WorldWideScience

Sample records for eukaryotic ribosome display

  1. Interaction of tRNA with Eukaryotic Ribosome

    Directory of Open Access Journals (Sweden)

    Dmitri Graifer

    2015-03-01

    Full Text Available This paper is a review of currently available data concerning interactions of tRNAs with the eukaryotic ribosome at various stages of translation. These data include the results obtained by means of cryo-electron microscopy and X-ray crystallography applied to various model ribosomal complexes, site-directed cross-linking with the use of tRNA derivatives bearing chemically or photochemically reactive groups in the CCA-terminal fragment and chemical probing of 28S rRNA in the region of the peptidyl transferase center. Similarities and differences in the interactions of tRNAs with prokaryotic and eukaryotic ribosomes are discussed with concomitant consideration of the extent of resemblance between molecular mechanisms of translation in eukaryotes and bacteria.

  2. Structural view on recycling of archaeal and eukaryotic ribosomes after canonical termination and ribosome rescue.

    Science.gov (United States)

    Franckenberg, Sibylle; Becker, Thomas; Beckmann, Roland

    2012-12-01

    Ribosome recycling usually occurs after canonical termination triggered by a stop codon. Additionally, ribosomes that are stalled by aberrant mRNAs need to be recognized and subsequently recycled. In eukaryotes and archaea, the factors involved in canonical termination and ribosome rescue are structurally and functionally related. Both termination and ribosome rescue are mediated by class I release factors (eRF1/aRF1 in eukaryotic/archaeal termination) or their paralogs (Pelota/aPelota for ribosome rescue) and homologs of translational GTPases (eRF3/aEF1α in termination, Hbs1/aEF1α in ribosome rescue). These events are followed by recycling of the ribosome. Recently the ATPase ABCE1 was shown to be the main ribosome recycling factor. In concert with eRF1 or Pelota, ABCE1 dissociates the ribosome into subunits. During the past two years, several structures of ribosome rescue and ribosome recycling complexes have been solved by cryo-electron microscopy and crystallography. These structures along with recent functional data make it possible to propose a molecular model of these late translation events in termination and recycling. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Ribosome display for improved biotherapeutic molecules.

    Science.gov (United States)

    Rothe, Achim; Hosse, Ralf J; Power, Barbara E

    2006-02-01

    Ribosome display presents an innovative in vitro technology for the rapid isolation and evolution of high-affinity peptides or proteins. Displayed proteins are bound to and recovered from target molecules in multiple rounds of selection in order to enrich for specific binding proteins. No transformation step is necessary, which could lead to a loss of library diversity. A cycle of display and selection can be performed in one day, enabling the existing gene repertoire to be rapidly scanned. Proteins isolated from the panning rounds can be further modified through random or directed molecular evolution for affinity maturation, as well as selected for characteristics such as protein stability, folding and functional activity. Recently, the field of display technologies has become more prominent due to the generation of new scaffolds for ribosome display, isolation of high-affinity human antibodies by phage display, and their implementation in the discovery of novel protein-protein interactions. Applications for this technology extend into the broad field of antibody engineering, proteomics, and synthetic enzymes for diagnostics and therapeutics in cancer, autoimmune and infectious diseases, neurodegenerative diseases and inflammatory disorders. This review highlights the role of ribosome display in drug discovery, discusses advantages and disadvantages of the system, and attempts to predict the future impact of ribosome display technology on the development of novel engineered biopharmaceutical products for biological therapies.

  4. Structures of eukaryotic ribosomal stalk proteins and its complex with trichosanthin, and their implications in recruiting ribosome-inactivating proteins to the ribosomes.

    Science.gov (United States)

    Choi, Andrew K H; Wong, Eddie C K; Lee, Ka-Ming; Wong, Kam-Bo

    2015-02-25

    Ribosome-inactivating proteins (RIP) are RNA N-glycosidases that inactivate ribosomes by specifically depurinating a conserved adenine residue at the α-sarcin/ricin loop of 28S rRNA. Recent studies have pointed to the involvement of the C-terminal domain of the eukaryotic stalk proteins in facilitating the toxic action of RIPs. This review highlights how structural studies of eukaryotic stalk proteins provide insights into the recruitment of RIPs to the ribosomes. Since the C-terminal domain of eukaryotic stalk proteins is involved in specific recognition of elongation factors and some eukaryote-specific RIPs (e.g., trichosanthin and ricin), we postulate that these RIPs may have evolved to hijack the translation-factor-recruiting function of ribosomal stalk in reaching their target site of rRNA.

  5. PURE ribosome display and its application in antibody technology.

    Science.gov (United States)

    Kanamori, Takashi; Fujino, Yasuhiro; Ueda, Takuya

    2014-11-01

    Ribosome display utilizes formation of the mRNA-ribosome-polypeptide ternary complex in a cell-free protein synthesis system to link genotype (mRNA) to phenotype (polypeptide). However, the presence of intrinsic components, such as nucleases in the cell-extract-based cell-free protein synthesis system, reduces the stability of the ternary complex, which would prevent attainment of reliable results. We have developed an efficient and highly controllable ribosome display system using the PURE (Protein synthesis Using Recombinant Elements) system. The mRNA-ribosome-polypeptide ternary complex is highly stable in the PURE system, and the selected mRNA can be easily recovered because activities of nucleases and other inhibitory factors are very low in the PURE system. We have applied the PURE ribosome display to antibody engineering approaches, such as epitope mapping and affinity maturation of antibodies, and obtained results showing that the PURE ribosome display is more efficient than the conventional method. We believe that the PURE ribosome display can contribute to the development of useful antibodies. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Interaction network of the ribosome assembly machinery from a eukaryotic thermophile.

    Science.gov (United States)

    Baßler, Jochen; Ahmed, Yasar Luqman; Kallas, Martina; Kornprobst, Markus; Calviño, Fabiola R; Gnädig, Marén; Thoms, Matthias; Stier, Gunter; Ismail, Sherif; Kharde, Satyavati; Castillo, Nestor; Griesel, Sabine; Bastuck, Sonja; Bradatsch, Bettina; Thomson, Emma; Flemming, Dirk; Sinning, Irmgard; Hurt, Ed

    2017-02-01

    Ribosome biogenesis in eukaryotic cells is a highly dynamic and complex process innately linked to cell proliferation. The assembly of ribosomes is driven by a myriad of biogenesis factors that shape pre-ribosomal particles by processing and folding the ribosomal RNA and incorporating ribosomal proteins. Biochemical approaches allowed the isolation and characterization of pre-ribosomal particles from Saccharomyces cerevisiae, which lead to a spatiotemporal map of biogenesis intermediates along the path from the nucleolus to the cytoplasm. Here, we cloned almost the entire set (∼180) of ribosome biogenesis factors from the thermophilic fungus Chaetomium thermophilum in order to perform an in-depth analysis of their protein-protein interaction network as well as exploring the suitability of these thermostable proteins for structural studies. First, we performed a systematic screen, testing about 80 factors for crystallization and structure determination. Next, we performed a yeast 2-hybrid analysis and tested about 32,000 binary combinations, which identified more than 1000 protein-protein contacts between the thermophilic ribosome assembly factors. To exemplary verify several of these interactions, we performed biochemical reconstitution with the focus on the interaction network between 90S pre-ribosome factors forming the ctUTP-A and ctUTP-B modules, and the Brix-domain containing assembly factors of the pre-60S subunit. Our work provides a rich resource for biochemical reconstitution and structural analyses of the conserved ribosome assembly machinery from a eukaryotic thermophile. © 2017 The Protein Society.

  7. Eukaryote-specific rRNA expansion segments function in ribosome biogenesis.

    Science.gov (United States)

    Ramesh, Madhumitha; Woolford, John L

    2016-08-01

    The secondary structure of ribosomal RNA (rRNA) is largely conserved across all kingdoms of life. However, eukaryotes have evolved extra blocks of rRNA sequences, relative to those of prokaryotes, called expansion segments (ES). A thorough characterization of the potential roles of ES remains to be done, possibly because of limitations in the availability of robust systems to study rRNA mutants. We sought to systematically investigate the potential functions, if any, of the ES in 25S rRNA of Saccharomyces cerevisiae by deletion mutagenesis. We deleted 14 of the 16 different eukaryote-specific ES in yeast 25S rRNA individually and assayed their phenotypes. Our results show that all but two of the ES tested are necessary for optimal growth and are required for production of 25S rRNA, suggesting that ES play roles in ribosome biogenesis. Further, we classified expansion segments into groups that participate in early nucleolar, middle, and late nucleoplasmic steps of ribosome biogenesis, by assaying their pre-rRNA processing phenotypes. This study is the first of its kind to systematically identify the functions of eukaryote-specific expansion segments by showing that they play roles in specific steps of ribosome biogenesis. The catalog of phenotypes we identified, combined with previous investigations of the roles ribosomal proteins in large subunit biogenesis, leads us to infer that assembling ribosomes are composed of distinct RNA and protein structural neighborhood clusters that participate in specific steps of ribosome biogenesis. © 2016 Ramesh and Woolford; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  8. UtpA and UtpB chaperone nascent pre-ribosomal RNA and U3 snoRNA to initiate eukaryotic ribosome assembly

    Science.gov (United States)

    Hunziker, Mirjam; Barandun, Jonas; Petfalski, Elisabeth; Tan, Dongyan; Delan-Forino, Clémentine; Molloy, Kelly R.; Kim, Kelly H.; Dunn-Davies, Hywel; Shi, Yi; Chaker-Margot, Malik; Chait, Brian T.; Walz, Thomas; Tollervey, David; Klinge, Sebastian

    2016-06-01

    Early eukaryotic ribosome biogenesis involves large multi-protein complexes, which co-transcriptionally associate with pre-ribosomal RNA to form the small subunit processome. The precise mechanisms by which two of the largest multi-protein complexes--UtpA and UtpB--interact with nascent pre-ribosomal RNA are poorly understood. Here, we combined biochemical and structural biology approaches with ensembles of RNA-protein cross-linking data to elucidate the essential functions of both complexes. We show that UtpA contains a large composite RNA-binding site and captures the 5' end of pre-ribosomal RNA. UtpB forms an extended structure that binds early pre-ribosomal intermediates in close proximity to architectural sites such as an RNA duplex formed by the 5' ETS and U3 snoRNA as well as the 3' boundary of the 18S rRNA. Both complexes therefore act as vital RNA chaperones to initiate eukaryotic ribosome assembly.

  9. Architecture of the 90S Pre-ribosome: A Structural View on the Birth of the Eukaryotic Ribosome.

    Science.gov (United States)

    Kornprobst, Markus; Turk, Martin; Kellner, Nikola; Cheng, Jingdong; Flemming, Dirk; Koš-Braun, Isabelle; Koš, Martin; Thoms, Matthias; Berninghausen, Otto; Beckmann, Roland; Hurt, Ed

    2016-07-14

    The 90S pre-ribosome is an early biogenesis intermediate formed during co-transcriptional ribosome formation, composed of ∼70 assembly factors and several small nucleolar RNAs (snoRNAs) that associate with nascent pre-rRNA. We report the cryo-EM structure of the Chaetomium thermophilum 90S pre-ribosome, revealing how a network of biogenesis factors including 19 β-propellers and large α-solenoid proteins engulfs the pre-rRNA. Within the 90S pre-ribosome, we identify the UTP-A, UTP-B, Mpp10-Imp3-Imp4, Bms1-Rcl1, and U3 snoRNP modules, which are organized around 5'-ETS and partially folded 18S rRNA. The U3 snoRNP is strategically positioned at the center of the 90S particle to perform its multiple tasks during pre-rRNA folding and processing. The architecture of the elusive 90S pre-ribosome gives unprecedented structural insight into the early steps of pre-rRNA maturation. Nascent rRNA that is co-transcriptionally folded and given a particular shape by encapsulation within a dedicated mold-like structure is reminiscent of how polypeptides use chaperone chambers for their protein folding. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. GTP-independent tRNA delivery to the ribosomal P-site by a novel eukaryotic translation factor.

    Science.gov (United States)

    Dmitriev, Sergey E; Terenin, Ilya M; Andreev, Dmitri E; Ivanov, Pavel A; Dunaevsky, Jacov E; Merrick, William C; Shatsky, Ivan N

    2010-08-27

    During translation, aminoacyl-tRNAs are delivered to the ribosome by specialized GTPases called translation factors. Here, we report the tRNA binding to the P-site of 40 S ribosomes by a novel GTP-independent factor eIF2D isolated from mammalian cells. The binding of tRNA(i)(Met) occurs after the AUG codon finds its position in the P-site of 40 S ribosomes, the situation that takes place during initiation complex formation on the hepatitis C virus internal ribosome entry site or on some other specific RNAs (leaderless mRNA and A-rich mRNAs with relaxed scanning dependence). Its activity in tRNA binding with 40 S subunits does not require the presence of the aminoacyl moiety. Moreover, the factor possesses the unique ability to deliver non-Met (elongator) tRNAs into the P-site of the 40 S subunit. The corresponding gene is found in all eukaryotes and includes an SUI1 domain present also in translation initiation factor eIF1. The versatility of translation initiation strategies in eukaryotes is discussed.

  11. A comparison of the crystal structures of eukaryotic and bacterial SSU ribosomal RNAs reveals common structural features in the hypervariable regions.

    Directory of Open Access Journals (Sweden)

    Jung C Lee

    Full Text Available While the majority of the ribosomal RNA structure is conserved in the three major domains of life--archaea, bacteria, and eukaryotes, specific regions of the rRNA structure are unique to at least one of these three primary forms of life. In particular, the comparative secondary structure for the eukaryotic SSU rRNA contains several regions that are different from the analogous regions in the bacteria. Our detailed analysis of two recently determined eukaryotic 40S ribosomal crystal structures, Tetrahymena thermophila and Saccharomyces cerevisiae, and the comparison of these results with the bacterial Thermus thermophilus 30S ribosomal crystal structure: (1 revealed that the vast majority of the comparative structure model for the eukaryotic SSU rRNA is substantiated, including the secondary structure that is similar to both bacteria and archaea as well as specific for the eukaryotes, (2 resolved the secondary structure for regions of the eukaryotic SSU rRNA that were not determined with comparative methods, (3 identified eukaryotic helices that are equivalent to the bacterial helices in several of the hypervariable regions, (4 revealed that, while the coaxially stacked compound helix in the 540 region in the central domain maintains the constant length of 10 base pairs, its two constituent helices contain 5+5 bp rather than the 6+4 bp predicted with comparative analysis of archaeal and eukaryotic SSU rRNAs.

  12. Artificial OFF-Riboswitches That Downregulate Internal Ribosome Entry without Hybridization Switches in a Eukaryotic Cell-Free Translation System.

    Science.gov (United States)

    Ogawa, Atsushi; Masuoka, Hiroki; Ota, Tsubasa

    2017-09-15

    We constructed novel artificial riboswitches that function in a eukaryotic translation system (wheat germ extract), by rationally implanting an in vitro-selected aptamer into the intergenic internal ribosome entry site (IRES) of Plautia stali intestine virus. These eukaryotic OFF-riboswitches (OFF-eRSs) ligand-dose-dependently downregulate IRES-mediated translation without hybridization switches, which typical riboswitches utilize for gene regulation. The hybridization-switch-free mechanism not only allows for easy design but also requires less energy for regulation, resulting in a higher switching efficiency than hybridization-switch-based OFF-eRSs provide. In addition, even a small ligand such as theophylline can induce satisfactory repression, in contrast to other types of OFF-eRSs that modulate the 5' cap-dependent canonical translation. Because our proposed hybridization-switch-free OFF-eRSs are based on a versatile IRES that functions well in many types of eukaryotic translation systems, they would be widely usable elements for synthetic gene circuits in both cell-free and cell-based synthetic biology.

  13. Ribosome stalling regulates IRES-mediated translation in eukaryotes, a parallel to prokaryotic attenuation

    NARCIS (Netherlands)

    Fernandez, James; Yaman, Ibrahim; Huang, Charles; Liu, Haiyan; Lopez, Alex B.; Komar, Anton A.; Caprara, Mark G.; Merrick, William C.; Snider, Martin D.; Kaufman, Randal J.; Lamers, Wouter H.; Hatzoglou, Maria

    2005-01-01

    It was previously shown that the mRNA for the cat-1 Arg/Lys transporter is translated from an internal ribosome entry site (IRES) that is regulated by cellular stress. Amino acid starvation stimulated cat-1 translation via a mechanism that requires translation of an ORF in the mRNA leader and

  14. Structural Studies of RNA Helicases Involved in Eukaryotic Pre-mRNA Splicing, Ribosome Biogenesis, and Translation Initiation

    DEFF Research Database (Denmark)

    He, Yangzi

    Ribonucleic acids (RNAs) take centre stage in gene expression. In eukaryotes, most RNAs are transcribed as precursors, and these precursors are co- or post-transcriptionally processed and assemble with particular proteins to form ribonucleoproteins (RNPs). Mature RNPs participate in various gene...... and ligates the neighbouring exons to generate mature mRNAs. Prp43 is an RNA helicase of the DEAH/RHA family. In yeast, once mRNAs are released, Prp43 catalyzes the disassembly of spliceosomes. The 18S, 5.8S and 25S rRNAs are transcribed as a single polycistronic transcript—the 35S pre-rRNA....... It is nucleolytically cleaved and chemically modified to generate mature rRNAs, which assemble with ribosomal proteins to form the ribosome. Prp43 is required for the processing of the 18S rRNA. Using X-ray crystallography, I determined a high resolution structure of Prp43 bound to ADP, the first structure of a DEAH...

  15. Protein interaction mapping with ribosome-displayed using PLATO ORF libraries

    Science.gov (United States)

    Zhu, Jian; Larman, H. Benjamin; Gao, Geng; Somwar, Romel; Zhang, Zijuan; Laserson, Uri; Ciccia, Alberto; Pavlova, Natalya; Church, George; Zhang, Wei; Kesari, Santosh; Elledge, Stephen J.

    2013-01-01

    Identifying physical interactions between proteins and other molecules is a critical aspect of biological analysis. Here we describe PLATO, an in vitro method for mapping such interactions by affinity enrichment of a library of full-length open reading frames displayed on ribosomes, followed by massively parallel analysis using DNA sequencing. We demonstrate the broad utility of the method by identifying known and new interacting partners of LYN kinase, patient autoantibodies and the small molecules gefitinib and dasatinib. PMID:24336473

  16. A simplified procedure for antibody engineering by yeast surface display: Coupling display levels and target binding by ribosomal skipping.

    Science.gov (United States)

    Grzeschik, Julius; Hinz, Steffen C; Könning, Doreen; Pirzer, Thomas; Becker, Stefan; Zielonka, Stefan; Kolmar, Harald

    2017-02-01

    Yeast surface display is a valuable, widely used method for protein engineering. However, current yeast display applications rely on the staining of epitope tags in order to verify full-length presentation of the protein of interest on the cell surface. We aimed at developing a modified yeast display approach that relies on ribosomal skipping, thereby enabling the translation of two proteins from one open reading frame and, in that manner, generating an intracellular fluorescence signal. This improved setup is based on a 2A sequence that is encoded between the protein to be displayed and a gene for green fluorescent protein (GFP). The intracellular GFP fluorescence signal of yeast cells correlates with full-length protein presentation and omits the need for the immunofluorescence detection of epitope tags. For method validation, shark-derived IgNAR variable domains (vNAR) were subjected to affinity maturation using the 2A-GFP system. Yeast library screening of full-length vNAR variants which were detected via GFP expression yielded the same high-affinity binder that had previously been isolated by our group using the conventional epitope tag-based display format. The presented method obviates the need for additional immunofluorescence cell staining, offering an easy and cost-friendly alternative to conventional epitope tag detections. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Optimal eukaryotic 18S and universal 16S/18S ribosomal RNA primers and their application in a study of symbiosis.

    Directory of Open Access Journals (Sweden)

    Yong Wang

    Full Text Available Eukaryotic 18S ribosomal RNA (rRNA gene primers that feature a wide coverage are critical in detecting the composition of eukaryotic microscopic organisms in ecosystems. Here, we predicted 18S rRNA primers based on consecutive conserved sites and evaluated their coverage efficiency and scope of application to different eukaryotic groups. After evaluation, eight of them were considered as qualified 18S primers based on coverage rate. Next, we examined common conserved regions in prokaryotic 16S and eukaryotic 18S rRNA sequences to design 16S/18S universal primers. Three 16S/18S candidate primers, U515, U1390 and U1492, were then considered to be suitable for simultaneous amplification of the rRNA sequences in three domains. Eukaryotic 18S and prokaryotic 16S rRNA genes in a sponge were amplified simultaneously using universal primers U515 and U1390, and the subsequent sorting of pyrosequenced reads revealed some distinctive communities in different parts of the sample. The real difference in biodiversity between prokaryotic and eukaryotic symbionts could be discerned as the dissimilarity between OTUs was increased from 0.005 to 0.1. A network of the communities in external and internal parts of the sponge illustrated the co-variation of some unique microbes in certain parts of the sponge, suggesting that the universal primers are useful in simultaneous detection of prokaryotic and eukaryotic microbial communities.

  18. Linker 2 of the eukaryotic pre-ribosomal processing factor Mrd1p is an essential interdomain functionally coupled to upstream RNA Binding Domain 2 (RBD2).

    Science.gov (United States)

    Lackmann, Fredrik; Belikov, Sergey; Wieslander, Lars

    2017-01-01

    Ribosome synthesis is an essential process in all cells. In Sacharomyces cerevisiae, the precursor rRNA, 35S pre-rRNA, is folded and assembled into a 90S pre-ribosomal complex. The 40S ribosomal subunit is processed from the pre-ribosomal complex. This requires concerted action of small nucleolar RNAs, such as U3 snoRNA, and a large number of trans-acting factors. Mrd1p, one of the essential small ribosomal subunit synthesis factors is required for cleavage of the 35S pre-rRNA to generate 18S rRNA of the small ribosomal subunit. Mrd1p is evolutionary conserved in all eukaryotes and in yeast it contains five RNA Binding Domains (RBDs) separated by linker regions. One of these linkers, Linker 2 between RBD2 and RBD3, is conserved in length, predicted to be structured and contains conserved clusters of amino acid residues. In this report, we have analysed Linker 2 mutations and demonstrate that it is essential for Mrd1p function during pre-ribosomal processing. Extensive changes of amino acid residues as well as specific changes of conserved clusters of amino acid residues were found to be incompatible with synthesis of pre-40S ribosomes and cell growth. In addition, gross changes in primary sequence of Linker 2 resulted in Mrd1p instability, leading to degradation of the N-terminal part of the protein. Our data indicates that Linker 2 is functionally coupled to RBD2 and argues for that these domains constitute a functional module in Mrd1p. We conclude that Linker 2 has an essential role for Mrd1p beyond just providing a defined length between RBD2 and RBD3.

  19. Linker 2 of the eukaryotic pre-ribosomal processing factor Mrd1p is an essential interdomain functionally coupled to upstream RNA Binding Domain 2 (RBD2.

    Directory of Open Access Journals (Sweden)

    Fredrik Lackmann

    Full Text Available Ribosome synthesis is an essential process in all cells. In Sacharomyces cerevisiae, the precursor rRNA, 35S pre-rRNA, is folded and assembled into a 90S pre-ribosomal complex. The 40S ribosomal subunit is processed from the pre-ribosomal complex. This requires concerted action of small nucleolar RNAs, such as U3 snoRNA, and a large number of trans-acting factors. Mrd1p, one of the essential small ribosomal subunit synthesis factors is required for cleavage of the 35S pre-rRNA to generate 18S rRNA of the small ribosomal subunit. Mrd1p is evolutionary conserved in all eukaryotes and in yeast it contains five RNA Binding Domains (RBDs separated by linker regions. One of these linkers, Linker 2 between RBD2 and RBD3, is conserved in length, predicted to be structured and contains conserved clusters of amino acid residues. In this report, we have analysed Linker 2 mutations and demonstrate that it is essential for Mrd1p function during pre-ribosomal processing. Extensive changes of amino acid residues as well as specific changes of conserved clusters of amino acid residues were found to be incompatible with synthesis of pre-40S ribosomes and cell growth. In addition, gross changes in primary sequence of Linker 2 resulted in Mrd1p instability, leading to degradation of the N-terminal part of the protein. Our data indicates that Linker 2 is functionally coupled to RBD2 and argues for that these domains constitute a functional module in Mrd1p. We conclude that Linker 2 has an essential role for Mrd1p beyond just providing a defined length between RBD2 and RBD3.

  20. A conserved domain important for association of eukaryotic J-protein co-chaperones Jjj1 and Zuo1 with the ribosome.

    Science.gov (United States)

    Kaschner, Lindsey A; Sharma, Ruchika; Shrestha, Om Kumar; Meyer, Alison E; Craig, Elizabeth A

    2015-05-01

    J-proteins, obligate co-chaperones, provide specialization for Hsp70 function in a variety of cellular processes. Two of the 13 J-proteins of the yeast cytosol/nucleus, Zuo1 and Jjj1, are associated with 60S ribosomal subunits. Abundant Zuo1 facilitates folding of nascent polypeptides; Jjj1, of much lower abundance, functions in ribosome biogenesis. However, overexpression of Jjj1 substantially rescues growth defects of cells lacking Zuo1. We analyzed a region held in common by Zuo1 and Jjj1, outside the signature J-domain found in all J-proteins. This shared "zuotin homology domain" (ZHD) is important for ribosome association of both proteins. An N-terminal segment of Jjj1, containing the J-domain and ZHD, is ribosome-associated and, like full-length Jjj1, is competent to rescue both the cold- and cation-sensitivity of ∆zuo1. However, this fragment, when expressed at normal levels, cannot rescue the cytosolic ribosome biogenesis defect of ∆jjj1. Our results are consistent with a model in which the primary functions of Zuo1 and Jjj1 occur in the cytosol. In addition, our data suggest that Zuo1 and Jjj1 bind overlapping sites on ribosomes due to an interaction via their common ZHDs, but Jjj1 binds primarily to pre-60S particles and Zuo1 to mature subunits. We hypothesize that ZUO1 and JJJ1, which are conserved throughout eukaryotes, arose from an ancient duplication of a progenitor J-protein gene that encoded the ZHD ribosome-binding region; subsequently, specialized roles and additional ribosome interaction sites evolved. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Partial methylation at Am100 in 18S rRNA of baker's yeast reveals ribosome heterogeneity on the level of eukaryotic rRNA modification.

    Directory of Open Access Journals (Sweden)

    Markus Buchhaupt

    Full Text Available Ribosome heterogeneity is of increasing biological significance and several examples have been described for multicellular and single cells organisms. In here we show for the first time a variation in ribose methylation within the 18S rRNA of Saccharomyces cerevisiae. Using RNA-cleaving DNAzymes, we could specifically demonstrate that a significant amount of S. cerevisiae ribosomes are not methylated at 2'-O-ribose of A100 residue in the 18S rRNA. Furthermore, using LC-UV-MS/MS of a respective 18S rRNA fragment, we could not only corroborate the partial methylation at A100, but could also quantify the methylated versus non-methylated A100 residue. Here, we exhibit that only 68% of A100 in the 18S rRNA of S.cerevisiae are methylated at 2'-O ribose sugar. Polysomes also contain a similar heterogeneity for methylated Am100, which shows that 40S ribosome subunits with and without Am100 participate in translation. Introduction of a multicopy plasmid containing the corresponding methylation guide snoRNA gene SNR51 led to an increased A100 methylation, suggesting the cellular snR51 level to limit the extent of this modification. Partial rRNA modification demonstrates a new level of ribosome heterogeneity in eukaryotic cells that might have substantial impact on regulation and fine-tuning of the translation process.

  2. Selection of diethylstilbestrol-specific single-chain antibodies from a non-immunized mouse ribosome display library.

    Directory of Open Access Journals (Sweden)

    Yanan Sun

    Full Text Available Single chain variable fragments (scFvs against diethylstilbestrol (DES were selected from the splenocytes of non-immunized mice by ribosome display technology. A naive library was constructed and engineered to allow in vitro transcription and translation using an E. coli lysate system. Alternating selection in solution and immobilization in microtiter wells was used to pan mRNA-ribosome-antibody (ARM complexes. After seven rounds of ribosome display, the expression vector pTIG-TRX containing the selected specific scFv DNAs were transformed into Escherichia coli BL21 (DE3 for expression. Twenty-six positive clones were screened and five clones had high antibody affinity and specificity to DES as evidenced by indirect competitive ELISA. Sequence analysis showed that these five DES-specific scFvs had different amino acid sequences, but the CDRs were highly similar. Surface plasmon resonance (SPR analysis was used to determine binding kinetics of one clone (30-1. The measured K(D was 3.79 µM. These results indicate that ribosome display technology can be used to efficiently isolate hapten-specific antibody (Ab fragments from a naive library; this study provides a methodological framework for the development of novel immunoassays for multiple environmental pollutants with low molecular weight detection using recombinant antibodies.

  3. Ligand binding of a ribosome-displayed protein detected in solution at the single molecule level by fluorescence correlation spectroscopy.

    Science.gov (United States)

    Jermutus, Lutz; Kolly, Reto; Földes-Papp, Zeno; Hanes, Jozef; Rigler, Rudolf; Plückthun, Andreas

    2002-06-01

    Interaction of a single-chain antibody fragment (scFv) with its cognate antigen while still attached to the ribosome was studied by fluorescence correlation spectroscopy (FCS). In experiments with purified scFv, FCS was capable of resolving the difference in diffusion time between free and antibody-bound labelled antigen. Ribosome-displayed antibody fragments generated by in vitro translation, in which neither the protein nor the mRNA leaves the ribosome owing to the absence of a stop codon and stabilizing buffer conditions, could be shown to specifically bind the antigen. The antibody-antigen interaction was specific, as shown by inhibition or displacement with unlabelled antigen and by control experiments with a non-cognate antibody fragment.

  4. The 18S ribosomal RNA sequence of the sea anemone Anemonia sulcata and its evolutionary position among other eukaryotes.

    Science.gov (United States)

    Hendriks, L; Van de Peer, Y; Van Herck, M; Neefs, J M; De Wachter, R

    1990-09-03

    Evolutionary trees based on partial small ribosomal subunit RNA sequences of 22 metazoa species have been published [(1988) Science 239, 748-753]. In these trees, cnidarians (Radiata) seemed to have evolved independently from the Bilateria, which is in contradiction with the general evolutionary view. In order to further investigate this problem, the complete srRNA sequence of the sea anemone Anemonia sulcata was determined and evolutionary trees were constructed using a matrix optimization method. In the tree thus obtained the sea anemone and Bilateria together form a monophyletic cluster, with the sea anemone forming the first line of the metazoan group.

  5. Structural insights into a unique Hsp70-Hsp40 interaction in the eukaryotic ribosome-associated complex.

    Science.gov (United States)

    Weyer, Felix Alexander; Gumiero, Andrea; Gesé, Genís Valentín; Lapouge, Karine; Sinning, Irmgard

    2017-02-01

    Cotranslational chaperones assist de novo folding of nascent polypeptides, prevent them from aggregating and modulate translation. The ribosome-associated complex (RAC) is unique in that the Hsp40 protein Zuo1 and the atypical Hsp70 chaperone Ssz1 form a stable heterodimer, which acts as a cochaperone for the Hsp70 chaperone Ssb. Here we present the structure of the Chaetomium thermophilum RAC core comprising Ssz1 and the Zuo1 N terminus. We show how the conserved allostery of Hsp70 proteins is abolished and this Hsp70-Hsp40 pair is molded into a functional unit. Zuo1 stabilizes Ssz1 in trans through interactions that in canonical Hsp70s occur in cis. Ssz1 is catalytically inert and cannot adopt the closed conformation, but the substrate binding domain β is completed by Zuo1. Our study offers insights into the coupling of a special Hsp70-Hsp40 pair, which evolved to link protein folding and translation.

  6. Phenotypically Dormant and Immature Leukaemia Cells Display Increased Ribosomal Protein S6 Phosphorylation.

    Directory of Open Access Journals (Sweden)

    Monica Pallis

    Full Text Available Mechanistic/mammalian target of rapamycin (mTOR activity drives a number of key metabolic processes including growth and protein synthesis. Inhibition of the mTOR pathway promotes cellular dormancy. Since cells from patients with acute myeloid leukaemia (AML can be phenotypically dormant (quiescent, we examined biomarkers of their mTOR pathway activity concurrently with Ki-67 and CD71 (indicators of cycling cells by quantitative flow cytometry. Using antibodies to phosphorylated epitopes of mTOR (S2448 and its downstream targets ribosomal protein S6 (rpS6, S235/236 and 4E-BP1 (T36/45, we documented that these phosphorylations were negligible in lymphocytes, but evident in dormant as well as proliferating subsets of both mobilised normal stem cell harvest CD34+ cells and AML blasts. Although mTOR phosphorylation in AML blasts was lower than that of the normal CD34+ cells, p-4E-BP1 was 2.6-fold higher and p-rpS6 was 22-fold higher. Moreover, in contrast to 4E-BP1, rpS6 phosphorylation was higher in dormant than proliferating AML blasts, and was also higher in the immature CD34+CD38- blast subset. Data from the Cancer Genome Atlas show that rpS6 expression is associated with that of respiratory chain enzymes in AML. We conclude that phenotypic quiescence markers do not necessarily predict metabolic dormancy and that elevated rpS6 ser235/236 phosphorylation is characteristic of AML.

  7. Establishment and Application of a High Throughput Screening System Targeting the Interaction between HCV Internal Ribosome Entry Site and Human Eukaryotic Translation Initiation Factor 3

    Directory of Open Access Journals (Sweden)

    Yuying Zhu

    2017-05-01

    Full Text Available Viruses are intracellular obligate parasites and the host cellular machinery is usually recruited for their replication. Human eukaryotic translation initiation factor 3 (eIF3 could be directly recruited by the hepatitis C virus (HCV internal ribosome entry site (IRES to promote the translation of viral proteins. In this study, we establish a fluorescence polarization (FP based high throughput screening (HTS system targeting the interaction between HCV IRES and eIF3. By screening a total of 894 compounds with this HTS system, two compounds (Mucl39526 and NP39 are found to disturb the interaction between HCV IRES and eIF3. And these two compounds are further demonstrated to inhibit the HCV IRES-dependent translation in vitro. Thus, this HTS system is functional to screen the potential HCV replication inhibitors targeting human eIF3, which is helpful to overcome the problem of viral resistance. Surprisingly, one compound HP-3, a kind of oxytocin antagonist, is discovered to significantly enhance the interaction between HCV IRES and eIF3 by this HTS system. HP-3 is demonstrated to directly interact with HCV IRES and promote the HCV IRES-dependent translation both in vitro and in vivo, which strongly suggests that HP-3 has potentials to promote HCV replication. Therefore, this HTS system is also useful to screen the potential HCV replication enhancers, which is meaningful for understanding the viral replication and screening novel antiviral drugs. To our knowledge, this is the first HTS system targeting the interaction between eIF3 and HCV IRES, which could be applied to screen both potential HCV replication inhibitors and enhancers.

  8. Higher order structure in the 3'-minor domain of small subunit ribosomal RNAs from a gram negative bacterium, a gram positive bacterium and a eukaryote

    DEFF Research Database (Denmark)

    Douthwaite, S; Christensen, A; Garrett, R A

    1983-01-01

    An experimental approach was used to determine and compare the highest order structure within the 150 to 200 nucleotides at the 3'-ends of the RNAs from the small ribosomal subunits of Escherichia coli, Bacillus stearothermophilus and Saccharomyces cerevisiae. Chemical reagents were employed......, T2 and S1. The data enabled the various minimal secondary structural models, proposed for the 3'-regions of the E. coli and S. cerevisiae RNAs, to be critically examined, and to demonstrate that the main common features of these models are correct. The results also reveal the presence and position...... regions of the RNAs are particularly important for the functioning of the ribosome. They are involved in mRNA, tRNA and ribosomal factor binding. The results reveal that while the functionally important RNA sequences tend to be conserved, they are not always accessible in the free RNA; the pyrimidine...

  9. A conserved domain important for association of eukaryotic J-protein co-chaperones Jjj1 and Zuo1 with the ribosome

    OpenAIRE

    Kaschner, Lindsey A.; Sharma, Ruchika; Shrestha, Om Kumar; Meyer, Alison E.; Craig, Elizabeth A.

    2015-01-01

    J-proteins, obligate co-chaperones, provide specialization for Hsp70 function in a variety of cellular processes. Two of the 13 J-proteins of the yeast cytosol/nucleus, Zuo1 and Jjj1, are associated with 60S ribosomal subunits. Abundant Zuo1 facilitates folding of nascent polypeptides; Jjj1, of much lower abundance, functions in ribosome biogenesis. However, overexpression of Jjj1 substantially rescues growth defects of cells lacking Zuo1. We analyzed a region held in common by Zuo1 and Jjj1,...

  10. Localization of BiP to translating ribosomes increases soluble accumulation of secreted eukaryotic proteins in an Escherichia coli cell-free system.

    Science.gov (United States)

    Welsh, John P; Bonomo, Jeanne; Swartz, James R

    2011-08-01

    The endoplasmic reticulum (ER) resident Hsp70 chaperone, BiP, docks to the Sec translocon and interacts co-translationally with polypeptides entering the ER to encourage proper folding. In order to recreate this interaction in Escherichia coli cell-free protein synthesis (CFPS) reactions, a fusion protein was formed between the ribosome-binding portion of the E. coli protein trigger factor (TF) and BiP. The biophysical affinity to ribosomes as well as the characteristic Hsp70 ATPase activity were both verified for the fusion protein. When added to E. coli-based CFPS reactions, the TF-BiP fusion chaperone increased soluble yields of several protein fragments that are normally secreted through the ER and have poor solubility in typical CFPS reactions. For comparison, a fusion between TF and the native E. coli Hsp70, DnaK, was also constructed. This fusion was also biologically active and increased soluble yields of certain protein targets in CFPS. The TF-BiP fusion described in this study can be seen as a first step in reconstituting and better understanding ER folding pathways in the prokaryotic environment of E. coli CFPS. Copyright © 2011 Wiley Periodicals, Inc.

  11. Displays

    OpenAIRE

    Schauer, A.

    1983-01-01

    A short review is given on new display technologies such as plasma, liquid crystals, light emitting diodes, electroluminescence and electrochromism. It is stated that thin or thick film or hybrid techniques are essential for all the different types of display. Comparing the performance data of displays the advantages, disadvantages, appropriate applications and future developments are described. Finally the display market and its growth are discussed briefly.

  12. The characterization of cytoplasmic ribosomal protein genes in ...

    African Journals Online (AJOL)

    Microsporidia are obligate intracellular, eukaryotic parasites of medical and commercial importance, which can infect almost all animals including humans. However, their ribosomes are not of the 80S type as other eukaryotes, but like the prokaryotic 70S ribosome. In order to get the global composition of ribosomal protein ...

  13. Ribosome display of combinatorial antibody libraries derived from mice immunized with heat-killed Xylella fastidiosa and the selection of MopB-specific single-chain antibodies.

    Science.gov (United States)

    Azizi, Armaghan; Arora, Arinder; Markiv, Anatoliy; Lampe, David J; Miller, Thomas A; Kang, Angray S

    2012-04-01

    Pierce's disease is a devastating lethal disease of Vitus vinifera grapevines caused by the bacterium Xylella fastidiosa. There is no cure for Pierce's disease, and control is achieved predominantly by suppressing transmission of the glassy-winged sharpshooter insect vector. We present a simple robust approach for the generation of panels of recombinant single-chain antibodies against the surface-exposed elements of X. fastidiosa that may have potential use in diagnosis and/or disease transmission blocking studies. In vitro combinatorial antibody ribosome display libraries were assembled from immunoglobulin transcripts rescued from the spleens of mice immunized with heat-killed X. fastidiosa. The libraries were used in a single round of selection against an outer membrane protein, MopB, resulting in the isolation of a panel of recombinant antibodies. The potential use of selected anti-MopB antibodies was demonstrated by the successful application of the 4XfMopB3 antibody in an enzyme-linked immunosorbent assay (ELISA), a Western blot assay, and an immunofluorescence assay (IFA). These immortalized in vitro recombinant single-chain antibody libraries generated against heat-killed X. fastidiosa are a resource for the Pierce's disease research community that may be readily accessed for the isolation of antibodies against a plethora of X. fastidiosa surface-exposed antigenic molecules.

  14. Primary role for endoplasmic reticulum-bound ribosomes in cellular translation identified by ribosome profiling.

    Science.gov (United States)

    Reid, David W; Nicchitta, Christopher V

    2012-02-17

    In eukaryotic cells, the spatial regulation of protein expression is frequently conferred through the coupling of mRNA localization and the local control of translation. mRNA localization to the endoplasmic reticulum (ER) is a prominent example of such regulation and serves a ubiquitous role in segregating the synthesis of secretory and integral membrane proteins to the ER. Recent genomic and biochemical studies have now expanded this view to suggest a more substantial role for the ER cellular protein synthesis. We have utilized cell fractionation and ribosome profiling to obtain a genomic survey of the subcellular organization of mRNA translation and report that ribosomal loading of mRNAs, a proxy for mRNA translation, is biased to the ER. Notably, ER-associated mRNAs encoding both cytosolic and topogenic signal-encoding proteins display similar ribosome loading densities, suggesting that ER-associated ribosomes serve a global role in mRNA translation. We propose that the partitioning of mRNAs and their translation between the cytosol and ER compartments may represent a novel mechanism for the post-transcriptional regulation of gene expression.

  15. Structural insights into ribosome translocation.

    Science.gov (United States)

    Ling, Clarence; Ermolenko, Dmitri N

    2016-09-01

    During protein synthesis, tRNA and mRNA are translocated from the A to P to E sites of the ribosome thus enabling the ribosome to translate one codon of mRNA after the other. Ribosome translocation along mRNA is induced by the universally conserved ribosome GTPase, elongation factor G (EF-G) in bacteria and elongation factor 2 (EF-2) in eukaryotes. Recent structural and single-molecule studies revealed that tRNA and mRNA translocation within the ribosome is accompanied by cyclic forward and reverse rotations between the large and small ribosomal subunits parallel to the plane of the intersubunit interface. In addition, during ribosome translocation, the 'head' domain of small ribosomal subunit undergoes forward- and back-swiveling motions relative to the rest of the small ribosomal subunit around the axis that is orthogonal to the axis of intersubunit rotation. tRNA/mRNA translocation is also coupled to the docking of domain IV of EF-G into the A site of the small ribosomal subunit that converts the thermally driven motions of the ribosome and tRNA into the forward translocation of tRNA/mRNA inside the ribosome. Despite recent and enormous progress made in the understanding of the molecular mechanism of ribosome translocation, the sequence of structural rearrangements of the ribosome, EF-G and tRNA during translocation is still not fully established and awaits further investigation. WIREs RNA 2016, 7:620-636. doi: 10.1002/wrna.1354 For further resources related to this article, please visit the WIREs website. © 2016 The Authors. WIREs RNA published by Wiley Periodicals, Inc.

  16. Ribosome recycling induces optimal translation rate at low ribosomal availability.

    Science.gov (United States)

    Marshall, E; Stansfield, I; Romano, M C

    2014-09-06

    During eukaryotic cellular protein synthesis, ribosomal translation is made more efficient through interaction between the two ends of the messenger RNA (mRNA). Ribosomes reaching the 3' end of the mRNA can thus recycle and begin translation again on the same mRNA, the so-called 'closed-loop' model. Using a driven diffusion lattice model of translation, we study the effects of ribosome recycling on the dynamics of ribosome flow and density on the mRNA. We show that ribosome recycling induces a substantial increase in ribosome current. Furthermore, for sufficiently large values of the recycling rate, the lattice does not transition directly from low to high ribosome density, as seen in lattice models without recycling. Instead, a maximal current phase becomes accessible for much lower values of the initiation rate, and multiple phase transitions occur over a wide region of the phase plane. Crucially, we show that in the presence of ribosome recycling, mRNAs can exhibit a peak in protein production at low values of the initiation rate, beyond which translation rate decreases. This has important implications for translation of certain mRNAs, suggesting that there is an optimal concentration of ribosomes at which protein synthesis is maximal, and beyond which translational efficiency is impaired. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  17. Disassembly of yeast 80S ribosomes into subunits is a concerted action of ribosome-assisted folding of denatured protein.

    Science.gov (United States)

    Chakraborty, Biprashekhar; Bhakta, Sayan; Sengupta, Jayati

    2016-01-22

    It has been shown by several groups that ribosome can assist folding of denatured protein in vitro and the process is conserved across the species. Domain V of large ribosomal rRNA which occupies the intersubunit side of the large subunit was identified as the key player responsible for chaperoning the folding process. Thus, it is conceivable that denatured protein needs to access the intersubunit space of the ribosome in order to get folded. In this study, we have investigated the mechanism of release of the protein from the eukaryotic ribosome following reactivation. We have observed significant splitting of yeast 80S ribosome when incubated with the denatured BCAII protein. Energy-free disassembly mechanism functions in low Mg(+2) ion concentration for prokaryotic ribosomes. Eukaryotic ribosomes do not show significant splitting even at low Mg(+2) ion concentration. In this respect, denatured protein-induced disassembly of eukaryotic ribosome without the involvement of any external energy source is intriguing. For prokaryotic ribosomes, it was reported that the denatured protein induces ribosome splitting into subunits in order to access domain V-rRNA. In contrast, our results suggest an alternative mechanism for eukaryotic ribosomal rRNA-mediated protein folding and subsequent separation of the subunits by which release of the activated-protein occurs. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Analysis of ribosome biogenesis factor-modules in yeast cells depleted from pre-ribosomes.

    Science.gov (United States)

    Merl, Juliane; Jakob, Steffen; Ridinger, Katrin; Hierlmeier, Thomas; Deutzmann, Rainer; Milkereit, Philipp; Tschochner, Herbert

    2010-05-01

    Formation of eukaryotic ribosomes requires more than 150 biogenesis factors which transiently interact with the nascent ribosomal subunits. Previously, many pre-ribosomal intermediates could be distinguished by their protein composition and rRNA precursor (pre-rRNA) content. We purified complexes of ribosome biogenesis factors from yeast cells in which de novo synthesis of rRNA precursors was down-regulated by genetic means. We compared the protein composition of these largely pre-rRNA free assemblies with the one of analogous pre-ribosomal preparations by semi-quantitative mass spectrometry. The experimental setup minimizes the possibility that the analysed pre-rRNA free protein modules were derived from (partially) disrupted pre-ribosomal particles and provides thereby strong evidence for their pre-ribosome independent existence. In support of the validity of this approach (i) the predicted composition of the analysed protein modules was in agreement with previously described rRNA-free complexes and (ii) in most of the cases we could identify new candidate members of reported protein modules. An unexpected outcome of these analyses was that free large ribosomal subunits are associated with a specific set of ribosome biogenesis factors in cells where neo-production of nascent ribosomes was blocked. The data presented strengthen the idea that assembly of eukaryotic pre-ribosomal particles can result from transient association of distinct building blocks.

  19. Interrelationships between yeast ribosomal protein assembly events and transient ribosome biogenesis factors interactions in early pre-ribosomes.

    Science.gov (United States)

    Jakob, Steffen; Ohmayer, Uli; Neueder, Andreas; Hierlmeier, Thomas; Perez-Fernandez, Jorge; Hochmuth, Eduard; Deutzmann, Rainer; Griesenbeck, Joachim; Tschochner, Herbert; Milkereit, Philipp

    2012-01-01

    Early steps of eukaryotic ribosome biogenesis require a large set of ribosome biogenesis factors which transiently interact with nascent rRNA precursors (pre-rRNA). Most likely, concomitant with that initial contacts between ribosomal proteins (r-proteins) and ribosome precursors (pre-ribosomes) are established which are converted into robust interactions between pre-rRNA and r-proteins during the course of ribosome maturation. Here we analysed the interrelationship between r-protein assembly events and the transient interactions of ribosome biogenesis factors with early pre-ribosomal intermediates termed 90S pre-ribosomes or small ribosomal subunit (SSU) processome in yeast cells. We observed that components of the SSU processome UTP-A and UTP-B sub-modules were recruited to early pre-ribosomes independently of all tested r-proteins. On the other hand, groups of SSU processome components were identified whose association with early pre-ribosomes was affected by specific r-protein assembly events in the head-platform interface of the SSU. One of these components, Noc4p, appeared to be itself required for robust incorporation of r-proteins into the SSU head domain. Altogether, the data reveal an emerging network of specific interrelationships between local r-protein assembly events and the functional interactions of SSU processome components with early pre-ribosomes. They point towards some of these components being transient primary pre-rRNA in vivo binders and towards a role for others in coordinating the assembly of major SSU domains.

  20. The subcellular distribution of the human ribosomal "stalk" components: P1, P2 and P0 proteins

    DEFF Research Database (Denmark)

    Tchórzewski, Marek; Krokowski, Dawid; Rzeski, Wojciech

    2003-01-01

    The ribosomal "stalk" structure is a distinct lateral protuberance located on the large ribosomal subunit in prokaryotic, as well as in eukaryotic cells. In eukaryotes, this ribosomal structure is composed of the acidic ribosomal P proteins, forming two hetero-dimers (P1/P2) attached......-proteins that are not actively transported into the nucleus; moreover, this might imply that the "stalk" constituents are assembled onto the ribosomal particle at the very last step of ribosomal maturation, which takes part in the cell cytoplasm....

  1. Cryo-EM structure of the archaeal 50S ribosomal subunit in complex with initiation factor 6 and implications for ribosome evolution.

    Science.gov (United States)

    Greber, Basil J; Boehringer, Daniel; Godinic-Mikulcic, Vlatka; Crnkovic, Ana; Ibba, Michael; Weygand-Durasevic, Ivana; Ban, Nenad

    2012-05-04

    Translation of mRNA into proteins by the ribosome is universally conserved in all cellular life. The composition and complexity of the translation machinery differ markedly between the three domains of life. Organisms from the domain Archaea show an intermediate level of complexity, sharing several additional components of the translation machinery with eukaryotes that are absent in bacteria. One of these translation factors is initiation factor 6 (IF6), which associates with the large ribosomal subunit. We have reconstructed the 50S ribosomal subunit from the archaeon Methanothermobacter thermautotrophicus in complex with archaeal IF6 at 6.6 Å resolution using cryo-electron microscopy (EM). The structure provides detailed architectural insights into the 50S ribosomal subunit from a methanogenic archaeon through identification of the rRNA expansion segments and ribosomal proteins that are shared between this archaeal ribosome and eukaryotic ribosomes but are mostly absent in bacteria and in some archaeal lineages. Furthermore, the structure reveals that, in spite of highly divergent evolutionary trajectories of the ribosomal particle and the acquisition of novel functions of IF6 in eukaryotes, the molecular binding of IF6 on the ribosome is conserved between eukaryotes and archaea. The structure also provides a snapshot of the reductive evolution of the archaeal ribosome and offers new insights into the evolution of the translation system in archaea. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Eukaryotic plankton diversity in the sunlit ocean

    OpenAIRE

    Vargas, Colomban de; Audic, Stéphane; Henry, Nicolas; Decelle, Johan; Mahé, Frédéric; Logares, Ramiro; Lara, Enrique; Berney, Cédric; Le Bescot, Noan; Probert, Ian; Carmichael, Margaux; Poulain, Julie; Romac, Sarah; Colin, Sébastien; Aury, Jean-Marc

    2015-01-01

    Marine plankton support global biological and geochemical processes. Surveys of their biodiversity have hitherto been geographically restricted and have not accounted for the full range of plankton size. We assessed eukaryotic diversity from 334 size-fractionated photic-zone plankton communities collected across tropical and temperate oceans during the circumglobal Tara Oceans expedition. We analyzed 18S ribosomal DNA sequences across the intermediate plankton-size spectrum from the smallest ...

  3. Saccharomyces cerevisiae Ribosomal Protein L26 Is Not Essential for Ribosome Assembly and Function

    Science.gov (United States)

    Babiano, Reyes; Gamalinda, Michael

    2012-01-01

    Ribosomal proteins play important roles in ribosome biogenesis and function. Here, we study the evolutionarily conserved L26 in Saccharomyces cerevisiae, which assembles into pre-60S ribosomal particles in the nucle(ol)us. Yeast L26 is one of the many ribosomal proteins encoded by two functional genes. We have disrupted both genes; surprisingly, the growth of the resulting rpl26 null mutant is apparently identical to that of the isogenic wild-type strain. The absence of L26 minimally alters 60S ribosomal subunit biogenesis. Polysome analysis revealed the appearance of half-mers. Analysis of pre-rRNA processing indicated that L26 is mainly required to optimize 27S pre-rRNA maturation, without which the release of pre-60S particles from the nucle(ol)us is partially impaired. Ribosomes lacking L26 exhibit differential reactivity to dimethylsulfate in domain I of 25S/5.8S rRNAs but apparently are able to support translation in vivo with wild-type accuracy. The bacterial homologue of yeast L26, L24, is a primary rRNA binding protein required for 50S ribosomal subunit assembly in vitro and in vivo. Our results underscore potential differences between prokaryotic and eukaryotic ribosome assembly. We discuss the reasons why yeast L26 plays such an apparently nonessential role in the cell. PMID:22688513

  4. Active yeast ribosome preparation using monolithic anion exchange chromatography.

    Science.gov (United States)

    Munoz, Antonio M; Yourik, Paul; Rajagopal, Vaishnavi; Nanda, Jagpreet S; Lorsch, Jon R; Walker, Sarah E

    2017-02-01

    In vitro studies of translation provide critical mechanistic details, yet purification of large amounts of highly active eukaryotic ribosomes remains a challenge for biochemists and structural biologists. Here, we present an optimized method for preparation of highly active yeast ribosomes that could easily be adapted for purification of ribosomes from other species. The use of a nitrogen mill for cell lysis coupled with chromatographic purification of the ribosomes results in 10-fold-increased yield and less variability compared with the traditional approach, which relies on sedimentation through sucrose cushions. We demonstrate that these ribosomes are equivalent to those made using the traditional method in a host of in vitro assays, and that utilization of this new method will consistently produce high yields of active yeast ribosomes.

  5. In vivo labelling of functional ribosomes reveals spatial regulation during starvation in Podospora anserina

    Directory of Open Access Journals (Sweden)

    Silar Philippe

    2000-11-01

    Full Text Available Abstract Background To date, in eukaryotes, ribosomal protein expression is known to be regulated at the transcriptional and/or translational levels. But other forms of regulation may be possible. Results Here, we report the successful tagging of functional ribosomal particles with a S7-GFP chimaeric protein, making it possible to observe in vivo ribosome dynamics in the filamentous fungus Podospora anserina. Microscopic observations revealed a novel kind of ribosomal protein regulation during the passage between cell growth and stationary phases, with a transient accumulation of ribosomal proteins and/or ribosome subunits in the nucleus, possibly the nucleolus, being observed at the beginning of stationary phase. Conclusion Nuclear sequestration can be another level of ribosomal protein regulation in eukaryotic cells.This may contribute to the regulation of cell growth and division.

  6. Communities of microbial eukaryotes in the mammalian gut within the context of environmental eukaryotic diversity

    Energy Technology Data Exchange (ETDEWEB)

    Parfrey, Laura Wegener; Walters, William A.; Lauber, Christian L.; Clemente, Jose C.; Berg-Lyons, Donna; Teiling, Clotilde; Kodira, Chinnappa; Mohiuddin, Mohammed; Brunelle, Julie; Driscoll, Mark; Fierer, Noah; Gilbert, Jack A.; Knight, Rob

    2014-06-19

    Eukaryotic microbes (protists) residing in the vertebrate gut influence host health and disease, but their diversity and distribution in healthy hosts is poorly understood. Protists found in the gut are typically considered parasites, but many are commensal and some are beneficial. Further, the hygiene hypothesis predicts that association with our co-evolved microbial symbionts may be important to overall health. It is therefore imperative that we understand the normal diversity of our eukaryotic gut microbiota to test for such effects and avoid eliminating commensal organisms. We assembled a dataset of healthy individuals from two populations, one with traditional, agrarian lifestyles and a second with modern, westernized lifestyles, and characterized the human eukaryotic microbiota via high-throughput sequencing. To place the human gut microbiota within a broader context our dataset also includes gut samples from diverse mammals and samples from other aquatic and terrestrial environments. We curated the SILVA ribosomal database to reflect current knowledge of eukaryotic taxonomy and employ it as a phylogenetic framework to compare eukaryotic diversity across environment. We show that adults from the non-western population harbor a diverse community of protists, and diversity in the human gut is comparable to that in other mammals. However, the eukaryotic microbiota of the western population appears depauperate. The distribution of symbionts found in mammals reflects both host phylogeny and diet. Eukaryotic microbiota in the gut are less diverse and more patchily distributed than bacteria. More broadly, we show that eukaryotic communities in the gut are less diverse than in aquatic and terrestrial habitats, and few taxa are shared across habitat types, and diversity patterns of eukaryotes are correlated with those observed for bacteria. These results outline the distribution and diversity of microbial eukaryotic communities in the mammalian gut and across

  7. Crystal structures of ribosome anti-association factor IF6.

    Science.gov (United States)

    Groft, C M; Beckmann, R; Sali, A; Burley, S K

    2000-12-01

    Ribosome anti-association factor eIF6 (originally named according to translation initiation terminology as eukaryotic initiation factor 6) binds to the large ribosomal subunit, thereby preventing inappropriate interactions with the small subunit during initiation of protein synthesis. We have determined the X-ray structures of two IF6 homologs, Methanococcus jannaschii archaeal aIF6 and Sacchromyces cerevisiae eIF6, revealing a phylogenetically conserved 25 kDa protein consisting of five quasi identical alpha/beta subdomains arrayed about a five-fold axis of pseudosymmetry. Yeast eIF6 prevents ribosomal subunit association. Comparative protein structure modeling with other known archaeal and eukaryotic homologs demonstrated the presence of two conserved surface regions, one or both of which may bind the large ribosomal subunit.

  8. The emerging roles of inositol pyrophosphates in eukaryotic cell ...

    Indian Academy of Sciences (India)

    These energy-rich small molecules are present in all eukaryotic cells, from yeast to mammals, and are involved in a wide range of cellular functions including apoptosis, vesicle trafficking, DNA repair, osmoregulation, phosphate homeostasis, insulin sensitivity, immune signalling, cell cycle regulation, and ribosome ...

  9. Morphological and ecological complexity in early eukaryotic ecosystems.

    Science.gov (United States)

    Javaux, E J; Knoll, A H; Walter, M R

    2001-07-05

    Molecular phylogeny and biogeochemistry indicate that eukaryotes differentiated early in Earth history. Sequence comparisons of small-subunit ribosomal RNA genes suggest a deep evolutionary divergence of Eukarya and Archaea; C27-C29 steranes (derived from sterols synthesized by eukaryotes) and strong depletion of 13C (a biogeochemical signature of methanogenic Archaea) in 2,700 Myr old kerogens independently place a minimum age on this split. Steranes, large spheroidal microfossils, and rare macrofossils of possible eukaryotic origin occur in Palaeoproterozoic rocks. Until now, however, evidence for morphological and taxonomic diversification within the domain has generally been restricted to very late Mesoproterozoic and Neoproterozoic successions. Here we show that the cytoskeletal and ecological prerequisites for eukaryotic diversification were already established in eukaryotic microorganisms fossilized nearly 1,500 Myr ago in shales of the early Mesoproterozoic Roper Group in northern Australia.

  10. Ribosome profiling: a Hi-Def monitor for protein synthesis at the genome-wide scale

    Science.gov (United States)

    Michel, Audrey M; Baranov, Pavel V

    2013-01-01

    Ribosome profiling or ribo-seq is a new technique that provides genome-wide information on protein synthesis (GWIPS) in vivo. It is based on the deep sequencing of ribosome protected mRNA fragments allowing the measurement of ribosome density along all RNA molecules present in the cell. At the same time, the high resolution of this technique allows detailed analysis of ribosome density on individual RNAs. Since its invention, the ribosome profiling technique has been utilized in a range of studies in both prokaryotic and eukaryotic organisms. Several studies have adapted and refined the original ribosome profiling protocol for studying specific aspects of translation. Ribosome profiling of initiating ribosomes has been used to map sites of translation initiation. These studies revealed the surprisingly complex organization of translation initiation sites in eukaryotes. Multiple initiation sites are responsible for the generation of N-terminally extended and truncated isoforms of known proteins as well as for the translation of numerous open reading frames (ORFs), upstream of protein coding ORFs. Ribosome profiling of elongating ribosomes has been used for measuring differential gene expression at the level of translation, the identification of novel protein coding genes and ribosome pausing. It has also provided data for developing quantitative models of translation. Although only a dozen or so ribosome profiling datasets have been published so far, they have already dramatically changed our understanding of translational control and have led to new hypotheses regarding the origin of protein coding genes. © 2013 John Wiley & Sons, Ltd. PMID:23696005

  11. Translation with frameshifting of ribosome along mRNA transcript

    CERN Document Server

    Li, Jingwei

    2015-01-01

    Translation is an important process for prokaryotic and eukaryotic cells to produce necessary proteins for cell growth. Numerious experiments have been performed to explore the translational properties. Diverse models have also been developed to determine the biochemical mechanism of translation. However, to simplify the majority of the existing models, the frameshifting of ribosome along the mRNA transcript is neglected, which actually occurs in real cells and has been extensively experimentally studied. The frameshifting of ribosome evidently influences the efficiency and speed of translation, considering that the peptide chains synthesized by shifted ribosomes will not fold into functional proteins and will degrade rapidly. In this study, a theoretical model is presented to describe the translational process based on the model for totally asymmetric simple exclusion process. In this model, the frameshifting of the ribosome along the mRNA transcript and the attachment/detachment of the ribosome to/from the ...

  12. A Long Noncoding RNA on the Ribosome Is Required for Lifespan Extension

    NARCIS (Netherlands)

    Essers, Paul B.; Nonnekens, Julie; Goos, Yvonne J.; Betist, Marco C.|info:eu-repo/dai/nl/304073202; Viester, Marjon D.; Mossink, Britt; Lansu, Nico; Korswagen, Hendrik C.; Jelier, Rob; Brenkman, Arjan B.; MacInnes, Alyson W.|info:eu-repo/dai/nl/338681388

    2015-01-01

    The biogenesis of ribosomes and their coordination of protein translation consume an enormous amount of cellular energy. As such, it has been established that the inhibition of either process can extend eukaryotic lifespan. Here, we used next-generation sequencing to compare ribosome-associated RNAs

  13. Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean.

    Science.gov (United States)

    de Vargas, Colomban; Audic, Stéphane; Henry, Nicolas; Decelle, Johan; Mahé, Frédéric; Logares, Ramiro; Lara, Enrique; Berney, Cédric; Le Bescot, Noan; Probert, Ian; Carmichael, Margaux; Poulain, Julie; Romac, Sarah; Colin, Sébastien; Aury, Jean-Marc; Bittner, Lucie; Chaffron, Samuel; Dunthorn, Micah; Engelen, Stefan; Flegontova, Olga; Guidi, Lionel; Horák, Aleš; Jaillon, Olivier; Lima-Mendez, Gipsi; Lukeš, Julius; Malviya, Shruti; Morard, Raphael; Mulot, Matthieu; Scalco, Eleonora; Siano, Raffaele; Vincent, Flora; Zingone, Adriana; Dimier, Céline; Picheral, Marc; Searson, Sarah; Kandels-Lewis, Stefanie; Acinas, Silvia G; Bork, Peer; Bowler, Chris; Gorsky, Gabriel; Grimsley, Nigel; Hingamp, Pascal; Iudicone, Daniele; Not, Fabrice; Ogata, Hiroyuki; Pesant, Stephane; Raes, Jeroen; Sieracki, Michael E; Speich, Sabrina; Stemmann, Lars; Sunagawa, Shinichi; Weissenbach, Jean; Wincker, Patrick; Karsenti, Eric

    2015-05-22

    Marine plankton support global biological and geochemical processes. Surveys of their biodiversity have hitherto been geographically restricted and have not accounted for the full range of plankton size. We assessed eukaryotic diversity from 334 size-fractionated photic-zone plankton communities collected across tropical and temperate oceans during the circumglobal Tara Oceans expedition. We analyzed 18S ribosomal DNA sequences across the intermediate plankton-size spectrum from the smallest unicellular eukaryotes (protists, >0.8 micrometers) to small animals of a few millimeters. Eukaryotic ribosomal diversity saturated at ~150,000 operational taxonomic units, about one-third of which could not be assigned to known eukaryotic groups. Diversity emerged at all taxonomic levels, both within the groups comprising the ~11,200 cataloged morphospecies of eukaryotic plankton and among twice as many other deep-branching lineages of unappreciated importance in plankton ecology studies. Most eukaryotic plankton biodiversity belonged to heterotrophic protistan groups, particularly those known to be parasites or symbiotic hosts. Copyright © 2015, American Association for the Advancement of Science.

  14. The Modular Adaptive Ribosome.

    Directory of Open Access Journals (Sweden)

    Anupama Yadav

    Full Text Available The ribosome is an ancient machine, performing the same function across organisms. Although functionally unitary, recent experiments suggest specialized roles for some ribosomal proteins. Our central thesis is that ribosomal proteins function in a modular fashion to decode genetic information in a context dependent manner. We show through large data analyses that although many ribosomal proteins are essential with consistent effect on growth in different conditions in yeast and similar expression across cell and tissue types in mice and humans, some ribosomal proteins are used in an environment specific manner. The latter set of variable ribosomal proteins further function in a coordinated manner forming modules, which are adapted to different environmental cues in different organisms. We show that these environment specific modules of ribosomal proteins in yeast have differential genetic interactions with other pathways and their 5'UTRs show differential signatures of selection in yeast strains, presumably to facilitate adaptation. Similarly, we show that in higher metazoans such as mice and humans, different modules of ribosomal proteins are expressed in different cell types and tissues. A clear example is nervous tissue that uses a ribosomal protein module distinct from the rest of the tissues in both mice and humans. Our results suggest a novel stratification of ribosomal proteins that could have played a role in adaptation, presumably to optimize translation for adaptation to diverse ecological niches and tissue microenvironments.

  15. cDNA, genomic sequence cloning and overexpression of ribosomal ...

    African Journals Online (AJOL)

    RPS16 of eukaryote is a component of the 40S small ribosomal subunit encoded by RPS16 gene and is also a homolog of prokaryotic RPS9. The cDNA and genomic sequence of RPS16 was cloned successfully for the first time from the Giant Panda (Ailuropoda melanoleuca) using reverse transcription-polymerase chain ...

  16. cDNA, genomic sequence cloning and overexpression of ribosomal ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... RPS20 is a component of the 40S small ribosomal subunit encoded by RPS20 gene, which is conserved between eukaryotes, prokaryotes and archaebacteria. The cDNA and the genomic sequence of RPS20 were cloned successfully from the Giant Panda (Ailuropoda melanoleuca) using RT-PCR ...

  17. Placeholder factors in ribosome biogenesis: please, pave my way

    Directory of Open Access Journals (Sweden)

    Francisco J. Espinar-Marchena

    2017-04-01

    Full Text Available The synthesis of cytoplasmic eukaryotic ribosomes is an extraordinarily energy-demanding cellular activity that occurs progressively from the nucleolus to the cytoplasm. In the nucleolus, precursor rRNAs associate with a myriad of trans-acting factors and some ribosomal proteins to form pre-ribosomal particles. These factors include snoRNPs, nucleases, ATPases, GTPases, RNA helicases, and a vast list of proteins with no predicted enzymatic activity. Their coordinate activity orchestrates in a spatiotemporal manner the modification and processing of precursor rRNAs, the rearrangement reactions required for the formation of productive RNA folding intermediates, the ordered assembly of the ribosomal proteins, and the export of pre-ribosomal particles to the cytoplasm; thus, providing speed, directionality and accuracy to the overall process of formation of translation-competent ribosomes. Here, we review a particular class of trans-acting factors known as “placeholders”. Placeholder factors temporarily bind selected ribosomal sites until these have achieved a structural context that is appropriate for exchanging the placeholder with another site-specific binding factor. By this strategy, placeholders sterically prevent premature recruitment of subsequently binding factors, premature formation of structures, avoid possible folding traps, and act as molecular clocks that supervise the correct progression of pre-ribosomal particles into functional ribosomal subunits. We summarize the current understanding of those factors that delay the assembly of distinct ribosomal proteins or subsequently bind key sites in pre-ribosomal particles. We also discuss recurrent examples of RNA-protein and protein-protein mimicry between rRNAs and/or factors, which have clear functional implications for the ribosome biogenesis pathway.

