The major achievements are: (1) ability to produce and maintain a high level of purity in fuel salt, (2) effective control of the Redox potential of the salt medium in order to minimize corrosion, (3) understanding of basic corrosion mechanisms in MOSART and MSFR systems. HN80MTY alloy can be recommended for further consideration as the main container material for the fuel circuit with operating temperature up to 1 023 K required for MOSART and MSFR designs. (authors)

  20. [Radiation protection in orthopaedics: implications for clinical practice of the new regulations governing roentgen ray irradiation and radioprotection].

    Science.gov (United States)

    Nestle, U; Berlich, J

    2006-05-01

    In 2001 or 2002, the legislator made substantial alterations to the "Röntgenverordnung" [regulations governing use of roentgen ray radiation] and "Strahlenschutzverordnung" [regulations governing radiation protection]. This was done to bring German law in line with EU Directives 96/29/Euratom (basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionizing radiation) and 97/43/Euratom (health protection of individuals against the dangers of ionizing radiation in relation to medical exposure). Proper use of radiation in medicine requires that those involved in its application are aware of the biological effects of radiation. When staff and others are protected good organization and appropriate technology at the workplace can achieve a great deal. In the new directives, the radiation protection for the patient is quantified and the responsibility of the physician is clearly pointed out. The most important aim is uniform quality throughout Europe in radiological diagnosis and radiation protection.

  1. [Radiation protection. Implications for clinical practice on the new regulations governing roentgen ray irradiation and radioprotection].

    Science.gov (United States)

    Nestle, U; Berlich, J

    2006-08-01

    In 2001 or 2002, the legislator made substantial alterations to the "Röntgenverordnung" [regulations governing use of roentgen ray radiation] and "Strahlenschutzverordnung" [regulations governing radiation protection]. This was done to bring German law in line with EU Directives 96/29/Euratom (basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionizing radiation) and 97/43/Euratom (health protection of individuals against the dangers of ionizing radiation in relation to medical exposure). Proper use of radiation in medicine requires that those involved in its application are aware of the biological effect of radiation. When staff and others are protected good organization and appropriate technology at the workplace can achieve a great deal. In the new directives, the radiation protection for the patient is quantified and the responsibility of the physician is clearly pointed out. The most important aim is uniform quality throughout Europe in radiological diagnosis and radiation protection.

  2. Radiation protection of the public in respect of consumer goods containing radioactive substances

    International Nuclear Information System (INIS)

    1984-01-01

    The use of consumer goods containing radioactive substances makes a contribution to the total exposure of man to ionizing radiation. This contribution is explicitly recognized in Section II of the Basic Safety Standards established pursuant to Article 30 of the Euratom Treaty for the health protection of the general public and workers against the dangers of ionizing radiation, first published in 1959 and most recently revised 15 July 1980. Nevertheless, the Standards are of a general nature and need to be expanded on to be of practical application in this field. National authorities must have additional information in order to attain in full the objectives stated in them. This guide has been prepared with these considerations in mind. The guide is not a set of regulations but is better described as a code of practice, drawn up by specialists and approved by the scientific experts in the field of radiological protection and public health appointed under Article 31 of the Euratom Treaty

  3. Legislative and statutory framework of radiation protection of patients in Romania

    International Nuclear Information System (INIS)

    Milu, Constantin

    2008-01-01

    The paper presents the legislative and statutory framework of radiation protection of patients in Romania, starting with the basic Law 111/1996 on the Safe Deployment of Nuclear Activities, and its amendments in 1998 and 2006 and the general nuclear safety regulation, which is in agreement with the international regulation. Regarding the medical exposure, jointly the Nuclear Regulatory Authority and the Ministry of Public Health issued in 2002 a separate regulation, which was published in the Official Gazette Part I No. 446 bis in 25 June 2002 and represents the transposition of the European Directive 97/43/EURATOM of 30 June 1997 on health protection on individuals against the dangers of ionizing radiation in relation to medical exposure, and repealing Directive 84/466/EURATOM. Following this document, several specific regulations on radiation protection of the patients were approved by the Ministry of Public Health. Some practical problems already arise, particularly due to the lack of medical physics departments in hospitals. (author)

  4. Safety design requirements for safety systems and components of JSFR

    International Nuclear Information System (INIS)

    Kubo, Shigenobu; Shimakawa, Yoshio; Yamano, Hidemasa; Kotake, Shoji

    2011-01-01

    Safety design requirements for JSFR were summarized taking the development targets of the FaCT project and design feature of JSFR into account. The related safety principle and requirements for Monju, CRBRP, PRISM, SPX, LWRs, IAEA standards, goals of GIF, basic principle of INPRO etc. were also taken into account so that the safety design requirements can be a next-generation global standard. The development targets for safety and reliability are set based on those of FaCT, namely, ensuring safety and reliability equal to future LWR and related fuel cycle facilities. In order to achieve these targets, the defence-in-depth concept is used as the basic safety design principle. General features of the safety design requirements are 1) Achievement of higher reliability, 2) Achievement of higher inspectability and maintainability, 3) Introduction of passive safety features, 4) Reduction of operator action needs, 5) Design consideration against Beyond Design Basis Events, 6) In-Vessel Retention of degraded core materials, 7) Prevention and mitigation against sodium chemical reactions, and 8) Design against external events. The current specific requirements for each system and component are summarized taking the basic design concept of JSFR into account, which is an advanced loop-type large-output power plant with a mixed-oxide-fuelled core. (author)

  5. Nuclear Safety. 1997; Surete Nucleaire. 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-19

    A quick review of the nuclear safety at EDF may be summarized as follows: - the nuclear safety at EDF maintains at a rather good standard; - none of the incidents that took place has had any direct impact upon safety; - the availability remained good; - initiation of the floor 4 reactor generation (N4 unit - 1450 MW) ensued without major difficulties (the Civaux 1 NPP has been coupled to the power network at 24 december 1997); - the analysis of the incidents interesting from the safety point of view presents many similarities with earlier ones. Significant progress has been recorded in promoting actively and directly a safe operation by making visible, evident and concrete the exertion of the nuclear operation responsibility and its control by the hierarchy. The report develops the following chapters and subjects: 1. An overview on 1997; 1.1. The technical issues of the nuclear sector; 1.2. General performances in safety; 1.3. The main incidents; 1.4. Wastes and radiation protection; 2. Nuclear safety management; 2.1. Dynamics and results; 2.2. Ameliorations to be consolidated; 3. Other important issues in safety; 3.1. Probabilistic safety studies; 3.2. Approach for safety re-evaluation; 3.3. The network safety; 3.4. Crisis management; 3.5. The Lifetime program; 3.6. PWR; 3.7. Documentation; 3.8. Competence; 4. Safety management in the future; 4.1. An open future; 4.2. The fast neutron NPP at Creys-Malville; 4.3. Stabilization of the PWR reference frame; 4.4. Implementing the EURATOM directive regarding the radiation protection standards; 4.5. Development of biomedical research and epidemiological studies; 4.6. New regulations concerning the liquid and gaseous effluents; 5. Visions of an open future; 5.1. Alternative views upon safety ay EDF; 5.2. Safety authority; 5.3. International considerations; 5.4. What happens abroad; 5.5. References from non-nuclear domain. Four appendices are added referring to policy of safety management, policy of human factors in NPPs

  6. Safety prediction for basic components of safety-critical software based on static testing

    International Nuclear Information System (INIS)

    Son, H.S.; Seong, P.H.

    2000-01-01

    The purpose of this work is to develop a safety prediction method, with which we can predict the risk of software components based on static testing results at the early development stage. The predictive model combines the major factor with the quality factor for the components, which are calculated based on the measures proposed in this work. The application to a safety-critical software system demonstrates the feasibility of the safety prediction method. (authors)

  7. Basic Program Elements for Federal employee Occupational Safety and Health Programs and related matters; Subpart I for Recordkeeping and Reporting Requirements. Final rule.

    Science.gov (United States)

    2013-08-05

    OSHA is issuing a final rule amending the Basic Program Elements to require Federal agencies to submit their occupational injury and illness recordkeeping information to the Bureau of Labor Statistics (BLS) and OSHA on an annual basis. The information, which is already required to be created and maintained by Federal agencies, will be used by BLS to aggregate injury and illness information throughout the Federal government. OSHA will use the information to identify Federal establishments with high incidence rates for targeted inspection, and assist in determining the most effective safety and health training for Federal employees. The final rule also interprets several existing basic program elements in our regulations to clarify requirements applicable to Federal agencies, amends the date when Federal agencies must submit to the Secretary of Labor their annual report on occupational safety and health programs, amends the date when the Secretary of Labor must submit to the President the annual report on Federal agency safety and health, and clarifies that Federal agencies must include uncompensated volunteers when reporting and recording occupational injuries and illnesses.

  8. Safety prediction for basic components of safety critical software based on static testing

    International Nuclear Information System (INIS)

    Son, H.S.; Seong, P.H.

    2001-01-01

    The purpose of this work is to develop a safety prediction method, with which we can predict the risk of software components based on static testing results at the early development stage. The predictive model combines the major factor with the quality factor for the components, both of which are calculated based on the measures proposed in this work. The application to a safety-critical software system demonstrates the feasibility of the safety prediction method. (authors)

  9. Hydrogen Technologies Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    Rivkin, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burgess, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Buttner, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-01-01

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  10. Improving health, safety and energy efficiency in New Zealand through measuring and applying basic housing standards.

    Science.gov (United States)

    Gillespie-Bennett, Julie; Keall, Michael; Howden-Chapman, Philippa; Baker, Michael G

    2013-08-02

    Substandard housing is a problem in New Zealand. Historically there has been little recognition of the important aspects of housing quality that affect people's health and safety. In this viewpoint article we outline the importance of assessing these factors as an essential step to improving the health and safety of New Zealanders and household energy efficiency. A practical risk assessment tool adapted to New Zealand conditions, the Healthy Housing Index (HHI), measures the physical characteristics of houses that affect the health and safety of the occupants. This instrument is also the only tool that has been validated against health and safety outcomes and reported in the international peer-reviewed literature. The HHI provides a framework on which a housing warrant of fitness (WOF) can be based. The HHI inspection takes about one hour to conduct and is performed by a trained building inspector. To maximise the effectiveness of this housing quality assessment we envisage the output having two parts. The first would be a pass/fail WOF assessment showing whether or not the house meets basic health, safety and energy efficiency standards. The second component would rate each main assessment area (health, safety and energy efficiency), potentially on a five-point scale. This WOF system would establish a good minimum standard for rental accommodation as well encouraging improved housing performance over time. In this article we argue that the HHI is an important, validated, housing assessment tool that will improve housing quality, leading to better health of the occupants, reduced home injuries, and greater energy efficiency. If required, this tool could be extended to also cover resilience to natural hazards, broader aspects of sustainability, and the suitability of the dwelling for occupants with particular needs.

  11. Taking into account chemical safety for French basic nuclear installations

    International Nuclear Information System (INIS)

    Tabard, Laurence; Conte, Dorothee

    2013-01-01

    Among nuclear installations, some fuel cycle facilities present a high level of chemical hazards. In France, the TSN law of the 13 June 2006 requires taking into account all the risks generated by a basic nuclear installation (BNI). But, as most of the implementing regulatory texts are under development at this time, part of the previous regulation settled down in the 1990's is still applying: the order of the 31 December 1999 concerning technical regulation in order to prevent and to limit hazards generated by nuclear facilities; the decree of the 4 May 1995 and the order of the 26 November 1999 that deal with BNI discharges. Moreover, some parts of BNI or of nuclear sites can be submitted to the general regulation concerning chemical hazards, which is part of the environment code. As a result, even if the TSN law and its implementing decree Nr 2007-1557 of the 2 November 2007 settle clearly that safety of BNI is not only radiological, but must take into account chemical hazards, the latter aspects are still under development. Moreover the application of the existing regulation, even if complex, has helped to assess chemical risks inside BNI and nuclear sites. (authors)

  12. 1989 basic plan for atomic energy development and utilization

    International Nuclear Information System (INIS)

    1989-01-01

    A Basic Plan for Atomic Energy Development and Utilization has been established each year based on the guidelines set up by the Atomic Energy Commission of Japan, with the aim of promoting the development and utilization of atomic energy schematically and efficiently. The Basic Plan shows specific projects to achieve the objectives specified in the Long-Range Plan for Atomic Energy Development and Utilization. The Basic Plan specifies efforts to be made for overall strengthening of safety measures (safety policies, safety research, disaster prevention, etc.), promotion of nuclear power generation, establishment of the nuclear fuel cycle (securing of uranium, technology for uranium enrichment, reprocessing, etc.), development of new types of power reactors (fast breeder reactor, new types of converter reactors, plutonium fuel processing technology), promotion of leading projects (nuclear fusion, utilization of radiations, atomic powered ships, high-temperature engineering tests), promotion of basic technology development (basic research, training of scientists and engineers), voluntary and active international activities (international cooperation), and acquisition of understanding and cooperation of the general public. (N,K.)

  13. Technical safety Organisations (TSO) contribute to European Nuclear Safety; Les organismes techniques de surete (TSO) au service de la surete nucleaire europeenne

    Energy Technology Data Exchange (ETDEWEB)

    Repussard, J. [Institut de radioprotection et de surete nucleaire - IRSN, 92 - Clarmart (France)

    2010-11-15

    Nuclear safety and radiation protection rely on science to achieve high level prevention objectives, through the analysis of safety files proposed by the licensees. The necessary expertise needs to be exercised so as to ensure adequate independence from nuclear operators, appropriate implementation of state of the art knowledge, and a broad spectrum of analysis, adequately ranking the positive and negative points of the safety files. The absence of a Europe-wide nuclear safety regime is extremely costly for an industry which has to cope with a highly competitive and open international environment, but has to comply with fragmented national regulatory systems. Harmonization is therefore critical, but such a goal is difficult to achieve. Only a gradual policy, made up of planned steps in each of the three key dimensions of the problem (energy policy at EU level, regulatory harmonization, consolidation of Europe-wide technical expertise capability) can be successful to achieve the required integration on the basis of the highest safety levels. TSO's contribute to this consolidation, with the support of the EC, in the fields of research (EURATOM-Programmes), of experience feedback analysis (European Clearinghouse), of training and knowledge management (European Training and Tutoring Institute, EUROSAFE). The TSO's network, ETSON, is becoming a formal organisation, able to enter into formal dialogue with EU institutions. However, nuclear safety nevertheless remains a world wide issue, requiring intensive international cooperation, including on TSO issues. (author)

  14. Barbecue Basics: Tips to Prevent Foodborne Illness

    Medline Plus

    Full Text Available ... eating outdoors in warm weather presents a food safety challenge. Bacteria in food multiply faster at temperatures ... so summer heat makes the basics of food safety especially important. “Fortunately, there are a lot of ...

  15. Barbecue Basics: Tips to Prevent Foodborne Illness

    Medline Plus

    Full Text Available ... and other outdoor parties. But eating outdoors in warm weather presents a food safety challenge. Bacteria in ... in FDA’s Center for Food Safety and Applied Nutrition. Wash hands. It seems basic, but not everyone ...

  16. FUSION Yearbook. Association Euratom-Tekes. Annual Report 2004

    International Nuclear Information System (INIS)

    Karttunen, S.; Rantamaeki, K.

    2005-05-01

    This report summarises the results of the Tekes FUSION technology programme and the fusion research activities by the Association Euratom-Tekes in 2004. The research areas are fusion physics, plasma engineering, fusion technology and a smaller effort to socioeconomic studies. Fusion technology research is carried out in close collaboration with Finnish industry. The emphasis in fusion physics and plasma engineering is in theoretical and computational studies on turbulent transport and modelling of radio-frequency heating experiments and the real time control of transport barriers in JET plasmas, predictive integrated modelling of tokamak plasmas, and studies on material transport in the edge plasmas supported by surface analysis of the JET divertor and limiter tiles. The work in fusion technology for the EFDA Technology Programme and ITER is strongly focused into vessel/in-vessel materials covering research and characterisation of first wall materials, mechanical testing of reactor materials under neutron irradiation, characterisation of irradiated Ti-alloys, simulations of carbon and tungsten sputtering, joining and welding methods and surface physics studies on plasma facing materials. A second domain of fusion technology consists of remote handling systems including water hydraulic manipulators for the ITER divertor maintenance as well as prototyping of intersector welding and cutting robot. Virtual modelling is an essential element in the remote handling engineering. Preparations to host the ITER divertor test platform (DTP2) were completed in 2004 and the DTP2 facility will be hosted by VTT. Some effort was also devoted to neutronics, socio-economic and power plant studies. Several EFDA technology tasks were successfully completed in 2004. (orig.)

  17. Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark. Annual progress report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Korsholm, S.B.; Michelsen, P.K.; Rasmussen, J.J.; Westergaard, C.M. (eds.)