  18. Isolation of Plastid Ribosomes.

    Science.gov (United States)

    Yamaguchi, Kenichi

    2017-01-01

    Plastid ribosomes are responsible for a large part of the protein synthesis in plant leaves, green algal cells, and the vast majority in the thalli of red algae. Plastid translation is necessary not only for photosynthesis but also for development/differentiation of plants and algae. While some isolated plastid ribosomes from a few green lineages have been characterized by biochemical and proteomic approaches, in-depth proteomics including analyses of posttranslational modifications and processing, comparative proteomics of plastid ribosomes isolated from the cells grown under different conditions, and those from different taxa are still to be carried out. Establishment of isolation methods for pure plastid ribosomes from a wider range of species would be beneficial to study the relationship between structure, function, and evolution of plastid ribosomes. Here I describe methodologies and provide example protocols for extraction and isolation of plastid ribosomes from a unicellular green alga (Chlamydomonas reinhardtii), a land plant (Arabidopsis thaliana), and a marine red macroalga (Pyropia yezoensis).

  19. Ribosome Profiling in Maize.

    Science.gov (United States)

    Chotewutmontri, Prakitchai; Stiffler, Nicholas; Watkins, Kenneth P; Barkan, Alice

    2018-01-01

    Ribosome profiling (also known as Ribo-seq) provides a genome-wide, high-resolution, and quantitative accounting of mRNA segments that are occupied by ribosomes in vivo. The method has been used to address numerous questions in bacteria, yeast, and metazoa, but its application to questions in plant biology is just beginning. This chapter provides a detailed protocol for profiling ribosomes in plant leaf tissue. The method was developed and optimized with maize, but it has been used successfully with Arabidopsis and tobacco as well. The method captures ribosome footprints from the chloroplast and cytosol in the same preparation, but it is not optimal for detecting the footprints of mitochondrial ribosomes. The protocol is robust and simpler than many of the methods reported previously for ribosome profiling in plants.

  20. Ribosomal Chamber Music: Toward an Understanding of IRES Mechanisms.

    Science.gov (United States)

    Yamamoto, Hiroshi; Unbehaun, Anett; Spahn, Christian M T

    2017-08-01

    Internal initiation is a 5'-end-independent mode of translation initiation engaged by many virus- and putatively some cell-encoded templates. Internal initiation is facilitated by specific RNA tertiary folds, called internal ribosomal entry sites (IRESs), in the 5' untranslated region (UTR) of the respective transcripts. In this review we discuss recent structural insight into how established IRESs first capture and then manipulate the eukaryotic translation machinery through non-canonical interactions and by guiding the intrinsic conformational flexibility of the eukaryotic ribosome. Because IRESs operate with reduced complexity and constitute minimal systems of initiation, comparison with canonical initiation may allow common mechanistic principles of the ribosome to be delineated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Mechanism of eIF6-mediated inhibition of ribosomal subunit joining

    OpenAIRE

    Gartmann, M.; Blau, M.; Armache, J.; Mielke, T.; Topf, M.; Beckmann, R.

    2010-01-01

    During the process of ribosomal assembly, the essential eukaryotic translation initiation factor 6 (eIF6) is known to act as a ribosomal anti-association factor. However, a molecular understanding of the anti-association activity of eIF6 is still missing. Here we present the cryo-electron microscopy reconstruction of a complex of the large ribosomal subunit with eukaryotic eIF6 from Saccharomyces cerevisiae. The structure reveals that the eIF6 binding site involves mainly rpL23 (L14p in Esche...

  2. Ribosome biogenesis and cancer.

    Science.gov (United States)

    Derenzini, Massimo; Montanaro, Lorenzo; Trerè, Davide

    2017-04-01

    There is growing evidence indicating that the human pathological conditions characterized by an up-regulated ribosome biogenesis are at an increased risk of cancer onset. At the basis of this relationship is the close interconnection between the ribosome biogenesis and cell proliferation. Cell proliferation-stimulating factors also stimulate ribosome production, while the ribosome biogenesis rate controls the cell cycle progression. The major tumour suppressor, the p53 protein, plays an important balancing role between the ribosome biogenesis rate and the cell progression through the cell cycle phases. The perturbation of ribosome biogenesis stabilizes and activates p53, with a consequent cell cycle arrest and/or apoptotic cell death, whereas an up-regulated ribosome production down-regulates p53 expression and activity, thus facilitating neoplastic transformation. In the present review we describe the interconnection between ribosome biogenesis and cell proliferation, while highlighting the mechanisms by which quantitative changes in ribosome biogenesis may induce cancer. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Analysis of gene order conservation in eukaryotes identifies transcriptionally and functionally linked genes.

    Directory of Open Access Journals (Sweden)

    Marcela Dávila López

    Full Text Available The order of genes in eukaryotes is not entirely random. Studies of gene order conservation are important to understand genome evolution and to reveal mechanisms why certain neighboring genes are more difficult to separate during evolution. Here, genome-wide gene order information was compiled for 64 species, representing a wide variety of eukaryotic phyla. This information is presented in a browser where gene order may be displayed and compared between species. Factors related to non-random gene order in eukaryotes were examined by considering pairs of neighboring genes. The evolutionary conservation of gene pairs was studied with respect to relative transcriptional direction, intergenic distance and functional relationship as inferred by gene ontology. The results show that among gene pairs that are conserved the divergently and co-directionally transcribed genes are much more common than those that are convergently transcribed. Furthermore, highly conserved pairs, in particular those of fungi, are characterized by a short intergenic distance. Finally, gene pairs of metazoa and fungi that are evolutionary conserved and that are divergently transcribed are much more likely to be related by function as compared to poorly conserved gene pairs. One example is the ribosomal protein gene pair L13/S16, which is unusual as it occurs both in fungi and alveolates. A specific functional relationship between these two proteins is also suggested by the fact that they are part of the same operon in both eubacteria and archaea. In conclusion, factors associated with non-random gene order in eukaryotes include relative gene orientation, intergenic distance and functional relationships. It seems likely that certain pairs of genes are conserved because the genes involved have a transcriptional and/or functional relationship. The results also indicate that studies of gene order conservation aid in identifying genes that are related in terms of transcriptional

  4. Autophagy in unicellular eukaryotes

    NARCIS (Netherlands)

    Kiel, J.A.K.W.

    2010-01-01

    Cells need a constant supply of precursors to enable the production of macromolecules to sustain growth and survival. Unlike metazoans, unicellular eukaryotes depend exclusively on the extracellular medium for this supply. When environmental nutrients become depleted, existing cytoplasmic components

  5. Structural disorder in eukaryotes.

    Directory of Open Access Journals (Sweden)

    Rita Pancsa

    Full Text Available Based on early bioinformatic studies on a handful of species, the frequency of structural disorder of proteins is generally thought to be much higher in eukaryotes than in prokaryotes. To refine this view, we present here a comparative prediction study and analysis of 194 fully described eukaryotic proteomes and 87 reference prokaryotes for structural disorder. We found that structural disorder does distinguish eukaryotes from prokaryotes, but its frequency spans a very wide range in the two superkingdoms that largely overlap. The number of disordered binding regions and different Pfam domain types also contribute to distinguish eukaryotes from prokaryotes. Unexpectedly, the highest levels--and highest variability--of predicted disorder is found in protists, i.e. single-celled eukaryotes, often surpassing more complex eukaryote organisms, plants and animals. This trend contrasts with that of the number of domain types, which increases rather monotonously toward more complex organisms. The level of structural disorder appears to be strongly correlated with lifestyle, because some obligate intracellular parasites and endosymbionts have the lowest levels, whereas host-changing parasites have the highest level of predicted disorder. We conclude that protists have been the evolutionary hot-bed of experimentation with structural disorder, in a period when structural disorder was actively invented and the major functional classes of disordered proteins established.

  6. When ribosomes go bad: diseases of ribosome biogenesis.

    Science.gov (United States)

    Freed, Emily F; Bleichert, Franziska; Dutca, Laura M; Baserga, Susan J

    2010-03-01

    Ribosomes are vital for cell growth and survival. Until recently, it was believed that mutations in ribosomes or ribosome biogenesis factors would be lethal, due to the essential nature of these complexes. However, in the last few decades, a number of diseases of ribosome biogenesis have been discovered. It remains a challenge in the field to elucidate the molecular mechanisms underlying them.

  7. A ribosome without RNA

    Directory of Open Access Journals (Sweden)

    Harold S Bernhardt

    2015-11-01

    Full Text Available It was Francis Crick who first asked why the ribosome contains so much RNA, and discussed the implications of this for the direct flow of genetic information from DNA to protein. Remarkable advances in our understanding of the ribosome and protein synthesis, including the recent publication of two mammalian mitochondrial ribosome structures, have shed new light on this intriguing aspect of evolution in molecular biology. We examine here whether RNA is indispensable for coded protein synthesis, or whether an all-protein ‘ribosome’ (or ‘synthosome’ might be possible, with a protein enzyme catalyzing peptide synthesis, and release factor-like protein adaptors able to read a message composed of deoxyribonucleotides. We also compare the RNA world hypothesis with the alternative ‘proteins first’ hypothesis in terms of their different understandings of the evolution of the ribosome, and whether this might have been preceded by an ancestral form of nonribosomal peptide synthesis catalyzed by protein enzymes.

  8. Comparative genomics of Eukaryotes

    NARCIS (Netherlands)

    Noort, Vera van

    2007-01-01

    This thesis focuses on developing comparative genomics methods in eukaryotes, with an emphasis on applications for gene function prediction and regulatory element detection. In the past, methods have been developed to predict functional associations between gene pairs in prokaryotes. The challenge

  9. Precambrian Skeletonized Microbial Eukaryotes

    Science.gov (United States)

    Lipps, Jere H.

    2017-04-01

    Skeletal heterotrophic eukaryotes are mostly absent from the Precambrian, although algal eukaryotes appear about 2.2 billion years ago. Tintinnids, radiolaria and foraminifera have molecular origins well back into the Precambrian yet no representatives of these groups are known with certainty in that time. These data infer times of the last common ancestors, not the appearance of true representatives of these groups which may well have diversified or not been preserved since those splits. Previous reports of these groups in the Precambrian are misinterpretations of other objects in the fossil record. Reported tintinnids at 1600 mya from China are metamorphic shards or mineral artifacts, the many specimens from 635-715 mya in Mongolia may be eukaryotes but they are not tintinnids, and the putative tintinnids at 580 mya in the Doushantou formation of China are diagenetic alterations of well-known acritarchs. The oldest supposed foraminiferan is Titanotheca from 550 to 565 mya rocks in South America and Africa is based on the occurrence of rutile in the tests and in a few modern agglutinated foraminifera, as well as the agglutinated tests. Neither of these nor the morphology are characteristic of foraminifera; hence these fossils remain as indeterminate microfossils. Platysolenites, an agglutinated tube identical to the modern foraminiferan Bathysiphon, occurs in the latest Neoproterozoic in Russia, Canada, and the USA (California). Some of the larger fossils occurring in typical Ediacaran (late Neoproterozoic) assemblages may be xenophyophorids (very large foraminifera), but the comparison is disputed and flawed. Radiolaria, on occasion, have been reported in the Precambrian, but the earliest known clearly identifiable ones are in the Cambrian. The only certain Precambrian heterotrophic skeletal eukaryotes (thecamoebians) occur in fresh-water rocks at about 750 mya. Skeletonized radiolaria and foraminifera appear sparsely in the Cambrian and radiate in the Ordovician

  10. Transition state analogues rescue ribosomes from saporin-L1 ribosome inactivating protein.

    Science.gov (United States)

    Sturm, Matthew B; Tyler, Peter C; Evans, Gary B; Schramm, Vern L

    2009-10-20

    Ribosome inactivating proteins (RIPs) catalyze the hydrolytic depurination of one or more adenosine residues from eukaryotic ribosomes. Depurination of the ribosomal sarcin-ricin tetraloop (GAGA) causes inhibition of protein synthesis and cellular death. We characterized the catalytic properties of saporin-L1 from Saponaria officinalis (soapwort) leaves, and it demonstrated robust activity against defined nucleic acid substrates and mammalian ribosomes. Transition state analogue mimics of small oligonucleotide substrates of saporin-L1 are powerful, slow-onset inhibitors when adenosine is replaced with the transition state mimic 9-deazaadenine-9-methylene-N-hydroxypyrrolidine (DADMeA). Linear, cyclic, and stem-loop oligonucleotide inhibitors containing DADMeA and based on the GAGA sarcin-ricin tetraloop gave slow-onset tight-binding inhibition constants (K(i)*) of 2.3-8.7 nM under physiological conditions and bind up to 40000-fold tighter than RNA substrates. Saporin-L1 inhibition of rabbit reticulocyte translation was protected by these inhibitors. Transition state analogues of saporin-L1 have potential in cancer therapy that employs saporin-L1-linked immunotoxins.

  11. The 100S ribosome: ribosomal hibernation induced by stress.

    Science.gov (United States)

    Yoshida, Hideji; Wada, Akira

    2014-01-01

    One of the most important cellular events in all organisms is protein synthesis (translation), which is catalyzed by ribosomes. The regulation of translational activity is dependent on the environmental situation of the cell. A decrease in overall translation under stress conditions is mainly accompanied by the formation of functionally inactive 100S ribosomes in bacteria. The 100S ribosome is a dimer of two 70S ribosomes that is formed through interactions between their 30S subunits. Two mechanisms of 100S ribosome formation are known: one involving ribosome modulation factor (RMF) and short hibernation promoting factor (HPF) in a part of Gammaproteobacteria including Escherichia coli, and the other involving only long HPF in the majority of bacteria. The expression of RMF is regulated by ppGpp and cyclic AMP-cAMP receptor protein (cAMP-CRP) induced by amino acid starvation and glucose depletion, respectively. When stress conditions are removed, the 100S ribosome immediately dissociates into the active 70S ribosomes by releasing RMF. The stage in the ribosome cycle at which the ribosome loses translational activity is referred to as 'Hibernation'. The lifetime of cells that cannot form 100S ribosomes by deletion of the rmf gene is shorter than that of parental cells under stress conditions in E. coli. This fact indicates that the interconversion system between active 70S ribosomes and inactive 100S ribosomes is an important survival strategy for bacteria. © 2014 John Wiley & Sons, Ltd.

  12. Mechanisms of In Vivo Ribosome Maintenance Change in Response to Nutrient Signals.

    Science.gov (United States)

    Mathis, Andrew D; Naylor, Bradley C; Carson, Richard H; Evans, Eric; Harwell, Justin; Knecht, Jared; Hexem, Eric; Peelor, Fredrick F; Miller, Benjamin F; Hamilton, Karyn L; Transtrum, Mark K; Bikman, Benjamin T; Price, John C

    2017-02-01

    Control of protein homeostasis is fundamental to the health and longevity of all organisms. Because the rate of protein synthesis by ribosomes is a central control point in this process, regulation, and maintenance of ribosome function could have amplified importance in the overall regulatory circuit. Indeed, ribosomal defects are commonly associated with loss of protein homeostasis, aging, and disease (1-4), whereas improved protein homeostasis, implying optimal ribosomal function, is associated with disease resistance and increased lifespan (5-7). To maintain a high-quality ribosome population within the cell, dysfunctional ribosomes are targeted for autophagic degradation. It is not known if complete degradation is the only mechanism for eukaryotic ribosome maintenance or if they might also be repaired by replacement of defective components. We used stable-isotope feeding and protein mass spectrometry to measure the kinetics of turnover of ribosomal RNA (rRNA) and 71 ribosomal proteins (r-proteins) in mice. The results indicate that exchange of individual proteins and whole ribosome degradation both contribute to ribosome maintenance in vivo In general, peripheral r-proteins and those with more direct roles in peptide-bond formation are replaced multiple times during the lifespan of the assembled structure, presumably by exchange with a free cytoplasmic pool, whereas the majority of r-proteins are stably incorporated for the lifetime of the ribosome. Dietary signals impact the rates of both new ribosome assembly and component exchange. Signal-specific modulation of ribosomal repair and degradation could provide a mechanistic link in the frequently observed associations among diminished rates of protein synthesis, increased autophagy, and greater longevity (5, 6, 8, 9). © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. RNase MRP and the RNA processing cascade in the eukaryotic ancestor.

    Science.gov (United States)

    Woodhams, Michael D; Stadler, Peter F; Penny, David; Collins, Lesley J

    2007-02-08

    Within eukaryotes there is a complex cascade of RNA-based macromolecules that process other RNA molecules, especially mRNA, tRNA and rRNA. An example is RNase MRP processing ribosomal RNA (rRNA) in ribosome biogenesis. One hypothesis is that this complexity was present early in eukaryotic evolution; an alternative is that an initial simpler network later gained complexity by gene duplication in lineages that led to animals, fungi and plants. Recently there has been a rapid increase in support for the complexity-early theory because the vast majority of these RNA-processing reactions are found throughout eukaryotes, and thus were likely to be present in the last common ancestor of living eukaryotes, herein called the Eukaryotic Ancestor. We present an overview of the RNA processing cascade in the Eukaryotic Ancestor and investigate in particular, RNase MRP which was previously thought to have evolved later in eukaryotes due to its apparent limited distribution in fungi and animals and plants. Recent publications, as well as our own genomic searches, find previously unknown RNase MRP RNAs, indicating that RNase MRP has a wide distribution in eukaryotes. Combining secondary structure and promoter region analysis of RNAs for RNase MRP, along with analysis of the target substrate (rRNA), allows us to discuss this distribution in the light of eukaryotic evolution. We conclude that RNase MRP can now be placed in the RNA-processing cascade of the Eukaryotic Ancestor, highlighting the complexity of RNA-processing in early eukaryotes. Promoter analyses of MRP-RNA suggest that regulation of the critical processes of rRNA cleavage can vary, showing that even these key cellular processes (for which we expect high conservation) show some species-specific variability. We present our consensus MRP-RNA secondary structure as a useful model for further searches.

  14. Ribosomal genes in focus

    Science.gov (United States)

    Koberna, Karel; Malínský, Jan; Pliss, Artem; Mašata, Martin; Večeřová, Jaromíra; Fialová, Markéta; Bednár, Jan; Raška, Ivan

    2002-01-01

    T he organization of transcriptionally active ribosomal genes in animal cell nucleoli is investigated in this study in order to address the long-standing controversy with regard to the intranucleolar localization of these genes. Detailed analyses of HeLa cell nucleoli include direct localization of ribosomal genes by in situ hybridization and their indirect localization via nascent ribosomal transcript mappings. On the light microscopy (LM) level, ribosomal genes map in 10–40 fluorescence foci per nucleus, and transcription activity is associated with most foci. We demonstrate that each nucleolar focus observed by LM corresponds, on the EM level, to an individual fibrillar center (FC) and surrounding dense fibrillar components (DFCs). The EM data identify the DFC as the nucleolar subcompartment in which rRNA synthesis takes place, consistent with detection of rDNA within the DFC. The highly sensitive method for mapping nascent transcripts in permeabilized cells on ultrastructural level provides intense and unambiguous clustered immunogold signal over the DFC, whereas very little to no label is detected over the FC. This signal is strongly indicative of nascent “Christmas trees” of rRNA associated with individual rDNA genes, sampled on the surface of thin sections. Stereological analysis of the clustered transcription signal further suggests that these Christmas trees may be contorted in space and exhibit a DNA compaction ratio on the order of 4–5.5. PMID:12034768

  15. Ribosomal Antibiotics: Contemporary Challenges

    Directory of Open Access Journals (Sweden)

    Tamar Auerbach-Nevo

    2016-06-01

    Full Text Available Most ribosomal antibiotics obstruct distinct ribosomal functions. In selected cases, in addition to paralyzing vital ribosomal tasks, some ribosomal antibiotics are involved in cellular regulation. Owing to the global rapid increase in the appearance of multi-drug resistance in pathogenic bacterial strains, and to the extremely slow progress in developing new antibiotics worldwide, it seems that, in addition to the traditional attempts at improving current antibiotics and the intensive screening for additional natural compounds, this field should undergo substantial conceptual revision. Here, we highlight several contemporary issues, including challenging the common preference of broad-range antibiotics; the marginal attention to alterations in the microbiome population resulting from antibiotics usage, and the insufficient awareness of ecological and environmental aspects of antibiotics usage. We also highlight recent advances in the identification of species-specific structural motifs that may be exploited for the design and the creation of novel, environmental friendly, degradable, antibiotic types, with a better distinction between pathogens and useful bacterial species in the microbiome. Thus, these studies are leading towards the design of “pathogen-specific antibiotics,” in contrast to the current preference of broad range antibiotics, partially because it requires significant efforts in speeding up the discovery of the unique species motifs as well as the clinical pathogen identification.

  16. Endosymbiotic theories for eukaryote origin.

    Science.gov (United States)

    Martin, William F; Garg, Sriram; Zimorski, Verena

    2015-09-26

    For over 100 years, endosymbiotic theories have figured in thoughts about the differences between prokaryotic and eukaryotic cells. More than 20 different versions of endosymbiotic theory have been presented in the literature to explain the origin of eukaryotes and their mitochondria. Very few of those models account for eukaryotic anaerobes. The role of energy and the energetic constraints that prokaryotic cell organization placed on evolutionary innovation in cell history has recently come to bear on endosymbiotic theory. Only cells that possessed mitochondria had the bioenergetic means to attain eukaryotic cell complexity, which is why there are no true intermediates in the prokaryote-to-eukaryote transition. Current versions of endosymbiotic theory have it that the host was an archaeon (an archaebacterium), not a eukaryote. Hence the evolutionary history and biology of archaea increasingly comes to bear on eukaryotic origins, more than ever before. Here, we have compiled a survey of endosymbiotic theories for the origin of eukaryotes and mitochondria, and for the origin of the eukaryotic nucleus, summarizing the essentials of each and contrasting some of their predictions to the observations. A new aspect of endosymbiosis in eukaryote evolution comes into focus from these considerations: the host for the origin of plastids was a facultative anaerobe. © 2015 The Authors.

  17. Endosymbiotic theories for eukaryote origin

    Science.gov (United States)

    Martin, William F.; Garg, Sriram; Zimorski, Verena

    2015-01-01

    For over 100 years, endosymbiotic theories have figured in thoughts about the differences between prokaryotic and eukaryotic cells. More than 20 different versions of endosymbiotic theory have been presented in the literature to explain the origin of eukaryotes and their mitochondria. Very few of those models account for eukaryotic anaerobes. The role of energy and the energetic constraints that prokaryotic cell organization placed on evolutionary innovation in cell history has recently come to bear on endosymbiotic theory. Only cells that possessed mitochondria had the bioenergetic means to attain eukaryotic cell complexity, which is why there are no true intermediates in the prokaryote-to-eukaryote transition. Current versions of endosymbiotic theory have it that the host was an archaeon (an archaebacterium), not a eukaryote. Hence the evolutionary history and biology of archaea increasingly comes to bear on eukaryotic origins, more than ever before. Here, we have compiled a survey of endosymbiotic theories for the origin of eukaryotes and mitochondria, and for the origin of the eukaryotic nucleus, summarizing the essentials of each and contrasting some of their predictions to the observations. A new aspect of endosymbiosis in eukaryote evolution comes into focus from these considerations: the host for the origin of plastids was a facultative anaerobe. PMID:26323761

  18. Ubiquitination of stalled ribosome triggers ribosome-associated quality control.

    Science.gov (United States)

    Matsuo, Yoshitaka; Ikeuchi, Ken; Saeki, Yasushi; Iwasaki, Shintaro; Schmidt, Christian; Udagawa, Tsuyoshi; Sato, Fumiya; Tsuchiya, Hikaru; Becker, Thomas; Tanaka, Keiji; Ingolia, Nicholas T; Beckmann, Roland; Inada, Toshifumi

    2017-07-31

    Translation arrest by polybasic sequences induces ribosome stalling, and the arrest product is degraded by the ribosome-mediated quality control (RQC) system. Here we report that ubiquitination of the 40S ribosomal protein uS10 by the E3 ubiquitin ligase Hel2 (or RQT1) is required for RQC. We identify a RQC-trigger (RQT) subcomplex composed of the RNA helicase-family protein Slh1/Rqt2, the ubiquitin-binding protein Cue3/Rqt3, and yKR023W/Rqt4 that is required for RQC. The defects in RQC of the RQT mutants correlate with sensitivity to anisomycin, which stalls ribosome at the rotated form. Cryo-electron microscopy analysis reveals that Hel2-bound ribosome are dominantly the rotated form with hybrid tRNAs. Ribosome profiling reveals that ribosomes stalled at the rotated state with specific pairs of codons at P-A sites serve as RQC substrates. Rqt1 specifically ubiquitinates these arrested ribosomes to target them to the RQT complex, allowing subsequent RQC reactions including dissociation of the stalled ribosome into subunits.Several protein quality control mechanisms are in place to trigger the rapid degradation of aberrant polypeptides and mRNAs. Here the authors describe a mechanism of ribosome-mediated quality control that involves the ubiquitination of ribosomal proteins by the E3 ubiquitin ligase Hel2/RQT1.

  19. Rational Extension of the Ribosome Biogenesis Pathway Using Network-Guided Genetics

    Science.gov (United States)

    Li, Zhihua; Lee, Insuk; Moradi, Emily; Hung, Nai-Jung; Johnson, Arlen W.; Marcotte, Edward M.

    2009-01-01

    Biogenesis of ribosomes is an essential cellular process conserved across all eukaryotes and is known to require >170 genes for the assembly, modification, and trafficking of ribosome components through multiple cellular compartments. Despite intensive study, this pathway likely involves many additional genes. Here, we employ network-guided genetics—an approach for associating candidate genes with biological processes that capitalizes on recent advances in functional genomic and proteomic studies—to computationally identify additional ribosomal biogenesis genes. We experimentally evaluated >100 candidate yeast genes in a battery of assays, confirming involvement of at least 15 new genes, including previously uncharacterized genes (YDL063C, YIL091C, YOR287C, YOR006C/TSR3, YOL022C/TSR4). We associate the new genes with specific aspects of ribosomal subunit maturation, ribosomal particle association, and ribosomal subunit nuclear export, and we identify genes specifically required for the processing of 5S, 7S, 20S, 27S, and 35S rRNAs. These results reveal new connections between ribosome biogenesis and mRNA splicing and add >10% new genes—most with human orthologs—to the biogenesis pathway, significantly extending our understanding of a universally conserved eukaryotic process. PMID:19806183

  20. Rational extension of the ribosome biogenesis pathway using network-guided genetics.

    Directory of Open Access Journals (Sweden)

    Zhihua Li

    2009-10-01

    Full Text Available Biogenesis of ribosomes is an essential cellular process conserved across all eukaryotes and is known to require >170 genes for the assembly, modification, and trafficking of ribosome components through multiple cellular compartments. Despite intensive study, this pathway likely involves many additional genes. Here, we employ network-guided genetics-an approach for associating candidate genes with biological processes that capitalizes on recent advances in functional genomic and proteomic studies-to computationally identify additional ribosomal biogenesis genes. We experimentally evaluated >100 candidate yeast genes in a battery of assays, confirming involvement of at least 15 new genes, including previously uncharacterized genes (YDL063C, YIL091C, YOR287C, YOR006C/TSR3, YOL022C/TSR4. We associate the new genes with specific aspects of ribosomal subunit maturation, ribosomal particle association, and ribosomal subunit nuclear export, and we identify genes specifically required for the processing of 5S, 7S, 20S, 27S, and 35S rRNAs. These results reveal new connections between ribosome biogenesis and mRNA splicing and add >10% new genes-most with human orthologs-to the biogenesis pathway, significantly extending our understanding of a universally conserved eukaryotic process.

  1. The cytoplasmic structure hypothesis for ribosome assembly, vertical inheritance, and phylogeny.

    Science.gov (United States)

    Thaler, David S

    2009-07-01

    Fundamental questions in evolution concern deep divisions in the living world and vertical versus horizontal information transfer. Two contrasting views are: (i) three superkingdoms Archaea, Eubacteria, and Eukarya based on vertical inheritance of genes encoding ribosomes; versus (ii) a prokaryotic/eukaryotic dichotomy with unconstrained horizontal gene transfer (HGT) among prokaryotes. Vertical inheritance implies continuity of cytoplasmic and structural information whereas HGT transfers only DNA. By hypothesis, HGT of the translation machinery is constrained by interaction between new ribosomal gene products and vertically inherited cytoplasmic structure made largely of preexisting ribosomes. Ribosomes differentially enhance the assembly of new ribosomes made from closely related genes and inhibit the assembly of products from more distal genes. This hypothesis suggests experiments for synthetic biology: the ability of synthetic genomes to "boot," i.e., establish hereditary continuity, will be constrained by the phylogenetic closeness of the cell "body" into which genomes are placed.

  2. Eukaryotic DNA Replication Fork.

    Science.gov (United States)

    Burgers, Peter M J; Kunkel, Thomas A

    2017-06-20

    This review focuses on the biogenesis and composition of the eukaryotic DNA replication fork, with an emphasis on the enzymes that synthesize DNA and repair discontinuities on the lagging strand of the replication fork. Physical and genetic methodologies aimed at understanding these processes are discussed. The preponderance of evidence supports a model in which DNA polymerase ε (Pol ε) carries out the bulk of leading strand DNA synthesis at an undisturbed replication fork. DNA polymerases α and δ carry out the initiation of Okazaki fragment synthesis and its elongation and maturation, respectively. This review also discusses alternative proposals, including cellular processes during which alternative forks may be utilized, and new biochemical studies with purified proteins that are aimed at reconstituting leading and lagging strand DNA synthesis separately and as an integrated replication fork.

  3. Ribosome Assembly as Antimicrobial Target

    Directory of Open Access Journals (Sweden)

    Rainer Nikolay

    2016-05-01

    Full Text Available Many antibiotics target the ribosome and interfere with its translation cycle. Since translation is the source of all cellular proteins including ribosomal proteins, protein synthesis and ribosome assembly are interdependent. As a consequence, the activity of translation inhibitors might indirectly cause defective ribosome assembly. Due to the difficulty in distinguishing between direct and indirect effects, and because assembly is probably a target in its own right, concepts are needed to identify small molecules that directly inhibit ribosome assembly. Here, we summarize the basic facts of ribosome targeting antibiotics. Furthermore, we present an in vivo screening strategy that focuses on ribosome assembly by a direct fluorescence based read-out that aims to identify and characterize small molecules acting as primary assembly inhibitors.

  4. Specialized yeast ribosomes: a customized tool for selective mRNA translation.

    Directory of Open Access Journals (Sweden)

    Johann W Bauer

    Full Text Available Evidence is now accumulating that sub-populations of ribosomes - so-called specialized ribosomes - can favour the translation of subsets of mRNAs. Here we use a large collection of diploid yeast strains, each deficient in one or other copy of the set of ribosomal protein (RP genes, to generate eukaryotic cells carrying distinct populations of altered 'specialized' ribosomes. We show by comparative protein synthesis assays that different heterologous mRNA reporters based on luciferase are preferentially translated by distinct populations of specialized ribosomes. These mRNAs include reporters carrying premature termination codons (PTC thus allowing us to identify specialized ribosomes that alter the efficiency of translation termination leading to enhanced synthesis of the wild-type protein. This finding suggests that these strains can be used to identify novel therapeutic targets in the ribosome. To explore this further we examined the translation of the mRNA encoding the extracellular matrix protein laminin β3 (LAMB3 since a LAMB3-PTC mutant is implicated in the blistering skin disease Epidermolysis bullosa (EB. This screen identified specialized ribosomes with reduced levels of RP L35B as showing enhanced synthesis of full-length LAMB3 in cells expressing the LAMB3-PTC mutant. Importantly, the RP L35B sub-population of specialized ribosomes leave both translation of a reporter luciferase carrying a different PTC and bulk mRNA translation largely unaltered.

  5. Tagging of functional ribosomes in living cells by HaloTag® technology.

    Science.gov (United States)

    Gallo, Simone; Beugnet, Anne; Biffo, Stefano

    2011-02-01

    Ribosomal proteins and ribosomal associated proteins are complicated subjects to target and study because of their high conservation through evolution which led to highly structured and regulated proteins. Tagging of ribosomal proteins may allow following of protein synthesis in vivo and isolating translated mRNAs. HaloTag® is a new technology which allows detection in living cells, biochemical purification, and localization studies. In the present work, we tested HaloTag®-based ribosomal tagging. We focused on eIF6 (eukaryotic Initiation Factor 6 free 60S ribosomal marker), RACK1 (Receptor for Activated C Kinase 1; 40S and polysomes, not nuclear), and rpS9 (40S ribosomes, both in the nucleus and in the cytoplasm). Experiments performed on HEK293 cells included ribosomal profiles and Western blot on the fractions, purification of HaloTag® proteins, and fluorescence with time-lapse microscopy. We show that tagged proteins can be incorporated on ribosomes and followed by time-lapse microscopy. eIF6 properly accumulates in the nucleolus, and it is redistributed upon actinomycin D treatment. RACK1 shows a specific cytoplasmic localization, whereas rpS9 is both nucleolar and cytoplasmic. However, efficiency of purification varies due to steric hindrances. In addition, the level of overexpression and degradation may vary upon different constructs. In summary, HaloTag® technology is highly suitable to ribosome tagging, but requires prior characterization for each construct.

  6. Expanding the eukaryotic genetic code

    Science.gov (United States)

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2013-01-22

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  7. Expanding the eukaryotic genetic code

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2017-02-28

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  8. Endosymbiosis and Eukaryotic Cell Evolution.

    Science.gov (United States)

    Archibald, John M

    2015-10-05

    Understanding the evolution of eukaryotic cellular complexity is one of the grand challenges of modern biology. It has now been firmly established that mitochondria and plastids, the classical membrane-bound organelles of eukaryotic cells, evolved from bacteria by endosymbiosis. In the case of mitochondria, evidence points very clearly to an endosymbiont of α-proteobacterial ancestry. The precise nature of the host cell that partnered with this endosymbiont is, however, very much an open question. And while the host for the cyanobacterial progenitor of the plastid was undoubtedly a fully-fledged eukaryote, how - and how often - plastids moved from one eukaryote to another during algal diversification is vigorously debated. In this article I frame modern views on endosymbiotic theory in a historical context, highlighting the transformative role DNA sequencing played in solving early problems in eukaryotic cell evolution, and posing key unanswered questions emerging from the age of comparative genomics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The role of eukaryotic translation initiation factor 6 in tumors

    OpenAIRE

    Zhu, Wei; Li, Gui Xian; Chen, Hong Lang; Liu, Xing Yan

    2017-01-01

    Eukaryotic translation initiation factor 6 (eIF6) affects the maturation of 60S ribosomal subunits. Found in yeast and mammalian cells, eIF6 is primarily located in the cytoplasm of mammalian cells. Emerging evidence has demonstrated that the dysregulated expression of eIF6 is important in several types of human cancer, including head and neck carcinoma, colorectal cancer, non-small cell lung cancer and ovarian serous adenocarcinoma. However, the molecular mechanisms by which eIF6 functions d...

  10. The drug diazaborine blocks ribosome biogenesis by inhibiting the AAA-ATPase Drg1

    NARCIS (Netherlands)

    Loibl, M.; Klein, I; Prattes, M.; Schmidt, C.; Kappel, L.; Zisser, G.; Gungl, A.; Krieger, E.; Pertschy, B.; Bergler, H.

    2014-01-01

    The drug diazaborine is the only known inhibitor of ribosome biogenesis and specifically blocks large subunit formation in eukaryotic cells. However, the target of this drug and the mechanism of inhibition were unknown. Here we identify the AAA-ATPase Drg1 as a target of diazaborine. Inhibitor

  11. Rrp15p, a novel component of pre-ribosomal particles required for 60S ribosome subunit maturation

    Science.gov (United States)

    DE MARCHIS, MARIA LAURA; GIORGI, ALESSANDRA; SCHININÀ, MARIA EUGENIA; BOZZONI, IRENE; FATICA, ALESSANDRO

    2005-01-01

    In eukaryotes ribosome biogenesis required that rRNAs primary transcripts are assembled in pre-ribosomal particles and processed. Protein factors and pre-ribosomal complexes involved in this complex pathway are not completely depicted. The essential ORF YPR143W encodes in yeast for an uncharacterized protein product, named here Rrp15p. Cellular function of Rrp15p has not so far defined even if nucleolar location was referred. With the aim to define the possible role of this orphan gene, we performed TAP-tagging of Rrp15p and investigated its molecular association with known pre-ribosomal complexes. Comparative sucrose gradient sedimentation analyses of yeast lysates expressing the TAP-tagged Rrp15p, strongly indicated that this protein is a component of the pre-60S particles. Northern hybridization, primer extension and functional proteomics on TAP-affinity isolated complexes proved that Rrp15p predominately associated with pre-rRNAs and proteins previously characterized as components of early pre-60S ribosomal particles. Finally, depletion of Rrp15p inhibited the accumulation of 27S and 7S pre-rRNAs and 5.8S and 25S mature rRNA. These results provide the first indication that Rrp15p is a novel factor involved in the early maturation steps of the 60S subunits. Moreover, the identification of the protein kinase CK2 in the Rrp15p-containing pre-ribosomal particles here reported, sustains the link between ribosome synthesis and cell cycle progression. PMID:15769876

  12. Eukaryotic DNA Replicases

    KAUST Repository

    Zaher, Manal S.

    2014-11-21

    The current model of the eukaryotic DNA replication fork includes three replicative DNA polymerases, polymerase α/primase complex (Pol α), polymerase δ (Pol δ), and polymerase ε (Pol ε). The primase synthesizes 8–12 nucleotide RNA primers that are extended by the DNA polymerization activity of Pol α into 30–35 nucleotide RNA-DNA primers. Replication factor C (RFC) opens the polymerase clamp-like processivity factor, proliferating cell nuclear antigen (PCNA), and loads it onto the primer-template. Pol δ utilizes PCNA to mediate highly processive DNA synthesis, while Pol ε has intrinsic high processivity that is modestly stimulated by PCNA. Pol ε replicates the leading strand and Pol δ replicates the lagging strand in a division of labor that is not strict. The three polymerases are comprised of multiple subunits and share unifying features in their large catalytic and B subunits. The remaining subunits are evolutionarily not related and perform diverse functions. The catalytic subunits are members of family B, which are distinguished by their larger sizes due to inserts in their N- and C-terminal regions. The sizes of these inserts vary among the three polymerases, and their functions remain largely unknown. Strikingly, the quaternary structures of Pol α, Pol δ, and Pol ε are arranged similarly. The catalytic subunits adopt a globular structure that is linked via its conserved C-terminal region to the B subunit. The remaining subunits are linked to the catalytic and B subunits in a highly flexible manner.

  13. Cytokinesis in eukaryotes.

    Science.gov (United States)

    Guertin, David A; Trautmann, Susanne; McCollum, Dannel

    2002-06-01

    Cytokinesis is the final event of the cell division cycle, and its completion results in irreversible partition of a mother cell into two daughter cells. Cytokinesis was one of the first cell cycle events observed by simple cell biological techniques; however, molecular characterization of cytokinesis has been slowed by its particular resistance to in vitro biochemical approaches. In recent years, the use of genetic model organisms has greatly advanced our molecular understanding of cytokinesis. While the outcome of cytokinesis is conserved in all dividing organisms, the mechanism of division varies across the major eukaryotic kingdoms. Yeasts and animals, for instance, use a contractile ring that ingresses to the cell middle in order to divide, while plant cells build new cell wall outward to the cortex. As would be expected, there is considerable conservation of molecules involved in cytokinesis between yeast and animal cells, while at first glance, plant cells seem quite different. However, in recent years, it has become clear that some aspects of division are conserved between plant, yeast, and animal cells. In this review we discuss the major recent advances in defining cytokinesis, focusing on deciding where to divide, building the division apparatus, and dividing. In addition, we discuss the complex problem of coordinating the division cycle with the nuclear cycle, which has recently become an area of intense research. In conclusion, we discuss how certain cells have utilized cytokinesis to direct development.

  14. [Obtaining ribosome crystals in homogenates].

    Science.gov (United States)

    Bersani, F; Longo, I; Fanti, M; Pettazzoni, P

    1979-08-30

    Chick embryos are homogenized in order to analyse ribosome crystallization. Ribosome crystallization has been induced by hypothermic treatment in chick embryos homogenate. Tetramers and crystals were produced by gradually inducing the temperature over a span of 10 h to 4 degrees C. It has been observed that the concentration of KCl in the buffer is a critical point. It is suggested that the nuclear fraction is engaged in ribosome crystallization.

  15. Nucleolus: The ribosome factory

    Czech Academy of Sciences Publication Activity Database

    Cmarko, Dušan; Šmigová, J.; Minichová, L.; Popov, Alexey

    2008-01-01

    Roč. 23, č. 10 (2008), s. 1291-1298 ISSN 0213-3911 R&D Projects: GA ČR(CZ) GA304/06/1691 Grant - others:Wellcome Trust(XE) 075834/04/Z; GA MŠk(CZ) LC535; GA ČR(CZ) GA304/06/1662 Program:LC Institutional research plan: CEZ:AV0Z50110509 Keywords : nucleolus * nucleolar architecture * ribosome biogenesis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.194, year: 2008

  16. Disruption of ribosome assembly in yeast blocks cotranscriptional pre-rRNA processing and affects the global hierarchy of ribosome biogenesis.

    Science.gov (United States)

    Talkish, Jason; Biedka, Stephanie; Jakovljevic, Jelena; Zhang, Jingyu; Tang, Lan; Strahler, John R; Andrews, Philip C; Maddock, Janine R; Woolford, John L

    2016-06-01

    In higher eukaryotes, pre-rRNA processing occurs almost exclusively post-transcriptionally. This is not the case in rapidly dividing yeast, as the majority of nascent pre-rRNAs are processed cotranscriptionally, with cleavage at the A2 site first releasing a pre-40S ribosomal subunit followed by release of a pre-60S ribosomal subunit upon transcription termination. Ribosome assembly is driven in part by hierarchical association of assembly factors and r-proteins. Groups of proteins are thought to associate with pre-ribosomes cotranscriptionally during early assembly steps, whereas others associate later, after transcription is completed. Here we describe a previously uncharacterized phenotype observed upon disruption of ribosome assembly, in which normally late-binding proteins associate earlier, with pre-ribosomes containing 35S pre-rRNA. As previously observed by many other groups, we show that disruption of 60S subunit biogenesis results in increased amounts of 35S pre-rRNA, suggesting that a greater fraction of pre-rRNAs are processed post-transcriptionally. Surprisingly, we found that early pre-ribosomes containing 35S pre-rRNA also contain proteins previously thought to only associate with pre-ribosomes after early pre-rRNA processing steps have separated maturation of the two subunits. We believe the shift to post-transcriptional processing is ultimately due to decreased cellular division upon disruption of ribosome assembly. When cells are grown under stress or to high density, a greater fraction of pre-rRNAs are processed post-transcriptionally and follow an alternative processing pathway. Together, these results affirm the principle that ribosome assembly occurs through different, parallel assembly pathways and suggest that there is a kinetic foot-race between the formation of protein binding sites and pre-rRNA processing events. © 2016 Talkish et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  17. Probing the interaction between NatA and the ribosome for co-translational protein acetylation.

    Science.gov (United States)

    Magin, Robert S; Deng, Sunbin; Zhang, Haibo; Cooperman, Barry; Marmorstein, Ronen

    2017-01-01

    N-terminal acetylation is among the most abundant protein modifications in eukaryotic cells. Over the last decade, significant progress has been made in elucidating the function of N-terminal acetylation for a number of diverse systems, involved in a wide variety of biological processes. The enzymes responsible for the modification are the N-terminal acetyltransferases (NATs). The NATs are a highly conserved group of enzymes in eukaryotes, which are responsible for acetylating over 80% of the soluble proteome in human cells. Importantly, many of these NATs act co-translationally; they interact with the ribosome near the exit tunnel and acetylate the nascent protein chain as it is being translated. While the structures of many of the NATs have been determined, the molecular basis for the interaction with ribosome is not known. Here, using purified ribosomes and NatA, a very well-studied NAT, we show that NatA forms a stable complex with the ribosome in the absence of other stabilizing factors and through two conserved regions; primarily through an N-terminal domain and an internal basic helix. These regions may orient the active site of the NatA to face the peptide emerging from the exit tunnel. This work provides a framework for understanding how NatA and potentially other NATs interact with the ribosome for co-translational protein acetylation and sets the foundation for future studies to decouple N-terminal acetyltransferase activity from ribosome association.

  18. Ribosome reinitiation can explain length-dependent translation of messenger RNA.

    Science.gov (United States)

    Rogers, David W; Böttcher, Marvin A; Traulsen, Arne; Greig, Duncan

    2017-06-01

    Models of mRNA translation usually presume that transcripts are linear; upon reaching the end of a transcript each terminating ribosome returns to the cytoplasmic pool before initiating anew on a different transcript. A consequence of linear models is that faster translation of a given mRNA is unlikely to generate more of the encoded protein, particularly at low ribosome availability. Recent evidence indicates that eukaryotic mRNAs are circularized, potentially allowing terminating ribosomes to preferentially reinitiate on the same transcript. Here we model the effect of ribosome reinitiation on translation and show that, at high levels of reinitiation, protein synthesis rates are dominated by the time required to translate a given transcript. Our model provides a simple mechanistic explanation for many previously enigmatic features of eukaryotic translation, including the negative correlation of both ribosome densities and protein abundance on transcript length, the importance of codon usage in determining protein synthesis rates, and the negative correlation between transcript length and both codon adaptation and 5' mRNA folding energies. In contrast to linear models where translation is largely limited by initiation rates, our model reveals that all three stages of translation-initiation, elongation, and termination/reinitiation-determine protein synthesis rates even at low ribosome availability.

  19. A comparative genomics study on the effect of individual amino acids on ribosome stalling

    Science.gov (United States)

    2015-01-01

    Background During protein synthesis, the nascent peptide chain emerges from the ribosome through the ribosomal exit tunnel. Biochemical interactions between the nascent peptide and the tunnel may stall the ribosome movement and thus affect the expression level of the protein being synthesized. Earlier studies focused on one model organism (S. cerevisiae), have suggested that certain amino acid sequences may be responsible for ribosome stalling; however, the stalling effect at the individual amino acid level across many organisms has not yet been quantified. Results By analyzing multiple ribosome profiling datasets from different organisms (including prokaryotes and eukaryotes), we report for the first time the organism-specific amino acids that significantly lead to ribosome stalling. We show that the identity of the stalling amino acids vary across the tree of life. In agreement with previous studies, we observed a remarkable stalling signal of proline and arginine in S. cerevisiae. In addition, our analysis supports the conjecture that the stalling effect of positively charged amino acids is not universal and that in certain conditions, negative charge may also induce ribosome stalling. Finally, we show that the beginning part of the tunnel tends to undergo more interactions with the translated amino acids than other positions along the tunnel. Conclusions The reported results support the conjecture that the ribosomal exit tunnel interacts with various amino acids and that the nature of these interactions varies among different organisms. Our findings should contribute towards better understanding of transcript and proteomic evolution and translation elongation regulation. PMID:26449596

  20. Exploring Ribosome Positioning on Translating Transcripts with Ribosome Profiling.

    Science.gov (United States)

    Spealman, Pieter; Wang, Hao; May, Gemma; Kingsford, Carl; McManus, C Joel

    2016-01-01

    Recent technological advances (e.g., microarrays and massively parallel sequencing) have facilitated genome-wide measurement of many aspects of gene regulation. Ribosome profiling is a high-throughput sequencing method used to measure gene expression at the level of translation. This is accomplished by quantifying both the number of translating ribosomes and their locations on mRNA transcripts. The inventors of this approach have published several methods papers detailing its implementation and addressing the basics of ribosome profiling data analysis. Here we describe our lab's procedure, which differs in some respects from those published previously. In addition, we describe a data analysis pipeline, Ribomap, for ribosome profiling data. Ribomap allocates sequence reads to alternative mRNA isoforms, normalizes sequencing bias along transcripts using RNA-seq data, and outputs count vectors of per-codon ribosome occupancy for each transcript.

  1. Protein-protein interactions within late pre-40S ribosomes.

    Directory of Open Access Journals (Sweden)

    Melody G Campbell

    2011-01-01

    Full Text Available Ribosome assembly in eukaryotic organisms requires more than 200 assembly factors to facilitate and coordinate rRNA transcription, processing, and folding with the binding of the ribosomal proteins. Many of these assembly factors bind and dissociate at defined times giving rise to discrete assembly intermediates, some of which have been partially characterized with regards to their protein and RNA composition. Here, we have analyzed the protein-protein interactions between the seven assembly factors bound to late cytoplasmic pre-40S ribosomes using recombinant proteins in binding assays. Our data show that these factors form two modules: one comprising Enp1 and the export adaptor Ltv1 near the beak structure, and the second comprising the kinase Rio2, the nuclease Nob1, and a regulatory RNA binding protein Dim2/Pno1 on the front of the head. The GTPase-like Tsr1 and the universally conserved methylase Dim1 are also peripherally connected to this second module. Additionally, in an effort to further define the locations for these essential proteins, we have analyzed the interactions between these assembly factors and six ribosomal proteins: Rps0, Rps3, Rps5, Rps14, Rps15 and Rps29. Together, these results and previous RNA-protein crosslinking data allow us to propose a model for the binding sites of these seven assembly factors. Furthermore, our data show that the essential kinase Rio2 is located at the center of the pre-ribosomal particle and interacts, directly or indirectly, with every other assembly factor, as well as three ribosomal proteins required for cytoplasmic 40S maturation. These data suggest that Rio2 could play a central role in regulating cytoplasmic maturation steps.

  2. Transcription Elongation by RNA Polymerase I Is Linked to Efficient rRNA Processing and Ribosome Assembly

    OpenAIRE

    Schneider, David A.; Michel, Antje; Sikes, Martha L.; Vu, Loan; Dodd, Jonathan A.; Salgia, Shilpa; Osheim, Yvonne N.; Beyer, Ann L.; Nomura, Masayasu

    2007-01-01

    The synthesis of ribosomes in eukaryotic cells is a complex process involving many nonribosomal protein factors and snoRNAs. In general, the processes of rRNA transcription and ribosome assembly are treated as temporally or spatially distinct. Here, we describe the identification of a point mutation in the second largest subunit of RNA polymerase I near the active center of the enzyme that results in an elongation-defective enzyme in the yeast Saccharomyces cerevisiae. In vivo, this mutant sh...

  3. The Eukaryotic Promoter Database (EPD)

    OpenAIRE

    Perier, R. C.; Praz, V; Junier, T; Bonnard, C.; Bucher, P

    2000-01-01

    The Eukaryotic Promoter Database (EPD) is an annotated non-redundant collection of eukaryotic POL II promoters for which the transcription start site has been determined experimentally. Access to promoter sequences is provided by pointers to positions in nucleotide sequence entries. The annotation part of an entry includes a description of the initiation site mapping data, exhaustive cross-references to the EMBL nucleotide sequence database, SWISS-PROT, TRANSFAC and other databases, as well a...

  4. Selection of scFvs specific for the HepG2 cell line using ribosome ...

    Indian Academy of Sciences (India)

    Madhsudhan

    Such a library would prove useful for direct intact cell panning using ribosome display technology. The selected scFv had a potential value for hepatocarcinoma treatment. [Zhou L, Mao W-P, Fen J, Liu H-Y, Wei C-J, Li W-X and Zhou F-Y 2009 Selection of scFvs specific for the HepG2 cell line using ribosome display;.

  5. Three distinct ribosome assemblies modulated by translation are the building blocks of polysomes

    Science.gov (United States)

    Lunelli, Lorenzo; Passerini, Andrea; Bianchini, Paolo; Gilbert, Robert J.; Bernabò, Paola; Tebaldi, Toma; Diaspro, Alberto; Pederzolli, Cecilia

    2015-01-01

    Translation is increasingly recognized as a central control layer of gene expression in eukaryotic cells. The overall organization of mRNA and ribosomes within polysomes, as well as the possible role of this organization in translation are poorly understood. Here we show that polysomes are primarily formed by three distinct classes of ribosome assemblies. We observe that these assemblies can be connected by naked RNA regions of the transcript. We show that the relative proportions of the three classes of ribosome assemblies reflect, and probably dictate, the level of translational activity. These results reveal the existence of recurrent supra-ribosomal building blocks forming polysomes and suggest the presence of unexplored translational controls embedded in the polysome structure. PMID:25713412

  6. Auditory Display

    DEFF Research Database (Denmark)

    volume. The conference's topics include auditory exploration of data via sonification and audification; real time monitoring of multivariate date; sound in immersive interfaces and teleoperation; perceptual issues in auditory display; sound in generalized computer interfaces; technologies supporting...... auditory display creation; data handling for auditory display systems; applications of auditory display....

  7. Eukaryotic richness in the abyss: insights from pyrotag sequencing.

    Directory of Open Access Journals (Sweden)

    Jan Pawlowski

    Full Text Available BACKGROUND: The deep sea floor is considered one of the most diverse ecosystems on Earth. Recent environmental DNA surveys based on clone libraries of rRNA genes confirm this observation and reveal a high diversity of eukaryotes present in deep-sea sediment samples. However, environmental clone-library surveys yield only a modest number of sequences with which to evaluate the diversity of abyssal eukaryotes. METHODOLOGY/PRINCIPAL FINDINGS: Here, we examined the richness of eukaryotic DNA in deep Arctic and Southern Ocean samples using massively parallel sequencing of the 18S ribosomal RNA (rRNA V9 hypervariable region. In very small volumes of sediments, ranging from 0.35 to 0.7 g, we recovered up to 7,499 unique sequences per sample. By clustering sequences having up to 3 differences, we observed from 942 to 1756 Operational Taxonomic Units (OTUs per sample. Taxonomic analyses of these OTUs showed that DNA of all major groups of eukaryotes is represented at the deep-sea floor. The dinoflagellates, cercozoans, ciliates, and euglenozoans predominate, contributing to 17%, 16%, 10%, and 8% of all assigned OTUs, respectively. Interestingly, many sequences represent photosynthetic taxa or are similar to those reported from the environmental surveys of surface waters. Moreover, each sample contained from 31 to 71 different metazoan OTUs despite the small sample volume collected. This indicates that a significant faction of the eukaryotic DNA sequences likely do not belong to living organisms, but represent either free, extracellular DNA or remains and resting stages of planktonic species. CONCLUSIONS/SIGNIFICANCE: In view of our study, the deep-sea floor appears as a global DNA repository, which preserves genetic information about organisms living in the sediment, as well as in the water column above it. This information can be used for future monitoring of past and present environmental changes.

  8. Depletion of the Signal Recognition Particle Receptor Inactivates Ribosomes in Escherichia coli▿

    Science.gov (United States)

    Bürk, Jonas; Weiche, Benjamin; Wenk, Meike; Boy, Diana; Nestel, Sigrun; Heimrich, Bernd; Koch, Hans-Georg

    2009-01-01

    The signal recognition particle (SRP)-dependent cotranslational targeting of proteins to the cytoplasmic membrane in bacteria or the endoplasmic reticulum membrane in eukaryotes is an essential process in most living organisms. Eukaryotic cells have been shown to respond to an impairment of the SRP pathway by (i) repressing ribosome biogenesis, resulting in decreased protein synthesis, and (ii) by increasing the expression of protein quality control mechanisms, such as chaperones and proteases. In the current study, we have analyzed how bacteria like Escherichia coli respond to a gradual depletion of FtsY, the bacterial SRP receptor. Our analyses using cell-free transcription/translation systems showed that FtsY depletion inhibits the translation of both SRP-dependent and SRP-independent proteins. This synthesis defect is the result of a multifaceted response that includes the upregulation of the ribosome-inactivating protein ribosome modulation factor (RMF). Although the consequences of these responses in E. coli are very similar to some of the effects also observed in eukaryotic cells, one striking difference is that E. coli obviously does not reduce the rate of protein synthesis by downregulating ribosome biogenesis. Instead, the upregulation of RMF leads to a direct and reversible inhibition of translation. PMID:19749044

  9. Ribosomes as molecular energy machines.

    Science.gov (United States)

    Kremen, A

    1994-10-07

    The idea that ribosomes operate as biological molecular energy machines offers an alternative description to that based on the assumption that the functionally important motions in ribosomes are only coupled to thermal degrees of freedom. The alternative model assumes that the energy gained in GTP cleavage generates in the ribosomal complex a localized metastable region temporarily not interacting with thermal motions. The metastable region may move along a definite pathway and in distinct sites promote irreversible logical operations involved in polypeptide biosynthesis. The new alternative represents a more complex and advanced algorithm offering advantages in speed, accuracy, more sophisticated control, and better resistance to various kinds of noise.

  10. Decoding Mammalian Ribosome-mRNA States by Translational GTPase Complexes.

    Science.gov (United States)

    Shao, Sichen; Murray, Jason; Brown, Alan; Taunton, Jack; Ramakrishnan, V; Hegde, Ramanujan S

    2016-11-17

    In eukaryotes, accurate protein synthesis relies on a family of translational GTPases that pair with specific decoding factors to decipher the mRNA code on ribosomes. We present structures of the mammalian ribosome engaged with decoding factor⋅GTPase complexes representing intermediates of translation elongation (aminoacyl-tRNA⋅eEF1A), termination (eRF1⋅eRF3), and ribosome rescue (Pelota⋅Hbs1l). Comparative analyses reveal that each decoding factor exploits the plasticity of the ribosomal decoding center to differentially remodel ribosomal proteins and rRNA. This leads to varying degrees of large-scale ribosome movements and implies distinct mechanisms for communicating information from the decoding center to each GTPase. Additional structural snapshots of the translation termination pathway reveal the conformational changes that choreograph the accommodation of decoding factors into the peptidyl transferase center. Our results provide a structural framework for how different states of the mammalian ribosome are selectively recognized by the appropriate decoding factor⋅GTPase complex to ensure translational fidelity. Copyright © 2016 MRC Laboratory of Molecular Biology. Published by Elsevier Inc. All rights reserved.

  11. A liaison between mTOR signaling, ribosome biogenesis and cancer.

    Science.gov (United States)

    Gentilella, Antonio; Kozma, Sara C; Thomas, George

    2015-07-01

    The ability to translate genetic information into functional proteins is considered a landmark in evolution. Ribosomes have evolved to take on this responsibility and, although there are some differences in their molecular make-up, both prokaryotes and eukaryotes share a common structural architecture and similar underlying mechanisms of protein synthesis. Understanding ribosome function and biogenesis has been the focus of extensive research since the early days of their discovery. In the last decade however, new and unexpected roles have emerged that place deregulated ribosome biogenesis and protein synthesis at the crossroads of pathological settings, particularly cancer, revealing a set of novel cellular checkpoints. Moreover, it is also becoming evident that mTOR signaling, which regulates an array of anabolic processes, including ribosome biogenesis, is often exploited by cancer cells to sustain proliferation through the upregulation of global protein synthesis. The use of pharmacological agents that interfere with ribosome biogenesis and mTOR signaling has proven to be an effective strategy to control cancer development clinically. Here we discuss the most recent findings concerning the underlying mechanisms by which mTOR signaling controls ribosome production and the potential impact of ribosome biogenesis in tumor development. This article is part of a Special Issue entitled: Translation and Cancer. Copyright © 2015. Published by Elsevier B.V.

  12. Human Cells Require Non-stop Ribosome Rescue Activity in Mitochondria.

    Science.gov (United States)

    Feaga, Heather A; Quickel, Michael D; Hankey-Giblin, Pamela A; Keiler, Kenneth C

    2016-03-01

    Bacteria use trans-translation and the alternative rescue factors ArfA (P36675) and ArfB (Q9A8Y3) to hydrolyze peptidyl-tRNA on ribosomes that stall near the 3' end of an mRNA during protein synthesis. The eukaryotic protein ICT1 (Q14197) is homologous to ArfB. In vitro ribosome rescue assays of human ICT1 and Caulobacter crescentus ArfB showed that these proteins have the same activity and substrate specificity. Both ArfB and ICT1 hydrolyze peptidyl-tRNA on nonstop ribosomes or ribosomes stalled with ≤6 nucleotides extending past the A site, but are unable to hydrolyze peptidyl-tRNA when the mRNA extends ≥14 nucleotides past the A site. ICT1 provided sufficient ribosome rescue activity to support viability in C. crescentus cells that lacked both trans-translation and ArfB. Likewise, expression of ArfB protected human cells from death when ICT1 was silenced with siRNA. These data indicate that ArfB and ICT1 are functionally interchangeable, and demonstrate that ICT1 is a ribosome rescue factor. Because ICT1 is essential in human cells, these results suggest that ribosome rescue activity in mitochondria is required in humans.

  13. The Mammalian Ribo-interactome Reveals Ribosome Functional Diversity and Heterogeneity.

    Science.gov (United States)

    Simsek, Deniz; Tiu, Gerald C; Flynn, Ryan A; Byeon, Gun W; Leppek, Kathrin; Xu, Adele F; Chang, Howard Y; Barna, Maria

    2017-06-01

    During eukaryotic evolution, ribosomes have considerably increased in size, forming a surface-exposed ribosomal RNA (rRNA) shell of unknown function, which may create an interface for yet uncharacterized interacting proteins. To investigate such protein interactions, we establish a ribosome affinity purification method that unexpectedly identifies hundreds of ribosome-associated proteins (RAPs) from categories including metabolism and cell cycle, as well as RNA- and protein-modifying enzymes that functionally diversify mammalian ribosomes. By further characterizing RAPs, we discover the presence of ufmylation, a metazoan-specific post-translational modification (PTM), on ribosomes and define its direct substrates. Moreover, we show that the metabolic enzyme, pyruvate kinase muscle (PKM), interacts with sub-pools of endoplasmic reticulum (ER)-associated ribosomes, exerting a non-canonical function as an RNA-binding protein in the translation of ER-destined mRNAs. Therefore, RAPs interconnect one of life's most ancient molecular machines with diverse cellular processes, providing an additional layer of regulatory potential to protein expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. DNA replication stress restricts ribosomal DNA copy number.

    Science.gov (United States)

    Salim, Devika; Bradford, William D; Freeland, Amy; Cady, Gillian; Wang, Jianmin; Pruitt, Steven C; Gerton, Jennifer L

    2017-09-01

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.

  15. DNA replication stress restricts ribosomal DNA copy number.

    Directory of Open Access Journals (Sweden)

    Devika Salim

    2017-09-01

    Full Text Available Ribosomal RNAs (rRNAs in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.

  16. Ribosome dynamics and the evolutionary history of ribosomes

    Science.gov (United States)

    Fox, George E.; Paci, Maxim; Tran, Quyen; Petrov, Anton S.; Williams, Loren D.

    2015-09-01

    The ribosome is a dynamic nanomachine responsible for coded protein synthesis. Its major subsystems were essentially in place at the time of the last universal common ancestor (LUCA). Ribosome evolutionary history thus potentially provides a window into the pre- LUCA world. This history begins with the origins of the peptidyl transferase center where the actual peptide is synthesized and then continues over an extended timeframe as additional functional centers including the GTPase center are added. The large ribosomal RNAs (rRNAs) have grown over time by an accretion process and a model exists that proposes a relative age of each accreted element. We have compared atomic resolution ribosome structures before and after EF-G bound GTP hydrolysis and thereby identified the location of 23 pivot points in the large rRNAs that facilitate ribosome dynamics. Pivots in small subunit helices h28 and h44 appear to be especially central to the process and according to the accretion model significantly older than the other helices containing pivots. Overall, the results suggest that ribosomal dynamics occurred in two phases. In the first phase, an inherently mobile h28/h44 combination provided the flexibility needed to create a dynamic ribosome that was essentially a Brownian machine. This addition likely made coded peptide synthesis possible by facilitating movement of a primitive mRNA. During the second phase, addition of pivoting elements and the creation of a factor binding site allowed the regulation of the inherent motion created by h28/h44. All of these events likely occurred before LUCA.

  17. Eukaryotic organisms in Proterozoic oceans.

    Science.gov (United States)

    Knoll, A H; Javaux, E J; Hewitt, D; Cohen, P

    2006-06-29

    The geological record of protists begins well before the Ediacaran and Cambrian diversification of animals, but the antiquity of that history, its reliability as a chronicle of evolution and the causal inferences that can be drawn from it remain subjects of debate. Well-preserved protists are known from a relatively small number of Proterozoic formations, but taphonomic considerations suggest that they capture at least broad aspects of early eukaryotic evolution. A modest diversity of problematic, possibly stem group protists occurs in ca 1800-1300 Myr old rocks. 1300-720 Myr fossils document the divergence of major eukaryotic clades, but only with the Ediacaran-Cambrian radiation of animals did diversity increase within most clades with fossilizable members. While taxonomic placement of many Proterozoic eukaryotes may be arguable, the presence of characters used for that placement is not. Focus on character evolution permits inferences about the innovations in cell biology and development that underpin the taxonomic and morphological diversification of eukaryotic organisms.

  18. Eukaryotic vs. cyanobacterial oxygenic photosynthesis

    OpenAIRE

    Schmelling, Nicolas

    2015-01-01

    Slides of my talk about the differences between eukaryotic and cyanobacterial oxygenic photosynthesis.  The talk is a more generell overview about the differences of the two systems. Slides and Figures are my own. For comments, questions and suggestions please contact me via twitter @derschmelling or via mail

  19. Neuron-Like Networks Between Ribosomal Proteins Within the Ribosome

    Science.gov (United States)

    Poirot, Olivier; Timsit, Youri

    2016-05-01

    From brain to the World Wide Web, information-processing networks share common scale invariant properties. Here, we reveal the existence of neural-like networks at a molecular scale within the ribosome. We show that with their extensions, ribosomal proteins form complex assortative interaction networks through which they communicate through tiny interfaces. The analysis of the crystal structures of 50S eubacterial particles reveals that most of these interfaces involve key phylogenetically conserved residues. The systematic observation of interactions between basic and aromatic amino acids at the interfaces and along the extension provides new structural insights that may contribute to decipher the molecular mechanisms of signal transmission within or between the ribosomal proteins. Similar to neurons interacting through “molecular synapses”, ribosomal proteins form a network that suggest an analogy with a simple molecular brain in which the “sensory-proteins” innervate the functional ribosomal sites, while the “inter-proteins” interconnect them into circuits suitable to process the information flow that circulates during protein synthesis. It is likely that these circuits have evolved to coordinate both the complex macromolecular motions and the binding of the multiple factors during translation. This opens new perspectives on nanoscale information transfer and processing.

  20. Structures and Ribosomal Interaction of Ribosome-Inactivating Proteins.

    Science.gov (United States)

    Shi, Wei-Wei; Mak, Amanda Nga-Sze; Wong, Kam-Bo; Shaw, Pang-Chui

    2016-11-21

    Ribosome-inactivating proteins (RIPs) including ricin, Shiga toxin, and trichosanthin, are RNA N-glycosidases that depurinate a specific adenine residue (A-4324 in rat 28S ribosomal RNA, rRNA) in the conserved α-sarcin/ricin loop (α-SRL) of rRNA. RIPs are grouped into three types according to the number of subunits and the organization of the precursor sequences. RIPs are two-domain proteins, with the active site located in the cleft between the N- and C-terminal domains. It has been found that the basic surface residues of the RIPs promote rapid and specific targeting to the ribosome and a number of RIPs have been shown to interact with the C-terminal regions of the P proteins of the ribosome. At present, the structural basis for the interaction of trichosanthin and ricin-A chain toward P2 peptide is known. This review surveys the structural features of the representative RIPs and discusses how they approach and interact with the ribosome.

  1. In vitro integration of ribosomal RNA synthesis, ribosome assembly, and translation

    National Research Council Canada - National Science Library

    Jewett, Michael C; Fritz, Brian R; Timmerman, Laura E; Church, George M

    ...‐step co‐activation of rRNA transcription, assembly of transcribed rRNA with native ribosomal proteins into functional ribosomes, and synthesis of active protein by these ribosomes in the same compartment...