    2009-04-15

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. New activities in technology related to development of high temperature superconductors have been initiated in 2008. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2008. (Author)

  18. Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark. Annual progress report 2010

    Energy Technology Data Exchange (ETDEWEB)

    Korsholm, S.B.; Michelsen, P.K.; Rasmussen, J.J.; Westergaard, C.M. (eds.)

    2011-04-15

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. Within fusion technology there are activities related to development of high temperature superconductors. Other activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2010. (Author)

  19. Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark. Annual progress report 2008

    International Nuclear Information System (INIS)

    Korsholm, S.B.; Michelsen, P.K.; Rasmussen, J.J.; Westergaard, C.M.

    2009-04-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. New activities in technology related to development of high temperature superconductors have been initiated in 2008. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2008. (Author)

  20. Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark. Annual progress report 2009

    International Nuclear Information System (INIS)

    Korsholm, S.B.; Michelsen, P.K.; Rasmussen, J.J.; Westergaard, C.M.

    2010-04-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. Within fusion technology there are activities related to development of high temperature superconductors. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2009. (Author)

  1. Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark. Annual progress report 2009

    Energy Technology Data Exchange (ETDEWEB)

    Korsholm, S B; Michelsen, P K; Rasmussen, J J; Westergaard, C M [eds.

    2010-04-15

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. Within fusion technology there are activities related to development of high temperature superconductors. Minor activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2009. (Author)

  2. Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark. Annual progress report 2010

    International Nuclear Information System (INIS)

    Korsholm, S.B.; Michelsen, P.K.; Rasmussen, J.J.; Westergaard, C.M.

    2011-04-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. Within fusion technology there are activities related to development of high temperature superconductors. Other activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2010. (Author)

  3. Guide to the declaration procedure and coding system for criteria concerning significant events related to safety, radiation protection or the environment, applicable to basic nuclear installations and the transport of radioactive materials

    International Nuclear Information System (INIS)

    Lacoste, Andre-Claude

    2005-01-01

    This guide notably contains various forms associated with the declaration of significant events, and explanations to fill them in: significant event declaration form for a basic nuclear installation, significant event declaration form for radioactive material transport, significant event report for a basic nuclear installation, significant event report for radioactive material transport, declaration criteria for significant events related to the safety of non-PWR basic nuclear installations, declaration criteria for significant events related to PWR safety, significant events declared further to events resulting in group 1 unavailability and non-compliance with technical operating specifications, declaration criteria for significant events concerning radiation protection for basic nuclear installations, declaration criteria for significant events concerning environmental protection, applicable to basic nuclear installations, and declaration criteria for significant events concerning radioactive material transport

  4. Unattended digital video surveillance: A system prototype for EURATOM safeguards

    International Nuclear Information System (INIS)

    Chare, P.; Goerten, J.; Wagner, H.; Rodriguez, C.; Brown, J.E.

    1994-01-01

    Ever increasing capabilities in video and computer technology have changed the face of video surveillance. From yesterday's film and analog video tape-based systems, we now emerge into the digital era with surveillance systems capable of digital image processing, image analysis, decision control logic, and random data access features -- all of which provide greater versatility with the potential for increased effectiveness in video surveillance. Digital systems also offer other advantages such as the ability to ''compress'' data, providing increased storage capacities and the potential for allowing longer surveillance Periods. Remote surveillance and system to system communications are also a benefit that can be derived from digital surveillance systems. All of these features are extremely important in today's climate Of increasing safeguards activity and decreasing budgets -- Los Alamos National Laboratory's Safeguards Systems Group and the EURATOM Safeguards Directorate have teamed to design and implement a period surveillance system that will take advantage of the versatility of digital video for facility surveillance system that will take advantage of the versatility of digital video for facility surveillance and data review. In this Paper we will familiarize you with system components and features and report on progress in developmental areas such as image compression and region of interest processing

  5. Survey on education and training of medical physicists in the member states of the European Community with reference to the patient directive (84/466/Euratom)

    International Nuclear Information System (INIS)

    Schmitt-Hannig, A.

    1991-01-01

    Article 5 of Directive 84/466/Euratom mentions the availability of a qualified expert in radiophysics to sophisticated departments of radiotherapy and nuclear medicine. Since the qualified expert has a major and direct role to play in the protection of the patient undergoing medical examination or treatment involving ionizing radiation, his presence in the hospital and the training he has received are considerable aspects of radiation protection in the medical domain. The application of Article 5 of Directive 84/466/Euratom is of great importance for the protection of the patient undergoing medical examination or treatment involving ionizing radiation. This report, developed to evaluate the actual application of this article, reveals that although in several Member States the concept of the qualified expert in radiophysics has already been introduced into national law, in practice a need for further harmonization clearly emerges. On the availability of training facilities, the situation in the Community is rather positive, but the formal recognition of training and education of medical physicists by government bodies is still in a developing stage

  6. Information report made on the behalf of the European Affairs Commission on European policy for nuclear safety

    International Nuclear Information System (INIS)

    Bizet, J.; Sutour, S.

    2011-05-01

    This report aims at defining some perspectives for the evolution of the European general legal framework for nuclear safety. The authors first outline the difficulty for a European policy to emerge. They explain this statement by the importance of the current policy of national states, of their operators and of their national regulation authorities. They evoke the few elements of this legal framework (EURATOM Treaty, jurisprudence) but outline the strong cooperation between national authorities. Then, they discuss some progresses which have been noticed during the past two years (the 'safety' directive, a proposition for a directive on the management of used fuel and radioactive wastes, and the recent works by WENRA), and discuss the consequences of the accident in Fukushima. Propositions are made, notably concerning the support to the 'waste' directive, the perpetuation of strength tests, the rewriting of the 'safety' directive of June 2009

  7. Basic considerations for the safety analysis report of the Greek Research Reactor-1 (GRR-1)

    International Nuclear Information System (INIS)

    Anoussis, J.N.; Chrysochoides, N.G.; Papastergiou, C.N.

    1980-09-01

    The basic considerations upon which the new revised Safety Analysis Report (SAR) for the GRR-1 will be based are presented. The format and the content the SAR will follow are given. A number of credible and less credible accidents is briefly analysed on the basis of present knowledge and experience for similar reactors, as well as the experience gained in the last 10 years of the GRR-1 operation at 5 MW. The accident caused by partial blockage of the cooling flow is considered to be the Maximum Credible Accident (MCA) for the GRR-1. The MCA is analysed and its radiological impact to the environment is estimated using conservative assumptions. (T.A.)

  8. Nuclear fusion project. Annual report of the Association KfK/EURATOM. October 1992 - September 1993

    International Nuclear Information System (INIS)

    Kast, G.

    1993-12-01

    The central areas of work are: 1) Structural materials, plasma forming components, plasma engineering; 2) superconducting magnets; 3) vacuum systems; 4) basic blanket; 5) remote handling and maintenance; 6) safety and environment; 7) material development, mechanical properties of pre- and post-irradiation of MANET (steel 1.4914); 8) solid breeder and liquid metal test blankets; 9) ECRH power sources; 10) TRT-1=tritium supply and management; 11) study contracts for ITER/NET. (HP)

  9. Integrated Safety in ''SARAF'

    International Nuclear Information System (INIS)

    Dickstein, P.; Grof, Y.; Machlev, M.; Pernick, A.

    2004-01-01

    As of the very early stages of the accelerator project at the Soreq Nuclear Research Center ''SARAF'' a safety group was established which has been an inseparable participant in the planning and design of the new facility. The safety group comprises of teams responsible for the shielding, radiation protection and general industrial safety aspects of ''SARAF''. The safety group prepared and documented the safety envelope for the accelerator, dealing with the safety requirements and guidelines for the first, pre-operational, stages of the project. The safety envelope, though based upon generic principles, took into account the accelerator features and the expected modes of operation. The safety envelope was prepared in a hierarchical structure, containing Basic Principles, Basic Guidelines, General Principles for Safety Implementation, Safety Requirements and Safety Underlining Issues. The above safety envelope applies to the entire facility, which entails the accelerator itself and the experimental areas and associated plant and equipment utilizing and supporting the production of the accelerated particle beams

  10. Association EURATOM-FZJ. Annual progress report 2012. SC-FZJ 90(13)/4.1.2

    International Nuclear Information System (INIS)

    2012-01-01

    The Helmholtz Association's (HGF) fusion activities are in line with the European fusion re-search programme. The following Helmholtz Centres are involved: Max Planck Institute of Plasma Physics (IPP, Garching and Greifswald), Karlsruhe Institute of Technology (KIT), and Forschungszentrum Juelich (FZJ). This report presents results having been achieved by FZJ in the year 2012. Forschungszentrum Juelich as a EURATOM Association coordinates its fusion research activities within the Nuclear Fusion Project (KFS). The programme is based on several institutes and is well embedded into the European fusion research structure. The major part of the Juelich research activities is located within the Institute of Energy and Climate Research (IEK). This is organized along a number of institute parts, among which fusion research is concentrated within IEK-4 Plasma Physics and IEK-2 Microstructure and Properties of Materials. The IEK-4 Plasma Physics has the largest share of scientific staff in physics and technology for fusion, operates the TEXTOR tokamak, performs scientific work on JET and DIII-D, supports the Wendelstein 7-X construction and takes up significant projects related to the development of ITER. With the recent appointment of a new second director at IEK-4 (Prof. Linsmeier) it is intended to enhance the materials science expertise within the Juelich fusion programme and in particular in IEK-4: This will complement the activities in IEK-2, which operates the high heat flux test facilities JUDITH 1 and 2. They are installed inside a Hot Cell and in a controlled area which is licensed to operate with toxic and radiating materials. The Central Technology Division (ZEA1) provides engineering expertise and specialised workshop capacities. The Juelich Supercomputing Centre (JSC) operates various types of super-computer systems, among which one device (HPC-FF) is dedicated exclusively to fusion research within EFDA. The Association EURATOM-FZJ has very close contacts

  11. Basic professional training course on nuclear safety - Finland YK4 preface

    International Nuclear Information System (INIS)

    Kyrki-Rajamaeki, R.

    2006-01-01

    This publication comprises the abstracts of the YK4 basic professional training course on nuclear safety arranged now for fourth time in Finland. Part of the abstracts has again been updated for this publication. When more renewed abstracts are received during the YK4 course, they are put in the distance learning pages of Lappeenranta University of Technology (LUT) being thus immediately available for the participants. In the fall of 2002, Finnish organizations re-evaluated the man-power situation and established an organizing committee to develop and organize basic post-graduate professional training of new recruits and staff members; especially for the acute needs of the new NPP project, but also to provide in the long-term a new generation of nuclear experts to replace the present generation which will retire within the next ten years. The organizing committee included representatives of the following organizations: Radiation and Nuclear Safety Authority STUK, nuclear power utilities TVO and Fortum, the Technical Research Centre of Finland VTT, the Lappeenranta (LUT) and Helsinki Universities of Technology (TKK), and the Ministry of Trade and Industry, KTM. The committee decided to promptly organize a national training course on nuclear safety based on a similar course developed by the IAEA: the course structure and syllabus are alike. Although part of the course material is based on the IAEA material, it has been adapted to the Finnish conditions, and a large part of the material is completely new. The Finnish application aims to make visible different standpoints of all organizations and the location of the five-week course rotates between different organizations. In the academic year 2006-2007, the course is starting fourth time as YK4. There are again over 100 lecturers and rehearsal, demonstration or excursion leaders. Half of them come from the utilities TVO and Fortum, a quarter from the authority STUK, and the rest from VTT, universities and others. The

  12. Advanced concepts for waste management and nuclear energy production in the EURATOM 5. framework programme

    International Nuclear Information System (INIS)

    Hugon, M.; Bhatnagar, V.P.; Martin Bermejon, J.

    2002-01-01

    This paper summarises the objectives of the research projects on partitioning and transmutation (P and T) of long-lived radionuclides in nuclear waste and advanced systems for nuclear energy production in the key action on nuclear fission of the EURATOM 5. Framework Programme (FP5) (1998-2002). As these FP5 projects cover the main aspects of P and T, they should provide a basis for evaluating the practicability, on an industrial scale, of P and T for reducing the amount of long-lived radionuclides to be disposed of. Concerning advanced concepts, a cluster of projects is addressing the key technical issues to be solved before implementing high-temperature reactors (HTRs) commercially for energy production. Finally, the European Commissions proposal fora New Framework Programme (2002-2006) is briefly outlined. (authors)

  13. Advanced concepts for waste management and nuclear energy production in the EURATOM fifth framework programme

    International Nuclear Information System (INIS)

    Hugon, M.; Bhatnagar, V.P.; Martin Bermejo, J.

    2001-01-01

    This paper summarises the objectives of the research projects on Partitioning and Transmutation (P and T) of long lived radionuclides in nuclear waste and advanced systems for nuclear energy production in the key action on nuclear fission of the EURATOM Fifth Framework Programme (FP5) (1998-2002). As these FP5 projects cover the main aspects of P and T, they should provide a basis for evaluating the practicability, on an industrial scale, of P and T for reducing the amount of long lived radionuclides to be disposed of. Concerning advanced concepts, a cluster of projects is addressing the key technical issues to be solved before implementing High Temperature Reactors (HTRs) commercially for energy production. Finally, the European Commission(tm)s proposal for a New Framework Programme (2002-2006) is briefly outlined. (author)

  14. Guidelines for approved medical officers on health surveillance of radiation workers

    International Nuclear Information System (INIS)

    O'Donovan, N.; Hone, C.

    1988-11-01

    As a result of the adoption of the Council of the European Communities Directive No. 80/836 Euratom which lays down the basic safety standards for the health protection of the general public and workers against the dangers of ionizing radiation, there is a need for nominating Approved Medical Officers whose functions in respect of hospital workers are outlined in the Department of Health Circular, Oct. 1983 (Appendix 1), and which are considered applicable to all other workers. This document outlines the role of the Approved Medical Officer and proides information to aid him/her in this work (author)

  15. Importance of the European qualification frame (EQF) and its tools for radiation protection

    International Nuclear Information System (INIS)

    Schmitt-Hannig, Annemarie

    2013-01-01

    The harmonization of different radiation protection education and training systems in Europe and the mutual approval of the qualifications acquired abroad are discussed since years. Due to large national differences the mutual approval is usually based on case approaches instead of a standardized procedure. With the European qualification frame for life learning and EVCET (European credit system for vocational education and training) there are tools that could also be used in the sector of radiation protection education and training. The draft of the EURATOM basic safety standards (BSS) guideline includes the requirement of an approval of radiation protection officer certifications.

  16. International Cooperation of the Republic of Croatia in the Field of Nuclear Safety

    International Nuclear Information System (INIS)

    Novosel, N.; Rosandic, L.

    2010-01-01

    International cooperation of the Republic of Croatia in the field of nuclear safety can be divided in two parts - political part, for which the Ministry of Foreign Affairs and European Integration is responsible, and technical part, for which the State Office for Nuclear Safety is responsible, in cooperation with other state administration bodies, where applicable. According to the Nuclear Safety Act (OG 73/2003) the State Office for Nuclear Safety: 'coordinates technical cooperation with the International Atomic Energy Agency for all participants from the Republic of Croatia'; 'fulfills the obligations which the Republic of Croatia has assumed through international conventions and bilateral agreements concerning nuclear safety and the application of protective measures aimed at the non-proliferation of nuclear weapons' and 'cooperates with international organizations and associations in the area of nuclear safety, and appoints its own expert representatives to take part in the work of such organizations and associations or to monitor their work'. In this paper various aspects of the technical cooperation with the International Atomic Energy Agency, as well as international conventions and bilateral agreements in the field of nuclear safety, will be presented. Also, cooperation with other international organizations and associations in the nuclear area, such as Nuclear Suppliers Group, Zangger Committee, Wassenaar Arrangement, Comprehensive Nuclear-Test-Ban Treaty Organization, Euratom and certain civil expert groups of NATO, will be described.(author).

  17. Reactor safety research. The CEC contribution

    International Nuclear Information System (INIS)

    Krischer, W.