  2. Dynamic evolution of mitochondrial ribosomal proteins in Holozoa.

    Science.gov (United States)

    Scheel, Bettina M; Hausdorf, Bernhard

    2014-07-01

    We studied the highly dynamic evolution of mitochondrial ribosomal proteins (MRPs) in Holozoa. Most major clades within Holozoa are characterized by gains and/or losses of MRPs. The usefulness of gains of MRPs as rare genomic changes in phylogenetics is undermined by the high frequency of secondary losses. However, phylogenetic analyses of the MRP sequences provide evidence for the Acrosomata hypothesis, a sister group relationship between Ctenophora and Bilateria. An extensive restructuring of the mitochondrial genome and, as a consequence, of the mitochondrial ribosomes occurred in the ancestor of metazoans. The last MRP genes encoded in the mitochondrial genome were either moved to the nuclear genome or were lost. The strong decrease in size of the mitochondrial genome was probably caused by selection for rapid replication of mitochondrial DNA during oogenesis in the metazoan ancestor. A phylogenetic analysis of MRPL56 sequences provided evidence for a horizontal gene transfer of the corresponding MRP gene between metazoans and Dictyostelidae (Amoebozoa). The hypothesis that the requisition of additional MRPs compensated for a loss of rRNA segments in the mitochondrial ribosomes is corroborated by a significant negative correlation between the number of MRPs and length of the rRNA. Newly acquired MRPs evolved faster than bacterial MRPs and positions in eukaryote-specific MRPs were more strongly affected by coevolution than positions in prokaryotic MRPs in accordance with the necessity to fit these proteins into the pre-existing structure of the mitoribosome. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Heterologous production of non-ribosomal peptide LLD-ACV in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Siewers, Verena; Chen, Xiao; Huang, Le

    2009-01-01

    Non-ribosomal peptides (NRPs) are a diverse family of secondary metabolites with a broad range of biological activities. We started to develop an eukaryotic microbial platform based on the yeast Saccharomyces cerevisiae for heterologous production of NRPs using δ-(l-α-aminoadipyl)–l-cysteinyl–d-v......Non-ribosomal peptides (NRPs) are a diverse family of secondary metabolites with a broad range of biological activities. We started to develop an eukaryotic microbial platform based on the yeast Saccharomyces cerevisiae for heterologous production of NRPs using δ......-(l-α-aminoadipyl)–l-cysteinyl–d-valine (ACV) as a model NRP. The Penicillium chrysogenum gene pcbAB encoding ACV synthetase was expressed in S. cerevisiae from a high-copy plasmid together with phosphopantetheinyl transferase (PPTase) encoding genes from Aspergillus nidulans, P. chrysogenum and Bacillus subtilis, and in all the three cases...

  4. Gonococcal attachment to eukaryotic cells

    Energy Technology Data Exchange (ETDEWEB)

    James, J.F.; Lammel, C.J.; Draper, D.L.; Brown, D.A.; Sweet, R.L.; Brooks, G.F.

    The attachment of Neisseria gonorrhoeae to eukaryotic cells grown in tissue culture was analyzed by use of light and electron microscopy and by labeling of the bacteria with (/sup 3/H)- and (/sup 14/C)adenine. Isogenic piliated and nonpiliated N. gonorrhoeae from opaque and transparent colonies were studied. The results of light microscopy studies showed that the gonococci attached to cells of human origin, including Flow 2000, HeLa 229, and HEp 2. Studies using radiolabeled gonococci gave comparable results. Piliated N. gonorrhoeae usually attached in larger numbers than nonpiliated organisms, and those from opaque colonies attached more often than isogenic variants from transparent colonies. Day-to-day variation in rate of attachment was observed. Scanning electron microscopy studies showed the gonococcal attachment to be specific for microvilli of the host cells. It is concluded that more N. gonorrhoeae from opaque colonies, as compared with isogenic variants from transparent colonies, attach to eukaryotic cells grown in tissue culture.

  5. Cryo-EM structures of the 80S ribosomes from human parasites Trichomonas vaginalis and Toxoplasma gondii.

    Science.gov (United States)

    Li, Zhifei; Guo, Qiang; Zheng, Lvqin; Ji, Yongsheng; Xie, Yi-Ting; Lai, De-Hua; Lun, Zhao-Rong; Suo, Xun; Gao, Ning

    2017-10-01

    As an indispensable molecular machine universal in all living organisms, the ribosome has been selected by evolution to be the natural target of many antibiotics and small-molecule inhibitors. High-resolution structures of pathogen ribosomes are crucial for understanding the general and unique aspects of translation control in disease-causing microbes. With cryo-electron microscopy technique, we have determined structures of the cytosolic ribosomes from two human parasites, Trichomonas vaginalis and Toxoplasma gondii, at resolution of 3.2-3.4 Å. Although the ribosomal proteins from both pathogens are typical members of eukaryotic families, with a co-evolution pattern between certain species-specific insertions/extensions and neighboring ribosomal RNA (rRNA) expansion segments, the sizes of their rRNAs are sharply different. Very interestingly, rRNAs of T. vaginalis are in size comparable to prokaryotic counterparts, with nearly all the eukaryote-specific rRNA expansion segments missing. These structures facilitate the dissection of evolution path for ribosomal proteins and RNAs, and may aid in design of novel translation inhibitors.

  6. Ribosome Collision Is Critical for Quality Control during No-Go Decay.

    Science.gov (United States)

    Simms, Carrie L; Yan, Liewei L; Zaher, Hani S

    2017-10-19

    No-go decay (NGD) is a eukaryotic quality control mechanism that evolved to cope with translational arrests. The process is characterized by an endonucleolytic cleavage near the stall sequence, but the mechanistic details are unclear. Our analysis of cleavage sites indicates that cleavage requires multiple ribosomes on the mRNA. We also show that reporters harboring stall sequences near the initiation codon, which cannot accommodate multiple ribosomes, are not subject to NGD. Consistent with our model, we uncover an inverse correlation between ribosome density per mRNA and cleavage efficiency. Furthermore, promoting global ribosome collision in vivo resulted in ubiquitination of ribosomal proteins, suggesting that collision is sensed by the cell to initiate downstream quality control processes. Collectively, our data suggest that NGD and subsequent quality control are triggered by ribosome collision. This model provides insight into the regulation of quality control processes and the manner by which they reduce off-target effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Comment on "Length-dependent translation of messenger RNA by ribosomes"

    CERN Document Server

    Zhang, Yunxin

    2011-01-01

    In recent paper [Phys. Rev. E {\\bf 83}, 042903 (2011)], a simple model for the translation of messenger RNA by ribosomes is provided, and the expression of translational ratio of protein is given. In this comments, varied methods to get this ratio are addressed. Depending on a different method, we find that, roughly speaking, this translational ratio decays exponentially with mRNA length in prokaryotic cell, and reciprocally with mRNA length in eukaryotic cells.

  8. Defensins: antifungal lessons from eukaryotes

    Directory of Open Access Journals (Sweden)

    Patrícia M. Silva

    2014-03-01

    Full Text Available Over the last years, antimicrobial peptides (AMPs have been the focus of intense research towards the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantæ and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components are presented. Additionally, recent works on antifungal defensins structure, activity and citotoxicity are also reviewed.

  9. The eukaryotic promoter database (EPD).

    Science.gov (United States)

    Périer, R C; Praz, V; Junier, T; Bonnard, C; Bucher, P

    2000-01-01

    The Eukaryotic Promoter Database (EPD) is an annotated non-redundant collection of eukaryotic POL II promoters for which the transcription start site has been determined experimentally. Access to promoter sequences is provided by pointers to positions in nucleotide sequence entries. The annotation part of an entry includes a description of the initiation site mapping data, exhaustive cross-references to the EMBL nucleotide sequence database, SWISS-PROT, TRANSFAC and other databases, as well as bibliographic references. EPD is structured in a way that facilitates dynamic extraction of biologically meaningful promoter subsets for comparative sequence analysis. WWW-based interfaces have been developed that enable the user to view EPD entries in different formats, to select and extract promoter sequences according to a variety of criteria, and to navigate to related databases exploiting different cross-references. The EPD web site also features yearly updated base frequency matrices for major eukaryotic promoter elements. EPD can be accessed at http://www.epd.isb-sib.ch

  10. Translation reinitiation and development are compromised in similar ways by mutations in translation initiation factor eIF3h and the ribosomal protein RPL24

    Directory of Open Access Journals (Sweden)

    Zhou Fujun

    2010-08-01

    Full Text Available Abstract Background Within the scanning model of translation initiation, reinitiation is a non-canonical mechanism that operates on mRNAs harboring upstream open reading frames. The h subunit of eukaryotic initiation factor 3 (eIF3 boosts translation reinitiation on the uORF-containing mRNA coding for the Arabidopsis bZip transcription factor, AtbZip11, among others. The RPL24B protein of the large ribosomal subunit, which is encoded by SHORT VALVE1, likewise fosters translation of uORF-containing mRNAs, for example mRNAs for auxin response transcription factors (ARFs. Results Here we tested the hypothesis that RPL24B and eIF3h affect translation reinitiation in a similar fashion. First, like eif3h mutants, rpl24b mutants under-translate the AtbZip11 mRNA, and the detailed spectrum of translational defects in rpl24b is remarkably similar to that of eif3h. Second, eif3h mutants display defects in auxin mediated organogenesis and gene expression, similar to rpl24b. Like AtbZip11, the uORF-containing ARF mRNAs are indeed undertranslated in eif3h mutant seedlings. Conclusion We conclude that, similar to eIF3h, RPL24B bolsters the reinitiation competence of uORF-translating ribosomes. Coordination between eIF3 and the large ribosomal subunit helps to fine-tune translation of uORF-containing mRNAs and, in turn, to orchestrate plant development.

  11. Comparative genomics of eukaryotic small nucleolar RNAs reveals deep evolutionary ancestry amidst ongoing intragenomic mobility

    Directory of Open Access Journals (Sweden)

    Hoeppner Marc P

    2012-09-01

    Full Text Available Abstract Background Small nucleolar (snoRNAs are required for posttranscriptional processing and modification of ribosomal, spliceosomal and messenger RNAs. Their presence in both eukaryotes and archaea indicates that snoRNAs are evolutionarily ancient. The location of some snoRNAs within the introns of ribosomal protein genes has been suggested to belie an RNA world origin, with the exons of the earliest protein-coding genes having evolved around snoRNAs after the advent of templated protein synthesis. Alternatively, this intronic location may reflect more recent selection for coexpression of snoRNAs and ribosomal components, ensuring rRNA modification by snoRNAs during ribosome synthesis. To gain insight into the evolutionary origins of this genetic organization, we examined the antiquity of snoRNA families and the stability of their genomic location across 44 eukaryote genomes. Results We report that dozens of snoRNA families are traceable to the Last Eukaryotic Common Ancestor (LECA, but find only weak similarities between the oldest eukaryotic snoRNAs and archaeal snoRNA-like genes. Moreover, many of these LECA snoRNAs are located within the introns of host genes independently traceable to the LECA. Comparative genomic analyses reveal the intronic location of LECA snoRNAs is not ancestral however, suggesting the pattern we observe is the result of ongoing intragenomic mobility. Analysis of human transcriptome data indicates that the primary requirement for hosting intronic snoRNAs is a broad expression profile. Consistent with ongoing mobility across broadly-expressed genes, we report a case of recent migration of a non-LECA snoRNA from the intron of a ubiquitously expressed non-LECA host gene into the introns of two LECA genes during the evolution of primates. Conclusions Our analyses show that snoRNAs were a well-established family of RNAs at the time when eukaryotes began to diversify. While many are intronic, this association is not

  12. Selective ribosome profiling as a tool for studying the interaction of chaperones and targeting factors with nascent polypeptide chains and ribosomes.

    Science.gov (United States)

    Becker, Annemarie H; Oh, Eugene; Weissman, Jonathan S; Kramer, Günter; Bukau, Bernd

    2013-11-01

    A plethora of factors is involved in the maturation of newly synthesized proteins, including chaperones, membrane targeting factors and enzymes. Many factors act co-translationally through association with ribosome-nascent chain complexes (RNCs), but their target specificities and modes of action remain poorly understood. We developed selective ribosome profiling (SeRP) to identify substrate pools and points of RNC engagement of these factors. SeRP is based on sequencing mRNA fragments covered by translating ribosomes (general ribosome profiling (RP)), combined with a procedure to selectively isolate RNCs whose nascent polypeptides are associated with the factor of interest. Factor-RNC interactions are stabilized by cross-linking; the resulting factor-RNC adducts are nuclease-treated to generate monosomes, and then they are affinity purified. The ribosome-extracted mRNA footprints are converted to DNA libraries for deep sequencing. The protocol is specified for general RP and SeRP in bacteria. It was first applied to the chaperone trigger factor (TF) and is readily adaptable to other co-translationally acting factors, including eukaryotic factors. Factor-RNC purification and sequencing library preparation takes 7-8 d, and sequencing and data analysis can be completed in 5-6 d.

  13. Challenges in describing ribosome dynamics

    Science.gov (United States)

    Nguyen, Kien; Whitford, Paul Charles

    2017-04-01

    For decades, protein folding and functional dynamics have been described in terms of diffusive motion across an underlying energy landscape. With continued advances in structural biology and high-performance computing, the field is positioned to extend these approaches to large biomolecular assemblies. Through the application of energy landscape techniques to the ribosome, one may work towards establishing a comprehensive description of the dynamics, which will bridge theoretical concepts and experimental observations. In this perspective, we discuss a few of the challenges that will need to be addressed as we extend the application of landscape principles to the ribosome.

  14. Studies on Pea Ribosomal Proteins

    Science.gov (United States)

    Lin, Chu-Yung; Chia, Subrina Li-Li; Travis, Robert L.; Key, Joe L.

    1975-01-01

    Ribosomal subunits prepared by NH4Cl dissociation (0.5 m) of the monomeric ribosomes were much less active in in vitro protein synthesis than those prepared by KCl dissociation. The decrease in activity correlated with a detachment of some proteins (L2 and L9 as shown by gel electrophoresis) within the 60S ribosomal subunits. Subunits prepared with 0.3 m NH4Cl retained L2 and L9, but the activity remained low. Incubation of these 60S subunits in TKM buffer (50 mm tris [pH 7.5], 20 mm KCl, and 5 mm MgCl2) for 20 min at 37 C restored the activity almost to the level of those obtained by KCl dissociation. Treatment of the 0.3 m NH4Cl-derived 60S subunits with a protein reagent, Procion brilliant blue, prior to extraction of the ribosomal proteins resulted in the loss of L2 and L9, showing that these proteins were made accessible for dye binding. These observations suggest that a considerable degree of unfolding of the 60S subunit occurs at 0.3 m NH4Cl (this apparently leads to a preferential detachment of L2 and L9 at 0.5 m NH4Cl) and that the activity of the purified subunits depends not only on the presence of L2 and L9 but also on the organization of these proteins within the 60S subunits. Images PMID:16659254

  15. AMPLIFICATION OF RIBOSOMAL RNA SEQUENCES

    Science.gov (United States)

    This book chapter offers an overview of the use of ribosomal RNA sequences. A history of the technology traces the evolution of techniques to measure bacterial phylogenetic relationships and recent advances in obtaining rRNA sequence information. The manual also describes procedu...

  16. Analysis of two domains with novel RNA-processing activities throws light on the complex evolution of ribosomal RNA biogenesis

    Directory of Open Access Journals (Sweden)

    A M Burroughs

    2014-12-01

    Full Text Available Ribosomal biogenesis has been extensively investigated, especially to identify the elusive nucleases and cofactors involved in the complex rRNA processing events in eukaryotes. Large-scale screens in yeast identified two biochemically uncharacterized proteins, TSR3 and TSR4, as being key players required for rRNA maturation. Using multiple computational approaches we identify the conserved domains comprising these proteins and establish sequence and structural features providing novel insights regarding their roles. TSR3 is unified with the DTW domain into a novel superfamily of predicted enzymatic domains, with the balance of the available evidence pointing towards an RNase role with the archaeo-eukaryotic TSR3 proteins processing rRNA and the bacterial versions potentially processing tRNA. TSR4, its other eukaryotic homologs PDCD2/rp-8, PDCD2L, Zfrp8, and trus, the predominantly bacterial DUF1963 proteins, and other uncharacterized proteins are unified into a new domain superfamily, which arose from an ancient duplication event of a strand-swapped, dimer-forming all-beta unit. We identify conserved features mediating protein-protein interactions and propose a potential chaperone-like function. While contextual evidence supports a conserved role in ribosome biogenesis for the eukaryotic TSR4-related proteins, there is no evidence for such a role for the bacterial versions. Whereas TSR3-related proteins can be traced to the last universal common ancestor with a well-supported archaeo-eukaryotic branch, TSR4-related proteins of eukaryotes are derived from within the bacterial radiation of this superfamily, with archaea entirely lacking them. This provides evidence for systems admixture, which followed the early endosymbiotic event, playing a key role in the emergence of the uniquely eukaryotic ribosome biogenesis process.

  17. The ribosome modulation factor (RMF) binding site on the 100S ribosome of Escherichia coli.

    Science.gov (United States)

    Yoshida, Hideji; Maki, Yasushi; Kato, Hisako; Fujisawa, Hisao; Izutsu, Kaori; Wada, Chieko; Wada, Akira

    2002-12-01

    During the stationary growth phase, Escherichia coli 70S ribosomes are converted to 100S ribosomes, and translational activity is lost. This conversion is caused by the binding of the ribosome modulation factor (RMF) to 70S ribosomes. In order to elucidate the mechanisms by which 100S ribosomes form and translational inactivation occurs, the shape of the 100S ribosome and the RMF ribosomal binding site were investigated by electron microscopy and protein-protein cross-linking, respectively. We show that (i) the 100S ribosome is formed by the dimerization of two 70S ribosomes mediated by face-to-face contacts between their constituent 30S subunits, and (ii) RMF binds near the ribosomal proteins S13, L13, and L2. The positions of these proteins indicate that the RMF binding site is near the peptidyl transferase center or the P site (peptidyl-tRNA binding site). These observations are consistent with the translational inactivation of the ribosome by RMF binding. After the "Recycling" stage, ribosomes can readily proceed to the "Initiation" stage during exponential growth, but during stationary phase, the majority of 70S ribosomes are stored as 100S ribosomes and are translationally inactive. We suggest that this conversion of 70S to 100S ribosomes represents a newly identified stage of the ribosomal cycle in stationary phase cells, and we have termed it the "Hibernation" stage.

  18. Chromatin structure of ribosomal RNA genes in dipterans and its relationship to the location of nucleolar organizers.

    Directory of Open Access Journals (Sweden)

    Christiane Rodriguez Gutierrez Madalena

    Full Text Available Nucleoli, nuclear organelles in which ribosomal RNA is synthesized and processed, emerge from nucleolar organizers (NORs located in distinct chromosomal regions. In polytene nuclei of dipterans, nucleoli of some species can be observed under light microscopy exhibiting distinctive morphology: Drosophila and chironomid species display well-formed nucleoli in contrast to the fragmented and dispersed nucleoli seen in sciarid flies. The available data show no apparent relationship between nucleolar morphology and location of NORs in Diptera. The regulation of rRNA transcription involves controlling both the transcription rate per gene as well as the proportion of rRNA genes adopting a proper chromatin structure for transcription, since active and inactive rRNA gene copies coexist in NORs. Transcription units organized in nucleosomes and those lacking canonical nucleosomes can be analyzed by the method termed psoralen gel retarding assay (PGRA, allowing inferences on the ratio of active to inactive rRNA gene copies. In this work, possible connections between chromosomal location of NORs and proportion of active rRNA genes were studied in Drosophila melanogaster, and in chironomid and sciarid species. The data suggested a link between location of NORs and proportion of active rRNA genes since the copy number showing nucleosomal organization predominates when NORs are located in the pericentric heterochromatin. The results presented in this work are in agreement with previous data on the chromatin structure of rRNA genes from distantly related eukaryotes, as assessed by the PGRA.

  19. Ribosomal DNA stability is supported by many 'buffer genes'-introduction to the Yeast rDNA Stability Database.

    Science.gov (United States)

    Kobayashi, Takehiko; Sasaki, Mariko

    2017-01-01

    The ribosomal RNA gene (rDNA) is the most abundant gene in yeast and other eukaryotic organisms. Due to its heavy transcription, repetitive structure and programmed replication fork pauses, the rDNA is one of the most unstable regions in the genome. Thus, the rDNA is the best region to study the mechanisms responsible for maintaining genome integrity. Recently, we screened a library of ∼4800 budding yeast gene knockout strains to identify mutants defective in the maintenance of rDNA stability. The results of this screen are summarized in the Yeast rDNA Stability (YRS) Database, in which the stability and copy number of rDNA in each mutant are presented. From this screen, we identified ∼700 genes that may contribute to the maintenance of rDNA stability. In addition, ∼50 mutants had abnormally high or low rDNA copy numbers. Moreover, some mutants with unstable rDNA displayed abnormalities in another chromosome. In this review, we introduce the YRS Database and discuss the roles of newly identified genes that contribute to rDNA maintenance and genome integrity. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Structure of Ribosomal Silencing Factor Bound to Mycobacterium tuberculosis Ribosome.

    Science.gov (United States)

    Li, Xiaojun; Sun, Qingan; Jiang, Cai; Yang, Kailu; Hung, Li-Wei; Zhang, Junjie; Sacchettini, James C

    2015-10-06

    The ribosomal silencing factor RsfS slows cell growth by inhibiting protein synthesis during periods of diminished nutrient availability. The crystal structure of Mycobacterium tuberculosis (Mtb) RsfS, together with the cryo-electron microscopy (EM) structure of the large subunit 50S of Mtb ribosome, reveals how inhibition of protein synthesis by RsfS occurs. RsfS binds to the 50S at L14, which, when occupied, blocks the association of the small subunit 30S. Although Mtb RsfS is a dimer in solution, only a single subunit binds to 50S. The overlap between the dimer interface and the L14 binding interface confirms that the RsfS dimer must first dissociate to a monomer in order to bind to L14. RsfS interacts primarily through electrostatic and hydrogen bonding to L14. The EM structure shows extended rRNA density that it is not found in the Escherichia coli ribosome, the most striking of these being the extended RNA helix of H54a. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Open questions on the origin of eukaryotes

    Science.gov (United States)

    López-García, Purificación; Moreira, David

    2015-01-01

    Despite recent progress, the origin of the eukaryotic cell remains enigmatic. It is now known that the last eukaryotic common ancestor was complex and that endosymbiosis played a crucial role in eukaryogenesis at least via the acquisition of the alphaproteobacterial ancestor of mitochondria. However, the nature of the mitochondrial host is controversial, although the recent discovery of an archaeal lineage phylogenetically close to eukaryotes reinforces models proposing archaea-derived hosts. We argue that, in addition to improved phylogenomic analyses with more comprehensive taxon sampling to pinpoint the closest prokaryotic relatives of eukaryotes, determining plausible mechanisms and selective forces at the origin of key eukaryotic features, such as the nucleus or the bacterial-like eukaryotic membrane system, is essential to constrain existing models. PMID:26455774

  2. 5S rRNA and ribosome.

    Science.gov (United States)

    Gongadze, G M

    2011-12-01

    5S rRNA is an integral component of the ribosome of all living organisms. It is known that the ribosome without 5S rRNA is functionally inactive. However, the question about the specific role of this RNA in functioning of the translation apparatus is still open. This review presents a brief history of the discovery of 5S rRNA and studies of its origin and localization in the ribosome. The previously expressed hypotheses about the role of this RNA in the functioning of the ribosome are discussed considering the unique location of 5S rRNA in the ribosome and its intermolecular contacts. Based on analysis of the current data on ribosome structure and its functional complexes, the role of 5S rRNA as an intermediary between ribosome functional domains is discussed.

  3. Ribosomal targets for antibiotic drug discovery

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, Scott C.; Feldman, Michael Brian; Wang, Leyi; Doudna Cate, James H.; Pulk, Arto; Altman, Roger B.; Wasserman, Michael R

    2016-09-13

    The present invention relates to methods to identify molecules that binds in the neomycin binding pocket of a bacterial ribosome using structures of an intact bacterial ribosome that reveal how the ribosome binds tRNA in two functionally distinct states, determined by x-ray crystallography. One state positions tRNA in the peptidyl-tRNA binding site. The second, a fully rotated state, is stabilized by ribosome recycling factor (RRF) and binds tRNA in a highly bent conformation in a hybrid peptidyl/exit (P/E) site. Additionally, the invention relates to various assays, including single-molecule assay for ribosome recycling, and methods to identify compounds that interfere with ribosomal function by detecting newly identified intermediate FRET states using known and novel FRET pairs on the ribosome. The invention also provides vectors and compositions with an N-terminally tagged S13 protein.

  4. Expanding the Entamoeba Universe: New Hosts Yield Novel Ribosomal Lineages.

    Science.gov (United States)

    Jacob, Alison S; Busby, Eloise J; Levy, Abigail D; Komm, Natasha; Clark, C Graham

    2016-01-01

    Removing the requirement for cell culture has led to a substantial increase in the number of lineages of Entamoeba recognized as distinct. Surveying the range of potential host species for this parasite genus has barely been started and it is clear that additional sampling of the same host in different locations often identifies additional diversity. In this study, using small subunit ribosomal RNA gene sequencing, we identify four new lineages of Entamoeba, including the first report of Entamoeba from an elephant, and extend the host range of some previously described lineages. In addition, examination of microbiome data from a number of host animals suggests that substantial Entamoeba diversity remains to be uncovered. © 2015 The Author(s) Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.

  5. Eukaryotic 5S rRNA biogenesis

    Science.gov (United States)

    Ciganda, Martin; Williams, Noreen

    2012-01-01

    The ribosome is a large complex containing both protein and RNA which must be assembled in a precise manner to allow proper functioning in the critical role of protein synthesis. 5S rRNA is the smallest of the RNA components of the ribosome, and although it has been studied for decades, we still do not have a clear understanding of its function within the complex ribosome machine. It is the only RNA species that binds ribosomal proteins prior to its assembly into the ribosome. Its transport into the nucleolus requires this interaction. Here we present an overview of some of the key findings concerning the structure and function of 5S rRNA and how its association with specific proteins impacts its localization and function. PMID:21957041

  6. The ribosomal DNA transcription unit of the house cricket, Acheta domesticus.

    Science.gov (United States)

    Ware, J L; Sharp, Z D; Cave, M D

    1987-06-01

    A composite map representing a single ribosomal DNA repeat unit of the house cricket, Acheta domesticus, was constructed from overlapping cloned fragments. Sites in the repeat unit for nine restriction enzymes were mapped. R-loop mapping of sequences coding for 18 S and 28 S RNA demonstrates that the 58-kb ribosomal DNA repeat unit contains a novel-sized internal transcribed spacer of 8.4 kb. The existence of this large spacer was confirmed in genomic DNA, most if not all of the genomic repeat units containing such a spacer. A 15- to 17-kb ribosomal RNA precursor transcript is synthesized as predicted on the basis of the size of the internal transcribed spacer. The 5.8 S RNA gene is localized to a 1-kb sequence immediately 5' to the 28 S gene. The coding regions examined contain no intervening sequences analogous to those described within ribosomal DNA of other eukaryotes. Only 11% of the repeat unit codes for mature ribosomal RNA, while the remainder is nontranscribed (71%) and transcribed (18%) spacer DNA.

  7. Focused classification and refinement in high-resolution cryo-EM structural analysis of ribosome complexes.

    Science.gov (United States)

    von Loeffelholz, Ottilie; Natchiar, S Kundhavai; Djabeur, Nadia; Myasnikov, Alexander G; Kratzat, Hanna; Ménétret, Jean-François; Hazemann, Isabelle; Klaholz, Bruno P

    2017-10-01

    Cryo electron microscopy (cryo-EM) historically has had a strong impact on the structural and mechanistic analysis of protein synthesis by the prokaryotic and eukaryotic ribosomes. Vice versa, studying ribosomes has helped moving forwards many methodological aspects in single particle cryo-EM, at the level of automated data collection and image processing including advanced techniques for particle sorting to address structural and compositional heterogeneity. Here we review some of the latest ribosome structures, where cryo-EM allowed gaining unprecedented insights based on 3D structure sorting with focused classification and refinement methods helping to reach local resolution levels better than 3Å. Such high-resolution features now enable the analysis of drug interactions with RNA and protein side-chains including even the visualization of chemical modifications of the ribosomal RNA. These advances represent a major breakthrough in structural biology and show the strong potential of cryo-EM beyond the ribosome field including for structure-based drug design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The ribosome regulates flavodoxin folding

    OpenAIRE

    Houwman, Joseline A.

    2017-01-01

    During and after their translation by the ribosome, folding of polypeptides to biologically active proteins is of vital importance for all living organisms. Gaining knowledge about nascent chain folding is required to enhance our understanding of protein folding in the cell. This in turn allows us to obtain insights into factors responsible for protein misfolding, aggregation, and, potentially, for numerous devastating pathologies. In Chapter 1 the model protein flavodoxin is introduced. Also...

  9. Metabolic symbiosis at the origin of eukaryotes.

    Science.gov (United States)

    López-Garćia, P; Moreira, D

    1999-03-01

    Thirty years after Margulis revived the endosymbiosis theory for the origin of mitochondria and chloroplasts, two novel symbiosis hypotheses for the origin of eukaryotes have been put forward. Both propose that eukaryotes arose through metabolic symbiosis (syntrophy) between eubacteria and methanogenic Archaea. They also propose that this was mediated by interspecies hydrogen transfer and that, initially, mitochondria were anaerobic. These hypotheses explain the mosaic character of eukaryotes (i.e. an archaeal-like genetic machinery and a eubacterial-like metabolism), as well as distinct eukaryotic characteristics (which are proposed to be products of symbiosis). Combined data from comparative genomics, microbial ecology and the fossil record should help to test their validity.

  10. Repurposing ribosomes for synthetic biology.

    Science.gov (United States)

    Liu, Yi; Kim, Do Soon; Jewett, Michael C

    2017-10-01

    The translation system is the cell's factory for protein biosynthesis, stitching together hundreds to thousands of amino acids into proteins, which are required for the structure, function, and regulation of living systems. The extraordinary synthetic capability of this system, which includes the ribosome and its associated factors required for polymerization, has driven extensive efforts to harness it for societal use in areas as diverse as energy, materials, and medicine. A powerful example is recombinant protein production, which has impacted the lives of patients through the synthesis of biopharmaceuticals such as insulin. In nature, however, only limited sets of monomers are utilized, thereby resulting in limited sets of biopolymers (i.e., proteins). Expanding nature's repertoire of ribosomal monomers could yield new classes of enzymes, therapeutics, materials, and chemicals with diverse, genetically encoded chemistry. Here, we discuss recent progress towards engineering ribosomes both in vivo and in vitro. These fundamental and technical breakthroughs open doors for advanced applications in biotechnology and synthetic biology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. High heterogeneity within the ribosomal proteins of the Arabidopsis thaliana 80S ribosome.

    Science.gov (United States)

    Giavalisco, Patrick; Wilson, Daniel; Kreitler, Thomas; Lehrach, Hans; Klose, Joachim; Gobom, Johan; Fucini, Paola

    2005-03-01

    Proteomic studies have addressed the composition of plant chloroplast ribosomes and 70S ribosomes from the unicellular organism Chlamydomonas reinhardtii But comprehensive characterization of cytoplasmic 80S ribosomes from higher plants has been lacking. We have used two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) to analyse the cytoplasmic 80S ribosomes from the model flowering plant Arabidopsis thaliana. Of the 80 ribosomal protein families predicted to comprise the cytoplasmic 80S ribosome, we have confirmed the presence of 61; specifically, 27 (84%) of the small 40S subunit and 34 (71%) of the large 60S subunit. Nearly half (45%) of the ribosomal proteins identified are represented by two or more distinct spots in the 2-DE gel indicating that these proteins are either post-translationally modified or present as different isoforms. Consistently, MS-based protein identification revealed that at least one-third (34%) of the identified ribosomal protein families showed expression of two or more family members. In addition, we have identified a number of non-ribosomal proteins that co-migrate with the plant 80S ribosomes during gradient centrifugation suggesting their possible association with the 80S ribosomes. Among them, RACK1 has recently been proposed to be a ribosome-associated protein that promotes efficient translation in yeast. The study, thus provides the basis for further investigation into the function of the other identified non-ribosomal proteins as well as the biological meaning of the various ribosomal protein isoforms.

  12. Dosage sensitivity of RPL9 and concerted evolution of ribosomal protein genes in plants

    Directory of Open Access Journals (Sweden)

    Deborah eDevis

    2015-12-01

    Full Text Available The ribosome in higher eukaryotes is a large macromolecular complex composed of four rRNAs and eighty different ribosomal proteins. In plants, each ribosomal protein is encoded by multiple genes. Duplicate genes within a family are often necessary to provide a threshold dose of a ribosomal protein but in some instances appear to have non-redundant functions. Here, we addressed whether divergent members of the RPL9 gene family are dosage sensitive or whether these genes have non-overlapping functions. The RPL9 family in A. thaliana comprises two nearly identical members, RPL9B and RPL9C, and a more divergent member, RPL9D. Mutations in RPL9C and RPL9D genes leads to delayed growth early in development, and loss of both genes is embryo lethal, indicating that these are dosage-sensitive and redundant genes. Phylogenetic analysis of RPL9 as well as RPL4, RPL5, RPL27a, RPL36a and RPS6 family genes in the Brassicaceae indicated that multicopy ribosomal protein genes have been largely retained following whole genome duplication. However, these gene families also show instances of tandem duplication, small scale deletion and evidence of gene conversion. Furthermore, phylogenetic analysis of RPL9 genes in angiosperm species showed that genes within a species are more closely related to each other than to RPL9 genes in other species, suggesting ribosomal protein genes undergo convergent evolution. Our analysis indicates that ribosomal protein gene retention following whole genome duplication contributes to the number of genes in a family. However, small scale rearrangements influence copy number and likely drive concerted evolution of these dosage-sensitive genes.

  13. Ribosome engineering to promote new crystal forms

    Energy Technology Data Exchange (ETDEWEB)

    Selmer, Maria, E-mail: maria.selmer@icm.uu.se [Uppsala University, Box 596, SE-751 24 Uppsala (Sweden); MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH (United Kingdom); Gao, Yong-Gui; Weixlbaumer, Albert; Ramakrishnan, V., E-mail: maria.selmer@icm.uu.se [MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH (United Kingdom); Uppsala University, Box 596, SE-751 24 Uppsala (Sweden)

    2012-05-01

    Truncation of ribosomal protein L9 in T. thermophilus allows the generation of new crystal forms and the crystallization of ribosome–GTPase complexes. Crystallographic studies of the ribosome have provided molecular details of protein synthesis. However, the crystallization of functional complexes of ribosomes with GTPase translation factors proved to be elusive for a decade after the first ribosome structures were determined. Analysis of the packing in different 70S ribosome crystal forms revealed that regardless of the species or space group, a contact between ribosomal protein L9 from the large subunit and 16S rRNA in the shoulder of a neighbouring small subunit in the crystal lattice competes with the binding of GTPase elongation factors to this region of 16S rRNA. To prevent the formation of this preferred crystal contact, a mutant strain of Thermus thermophilus, HB8-MRCMSAW1, in which the ribosomal protein L9 gene has been truncated was constructed by homologous recombination. Mutant 70S ribosomes were used to crystallize and solve the structure of the ribosome with EF-G, GDP and fusidic acid in a previously unobserved crystal form. Subsequent work has shown the usefulness of this strain for crystallization of the ribosome with other GTPase factors.

  14. Analysis of ribosomal protein gene structures: implications for intron evolution.

    Directory of Open Access Journals (Sweden)

    2006-03-01

    Full Text Available Many spliceosomal introns exist in the eukaryotic nuclear genome. Despite much research, the evolution of spliceosomal introns remains poorly understood. In this paper, we tried to gain insights into intron evolution from a novel perspective by comparing the gene structures of cytoplasmic ribosomal proteins (CRPs and mitochondrial ribosomal proteins (MRPs, which are held to be of archaeal and bacterial origin, respectively. We analyzed 25 homologous pairs of CRP and MRP genes that together had a total of 527 intron positions. We found that all 12 of the intron positions shared by CRP and MRP genes resulted from parallel intron gains and none could be considered to be "conserved," i.e., descendants of the same ancestor. This was supported further by the high frequency of proto-splice sites at these shared positions; proto-splice sites are proposed to be sites for intron insertion. Although we could not definitively disprove that spliceosomal introns were already present in the last universal common ancestor, our results lend more support to the idea that introns were gained late. At least, our results show that MRP genes were intronless at the time of endosymbiosis. The parallel intron gains between CRP and MRP genes accounted for 2.3% of total intron positions, which should provide a reliable estimate for future inferences of intron evolution.

  15. Ribosomal DNA Organization Before and After Magnification in Drosophila melanogaster

    Science.gov (United States)

    Bianciardi, Alessio; Boschi, Manuela; Swanson, Ellen E.; Belloni, Massimo; Robbins, Leonard G.

    2012-01-01

    In all eukaryotes, the ribosomal RNA genes are stably inherited redundant elements. In Drosophila melanogaster, the presence of a Ybb− chromosome in males, or the maternal presence of the Ribosomal exchange (Rex) element, induces magnification: a heritable increase of rDNA copy number. To date, several alternative classes of mechanisms have been proposed for magnification: in situ replication or extra-chromosomal replication, either of which might act on short or extended strings of rDNA units, or unequal sister chromatid exchange. To eliminate some of these hypotheses, none of which has been clearly proven, we examined molecular-variant composition and compared genetic maps of the rDNA in the bb2 mutant and in some magnified bb+ alleles. The genetic markers used are molecular-length variants of IGS sequences and of R1 and R2 mobile elements present in many 28S sequences. Direct comparison of PCR products does not reveal any particularly intensified electrophoretic bands in magnified alleles compared to the nonmagnified bb2 allele. Hence, the increase of rDNA copy number is diluted among multiple variants. We can therefore reject mechanisms of magnification based on multiple rounds of replication of short strings. Moreover, we find no changes of marker order when pre- and postmagnification maps are compared. Thus, we can further restrict the possible mechanisms to two: replication in situ of an extended string of rDNA units or unequal exchange between sister chromatids. PMID:22505623

  16. How and why DNA barcodes underestimate the diversity of microbial eukaryotes.

    Directory of Open Access Journals (Sweden)

    Gwenael Piganeau

    Full Text Available BACKGROUND: Because many picoplanktonic eukaryotic species cannot currently be maintained in culture, direct sequencing of PCR-amplified 18S ribosomal gene DNA fragments from filtered sea-water has been successfully used to investigate the astounding diversity of these organisms. The recognition of many novel planktonic organisms is thus based solely on their 18S rDNA sequence. However, a species delimited by its 18S rDNA sequence might contain many cryptic species, which are highly differentiated in their protein coding sequences. PRINCIPAL FINDINGS: Here, we investigate the issue of species identification from one gene to the whole genome sequence. Using 52 whole genome DNA sequences, we estimated the global genetic divergence in protein coding genes between organisms from different lineages and compared this to their ribosomal gene sequence divergences. We show that this relationship between proteome divergence and 18S divergence is lineage dependent. Unicellular lineages have especially low 18S divergences relative to their protein sequence divergences, suggesting that 18S ribosomal genes are too conservative to assess planktonic eukaryotic diversity. We provide an explanation for this lineage dependency, which suggests that most species with large effective population sizes will show far less divergence in 18S than protein coding sequences. CONCLUSIONS: There is therefore a trade-off between using genes that are easy to amplify in all species, but which by their nature are highly conserved and underestimate the true number of species, and using genes that give a better description of the number of species, but which are more difficult to amplify. We have shown that this trade-off differs between unicellular and multicellular organisms as a likely consequence of differences in effective population sizes. We anticipate that biodiversity of microbial eukaryotic species is underestimated and that numerous "cryptic species" will become

  17. A Portrait of Ribosomal DNA Contacts with Hi-C Reveals 5S and 45S rDNA Anchoring Points in the Folded Human Genome.

    Science.gov (United States)

    Yu, Shoukai; Lemos, Bernardo

    2016-12-31

    Ribosomal RNAs (rRNAs) account for >60% of all RNAs in eukaryotic cells and are encoded in the ribosomal DNA (rDNA) arrays. The rRNAs are produced from two sets of loci: the 5S rDNA array resides exclusively on human chromosome 1, whereas the 45S rDNA array resides on the short arm of five human acrocentric chromosomes. The 45S rDNA gives origin to the nucleolus, the nuclear organelle that is the site of ribosome biogenesis. Intriguingly, 5S and 45S rDNA arrays exhibit correlated copy number variation in lymphoblastoid cells (LCLs). Here we examined the genomic architecture and repeat content of the 5S and 45S rDNA arrays in multiple human genome assemblies (including PacBio MHAP assembly) and ascertained contacts between the rDNA arrays and the rest of the genome using Hi-C datasets from two human cell lines (erythroleukemia K562 and lymphoblastoid cells). Our analyses revealed that 5S and 45S arrays each have thousands of contacts in the folded genome, with rDNA-associated regions and genes dispersed across all chromosomes. The rDNA contact map displayed conserved and disparate features between two cell lines, and pointed to specific chromosomes, genomic regions, and genes with evidence of spatial proximity to the rDNA arrays; the data also showed a lack of direct physical interaction between the 5S and 45S rDNA arrays. Finally, the analysis identified an intriguing organization in the 5S array with Alu and 5S elements adjacent to one another and organized in opposite orientation along the array. Portraits of genome folding centered on the ribosomal DNA array could help understand the emergence of concerted variation, the control of 5S and 45S expression, as well as provide insights into an organelle that contributes to the spatial localization of human chromosomes during interphase. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Kinetics of CrPV and HCV IRES-mediated eukaryotic translation using single-molecule fluorescence microscopy.

    Science.gov (United States)

    Bugaud, Olivier; Barbier, Nathalie; Chommy, Hélène; Fiszman, Nicolas; Le Gall, Antoine; Dulin, David; Saguy, Matthieu; Westbrook, Nathalie; Perronet, Karen; Namy, Olivier

    2017-11-01

    Protein synthesis is a complex multistep process involving many factors that need to interact in a coordinated manner to properly translate the messenger RNA. As translating ribosomes cannot be synchronized over many elongation cycles, single-molecule studies have been introduced to bring a deeper understanding of prokaryotic translation dynamics. Extending this approach to eukaryotic translation is very appealing, but initiation and specific labeling of the ribosomes are much more complicated. Here, we use a noncanonical translation initiation based on internal ribosome entry sites (IRES), and we monitor the passage of individual, unmodified mammalian ribosomes at specific fluorescent milestones along mRNA. We explore initiation by two types of IRES, the intergenic IRES of cricket paralysis virus (CrPV) and the hepatitis C (HCV) IRES, and show that they both strongly limit the rate of the first elongation steps compared to the following ones, suggesting that those first elongation cycles do not correspond to a canonical elongation. This new system opens the possibility of studying both IRES-mediated initiation and elongation kinetics of eukaryotic translation and will undoubtedly be a valuable tool to investigate the role of translation machinery modifications in human diseases. © 2017 Bugaud et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  19. Elucidation of motifs in ribosomal protein S9 that mediate its nucleolar localization and binding to NPM1/nucleophosmin.

    Directory of Open Access Journals (Sweden)

    Mikael S Lindström

    Full Text Available Biogenesis of eukaryotic ribosomes occurs mainly in a specific subnuclear compartment, the nucleolus, and involves the coordinated assembly of ribosomal RNA and ribosomal proteins. Identification of amino acid sequences mediating nucleolar localization of ribosomal proteins may provide important clues to understand the early steps in ribosome biogenesis. Human ribosomal protein S9 (RPS9, known in prokaryotes as RPS4, plays a critical role in ribosome biogenesis and directly binds to ribosomal RNA. RPS9 is targeted to the nucleolus but the regions in the protein that determine its localization remains unknown. Cellular expression of RPS9 deletion mutants revealed that it has three regions capable of driving nuclear localization of a fused enhanced green fluorescent protein (EGFP. The first region was mapped to the RPS9 N-terminus while the second one was located in the proteins C-terminus. The central and third region in RPS9 also behaved as a strong nucleolar localization signal and was hence sufficient to cause accumulation of EGFP in the nucleolus. RPS9 was previously shown to interact with the abundant nucleolar chaperone NPM1 (nucleophosmin. Evaluating different RPS9 fragments for their ability to bind NPM1 indicated that there are two binding sites for NPM1 on RPS9. Enforced expression of NPM1 resulted in nucleolar accumulation of a predominantly nucleoplasmic RPS9 mutant. Moreover, it was found that expression of a subset of RPS9 deletion mutants resulted in altered nucleolar morphology as evidenced by changes in the localization patterns of NPM1, fibrillarin and the silver stained nucleolar organizer regions. In conclusion, RPS9 has three regions that each are competent for nuclear localization, but only the central region acted as a potent nucleolar localization signal. Interestingly, the RPS9 nucleolar localization signal is residing in a highly conserved domain corresponding to a ribosomal RNA binding site.

  20. Structural Basis for Ribosome Rescue in Bacteria.

    Science.gov (United States)

    Huter, Paul; Müller, Claudia; Arenz, Stefan; Beckert, Bertrand; Wilson, Daniel N

    2017-08-01

    Ribosomes that translate mRNAs lacking stop codons become stalled at the 3' end of the mRNA. Recycling of these stalled ribosomes is essential for cell viability. In bacteria three ribosome rescue systems have been identified so far, with the most ubiquitous and best characterized being the trans-translation system mediated by transfer-messenger RNA (tmRNA) and small protein B (SmpB). The two additional rescue systems present in some bacteria employ alternative rescue factor (Arf) A and release factor (RF) 2 or ArfB. Recent structures have revealed how ArfA mediates ribosome rescue by recruiting the canonical termination factor RF2 to ribosomes stalled on truncated mRNAs. This now provides us with the opportunity to compare and contrast the available structures of all three bacterial ribosome rescue systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Eukaryotic transcriptomics in silico: Optimizing cDNA-AFLP efficiency

    Directory of Open Access Journals (Sweden)

    Wüst Christian

    2009-11-01

    Full Text Available Abstract Background Complementary-DNA based amplified fragment length polymorphism (cDNA-AFLP is a commonly used tool for assessing the genetic regulation of traits through the correlation of trait expression with cDNA expression profiles. In spite of the frequent application of this method, studies on the optimization of the cDNA-AFLP assay design are rare and have typically been taxonomically restricted. Here, we model cDNA-AFLPs on all 92 eukaryotic species for which cDNA pools are currently available, using all combinations of eight restriction enzymes standard in cDNA-AFLP screens. Results In silco simulations reveal that cDNA pool coverage is largely determined by the choice of individual restriction enzymes and that, through the choice of optimal enzyme combinations, coverage can be increased from Conclusion The insights gained from in silico screening of cDNA-AFLPs from a broad sampling of eukaryotes provide a set of guidelines that should help to substantially increase the efficiency of future cDNA-AFLP experiments in eukaryotes. In silico simulations also suggest a novel use of cDNA-AFLP screens to determine the number of transcripts expressed in a target tissue, an application that should be invaluable as next-generation sequencing technologies are adapted for differential display.

  2. Role for RNA:DNA hybrids in origin-independent replication priming in a eukaryotic system.

    Science.gov (United States)

    Stuckey, Ruth; García-Rodríguez, Néstor; Aguilera, Andrés; Wellinger, Ralf Erik

    2015-05-05

    DNA replication initiates at defined replication origins along eukaryotic chromosomes, ensuring complete genome duplication within a single S-phase. A key feature of replication origins is their ability to control the onset of DNA synthesis mediated by DNA polymerase-α and its intrinsic RNA primase activity. Here, we describe a novel origin-independent replication process that is mediated by transcription. RNA polymerase I transcription constraints lead to persistent RNA:DNA hybrids (R-loops) that prime replication in the ribosomal DNA locus. Our results suggest that eukaryotic genomes have developed tools to prevent R-loop-mediated replication events that potentially contribute to copy number variation, particularly relevant to carcinogenesis.

  3. Ribosomes are optimized for autocatalytic production

    Science.gov (United States)

    Reuveni, Shlomi; Ehrenberg, Måns; Paulsson, Johan

    2017-07-01

    Many fine-scale features of ribosomes have been explained in terms of function, revealing a molecular machine that is optimized for error-correction, speed and control. Here we demonstrate mathematically that many less well understood, larger-scale features of ribosomes—such as why a few ribosomal RNA molecules dominate the mass and why the ribosomal protein content is divided into 55-80 small, similarly sized segments—speed up their autocatalytic production.

  4. A simple and rapid PCR-based method to isolate complete small macronuclear minichromosomes from hypotrich ciliates: 5S rDNA and S26 ribosomal protein gene of Oxytricha (Sterkiella) nova.

    Science.gov (United States)

    Callejas, Sergio; Gutiérrez, Juan Carlos

    2002-06-01

    Hypotrich ciliates present a macronuclear genome consisting of gene-sized instead of chromosome-sized DNA molecules. Exploiting this unique eukaryotic genome feature, we introduce, for the first time in ciliates, a rapid and easy PCR method using telomeric primers to isolate small complete macronuclear DNA molecules or minichromosomes. Two presumably abundant macronuclear DNA molecules, containing ribosomal genes, were amplified from the Oxytricha (Sterkiella) nova complete genome after using this method, and then were cloned and sequenced. The 5S rDNA sequence of O. (S.) nova is the third one reported among hypotrich ciliates; its primary and secondary structure is compared with other eukaryotic 5S rRNAs. The ribosomal protein S26 gene is the first one reported among ciliates. This "End-End-PCR" method might be useful to obtain similar gene-sized macronuclear molecules from other hypotrich ciliates, and, therefore, to increase our knowledge on ribosomal genes in these eukaryotic microorganisms.

  5. Ribosome biogenesis in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Woolford, John L; Baserga, Susan J

    2013-11-01

    Ribosomes are highly conserved ribonucleoprotein nanomachines that translate information in the genome to create the proteome in all cells. In yeast these complex particles contain four RNAs (>5400 nucleotides) and 79 different proteins. During the past 25 years, studies in yeast have led the way to understanding how these molecules are assembled into ribosomes in vivo. Assembly begins with transcription of ribosomal RNA in the nucleolus, where the RNA then undergoes complex pathways of folding, coupled with nucleotide modification, removal of spacer sequences, and binding to ribosomal proteins. More than 200 assembly factors and 76 small nucleolar RNAs transiently associate with assembling ribosomes, to enable their accurate and efficient construction. Following export of preribosomes from the nucleus to the cytoplasm, they undergo final stages of maturation before entering the pool of functioning ribosomes. Elaborate mechanisms exist to monitor the formation of correct structural and functional neighborhoods within ribosomes and to destroy preribosomes that fail to assemble properly. Studies of yeast ribosome biogenesis provide useful models for ribosomopathies, diseases in humans that result from failure to properly assemble ribosomes.

  6. The Structures of Antibiotics Bound to the E Site Region of the 50 S Ribosomal Subunit of Haloarcula marismortui: 13-Deoxytedanolide and Girodazole

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder,S.; Blaha, G.; Tirado-Rives, J.; Steitz, T.; Moore, P.

    2007-01-01

    Crystal structures of the 50 S ribosomal subunit from Haloarcula marismortui complexed with two antibiotics have identified new sites at which antibiotics interact with the ribosome and inhibit protein synthesis. 13-Deoxytedanolide binds to the E site of the 50 S subunit at the same location as the CCA of tRNA, and thus appears to inhibit protein synthesis by competing with deacylated tRNAs for E site binding. Girodazole binds near the E site region, but is somewhat buried and may inhibit tRNA binding by interfering with conformational changes that occur at the E site. The specificity of 13-deoxytedanolide for eukaryotic ribosomes is explained by its extensive interactions with protein L44e, which is an E site component of archaeal and eukaryotic ribosomes, but not of eubacterial ribosomes. In addition, protein L28, which is unique to the eubacterial E site, overlaps the site occupied by 13-deoxytedanolide, precluding its binding to eubacterial ribosomes. Girodazole is specific for eukarytes and archaea because it makes interactions with L15 that are not possible in eubacteria.

  7. Function and ribosomal localization of aIF6, a translational regulator shared by archaea and eukarya.

    Science.gov (United States)

    Benelli, Dario; Marzi, Stefano; Mancone, Carmine; Alonzi, Tonino; la Teana, Anna; Londei, Paola

    2009-01-01

    The translation factor IF6 is shared by the Archaea and the Eukarya, but is not found in Bacteria. The properties of eukaryal IF6 (eIF6) have been extensively studied, but remain somewhat elusive. eIF6 behaves as a ribosome-anti-association factor and is involved in miRNA-mediated gene silencing; however, it also seems to participate in ribosome synthesis and export. Here we have determined the function and ribosomal localization of the archaeal (Sulfolobus solfataricus) IF6 homologue (aIF6). We find that aIF6 binds specifically to the 50S ribosomal subunits, hindering the formation of 70S ribosomes and strongly inhibiting translation. aIF6 is uniformly expressed along the cell cycle, but it is upregulated following both cold- and heat shock. The aIF6 ribosomal binding site lies in the middle of the 30-S interacting surface of the 50S subunit, including a number of critical RNA and protein determinants involved in subunit association. The data suggest that the IF6 protein evolved in the archaeal-eukaryal lineage to modulate translational efficiency under unfavourable environmental conditions, perhaps acquiring additional functions during eukaryotic evolution.

  8. Metabarcoding analysis of eukaryotic microbiota in the gut of HIV-infected patients.

    Directory of Open Access Journals (Sweden)

    Ibrahim Hamad

    Full Text Available Research on the relationship between changes in the gut microbiota and human disease, including AIDS, is a growing field. However, studies on the eukaryotic component of the intestinal microbiota have just begun and have not yet been conducted in HIV-infected patients. Moreover, eukaryotic community profiling is influenced by the use of different methodologies at each step of culture-independent techniques. Herein, initially, four DNA extraction protocols were compared to test the efficiency of each method in recovering eukaryotic DNA from fecal samples. Our results revealed that recovering eukaryotic components from fecal samples differs significantly among DNA extraction methods. Subsequently, the composition of the intestinal eukaryotic microbiota was evaluated in HIV-infected patients and healthy volunteers through clone sequencing, high-throughput sequencing of nuclear ribosomal internal transcribed spacers 1 (ITS1 and 2 (ITS2 amplicons and real-time PCRs. Our results revealed that not only richness (Chao-1 index and alpha diversity (Shannon diversity differ between HIV-infected patients and healthy volunteers, depending on the molecular strategy used, but also the global eukaryotic community composition, with little overlapping taxa found between techniques. Moreover, our results based on cloning libraries and ITS1/ITS2 metabarcoding sequencing showed significant differences in fungal composition between HIV-infected patients and healthy volunteers, but without distinct clusters separating the two groups. Malassezia restricta was significantly more prevalent in fecal samples of HIV-infected patients, according to cloning libraries, whereas operational taxonomic units (OTUs belonging to Candida albicans and Candida tropicalis were significantly more abundant in fecal samples of HIV-infected patients compared to healthy subjects in both ITS subregions. Finally, real-time PCR showed the presence of Microsporidia, Giardia lamblia, Blastocystis

  9. A new version of the RDP (Ribosomal Database Project)

    Science.gov (United States)

    Maidak, B. L.; Cole, J. R.; Parker, C. T. Jr; Garrity, G. M.; Larsen, N.; Li, B.; Lilburn, T. G.; McCaughey, M. J.; Olsen, G. J.; Overbeek, R.; hide

    1999-01-01

    The Ribosomal Database Project (RDP-II), previously described by Maidak et al. [ Nucleic Acids Res. (1997), 25, 109-111], is now hosted by the Center for Microbial Ecology at Michigan State University. RDP-II is a curated database that offers ribosomal RNA (rRNA) nucleotide sequence data in aligned and unaligned forms, analysis services, and associated computer programs. During the past two years, data alignments have been updated and now include >9700 small subunit rRNA sequences. The recent development of an ObjectStore database will provide more rapid updating of data, better data accuracy and increased user access. RDP-II includes phylogenetically ordered alignments of rRNA sequences, derived phylogenetic trees, rRNA secondary structure diagrams, and various software programs for handling, analyzing and displaying alignments and trees. The data are available via anonymous ftp (ftp.cme.msu. edu) and WWW (http://www.cme.msu.edu/RDP). The WWW server provides ribosomal probe checking, approximate phylogenetic placement of user-submitted sequences, screening for possible chimeric rRNA sequences, automated alignment, and a suggested placement of an unknown sequence on an existing phylogenetic tree. Additional utilities also exist at RDP-II, including distance matrix, T-RFLP, and a Java-based viewer of the phylogenetic trees that can be used to create subtrees.

  10. Identification of the binding site of Rlp7 on assembling 60S ribosomal subunits in Saccharomyces cerevisiae

    Science.gov (United States)

    Dembowski, Jill A.; Ramesh, Madhumitha; McManus, C. Joel; Woolford, John L.

    2013-01-01

    Eukaryotic ribosome assembly requires over 200 assembly factors that facilitate rRNA folding, ribosomal protein binding, and pre-rRNA processing. One such factor is Rlp7, an essential RNA binding protein required for consecutive pre-rRNA processing steps for assembly of yeast 60S ribosomal subunits: exonucleolytic processing of 27SA3 pre-rRNA to generate the 5′ end of 5.8S rRNA and endonucleolytic cleavage of the 27SB pre-rRNA to initiate removal of internal transcribed spacer 2 (ITS2). To better understand the functions of Rlp7 in 27S pre-rRNA processing steps, we identified where it crosslinks to pre-rRNA. We found that Rlp7 binds at the junction of ITS2 and the ITS2-proximal stem, between the 3′ end of 5.8S rRNA and the 5′ end of 25S rRNA. Consistent with Rlp7 binding to this neighborhood during assembly, two-hybrid and affinity copurification assays showed that Rlp7 interacts with other assembly factors that bind to or near ITS2 and the proximal stem. We used in vivo RNA structure probing to demonstrate that the proximal stem forms prior to Rlp7 binding and that Rlp7 binding induces RNA conformational changes in ITS2 that may chaperone rRNA folding and regulate 27S pre-rRNA processing. Our findings contradict the hypothesis that Rlp7 functions as a placeholder for ribosomal protein L7, from which Rlp7 is thought to have evolved in yeast. The binding site of Rlp7 is within eukaryotic-specific RNA elements, which are not found in bacteria. Thus, we propose that Rlp7 coevolved with these RNA elements to facilitate eukaryotic-specific functions in ribosome assembly and pre-rRNA processing. PMID:24129494

  11. The eukaryotic fossil record in deep time

    Science.gov (United States)

    Butterfield, N.

    2011-12-01

    Eukaryotic organisms are defining constituents of the Phanerozoic biosphere, but they also extend well back into the Proterozoic record, primarily in the form of microscopic body fossils. Criteria for identifying pre-Ediacaran eukaryotes include large cell size, morphologically complex cell walls and/or the recognition of diagnostically eukaryotic cell division patterns. The oldest unambiguous eukaryote currently on record is an acanthomorphic acritarch (Tappania) from the Palaeoproterozoic Semri Group of central India. Older candidate eukaryotes are difficult to distinguish from giant bacteria, prokaryotic colonies or diagenetic artefacts. In younger Meso- and Neoproterozoic strata, the challenge is to recognize particular grades and clades of eukaryotes, and to document their macro-evolutionary expression. Distinctive unicellular forms include mid-Neoproterozoic testate amoebae and phosphate biomineralizing 'scale-microfossils' comparable to an extant green alga. There is also a significant record of seaweeds, possible fungi and problematica from this interval, documenting multiple independent experiments in eukaryotic multicellularity. Taxonomically resolved forms include a bangiacean red alga and probable vaucheriacean chromalveolate algae from the late Mesoproterozoic, and populations of hydrodictyacean and siphonocladalean green algae of mid Neoproterozoic age. Despite this phylogenetic breadth, however, or arguments from molecular clocks, there is no convincing evidence for pre-Ediacaran metazoans or metaphytes. The conspicuously incomplete nature of the Proterozoic record makes it difficult to resolve larger-scale ecological and evolutionary patterns. Even so, both body fossils and biomarker data point to a pre-Ediacaran biosphere dominated overwhelming by prokaryotes. Contemporaneous eukaryotes appear to be limited to conspicuously shallow water environments, and exhibit fundamentally lower levels of morphological diversity and evolutionary turnover than

  12. IMPACT is a developmentally regulated protein in neurons that opposes the eukaryotic initiation factor 2α kinase GCN2 in the modulation of neurite outgrowth.

    Science.gov (United States)

    Roffé, Martín; Hajj, Glaucia N M; Azevedo, Hátylas F; Alves, Viviane S; Castilho, Beatriz A

    2013-04-12

    The product of the mouse Imprinted and Ancient gene, IMPACT, is preferentially expressed in neurons. We have previously shown that IMPACT overexpression inhibits the activation of the protein kinase GCN2, which signals amino acid starvation. GCN2 phosphorylates the α-subunit of eukaryotic translation initiation factor 2 (eIF2α), resulting in inhibition of general protein synthesis but increased translation of specific messages, such as ATF4. GCN2 is also involved in the regulation of neuronal functions, controlling synaptic plasticity, memory, and feeding behavior. We show here that IMPACT abundance increases during differentiation of neurons and neuron-like N2a cells, whereas GCN2 displays lowered activation levels. Upon differentiation, IMPACT associates with translating ribosomes, enhances translation initiation, and down-regulates the expression of ATF4. We further show that endogenous IMPACT promotes neurite outgrowth whereas GCN2 is a strong inhibitor of spontaneous neuritogenesis. Together, these results uncover the participation of the GCN2-IMPACT module of translational regulation in a highly controlled step in the development of the nervous system.

  13. IMPACT Is a Developmentally Regulated Protein in Neurons That Opposes the Eukaryotic Initiation Factor 2α Kinase GCN2 in the modulation of Neurite Outgrowth*

    Science.gov (United States)

    Roffé, Martín; Hajj, Glaucia N. M.; Azevedo, Hátylas F.; Alves, Viviane S.; Castilho, Beatriz A.

    2013-01-01

    The product of the mouse Imprinted and Ancient gene, IMPACT, is preferentially expressed in neurons. We have previously shown that IMPACT overexpression inhibits the activation of the protein kinase GCN2, which signals amino acid starvation. GCN2 phosphorylates the α-subunit of eukaryotic translation initiation factor 2 (eIF2α), resulting in inhibition of general protein synthesis but increased translation of specific messages, such as ATF4. GCN2 is also involved in the regulation of neuronal functions, controlling synaptic plasticity, memory, and feeding behavior. We show here that IMPACT abundance increases during differentiation of neurons and neuron-like N2a cells, whereas GCN2 displays lowered activation levels. Upon differentiation, IMPACT associates with translating ribosomes, enhances translation initiation, and down-regulates the expression of ATF4. We further show that endogenous IMPACT promotes neurite outgrowth whereas GCN2 is a strong inhibitor of spontaneous neuritogenesis. Together, these results uncover the participation of the GCN2-IMPACT module of translational regulation in a highly controlled step in the development of the nervous system. PMID:23447528

  14. The global translation profile in a ribosomal protein mutant resembles that of an eIF3 mutant.

    Science.gov (United States)

    Tiruneh, Bayu Sisay; Kim, Byung-Hoon; Gallie, Daniel R; Roy, Bijoyita; von Arnim, Albrecht G

    2013-12-30

    -wide analysis of translation in a eukaryote defective in the large ribosomal subunit. RPL24 and eIF3h play similar but non-identical roles in eukaryotic translation. The data also shed light on the fine structure of the regulon of ribosomal protein mRNAs.

  15. Selection of scFvs specific for the HepG2 cell line using ribosome ...

    Indian Academy of Sciences (India)

    The aim of this study was to construct a ribosome display library of single chain variable fragments (scFvs) associated with hepatocarcinoma and screen such a library for hepatocarcinoma-binding scFvs. mRNA was isolated from the spleens of mice immunized with hepatocellular carcinoma cell line HepG2. Heavy and k ...

  16. rRNA maturation in yeast cells depleted of large ribosomal subunit proteins.

    Directory of Open Access Journals (Sweden)

    Gisela Pöll

    Full Text Available The structural constituents of the large eukaryotic ribosomal subunit are 3 ribosomal RNAs, namely the 25S, 5.8S and 5S rRNA and about 46 ribosomal proteins (r-proteins. They assemble and mature in a highly dynamic process that involves more than 150 proteins and 70 small RNAs. Ribosome biogenesis starts in the nucleolus, continues in the nucleoplasm and is completed after nucleo-cytoplasmic translocation of the subunits in the cytoplasm. In this work we created 26 yeast strains, each of which conditionally expresses one of the large ribosomal subunit (LSU proteins. In vivo depletion of the analysed LSU r-proteins was lethal and led to destabilisation and degradation of the LSU and/or its precursors. Detailed steady state and metabolic pulse labelling analyses of rRNA precursors in these mutant strains showed that LSU r-proteins can be grouped according to their requirement for efficient progression of different steps of large ribosomal subunit maturation. Comparative analyses of the observed phenotypes and the nature of r-protein-rRNA interactions as predicted by current atomic LSU structure models led us to discuss working hypotheses on i how individual r-proteins control the productive processing of the major 5' end of 5.8S rRNA precursors by exonucleases Rat1p and Xrn1p, and ii the nature of structural characteristics of nascent LSUs that are required for cytoplasmic accumulation of nascent subunits but are nonessential for most of the nuclear LSU pre-rRNA processing events.

  17. Chaperone binding at the ribosomal exit tunnel

    DEFF Research Database (Denmark)

    Kristensen, Ole; Gajhede, Michael

    2003-01-01

    The exit tunnel region of the ribosome is well established as a focal point for interaction between the components that guide the fate of nascent polypeptides. One of these, the chaperone trigger factor (TF), associates with the 50S ribosomal subunit through its N-terminal domain. Targeting of TF...

  18. Ribosome evolution: Emergence of peptide synthesis machinery

    Indian Academy of Sciences (India)

    remains unclear and many studies need to be performed. However, the crystal structure of the large ribosomal subunit of. Deinococcus ... radiodurans.rrnC.pdf/) (Cannone et al. 2002; Doshi et al. 2004). The following modifications were ... experimentally in future studies. In the evolutionary process from proto-ribosomes to.

  19. [Development of platform technology using molecular display].

    Science.gov (United States)

    Shibasaki, Seiji

    2009-11-01

    Techniques for immobilizing proteins on surface of virus or microorganisms, namely molecular display technologies, have played important roles in helping the elucidation of protein-protein interactions in cells and to develop research on drug discovery. Phage display system is well-established and sophisticated; consequently, bioactive low-molecular-weight ligands and proteins significant in pharmaceutical industry have been found. In addition to the development of novel functional proteins by phage display using results from experiments in genomics and proteomics, ribosome display or yeast display systems have been developed as complementary methods. We can select the appropriate method on the basis of the objective. Molecular display using yeast has advantages in production of desired proteins from combinatorial library by flow cytometry. Firstly, principle, development procedure, and latest research in this field are introduced. Thereafter, results of molecular display using yeast for antibodies and their related proteins are presented. Furthermore, display of receptor coupled with intracellular signal transduction -a novel type of molecular display on yeast cell surface- has been created in recent years. The role and potential of molecular display technologies employing yeast cells in drug discovery are discussed.

  20. Multiplication of Ribosomal P-Stalk Proteins Contributes to the Fidelity of Translation.

    Science.gov (United States)

    Wawiórka, Leszek; Molestak, Eliza; Szajwaj, Monika; Michalec-Wawiórka, Barbara; Mołoń, Mateusz; Borkiewicz, Lidia; Grela, Przemysław; Boguszewska, Aleksandra; Tchórzewski, Marek

    2017-09-01

    The P-stalk represents a vital element within the ribosomal GTPase-associated center, which represents a landing platform for translational GTPases. The eukaryotic P-stalk exists as a uL10-(P1-P2) 2 pentameric complex, which contains five identical C-terminal domains, one within each protein, and the presence of only one such element is sufficient to stimulate factor-dependent GTP hydrolysis in vitro and to sustain cell viability. The functional contribution of the P-stalk to the performance of the translational machinery in vivo , especially the role of P-protein multiplication, has never been explored. Here, we show that ribosomes depleted of P1/P2 proteins exhibit reduced translation fidelity at elongation and termination steps. The elevated rate of the decoding error is inversely correlated with the number of the P-proteins present on the ribosome. Unexpectedly, the lack of P1/P2 has little effect in vivo on the efficiency of other translational GTPase (trGTPase)-dependent steps of protein synthesis, including translocation. We have shown that loss of accuracy of decoding caused by P1/P2 depletion is the major cause of translation slowdown, which in turn affects the metabolic fitness of the yeast cell. We postulate that the multiplication of P-proteins is functionally coupled with the qualitative aspect of ribosome action, i.e., the recoding phenomenon shaping the cellular proteome. Copyright © 2017 American Society for Microbiology.

  1. Atomic resolution snapshot of Leishmania ribosome inhibition by the aminoglycoside paromomycin.

    Science.gov (United States)

    Shalev-Benami, Moran; Zhang, Yan; Rozenberg, Haim; Nobe, Yuko; Taoka, Masato; Matzov, Donna; Zimmerman, Ella; Bashan, Anat; Isobe, Toshiaki; Jaffe, Charles L; Yonath, Ada; Skiniotis, Georgios

    2017-11-17

    Leishmania is a single-celled eukaryotic parasite afflicting millions of humans worldwide, with current therapies limited to a poor selection of drugs that mostly target elements in the parasite's cell envelope. Here we determined the atomic resolution electron cryo-microscopy (cryo-EM) structure of the Leishmania ribosome in complex with paromomycin (PAR), a highly potent compound recently approved for treatment of the fatal visceral leishmaniasis (VL). The structure reveals the mechanism by which the drug induces its deleterious effects on the parasite. We further show that PAR interferes with several aspects of cytosolic translation, thus highlighting the cytosolic rather than the mitochondrial ribosome as the primary drug target. The results also highlight unique as well as conserved elements in the PAR-binding pocket that can serve as hotspots for the development of novel therapeutics.

  2. In vitro integration of ribosomal RNA synthesis, ribosome assembly, and translation.

    Science.gov (United States)

    Jewett, Michael C; Fritz, Brian R; Timmerman, Laura E; Church, George M

    2013-06-25

    Purely in vitro ribosome synthesis could provide a critical step towards unraveling the systems biology of ribosome biogenesis, constructing minimal cells from defined components, and engineering ribosomes with new functions. Here, as an initial step towards this goal, we report a method for constructing Escherichia coli ribosomes in crude S150 E. coli extracts. While conventional methods for E. coli ribosome reconstitution are non-physiological, our approach attempts to mimic chemical conditions in the cytoplasm, thus permitting several biological processes to occur simultaneously. Specifically, our integrated synthesis, assembly, and translation (iSAT) technology enables one-step co-activation of rRNA transcription, assembly of transcribed rRNA with native ribosomal proteins into functional ribosomes, and synthesis of active protein by these ribosomes in the same compartment. We show that iSAT makes possible the in vitro construction of modified ribosomes by introducing a 23S rRNA mutation that mediates resistance against clindamycin. We anticipate that iSAT will aid studies of ribosome assembly and open new avenues for making ribosomes with altered properties.

  3. Differential Stoichiometry among Core Ribosomal Proteins

    Directory of Open Access Journals (Sweden)

    Nikolai Slavov

    2015-11-01

    Full Text Available Understanding the regulation and structure of ribosomes is essential to understanding protein synthesis and its dysregulation in disease. While ribosomes are believed to have a fixed stoichiometry among their core ribosomal proteins (RPs, some experiments suggest a more variable composition. Testing such variability requires direct and precise quantification of RPs. We used mass spectrometry to directly quantify RPs across monosomes and polysomes of mouse embryonic stem cells (ESC and budding yeast. Our data show that the stoichiometry among core RPs in wild-type yeast cells and ESC depends both on the growth conditions and on the number of ribosomes bound per mRNA. Furthermore, we find that the fitness of cells with a deleted RP-gene is inversely proportional to the enrichment of the corresponding RP in polysomes. Together, our findings support the existence of ribosomes with distinct protein composition and physiological function.

  4. Differential Stoichiometry among Core Ribosomal Proteins

    Science.gov (United States)

    Slavov, Nikolai; Semrau, Stefan; Airoldi, Edoardo; Budnik, Bogdan; van Oudenaarden, Alexander

    2015-01-01

    Summary Understanding the regulation and structure of ribosomes is essential to understanding protein synthesis and its dysregulation in disease. While ribosomes are believed to have a fixed stoichiometry among their core ribosomal proteins (RPs), some experiments suggest a more variable composition. Testing such variability requires direct and precise quantification of RPs. We used mass spectrometry to directly quantify RPs across monosomes and polysomes of mouse embryonic stem cells (ESC) and budding yeast. Our data show that the stoichiometry among core RPs in wild-type yeast cells and ESC depends both on the growth conditions and on the number of ribosomes bound per mRNA. Furthermore, we find that the fitness of cells with a deleted RP-gene is inversely proportional to the enrichment of the corresponding RP in polysomes. Together, our findings support the existence of ribosomes with distinct protein composition and physiological function. PMID:26565899

  5. Viruses and viruslike particles of eukaryotic algae.

    OpenAIRE

    Van Etten, J L; Lane, L C; Meints, R H

    1991-01-01

    Until recently there was little interest or information on viruses and viruslike particles of eukaryotic algae. However, this situation is changing. In the past decade many large double-stranded DNA-containing viruses that infect two culturable, unicellular, eukaryotic green algae have been discovered. These viruses can be produced in large quantities, assayed by plaque formation, and analyzed by standard bacteriophage techniques. The viruses are structurally similar to animal iridoviruses, t...

  6. Metabolic Constraints on the Eukaryotic Transition

    Science.gov (United States)

    Wallace, Rodrick

    2009-04-01

    Mutualism, obligate mutualism, symbiosis, and the eukaryotic ‘fusion’ of Serial Endosymbiosis Theory represent progressively more rapid and less distorted real-time communication between biological structures instantiating information sources. Such progression in accurate information transmission requires, in turn, progressively greater channel capacity that, through the homology between information source uncertainty and free energy density, requires ever more energetic metabolism. The eukaryotic transition, according to this model, may have been entrained by an ecosystem resilience shift from anaerobic to aerobic metabolism.

  7. Origin of the nucleus and Ran-dependent transport to safeguard ribosome biogenesis in a chimeric cell

    Directory of Open Access Journals (Sweden)

    Jékely Gáspár

    2008-07-01

    Full Text Available Abstract Background The origin of the nucleus is a central problem about the origin of eukaryotes. The common ancestry of nuclear pore complexes (NPC and vesicle coating complexes indicates that the nucleus evolved via the modification of a pre-existing endomembrane system. Such an autogenous scenario is cell biologically feasible, but it is not clear what were the selective or neutral mechanisms that had led to the origin of the nuclear compartment. Results A key selective force during the autogenous origin of the nucleus could have been the need to segregate ribosome factories from the cytoplasm where ribosomal proteins (RPs of the protomitochondrium were synthesized. After its uptake by an anuclear cell the protomitochondrium transferred several of its RP genes to the host genome. Alphaproteobacterial RPs and archaebacterial-type host ribosomes were consequently synthesized in the same cytoplasm. This could have led to the formation of chimeric ribosomes. I propose that the nucleus evolved when the host cell compartmentalised its ribosome factories and the tightly linked genome to reduce ribosome chimerism. This was achieved in successive stages by first evolving karyopherin and RanGTP dependent chaperoning of RPs, followed by the evolution of a membrane network to serve as a diffusion barrier, and finally a hydrogel sieve to ensure selective permeability at nuclear pores. Computer simulations show that a gradual segregation of cytoplasm and nucleoplasm via these steps can progressively reduce ribosome chimerism. Conclusion Ribosome chimerism can provide a direct link between the selective forces for and the mechanisms of evolving nuclear transport and compartmentalisation. The detailed molecular scenario presented here provides a solution to the gradual evolution of nuclear compartmentalization from an anuclear stage. Reviewers This article was reviewed by Eugene V Koonin, Martijn Huynen, Anthony M. Poole and Patrick Forterre.

  8. Transfer of DNA from Bacteria to Eukaryotes

    Directory of Open Access Journals (Sweden)

    Benoît Lacroix

    2016-07-01

    Full Text Available Historically, the members of the Agrobacterium genus have been considered the only bacterial species naturally able to transfer and integrate DNA into the genomes of their eukaryotic hosts. Yet, increasing evidence suggests that this ability to genetically transform eukaryotic host cells might be more widespread in the bacterial world. Indeed, analyses of accumulating genomic data reveal cases of horizontal gene transfer from bacteria to eukaryotes and suggest that it represents a significant force in adaptive evolution of eukaryotic species. Specifically, recent reports indicate that bacteria other than Agrobacterium, such as Bartonella henselae (a zoonotic pathogen, Rhizobium etli (a plant-symbiotic bacterium related to Agrobacterium, or even Escherichia coli, have the ability to genetically transform their host cells under laboratory conditions. This DNA transfer relies on type IV secretion systems (T4SSs, the molecular machines that transport macromolecules during conjugative plasmid transfer and also during transport of proteins and/or DNA to the eukaryotic recipient cells. In this review article, we explore the extent of possible transfer of genetic information from bacteria to eukaryotic cells as well as the evolutionary implications and potential applications of this transfer.

  9. Elongation factor methyltransferase 3--a novel eukaryotic lysine methyltransferase.

    Science.gov (United States)

    Zhang, Lelin; Hamey, Joshua J; Hart-Smith, Gene; Erce, Melissa A; Wilkins, Marc R

    2014-08-22

    Here we describe the discovery of Saccharomycescerevisiae protein YJR129Cp as a new eukaryotic seven-beta-strand lysine methyltransferase. An immunoblotting screen of 21 putative methyltransferases showed a loss in the methylation of elongation factor 2 (EF2) on knockout of YJR129C. Mass spectrometric analysis of EF2 tryptic peptides localised this loss of methylation to lysine 509, in peptide LVEGLKR. In vitro methylation, using recombinant methyltransferases and purified EF2, validated YJR129Cp as responsible for methylation of lysine 509 and Efm2p as responsible for methylation at lysine 613. Contextualised on previously described protein structures, both sites of methylation were found at the interaction interface between EF2 and the 40S ribosomal subunit. In line with the recently discovered Efm1 and Efm2 we propose that YJR129C be named elongation factor methyltransferase 3 (Efm3). The human homolog of Efm3 is likely to be the putative methyltransferase FAM86A, according to sequence homology and multiple lines of literature evidence. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Universal Numeric Segmented Display

    OpenAIRE

    Azad, Md. Abul Kalam; Sharmeen, Rezwana; S. M. Kamruzzaman

    2010-01-01

    Segmentation display plays a vital role to display numerals. But in today's world matrix display is also used in displaying numerals. Because numerals has lots of curve edges which is better supported by matrix display. But as matrix display is costly and complex to implement and also needs more memory, segment display is generally used to display numerals. But as there is yet no proposed compact display architecture to display multiple language numerals at a time, this paper proposes uniform...

  11. Identification of Eukaryotic Open Reading Frames in Metagenomic cDNA Libraries Made from Environmental Samples†

    Science.gov (United States)

    Grant, Susan; Grant, William D.; Cowan, Don A.; Jones, Brian E.; Ma, Yanhe; Ventosa, Antonio; Heaphy, Shaun

    2006-01-01

    Here we describe the application of metagenomic technologies to construct cDNA libraries from RNA isolated from environmental samples. RNAlater (Ambion) was shown to stabilize RNA in environmental samples for periods of at least 3 months at −20°C. Protocols for library construction were established on total RNA extracted from Acanthamoeba polyphaga trophozoites. The methodology was then used on algal mats from geothermal hot springs in Tengchong county, Yunnan Province, People's Republic of China, and activated sludge from a sewage treatment plant in Leicestershire, United Kingdom. The Tenchong libraries were dominated by RNA from prokaryotes, reflecting the mainly prokaryote microbial composition. The majority of these clones resulted from rRNA; only a few appeared to be derived from mRNA. In contrast, many clones from the activated sludge library had significant similarity to eukaryote mRNA-encoded protein sequences. A library was also made using polyadenylated RNA isolated from total RNA from activated sludge; many more clones in this library were related to eukaryotic mRNA sequences and proteins. Open reading frames (ORFs) up to 378 amino acids in size could be identified. Some resembled known proteins over their full length, e.g., 36% match to cystatin, 49% match to ribosomal protein L32, 63% match to ribosomal protein S16, 70% to CPC2 protein. The methodology described here permits the polyadenylated transcriptome to be isolated from environmental samples with no knowledge of the identity of the microorganisms in the sample or the necessity to culture them. It has many uses, including the identification of novel eukaryotic ORFs encoding proteins and enzymes. PMID:16391035

  12. Impact of P-Site tRNA and antibiotics on ribosome mediated protein folding: studies using the Escherichia coli ribosome.

    Directory of Open Access Journals (Sweden)

    Surojit Mondal

    Full Text Available BACKGROUND: The ribosome, which acts as a platform for mRNA encoded polypeptide synthesis, is also capable of assisting in folding of polypeptide chains. The peptidyl transferase center (PTC that catalyzes peptide bond formation resides in the domain V of the 23S rRNA of the bacterial ribosome. Proper positioning of the 3' -CCA ends of the A- and P-site tRNAs via specific interactions with the nucleotides of the PTC are crucial for peptidyl transferase activity. This RNA domain is also the center for ribosomal chaperoning activity. The unfolded polypeptide chains interact with the specific nucleotides of the PTC and are released in a folding competent form. In vitro transcribed RNA corresponding to this domain (bDV RNA also displays chaperoning activity. RESULTS: The present study explores the effects of tRNAs, antibiotics that are A- and P-site PTC substrate analogs (puromycin and blasticidin and macrolide antibiotics (erythromycin and josamycin on the chaperoning ability of the E. coli ribosome and bDV RNA. Our studies using mRNA programmed ribosomes show that a tRNA positioned at the P-site effectively inhibits the ribosome's chaperoning function. We also show that the antibiotic blasticidin (that mimics the interaction between 3'-CCA end of P/P-site tRNA with the PTC is more effective in inhibiting ribosome and bDV RNA chaperoning ability than either puromycin or the macrolide antibiotics. Mutational studies of the bDV RNA could identify the nucleotides U2585 and G2252 (both of which interact with P-site tRNA to be important for its chaperoning ability. CONCLUSION: Both protein synthesis and their proper folding are crucial for maintenance of a functional cellular proteome. The PTC of the ribosome is attributed with both these abilities. The silencing of the chaperoning ability of the ribosome in the presence of P-site bound tRNA might be a way to segregate these two important functions.

  13. Atypical mitochondrial inheritance patterns in eukaryotes.

    Science.gov (United States)

    Breton, Sophie; Stewart, Donald T

    2015-10-01

    Mitochondrial DNA (mtDNA) is predominantly maternally inherited in eukaryotes. Diverse molecular mechanisms underlying the phenomenon of strict maternal inheritance (SMI) of mtDNA have been described, but the evolutionary forces responsible for its predominance in eukaryotes remain to be elucidated. Exceptions to SMI have been reported in diverse eukaryotic taxa, leading to the prediction that several distinct molecular mechanisms controlling mtDNA transmission are present among the eukaryotes. We propose that these mechanisms will be better understood by studying the deviations from the predominating pattern of SMI. This minireview summarizes studies on eukaryote species with unusual or rare mitochondrial inheritance patterns, i.e., other than the predominant SMI pattern, such as maternal inheritance of stable heteroplasmy, paternal leakage of mtDNA, biparental and strictly paternal inheritance, and doubly uniparental inheritance of mtDNA. The potential genes and mechanisms involved in controlling mitochondrial inheritance in these organisms are discussed. The linkage between mitochondrial inheritance and sex determination is also discussed, given that the atypical systems of mtDNA inheritance examined in this minireview are frequently found in organisms with uncommon sexual systems such as gynodioecy, monoecy, or andromonoecy. The potential of deviations from SMI for facilitating a better understanding of a number of fundamental questions in biology, such as the evolution of mtDNA inheritance, the coevolution of nuclear and mitochondrial genomes, and, perhaps, the role of mitochondria in sex determination, is considerable.

  14. Comparative genomics and evolution of eukaryotic phospholipidbiosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Lykidis, Athanasios

    2006-12-01

    Phospholipid biosynthetic enzymes produce diverse molecular structures and are often present in multiple forms encoded by different genes. This work utilizes comparative genomics and phylogenetics for exploring the distribution, structure and evolution of phospholipid biosynthetic genes and pathways in 26 eukaryotic genomes. Although the basic structure of the pathways was formed early in eukaryotic evolution, the emerging picture indicates that individual enzyme families followed unique evolutionary courses. For example, choline and ethanolamine kinases and cytidylyltransferases emerged in ancestral eukaryotes, whereas, multiple forms of the corresponding phosphatidyltransferases evolved mainly in a lineage specific manner. Furthermore, several unicellular eukaryotes maintain bacterial-type enzymes and reactions for the synthesis of phosphatidylglycerol and cardiolipin. Also, base-exchange phosphatidylserine synthases are widespread and ancestral enzymes. The multiplicity of phospholipid biosynthetic enzymes has been largely generated by gene expansion in a lineage specific manner. Thus, these observations suggest that phospholipid biosynthesis has been an actively evolving system. Finally, comparative genomic analysis indicates the existence of novel phosphatidyltransferases and provides a candidate for the uncharacterized eukaryotic phosphatidylglycerol phosphate phosphatase.

  15. The ribosome as a missing link in prebiotic evolution II: Ribosomes encode ribosomal proteins that bind to common regions of their own mRNAs and rRNAs.

    Science.gov (United States)

    Root-Bernstein, Robert; Root-Bernstein, Meredith

    2016-05-21

    We have proposed that the ribosome may represent a missing link between prebiotic chemistries and the first cells. One of the predictions that follows from this hypothesis, which we test here, is that ribosomal RNA (rRNA) must have encoded the proteins necessary for ribosomal function. In other words, the rRNA also functioned pre-biotically as mRNA. Since these ribosome-binding proteins (rb-proteins) must bind to the rRNA, but the rRNA also functioned as mRNA, it follows that rb-proteins should bind to their own mRNA as well. This hypothesis can be contrasted to a "null" hypothesis in which rb-proteins evolved independently of the rRNA sequences and therefore there should be no necessary similarity between the rRNA to which rb-proteins bind and the mRNA that encodes the rb-protein. Five types of evidence reported here support the plausibility of the hypothesis that the mRNA encoding rb-proteins evolved from rRNA: (1) the ubiquity of rb-protein binding to their own mRNAs and autogenous control of their own translation; (2) the higher-than-expected incidence of Arginine-rich modules associated with RNA binding that occurs in rRNA-encoded proteins; (3) the fact that rRNA-binding regions of rb-proteins are homologous to their mRNA binding regions; (4) the higher than expected incidence of rb-protein sequences encoded in rRNA that are of a high degree of homology to their mRNA as compared with a random selection of other proteins; and (5) rRNA in modern prokaryotes and eukaryotes encodes functional proteins. None of these results can be explained by the null hypothesis that assumes independent evolution of rRNA and the mRNAs encoding ribosomal proteins. Also noteworthy is that very few proteins bind their own mRNAs that are not associated with ribosome function. Further tests of the hypothesis are suggested: (1) experimental testing of whether rRNA-encoded proteins bind to rRNA at their coding sites; (2) whether tRNA synthetases, which are also known to bind to their

  16. Interaction of nascent chains with the ribosomal tunnel proteins Rpl4, Rpl17, and Rpl39 of Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhang, Ying; Wölfle, Tina; Rospert, Sabine

    2013-11-22

    As translation proceeds, nascent polypeptides pass through an exit tunnel that traverses the large ribosomal subunit. Three ribosomal proteins, termed Rpl4, Rpl17, and Rpl39 expose domains to the interior of the exit tunnel of eukaryotic ribosomes. Here we generated ribosome-bound nascent chains in a homologous yeast translation system to analyze contacts between the tunnel proteins and nascent chains. As model proteins we employed Dap2, which contains a hydrophobic signal anchor (SA) segment, and the chimera Dap2α, in which the SA was replaced with a hydrophilic segment, with the propensity to form an α-helix. Employing a newly developed FLAG exposure assay, we find that the nascent SA segment but not the hydrophilic segment adopted a stable, α-helical structure within the tunnel when the most C-terminal SA residue was separated by 14 residues from the peptidyl transferase center. Using UV cross-linking, antibodies specifically recognizing Rpl17 or Rpl39, and a His6-tagged version of Rpl4, we established that all three tunnel proteins of yeast contact the SA, whereas only Rpl4 and Rpl39 also contact the hydrophilic segment. Consistent with the localization of the tunnel exposed domains of Rpl17 and Rpl39, the SA was in contact with Rpl17 in the middle region and with Rpl39 in the exit region of the tunnel. In contrast, Rpl4 was in contact with nascent chain residues throughout the ribosomal tunnel.

  17. Staphylococcus aureus and Escherichia coli have disparate dependences on KsgA for growth and ribosome biogenesis.

    Science.gov (United States)

    O'Farrell, Heather C; Rife, Jason P

    2012-10-24

    The KsgA methyltransferase has been conserved throughout evolution, methylating two adenosines in the small subunit rRNA in all three domains of life as well as in eukaryotic organelles that contain ribosomes. Understanding of KsgA's important role in ribosome biogenesis has been recently expanded in Escherichia coli; these studies help explain why KsgA is so highly conserved and also suggest KsgA's potential as an antimicrobial drug target. We have analyzed KsgA's contribution to ribosome biogenesis and cell growth in Staphylococcus aureus. We found that deletion of ksgA in S. aureus led to a cold-sensitive growth phenotype, although KsgA was not as critical for ribosome biogenesis as it was shown to be in E. coli. Additionally, the ksgA knockout strain showed an increased sensitivity to aminoglycoside antibiotics. Overexpression of a catalytically inactive KsgA mutant was deleterious in the knockout strain but not the wild-type strain; this negative phenotype disappeared at low temperature. This work extends the study of KsgA, allowing comparison of this aspect of ribosome biogenesis between a Gram-negative and a Gram-positive organism. Our results in S. aureus are in contrast to results previously described in E. coli, where the catalytically inactive protein showed a negative phenotype in the presence or absence of endogenous KsgA.

  18. Staphylococcus aureus and Escherichia coli have disparate dependences on KsgA for growth and ribosome biogenesis

    Directory of Open Access Journals (Sweden)

    O’Farrell Heather C

    2012-10-01

    Full Text Available Abstract Background The KsgA methyltransferase has been conserved throughout evolution, methylating two adenosines in the small subunit rRNA in all three domains of life as well as in eukaryotic organelles that contain ribosomes. Understanding of KsgA’s important role in ribosome biogenesis has been recently expanded in Escherichia coli; these studies help explain why KsgA is so highly conserved and also suggest KsgA’s potential as an antimicrobial drug target. Results We have analyzed KsgA’s contribution to ribosome biogenesis and cell growth in Staphylococcus aureus. We found that deletion of ksgA in S. aureus led to a cold-sensitive growth phenotype, although KsgA was not as critical for ribosome biogenesis as it was shown to be in E. coli. Additionally, the ksgA knockout strain showed an increased sensitivity to aminoglycoside antibiotics. Overexpression of a catalytically inactive KsgA mutant was deleterious in the knockout strain but not the wild-type strain; this negative phenotype disappeared at low temperature. Conclusions This work extends the study of KsgA, allowing comparison of this aspect of ribosome biogenesis between a Gram-negative and a Gram-positive organism. Our results in S. aureus are in contrast to results previously described in E. coli, where the catalytically inactive protein showed a negative phenotype in the presence or absence of endogenous KsgA.

  19. Is The Ribosome Targeted By Adaptive Mutations

    DEFF Research Database (Denmark)

    Jimenez Fernandez, Alicia; Molin, Søren; Johansen, Helle Krogh

    2015-01-01

    degree of evolutionary conservation of the cellular MMSM tend to support this view. However, under certain selective conditions the machinery itself may be targeted by adaptive mutations, which result in fitness-increasing phenotypic changes. Here we investigate and characterize the role of ribosomal...... mutations in adaptive evolution. Methods: Several mutations in ribosomal genes have been identified in the genome analysis of nearly 700 Pseudomonas aeruginosa isolates from infected cystic fibrosis patients. Among these mutations we have repeatedly identified insertions, deletions and substitutions...... in specific ribosomal genes. The bacterial phenotypes of the mutated strains will be investigated. Results: Preliminary assays show that mutant strains have reduced growth rate and an altered antibiotic resistance pattern. The selection for mutations in ribosomal protein genes is partly explainable...

  20. A unique phosphorylation-dependent eIF4E assembly on 40S ribosomes co-ordinated by hepatitis C virus protein NS5A that activates internal ribosome entry site translation.

    Science.gov (United States)

    Panda, Swarupa; Vedagiri, Dhiviya; Viveka, Thangaraj Soundara; Harshan, Krishnan Harinivas

    2014-09-01

    We previously reported that the HCV (hepatitis C virus) protein NS5A up-regulated mRNA cap binding eIF4F (eukaryotic initiation factor 4F) complex assembly through mTOR (mechanistic target of rapamycin)-4EBP1 (eIF4E-binding protein 1) pathway and that NS5A (non-structural protein 5A) physically interacted with translation apparatus. In the present study, we demonstrate that NS5A co-ordinates a unique assembly of the cap binding protein eIF4E and 40S ribosome to form a complex that we call ENR (eIF4E-NS5A-ribosome). Recruitment of NS5A and eIF4E to 40S ribosome was confirmed by polysome fractionation, subcellular fractionation and high-salt-wash immunoprecipitation. These observations were also confirmed in HCV-infected cells, validating its biological significance. eIF4E phosphorylation was critical for ENR assembly. 80S ribosome dissociation and RNase integrity assays revealed that, once associated, the ENR complex is stable and RNA interaction is dispensable. Both the N- and C-terminal regions of NS5A domain 1 were indispensable for this assembly and for the NS5A-induced HCV IRES (internal ribosome entry site) activation. The present study demonstrates that NS5A initially associates with phosphorylated eIF4E of eIF4F complex and subsequently recruits it to 40S ribosomes. This is the first time the interaction of viral protein with both eIF4E and ribosomes has been reported. We propose that this assembly would determine the outcome of HCV infection and pathogenesis through regulation of viral and host translation.

  1. Mitochondrion-related organelles in eukaryotic protists.

    Science.gov (United States)

    Shiflett, April M; Johnson, Patricia J

    2010-01-01

    The discovery of mitochondrion-type genes in organisms thought to lack mitochondria led to the demonstration that hydrogenosomes share a common ancestry with mitochondria, as well as the discovery of mitosomes in multiple eukaryotic lineages. No examples of examined eukaryotes lacking a mitochondrion-related organelle exist, implying that the endosymbiont that gave rise to the mitochondrion was present in the first eukaryote. These organelles, known as hydrogenosomes, mitosomes, or mitochondrion-like organelles, are typically reduced, both structurally and biochemically, relative to classical mitochondria. However, despite their diversification and adaptation to different niches, all appear to play a role in Fe-S cluster assembly, as observed for mitochondria. Although evidence supports the use of common protein targeting mechanisms in the biogenesis of these diverse organelles, divergent features are also apparent. This review examines the metabolism and biogenesis of these organelles in divergent unicellular microbes, with a focus on parasitic protists.

  2. 3-D ultrastructure of O. tauri: electron cryotomography of an entire eukaryotic cell.

    Directory of Open Access Journals (Sweden)

    Gregory P Henderson

    2007-08-01

    Full Text Available The hallmark of eukaryotic cells is their segregation of key biological functions into discrete, membrane-bound organelles. Creating accurate models of their ultrastructural complexity has been difficult in part because of the limited resolution of light microscopy and the artifact-prone nature of conventional electron microscopy. Here we explored the potential of the emerging technology electron cryotomography to produce three-dimensional images of an entire eukaryotic cell in a near-native state. Ostreococcus tauri was chosen as the specimen because as a unicellular picoplankton with just one copy of each organelle, it is the smallest known eukaryote and was therefore likely to yield the highest resolution images. Whole cells were imaged at various stages of the cell cycle, yielding 3-D reconstructions of complete chloroplasts, mitochondria, endoplasmic reticula, Golgi bodies, peroxisomes, microtubules, and putative ribosome distributions in-situ. Surprisingly, the nucleus was seen to open long before mitosis, and while one microtubule (or two in some predivisional cells was consistently present, no mitotic spindle was ever observed, prompting speculation that a single microtubule might be sufficient to segregate multiple chromosomes.

  3. Large variability of bathypelagic microbial eukaryotic communities across the world’s oceans

    KAUST Repository

    Pernice, Massimo C.

    2015-10-09

    In this work, we study the diversity of bathypelagic microbial eukaryotes (0.8–20 μm) in the global ocean. Seawater samples from 3000 to 4000 m depth from 27 stations in the Atlantic, Pacific and Indian Oceans were analyzed by pyrosequencing the V4 region of the 18S ribosomal DNA. The relative abundance of the most abundant operational taxonomic units agreed with the results of a parallel metagenomic analysis, suggesting limited PCR biases in the tag approach. Although rarefaction curves for single stations were seldom saturated, the global analysis of all sequences together suggested an adequate recovery of bathypelagic diversity. Community composition presented a large variability among samples, which was poorly explained by linear geographic distance. In fact, the similarity between communities was better explained by water mass composition (26% of the variability) and the ratio in cell abundance between prokaryotes and microbial eukaryotes (21%). Deep diversity appeared dominated by four taxonomic groups (Collodaria, Chrysophytes, Basidiomycota and MALV-II) appearing in different proportions in each sample. Novel diversity amounted to 1% of the pyrotags and was lower than expected. Our study represents an essential step in the investigation of bathypelagic microbial eukaryotes, indicating dominating taxonomic groups and suggesting idiosyncratic assemblages in distinct oceanic regions.

    The ISME Journal advance online publication, 9 October 2015; doi:10.1038/ismej.2015.170

  4. Large variability of bathypelagic microbial eukaryotic communities across the world's oceans.

    Science.gov (United States)

    Pernice, Massimo C; Giner, Caterina R; Logares, Ramiro; Perera-Bel, Júlia; Acinas, Silvia G; Duarte, Carlos M; Gasol, Josep M; Massana, Ramon

    2016-04-01

    In this work, we study the diversity of bathypelagic microbial eukaryotes (0.8-20 μm) in the global ocean. Seawater samples from 3000 to 4000 m depth from 27 stations in the Atlantic, Pacific and Indian Oceans were analyzed by pyrosequencing the V4 region of the 18S ribosomal DNA. The relative abundance of the most abundant operational taxonomic units agreed with the results of a parallel metagenomic analysis, suggesting limited PCR biases in the tag approach. Although rarefaction curves for single stations were seldom saturated, the global analysis of all sequences together suggested an adequate recovery of bathypelagic diversity. Community composition presented a large variability among samples, which was poorly explained by linear geographic distance. In fact, the similarity between communities was better explained by water mass composition (26% of the variability) and the ratio in cell abundance between prokaryotes and microbial eukaryotes (21%). Deep diversity appeared dominated by four taxonomic groups (Collodaria, Chrysophytes, Basidiomycota and MALV-II) appearing in different proportions in each sample. Novel diversity amounted to 1% of the pyrotags and was lower than expected. Our study represents an essential step in the investigation of bathypelagic microbial eukaryotes, indicating dominating taxonomic groups and suggesting idiosyncratic assemblages in distinct oceanic regions.

  5. Bioadsorption strategies with yeast molecular display technology.

    Science.gov (United States)

    Shibasaki, Seiji; Ueda, Mitsuyoshi

    2014-01-01

    Molecular display techniques using microbial cell surfaces have been widely developed in the past twenty years, and are useful tools as whole cell catalysts for various applications such as bioconversion, bioremediation, biosensing, and the screening system of protein libraries. Furthermore, different types of microbial cells among eukaryotic and prokaryotic strains have been investigated for their use in surface display technologies. Recently, several kinds of protein-displaying yeasts have been utilized as bioadsorbents in this platform technology. In particular, these trials have successfully expanded the possibility of applications to metal binding, affinity purification, and receptor-ligand interaction by using the yeast cell surface. In this mini review, we describe the general principles of molecular display technology using yeast cells and its applications, with a particular focus on bioadsorption.

  6. Implications of electrostatic potentials on ribosomal proteins.

    Science.gov (United States)

    Kliber, J S; Hoa, G H; Douzou, P; Graffe, M; Grunberg-Manago, M

    1976-01-01

    Potentiometric studies of ribosomal particles 30S, 50S, and 70S, were designed to investigate possible implications of the electrostatic potentials developed by the 16S and 23S rRNA fractions. Release of protons and proton titrations of these ribosomal fractions were examined as a function of Mg2+ and K+ concentrations. The effects of these cations fit the polyelectrolyte theory remarkably well and are discussed accordingly. PMID:12498

  7. Structure of the human 80S ribosome.

    Science.gov (United States)

    Khatter, Heena; Myasnikov, Alexander G; Natchiar, S Kundhavai; Klaholz, Bruno P

    2015-04-30

    Ribosomes are translational machineries that catalyse protein synthesis. Ribosome structures from various species are known at the atomic level, but obtaining the structure of the human ribosome has remained a challenge; efforts to address this would be highly relevant with regard to human diseases. Here we report the near-atomic structure of the human ribosome derived from high-resolution single-particle cryo-electron microscopy and atomic model building. The structure has an average resolution of 3.6 Å, reaching 2.9 Å resolution in the most stable regions. It provides unprecedented insights into ribosomal RNA entities and amino acid side chains, notably of the transfer RNA binding sites and specific molecular interactions with the exit site tRNA. It reveals atomic details of the subunit interface, which is seen to remodel strongly upon rotational movements of the ribosomal subunits. Furthermore, the structure paves the way for analysing antibiotic side effects and diseases associated with deregulated protein synthesis.

  8. Reproduction, symbiosis, and the eukaryotic cell

    Science.gov (United States)

    Godfrey-Smith, Peter

    2015-01-01

    This paper develops a conceptual framework for addressing questions about reproduction, individuality, and the units of selection in symbiotic associations, with special attention to the origin of the eukaryotic cell. Three kinds of reproduction are distinguished, and a possible evolutionary sequence giving rise to a mitochondrion-containing eukaryotic cell from an endosymbiotic partnership is analyzed as a series of transitions between each of the three forms of reproduction. The sequence of changes seen in this “egalitarian” evolutionary transition is compared with those that apply in “fraternal” transitions, such as the evolution of multicellularity in animals. PMID:26286983

  9. Microtubule-dependent ribosome localization in C. elegans neurons

    Science.gov (United States)

    Noma, Kentaro; Goncharov, Alexandr; Ellisman, Mark H

    2017-01-01

    Subcellular localization of ribosomes defines the location and capacity for protein synthesis. Methods for in vivo visualizing ribosomes in multicellular organisms are desirable in mechanistic investigations of the cell biology of ribosome dynamics. Here, we developed an approach using split GFP for tissue-specific visualization of ribosomes in Caenorhabditis elegans. Labeled ribosomes are detected as fluorescent puncta in the axons and synaptic terminals of specific neuron types, correlating with ribosome distribution at the ultrastructural level. We found that axonal ribosomes change localization during neuronal development and after axonal injury. By examining mutants affecting axonal trafficking and performing a forward genetic screen, we showed that the microtubule cytoskeleton and the JIP3 protein UNC-16 exert distinct effects on localization of axonal and somatic ribosomes. Our data demonstrate the utility of tissue-specific visualization of ribosomes in vivo, and provide insight into the mechanisms of active regulation of ribosome localization in neurons. PMID:28767038

  10. S18 family of mitochondrial ribosomal proteins: evolutionary history and Gly132 polymorphism in colon carcinoma.

    Science.gov (United States)

    Mushtaq, Muhammad; Ali, Raja Hashim; Kashuba, Vladimir; Klein, George; Kashuba, Elena

    2016-08-23

    S18 family of mitochondrial ribosomal proteins (MRPS18, S18) consists of three members, S18-1 to -3. Earlier, we found that overexpression of S18-2 protein resulted in immortalization and eventual transformation of primary rat fibroblasts. The S18-1 and -3 have not exhibited such abilities. To understand the differences in protein properties, the evolutionary history of S18 family was analyzed. The S18-3, followed by S18-1 and S18-2 emerged as a result of ancient gene duplication in the root of eukaryotic species tree, followed by two metazoan-specific gene duplications. However, the most conserved metazoan S18 homolog is the S18-1; it shares the most sequence similarity with S18 proteins of bacteria and of other eukaryotic clades. Evolutionarily conserved residues of S18 proteins were analyzed in various cancers. S18-2 is mutated at a higher rate, compared with S18-1 and -3 proteins. Moreover, the evolutionarily conserved residue, Gly132 of S18-2, shows genetic polymorphism in colon adenocarcinomas that was confirmed by direct DNA sequencing.Concluding, S18 family represents the yet unexplored important mitochondrial ribosomal proteins.

  11. Ribosomal studies on the 70S ribosome of E.coli by means of neutron scattering; Strukturuntersuchungen am 70S-Ribosom von E.coli unter Anwendung von Neutronenstreuung

    Energy Technology Data Exchange (ETDEWEB)

    Burkhardt, N. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    1997-12-31

    Ribosomes are ribonucleo-protein complexes, which catalyse proteinbiosynthesis in all living organisms. Currently, most of the structural models of the prokaryotic 70S ribosome rely on electron microscopy and describe mainly the outer shape of the particle. Neutron scattering can provide information on the internal structure of the ribosome. Parts of the structure can be contrasted for neutrons by means of an isotopic exchange of the naturally occurring hydrogen ({sup 1}H) for deuterium ({sup 2}H), allowing direct measurements in situ. Specifically deuterium-labeled ribosomes (E. coli) were prepared and analysed with neutron scattering. The biochemical methods were established and combined to a generally applicable preparation system. This allows labeling of all ribosomal components in any combination. A systematic analysis of the protein and RNA phases resulted in the development of a new model for the 70S ribosome. This model describes not only the outer shape of the particle, but displays also an experimentally determined internal protein-RNA distribution and the border of subunits for the first time (four-phase model; resolution: 50A). Models of the 70S ribosome from other studies were evaluated and ranked according to consistency with the measured scattering data. Applying a new neutron scattering technique of particular sensitivity, the proton-spin contrast-variation, single proteins could be measured and localized. The positions of the proteins S6 and S10 were determined, providing the first coordinates of protein mass centers within the 70S ribosome. (orig.) [Deutsch] Ribosomen sind Ribonukleinsaeure-Protein Komplexe, die in allen lebenden Organismen die Proteinbiosynthese katalysieren. Strukturmodelle fuer das prokaryontische 70S-Ribosom beruhen derzeit vorwiegend auf elektronenmikroskopischen Untersuchungen und beschreiben im wesentlichen die aeussere Oberflaeche des Partikels. Informationen ueber die innere Struktur des Ribosoms koennen Messungen mit

  12. Genome-wide mapping reveals single-origin chromosome replication in Leishmania, a eukaryotic microbe.

    Science.gov (United States)

    Marques, Catarina A; Dickens, Nicholas J; Paape, Daniel; Campbell, Samantha J; McCulloch, Richard

    2015-10-19

    DNA replication initiates on defined genome sites, termed origins. Origin usage appears to follow common rules in the eukaryotic organisms examined to date: all chromosomes are replicated from multiple origins, which display variations in firing efficiency and are selected from a larger pool of potential origins. To ask if these features of DNA replication are true of all eukaryotes, we describe genome-wide origin mapping in the parasite Leishmania. Origin mapping in Leishmania suggests a striking divergence in origin usage relative to characterized eukaryotes, since each chromosome appears to be replicated from a single origin. By comparing two species of Leishmania, we find evidence that such origin singularity is maintained in the face of chromosome fusion or fission events during evolution. Mapping Leishmania origins suggests that all origins fire with equal efficiency, and that the genomic sites occupied by origins differ from related non-origins sites. Finally, we provide evidence that origin location in Leishmania displays striking conservation with Trypanosoma brucei, despite the latter parasite replicating its chromosomes from multiple, variable strength origins. The demonstration of chromosome replication for a single origin in Leishmania, a microbial eukaryote, has implications for the evolution of origin multiplicity and associated controls, and may explain the pervasive aneuploidy that characterizes Leishmania chromosome architecture.

  13. Bicistronic DNA display for in vitro selection of Fab fragments.

    Science.gov (United States)

    Sumida, Takeshi; Doi, Nobuhide; Yanagawa, Hiroshi

    2009-12-01

    In vitro display methods are superior tools for obtaining monoclonal antibodies. Although totally in vitro display methods, such as ribosome display and mRNA display, have the advantages of larger library sizes and quicker selection procedures compared with phage display, their applications have been limited to single-chain Fvs due to the requirement for linking of the mRNA and the nascent protein on the ribosome. Here we describe a different type of totally in vitro method, DNA display, that is applicable to heterodimeric Fab fragments: in vitro compartmentalization in water-in-oil emulsions allows the linking of an oligomeric protein and its encoding DNA with multiple ORFs. Since previously used emulsions impaired the synthesis of functional Fab fragments, we modified conditions for preparing emulsions, and identified conditions under which it was possible to enrich Fab fragments 10(6)-fold per three rounds of affinity selection. Furthermore, we confirmed that genes encoding stable Fab fragments could be selected from a Fab fragment library with a randomized hydrophobic core in the constant region by applying heat treatment as a selection pressure. Since this method has all advantages of both phage display and totally in vitro display, it represents a new option for many applications using display methods.

  14. Interaction of triclosan with eukaryotic membrane lipids.

    Science.gov (United States)

    Lygre, Henning; Moe, Grete; Skålevik, Rita; Holmsen, Holm

    2003-06-01

    The possibility that triclosan and PVM/MA (polyvinylmethyl ether/maleic acid) copolymer, additives to dentrifrices, could interact with eukaryotic membrane lipids was studied by two methods: first, by determining the pressure/molecular area isotherms at 37 degrees C of glycerophospholipid monolayers, using the Langmuir technique; and second, by phase-transition parameters in liposomes of the same lipids, using differential scanning calorimetry (DSC). Triclosan interacted, in a concentration-independent manner, with monolayers of saturated phosphatidylcholines (PC; i.e. markers of the outer membrane leaflet of eukaryotic cells). Triclosan and PVM/MA copolymer mixtures were shown to clearly interact in a concentration-dependent manner with PC. Triclosan was found to interact with liposomes of saturated and unsaturated phosphatidylcholines and phosphatidylserines (PS; i.e. markers of the inner membrane leaflet of eukaryotic cells), and saturated ethanolamines (PE; i.e. markers of the inner membrane leaflet of eukaryotic cells), resulting in a decrease of the lipid melting temperature (Tm). PVM/MA copolymer changed the Tm of PS, PC, and PE in different manners. By adding PVM/MA or triclosan-PVM/MA copolymer mixtures to 1-stearoyl-2-oleoyl-sn-glycero-3-phosphoserine (SOPS) no lipid transitions were detected. A biphasic change of the PC transition temperature resulted when triclosan or triclosan PVM/MA copolymer mixtures were added, indicating domain formation and change of the lipid polymorphism.

  15. The Center for Eukaryotic Structural Genomics.

    Science.gov (United States)

    Markley, John L; Aceti, David J; Bingman, Craig A; Fox, Brian G; Frederick, Ronnie O; Makino, Shin-ichi; Nichols, Karl W; Phillips, George N; Primm, John G; Sahu, Sarata C; Vojtik, Frank C; Volkman, Brian F; Wrobel, Russell L; Zolnai, Zsolt

    2009-04-01

    The Center for Eukaryotic Structural Genomics (CESG) is a "specialized" or "technology development" center supported by the Protein Structure Initiative (PSI). CESG's mission is to develop improved methods for the high-throughput solution of structures from eukaryotic proteins, with a very strong weighting toward human proteins of biomedical relevance. During the first three years of PSI-2, CESG selected targets representing 601 proteins from Homo sapiens, 33 from mouse, 10 from rat, 139 from Galdieria sulphuraria, 35 from Arabidopsis thaliana, 96 from Cyanidioschyzon merolae, 80 from Plasmodium falciparum, 24 from yeast, and about 25 from other eukaryotes. Notably, 30% of all structures of human proteins solved by the PSI Centers were determined at CESG. Whereas eukaryotic proteins generally are considered to be much more challenging targets than prokaryotic proteins, the technology now in place at CESG yields success rates that are comparable to those of the large production centers that work primarily on prokaryotic proteins. We describe here the technological innovations that underlie CESG's platforms for bioinformatics and laboratory information management, target selection, protein production, and structure determination by X-ray crystallography or NMR spectroscopy.

  16. Structural diversity in bacterial ribosomes: mycobacterial 70S ribosome structure reveals novel features.

    Science.gov (United States)

    Shasmal, Manidip; Sengupta, Jayati

    2012-01-01

    Here we present analysis of a 3D cryo-EM map of the 70S ribosome from Mycobacterium smegmatis, a saprophytic cousin of the etiological agent of tuberculosis in humans, Mycobacterium tuberculosis. In comparison with the 3D structures of other prokaryotic ribosomes, the density map of the M. smegmatis 70S ribosome reveals unique structural features and their relative orientations in the ribosome. Dramatic changes in the periphery due to additional rRNA segments and extra domains of some of the peripheral ribosomal proteins like S3, S5, S16, L17, L25, are evident. One of the most notable features appears in the large subunit near L1 stalk as a long helical structure next to helix 54 of the 23S rRNA. The sharp upper end of this structure is located in the vicinity of the mRNA exit channel. Although the M. smegmatis 70S ribosome possesses conserved core structure of bacterial ribosome, the new structural features, unveiled in this study, demonstrates diversity in the 3D architecture of bacterial ribosomes. We postulate that the prominent helical structure related to the 23S rRNA actively participates in the mechanisms of translation in mycobacteria.

  17. Distribution of dwell times of a ribosome: effects of infidelity, kinetic proofreading and ribosome crowding

    Science.gov (United States)

    Sharma, Ajeet K.; Chowdhury, Debashish

    2011-04-01

    Ribosome is a molecular machine that polymerizes a protein where the sequence of the amino acid residues, the monomers of the protein, is dictated by the sequence of codons (triplets of nucleotides) on a messenger RNA (mRNA) that serves as the template. The ribosome is a molecular motor that utilizes the template mRNA strand also as the track. Thus, in each step the ribosome moves forward by one codon and, simultaneously, elongates the protein by one amino acid. We present a theoretical model that captures most of the main steps in the mechanochemical cycle of a ribosome. The stochastic movement of the ribosome consists of an alternating sequence of pause and translocation; the sum of the durations of a pause and the following translocation is the time of dwell of the ribosome at the corresponding codon. We derive the analytical expression for the distribution of the dwell times of a ribosome in our model. Wherever experimental data are available, our theoretical predictions are consistent with those results. We suggest appropriate experiments to test the new predictions of our model, particularly the effects of the quality control mechanism of the ribosome and that of their crowding on the mRNA track.

  18. Precursors of ribosomal RNA in yeast nucleus : Biosynthesis and relation to cytoplasmic ribosomal RNA

    NARCIS (Netherlands)

    Sillevis Smitt, W.W.; Vlak, J.M.; Schiphof, R.; Rozijn, Th.H.

    In vivo methylated precursors of ribosomal RNA in yeast have been characterized on acrylamide gels. The initial ribosomal precursor in the yeast nucleus is a 37S RNA component, which is processed to a nuclear 28S RNA. Both the 37S and the 28S RNA components are important constituents of the yeast

  19. Anaerobic energy metabolism in unicellular photosynthetic eukaryotes.

    Science.gov (United States)

    Atteia, Ariane; van Lis, Robert; Tielens, Aloysius G M; Martin, William F

    2013-02-01

    Anaerobic metabolic pathways allow unicellular organisms to tolerate or colonize anoxic environments. Over the past ten years, genome sequencing projects have brought a new light on the extent of anaerobic metabolism in eukaryotes. A surprising development has been that free-living unicellular algae capable of photoautotrophic lifestyle are, in terms of their enzymatic repertoire, among the best equipped eukaryotes known when it comes to anaerobic energy metabolism. Some of these algae are marine organisms, common in the oceans, others are more typically soil inhabitants. All these species are important from the ecological (O(2)/CO(2) budget), biotechnological, and evolutionary perspectives. In the unicellular algae surveyed here, mixed-acid type fermentations are widespread while anaerobic respiration, which is more typical of eukaryotic heterotrophs, appears to be rare. The presence of a core anaerobic metabolism among the algae provides insights into its evolutionary origin, which traces to the eukaryote common ancestor. The predicted fermentative enzymes often exhibit an amino acid extension at the N-terminus, suggesting that these proteins might be compartmentalized in the cell, likely in the chloroplast or the mitochondrion. The green algae Chlamydomonas reinhardtii and Chlorella NC64 have the most extended set of fermentative enzymes reported so far. Among the eukaryotes with secondary plastids, the diatom Thalassiosira pseudonana has the most pronounced anaerobic capabilities as yet. From the standpoints of genomic, transcriptomic, and biochemical studies, anaerobic energy metabolism in C. reinhardtii remains the best characterized among photosynthetic protists. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Genetic diversity of Entamoeba: Novel ribosomal lineages from cockroaches

    Science.gov (United States)

    Kawano, Tetsuro; Imada, Mihoko; Chamavit, Pennapa; Kobayashi, Seiki; Hashimoto, Tetsuo

    2017-01-01

    Our current taxonomic perspective on Entamoeba is largely based on small-subunit ribosomal RNA genes (SSU rDNA) from Entamoeba species identified in vertebrate hosts with minor exceptions such as E. moshkovskii from sewage water and E. marina from marine sediment. Other Entamoeba species have also been morphologically identified and described from non-vertebrate species such as insects; however, their genetic diversity remains unknown. In order to further disclose the diversity of the genus, we investigated Entamoeba spp. in the intestines of three cockroach species: Periplaneta americana, Blaptica dubia, and Gromphadorhina oblongonota. We obtained 134 Entamoeba SSU rDNA sequences from 186 cockroaches by direct nested PCR using the DNA extracts of intestines from cockroaches, followed by scrutinized BLASTn screening and phylogenetic analyses. All the sequences identified in this study were distinct from those reported from known Entamoeba species, and considered as novel Entamoeba ribosomal lineages. Furthermore, they were positioned at the base of the clade of known Entamoeba species and displayed remarkable degree of genetic diversity comprising nine major groups in the three cockroach species. This is the first report of the diversity of SSU rDNA sequences from Entamoeba in non-vertebrate host species, and should help to understand the genetic diversity of the genus Entamoeba. PMID:28934335

  1. Genetic diversity of Entamoeba: Novel ribosomal lineages from cockroaches.

    Directory of Open Access Journals (Sweden)

    Tetsuro Kawano

    Full Text Available Our current taxonomic perspective on Entamoeba is largely based on small-subunit ribosomal RNA genes (SSU rDNA from Entamoeba species identified in vertebrate hosts with minor exceptions such as E. moshkovskii from sewage water and E. marina from marine sediment. Other Entamoeba species have also been morphologically identified and described from non-vertebrate species such as insects; however, their genetic diversity remains unknown. In order to further disclose the diversity of the genus, we investigated Entamoeba spp. in the intestines of three cockroach species: Periplaneta americana, Blaptica dubia, and Gromphadorhina oblongonota. We obtained 134 Entamoeba SSU rDNA sequences from 186 cockroaches by direct nested PCR using the DNA extracts of intestines from cockroaches, followed by scrutinized BLASTn screening and phylogenetic analyses. All the sequences identified in this study were distinct from those reported from known Entamoeba species, and considered as novel Entamoeba ribosomal lineages. Furthermore, they were positioned at the base of the clade of known Entamoeba species and displayed remarkable degree of genetic diversity comprising nine major groups in the three cockroach species. This is the first report of the diversity of SSU rDNA sequences from Entamoeba in non-vertebrate host species, and should help to understand the genetic diversity of the genus Entamoeba.

  2. Fragmentation of the large subunit ribosomal RNA gene in oyster mitochondrial genomes

    Directory of Open Access Journals (Sweden)

    Milbury Coren A

    2010-09-01

    Full Text Available Abstract Background Discontinuous genes have been observed in bacteria, archaea, and eukaryotic nuclei, mitochondria and chloroplasts. Gene discontinuity occurs in multiple forms: the two most frequent forms result from introns that are spliced out of the RNA and the resulting exons are spliced together to form a single transcript, and fragmented gene transcripts that are not covalently attached post-transcriptionally. Within the past few years, fragmented ribosomal RNA (rRNA genes have been discovered in bilateral metazoan mitochondria, all within a group of related oysters. Results In this study, we have characterized this fragmentation with comparative analysis and experimentation. We present secondary structures, modeled using comparative sequence analysis of the discontinuous mitochondrial large subunit rRNA genes of the cupped oysters C. virginica, C. gigas, and C. hongkongensis. Comparative structure models for the large subunit rRNA in each of the three oyster species are generally similar to those for other bilateral metazoans. We also used RT-PCR and analyzed ESTs to determine if the two fragmented LSU rRNAs are spliced together. The two segments are transcribed separately, and not spliced together although they still form functional rRNAs and ribosomes. Conclusions Although many examples of discontinuous ribosomal genes have been documented in bacteria and archaea, as well as the nuclei, chloroplasts, and mitochondria of eukaryotes, oysters are some of the first characterized examples of fragmented bilateral animal mitochondrial rRNA genes. The secondary structures of the oyster LSU rRNA fragments have been predicted on the basis of previous comparative metazoan mitochondrial LSU rRNA structure models.

  3. Structure of the 40S ribosomal subunit of Plasmodium falciparum by homology and de novo modeling

    Directory of Open Access Journals (Sweden)

    Harrison Ndung'u Mwangi

    2017-01-01

    Full Text Available Generation of three dimensional structures of macromolecules using in silico structural modeling technologies such as homology and de novo modeling has improved dramatically and increased the speed by which tertiary structures of organisms can be generated. This is especially the case if a homologous crystal structure is already available. High-resolution structures can be rapidly created using only their sequence information as input, a process that has the potential to increase the speed of scientific discovery. In this study, homology modeling and structure prediction tools such as RNA123 and SWISS–MODEL were used to generate the 40S ribosomal subunit from Plasmodium falciparum. This structure was modeled using the published crystal structure from Tetrahymena thermophila, a homologous eukaryote. In the absence of the Plasmodium falciparum 40S ribosomal crystal structure, the model accurately depicts a global topology, secondary and tertiary connections, and gives an overall root mean square deviation (RMSD value of 3.9 Å relative to the template׳s crystal structure. Deviations are somewhat larger in areas with no homology between the templates. These results demonstrate that this approach has the power to identify motifs of interest in RNA and identify potential drug targets for macromolecules whose crystal structures are unknown. The results also show the utility of RNA homology modeling software for structure determination and lay the groundwork for applying this approach to larger and more complex eukaryotic ribosomes and other RNA-protein complexes. Structures generated from this study can be used in in silico screening experiments and lead to the determination of structures for targets/hit complexes.

  4. HflX is a ribosome-splitting factor rescuing stalled ribosomes under stress conditions.

    Science.gov (United States)

    Zhang, Yanqing; Mandava, Chandra Sekhar; Cao, Wei; Li, Xiaojing; Zhang, Dejiu; Li, Ningning; Zhang, Yixiao; Zhang, Xiaoxiao; Qin, Yan; Mi, Kaixia; Lei, Jianlin; Sanyal, Suparna; Gao, Ning

    2015-11-01

    Adverse cellular conditions often lead to nonproductive translational stalling and arrest of ribosomes on mRNAs. Here, we used fast kinetics and cryo-EM to characterize Escherichia coli HflX, a GTPase with unknown function. Our data reveal that HflX is a heat shock-induced ribosome-splitting factor capable of dissociating vacant as well as mRNA-associated ribosomes with deacylated tRNA in the peptidyl site. Structural data demonstrate that the N-terminal effector domain of HflX binds to the peptidyl transferase center in a strikingly similar manner as that of the class I release factors and induces dramatic conformational changes in central intersubunit bridges, thus promoting subunit dissociation. Accordingly, loss of HflX results in an increase in stalled ribosomes upon heat shock. These results suggest a primary role of HflX in rescuing translationally arrested ribosomes under stress conditions.

  5. The CRM domain: an RNA binding module derived from an ancient ribosome-associated protein.

    Science.gov (United States)

    Barkan, Alice; Klipcan, Larik; Ostersetzer, Oren; Kawamura, Tetsuya; Asakura, Yukari; Watkins, Kenneth P

    2007-01-01

    The CRS1-YhbY domain (also called the CRM domain) is represented as a stand-alone protein in Archaea and Bacteria, and in a family of single- and multidomain proteins in plants. The function of this domain is unknown, but structural data and the presence of the domain in several proteins known to interact with RNA have led to the proposal that it binds RNA. Here we describe a phylogenetic analysis of the domain, its incorporation into diverse proteins in plants, and biochemical properties of a prokaryotic and eukaryotic representative of the domain family. We show that a bacterial member of the family, Escherichia coli YhbY, is associated with pre-50S ribosomal subunits, suggesting that YhbY functions in ribosome assembly. GFP fused to a single-domain CRM protein from maize localizes to the nucleolus, suggesting that an analogous activity may have been retained in plants. We show further that an isolated maize CRM domain has RNA binding activity in vitro, and that a small motif shared with KH RNA binding domains, a conserved "GxxG" loop, contributes to its RNA binding activity. These and other results suggest that the CRM domain evolved in the context of ribosome function prior to the divergence of Archaea and Bacteria, that this function has been maintained in extant prokaryotes, and that the domain was recruited to serve as an RNA binding module during the evolution of plant genomes.

  6. A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress.

    Science.gov (United States)

    Brandman, Onn; Stewart-Ornstein, Jacob; Wong, Daisy; Larson, Adam; Williams, Christopher C; Li, Gene-Wei; Zhou, Sharleen; King, David; Shen, Peter S; Weibezahn, Jimena; Dunn, Joshua G; Rouskin, Silvi; Inada, Toshifumi; Frost, Adam; Weissman, Jonathan S

    2012-11-21

    The conserved transcriptional regulator heat shock factor 1 (Hsf1) is a key sensor of proteotoxic and other stress in the eukaryotic cytosol. We surveyed Hsf1 activity in a genome-wide loss-of-function library in Saccaromyces cerevisiae as well as ~78,000 double mutants and found Hsf1 activity to be modulated by highly diverse stresses. These included disruption of a ribosome-bound complex we named the Ribosome Quality Control Complex (RQC) comprising the Ltn1 E3 ubiquitin ligase, two highly conserved but poorly characterized proteins (Tae2 and Rqc1), and Cdc48 and its cofactors. Electron microscopy and biochemical analyses revealed that the RQC forms a stable complex with 60S ribosomal subunits containing stalled polypeptides and triggers their degradation. A negative feedback loop regulates the RQC, and Hsf1 senses an RQC-mediated translation-stress signal distinctly from other stresses. Our work reveals the range of stresses Hsf1 monitors and elucidates a conserved cotranslational protein quality control mechanism. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Modular, rule-based modeling for the design of eukaryotic synthetic gene circuits.

    Science.gov (United States)

    Marchisio, Mario Andrea; Colaiacovo, Moreno; Whitehead, Ellis; Stelling, Jörg

    2013-05-27

    The modular design of synthetic gene circuits via composable parts (DNA segments) and pools of signal carriers (molecules such as RNA polymerases and ribosomes) has been successfully applied to bacterial systems. However, eukaryotic cells are becoming a preferential host for new synthetic biology applications. Therefore, an accurate description of the intricate network of reactions that take place inside eukaryotic parts and pools is necessary. Rule-based modeling approaches are increasingly used to obtain compact representations of reaction networks in biological systems. However, this approach is intrinsically non-modular and not suitable per se for the description of composable genetic modules. In contrast, the Model Description Language (MDL) adopted by the modeling tool ProMoT is highly modular and it enables a faithful representation of biological parts and pools. We developed a computational framework for the design of complex (eukaryotic) gene circuits by generating dynamic models of parts and pools via the joint usage of the BioNetGen rule-based modeling approach and MDL. The framework converts the specification of a part (or pool) structure into rules that serve as inputs for BioNetGen to calculate the part's species and reactions. The BioNetGen output is translated into an MDL file that gives a complete description of all the reactions that take place inside the part (or pool) together with a proper interface to connect it to other modules in the circuit. In proof-of-principle applications to eukaryotic Boolean circuits with more than ten genes and more than one thousand reactions, our framework yielded proper representations of the circuits' truth tables. For the model-based design of increasingly complex gene circuits, it is critical to achieve exact and systematic representations of the biological processes with minimal effort. Our computational framework provides such a detailed and intuitive way to design new and complex synthetic gene circuits.

  8. IRES-Mediated Translation of Membrane Proteins and Glycoproteins in Eukaryotic Cell-Free Systems

    Science.gov (United States)

    Brödel, Andreas K.; Sonnabend, Andrei; Roberts, Lisa O.; Stech, Marlitt; Wüstenhagen, Doreen A.; Kubick, Stefan

    2013-01-01

    Internal ribosome entry site (IRES) elements found in the 5′ untranslated region of mRNAs enable translation initiation in a cap-independent manner, thereby representing an alternative to cap-dependent translation in cell-free protein expression systems. However, IRES function is largely species-dependent so their utility in cell-free systems from different species is rather limited. A promising approach to overcome these limitations would be the use of IRESs that are able to recruit components of the translation initiation apparatus from diverse origins. Here, we present a solution to this technical problem and describe the ability of a number of viral IRESs to direct efficient protein expression in different eukaryotic cell-free expression systems. The IRES from the intergenic region (IGR) of the Cricket paralysis virus (CrPV) genome was shown to function efficiently in four different cell-free systems based on lysates derived from cultured Sf21, CHO and K562 cells as well as wheat germ. Our results suggest that the CrPV IGR IRES-based expression vector is universally applicable for a broad range of eukaryotic cell lysates. Sf21, CHO and K562 cell-free expression systems are particularly promising platforms for the production of glycoproteins and membrane proteins since they contain endogenous microsomes that facilitate the incorporation of membrane-spanning proteins and the formation of post-translational modifications. We demonstrate the use of the CrPV IGR IRES-based expression vector for the enhanced synthesis of various target proteins including the glycoprotein erythropoietin and the membrane proteins heparin-binding EGF-like growth factor receptor as well as epidermal growth factor receptor in the above mentioned eukaryotic cell-free systems. CrPV IGR IRES-mediated translation will facilitate the development of novel eukaryotic cell-free expression platforms as well as the high-yield synthesis of desired proteins in already established systems. PMID

  9. IRES-mediated translation of membrane proteins and glycoproteins in eukaryotic cell-free systems.

    Directory of Open Access Journals (Sweden)

    Andreas K Brödel

    Full Text Available Internal ribosome entry site (IRES elements found in the 5' untranslated region of mRNAs enable translation initiation in a cap-independent manner, thereby representing an alternative to cap-dependent translation in cell-free protein expression systems. However, IRES function is largely species-dependent so their utility in cell-free systems from different species is rather limited. A promising approach to overcome these limitations would be the use of IRESs that are able to recruit components of the translation initiation apparatus from diverse origins. Here, we present a solution to this technical problem and describe the ability of a number of viral IRESs to direct efficient protein expression in different eukaryotic cell-free expression systems. The IRES from the intergenic region (IGR of the Cricket paralysis virus (CrPV genome was shown to function efficiently in four different cell-free systems based on lysates derived from cultured Sf21, CHO and K562 cells as well as wheat germ. Our results suggest that the CrPV IGR IRES-based expression vector is universally applicable for a broad range of eukaryotic cell lysates. Sf21, CHO and K562 cell-free expression systems are particularly promising platforms for the production of glycoproteins and membrane proteins since they contain endogenous microsomes that facilitate the incorporation of membrane-spanning proteins and the formation of post-translational modifications. We demonstrate the use of the CrPV IGR IRES-based expression vector for the enhanced synthesis of various target proteins including the glycoprotein erythropoietin and the membrane proteins heparin-binding EGF-like growth factor receptor as well as epidermal growth factor receptor in the above mentioned eukaryotic cell-free systems. CrPV IGR IRES-mediated translation will facilitate the development of novel eukaryotic cell-free expression platforms as well as the high-yield synthesis of desired proteins in already established

  10. The ribosome can prevent aggregation of partially folded protein intermediates: studies using the Escherichia coli ribosome.

    Directory of Open Access Journals (Sweden)

    Bani Kumar Pathak

    Full Text Available BACKGROUND: Molecular chaperones that support de novo folding of proteins under non stress condition are classified as chaperone 'foldases' that are distinct from chaperone' holdases' that provide high affinity binding platform for unfolded proteins and prevent their aggregation specifically under stress conditions. Ribosome, the cellular protein synthesis machine can act as a foldase chaperone that can bind unfolded proteins and release them in folding competent state. The peptidyl transferase center (PTC located in the domain V of the 23S rRNA of Escherichia coli ribosome (bDV RNA is the chaperoning center of the ribosome. It has been proposed that via specific interactions between the RNA and refolding proteins, the chaperone provides information for the correct folding of unfolded polypeptide chains. RESULTS: We demonstrate using Escherichia coli ribosome and variants of its domain V RNA that the ribosome can bind to partially folded intermediates of bovine carbonic anhydrase II (BCAII and lysozyme and suppress aggregation during their refolding. Using mutants of domain V RNA we demonstrate that the time for which the chaperone retains the bound protein is an important factor in determining its ability to suppress aggregation and/or support reactivation of protein. CONCLUSION: The ribosome can behave like a 'holdase' chaperone and has the ability to bind and hold back partially folded intermediate states of proteins from participating in the aggregation process. Since the ribosome is an essential organelle that is present in large numbers in all living cells, this ability of the ribosome provides an energetically inexpensive way to suppress cellular aggregation. Further, this ability of the ribosome might also be crucial in the context that the ribosome is one of the first chaperones to be encountered by a large nascent polypeptide chains that have a tendency to form partially folded intermediates immediately following their synthesis.

  11. Functional Importance of Mobile Ribosomal Proteins

    Directory of Open Access Journals (Sweden)

    Kai-Chun Chang

    2015-01-01

    Full Text Available Although the dynamic motions and peptidyl transferase activity seem to be embedded in the rRNAs, the ribosome contains more than 50 ribosomal proteins (r-proteins, whose functions remain largely elusive. Also, the precise forms of some of these r-proteins, as being part of the ribosome, are not structurally solved due to their high flexibility, which hinders the efforts in their functional elucidation. Owing to recent advances in cryo-electron microscopy, single-molecule techniques, and theoretical modeling, much has been learned about the dynamics of these r-proteins. Surprisingly, allosteric regulations have been found in between spatially separated components as distant as those in the opposite sides of the ribosome. Here, we focus on the functional roles and intricate regulations of the mobile L1 and L12 stalks and L9 and S1 proteins. Conformational flexibility also enables versatile functions for r-proteins beyond translation. The arrangement of r-proteins may be under evolutionary pressure that fine-tunes mass distributions for optimal structural dynamics and catalytic activity of the ribosome.

  12. Vertical structure of small eukaryotes in three lakes that differ by their trophic status: a quantitative approach.

    Science.gov (United States)

    Lepère, Cecile; Masquelier, Sylvie; Mangot, Jean-François; Debroas, Didier; Domaizon, Isabelle

    2010-12-01

    In lakes, the diversity of eukaryotic picoplankton has been recently studied by the analysis of 18S ribosomal RNA gene sequences; however, quantitative data are rare. In this study, the vertical structure and abundance of the small eukaryotic size fraction (0.2-5 μm) were investigated in three lakes by tyramide signal amplification-fluorescent in situ hybridization targeting six phylogenetic groups: Chlorophyta, Haptophyta, Cercozoa, LKM11, Perkinsozoa and fungi. The groups targeted in this study are found in all lakes; however, both the abundance and structure of small eukaryotes are dependent on the system's productivity and depth. These data highlighted the presence of Chlorophyta contributing on an average to 19.3%, 14.7% and 41.2% of total small eukaryotes in lakes Bourget, Aydat and Pavin, respectively. This study also revealed the unexpected importance of Haptophyta, reaching 62.8% of eukaryotes in the euphotic zone of Lake Bourget. The high proportions of these pigmented cells highlight the underestimation of these groups by PCR-based methods. The presence of pigmented Chlorophyta in the deepest zones of the lakes suggests a mixotrophic behaviour of these taxa. We also confirmed the presence of putative parasites such as Perkinsozoa (5.1% of small eukaryotes in Lake Pavin and Bourget) and, with lower abundances, fungi (targeted by the MY1574 probe). Cells targeted by LKM11 probes represented the second group of abundance within heterotrophs. Open questions regarding the functional roles of the targeted groups arise from this study, especially regarding parasitism and mixotrophy, which are interactions poorly taken into account in planktonic food web models.

  13. Detection and Quantification of Ribosome Inhibition by Aminoglycoside Antibiotics in Living Bacteria Using an Orthogonal Ribosome-Controlled Fluorescent Reporter.

    Science.gov (United States)

    Huang, Shijie; Zhu, Xuechen; Melançon, Charles E

    2016-01-15

    The ribosome is the quintessential antibacterial drug target, with many structurally and mechanistically distinct classes of antibacterial agents acting by inhibiting ribosome function. Detecting and quantifying ribosome inhibition by small molecules and investigating their binding modes and mechanisms of action are critical to antibacterial drug discovery and development efforts. To develop a ribosome inhibition assay that is operationally simple, yet provides direct information on the drug target and the mechanism of action, we have developed engineered E. coli strains harboring an orthogonal ribosome-controlled green fluorescent protein (GFP) reporter that produce fluorescent signal when the orthogonal ribosome is inhibited. As a proof of concept, we demonstrate that these strains, when coexpressing homogeneous populations of aminoglycoside resistant ribosomes, act as sensitive and quantitative detectors of ribosome inhibition by a set of 12 structurally diverse aminoglycoside antibiotics. We suggest that this strategy can be extended to quantifying ribosome inhibition by other drug classes.