    1990-01-01

    The involvement of the EC Commission in the reactor safety research dates back almost to the implementation of the EURATOM Treaty and has thus lasted for thirty years. The need for close collaboration and for general consensus on some crucial problems of concern to the public, has made the role of international organizations and, as far as Europe is concerned, the role of the European Community particularly important. The areas in which the CEC has been active during the last five years are widespread. This is partly due to the fact that, after TMI and Chernobyl, the effort and the interest of the different countries in reactor safety was considerable. Reactor Safety Research represents the proceedings of a seminar held by the Commission at the end of its research programme 1984-88 on reactor safety. As such it gives a comprehensive overview of the recent activities and main results achieved in the CEC Joint Research Centre and in national laboratories throughout Europe on the basis of shared cost actions. In a concluding chapter the book reports on the opinions, expressed during a panel by a group of major exponents, on the needs for future research. The main topics addressed are, with particular reference to Light Water Reactors (LWRS): reliability and risk evaluation, inspection of steel components, primary circuit components end-of-life prediction, and abnormal behaviour of reactor cooling systems. As far as LMFBRs are concerned, the topics covered are: severe accident modelling, material properties and structural behaviour studies. There are 67 pages, all of which are indexed separately. Reactor Safety Research will be of particular interest to reliability and safety engineers, nuclear engineers and technicians, and mechanical and structural engineers. (author)

  18. Implementation of the directive 2013/59 EURATOM from the view of a federal state authority - new challenges for the federal state authorities in the frame of the federal executive administration; Umsetzung der Richtlinie 2013/59 EURATOM aus Sicht einer Landesbehoerde. Neue Herausforderungen fuer die Landesbehoerde im Rahmen der Bundesauftragsverwaltung im Strahlenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, J. [Saechsisches Staatsministerium fuer Umwelt und Landwirtschaft, Dresden (Germany). Referat Strahlenschutz, Gentechnik und Chemikalien; Honolka, J. [Saechsisches Landesamt fuer Umwelt, Landwirtschaft und Geologie, Dresden (Germany). Referat Strahlenschutz

    2016-07-01

    The directive 2013/59 EURATOM must be implemented in Germany by the Federal Environment Ministry until 2018. The implementation is to modernize the law in the field of the Radiation Protection in Germany. New assignments are coming to the Saxon authorities. The implementation of Article 63 in the field of medicine will be described in more detail and the problems for the authorities in Saxony are discussed. The new tasks require additional staff.

  19. Safety objectives and basic design for surface centres for long-term storage of solid radioactive waste with short or medium half-life and low or medium specific activity

    International Nuclear Information System (INIS)

    1984-06-01

    RFS or Regles Fondamentales de Surete (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety, while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the Service Central de Surete des Installations Nucleaires, or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary, any RFS and specify, if need be, the terms under which a modification is deemed retroactive. The role of this RFS is to define the safety objectives and the basic design philosophy for surface centres for long-term storage of packages of radioactive waste with short or medium half-life and with low or medium specific activity

  20. Safety at basic nuclear facilities other than nuclear power plants. Lessons learned from significant events reported in 2011 and 2012

    International Nuclear Information System (INIS)

    2014-01-01

    The third report on the safety of basic nuclear installations in France other than power reactors presents an IRSN's analysis of significant events reported to the Nuclear Safety Authority in the years 2011 and 2012. It covers plants, laboratories, research reactors and facilities for the treatment, storage or disposal of waste. This report aims to contribute to a better understanding by stakeholders and more widely by the public of the safety and radiation protection issues associated with the operation of nuclear facilities, the progress made in terms of safety as well as the identified deficiencies. The main trend shows, once again, the significant role of organizational and human factors in the significant events that occurred in 2011 and 2012, of which the vast majority are without noteworthy consequences. Aging mechanisms are another major cause of equipment failure and require special attention. The report also provides IRSN's analysis of specific events that are particularly instructive for facility safety and a synthesis of assessments performed by IRSN on topics that are important for safety and radiation protection. IRSN also includes an overview of its analysis of measures proposed by licensees for increasing the safety of their facilities after the March 2011 accident at the Fukushima Daiichi nuclear power plant in Japan, which consist of providing a 'hardened safety core' to confront extreme situations (earthquake, flooding, etc.) that are unlikely but plausible and can bring about levels of hazards higher than those taken into account in the design of the facilities

  1. Radiation protection at workplaces with increased natural radiation exposure in Greece: recording, monitoring and protection measures

    International Nuclear Information System (INIS)

    Potiriadis, C.; Koukoliou, V.

    2002-01-01

    Greek Atomic Energy Commission (GAEC) is the regulatory, advisory and competent authority on radiation protection matters. It is the authority responsible for the introduction of Radiation Protection regulations and monitoring of their implementation. In 1997, within the frame of its responsibilities the Board of the GAEC appointed a task group of experts to revise and bring the present Radiation Protection Regulations into line with the Basic Safety Standards (BSS) 96/29/Euratom Directive and the 97/43/Euratom Directive (on health protection of individuals against the dangers of ionising radiation in relation to medical exposure). Concerning the Title 7. of the new European BSS Directive, which refers to the Radiation Protection at work places with increased levels of natural radiation exposure, the Radiation Protection Regulations provides that the authority responsible for recording, monitoring and introducing protection measures at these places is the GAEC. Practices where effective doses to the workers due to increased natural radiation levels, may exceed 1mSv/y, have to be specified and authorised by the GAEC. The identification procedure is ongoing

  2. Arizona Traffic Safety Education, K-8. Passenger Safety, Grade 3.

    Science.gov (United States)

    Mesa Public Schools, AZ.

    One in a series designed to assist Arizona elementary and junior high school teachers in developing children's traffic safety skills, this curriculum guide contains four lessons and an appendix of school bus safety tips for use in grade 3. Introductory information provided for the teacher includes basic highway safety concepts, stressing…

  3. A basic toxicity classification of radionuclides

    International Nuclear Information System (INIS)

    1963-01-01

    In the course of its work in the field of health and safety the International Atomic Energy Agency has often met the practical requirement for grading radionuclides in order of their relative radiotoxicities. This need was particularly evident when the Agency's Basic Safety Standards for the protection of health against ionizing radiation were in preparation, when it was necessary to exempt quantities of radionuclides from inclusion in the norms. A basic toxicity grading might be of help to laboratories in meeting some of their requirements in problems related to waste management as well as for the design of experimental facilities. It should also serve as a basis for the development of safety criteria for laboratory equipment and procedures for handling and transporting various quantities and kinds of radionuclides. The purpose of the present Report is to make a toxicity grading of the radionuclides according to the risk of biological injury which they may cause when they have become incorporated in the human body. 4 refs, 4 tabs

  4. A basic toxicity classification of radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    1963-04-01

    In the course of its work in the field of health and safety the International Atomic Energy Agency has often met the practical requirement for grading radionuclides in order of their relative radiotoxicities. This need was particularly evident when the Agency's Basic Safety Standards for the protection of health against ionizing radiation were in preparation, when it was necessary to exempt quantities of radionuclides from inclusion in the norms. A basic toxicity grading might be of help to laboratories in meeting some of their requirements in problems related to waste management as well as for the design of experimental facilities. It should also serve as a basis for the development of safety criteria for laboratory equipment and procedures for handling and transporting various quantities and kinds of radionuclides. The purpose of the present Report is to make a toxicity grading of the radionuclides according to the risk of biological injury which they may cause when they have become incorporated in the human body. 4 refs, 4 tabs.

  5. Evaluation guide for the radiological impact study of a basic nuclear installation (BNI) as a support for the authorization application of releases

    International Nuclear Information System (INIS)

    Chartier, Mr.; Despres, A.; Supervil, S.; Conte, D.; Hubert, P.; Oudiz, A.; Champion, D.

    2002-10-01

    At the time of a licence application of effluent releases and water pumping of basic nuclear facilities (BNF), the operator of the installation must in particular provide a radiological impact study of the radioactive effluent releases coming from the installation on the environment and on public health. An impact study of the radioactive releases represents technical and conditional specifications. It was for this reason that the French Safety Authority (ASN then DSIN) and the Directorate-General of Health Services (DGS) requested IRSN (then IPSN), in April 1999, to develop a guide facilitating the review of such a study, as well for the services implied in the examination of the licence applications, as for all the concerned parties in this field. The objective of the guide is to take into account the regulatory context which underlies the development of the impact studies (decree no. 95-540 of May 4, 1995, modified by the decree no. 2002-460 of April 4, 2002, and the Euratom guideline 96/29 of May 13, 1996, known as 'the basic standard guideline', accompanied by its transposition texts in French law). In this precise context, the guide proposes to assess the radiological impact study of a BNF from three different angles: - the description and the quantification of the produced effluents, by taking account of the triggering processes, of the different processing measures and of the procedures to optimise the reduction of the produced effluents; - the estimate of the dosimetric impact of the planned releases on the population, taking into account the environmental characteristics of the installation; - the definition of the conditions to monitor the releases and the environment. This guide provides a general condition logical framework adaptable to any particular situation met

  6. Report on the proposal for a Council directive (EURATOM) on the management of spent nuclear fuel and radioactive waste - Committee on Industry, External Trade, Research and Energy

    International Nuclear Information System (INIS)

    2006-01-01

    By letter of 13 May 2003 the Council consulted Parliament, pursuant to Articles 31 and 32 of the EURATOM Treaty, on the proposal for a Council directive (EURATOM) on the management of spent nuclear fuel and radioactive waste (COM(2003) 32 - 2003/0022(CNS)). At the sitting of 15 May 2003 the President of Parliament announced that he had referred the proposal to the Committee on Industry, External Trade, Research and Energy as the committee responsible and the Committee on the Environment, Public Health and Consumer Policy for its opinion (C5-0229/2003). The Committee on Industry, External Trade, Research and Energy appointed Alejo Vidal-Quadras Roca Rapporteur at its meeting of 22 May 2003. The committee considered the Commission proposal and draft report at its meetings of 9 July, 9 September, 6 October, 3 November and 27 November 2003. At the last meeting it adopted the draft legislative resolution by 36 votes to 7, with 2 abstentions. The opinion of the Committee on the Environment, Public Health and Consumer Policy is attached. The report was tabled on 1 December 2003

  7. Safety culture of nuclear power plant

    International Nuclear Information System (INIS)

    Zheng Beixin

    2008-01-01

    This paper is a summary on the basis of DNMC safety culture training material for managerial personnel. It intends to explain the basic contents of safety, design, management, enterprise culture, safety culture of nuclear power plant and the relationship among them. It explains especially the constituent elements of safety culture system, the basic requirements for the three levels of commitments: policy level, management level and employee level. It also makes some analyses and judgments for some typical safety culture cases, for example, transparent culture and habitual violation of procedure. (authors)

  8. Barbecue Basics: Tips to Prevent Foodborne Illness

    Medline Plus

    Full Text Available ... and 140°F, so summer heat makes the basics of food safety especially important. “Fortunately, there are a lot of steps consumers can take to keep family and friends from becoming ill,” says Marjorie Davidson, Ph.D., education team leader in FDA’s Center for Food Safety ...

  9. Regulatory control of radiation sources. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    The basic requirements for the protection of persons against exposure to ionizing radiation and for the safety of radiation sources were established in the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the Basic Safety Standards), jointly sponsored by the Food and Agriculture Organization of the United Nations (FAO), the International Atomic Energy Agency (IAEA), the International Labour Organization (ILO), the OECD Nuclear Energy Agency (OECD/ NEA), the Pan American Health Organization (PAHO) and the World Health Organization (WHO) (the Sponsoring Organizations). The application of the Basic Safety Standards is based on the presumption that national infrastructures are in place to enable governments to discharge their responsibilities for radiation protection and safety. Requirements relating to the legal and governmental infrastructure for the safety of nuclear facilities and sources of ionizing radiation, radiation protection, the safe management of radioactive waste and the safe transport of radioactive material are established in the Safety Requirements on Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety, Safety Standards Series No. GS-R-1. This Safety Guide, which is jointly sponsored by the FAO, the IAEA, the International Labour Office, the PAHO and the WHO, gives detailed guidance on the key elements for the organization and operation of a national regulatory infrastructure for radiation safety, with particular reference to the functions of the national regulatory body that are necessary to ensure the implementation of the Basic Safety Standards. The Safety Guide is based technically on material first published in IAEA-TECDOC-10671, which was jointly sponsored by the FAO, the IAEA, the OECD/NEA, the PAHO and the WHO. The requirements established in GS-R-1 have been taken into account. The Safety Guide is oriented towards national

  10. FFUSION yearbook 1995. Annual report of the Finnish research unit. Association EURATOM-TEKES

    Energy Technology Data Exchange (ETDEWEB)

    Karttunen, S; Paettikangas, T [eds.; VTT Energy, Espoo (Finland)

    1996-03-01

    Finnish Fusion Research Programme (FFUSION) is one of the eleven national energy research programmes funded by the Technological Development Centre of Finland (TEKES). All fusion related research in Finland is included in the FFUSION programme and it made it possible to establish a dialogue with the European Fusion Programme already two years before Finland joined the European Union. The process led to the founding of the Association Euratom-TEKES in early 1995. The contract of Association was signed in Helsinki on March 13 1995, to establish the 14th Association in the EU FFusion Programme. This annual report summarises the research activities of the Finnish Research Unit in 1995. The emphasis is on research supported by the EU Commission. The programme consists of two parts: Physics and Technology. The research areas of the physics are: Fusion plasma engineering, Radio-frequency heating and plasma diagnostics, and Plasma-wall interactions - ion-beam studies of the reactor materials. The technology is focused into three areas: Fusion reactor materials (first wall components and joining techniques), and Remote handling

  11. EU-funded research in nuclear fission with emphasis on operational safety of existing installations: main achievements of FP-4 (1994-1998), some preliminary results of FP-5 (1998-2002) and prospects for beyond 2002

    International Nuclear Information System (INIS)

    Van Goethem, G.; Bermejo, J.M.; Zurita, A.; Lemaitre, P.

    2001-01-01

    In this paper an overview is given of the most important aspects of the research activities organised by the European Union (EU) in the area ''Operational Safety of Existing installation'' of the Key Action NUCLEAR FISSION of the 5. EURATOM framework programme (FP-5) 1998-2002, with emphasis on plant life extension and management (PLEM), severe accident management (SAM) and evolutionary safety concepts (EVOL). The strategic goal of this specific programme 1998-2002 is to help exploit the full potential of nuclear energy in a sustainable manner, by making current technologies even safer and more economical and by exploring promising new concepts. (author)

  12. Predicting Stress Related to Basic Needs and Safety in Darfur Refugee Camps: A Structural and Social Ecological Analysis.

    Science.gov (United States)

    Rasmussen, Andrew; Annan, Jeannie

    2010-03-01

    The research on the determinants of mental health among refugees has been largely limited to traumatic events, but recent work has indicated that the daily hassles of living in refugee camps also play a large role. Using hierarchical linear modelling to account for refugees nested within camp blocks, this exploratory study attempted to model stress surrounding safety and acquiring basic needs and functional impairment among refugees from Darfur living in Chad, using individual-level demographics (e.g., gender, age, presence of a debilitating injury), structural factors (e.g., distance from block to distribution centre), and social ecological variables (e.g., percentage of single women within a block). We found that stress concerning safety concerns, daily hassles, and functional impairment were associated with several individual-level demographic factors (e.g., gender), but also with interactions between block-level and individual-level factors as well (e.g., injury and distance to distribution centre). Findings are discussed in terms of monitoring and evaluation of refugee services.

  13. Validity of your safety awareness training

    CERN Multimedia

    DG Unit

    2010-01-01

    AIS is setting up an automatic e-mail reminder system for safety training. You are invited to forward this message to everyone concerned. Reminder: Please check the validity of your Safety courses Since April 2009 the compulsory basic Safety awareness courses (levels 1, 2 and 3) have been accessible on a "self-service" basis on the web (see CERN Bulletin). Participants are required to pass a test at the end of each course. The test is valid for 3 years so courses must be repeated on a regular basis. A system of automatic e-mail reminders already exists for level 4 courses on SIR and will be extended to the other levels shortly. The number of levels you are required to complete depends on your professional category. Activity Personnel concerned Level 1 Level 2 Level 3 Level 4     Basic safety Basic Safety ...

  14. Experience in Strengthening Cooperation Between Radiation Safety Regulators in Europe

    International Nuclear Information System (INIS)

    Magnusson, S.

    2016-01-01

    HERCA is a voluntary association in which the Heads of Radiation Protection Authorities in Europe work together in order to develop common regulatory approaches in terms of practical implementation. HERCA addresses topics generally covered by provisions of the EURATOM Treaty and its work program is based on significant regulatory issues of common interest. HERCA was established in 2007 and brings together 51 radiation protection Authorities from 31 European countries. The current HERCA work program focuses on Medical and Veterinary Applications, Emergency Preparedness and Response, Non-Medical Sources and Practices, Radon and Euratom BSS Transposition as well as Education and Training.

  15. Operation safety of complex industrial systems

    International Nuclear Information System (INIS)

    Zwingelstein, G.

    1999-01-01

    Zero fault or zero risk is an unreachable goal in industrial activities like nuclear activities. However, methods and techniques exist to reduce the risks to the lowest possible and acceptable level. The operation safety consists in the recognition, evaluation, prediction, measurement and mastery of technological and human faults. This paper analyses each of these points successively: 1 - evolution of operation safety; 2 - definitions and basic concepts: failure, missions and functions of a system and of its components, basic concepts and operation safety; 3 - forecasting analysis of operation safety: reliability data, data-banks, precautions for the use of experience feedback data; realization of an operation safety study: management of operation safety, quality assurance, critical review and audit of operation safety studies; 6 - conclusions. (J.S.)

  16. The benefit-cost relationship as the basic criterion for decisions.

    NARCIS (Netherlands)

    Flury, F.C.

    2016-01-01

    It seems appropriate to describe in short the interpretation of the theme adopted in this paper. The basic components of the theme:- 1. road safety measures 2. choice 3. governing principles are defined as follows: Definition 1 A road safety measure is any measure which influences road safety. This

  17. EC-sponsored research activities on innovative passive safety systems

    International Nuclear Information System (INIS)

    Bermejo, J.M.; Goethem, G. van

    2000-01-01

    On April 26th 1994, the European Union (EU) adopted via a Council Decision a EURATOM Multiannual Programme for community activities in the field of Nuclear Fission Safety (NFS) Research for the period 1994 to 1998. An area of work having, as an objective, to 'explore innovative approaches' to improve the safety of future and existing reactors, was introduced in this programme. Most of the projects selected in this area, which have been grouped under a common cluster known as 'INNO', are currently being carried out on a 'cost-shared' basis, i.e. contribution of the European Commission is up to 50% of the total cost. At present, the 'INNO' cluster is composed of 10 projects in which 25 different organisations, representing research centres, universities, regulators, utilities and vendors from 7 EU member states and Switzerland, are involved. These projects are proving to be an efficient means to gain the necessary phenomenological knowledge and to solve the challenging problems, many times of generic nature, posed among others by the characteristically small driving forces of the systems studied and by the lack of really prototypical test facilities. (author)

  18. Radon in workplaces - Czech approach to EU BSS implementation

    International Nuclear Information System (INIS)

    Fojtikova, I.; Timkova, J.; Zenata, I.

    2017-01-01

    The European Council Directive 2013/59/Euratom of December 2013 established inter alia the uniform basic safety standards for the health protection of individuals being subject to occupational exposure. In Article 54, a new obligation is introduced to regulate radon exposure in workplaces. The EU Member States are obliged to set national reference value for radon in workplaces, delineate the areas where the regulation will be applied and determine the concerned types of workplaces. The presented article shows the Czech approach to implementation of this obligation in national legislation and the first design of regulator s control activities to set the obligation in practice. (authors)

  19. EURATOM-CEA association contributions to the 18. IAEA fusion energy conference

    International Nuclear Information System (INIS)

    Ghendrih, Ph.; Peysson, Y.; Hoang, G.T.

    2000-12-01

    The 9 contributions of EURATOM-Cea association to the fusion energy conference hold at Sorrento are gathered in this document with 7 additional papers. The different titles are: 1) Ergodic divertor experiments on the route to steady state operation of Tore-Supra, 2) High power lower hybrid current drive experiments in Tore-Supra tokamak, 3) Electron transport and improved confinement on Tore-Supra, 4) ECRH experiments and developments for long pulse in Tore-Supra, 5) Impurity penetration and contamination in Tore-Supra ergodic divertor experiments, 6) Real time plasma feed-back control: an overview of Tore-Supra achievements, 7) Numerical assessment of the ion turbulent thermal transport scaling laws, 8) Design of next step tokamak: consistent analysis of plasma flux consumption and poloidal, 9) Large superconducting conductors and joints for fusion magnets: from conceptual design to test at full size scale, 10) Burst-prone transport in tokamaks with internal transport barriers, 11) Electrostatic turbulence with finite parallel correlation length and radial electric field generation, 12) Theoretical issues in tokamak confinement: internal-edge transport barriers and runaway avalanche confinement, 13) Core and edge confinement studies with different heating methods in JET, 14) Confinement and transport studies of conventional scenarios in ASDEX upgrade, 15) First test results for the ITER central solenoid model coil, and 16) Progress of the ITER central solenoid model coil program

  20. EURATOM-CEA association contributions to the 18. IAEA fusion energy conference

    Energy Technology Data Exchange (ETDEWEB)

    Ghendrih, Ph.; Peysson, Y.; Hoang, G.T. [and others

    2000-12-01

    The 9 contributions of EURATOM-Cea association to the fusion energy conference hold at Sorrento are gathered in this document with 7 additional papers. The different titles are: 1) Ergodic divertor experiments on the route to steady state operation of Tore-Supra, 2) High power lower hybrid current drive experiments in Tore-Supra tokamak, 3) Electron transport and improved confinement on Tore-Supra, 4) ECRH experiments and developments for long pulse in Tore-Supra, 5) Impurity penetration and contamination in Tore-Supra ergodic divertor experiments, 6) Real time plasma feed-back control: an overview of Tore-Supra achievements, 7) Numerical assessment of the ion turbulent thermal transport scaling laws, 8) Design of next step tokamak: consistent analysis of plasma flux consumption and poloidal, 9) Large superconducting conductors and joints for fusion magnets: from conceptual design to test at full size scale, 10) Burst-prone transport in tokamaks with internal transport barriers, 11) Electrostatic turbulence with finite parallel correlation length and radial electric field generation, 12) Theoretical issues in tokamak confinement: internal-edge transport barriers and runaway avalanche confinement, 13) Core and edge confinement studies with different heating methods in JET, 14) Confinement and transport studies of conventional scenarios in ASDEX upgrade, 15) First test results for the ITER central solenoid model coil, and 16) Progress of the ITER central solenoid model coil program.

  1. International Cooperation of the Republic of Croatia in the Field of Radiological and Nuclear Safety

    International Nuclear Information System (INIS)

    Novosel, N.

    2011-01-01

    International cooperation of the Republic of Croatia in the field of radiological and nuclear safety can be divided in two parts - political part, for which the Ministry of Foreign Affairs and European Integration is responsible, and technical part, for which the State Office for Radiological and Nuclear Safety is responsible. According to the Radiological and Nuclear Safety Act (OG 28/10) the State Office for Radiological and Nuclear Safety: ''coordinates technical cooperation with the International Atomic Energy Agency for all participants from the Republic of Croatia''; ''fulfils the obligations which the Republic of Croatia has assumed through international conventions and bilateral agreements concerning protection against ionising radiation, nuclear safety and the application of protective measures aimed at the non-proliferation of nuclear weapons'' and ''cooperates with international and domestic organisations and associations in the area of protection against ionising radiation and nuclear safety, and appoints its own expert representatives to take part in the work of such organisations and associations or to monitor their work''. In this paper various aspects of the technical cooperation with the International Atomic Energy Agency, as well as international conventions and bilateral agreements in the field of radiological and nuclear safety, are presented. Also, cooperation with other international organizations and associations in the area of radiological and nuclear safety, such as Nuclear Suppliers Group, the Zangger Committee, the Wassenaar Arrangement, Comprehensive Nuclear-Test-Ban Treaty Organization, Euratom and certain civil expert groups of NATO, is described. (author)

  2. Basic design criteria for an impact test frame for safety glazing; Criterios basicos de diseno de banco de ensayos para impactos de vidrios de seguridad

    Energy Technology Data Exchange (ETDEWEB)

    Postigo, S.; Pacios, A.; Huerta, C.

    2011-07-01

    The Spanish Building Code establishes the essential requirements of safety and habitability that buildings must satisfy. The Basic Document of Safety in Use and Accessibility identifies some critical areas where falling through brittle elements may cause a risk to the user. The document also establishes the minimum performance of glasses located in such areas, according to the impact procedure described in UNE-EN 12600:2003. However, this standard does not provide detailed information about the characteristics of the test equipment, but indicates a final calibration as validation test. The general criteria and conditions of this calibration are also incorporated in the UNE-EN 12600. To better achieve a successful manufacture of a pendulum complying with calibration limits, a proposal of the basic design criteria of a test frame for impacts of safety glazing is presented in this paper. Prototypes and results have been evaluated using dynamic design criteria of the impact phenomenon. Three criteria proposed and applied in the design and manufacture of a real test frame have helped to achieve the calibration required by the UNE-EN 12600:2003. The repeatability and reproducibility of the tests presented in this paper also guaranty the robustness of the set-up. (Author)

  3. Concerning 1991 basic plan for atomic energy development and application (subjected to examination)

    International Nuclear Information System (INIS)

    1990-01-01

    The prime minister developed a draft 1991 Basic Plan for Atomic Energy Development and Application and sent it to the Nuclear Safety Commission for examination. The Commission started the examination at its 14th meeting. The report outlines results of the examination. A Basic Plan is developed each year to promote efforts at atomic energy development and application systematically and efficiently. In particular, it identifies specific activities required to realize the basic policies shown in the Long Term Program for Atomic Energy Development and Application. In the present report, activities required for improving the safety measures in general are described first, with special emphasis placed on the improvement in nuclear safety regulations and promotion of nuclear safety research. Activities required for promoting nuclear power generation are then outlined. It also insists that the nuclear fuel cycle should be established by promoting measures for uranium resources, uranium enrichment, spent fuel enrichment, and radioactive waste disposal. Other required efforts include the development of improved power reactors, implementation of major projects, and development of basic technology. (N.K.)

  4. Basic safety principles and practice of WWERs in Hungary

    International Nuclear Information System (INIS)

    Voeroess, L.

    1992-01-01

    The nuclear safety is the actual subject of this presentation and it is considered to be the most important issue, and its permanent improvement is the key responsibility. We share the opinion, that everybody who works in the field of nuclear power generation has to be at such a high level, both in respect of the professional and the moral aspects, which would practically exclude occurrence of accidents causing adverse environmental effects. We are aware that another severe accident occurring in any country of the world would put the whole nuclear industry into a hopeless situation, which - as we have already seen - would seriously influence the Hungarian energy system as well. I try to illustrate in my presentation how can our WWER reactors be evaluated in the highlight of the internationally accepted safety requirements, how safe can they be considered and what can we do in order to ensure at every time the appropriate level of safety. 22 refs, 15 figs

  5. Professional education in the framework of the EURATOM FP7 GENTLE project - 15453

    International Nuclear Information System (INIS)

    Kloosterman, J.L.; Tamboer, R.; Konings, R.J.M.; Manara, D.; Sanchez, V.H.; Ricotti, M.; Thaczyk, A.H.; Hyvaerinen, J.

    2015-01-01

    The EURATOM GENTLE project is a pan-European effort pulling together the leading institutions in the field of nuclear engineering and education to create a sustainable life-long learning programme in the field of nuclear fission technology. Directly targeting the needs of industry, research, regulatory and TSO organizations, three different learning programmes have been developed: 1) support for student research experiences (where graduate and undergraduate students can apply for internships at GENTLE partners), 2) inter-semester courses for undergraduate and graduate students on topics outside regular curricula (organized at partner institutes) and 3) a professional education programme (targeting professionals with at least 5 years of working experience, not necessarily in the nuclear field) that are intending to work in the nuclear industry. The professional education programme has the goal to enhance participants' knowledge in the following fields: 1) Understanding nuclear power; 2) Producing energy with nuclear reactors; 3) Nuclear fuel: from ore to waste; 4) Conditions for societal justification of nuclear energy; and 5) Management systems. These learning programmes will be available for the public in 2015-2016. More information can be found at www.gentleproject.eu/

  6. Basic principles and criteria on radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Dlouhy, Z.; Kropikova, S.

    1980-01-01

    The basic principles are stated of radiation protection of the workers at radioactive waste disposal facilities, which must be observed in the choice of radioactive waste disposal sites. The emergency programme, the operating regulations and the safety report are specified. Workplace safety regulations are cited. (author)

  7. Decree no 2007-1557 from November 2, 2007, relative to basic nuclear facilities and to the nuclear safety control of nuclear materials transport

    International Nuclear Information System (INIS)

    2007-11-01

    This decree concerns the enforcement of articles 5, 17 and 36 of the law 2006-686 from June 13, 2006, relative to the transparency and safety in the nuclear domain. A consultative commission of basic nuclear facilities is established. The decree presents the general dispositions relative to basic nuclear facilities, the dispositions relative to their creation and operation, to their shutdown and dismantling. It precises the dispositions in the domain of public utility services, administrative procedures and sanctions. It stipulates also the particular dispositions relative to other facilities located in the vicinity of nuclear facilities, relative to the use of pressure systems, and relative to the transport of radioactive materials. (J.S.)

  8. Basic safety rule number no.2002-01

    International Nuclear Information System (INIS)

    2002-12-01

    The purpose of this rule is to define acceptable methods for the development of probabilistic safety assessments(P.S.A.) and proven applications of P.S.A. for operating or future pressurized water reactors (PWR type reactors) of the French nuclear power programme, incorporating available French and international experience in this area. The standing group of experts for nuclear reactors has been consulted for the drafting of this rule. (N.C.)

  9. Using the IRRS to Strengthen Regulatory Competence in Ireland

    International Nuclear Information System (INIS)

    Smith, K.

    2016-01-01

    In 2015, Ireland underwent an IRRS (Integrated Regulatory Review Service) review mission. The purpose of the mission was to review Ireland’s radiation and nuclear safety regulatory framework and activities against the relevant IAEA safety standards, to report on the regulatory effectiveness and to exchange information and experience in the areas covered by the IRRS. The review mission was well-timed as there had been recent changes in the regulatory infrastructure with the merger of the Radiological Protection Institute of Ireland (RPII) and the Environmental Protection Agency (EPA) in 2014, as well as the upcoming implementation of the new Euratom Basic Safety Standards (BSS) Directive. The key objectives of the mission were to enhance the national legal, governmental and regulatory framework for nuclear and radiation safety, and national arrangements for emergency preparedness and response. The agreed scope of the review covered all relevant facilities and activities regulated in Ireland and also included medical exposures and public exposure to radon. In advance of the mission, Ireland completed a process of self-assessment and review. This process identified strengths and weaknesses in the national regulatory framework compared with the international standards. In addition to the value of having Ireland’s radiation protection framework peer reviewed by senior international experts, the mission helped to further strengthen links between all the national bodies (government, licensees, regulatory) with a role in the regulation of radiation safety. The findings from the IRRS review team’s objective evaluation of Ireland’s regulatory infrastructure are being used to prioritise actions for strengthening the regulatory framework, to provide input into the transposition of the Euratom BSS, and to support the revision of the national emergency plan for nuclear accidents. It is planned to have addressed the findings of the IRRS mission in advance of a follow up

  10. Radioactive isotopes in occupational health

    International Nuclear Information System (INIS)

    Favino, Angelo.

    1976-01-01

    It is highly desirable today to know and use for industrial medicine purposes all scientific and technological data available in the field of nuclear medicine. The present textbook is an inventory of all possibilities given to occupational doctors in order to pronounce a judgement of ability to work on the occasion of preemployment or routine medical examinations. Such applications require a high degree of competence in radiological protection and also require observation of the basic Safety Standards of Euratom and of the recommendations of the International Committee on Radiological Protection, the same safety principles having been incorporated in all the legislations of the Member States of the Community. In this book a number of chapters are devoted to the description of the basic principles for maximum permissible doses, dosimetric surveillance, medical supervision of workers exposed to ionizing radiations, and medical treatments to be used after a radioactive contamination. In addition a small number of preventive measures are described for all utilisations of radioactive substances for diagnostic or therapeutic purposes

  11. Annual report of the Association EURATOM-Cea 2003 (full report)

    International Nuclear Information System (INIS)

    Magaud, Ph.; Le Vagueres, F.

    2003-01-01

    This annual report summarizes activities performed by the EURATOM-Cea association in 2003 but only those concerning plasma-facing components are detailed. A full scale prototype mock-up of the ITER divertor vertical target has been high heat flux tested. The reference solution CFC mono-blocks made of SEP NB31 tiles and CrCrZr tubes confirmed a good behaviour under fatigue testing. Studies on high flux tested primary first wall panels have showed that cracks can be directly related to a problem of manufacturing or welding. The applicability of the hot isostatic pressing (HIP) technologies for manufacturing primary first wall is being investigated through the fabrication and testing of mock-ups. Samples of nano-structured SiC have been obtained by HIP of green-compacts made up of nano-powders synthesized by laser pyrolysis. Another task has been to assess the risk of failure in cascade of flat tiles under convective heat flux. The expected phenomenon of cascade failure did not occur during the tests. Tests concerning the erosion of graphite tiles have been performed. Chamfering angles for the new tiles of the MKII-HD divertor have been optimized to insure a good shadowing of the edges for the 12 reference plasma configurations. Pre-tests of 3-dimensional calculations of JET divertor tiles have been performed. The detritiation of plasma-facing components through the use of a laser beam has been investigated. Thick tungsten coating by chemical vapor deposition had been studied for copper divertor component. (A.C.)

  12. The concepts of exclusion, exemption and clearance as used in the interagency basic safety standards and related IAEA documents

    International Nuclear Information System (INIS)

    Webbl, G.A.M.