  14. Modified ribosome profiling reveals high abundance of ribosome protected mRNA fragments derived from 3' untranslated regions.

    Science.gov (United States)

    Miettinen, Teemu P; Björklund, Mikael

    2015-01-01

    Ribosome profiling identifies ribosome positions on translated mRNAs. A prominent feature of published datasets is the near complete absence of ribosomes in 3' untranslated regions (3'UTR) although substantial ribosome density can be observed on non-coding RNAs. Here we perform ribosome profiling in cultured Drosophila and human cells and show that different features of translation are revealed depending on the nuclease and the digestion conditions used. Most importantly, we observe high abundance of ribosome protected fragments in 3'UTRs of thousands of genes without manipulation of translation termination. Affinity purification of ribosomes indicates that the 3'UTR reads originate from ribosome protected fragments. Association of ribosomes with the 3'UTR may be due to ribosome migration through the stop codon or 3'UTR mRNA binding to ribosomes on the coding sequence. This association depends primarily on the relative length of the 3'UTR and may be related to translational regulation or ribosome recycling, for which the efficiency is known to inversely correlate with 3'UTR length. Together our results indicate that ribosome profiling is highly dependent on digestion conditions and that ribosomes commonly associate with the 3'UTR, which may have a role in translational regulation. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Modified ribosome profiling reveals high abundance of ribosome protected mRNA fragments derived from 3′ untranslated regions

    Science.gov (United States)

    Miettinen, Teemu P.; Björklund, Mikael

    2015-01-01

    Ribosome profiling identifies ribosome positions on translated mRNAs. A prominent feature of published datasets is the near complete absence of ribosomes in 3′ untranslated regions (3′UTR) although substantial ribosome density can be observed on non-coding RNAs. Here we perform ribosome profiling in cultured Drosophila and human cells and show that different features of translation are revealed depending on the nuclease and the digestion conditions used. Most importantly, we observe high abundance of ribosome protected fragments in 3′UTRs of thousands of genes without manipulation of translation termination. Affinity purification of ribosomes indicates that the 3′UTR reads originate from ribosome protected fragments. Association of ribosomes with the 3′UTR may be due to ribosome migration through the stop codon or 3′UTR mRNA binding to ribosomes on the coding sequence. This association depends primarily on the relative length of the 3′UTR and may be related to translational regulation or ribosome recycling, for which the efficiency is known to inversely correlate with 3′UTR length. Together our results indicate that ribosome profiling is highly dependent on digestion conditions and that ribosomes commonly associate with the 3′UTR, which may have a role in translational regulation. PMID:25550424

  16. Towards New Antifolates Targeting Eukaryotic Opportunistic Infections

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.; Bolstad, D; Bolstad, E; Wright, D; Anderson, A

    2009-01-01

    Trimethoprim, an antifolate commonly prescribed in combination with sulfamethoxazole, potently inhibits several prokaryotic species of dihydrofolate reductase (DHFR). However, several eukaryotic pathogenic organisms are resistant to trimethoprim, preventing its effective use as a therapeutic for those infections. We have been building a program to reengineer trimethoprim to more potently and selectively inhibit eukaryotic species of DHFR as a viable strategy for new drug discovery targeting several opportunistic pathogens. We have developed a series of compounds that exhibit potent and selective inhibition of DHFR from the parasitic protozoa Cryptosporidium and Toxoplasma as well as the fungus Candida glabrata. A comparison of the structures of DHFR from the fungal species Candida glabrata and Pneumocystis suggests that the compounds may also potently inhibit Pneumocystis DHFR.

  17. Symbiosis and the origin of eukaryotic motility

    Science.gov (United States)

    Margulis, L.; Hinkle, G.

    1991-01-01

    Ongoing work to test the hypothesis of the origin of eukaryotic cell organelles by microbial symbioses is discussed. Because of the widespread acceptance of the serial endosymbiotic theory (SET) of the origin of plastids and mitochondria, the idea of the symbiotic origin of the centrioles and axonemes for spirochete bacteria motility symbiosis was tested. Intracellular microtubular systems are purported to derive from symbiotic associations between ancestral eukaryotic cells and motile bacteria. Four lines of approach to this problem are being pursued: (1) cloning the gene of a tubulin-like protein discovered in Spirocheata bajacaliforniesis; (2) seeking axoneme proteins in spirochets by antibody cross-reaction; (3) attempting to cultivate larger, free-living spirochetes; and (4) studying in detail spirochetes (e.g., Cristispira) symbiotic with marine animals. Other aspects of the investigation are presented.

  18. The Eukaryotic Promoter Database (EPD): recent developments.

    Science.gov (United States)

    Périer, R C; Junier, T; Bonnard, C; Bucher, P

    1999-01-01

    The Eukaryotic Promoter Database (EPD) is an annotated non-redundant collection of eukaryotic POL II promoters, for which the transcription start site has been determined experimentally. Access to promoter sequences is provided by pointers to positions in nucleotide sequence entries. The annotation part of an entry includes description of the initiation site mapping data, cross-references to other databases, and bibliographic references. EPD is structured in a way that facilitates dynamic extraction of biologically meaningful promoter subsets for comparative sequence analysis. Recent efforts have focused on exhaustive cross-referencing to the EMBL nucleotide sequence database, and on the improvement of the WWW-based user interfaces and data retrieval mechanisms. EPD can be accessed at http://www.epd.isb-sib.ch

  19. The Future of Multiplexed Eukaryotic Genome Engineering.

    Science.gov (United States)

    Thompson, David B; Aboulhouda, Soufiane; Hysolli, Eriona; Smith, Cory J; Wang, Stan; Castanon, Oscar; Church, George M

    2017-12-28

    Multiplex genome editing is the simultaneous introduction of multiple distinct modifications to a given genome. Though in its infancy, maturation of this field will facilitate powerful new biomedical research approaches and will enable a host of far-reaching biological engineering applications, including new therapeutic modalities and industrial applications, as well as "genome writing" and de-extinction efforts. In this Perspective, we focus on multiplex editing of large eukaryotic genomes. We describe the current state of multiplexed genome editing, the current limits of our ability to multiplex edits, and provide perspective on the many applications that fully realized multiplex editing technologies would enable in higher eukaryotic genomes. We offer a broad look at future directions, covering emergent CRISPR-based technologies, advances in intracellular delivery, and new DNA assembly approaches that may enable future genome editing on a massively multiplexed scale.

  20. Release of hyaluronate from eukaryotic cells.

    OpenAIRE

    Prehm, P

    1990-01-01

    The mechanism of hyaluronate shedding from eukaryotic cell lines was analysed. All cell lines shed identical sizes of hyaluronate as were retained on the surface. They differed in the amount of hyaluronate synthesized and in the proportions of hyaluronate which were released and retained. A method was developed which could discriminate between shedding due to intramolecular degradation and that due to dissociation as intact macromolecules. This method was applied to B6 and SV3T3 cells in orde...

  1. Non-AUG translation: a new start for protein synthesis in eukaryotes.

    Science.gov (United States)

    Kearse, Michael G; Wilusz, Jeremy E

    2017-09-01

    Although it was long thought that eukaryotic translation almost always initiates at an AUG start codon, recent advancements in ribosome footprint mapping have revealed that non-AUG start codons are used at an astonishing frequency. These non-AUG initiation events are not simply errors but instead are used to generate or regulate proteins with key cellular functions; for example, during development or stress. Misregulation of non-AUG initiation events contributes to multiple human diseases, including cancer and neurodegeneration, and modulation of non-AUG usage may represent a novel therapeutic strategy. It is thus becoming increasingly clear that start codon selection is regulated by many trans-acting initiation factors as well as sequence/structural elements within messenger RNAs and that non-AUG translation has a profound impact on cellular states. © 2017 Kearse and Wilusz; Published by Cold Spring Harbor Laboratory Press.

  2. Convergent use of RhoGAP toxins by eukaryotic parasites and bacterial pathogens.

    Directory of Open Access Journals (Sweden)

    Dominique Colinet

    2007-12-01

    Full Text Available Inactivation of host Rho GTPases is a widespread strategy employed by bacterial pathogens to manipulate mammalian cellular functions and avoid immune defenses. Some bacterial toxins mimic eukaryotic Rho GTPase-activating proteins (GAPs to inactivate mammalian GTPases, probably as a result of evolutionary convergence. An intriguing question remains whether eukaryotic pathogens or parasites may use endogenous GAPs as immune-suppressive toxins to target the same key genes as bacterial pathogens. Interestingly, a RhoGAP domain-containing protein, LbGAP, was recently characterized from the parasitoid wasp Leptopilina boulardi, and shown to protect parasitoid eggs from the immune response of Drosophila host larvae. We demonstrate here that LbGAP has structural characteristics of eukaryotic RhoGAPs but that it acts similarly to bacterial RhoGAP toxins in mammals. First, we show by immunocytochemistry that LbGAP enters Drosophila immune cells, plasmatocytes and lamellocytes, and that morphological changes in lamellocytes are correlated with the quantity of LbGAP they contain. Demonstration that LbGAP displays a GAP activity and specifically interacts with the active, GTP-bound form of the two Drosophila Rho GTPases Rac1 and Rac2, both required for successful encapsulation of Leptopilina eggs, was then achieved using biochemical tests, yeast two-hybrid analysis, and GST pull-down assays. In addition, we show that the overall structure of LbGAP is similar to that of eukaryotic RhoGAP domains, and we identify distinct residues involved in its interaction with Rac GTPases. Altogether, these results show that eukaryotic parasites can use endogenous RhoGAPs as virulence factors and that despite their differences in sequence and structure, eukaryotic and bacterial RhoGAP toxins are similarly used to target the same immune pathways in insects and mammals.

  3. Arsenic and Antimony Transporters in Eukaryotes

    Science.gov (United States)

    Maciaszczyk-Dziubinska, Ewa; Wawrzycka, Donata; Wysocki, Robert

    2012-01-01

    Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters. PMID:22489166

  4. Structure and function of eukaryotic chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, W.

    1987-01-01

    Contents: Introduction; Polytene Chromosomel Giant Chromosomes in Ciliates; The sp-I Genes in the Balbiani Rings of Chironomus Salivary Glands; The White Locus of Drosophila Melanogaster; The Genetic and Molecular Organization of the Dense Cluster of Functionally Related Vital Genes in the DOPA Decarboxylase Region of the Drosophila melanogaster Genome; Heat Shock Puffs and Response to Environmental Stress; The Y Chromosomal Lampbrush Loops of Drosophila; Contributions of Electron Microscopic Spreading Preparations (''Miller Spreads'') to the Analysis of Chromosome Structure; Replication of DNA in Eukaryotic Chromosomes; Gene Amplification in Dipteran Chromosomes; The Significance of Plant Transposable Elements in Biologically Relevant Processes; Arrangement of Chromosomes in Interphase Cell Nuclei; Heterochromatin and the Phenomenon of Chromosome Banding; Multiple Nonhistone Protein-DNA Complexes in Chromatin Regulate the Cell- and Stage-Specific Activity of an Eukaryotic Gene; Genetics of Sex Determination in Eukaryotes; Application of Basic Chromosome Research in Biotechnology and Medicine. This book presents an overview of various aspects of chromosome research.

  5. Arsenic and antimony transporters in eukaryotes.

    Science.gov (United States)

    Maciaszczyk-Dziubinska, Ewa; Wawrzycka, Donata; Wysocki, Robert

    2012-01-01

    Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters.

  6. Enzymes from Higher Eukaryotes for Industrial Biocatalysis

    Directory of Open Access Journals (Sweden)

    Zhibin Liu

    2004-01-01

    Full Text Available The industrial production of fine chemicals, feed and food ingredients, pharmaceuticals, agrochemicals and their respective intermediates relies on an increasing application of biocatalysis, i.e. on enzyme or whole-cell catalyzed conversions of molecules. Simple procedures for discovery, cloning and over-expression as well as fast growth favour fungi, yeasts and especially bacteria as sources of biocatalysts. Higher eukaryotes also harbour an almost unlimited number of potential biocatalysts, although to date the limited supply of enzymes, the high heterogeneity of enzyme preparations and the hazard of infectious contaminants keep some interesting candidates out of reach for industrial bioprocesses. In the past only a few animal and plant enzymes from agricultural waste materials were employed in food processing. The use of bacterial expression strains or non-conventional yeasts for the heterologous production of efficient eukaryotic enzymes can overcome the bottleneck in enzyme supply and provide sufficient amounts of homogenous enzyme preparations for reliable and economically feasible applications at large scale. Ideal enzymatic processes represent an environmentally friendly, »near-to-completion« conversion of (mostly non-natural substrates to pure products. Recent developments demonstrate the commercial feasibility of large-scale biocatalytic processes employing enzymes from higher eukaryotes (e.g. plants, animals and also their usefulness in some small-scale industrial applications.

  7. Cryo-EM structure of Hepatitis C virus IRES bound to the human ribosome at 3.9-Å resolution

    Science.gov (United States)

    Quade, Nick; Boehringer, Daniel; Leibundgut, Marc; van den Heuvel, Joop; Ban, Nenad

    2015-07-01

    Hepatitis C virus (HCV), a widespread human pathogen, is dependent on a highly structured 5'-untranslated region of its mRNA, referred to as internal ribosome entry site (IRES), for the translation of all of its proteins. The HCV IRES initiates translation by directly binding to the small ribosomal subunit (40S), circumventing the need for many eukaryotic translation initiation factors required for mRNA scanning. Here we present the cryo-EM structure of the human 40S ribosomal subunit in complex with the HCV IRES at 3.9 Å resolution, determined by focused refinement of an 80S ribosome-HCV IRES complex. The structure reveals the molecular details of the interactions between the IRES and the 40S, showing that expansion segment 7 (ES7) of the 18S rRNA acts as a central anchor point for the HCV IRES. The structural data rationalizes previous biochemical and genetic evidence regarding the initiation mechanism of the HCV and other related IRESs.

  8. Clusters of basic amino acids contribute to RNA binding and nucleolar localization of ribosomal protein L22.

    Directory of Open Access Journals (Sweden)

    Jennifer L Houmani

    Full Text Available The ribosomal protein L22 is a component of the 60S eukaryotic ribosomal subunit. As an RNA-binding protein, it has been shown to interact with both cellular and viral RNAs including 28S rRNA and the Epstein-Barr virus encoded RNA, EBER-1. L22 is localized to the cell nucleus where it accumulates in nucleoli. Although previous studies demonstrated that a specific amino acid sequence is required for nucleolar localization, the RNA-binding domain has not been identified. Here, we investigated the hypothesis that the nucleolar accumulation of L22 is linked to its ability to bind RNA. To address this hypothesis, mutated L22 proteins were generated to assess the contribution of specific amino acids to RNA binding and protein localization. Using RNA-protein binding assays, we demonstrate that basic amino acids 80-93 are required for high affinity binding of 28S rRNA and EBER-1 by L22. Fluorescence localization studies using GFP-tagged mutated L22 proteins further reveal that basic amino acids 80-93 are critical for nucleolar accumulation and for incorporation into ribosomes. Our data support the growing consensus that the nucleolar accumulation of ribosomal proteins may not be mediated by a defined localization signal, but rather by specific interaction with established nucleolar components such as rRNA.

  9. Dom34 Rescues Ribosomes in 3´ Untranslated Regions

    Science.gov (United States)

    Guydosh, Nicholas R.; Green, Rachel

    2014-01-01

    SUMMARY Ribosomes that stall before completing peptide synthesis must be recycled and returned to the cytoplasmic pool. The protein Dom34 and cofactors Hbs1 and Rli1 can dissociate stalled ribosomes in vitro, but the identity of targets in the cell is unknown. Here we extend ribosome profiling methodology to reveal a high-resolution molecular characterization of Dom34 function in vivo. Dom34 removes stalled ribosomes from truncated mRNAs, but, in contrast, does not generally dissociate ribosomes on coding sequences known to trigger stalling, such as polyproline. We also show that Dom34 targets arrested ribosomes near the ends of 3´ UTRs. These ribosomes appear to gain access to the 3 UTR via a mechanism that does not require decoding of the mRNA. These results suggest that ribosomes frequently enter downstream noncoding regions and that Dom34 carries out the important task of rescuing them. PMID:24581494

  10. Ribosomes Dance to a Daily Rhythm.

    Science.gov (United States)

    Iyer, Aishwarya; Grummt, Ingrid

    2017-08-01

    Sinturel et al. demonstrate that feeding-fasting rhythms and light-dark cycles direct daily changes in liver mass and cell size. These feeding-fasting- and light-dark-driven diurnal fluctuations are controlled by an unconventional mechanism that affects ribosome assembly and protein levels during the active phase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Modeling Interactions of Erythromycin Derivatives with Ribosomes.

    Science.gov (United States)

    Shishkina, A V; Makarova, T M; Tereshchenkov, A G; Makarov, G I; Korshunova, G A; Bogdanov, A A

    2015-11-01

    Using a method of static simulation, a series of erythromycin A analogs was designed with aldehyde functions introduced instead of one of the methyl substituents in the 3'-N-position of the antibiotic that was potentially capable of forming a covalent bond with an amino group of one of the nucleotide residues of the 23S rRNA in the ribosomal exit tunnel. Similar interaction is observed for antibiotics of the tylosin series, which bind tightly to the large ribosomal subunit and demonstrate high antibacterial activity. Binding of novel erythromycin derivatives with the bacterial ribosome was investigated with the method of fluorescence polarization. It was found that the erythromycin analog containing a 1-methyl-3-oxopropyl group in the 3'-N-position demonstrates the best binding. Based on the ability to inhibit protein biosynthesis, it is on the same level as erythromycin, and it is significantly better than desmethyl-erythromycin. Molecular dynamic modeling of complexes of the derivatives with ribosomes was conducted to explain the observed effects.

  12. Evaluation of a ribosomal vaccine against pertussis.

    Science.gov (United States)

    Field, L H; Parker, C D; Manclark, C R; Berry, L J

    1979-01-01

    A crude ribosomal vaccine derived from Bordetella pertussis administered to ICR and N:NIH (SW) strains of mice protected them effectively against a standardized intracranial challenge. The dose of vaccine that protected half the mice was less for N:NIH (SW) than for ICR mice and compared favorably with a killed reference vaccine. Ribosomes prepared from bacteria ground with washed sea sand were more immunogenic than those obtained by rupture with alumina or with a Braun homogenizer. The protective effect of the crude ribosomes was not an innate part of the organelle but was due to a substance or substances that could be removed from them by a 1 M NH4Cl wash. The material in the wash was highly immunogenic and retained both the histamine-sensitizing and leukocytosis-promoting properties. It lost much of the dermonecrotic activity and was poorly pyrogenic in rabbits. The most potent pyrogen was present in the washed ribosomes, which apparently, retained the endotoxic components of the cell wall. The best vaccines permitted acceptable weight gain in the immunized mice. PMID:222684

  13. Control of Ribosome Synthesis in Escherichia coli

    DEFF Research Database (Denmark)

    Molin, Søren; Meyenburg, K. von; Måløe, O.

    1977-01-01

    The rate of ribosome synthesis and accumulation in Escherichia coli during the transition after an energy source shift-down was analyzed. The shift was imposed on cultures of stringent and relaxed strains growing in glucose minimal medium by the addition of the glucose analogue {alpha...

  14. Diamond-Blackfan anemia, ribosome and erythropoiesis.

    Science.gov (United States)

    Da Costa, L; Moniz, H; Simansour, M; Tchernia, G; Mohandas, N; Leblanc, T

    2010-09-01

    Diamond-Blackfan anemia is a rare inherited bone marrow failure syndrome (five to seven cases per million live births) characterized by an aregenerative, usually macrocytic anemia with an absence or less than 5% of erythroid precursors (erythroblastopenia) in an otherwise normal bone marrow. The platelet and the white cell counts are usually normal but neutropenia, thrombopenia or thrombocytosis have been noted at diagnosis. In 40 to 50% of DBA patients, congenital abnormalities mostly in the cephalic area and in thumbs and upper limbs have been described. Recent analysis did show a phenotype/genotype correlation. Congenital erythroblastopenia of DBA is the first human disease identified to result from defects in ribosomal biogenesis. The first ribosomal gene involved in DBA, ribosomal protein (RP) gene S19 (RPS19 gene), was identified in 1999. Subsequently, mutations in 12 other RP genes out of a total of 78 RP genes have been identified in DBA. All RP gene mutations described to date are heterozygous and dominant inheritance has been documented in 40 to 45% of affected individuals. As RP mutations are yet to be identified in approximately 50% of DBA cases, it is likely that other yet to be identified genes involved in ribosomal biogenesis or other pathways may be responsible for DBA phenotype. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  15. Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin

    Directory of Open Access Journals (Sweden)

    Fucini Paola

    2004-04-01

    Full Text Available Abstract Background The bacterial ribosome is a primary target of several classes of antibiotics. Investigation of the structure of the ribosomal subunits in complex with different antibiotics can reveal the mode of inhibition of ribosomal protein synthesis. Analysis of the interactions between antibiotics and the ribosome permits investigation of the specific effect of modifications leading to antimicrobial resistances. Streptogramins are unique among the ribosome-targeting antibiotics because they consist of two components, streptogramins A and B, which act synergistically. Each compound alone exhibits a weak bacteriostatic activity, whereas the combination can act bactericidal. The streptogramins A display a prolonged activity that even persists after removal of the drug. However, the mode of activity of the streptogramins has not yet been fully elucidated, despite a plethora of biochemical and structural data. Results The investigation of the crystal structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with the clinically relevant streptogramins quinupristin and dalfopristin reveals their unique inhibitory mechanism. Quinupristin, a streptogramin B compound, binds in the ribosomal exit tunnel in a similar manner and position as the macrolides, suggesting a similar inhibitory mechanism, namely blockage of the ribosomal tunnel. Dalfopristin, the corresponding streptogramin A compound, binds close to quinupristin directly within the peptidyl transferase centre affecting both A- and P-site occupation by tRNA molecules. Conclusions The crystal structure indicates that the synergistic effect derives from direct interaction between both compounds and shared contacts with a single nucleotide, A2062. Upon binding of the streptogramins, the peptidyl transferase centre undergoes a significant conformational transition, which leads to a stable, non-productive orientation of the universally conserved U2585. Mutations of this r

  16. Functional and evolutionary characterization of Ohr proteins in eukaryotes reveals many active homologs among pathogenic fungi

    Directory of Open Access Journals (Sweden)

    D.A. Meireles

    2017-08-01

    Full Text Available Ohr and OsmC proteins comprise two subfamilies within a large group of proteins that display Cys-based, thiol dependent peroxidase activity. These proteins were previously thought to be restricted to prokaryotes, but we show here, using iterated sequence searches, that Ohr/OsmC homologs are also present in 217 species of eukaryotes with a massive presence in Fungi (186 species. Many of these eukaryotic Ohr proteins possess an N-terminal extension that is predicted to target them to mitochondria. We obtained recombinant proteins for four eukaryotic members of the Ohr/OsmC family and three of them displayed lipoyl peroxidase activity. Further functional and biochemical characterization of the Ohr homologs from the ascomycete fungus Mycosphaerella fijiensis Mf_1 (MfOhr, the causative agent of Black Sigatoka disease in banana plants, was pursued. Similarly to what has been observed for the bacterial proteins, we found that: (i the peroxidase activity of MfOhr was supported by DTT or dihydrolipoamide (dithiols, but not by β-mercaptoethanol or GSH (monothiols, even in large excess; (ii MfOhr displayed preference for organic hydroperoxides (CuOOH and tBOOH over hydrogen peroxide; (iii MfOhr presented extraordinary reactivity towards linoleic acid hydroperoxides (k=3.18 (±2.13×108 M−1 s−1. Both Cys87 and Cys154 were essential to the peroxidase activity, since single mutants for each Cys residue presented no activity and no formation of intramolecular disulfide bond upon treatment with hydroperoxides. The pKa value of the Cysp residue was determined as 5.7±0.1 by a monobromobimane alkylation method. Therefore, eukaryotic Ohr peroxidases share several biochemical features with prokaryotic orthologues and are preferentially located in mitochondria.

  17. Invisible Display in Aluminum

    DEFF Research Database (Denmark)

    Prichystal, Jan Phuklin; Hansen, Hans Nørgaard; Bladt, Henrik Henriksen

    2005-01-01

    for an integrated display in a metal surface is often ruled by design and functionality of a product. The integration of displays in metal surfaces requires metal removal in order to clear the area of the display to some extent. The idea behind an invisible display in Aluminum concerns the processing of a metal...

  18. Assessing the 5S ribosomal RNA heterogeneity in Arabidopsis thaliana using short RNA next generation sequencing data.

    Science.gov (United States)

    Szymanski, Maciej; Karlowski, Wojciech M

    2016-01-01

    In eukaryotes, ribosomal 5S rRNAs are products of multigene families organized within clusters of tandemly repeated units. Accumulation of genomic data obtained from a variety of organisms demonstrated that the potential 5S rRNA coding sequences show a large number of variants, often incompatible with folding into a correct secondary structure. Here, we present results of an analysis of a large set of short RNA sequences generated by the next generation sequencing techniques, to address the problem of heterogeneity of the 5S rRNA transcripts in Arabidopsis and identification of potentially functional rRNA-derived fragments.

  19. Primary structure of dihydrofolate reductase and mitochondrial ribosomal protein L36 genes from the basidiomycete Coprinus cinereus.

    Science.gov (United States)

    Aimi, Tadanori; Fukuhara, Shoji; Ishiguro, Maki; Kitamoto, Yutaka; Morinaga, Tsutomu

    2004-08-01

    We amplified and sequenced the dihydrofolate reductase (DHFR) gene of the basidiomycete Coprinus cinereus. Downstream of the DHFR coding region, a mitochondrial (mt) ribosomal protein L36 (RPL36) gene was discovered in the opposite orientation to DHFR gene. Putative polyadenylation signals of the two genes overlapped, both containing the 8-bp palindrome 5'-aatatatt-3'. The finding that C. cinereus DHFR gene is closely clustered with a mt protein gene strongly suggests that C. cinereus DHFR is closely related to mt function and evolution. The amino acid sequence of C. cinereus DHFR is most homologous to eukaryotic proteins such as Cryptococcus neoformans and Pneumocystis carinii DHFRs. However, the sequence of C. cinereus mt RPL36 closely resembles RPL36 of bacteria and cyanobacteria such as Synechocystis sp. and Escherichia coli. This result strongly supports the serial endosymbiotic theory of the development of ancestral eukaryotes, and suggests that C. cinereus mt RPL36 gene originated from the ancestral eubacterial genome.

  20. Presence of Two Sets of Ribosomal Genes in Phytopathogenic Mollicutes

    Science.gov (United States)

    Schneider, B.; Seemüller, E.

    1994-01-01

    DNA from 28 strains of phytopathogenic mycoplasmalike organisms that represented five primary taxonomic clusters was digested with restriction endonucleases and hybridized with several ribosomal probes. The results indicate the presence of two sets of ribosomal genes in all strains examined. Restriction maps of the two ribosomal operons for a group of 12 aster yellows mycoplasmalike organisms were constructed. Images PMID:16349389

  1. Horizontal gene transfer in eukaryotes: The weak-link model

    Science.gov (United States)

    Huang, Jinling

    2013-01-01

    The significance of horizontal gene transfer (HGT) in eukaryotic evolution remains controversial. Although many eukaryotic genes are of bacterial origin, they are often interpreted as being derived from mitochondria or plastids. Because of their fixed gene pool and gene loss, however, mitochondria and plastids alone cannot adequately explain the presence of all, or even the majority, of bacterial genes in eukaryotes. Available data indicate that no insurmountable barrier to HGT exists, even in complex multicellular eukaryotes. In addition, the discovery of both recent and ancient HGT events in all major eukaryotic groups suggests that HGT has been a regular occurrence throughout the history of eukaryotic evolution. A model of HGT is proposed that suggests both unicellular and early developmental stages as likely entry points for foreign genes into multicellular eukaryotes. PMID:24037739

  2. Patterns of prokaryotic lateral gene transfers affecting parasitic microbial eukaryotes

    DEFF Research Database (Denmark)

    Alsmark, Cecilia; Foster, Peter G; Sicheritz-Pontén, Thomas

    2013-01-01

    BACKGROUND: The influence of lateral gene transfer on gene origins and biology in eukaryotes is poorly understood compared with those of prokaryotes. A number of independent investigations focusing on specific genes, individual genomes, or specific functional categories from various eukaryotes have...... indicated that lateral gene transfer does indeed affect eukaryotic genomes. However, the lack of common methodology and criteria in these studies makes it difficult to assess the general importance and influence of lateral gene transfer on eukaryotic genome evolution. RESULTS: We used a phylogenomic...... approach to systematically investigate lateral gene transfer affecting the proteomes of thirteen, mainly parasitic, microbial eukaryotes, representing four of the six eukaryotic super-groups. All of the genomes investigated have been significantly affected by prokaryote-to-eukaryote lateral gene transfers...

  3. Depth shapes α- and β-diversities of microbial eukaryotes in surficial sediments of coastal ecosystems.

    Science.gov (United States)

    Gong, Jun; Shi, Fei; Ma, Bin; Dong, Jun; Pachiadaki, Maria; Zhang, Xiaoli; Edgcomb, Virginia P

    2015-10-01

    Little is known about the relative influence of historic processes and environmental gradients on shaping the diversity of single-celled eukaryotes in marine benthos. By combining pyrosequencing of 18S ribosomal RNA genes with data on multiple environmental factors, we investigated the diversity of microeukaryotes in surficial sediments of three basins of the Yellow Sea Large Marine Ecosystem. A considerable proportion (about 20%) of reads was affiliated with known parasitoid protists. Dinophyta and Ciliophora appeared dominant in terms of relative proportion of reads and operational taxonomic unit (OTU) richness. Overall, OTU richness of benthic microeukaryotes decreased with increasing water depth and decreasing pH. While community composition was significantly different among basins, partial Mantel tests indicated a depth-decay pattern of community similarity, whereby water depth, rather than geographic distance or environment, shaped β-diversity of benthic microeukaryotes (including both the abundant and the rare biosphere) on a regional scale. Similar hydrographic and mineralogical factors contributed to the biogeography of both the abundant and the rare OTUs. The trace metal vanadium had a significant effect on the biogeography of the rare biosphere. Our study sheds new light on the composition, diversity patterns and underlying mechanisms of single-celled eukaryote distribution in surficial sediments of coastal oceans. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Eukaryotic TPP riboswitch regulation of alternative splicing involving long-distance base pairing.

    Science.gov (United States)

    Li, Sanshu; Breaker, Ronald R

    2013-03-01

    Thiamin pyrophosphate (TPP) riboswitches are found in organisms from all three domains of life. Examples in bacteria commonly repress gene expression by terminating transcription or by blocking ribosome binding, whereas most eukaryotic TPP riboswitches are predicted to regulate gene expression by modulating RNA splicing. Given the widespread distribution of eukaryotic TPP riboswitches and the diversity of their locations in precursor messenger RNAs (pre-mRNAs), we sought to examine the mechanism of alternative splicing regulation by a fungal TPP riboswitch from Neurospora crassa, which is mostly located in a large intron separating protein-coding exons. Our data reveal that this riboswitch uses a long-distance (∼530-nt separation) base-pairing interaction to regulate alternative splicing. Specifically, a portion of the TPP-binding aptamer can form a base-paired structure with a conserved sequence element (α) located near a 5' splice site, which greatly increases use of this 5' splice site and promotes gene expression. Comparative sequence analyses indicate that many fungal species carry a TPP riboswitch with similar intron architecture, and therefore the homologous genes in these fungi are likely to use the same mechanism. Our findings expand the scope of genetic control mechanisms relying on long-range RNA interactions to include riboswitches.

  5. A consideration of alternative models for the initiation of translation in eukaryotes.

    Science.gov (United States)

    Kozak, M

    1992-01-01

    Although recent biochemical and genetic investigations have produced some insights into the mechanism of initiation of translation in eukaryotic cells, two aspects of the initiation process remain controversial. One unsettled issue concerns a variety of functions that have been proposed for mRNA binding proteins, including some initiation factors. The need to distinguish between specific and nonspecific binding of proteins to mRNA is discussed herein. The possibility that certain initiation factors might act as RNA helicases is evaluated along with other ideas about the functions of mRNA- and ATP-binding factors. A second controversial issue concerns the universality of the scanning mechanism for initiation of translation. According to the conventional scanning model, the initial contact between eukaryotic ribosomes and mRNA occurs exclusively at the 5' terminus of the message, which is usually capped. The existence of uncapped mRNAs among a few plant and animal viruses has prompted a vigorous search for other modes of initiation. An "internal initiation" mechanism, first proposed for picornaviruses, has received considerable attention. Although a large body of evidence has been adduced in support of such a mechanism, many of the experiments appear flawed or inconclusive. Some suggestions are given for improving experiments designed to test the internal initiation hypothesis.

  6. Deep sequencing of subseafloor eukaryotic rRNA reveals active Fungi across marine subsurface provinces.

    Directory of Open Access Journals (Sweden)

    William Orsi

    Full Text Available The deep marine subsurface is a vast habitat for microbial life where cells may live on geologic timescales. Because DNA in sediments may be preserved on long timescales, ribosomal RNA (rRNA is suggested to be a proxy for the active fraction of a microbial community in the subsurface. During an investigation of eukaryotic 18S rRNA by amplicon pyrosequencing, unique profiles of Fungi were found across a range of marine subsurface provinces including ridge flanks, continental margins, and abyssal plains. Subseafloor fungal populations exhibit statistically significant correlations with total organic carbon (TOC, nitrate, sulfide, and dissolved inorganic carbon (DIC. These correlations are supported by terminal restriction length polymorphism (TRFLP analyses of fungal rRNA. Geochemical correlations with fungal pyrosequencing and TRFLP data from this geographically broad sample set suggests environmental selection of active Fungi in the marine subsurface. Within the same dataset, ancient rRNA signatures were recovered from plants and diatoms in marine sediments ranging from 0.03 to 2.7 million years old, suggesting that rRNA from some eukaryotic taxa may be much more stable than previously considered in the marine subsurface.

  7. A universal strategy for regulating mRNA translation in prokaryotic and eukaryotic cells.

    Science.gov (United States)

    Cao, Jicong; Arha, Manish; Sudrik, Chaitanya; Mukherjee, Abhirup; Wu, Xia; Kane, Ravi S

    2015-04-30

    We describe a simple strategy to control mRNA translation in both prokaryotic and eukaryotic cells which relies on a unique protein-RNA interaction. Specifically, we used the Pumilio/FBF (PUF) protein to repress translation by binding in between the ribosome binding site (RBS) and the start codon (in Escherichia coli), or by binding to the 5' untranslated region of target mRNAs (in mammalian cells). The design principle is straightforward, the extent of translational repression can be tuned and the regulator is genetically encoded, enabling the construction of artificial signal cascades. We demonstrate that this approach can also be used to regulate polycistronic mRNAs; such regulation has rarely been achieved in previous reports. Since the regulator used in this study is a modular RNA-binding protein, which can be engineered to target different 8-nucleotide RNA sequences, our strategy could be used in the future to target endogenous mRNAs for regulating metabolic flows and signaling pathways in both prokaryotic and eukaryotic cells. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. An evolutionary ratchet leading to loss of elongation factors in eukaryotes.

    Science.gov (United States)

    Atkinson, Gemma C; Kuzmenko, Anton; Chicherin, Ivan; Soosaar, Axel; Tenson, Tanel; Carr, Martin; Kamenski, Piotr; Hauryliuk, Vasili

    2014-02-24

    The GTPase eEF1A is the eukaryotic factor responsible for the essential, universal function of aminoacyl-tRNA delivery to the ribosome. Surprisingly, eEF1A is not universally present in eukaryotes, being replaced by the paralog EFL independently in multiple lineages. The driving force behind this unusually frequent replacement is poorly understood. Through sequence searching of genomic and EST databases, we find a striking association of eEF1A replacement by EFL and loss of eEF1A's guanine exchange factor, eEF1Bα, suggesting that EFL is able to spontaneously recharge with GTP. Sequence conservation and homology modeling analyses indicate several sequence regions that may be responsible for EFL's lack of requirement for eEF1Bα. We propose that the unusual pattern of eEF1A, eEF1Bα and EFL presence and absence can be explained by a ratchet-like process: if either eEF1A or eEF1Bα diverges beyond functionality in the presence of EFL, the system is unable to return to the ancestral, eEF1A:eEFBα-driven state.

  9. An ancient spliceosomal intron in the ribosomal protein L7a gene (Rpl7a of Giardia lamblia

    Directory of Open Access Journals (Sweden)

    Gray Michael W

    2005-08-01

    Full Text Available Abstract Background Only one spliceosomal-type intron has previously been identified in the unicellular eukaryotic parasite, Giardia lamblia (a diplomonad. This intron is only 35 nucleotides in length and is unusual in possessing a non-canonical 5' intron boundary sequence, CT, instead of GT. Results We have identified a second spliceosomal-type intron in G. lamblia, in the ribosomal protein L7a gene (Rpl7a, that possesses a canonical GT 5' intron boundary sequence. A comparison of the two known Giardia intron sequences revealed extensive nucleotide identity at both the 5' and 3' intron boundaries, similar to the conserved sequence motifs recently identified at the boundaries of spliceosomal-type introns in Trichomonas vaginalis (a parabasalid. Based on these observations, we searched the partial G. lamblia genome sequence for these conserved features and identified a third spliceosomal intron, in an unassigned open reading frame. Our comprehensive analysis of the Rpl7a intron in other eukaryotic taxa demonstrates that it is evolutionarily conserved and is an ancient eukaryotic intron. Conclusion An analysis of the phylogenetic distribution and properties of the Rpl7a intron suggests its utility as a phylogenetic marker to evaluate particular eukaryotic groupings. Additionally, analysis of the G. lamblia introns has provided further insight into some of the conserved and unique features possessed by the recently identified spliceosomal introns in related organisms such as T. vaginalis and Carpediemonas membranifera.

  10. Prokaryotes versus Eukaryotes: Who is hosting whom?

    Directory of Open Access Journals (Sweden)

    Guillermo eTellez

    2014-10-01

    Full Text Available Microorganisms represent the largest component of biodiversity in our world. For millions of years, prokaryotic microorganisms have functioned as a major selective force shaping eukaryotic evolution. Microbes that live inside and on animals outnumber the animals’ actual somatic and germ cells by an estimated 10-fold. Collectively, the intestinal microbiome represents a ‘forgotten organ’, functioning as an organ inside another that can execute many physiological responsibilities. The nature of primitive eukaryotes was drastically changed due to the association with symbiotic prokaryotes facilitating mutual coevolution of host and microbe. Phytophagous insects have long been used to test theories of evolutionary diversification; moreover, the diversification of a number of phytophagous insect lineages has been linked to mutualisms with microbes. From termites and honey bees to ruminants and mammals, depending on novel biochemistries provided by the prokaryotic microbiome, the association helps to metabolize several nutrients that the host cannot digest and converting these into useful end products (such as short chain fatty acids, a process which has huge impact on the biology and homeostasis of metazoans. More importantly, in a direct and/or indirect way, the intestinal microbiota influences the assembly of gut-associated lymphoid tissue, helps to educate immune system, affects the integrity of the intestinal mucosal barrier, modulates proliferation and differentiation of its epithelial lineages, regulates angiogenesis, and modifies the activity of enteric as well as the central nervous system,. Despite these important effects, the mechanisms by which the gut microbial community influences the host’s biology remains almost entirely unknown. Our aim here is to encourage empirical inquiry into the relationship between mutualism and evolutionary diversification between prokaryotes and eukaryotes which encourage us to postulate: Who is

  11. Expression of eukaryotic polypeptides in chloroplasts

    Science.gov (United States)

    Mayfield, Stephen P.

    2013-06-04

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  12. Design and chemical synthesis of eukaryotic chromosomes.

    Science.gov (United States)

    Xie, Ze-Xiong; Liu, Duo; Li, Bing-Zhi; Zhao, Meng; Zeng, Bo-Xuan; Wu, Yi; Shen, Yue; Lin, Tao; Yang, Ping; Dai, Junbiao; Cai, Yizhi; Yang, Huanming; Yuan, Ying-Jin

    2017-11-27

    Following the discovery of the DNA double helix structure and the advancement of genome sequencing, we have entered a promising stage with regard to genome writing. Recently, a milestone breakthrough was achieved in the chemical synthesis of designer yeast chromosomes. Here, we review the systematic approaches to the de novo synthesis of designer eukaryotic chromosomes, with an emphasis on technologies and methodologies that enable design, building, testing and debugging. The achievement of chemically synthesized genomes with customized genetic features offers an opportunity to rebuild genome organization, remold biological functions and promote life evolution, which will be of great benefit for application in medicine and industrial manufacturing.

  13. GTPases and the origin of the ribosome

    Directory of Open Access Journals (Sweden)

    Smith Temple F

    2010-05-01

    Full Text Available Abstract Background This paper is an attempt to trace the evolution of the ribosome through the evolution of the universal P-loop GTPases that are involved with the ribosome in translation and with the attachment of the ribosome to the membrane. The GTPases involved in translation in Bacteria/Archaea are the elongation factors EFTu/EF1, the initiation factors IF2/aeIF5b + aeIF2, and the elongation factors EFG/EF2. All of these GTPases also contain the OB fold also found in the non GTPase IF1 involved in initiation. The GTPase involved in the signal recognition particle in most Bacteria and Archaea is SRP54. Results 1 The Elongation Factors of the Archaea based on structural considerations of the domains have the following evolutionary path: EF1→ aeIF2 → EF2. The evolution of the aeIF5b was a later event; 2 the Elongation Factors of the Bacteria based on the topological considerations of the GTPase domain have a similar evolutionary path: EFTu→ IF→2→EFG. These evolutionary sequences reflect the evolution of the LSU followed by the SSU to form the ribosome; 3 the OB-fold IF1 is a mimic of an ancient tRNA minihelix. Conclusion The evolution of translational GTPases of both the Archaea and Bacteria point to the evolution of the ribosome. The elongation factors, EFTu/EF1, began as a Ras-like GTPase bringing the activated minihelix tRNA to the Large Subunit Unit. The initiation factors and elongation factor would then have evolved from the EFTu/EF1 as the small subunit was added to the evolving ribosome. The SRP has an SRP54 GTPase and a specific RNA fold in its RNA component similar to the PTC. We consider the SRP to be a remnant of an ancient form of an LSU bound to a membrane. Reviewers This article was reviewed by George Fox, Leonid Mirny and Chris Sander.

  14. Regulation of bacterial gene expression by ribosome stalling and rescuing.

    Science.gov (United States)

    Jin, Yongxin; Jin, Shouguang; Wu, Weihui

    2016-05-01

    Ribosome is responsible for protein synthesis and is able to monitor the sequence and structure of the nascent peptide. Such ability plays an important role in determining overall gene expression profile of the bacteria through ribosome stalling and rescuing. In this review, we briefly summarize our current understanding of the regulation of gene expression through ribosome stalling and rescuing in bacteria, as well as mechanisms that modulate ribosome activity. Understanding the mechanisms of how bacteria modulate ribosome activity will provide not only fundamental insights into bacterial gene regulation, but also new candidate targets for the development of novel antimicrobial agents.

  15. Bacterial Signaling Nucleotides Inhibit Yeast Cell Growth by Impacting Mitochondrial and Other Specifically Eukaryotic Functions

    Directory of Open Access Journals (Sweden)

    Andy Hesketh

    2017-07-01

    Full Text Available We have engineered Saccharomyces cerevisiae to inducibly synthesize the prokaryotic signaling nucleotides cyclic di-GMP (cdiGMP, cdiAMP, and ppGpp in order to characterize the range of effects these nucleotides exert on eukaryotic cell function during bacterial pathogenesis. Synthetic genetic array (SGA and transcriptome analyses indicated that, while these compounds elicit some common reactions in yeast, there are also complex and distinctive responses to each of the three nucleotides. All three are capable of inhibiting eukaryotic cell growth, with the guanine nucleotides exhibiting stronger effects than cdiAMP. Mutations compromising mitochondrial function and chromatin remodeling show negative epistatic interactions with all three nucleotides. In contrast, certain mutations that cause defects in chromatin modification and ribosomal protein function show positive epistasis, alleviating growth inhibition by at least two of the three nucleotides. Uniquely, cdiGMP is lethal both to cells growing by respiration on acetate and to obligately fermentative petite mutants. cdiGMP is also synthetically lethal with the ribonucleotide reductase (RNR inhibitor hydroxyurea. Heterologous expression of the human ppGpp hydrolase Mesh1p prevented the accumulation of ppGpp in the engineered yeast and restored cell growth. Extensive in vivo interactions between bacterial signaling molecules and eukaryotic gene function occur, resulting in outcomes ranging from growth inhibition to death. cdiGMP functions through a mechanism that must be compensated by unhindered RNR activity or by functionally competent mitochondria. Mesh1p may be required for abrogating the damaging effects of ppGpp in human cells subjected to bacterial infection.

  16. Handbook of display technology

    CERN Document Server

    Castellano, Joseph A

    1992-01-01

    This book presents a comprehensive review of technical and commercial aspects of display technology. It provides design engineers with the information needed to select proper technology for new products. The book focuses on flat, thin displays such as light-emitting diodes, plasma display panels, and liquid crystal displays, but it also includes material on cathode ray tubes. Displays include a large number of products from televisions, auto dashboards, radios, and household appliances, to gasoline pumps, heart monitors, microwave ovens, and more.For more information on display tech

  17. A cobalt-containing eukaryotic nitrile hydratase.

    Science.gov (United States)

    Martinez, Salette; Yang, Xinhang; Bennett, Brian; Holz, Richard C

    2017-01-01

    Nitrile hydratase (NHase), an industrially important enzyme that catalyzes the hydration of nitriles to their corresponding amides, has only been characterized from prokaryotic microbes. The putative NHase from the eukaryotic unicellular choanoflagellate organism Monosiga brevicollis (MbNHase) was heterologously expressed in Escherichia coli. The resulting enzyme expressed as a single polypeptide with fused α- and β-subunits linked by a seventeen-histidine region. Size-exclusion chromatography indicated that MbNHase exists primarily as an (αβ)2 homodimer in solution, analogous to the α2β2 homotetramer architecture observed for prokaryotic NHases. The NHase enzyme contained its full complement of Co(III) and was fully functional without the co-expression of an activator protein or E. coli GroES/EL molecular chaperones. The homology model of MbNHase was developed identifying Cys400, Cys403, and Cys405 as active site ligands. The results presented here provide the first experimental data for a mature and active eukaryotic NHase with fused subunits. Since this new member of the NHase family is expressed from a single gene without the requirement of an activator protein, it represents an alternative biocatalyst for industrial syntheses of important amide compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Consistent mutational paths predict eukaryotic thermostability

    Directory of Open Access Journals (Sweden)

    van Noort Vera

    2013-01-01

    Full Text Available Abstract Background Proteomes of thermophilic prokaryotes have been instrumental in structural biology and successfully exploited in biotechnology, however many proteins required for eukaryotic cell function are absent from bacteria or archaea. With Chaetomium thermophilum, Thielavia terrestris and Thielavia heterothallica three genome sequences of thermophilic eukaryotes have been published. Results Studying the genomes and proteomes of these thermophilic fungi, we found common strategies of thermal adaptation across the different kingdoms of Life, including amino acid biases and a reduced genome size. A phylogenetics-guided comparison of thermophilic proteomes with those of other, mesophilic Sordariomycetes revealed consistent amino acid substitutions associated to thermophily that were also present in an independent lineage of thermophilic fungi. The most consistent pattern is the substitution of lysine by arginine, which we could find in almost all lineages but has not been extensively used in protein stability engineering. By exploiting mutational paths towards the thermophiles, we could predict particular amino acid residues in individual proteins that contribute to thermostability and validated some of them experimentally. By determining the three-dimensional structure of an exemplar protein from C. thermophilum (Arx1, we could also characterise the molecular consequences of some of these mutations. Conclusions The comparative analysis of these three genomes not only enhances our understanding of the evolution of thermophily, but also provides new ways to engineer protein stability.

  19. Eukaryotic and Prokaryotic Cytoskeletons: Structure and Mechanics

    Science.gov (United States)

    Gopinathan, Ajay

    2013-03-01

    The eukaryotic cytoskeleton is an assembly of filamentous proteins and a host of associated proteins that collectively serve functional needs ranging from spatial organization and transport to the production and transmission of forces. These systems can exhibit a wide variety of non-equilibrium, self-assembled phases depending on context and function. While much recent progress has been made in understanding the self-organization, rheology and nonlinear mechanical properties of such active systems, in this talk, we will concentrate on some emerging aspects of cytoskeletal physics that are promising. One such aspect is the influence of cytoskeletal network topology and its dynamics on both active and passive intracellular transport. Another aspect we will highlight is the interplay between chirality of filaments, their elasticity and their interactions with the membrane that can lead to novel conformational states with functional implications. Finally we will consider homologs of cytoskeletal proteins in bacteria, which are involved in templating cell growth, segregating genetic material and force production, which we will discuss with particular reference to contractile forces during cell division. These prokaryotic structures function in remarkably similar yet fascinatingly different ways from their eukaryotic counterparts and can enrich our understanding of cytoskeletal functioning as a whole.

  20. Ribosome Mediated Quinary Interactions Modulate In-Cell Protein Activities.

    Science.gov (United States)

    DeMott, Christopher M; Majumder, Subhabrata; Burz, David S; Reverdatto, Sergey; Shekhtman, Alexander

    2017-08-15

    Ribosomes are present inside bacterial cells at micromolar concentrations and occupy up to 20% of the cell volume. Under these conditions, even weak quinary interactions between ribosomes and cytosolic proteins can affect protein activity. By using in-cell and in vitro NMR spectroscopy, and biophysical techniques, we show that the enzymes, adenylate kinase and dihydrofolate reductase, and the respective coenzymes, ATP and NADPH, bind to ribosomes with micromolar affinity, and that this interaction suppresses the enzymatic activities of both enzymes. Conversely, thymidylate synthase, which works together with dihydrofolate reductase in the thymidylate synthetic pathway, is activated by ribosomes. We also show that ribosomes impede diffusion of green fluorescent protein in vitro and contribute to the decrease in diffusion in vivo. These results strongly suggest that ribosome-mediated quinary interactions contribute to the differences between in vitro and in vivo protein activities and that ribosomes play a previously under-appreciated nontranslational role in regulating cellular biochemistry.

  1. Translational control of ribosomal protein S15.

    Science.gov (United States)

    Portier, C; Philippe, C; Dondon, L; Grunberg-Manago, M; Ebel, J P; Ehresmann, B; Ehresmann, C

    1990-08-27

    The expression of ribosomal protein S15 is shown to be translationally and negatively autocontrolled using a fusion within a reporter gene. Isolation and characterization of several deregulated mutants indicate that the regulatory site (the translational operator site) overlaps the ribosome loading site of the S15 messenger. In this region, three domains, each exhibiting a stem-loop structure, were determined using chemical and enzymatic probes. The most downstream hairpin carries the Shine-Dalgarno sequence and the initiation codon. Genetic and structural data derived from mutants constructed by site-directed mutagenesis show that the operator is a dynamic structure, two domains of which can form a pseudoknot. Binding of S15 to these two domains suggests that the pseudoknot could be stabilized by S15. A model is presented in which two alternative structures would explain the molecular basis of the S15 autocontrol.

  2. Entrapping ribosomes for viral translation: tRNA mimicry as a molecular Trojan horse.

    Science.gov (United States)

    Barends, Sharief; Bink, Hugo H J; van den Worm, Sjoerd H E; Pleij, Cornelis W A; Kraal, Barend

    2003-01-10

    Turnip yellow mosaic virus (TYMV) has a genomic plus-strand RNA with a 5' cap followed by overlapping and different reading frames for the movement protein and polyprotein, while the distal coat protein cistron is translated from a subgenomic RNA. The 3'-untranslated region harbors a tRNA-like structure (TLS) to which a valine moiety can be added and it is indispensable for virus viability. Here, we report about a surprising interaction between TYMV-RNA-programmed ribosomes and 3'-valylated TLS that yields polyprotein with the valine N terminally incorporated by a translation mechanism resistant to regular initiation inhibitors. Disruption of the TLS exclusively abolishes polyprotein synthesis, which can be restored by adding excess TLS in trans. Our observations imply a novel eukaryotic mechanism for internal initiation of mRNA translation.

  3. Lunar Sample Display Locations

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA provides a number of lunar samples for display at museums, planetariums, and scientific expositions around the world. Lunar displays are open to the public....

  4. A Compressive Superresolution Display

    KAUST Repository

    Heide, Felix

    2014-06-22

    In this paper, we introduce a new compressive display architecture for superresolution image presentation that exploits co-design of the optical device configuration and compressive computation. Our display allows for superresolution, HDR, or glasses-free 3D presentation.

  5. Origins of prokaryotes, eukaryotes, mitochondria, and chloroplasts

    Science.gov (United States)

    Schwartz, R. M.; Dayhoff, M. O.

    1978-01-01

    A computer branching model is used to analyze cellular evolution. Attention is given to certain key amino acids and nucleotide residues (ferredoxin, 5s ribosomal RNA, and c-type cytochromes) because of their commonality over a wide variety of cell types. Each amino acid or nucleotide residue is a sequence in an inherited biological trait; and the branching method is employed to align sequences so that changes reflect substitution of one residue for another. Based on the computer analysis, the symbiotic theory of cellular evolution is considered the most probable. This theory holds that organelles, e.g., mitochondria and chloroplasts invaded larger bodies, e.g., bacteria, and combined functions to form eucaryotic cells.

  6. The ribosome challenge to the RNA world.

    Science.gov (United States)

    Bowman, Jessica C; Hud, Nicholas V; Williams, Loren Dean

    2015-04-01

    An RNA World that predated the modern world of polypeptide and polynucleotide is one of the most widely accepted models in origin of life research. In this model, the translation system shepherded the RNA World into the extant biology of DNA, RNA, and protein. Here, we examine the RNA World Hypothesis in the context of increasingly detailed information available about the origins, evolution, functions, and mechanisms of the translation system. We conclude that the translation system presents critical challenges to RNA World Hypotheses. Firstly, a timeline of the RNA World is problematic when the ribosome is incorporated. The mechanism of peptidyl transfer of the ribosome appears distinct from evolved enzymes, signaling origins in a chemical rather than biological milieu. Secondly, we have no evidence that the basic biochemical toolset of life is subject to substantive change by Darwinian evolution, as required for the transition from the RNA world to extant biology. Thirdly, we do not see specific evidence for biological takeover of ribozyme function by protein enzymes. Finally, we can find no basis for preservation of the ribosome as ribozyme or the universality of translation, if it were the case that other information transducing ribozymes, such as ribozyme polymerases, were replaced by protein analogs and erased from the phylogenetic record. We suggest that an updated model of the RNA World should address the current state of knowledge of the translation system.

  7. Structural snapshots of actively translating human ribosomes.

    Science.gov (United States)

    Behrmann, Elmar; Loerke, Justus; Budkevich, Tatyana V; Yamamoto, Kaori; Schmidt, Andrea; Penczek, Pawel A; Vos, Matthijn R; Bürger, Jörg; Mielke, Thorsten; Scheerer, Patrick; Spahn, Christian M T

    2015-05-07

    Macromolecular machines, such as the ribosome, undergo large-scale conformational changes during their functional cycles. Although their mode of action is often compared to that of mechanical machines, a crucial difference is that, at the molecular dimension, thermodynamic effects dominate functional cycles, with proteins fluctuating stochastically between functional states defined by energetic minima on an energy landscape. Here, we have used cryo-electron microscopy to image ex-vivo-derived human polysomes as a source of actively translating ribosomes. Multiparticle refinement and 3D variability analysis allowed us to visualize a variety of native translation intermediates. Significantly populated states include not only elongation cycle intermediates in pre- and post-translocational states, but also eEF1A-containing decoding and termination/recycling complexes. Focusing on the post-translocational state, we extended this assessment to the single-residue level, uncovering striking details of ribosome-ligand interactions and identifying both static and functionally important dynamic elements. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Immature large ribosomal subunits containing the 7S pre-rRNA can engage in translation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Rodríguez-Galán, Olga; García-Gómez, Juan J; Kressler, Dieter; de la Cruz, Jesús

    2015-01-01

    Evolution has provided eukaryotes with mechanisms that impede immature and/or aberrant ribosomes to engage in translation. These mechanisms basically either prevent the nucleo-cytoplasmic export of these particles or, once in the cytoplasm, the release of associated assembly factors, which interfere with the binding of translation initiation factors and/or the ribosomal subunit joining. We have previously shown that aberrant yeast 40S ribosomal subunits containing the 20S pre-rRNA can engage in translation. In this study, we describe that cells harbouring the dob1-1 allele, encoding a mutated version of the exosome-assisting RNA helicase Mtr4, accumulate otherwise nuclear pre-60S ribosomal particles containing the 7S pre-rRNA in the cytoplasm. Polysome fractionation analyses revealed that these particles are competent for translation and do not induce elongation stalls. This phenomenon is rather specific since most mutations in other exosome components or co-factors, impairing the 3' end processing of the mature 5.8S rRNA, accumulate 7S pre-rRNAs in the nucleus. In addition, we confirm that pre-60S ribosomal particles containing either 5.8S + 30 or 5.8S + 5 pre-rRNAs also engage in translation elongation. We propose that 7S pre-rRNA processing is not strictly required for pre-60S r-particle export and that, upon arrival in the cytoplasm, there is no specific mechanism to prevent translation by premature pre-60S r-particles containing 3' extended forms of mature 5.8S rRNA.

  9. Ribosomal and immune transcripts associate with relapse in acquired ADAMTS13-deficient thrombotic thrombocytopenic purpura.

    Directory of Open Access Journals (Sweden)

    Contessa E Edgar

    Full Text Available Approximately 40% of patients who survive acute episodes of thrombotic thrombocytopenic purpura (TTP associated with severe acquired ADAMTS13 deficiency experience one or more relapses. Risk factors for relapse other than severe ADAMTS13 deficiency and ADAMTS13 autoantibodies are unknown. ADAMTS13 autoantibodies, TTP episodes following infection or type I interferon treatment and reported ensuing systemic lupus erythematosus in some patients suggest immune dysregulation. This cross-sectional study asked whether autoantibodies against RNA-binding proteins or peripheral blood gene expression profiles measured during remission are associated with history of prior relapse in acquired ADAMTS13-deficient TTP. Peripheral blood from 38 well-characterized patients with autoimmune ADAMTS13-deficient TTP in remission was examined for autoantibodies and global gene expression. A subset of TTP patients (9 patients, 24% exhibited a peripheral blood gene signature composed of elevated ribosomal transcripts that associated with prior relapse. A non-overlapping subset of TTP patients (9 patients, 24% displayed a peripheral blood type I interferon gene signature that associated with autoantibodies to RNA-binding proteins but not with history of relapse. Patients who had relapsed bimodally expressed higher HLA transcript levels independently of ribosomal transcripts. Presence of any one potential risk factor (ribosomal gene signature, elevated HLA-DRB1, elevated HLA-DRB5 associated with relapse (OR = 38.4; p = 0.0002 more closely than any factor alone or all factors together. Levels of immune transcripts typical of natural killer (NK and T lymphocytes positively correlated with ribosomal gene expression and number of prior episodes but not with time since the most recent episode. Flow cytometry confirmed elevated expression of cell surface markers encoded by these transcripts on T and/or NK cell subsets of patients who had relapsed. These data associate elevated

  10. The Genome of Naegleria gruberi Illuminates Early Eukaryotic Versatility

    Energy Technology Data Exchange (ETDEWEB)

    Fritz-Laylin, Lillian K.; Prochnik, Simon E.; Ginger, Michael L.; Dacks, Joel; Carpenter, Meredith L.; Field, Mark C.; Kuo, Alan; Paredez, Alex; Chapman, Jarrod; Pham, Jonathan; Shu, Shengqiang; Neupane, Rochak; Cipriano, Michael; Mancuso, Joel; Tu, Hank; Salamov, Asaf; Lindquist, Erika; Shapiro, Harris; Lucas, Susan; Grigoriev, Igor V.; Cande, W. Zacheus; Fulton, Chandler; Rokhsar, Daniel S.; Dawson, Scott C.

    2010-03-01

    Genome sequences of diverse free-living protists are essential for understanding eukaryotic evolution and molecular and cell biology. The free-living amoeboflagellate Naegleria gruberi belongs to a varied and ubiquitous protist clade (Heterolobosea) that diverged from other eukaryotic lineages over a billion years ago. Analysis of the 15,727 protein-coding genes encoded by Naegleria's 41 Mb nuclear genome indicates a capacity for both aerobic respiration and anaerobic metabolism with concomitant hydrogen production, with fundamental implications for the evolution of organelle metabolism. The Naegleria genome facilitates substantially broader phylogenomic comparisons of free-living eukaryotes than previously possible, allowing us to identify thousands of genes likely present in the pan-eukaryotic ancestor, with 40% likely eukaryotic inventions. Moreover, we construct a comprehensive catalog of amoeboid-motility genes. The Naegleria genome, analyzed in the context of other protists, reveals a remarkably complex ancestral eukaryote with a rich repertoire of cytoskeletal, sexual, signaling, and metabolic modules.

  11. Crystal structures of two eukaryotic nucleases involved in RNA metabolism

    DEFF Research Database (Denmark)

    Jonstrup, Anette Thyssen; Midtgaard, Søren Fuglsang; Van, Lan Bich

    as well as the controlled turnover of these in response to changing surrounding conditions is of vital importance to ensure optimal fitness of a cell. Central to both these processes is the degradation of RNA, either as a means of decreasing the level of particular RNAs or as a way to get rid of aberrant...... form the 3'-end of mRNA, is normally the first and also rate-limiting step in cellular mRNA degradation and therefore a key process in the control of eukaryotic mRNA turnover. Since Ccr4p is believed to be the main deadenylase the precise role of Pop2p in the complex is less clear. Nevertheless, Pop2p....... In the nucleus Rrp6p associates with the exosome and participates in the degradation of improperly processed precursor mRNAs and trimming of stable RNAs. The crystal structure of S. cerevisiae Rrp6p presented here displays a conserved DEDD nuclease core with a flanking HRDC domain believed to be involved in RNA...

  12. Library-based display technologies: where do we stand?

    Science.gov (United States)

    Galán, Asier; Comor, Lubos; Horvatić, Anita; Kuleš, Josipa; Guillemin, Nicolas; Mrljak, Vladimir; Bhide, Mangesh

    2016-07-19

    Over the past two decades, library-based display technologies have been staggeringly optimized since their appearance in order to mimic the process of natural molecular evolution. Display technologies are essential for the isolation of specific high-affinity binding molecules (proteins, polypeptides, nucleic acids and others) for diagnostic and therapeutic applications in cancer, infectious diseases, autoimmune, neurodegenerative, inflammatory pathologies etc. Applications extend to other fields such as antibody and enzyme engineering, cell-free protein synthesis and the discovery of protein-protein interactions. Phage display technology is the most established of these methods but more recent fully in vitro alternatives, such as ribosome display, mRNA display, cis-activity based (CIS) display and covalent antibody display (CAD), as well as aptamer display and in vitro compartmentalization, offer advantages over phage in library size, speed and the display of unnatural amino acids and nucleotides. Altogether, they have produced several molecules currently approved or in diverse stages of clinical or preclinical testing and have provided researchers with tools to address some of the disadvantages of peptides and nucleotides such as their low affinity, low stability, high immunogenicity and difficulty to cross membranes. In this review we assess the fundamental technological features and point out some recent advances and applications of display technologies.

  13. Quantifying ribosome dynamics in Escherichia coli using fluorescence.

    Science.gov (United States)

    Failmezger, Jurek; Ludwig, Julian; Nieß, Alexander; Siemann-Herzberg, Martin

    2017-03-01

    Ribosomes are a crucial component of the physiological state of a cell. Therefore, we aimed to monitor ribosome dynamics using a fast and easy fluorescence readout. Using fluorescent-labeled ribosomal proteins, the dynamics of ribosomes during batch cultivation and during nutritional shift conditions was investigated. The fluorescence readout was compared to the cellular rRNA content determined by capillary gel electrophoresis with laser-induced fluorescence detection during exponentially accelerating and decelerating growth. We found a linear correlation between the observed fluorescence and the extracted rRNA content throughout cultivation, demonstrating the applicability of this method. Moreover, the results show that ribosome dynamics, as a result of slowing growth, are accompanied by the passive effect of dilution of preexisting ribosomes, de novo ribosome synthesis and ribosome degradation. In light of the challenging task of deciphering ribosome regulatory mechanisms, our approach of using fluorescence to follow ribosome dynamics will allow more comprehensive studies of biological systems. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Ribosomal history reveals origins of modern protein synthesis.

    Directory of Open Access Journals (Sweden)

    Ajith Harish

    Full Text Available The origin and evolution of the ribosome is central to our understanding of the cellular world. Most hypotheses posit that the ribosome originated in the peptidyl transferase center of the large ribosomal subunit. However, these proposals do not link protein synthesis to RNA recognition and do not use a phylogenetic comparative framework to study ribosomal evolution. Here we infer evolution of the structural components of the ribosome. Phylogenetic methods widely used in morphometrics are applied directly to RNA structures of thousands of molecules and to a census of protein structures in hundreds of genomes. We find that components of the small subunit involved in ribosomal processivity evolved earlier than the catalytic peptidyl transferase center responsible for protein synthesis. Remarkably, subunit RNA and proteins coevolved, starting with interactions between the oldest proteins (S12 and S17 and the oldest substructure (the ribosomal ratchet in the small subunit and ending with the rise of a modern multi-subunit ribosome. Ancestral ribonucleoprotein components show similarities to in vitro evolved RNA replicase ribozymes and protein structures in extant replication machinery. Our study therefore provides important clues about the chicken-or-egg dilemma associated with the central dogma of molecular biology by showing that ribosomal history is driven by the gradual structural accretion of protein and RNA structures. Most importantly, results suggest that functionally important and conserved regions of the ribosome were recruited and could be relics of an ancient ribonucleoprotein world.

  15. Bacterial proteins pinpoint a single eukaryotic root

    Czech Academy of Sciences Publication Activity Database

    Derelle, R.; Torruella, G.; Klimeš, V.; Brinkmann, H.; Kim, E.; Vlček, Čestmír; Lang, B.F.; Eliáš, M.

    2015-01-01

    Roč. 112, č. 7 (2015), E693-E699 ISSN 0027-8424 R&D Projects: GA ČR GA13-24983S Grant - others:GA MŠk(CZ) ED2.1.00/03.0100; Howard Hughes Medical Institute International Early Career Scientist Program(US) 55007424; Spanish Ministry of Economy and Competitiveness, European Molecular Biology Organization Young Investigator Program(ES) BFU2012-31329; Spanish Ministry of Economy and Competitiveness, "Centro de Excelencia Severo Ochoa" - European Regional Development Fund(ES) Sev-2012-0208, BES-2013-064004 Institutional support: RVO:68378050 Keywords : eukaryote phylogeny * phylogenomics * Opimoda * Diphoda * LECA Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.423, year: 2015

  16. Posttranscriptional mechanisms in controlling eukaryotic circadian rhythms.

    Science.gov (United States)

    Zhang, Lin; Weng, Wenya; Guo, Jinhu

    2011-05-20

    The circadian clock is essential in almost all living organisms to synchronise biochemical, metabolic, physiological and behavioural cycles to daily changing environmental factors. In a highly conserved fashion, the circadian clock is primarily controlled by multiple positive and negative molecular circuitries that control gene expression. More recently, research in Neurospora and other eukaryotes has uncovered the involvement of additional regulatory components that operate at the posttranslational level to fine tune the circadian system. Though it remains poorly understood, a growing body of evidence has shown that posttranscriptional regulation controls the expression of both circadian oscillator and output gene transcripts at a number of different steps. This regulation is crucial for driving and maintaining robust circadian rhythms. Here we review recent advances in circadian rhythm research at the RNA level. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  17. DNA Mismatch Repair in Eukaryotes and Bacteria

    Directory of Open Access Journals (Sweden)

    Kenji Fukui

    2010-01-01

    Full Text Available DNA mismatch repair (MMR corrects mismatched base pairs mainly caused by DNA replication errors. The fundamental mechanisms and proteins involved in the early reactions of MMR are highly conserved in almost all organisms ranging from bacteria to human. The significance of this repair system is also indicated by the fact that defects in MMR cause human hereditary nonpolyposis colon cancers as well as sporadic tumors. To date, 2 types of MMRs are known: the human type and Escherichia coli type. The basic features of the former system are expected to be universal among the vast majority of organisms including most bacteria. Here, I review the molecular mechanisms of eukaryotic and bacterial MMR, emphasizing on the similarities between them.

  18. Arabinogalactan proteins have deep roots in eukaryotes

    DEFF Research Database (Denmark)

    Hervé, Cécile; Siméon, Amandine; Jam, Murielle

    2016-01-01

    Arabinogalactan proteins (AGPs) are highly glycosylated, hydroxyproline-rich proteins found at the cell surface of plants, where they play key roles in developmental processes. Brown algae are marine, multicellular, photosynthetic eukaryotes. They belong to the phylum Stramenopiles, which...... is unrelated to land plants and green algae (Chloroplastida). Brown algae share common evolutionary features with other multicellular organisms, including a carbohydrate-rich cell wall. They differ markedly from plants in their cell wall composition, and AGPs have not been reported in brown algae. Here we...... glycan epitopes in a range of brown algal cell wall extracts. We demonstrated that these chimeric AGP-like core proteins are developmentally regulated in embryos of the order Fucales and showed that AGP loss of function seriously impairs the course of early embryogenesis. Our findings shine a new light...

  19. Protein splicing and its evolution in eukaryotes

    Directory of Open Access Journals (Sweden)

    Starokadomskyy P. L.

    2010-02-01

    Full Text Available Inteins, or protein introns, are parts of protein sequences that are post-translationally excised, their flanking regions (exteins being spliced together. This process was called protein splicing. Originally inteins were found in prokaryotic or unicellular eukaryotic organisms. But the general principles of post-translation protein rearrangement are evolving yielding different post-translation modification of proteins in multicellular organisms. For clarity, these non-intein mediated events call either protein rearrangements or protein editing. The most intriguing example of protein editing is proteasome-mediated splicing of antigens in vertebrates that may play important role in antigen presentation. Other examples of protein rearrangements are maturation of Hg-proteins (critical receptors in embryogenesis as well as maturation of several metabolic enzymes. Despite a lack of experimental data we try to analyze some intriguing examples of protein splicing evolution.

  20. Horizontal gene transfer in eukaryotic plant pathogens.

    Science.gov (United States)

    Soanes, Darren; Richards, Thomas A

    2014-01-01

    Gene transfer has been identified as a prevalent and pervasive phenomenon and an important source of genomic innovation in bacteria. The role of gene transfer in microbial eukaryotes seems to be of a reduced magnitude but in some cases can drive important evolutionary innovations, such as new functions that underpin the colonization of different niches. The aim of this review is to summarize published cases that support the hypothesis that horizontal gene transfer (HGT) has played a role in the evolution of phytopathogenic traits in fungi and oomycetes. Our survey of the literature identifies 46 proposed cases of transfer of genes that have a putative or experimentally demonstrable phytopathogenic function. When considering the life-cycle steps through which a pathogen must progress, the majority of the HGTs identified are associated with invading, degrading, and manipulating the host. Taken together, these data suggest HGT has played a role in shaping how fungi and oomycetes colonize plant hosts.

  1. How eukaryotic filamentous pathogens evade plant recognition.

    Science.gov (United States)

    Oliveira-Garcia, Ely; Valent, Barbara

    2015-08-01

    Plant pathogenic fungi and oomycetes employ sophisticated mechanisms for evading host recognition. After host penetration, many fungi and oomycetes establish a biotrophic interaction. It is assumed that different strategies employed by these pathogens to avoid triggering host defence responses, including establishment of biotrophic interfacial layers between the pathogen and host, masking of invading hyphae and active suppression of host defence mechanisms, are essential for a biotrophic parasitic lifestyle. During the infection process, filamentous plant pathogens secrete various effectors, which are hypothesized to be involved in facilitating effective host infection. Live-cell imaging of fungi and oomycetes secreting fluorescently labeled effector proteins as well as functional characterization of the components of biotrophic interfaces have led to the recent progress in understanding how eukaryotic filamentous pathogens evade plant recognition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Relationship between organization and function of ribosomal genes in Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Karpen, G.H.

    1987-01-01

    In most eukaryotic organisms, the genes that encode the 18S and 28S ribosomal RNAs (rDNA genes) are tandemly repeated, and are located in constitutive heterochromatin and/or centromeric or telomeric regions. P-element mediated transformation was used to investigate the relationship between rDNA organization and function in Drosophila melanogaster. Tritiated-uridine incorporation under heat shock conditions and in situ hybridization to rRNA were used to demonstrate that a single rDNA gene inserted into euchromatin can be transcribed at a high rate, in polytene nuclei. P-element-mediated transformation of a single Drosophila rDNA gene was also utilized to investigate the ability of ribosomal DNA to organize a nucleolus. Cytological approaches demonstrated that structures resembling the endogenous nucleoli were preferentially associated with four different sites of rDNA insertion, in polytene nuclei. These mini-nucleoli also contained components specific to the nucleolus, as shown by in situ hybridization to rRNA and indirect immunofluorescence with an antibody that binds to Drosophila nucleoli. The transformed genes were able to partially rescue mutant phenotypes due to a deficiency of rDNA, indicating that the mini-nucleoli were functional.

  3. Analysis of ribosomal RNA transcription termination and 3' end processing in Leishmania amazonensis.

    Science.gov (United States)

    Abreu-Blanco, María Teresa; Ramírez, José Luís; Pinto-Santini, Delia María; Papadopoulou, Barbara; Guevara, Palmira

    2010-02-01

    The control of gene expression in the human parasite Leishmania occurs mainly at the post-transcriptional level. Nevertheless, basic cell processes such as ribosome biogenesis seem to be conserved. Mature ribosomal RNAs (rRNAs) are synthesized from typical RNA polymerase I (Pol I) promoters and processed by pathways analogous to other eukaryotes. To further understand Pol I transcription control in these parasites, we have analyzed transcription termination and processing of the rDNA in Leishmania amazonensis. 3'-end S1 mapping of rRNA precursors identified three termini, one corresponding to the mature 28S rRNA and two to the rDNA intergenic spacer (IGS), termed T1 and T2, for precursors which are 185 and 576 nucleotides longer, respectively. Both T1 and T2 are associated with conserved G + C rich elements that have the potential to form hairpin structures and T-rich clusters. We found that two fragments of 423 bp and 233 bp, flanking sites T1 and T2 respectively when placed upstream of the green fluorescent protein gene (GFP), negatively affected the Pol I-driven transcription of this gene, which suggests the presence of a transcription terminator element in these regions. Deletion analysis pointed to a CCCTTTT heptamer as part of the putative terminator and suggested that the hairpins are processing signals.

  4. Molecular characterization of 5S ribosomal RNA genes and transcripts in the protozoan parasite Leishmania major.

    Science.gov (United States)

    Moreno-Campos, Rodrigo; Florencio-Martínez, Luis E; Nepomuceno-Mejía, Tomás; Rojas-Sánchez, Saúl; Vélez-Ramírez, Daniel E; Padilla-Mejía, Norma E; Figueroa-Angulo, Elisa; Manning-Cela, Rebeca; Martínez-Calvillo, Santiago

    2016-12-01

    Eukaryotic 5S rRNA, synthesized by RNA polymerase III (Pol III), is an essential component of the large ribosomal subunit. Most organisms contain hundreds of 5S rRNA genes organized into tandem arrays. However, the genome of the protozoan parasite Leishmania major contains only 11 copies of the 5S rRNA gene, which are interspersed and associated with other Pol III-transcribed genes. Here we report that, in general, the number and order of the 5S rRNA genes is conserved between different species of Leishmania. While in most organisms 5S rRNA genes are normally associated with the nucleolus, combined fluorescent in situ hybridization and indirect immunofluorescence experiments showed that 5S rRNA genes are mainly located at the nuclear periphery in L. major. Similarly, the tandemly repeated 5S rRNA genes in Trypanosoma cruzi are dispersed throughout the nucleus. In contrast, 5S rRNA transcripts in L. major were localized within the nucleolus, and scattered throughout the cytoplasm, where mature ribosomes are located. Unlike other rRNA species, stable antisense RNA complementary to 5S rRNA is not detected in L. major.

  5. 18S Ribosomal RNA Evaluation as Preanalytical Quality Control for Animal DNA

    Directory of Open Access Journals (Sweden)

    Cory Ann Leonard

    2016-01-01

    Full Text Available The 18S ribosomal RNA (rRNA gene is present in all eukaryotic cells. In this study, we evaluated the use of this gene to verify the presence of PCR-amplifiable host (animal DNA as an indicator of sufficient sample quality for quantitative real-time PCR (qPCR analysis. We compared (i samples from various animal species, tissues, and sample types, including swabs; (ii multiple DNA extraction methods; and (iii both fresh and formalin-fixed paraffin-embedded (FFPE samples. Results showed that 18S ribosomal RNA gene amplification was possible from all tissue samples evaluated, including avian, reptile, and FFPE samples and most swab samples. A single swine rectal swab, which showed sufficient DNA quantity and the demonstrated lack of PCR inhibitors, nonetheless was negative by 18S qPCR. Such a sample specifically illustrates the improvement of determination of sample integrity afforded by inclusion of 18S rRNA gene qPCR analysis in addition to spectrophotometric analysis and the use of internal controls for PCR inhibition. Other possible applications for the described 18S rRNA qPCR are preselection of optimal tissue specimens for studies or preliminary screening of archived samples prior to acceptance for biobanking projects.

  6. Ribosomal DNA in the grasshopper Podisma pedestris: escape from concerted evolution.

    Science.gov (United States)

    Keller, Irene; Chintauan-Marquier, Ioana C; Veltsos, Paris; Nichols, Richard A

    2006-10-01

    Eukaryote nuclear ribosomal DNA (rDNA) typically exhibits strong concerted evolution: a pattern in which several hundred rDNA sequences within any one species show little or no genetic diversity, whereas the sequences of different species diverge. We report a markedly different pattern in the genome of the grasshopper Podisma pedestris. Single individuals contain several highly divergent ribosomal DNA groups. Analysis of the magnitude of divergence indicates that these groups have coexisted in the Podisma lineage for at least 11 million years. There are two putatively functional groups, each estimated to be at least 4 million years old, and several pseudogene groups, many of which are transcribed. Southern hybridization and real-time PCR experiments show that only one of the putatively functional types occurs at high copy number. However, this group is scarcely amplified under standard PCR conditions, which means that phylogenetic inference on the basis of standard PCR would be severely distorted. The analysis suggests that concerted evolution has been remarkably ineffective in P. pedestris. We propose that this outcome may be related to the species' exceptionally large genome and the associated low rate of deletion per base pair, which may allow pseudogenes to persist.

  7. Soil eukaryotic functional diversity, a metatranscriptomic approach.

    Science.gov (United States)

    Bailly, Julie; Fraissinet-Tachet, Laurence; Verner, Marie-Christine; Debaud, Jean-Claude; Lemaire, Marc; Wésolowski-Louvel, Micheline; Marmeisse, Roland

    2007-11-01

    To appreciate the functional diversity of communities of soil eukaryotic micro-organisms we evaluated an experimental approach based on the construction and screening of a cDNA library using polyadenylated mRNA extracted from a forest soil. Such a library contains genes that are expressed by each of the different organisms forming the community and represents its metatranscriptome. The diversity of the organisms that contributed to this library was evaluated by sequencing a portion of the 18S rDNA gene amplified from either soil DNA or reverse-transcribed RNA. More than 70% of the sequences were from fungi and unicellular eukaryotes (protists) while the other most represented group was the metazoa. Calculation of richness estimators suggested that more than 180 species could be present in the soil samples studied. Sequencing of 119 cDNA identified genes with no homologues in databases (32%) and genes coding proteins involved in different biochemical and cellular processes. Surprisingly, the taxonomic distribution of the cDNA and of the 18S rDNA genes did not coincide, with a marked under-representation of the protists among the cDNA. Specific genes from such an environmental cDNA library could be isolated by expression in a heterologous microbial host, Saccharomyces cerevisiae. This is illustrated by the functional complementation of a histidine auxotrophic yeast mutant by two cDNA originating possibly from an ascomycete and a basidiomycete fungal species. Study of the metatranscriptome has the potential to uncover adaptations of whole microbial communities to local environmental conditions. It also gives access to an abundant source of genes of biotechnological interest.

  8. Eukaryotic protein production in designed storage organelles.

    Science.gov (United States)

    Torrent, Margarita; Llompart, Blanca; Lasserre-Ramassamy, Sabine; Llop-Tous, Immaculada; Bastida, Miriam; Marzabal, Pau; Westerholm-Parvinen, Ann; Saloheimo, Markku; Heifetz, Peter B; Ludevid, M Dolors

    2009-01-28

    Protein bodies (PBs) are natural endoplasmic reticulum (ER) or vacuole plant-derived organelles that stably accumulate large amounts of storage proteins in seeds. The proline-rich N-terminal domain derived from the maize storage protein gamma zein (Zera) is sufficient to induce PBs in non-seed tissues of Arabidopsis and tobacco. This Zera property opens up new routes for high-level accumulation of recombinant proteins by fusion of Zera with proteins of interest. In this work we extend the advantageous properties of plant seed PBs to recombinant protein production in useful non-plant eukaryotic hosts including cultured fungal, mammalian and insect cells. Various Zera fusions with fluorescent and therapeutic proteins accumulate in induced PB-like organelles in all eukaryotic systems tested: tobacco leaves, Trichoderma reesei, several mammalian cultured cells and Sf9 insect cells. This accumulation in membranous organelles insulates both recombinant protein and host from undesirable activities of either. Recombinant protein encapsulation in these PBs facilitates stable accumulation of proteins in a protected sub-cellular compartment which results in an enhancement of protein production without affecting the viability and development of stably transformed hosts. The induced PBs also retain the high-density properties of native seed PBs which facilitate the recovery and purification of the recombinant proteins they contain. The Zera sequence provides an efficient and universal means to produce recombinant proteins by accumulation in ER-derived organelles. The remarkable cross-kingdom conservation of PB formation and their biophysical properties should have broad application in the manufacture of non-secreted recombinant proteins and suggests the existence of universal ER pathways for protein insulation.

  9. Eukaryotic protein production in designed storage organelles

    Directory of Open Access Journals (Sweden)

    Saloheimo Markku

    2009-01-01

    Full Text Available Abstract Background Protein bodies (PBs are natural endoplasmic reticulum (ER or vacuole plant-derived organelles that stably accumulate large amounts of storage proteins in seeds. The proline-rich N-terminal domain derived from the maize storage protein γ zein (Zera is sufficient to induce PBs in non-seed tissues of Arabidopsis and tobacco. This Zera property opens up new routes for high-level accumulation of recombinant proteins by fusion of Zera with proteins of interest. In this work we extend the advantageous properties of plant seed PBs to recombinant protein production in useful non-plant eukaryotic hosts including cultured fungal, mammalian and insect cells. Results Various Zera fusions with fluorescent and therapeutic proteins accumulate in induced PB-like organelles in all eukaryotic systems tested: tobacco leaves, Trichoderma reesei, several mammalian cultured cells and Sf9 insect cells. This accumulation in membranous organelles insulates both recombinant protein and host from undesirable activities of either. Recombinant protein encapsulation in these PBs facilitates stable accumulation of proteins in a protected sub-cellular compartment which results in an enhancement of protein production without affecting the viability and development of stably transformed hosts. The induced PBs also retain the high-density properties of native seed PBs which facilitate the recovery and purification of the recombinant proteins they contain. Conclusion The Zera sequence provides an efficient and universal means to produce recombinant proteins by accumulation in ER-derived organelles. The remarkable cross-kingdom conservation of PB formation and their biophysical properties should have broad application in the manufacture of non-secreted recombinant proteins and suggests the existence of universal ER pathways for protein insulation.

  10. An Evolutionary Network of Genes Present in the Eukaryote Common Ancestor Polls Genomes on Eukaryotic and Mitochondrial Origin

    Science.gov (United States)

    Thiergart, Thorsten; Landan, Giddy; Schenk, Marc; Dagan, Tal; Martin, William F.

    2012-01-01

    To test the predictions of competing and mutually exclusive hypotheses for the origin of eukaryotes, we identified from a sample of 27 sequenced eukaryotic and 994 sequenced prokaryotic genomes 571 genes that were present in the eukaryote common ancestor and that have homologues among eubacterial and archaebacterial genomes. Maximum-likelihood trees identified the prokaryotic genomes that most frequently contained genes branching as the sister to the eukaryotic nuclear homologues. Among the archaebacteria, euryarchaeote genomes most frequently harbored the sister to the eukaryotic nuclear gene, whereas among eubacteria, the α-proteobacteria were most frequently represented within the sister group. Only 3 genes out of 571 gave a 3-domain tree. Homologues from α-proteobacterial genomes that branched as the sister to nuclear genes were found more frequently in genomes of facultatively anaerobic members of the rhiozobiales and rhodospirilliales than in obligate intracellular ricketttsial parasites. Following α-proteobacteria, the most frequent eubacterial sister lineages were γ-proteobacteria, δ-proteobacteria, and firmicutes, which were also the prokaryote genomes least frequently found as monophyletic groups in our trees. Although all 22 higher prokaryotic taxa sampled (crenarchaeotes, γ-proteobacteria, spirochaetes, chlamydias, etc.) harbor genes that branch as the sister to homologues present in the eukaryotic common ancestor, that is not evidence of 22 different prokaryotic cells participating at eukaryote origins because prokaryotic “lineages” have laterally acquired genes for more than 1.5 billion years since eukaryote origins. The data underscore the archaebacterial (host) nature of the eukaryotic informational genes and the eubacterial (mitochondrial) nature of eukaryotic energy metabolism. The network linking genes of the eukaryote ancestor to contemporary homologues distributed across prokaryotic genomes elucidates eukaryote gene origins in a

  11. Phylogenetic analysis of ferlin genes reveals ancient eukaryotic origins

    Directory of Open Access Journals (Sweden)

    Lek Monkol

    2010-07-01

    Full Text Available Abstract Background The ferlin gene family possesses a rare and identifying feature consisting of multiple tandem C2 domains and a C-terminal transmembrane domain. Much currently remains unknown about the fundamental function of this gene family, however, mutations in its two most well-characterised members, dysferlin and otoferlin, have been implicated in human disease. The availability of genome sequences from a wide range of species makes it possible to explore the evolution of the ferlin family, providing contextual insight into characteristic features that define the ferlin gene family in its present form in humans. Results Ferlin genes were detected from all species of representative phyla, with two ferlin subgroups partitioned within the ferlin phylogenetic tree based on the presence or absence of a DysF domain. Invertebrates generally possessed two ferlin genes (one with DysF and one without, with six ferlin genes in most vertebrates (three DysF, three non-DysF. Expansion of the ferlin gene family is evident between the divergence of lamprey (jawless vertebrates and shark (cartilaginous fish. Common to almost all ferlins is an N-terminal C2-FerI-C2 sandwich, a FerB motif, and two C-terminal C2 domains (C2E and C2F adjacent to the transmembrane domain. Preservation of these structural elements throughout eukaryotic evolution suggests a fundamental role of these motifs for ferlin function. In contrast, DysF, C2DE, and FerA are optional, giving rise to subtle differences in domain topologies of ferlin genes. Despite conservation of multiple C2 domains in all ferlins, the C-terminal C2 domains (C2E and C2F displayed higher sequence conservation and greater conservation of putative calcium binding residues across paralogs and orthologs. Interestingly, the two most studied non-mammalian ferlins (Fer-1 and Misfire in model organisms C. elegans and D. melanogaster, present as outgroups in the phylogenetic analysis, with results suggesting

  12. ZNF598 and RACK1 Regulate Mammalian Ribosome-Associated Quality Control Function by Mediating Regulatory 40S Ribosomal Ubiquitylation.

    Science.gov (United States)

    Sundaramoorthy, Elayanambi; Leonard, Marilyn; Mak, Raymond; Liao, Jeffrey; Fulzele, Amitkumar; Bennett, Eric J

    2017-02-16

    Ribosomes that experience terminal stalls during translation are resolved by ribosome-associated quality control (QC) pathways that oversee mRNA and nascent chain destruction and recycle ribosomal subunits. The proximal factors that sense stalled ribosomes and initiate mammalian ribosome-associated QC events remain undefined. We demonstrate that the ZNF598 ubiquitin ligase and the 40S ribosomal protein RACK1 help to resolve poly(A)-induced stalled ribosomes. They accomplish this by regulating distinct and overlapping regulatory 40S ribosomal ubiquitylation events. ZNF598 primarily mediates regulatory ubiquitylation of RPS10 and RPS20, whereas RACK1 regulates RPS2, RPS3, and RPS20 ubiquitylation. Gain or loss of ZNF598 function or mutations that block RPS10 or RPS20 ubiquitylation result in defective resolution of stalled ribosomes and subsequent readthrough of poly(A)-containing stall sequences. Together, our results indicate that ZNF598, RACK1, and 40S regulatory ubiquitylation plays a pivotal role in mammalian ribosome-associated QC pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The ribosomal protein Rpl22 controls ribosome composition by directly repressing expression of its own paralog, Rpl22l1.

    Directory of Open Access Journals (Sweden)

    Monique N O'Leary

    Full Text Available Most yeast ribosomal protein genes are duplicated and their characterization has led to hypotheses regarding the existence of specialized ribosomes with different subunit composition or specifically-tailored functions. In yeast, ribosomal protein genes are generally duplicated and evidence has emerged that paralogs might have specific roles. Unlike yeast, most mammalian ribosomal proteins are thought to be encoded by a single gene copy, raising the possibility that heterogenous populations of ribosomes are unique to yeast. Here, we examine the roles of the mammalian Rpl22, finding that Rpl22(-/- mice have only subtle phenotypes with no significant translation defects. We find that in the Rpl22(-/- mouse there is a compensatory increase in Rpl22-like1 (Rpl22l1 expression and incorporation into ribosomes. Consistent with the hypothesis that either ribosomal protein can support translation, knockdown of Rpl22l1 impairs growth of cells lacking Rpl22. Mechanistically, Rpl22 regulates Rpl22l1 directly by binding to an internal hairpin structure and repressing its expression. We propose that ribosome specificity may exist in mammals, providing evidence that one ribosomal protein can influence composition of the ribosome by regulating its own paralog.

  14. The COG database: an updated version includes eukaryotes

    Directory of Open Access Journals (Sweden)

    Sverdlov Alexander V

    2003-09-01

    Full Text Available Abstract Background The availability of multiple, essentially complete genome sequences of prokaryotes and eukaryotes spurred both the demand and the opportunity for the construction of an evolutionary classification of genes from these genomes. Such a classification system based on orthologous relationships between genes appears to be a natural framework for comparative genomics and should facilitate both functional annotation of genomes and large-scale evolutionary studies. Results We describe here a major update of the previously developed system for delineation of Clusters of Orthologous Groups of proteins (COGs from the sequenced genomes of prokaryotes and unicellular eukaryotes and the construction of clusters of predicted orthologs for 7 eukaryotic genomes, which we named KOGs after eukaryotic orthologous groups. The COG collection currently consists of 138,458 proteins, which form 4873 COGs and comprise 75% of the 185,505 (predicted proteins encoded in 66 genomes of unicellular organisms. The eukaryotic orthologous groups (KOGs include proteins from 7 eukaryotic genomes: three animals (the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster and Homo sapiens, one plant, Arabidopsis thaliana, two fungi (Saccharomyces cerevisiae and Schizosaccharomyces pombe, and the intracellular microsporidian parasite Encephalitozoon cuniculi. The current KOG set consists of 4852 clusters of orthologs, which include 59,838 proteins, or ~54% of the analyzed eukaryotic 110,655 gene products. Compared to the coverage of the prokaryotic genomes with COGs, a considerably smaller fraction of eukaryotic genes could be included into the KOGs; addition of new eukaryotic genomes is expected to result in substantial increase in the coverage of eukaryotic genomes with KOGs. Examination of the phyletic patterns of KOGs reveals a conserved core represented in all analyzed species and consisting of ~20% of the KOG set. This conserved portion of the

  15. Displaying gray shades in liquid crystal displays

    Indian Academy of Sciences (India)

    These transistors act as a switch to charge and hold the desired voltage across a pixel. Passive matrix LCDs are easy to fabricate and cost less as compared to the active matrix LCDs. Current trend demands gray scale and colour capa- bilities even for the displays in mobile phones. Passive matrix LCDs will be preferred as.

  16. Chemical modulators of ribosome biogenesis as biological probes.

    Science.gov (United States)

    Stokes, Jonathan M; Brown, Eric D

    2015-12-01

    Small-molecule inhibitors of protein biosynthesis have been instrumental in the dissection of the complexities of ribosome structure and function. Ribosome biogenesis, on the other hand, is a complex and largely enigmatic process for which there is a paucity of chemical probes. Indeed, ribosome biogenesis has been studied almost exclusively using genetic and biochemical approaches without the benefit of small-molecule inhibitors of this process. Here, we provide a perspective on the promise of chemical inhibitors of ribosome assembly for future research. We explore key obstacles that complicate the interpretation of studies aimed at perturbing ribosome biogenesis in vivo using genetic methods, and we argue that chemical inhibitors are especially powerful because they can be used to induce perturbations in a manner that obviates these difficulties. Thus, in combination with leading-edge biochemical and structural methods, chemical probes offer unique advantages toward elucidating the molecular events that define the assembly of ribosomes.

  17. Adoption of the 2A Ribosomal Skip Principle to Tobacco Mosaic Virus for Peptide Display

    Directory of Open Access Journals (Sweden)

    Juliane Röder

    2017-06-01

    Full Text Available Plant viruses are suitable as building blocks for nanomaterials and nanoparticles because they are easy to modify and can be expressed and purified using plants or heterologous expression systems. Plant virus nanoparticles have been utilized for epitope presentation in vaccines, for drug delivery, as nanospheres and nanowires, and for biomedical imaging applications. Fluorescent protein fusions have been instrumental for the tagging of plant virus particles. The monomeric non-oxygen-dependent fluorescent protein iLOV can be used as an alternative to green fluorescent protein. In this study, the iLOV sequence was genetically fused either directly or via a glycine-serine linker to the C-terminus of the Tobacco mosaic virus (TMV coat protein (CP and also carried an N-terminal Foot-and-mouth disease virus (FMDV 2A sequence. Nicotiana benthamiana plants were inoculated with recombinant viral vectors and a systemic infection was achieved. The presence of iLOV fusion proteins and hybrid particles was confirmed by western blot analysis and transmission electron microscopy. Our data suggest that TMV-based vectors are suitable for the production of proteins at least as large as iLOV when combined with the FMDV 2A sequence. This approach allowed the simultaneous production of foreign proteins fused to the CP as well as free CP subunits.

  18. Cryoelectron Microscopic Structures of Eukaryotic Translation Termination Complexes Containing eRF1-eRF3 or eRF1-ABCE1

    Directory of Open Access Journals (Sweden)

    Anne Preis

    2014-07-01

    Full Text Available Termination and ribosome recycling are essential processes in translation. In eukaryotes, a stop codon in the ribosomal A site is decoded by a ternary complex consisting of release factors eRF1 and guanosine triphosphate (GTP-bound eRF3. After GTP hydrolysis, eRF3 dissociates, and ABCE1 can bind to eRF1-loaded ribosomes to stimulate peptide release and ribosomal subunit dissociation. Here, we present cryoelectron microscopic (cryo-EM structures of a pretermination complex containing eRF1-eRF3 and a termination/prerecycling complex containing eRF1-ABCE1. eRF1 undergoes drastic conformational changes: its central domain harboring the catalytically important GGQ loop is either packed against eRF3 or swung toward the peptidyl transferase center when bound to ABCE1. Additionally, in complex with eRF3, the N-terminal domain of eRF1 positions the conserved NIKS motif proximal to the stop codon, supporting its suggested role in decoding, yet it appears to be delocalized in the presence of ABCE1. These results suggest that stop codon decoding and peptide release can be uncoupled during termination.

  19. The architecture of mammalian ribosomal protein promoters

    Directory of Open Access Journals (Sweden)

    Perry Robert P

    2005-02-01

    Full Text Available Abstract Background Mammalian ribosomes contain 79 different proteins encoded by widely scattered single copy genes. Coordinate expression of these genes at transcriptional and post-transcriptional levels is required to ensure a roughly equimolar accumulation of ribosomal proteins. To date, detailed studies of only a very few ribosomal protein (rp promoters have been made. To elucidate the general features of rp promoter architecture, I made a detailed sequence comparison of the promoter regions of the entire set of orthologous human and mouse rp genes. Results A striking evolutionarily conserved feature of most rp genes is the separation by an intron of the sequences involved in transcriptional and translational regulation from the sequences with protein encoding function. Another conserved feature is the polypyrimidine initiator, which conforms to the consensus (Y2C+1TY(T2(Y3. At least 60 % of the rp promoters contain a largely conserved TATA box or A/T-rich motif, which should theoretically have TBP-binding capability. A remarkably high proportion of the promoters contain conserved binding sites for transcription factors that were previously implicated in rp gene expression, namely upstream GABP and Sp1 sites and downstream YY1 sites. Over 80 % of human and mouse rp genes contain a transposable element residue within 900 bp of 5' flanking sequence; very little sequence identity between human and mouse orthologues was evident more than 200 bp upstream of the transcriptional start point. Conclusions This analysis has provided some valuable insights into the general architecture of mammalian rp promoters and has identified parameters that might coordinately regulate the transcriptional activity of certain subsets of rp genes.

  20. Arabidopsis MAS2, an Essential Gene That Encodes a Homolog of Animal NF-κ B Activating Protein, Is Involved in 45S Ribosomal DNA Silencing.

    Science.gov (United States)

    Sánchez-García, Ana Belén; Aguilera, Verónica; Micol-Ponce, Rosa; Jover-Gil, Sara; Ponce, María Rosa

    2015-07-01

    Ribosome biogenesis requires stoichiometric amounts of ribosomal proteins and rRNAs. Synthesis of rRNAs consumes most of the transcriptional activity of eukaryotic cells, but its regulation remains largely unclear in plants. We conducted a screen for ethyl methanesulfonate-induced suppressors of Arabidopsis thaliana ago1-52, a hypomorphic allele of AGO1 (ARGONAUTE1), a key gene in microRNA pathways. We identified nine extragenic suppressors as alleles of MAS2 (MORPHOLOGY OF AGO1-52 SUPPRESSED2). Positional cloning showed that MAS2 encodes the putative ortholog of NKAP (NF-κ B activating protein), a conserved eukaryotic protein involved in transcriptional repression and splicing in animals. The mas2 point mutations behave as informational suppressors of ago1 alleles that cause missplicing. MAS2 is a single-copy gene whose insertional alleles are embryonic lethal. In yeast two-hybrid assays, MAS2 interacted with splicing and ribosome biogenesis proteins, and fluorescence in situ hybridization showed that MAS2 colocalizes with the 45S rDNA at the nucleolar organizer regions (NORs). The artificial microRNA amiR-MAS2 partially repressed MAS2 and caused hypomethylation of 45S rDNA promoters as well as partial NOR decondensation, indicating that MAS2 negatively regulates 45S rDNA expression. Our results thus reveal a key player in the regulation of rRNA synthesis in plants. © 2015 American Society of Plant Biologists. All rights reserved.

  1. Structure of ERA in Complex with the 3 End of 16s rRNBA Implications for Ribosome Biogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Tu, C.; Zhou, X; Tropea, J; Austin, B; Waugh, D; Court, D; Ji, X

    2009-01-01

    ERA, composed of an N-terminal GTPase domain followed by an RNA-binding KH domain, is essential for bacterial cell viability. It binds to 16S rRNA and the 30S ribosomal subunit. However, its RNA-binding site, the functional relationship between the two domains, and its role in ribosome biogenesis remain unclear. We have determined two crystal structures of ERA, a binary complex with GDP and a ternary complex with a GTP-analog and the 1531AUCACCUCCUUA1542 sequence at the 3? end of 16S rRNA. In the ternary complex, the first nine of the 12 nucleotides are recognized by the protein. We show that GTP binding is a prerequisite for RNA recognition by ERA and that RNA recognition stimulates its GTP-hydrolyzing activity. Based on these and other data, we propose a functional cycle of ERA, suggesting that the protein serves as a chaperone for processing and maturation of 16S rRNA and a checkpoint for assembly of the 30S ribosomal subunit. The AUCA sequence is highly conserved among bacteria, archaea, and eukaryotes, whereas the CCUCC, known as the anti-Shine-Dalgarno sequence, is conserved in noneukaryotes only. Therefore, these data suggest a common mechanism for a highly conserved ERA function in all three kingdoms of life by recognizing the AUCA, with a 'twist' for noneukaryotic ERA proteins by also recognizing the CCUCC.

  2. Structure of ERA in complex with the 3′ end of 16S rRNA: Implications for ribosome biogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Chao; Zhou, Xiaomei; Tropea, Joseph E.; Austin, Brian P.; Waugh, David S.; Court, Donald L.; Ji, Xinhua; (NCI)

    2009-10-09

    ERA, composed of an N-terminal GTPase domain followed by an RNA-binding KH domain, is essential for bacterial cell viability. It binds to 16S rRNA and the 30S ribosomal subunit. However, its RNA-binding site, the functional relationship between the two domains, and its role in ribosome biogenesis remain unclear. We have determined two crystal structures of ERA, a binary complex with GDP and a ternary complex with a GTP-analog and the {sub 1531}AUCACCUCCUUA{sub 1542} sequence at the 3' end of 16S rRNA. In the ternary complex, the first nine of the 12 nucleotides are recognized by the protein. We show that GTP binding is a prerequisite for RNA recognition by ERA and that RNA recognition stimulates its GTP-hydrolyzing activity. Based on these and other data, we propose a functional cycle of ERA, suggesting that the protein serves as a chaperone for processing and maturation of 16S rRNA and a checkpoint for assembly of the 30S ribosomal subunit. The AUCA sequence is highly conserved among bacteria, archaea, and eukaryotes, whereas the CCUCC, known as the anti-Shine-Dalgarno sequence, is conserved in noneukaryotes only. Therefore, these data suggest a common mechanism for a highly conserved ERA function in all three kingdoms of life by recognizing the AUCA, with a 'twist' for noneukaryotic ERA proteins by also recognizing the CCUCC.

  3. Scalable Resolution Display Walls

    KAUST Repository

    Leigh, Jason

    2013-01-01

    This article will describe the progress since 2000 on research and development in 2-D and 3-D scalable resolution display walls that are built from tiling individual lower resolution flat panel displays. The article will describe approaches and trends in display hardware construction, middleware architecture, and user-interaction design. The article will also highlight examples of use cases and the benefits the technology has brought to their respective disciplines. © 1963-2012 IEEE.

  4. OLED displays and lighting

    CERN Document Server

    Koden, Mitsuhiro

    2017-01-01

    Organic light-emitting diodes (OLEDs) have emerged as the leading technology for the new display and lighting market. OLEDs are solid-state devices composed of thin films of organic molecules that create light with the application of electricity. OLEDs can provide brighter, crisper displays on electronic devices and use less power than conventional light-emitting diodes (LEDs) or liquid crystal displays (LCDs) used today. This book covers both the fundamentals and practical applications of flat and flexible OLEDs.

  5. Ribosomal RNA gene functioning in avian oogenesis.

    Science.gov (United States)

    Koshel, Elena; Galkina, Svetlana; Saifitdinova, Alsu; Dyomin, Alexandr; Deryusheva, Svetlana; Gaginskaya, Elena

    2016-12-01

    Despite long-term exploration into ribosomal RNA gene functioning during the oogenesis of various organisms, many intriguing problems remain unsolved. In this review, we describe nucleolus organizer region (NOR) activity in avian oocytes. Whereas oocytes from an adult avian ovary never reveal the formation of the nucleolus in the germinal vesicle (GV), an ovary from juvenile birds possesses both nucleolus-containing and non-nucleolus-containing oocytes. The evolutionary diversity of oocyte NOR functioning and the potential non-rRNA-related functions of the nucleolus in oocytes are also discussed.

  6. Molecular dynamics simulation of ribosome jam

    KAUST Repository

    Matsumoto, Shigenori

    2011-09-01

    We propose a coarse-grained molecular dynamics model of ribosome molecules to study the dependence of translation process on environmental parameters. We found the model exhibits traffic jam property, which is consistent with an ASEP model. We estimated the influence of the temperature and concentration of molecules on the hopping probability used in the ASEP model. Our model can also treat environmental effects on the translation process that cannot be explained by such cellular automaton models. © 2010 Elsevier B.V. All rights reserved.

  7. Molecular paleontology and complexity in the last eukaryotic common ancestor.

    Science.gov (United States)

    Koumandou, V Lila; Wickstead, Bill; Ginger, Michael L; van der Giezen, Mark; Dacks, Joel B; Field, Mark C

    2013-01-01

    Eukaryogenesis, the origin of the eukaryotic cell, represents one of the fundamental evolutionary transitions in the history of life on earth. This event, which is estimated to have occurred over one billion years ago, remains rather poorly understood. While some well-validated examples of fossil microbial eukaryotes for this time frame have been described, these can provide only basic morphology and the molecular machinery present in these organisms has remained unknown. Complete and partial genomic information has begun to fill this gap, and is being used to trace proteins and cellular traits to their roots and to provide unprecedented levels of resolution of structures, metabolic pathways and capabilities of organisms at these earliest points within the eukaryotic lineage. This is essentially allowing a molecular paleontology. What has emerged from these studies is spectacular cellular complexity prior to expansion of the eukaryotic lineages. Multiple reconstructed cellular systems indicate a very sophisticated biology, which by implication arose following the initial eukaryogenesis event but prior to eukaryotic radiation and provides a challenge in terms of explaining how these early eukaryotes arose and in understanding how they lived. Here, we provide brief overviews of several cellular systems and the major emerging conclusions, together with predictions for subsequent directions in evolution leading to extant taxa. We also consider what these reconstructions suggest about the life styles and capabilities of these earliest eukaryotes and the period of evolution between the radiation of eukaryotes and the eukaryogenesis event itself.

  8. Eukaryotic translation initiation factor 5A of wheat: Identification ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... Regulation of senescence by eukaryotic translation initiation factor 5A: implications for plant growth and development. Trends Plant Sci. 9: 174-179. Zhou et al. 2117. Tome ME, Fiser SM, Payne CM, Gerner EW (1997). Excess putrescine accumulation inhibits the formation of modified eukaryotic initiation.

  9. Causes and consequences of eukaryotization through mutualistic endosymbiosis and compartmentalization

    NARCIS (Netherlands)

    Hengeveld, R.; Fedonkin, M.A.

    2004-01-01

    This paper reviews and extends ideas of eukaryotization by endosymbiosis. These ideas are put within an historical context of processes that may have led up to eukaryotization and those that seem to have resulted from this process. Our starting point for considering the emergence and development of

  10. Displaying Data As Movies

    Science.gov (United States)

    Moore, Judith G.

    1992-01-01

    NMSB Movie computer program displays large sets of data (more than million individual values). Presentation dynamic, rapidly displaying sequential image "frames" in main "movie" window. Any sequence of two-dimensional sets of data scaled between 0 and 255 (1-byte resolution) displayed as movie. Time- or slice-wise progression of data illustrated. Originally written to present data from three-dimensional ultrasonic scans of damaged aerospace composite materials, illustrates data acquired by thermal-analysis systems measuring rates of heating and cooling of various materials. Developed on Macintosh IIx computer with 8-bit color display adapter and 8 megabytes of memory using Symantec Corporation's Think C, version 4.0.

  11. JAVA Stereo Display Toolkit

    Science.gov (United States)

    Edmonds, Karina

    2008-01-01

    This toolkit provides a common interface for displaying graphical user interface (GUI) components in stereo using either specialized stereo display hardware (e.g., liquid crystal shutter or polarized glasses) or anaglyph display (red/blue glasses) on standard workstation displays. An application using this toolkit will work without modification in either environment, allowing stereo software to reach a wider audience without sacrificing high-quality display on dedicated hardware. The toolkit is written in Java for use with the Swing GUI Toolkit and has cross-platform compatibility. It hooks into the graphics system, allowing any standard Swing component to be displayed in stereo. It uses the OpenGL graphics library to control the stereo hardware and to perform the rendering. It also supports anaglyph and special stereo hardware using the same API (application-program interface), and has the ability to simulate color stereo in anaglyph mode by combining the red band of the left image with the green/blue bands of the right image. This is a low-level toolkit that accomplishes simply the display of components (including the JadeDisplay image display component). It does not include higher-level functions such as disparity adjustment, 3D cursor, or overlays all of which can be built using this toolkit.

  12. Ribosome Footprint Profiling of Translation throughout the Genome

    Science.gov (United States)

    Ingolia, Nicholas T.

    2016-01-01

    Ribosome profiling has emerged as a technique for measuring translation comprehensively and quantitatively by deep sequencing of ribosome-protected mRNA fragments. By identifying the precise positions of ribosomes, footprinting experiments have unveiled key insights into the composition and regulation of the expressed proteome, including delineating potentially functional micropeptides, revealing pervasive translation on cytosolic RNAs, and identifying differences in elongation rates driven by codon usage or other factors. This Primer looks at important experimental and analytical concerns for executing ribosome profiling experiments and surveys recent examples where the approach was developed to explore protein biogenesis and homeostasis. PMID:27015305

  13. Dynamic Behavior of Trigger Factor on the Ribosome.

    Science.gov (United States)

    Deeng, J; Chan, K Y; van der Sluis, E O; Berninghausen, O; Han, W; Gumbart, J; Schulten, K; Beatrix, B; Beckmann, R

    2016-09-11

    Trigger factor (TF) is the only ribosome-associated chaperone in bacteria. It interacts with hydrophobic segments in nascent chain (NCs) as they emerge from the ribosome. TF binds via its N-terminal ribosome-binding domain (RBD) mainly to ribosomal protein uL23 at the tunnel exit on the large ribosomal subunit. Whereas earlier structural data suggested that TF binds as a rigid molecule to the ribosome, recent comparisons of structural data on substrate-bound, ribosome-bound, and TF in solution from different species suggest that this chaperone is a rather flexible molecule. Here, we present two cryo-electron microscopy structures of TF bound to ribosomes translating an mRNA coding for a known TF substrate from Escherichia coli of a different length. The structures reveal distinct degrees of flexibility for the different TF domains, a conformational rearrangement of the RBD upon ribosome binding, and an increase in rigidity within TF when the NC is extended. Molecular dynamics simulations agree with these data and offer a molecular basis for these observations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Complete kinetic mechanism for recycling of the bacterial ribosome.

    Science.gov (United States)

    Borg, Anneli; Pavlov, Michael; Ehrenberg, Måns

    2016-01-01

    How EF-G and RRF act together to split a post-termination ribosomal complex into its subunits has remained obscure. Here, using stopped-flow experiments with Rayleigh light scattering detection and quench-flow experiments with radio-detection of GTP hydrolysis, we have clarified the kinetic mechanism of ribosome recycling and obtained precise estimates of its kinetic parameters. Ribosome splitting requires that EF-G binds to an already RRF-containing ribosome. EF-G binding to RRF-free ribosomes induces futile rounds of GTP hydrolysis and inhibits ribosome splitting, implying that while RRF is purely an activator of recycling, EF-G acts as both activator and competitive inhibitor of RRF in recycling of the post-termination ribosome. The ribosome splitting rate and the number of GTPs consumed per splitting event depend strongly on the free concentrations of EF-G and RRF. The maximal recycling rate, here estimated as 25 sec(-1), is approached at very high concentrations of EF-G and RRF with RRF in high excess over EF-G. The present in vitro results, suggesting an in vivo ribosome recycling rate of ∼5 sec(-1), are discussed in the perspective of rapidly growing bacterial cells. © 2015 Borg et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  15. Commandeering the Ribosome: Lessons Learned from Dicistroviruses about Translation.

    Science.gov (United States)

    Kerr, Craig H; Jan, Eric

    2016-06-15

    To replicate, all viruses depend entirely on the enslavement of host cell ribosomes for their own advantage. To this end, viruses have evolved a multitude of translational strategies to usurp the ribosome. RNA-based structures known as internal ribosome entry sites (IRESs) are among the most notable mechanisms employed by viruses to seize host ribosomes. In this article, we spotlight the intergenic region IRES from the Dicistroviridae family of viruses and its importance as a model for IRES-dependent translation and in understanding fundamental properties of translation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Ribosome hibernation factor promotes Staphylococcal survival and differentially represses translation.

    Science.gov (United States)

    Basu, Arnab; Yap, Mee-Ngan F

    2016-06-02

    In opportunistic Gram-positive Staphylococcus aureus, a small protein called hibernation-promoting factor (HPFSa) is sufficient to dimerize 2.5-MDa 70S ribosomes into a translationally inactive 100S complex. Although the 100S dimer is observed in only the stationary phase in Gram-negative gammaproteobacteria, it is ubiquitous throughout all growth phases in S. aureus The biological significance of the 100S ribosome is poorly understood. Here, we reveal an important role of HPFSa in preserving ribosome integrity and poising cells for translational restart, a process that has significant clinical implications for relapsed staphylococcal infections. We found that the hpf null strain is severely impaired in long-term viability concomitant with a dramatic loss of intact ribosomes. Genome-wide ribosome profiling shows that eliminating HPFSa drastically increased ribosome occupancy at the 5' end of specific mRNAs under nutrient-limited conditions, suggesting that HPFSa may suppress translation initiation. The protective function of HPFSa on ribosomes resides at the N-terminal conserved basic residues and the extended C-terminal segment, which are critical for dimerization and ribosome binding, respectively. These data provide significant insight into the functional consequences of 100S ribosome loss for protein synthesis and stress adaptation. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. A Molecular Titration System Coordinates Ribosomal Protein Gene Transcription with Ribosomal RNA Synthesis.

    Science.gov (United States)

    Albert, Benjamin; Knight, Britta; Merwin, Jason; Martin, Victoria; Ottoz, Diana; Gloor, Yvonne; Bruzzone, Maria Jessica; Rudner, Adam; Shore, David

    2016-11-17

    Cell growth potential is determined by the rate of ribosome biogenesis, a complex process that requires massive and coordinated transcriptional output. In the yeast Saccharomyces cerevisiae, ribosome biogenesis is highly regulated at the transcriptional level. Although evidence for a system that coordinates ribosomal RNA (rRNA) and ribosomal protein gene (RPG) transcription has been described, the molecular mechanisms remain poorly understood. Here we show that an interaction between the RPG transcriptional activator Ifh1 and the rRNA processing factor Utp22 serves to coordinate RPG transcription with that of rRNA. We demonstrate that Ifh1 is rapidly released from RPG promoters by a Utp22-independent mechanism following growth inhibition, but that its long-term dissociation requires Utp22. We present evidence that RNA polymerase I activity inhibits the ability of Utp22 to titrate Ifh1 from RPG promoters and propose that a dynamic Ifh1-Utp22 interaction fine-tunes RPG expression to coordinate RPG and rRNA transcription. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Phosphorylation of acidic ribosomal proteins from rabbit reticulocytes by a ribosome-associated casein kinase

    DEFF Research Database (Denmark)

    Issinger, O G

    1977-01-01

    Two acidic proteins from 80-S ribosomes were isolated and purified to homogeneity. The purified acidic proteins could be phosphorylated by casein kinase using [gamma-32P]ATP and [gamma-32P]GTP as a phosphoryl donor. The proteins became phosphorylated in situ, too. Sodium dodecyl sulfate polyacryl...

  19. Ultradian clocks in eukaryotic microbes: from behavioural observation to functional genomics.

    Science.gov (United States)

    Kippert, F; Hunt, P

    2000-01-01

    Period homeostasis is the defining characteristic of a biological clock. Strict period homeostasis is found for the ultradian clocks of eukaryotic microbes. In addition to being temperature-compensated, the period of these rhythms is unaffected by differences in nutrient composition or changes in other environmental variables. The best-studied examples of ultradian clocks are those of the ciliates Paramecium tetraurelia and Tetrahymena sp. and of the fission yeast, Schizosaccharomyces pombe. In these single cell eukaryotes, up to seven different parameters display ultradian rhythmicity with the same, species- and strain-specific period. In fission yeast, the molecular genetic analysis of ultradian clock mechanisms has begun with the systematic analysis of mutants in identified candidate genes. More than 40 "clock mutants" have already been identified, most of them affected in components of major regulatory and signalling pathways. These results indicate a high degree of complexity for a eukaryotic clock mechanism. BioEssays 22:16-22, 2000. Copyright 2000 John Wiley & Sons, Inc.

  20. Exploring microbial dark matter to resolve the deep archaeal ancestry of eukaryotes

    Science.gov (United States)

    Saw, Jimmy H.; Spang, Anja; Zaremba-Niedzwiedzka, Katarzyna; Juzokaite, Lina; Dodsworth, Jeremy A.; Murugapiran, Senthil K.; Colman, Dan R.; Takacs-Vesbach, Cristina; Hedlund, Brian P.; Guy, Lionel; Ettema, Thijs J. G.

    2015-01-01

    The origin of eukaryotes represents an enigmatic puzzle, which is still lacking a number of essential pieces. Whereas it is currently accepted that the process of eukaryogenesis involved an interplay between a host cell and an alphaproteobacterial endosymbiont, we currently lack detailed information regarding the identity and nature of these players. A number of studies have provided increasing support for the emergence of the eukaryotic host cell from within the archaeal domain of life, displaying a specific affiliation with the archaeal TACK superphylum. Recent studies have shown that genomic exploration of yet-uncultivated archaea, the so-called archaeal ‘dark matter’, is able to provide unprecedented insights into the process of eukaryogenesis. Here, we provide an overview of state-of-the-art cultivation-independent approaches, and demonstrate how these methods were used to obtain draft genome sequences of several novel members of the TACK superphylum, including Lokiarchaeum, two representatives of the Miscellaneous Crenarchaeotal Group (Bathyarchaeota), and a Korarchaeum-related lineage. The maturation of cultivation-independent genomics approaches, as well as future developments in next-generation sequencing technologies, will revolutionize our current view of microbial evolution and diversity, and provide profound new insights into the early evolution of life, including the enigmatic origin of the eukaryotic cell. PMID:26323759

  1. Energetics and genetics across the prokaryote-eukaryote divide

    Science.gov (United States)

    2011-01-01

    Background All complex life on Earth is eukaryotic. All eukaryotic cells share a common ancestor that arose just once in four billion years of evolution. Prokaryotes show no tendency to evolve greater morphological complexity, despite their metabolic virtuosity. Here I argue that the eukaryotic cell originated in a unique prokaryotic endosymbiosis, a singular event that transformed the selection pressures acting on both host and endosymbiont. Results The reductive evolution and specialisation of endosymbionts to mitochondria resulted in an extreme genomic asymmetry, in which the residual mitochondrial genomes enabled the expansion of bioenergetic membranes over several orders of magnitude, overcoming the energetic constraints on prokaryotic genome size, and permitting the host cell genome to expand (in principle) over 200,000-fold. This energetic transformation was permissive, not prescriptive; I suggest that the actual increase in early eukaryotic genome size was driven by a heavy early bombardment of genes and introns from the endosymbiont to the host cell, producing a high mutation rate. Unlike prokaryotes, with lower mutation rates and heavy selection pressure to lose genes, early eukaryotes without genome-size limitations could mask mutations by cell fusion and genome duplication, as in allopolyploidy, giving rise to a proto-sexual cell cycle. The side effect was that a large number of shared eukaryotic basal traits accumulated in the same population, a sexual eukaryotic common ancestor, radically different to any known prokaryote. Conclusions The combination of massive bioenergetic expansion, release from genome-size constraints, and high mutation rate favoured a protosexual cell cycle and the accumulation of eukaryotic traits. These factors explain the unique origin of eukaryotes, the absence of true evolutionary intermediates, and the evolution of sex in eukaryotes but not prokaryotes. Reviewers This article was reviewed by: Eugene Koonin, William Martin

  2. In Profile: Models of Ribosome Biogenesis Defects and Regulation of Protein Synthesis

    NARCIS (Netherlands)

    Essers, P.B.M.

    2013-01-01

    Ribosomes are the mediators of protein synthesis in the cell and therefore crucial to proper cell function. In addition, ribosomes are highly abundant, with ribosomal RNA making up 80% of the RNA in the cell. A large amount of resources go into maintaining this pool of ribosomes, so ribosome

  3. Ribosome Flow Model on a Ring.

    Science.gov (United States)

    Raveh, Alon; Zarai, Yoram; Margaliot, Michael; Tuller, Tamir

    2015-01-01

    The asymmetric simple exclusion process (ASEP) is an important model from statistical physics describing particles that hop randomly from one site to the next along an ordered lattice of sites, but only if the next site is empty. ASEP has been used to model and analyze numerous multiagent systems with local interactions including the flow of ribosomes along the mRNA strand. In ASEP with periodic boundary conditions a particle that hops from the last site returns to the first one. The mean field approximation of this model is referred to as the ribosome flow model on a ring (RFMR). The RFMR may be used to model both synthetic and endogenous gene expression regimes. We analyze the RFMR using the theory of monotone dynamical systems. We show that it admits a continuum of equilibrium points and that every trajectory converges to an equilibrium point. Furthermore, we show that it entrains to periodic transition rates between the sites. We describe the implications of the analysis results to understanding and engineering cyclic mRNA translation in-vitro and in-vivo.

  4. Defining the bacteroides ribosomal binding site.

    Science.gov (United States)

    Wegmann, Udo; Horn, Nikki; Carding, Simon R

    2013-03-01

    The human gastrointestinal tract, in particular the colon, hosts a vast number of commensal microorganisms. Representatives of the genus Bacteroides are among the most abundant bacterial species in the human colon. Bacteroidetes diverged from the common line of eubacterial descent before other eubacterial groups. As a result, they employ unique transcription initiation signals and, because of this uniqueness, they require specific genetic tools. Although some tools exist, they are not optimal for studying the roles and functions of these bacteria in the human gastrointestinal tract. Focusing on translation initiation signals in Bacteroides, we created a series of expression vectors allowing for different levels of protein expression in this genus, and we describe the use of pepI from Lactobacillus delbrueckii subsp. lactis as a novel reporter gene for Bacteroides. Furthermore, we report the identification of the 3' end of the 16S rRNA of Bacteroides ovatus and analyze in detail its ribosomal binding site, thus defining a core region necessary for efficient translation, which we have incorporated into the design of our expression vectors. Based on the sequence logo information from the 5' untranslated region of other Bacteroidales ribosomal protein genes, we conclude that our findings are relevant to all members of this order.

  5. Helmet-Mounted Displays (HMD)

    Data.gov (United States)

    Federal Laboratory Consortium — The Helmet-Mounted Display labis responsible for monocular HMD day display evaluations; monocular HMD night vision performance processes; binocular HMD day display...

  6. Effective Monitor Display Design.

    Science.gov (United States)

    Harrell, William

    1999-01-01

    Describes some of the factors that affect computer monitor display design and provides suggestions and insights into how screen displays can be designed more effectively. Topics include color, font choices, organizational structure of text, space outline, and general principles. (Author/LRW)

  7. Jet printing flexible displays

    OpenAIRE

    Street, R. A.; Wong, W S; Ready, S. E.; Chabinyc, M.L; Arias, A.C.; Limb, S.; Salleo, A; Lujan, R.

    2006-01-01

    Jet printing is an interesting patterning technique for electronic devices because it requires no physical mask, has digital control of ejection, and provides good layer-to-layer registration. It also has the potential to reduce display manufacturing costs and enable roll-to-roll processing. The technique is illustrated with examples of prototype printed displays using amorphous silicon and polymer semiconductors.

  8. Standardizing visual display quality

    NARCIS (Netherlands)

    Besuijen, J.; Spenkelink, G.P.J.

    1998-01-01

    The current ISO 9241–3 standard for visual display quality and the proposed user performance tests are reviewed. The standard is found to be more engineering than ergonomic and problems with system configuration, software applications, display settings, user behaviour, wear and physical environment

  9. Visual merchandising window display

    Directory of Open Access Journals (Sweden)

    Opris (Cas. Stanila M.

    2013-12-01

    Full Text Available Window display plays a major part in the selling strategies; it does not only include the simple display of goods, nowadays it is a form of art, also having the purpose of sustaining the brand image. This article wants to reveal the tools that are essential in creating a fabulous window display. Being a window designer is not an easy job, you have to always think ahead trends, to have a sense of colour, to know how to use light to attract customers in the store after only one glance at the window. The big store window displays are theatre scenes: with expensive backgrounds, special effects and high fashion mannequins. The final role of the displays is to convince customers to enter the store and trigger the purchasing act which is the final goal of the retail activity.

  10. Origins and evolution of viruses of eukaryotes: The ultimate modularity

    Energy Technology Data Exchange (ETDEWEB)

    Koonin, Eugene V., E-mail: koonin@ncbi.nlm.nih.gov [National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 (United States); Dolja, Valerian V., E-mail: doljav@science.oregonstate.edu [Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331 (United States); Krupovic, Mart, E-mail: krupovic@pasteur.fr [Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Paris 75015 (France)

    2015-05-15

    Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangible clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order “Megavirales” that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources

  11. Loss of human ribosomal gene CpG methylation enhances cryptic RNA polymerase II transcription and disrupts ribosomal RNA processing.

    Science.gov (United States)

    Gagnon-Kugler, Thérèse; Langlois, Frédéric; Stefanovsky, Victor; Lessard, Frédéric; Moss, Tom

    2009-08-28

    Epigenetic methyl-CpG silencing of the ribosomal RNA (rRNA) genes is thought to downregulate rRNA synthesis in mammals. In contrast, we now show that CpG methylation in fact positively influences rRNA synthesis and processing. Human HCT116 cells, inactivated for DNMT1 and DNMT3b or treated with aza-dC, lack CpG methylation and reactivate a large fraction of normally silent rRNA genes. Unexpectedly, these cells display reduced rRNA synthesis and processing and accumulate unprocessed 45S rRNA. Reactivation of the rRNA genes is associated with their cryptic transcription by RNA polymerase II. Ectopic expression of cryptic rRNA gene transcripts recapitulates the defects associated with loss of CpG methylation. The data demonstrate that rRNA gene silencing prevents cryptic RNA polymerase II transcription of these genes. Lack of silencing leads to the partial disruption of rRNA synthesis and rRNA processing, providing an explanation for the cytotoxic effects of loss of CpG methylation.

  12. Functional divergence between the two P1-P2 stalk dimers on the ribosome in their interaction with ricin A chain

    Science.gov (United States)

    Grela, Przemysław; Li, Xiao-Ping; Tchórzewski, Marek; Tumer, Nilgun E.

    2014-01-01

    The eukaryotic stalk, which is responsible for the recruitment of translation factors, is a pentamer containing two P1–P2 dimers with unclear modes of action. In Saccharomyces cerevisiae, P1/P2 proteins (individual P1 and P2 proteins) are organized into two distinct dimers, P1A–P2B and P1B–P2A. To investigate the functional contribution of each dimer on the ribosome, RTA (ricin A chain), which binds to the stalk to depurinate the SRL (sarcin/ricin loop), was used as a molecular probe in yeast mutants in which the binding site for one or the other dimer on P0 was deleted. Ribosome depurination and toxicity of RTA were greatly reduced in mutants containing only P1A–P2B on the ribosome, whereas those with only P1B–P2A were reduced less in depurination and were unaffected in toxicity. Ribosomesn bearing P1B–P2A were depurinated by RTA at a similar level as wild-type, but ribosomes bearing P1A–P2B were depurinated at a much lower level in vitro. The latter ribosomes showed the lowest association and almost no dissociation with RTA by surface plasmon resonance. These results indicate that the P1B– P2A dimer is more critical for facilitating the access of RTA to the SRL, providing the first in vivo evidence for functional divergence between the two stalk dimers on the ribosome. PMID:24576056

  13. Activities of Escherichia coli ribosomes in IF3 and RMF change to prepare 100S ribosome formation on entering the stationary growth phase.

    Science.gov (United States)

    Yoshida, Hideji; Ueta, Masami; Maki, Yasushi; Sakai, Akiko; Wada, Akira

    2009-02-01

    The canonical ribosome cycle in bacteria consists of initiation, elongation, termination, and recycling stages. After the recycling stage, initiation factor 3 (IF3) stabilizes ribosomal dissociation by binding to 30S subunits for the next round of translation. On the other hand, during the stationary growth phase, it has been elucidated that Escherichia coli ribosomes are dimerized (100S ribosome formation) by binding ribosome modulation factor (RMF) and hibernation promoting factor (HPF), leading to a hibernation stage. This indicates that 100S ribosomes are formed after these factors are scrambled for ribosomes concomitantly with transition from the log phase to the stationary phase. In this study, to elucidate the ribosomal events before 100S ribosome formation, the relationships between protein factors (RMF and HPF) involved in 100S ribosome formation and IF3 involved in initiation complex formation were examined. As a result of in vitro assays, it was found that ribosomal dissociation activity by IF3 fell, and that ribosomal dimerization activity by RMF and HPF was elevated more when using stationary-phase ribosomes than when using log-phase ribosomes. This suggests that ribosomes change into forms which are hard to bind with IF3 and easy to form 100S ribosomes by RMF and HPF concomitantly with transition from the log phase to the stationary phase.

  14. Microlaser-based displays

    Science.gov (United States)

    Bergstedt, Robert; Fink, Charles G.; Flint, Graham W.; Hargis, David E.; Peppler, Philipp W.

    1997-07-01

    Laser Power Corporation has developed a new type of projection display, based upon microlaser technology and a novel scan architecture, which provides the foundation for bright, extremely high resolution images. A review of projection technologies is presented along with the limitations of each and the difficulties they experience in trying to generate high resolution imagery. The design of the microlaser based projector is discussed along with the advantage of this technology. High power red, green, and blue microlasers have been designed and developed specifically for use in projection displays. These sources, in combination with high resolution, high contrast modulator, produce a 24 bit color gamut, capable of supporting the full range of real world colors. The new scan architecture, which reduces the modulation rate and scan speeds required, is described. This scan architecture, along with the inherent brightness of the laser provides the fundamentals necessary to produce a 5120 by 4096 resolution display. The brightness and color uniformity of the display is excellent, allowing for tiling of the displays with far fewer artifacts than those in a traditionally tiled display. Applications for the display include simulators, command and control centers, and electronic cinema.

  15. Pyrosequencing assessment of prokaryotic and eukaryotic diversity in biofilm communities from a French river.

    Science.gov (United States)

    Bricheux, Geneviève; Morin, Loïc; Le Moal, Gwenaël; Coffe, Gérard; Balestrino, Damien; Charbonnel, Nicolas; Bohatier, Jacques; Forestier, Christiane

    2013-06-01

    Despite the recent and significant increase in the study of aquatic microbial communities, little is known about the microbial diversity of complex ecosystems such as running waters. This study investigated the biodiversity of biofilm communities formed in a river with 454 Sequencing™. This river has the particularity of integrating both organic and microbiological pollution, as receiver of agricultural pollution in its upstream catchment area and urban pollution through discharges of the wastewater treatment plant of the town of Billom. Different regions of the small subunit (SSU) ribosomal RNA gene were targeted using nine pairs of primers, either universal or specific for bacteria, eukarya, or archaea. Our aim was to characterize the widest range of rDNA sequences using different sets of polymerase chain reaction (PCR) primers. A first look at reads abundance revealed that a large majority (47-48%) were rare sequences (<5 copies). Prokaryotic phyla represented the species richness, and eukaryotic phyla accounted for a small part. Among the prokaryotic phyla, Proteobacteria (beta and alpha) predominated, followed by Bacteroidetes together with a large number of nonaffiliated bacterial sequences. Bacillariophyta plastids were abundant. The remaining bacterial phyla, Verrucomicrobia and Cyanobacteria, made up the rest of the bulk biodiversity. The most abundant eukaryotic phyla were annelid worms, followed by Diatoms, and Chlorophytes. These latter phyla attest to the abundance of plastids and the importance of photosynthetic activity for the biofilm. These findings highlight the existence and plasticity of multiple trophic levels within these complex biological systems. © 2013 The Authors. Microbiology Open published by John Wiley & Sons Ltd.

  16. A comparison of structural and evolutionary attributes of Escherichia coli and Thermus thermophilus small ribosomal subunits: signatures of thermal adaptation.

    Directory of Open Access Journals (Sweden)

    Saurav Mallik

    Full Text Available Here we compare the structural and evolutionary attributes of Thermus thermophilus and Escherichia coli small ribosomal subunits (SSU. Our results indicate that with few exceptions, thermophilic 16S ribosomal RNA (16S rRNA is densely packed compared to that of mesophilic at most of the analogous spatial regions. In addition, we have located species-specific cavity clusters (SSCCs in both species. E. coli SSCCs are numerous and larger compared to T. thermophilus SSCCs, which again indicates densely packed thermophilic 16S rRNA. Thermophilic ribosomal proteins (r-proteins have longer disordered regions than their mesophilic homologs and they experience larger disorder-to-order transitions during SSU-assembly. This is reflected in the predicted higher conformational changes of thermophilic r-proteins compared to their mesophilic homologs during SSU-assembly. This high conformational change of thermophilic r-proteins may help them to associate with the 16S ribosomal RNA with high complementary interfaces, larger interface areas, and denser molecular contacts, compared to those of mesophilic. Thus, thermophilic protein-rRNA interfaces are tightly associated with 16S rRNA than their mesophilic homologs. Densely packed 16S rRNA interior and tight protein-rRNA binding of T. thermophilus (compared to those of E. coli are likely the signatures of its thermal adaptation. We have found a linear correlation between the free energy of protein-RNA interface formation, interface size, and square of conformational changes, which is followed in both prokaryotic and eukaryotic SSU. Disorder is associated with high protein-RNA interface polarity. We have found an evolutionary tendency to maintain high polarity (thereby disorder at protein-rRNA interfaces, than that at rest of the protein structures. However, some proteins exhibit exceptions to this general trend.

  17. An intron in a ribosomal protein gene from Tetrahymena

    DEFF Research Database (Denmark)

    Nielsen, Henrik; Andreasen, Per Hove; Dreisig, Hanne

    1986-01-01

    of hybrid-selected mRNA and authentic ribosomal proteins. The proteins show strong homology to ribosomal protein S12 from Escherichia coli. The coding region of the gene is interrupted by a 979-bp intron 68 bp downstream of the translation start. This is the first intron in a protein encoding gene...

  18. Close sequence identity between ribosomal DNA episomes of the ...

    Indian Academy of Sciences (India)

    Entamoeba dispar and Entamoeba histolytica are now recognized as two distinct species – the former being nonpathogenic to humans. We had earlier studied the organization of ribosomal RNA genes in E. histolytica. Here we report the analysis of ribosomal RNA genes in E. dispar. The rRNA genes of E. dispar, like their ...

  19. Association of ribosomal anti-P antibodies with different parameters ...

    African Journals Online (AJOL)

    antibodies with neuropsychiatric lupus manifestations and to find out the relationship of ribosomal anti-P antibodies with other autoimmune parameters of lupus. Ribosomal anti-P antibodies were evaluated in the serum of 41 systemic lupus erythematosus (SLE) patients as well as ANA, dsDNA, anti- Sm, anti-SSA, anti-SSB, ...

  20. Color Display Design Guide

    Science.gov (United States)

    1978-10-01

    and G. M. Corso , "Color flcsearch for Visuz’l Displays, Technical Report No. ONH-CR2l3-102-3, July 1975, 108 pp. 45 1 Results of two code comparison...respective- ly. Since the display elements constitute routine or non-priority informatica , all display information would be coded green if the three-color...1963, with Amendment 1, 30 September 1971. U.S. Government Printing Office: Washington, DC. 27. Christ, R.E. and G.M. Corso . "Color Research for Visual

  1. Small - Display Cartography

    DEFF Research Database (Denmark)

    Nissen, Flemming; Hvas, Anders; Münster-Swendsen, Jørgen

    This report comprises the work carried out in the work-package of small display cartography. The work-package has aimed at creating a general framework for the small-display cartography. A solid framework facilitates an increased use of spatial data in mobile devices - thus enabling, together...... Service Communication and finally, Part IV: Concluding remarks and topics for further research on small-display cartography. Part II includes a separate Appendix D consisting of a cartographic design specification. Part III includes a separate Appendix C consisting of a schema specification, a separate...