    1997-01-01

    Mechanisms are needed to remove from regulatory control those exposures or radiation sources that do not warrant concern. In this paper three such conceptual mechanisms are examined from their historical development to their current usage in the Interagency Basic Safety Standards. These concepts are exclusion, applied to exposures that are not amenable to control, exemption applied in advance on the basis of low risks to prevent practices or sources from entering the regulatory control system, and clearance, a similar concept but used to remove sources from the regulatory control system. The application of and interrelationships between these concepts, is described. (author)

  13. Court of Justice of the European Communities ruling of September 22, 1988 - Rs 187/87: Radioactive effluents, EURATOM, Court of Justice of the EC - ruling concerning Art. 37 EURATOM Treaty (EAGV), nuclear power plants, member states - duties according to Art. 37 EAGV, radioactive effluents - approval of a plan of discharge according to Art. 37 EAGV, decision of the Commission concerning Art. 37 EAGV

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Headnote: Article 37 of the treaty of March 25, 1957, establishing the European Atomic Energy Community (EURATOM) is to be interpreted as follows: General information regarding a plan for the discharge of radioactive material must be submitted to the Commission of the European Communities prior to the approval of such discharges by the authorities in charge in the respective member country. (orig./HP) [de

  14. IAEA regional basic professional training on radiation protection

    International Nuclear Information System (INIS)

    1998-01-01

    This book contains the manuscripts of lectures of the Basic Professional Training Course on Radiation Protection which was organized and prepared on the basis of the standard syllabus put together in accordance with the recommendations of the International Basic safety standards for radiation protection against ionizing radiation and for safety of radiation sources (BSS). The course was intended to meet the educational and initial training requirements of personnel working in this field. The course is aimed at workers of a graduate level who are called on to take up position in the radiation protection field and who might someday become trainers in their home countries and institutions. Papers relevant to INIS are indexed separately

  15. A PSA study for the SMART basic design

    International Nuclear Information System (INIS)

    Han, Sang Hoon; Kim, H. C.; Yang, S. H.; Lee, D. J.

    2002-03-01

    SMART (System-Integrated Modular Advanced Reactor) is under development that is an advanced integral type small and medium category nuclear power reactor with the rated thermal power of 330 MW. A Probabilistic Safety Analysis (PSA) for the SMART basic design has been performed to evaluate the safety and optimize the design. Currently, the basic design is done and the detailed design is not available for the SMART, we made several assumptions about the system design before performing the PSA. The scope of the PSA was limited to the Level-1 internal full power PSA. The level-2 and 3 PSA, the external PSA, and the low power/shutdown PSA will be performed in the final design stage

  16. Radiation Protection: The Specific Case of Cabin Crew

    International Nuclear Information System (INIS)

    Lecouturier, B.

    1999-01-01

    Exposure to cosmic radiation is one important element of the in-flight working environment. The new requirements of the Council Directive 96/29 Euratom set out basic safety standards in radiation protection which are particularly important to cabin crew. There are two major reasons why they relate specifically to this category of crew member. One is the great diversity of or in some cases the lack of, medical requirements and surveillance. The situation in this area notably differs from that relating to the cockpit crew, who have an aeronautical licence with detailed and rigid medical requirements. The other major reason is the very high percentage of women among the cabin crew (from 65% to 100% depending on the airline concerned), which emphasises the question of protection during pregnancy. The issue of radiation protection of aircrew therefore differs not only according to country and airline, but also according to the crew members concerned. The need is stressed for a harmonised application of the new requirements of the Council Directive 96/29 Euratom and, hopefully in the future, for equivalent protective provisions to be applied worldwide. (author)

  17. Radiation protection

    International Nuclear Information System (INIS)

    Koelzer, W.

    1975-01-01

    Physical and radiological terms, quantities, and units. Basic principles of radiation protection (ICRP, IAEA, EURATOM, FRG). Biological effects of ionizing radiation. Objectives of practical radiation protection. (HP) [de

  18. Radiation safety

    International Nuclear Information System (INIS)

    1996-04-01

    Most of the ionizing radiation that people are exposed to in day-to-day activities comes from natural, rather than manmade, sources. The health effects of radiation - both natural and artificial - are relatively well understood and can be effectively minimized through careful safety measures and practices. The IAEA, together with other international and expert organizations, is helping to promote and institute Basic Safety Standards on an international basis to ensure that radiation sources and radioactive materials are managed for both maximum safety and human benefit

  19. Research and development activities of the Joint Research Centre -JRC and its involvement in the development of future nuclear energy systems

    International Nuclear Information System (INIS)

    Schenkel, R.

    2007-01-01

    Besides the policy driven support which the JRC gives to the European Commission and its Member States, the nuclear activities of the JRC also fulfil the Research and Development obligations as enshrined in the EURATOM Treaty. These have for objectives to develop and assemble knowledge in the field of nuclear energy and concern basic actinide research, nuclear data and nuclear measurements, radiation monitoring and radionuclides in the environment, health and nuclear medicine, management of spent fuel and waste, safety of reactors and fuel cycle and nuclear safeguards and non proliferation. The European Union currently imports 50% of its energy and, going by the present trend, this may increase to 70% within 20 years. One third of the electricity in Europe is currently been produced via nuclear fission and the move to innovative reactor systems holds great promise. In May 2006, the European Atomic Energy Community became a Party to the Framework Agreement for International Collaboration on Research and Development of Generation IV Nuclear Energy Systems (GIF Framework Agreement). The 'Generation IV' initiative concerns concepts for nuclear energy systems that can be operated in a manner that will provide a competitive and reliable supply of energy, while satisfactorily addressing nuclear safety, waste, proliferation and public perception concerns. The JRC with its strong international dimension is not only the implementing agent for EURATOM in the Generation IV international forum, but also participates actively in related Research and Development projects. The Research and Development projects are focused on fuel development, reprocessing and irradiation testing, fuel cladding interaction and corrosion, basic data for fuel and reprocessing, reprocessing and waste treatment. In this paper the Research and Development the nuclear activities of the JRC will be presented especially those related to its participation to GIF

  20. The radioactive materials decree and the radiation apparatus decree in the nuclear energy law

    International Nuclear Information System (INIS)

    Vlaskamp, L.

    1982-01-01

    A short introduction is presented to the new sets of regulations concerning the use of radioactive materials and work with apparatuses producing ionising radiations, which were drawn up to bring the Netherlands' Regulations in agreement with the Euratom basic standards. Appendices contain a survey of the new units to be used, the regulations as proposed, the Euratom category classification, a global Dutch one, a list of concepts and notions, and a table of old and new units in radiation protection programmes. (Auth.)

  1. European Union Council Directive 2009/71/Euratom

    International Nuclear Information System (INIS)

    Butragueno, J. L.

    2009-01-01

    Summary of Directive 2009/71, approved by the European Union on June 25th last. This text establishes a new Community framework for the safety of nuclear facilities and includes an analysis of issues such as the reactivation of nuclear programmes, the extension of the operating lifetime of the plants beyond their theoretical period of service and the need for safety requirements accepted by all the Member States. (Author)

  2. Euratom requirements regarding environmental monitoring and review of Basic Safety Standards; Requisitos de Euratom con respecto a la vigilancia radiologica ambiental y revision de las Normas Basicas de Seguridad

    Energy Technology Data Exchange (ETDEWEB)

    Janssens, A.

    2010-07-01

    This paper provides and overview of the articles related to environmental monitoring that were included in Title III of the Treaty that established the European Atomic Energy Comunity in 1957. In particular Article 35 of the Treaty which requires Member States to control the levels of radioactivity in the atmosphere, water and soil is the cornerstone of comprehensive programs that take place. (Author). 18 refs.

  3. Safety margins in deterministic safety analysis

    International Nuclear Information System (INIS)

    Viktorov, A.

    2011-01-01

    The concept of safety margins has acquired certain prominence in the attempts to demonstrate quantitatively the level of the nuclear power plant safety by means of deterministic analysis, especially when considering impacts from plant ageing and discovery issues. A number of international or industry publications exist that discuss various applications and interpretations of safety margins. The objective of this presentation is to bring together and examine in some detail, from the regulatory point of view, the safety margins that relate to deterministic safety analysis. In this paper, definitions of various safety margins are presented and discussed along with the regulatory expectations for them. Interrelationships of analysis input and output parameters with corresponding limits are explored. It is shown that the overall safety margin is composed of several components each having different origins and potential uses; in particular, margins associated with analysis output parameters are contrasted with margins linked to the analysis input. While these are separate, it is possible to influence output margins through the analysis input, and analysis method. Preserving safety margins is tantamount to maintaining safety. At the same time, efficiency of operation requires optimization of safety margins taking into account various technical and regulatory considerations. For this, basic definitions and rules for safety margins must be first established. (author)

  4. Barbecue Basics: Tips to Prevent Foodborne Illness

    Medline Plus

    Full Text Available ... from becoming ill,” says Marjorie Davidson, Ph.D., education team leader in FDA’s Center for Food Safety and Applied Nutrition. Wash hands. It seems basic, but not everyone does it. Wash hands well ...

  5. Barbecue Basics: Tips to Prevent Foodborne Illness

    Medline Plus

    Full Text Available ... heat makes the basics of food safety especially important. “Fortunately, there are a lot of steps consumers ... the microwave, oven or stove to reduce grilling time, do so immediately before the food goes on ...

  6. Barbecue Basics: Tips to Prevent Foodborne Illness

    Medline Plus

    Full Text Available ... in FDA’s Center for Food Safety and Applied Nutrition. Wash hands. It seems basic, but not everyone ... Health Cosmetics Dietary Supplements Drugs Food Medical Devices Nutrition Radiation-Emitting Products Tobacco Products Vaccines, Blood & Biologics ...

  7. Barbecue Basics: Tips to Prevent Foodborne Illness

    Medline Plus

    Full Text Available ... leader in FDA’s Center for Food Safety and Applied Nutrition. Wash hands. It seems basic, but not ... Federal, State & Local Officials Consumers Health Professionals Science & Research Industry Scroll back to top Popular Content Home ...

  8. Elements of nuclear safety

    CERN Document Server

    Libmann, Jacques

    1996-01-01

    This basically educational book is intended for all involved in nuclear facility safety. It dissects the principles and experiences conducive to the adoption of attitudes compliant with what is now known as "safety culture". This book is accessible to a wide range of readers.

  9. Barbecue Basics: Tips to Prevent Foodborne Illness

    Medline Plus

    Full Text Available ... at temperatures between 40°F and 140°F, so summer heat makes the basics of food safety ... oven or stove to reduce grilling time, do so immediately before the food goes on the hot ...

  10. Patient Safety Culture

    DEFF Research Database (Denmark)

    Kristensen, Solvejg

    of health care professional’s behaviour, habits, norms, values, and basic assumptions related to patient care; it is the way things are done. The patient safety culture guides the motivation, commitment to and know-how of the safety management, and how all members of a work place interact. This thesis......Patient safety is highly prioritised in the Danish health care system, never the less, patients are still exposed to risk and harmed every day. Implementation of a patient safety culture has been suggested an effective mean to protect patients against adverse events. Working strategically...

  11. 3084 ROYAL DECREE No 53/1992 of 24 January 1992 approving the Regulation on Health Protection against Ionizing Radiation

    International Nuclear Information System (INIS)

    1992-01-01

    The purpose of this new Regulation is to unite in a single instrument the existing rules on this subject contained in Decree 2519/1982 as amended by Decree 1753/1987, now repealed, as well as to introduce certain modifications which have proved desirable in the light of the practical application of those rules. The 1987 Decree reflected the basic safety standards of the Euratom Directives. Like that Decree, the new regulation lays down the measures for protection of the public and occupationally exposed persons against the dangers of ionizing radiation. The Regulation is supplemented by Appendices providing for definitions of radiological, biological and medical terms, annual dose limits for the public and for occupationally exposed persons, etc. (NEA)

  12. Statutory Instrument No 276 of 1994. European Communities (Supervision and control of certain shipments of radioactive waste) Regulations, 1994

    International Nuclear Information System (INIS)

    1994-09-01

    These Regulations provide for the implementation of Council Directive 92/3/EURATOM of 3 February, 1992 laying down conditions for the supervision and control of shipments of radioactive waste between Member States and into and out of the Community, whenever quantities and concentrations of such waste exceed certain levels. These conditions supplement the existing Council Directives on basic safety standards for the health protection of workers and the general public against the dangers of ionising radiation. The Radiological Protection Institute of Ireland has been deemed the Competent Authority for the purpose of implementation of these Regulations in this country and application should be made to that body for all authorisations required under the Regulations

  13. Development of Basic Key Technologies for Gen IV SFR Safety Evaluation

    International Nuclear Information System (INIS)

    Jeong, Hae Yong; Kwon, Young Min; Kim, Tae Woon; Park, Soo Yong; Suk, Soo Dong; Lee, Kwi Lim; Lee, Yong Bum; Chang, Won Pyo; Ha, Kwi Seok; Hahn, Sang Hoon

    2010-07-01

    Safety issues and design requirements on control rod worth were identified through the evaluation of safety design characteristics and the preliminary safety evaluation. This results will be taken into account for the conceptual design studies of the demonstration reactor in the next stage. The Level-1 Pasa has been performed and a quantitative Cdf value was produced for the selected design from the several candidates. The inherent safety characteristics of the selected design were evaluated through the DBE and ATWS analyses. A surrogate material for Tru has been selected which is applicable to the study of liquidus/solidus temperature test for the metallic fuel containing Tru. A methodology for the regression analysis with surrogate material has been developed and valuable data on metal fuel liquidus/solidus temperature have been measured. A simple mechanistic model describing a bending of subassemblies has been formulated based on the foreign test data and existing models. Its applicability has been evaluated for the Phenix design. New criteria of the core damage for the SFR PSA were identified. The list of initiating events, system response event tree, and core response event tree, which constitute a PSA methodology for an SFR, have been introduced. By developing the SFR PIRT, phenomenological model features, which have to be satisfied in a safety code, were defined and the PIRT results were applied to the design of the PDRC test facility. Bases for a safety evaluation methodology for the SFR DBEs have been also prepared. A draft version of the topical report on the code for local fault analysis has been completed. Since 2007, the MARS-LMR code has been developed and assessments for model validation with the test data from EBR-II and Phenix reactor have been continued. The code has been applied to the evaluation of passive safety of a conceptual design of Gen IV SFR

  14. Laboratory Safety in the Biology Lab.

    Science.gov (United States)

    Ritch, Donna; Rank, Jane

    2001-01-01

    Reports on a research project to determine if students possess and comprehend basic safety knowledge. Shows a significant increase in the amount of safety knowledge gained when students are exposed to various topics in laboratory safety and are held accountable for learning the information as required in a laboratory safety course. (Author/MM)

  15. Barbecue Basics: Tips to Prevent Foodborne Illness

    Medline Plus

    Full Text Available ... common links HHS U.S. Department of Health and Human Services U.S. Food and Drug Administration A to ... in FDA’s Center for Food Safety and Applied Nutrition. Wash hands. It seems basic, but not everyone ...

  16. Framework of nuclear safety and safety assessment

    International Nuclear Information System (INIS)

    Furuta, Kazuo

    2007-01-01

    Since enormous energy is released by nuclear chain reaction mainly as a form of radiation, a great potential risk accompanies utilization of nuclear energy. Safety has been continuously a critical issue therefore from the very beginning of its development. Though the framework of nuclear safety that has been established at an early developmental stage of nuclear engineering is still valid, more comprehensive approaches are required having experienced several events such as Three Mile Island, Chernobyl, and JCO. This article gives a brief view of the most basic principles how nuclear safety is achieved, which were introduced and sophisticated in nuclear engineering but applicable also to other engineering domains in general. (author)

  17. Basic elements of a regulatory programme for radiation safety

    International Nuclear Information System (INIS)

    Bilbao, A.A.

    2000-01-01

    In this lecture the objectives of IAEA TECDOC 1067: Organization and implementation of a national regulatory infrastructure governing protection against ionizing radiation and the safety of sources (1999) is presented

  18. YK1 Basic professional training course on nuclear safety, Finland

    International Nuclear Information System (INIS)

    Kyrki-Rajamaeki, R.

    2005-01-01

    In the fall of 2002, Finnish organizations re-evaluated the manpower situation and established an organizing committee to develop and organize basic post-graduate professional training of new recruits and staff members; especially for the acute needs of the new NPP project, but also to provide in the long-term a new generation of nuclear experts to replace the present generation which will retire within the next ten years. The organizing committee included representatives of the following organizations: Radiation and Nuclear Safety Authority STUK, nuclear power utilities TVO and Fortum, the Technical Research Centre of Finland VTT, the Lappeenranta and Helsinki Universities of Technology, LUT and HUT, respectively, and the Ministry of Trade and Industry, KTM. The committee decided to promptly organize a national training course on nuclear safety based on a similar course developed by the IAEA: the course structure and syllabus are alike. Although part of the course material is based on the IAEA material, it has been adapted to the Finnish conditions, and a large part of the material is completely new. The Finnish application was developed in order to make visible different standpoints of all organizations. The location of the first six-week course YK1 from September 2003 to February 2004 rotated between different organizations. There were altogether 120 lecturers and rehearsal, demonstration or excursion leaders. Half of them came from the utilities TVO and Fortum, a quarter from the authority STUK, and the rest from VTT, universities and others. The 51 participants of the course came from these same organisations. The lectures were held in Finnish, and the slides in Finnish were distributed to the participants. However, it is useful and even mandatory to know the terms also in English, and therefore the extended abstracts of the lectures were written in English. The YK1 course material was laid on the website of LUT to look for in advance or in more detail with

  19. YK1 Basic professional training course on nuclear safety, Finland

    International Nuclear Information System (INIS)

    Kyrki-Rajamaeki, R.