  2. Kinetic modeling predicts a stimulatory role for ribosome collisions at elongation stall sites in bacteria.

    Science.gov (United States)

    Ferrin, Michael A; Subramaniam, Arvind R

    2017-05-12

    Ribosome stalling on mRNAs can decrease protein expression. To decipher ribosome kinetics at stall sites, we induced ribosome stalling at specific codons by starving the bacterium Escherichia coli for the cognate amino acid. We measured protein synthesis rates from a reporter library of over 100 variants that encoded systematic perturbations of translation initiation rate, the number of stall sites, and the distance between stall sites. Our measurements are quantitatively inconsistent with two widely-used kinetic models for stalled ribosomes: ribosome traffic jams that block initiation, and abortive (premature) termination of stalled ribosomes. Rather, our measurements support a model in which collision with a trailing ribosome causes abortive termination of the stalled ribosome. In our computational analysis, ribosome collisions selectively stimulate abortive termination without fine-tuning of kinetic rate parameters at ribosome stall sites. We propose that ribosome collisions serve as a robust timer for translational quality control pathways to recognize stalled ribosomes.

  3. HIV-1 Replication and the Cellular Eukaryotic Translation Apparatus

    Directory of Open Access Journals (Sweden)

    Santiago Guerrero

    2015-01-01

    Full Text Available Eukaryotic translation is a complex process composed of three main steps: initiation, elongation, and termination. During infections by RNA- and DNA-viruses, the eukaryotic translation machinery is used to assure optimal viral protein synthesis. Human immunodeficiency virus type I (HIV-1 uses several non-canonical pathways to translate its own proteins, such as leaky scanning, frameshifting, shunt, and cap-independent mechanisms. Moreover, HIV-1 modulates the host translation machinery by targeting key translation factors and overcomes different cellular obstacles that affect protein translation. In this review, we describe how HIV-1 proteins target several components of the eukaryotic translation machinery, which consequently improves viral translation and replication.

  4. The Complete Structure of the Mycobacterium smegmatis 70S Ribosome

    Directory of Open Access Journals (Sweden)

    Jendrik Hentschel

    2017-07-01

    Full Text Available The ribosome carries out the synthesis of proteins in every living cell. It consequently represents a frontline target in anti-microbial therapy. Tuberculosis ranks among the leading causes of death worldwide, due in large part to the combination of difficult-to-treat latency and antibiotic resistance. Here, we present the 3.3-Å cryo-EM structure of the 70S ribosome of Mycobacterium smegmatis, a close relative to the human pathogen Mycobacterium tuberculosis. The structure reveals two additional ribosomal proteins and localizes them to the vicinity of drug-target sites in both the catalytic center and the decoding site of the ribosome. Furthermore, we visualized actinobacterium-specific rRNA and protein expansions that extensively remodel the ribosomal surface with implications for polysome organization. Our results provide a foundation for understanding the idiosyncrasies of mycobacterial translation and reveal atomic details of the structure that will facilitate the design of anti-tubercular therapeutics.

  5. Map display design

    Science.gov (United States)

    Aretz, Anthony J.

    1990-01-01

    This paper presents a cognitive model of a pilot's navigation task and describes an experiment comparing a visual momentum map display to the traditional track-up and north-up approaches. The data show the advantage to a track-up map is its congruence with the ego-centered forward view; however, the development of survey knowledge is hindered by the inconsistency of the rotating display. The stable alignment of a north-up map aids the acquisition of survey knowledge, but there is a cost associated with the mental rotation of the display to a track-up alignment for ego-centered tasks. The results also show that visual momentum can be used to reduce the mental rotation costs of a north-up display.

  6. Compressive light field displays.

    Science.gov (United States)

    Wetzstein, Gordon; Lanman, Douglas; Hirsch, Matthew; Heidrich, Wolfgang; Raskar, Ramesh

    2012-01-01

    Light fields are the multiview extension of stereo image pairs: a collection of images showing a 3D scene from slightly different perspectives. Depicting high-resolution light fields usually requires an excessively large display bandwidth; compressive light field displays are enabled by the codesign of optical elements and computational-processing algorithms. Rather than pursuing a direct "optical" solution (for example, adding one more pixel to support the emission of one additional light ray), compressive displays aim to create flexible optical systems that can synthesize a compressed target light field. In effect, each pixel emits a superposition of light rays. Through compression and tailored optical designs, fewer display pixels are necessary to emit a given light field than a direct optical solution would require.

  7. Flexible displays, rigid designs?

    DEFF Research Database (Denmark)

    Hornbæk, Kasper

    2015-01-01

    Rapid technological progress has enabled a wide range of flexible displays for computing devices, but the user experience--which we're only beginning to understand--will be the key driver for successful designs....

  8. ENERGY STAR Certified Displays

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 7.0 ENERGY STAR Program Requirements for Displays that are effective as of July 1, 2016....

  9. Advanced aerosense display interfaces

    Science.gov (United States)

    Hopper, Darrel G.; Meyer, Frederick M.

    1998-09-01

    High-resolution display technologies are being developed to meet the ever-increasing demand for realistic detail. The requirement for evermore visual information exceeds the capacity of fielded aerospace display interfaces. In this paper we begin an exploration of display interfaces and evolving aerospace requirements. Current and evolving standards for avionics, commercial, and flat panel displays are summarized and compared to near term goals for military and aerospace applications. Aerospace and military applications prior to 2005 up to UXGA and digital HDTV resolution can be met by using commercial interface standard developments. Advanced aerospace requirements require yet higher resolutions (2560 X 2048 color pixels, 5120 X 4096 color pixels at 85 Hz, etc.) and necessitate the initiation of discussion herein of an 'ultra digital interface standard (UDIS)' which includes 'smart interface' features such as large memory and blazingly fast resizing microcomputer. Interface capacity, IT, increased about 105 from 1973 to 1998; 102 more is needed for UDIS.

  10. Liquid Crystal Airborne Display

    Science.gov (United States)

    1977-08-01

    with the drive capability of the present state-of-the- art microm.ziiaturized integi ated circuits. The impact of microminiaturizing the drive circuits...7 Advantages /Disadvantages of Prior Art .........- 8 Performance of the Liquid Crystal Matrix Display . . .. 8 Liquid Crystal...Holographic HUD Light Source ...................... .... 99 Design of a Special Purpose Mercury Art - Plo.?hcr La np . 104 V LARGE SCALE INTEGRATION FOR DISPLAY

  11. Military display performance parameters

    Science.gov (United States)

    Desjardins, Daniel D.; Meyer, Frederick

    2012-06-01

    The military display market is analyzed in terms of four of its segments: avionics, vetronics, dismounted soldier, and command and control. Requirements are summarized for a number of technology-driving parameters, to include luminance, night vision imaging system compatibility, gray levels, resolution, dimming range, viewing angle, video capability, altitude, temperature, shock and vibration, etc., for direct-view and virtual-view displays in cockpits and crew stations. Technical specifications are discussed for selected programs.

  12. ORFeome Phage Display.

    Science.gov (United States)

    Zantow, Jonas; Moreira, Gustavo Marçal Schmidt Garcia; Dübel, Stefan; Hust, Michael

    2018-01-01

    ORFeome phage display allows the efficient functional screening of entire proteomes or even metaproteomes to identify immunogenic proteins. For this purpose, randomly fragmented, whole genomes or metagenomes are cloned into a phage-display vector allowing positive selection for open reading frames (ORF) to improve the library quality. These libraries display all possible proteins encoded by a pathogen or a microbiome on the phage surface. Consequently, immunogenic proteins can be selected from these libraries using disease-related immunoglobulins from patient serum. ORFeome phage display in particular allows the identification of immunogenic proteins that are only expressed in the host-pathogen interaction but not in cultivation, as well as the detection of very low expressed and very small immunogens and immunogenic proteins of non-cultivable organisms. The identified immunogenic proteins are potential biomarkers for the development of diagnostic assays or vaccines. These articles will give an introduction to ORFeome phage-display technology and give detailed protocols to identify immunogenic proteins by phage display.

  13. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae.

    NARCIS (Netherlands)

    Wijffels, R.H.; Kruse, O.; Hellingwerf, K.J.

    2013-01-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments. Cyanobacteria are promising host organisms

  14. Conservation and Variability of Meiosis Across the Eukaryotes.

    Science.gov (United States)

    Loidl, Josef

    2016-11-23

    Comparisons among a variety of eukaryotes have revealed considerable variability in the structures and processes involved in their meiosis. Nevertheless, conventional forms of meiosis occur in all major groups of eukaryotes, including early-branching protists. This finding confirms that meiosis originated in the common ancestor of all eukaryotes and suggests that primordial meiosis may have had many characteristics in common with conventional extant meiosis. However, it is possible that the synaptonemal complex and the delicate crossover control related to its presence were later acquisitions. Later still, modifications to meiotic processes occurred within different groups of eukaryotes. Better knowledge on the spectrum of derived and uncommon forms of meiosis will improve our understanding of many still mysterious aspects of the meiotic process and help to explain the evolutionary basis of functional adaptations to the meiotic program.

  15. Hydrodynamics Versus Intracellular Coupling in the Synchronization of Eukaryotic Flagella

    NARCIS (Netherlands)

    Quaranta, G.; Aubin, M.E.; Tam, D.S.W.

    2015-01-01

    The influence of hydrodynamic forces on eukaryotic flagella synchronization is investigated by triggering phase locking between a controlled external flow and the flagella of C. reinhardtii. Hydrodynamic forces required for synchronization are over an order of magnitude larger than hydrodynamic

  16. Information rich display design

    Energy Technology Data Exchange (ETDEWEB)

    Welch, Robin; Braseth, Alf Ove; Veland, Oeystein

    2004-07-01

    This paper presents the concept Information Rich Displays. The purpose of Information Rich Displays (IRDs) is to condensate prevailing information in process displays in such a way that each display format (picture) contains more relevant information for the user. Compared to traditional process control displays, this new concept allows the operator to attain key information at a glance and at the same time allows for improved monitoring of larger portions of the process. This again allows for reduced navigation between both process and trend displays and ease the cognitive demand on the operator. This concept has been created while working on designing display prototypes for the offshore petroleum production facilities of tomorrow. Offshore installations basically consist of wells, separation trains (where oil, gas and water are separated from each other), an oil tax measurement system (where oil quality is measured and the pressure increased to allow for export), gas compression (compression of gas for export) and utility systems (water treatment, chemical systems etc.). This means that an offshore control room operator has to deal with a complex process that comprises several functionally different systems. The need for a new approach to offshore display format design is in particular based on shortcomings in today's designs related to the keyhole effect, where the display format only reveals a fraction of the whole process. Furthermore, the upcoming introduction of larger off- and on-shore operation centres will increase the size and complexity of the operators' work domain. In the light of the increased demands on the operator, the proposed IRDs aim to counter the negative effects this may have on the workload. In this work we have attempted to classify the wide range of different roles an operator can have in different situations. The information content and amount being presented to the operator in a display should be viewed in context of the roles

  17. Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes.

    Science.gov (United States)

    Ku, Chuan; Nelson-Sathi, Shijulal; Roettger, Mayo; Garg, Sriram; Hazkani-Covo, Einat; Martin, William F

    2015-08-18

    Endosymbiotic theory in eukaryotic-cell evolution rests upon a foundation of three cornerstone partners--the plastid (a cyanobacterium), the mitochondrion (a proteobacterium), and its host (an archaeon)--and carries a corollary that, over time, the majority of genes once present in the organelle genomes were relinquished to the chromosomes of the host (endosymbiotic gene transfer). However, notwithstanding eukaryote-specific gene inventions, single-gene phylogenies have never traced eukaryotic genes to three single prokaryotic sources, an issue that hinges crucially upon factors influencing phylogenetic inference. In the age of genomes, single-gene trees, once used to test the predictions of endosymbiotic theory, now spawn new theories that stand to eventually replace endosymbiotic theory with descriptive, gene tree-based variants featuring supernumerary symbionts: prokaryotic partners distinct from the cornerstone trio and whose existence is inferred solely from single-gene trees. We reason that the endosymbiotic ancestors of mitochondria and chloroplasts brought into the eukaryotic--and plant and algal--lineage a genome-sized sample of genes from the proteobacterial and cyanobacterial pangenomes of their respective day and that, even if molecular phylogeny were artifact-free, sampling prokaryotic pangenomes through endosymbiotic gene transfer would lead to inherited chimerism. Recombination in prokaryotes (transduction, conjugation, transformation) differs from recombination in eukaryotes (sex). Prokaryotic recombination leads to pangenomes, and eukaryotic recombination leads to vertical inheritance. Viewed from the perspective of endosymbiotic theory, the critical transition at the eukaryote origin that allowed escape from Muller's ratchet--the origin of eukaryotic recombination, or sex--might have required surprisingly little evolutionary innovation.

  18. Massive expansion of the calpain gene family in unicellular eukaryotes

    Directory of Open Access Journals (Sweden)

    Zhao Sen

    2012-09-01

    Full Text Available Abstract Background Calpains are Ca2+-dependent cysteine proteases that participate in a range of crucial cellular processes. Dysfunction of these enzymes may cause, for instance, life-threatening diseases in humans, the loss of sex determination in nematodes and embryo lethality in plants. Although the calpain family is well characterized in animal and plant model organisms, there is a great lack of knowledge about these genes in unicellular eukaryote species (i.e. protists. Here, we study the distribution and evolution of calpain genes in a wide range of eukaryote genomes from major branches in the tree of life. Results Our investigations reveal 24 types of protein domains that are combined with the calpain-specific catalytic domain CysPc. In total we identify 41 different calpain domain architectures, 28 of these domain combinations have not been previously described. Based on our phylogenetic inferences, we propose that at least four calpain variants were established in the early evolution of eukaryotes, most likely before the radiation of all the major supergroups of eukaryotes. Many domains associated with eukaryotic calpain genes can be found among eubacteria or archaebacteria but never in combination with the CysPc domain. Conclusions The analyses presented here show that ancient modules present in prokaryotes, and a few de novo eukaryote domains, have been assembled into many novel domain combinations along the evolutionary history of eukaryotes. Some of the new calpain genes show a narrow distribution in a few branches in the tree of life, likely representing lineage-specific innovations. Hence, the functionally important classical calpain genes found among humans and vertebrates make up only a tiny fraction of the calpain family. In fact, a massive expansion of the calpain family occurred by domain shuffling among unicellular eukaryotes and contributed to a wealth of functionally different genes.

  19. Nitrate storage and dissimilatory nitrate reduction by eukaryotic microbes

    OpenAIRE

    Anja eKamp; Signe eHøgslund; Nils eRisgaard-Petersen; Peter eStief

    2015-01-01

    The microbial nitrogen cycle is one of the most complex and environmentally important element cycles on Earth and has long been thought to be mediated exclusively by prokaryotic microbes. Rather recently, it was discovered that certain eukaryotic microbes are able to store nitrate intracellularly and use it for dissimilatory nitrate reduction in the absence of oxygen. The paradigm shift that this entailed is ecologically significant because the eukaryotes in question comprise global players l...

  20. Real-time observation of signal recognition particle binding to actively translating ribosomes

    Science.gov (United States)

    Noriega, Thomas R; Chen, Jin; Walter, Peter; Puglisi, Joseph D

    2014-01-01

    The signal recognition particle (SRP) directs translating ribosome-nascent chain complexes (RNCs) that display a signal sequence to protein translocation channels in target membranes. All previous work on the initial step of the targeting reaction, when SRP binds to RNCs, used stalled and non-translating RNCs. This meant that an important dimension of the co-translational process remained unstudied. We apply single-molecule fluorescence measurements to observe directly and in real-time E. coli SRP binding to actively translating RNCs. We show at physiologically relevant SRP concentrations that SRP-RNC association and dissociation rates depend on nascent chain length and the exposure of a functional signal sequence outside the ribosome. Our results resolve a long-standing question: how can a limited, sub-stoichiometric pool of cellular SRP effectively distinguish RNCs displaying a signal sequence from those that are not? The answer is strikingly simple: as originally proposed, SRP only stably engages translating RNCs exposing a functional signal sequence. DOI: http://dx.doi.org/10.7554/eLife.04418.001 PMID:25358118

  1. Restless 5S: the re-arrangement(s) and evolution of the nuclear ribosomal DNA in land plants.

    Science.gov (United States)

    Wicke, Susann; Costa, Andrea; Muñoz, Jesùs; Quandt, Dietmar

    2011-11-01

    Among eukaryotes two types of nuclear ribosomal DNA (nrDNA) organization have been observed. Either all components, i.e. the small ribosomal subunit, 5.8S, large ribosomal subunit, and 5S occur tandemly arranged or the 5S rDNA forms a separate cluster of its own. Generalizations based on data derived from just a few model organisms have led to a superimposition of structural and evolutionary traits to the entire plant kingdom asserting that plants generally possess separate arrays. This study reveals that plant nrDNA organization into separate arrays is not a distinctive feature, but rather assignable almost solely to seed plants. We show that early diverging land plants and presumably streptophyte algae share a co-localization of all rRNA genes within one repeat unit. This raises the possibility that the state of rDNA gene co-localization had occurred in their common ancestor. Separate rDNA arrays were identified for all basal seed plants and water ferns, implying at least two independent 5S rDNA transposition events during land plant evolution. Screening for 5S derived Cassandra transposable elements which might have played a role during the transposition events, indicated that this retrotransposon is absent in early diverging vascular plants including early fern lineages. Thus, Cassandra can be rejected as a primary mechanism for 5S rDNA transposition in water ferns. However, the evolution of Cassandra and other eukaryotic 5S derived elements might have been a side effect of the 5S rDNA cluster formation. Structural analysis of the intergenic spacers of the ribosomal clusters revealed that transposition events partially affect spacer regions and suggests a slightly different transcription regulation of 5S rDNA in early land plants. 5S rDNA upstream regulatory elements are highly divergent or absent from the LSU-5S spacers of most early divergent land plant lineages. Several putative scenarios and mechanisms involved in the concerted relocation of hundreds of 5S

  2. On the Diversification of the Translation Apparatus across Eukaryotes

    Directory of Open Access Journals (Sweden)

    Greco Hernández

    2012-01-01

    Full Text Available Diversity is one of the most remarkable features of living organisms. Current assessments of eukaryote biodiversity reaches 1.5 million species, but the true figure could be several times that number. Diversity is ingrained in all stages and echelons of life, namely, the occupancy of ecological niches, behavioral patterns, body plans and organismal complexity, as well as metabolic needs and genetics. In this review, we will discuss that diversity also exists in a key biochemical process, translation, across eukaryotes. Translation is a fundamental process for all forms of life, and the basic components and mechanisms of translation in eukaryotes have been largely established upon the study of traditional, so-called model organisms. By using modern genome-wide, high-throughput technologies, recent studies of many nonmodel eukaryotes have unveiled a surprising diversity in the configuration of the translation apparatus across eukaryotes, showing that this apparatus is far from being evolutionarily static. For some of the components of this machinery, functional differences between different species have also been found. The recent research reviewed in this article highlights the molecular and functional diversification the translational machinery has undergone during eukaryotic evolution. A better understanding of all aspects of organismal diversity is key to a more profound knowledge of life.

  3. An Evolutionary Framework for Understanding the Origin of Eukaryotes

    Directory of Open Access Journals (Sweden)

    Neil W. Blackstone

    2016-04-01

    Full Text Available Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real—the endosymbiosis that led to the mitochondrion is often described as “non-Darwinian” because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious—all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes.

  4. An Evolutionary Framework for Understanding the Origin of Eukaryotes.

    Science.gov (United States)

    Blackstone, Neil W

    2016-04-27

    Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real-the endosymbiosis that led to the mitochondrion is often described as "non-Darwinian" because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious-all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes.

  5. Single Cell Genomics and Transcriptomics for Unicellular Eukaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Ciobanu, Doina; Clum, Alicia; Singh, Vasanth; Salamov, Asaf; Han, James; Copeland, Alex; Grigoriev, Igor; James, Timothy; Singer, Steven; Woyke, Tanja; Malmstrom, Rex; Cheng, Jan-Fang

    2014-03-14

    Despite their small size, unicellular eukaryotes have complex genomes with a high degree of plasticity that allow them to adapt quickly to environmental changes. Unicellular eukaryotes live with prokaryotes and higher eukaryotes, frequently in symbiotic or parasitic niches. To this day their contribution to the dynamics of the environmental communities remains to be understood. Unfortunately, the vast majority of eukaryotic microorganisms are either uncultured or unculturable, making genome sequencing impossible using traditional approaches. We have developed an approach to isolate unicellular eukaryotes of interest from environmental samples, and to sequence and analyze their genomes and transcriptomes. We have tested our methods with six species: an uncharacterized protist from cellulose-enriched compost identified as Platyophrya, a close relative of P. vorax; the fungus Metschnikowia bicuspidate, a parasite of water flea Daphnia; the mycoparasitic fungi Piptocephalis cylindrospora, a parasite of Cokeromyces and Mucor; Caulochytrium protosteloides, a parasite of Sordaria; Rozella allomycis, a parasite of the water mold Allomyces; and the microalgae Chlamydomonas reinhardtii. Here, we present the four components of our approach: pre-sequencing methods, sequence analysis for single cell genome assembly, sequence analysis of single cell transcriptomes, and genome annotation. This technology has the potential to uncover the complexity of single cell eukaryotes and their role in the environmental samples.

  6. An Evolutionary Framework for Understanding the Origin of Eukaryotes

    Science.gov (United States)

    Blackstone, Neil W.

    2016-01-01

    Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real—the endosymbiosis that led to the mitochondrion is often described as “non-Darwinian” because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious—all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes. PMID:27128953

  7. A statistical anomaly indicates symbiotic origins of eukaryotic membranes

    Science.gov (United States)

    Bansal, Suneyna; Mittal, Aditya

    2015-01-01

    Compositional analyses of nucleic acids and proteins have shed light on possible origins of living cells. In this work, rigorous compositional analyses of ∼5000 plasma membrane lipid constituents of 273 species in the three life domains (archaea, eubacteria, and eukaryotes) revealed a remarkable statistical paradox, indicating symbiotic origins of eukaryotic cells involving eubacteria. For lipids common to plasma membranes of the three domains, the number of carbon atoms in eubacteria was found to be similar to that in eukaryotes. However, mutually exclusive subsets of same data show exactly the opposite—the number of carbon atoms in lipids of eukaryotes was higher than in eubacteria. This statistical paradox, called Simpson's paradox, was absent for lipids in archaea and for lipids not common to plasma membranes of the three domains. This indicates the presence of interaction(s) and/or association(s) in lipids forming plasma membranes of eubacteria and eukaryotes but not for those in archaea. Further inspection of membrane lipid structures affecting physicochemical properties of plasma membranes provides the first evidence (to our knowledge) on the symbiotic origins of eukaryotic cells based on the “third front” (i.e., lipids) in addition to the growing compositional data from nucleic acids and proteins. PMID:25631820

  8. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes.

    Directory of Open Access Journals (Sweden)

    Linda A Amaral-Zettler

    2009-07-01

    Full Text Available Massively parallel pyrosequencing of amplicons from the V6 hypervariable regions of small-subunit (SSU ribosomal RNA (rRNA genes is commonly used to assess diversity and richness in bacterial and archaeal populations. Recent advances in pyrosequencing technology provide read lengths of up to 240 nucleotides. Amplicon pyrosequencing can now be applied to longer variable regions of the SSU rRNA gene including the V9 region in eukaryotes.We present a protocol for the amplicon pyrosequencing of V9 regions for eukaryotic environmental samples for biodiversity inventories and species richness estimation. The International Census of Marine Microbes (ICoMM and the Microbial Inventory Research Across Diverse Aquatic Long Term Ecological Research Sites (MIRADA-LTERs projects are already employing this protocol for tag sequencing of eukaryotic samples in a wide diversity of both marine and freshwater environments.Massively parallel pyrosequencing of eukaryotic V9 hypervariable regions of SSU rRNA genes provides a means of estimating species richness from deeply-sampled populations and for discovering novel species from the environment.

  9. Regulation of eukaryotic initiation factor 4AII by MyoD during murine myogenic cell differentiation.

    Directory of Open Access Journals (Sweden)

    Gabriela Galicia-Vázquez

    Full Text Available Gene expression during muscle cell differentiation is tightly regulated at multiple levels, including translation initiation. The PI3K/mTOR signalling pathway exerts control over protein synthesis by regulating assembly of eukaryotic initiation factor (eIF 4F, a heterotrimeric complex that stimulates recruitment of ribosomes to mRNA templates. One of the subunits of eIF4F, eIF4A, supplies essential helicase function during this phase of translation. The presence of two cellular eIF4A isoforms, eIF4AI and eIF4AII, has long thought to impart equivalent functions to eIF4F. However, recent experiments have alluded to distinct activities between them. Herein, we characterize distinct regulatory mechanisms between the eIF4A isoforms during muscle cell differentiation. We find that eIF4AI levels decrease during differentiation whereas eIF4AII levels increase during myofiber formation in a MyoD-dependent manner. This study characterizes a previously undefined mechanism for eIF4AII regulation in differentiation and highlights functional differences between eIF4AI and eIF4AII. Finally, RNAi-mediated alterations in eIF4AI and eIF4AII levels indicate that the myogenic process can tolerate short term reductions in eIF4AI or eIF4AII levels, but not both.

  10. Identification of Oxa1 Homologs Operating in the Eukaryotic Endoplasmic Reticulum

    Directory of Open Access Journals (Sweden)

    S. Andrei Anghel

    2017-12-01

    Full Text Available Members of the evolutionarily conserved Oxa1/Alb3/YidC family mediate membrane protein biogenesis at the mitochondrial inner membrane, chloroplast thylakoid membrane, and bacterial plasma membrane, respectively. Despite their broad phylogenetic distribution, no Oxa1/Alb3/YidC homologs are known to operate in eukaryotic cells outside the endosymbiotic organelles. Here, we present bioinformatic evidence that the tail-anchored protein insertion factor WRB/Get1, the “endoplasmic reticulum (ER membrane complex” subunit EMC3, and TMCO1 are ER-resident homologs of the Oxa1/Alb3/YidC family. Topology mapping and co-evolution-based modeling demonstrate that Get1, EMC3, and TMCO1 share a conserved Oxa1-like architecture. Biochemical analysis of human TMCO1, the only homolog not previously linked to membrane protein biogenesis, shows that it associates with the Sec translocon and ribosomes. These findings suggest a specific biochemical function for TMCO1 and define a superfamily of proteins—the “Oxa1 superfamily”—whose shared function is to facilitate membrane protein biogenesis.

  11. HSV usurps eukaryotic initiation factor 3 subunit M for viral protein translation: novel prevention target.

    Directory of Open Access Journals (Sweden)

    Natalia Cheshenko

    2010-07-01

    Full Text Available Prevention of genital herpes is a global health priority. B5, a recently identified ubiquitous human protein, was proposed as a candidate HSV entry receptor. The current studies explored its role in HSV infection. Viral plaque formation was reduced by approximately 90% in human cells transfected with small interfering RNA targeting B5 or nectin-1, an established entry receptor. However, the mechanisms were distinct. Silencing of nectin-1 prevented intracellular delivery of viral capsids, nuclear transport of a viral tegument protein, and release of calcium stores required for entry. In contrast, B5 silencing had no effect on these markers of entry, but inhibited viral protein translation. Specifically, viral immediate early genes, ICP0 and ICP4, were transcribed, polyadenylated and transported from the nucleus to the cytoplasm, but the viral transcripts did not associate with ribosomes or polysomes in B5-silenced cells. In contrast, immediate early gene viral transcripts were detected in polysome fractions isolated from control cells. These findings are consistent with sequencing studies demonstrating that B5 is eukaryotic initiation factor 3 subunit m (eIF3m. Although B5 silencing altered the polysome profile of cells, silencing had little effect on cellular RNA or protein expression and was not cytotoxic, suggesting that this subunit is not essential for host cellular protein synthesis. Together these results demonstrate that B5 plays a major role in the initiation of HSV protein translation and could provide a novel target for strategies to prevent primary and recurrent herpetic disease.

  12. Structure of the chloroplast ribosome: novel domains for translation regulation.

    Directory of Open Access Journals (Sweden)

    Andrea L Manuell

    2007-08-01

    Full Text Available Gene expression in chloroplasts is controlled primarily through the regulation of translation. This regulation allows coordinate expression between the plastid and nuclear genomes, and is responsive to environmental conditions. Despite common ancestry with bacterial translation, chloroplast translation is more complex and involves positive regulatory mRNA elements and a host of requisite protein translation factors that do not have counterparts in bacteria. Previous proteomic analyses of the chloroplast ribosome identified a significant number of chloroplast-unique ribosomal proteins that expand upon a basic bacterial 70S-like composition. In this study, cryo-electron microscopy and single-particle reconstruction were used to calculate the structure of the chloroplast ribosome to a resolution of 15.5 A. Chloroplast-unique proteins are visualized as novel structural additions to a basic bacterial ribosome core. These structures are located at optimal positions on the chloroplast ribosome for interaction with mRNAs during translation initiation. Visualization of these chloroplast-unique structures on the ribosome, combined with mRNA cross-linking, allows us to propose a model for translation initiation in chloroplasts in which chloroplast-unique ribosomal proteins interact with plastid-specific translation factors and RNA elements to facilitate regulated translation of chloroplast mRNAs.

  13. Post-transcriptional regulation of ribosome biogenesis in yeast

    Directory of Open Access Journals (Sweden)

    Isabelle C. Kos-Braun

    2017-05-01

    Full Text Available Most microorganisms are exposed to the constantly and often rapidly changing environment. As such they evolved mechanisms to balance their metabolism and energy expenditure with the resources available to them. When resources become scarce or conditions turn out to be unfavourable for growth, cells reduce their metabolism and energy usage to survive. One of the major energy consuming processes in the cell is ribosome biogenesis. Unsurprisingly, cells encountering adverse conditions immediately shut down production of new ribosomes. It is well established that nutrient depletion leads to a rapid repression of transcription of the genes encoding ribosomal proteins, ribosome biogenesis factors as well as ribosomal RNA (rRNA. However, if pre-rRNA processing and ribosome assembly are regulated post-transcriptionally remains largely unclear. We have recently uncovered that the yeast Saccharomyces cerevisiae rapidly switches between two alternative pre-rRNA processing pathways depending on the environmental conditions. Our findings reveal a new level of complexity in the regulation of ribosome biogenesis.

  14. Dynamic plasmonic colour display

    Science.gov (United States)

    Duan, Xiaoyang; Kamin, Simon; Liu, Na

    2017-01-01

    Plasmonic colour printing based on engineered metasurfaces has revolutionized colour display science due to its unprecedented subwavelength resolution and high-density optical data storage. However, advanced plasmonic displays with novel functionalities including dynamic multicolour printing, animations, and highly secure encryption have remained in their infancy. Here we demonstrate a dynamic plasmonic colour display technique that enables all the aforementioned functionalities using catalytic magnesium metasurfaces. Controlled hydrogenation and dehydrogenation of the constituent magnesium nanoparticles, which serve as dynamic pixels, allow for plasmonic colour printing, tuning, erasing and restoration of colour. Different dynamic pixels feature distinct colour transformation kinetics, enabling plasmonic animations. Through smart material processing, information encoded on selected pixels, which are indiscernible to both optical and scanning electron microscopies, can only be read out using hydrogen as a decoding key, suggesting a new generation of information encryption and anti-counterfeiting applications. PMID:28232722

  15. Stereo Painting Display Devices

    Science.gov (United States)

    Shafer, David

    1982-06-01

    The Spanish Surrealist artist Salvador Dali has recently perfected the art of producing two paintings which are stereo pairs. Each painting is separately quite remarkable, presenting a subject with the vivid realism and clarity for which Dali is famous. Due to the surrealistic themes of Dali's art, however, the subjects preser.ted with such naturalism only exist in his imagination. Despite this considerable obstacle to producing stereo art, Dali has managed to paint stereo pairs that display subtle differences of coloring and lighting, in addition to the essential perspective differences. These stereo paintings require a display method that will allow the viewer to experience stereo fusion, but which will not degrade the high quality of the art work. This paper gives a review of several display methods that seem promising in terms of economy, size, adjustability, and image quality.

  16. Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids

    Directory of Open Access Journals (Sweden)

    Weber Andreas PM

    2011-04-01

    Full Text Available Abstract Background Euglenophytes are a group of photosynthetic flagellates possessing a plastid derived from a green algal endosymbiont, which was incorporated into an ancestral host cell via secondary endosymbiosis. However, the impact of endosymbiosis on the euglenophyte nuclear genome is not fully understood due to its complex nature as a 'hybrid' of a non-photosynthetic host cell and a secondary endosymbiont. Results We analyzed an EST dataset of the model euglenophyte Euglena gracilis using a gene mining program designed to detect laterally transferred genes. We found E. gracilis genes showing affinity not only with green algae, from which the secondary plastid in euglenophytes evolved, but also red algae and/or secondary algae containing red algal-derived plastids. Phylogenetic analyses of these 'red lineage' genes suggest that E. gracilis acquired at least 14 genes via eukaryote-to-eukaryote lateral gene transfer from algal sources other than the green algal endosymbiont that gave rise to its current plastid. We constructed an EST library of the aplastidic euglenid Peranema trichophorum, which is a eukaryovorous relative of euglenophytes, and also identified 'red lineage' genes in its genome. Conclusions Our data show genome mosaicism in E. gracilis and P. trichophorum. One possible explanation for the presence of these genes in these organisms is that some or all of them were independently acquired by lateral gene transfer and contributed to the successful integration and functioning of the green algal endosymbiont as a secondary plastid. Alternative hypotheses include the presence of a phagocytosed alga as the single source of those genes, or a cryptic tertiary endosymbiont harboring secondary plastid of red algal origin, which the eukaryovorous ancestor of euglenophytes had acquired prior to the secondary endosymbiosis of a green alga.

  17. Assessment of DNA Contamination in RNA Samples Based on Ribosomal DNA.

    Science.gov (United States)

    Hashemipetroudi, Seyyed Hamidreza; Nematzadeh, Ghorbanali; Ahmadian, Gholamreza; Yamchi, Ahad; Kuhlmann, Markus

    2018-01-22

    One method extensively used for the quantification of gene expression changes and transcript abundances is reverse-transcription quantitative real-time PCR (RT-qPCR). It provides accurate, sensitive, reliable, and reproducible results. Several factors can affect the sensitivity and specificity of RT-qPCR. Residual genomic DNA (gDNA) contaminating RNA samples is one of them. In gene expression analysis, non-specific amplification due to gDNA contamination will overestimate the abundance of transcript levels and can affect the RT-qPCR results. Generally, gDNA is detected by qRT-PCR using primer pairs annealing to intergenic regions or an intron of the gene of interest. Unfortunately, intron/exon annotations are not yet known for all genes from vertebrate, bacteria, protist, fungi, plant, and invertebrate metazoan species. Here we present a protocol for detection of gDNA contamination in RNA samples by using ribosomal DNA (rDNA)-based primers. The method is based on the unique features of rDNA: their multigene nature, highly conserved sequences, and high frequency in the genome. Also as a case study, a unique set of primers were designed based on the conserved region of ribosomal DNA (rDNA) in the Poaceae family. The universality of these primer pairs was tested by melt curve analysis and agarose gel electrophoresis. Although our method explains how rDNA-based primers can be applied for the gDNA contamination assay in the Poaceae family, it could be easily used to other prokaryote and eukaryote species.

  18. Refreshing Refreshable Braille Displays.

    Science.gov (United States)

    Russomanno, Alexander; O'Modhrain, Sile; Gillespie, R Brent; Rodger, Matthew W M

    2015-01-01

    The increased access to books afforded to blind people via e-publishing has given them long-sought independence for both recreational and educational reading. In most cases, blind readers access materials using speech output. For some content such as highly technical texts, music, and graphics, speech is not an appropriate access modality as it does not promote deep understanding. Therefore blind braille readers often prefer electronic braille displays. But, these are prohibitively expensive. The search is on, therefore, for a low-cost refreshable display that would go beyond current technologies and deliver graphical content as well as text. And many solutions have been proposed, some of which reduce costs by restricting the number of characters that can be displayed, even down to a single braille cell. In this paper, we demonstrate that restricting tactile cues during braille reading leads to poorer performance in a letter recognition task. In particular, we show that lack of sliding contact between the fingertip and the braille reading surface results in more errors and that the number of errors increases as a function of presentation speed. These findings suggest that single cell displays which do not incorporate sliding contact are likely to be less effective for braille reading.

  19. Rmt1 catalyzes zinc-finger independent arginine methylation of ribosomal protein Rps2 in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Lipson, Rebecca S.; Webb, Kristofor J. [Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569 (United States); Clarke, Steven G., E-mail: clarke@mbi.ucla.edu [Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569 (United States)

    2010-01-22

    Rps2/rpS2 is a well conserved protein of the eukaryotic ribosomal small subunit. Rps2 has previously been shown to contain asymmetric dimethylarginine residues, the addition of which is catalyzed by zinc-finger-containing arginine methyltransferase 3 (Rmt3) in the fission yeast Schizosaccharomyces pombe and protein arginine methyltransferase 3 (PRMT3) in mammalian cells. Here, we demonstrate that despite the lack of a zinc-finger-containing homolog of Rmt3/PRMT3 in the budding yeast Saccharomyces cerevisiae, Rps2 is partially modified to generate asymmetric dimethylarginine and monomethylarginine residues. We find that this modification of Rps2 is dependent upon the major arginine methyltransferase 1 (Rmt1) in S. cerevisiae. These results are suggestive of a role for Rmt1 in modifying the function of Rps2 in a manner distinct from that occurring in S. pombe and mammalian cells.

  20. Cisplatin Targeting of Bacterial Ribosomal RNA Hairpins

    Directory of Open Access Journals (Sweden)

    Gayani N. P. Dedduwa-Mudalige

    2015-09-01

    Full Text Available Cisplatin is a clinically important chemotherapeutic agent known to target purine bases in nucleic acids. In addition to major deoxyribonucleic acid (DNA intrastrand cross-links, cisplatin also forms stable adducts with many types of ribonucleic acid (RNA including siRNA, spliceosomal RNAs, tRNA, and rRNA. All of these RNAs play vital roles in the cell, such as catalysis of protein synthesis by rRNA, and therefore serve as potential drug targets. This work focused on platination of two highly conserved RNA hairpins from E. coli ribosomes, namely pseudouridine-modified helix 69 from 23S rRNA and the 790 loop of helix 24 from 16S rRNA. RNase T1 probing, MALDI mass spectrometry, and dimethyl sulfate mapping revealed platination at GpG sites. Chemical probing results also showed platination-induced RNA structural changes. These findings reveal solvent and structural accessibility of sites within bacterial RNA secondary structures that are functionally significant and therefore viable targets for cisplatin as well as other classes of small molecules. Identifying target preferences at the nucleotide level, as well as determining cisplatin-induced RNA conformational changes, is important for the design of more potent drug molecules. Furthermore, the knowledge gained through studies of RNA-targeting by cisplatin is applicable to a broad range of organisms from bacteria to human.

  1. A process yields large quantities of pure ribosome subunits

    Science.gov (United States)

    Friedman, M.; Lu, P.; Rich, A.

    1972-01-01

    Development of process for in-vitro protein synthesis from living cells followed by dissociation of ribosomes into subunits is discussed. Process depends on dialysis or use of chelating agents. Operation of process and advantages over previous methods are outlined.

  2. Organization of Replication of Ribosomal DNA in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Linskens, Maarten H.K.; Huberman, Joel A.

    1988-01-01

    Using recently developed replicon mapping techniques, we have analyzed the replication of the ribosomal DNA in Saccharomyces cerevisiae. The results show that (i) the functional origin of replication colocalizes with an autonomously replicating sequence element previously mapped to the

  3. Structure of plant nuclear and ribosomal DNA containing chromatin.

    Science.gov (United States)

    Leber, B; Hemleben, V

    1979-11-10

    Digestion of plant chromatin from Brassica pekinensis and Matthiola incana with staphylococcus nuclease leads to a DNA repeat of 175 plus or minus 8 and a core size of 140 base pairs. DNase I digestion results in multiples of 10 bases. Ribosomal RNN genes were studied as a model system for active plant chromatin because of their great redundancy and their high transcriptional activity in growing and differentiating tissues. The actively transcribed genes were identified by nascent RNA of ribosomal origin still attached to its matrix DNA. Hybridization techniques were used to demonstrate that even transcriptionally active gene sequences are present in nuclease generated chromatin subunits. Comparison of the DNase I kinetics of chromatin digestion with the amount of ribosomal RNA genes which is available for hybridization at the given times indicated that ribosomal RNA genes are digested, but not preferentially degraded by DNase I.

  4. Ribosome heterogeneity in tumorigenesis: the rRNA point of view

    OpenAIRE

    Marcel, Virginie; Catez, Fr?d?ric; Diaz, Jean-Jacques

    2015-01-01

    The "specialized ribosome" concept proposes that ribosome variants are produced and differentially regulate translation. Examples supporting this notion demonstrated heterogeneity of ribosomal protein composition. However, ribosome translational activity is carried out by rRNA. We, and others, recently showed that rRNA heterogeneity regulates translation to generate distinct translatomes promoting tumorigenesis.

  5. Interaction of Pleuromutilin Derivatives with the Ribosomal Peptidyl Transferase Center

    OpenAIRE

    Long, Katherine S.; Hansen, Lykke H.; Jakobsen, Lene; Vester, Birte

    2006-01-01

    Tiamulin is a pleuromutilin antibiotic that is used in veterinary medicine. The recently published crystal structure of a tiamulin-50S ribosomal subunit complex provides detailed information about how this drug targets the peptidyl transferase center of the ribosome. To promote rational design of pleuromutilin-based drugs, the binding of the antibiotic pleuromutilin and three semisynthetic derivatives with different side chain extensions has been investigated using chemical footprinting. The ...

  6. Comparison of genes fragments coding for ribosomal protein in sugarcane

    Directory of Open Access Journals (Sweden)

    María I. Oloriz

    2005-01-01

    Full Text Available Partial sequences of sugarcane genes, obtained by means of a subtractive library were identified by BLAST alignment against all sequences available in the databases. During the homology search, five genes were identified as chloroplast or citosol ribosomal proteins. The biggest homology obtained among the identified sequences as ribosomal proteins of sugarcane was with the corn genome. Key words: consensus domain, Saccharum spp., subtractive library

  7. Evolution of DNA replication protein complexes in eukaryotes and Archaea.

    Directory of Open Access Journals (Sweden)

    Nicholas Chia

    Full Text Available BACKGROUND: The replication of DNA in Archaea and eukaryotes requires several ancillary complexes, including proliferating cell nuclear antigen (PCNA, replication factor C (RFC, and the minichromosome maintenance (MCM complex. Bacterial DNA replication utilizes comparable proteins, but these are distantly related phylogenetically to their archaeal and eukaryotic counterparts at best. METHODOLOGY/PRINCIPAL FINDINGS: While the structures of each of the complexes do not differ significantly between the archaeal and eukaryotic versions thereof, the evolutionary dynamic in the two cases does. The number of subunits in each complex is constant across all taxa. However, they vary subtly with regard to composition. In some taxa the subunits are all identical in sequence, while in others some are homologous rather than identical. In the case of eukaryotes, there is no phylogenetic variation in the makeup of each complex-all appear to derive from a common eukaryotic ancestor. This is not the case in Archaea, where the relationship between the subunits within each complex varies taxon-to-taxon. We have performed a detailed phylogenetic analysis of these relationships in order to better understand the gene duplications and divergences that gave rise to the homologous subunits in Archaea. CONCLUSION/SIGNIFICANCE: This domain level difference in evolution suggests that different forces have driven the evolution of DNA replication proteins in each of these two domains. In addition, the phylogenies of all three gene families support the distinctiveness of the proposed archaeal phylum Thaumarchaeota.

  8. [Methylation of adenine residues in DNA of eukaryotes].

    Science.gov (United States)

    Baniushin, B F

    2005-01-01

    Like in bacteria, DNA in these organisms is subjected to enzymatic modification (methylation) both at adenine and cytosine residues. There is an indirect evidence that adenine DNA methylation takes place also in animals. In plants m6A was detected in total, mitochondrial and nuclear DNAs; in plants one and the same gene (DRM2) can be methylated both at adenine and cytosine residues. ORF homologous to bacterial adenine DNA-methyltransferases are present in nuclear DNA of protozoa, yeasts, insects, nematodes, higher plants, vertebrates and other eukaryotes. Thus, adenine DNA-methyltransferases can be found in the various evolutionary distant eukaryotes. First N6-adenine DNA-methyltransferase (wadmtase) of higher eukaryotes was isolated from vacuolar fraction of vesicles obtained from aging wheat coleoptiles; in the presence of S-adenosyl-L-methionine this Mg2+ -, Ca2+ -dependent enzyme de novo methylates first adenine residue in TGATCA sequence in single- and double-stranded DNA but it prefers single-stranded DNA structures. Adenine DNA methylation in eukaryotes seems to be involved in regulation of both gene expression and DNA replication including replication of mitochondrial DNA. It can control persistence of foreign DNA in a cell and seems to be an element of R-M system in plants. Thus, in eukaryotic cell there are, at least, two different systems of the enzymatic DNA methylations (adenine and cytosine ones) and a special type of regulation of gene functioning based on the combinatory hierarchy of these interdependent genome modifications.

  9. Bayesian prediction of RNA translation from ribosome profiling.

    Science.gov (United States)

    Malone, Brandon; Atanassov, Ilian; Aeschimann, Florian; Li, Xinping; Großhans, Helge; Dieterich, Christoph

    2017-04-07

    Ribosome profiling via high-throughput sequencing (ribo-seq) is a promising new technique for characterizing the occupancy of ribosomes on messenger RNA (mRNA) at base-pair resolution. The ribosome is responsible for translating mRNA into proteins, so information about its occupancy offers a detailed view of ribosome density and position which could be used to discover new translated open reading frames (ORFs), among other things. In this work, we propose Rp-Bp, an unsupervised Bayesian approach to predict translated ORFs from ribosome profiles. We use state-of-the-art Markov chain Monte Carlo techniques to estimate posterior distributions of the likelihood of translation of each ORF. Hence, an important feature of Rp-Bp is its ability to incorporate and propagate uncertainty in the prediction process. A second novel contribution is automatic Bayesian selection of read lengths and ribosome P-site offsets (BPPS). We empirically demonstrate that our read length selection technique modestly improves sensitivity by identifying more canonical and non-canonical ORFs. Proteomics- and quantitative translation initiation sequencing-based validation verifies the high quality of all of the predictions. Experimental comparison shows that Rp-Bp results in more peptide identifications and proteomics-validated ORF predictions compared to another recent tool for translation prediction. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Dual effect of chloramphenicol peptides on ribosome inhibition.

    Science.gov (United States)

    Bougas, Anthony; Vlachogiannis, Ioannis A; Gatos, Dimitrios; Arenz, Stefan; Dinos, George P

    2017-05-01

    Chloramphenicol peptides were recently established as useful tools for probing nascent polypeptide chain interaction with the ribosome, either biochemically, or structurally. Here, we present a new 10mer chloramphenicol peptide, which exerts a dual inhibition effect on the ribosome function affecting two distinct areas of the ribosome, namely the peptidyl transferase center and the polypeptide exit tunnel. According to our data, the chloramphenicol peptide bound on the chloramphenicol binding site inhibits the formation of both acetyl-phenylalanine-puromycin and acetyl-lysine-puromycin, showing, however, a decreased peptidyl transferase inhibition compared to chloramphenicol-mediated inhibition per se. Additionally, we found that the same compound is a strong inhibitor of green fluorescent protein synthesis in a coupled in vitro transcription-translation assay as well as a potent inhibitor of lysine polymerization in a poly(A)-programmed ribosome, showing that an additional inhibitory effect may exist. Since chemical protection data supported the interaction of the antibiotic with bases A2058 and A2059 near the entrance of the tunnel, we concluded that the extra inhibition effect on the synthesis of longer peptides is coming from interactions of the peptide moiety of the drug with residues comprising the ribosomal tunnel, and by filling up the tunnel and blocking nascent chain progression through the restricted tunnel. Therefore, the dual interaction of the chloramphenicol peptide with the ribosome increases its inhibitory effect and opens a new window for improving the antimicrobial potency of classical antibiotics or designing new ones.

  11. Simple and inexpensive ribosome profiling analysis of mRNA translation.

    Science.gov (United States)

    Reid, David W; Shenolikar, Shirish; Nicchitta, Christopher V

    2015-12-01

    The development and application of ribosome profiling has markedly advanced our understanding of ribosomes and mRNA translation. The experimental approach, which relies on deep sequencing of ribosome-protected mRNA fragments generated by treatment of polyribosomes with exogenous nucleases, provides a transcriptome-wide assessment of translation. The broad application of ribosome profiling has been slowed by the complexity and expense of the protocol. Here, we provide a simplified ribosome profiling method that uses micrococcal nuclease to generate ribosome footprints in crude cellular extracts, which are then purified simply by size selection via polyacrylamide gel electrophoresis. This simplification removes the laborious or expensive purification of ribosomes that has typically been used. This direct extraction method generates gene-level ribosome profiling data that are similar to a method that includes ribosome purification. This protocol should significantly ease the barrier to entry for research groups interested in employing ribosome profiling. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Structure of the 100S ribosome in the hibernation stage revealed by electron cryomicroscopy.

    Science.gov (United States)

    Kato, Takayuki; Yoshida, Hideji; Miyata, Tomoko; Maki, Yasushi; Wada, Akira; Namba, Keiichi

    2010-06-09

    In the stationary growth phase of bacteria, protein biosynthesis on ribosomes is suppressed, and the ribosomes are preserved in the cell by the formation of the 100S ribosome. The 100S ribosome is a dimer of the 70S ribosome and is formed by the binding of the ribosome modulation factor and the hibernation promoting factor. However, the binding mode between the two 70S ribosomes and the mechanism of complex formation are still poorly understood. Here, we report the structure of the 100S ribosome by electron cryomicroscopy and single-particle image analysis. The 100S ribosome purified from the cell in the stationary growth phase is composed of two transfer RNA-free 70S ribosomes, has two-fold symmetry, and is formed through interactions between their 30S subunits, where interactions between small subunit proteins, S2, S3 and S5, appear to be critical for the dimerization.

  13. Refrigerated display cabinets; Butikskyla

    Energy Technology Data Exchange (ETDEWEB)

    Fahlen, Per

    2000-07-01

    This report summarizes experience from SP research and assignments regarding refrigerated transport and storage of food, mainly in the retail sector. It presents the fundamentals of heat and mass transfer in display cabinets with special focus on indirect systems and secondary refrigerants. Moreover, the report includes a brief account of basic food hygiene and the related regulations. The material has been compiled for educational purposes in the Masters program at Chalmers Technical University.

  14. Tactical Video Display.

    Science.gov (United States)

    1981-02-01

    designed to extend the state-of-the-art in the area of thin film electroluminescent display systems. The program entails two major areas of efforts...the inclusion of the residual gases in thin film is very likely and dependent upon the concentrations of the gases and the reactive nature of the...reproducible films . Some exploratory work was also performed on the feasitility of applying a ZnTe /Te system black layer with TFEL structure. Pre

  15. Nitrate storage and dissimilatory nitrate reduction by eukaryotic microbes

    DEFF Research Database (Denmark)

    Kamp, Anja; Høgslund, Signe; Risgaard-Petersen, Nils

    2015-01-01

    The microbial nitrogen cycle is one of the most complex and environmentally important element cycles on Earth and has long been thought to be mediated exclusively by prokaryotic microbes. Rather recently, it was discovered that certain eukaryotic microbes are able to store nitrate intracellularly...... and use it for dissimilatory nitrate reduction in the absence of oxygen. The paradigm shift that this entailed is ecologically significant because the eukaryotes in question comprise global players like diatoms, foraminifers, and fungi. This review article provides an unprecedented overview of nitrate...... storage and dissimilatory nitrate reduction by diverse marine eukaryotes placed into an eco-physiological context. The advantage of intracellular nitrate storage for anaerobic energy conservation in oxygen-depleted habitats is explained and the life style enabled by this metabolic trait is described...

  16. DNA mismatch repair and its many roles in eukaryotic cells

    DEFF Research Database (Denmark)

    Liu, Dekang; Keijzers, Guido; Rasmussen, Lene Juel

    2017-01-01

    in the clinic, and as a biomarker of cancer susceptibility in animal model systems. Prokaryotic MMR is well-characterized at the molecular and mechanistic level; however, MMR is considerably more complex in eukaryotic cells than in prokaryotic cells, and in recent years, it has become evident that MMR plays......DNA mismatch repair (MMR) is an important DNA repair pathway that plays critical roles in DNA replication fidelity, mutation avoidance and genome stability, all of which contribute significantly to the viability of cells and organisms. MMR is widely-used as a diagnostic biomarker for human cancers...... novel roles in eukaryotic cells, several of which are not yet well-defined or understood. Many MMR-deficient human cancer cells lack mutations in known human MMR genes, which strongly suggests that essential eukaryotic MMR components/cofactors remain unidentified and uncharacterized. Furthermore...

  17. Unraveling adaptation in eukaryotic pathways: lessons from protocells.

    Directory of Open Access Journals (Sweden)

    Giovanna De Palo

    2013-10-01

    Full Text Available Eukaryotic adaptation pathways operate within wide-ranging environmental conditions without stimulus saturation. Despite numerous differences in the adaptation mechanisms employed by bacteria and eukaryotes, all require energy consumption. Here, we present two minimal models showing that expenditure of energy by the cell is not essential for adaptation. Both models share important features with large eukaryotic cells: they employ small diffusible molecules and involve receptor subunits resembling highly conserved G-protein cascades. Analyzing the drawbacks of these models helps us understand the benefits of energy consumption, in terms of adjustability of response and adaptation times as well as separation of cell-external sensing and cell-internal signaling. Our work thus sheds new light on the evolution of adaptation mechanisms in complex systems.

  18. Unraveling adaptation in eukaryotic pathways: lessons from protocells.

    Science.gov (United States)

    De Palo, Giovanna; Endres, Robert G

    2013-10-01

    Eukaryotic adaptation pathways operate within wide-ranging environmental conditions without stimulus saturation. Despite numerous differences in the adaptation mechanisms employed by bacteria and eukaryotes, all require energy consumption. Here, we present two minimal models showing that expenditure of energy by the cell is not essential for adaptation. Both models share important features with large eukaryotic cells: they employ small diffusible molecules and involve receptor subunits resembling highly conserved G-protein cascades. Analyzing the drawbacks of these models helps us understand the benefits of energy consumption, in terms of adjustability of response and adaptation times as well as separation of cell-external sensing and cell-internal signaling. Our work thus sheds new light on the evolution of adaptation mechanisms in complex systems.

  19. Applications of Recombinant Dna Technology in Gastrointestinal Medicine and Hepatology: Basic Paradigms of Molecular Cell Biology. Part B: Eukaryotic Gene Transcription and Post-Transcripional Rna Processing

    Directory of Open Access Journals (Sweden)

    Gary E Wild

    2000-01-01

    Full Text Available The transcription of DNA into RNA is the primary level at which gene expression is controlled in eukaryotic cells. Eukaryotic gene transcription  involves several different RNA polymerases that interact with a host of transcription factors to initiate transcription. Genes that encode proteins are transcribed into messenger RNA (mRNA by RNA polymerase II. Ribosomal RNAs (rRNAs and transfer RNAs (tRNAs are transcribed by RNA polymerase I and III, respectively.  The production of each mRNA in human cells involves complex interactions of proteins (ie, trans-acting factors with specific sequences on the DNA (ie, cis-acting elements. Cis-acting elements are short base sequences adjacent to or within a particular gene. While the regulation of transcription is a pivotal step in the control of gene expression, a variety of molecular events, collectively known as ’RNA processing’  add an additional level of control of gene expression in eukaryotic cells.

  20. Attention-Seeking Displays.

    Directory of Open Access Journals (Sweden)

    Szabolcs Számadó

    Full Text Available Animal communication abounds with extravagant displays. These signals are usually interpreted as costly signals of quality. However, there is another important function for these signals: to call the attention of the receiver to the signaller. While there is abundant empirical evidence to show the importance of this stage, it is not yet incorporated into standard signalling theory. Here I investigate a general model of signalling - based on a basic action-response game - that incorporates this searching stage. I show that giving attention-seeking displays and searching for them can be an ESS. This is a very general result and holds regardless whether only the high quality signallers or both high and low types give them. These signals need not be costly at the equilibrium and they need not be honest signals of any quality, as their function is not to signal quality but simply to call the attention of the potential receivers. These kind of displays are probably more common than their current weight in the literature would suggest.

  1. Neurodegeneration-associated instability of ribosomal DNA.

    Science.gov (United States)

    Hallgren, Justin; Pietrzak, Maciej; Rempala, Grzegorz; Nelson, Peter T; Hetman, Michal

    2014-06-01

    Homologous recombination (HR)-mediated instability of the repetitively organized ribosomal DNA (rDNA) has been proposed as a mediator of cell senescence in yeast triggering the DNA damage response. High individual variability in the content of human rDNA suggests that this genomic region remained relatively unstable throughout evolution. Therefore, quantitative real-time polymerase chain reaction was used to determine the genomic content of rDNA in post mortem samples of parietal cortex from 14 young and 9 elderly individuals with no diagnosis of a chronic neurodegenerative/neurological disease. In addition, rDNA content in that brain region was compared between 10 age-matched control individuals and 10 patients with dementia with Lewy bodies (DLB) which involves neurodegeneration of the cerebral cortex. Probing rRNA-coding regions of rDNA revealed no effects of aging on the rDNA content. Elevated rDNA content was observed in DLB. Conversely, in the DLB pathology-free cerebellum, lower genomic content of rDNA was present in the DLB group. In the parietal cortex, such a DLB-associated instability of rDNA was not accompanied by any major changes of cytosine-phosphate-guanine methylation of the rDNA promoter. As increased cerebro-cortical rDNA content was previously reported in Alzheimer's disease, neurodegeneration appears to be associated with instability of rDNA. The hypothetical origins and consequences of this phenomenon are discussed including possibilities that the DNA damage-induced recombination destabilizes rDNA and that differential content of rDNA affects heterochromatin formation, gene expression and/or DNA damage response. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Changes in chloroplastic and cytoplasmic ribosomal protein after GA3-treatment of Zea mays leaves

    Directory of Open Access Journals (Sweden)

    P. Masłowski

    2015-06-01

    Full Text Available Protein was isolated from chioroplastic and cytoplasmic ribosomes of 14-day-old maize leaves subjected to the action of gibberellic acid. The proteins were separated electrophoretically on polyacrylamide gel. Fourteen fractions of ribosomal protein were obtained exhibiting wide electrophoretic differences. Qualitative differences were found between the chloroplastic and cytoplasmic ribosomes. Gibberellic acid caused the appearance of an additional protein Traction in cytoplasmic ribosomes. It did not, however, affect the qualitative composition of ribosome proteins from chloroplasts.

  3. Increased ribosome density associated to positively charged residues is evident in ribosome profiling experiments performed in the absence of translation inhibitors.

    Science.gov (United States)

    Requião, Rodrigo D; de Souza, Henrique José Araujo; Rossetto, Silvana; Domitrovic, Tatiana; Palhano, Fernando L

    2016-06-02

    It has been proposed that polybasic peptides cause slower movement of ribosomes through an electrostatic interaction with the highly negative ribosome exit tunnel. Ribosome profiling data-the sequencing of short ribosome-bound fragments of mRNA-is a powerful tool for the analysis of mRNA translation. Using the yeast Saccharomyces cerevisiae as a model, we showed that reduced translation efficiency associated with polybasic protein sequences could be inferred from ribosome profiling. However, an increase in ribosome density at polybasic sequences was evident only when the commonly used translational inhibitors cycloheximide and anisomycin were omitted during mRNA isolation. Since ribosome profiling performed without inhibitors agrees with experimental evidence obtained by other methods, we conclude that cycloheximide and anisomycin must be avoided in ribosome profiling experiments.

  4. Serial endosymbiosis or singular event at the origin of eukaryotes?

    Science.gov (United States)

    Lane, Nick

    2017-12-07

    'On the Origin of Mitosing Cells' heralded a new way of seeing cellular evolution, with symbiosis at its heart. Lynn Margulis (then Sagan) marshalled an impressive array of evidence for endosymbiosis, from cell biology to atmospheric chemistry and Earth history. Despite her emphasis on symbiosis, she saw plenty of evidence for gradualism in eukaryotic evolution, with multiple origins of mitosis and sex, repeated acquisitions of plastids, and putative evolutionary intermediates throughout the microbial world. Later on, Margulis maintained her view of multiple endosymbioses giving rise to other organelles such as hydrogenosomes, in keeping with the polyphyletic assumptions of the serial endosymbiosis theory. She stood at the threshold of the phylogenetic era, and anticipated its potential. Yet while predicting that the nucleotide sequences of genes would enable a detailed reconstruction of eukaryotic evolution, Margulis did not, and could not, imagine the radically different story that would eventually emerge from comparative genomics. The last eukaryotic common ancestor now seems to have been essentially a modern eukaryotic cell that had already evolved mitosis, meiotic sex, organelles and endomembrane systems. The long search for missing evolutionary intermediates has failed to turn up a single example, and those discussed by Margulis turn out to have evolved reductively from more complex ancestors. Strikingly, Margulis argued that all eukaryotes had mitochondria in her 1967 paper (a conclusion that she later disavowed). But she developed her ideas in the context of atmospheric oxygen and aerobic respiration, neither of which is consistent with more recent geological and phylogenetic findings. Instead, a modern synthesis of genomics and bioenergetics points to the endosymbiotic restructuring of eukaryotic genomes in relation to bioenergetic membranes as the singular event that permitted the evolution of morphological complexity. Copyright © 2017 Elsevier Ltd. All

  5. Identifying contamination with advanced visualization and analysis practices: metagenomic approaches for eukaryotic genome assemblies

    Directory of Open Access Journals (Sweden)

    Tom O. Delmont

    2016-03-01

    Full Text Available High-throughput sequencing provides a fast and cost-effective mean to recover genomes of organisms from all domains of life. However, adequate curation of the assembly results against potential contamination of non-target organisms requires advanced bioinformatics approaches and practices. Here, we re-analyzed the sequencing data generated for the tardigrade Hypsibius dujardini, and created a holistic display of the eukaryotic genome assembly using DNA data originating from two groups and eleven sequencing libraries. By using bacterial single-copy genes, k-mer frequencies, and coverage values of scaffolds we could identify and characterize multiple near-complete bacterial genomes from the raw assembly, and curate a 182 Mbp draft genome for H. dujardini supported by RNA-Seq data. Our results indicate that most contaminant scaffolds were assembled from Moleculo long-read libraries, and most of these contaminants have differed between library preparations. Our re-analysis shows that visualization and curation of eukaryotic genome assemblies can benefit from tools designed to address the needs of today’s microbiologists, who are constantly challenged by the difficulties associated with the identification of distinct microbial genomes in complex environmental metagenomes.

  6. Repeated reunions and splits feature the highly dynamic evolution of 5S and 35S ribosomal RNA genes (rDNA) in the Asteraceae family

    Science.gov (United States)

    2010-01-01

    Background In flowering plants and animals the most common ribosomal RNA genes (rDNA) organisation is that in which 35S (encoding 18S-5.8S-26S rRNA) and 5S genes are physically separated occupying different chromosomal loci. However, recent observations established that both genes have been unified to a single 35S-5S unit in the genus Artemisia (Asteraceae), a genomic arrangement typical of primitive eukaryotes such as yeast, among others. Here we aim to reveal the origin, distribution and mechanisms leading to the linked organisation of rDNA in the Asteraceae by analysing unit structure (PCR, Southern blot, sequencing), gene copy number (quantitative PCR) and chromosomal position (FISH) of 5S and 35S rRNA genes in ~200 species representing the family diversity and other closely related groups. Results Dominant linked rDNA genotype was found within three large groups in subfamily Asteroideae: tribe Anthemideae (93% of the studied cases), tribe Gnaphalieae (100%) and in the "Heliantheae alliance" (23%). The remaining five tribes of the Asteroideae displayed canonical non linked arrangement of rDNA, as did the other groups in the Asteraceae. Nevertheless, low copy linked genes were identified among several species that amplified unlinked units. The conserved position of functional 5S insertions downstream from the 26S gene suggests a unique, perhaps retrotransposon-mediated integration event at the base of subfamily Asteroideae. Further evolution likely involved divergence of 26S-5S intergenic spacers, amplification and homogenisation of units across the chromosomes and concomitant elimination of unlinked arrays. However, the opposite trend, from linked towards unlinked arrangement was also surmised in few species indicating possible reversibility of these processes. Conclusions Our results indicate that nearly 25% of Asteraceae species may have evolved unusual linked arrangement of rRNA genes. Thus, in plants, fundamental changes in intrinsic structure of rDNA units

  7. Stage Cylindrical Immersive Display

    Science.gov (United States)

    Abramyan, Lucy; Norris, Jeffrey S.; Powell, Mark W.; Mittman, David S.; Shams, Khawaja S.

    2011-01-01

    Panoramic images with a wide field of view intend to provide a better understanding of an environment by placing objects of the environment on one seamless image. However, understanding the sizes and relative positions of the objects in a panorama is not intuitive and prone to errors because the field of view is unnatural to human perception. Scientists are often faced with the difficult task of interpreting the sizes and relative positions of objects in an environment when viewing an image of the environment on computer monitors or prints. A panorama can display an object that appears to be to the right of the viewer when it is, in fact, behind the viewer. This misinterpretation can be very costly, especially when the environment is remote and/or only accessible by unmanned vehicles. A 270 cylindrical display has been developed that surrounds the viewer with carefully calibrated panoramic imagery that correctly engages their natural kinesthetic senses and provides a more accurate awareness of the environment. The cylindrical immersive display offers a more natural window to the environment than a standard cubic CAVE (Cave Automatic Virtual Environment), and the geometry allows multiple collocated users to simultaneously view data and share important decision-making tasks. A CAVE is an immersive virtual reality environment that allows one or more users to absorb themselves in a virtual environment. A common CAVE setup is a room-sized cube where the cube sides act as projection planes. By nature, all cubic CAVEs face a problem with edge matching at edges and corners of the display. Modern immersive displays have found ways to minimize seams by creating very tight edges, and rely on the user to ignore the seam. One significant deficiency of flat-walled CAVEs is that the sense of orientation and perspective within the scene is broken across adjacent walls. On any single wall, parallel lines properly converge at their vanishing point as they should, and the sense of

  8. Gene name ambiguity of eukaryotic nomenclatures.

    Science.gov (United States)

    Chen, Lifeng; Liu, Hongfang; Friedman, Carol

    2005-01-15

    With more and more scientific literature published online, the effective management and reuse of this knowledge has become problematic. Natural language processing (NLP) may be a potential solution by extracting, structuring and organizing biomedical information in online literature in a timely manner. One essential task is to recognize and identify genomic entities in text. 'Recognition' can be accomplished using pattern matching and machine learning. But for 'identification' these techniques are not adequate. In order to identify genomic entities, NLP needs a comprehensive resource that specifies and classifies genomic entities as they occur in text and that associates them with normalized terms and also unique identifiers so that the extracted entities are well defined. Online organism databases are an excellent resource to create such a lexical resource. However, gene name ambiguity is a serious problem because it affects the appropriate identification of gene entities. In this paper, we explore the extent of the problem and suggest ways to address it. We obtained gene information from 21 organisms and quantified naming ambiguities within species, across species, with English words and with medical terms. When the case (of letters) was retained, official symbols displayed negligible intra-species ambiguity (0.02%) and modest ambiguities with general English words (0.57%) and medical terms (1.01%). In contrast, the across-species ambiguity was high (14.20%). The inclusion of gene synonyms increased intra-species ambiguity substantially and full names contributed greatly to gene-medical-term ambiguity. A comprehensive lexical resource that covers gene information for the 21 organisms was then created and used to identify gene names by using a straightforward string matching program to process 45,000 abstracts associated with the mouse model organism while ignoring case and gene names that were also English words. We found that 85.1% of correctly retrieved mouse

  9. Handbook of Visual Display Technology

    CERN Document Server

    Cranton, Wayne; Fihn, Mark

    2012-01-01

    The Handbook of Visual Display Technology is a unique work offering a comprehensive description of the science, technology, economic and human interface factors associated with the displays industry. An invaluable compilation of information, the Handbook will serve as a single reference source with expert contributions from over 150 international display professionals and academic researchers. All classes of display device are covered including LCDs, reflective displays, flexible solutions and emissive devices such as OLEDs and plasma displays, with discussion of established principles, emergent technologies, and particular areas of application. The wide-ranging content also encompasses the fundamental science of light and vision, image manipulation, core materials and processing techniques, display driving and metrology.