    2005-01-01

    In the fall of 2002, Finnish organizations re-evaluated the manpower situation and established an organizing committee to develop and organize basic post-graduate professional training of new recruits and staff members; especially for the acute needs of the new NPP project, but also to provide in the long-term a new generation of nuclear experts to replace the present generation which will retire within the next ten years. The organizing committee included representatives of the following organizations: Radiation and Nuclear Safety Authority STUK, nuclear power utilities TVO and Fortum, the Technical Research Centre of Finland VTT, the Lappeenranta and Helsinki Universities of Technology, LUT and HUT, respectively, and the Ministry of Trade and Industry, KTM. The committee decided to promptly organize a national training course on nuclear safety based on a similar course developed by the IAEA: the course structure and syllabus are alike. Although part of the course material is based on the IAEA material, it has been adapted to the Finnish conditions, and a large part of the material is completely new. The Finnish application was developed in order to make visible different standpoints of all organizations. The location of the first six-week course YK1 from September 2003 to February 2004 rotated between different organizations. There were altogether 120 lecturers and rehearsal, demonstration or excursion leaders. Half of them came from the utilities TVO and Fortum, a quarter from the authority STUK, and the rest from VTT, universities and others. The 51 participants of the course came from these same organisations. The lectures were held in Finnish, and the slides in Finnish were distributed to the participants. However, it is useful and even mandatory to know the terms also in English, and therefore the extended abstracts of the lectures were written in English. The YK1 course material was laid on the website of LUT to look for in advance or in more detail with

  20. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  1. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2006-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  2. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    1999-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  3. Occupational radiation protection. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. In 1996, the Agency published Safety Fundamentals on Radiation Protection and the Safety of Radiation Sources (IAEA Safety Series No. 120) and International Basic Safety Standards for Protection against Ionizing, Radiation and for the Safety of Radiation Sources (IAEA Safety Series No. 115), both of which were jointly sponsored by the Food and Agriculture Organization of the United Nations, the IAEA, the International Labour Organisation, the OECD Nuclear Energy Agency, the Pan American Health Organization and the World Health Organization. These publications set out, respectively, the objectives and principles for radiation safety and the requirements to be met to apply the principles and to achieve the objectives. The establishment of safety requirements and guidance on occupational radiation protection is a major component of the support for radiation safety provided by the IAEA to its Member States. The objective of the IAEA's occupational protection programme is to promote an internationally harmonized approach to the optimization of occupational radiation protection, through the development and application of guidelines for restricting radiation exposures and applying current radiation protection techniques in the workplace. Guidance on meeting the requirements of the Basic Safety Standards for occupational protection is provided in three interrelated Safety Guides, one giving general guidance on the development of occupational radiation protection programmes and two giving more detailed guidance on the monitoring and assessment of workers' exposure due to external radiation sources and from intakes of radionuclides, respectively. These Safety

  4. Barbecue Basics: Tips to Prevent Foodborne Illness

    Medline Plus

    Full Text Available ... between 40°F and 140°F, so summer heat makes the basics of food safety especially important. “ ... Devices Nutrition Radiation-Emitting Products Tobacco Products Vaccines, Blood & Biologics Articulos en Espanol Alimentos y Bebidas Cosmé ...

  5. Tire safety : everything rides on it

    Science.gov (United States)

    2008-01-01

    This booklet presents a comprehensive overview of tire safety, including information on the following topics: basic tire maintenance; Uniform Tire Quality Grading System; fundamental characteristics of tires; and tire safety tips.

  6. Assessment Of Co60 Industrial Irradiators According To Basic Design Principles

    Directory of Open Access Journals (Sweden)

    El-Sayed Mohamed El Refaie

    2017-04-01

    Full Text Available Ensuring safe and easy operation providing relative uniform dose in the product and maximizing radiation utilization are the basic design principles for each Co60 industrial irradiator to maintain radiation safety. The study shows an assessment for four industrial irradiators to determine which active results were been maintained by using basic design principles. Different designs elements of the chosen irradiators have been illustrated and studied. The study shows that IRASM and ROBO industrial irradiators satisfy all basic design principles. IAEA-NR3772 irradiator maintains only two of the three basic design principles due to rotating door. Brevion irradiator satisfies only the principle of relative uniform radiation dose in product. Without affecting radiation safety this study proposes a new design of the irradiator to maximize energy utilization by adding a new track for low density products and also a static irradiation for cultural heritage beside the main track of high density products.

  7. Fire safety of wood construction

    Science.gov (United States)

    Robert H. White; Mark A. Dietenberger

    2010-01-01

    Fire safety is an important concern in all types of construction. The high level of national concern for fire safety is reflected in limitations and design requirements in building codes. These code requirements and related fire performance data are discussed in the context of fire safety design and evaluation in the initial section of this chapter. Because basic data...

  8. Electric and mechanical basic parameters to elaborate a process for a technical verification of safety related design modifications

    International Nuclear Information System (INIS)

    Lamuno Fernandez, Mercedes; La Roca Mallofre, GISEL; Bano Azcon, Alberto

    2010-01-01

    This paper presents a systematic process to check a design in order to achieve all the requirements that regulations demand. Nuclear engineers must verify that a design is done according to the safety requirements, and this paper presents how we have elaborated a process to improve the technical project verification. For a faster, better and easier verification process, here we summarize how to select the electric and mechanical basic parameters, which ensure the correct project verification of safety related design modifications. This process considers different aspects, which guarantee that the design preserves the availability, reliability and functional capability of the Structures, Systems and Components needed to operate the Nuclear Power Station with security. Electric and mechanical reference parameters are identified and discussed as well as others related ones, which are critical to safety. The implementation procedure to develop tasks performed in any company that has a quality plan is a requirement. On the engineering business, it is important not to use the personal criteria to do a technical analysis of a project; although, many times it is the checker's criteria and knowledge responsibility to ensure the correct development of a design modification. Then, the checker capabilities are the basis of the modification verification. This kind of procedure's development is not easy, because in an engineering project with important technical contents, there are multiple scenarios, but lots of them have a common basis. If we can identify the technical common basis of these projects, we will make good project verification but there are many difficulties we can encounter along this process. (authors)

  9. 31 March 1992 - Royal Order amending Section 133(1) of the General Regulation on safety at Work concerning protection of workers against the hazards of ionizing radiation

    International Nuclear Information System (INIS)

    1992-01-01

    A Royal Order of 31 March 1992 amends certain provisions of the Regulations on safety at work with respect to protection of workers against the hazards of ionizing radiation, amended in 1990. The purpose of the amendment is to avoid that certain international and national civil servants be hindered in their control duties. The following inspectors are concerned: the International Atomic Energy Agency inspectors; the persons designated as responsible for surveillance under the Euratom Treaty and the Act of 1955 on State security in the nuclear field; the inspectors designated by the Act of 1972 on inspections at work. (NEA)

  10. IAEA Safety Standards

    International Nuclear Information System (INIS)

    2016-09-01

    The IAEA Safety Standards Series comprises publications of a regulatory nature covering nuclear safety, radiation protection, radioactive waste management, the transport of radioactive material, the safety of nuclear fuel cycle facilities and management systems. These publications are issued under the terms of Article III of the IAEA’s Statute, which authorizes the IAEA to establish “standards of safety for protection of health and minimization of danger to life and property”. Safety standards are categorized into: • Safety Fundamentals, stating the basic objective, concepts and principles of safety; • Safety Requirements, establishing the requirements that must be fulfilled to ensure safety; and • Safety Guides, recommending measures for complying with these requirements for safety. For numbering purposes, the IAEA Safety Standards Series is subdivided into General Safety Requirements and General Safety Guides (GSR and GSG), which are applicable to all types of facilities and activities, and Specific Safety Requirements and Specific Safety Guides (SSR and SSG), which are for application in particular thematic areas. This booklet lists all current IAEA Safety Standards, including those forthcoming

  11. Safety performance indicators used by the Russian Safety Regulatory Authority in its practical activities on nuclear power plant safety regulation

    International Nuclear Information System (INIS)

    Khazanov, A.L.

    2005-01-01

    The Sixth Department of the Nuclear, Industrial and Environmental Regulatory Authority of Russia, Scientific and Engineering Centre for Nuclear and Radiation Safety process, analyse and use the information on nuclear power plants (NPPs) operational experience or NPPs safety improvement. Safety performance indicators (SPIs), derived from processing of information on operational violations and analysis of annual NPP Safety Reports, are used as tools to determination of trends towards changing of characteristics of operational safety, to assess the effectiveness of corrective measures, to monitor and evaluate the current operational safety level of NPPs, to regulate NPP safety. This report includes a list of the basic SPIs, those used by the Russian safety regulatory authority in regulatory activity. Some of them are absent in list of IAEA-TECDOC-1141 ('Operational safety performance indicators for nuclear power plants'). (author)

  12. Safety strategy

    International Nuclear Information System (INIS)

    Schultheiss, G.F.

    1980-01-01

    The basis for safety strategy in nuclear industry and especially nuclear power plants is the prevention of radioactivity release inside or outside of the technical installation. Therefore either technical or administrative measures are combined to a general strategy concept. This introduction will explain in more detail the following topics: - basic principles of safety - lines of assurance (LOA) - defense in depth - deterministic and probabilistic methods. This presentation is seen as an introduction to the more detailed discussion following in this course, nevertheless some selected examples will be used to illustrate the aspects of safety strategy development although they might be repeated later on. (orig.)

  13. Countermeasures that work : a highway safety countermeasure guide for state highway safety offices : eighth edition : 2015

    Science.gov (United States)

    2015-11-01

    The guide is a basic reference to assist State Highway Safety Offices in selecting effective, evidence- based : countermeasures for traffic safety problem areas. These areas include: : - Alcohol-and Drug-Impaired Driving; : - Seat Belts and Child Res...

  14. The European Federation of Organisations for Medical Physics. Policy Statement No. 7.1: The roles, responsibilities and status of the medical physicist including the criteria for the staffing levels in a Medical Physics Department approved by EFOMP Council on 5th February 2016.

    Science.gov (United States)

    Evans, Stephen; Christofides, Stelios; Brambilla, Marco

    2016-04-01

    This EFOMP Policy Statement is an amalgamation and an update of the EFOMP Policy Statements No. 2, 4 and 7. It presents guidelines for the roles, responsibilities and status of the medical physicist together with recommended minimum staffing levels. These recommendations take into account the ever-increasing demands for competence, patient safety, specialisation and cost effectiveness of modern healthcare services, the requirements of the European Union Council Directive 2013/59/Euratom laying down the basic safety standards for protection against the dangers arising from exposure to ionising radiation, the European Commission's Radiation Protection Report No. 174: "Guidelines on medical physics expert", as well as the relevant publications of the International Atomic Energy Agency. The provided recommendations on minimum staffing levels are in very good agreement with those provided by both the European Commission and the International Atomic Energy Agency. Copyright © 2016. Published by Elsevier Ltd.

  15. Safety on the Job. Some Guidelines for Working Safely. Instructor's Edition.

    Science.gov (United States)

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This teacher's guide was developed to help teachers (especially in Oklahoma) promote safe practices on the job. As a supplement to existing programs in the requirements for job safety, this book can also promote same basic safety attitudes and help support basic safety concepts, with an emphasis on accident prevention. The guide contains eight…

  16. General data relating to the arrangements for disposal of radioactive waste required under Article 37 of the Euratom Treaty. Decommissioning of the nuclear facilities at Risoe National Laboratory, Denmark

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    This document submitted by the Danish Government has been produced to satisfy the requirements of Article 37 of the Euratom Treaty as recommended by the Commission of the European Communities (Annex 2 of Commission Recommendation 1999/829/Euratom of 6 December 1999). The above Recommendations include the dismantling of nuclear reactors and reprocessing plants in the list of operations to which Article 37 applies. Under paragraph 5.1 of the Recommendation, a submission of General Data in respect of such dismantling operations is only necessary when the proposed authorised limits and other requirements are less restrictive than those in force when the plant was operational. However, in the case of Risoe National Laboratory, no previous submission of general data has been made under Article 37 and no Opinion given by the Commission on a plan for the disposal of radioactive waste. For this reason, general data are submitted in respect of the proposed dismantling operations, even though no change to a less restrictive authorisation is envisaged at this time. This submission is for the decommissioning of the nuclear facilities at Risoe National Laboratory, which are owned by the Danish Government and managed by a Board of Governors for the Ministry of Science, Technology and Innovation. (BA)

  17. Management of safety and safety culture at the NPPs of Ukraine

    International Nuclear Information System (INIS)

    Koltakov, Vladimir

    2002-01-01

    The report contains general aspects of safety and safety culture. The brief description of operational characteristics and basic indexes of atomic power plants at the Ukraine are represented. The information referring to structure of NPPs of Operation organization license-holder, safety responsibility of both Regulatory and Utility Bodies also is given. The main part of the report include seven sections: 1. Practical application of safety management models; 2. erspective on the relationship between safety management and safety culture; 3. The role of leadership in achieving high standards of safety; 4. Current and future challengers that impact on safety culture and safety management (e.g. the impact of competition, changing, economic and political circumstances, workforce demographics, etc.); 5. Key lessons learned from major events; 6. Practical applications of safety culture concepts (e.g. learning organizations, training staff communications, etc.); 7. dvance in human performance. Some of the main pending safety and safety culture problems that are necessary to achieve in the near future are mentioned

  18. System safety engineering analysis handbook

    Science.gov (United States)

    Ijams, T. E.

    1972-01-01

    The basic requirements and guidelines for the preparation of System Safety Engineering Analysis are presented. The philosophy of System Safety and the various analytic methods available to the engineering profession are discussed. A text-book description of each of the methods is included.

  19. The "School Safety & Security Questionnaire": Middle Grades Students' Perceptions of Safety at School

    Science.gov (United States)

    Miller, Janice Williams; Nickell, Linda K.

    2008-01-01

    This study presents the development and basic psychometric characteristics of the "School Safety and Security Questionnaire" (SSSQ). This new measure was constructed to assess middle grade students' perceptions of safety and security during the school year. The content validity of the theoretically-based instrument was assessed and the measure was…

  20. Balancing safety and economics

    International Nuclear Information System (INIS)

    Kroeger, W.; Fischer, P.U.

    2000-01-01

    The safety requirements of NPPs have always aimed at limiting societal risks. This risk approach initially resulted in deterministic design criteria and concepts. In the 1980s the paradigm 'safety at all costs' arose and often led to questionable backfitting measures. Conflicts between new requirements, classical design concepts and operational demands were often ignored. The design requirements for advanced reactors ensure enhanced protection against severe accidents. Still, it is questionable whether the 'no-damage-outside-the-fence' criteria can be achieved deterministically and at competitive costs. Market deregulation and utility privatisation call for a balance between safety and costs, without jeopardising basic safety concepts. An ideal approach must be risk-based and imply modern PSAs and new methods for cost-benefit and ALARA analyses, embed nuclear risks in a wider risk spectrum, but also make benefits transparent within the context of a broader life experience. Governments should define basic requirements, minimum standards and consistent comparison criteria, and strengthen operator responsibility. Internationally sufficient and binding safety requirements must be established and nuclear technology transfer handled in a responsible way, while existing plants, with their continuous backfitting investments, should receive particular attention. (orig.)

  1. Barbecue Basics: Tips to Prevent Foodborne Illness

    Medline Plus

    Full Text Available ... Safety and Applied Nutrition. Wash hands. It seems basic, but not everyone does it. Wash hands well and often, with soap and water for at least 20 seconds, especially after using the bathroom and before cooking or eating. If you’re in an outdoor ...

  2. Patient participation in patient safety still missing: Patient safety experts' views.

    Science.gov (United States)

    Sahlström, Merja; Partanen, Pirjo; Rathert, Cheryl; Turunen, Hannele

    2016-10-01

    The aim of this study was to elicit patient safety experts' views of patient participation in promoting patient safety. Data were collected between September and December in 2014 via an electronic semi-structured questionnaire and interviews with Finnish patient safety experts (n = 21), then analysed using inductive content analysis. Patient safety experts regarded patients as having a crucial role in promoting patient safety. They generally deemed the level of patient safety as 'acceptable' in their organizations, but reported that patient participation in their own safety varied, and did not always meet national standards. Management of patient safety incidents differed between organizations. Experts also suggested that patient safety training should be increased in both basic and continuing education programmes for healthcare professionals. Patient participation in patient safety is still lacking in clinical practice and systematic actions are needed to create a safety culture in which patients are seen as equal partners in the promotion of high-quality and safe care. © 2016 John Wiley & Sons Australia, Ltd.