  10. The D1-D2 region of the large subunit ribosomal DNA as barcode for ciliates.

    Science.gov (United States)

    Stoeck, T; Przybos, E; Dunthorn, M

    2014-05-01

    Ciliates are a major evolutionary lineage within the alveolates, which are distributed in nearly all habitats on our planet and are an essential component for ecosystem function, processes and stability. Accurate identification of these unicellular eukaryotes through, for example, microscopy or mating type reactions is reserved to few specialists. To satisfy the demand for a DNA barcode for ciliates, which meets the standard criteria for DNA barcodes defined by the Consortium for the Barcode of Life (CBOL), we here evaluated the D1-D2 region of the ribosomal DNA large subunit (LSU-rDNA). Primer universality for the phylum Ciliophora was tested in silico with available database sequences as well as in the laboratory with 73 ciliate species, which represented nine of 12 ciliate classes. Primers tested in this study were successful for all tested classes. To test the ability of the D1-D2 region to resolve conspecific and congeneric sequence divergence, 63 Paramecium strains were sampled from 24 mating species. The average conspecific D1-D2 variation was 0.18%, whereas congeneric sequence divergence averaged 4.83%. In pairwise genetic distance analyses, we identified a D1-D2 sequence divergence of barcode for ciliated protists. © 2013 John Wiley & Sons Ltd.

  11. Plant Ribosome-Inactivating Proteins: Progesses, Challenges and Biotechnological Applications (and a Few Digressions

    Directory of Open Access Journals (Sweden)

    Maria Serena Fabbrini

    2017-10-01

    Full Text Available Plant ribosome-inactivating protein (RIP toxins are EC3.2.2.22 N-glycosidases, found among most plant species encoded as small gene families, distributed in several tissues being endowed with defensive functions against fungal or viral infections. The two main plant RIP classes include type I (monomeric and type II (dimeric as the prototype ricin holotoxin from Ricinus communis that is composed of a catalytic active A chain linked via a disulphide bridge to a B-lectin domain that mediates efficient endocytosis in eukaryotic cells. Plant RIPs can recognize a universally conserved stem-loop, known as the α-sarcin/ ricin loop or SRL structure in 23S/25S/28S rRNA. By depurinating a single adenine (A4324 in 28S rat rRNA, they can irreversibly arrest protein translation and trigger cell death in the intoxicated mammalian cell. Besides their useful application as potential weapons against infected/tumor cells, ricin was also used in bio-terroristic attacks and, as such, constitutes a major concern. In this review, we aim to summarize past studies and more recent progresses made studying plant RIPs and discuss successful approaches that might help overcoming some of the bottlenecks encountered during the development of their biomedical applications.

  12. Evolutionarily conserved coupling of adaptive and excitable networks mediates eukaryotic chemotaxis

    Science.gov (United States)

    Tang, Ming; Wang, Mingjie; Shi, Changji; Iglesias, Pablo A.; Devreotes, Peter N.; Huang, Chuan-Hsiang

    2014-10-01

    Numerous models explain how cells sense and migrate towards shallow chemoattractant gradients. Studies show that an excitable signal transduction network acts as a pacemaker that controls the cytoskeleton to drive motility. Here we show that this network is required to link stimuli to actin polymerization and chemotactic motility and we distinguish the various models of chemotaxis. First, signalling activity is suppressed towards the low side in a gradient or following removal of uniform chemoattractant. Second, signalling activities display a rapid shut off and a slower adaptation during which responsiveness to subsequent test stimuli decline. Simulations of various models indicate that these properties require coupled adaptive and excitable networks. Adaptation involves a G-protein-independent inhibitor, as stimulation of cells lacking G-protein function suppresses basal activities. The salient features of the coupled networks were observed for different chemoattractants in Dictyostelium and in human neutrophils, suggesting an evolutionarily conserved mechanism for eukaryotic chemotaxis.

  13. Hepatitis-C-virus-like internal ribosome entry sites displace eIF3 to gain access to the 40S subunit

    Science.gov (United States)

    Hashem, Yaser; Des Georges, Amedee; Dhote, Vidya; Langlois, Robert; Liao, Hstau Y.; Grassucci, Robert A.; Pestova, Tatyana V.; Hellen, Christopher U. T.; Frank, Joachim

    2013-11-01

    Hepatitis C virus (HCV) and classical swine fever virus (CSFV) messenger RNAs contain related (HCV-like) internal ribosome entry sites (IRESs) that promote 5'-end independent initiation of translation, requiring only a subset of the eukaryotic initiation factors (eIFs) needed for canonical initiation on cellular mRNAs. Initiation on HCV-like IRESs relies on their specific interaction with the 40S subunit, which places the initiation codon into the P site, where it directly base-pairs with eIF2-bound initiator methionyl transfer RNA to form a 48S initiation complex. However, all HCV-like IRESs also specifically interact with eIF3 (refs 2, 5, 6, 7, 9, 10, 11, 12), but the role of this interaction in IRES-mediated initiation has remained unknown. During canonical initiation, eIF3 binds to the 40S subunit as a component of the 43S pre-initiation complex, and comparison of the ribosomal positions of eIF3 and the HCV IRES revealed that they overlap, so that their rearrangement would be required for formation of ribosomal complexes containing both components. Here we present a cryo-electron microscopy reconstruction of a 40S ribosomal complex containing eIF3 and the CSFV IRES. Remarkably, although the position and interactions of the CSFV IRES with the 40S subunit in this complex are similar to those of the HCV IRES in the 40S-IRES binary complex, eIF3 is completely displaced from its ribosomal position in the 43S complex, and instead interacts through its ribosome-binding surface exclusively with the apical region of domain III of the IRES. Our results suggest a role for the specific interaction of HCV-like IRESs with eIF3 in preventing ribosomal association of eIF3, which could serve two purposes: relieving the competition between the IRES and eIF3 for a common binding site on the 40S subunit, and reducing formation of 43S complexes, thereby favouring translation of viral mRNAs.

  14. The role of GTP in transient splitting of 70S ribosomes by RRF (ribosome recycling factor) and EF-G (elongation factor G).

    Science.gov (United States)

    Hirokawa, Go; Iwakura, Nobuhiro; Kaji, Akira; Kaji, Hideko

    2008-12-01

    Ribosome recycling factor (RRF), elongation factor G (EF-G) and GTP split 70S ribosomes into subunits. Here, we demonstrated that the splitting was transient and the exhaustion of GTP resulted in re-association of the split subunits into 70S ribosomes unless IF3 (initiation factor 3) was present. However, the splitting was observed with sucrose density gradient centrifugation (SDGC) without IF3 if RRF, EF-G and GTP were present in the SDGC buffer. The splitting of 70S ribosomes causes the decrease of light scattering by ribosomes. Kinetic constants obtained from the light scattering studies are sufficient to account for the splitting of 70S ribosomes by RRF and EF-G/GTP during the lag phase for activation of ribosomes for the log phase. As the amount of 70S ribosomes increased, more RRF, EF-G and GTP were necessary to split 70S ribosomes. In the presence of a physiological amount of polyamines, GTP and factors, even 0.6 microM 70S ribosomes (12 times higher than the 70S ribosomes for routine assay) were split. Spermidine (2 mM) completely inhibited anti-association activity of IF3, and the RRF/EF-G/GTP-dependent splitting of 70S ribosomes.

  15. Distinct gene number-genome size relationships for eukaryotes and non-eukaryotes: gene content estimation for dinoflagellate genomes.

    Directory of Open Access Journals (Sweden)

    Yubo Hou

    Full Text Available The ability to predict gene content is highly desirable for characterization of not-yet sequenced genomes like those of dinoflagellates. Using data from completely sequenced and annotated genomes from phylogenetically diverse lineages, we investigated the relationship between gene content and genome size using regression analyses. Distinct relationships between log(10-transformed protein-coding gene number (Y' versus log(10-transformed genome size (X', genome size in kbp were found for eukaryotes and non-eukaryotes. Eukaryotes best fit a logarithmic model, Y' = ln(-46.200+22.678X', whereas non-eukaryotes a linear model, Y' = 0.045+0.977X', both with high significance (p0.91. Total gene number shows similar trends in both groups to their respective protein coding regressions. The distinct correlations reflect lower and decreasing gene-coding percentages as genome size increases in eukaryotes (82%-1% compared to higher and relatively stable percentages in prokaryotes and viruses (97%-47%. The eukaryotic regression models project that the smallest dinoflagellate genome (3x10(6 kbp contains 38,188 protein-coding (40,086 total genes and the largest (245x10(6 kbp 87,688 protein-coding (92,013 total genes, corresponding to 1.8% and 0.05% gene-coding percentages. These estimates do not likely represent extraordinarily high functional diversity of the encoded proteome but rather highly redundant genomes as evidenced by high gene copy numbers documented for various dinoflagellate species.

  16. Image Descriptors for Displays

    Science.gov (United States)

    1977-02-01

    the entire display could be changed as often as every 1/60 s (TV field rate). Scan interlace was not used on the monitor. The 1/60-s resolution of...of photons arriving at the retina. These contributions can be separated by examining the experimental mT(v) as a function of luminance. From... photon shot noise, was found to be negligible for luminance .al.•- above 4 iabout 10 mL. Thus, the function A(v) represents the m4(v) employed in the

  17. Eu-Detect: An algorithm for detecting eukaryotic sequences in ...

    Indian Academy of Sciences (India)

    Plots depicting the classification accuracy of Eu-Detect with various combinations of. 'cumulative sequence count' (40K, 50K, 60K, 70K, 80K) and 'coverage threshold' (20%, 30%, 40%, 50%, 60%, 70%,. 80%). While blue bars represent Eu-Detect's average classification accuracy with eukaryotic data sets, red bars represent.

  18. The biology of eukaryotic promoter prediction - a review

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, Pierre; Chauvin, Yves

    1999-01-01

    Computational prediction of eukaryotic promoters from the nucleotide sequence is one of the most attractive problems in sequence analysis today, but it is also a very difficult one. Thus, current methods predict in the order of one promoter per kilobase in human DNA, while the average distance...

  19. An algorithm for detecting eukaryotic sequences in metagenomic ...

    Indian Academy of Sciences (India)

    Physical partitioning techniques are routinely employed (during sample preparation stage) for segregating the prokaryotic and eukaryotic fractions of metagenomic samples. In spite of these efforts, several metagenomic studies focusing on bacterial and archaeal populations have reported the presence of contaminating ...

  20. Eukaryotic checkpoints are absent in the cell division cycle of ...

    Indian Academy of Sciences (India)

    Fidelity in transmission of genetic characters is ensured by the faithful duplication of the genome, followed by equal segregation of the genetic material in the progeny. Thus, alternation of DNA duplication (S-phase) and chromosome segregation during the M-phase are hallmarks of most well studied eukaryotes. Several ...

  1. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae

    NARCIS (Netherlands)

    Wijffels, R.H.; Kruse, O.; Hellingwerf, K.J.

    2013-01-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments.Cyanobacteria are promising host organisms for

  2. Eu-Detect: An algorithm for detecting eukaryotic sequences in ...

    Indian Academy of Sciences (India)

    Physical partitioning techniques are routinely employed (during sample preparation stage) for segregating the prokaryotic and eukaryotic fractions of metagenomic samples. In spite of these efforts, several metagenomic studies focusing on bacterial and archaeal populations have reported the presence of contaminating ...

  3. Geminin: a major DNA replication safeguard in higher eukaryotes

    DEFF Research Database (Denmark)

    Melixetian, Marina; Helin, Kristian

    2004-01-01

    Eukaryotes have evolved multiple mechanisms to restrict DNA replication to once per cell cycle. These mechanisms prevent relicensing of origins of replication after initiation of DNA replication in S phase until the end of mitosis. Most of our knowledge of mechanisms controlling prereplication...

  4. Uncoupling of Sister Replisomes during Eukaryotic DNA Replication

    NARCIS (Netherlands)

    Yardimci, Hasan; Loveland, Anna B.; Habuchi, Satoshi; van Oijen, Antoine M.; Walter, Johannes C.

    2010-01-01

    The duplication of eukaryotic genomes involves the replication of DNA from multiple origins of replication. In S phase, two sister replisomes assemble at each active origin, and they replicate DNA in opposite directions. Little is known about the functional relationship between sister replisomes.

  5. Molecular typing of fecal eukaryotic microbiota of human infants and ...

    Indian Academy of Sciences (India)

    Keywords. 18S rRNA library; gastrointestinal tract; micro-eukaryotic diversity ... Insect Molecular Biology Unit, National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411 007, Maharashtra, India; Gastroenterology Unit, Department of P ediatrics, KEM Hospital, Rasta Peth, Pune 411 011, India ...

  6. Characterization of prokaryotic and eukaryotic promoters usinghidden Markov models

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, Pierre; Brunak, Søren

    1996-01-01

    In this paper we utilize hidden Markov models (HMMs) and information theory to analyze prokaryotic and eukaryotic promoters. We perform this analysis with special emphasis on the fact that promoters are divided into a number of different classes, depending on which polymerase-associated factors...

  7. Characterization of prokaryotic and eukaryotic promoters using hidden Markov models

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, P.; Chauvin, Y.

    1996-01-01

    In this paper we utilize hidden Markov models (HMMs) and information theory to analyze prokaryotic and eukaryotic promoters. We perform this analysis with special emphasis on the fact that promoters are divided into a number of different classes, depending on which polymerase-associated factors...

  8. Intracellular amorphous carbonates uncover a new biomineralization process in eukaryotes.

    Science.gov (United States)

    Martignier, A; Pacton, M; Filella, M; Jaquet, J-M; Barja, F; Pollok, K; Langenhorst, F; Lavigne, S; Guagliardo, P; Kilburn, M R; Thomas, C; Martini, R; Ariztegui, D

    2017-03-01

    Until now, descriptions of intracellular biomineralization of amorphous inclusions involving alkaline-earth metal (AEM) carbonates other than calcium have been confined exclusively to cyanobacteria (Couradeau et al., 2012). Here, we report the first evidence of the presence of intracellular amorphous granules of AEM carbonates (calcium, strontium, and barium) in unicellular eukaryotes. These inclusions, which we have named micropearls, show concentric and oscillatory zoning on a nanometric scale. They are widespread in certain eukaryote phytoplankters of Lake Geneva (Switzerland) and represent a previously unknown type of non-skeletal biomineralization, revealing an unexpected pathway in the geochemical cycle of AEMs. We have identified Tetraselmis cf. cordiformis (Chlorophyta, Prasinophyceae) as being responsible for the formation of one micropearl type containing strontium ([Ca,Sr]CO3 ), which we also found in a cultured strain of Tetraselmis cordiformis. A different flagellated eukaryotic cell forms barium-rich micropearls [(Ca,Ba)CO3 ]. The strontium and barium concentrations of both micropearl types are extremely high compared with the undersaturated water of Lake Geneva (the Ba/Ca ratio of the micropearls is up to 800,000 times higher than in the water). This can only be explained by a high biological pre-concentration of these elements. The particular characteristics of the micropearls, along with the presence of organic sulfur-containing compounds-associated with and surrounding the micropearls-strongly suggest the existence of a yet-unreported intracellular biomineralization pathway in eukaryotic micro-organisms. © 2016 John Wiley & Sons Ltd.

  9. Monitoring disulfide bond formation in the eukaryotic cytosol

    DEFF Research Database (Denmark)

    Østergaard, Henrik; Tachibana, Christine; Winther, Jakob R.

    2004-01-01

    Glutathione is the most abundant low molecular weight thiol in the eukaryotic cytosol. The compartment-specific ratio and absolute concentrations of reduced and oxidized glutathione (GSH and GSSG, respectively) are, however, not easily determined. Here, we present a glutathione-specific green flu...

  10. Painting Reproductions on Display

    Directory of Open Access Journals (Sweden)

    Joanna Iranowska

    2017-09-01

    Full Text Available Paintings in museums might occasionally be replaced by a photoprint mimicking the original. This article is an investigation of what constitutes a good reproduction of an artwork (oil painting that is meant to be displayed. The article discusses what the usefulness of reproductions depends on, applying the Valuation Studies approach, which means the primary concern is with the practice of valuing itself. In other words, the study focuses on how museum experts evaluate reproduc-tions of oil paintings. The article analyses three cases of displaying digitally prin-ted copies of Edvard Munch's oil paintings between 2013 and 2015 in the Munch Museum and in the National Gallery in Oslo. The study is based on a series of semi-structured interviews with the experts, working at and for the museums, that were involved in producing and exhibiting of the photoprints: curators, con-servators, museum educators, and external manufacturers. The interviews were grouped into five clusters, which I have chosen to call registers of valuing following Frank Heuts and Annemarie Mol (2013. The described valuation practices have to do with delivering experiences to the public, obtaining mimetic resemblance, solving ethical aspects, exhibitions' budget, and last but not least, with the time perspective.

  11. Transcriptome-wide measurement of translation by ribosome profiling.

    Science.gov (United States)

    McGlincy, Nicholas J; Ingolia, Nicholas T

    2017-08-15

    Translation is one of the fundamental processes of life. It comprises the assembly of polypeptides whose amino acid sequence corresponds to the codon sequence of an mRNA's ORF. Translation is performed by the ribosome; therefore, in order to understand translation and its regulation we must be able to determine the numbers and locations of ribosomes on mRNAs in vivo. Furthermore, we must be able to examine their redistribution in different physiological contexts and in response to experimental manipulations. The ribosome profiling method provides us with an opportunity to learn these locations, by sequencing a cDNA library derived from the short fragments of mRNA covered by the ribosome. Since its original description, the ribosome profiling method has undergone continuing development; in this article we describe the method's current state. Important improvements include: the incorporation of sample barcodes to enable library multiplexing, the incorporation of unique molecular identifiers to enable to removal of duplicated sequences, and the replacement of a gel-purification step with the enzymatic degradation of unligated linker. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Epigenetic engineering of ribosomal RNA genes enhances protein production.

    Directory of Open Access Journals (Sweden)

    Raffaella Santoro

    Full Text Available Selection of mammalian high-producer cell lines remains a major challenge for the biopharmaceutical manufacturing industry. Ribosomal RNA (rRNA genes encode the major component of the ribosome but many rRNA gene copies are not transcribed due to epigenetic silencing by the nucleolar remodelling complex (NoRC [6], which may limit the cell's full production capacity. Here we show that the knockdown of TIP5, a subunit of NoRC, decreases the number of silent rRNA genes, upregulates rRNA transcription, enhances ribosome synthesis and increases production of recombinant proteins. However, general enhancement of rRNA transcription rate did not stimulate protein synthesis. Our data demonstrates that the number of transcriptionally competent rRNA genes limits efficient ribosome synthesis. Epigenetic engineering of ribosomal RNA genes offers new possibilities for improving biopharmaceutical manufacturing and provides novel insights into the complex regulatory network which governs the translation machinery in normal cellular processes as well as in pathological conditions like cancer.

  13. Regulatory elements of Caenorhabditis elegans ribosomal protein genes

    Directory of Open Access Journals (Sweden)

    Sleumer Monica C

    2012-08-01

    Full Text Available Abstract Background Ribosomal protein genes (RPGs are essential, tightly regulated, and highly expressed during embryonic development and cell growth. Even though their protein sequences are strongly conserved, their mechanism of regulation is not conserved across yeast, Drosophila, and vertebrates. A recent investigation of genomic sequences conserved across both nematode species and associated with different gene groups indicated the existence of several elements in the upstream regions of C. elegans RPGs, providing a new insight regarding the regulation of these genes in C. elegans. Results In this study, we performed an in-depth examination of C. elegans RPG regulation and found nine highly conserved motifs in the upstream regions of C. elegans RPGs using the motif discovery algorithm DME. Four motifs were partially similar to transcription factor binding sites from C. elegans, Drosophila, yeast, and human. One pair of these motifs was found to co-occur in the upstream regions of 250 transcripts including 22 RPGs. The distance between the two motifs displayed a complex frequency pattern that was related to their relative orientation. We tested the impact of three of these motifs on the expression of rpl-2 using a series of reporter gene constructs and showed that all three motifs are necessary to maintain the high natural expression level of this gene. One of the motifs was similar to the binding site of an orthologue of POP-1, and we showed that RNAi knockdown of pop-1 impacts the expression of rpl-2. We further determined the transcription start site of rpl-2 by 5’ RACE and found that the motifs lie 40–90 bases upstream of the start site. We also found evidence that a noncoding RNA, contained within the outron of rpl-2, is co-transcribed with rpl-2 and cleaved during trans-splicing. Conclusions Our results indicate that C. elegans RPGs are regulated by a complex novel series of regulatory elements that is evolutionarily distinct from

  14. Determining minimal display element requirements for surface map displays

    Science.gov (United States)

    2003-04-14

    There is a great deal of interest in developing electronic surface map displays to enhance safety and reduce incidents and incursions on or near the airport surface. There is a lack of research, however, detailing the minimal display elements require...

  15. Molecular Data are Transforming Hypotheses on the Origin and Diversification of Eukaryotes.

    Science.gov (United States)

    Tekle, Yonas I; Parfrey, Laura Wegener; Katz, Laura A

    2009-06-01

    The explosion of molecular data has transformed hypotheses on both the origin of eukaryotes and the structure of the eukaryotic tree of life. Early ideas about the evolution of eukaryotes arose through analyses of morphology by light microscopy and later electron microscopy. Though such studies have proven powerful at resolving more recent events, theories on origins and diversification of eukaryotic life have been substantially revised in light of analyses of molecular data including gene and, increasingly, whole genome sequences. By combining these approaches, progress has been made in elucidating both the origin and diversification of eukaryotes. Yet many aspects of the evolution of eukaryotic life remain to be illuminated.

  16. Improved expression systems for regulated expression in Salmonella infecting eukaryotic cells.

    Directory of Open Access Journals (Sweden)

    Carlos Medina

    Full Text Available In this work we describe a series of improvements to the Salmonella-based salicylate-inducible cascade expression system comprised of a plasmid-borne expression module, where target gene expression is driven by the P(m promoter governed by the XylS2 regulator, and a genome-integrated regulatory module controlled by the nahR/P(sal system. We have constructed a set of high and low-copy number plasmids bearing modified versions of the expression module with a more versatile multiple cloning site and different combinations of the following elements: (i the nasF transcriptional attenuator, which reduces basal expression levels, (ii a strong ribosome binding site, and (iii the Type III Secretion System (TTSS signal peptide from the effector protein SspH2 to deliver proteins directly to the eukaryotic cytosol following bacterial infection of animal cells. We show that different expression module versions can be used to direct a broad range of protein production levels. Furthermore, we demonstrate that the efficient reduction of basal expression by the nasF attenuator allows the cloning of genes encoding highly cytotoxic proteins such as colicin E3 even in the absence of its immunity protein. Additionally, we show that the Salmonella TTSS is able to translocate most of the protein produced by this regulatory cascade to the cytoplasm of infected HeLa cells. Our results indicate that these vectors represent useful tools for the regulated overproduction of heterologous proteins in bacterial culture or in animal cells, for the cloning and expression of genes encoding toxic proteins and for pathogenesis studies.

  17. Eukaryotic evolutionary transitions are associated with extreme codon bias in functionally-related proteins.

    Directory of Open Access Journals (Sweden)

    Nicholas J Hudson

    Full Text Available Codon bias in the genome of an organism influences its phenome by changing the speed and efficiency of mRNA translation and hence protein abundance. We hypothesized that differences in codon bias, either between-species differences in orthologous genes, or within-species differences between genes, may play an evolutionary role. To explore this hypothesis, we compared the genome-wide codon bias in six species that occupy vital positions in the Eukaryotic Tree of Life. We acquired the entire protein coding sequences for these organisms, computed the codon bias for all genes in each organism and explored the output for relationships between codon bias and protein function, both within- and between-lineages. We discovered five notable coordinated patterns, with extreme codon bias most pronounced in traits considered highly characteristic of a given lineage. Firstly, the Homo sapiens genome had stronger codon bias for DNA-binding transcription factors than the Saccharomyces cerevisiae genome, whereas the opposite was true for ribosomal proteins--perhaps underscoring transcriptional regulation in the origin of complexity. Secondly, both mammalian species examined possessed extreme codon bias in genes relating to hair--a tissue unique to mammals. Thirdly, Arabidopsis thaliana showed extreme codon bias in genes implicated in cell wall formation and chloroplast function--which are unique to plants. Fourthly, Gallus gallus possessed strong codon bias in a subset of genes encoding mitochondrial proteins--perhaps reflecting the enhanced bioenergetic efficiency in birds that co-evolved with flight. And lastly, the G. gallus genome had extreme codon bias for the Ciliary Neurotrophic Factor--which may help to explain their spontaneous recovery from deafness. We propose that extreme codon bias in groups of genes that encode functionally related proteins has a pathway-level energetic explanation.

  18. Structural basis for precursor protein-directed ribosomal peptide macrocyclization

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kunhua; Condurso, Heather L.; Li, Gengnan; Ding, Yousong; Bruner, Steven D. (Florida)

    2016-11-11

    Macrocyclization is a common feature of natural product biosynthetic pathways including the diverse family of ribosomal peptides. Microviridins are architecturally complex cyanobacterial ribosomal peptides that target proteases with potent reversible inhibition. The product structure is constructed via three macrocyclizations catalyzed sequentially by two members of the ATP-grasp family, a unique strategy for ribosomal peptide macrocyclization. Here we describe in detail the structural basis for the enzyme-catalyzed macrocyclizations in the microviridin J pathway of Microcystis aeruginosa. The macrocyclases MdnC and MdnB interact with a conserved α-helix of the precursor peptide using a novel precursor-peptide recognition mechanism. The results provide insight into the unique protein–protein interactions that are key to the chemistry, suggest an origin for the natural combinatorial synthesis of microviridin peptides, and provide a framework for future engineering efforts to generate designed compounds.

  19. 5SRNAdb: an information resource for 5S ribosomal RNAs.

    Science.gov (United States)

    Szymanski, Maciej; Zielezinski, Andrzej; Barciszewski, Jan; Erdmann, Volker A; Karlowski, Wojciech M

    2016-01-04

    Ribosomal 5S RNA (5S rRNA) is the ubiquitous RNA component found in the large subunit of ribosomes in all known organisms. Due to its small size, abundance and evolutionary conservation 5S rRNA for many years now is used as a model molecule in studies on RNA structure, RNA-protein interactions and molecular phylogeny. 5SRNAdb (http://combio.pl/5srnadb/) is the first database that provides a high quality reference set of ribosomal 5S RNAs (5S rRNA) across three domains of life. Here, we give an overview of new developments in the database and associated web tools since 2002, including updates to database content, curation processes and user web interfaces. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Structural basis for the rescue of stalled ribosomes: structure of YaeJ bound to the ribosome.

    Science.gov (United States)

    Gagnon, Matthieu G; Seetharaman, Sai V; Bulkley, David; Steitz, Thomas A

    2012-03-16

    In bacteria, the hybrid transfer-messenger RNA (tmRNA) rescues ribosomes stalled on defective messenger RNAs (mRNAs). However, certain gram-negative bacteria have evolved proteins that are capable of rescuing stalled ribosomes in a tmRNA-independent manner. Here, we report a 3.2 angstrom-resolution crystal structure of the rescue factor YaeJ bound to the Thermus thermophilus 70S ribosome in complex with the initiator tRNA(i)(fMet) and a short mRNA. The structure reveals that the C-terminal tail of YaeJ functions as a sensor to discriminate between stalled and actively translating ribosomes by binding in the mRNA entry channel downstream of the A site between the head and shoulder of the 30S subunit. This allows the N-terminal globular domain to sample different conformations, so that its conserved GGQ motif is optimally positioned to catalyze the hydrolysis of peptidyl-tRNA. This structure gives insights into the mechanism of YaeJ function and provides a basis for understanding how it rescues stalled ribosomes.

  1. Structural Basis for the Rescue of Stalled Ribosomes: Structure of YaeJ Bound to the Ribosome

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, Matthieu G.; Seetharaman, Sai V.; Bulkley, David; Steitz, Thomas A. (Yale)

    2012-06-19

    In bacteria, the hybrid transfer-messenger RNA (tmRNA) rescues ribosomes stalled on defective messenger RNAs (mRNAs). However, certain gram-negative bacteria have evolved proteins that are capable of rescuing stalled ribosomes in a tmRNA-independent manner. Here, we report a 3.2 angstrom-resolution crystal structure of the rescue factor YaeJ bound to the Thermus thermophilus 70S ribosome in complex with the initiator tRNA{sub i}{sup fMet} and a short mRNA. The structure reveals that the C-terminal tail of YaeJ functions as a sensor to discriminate between stalled and actively translating ribosomes by binding in the mRNA entry channel downstream of the A site between the head and shoulder of the 30S subunit. This allows the N-terminal globular domain to sample different conformations, so that its conserved GGQ motif is optimally positioned to catalyze the hydrolysis of peptidyl-tRNA. This structure gives insights into the mechanism of YaeJ function and provides a basis for understanding how it rescues stalled ribosomes.

  2. Label-Free Quantitation of Ribosomal Proteins from Bacillus subtilis for Antibiotic Research.

    Science.gov (United States)

    Schäkermann, Sina; Prochnow, Pascal; Bandow, Julia E

    2017-01-01

    Current research is focusing on ribosome heterogeneity as a response to changing environmental conditions and stresses, such as antibiotic stress. Altered stoichiometry and composition of ribosomal proteins as well as association of additional protein factors are mechanisms for shaping the protein expression profile or hibernating ribosomes. Here, we present a method for the isolation of ribosomes to analyze antibiotic-induced changes in the composition of ribosomes in Bacillus subtilis or other bacteria. Ribosomes and associated proteins are isolated by ultracentrifugation and proteins are identified and quantified using label-free mass spectrometry.

  3. Computational discovery of transcriptional regulatory modules in fungal ribosome biogenesis genes reveals novel sequence and function patterns.

    Science.gov (United States)

    Martyanov, Viktor; Gross, Robert H

    2013-01-01

    Genes involved in ribosome biogenesis and assembly (RBA) are responsible for ribosome formation. In Saccharomyces cerevisiae, their transcription is regulated by two dissimilar DNA motifs. We were interested in analyzing conservation and divergence of RBA transcription regulation machinery throughout fungal evolution. We have identified orthologs of S. cerevisiae RBA genes in 39 species across fungal phylogeny and searched upstream regions of these gene sets for DNA sequences significantly similar to S. cerevisiae RBA regulatory motifs. In addition to confirming known motif arrangements comprising two different motifs in a set of S. cerevisiae close relatives or two instances of the same motif (that we refer to as modules), we have also discovered novel modules in a group of fungi closely related to Neurospora crassa. Despite a single nucleotide difference between consensus sequences of RBA motifs, modules associated with S, cerevisiae group and N. crassa group displayed consistently different characteristics with respect to preferred module organization and several other module properties. For a given species, we have found a correlation between the configuration of the RBA module and significant enrichment in a set of specific Gene Ontology biological processes. We have identified several likely new candidates for a role in ribosome biogenesis in S. cerevisiae based on the combined evidence of RBA module presence in the upstream regions, functional annotation information and microarray expression profiles. We believe that this approach will be useful in terms of generating hypotheses about functional roles of genes for which only fragmentary data from a single source are available.

  4. Computational discovery of transcriptional regulatory modules in fungal ribosome biogenesis genes reveals novel sequence and function patterns.

    Directory of Open Access Journals (Sweden)

    Viktor Martyanov

    Full Text Available Genes involved in ribosome biogenesis and assembly (RBA are responsible for ribosome formation. In Saccharomyces cerevisiae, their transcription is regulated by two dissimilar DNA motifs. We were interested in analyzing conservation and divergence of RBA transcription regulation machinery throughout fungal evolution. We have identified orthologs of S. cerevisiae RBA genes in 39 species across fungal phylogeny and searched upstream regions of these gene sets for DNA sequences significantly similar to S. cerevisiae RBA regulatory motifs. In addition to confirming known motif arrangements comprising two different motifs in a set of S. cerevisiae close relatives or two instances of the same motif (that we refer to as modules, we have also discovered novel modules in a group of fungi closely related to Neurospora crassa. Despite a single nucleotide difference between consensus sequences of RBA motifs, modules associated with S, cerevisiae group and N. crassa group displayed consistently different characteristics with respect to preferred module organization and several other module properties. For a given species, we have found a correlation between the configuration of the RBA module and significant enrichment in a set of specific Gene Ontology biological processes. We have identified several likely new candidates for a role in ribosome biogenesis in S. cerevisiae based on the combined evidence of RBA module presence in the upstream regions, functional annotation information and microarray expression profiles. We believe that this approach will be useful in terms of generating hypotheses about functional roles of genes for which only fragmentary data from a single source are available.

  5. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa.

    Science.gov (United States)

    Cavalier-Smith, T

    2002-03-01

    Eukaryotes and archaebacteria form the clade neomura and are sisters, as shown decisively by genes fragmented only in archaebacteria and by many sequence trees. This sisterhood refutes all theories that eukaryotes originated by merging an archaebacterium and an alpha-proteobacterium, which also fail to account for numerous features shared specifically by eukaryotes and actinobacteria. I revise the phagotrophy theory of eukaryote origins by arguing that the essentially autogenous origins of most eukaryotic cell properties (phagotrophy, endomembrane system including peroxisomes, cytoskeleton, nucleus, mitosis and sex) partially overlapped and were synergistic with the symbiogenetic origin of mitochondria from an alpha-proteobacterium. These radical innovations occurred in a derivative of the neomuran common ancestor, which itself had evolved immediately prior to the divergence of eukaryotes and archaebacteria by drastic alterations to its eubacterial ancestor, an actinobacterial posibacterium able to make sterols, by replacing murein peptidoglycan by N-linked glycoproteins and a multitude of other shared neomuran novelties. The conversion of the rigid neomuran wall into a flexible surface coat and the associated origin of phagotrophy were instrumental in the evolution of the endomembrane system, cytoskeleton, nuclear organization and division and sexual life-cycles. Cilia evolved not by symbiogenesis but by autogenous specialization of the cytoskeleton. I argue that the ancestral eukaryote was uniciliate with a single centriole (unikont) and a simple centrosomal cone of microtubules, as in the aerobic amoebozoan zooflagellate Phalansterium. I infer the root of the eukaryote tree at the divergence between opisthokonts (animals, Choanozoa, fungi) with a single posterior cilium and all other eukaryotes, designated 'anterokonts' because of the ancestral presence of an anterior cilium. Anterokonts comprise the Amoebozoa, which may be ancestrally unikont, and a vast

  6. A Well Tempered Mammographic Display

    National Research Council Canada - National Science Library

    Kundel, Harold L

    1997-01-01

    This proposal addresses the development of a softcopy display for digital mammography that seeks to couple optimally the visual system to the displayed image without excessive human-machine interaction...

  7. Architecture of the E.coli 70S ribosome

    DEFF Research Database (Denmark)

    Burkhardt, N.; Diedrich, G.; Nierhaus, K.H.

    1997-01-01

    The 70S ribosome from E.coli was analysed by neutron scattering focusing on the shape and the internal protein-RNA-distribution of the complex. Measurements on selectively deuterated 70S particles and free 30S and 50S subunits applying conventional contrast variation and proton-spin contrast......-variation resulted in a total of 42 scattering curves. Processing the data on the basis of the spherical harmonic technique, a four-phase model for the 70S ribosome could be generated, which describes the shape of the particle as well as the protein- and the RNA-moieties of each subunit at about 35 Angstrom...

  8. Ribosomal crystallography: from crystal growth to initial phasing

    Science.gov (United States)

    Thygesen, J.; Krumbholz, S.; Levin, I.; Zaytzev-Bashan, A.; Harms, J.; Bartels, H.; Schlünzen, F.; Hansen, H. A. S.; Bennett, W. S.; Volkmann, N.; Agmon, I.; Eisenstein, M.; Dribin, A.; Maltz, E.; Sagi, I.; Morlang, S.; Fua, M.; Franceschi, F.; Weinstein, S.; Böddeker, N.; Sharon, R.; Anagnostopoulos, K.; Peretz, M.; Geva, M.; Berkovitch-Yellin, Z.; Yonath, A.

    1996-10-01

    Preliminary phases were determined by the application of the isomorphous replacement method at low and intermediate resolution for structure factor amplitudes collected from crystals of large and small ribosomal subunits from halophilic and thermophilic bacteria. Derivatization was performed with dense heavy atom clusters, either by soaking or by specific covalent binding prior to the crystallization. The resulting initial electron density maps contain features comparable in size to those expected for the corresponding particles. The packing arrangements of these maps have been compared with motifs observed by electron microscopy in positively stained thin sections of embedded three-dimensional crystals, as well as with phase sets obtained by ab-initio computations. Aimed at higher resolution phasing, procedures are being developed for multi-site binding of relatively small dense metal clusters at selected locations. Potential sites are being inserted either by mutagenesis or by chemical modifications to facilitate cluster binding to the large halophilic and the small thermophilic ribosomal subunits which yield crystals diffracting to the highest resolution obtained so far for ribosomes, 2.9 and 7.3 Å, respectively. For this purpose the surfaces of these ribosomal particles have been characterized and conditions for quantitative reversible detachment of selected ribosomal proteins have been found. The corresponding genes are being cloned, sequenced, mutated to introduce the reactive side-groups (mainly cysteines) and overexpressed. To assist the interpretation of the anticipated electron density maps, sub-ribosomal stable complexes were isolated from H50S. One of these complexes is composed of two proteins and the other is made of a stretch of the rRNA and a protein. For exploiting the exposed parts of the surface of these complexes for heavy atom binding and for attempting the determination of their three-dimensional structure, their components are being produced

  9. Optimal delivery in display advertising

    OpenAIRE

    Mostagir, Mohamed

    2010-01-01

    In display advertising, a publisher targets a specific audience by displaying ads on content web pages. Because the publisher has little control over the supply of display opportunities, the actual supply of ads that it can sell is stochastic. We consider the problem of optimal ad delivery, where an advertiser requests a certain number of impressions to be displayed by the publisher over a certain time horizon. Time is divided into periods, and in the beginning of each period the publisher ch...

  10. Affinity labelling in situ of the bL12 protein on E. coli 70S ribosomes by means of a tRNA dialdehyde derivative.

    Science.gov (United States)

    Hountondji, Codjo; Créchet, Jean-Bernard; Le Caër, Jean-Pierre; Lancelot, Véronique; Cognet, Jean A H; Baouz, Soria

    2017-12-01

    In this report, we have used periodate-oxidized tRNA (tRNAox) as an affinity laleling reagent to demonstrate that: (i) the bL12 protein contacts the CCA-arm of P-site bound tRNA on the Escherichia coli 70S ribosomes; (ii) the stoichiometry of labelling is one molecule of tRNAox bound to one polypeptide chain of endogenous bL12; (iii) cross-linking in situ of bL12 with tRNAox on the ribosomes provokes the loss of activity; (iv) intact tRNA protects bL12 in the 70S ribosomes against cross-linking with tRNAox; (v) both tRNAox and pyridoxal 5'-phosphate (PLP) compete for the same or for proximal cross-linking site(s) on bL12 inside the ribosome; (vi) the stoichiometry of cross-linking of PLP to the recombinant E. coli bL12 protein is one molecule of PLP covalently bound per polypeptide chain; (vii) the amino acid residue of recombinant bL12 cross-linked with PLP is Lys-65; (viii) Lys-65 of E. coli bL12 corresponds to Lys-53 of eL42 which was previously shown to cross-link with P-site bound tRNAox on human 80S ribosomes in situ; (ix) finally, E. coli bL12 and human eL42 proteins display significant primary structure similarities, which argues for evolutionary conservation of these two proteins located at the tRNA-CCA binding site on eubacterial and eukaryal ribosomes. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  11. Combined Effect of the Cfr Methyltransferase and Ribosomal Protein L3 Mutations on Resistance to Ribosome-Targeting Antibiotics

    DEFF Research Database (Denmark)

    Pakula, Kevin K; Hansen, Lykke H; Vester, Birte

    2017-01-01

    Several groups of antibiotics inhibit bacterial growth by binding to bacterial ribosomes. Mutations in ribosomal protein L3 have been associated with resistance to linezolid and tiamulin, which both bind at the peptidyl transferase center in the ribosome. Resistance to these and other antibiotics...... also occurs through methylation of 23S rRNA at position A2503 by the methyltransferase Cfr. The mutations in L3 and the cfr gene have been found together in clinical isolates, raising the question of whether they have a combined effect on antibiotic resistance or growth. We transformed a plasmid...... seen. This study underscores the complex interplay between various resistance mechanisms and cross-resistance, even from antibiotics with overlapping binding sites....

  12. LHCb Event display

    CERN Document Server

    Trisovic, Ana

    2014-01-01

    The LHCb Event Display was made for educational purposes at the European Organization for Nuclear Research, CERN in Geneva, Switzerland. The project was implemented as a stand-alone application using C++ and ROOT, a framework developed by CERN for data analysis. This paper outlines the development and architecture of the application in detail, as well as the motivation for the development and the goals of the exercise. The application focuses on the visualization of events recorded by the LHCb detector, where an event represents a set of charged particle tracks in one proton-proton collision. Every particle track is coloured by its type and can be selected to see its essential information such as mass and momentum. The application allows students to save this information and calculate the invariant mass for any pair of particles. Furthermore, the students can use additional calculating tools in the application and build up a histogram of these invariant masses. The goal for the students is to find a $D^0$ par...

  13. Colorimetry for CRT displays.

    Science.gov (United States)

    Golz, Jürgen; MacLeod, Donald I A

    2003-05-01

    We analyze the sources of error in specifying color in CRT displays. These include errors inherent in the use of the color matching functions of the CIE 1931 standard observer when only colorimetric, not radiometric, calibrations are available. We provide transformation coefficients that prove to correct the deficiencies of this observer very well. We consider four different candidate sets of cone sensitivities. Some of these differ substantially; variation among candidate cone sensitivities exceeds the variation among phosphors. Finally, the effects of the recognized forms of observer variation on the visual responses (cone excitations or cone contrasts) generated by CRT stimuli are investigated and quantitatively specified. Cone pigment polymorphism gives rise to variation of a few per cent in relative excitation by the different phosphors--a variation larger than the errors ensuing from the adoption of the CIE standard observer, though smaller than the differences between some candidate cone sensitivities. Macular pigmentation has a larger influence, affecting mainly responses to the blue phosphor. The estimated combined effect of all sources of observer variation is comparable in magnitude with the largest differences between competing cone sensitivity estimates but is not enough to disrupt very seriously the relation between the L and M cone weights and the isoluminance settings of individual observers. It is also comparable with typical instrumental colorimetric errors, but we discuss these only briefly.

  14. In vitro affinity screening of protein and peptide binders by megavalent bead surface display.

    Science.gov (United States)

    Diamante, Letizia; Gatti-Lafranconi, Pietro; Schaerli, Yolanda; Hollfelder, Florian

    2013-10-01

    The advent of protein display systems has provided access to tailor-made protein binders by directed evolution. We introduce a new in vitro display system, bead surface display (BeSD), in which a gene is mounted on a bead via strong non-covalent (streptavidin/biotin) interactions and the corresponding protein is displayed via a covalent thioether bond on the DNA. In contrast to previous monovalent or low-copy bead display systems, multiple copies of the DNA and the protein or peptide of interest are displayed in defined quantities (up to 10(6) of each), so that flow cytometry can be used to obtain a measure of binding affinity. The utility of the BeSD in directed evolution is validated by library selections of randomized peptide sequences for binding to the anti-hemagglutinin (HA) antibody that proceed with enrichments in excess of 10(3) and lead to the isolation of high-affinity HA-tags within one round of flow cytometric screening. On-bead K(d) measurements suggest that the selected tags have affinities in the low nanomolar range. In contrast to other display systems (such as ribosome, mRNA and phage display) that are limited to affinity panning selections, BeSD possesses the ability to screen and rank binders by their affinity in vitro, a feature that hitherto has been exclusive to in vivo multivalent cell display systems (such as yeast display).

  15. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water.

    Science.gov (United States)

    Stoeck, Thorsten; Bass, David; Nebel, Markus; Christen, Richard; Jones, Meredith D M; Breiner, Hans-Werner; Richards, Thomas A

    2010-03-01

    Sequencing of ribosomal DNA clone libraries amplified from environmental DNA has revolutionized our understanding of microbial eukaryote diversity and ecology. The results of these analyses have shown that protist groups are far more genetically heterogeneous than their morphological diversity suggests. However, the clone library approach is labour-intensive, relatively expensive, and methodologically biased. Therefore, even the most intensive rDNA library analyses have recovered only small samples of much larger assemblages, indicating that global environments harbour a vast array of unexplored biodiversity. High-throughput parallel tag 454 sequencing offers an unprecedented scale of sampling for molecular detection of microbial diversity. Here, we report a 454 protocol for sampling and characterizing assemblages of eukaryote microbes. We use this approach to sequence two SSU rDNA diversity markers-the variable V4 and V9 regions-from 10 L of anoxic Norwegian fjord water. We identified 38 116 V4 and 15 156 V9 unique sequences. Both markers detect a wide range of taxonomic groups but in both cases the diversity detected was dominated by dinoflagellates and close relatives. Long-tailed rank abundance curves suggest that the 454 sequencing approach provides improved access to rare genotypes. Most tags detected represent genotypes not currently in GenBank, although many are similar to database sequences. We suggest that current understanding of the ecological complexity of protist communities, genetic diversity, and global species richness are severely limited by the sequence data hitherto available, and we discuss the biological significance of this high amplicon diversity.

  16. Computational identification of operon-like transcriptional loci in eukaryotes.

    Science.gov (United States)

    Nannapaneni, Kishore; Ben-Shahar, Yehuda; Keen, Henry L; Welsh, Michael J; Casavant, Thomas L; Scheetz, Todd E

    2013-07-01

    Operons are primarily a bacterial phenomenon, not commonly observed in eukaryotes. However, new research indicates that operons are found in higher organisms as well. There are instances of operons found in C. elegans, Drosophila melanogaster and other eukaryotic species. We developed a prototype using positional, structural and gene expression information to identify candidate operons. We focused our efforts on "trans-spliced" operons in which the pre-mRNA is trans-spliced into individual transcripts and subsequently translated, as widely observed in C. elegans and some instances in Drosophila. We identify several candidate operons in Drosophila melanogaster of which two have been subsequently molecularly validated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Horizontal transfers of transposable elements in eukaryotes: The flying genes.

    Science.gov (United States)

    Panaud, Olivier

    2016-01-01

    Transposable elements (TEs) are the major components of eukaryotic genomes. Their propensity to densely populate and in some cases invade the genomes of plants and animals is in contradiction with the fact that transposition is strictly controlled by several molecular pathways acting at either transcriptional or post-transcriptional levels. Horizontal transfers, defined as the transmission of genetic material between sexually isolated species, have long been considered as rare phenomena. Here, we show that the horizontal transfers of transposable elements (HTTs) are very frequent in ecosystems. The exact mechanisms of such transfers are not well understood, but species involved in close biotic interactions, like parasitism, show a propensity to exchange genetic material horizontally. We propose that HTTs allow TEs to escape the silencing machinery of their host genome and may therefore be an important mechanism for their survival and their dissemination in eukaryotes. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  18. Recognition of extremophilic archaeal viruses by eukaryotic cells

    DEFF Research Database (Denmark)

    Uldahl, Kristine Buch; Wu, Linping; Hall, Arnaldur

    2016-01-01

    Viruses from the third domain of life, Archaea, exhibit unusual features including extreme stability that allow their survival in harsh environments. In addition, these species have never been reported to integrate into human or any other eukaryotic genomes, and could thus serve for exploration...... of novel medical nanoplatforms. Here, we selected two archaeal viruses Sulfolobus monocaudavirus 1 (SMV1) and Sulfolobus spindle shaped virus 2 (SSV2) owing to their unique spindle shape, hyperthermostable and acid-resistant nature and studied their interaction with mammalian cells. Accordingly, we...... for selective cell targeting. On internalization, both viruses localize to the lysosomal compartments. Neither SMV1, nor SSV2 induced any detrimental effect on cell morphology, plasma membrane and mitochondrial functionality. This is the first study demonstrating recognition of archaeal viruses by eukaryotic...

  19. Anionic lipids and the maintenance of membrane electrostatics in eukaryotes.

    Science.gov (United States)

    Platre, Matthieu Pierre; Jaillais, Yvon

    2017-02-01

    A wide range of signaling processes occurs at the cell surface through the reversible association of proteins from the cytosol to the plasma membrane. Some low abundant lipids are enriched at the membrane of specific compartments and thereby contribute to the identity of cell organelles by acting as biochemical landmarks. Lipids also influence membrane biophysical properties, which emerge as an important feature in specifying cellular territories. Such parameters are crucial for signal transduction and include lipid packing, membrane curvature and electrostatics. In particular, membrane electrostatics specifies the identity of the plasma membrane inner leaflet. Membrane surface charges are carried by anionic phospholipids, however the exact nature of the lipid(s) that powers the plasma membrane electrostatic field varies among eukaryotes and has been hotly debated during the last decade. Herein, we discuss the role of anionic lipids in setting up plasma membrane electrostatics and we compare similarities and differences that were found in different eukaryotic cells.

  20. Kinetic model of DNA replication in eukaryotic organisms

    Science.gov (United States)

    Bechhoefer, John; Herrick, John; Bensimon, Aaron

    2001-03-01

    We introduce an analogy between DNA replication in eukaryotic organisms and crystal growth in one dimension. Drawing on models of crystallization kinetics developed in the 1930s to describe the freezing of metals, we formulate a kinetic model of DNA replication that quantitatively describes recent results on DNA replication in the in vitro system of Xenopus laevis prior to the mid-blastula transition. It allows one, for the first time, to determine the parameters governing the DNA replication program in a eukaryote on a genome-wide basis. In particular, we have determined the frequency of origin activation in time and space during the cell cycle. Although we focus on a specific stage of development, this model can easily be adapted to describe replication in many other organisms, including budding yeast.

  1. Regulated eukaryotic DNA replication origin firing with purified proteins.

    Science.gov (United States)

    Yeeles, Joseph T P; Deegan, Tom D; Janska, Agnieszka; Early, Anne; Diffley, John F X

    2015-03-26

    Eukaryotic cells initiate DNA replication from multiple origins, which must be tightly regulated to promote precise genome duplication in every cell cycle. To accomplish this, initiation is partitioned into two temporally discrete steps: a double hexameric minichromosome maintenance (MCM) complex is first loaded at replication origins during G1 phase, and then converted to the active CMG (Cdc45-MCM-GINS) helicase during S phase. Here we describe the reconstitution of budding yeast DNA replication initiation with 16 purified replication factors, made from 42 polypeptides. Origin-dependent initiation recapitulates regulation seen in vivo. Cyclin-dependent kinase (CDK) inhibits MCM loading by phosphorylating the origin recognition complex (ORC) and promotes CMG formation by phosphorylating Sld2 and Sld3. Dbf4-dependent kinase (DDK) promotes replication by phosphorylating MCM, and can act either before or after CDK. These experiments define the minimum complement of proteins, protein kinase substrates and co-factors required for regulated eukaryotic DNA replication.

  2. Silencing or knocking out eukaryotic gene expression by oligodeoxynucleotide decoys.

    Science.gov (United States)

    Cutroneo, Kenneth R; Ehrlich, H

    2006-01-01

    The elucidation of molecular and signaling pathways in eukaryotic cells is often achieved by targeting regulatory element(s) found in the promoter or the enhancer region of eukaryotic gene(s) using a double-stranded (ds) oligodeoxynucleotide (ODN) containing a specific cis-element. Our laboratory is focusing on dsODN decoys containing the TGF-beta element as a novel nonsteroidal antifibrotic for achieving normal wound healing. In the model systems discussed, there is either a specific gene possessing a specific cis-element or a cluster of genes with one gene containing the consensus cis-element. The rest of the genes in the cluster contain the cis-elements homologous to this consensus element, which allows for dsODN decoy regulation of a gene cluster at one time.

  3. Molecular Data are Transforming Hypotheses on the Origin and Diversification of Eukaryotes

    OpenAIRE

    Tekle, Yonas I.; Parfrey, Laura Wegener; Katz, Laura A.

    2009-01-01

    The explosion of molecular data has transformed hypotheses on both the origin of eukaryotes and the structure of the eukaryotic tree of life. Early ideas about the evolution of eukaryotes arose through analyses of morphology by light microscopy and later electron microscopy. Though such studies have proven powerful at resolving more recent events, theories on origins and diversification of eukaryotic life have been substantially revised in light of analyses of molecular data including gene an...

  4. Biological Influence of Deuterium on Procariotic and Eukaryotic Cells

    OpenAIRE

    Oleg Mosin; Ignat Ignatov

    2014-01-01

    Biologic influence of deuterium (D) on cells of various taxonomic groups of prokaryotic and eukaryotic microorganisms realizing methylotrophic, chemoheterotrophic, photo-organotrophic, and photosynthetic ways of assimilation of carbon substrates are investigated at growth on media with heavy water (D2О). The method of step by step adaptation technique of cells to D2О was developed, consisting in plating of cells on 2 % agarose nutrient media containing increasing gradient of concentration of ...

  5. Starting the protein synthesis machine: eukaryotic translation initiation.

    Science.gov (United States)

    Preiss, Thomas; W Hentze, Matthias

    2003-12-01

    The final assembly of the protein synthesis machinery occurs during translation initiation. This delicate process involves both ends of eukaryotic messenger RNAs as well as multiple sequential protein-RNA and protein-protein interactions. As is expected from its critical position in the gene expression pathway between the transcriptome and the proteome, translation initiation is a selective and highly regulated process. This synopsis summarises the current status of the field and identifies intriguing open questions. Copyright 2003 Wiley Periodicals, Inc.

  6. Sulfate assimilation in eukaryotes: fusions, relocations and lateral transfers

    Directory of Open Access Journals (Sweden)

    Durnford Dion G

    2008-02-01

    Full Text Available Abstract Background The sulfate assimilation pathway is present in photosynthetic organisms, fungi, and many bacteria, providing reduced sulfur for the synthesis of cysteine and methionine and a range of other metabolites. In photosynthetic eukaryotes sulfate is reduced in the plastids whereas in aplastidic eukaryotes the pathway is cytosolic. The only known exception is Euglena gracilis, where the pathway is localized in mitochondria. To obtain an insight into the evolution of the sulfate assimilation pathway in eukaryotes and relationships of the differently compartmentalized isoforms we determined the locations of the pathway in lineages for which this was unknown and performed detailed phylogenetic analyses of three enzymes involved in sulfate reduction: ATP sulfurylase (ATPS, adenosine 5'-phosphosulfate reductase (APR and sulfite reductase (SiR. Results The inheritance of ATPS, APR and the related 3'-phosphoadenosine 5'-phosphosulfate reductase (PAPR are remarkable, with multiple origins in the lineages that comprise the opisthokonts, different isoforms in chlorophytes and streptophytes, gene fusions with other enzymes of the pathway, evidence a eukaryote to prokaryote lateral gene transfer, changes in substrate specificity and two reversals of cellular location of host- and endosymbiont-originating enzymes. We also found that the ATPS and APR active in the mitochondria of Euglena were inherited from its secondary, green algal plastid. Conclusion Our results reveal a complex history for the enzymes of the sulfate assimilation pathway. Whilst they shed light on the origin of some characterised novelties, such as a recently described novel isoform of APR from Bryophytes and the origin of the pathway active in the mitochondria of Euglenids, the many distinct and novel isoforms identified here represent an excellent resource for detailed biochemical studies of the enzyme structure/function relationships.

  7. Hydrodynamics Versus Intracellular Coupling in the Synchronization of Eukaryotic Flagella.

    Science.gov (United States)

    Quaranta, Greta; Aubin-Tam, Marie-Eve; Tam, Daniel

    2015-12-04

    The influence of hydrodynamic forces on eukaryotic flagella synchronization is investigated by triggering phase locking between a controlled external flow and the flagella of C. reinhardtii. Hydrodynamic forces required for synchronization are over an order of magnitude larger than hydrodynamic forces experienced in physiological conditions. Our results suggest that synchronization is due instead to coupling through cell internal fibers connecting the flagella. This conclusion is confirmed by observations of the vfl3 mutant, with impaired mechanical connection between the flagella.

  8. An Evolutionary Framework for Understanding the Origin of Eukaryotes

    OpenAIRE

    Neil W Blackstone

    2016-01-01

    Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real—the endosymbiosis that led to the mitochondrion is often described as “non-Darwinian” because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious—all of the major fea...

  9. Function of prokaryotic and eukaryotic ABC proteins in lipid transport.

    Science.gov (United States)

    Pohl, Antje; Devaux, Philippe F; Herrmann, Andreas

    2005-03-21

    ATP binding cassette (ABC) proteins of both eukaryotic and prokaryotic origins are implicated in the transport of lipids. In humans, members of the ABC protein families A, B, C, D and G are mutated in a number of lipid transport and metabolism disorders, such as Tangier disease, Stargardt syndrome, progressive familial intrahepatic cholestasis, pseudoxanthoma elasticum, adrenoleukodystrophy or sitosterolemia. Studies employing transfection, overexpression, reconstitution, deletion and inhibition indicate the transbilayer transport of endogenous lipids and their analogs by some of these proteins, modulating lipid transbilayer asymmetry. Other proteins appear to be involved in the exposure of specific lipids on the exoplasmic leaflet, allowing their uptake by acceptors and further transport to specific sites. Additionally, lipid transport by ABC proteins is currently being studied in non-human eukaryotes, e.g. in sea urchin, trypanosomatides, arabidopsis and yeast, as well as in prokaryotes such as Escherichia coli and Lactococcus lactis. Here, we review current information about the (putative) role of both pro- and eukaryotic ABC proteins in the various phenomena associated with lipid transport. Besides providing a better understanding of phenomena like lipid metabolism, circulation, multidrug resistance, hormonal processes, fertilization, vision and signalling, studies on pro- and eukaryotic ABC proteins might eventually enable us to put a name on some of the proteins mediating transbilayer lipid transport in various membranes of cells and organelles. It must be emphasized, however, that there are still many uncertainties concerning the functions and mechanisms of ABC proteins interacting with lipids. In particular, further purification and reconstitution experiments with an unambiguous role of ATP hydrolysis are needed to demonstrate a clear involvement of ABC proteins in lipid transbilayer asymmetry.

  10. Interaction between Bacillus subtilis YsxC and ribosomes (or rRNAs).

    Science.gov (United States)

    Wicker-Planquart, Catherine; Jault, Jean-Michel

    2015-04-13

    YsxC is an essential P-loop GTPase, that binds to the 50S ribosomal subunit, and is required for the proper assembly of the ribosome. The aim of this study was to characterize YsxC ribosome interactions. The stoichiometry of YsxC ribosome subunit complex was evaluated. We showed that YsxC binding to the 50S ribosomal subunit is not affected by GTP, but in the presence of GDP the stoichiometry of YsxC-ribosome is decreased. YsxC GTPase activity was stimulated upon 50S ribosomal subunit binding. In addition, it is shown for the first time that YsxC binds both 16S and 23S ribosomal RNAs. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. Non-coding RNAs: the architects of eukaryotic complexity.

    Science.gov (United States)

    Mattick, J S

    2001-11-01

    Around 98% of all transcriptional output in humans is non-coding RNA. RNA-mediated gene regulation is widespread in higher eukaryotes and complex genetic phenomena like RNA interference, co-suppression, transgene silencing, imprinting, methylation, and possibly position-effect variegation and transvection, all involve intersecting pathways based on or connected to RNA signaling. I suggest that the central dogma is incomplete, and that intronic and other non-coding RNAs have evolved to comprise a second tier of gene expression in eukaryotes, which enables the integration and networking of complex suites of gene activity. Although proteins are the fundamental effectors of cellular function, the basis of eukaryotic complexity and phenotypic variation may lie primarily in a control architecture composed of a highly parallel system of trans-acting RNAs that relay state information required for the coordination and modulation of gene expression, via chromatin remodeling, RNA-DNA, RNA-RNA and RNA-protein interactions. This system has interesting and perhaps informative analogies with small world networks and dataflow computing.

  12. Evolution of networks and sequences in eukaryotic cell cycle control.

    Science.gov (United States)

    Cross, Frederick R; Buchler, Nicolas E; Skotheim, Jan M

    2011-12-27

    The molecular networks regulating the G1-S transition in budding yeast and mammals are strikingly similar in network structure. However, many of the individual proteins performing similar network roles appear to have unrelated amino acid sequences, suggesting either extremely rapid sequence evolution, or true polyphyly of proteins carrying out identical network roles. A yeast/mammal comparison suggests that network topology, and its associated dynamic properties, rather than regulatory proteins themselves may be the most important elements conserved through evolution. However, recent deep phylogenetic studies show that fungal and animal lineages are relatively closely related in the opisthokont branch of eukaryotes. The presence in plants of cell cycle regulators such as Rb, E2F and cyclins A and D, that appear lost in yeast, suggests cell cycle control in the last common ancestor of the eukaryotes was implemented with this set of regulatory proteins. Forward genetics in non-opisthokonts, such as plants or their green algal relatives, will provide direct information on cell cycle control in these organisms, and may elucidate the potentially more complex cell cycle control network of the last common eukaryotic ancestor.

  13. Horizontal gene acquisitions by eukaryotes as drivers of adaptive evolution.

    Science.gov (United States)

    Schönknecht, Gerald; Weber, Andreas P M; Lercher, Martin J

    2014-01-01

    In contrast to vertical gene transfer from parent to offspring, horizontal (or lateral) gene transfer moves genetic information between different species. Bacteria and archaea often adapt through horizontal gene transfer. Recent analyses indicate that eukaryotic genomes, too, have acquired numerous genes via horizontal transfer from prokaryotes and other lineages. Based on this we raise the hypothesis that horizontally acquired genes may have contributed more to adaptive evolution of eukaryotes than previously assumed. Current candidate sets of horizontally acquired eukaryotic genes may just be the tip of an iceberg. We have recently shown that adaptation of the thermoacidophilic red alga Galdieria sulphuraria to its hot, acid, toxic-metal laden, volcanic environment was facilitated by the acquisition of numerous genes from extremophile bacteria and archaea. Other recently published examples of horizontal acquisitions involved in adaptation include ice-binding proteins in marine algae, enzymes for carotenoid biosynthesis in aphids, and genes involved in fungal metabolism. Editor's suggested further reading in BioEssays Jumping the fine LINE between species: Horizontal transfer of transposable elements in animals catalyses genome evolution Abstract. © 2014 WILEY Periodicals, Inc.

  14. diArk – a resource for eukaryotic genome research

    Directory of Open Access Journals (Sweden)

    Kollmar Martin

    2007-04-01

    Full Text Available Abstract Background The number of completed eukaryotic genome sequences and cDNA projects has increased exponentially in the past few years although most of them have not been published yet. In addition, many microarray analyses yielded thousands of sequenced EST and cDNA clones. For the researcher interested in single gene analyses (from a phylogenetic, a structural biology or other perspective it is therefore important to have up-to-date knowledge about the various resources providing primary data. Description The database is built around 3 central tables: species, sequencing projects and publications. The species table contains commonly and alternatively used scientific names, common names and the complete taxonomic information. For projects the sequence type and links to species project web-sites and species homepages are stored. All publications are linked to projects. The web-interface provides comprehensive search modules with detailed options and three different views of the selected data. We have especially focused on developing an elaborate taxonomic tree search tool that allows the user to instantaneously identify e.g. the closest relative to the organism of interest. Conclusion We have developed a database, called diArk, to store, organize, and present the most relevant information about completed genome projects and EST/cDNA data from eukaryotes. Currently, diArk provides information about 415 eukaryotes, 823 sequencing projects, and 248 publications.

  15. Chromatin—a global buffer for eukaryotic gene control

    Directory of Open Access Journals (Sweden)

    Yuri M. Moshkin

    2015-09-01

    Full Text Available Most of eukaryotic DNA is embedded into nucleosome arrays formed by DNA wrapped around a core histone octamer. Nucleosome is a fundamental repeating unit of chromatin guarding access to the genetic information. Here, I will discuss two facets of nucleosome in eukaryotic gene control. On the one hand, nucleosome acts as a regulatory unit, which controls gene switches through a set of post-translational modifications occurring on histone tails. On the other hand, global configuration of nucleosome arrays with respect to nucleosome positioning, spacing and turnover acts as a tuning parameter for all genomic functions. A “histone code” hypothesis extents the Jacob-Monod model for eukaryotic gene control; however, when considering factors capable of reconfiguring entire nucleosome array, such as ATP-dependent chromatin remodelers, this model becomes limited. Global changes in nucleosome arrays will be sensed by every gene, yet the transcriptional responses might be specific and appear as gene targeted events. What determines such specificity is unclear, but it’s likely to depend on initial gene settings, such as availability of transcription factors, and on configuration of new nucleosome array state.

  16. Eukaryotic Penelope-Like Retroelements Encode Hammerhead Ribozyme Motifs

    Science.gov (United States)

    Cervera, Amelia; De la Peña, Marcos

    2014-01-01

    Small self-cleaving RNAs, such as the paradigmatic Hammerhead ribozyme (HHR), have been recently found widespread in DNA genomes across all kingdoms of life. In this work, we found that new HHR variants are preserved in the ancient family of Penelope-like elements (PLEs), a group of eukaryotic retrotransposons regarded as exceptional for encoding telomerase-like retrotranscriptases and spliceosomal introns. Our bioinformatic analysis revealed not only the presence of minimalist HHRs in the two flanking repeats of PLEs but also their massive and widespread occurrence in metazoan genomes. The architecture of these ribozymes indicates that they may work as dimers, although their low self-cleavage activity in vitro suggests the requirement of other factors in vivo. In plants, however, PLEs show canonical HHRs, whereas fungi and protist PLEs encode ribozyme variants with a stable active conformation as monomers. Overall, our data confirm the connection of self-cleaving RNAs with eukaryotic retroelements and unveil these motifs as a significant fraction of the encoded information in eukaryotic genomes. PMID:25135949

  17. Mechanisms and regulation of DNA replication initiation in eukaryotes.

    Science.gov (United States)

    Parker, Matthew W; Botchan, Michael R; Berger, James M

    2017-04-01

    Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.

  18. Evolution of filamentous plant pathogens: gene exchange across eukaryotic kingdoms.

    Science.gov (United States)

    Richards, Thomas A; Dacks, Joel B; Jenkinson, Joanna M; Thornton, Christopher R; Talbot, Nicholas J

    2006-09-19

    Filamentous fungi and oomycetes are eukaryotic microorganisms that grow by producing networks of thread-like hyphae, which secrete enzymes to break down complex nutrients, such as wood and plant material, and recover the resulting simple sugars and amino acids by osmotrophy. These organisms are extremely similar in both appearance and lifestyle and include some of the most economically important plant pathogens . However, the morphological similarity of fungi and oomycetes is misleading because they represent some of the most distantly related eukaryote evolutionary groupings, and their shared osmotrophic growth habit is interpreted as being the result of convergent evolution . The fungi branch with the animals, whereas the oomycetes branch with photosynthetic algae as part of the Chromalveolata . In this report, we provide strong phylogenetic evidence that multiple horizontal gene transfers (HGT) have occurred from filamentous ascomycete fungi to the distantly related oomycetes. We also present evidence that a subset of the associated gene families was initially the product of prokaryote-to-fungi HGT. The predicted functions of the gene products associated with fungi-to-oomycete HGT suggest that this process has played a significant role in the evolution of the osmotrophic, filamentous lifestyle on two separate branches of the eukaryote tree.

  19. The first eukaryote cell: an unfinished history of contestation.

    Science.gov (United States)

    O'Malley, Maureen A

    2010-09-01

    The eukaryote cell is one of the most radical innovations in the history of life, and the circumstances of its emergence are still deeply contested. This paper will outline the recent history of attempts to reveal these origins, with special attention to the argumentative strategies used to support claims about the first eukaryote cell. I will focus on two general models of eukaryogenesis: the phagotrophy model and the syntrophy model. As their labels indicate, they are based on claims about metabolic relationships. The first foregrounds the ability to consume other organisms; the second the ability to enter into symbiotic metabolic arrangements. More importantly, however, the first model argues for the autogenous or self-generated origins of the eukaryote cell, and the second for its exogenous or externally generated origins. Framing cell evolution this way leads each model to assert different priorities in regard to cell-biological versus molecular evidence, cellular versus environmental influences, plausibility versus evolutionary probability, and irreducibility versus the continuity of cell types. My examination of these issues will conclude with broader reflections on the implications of eukaryogenesis studies for a philosophical understanding of scientific contestation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. The characterization of cytoplasmic ribosomal protein genes in ...

    African Journals Online (AJOL)

    USER

    2012-04-17

    Apr 17, 2012 ... genomics' characteristics, a genome-wide survey in N. bombycis genome was performed. From the results, we ... bombycis ESTs, and they have the same structure among microsporidia. The novel arrangements of ...... chromosome and ribosomal DNA organization in the context of the complete genome ...