  3. Transposition of the EU basic safety standards. The Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Petrova, K.; Davidkova, J.; Kochanek, S. [State Office for Nuclear Safety (SUJB), Prague (Czech Republic)

    2013-07-01

    The proposal for a new Council Directive laying down basic safety standards for protection against the danger arising from exposure to ionizing radiation replacing a Council Directive 29/96 and recasting four other Directives - medical, outside workers, HASS (high activity sealed sources) and public information in emergency has been developed and it is prepared for adoption procedure. The Member States (MS) are requested to implement this Directive within 4 years after adoption of the final text. The Czech Republic has participated in the development of this new Directive actively from the beginning of the process. There could be expected an impact to the Czech legislation in several areas. Main changes will be presented in the Atomic Law and in the Radiation Protection Regulation which are currently under preparation and should substitute actual national legislation in the field. Also ICRP 103 is already as far as possible reflected by the new Czech legislation. A proposal of the Czech Atomic Law already includes a new ICRP terminology - e.g. planned, emergency, existing exposure situation, reference levels instead of intervention levels and it also reflects extension of optimization principle and more specifically a graded approach by introducing a registration as a specific level of authorization supplemented with a unique and simplified procedure. Regarding the regulatory infrastructure there is no identified urgent need for changes as far as the current Czech system already complies with the requirements of the Directive proposal (the EU BSS). In fact, there is a new structure of the Czech regulatory authority proposed, introducing a Council with a president as a head instead of the current structure headed solely by a president. The regulation of exposure from natural sources is already very well handled in the current Czech legislation - there exists a national radon program since 1992 and the legislation is also dealing with regulation of NORM workplaces

  4. Sources and basic threats of biological safety

    International Nuclear Information System (INIS)

    Nazarova, O.D.

    2010-01-01

    Full text: Biological safety of any state is connected with development of its public protection against biological weapons and opportunity to prevent bio terrorist attacks. That's why in modern social-economic and geo-political conditions, the problem of biological safety strengthening become significant, which is connected with migration process globalization, development of bio-technology and dramatically increased risk of pathogenic germ infections proliferation, which can be used as biological weapon. Despite of undertaken efforts by world community on full prohibition of biological weapon, its proliferation in the world still takes place. Biology revolution during second and third millennium lead to development not only biotechnology but new achievements in medicine, agriculture and other fields of economy, but also created scientific and research preconditions for development of advanced biological means of mass destruction, that make it more attractive for achieving superiority and assigned targets: low developments costs, opportunity to create it by one small laboratory with two-three high qualified specialists bio technologists; tremendous impact effect: one substance gram can contain from one till one hundreds quintillions (10"1"8 - 10"2"0) active pathogen molecules and in case if they belong to amplificated RNA and DNA, each molecule getting to organism, will multiply and contaminate environment (the last one is its principal difference from chemical weapon); bypass of organism immunological barriers and specific vaccinations; unusual clinic finding, hard diagnosis; weakness of traditional medications and treatment methods; lack of material destruction; opportunity of tight-lipped developments; opportunity of tight-lipped application; opportunity of delayed effect; opportunity of selective influence on specific population (by use of genetic, climatic and cultural specifications of race, nations and nationalities). Above mentioned specifications create

  5. Light water reactor safety

    CERN Document Server

    Pershagen, B

    2013-01-01

    This book describes the principles and practices of reactor safety as applied to the design, regulation and operation of light water reactors, combining a historical approach with an up-to-date account of the safety, technology and operating experience of both pressurized water reactors and boiling water reactors. The introductory chapters set out the basic facts upon which the safety of light water reactors depend. The central section is devoted to the methods and results of safety analysis. The accidents at Three Mile Island and Chernobyl are reviewed and their implications for light wate

  6. Lift truck safety review

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, L.C.

    1997-03-01

    This report presents safety information about powered industrial trucks. The basic lift truck, the counterbalanced sit down rider truck, is the primary focus of the report. Lift truck engineering is briefly described, then a hazard analysis is performed on the lift truck. Case histories and accident statistics are also given. Rules and regulations about lift trucks, such as the US Occupational Safety an Health Administration laws and the Underwriter`s Laboratories standards, are discussed. Safety issues with lift trucks are reviewed, and lift truck safety and reliability are discussed. Some quantitative reliability values are given.

  7. Lift truck safety review

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1997-03-01

    This report presents safety information about powered industrial trucks. The basic lift truck, the counterbalanced sit down rider truck, is the primary focus of the report. Lift truck engineering is briefly described, then a hazard analysis is performed on the lift truck. Case histories and accident statistics are also given. Rules and regulations about lift trucks, such as the US Occupational Safety an Health Administration laws and the Underwriter's Laboratories standards, are discussed. Safety issues with lift trucks are reviewed, and lift truck safety and reliability are discussed. Some quantitative reliability values are given

  8. The development of a methodology to assess population doses from multiple sources and exposure pathways of radioactivity

    International Nuclear Information System (INIS)

    Hancox, J.; Stansby, S.; Thorne, M.

    2002-01-01

    The Environment Agency (EA) has new duties in accordance with the Basic Safety Standards Directive under which it is required to ensure that doses to individuals received from exposure to anthropogenic sources of radioactivity are within defined limits. In order to assess compliance with these requirements, the EA needs to assess the doses to members of the most highly exposed population groups ('critical' groups) from all relevant potential sources of anthropogenic radioactivity and all relevant potential exposure pathways to such radioactivity. The EA has identified a need to develop a methodology for the retrospective assessment of effective doses from multiple sources of radioactive materials and exposure pathways associated with those sources. Under contract to the EA, AEA Technology has undertaken the development of a suitable methodology as part of EA R and D Project P3-070. The methodology developed under this research project has been designed to support the EA in meeting its obligations under the Euratom Basic Safety Standards Directive and is consistent with UK and international approaches to radiation dosimetry and radiological protection. The development and trial application of the methodology is described in this report

  9. Managing electrical safety

    CERN Document Server

    Wiggins, James H, Jr

    2001-01-01

    Managing Electrical Safety provides an overview of electric basics, hazards, and established standards that enables you to understand the hazards you are likely to encounter in your workplace. Focusing on typical industrial environments-which utilize voltages much higher than household or office circuits-the author identifies the eight key components of an electrical safety program and examines each using a model safety management process. You'll learn how to identify electrical hazards, how to prescribe necessary electrical Personal Protective Equipment, how to ensure that equipment is de-ene

  10. Nuclear safety culture and integrated risk management

    International Nuclear Information System (INIS)

    Joksimovich, V.; Orvis, D.D.

    1993-01-01

    A primary focus of nuclear safety is the prevention of large releases of radioactivity in the case of low-probability severe accidents. An analysis of the anatomy of nuclear (Chernobyl, Three Mile Island Unit 2) and nonnuclear (Challenger, Bhopal, Piper Alpha, etc.) severe accidents yields four broad categories of root causes: human (operating crew response), machine (design with its basic flaws), media (natural phenomena, operational considerations, political environment, commercial pressures, etc.)-providing triggering events, and management (basic organizational safety culture flaws). A strong management can minimize the contributions of humans, machines, and media to the risk arising from the operation of hazardous facilities. One way that management can have a powerful positive influence is through the establishment of a proper safety culture. The term safety culture is used as defined by the International Atomic Energy Agency's International Safety Advisory Group

  11. The radiation safety standards programme

    International Nuclear Information System (INIS)

    Bilbao, A.A.

    2000-01-01

    In this lecture the development of radiation safety standards by the IAEA which is a statutory function of the IAEA is presented. The latest editions of the basic safety standards published by the IAEA in cooperation with ICRP, FAO, ILO, NEA/OECD, PAHO and WHO are reviewed

  12. Experiences in assessing safety culture

    International Nuclear Information System (INIS)

    Spitalnik, J.

    2002-01-01

    Based on several Safety Culture self-assessment applications in nuclear organisations, the paper stresses relevant aspects to be considered when programming an assessment of this type. Reasons for assessing Safety Culture, basic principles to take into account, necessary resources, the importance of proper statistical analyses, the feed-back of results, and the setting up of action plans to enhance Safety Culture are discussed. (author)

  13. Industrial safety, origins and current situation

    International Nuclear Information System (INIS)

    Gil Sarralbo, J. F.

    2011-01-01

    Basic Introduction to Industrial Safety, purpose and expected outcome. Concepts and fundamental principles that support it. Brief overview of its evolution over the course of history. The current legal basis in Spain for Industrial Safety. (Author) 4 refs.

  14. Annual progress report 1993. Work in controlled thermonuclear fusion research performed in the fusion research unit under the contract of association between Euratom and Risoe National Laboratory

    International Nuclear Information System (INIS)

    1994-09-01

    The programme of the Research Unit of the Fusion Association Euratom-Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within (a) studies of nonlinear dynamical processes in magnetized plasmas, (b) development of pellet injectors for fusion experiments, and (c) development of diagnostics for fusion plasmas. The activities in technology cover radiation damage of fusion reactor materials. A summary of the activities in 1993 is presented. (au) (4 tabs., 21 ills., 64 refs.)

  15. Basic design report of SMART

    International Nuclear Information System (INIS)

    Chang, M. H.; Yeo, J. W.; Zee, Q. S.; Lee, D. J.; Park, K. B.; Koo, I. S.; Kim, H. C.; Kim, J. I.

    2002-03-01

    KAERI has been developing a 330MWt integral reactor, SMART and its application system since 1997. SMART is being developed for use as an energy source for small-scale power generation and seawater desalination. The SMART system can produce portable water of 40.000m 3 /day using the MED-TVC desalination process and about 90MW of electricity. Although the design of SMART is based on the current pressurized water reactor technology, new technologies such as inherent safety and passive safety have been applied, and system simplification and modularization, innovations in manufacturing and installation technologies have been implemented culminating in a design that has enhanced safety and economy, and is environment-friendly. The objective of this design report is to provide the overall information on the basic design of SMART NSSS, and the applied technologies. The information covers mainly NSSS design with some information on the desalination system. For the secondary system, only the information directly related to the coupling with NSSS are covered

  16. Graphical symbols -- Safety colours and safety signs -- Part 1: Design principles for safety signs in workplaces and public areas

    CERN Document Server

    International Organization for Standardization. Geneva

    2002-01-01

    This International Standard establishes the safety identification colours and design principles for safety signs to be used in workplaces and in public areas for the purpose of accident prevention, fire protection, health hazard information and emergency evacuation. It also establishes the basic principles to be applied when developing standards containing safety signs. This part of ISO 3864 is applicable to workplaces and all locations and all sectors where safety-related questions may be posed. However, it is not applicable to the signalling used for guiding rail, road, river, maritime and air traffic and, generally speaking, to those sectors subject to a regulation which may differ.

  17. S.I. No 125 of 2000 Radiological Protection Act 1991 (ionising radiation) Order 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This statutory instrument provides for the implementation of Council Directive 96/29/Euratom of 13 May 1996 laying down basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionising radiation. It also incorporates the provisions of Council Directive 90/641/Euratom of 4 December 1990 on the operational protection of outside workers exposed to the risk of ionising radiation during their activities in controlled areas. It replaces the provisions of the European Communities (Ionising Radiation) Regulations, 1991 (S.I. No. 43 of 1991), the Radiological Protection Act, 1991 (General Control of Radioactive Substances, Nuclear Devices and Irradiating Apparatus) Order, 1993 (S.I. No. 151 of 1993) and the European Communities (Protection of Outside Workers from Ionising Radiation) Regulations, 1994 (S.I. No. 144 of 1994). The main changes introduced in this Order are: the inclusion of work activities involving exposure to natural sources of radiation, stricter application of existing radiation protection principles through the introduction of lower dose limits, the use of dose constraints in keeping doses as low as reasonably achievable (i.e. optimisation process) and extended application of justification principles, the introduction of radiation protection principles for intervention in cases of radiological emergencies or lasting exposures. (author)

  18. Education, training and continuing professional development for the medical physicist - The EFOMP view in relation to EC Council directives

    International Nuclear Information System (INIS)

    Lamm, I.L.

    2001-01-01

    The European Federation of Organisations for Medical Physics, EFOMP, is an umbrella organisation for National Medical Physics Organisations. One of the main objectives of EFOMP is to harmonise and promote the best practice of Medical Physics within Europe. To accomplish this goal, EFOMP has presented various recommendations and guidelines in a number of Policy Statements, unanimously adopted by EFOMP Member Organisations. Policy Statement No 9, 'Radiation Protection of the Patient in Europe: The Training of the Medical Physics Expert in Radiation Physics or Radiation Technology', is the EFOMP response to the Medical Exposure Directive, 97/43/Euratom. Here EFOMP presents its recommendations on the role and the competence requirements of the Medical Physics Expert, defined in this Directive, together with recommendations on education, training and Continuing Professional Development. The previous Directive 96/29/Euratom, the Basic Safety Standards Directive, defines a 'Qualified Expert' in the radiation protection of workers and the general public. EFOMP has an ongoing discussion on the interpretation of the competence requirements of the Qualified Expert in medical practice. The EFOMP approach to achieve harmonisation in the qualification of the Medical Physicist is to encourage the establishment of education and training schemes according to EFOMP recommendations. (author)

  19. Natural radioactivity in building material in the European Union: robustness of the activity concentration index I and comparison with a room model.

    Science.gov (United States)

    Nuccetelli, C; Risica, S; D'Alessandro, M; Trevisi, R

    2012-09-01

    Using a wide database collected in the last 10 years, the authors have calculated the activity concentration index I for many building materials in the European Union. Suggested by a European technical guidance document, the index I has recently been adopted as a screening tool in the proposal for the new Euratom basic safety standards directive. The paper analyses the possible implications of the choice of different parameters for the computation of index I, i.e. background to be subtracted, dose criteria, etc. With the collected data an independent assessment of gamma doses was also made with an ISS room model, choosing reasonable hypotheses on the use of materials. The results of the two approaches, i.e. index I and a room model, were compared.

  20. Calculation Sheet for the Basic Design of the ATLAS Fluid System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Sik; Moon, S. K.; Yun, B. J.; Kwon, T. S.; Choi, K. Y.; Cho, S.; Park, C. K.; Lee, S. J.; Kim, Y. S.; Song, C. H.; Baek, W. P.; Hong, S. D

    2007-03-15

    The basic design of an integral effect test loop for pressurized water reactors (PWRs), the ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation), has been carried out by Thermal-Hydraulics Safety Research Team in Korea Atomic Energy Research Institute (KAERI). The ATLAS facility has been designed to have the length scale of 1/2 and area scale of 1/144 compared with the reference plant, APR1400, and is scaled for full pressure and temperature conditions. This report includes calculation sheets for the basic design of ATLAS fluid systems, which are consisted of a reactor pressure vessel with core simulator, the primary loop piping, a pressurizer, reactor coolant pumps, steam generators, the secondary system, the safety system, the auxiliary system, and the heat loss compensation system. The present calculation sheets will be used to help understanding the basic design of the ATLAS fluid system and its based scaling methodology.

  1. Calculation Sheet for the Basic Design of the ATLAS Fluid System

    International Nuclear Information System (INIS)

    Park, Hyun Sik; Moon, S. K.; Yun, B. J.; Kwon, T. S.; Choi, K. Y.; Cho, S.; Park, C. K.; Lee, S. J.; Kim, Y. S.; Song, C. H.; Baek, W. P.; Hong, S. D.

    2007-03-01

    The basic design of an integral effect test loop for pressurized water reactors (PWRs), the ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation), has been carried out by Thermal-Hydraulics Safety Research Team in Korea Atomic Energy Research Institute (KAERI). The ATLAS facility has been designed to have the length scale of 1/2 and area scale of 1/144 compared with the reference plant, APR1400, and is scaled for full pressure and temperature conditions. This report includes calculation sheets for the basic design of ATLAS fluid systems, which are consisted of a reactor pressure vessel with core simulator, the primary loop piping, a pressurizer, reactor coolant pumps, steam generators, the secondary system, the safety system, the auxiliary system, and the heat loss compensation system. The present calculation sheets will be used to help understanding the basic design of the ATLAS fluid system and its based scaling methodology

  2. UK experience with ICRP26 and ICRP30

    International Nuclear Information System (INIS)

    Dray, C.H.

    1991-01-01

    ICRP26 was adopted in January 1977 which took into account information emerging since the adoption of ICRP9 in September 1969 and specified the basic criteria for dose limitation which still apply today. ICRP30 defines the limits for intakes for radionuclides for workers, and enables the health physicist and regulatory bodies to make appropriate limits for annual intake, air contamination etc, to comply requirements of dose-equivalent commitment and committed dose equivalent. The publication of ICRP26 is reflected in European Communities directive 80/836/Euratom. Council Directive of 15th July 1980 amending the Directive laying down the basic safety standards for the health protection of general public and workers against the dangers of ionizing radiations. This document being required the member states to bring the requirements of the directive within their legislation. In the United Kingdom this was accomplished by the publication of the Ionizing Radiations Regulations 1985

  3. The basics in transportation of low-level radioactive waste

    International Nuclear Information System (INIS)

    Allred, W.E.

    1998-06-01

    This bulletin gives a basic understanding about issues and safety standards that are built into the transportation system for radioactive material and waste in the US. An excellent safety record has been established for the transport of commercial low-level radioactive waste, or for that matter, all radioactive materials. This excellent safety record is primarily because of people adhering to strict regulations governing the transportation of radioactive materials. This bulletin discusses the regulatory framework as well as the regulations that set the standards for packaging, hazard communications (communicating the potential hazard to workers and the public), training, inspections, routing, and emergency response. The excellent safety record is discussed in the last section of the bulletin

  4. Nuclear safety legislation and supervision in China

    International Nuclear Information System (INIS)

    Zhang Shiguan

    1991-02-01

    The cause for the urgent need of nuclear safety legislation and supervision in China is firstly described, and then a brief introduction to the basic principle and guideline of nuclear safety is presented. Finally the elaboration on the establishment of nuclear safety regulatory system, the enactment of a series of regulations and safety guides, and the implementation of licencing, nuclear safety supervision and research for ensuring the safety of nuclear energy, since the founding of the National Nuclear Safety Administration, are introduced

  5. Safety of Basic nuclear facilities (INB) other than electronuclear reactors. Lessons learned from declared significant events in 2011 and 2012

    International Nuclear Information System (INIS)

    2013-01-01

    The first part of this report presents the different types of basic nuclear facilities other than electronuclear reactors. These installations can be industrial installations dedicated or not to the nuclear fuel cycle, research and support installations, be definitively stopped or being dismantled, or radioactive waste storage installations. After a comment of the main trends noticed in 2011 and 2012, the report proposes a transverse analysis of events which occurred in these installations. These events are related to various risks: dissemination of radioactive materials, exposure to ionizing radiations, criticality, fire and explosion, handling operations, loss of electric supplies or fluids, external aggression. Other events are those significant for the environment with a radiological component, or related to periodic controls and tests. The causes of these events are analysed. Specific events are presented which occurred on different sites (in the MELOX plant, in Areva sites in La Hague, Pierrelatte, in CEA sites in Cadarache and Saclay, in a fuel factory in Romans). Other topics are finally addressed: safety measures after the Fukushima accident, safety and radiation protection management systems of Areva and CEA, dismantling of nuclear installations

  6. Dry vault for spent fuel depository, basic outsets, operating results and safety of the 'CASCAD' plant

    International Nuclear Information System (INIS)

    Bardelle, Ph.; Mercier, J.P.

    1995-01-01

    CEA built a facility in which spent fuel can be stored for a few decades (50 years), until favourable conditions prevail for its disposal. The main features of this project consist of a dry depository, which presents a low cost of operation, against a wet one which is more expensive due to the circulation and the continuous controls of the water. Fuel elements are cooled by a fully passive air circulation. This process allows a good efficiency without mechanical equipment and works all the better as the amount of heat to exhaust is great, in the limits of the design. This facility, known as 'CASCAD' (shortening for CASemate (=vault) CADarache) started up in 1990, and received its first canister of fuel on May 29th 1990. The basic design data of the facility, are reviewed the main techniques used for its construction are outlined the safety concepts are drawn and the first results determined by a looking-back over 4 years of working are presented. (K.A.). 1 tab

  7. The second Euratom sponsored 9000C HTR fuel irradiation experiment in the HFR Petten Project E 96.02: Pt.2. Post-irradiation examination

    International Nuclear Information System (INIS)

    Roettger, R.; Bueger, J. de; Schoots, T.

    1977-01-01

    A large variety of HTR fuel specimens, loose coated particles, coupons and compacts provided by Belgonucleaire, the Dragon Project and the KFA Juelich have been irradiated in the HFR at Petten at about 900 0 C up to a maximum fast neutron fluence of about 7x10 21 cm -2 (EDN) as a Euratom sponsored experiment. The maximum burn-ups were between 11 and 18.5% FIMA. The results of the post-irradiation examinations, comprising visual inspection, dimensional measurements, microradiography, metallography, and burn-up determinations are presented in this part 2 of the final report. The examinations have shown that the endurance limit of most of the tested fuel varieties is beyond the reached irradiation values

  8. Regional Integrated Tenets to Reinforce the Safety and Security of Radioactive Sources (ClearZone)

    International Nuclear Information System (INIS)

    Salzer, P.

    2003-01-01

    The EURATOM Research and Training Programme on Nuclear Energy includes 2 main fields - fusion energy research and management of radioactive waste, radiation protection and other activities of nuclear technology and safety.Seven instruments (mechanisms) for projects management are used - 'Network of Excellence' (NOE); 'Integrated Project' (IP); 'Specific Targeted Research Project' or 'Specific Targeted Training Project' (STREP); 'Co-ordination Action' (CA); Actions to Promote and Develop Human Resources and Mobility Specific Support Actions; Integrated Infrastructure Initiatives. Two consecutive sub-projects are proposed: 'small' - countries of the Visegrad four + Austrian participant -within the 6th FP 'Specific Supported Actions' and 'large' - participation of more countries in the region - more oriented to practical implementation of the 'small' project findings - intention to use the 6th Framework Programme resources to co-financing the implementation activities. The main objectives are: to create effective lines of defense (prevention -detection - categorization - transport - storage) against malicious use of radioactive sources; to achieve and maintain a high level of safety and security of radioactive sources; to arise the radioactive sources management safety and security culture at the Central European region. Consortium of 11 organisations from Czech Republic, Slovak Republic, Austria, Hungary and Poland is established for the Project implementation. The Project task are grouped in the following areas: legislation, infrastructure, practices; metallurgical industry, cross border control; instrumentation and metrology; information system

  9. European Legalisation on Protection Against Cosmic Radiation

    International Nuclear Information System (INIS)

    Courades, M.

    1999-01-01

    Specific provisions on protection of aircrew against cosmic radiation have been laid down for the first time at EU level as part of the Basic Safety Standards for the Health Protection of the General Public and Workers against the Dangers of Ionizing Radiation (Council Directive 96/29/Euratom of 13 May 1996). These provisions, focusing mainly on health and radiological surveillance, are minimal requirements; therefore the Directive leaves significant discretion to the Member States as regards actions to be taken; Member States have to transpose these provisions into national law before 13 May 2000. Further harmonisation of Community regulations on civil aviation safety will be needed in the field of protection against cosmic radiation. This is to obtain a high level of radiation protection for the aircrew and to maintain fair competition under the common transport policy. Additionally, particular requirement are foreseen for detection and monitoring devices as well as for working instructions (Operations Manual). (author)

  10. The basic discussion on nuclear power safety improvement based on nuclear equipment design

    International Nuclear Information System (INIS)

    Zhao Feiyun; Yao Yangui; Yu Hao; He Yinbiao; Gao Lei; Yao Weida

    2013-01-01

    The safety of strengthening nuclear power design was described based on nuclear equipment design after Fukushima nuclear accident. From these aspects, such as advanced standard system, advanced design method, suitable test means, consideration of beyond design basis event, and nuclear safety culture construction, the importance of nuclear safety improvement was emphatically presented. The enlightenment was given to nuclear power designer. (authors)

  11. Current activities on safety improvement at Ukrainian NPPs

    International Nuclear Information System (INIS)

    Stovbun, V.V.

    2000-01-01

    This report describes general development status of the national programs on safety improvement of the Ukrainian NPPs, basic approaches adopted for planning and implementation of safety improvement works, and state of implementation of principal technical activities aimed at safety improvement of Ukrainian NPPs. (author)

  12. Basic safety principles of INSAG and their application in radioactive waste management

    International Nuclear Information System (INIS)

    Baer, A.J.

    2000-01-01

    The International Nuclear Safety Advisory Group (INSAG) has, in INSAG-11, attempted to show what safety principles are common to all applications of all sources of radiation. It has been considered that these general principles should apply to all industrial activities. A comparison of INSAG-11 with Article 11 of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (Joint Convention) shows that the management of radioactive waste is but a special case of industrial activity and follows the same safety rules. The importance of the Joint Convention comes, however, from the fact that it is a politically important document, requiring ratification by the parliaments of the contracting parties. The safe management of radioactive waste implies that five types of issue must be taken into consideration, not only technical and ethical ones, but also socio-political, economic and ecological ones. By comparison, sustainable development in its three dimensions (temporal, spatial and sectorial) has five components (ecology, economics, ethics, socio-politics and technology), just like the safe management of radioactive waste. The consequence of this is that if management is treated as a particular case of sustainable development, it will not be accepted by society. The conclusions are that technology alone can not ensure the safety of radioactive waste management and that society will always give priority to socio-political issues over technological ones. Furthermore, it is crucial that people involved in the management of radioactive waste learn to communicate better and to listen more attentively. Their efforts will only succeed when they incorporate all the components that determine the fabric of our society. (author)

  13. Basic design requirements for indigenous irradiator

    International Nuclear Information System (INIS)

    Anwar Abd Rahman; Rosli Darmawan; Mohd Arif Hamzah; Fadil Ismail; Muhd Nor Atan

    2007-01-01

    Most of the irradiators owned by Nuclear Malaysia are imported from other countries. The irradiators are used for various applications such as Research and Development, agriculture and industry. There is a plan to develop locally made multi-purpose gamma irradiator in 9th Malaysia Plan which equipped with better safety features. This paper will discuss the basic requirements for the design of the irradiator. (Author)

  14. Dealing with the Y2K problem in German nuclear facilities

    International Nuclear Information System (INIS)

    Hagemann, A.

    1999-01-01

    General situation concerning Y2K problem related to german nuclear facilities is presented. Nuclear material used i Germany is owned by EURATOM and Germany is responsible to EURATOM as well as IAEA inspections. Systems of concern are monitoring and control systems, safety related systems and physical protection systems. Present situation is as follows: responsible project teams are formed, Y2K sensitive equipment is identified, designers are contacted, compliance tests specified and schedule of the proof established as of end of August 1999. Experiences obtained in overcoming the Y2K risks are cited

  15. Basic plans of atomic energy development and utilization for fiscal 1978

    International Nuclear Information System (INIS)

    1978-01-01

    The Government has promoted the development and utilization of atomic energy as one of the most important measures for energy supplies. In Japan, due to the unrest concerning safety of nuclear power, siting of nuclear power plants is difficult, thereby the nuclear power generation program is delayed. Then, in major research and development projects such as those of uranium enrichment, fast breeder reactors, an advanced thermal reactor and nuclear fusion, while the remarkable results are being accumulated, the practical aspects are in need of positive governmental measures. Under this situation, the long range program of atomic energy development and utilization is being revised. For the fiscal year 1978 (from April, 1978 to March, 1979), based on the revision, the basic plans are presented, first, the basic policy, and second, the practical measures: strengthening of the safety measures; establishment of the nuclear fuel cycle; development of the new types of power reactors; promotion of the basic researches; securing of the people's understanding and cooperation. (Mori, K

  16. Developments toward the use of tungsten as armour material in plasma facing components promoted by Euratom-CEA Association

    International Nuclear Information System (INIS)

    Mitteau, R.; Missiaen, J.M.; Brustolin, P.

    2006-01-01

    Tungsten is increasingly considered as a prime candidate armour material facing the plasma in fusion experiments (ASDEX, JET, ITER). This material is, however, a challenge for the engineers due to its brittleness at room temperature. Its bonding to structural or cooled substrates is a critical issue. The Euratom-CEA Association promotes the development of evolutionary techniques aiming to produce high performance assemblies between tungsten and various substrates. These are 1) functionally graded tungsten to copper, 2) direct electron beam welding of tungsten to Mo-alloy TZM and 3) the characterisation of tungsten coatings deposited on carbon fibre composite by high energy deposition processes. 1) A functionally graded material eliminates the singular point which weakens the heterogeneous assembly, reducing the stresses and allowing a better behaviour. The sintering of submicronic W-Cu powders is investigated. The green shape is processed from W-CuO powder, which is reduced by a hydrogen flow. The compaction and sintering of layers of various compositions (10 to 30 % Cu) produces an assembly (density of ∼ 94%) with a good cohesion. However, the gradient is not effectively controlled, because of the migration of melt copper during the sintering. Future work aims to improve the process by using spark or microwave assisted sintering. 2) Electron beam welding of Mo-alloy TZM is investigated, to produce high temperature components required by radiation cooled PFCs. They require only mechanical properties and no vacuum sealing. The driving line is to use simple tungsten shapes to reduce the milling cost. In spite of low weldable properties of the refractory alloys, a good bonding up to a depth of 5 mm is obtained. Hardness measurements show that the melt area and the heat affected zone are harder than TZM, the weakest materials at 230 Hv. Quench tests in water from up to 2000 o C are done without apparent crack formation. 3) Finally, characterisation techniques are

  17. Food Follies: Food Safety for College Students

    OpenAIRE

    Osborne, Michelle

    2010-01-01

    This project involves the production and dissemination of a basic food storage and safety course geared toward college students. The course covers basic preparation, sanitation, proper cooking temperatures, chilling and storage, as well as common pathogens to be aware of. MALS

  18. Safe management of nuclear energy. An interdisciplinary systemic approach

    International Nuclear Information System (INIS)

    Dreimanis, Andrejs

    2008-01-01

    The worldwide use of nuclear energy and emergence of a threat to the global security demand to develop innovative approaches to ensure global safety. There is proposed a possible approach to solve education, social communication and decision making issues, with the aim to gain public confidence in the safety of novel nuclear projects. The approach is based on societal optimization of nuclear activities to be realized in an extended environment - a multitude of physical, ecological, economic, socio-cultural, psychological. A basic criterion for societal optimization - the principle of requisite variety whereby the inherent variety of a society/community should exceed the environmental variety. The basic parameter of societal optimization - stakeholder awareness level. As a primary source of growth of human/communities inherent variety is considered information and its organized form - knowledge. The basic ways to increase the internal variety are proposed to be stakeholder involvement, their education and mutual interactions. This increase results in activation of mutual interactions between stakeholders, increasing their knowledge mutual understanding level. Public education, social learning, risk communication, the use of mass media internet is treated informational self-organization processes. Forming a knowledge-creating community capable to use novel communication and knowledge management forms. Multi-level confidence building at: 1) the global level, via United Nations activities, 2) regional level - the Euratom actions, 3) national level - is considered. (author)

  19. EURATOM-CEA association contributions to the 26. EPS conference on controlled fusion and plasma physics, Maastricht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-15

    This report references the EURATOM-CEA association contributions presented at the 26. EPS conference on controlled fusion and plasma physics, in Maastricht (Netherlands) the 14-18 June 1999. Two invited papers and 24 contributed papers are proposed. They deal with: tokamak devices; particle recirculation in ergodic divertor; current profile control and MHD stability in Tore Supra discharges; edge-plasma control by the ergodic divertor; electron heat transport in stochastic magnetic layer; bolometry and radiated power; particle collection by ergodic divertor; study and simulation of pa impurities; line shape modelling for plasma edge conditions; dynamical study of the radial structure of the fluctuations measured by reciprocating Langmuir probe in Tore Supra; up-down asymmetry of density fluctuations; Halo currents in a circular tokamak; real time measurement of the position, density, profile and current profile at Tore Supra; poloidal rotation measurement by reflectometry; interpretation of q-profile dependence of the LH power deposition profile during LHCD experiments; ICFR plasma production and optimization; improved core electron confinement; measurement of hard X-ray emission profile; modelling of shear effects on thermal and particles transport; ion turbulence; current drive generation based on autoresonance and intermittent trapping mechanisms. (A.L.B.)

  20. EURATOM-CEA association contributions to the 26. EPS conference on controlled fusion and plasma physics, Maastricht

    International Nuclear Information System (INIS)

    1999-10-01

    This report references the EURATOM-CEA association contributions presented at the 26. EPS conference on controlled fusion and plasma physics, in Maastricht (Netherlands) the 14-18 June 1999. Two invited papers and 24 contributed papers are proposed. They deal with: tokamak devices; particle recirculation in ergodic divertor; current profile control and MHD stability in Tore Supra discharges; edge-plasma control by the ergodic divertor; electron heat transport in stochastic magnetic layer; bolometry and radiated power; particle collection by ergodic divertor; study and simulation of plasma impurities; line shape modelling for plasma edge conditions; dynamical study of the radial structure of the fluctuations measured by reciprocating Langmuir probe in Tore Supra; up-down asymmetry of density fluctuations; Halo currents in a circular tokamak; real time measurement of the position, density, profile and current profile at Tore Supra; poloidal rotation measurement by reflectometry; interpretation of q-profile dependence of the LH power deposition profile during LHCD experiments; ICFR plasma production and optimization; improved core electron confinement; measurement of hard X-ray emission profile; modelling of shear effects on thermal and particles transport; ion turbulence; current drive generation based on autoresonance and intermittent trapping mechanisms. (A.L.B.)